
A NEW MULTI-THREADED AND RECURSIVE DIRECT ALGORITHM FOR
PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

ERCAN SELÇUK BÖLÜKBA�I

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2013

Approval of the thesis:

A NEW MULTI-THREADED AND RECURSIVE DIRECT ALGORITHM
FOR PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS

submitted by ERCAN SELÇUK BÖLÜKBA�I in partial ful�llment of the require-
ments for the degree of Master of Science in Computer Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Assoc. Prof. Dr. Murat Manguo§lu
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Sibel Tar�
Computer Engineering Department, METU

Assoc. Prof. Dr. Murat Manguo§lu
Computer Engineering Department, METU

Prof. Dr. Bülent Karasözen
Mathematics Department, METU

Prof. Dr. Cevdet Aykanat
Computer Engineering Department, Bilkent University

Dr. Cevat �ener
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: ERCAN SELÇUK BÖLÜKBA�I

Signature :

iv

ABSTRACT

A NEW MULTI-THREADED AND RECURSIVE DIRECT ALGORITHM FOR
PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS

Bölükba³�, Ercan Selçuk

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Murat Manguo§lu

August 2013, 67 pages

Many of the science and engineering applications need to solve linear systems to model
a real problem. Usually these linear systems have sparse coe�cient matrices and thus
require an e�ective solution of sparse linear systems which is usually the most time
consuming operation. Circuit simulation, material science, power network analysis
and computational �uid dynamics can be given as examples of these problems. With
the introduction of multi-core processors, it became more important to solve sparse
linear systems e�ectively in parallel. In this thesis, a new direct multi-threaded and
recursive algorithm based on DS factorization to solve sparse linear systems will be
introduced. The algorithmic challenges of this approach will be studied on matrices
from di�erent application domains. The advantages and disadvantages of variations of
the algorithm on di�erent matrices will be discussed. Speci�cally, we study the e�ects
of changing number of threads, degree of diagonal dominance, the usage of sparse
right hand side solution and various methods used to �nd the exact solution using the
reduced system. Furthermore, comparisons will be made against a well known direct
parallel sparse solver.

Keywords: Sparse Linear System, Parallel, Direct Solution, Recursion, Multithreading

v

ÖZ

SEYREK DO�RUSAL S�STEMLER�N PARALEL ÇÖZÜMÜ �Ç�N ÇOK �ZLEKL�
VE ÖZY�NELEMEL� YEN� B�R DO�RUDAN ALGOR�TMA

Bölükba³�, Ercan Selçuk

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Doç. Dr. Murat Manguo§lu

A§ustos 2013 , 67 sayfa

Bilim ve mühendislik uygulamalar�n�n ço§u, gerçek bir problemi modellemek için do§-
rusal sistemleri çözmeye ihtiyaç duyar. Bu do§rusal sistemler genellikle seyrek katsay�l�
matrislere sahiptirler ve bu nedenle ço§unlukla en çok zaman alan i³lem olan seyrek
do§rusal sistemlerin etkili bir çözümünü gerektirirler. Devre simülasyonu, malzeme bil-
imi, güç a§� analizi ve hesaplamal� ak�³kanlar dinami§i bu problemlere örnek olarak
verilebilir. Çok çekirdekli i³lemcilerin ortaya ç�kmas� ile birlikte seyrek do§rusal sistem-
leri paralel olarak etkili bir biçimde çözmek önemli hale gelmi³tir. Bu tez çal�³mas�nda,
seyrek do§rusal sistemleri çözmek için DS çarpanlara ay�rma metoduna dayal� çok
izlekli ve özyinelemeli yeni bir do§rudan algoritma tan�t�lacakt�r. Bu yakla³�m�n algo-
ritmik zorluklar� farkl� uygulama alanlar�ndaki matrisler üzerinde ele al�nacakt�r. Bu al-
goritman�n varyasyonlar�n�n farkl� matrislerdeki avantajlar� ve dezavantajlar� tart�³�la-
cakt�r. Özel olarak; �zlek say�s�nda, çapraz bask�nl�kta, seyrek sa§ taraf çözümünün
kullan�m�nda ve küçültülmü³ sistemi kullanarak kesin sonucu bulmak için kullan�lan
yöntemlerdeki de§i³ikliklerin etkilerini ele alaca§�z. Buna ek olarak, iyi bilinen bir
do§rudan paralel seyrek sistem çözücü ile de kar³�la³t�rmalar yap�lacakt�r.

Anahtar Kelimeler: Seyrek Do§rusal Sistem, Paralel, Do§rudan Çözüm, Özyineleme,

Çok �zlek

vi

To My Family

vii

ACKNOWLEDGMENTS

The author wishes to express his gratitude towards his supervisor Murat Manguo§lu

for the guidance and the encouragement he provided.

The author would also like to thank to the examining committee members Prof. Dr.

Sibel Tar�, Prof. Dr. Bülent Karasözen, Prof. Dr. Cevdet Aykanat and Dr. Cevat

�ener for their valuable and constructive comments.

The HPC resources were provided by the Department of Computer Engineering, Mid-

dle East Technical University.

The Masters of Science education of the author was supported by The Scienti�c and

Technological Research Council of Turkey (TUB�TAK) with Program No: 2210

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 5

2.1 LU Factorization . 5

2.2 SPIKE and Recursive SPIKE 7

2.3 Domain Decomposing Parallel Sparse Linear Solver 8

3 METHODS AND MOTIVATION . 9

3.1 Domain Decomposition . 9

3.2 Direct Solution . 10

3.3 Shared Memory and Recursion 11

3.3.1 Distributed Memory versus Shared Memory 11

ix

3.3.2 Recursion . 13

4 THE ALGORITHM . 15

5 NUMERICAL EXPERIMENTS . 27

5.1 Programming Environment . 27

5.2 Computing Environment . 28

5.3 Experiments and Results . 28

6 CONCLUSION AND FUTURE WORK 41

REFERENCES . 43

APPENDICES

A RESULTS OF ALL NUMERICAL EXPERIMENTS 47

A.1 ASIC_320k . 48

A.2 ASIC_620ks . 49

A.3 Crashbasis . 50

A.4 Ecology2 . 51

A.5 Freescale1 . 52

A.6 Hvdc2 . 53

A.7 Kaufhold . 54

A.8 Kuu . 55

A.9 Lin . 56

A.10 Majorbasis . 57

A.11 Pd . 58

A.12 Powersim . 59

A.13 Raj1 . 60

x

A.14 Rajat21 . 61

A.15 Scircuit . 62

A.16 Stomach . 63

A.17 Tomography . 64

A.18 Torso3 . 65

A.19 Transient . 66

A.20 Xenon2 . 67

xi

LIST OF TABLES

TABLES

Table 5.1 Properties of Test Matrices . 29

Table 5.2 Relative Residuals on Matrix ecology2 30

Table 5.3 Relative Residuals on Matrix Freescale1 33

Table 5.4 Relative Residuals on Matrix Kaufhold 34

Table 5.5 Relative Residuals on Matrix Lin 36

Table 5.6 Relative Residuals on Matrix rajat21 37

Table 5.7 Relative Residuals on Matrix torso3 39

Table 5.8 Relative Residuals on Matrix xenon2 39

Table A.1 PARDISO on ASIC_320k . 48

Table A.2 DS-NR-SP on ASIC_320k . 48

Table A.3 DS-NR-NS on ASIC_320k . 48

Table A.4 DS-RE-SP on ASIC_320k . 48

Table A.5 DS-RE-NS on ASIC_320k . 48

Table A.6 PARDISO on ASIC_620ks . 49

Table A.7 DS-NR-SP on ASIC_620ks . 49

Table A.8 DS-NR-NS on ASIC_620ks . 49

xii

Table A.9 DS-RE-SP on ASIC_620ks . 49

Table A.10 DS-RE-NS on ASIC_620ks . 49

Table A.11 PARDISO on crashbasis . 50

Table A.12 DS-NR-SP on crashbasis . 50

Table A.13 DS-NR-NS on crashbasis . 50

Table A.14 DS-RE-SP on crashbasis . 50

Table A.15 DS-RE-NS on crashbasis . 50

Table A.16 PARDISO on ecology2 . 51

Table A.17 DS-NR-SP on ecology2 . 51

Table A.18 DS-NR-NS on ecology2 . 51

Table A.19 DS-RE-SP on ecology2 . 51

Table A.20 DS-RE-NS on ecology2 . 51

Table A.21 PARDISO on Freescale1 . 52

Table A.22 DS-NR-SP on Freescale1 . 52

Table A.23 DS-NR-NS on Freescale1 . 52

Table A.24 DS-RE-SP on Freescale1 . 52

Table A.25 DS-RE-NS on Freescale1 . 52

Table A.26 PARDISO on hvdc2 . 53

Table A.27 DS-NR-SP on hvdc2 . 53

Table A.28 DS-NR-NS on hvdc2 . 53

Table A.29 DS-RE-SP on hvdc2 . 53

Table A.30 DS-RE-NS on hvdc2 . 53

xiii

Table A.31 PARDISO on Kaufhold . 54

Table A.32 DS-NR-SP on Kaufhold . 54

Table A.33 DS-NR-NS on Kaufhold . 54

Table A.34 DS-RE-SP on Kaufhold . 54

Table A.35 DS-RE-NS on Kaufhold . 54

Table A.36 PARDISO on Kuu . 55

Table A.37 DS-NR-SP on Kuu . 55

Table A.38 DS-NR-NS on Kuu . 55

Table A.39 DS-RE-SP on Kuu . 55

Table A.40 DS-RE-NS on Kuu . 55

Table A.41 PARDISO on Lin . 56

Table A.42 DS-NR-SP on Lin . 56

Table A.43 DS-NR-NS on Lin . 56

Table A.44 DS-RE-SP on Lin . 56

Table A.45 DS-RE-NS on Lin . 56

Table A.46 PARDISO on majorbasis . 57

Table A.47 DS-NR-SP on majorbasis . 57

Table A.48 DS-NR-NS on majorbasis . 57

Table A.49 DS-RE-SP on majorbasis . 57

Table A.50 DS-RE-NS on majorbasis . 57

Table A.51 PARDISO on Pd . 58

Table A.52 DS-NR-SP on Pd . 58

xiv

Table A.53 DS-NR-NS on Pd . 58

Table A.54 DS-RE-SP on Pd . 58

Table A.55 DS-RE-NS on Pd . 58

Table A.56 PARDISO on powersim . 59

Table A.57 DS-NR-SP on powersim . 59

Table A.58 DS-NR-NS on powersim . 59

Table A.59 DS-RE-SP on powersim . 59

Table A.60 DS-RE-NS on powersim . 59

Table A.61 PARDISO on Raj1 . 60

Table A.62 DS-NR-SP on Raj1 . 60

Table A.63 DS-NR-NS on Raj1 . 60

Table A.64 DS-RE-SP on Raj1 . 60

Table A.65 DS-RE-NS on Raj1 . 60

Table A.66 PARDISO on rajat21 . 61

Table A.67 DS-NR-SP on rajat21 . 61

Table A.68 DS-NR-NS on rajat21 . 61

Table A.69 DS-RE-SP on rajat21 . 61

Table A.70 DS-RE-NS on rajat21 . 61

Table A.71 PARDISO on scircuit . 62

Table A.72 DS-NR-SP on scircuit . 62

Table A.73 DS-NR-NS on scircuit . 62

Table A.74 DS-RE-SP on scircuit . 62

xv

Table A.75 DS-RE-NS on scircuit . 62

Table A.76 PARDISO on stomach . 63

Table A.77 DS-NR-SP on stomach . 63

Table A.78 DS-NR-NS on stomach . 63

Table A.79 DS-RE-SP on stomach . 63

Table A.80 DS-RE-NS on stomach . 63

Table A.81 PARDISO on tomography . 64

Table A.82 DS-NR-SP on tomography . 64

Table A.83 DS-NR-NS on tomography . 64

Table A.84 DS-RE-SP on tomography . 64

Table A.85 DS-RE-NS on tomography . 64

Table A.86 PARDISO on torso3 . 65

Table A.87 DS-NR-SP on torso3 . 65

Table A.88 DS-NR-NS on torso3 . 65

Table A.89 DS-RE-SP on torso3 . 65

Table A.90 DS-RE-NS on torso3 . 65

Table A.91 PARDISO on transient . 66

Table A.92 DS-NR-SP on transient . 66

Table A.93 DS-NR-NS on transient . 66

Table A.94 DS-RE-SP on transient . 66

Table A.95 DS-RE-NS on transient . 66

Table A.96 PARDISO on xenon2 . 67

xvi

Table A.97 DS-NR-SP on xenon2 . 67

Table A.98 DS-NR-NS on xenon2 . 67

Table A.99 DS-RE-SP on xenon2 . 67

Table A.100 DS-RE-NS on xenon2 . 67

xvii

LIST OF FIGURES

FIGURES

Figure 1.1 Matrix scircuit . 2

Figure 2.1 LU = A . 5

Figure 2.2 A Banded Sparse Matrix . 7

Figure 2.3 Matrix after pre-processing . 8

Figure 4.1 A linear system of equations Ax = f 16

Figure 4.2 D +R← A . 17

Figure 4.3 Matrix R with non-zero columns marked 17

Figure 4.4 Solve DG = R for only non-zero collumns shown with light blue . 18

Figure 4.5 Matrix G with non-zero columns marked 18

Figure 4.6 Matrix G with red cells that may cause loss of precision 20

Figure 4.7 Solve Dg = f . 20

Figure 4.8 Matrix S . 21

Figure 4.9 Matrix S(c,c) with some values that might be dropped shown with

light green . 22

Figure 4.10 Solve S(c,c)x(c) = g(c) . 22

Figure 4.11 Matrix S(c,c) with cut points for recursion shown 23

xviii

Figure 4.12 Matrix G(:,c) . 24

Figure 5.1 Matrix ecology2: Time versus Number of Threads 30

Figure 5.2 Matrix ecology2: Speedup versus Number of Threads 31

Figure 5.3 Matrix Freescale1: Time versus Number of Threads 32

Figure 5.4 Matrix Freescale1: Speedup versus Number of Threads 32

Figure 5.5 Matrix Kaufhold: Time versus Number of Threads 33

Figure 5.6 Matrix Kaufhold: Speedup versus Number of Threads 34

Figure 5.7 Matrix Lin: Time versus Number of Threads 35

Figure 5.8 Matrix Lin: Speedup versus Number of Threads 35

Figure 5.9 Matrix rajat21: Time versus Number of Threads 36

Figure 5.10 Matrix rajat21: Speedup versus Number of Threads 37

Figure 5.11 Matrix torso3: Time versus Number of Threads 38

Figure 5.12 Matrix torso3: Speedup versus Number of Threads 38

Figure 5.13 Matrix xenon2: Time versus Number of Threads 39

Figure 5.14 Matrix xenon2: Speedup versus Number of Threads 40

xix

LIST OF ABBREVIATIONS

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CERN European Organization for Nuclear Research

Fermilab Fermi National Accelerator Laboratory

LAPACK Linear Algebra Package

MKL Math Kernel Library

MPI Message Passing Interface

MUMPS A Multifrontal Massively Parallel Sparse Direct Solver

OpenMP Open Multi-Processing

POSIX Portable Operating System Interface for Unix

ScaLAPACK Scalable Linear Algebra Package

UMFPACK Unsymmetrix Multifrontal Sparse LU Factorization Package

xx

CHAPTER 1

INTRODUCTION

The number of transistors in the processor's doubles every 18 months states the
Moore's Law [1]. It is proven almost to be true by the developments of the last
decades. And those improvements mostly re�ected to the processor clock rates. Al-
though this law would be limited to the possible minimum size of transistors as it will
reach to the size of atoms, it can be said that it is expected to work for ten years more.
However, mainly because of power dissipation issues, the tendency is now to produce
processors with more cores rather than producing processors with higher clock rates.
Therefore, even personal computers now have more cores instead of increase in clock
rates. It is not surprising that high performance computers now have more and more
nodes and cores by seeing the developments on personal computers.

The number of transistors is not the only number to increase over the years, but also
problem data sizes and complexities. To have better and more realistic calculations
we need models which resemble more and more to the real problems. Nonetheless,
classical sequential methods are parallelized with pre-acceptance that they will perform
well on parallel computing platforms. Nevertheless, they may not be the most e�cient
and scalable choice. Therefore in order to improve scalability of the linear solvers on
multicore platforms, we need either parallelized versions of the classical linear solvers
or novel methods that are tailored for today's parallel computing platforms.

Parallel computing is being used for a variety of areas, including applications in en-
gineering and design, scienti�c applications, commercial applications and applications
in computer sciences. Especially for areas that uses very large data, the linear systems
constructed to represent them are also very large and it became almost obligatory to
bene�t from parallel computing [2, 3].

Those systems are actual models of real world problems and when they are represented
as graphs, they usually have far less edges than a fully connected graph. Thus, they
are sparse linear systems. In other words, in sparse matrices, there are more zero
elements than other elements. Since these matrices have so many zero elements, they
need to be treated specially to ensure no arithmetics is performed on zero elements.

1

An example of a sparsity structure of a matrix is given on Figure 1.1, with non-zero
values shown with blue dots. It is a sparse matrix from University of Florida Matrix
Collection [4], scircuit. It represents a circuit simulation problem. Only 0.0032795
percent of its entries are non-zero.

Figure 1.1: Matrix scircuit

To solve a linear system of equations, i.e., Ax = f where x is unknown, a naive
approach could be to calculate x = A−1f . To solve the system with such approach,
we need to �nd A−1 �rst. However, computing the inverse explicitly is not only
computationally expensive but also numerically less stable. So, it is far more better
to use methods to solve a linear system without explicitly computing the inverse of
a matrix. Today, none of the linear system solvers computes the inverse of a matrix.
Instead, they apply factorization on matrices. Our algorithm is based on one of them,
namely the DS factorization. DS factorization is a new method to factorize matrices
using the diagonal blocks.

Our algorithm parallely applies DS factorization on the initial matrix to be solved,
in order to have an independent reduced system of the initial sparse linear system
of equations. Moreover, we solve the reduce system applying the same algorithm
recursively.

2

The main contribution of our new algorithm is that our algorithm is recursive, direct
and multi-threaded [5].

The rest of this report is organized as follows: In Chapter 2, literature research about
LU Factorization, SPIKE, and Domain Decomposing Parallel Sparse Linear Solver
are explained. This chapter is followed by the chapter that explains Methods and
Motivation including Domain Decomposition, Direct Solution, and Shared Memory
and Recursion. In Chapter 4, our algorithm with all its variations is expressed. In
Chapter 5, we show the programming and computing environment, and the exper-
imental results. Finally, in Chapter 6, we conclude our work with a summary and
comments on some possible future directions.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, background information about the solution of linear systems and fac-
torization of matrices will be presented. Moreover, we will show two parallel algorithms
that inspired our work.

2.1 LU Factorization

LU Factorization (LU Decomposition) is one of the classical algorithms that trans-
forms the linear system of equations into a form that we can solve it by backward and
forward substitutions. It can be described as the matrix form of Gaussian Elimination.
The idea of LU Factorization is to transform the system into a product of an upper-
triangular and a lower-triangular matrices (see �gure 2.1), i.e., transforming Ax = f

to LUx = f , where LU = A.

Figure 2.1: LU = A

For large condition numbers or singular matrices, Gaussian Elimination with partial or
complete pivoting can be applied. The following is the classical dense LU Factorization
without pivoting [6]. A basic pseudo code to solve a linear system is given on Algorithm
1.

5

Algorithm 1 LU Factorization (Doolittle Algorithm)
1: for i← 0, n− 1 do
2: for j ← i+ 1, n do
3: li,j ← aj,i/ai,i

4: end for
5: for j ← i+ 1, n do
6: for k ← i+ 1, n do
7: aj,k = aj,k + lj,i · ai,k
8: end for
9: end for
10: end for

Algorithm 1 overwrites the original matrix with diagonal and upper triangular values
of U, and lower triangular values belonging to L. Since L is assumed to be a unit lower
triangular matrix, the main diagonal of L known to consists of ones [6].

Ax = f is now transformed into LUx = f where L is a lower triangular matrix, U an
upper triangular matrix, and A = LU .

After the factorization phase, forward and backward substitutions are applied.

Algorithm 2 Forward Substitution
1: g1 ← f1/l1,1

2: for i← 2, n do
3: sum← 0

4: for j ← 1, i− 1 do
5: sum← sum+ li,j · gj
6: end for
7: gi ← fi − sum

8: end for

In Algorithm 2, forward substitution is applied to �nd g = L−1f . Since LUx = f ,
g is equal to LU . It is known that Ux = g. Thus, Algorithm 3 �nds x = U−1g by
backward substitution.

Algorithm 3 Backward Substitution
1: xn ← gn/un,n

2: for i← n− 1, 1 do
3: sum← 0

4: for j ← i+ 1, n do
5: sum← sum+ ui,i · xj
6: end for
7: xi ← gi − sum

8: end for

6

There are also a number of parallel algorithms that are using sparse LU factorization.
An example is SuperLU which is a general purpose library for the direct solution of
large, sparse, non-symmetric systems of linear equations in parallel and uses Gaussian
elimination as its Kernel algorithm [7, 8].

2.2 SPIKE and Recursive SPIKE

The main idea of our work is based on the DS factorization of SPIKE [9, 10, 11]. The
main di�erence is that SPIKE DS factorization is designed for banded linear systems,
whereas our factorization is designed for sparse linear systems. SPIKE has two stages
namely, pre-processing and post-processing, which are equivalent to factorization and
solution stages in other solvers.

Figure 2.2 represents a banded sparse matrix for given number of partitions. On pre-
processing phase, dark green cells are inside diagonal blocks whereas light green cells
are outside.

Figure 2.2: A Banded Sparse Matrix

A matrix after pre-processing is represented on Figure 2.3. Dark green cells inside
the diagonal blocks are now Identity matrices and light green cells are dense matrices.
Pre-processing stage does not work with the right hand side of the linear system. It
has two phases: One to partition the linear system on di�erent processes and one to
simultaneously factorize the di�erent partitions of the system on di�erent processes to
extract the reduced system with smaller size.

Post-processing, on the contrary, works with the right hand side of the system. This
stage has also have two phases. First one is to solve the reduced system and the last

7

Figure 2.3: Matrix after pre-processing

phase to retrieve the solution of the initial system. Except the solution of the reduced
system, all the steps of SPIKE are ideally parallel, i.e., does not need any data from any
other processes. The size of the reduced system depends on the number of partitions
and the bandwidth of the initial banded linear system.

There is also a recursive implementation of SPIKE [10]. The algorithm is applied
recursively on S matrix, which has a structure that the block diagonals are identity
and to the left and right block diagonals there are dense tall matrices. In our algorithm,
however, the recursion is applied on the smaller reduced system.

2.3 Domain Decomposing Parallel Sparse Linear Solver

Domain Decomposing Parallel Sparse Linear Solver (DDPS) [12, 13] is a generalization
of banded linear system solver SPIKE, for sparse linear systems. DDPS uses Algebraic
domain decomposition. Like SPIKE, The algorithm is ideally parallel except the so-
lution of the reduced system.

If DDPS is used as a solver for a preconditioned system in an iterative method, a
dropping strategy is applied for speed-up. The error which is a result of dropping
strategy is handled with iteration. However DDPS can be implemented as a direct
solver if it is computed without a dropping strategy, and with exact computation
of LU factorization of the initial matrix and exact solution of the reduced system.
DDPS is designed to be used as a hybrid (direct/iterative) solver to achieve a balance
in robustness and scalability. Domain Decomposing Linear Solver uses distributed
memory in its implementation and it is not a recursive algorithm.

8

CHAPTER 3

METHODS AND MOTIVATION

In the previous chapter, we have presented three solution algorithms and shown their
characteristics and their relation to our algorithm. This chapter will explain some
methods and features that we use in our algorithm. They are domain decompostion,
direct solution, shared memory and recursion.

3.1 Domain Decomposition

Domain decomposition corresponds to the methods that are �exible for the solution
of linear and non-linear systems arising from the discretization of partial di�eren-
tial equations. Domain decomposition methods use underlying features of the partial
di�erential equations to obtain faster solutions. They are often being used as precon-
ditioners for linear problems and non-linear problems [14].

Their potential for e�cient parallelization using data locality, ability to deal with
partial di�erential equations even on complicated physical geometries, ability to deal
with partial di�erential equations which have di�erent behaviour on di�erent parts
of the domain, and superior convergence properties for iterative methods even on
sequential machines are some of the motivations for the use of domain decomposition
methods [15].

The main similarity of the algorithm with the one it is based on, is the method used for
division of the problem into sub problems; namely domain decomposition. Domain de-
composition is usually used to �nd preconditioners for iterative methods. For a certain
linear system, any domain decomposition algorithm written in terms of functions and
operators, it is possible to transform it into matrix form as a preconditioned iterative
form [16]. However, in this thesis, domain decomposition is used as a part of a direct
algorithm and it is independent of the problem domain. Hence, it can be referred as
"algebraic domain decomposition".

Since parallel programming relies on the idea that it might be possible to have a better
performance, if the solution could be achieved with using di�erent processes at the same

9

time on the sub problems of the same domain, it is important how we split the problem
into sub problems. Because we need communication, technically it is not possible to
achieve ideal speed-up. However, we can evaluate the algorithm on how much it is close
to the ideal parallelism, for example on the communication volume. The problem is
that the separate sub problems may need to communicate during the execution. Since
the processors are getting faster and faster, the signi�cance of the communication
time is also getting more important. The advantage of domain decomposition is that
we do not need to communicate between the sub problems during the execution. The
partitioning method used on this algorithm allows us to have a completely independent
subsystem, thus achieving minimum need for communication or data sharing. It also
helps us to decrease the size of the reduced system by gathering the non-zero values on
diagonal blocks. In this work, a sequential graph partitioning and �ll-reducing matrix
reordering algorithm, METIS [17] is used for domain decomposition.

3.2 Direct Solution

One of the features of the algorithm introduced in this thesis is that it is not used as
a solver for the preconditioned system in an iterative method, but as a direct solver.

Preconditioning is a technique used for iterative algorithms in order to improve the
spectrum of the initial matrix so that it is more favorable for the iterative scheme. The
application of preconditioner is usually denoted by just multiplying its inverse with
both sides of the equation. In practice, however, it involves solving systems where the
coe�cient matrix is the preconditioner at each iteration.

Iterative methods are based on the idea that we can get approximate results which are
accurate enough, incrementally improved and is expected to be be computationally
cheaper than the direct solvers. Coming up with an e�ective preconditioner, however,
is often not straightforward and there are no black-box techniques to do it. That
is why it is often referred as �the art of preconditioning� [18]. The scalability of
direct methods are poor with problem size in terms of operation counts and memory
requirements particularly for problems that arise from the discretization of partial
di�erential equations in three space dimensions. For such cases, iterative methods are
considered as the only option available [19].

Although the result of iterative methods are accurate and robust enough for many
applications, they are not robust enough for many others [20]. Direct solvers are
�robust�, i.e., they can solve systems that are not possible to solve with iterative
solvers. There are so many direct methods each specialized on handling one or more
issues such as scalability, time consumption, large memory usage, etc. [21, 22].

To solve sparse linear systems directly, there are di�erent decompositions like Cholesky
factorization, QR factorization, LU factorization and their di�erent implementations

10

like SuperLU [7, 8], MUMPS [23], PARDISO [24, 25, 26, 27], UMFPACK [28, 29, 30,
31], can be taken into account.

Although, the algorithm o�ered in this thesis is a direct algorithm, it can easily be
modi�ed to be used as a solver for the preconditioned linear system of an iterative
algorithm.

3.3 Shared Memory and Recursion

Our algorithm is implemented as a multi-threaded algorithm which uses recursion on
the reduced system. It is implemented using Intel Cilk Plus [4] which is an extension
of programming language C and is a part of Intel Compiler. We use Cilk environ-
ment mainly because of the recursion support it has, and Intel Cilk Plus for its well
documentation and support.

3.3.1 Distributed Memory versus Shared Memory

The algorithm is implemented for shared memory architectures rather than distributed
memory architectures. The main di�erence of these two is that while distributed mem-
ory model use di�erent processes to execute di�erent tasks, shared memory algorithms
use threads.

A process uses a virtual address space to hold the collection of program, data, stack
and attributes de�ned in the process control block; namely process image [32]. Unlike
processes, threads of a process has the same state and resources of that process, and
all the threads share them since they belong to the same address space and have access
to same data [32].

We now discuss the advantages and challenges of having shared memory or using
threads in a parallel algorithm, speci�cally in our algorithm.

Distributed memory systems need a message passing method. Thus, the overheads of
message passing program is usually higher than thread overheads of a shared memory
system.

• The creation time of a thread is much less than a process, since each process uses
it's own process image unlike the threads [32, 33].

• Since we work on large matrices, resource sharing is also advantageous. Send and
receive of such big data would require more memory references and also require more
storage [33].

11

• Scalability is also an advantage, since most of the computers are now multi-core
with 2 or more computational units sharing the same main system memory. Threads
may run in parallel on di�erent cores, while a single-threaded process is able to run on
only one processor [33].

• We want to use recursion in our algorithm. Another advantage is that there are
shared memory programming languages which are suitable for recursive approach.
While implementing a recursive code in a message passing environment, systems such
as MPI [34], would be impractical.

There are also challenges that makes it di�cult to implement the algorithm using
shared memory.

• It is very important to divide the jobs and the work on data balanced. This challenge
applies not only on shared memory systems, but also on distributed memory systems.
To handle, we use a reordering and partitioning algorithm before distributing the
workload of the threads.

• Another issue is data dependency. Threads working on same data concurrently
means a potential danger for data corruption. There are some strategies to avoid this
issue, by ensuring the synchronization. However, another issue would be that these
strategies make the algorithm more di�cult to code, test and debug [33]. Nonetheless,
the threads of our algorithm barely needs to work on same spaces of the data, and
Intel Cilk Plus [35], the programming language that we use, handles these parts of the
code easily. So, data dependency is not an important problem for our current work.

• The main challenge of using shared memory for algorithm is the resources of com-
puting environment. While using distributed memory approach, the programmer can
work with all the nodes of a parallel computer, it is only possible to use the processors
of one node to fully bene�t from the advantages of shared memory algorithms. This
issue limits our numerical experiments to use a limited number of process. This num-
ber is determined by the number of processors of a core of the computing environment
we use.

To implement an algorithm with threads there are several options such as using POSIX
Threads, OpenMP and Cilk.

POSIX Threads are the most known multithreading speci�cations referring to the
POSIX standard (IEEE 1003.1c) that de�nes an API for thread creation and synchro-
nization. Mostly UNIX-type systems implement POSIX Threads speci�cation [33].

OpenMP is an API (Application Programming Interface) developed to enable portable
shared memory parallel programming and to support the parallelization of applications
from many disciplines. It also permits an incremental approach for parallelizing an
existing code [36].

12

Cilk is an extension of programming language C. It is a parallel multithreaded language
designed to make high-performance parallel computing easier. The programmer of a
Cilk code does not have to deal with many low-level implementation details like load
balancing and communication [37, 38, 39]. Cilk also allows programmer to implement
a recursive parallel algorithm.

3.3.2 Recursion

Recursion can be simply described as calling the same set of routines as a part of these
routines. A simple recursive function has two parts. A base case and a set of rules to
reduce the system to the base case [40].

Recursive approach is used in our algorithm to execute the same processes in a similar
way when proceeding. The main motivation for us to use recursion is that as the
number of partitions increase, the reduced system size increases and hence the need
for solving the reduced system in parallel. Since the structure of the reduce system
is somehow similar to the original system, we take advantage of the partitioning of
the original system and apply the same algorithm recursively on the reduce system in
order to reduce the overall solution time and improve scalability.

It might be helpful to use recursion on larger matrices. The degree of diagonal domi-
nance of the matrix could a�ect the performance gained by recursion. We expect that
it might a�ect the sparsity of the reduced system matrix obtained after partitioning
and DS factorization. If the initial matrix that we use is not diagonally dominant, we
expect that the reduced system would be a dense matrix, so using recursion would not
be bene�cial. Otherwise, we can consider the reduced system as another sparse linear
system and apply our algorithm recursively. For very large matrices, we expect that
the reduced system would be also large enough to apply recursion e�ciently.

13

14

CHAPTER 4

THE ALGORITHM

This chapter will describe not only one algorithm but all variations of the algorithm
that are being used in the numerical experiments. We will also give some theoretical
expectations about these variations.

Algorithm 4 The Algorithm
1: procedure RDS(A, x, f, t) . to solve Ax = f with t number of threads
2: D +R← A

3: Indentify non-zero collumns of R and store their indices in c

4: G← D−1R . using sparse right hand side feature of
PARDISO

5: g ← D−1f

6: S ← I +G

7: if t ≥ 4 then
8: RDS(S(c,c), x(c), g(c), t/2)
9: else
10: x(c) ← S−1

(c,c)g(c)
11: end if
12: a. x← g −G(:,c)x(c)

b. x← D−1(f −Rx̂) . where x̂ is the full sized vector �lled with
only the values corresponding indice c

13: end procedure

Given a general sparse linear system of equations:

Ax = f is assumed to be the sparse linear system after METIS reordering and we
partition the matrix and the right hand side based on the information provided by
METIS [17] for gathering the non-zero values in the diagonal blocks.

In Figure 4.1, a sparse linear system of equations, Ax = f , is given. Dark green cells,
white cells and grey cells represent non-zero blocks, zero blocks and unknown blocks

15

Figure 4.1: A linear system of equations Ax = f

consecutively.

The factorization is considered to be the preprocessing stage of the algorithm since
it can be computed only once if linear systems with the same sparsity structure of
the coe�cient matrix needs to be solved. Here, like other well-known algorithms, we
are factorizing the initial sparse matrix A to use this factors in the solution phase.
Substeps 2,3 and 4 (of algorithm 4) are all considered to be preprocessing since they
do not use the right side of the linear system to be solved, namely f .

Solution of linear systems involving the diagonal blocks in the algorithm are handled
using a well known parallel direct sparse linear system solver, PARDISO [24, 25, 26, 27].
Other direct or iterative solvers, however, can easily replace PARDISO provided they
have the capability to compute partial solution in case of sparse right hand side. To
improve data locality; summation, subtraction and multiplications are handled using
BLAS and Sparse BLAS routines of Intel MKL [41, 42].

The algorithm is almost ideally parallel. There is no communication before the solution
of the reduced system. Since our approach is recursive, the time consumed solving this
part is also expected to be reduced.

In general, all sparse linear solvers �nd ways to handle the non-zero values of the initial
matrix without losing time with the zeros. To do this and reduce the �ll-in, domain
decomposition is used in our algorithm.

D +R← A (4.1)

Here, D consists of the block diagonals of the matrix A. The number of block diagonals
is determined by the number of threads that will be used. Each block diagonal will be

16

Figure 4.2: D +R← A

handled by di�erent threads on preprocessing stage.

Matrix R consists of the remaining elements, i.e., the values of A which are not inside
the diagonal blocks. We can compute R by subtracting D from A, i.e., R = A −D.
The non-zero columns of R determine the size of the reduced system.

Figure 4.3: Matrix R with non-zero columns marked

Here in our example, we just need to process only 5 columns out of 16 of the matrix
R. From now on, we are operating only on the selected indices of the matrix for all
the steps but the last step.

17

Figure 4.4: Solve DG = R for only non-zero collumns shown with light blue

Figure 4.5: Matrix G with non-zero columns marked

G← D−1R (4.2)

G← D−1R is applied in parallel on each processor. The matrix is partitioned row-wise
and each process executes the computation on its own part of D and R.

We now have a structure with non-zero values only on the columns where R has non-
zero values. Since we are going to apply the same operation on the right side of
the initial equation, the solution remains unchanged, i.e., ((D−1A)x = D−1f), where
Ax = f . After this operation, a smaller and independent system, the reduced system,
can be extracted and solved. Note that it was not possible to �nd and independent
and small system before this step.

18

The most time consuming part of the algorithm is this part, where we compute the
matrix G. We expect that R is also a sparse matrix. Since we have this sparse matrix
on the right side and we do not need every entry in the solution, some savings could
be made by using the sparse right hand side feature of PARDISO.

The main advantage is that we do not have to calculate the values in the solution vector
that are in the same row with the zero values of matrix R resulting in reduction of
the amount of computation, and hence a reduction in total time. However, this could
also mean some information loss since some entries of G matrix will not be computed.
This means a trade-o� between speed and robustness. If we use sparse right hand side
feature of PARDISO, the algorithm is faster but less robust.

The magnitude of values that we do not compute mainly depends on the degree of
block diagonal dominance of matrix D. Thus, if the initial matrix has very large
values on it's diagonal blocks, the values we lose because of using sparse right hand
side feature of PARDISO becomes less important since they are practically zero. So,
the robustness of the algorithm depends on the block diagonal dominance after the
permutation, i.e., the dominance of the values on the block diagonals with respect to
the other values on the matrix.

Nonetheless, not all the matrices are block diagonal dominant matrices after METIS
reordering. So, we may need a method that still bene�ts from the sparse right hand
side feature of PARDISO and maintain the robustness regardless of block diagonal
dominance. To do this, we need to �nd the solution of the system without using the
values in G which are not calculated due to the usage of sparse right hand side feature
of PARDISO. Such method is given on 12.b (Algorithm 4).

Note that we calculated some values that corresponds to the zero values of the right
hand side vector. They are calculated because they are needed for step 12 (of Algorithm
4), to �nd the reduced system correctly. However, for systems that have very large
block diagonal dominance, skipping to calculate these values may also lead to a speed-
up without a signi�cant loss of precision.

In Figure 4.6, red cells denote the values that are not calculated, light greens are the
cells that are calculated because we need them in step 12 of Algorithm 4.

Since we have now all the necessary information for the left hand side of the reduced
system, we can now move on to the operations involving the right side. Until now, we
did not use any value from the right hand side of the system, and we also did not need
any communication.

g ← D−1f (4.3)

19

Figure 4.6: Matrix G with red cells that may cause loss of precision

Figure 4.7: Solve Dg = f

To solveDg = f , We applyD−1 to the right hand side of the initial linear system. Note
that, again we are solving multiple independent linear systems where the coe�cient
matrices are the blocks of the matrix D and we do not compute D−1 explicitly. Since
in general the right hand side vector is assumed to be dense, we do not use the sparse
right hand side feature of PARDISO in this step. This operation does not require too

20

much time because it is only forward and backward sweeps of already computed LU
factorization and is completely parallel.

S ← I +G (4.4)

The operation I +G actually gives the result of D−1A, since A = D+R and D−1A =

D−1(D +R), which is also equal to I +G.

Figure 4.8: Matrix S

After we drop the indices that we will not use for the reduced system, S(c,c) is shown
on Figure 4.9. Dark green cells denote the values that are absolutely necessary for any
case and light green cells contain the values that might be dropped in case the initial
system would be block diagonally dominant.

Even if we use the sparse right hand side feature of PARDISO, there is no information
loss on S(c,c) and hence it is exact. There is no loss of information, because while
calculating G, we calculate all the needed values for the reduced system, namely the
values that are on the rows that are corresponding to the indice c.

However, we may not have to compute the entries of the matrix that are expected to
be relatively small if the matrix is block diagonally dominant. In this small example
these are highlighted as light green. This means some information is lost, but both

21

Figure 4.9: Matrix S(c,c) with some values that might be dropped shown with light
green

computing the reduced system and solving the reduced system will be faster. We can
also accelerate the algorithm that way with a trade-o� in terms of robustness. Again,
the accuracy loss would depend on the block diagonal dominance of the initial system.
It might be possible to implement an extra preprocessing phase that �rst increases the
block diagonal dominance with an additional preprocessing and apply the algorithm
on this system. Nevertheless, this is out of the scope of our current work.

Figure 4.10: Solve S(c,c)x(c) = g(c)

x(c) = S−1
(c,c)g(c) (4.5)

22

In this example, the reduced system is considerably small and hence, we do not need
to use recursion. However, if we consider �lled cells as an abstraction, for example as
block sparse matrices consisting of matrix entries at least one having a non-zero value,
the reduced system could be still sparse and large enough for recursion.

Figure 4.11: Matrix S(c,c) with cut points for recursion shown

Since calling METIS on every recursive step would be expensive, we rather choose our
partitioning points for the blocks referring to the last cut-o�. In this example the �rst
3 blocks come from the thread 1 and 2, and the last 2 from the thread 3 and 4. We
halved the number of threads, thus we cut from where thread 2 �nishes.

The sparsity of the reduced system is observed to be related to the degree of diagonal
dominance of the initial Matrix A. If the initial Matrix is diagonally dominant, the
values resulted from the equation G = D−1R would be nearly zero, so the reduced
matrix would be sparse.

For the base case of recursion, we used PARDISO in our algorithm to solve the reduced
system. However, if the reduced system is dense, it would be more suitable to use a
dense linear system solver such as the ones in LAPACK [43] or ScaLAPACK [44], since
dense solvers are more e�cient for dense matrices.

x← g −G(:,c)x(c) (4.6)

Unless we use sparse right hand side feature of PARDISO, this operation works cor-
rectly and gives the exact result, because the solution of the reduced system is also
exact. The proof of the formula is given by Proof 1.

23

Proof 1
1: Gx = G(:,c)x(c) . as G has non-zero values only on their

indices c.
2: DGx = DG(:,c)x(c)
3: Rx = DG(:,c)x(c) . since G = D−1R, i.e., DG = R.
4: f = Dx+DG(:,c)x(c) . since f = Ax, andA = D + R, thus f =

(D +R)c = Dx+Rx.
5: D−1f = x+G(:,c)x(c)
6: g = x+G(:,c)x(c), . since g = D−1f .
7: x = g −G(:,c)x(c)

Figure 4.12: Matrix G(:,c)

x← D−1(f −Rx̂) (4.7)

Because the speed is important for us, we used sparse right hand side feature of
PARDISO almost on all of the numerical experiments. G = D−1R is approximately

24

calculated if we use this feature. There is information loss on matrix G. So, the result
is also approximate. If the matrix is block diagonally dominant, the unused values are
small, so the result is more robust. Otherwise, we can use another approach which is
also exact at a cost of another parallel linear solve using the block diagonal matrix D
as the coe�cient matrix. We note that the extra cost here is not too much since the
factors for each diagonal block of D has been already computed in the �rst stage of
algorithm.

We can calculate x by 12.b, where x̂ is a vector in which only values corresponding
to the indice c is �lled by the values of x(c). Since we do not use the matrix G on
this computation, the sparse right hand side feature of PARDISO does not a�ect the
accuracy of our result. The proof of this method is given by Proof 2.

Proof 2
1: Rx = Rx̂ . since R has non-zero values only on the

columns that corresponds to the indices
shown by c.

2: Ax = f

3: Dx+Rx = f . since A = D +R.
4: Dx+Rx̂ = f . since Rx = Rx̂.
5: Dx = f −Rx̂

6: x = D−1(f −Rx̂)

25

26

CHAPTER 5

NUMERICAL EXPERIMENTS

In the previous chapters, we have explained the methods that we used and our al-
gorithm. This chapter will show the programming and computing environments we
worked on and give the experimental results of our work.

5.1 Programming Environment

In this section, we will give the information about the libraries we used in our algorithm.
We will explain their features and how we used them.

METIS is a sequential graph partitioning and �ll-reducing matrix reordering algorithm
[17]. �The algorithms implemented in METIS are based on the multilevel recursive-
bisection, multilevel k-way, and multi-constraint partitioning schemes� in Karypis Lab
[45]. It is used in our work to gather the non zero values on matrix near the main diag-
onal by setting it to minimize the communication volume. METIS �nds a symmetric
permutation of matrices and works on undirected graphs. For non-symmetric matri-
ces, we used a symmetric matrix that matches to the structure of our non-symmetric
matrix, i.e., dividing all the values on (|A|T + |A|) by 2. Version 5.1.0 of METIS is
used in our work.

Some of the matrices that are used in our experiments has zero values on their main
diagonals. Since having even one zero value in the main diagonal means that our matrix
is singular (or non-invertable), we apply non-symmetric permutation. HSL MC64 is
a collection of Fortran codes to �nd a column permutation vector to ensure that the
matrix will have only non-zero entries on its main diagonal [46]. The permutation
vector created by HSL MC64 is used on some of our test matrices.

Intel Cilk Plus is an extension of C and C++ languages [35]. In our work it is used to
ensure e�cient multi-threading with recursion.

Intel MKL (Math Kernel Library) is a library of math routines such as BLAS, LA-
PACK, ScaLAPACK and sparse linear system solvers [41]. In our work, all the basic

27

matrix-vector and matrix-matrix operations are handled using BLAS and Sparse BLAS
routines of Intel MKL version 10.3 [42].

PARDISO [24, 25, 26, 27] is a well known, fast and robust parallel direct solver for
sparse linear systems of equations. It works both on shared and distributed memory
architectures. It is used both for testing our results and as a part of our algorithm.
All of the solutions inside of our algorithm are handled by PARDISO. Version 4.1.2
of PARDISO is used in our work. For factorization phase, it applies �ll-in METIS
reordering by default. The only non-default parameter that we use is the one that
controls the sparse right hand side feature of PARDISO. When the right hand side is
also a sparse matrix (see line 4 of Algorithm 4), we use this option to avoid unnecessary
calculations and save time.

5.2 Computing Environment

All the numerical experiments were executed on NAR. NAR is the High Performance
Computing Facility of Middle East Technical University Department of Computer
Engineering. �It aims to serve research studies and courses of METU, involving parallel
algorithms and solutions� [47].

A single node of NAR contains 2 x Intel Xeon E5430 Quad-Core CPU (2.66 GHz,
12 MP L2 Cache, 1333 MHz FSB) and 16 GB Memory. Nar uses an open source
Linux distribution developed by Fermi National Accelerator Laboratory (Fermilab)
and European Organization for Nuclear Research (CERN), Scienti�c Linux v5.2 64bit,
as its operating system [47].

5.3 Experiments and Results

In this section, we will discuss the results of the tests. For each test matrix we use
two �gures and a table. The number of threads used for each test starts from 1
and continues with the powers of 2. Because of the limitations of our computing
environment, we used at most 8 threads.

For each di�erent thread number there are 5 test cases:

1) A well-known parallel direct solver for sparse linear sytem of eqations, PARDISO.

2) Non-recursive DS factorization using the sparse right hand side feature of PARDISO
in its computations (DS-nr-sp).

3) Non-recursive DS factorization without using the sparse right hand side feature of
PARDISO (DS-nr-ns).

28

4) Recursive DS factorization using the sparse right hand side feature of PARDISO
(DS-re-sp).

5) Recursive DS factorization without using the sparse right hand side feature of
PARDISO (DS-re-ns).

The matrices used for testing are retrieved from University of Florida Sparse Matrix
collection [4]. The properties of matrices are given on Table 5.1. For inde�nite ma-
trices, the degree of diagonal dominances given are calculated after non-symmetric
permutation.

Table 5.1: Properties of Test Matrices

Matrix Name Number of
Rows and
Columns

Number of
Non-zeros

Degree of
Diagonal
Dominance

Problem Type

ASIC_320k 321,821 1,931,828 0.000383 circuit simulation
ASIC_680ks 682,712 1,693,767 0.000001 circuit simulation
crashbasis 160,000 1,750,416 2.701016 optimization
ecology2 999,999 4,995,991 1.000000 2D/3D
Freescale1 3,428,755 17,052,626 0.491856 circuit simulation
hvdc2 189,860 1,339,638 0.000036 power network
Kaufhold 160,000 1,750,416 0.000003 counter-example
Kuu 7,102 173,651 0.255813 structural
Lin 256,000 1,766,400 1.931723 structural
majorbasis 160,000 1,750,416 0.032386 optimization
Pd 8,081 13,036 0.000015 counter-example
powersim 15,838 67,562 0.001767 power network
Raj1 263,743 1,300,261 0.000203 circuit simulation
rajat21 411,676 1,876,011 0.000002 circuit simulation
scircuit 170998 958936 0.000037 circuit simulation
stomach 213,360 3,021,648 0.166783 2D/3D
tomography 500 28,726 0.000551 computer graphics

/vision
torso3 259,156 4,429,042 0.098827 2D/3D
transient 178866 961368 0.000060 circuit simulation
xenon2 157464 3866688 0.082090 materials

The results are evaluated in terms of robustness and speed. Thus, for every result
discussed in this section, there will be two �gures to show time and speed-up, and a
table to show the relative error.

It can be seen from Table 5.1 that, out of eight di�erent domains that we use, most
of the tests held on circuit simulation problem. More circuit simulation problems are

29

included in the tests because they provide variety of the degree of diagonal dominance,
the number of rows and columns, the number of non-zero entries and the sparsity of
structures.

The �rst matrix that we are going to look is ecology2 from 2D/3D problem domain.
Its degree of diagonal dominance is 1, which means ecology2 is diagonally dominant.
The structure of ecology2 is symmetric. However, our code is implemented for non-
symmetric coe�cient matrices. Thus, instead of taking advantage of symmetry, we
changed its structure to the non-symmetric form and computed result as if it is non-
symmetric.

The time values and the relative residuals are very close to PARDISO for ecology2
(Figure 5.1, Figure 5.2, Table 5.1). Nonetheless, 3 of our 4 approaches are faster for
the 8-threaded case. The performance improvement of using sparse right hand side
feature is obvious in this example. Moreover, the speed-up is almost ideal if sparse
right hand side is used with recursion. This is mainly because of the degree of diagonal
dominance of ecology2.

Figure 5.1: Matrix ecology2: Time versus Number of Threads

Table 5.2: Relative Residuals on Matrix ecology2

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 1.32e-16 - - - -
2 1.31e-16 1.32e-16 1.37e-16 - -
4 1.31e-16 1.31e-16 1.46e-16 2.04e-16 1.54e-16
8 1.29e-16 1.29e-16 1.45e-16 1.71e-16 1.54e-16

30

Figure 5.2: Matrix ecology2: Speedup versus Number of Threads

Freescale1 is from circuit simulation problem domain and has a degree of diagonal
dominance 0.49. Thus, it is not diagonally dominant but has a reasonable degree.
Freescale1 is a non-symmetric matrix. So, there is no need to change the structure
before tests.

Although the speed up for tests on Freescale1 are better than or equal to PARDISO
for sparse right hand side cases, unlike the tests on ecology2, our algorithm is slightly
slower than PARDISO if sparse hand side feature is not used (Figure 5.3, 5.4). This
might be caused by the distribution of non-zero values which are out of block diagonal
blocks. Because if the non-zero values are on disjoint columns we have to deal with
more columns in our factorization. On the other hand, using sparse right hand side
feature of PARDISO we counter-work some of the negative e�ects of working on more
sparse columns by omitting some unnecessary values.

Another important di�erence to be expressed is that our algorithm is more robust
than PARDISO for this case (Table 5.3). This might be the result of the structure of
diagonal blocks of matrix Freescale1.

Kaufhold is a matrix from domain of counter-example problems and has a very low
degree of diagonal dominance, 3 ·10−6. It can also be considered as a counter-example
for our algorithm, since it does not give good results compared to PARDISO, in terms
of time (Figure 5.5, 5.6). For all the test on Kaufhold, our algorithm is slower than

31

Figure 5.3: Matrix Freescale1: Time versus Number of Threads

Figure 5.4: Matrix Freescale1: Speedup versus Number of Threads

PARDISO. Recursion is also slow for this example. It is an expected result. Since
our algorithm is slower than PARDISO for this case, using it for the reduced system
instead of PARDISO should also slow down the algorithm. Low degree of diagonal
dominance of matrix Kaufhold is also a cause for low performance of recursion.

32

Table 5.3: Relative Residuals on Matrix Freescale1

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 1.79e-10 - - - -
2 1.79e-10 4.47e-15 2.11e-15 - -
4 1.79e-10 4.29e-15 9.08e-16 7.11e-15 6.71e-16
8 1.85e-10 8.64e-16 8.61e-16 1.03e-15 1.94e-16

Figure 5.5: Matrix Kaufhold: Time versus Number of Threads

33

Figure 5.6: Matrix Kaufhold: Speedup versus Number of Threads

Table 5.4: Relative Residuals on Matrix Kaufhold

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 9.72e-14 - - - -
2 9.72e-15 1.26e-16 1.25e-16 - -
4 9.72e-15 1.23e-16 1.23e-16 3.14e-04 1.93e-16
8 9.72e-15 1.20e-16 1.25e-16 6.51e-16 1.37e-16

Matrix Lin is a good example where using the sparse right hand side feature of PAR-
DISO is the main di�erence. It is from the domain of structural problems and has a
good degree of diagonal dominance, 1.93. Lin is also a symmetric matrix. Thus, the
same operation on ecology2 is also applied on Lin.

If we use the sparse right hand side feature, our algorithm works nearly as fast as
PARDISO, and even faster on 8 threads (Figure 5.7, 5.8). Recursion also works very
well. Nevertheless, it does give very bad results for the other cases. Unless we use
sparse right hand side, our algorithm gives results even worse than single-threaded
PARDISO. The distribution of non-zero values might be the cause of having bad
results for also this case.

Matrix rajat21 is from circuit simulation problem domain. The di�erence of it is that
its degree of diagonal dominance before any permutations is zero. In other words, it is a
singular (or non-invertible) matrix. To handle this issue, a non-symmetric permutation
(by HSL MC64) before execution is applied on these matrices. After the permutation,

34

Figure 5.7: Matrix Lin: Time versus Number of Threads

Figure 5.8: Matrix Lin: Speedup versus Number of Threads

the degree of diagonal dominance of matrix rajat21 is 2 · 10−6. Therefore, it expected
for the recursion to work less e�cient on rajat21. When we use the sparse right hand
side feature of PARDISO, our algorithm works fast even on the 8 threaded case where
PARDISO gets slower (Figure 5.9, 5.10).

35

Table 5.5: Relative Residuals on Matrix Lin

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 9.95e-10 - - - -
2 8.81e-16 5.63e-16 1.88e-16 - -
4 8.07e-16 8.72e-16 6.99e-16 3.70e-13 1.18e-12
8 7.16e-16 1.36e-15 2.14e-16 6.13e-13 8.65e-14

The relative residual of PARDISO for rajat21 is not well, compared to the test on
other matrices. Since our algorithm uses PARDISO as an inner solver, it also applies
to our solvers. However, our results are still more robust than the results of PARDISO
for rajat21 (Table 5.6).

The last matrices to be shown in this chapter are torso3 and xenon2 from 2D/3D and
materials problem domains respectively. They di�er on both the problem domains and
solution times but they have very close diagonal dominances. torso3 has 0.10, where
xenon2 has 0.08.

The behaviours of tests in terms of speed on both matrices are almost the same. They
are at least as fast as PARDISO for non-recursive cases and they are slower in case of
usage of recursion.

The relative residuals on torso3 are better than on xenon2, but the di�erence between
robustness of our algorithm and PARDISO is very low on both cases.

Figure 5.9: Matrix rajat21: Time versus Number of Threads

36

Figure 5.10: Matrix rajat21: Speedup versus Number of Threads

Table 5.6: Relative Residuals on Matrix rajat21

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 2.54e-05 - - - -
2 7.97e-06 5.63e-16 2.51e-07 - -
4 8.38e-06 2.65e-07 1.11e-07 3.18e-04 1.18e-07
8 1.16e-05 8.04e-08 5.68e-08 9.96e-05 5.81e-08

37

Figure 5.11: Matrix torso3: Time versus Number of Threads

Figure 5.12: Matrix torso3: Speedup versus Number of Threads

38

Table 5.7: Relative Residuals on Matrix torso3

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 1.03e-15 - - - -
2 1.02e-15 4.80e-15 4.24e-15 - -
4 1.01e-15 1.74e-15 1.69e-15 2.11e-15 1.42e-15
8 9.93e-16 6.82e-16 7.83e-16 8.59e-16 4.15e-16

Figure 5.13: Matrix xenon2: Time versus Number of Threads

Table 5.8: Relative Residuals on Matrix xenon2

Threads PARDISO DS-nr-sp DS-nr-ns DS-re-sp DS-re-ns
1 4.38e-12 - - - -
2 4.39e-12 9.41e-12 1.12e-13 - -
4 4.37e-12 4.33e-12 1.12e-13 2.21e-11 6.71e-12
8 4.35e-12 1.74e-13 1.63e-13 5.23e-11 6.71e-12

39

Figure 5.14: Matrix xenon2: Speedup versus Number of Threads

40

CHAPTER 6

CONCLUSION AND FUTURE WORK

For most of the real problems, solution of the linear systems of equations is a neces-
sity. With the recent developments on the processor architectures it is also needed to
distribute the workload to di�erent threads or processes. However, most of the current
LU factorization based parallel solvers have limits of parallelization since they need
some sequential computations to be held.

Nonetheless, our DS factorization based parallel algorithm distribute the workload so
that it does not need sequential computations or does not have data dependency for
most of the steps as it is shown on Chapter 4. The algorithm proposed in this thesis, a
new multi-threaded and recursive direct algorithm for parallel solution of sparse linear
systems, is robust and works as fast as and for some cases faster than a well known
parallel direct sparse linear solver, PARDISO on given matrices from di�erent problem
domains. Performance improvement is more pronounced for larger number of cores.

Using shared memory enables it to be used in personal computers and be enhanced
with distributed memory or hybrid approach to get better results on high performance
computers.

Recursion is used in the algorithm and our experiments show that it is more e�cient
for working on a diagonally dominant matrix. Another interesting output of our work
is that we do not need to reorder the reduced system again before recursively applying
our algorithm on it, since the reduced system has similar characteristics with the initial
linear system.

Our experiments have also shown that using sparse right hand side feature on DS
factorization results in a speed-boost without losing accuracy, although it means to
skip the calculation of some non-zero values.

For the future, the following enhancements can be applied to achieve better results:

1) Recursion can also be used for the factorization phase of the algorithm if the diagonal
blocks are diagonally dominant. Since the degree of diagonal dominance is determined
by the minimum ratio obtained from all diagonal elements, a diagonal block of a matrix

41

could be diagonally dominant even if the whole matrix is not. Since our algorithm can
also be implemented as a distributed memory algorithm, an option could be to solve
the whole system of linear equations on di�erent nodes of a high performance computer
and execute the inner solutions with multi-threading.

2) Sparse right hand side feature of PARDISO has proven to be helpful because we
expect that the di�erent blocks of a sparse matrix would also be sparse. However,
PARDISO uses dense structure as its input on right side of the linear system of equa-
tions. This results in ine�cient usage of memory, i.e., allocation of dense arrays for
sparse matrices. Another enhancement could be made by using or developing a sparse
linear system solver that takes all inputs in sparse format. For this case, compressed
sparse column (CSC) format could be useful.

3) Another change on factorization could be to make the reduced system even smaller.
During the factorization phase, we calculate some values for the reduced system that
are necessary for our computations on reduced system (light green cells on �gure 4.9).
However, these cells are a�ected by the degree of block diagonal dominance of the
matrix. In other words, if the matrix is block diagonally dominant these values become
practically zero. Another improvement can be to permute the matrix to increase its
degree of block diagonally dominance and to skip the calculation of the values that are
practically zero.

42

REFERENCES

[1] G. E. Moore, �Cramming more components onto integrated circuits,� Electronics
Magazine, vol. 38, no. 8, 1965.

[2] C. T. Chen, Linear system theory and design. Oxford University Press, 1998.

[3] V. Kumar, A. Grama, A. Gupta, and Karypis, Introduction to parallel computing.
Addison Wesley, second ed., 2003.

[4] T. A. Davis and Y. Hu, �The university of �orida sparse matrix collection,� ACM
Trans. Math. Softw., vol. 38, pp. 1:1�1:25, Dec. 2011.

[5] E. S. Bölükba³� and M. Manguo§lu, �A new multi-threaded and recursive di-
rect algorithm for parallel solution of sparse linear systems.� 5th International
Conference of the ERCIM (European Research Consortium for Informatics and
Mathematics) Working Group on Computing & Statistics, 2012.

[6] M. T. Heath, Scienti�c Computing: An Introductory Survey. New York: McGraw-
Hill, 1997.

[7] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu, �A
supernodal approach to sparse partial pivoting,� SIAM J. Matrix Analysis and
Applications, vol. 20, no. 3, pp. 720�755, 1999.

[8] X. S. Li, �An overview of SuperLU: Algorithms, implementation, and user in-
terface,� ACM Trans. Mathematical Software, vol. 31, pp. 302�325, September
2005.

[9] A. H. Sameh and D. J. Kuck, �On stable parallel linear system solvers,� Journal
of the ACM (JACM), vol. 25, no. 1, pp. 81�91, 1978.

[10] A. H. Sameh and E. Polizzi, �A parallel hybrid banded system solver: the spike
algorithm,� Parallel computing, vol. 32, no. 2, pp. 177�194, 2006.

[11] A. H. Sameh and E. Polizzi, �Spike: A parallel environment for solving banded
linear systems,� Computers & Fluids, vol. 36, no. 1, pp. 113�120, 2007.

[12] M. Manguo§lu, �A domain-decomposing parallel sparse linear system solver,�
Journal of computational and applied mathematics, vol. 236, no. 3, pp. 319�325,
2011.

[13] M. Manguo§lu, �Parallel solution of sparse linear systems,� in High-Performance
Scienti�c Computing, pp. 171�184, Springer London, 2012.

[14] B. F. Smith, �Domain decomposition methods for partial di�erential equations,�
in Parallel Numerical Algorithms, pp. 225�243, Springer Netherlands, 1997.

43

[15] P. B. Smith, Barry and W. Gropp, Domain decomposition: parallel multilevel
methods for elliptic partial di�erential equations. Cambridge University Press,
2004.

[16] A. Toselli and O. B. Widlund, Domain decomposition methods: algorithms and
theory, vol. 34. Sipringer Berlin, 2005.

[17] G. Karypis and V. Kumar, �A fast and high quality multilevel scheme for parti-
tioning irregular graphs,� SIAM Journal on Scienti�c Computing, vol. 20, no. 1,
pp. 359�392, 1998.

[18] M. Grote and H. Simon, �Parallel preconditioning and approximation inverses on
the connection machine,� in Scalable High Performance Computing Conference,
1992. SHPCC-92, Proceedings., pp. 76�83, 1992.

[19] M. Benzi, �Preconditioning techniques for large linear systems: A survey,� Journal
of Computational Physics, vol. 182, no. 2, pp. 418�477, 2002.

[20] Y. Saad, Iterative methods for sparse linear systems. Siam, second ed., 2003.

[21] O. Østerby and Z. Zlatev, �Direct methods for sparse matrices,� DAIMI Report
Series, vol. 9, no. 123, 1980.

[22] T. A. Davis, Direct methods for sparse linear systems. Siam, 2006.

[23] P. Amestoy, I. Du�, J.-Y. L'Excellent, and J. Koster, �Mumps: A general purpose
distributed memory sparse solver,� in Applied Parallel Computing. New Paradigms
for HPC in Industry and Academia (T. Sørevik, F. Manne, A. Gebremedhin, and
R. Moe, eds.), vol. 1947 of Lecture Notes in Computer Science, pp. 121�130,
Springer Berlin Heidelberg, 2001.

[24] O. Schenk, M. Bollhöfer, and R. A. Römer, �On large-scale diagonalization tech-
niques for the anderson model of localization,� SIAM review, vol. 50, no. 1, pp. 91�
112, 2008.

[25] O. Schenk, A. Wächter, and M. Hagemann, �Matching-based preprocessing algo-
rithms to the solution of saddle-point problems in large-scale nonconvex interior-
point optimization,� Computational Optimization and Applications, vol. 36, no. 2-
3, pp. 321�341, 2007.

[26] O. Schenk and K. Gärtner, �Solving unsymmetric sparse systems of linear equa-
tions with pardiso,� Future Generation Computer Systems, vol. 20, no. 3, pp. 475�
487, 2004.

[27] O. Schenk and K. Gärtner, �On fast factorization pivoting methods for sparse
symmetric inde�nite systems,� Electronic Transactions on Numerical Analysis,
vol. 23, pp. 158�179, 2006.

[28] T. A. Davis, �A column pre-ordering strategy for the unsymmetric-pattern multi-
frontal method,� ACM Transactions on Mathematical Software (TOMS), vol. 30,
no. 2, pp. 165�195, 2004.

[29] T. A. Davis, �Algorithm 832: Umfpack v4. 3�an unsymmetric-pattern multi-
frontal method,� ACM Transactions on Mathematical Software (TOMS), vol. 30,
no. 2, pp. 196�199, 2004.

44

[30] T. A. Davis and I. S. Du�, �A combined unifrontal/multifrontal method for unsym-
metric sparse matrices,� ACM Transactions on Mathematical Software (TOMS),
vol. 25, no. 1, pp. 1�20, 1999.

[31] T. Davis and I. Du�, �An unsymmetric-pattern multifrontal method for sparse lu
factorization,� SIAM Journal on Matrix Analysis and Applications, vol. 18, no. 1,
pp. 140�158, 1997.

[32] W. Stallings, Operating Systems: Internals and Design Principles, 6/E. Prentice
Hall, 2011.

[33] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts. J. Wiley
& Sons, 2009.

[34] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI:
The Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[35] Intel, �Intel cilk plus.� http://software.intel.com/en-us/intel-cilk-plus,
2013.

[36] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable shared mem-
ory parallel programming, vol. 10. The MIT Press, 2008.

[37] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou, �Cilk: An e�cient multithreaded runtime system,� in Proceedings
of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), (Santa Barbara, California), pp. 207�216, July 1995.

[38] C. F. Joerg, The Cilk System for Parallel Multithreaded Computing. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts, Jan. 1996. Available as MIT
Laboratory for Computer Science Technical Report MIT/LCS/TR-701.

[39] K. H. Randall, Cilk: E�cient Multithreaded Computing. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, May 1998.

[40] P. Odifreddi, Classical recursion theory: The theory of functions and sets of nat-
ural numbers. Access Online via Elsevier, 1992.

[41] Intel, �Intel math kernel library 11.0.� http://software.intel.com/en-us/

intel-mkl, 2013.

[42] Intel, �Intel mkl 10.3 release notes.� http://software.intel.com/en-us/

articles/intel-mkl-103-release-notes, 2012.

[43] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users' Guide. Philadelphia, PA: Society for Industrial and Applied Mathematics,
third ed., 1999.

[44] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley, ScaLAPACK Users' Guide. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997.

45

http://software.intel.com/en-us/intel-cilk-plus
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/articles/intel-mkl-103-release-notes
http://software.intel.com/en-us/articles/intel-mkl-103-release-notes

[45] G. Karypis, �Metis - serial graph partitioning and �ll-reducing matrix ordering.�
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview, 2013.

[46] HSL, �A collection of fortran codes for large scale scienti�c computation.� http:
//www.hsl.rl.ac.uk, 2011.

[47] Middle East Technical University Department of Computer Engineering, �High
performance computing.� http://www.ceng.metu.edu.tr/hpc/index, 2011.

46

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://www.ceng.metu.edu.tr/hpc/index

APPENDIX A

RESULTS OF ALL NUMERICAL EXPERIMENTS

The coding used for representing the results are as follows:

Reordering: The time consumed by METIS reordering in seconds.

Solution: The time consumed by solving the linear system of equation in seconds.

Exact Residual: The relative residual obtained from the exact solution.

Appx. Residual: The relative residual obtained from the approximate solution, i.e.,
dropping more elements using sparse right hand side feature of PARDISO.

DS-NR-SP: DS factorization without recursion and using the right hand side feature
of PARDISO.

DS-NR-NS: DS factorization without recursion not using the right hand side feature
of PARDISO.

DS-RE-SP: DS factorization with recursion and using the right hand side feature of
PARDISO.

DS-RE-NS: DS factorization without recursion not using the right hand side feature
of PARDISO.

47

A.1 ASIC_320k

Table A.1: PARDISO on ASIC_320k

Operation 1 thread 2 threads 4 threads 8 threads
Reordering 3.31 3.34 3.34 3.33
Solution 13.88 7.22 5.06 4.10
Exact Residual 1.29e-10 1.41e-10 9.03e-11 5.31e-11

Table A.2: DS-NR-SP on ASIC_320k

Operation 2 threads 4 threads 8 threads
Reordering 3.14 3.15 3.17
Solution 7.19 5.11 3.98
Exact Residual 1.12e-15 1.04e-15 9.98e-16
Appx. Residual 3.57e-09 9.43e-11 8.48e-09

Table A.3: DS-NR-NS on ASIC_320k

Operation 2 threads 4 threads 8 threads
Reordering 3.14 3.15 3.17
Solution 11.26 7.68 5.82
Exact Residual 5.63e-11 5.45e-11 1.16e-11

Table A.4: DS-RE-SP on ASIC_320k

Operation 4 threads 8 threads
Reordering 3.15 3.17
Solution 5.13 3.94
Exact Residual 1.47e-15 1.16e-15
Appx. Residual 1.01e-07 8.31e-08

Table A.5: DS-RE-NS on ASIC_320k

Operation 4 threads 8 threads
Reordering 3.15 3.17
Solution 7.67 4.14
Exact Residual 3.81e-13 3.84e-13

48

A.2 ASIC_620ks

Table A.6: PARDISO on ASIC_620ks

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 7.82 8.01 8.00 8.03
Solution 104.30 52.45 26.66 14.53
Exact Residual 9.45e-08 9.45e-08 9.45e-08 9.45e-08

Table A.7: DS-NR-SP on ASIC_620ks

Operation 2 threads 4 threads 8 threads
Reordering 7.44 7.47 7.47
Solution 52.41 26.27 13.92
Exact Residual 6.19e-10 8.41e-10 7.34e-10
Appx. Residual 1.17e-06 1.17e-06 4.20e-05

Table A.8: DS-NR-NS on ASIC_620ks

Operation 2 threads 4 threads 8 threads
Reordering 7.44 7.47 7.47
Solution 91.64 68.13 51.92
Exact Residual 8.26e-11 8.24e-11 8.26e-11

Table A.9: DS-RE-SP on ASIC_620ks

Operation 4 threads 8 threads
Reordering 7.47 7.47
Solution 27.19 14.81
Exact Residual 8.40e-10 8.13e-10
Appx. Residual 7.61e-05 2.03e-04

Table A.10: DS-RE-NS on ASIC_620ks

Operation 4 threads 8 threads
Reordering 7.47 7.47
Solution 69.26 52.17
Exact Residual 6.13e-11 6.18e-11

49

A.3 Crashbasis

Table A.11: PARDISO on crashbasis

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 2.32 2.42 2.41 2.68
Solution 3.74 1.98 1.12 1.04
Exact Residual 2.20e-15 2.20e-15 2.20e-15 2.19e-15

Table A.12: DS-NR-SP on crashbasis

Operation 2 threads 4 threads 8 threads
Reordering 0.67 1.32 2.71
Solution 1.91 1.17 0.87
Exact Residual 2.20e-15 2.15e-15 2.13e-15
Appx. Residual 8.64e-02 1.19e-01 1.75e-01

Table A.13: DS-NR-NS on crashbasis

Operation 2 threads 4 threads 8 threads
Reordering 0.67 1.32 2.71
Solution 2.03 1.34 1.02
Exact Residual 2.21e-15 2.14e-15 2.14e-15

Table A.14: DS-RE-SP on crashbasis

Operation 4 threads 8 threads
Reordering 1.32 2.71
Solution 0.96 0.51
Exact Residual 2.01e-14 2.44e-14
Appx. Residual 8.05e+00 1.16e+01

Table A.15: DS-RE-NS on crashbasis

Operation 4 threads 8 threads
Reordering 1.32 2.71
Solution 1.07 1.00
Exact Residual 2.13e-15 4.34e-16

50

A.4 Ecology2

Table A.16: PARDISO on ecology2

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 7.62 7.79 7.71 7.80
Solution 7.49 3.97 2.21 1.64
Exact Residual 1.32e-16 1.31e-16 1.31e-16 1.29e-16

Table A.17: DS-NR-SP on ecology2

Operation 2 threads 4 threads 8 threads
Reordering 2.19 4.39 8.78
Solution 3.91 2.03 1.28
Exact Residual 1.32e-16 1.31e-16 1.29e-16
Appx. Residual 7.28e-03 1.01e-02 1.52e-02

Table A.18: DS-NR-NS on ecology2

Operation 2 threads 4 threads 8 threads
Reordering 2.19 4.39 8.78
Solution 4.61 2.47 1.93
Exact Residual 1.37e-16 1.46e-16 1.45e-16

Table A.19: DS-RE-SP on ecology2

Operation 4 threads 8 threads
Reordering 4.39 8.78
Solution 1.96 0.99
Exact Residual 2.04e-16 1.71e-16
Appx. Residual 6.07e-01 7.14e-01

Table A.20: DS-RE-NS on ecology2

Operation 4 threads 8 threads
Reordering 4.39 8.78
Solution 2.29 1.74
Exact Residual 1.54e-16 1.54e-16

51

A.5 Freescale1

Table A.21: PARDISO on Freescale1

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 25.42 25.61 25.48 25.73
Solution 7.64 4.15 2.52 2.27
Exact Residual 1.79e-10 1.79e-10 1.79e-10 1.85e-10

Table A.22: DS-NR-SP on Freescale1

Operation 2 threads 4 threads 8 threads
Reordering 24.11 25.71 26.04
Solution 3.99 2.15 1.56
Exact Residual 4.47e-15 4.29e-15 8.64e-16
Appx. Residual 1.26e-10 1.28e-10 1.35e-10

Table A.23: DS-NR-NS on Freescale1

Operation 2 threads 4 threads 8 threads
Reordering 24.11 25.71 26.04
Solution 8.64e-16 5.17 4.71
Exact Residual 2.11e-15 9.08e-16 8.61e-16

Table A.24: DS-RE-SP on Freescale1

Operation 4 threads 8 threads
Reordering 25.71 26.04
Solution 2.02 1.19
Exact Residual 7.11e-15 1.03e-15
Appx. Residual 1.06e-07 4.14e-06

Table A.25: DS-RE-NS on Freescale1

Operation 4 threads 8 threads
Reordering 25.71 26.04
Solution 5.64 4.91
Exact Residual 6.71e-16 1.94e-16

52

A.6 Hvdc2

Table A.26: PARDISO on hvdc2

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.99 1.02 1.00 0.95
Solution 0.45 0.35 0.29 0.23
Exact Residual 2.84e-09 2.80e-09 2.80e-09 2.85e-09

Table A.27: DS-NR-SP on hvdc2

Operation 2 threads 4 threads 8 threads
Reordering 1.09 1.09 1.15
Solution - 0.03 0.01
Exact Residual - 3.44e+01 1.73e+01
Appx. Residual - 1.30e+03 1.89e+04

Table A.28: DS-NR-NS on hvdc2

Operation 2 threads 4 threads 8 threads
Reordering 1.09 1.09 1.15
Solution - 0.07 0.04
Exact Residual - 9.55e-11 1.40e-10

Table A.29: DS-RE-SP on hvdc2

Operation 4 threads 8 threads
Reordering 1.09 1.15
Solution - -
Exact Residual - -
Appx. Residual - -

Table A.30: DS-RE-NS on hvdc2

Operation 4 threads 8 threads
Reordering 1.09 1.15
Solution 0.08 0.04
Exact Residual 9.51e-11 1.24e-10

53

A.7 Kaufhold

Table A.31: PARDISO on Kaufhold

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.06 0.05 0.06 0.07
Solution 0.04 0.03 0.02 0.02
Exact Residual 9.72e-14 9.72e-15 9.72e-15 9.72e-15

Table A.32: DS-NR-SP on Kaufhold

Operation 2 threads 4 threads 8 threads
Reordering 0.02 0.05 0.11
Solution 0.13 0.10 0.09
Exact Residual 1.26e-16 1.23e-16 1.20e-16
Appx. Residual 9.61e-10 1.27e-16 5.09e-03

Table A.33: DS-NR-NS on Kaufhold

Operation 2 threads 4 threads 8 threads
Reordering 0.02 0.05 0.11
Solution 0.13 0.10 0.10
Exact Residual 1.25e-16 1.23e-16 1.25e-16

Table A.34: DS-RE-SP on Kaufhold

Operation 4 threads 8 threads
Reordering 0.05 0.11
Solution 0.10 0.15
Exact Residual 3.14e-04 6.51e-16
Appx. Residual 2.61e-06 9.27e-05

Table A.35: DS-RE-NS on Kaufhold

Operation 4 threads 8 threads
Reordering 0.05 0.11
Solution 0.12 0.17
Exact Residual 1.93e-16 1.37e-16

54

A.8 Kuu

Table A.36: PARDISO on Kuu

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.07 0.06 0.06 0.08
Solution 0.06 0.04 0.03 0.03
Exact Residual 4.75e-16 4.59e-16 4.58e-16 4.51e-16

Table A.37: DS-NR-SP on Kuu

Operation 2 threads 4 threads 8 threads
Reordering 0.02 0.04 0.07
Solution 0.07 0.03 0.01
Exact Residual 7.41e-15 9.68e-15 1.81e-14
Appx. Residual 4.09e-10 9.74e-10 2.28e-09

Table A.38: DS-NR-NS on Kuu

Operation 2 threads 4 threads 8 threads
Reordering 0.02 0.04 0.07
Solution 0.20 0.11 0.08
Exact Residual 2.14e-16 2.13e-16 2.62e-16

Table A.39: DS-RE-SP on Kuu

Operation 4 threads 8 threads
Reordering 0.04 0.07
Solution 0.03 0.01
Exact Residual 3.85e-14 8.46e-14
Appx. Residual 1.17e-08 7.62e-07

Table A.40: DS-RE-NS on Kuu

Operation 4 threads 8 threads
Reordering 0.04 0.07
Solution 0.09 0.06
Exact Residual 2.56e-16 1.91e-16

55

A.9 Lin

Table A.41: PARDISO on Lin

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 3.1 3.1 2.7 3.2
Solution 81.5 42.8 24.2 24.3
Exact Residual 9.95e-10 8.81e-16 8.07e-16 7.16e-16

Table A.42: DS-NR-SP on Lin

Operation 2 threads 4 threads 8 threads
Reordering 0.8 1.3 2.9
Solution 87.8 30.3 17.7
Exact Residual 5.63e-16 8.72e-16 1.36e-15
Appx. Residual 8.48e-11 1.28e-10 1.68e-10

Table A.43: DS-NR-NS on Lin

Operation 2 threads 4 threads 8 threads
Reordering 0.8 1.3 2.9
Solution 293.6 146.5 112.7
Exact Residual 1.88e-16 6.99e-16 2.14e-16

Table A.44: DS-RE-SP on Lin

Operation 4 threads 8 threads
Reordering 1.3 2.9
Solution 31.5 13.2
Exact Residual 3.70e-13 6.13e-13
Appx. Residual 8.63e-09 1.13e-08

Table A.45: DS-RE-NS on Lin

Operation 4 threads 8 threads
Reordering 1.3 2.9
Solution 117.4 81.5
Exact Residual 1.18e-12 8.65e-14

56

A.10 Majorbasis

Table A.46: PARDISO on majorbasis

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 2.31 2.31 2.30 2.30
Solution 14.50 7.64 4.24 3.29
Exact Residual 1.72e-15 1.71e-15 1.71e-15 1.70e-15

Table A.47: DS-NR-SP on majorbasis

Operation 2 threads 4 threads 8 threads
Reordering 1.26 2.03 2.71
Solution 7.29 4.01 2.84
Exact Residual 1.09e-16 1.09e-16 1.04e-16
Appx. Residual 1.17e-4 5.19e-13 8.23e-15

Table A.48: DS-NR-NS on majorbasis

Operation 2 threads 4 threads 8 threads
Reordering 1.26 2.03 2.71
Solution 11.72 8.08 5.91
Exact Residual 1.09e-16 1.09e-16 2.76e-16

Table A.49: DS-RE-SP on majorbasis

Operation 4 threads 8 threads
Reordering 2.03 2.71
Solution 4.02 2.75
Exact Residual 9.61e-05 2.91e-11
Appx. Residual 5.66e-03 4.11e-02

Table A.50: DS-RE-NS on majorbasis

Operation 4 threads 8 threads
Reordering 2.03 2.71
Solution 10.04 14.26
Exact Residual 2.78e-16 1.65e-16

57

A.11 Pd

Table A.51: PARDISO on Pd

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.05 0.05 0.04 0.05
Solution 0.02 0.02 0.02 0.02
Exact Residual 2.38e-14 2.38e-14 2.38e-14 2.38e-14

Table A.52: DS-NR-SP on Pd

Operation 2 threads 4 threads 8 threads
Reordering 0.01 0.13 0.13
Solution - 0.06 0.05
Exact Residual - 2.38e-14 2.38e-14
Appx. Residual - 7.14e+01 4.91e+03

Table A.53: DS-NR-NS on Pd

Operation 2 threads 4 threads 8 threads
Reordering 0.01 0.13 0.13
Solution - 0.12 0.08
Exact Residual - 1.64e-14 1.31e-14

Table A.54: DS-RE-SP on Pd

Operation 4 threads 8 threads
Reordering 0.13 0.13
Solution - -
Exact Residual - -
Appx. Residual - -

Table A.55: DS-RE-NS on Pd

Operation 4 threads 8 threads
Reordering 0.13 0.13
Solution - -
Exact Residual - -

58

A.12 Powersim

Table A.56: PARDISO on powersim

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.08 0.09 0.09 0.09
Solution 0.04 0.02 0.02 0.02
Exact Residual 9.42e-13 8.62e-13 9.55e-13 1.01e-12

Table A.57: DS-NR-SP on powersim

Operation 2 threads 4 threads 8 threads
Reordering 1.11 1.12 1.14
Solution - 0.01 0.00
Exact Residual - 2.26e-05 1.01e-06
Appx. Residual - 1.17e-03 2.71e-02

Table A.58: DS-NR-NS on powersim

Operation 2 threads 4 threads 8 threads
Reordering 1.11 1.12 1.14
Solution - 0.01 0.01
Exact Residual - 6.02e-15 2.81e-15

Table A.59: DS-RE-SP on powersim

Operation 4 threads 8 threads
Reordering 1.12 1.14
Solution - -
Exact Residual - -
Appx. Residual - -

Table A.60: DS-RE-NS on powersim

Operation 4 threads 8 threads
Reordering 1.12 1.14
Solution 0.01 0.00
Exact Residual 6.11e-15 2.73e-15

59

A.13 Raj1

Table A.61: PARDISO on Raj1

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 1.90 1.84 1.90 1.83
Solution 0.84 0.46 0.30 0.19
Exact Residual 5.48e-09 6.16e-10 4.50e-10 6.47e-10

Table A.62: DS-NR-SP on Raj1

Operation 2 threads 4 threads 8 threads
Reordering 0.81 1.74 3.75
Solution 0.51 0.34 0.21
Exact Residual 4.67e-07 1.21e-08 1.04e-08
Appx. Residual 6.21e+05 7.40e+04 2.09e+04

Table A.63: DS-NR-NS on Raj1

Operation 2 threads 4 threads 8 threads
Reordering 0.81 1.74 3.75
Solution 1.12 0.84 0.68
Exact Residual 8.19e-08 1.00e-08 6.23e-09

Table A.64: DS-RE-SP on Raj1

Operation 4 threads 8 threads
Reordering 1.74 3.75
Solution 0.37 0.23
Exact Residual 3.04e+00 4.31e+00
Appx. Residual 4.28e+07 2.61e+08

Table A.65: DS-RE-NS on Raj1

Operation 4 threads 8 threads
Reordering 1.74 3.75
Solution 1.28 1.49
Exact Residual 1.13e-08 7.07e-09

60

A.14 Rajat21

Table A.66: PARDISO on rajat21

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 3.12 3.15 3.17 3.16
Solution 1.05 0.56 0.35 0.63
Exact Residual 2.54e-05 7.97e-06 8.38e-06 1.16e-05

Table A.67: DS-NR-SP on rajat21

Operation 2 threads 4 threads 8 threads
Reordering 3.04 3.06 3.11
Solution 0.59 0.37 0.24
Exact Residual 4.93e-07 2.65e-07 8.04e-08
Appx. Residual 2.19e-01 1.05e-01 7.28e-02

Table A.68: DS-NR-NS on rajat21

Operation 2 threads 4 threads 8 threads
Reordering 3.04 3.06 3.11
Solution 0.91 0.76 0.85
Exact Residual 2.51e-07 1.11e-07 5.68e-08

Table A.69: DS-RE-SP on rajat21

Operation 4 threads 8 threads
Reordering 3.06 3.11
Solution 0.39 0.28
Exact Residual 3.18e-04 9.96e-05
Appx. Residual 7.01e+03 1.94e+03

Table A.70: DS-RE-NS on rajat21

Operation 4 threads 8 threads
Reordering 3.06 3.11
Solution 0.89 1.61
Exact Residual 1.18e-07 5.81e-08

61

A.15 Scircuit

Table A.71: PARDISO on scircuit

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.82 0.84 0.83 0.87
Solution 1.02 0.96 0.67 0.80
Exact Residual 1.93e-09 2.03e-09 1.60e-09 1.59e-09

Table A.72: DS-NR-SP on scircuit

Operation 2 threads 4 threads 8 threads
Reordering 0.78 0.78 0.78
Solution 1.51 1.03 1.01
Exact Residual 4.63e-15 9.94e-15 8.92e-15
Appx. Residual 3.20e-09 8.70e-09 1.33e-08

Table A.73: DS-NR-NS on scircuit

Operation 2 threads 4 threads 8 threads
Reordering 0.78 0.78 0.78
Solution 1.83 1.70 1.64
Exact Residual 9.94e-15 9.97e-15 8.90e-15

Table A.74: DS-RE-SP on scircuit

Operation 4 threads 8 threads
Reordering 0.78 0.78
Solution 1.11 1.05
Exact Residual 1.73e-15 1.44e-15
Appx. Residual 8.70e-09 1.33e-08

Table A.75: DS-RE-NS on scircuit

Operation 4 threads 8 threads
Reordering 0.78 0.78
Solution 1.73 2.05
Exact Residual 1.00e-14 9.95e-15

62

A.16 Stomach

Table A.76: PARDISO on stomach

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 3.35 3.35 3.34 3.21
Solution 10.73 5.51 3.02 2.11
Exact Residual 7.74e-16 7.71e-16 7.64e-16 7.52e-16

Table A.77: DS-NR-SP on stomach

Operation 2 threads 4 threads 8 threads
Reordering 0.61 1.22 2.56
Solution 5.48 2.86 1.87
Exact Residual 7.65e-16 8.17e-16 9.02e-16
Appx. Residual 1.10e-03 2.01e-03 2.19e-03

Table A.78: DS-NR-NS on stomach

Operation 2 threads 4 threads 8 threads
Reordering 0.61 1.22 2.56
Solution 5.47 3.54 2.16
Exact Residual 4.21e-16 4.13e-16 4.38e-16

Table A.79: DS-RE-SP on stomach

Operation 4 threads 8 threads
Reordering 1.22 2.56
Solution 2.84 1.85
Exact Residual 3.20e-15 3.27e-15
Appx. Residual 5.18e-01 1.14e+00

Table A.80: DS-RE-NS on stomach

Operation 4 threads 8 threads
Reordering 1.22 2.56
Solution 3.47 2.21
Exact Residual 3.96e-16 4.08e-16

63

A.17 Tomography

Table A.81: PARDISO on tomography

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 0.01 0.02 0.02 0.03
Solution 0.02 0.01 0.02 0.01
Exact Residual 2.90e-13 3.72e-13 4.18e-13 3.67e-13

Table A.82: DS-NR-SP on tomography

Operation 2 threads 4 threads 8 threads
Reordering 0.09 0.09 4.36
Solution 0.02 0.01 0.01
Exact Residual 9.49e-13 8.82e-13 5.65e-13
Appx. Residual 1.41e+01 1.45e+01 9.71e+00

Table A.83: DS-NR-NS on tomography

Operation 2 threads 4 threads 8 threads
Reordering 0.09 0.09 4.36
Solution 0.03 0.02 0.02
Exact Residual 7.12e-13 5.37e-13 3.90e-13

Table A.84: DS-RE-SP on tomography

Operation 4 threads 8 threads
Reordering 0.09 4.36
Solution 0.04 0.05
Exact Residual 4.18e+00 1.09e+01
Appx. Residual 7.53e+05 5.16e+05

Table A.85: DS-RE-NS on tomography

Operation 4 threads 8 threads
Reordering 0.09 4.36
Solution 0.04 0.07
Exact Residual 2.05e-12 1.71e+01

64

A.18 Torso3

Table A.86: PARDISO on torso3

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 4.99 4.65 4.66 4.62
Solution 59.32 31.34 16.78 18.79
Exact Residual 1.03e-15 1.02e-15 1.01e-15 9.93e-16

Table A.87: DS-NR-SP on torso3

Operation 2 threads 4 threads 8 threads
Reordering 1.19 1.86 4.13
Solution 30.28 15.91 11.37
Exact Residual 4.80e-15 1.74e-15 6.82e-16
Appx. Residual 9.61e-02 2.18e-01 3.65e-01

Table A.88: DS-NR-NS on torso3

Operation 2 threads 4 threads 8 threads
Reordering 1.19 1.86 4.13
Solution 42.08 22.74 17.93
Exact Residual 4.24e-15 1.69e-15 7.83e-16

Table A.89: DS-RE-SP on torso3

Operation 4 threads 8 threads
Reordering 1.86 4.13
Solution 16.21 19.06
Exact Residual 2.11e-15 8.59e-16
Appx. Residual 1.23e+00 7.01e+01

Table A.90: DS-RE-NS on torso3

Operation 4 threads 8 threads
Reordering 1.86 4.13
Solution 28.61 34.77
Exact Residual 1.42e-15 4.15e-16

65

A.19 Transient

Table A.91: PARDISO on transient

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 1.18 1.18 1.21 1.23
Solution 0.43 0.24 0.16 0.11
Exact Residual 8.88e-07 1.42e-06 1.56e-06 1.68e-06

Table A.92: DS-NR-SP on transient

Operation 2 threads 4 threads 8 threads
Reordering 1.19 1.19 1.19
Solution 0.29 0.22 0.18
Exact Residual 1.96e-10 1.80e-10 1.47e-10
Appx. Residual 3.51e-06 7.24e-06 1.82e-05

Table A.93: DS-NR-NS on transient

Operation 2 threads 4 threads 8 threads
Reordering 1.19 1.19 1.19
Solution 0.49 0.50 0.49
Exact Residual 4.17e-10 4.07e-10 3.82e-10

Table A.94: DS-RE-SP on transient

Operation 4 threads 8 threads
Reordering 1.19 1.19
Solution 0.16 0.12
Exact Residual 2.41e-03 2.41e-03
Appx. Residual 1.7e+01 8.38e+02

Table A.95: DS-RE-NS on transient

Operation 4 threads 8 threads
Reordering 1.19 1.19
Solution 0.67 0.71
Exact Residual 7.07e-11 5.94e-11

66

A.20 Xenon2

Table A.96: PARDISO on xenon2

Operation 1 threads 2 threads 4 threads 8 threads
Reordering 1.81 1.83 1.75 1.74
Solution 15.95 8.37 4.48 3.41
Exact Residual 4.38e-12 4.39e-12 4.37e-12 4.35e-12

Table A.97: DS-NR-SP on xenon2

Operation 2 threads 4 threads 8 threads
Reordering 0.74 1.00 2.23
Solution 8.18 4.35 2.84
Exact Residual 9.41e-12 4.33e-12 1.74e-13
Appx. Residual 9.16e-08 4.97e-08 1.01e-09

Table A.98: DS-NR-NS on xenon2

Operation 2 threads 4 threads 8 threads
Reordering 0.74 1.00 2.23
Solution 8.68 6.71 4.10
Exact Residual 1.12e-13 1.12e-13 1.63e-13

Table A.99: DS-RE-SP on xenon2

Operation 4 threads 8 threads
Reordering 1.00 2.23
Solution 4.33 2.72
Exact Residual 2.21e-11 5.23e-11
Appx. Residual 3.29e-06 7.08e-06

Table A.100: DS-RE-NS on xenon2

Operation 4 threads 8 threads
Reordering 1.00 2.23
Solution 8.16 10.04
Exact Residual 6.71e-12 6.71e-12

67

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background and Related Work
	LU Factorization
	SPIKE and Recursive SPIKE
	Domain Decomposing Parallel Sparse Linear Solver

	Methods and Motivation
	Domain Decomposition
	Direct Solution
	Shared Memory and Recursion
	Distributed Memory versus Shared Memory
	Recursion

	The Algorithm
	Numerical Experiments
	Programming Environment
	Computing Environment
	Experiments and Results

	Conclusion and Future Work
	REFERENCES
	APPENDICES
	Results of All Numerical Experiments
	ASIC_320k
	ASIC_620ks
	Crashbasis
	Ecology2
	Freescale1
	Hvdc2
	Kaufhold
	Kuu
	Lin
	Majorbasis
	Pd
	Powersim
	Raj1
	Rajat21
	Scircuit
	Stomach
	Tomography
	Torso3
	Transient
	Xenon2

