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ABSTRACT

SUPERPIXEL BASED EFFICIENT IMAGE REPRESENTATION FOR
SEGMENTATION AND CLASSIFICATION

Ta³l�, H. Emrah

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Ayd�n Alatan

June 2013, 140 pages

The wide availability of visual capture and display devices with increasing resolution
and a�ordable prices, made the visual data an indispensable part of our life. The
enormous amount of visual data produced every day is captured, stored and some-
times processed for further analysis. In this era of technological improvement, where
an exponential increase in the number and capability of the devices is experienced,
researchers have focused on e�cient and accurate ways to reach, store, analyse and
display the data for various purposes.

At the capture side of the visual content, the number of cameras has rapidly increased
in close correlation to the number of mobile phones with built in cameras. As with the
quantity increase, the quality of the sensors have also boosted regarding the resolution,
color/brightness and noise level performance. On the other side of the pipeline, there
has been some major changes at the display side over the last couple of decades. With
the introduction of the Plasma and LCD (Liquid-crystal-display) type of displays, sizes
have rapidly decreased in the depth dimension. This decrease also made the mobility
of the displays possible especially with lower power consumptions. Therefore, mobile
equipments with high resolution displays could easily �t in our pockets. Moreover,
another major stepping stone towards a richer visual experience is observed with the
introduction of 3D capable displays for di�erent sizes and resolutions.

There has been a major increase in the popularity of 3D TVs in the last couple of years.
Mobile devices with 3D capability have also been introduced in the market. However,
the fast increase in the display side could not be matched as well in the capture and
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broadcast side. Therefore, the popularity of the 3D devices have been lower than the
expectations. Various factors could be counted as a cause for such a slower reaction.
These factors and possible solutions for such problems are presented in this thesis.

This thesis deals with various aspects of the research in visual content analysis and
display technologies. The author's previous experience in real time processing of im-
age/video data, human visual perspectives for objective/subjective quality analysis,
stereoscopy and 3D perception, image understanding for object recognition, image
feature descriptors using low-, mid- and region- level visual cues have been vastly
incorporated in this thesis. Applications of the proposed techniques for real world sce-
narios have been conducted and results are supported with performance evaluations
using objective and subjective quality metrics.

Superpixel extraction is proposed as an e�cient image representation tool. It has
been shown to o�er computational e�ciency with high segmentation performance.
Extraction of the superpixel has been realized using a color and spatial distance metric
where the weighting is de�ned as a trade-o� parameter. With extensive comparative
tests with the state-of-the-art, the proposed scheme is shown to yield a remarkable
alternative in the current superpixel and supervoxel extraction methods with faster
execution times and competitive segmentation performances.

The extracted superpixels have been further utilized for user-assisted image segmenta-
tion purposes. User assistance is required as drawing lines on the representative parts
of the image to de�ne foreground and background regions. An energy minimization
technique is then used to de�ne most likely regions to be segmented. The acquired
foreground segments could further be used for rendering the stereo pair of an image
for 3D visualization purposes. The same energy formulization is also extended on the
stereo and video footage for completeness.

The segmented superpixel patches are also presented as mid-level information sources
and applied on the image classi�cation task. Pixel-wise image descriptors are stud-
ied and extended using the proposed mid-level region descriptor in order to capture
the complementary mid-level information present in the image. The experimental re-
sults have shown supporting evidence for the proposal where classi�cation scores has
considerably increased.

Keywords: Superpixel Extraction, Image Segmentation, Video Segmentation, Graph-
cuts, 2D/3D Conversion, Stereo Disparity Remapping, Object Recognition, Spatial
Pooling, Mid-Level Feature Descripton
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ÖZ

BÖLÜTLEME VE SINIFLANDIRMA �Ç�N SÜPERP�KSEL TEMELL� ETK�N
�MGE S�MGELEME

Ta³l�, H. Emrah

Doktora, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. A. Ayd�n Alatan

Haziran 2013 , 140 sayfa

Görsel kay�t ve gösterim cihazlar�ndaki çözünürlük art�³� ile birlikte gelen ekonomik
sat�³ �yatlar�, görsel bilginin hayat�n vazgeçilmez bir ö§esi olmas�na sebep olmu³tur.
Her gün çok büyük miktarda görsel veri kaydedilip depoland�ktan sonra, belki de farkl�
amaçlar için tekrar i³lenerek anlamland�r�lmaktad�r. Teknolojinin h�zla geli³ti§i ve gör-
sel kay�t cihazlar�n say�s�n�n h�zl�ca artt�§� bu zamanda, ara³t�rmac�lar bu büyük veriyi
ula³�l�r k�lman�n ve gerekti§inde farkl� amaçlar için i³lemenin en verimli yollar�n� ara-
maktad�r.

Her gün kaydedilen görsel veri miktar�ndaki art�³, say�lar� h�zla artan ta³�nabilir ci-
hazlar�n artmas� ile ili³kilendirilebilir. Bu cihazlardaki say�sal art�³�n yan� s�ra, görsel
kalitede de çözünürlük, renk, ayd�nl�k ve gürültü bak�m�ndan art�³ kaydedilmi³tir. Di-
§er tarafta ekran teknolojilerinde de, son çeyrek as�rda önemli geli³meler ya³anm�³t�r.
Plazma ve LCD ekran teknolojilerinin yayg�nla³mas� ile televizyon ebatlar�nda derinlik
aç�s�ndan ciddi azalma olmu³tur. Bu ayn� zamanda, ta³�nabilir ekranlar�n özellikle dü-
³ük enerji tüketimleri ile yayg�nl�k kazanarak ceplerimize girmelerine sebep olmu³tur.
Bir ba³ka önemli ad�m ise üç boyutlu ekranlar�n yayg�nla³arak daha zengin bir görsel
deneyim ile tan�³mam�z� sa§lam�³ olmalar�d�r.

Üç boyutlu televizyonlarda son on y�l içinde ciddi bir art�³ gözlenmi³tir. Buna ek
olarak üç boyutlu mobil ekranlar da üretilerek tüketiciye sunulmu³tur. Fakat, ekran
say�s�ndaki art�³ içerik üreticileri taraf�ndan ayn� oranda kar³�l�k görememi³tir. Sonuç
olarak, üç boyutlu cihazlar beklenenin alt�nda ilgi görmü³tür. Bu durumun alt�nda
yatan sebepler ve çözüm önerileri bu tezde sunulmaktad�r.

vii



Bu tez, görsel içerik analizinden, görselle³tirme teknolojileri konusuna kadar farkl� alan-
lara de§inmektedir. Gerçek zamanl� görüntü ve vidyo i³leme, insan görsel perspekti�
temelli öznel ve nesnel görsel kalite analizi, stereoskopi ve üç boyut alg�s�, görüntü
anlama ve nesne tan�ma, alt orta seviye ve bölgesel imge öznitelik tan�mlay�c�lar� gibi
konular bu tezde incelenmektedir. Anlat�lan yöntemler gerçek hayat senaryolar�na uy-
gulanarak sonuçlar� öznel ve nesnel kalite ölçümleri ile de§erlendirilmi³tir.

Superpiksel ç�kar�m� verimli bir imge simgeleme yöntemi olarak sunulmaktad�r. Bu ³e-
kilde bölütleme performans�nda art�³ ve i³lem karma³�kl�§�nda ciddi kazan�mlar sa§la-
nabilmektedir. Süperpiksel ç�kar�m�nda renk ve uzamsal yak�nl�k kriterlerine dayanan
bir metrik kullan�lm�³t�r. Detayl� nesnel kar³�la³t�rmalar ile de§erlendirilen yöntem,
i³lem h�z� ve bölütleme performans� ile güncel metotlara ciddi bir alternatif olu³tur-
maktad�r.

Olu³turulan süperpiksel bölgeleri, kullan�c� etkile³imli imge bölütleme yöntemi için kul-
lan�lmaktad�r. Kullan�c�, imge üzerindeki belirleyici alanlar� i³aret ederek nesne ve arka
fon bölütlemesi için sisteme bilgi vermektedir. Bu bilgi ile olu³turulan enerji fonksiyonu
en aza indirgenerek, sahnenin bölütlenmesi sa§lamaktad�r. Elde edilen nesne s�n�rlar�,
stereo görüntü sentezinde kullan�larak üç boyutlu görselle³tirme sa§layabilmektedir.
Önerilen yöntem ek olarak stereo ve video içerklere de uygulanarak bütünlük sa§lan-
m�³t�r.

Süperpiksel bölgeleri ayr�ca orta seviye bilgi kayna§� olarak ele al�narak görüntü s�n�f-
land�rma probleminde kullan�lm�³lard�r. Güncel piksel temelli öznitelik tan�ml�y�c�lar�
örnek al�narak, orta seviye bir imge tan�mlama yöntemi önerilmektedir. Bu sayede, alt
seviyede yap�lan bilgi ç�kar�m�n�n orta seviyeye de aktar�larak bütünleyici bir yakla-
³�m sergilenmesi mümkün olabilmektedir. Deneysel çal�³malar ile de destekleyici yönde
sonuçlar gözlenmi³tir.

Anahtar Kelimeler: Süperpiksel Ç�kar�m�, �mge Bölütleme, Video Bölütleme, Çizge

Kesit, 2 Boyut / 3 Boyut Dönü³ümü, Stereo Ayr�kl�k Tekrar Hede�enmesi, Nesne

Tan�ma, Bölgesel Gruplama, Orta Düzey Öznitelik Betimleme
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CHAPTER 1

INTRODUCTION

The wide availability of visual capture and display devices with increasing resolution

and a�ordable prices, made the visual data an indispensable part of our life. The

enormous amount of visual data that is produced every day is captured, stored and

sometimes processed for further analysis. In this era of technological improvement,

where an exponential increase in the number and capability of the devices is experi-

enced, researchers have focused on e�cient and accurate ways to reach, store, analyse

and display the data for various purposes.

At the capture side of the visual content pipeline, the number of cameras has rapidly

increased in close correlation to the number of mobile phones with built in camera

functionality. As with the quantity increase, the quality of the sensors have also

boosted in regards to resolution, color/brightness and noise level performance. On

the other side of the pipeline, there has been some major changes at the display

side over the last couple of decades. With the introduction of the plasma and LCD

(Liquid Crystal Display) type of displays, sizes have rapidly decreased in the depth

dimension. This decrease also made the mobility of the displays possible especially with

lower power consumptions of LED (Light Emitting Diode) type lightning equipment.

Therefore, mobile equipments with high resolution displays could easily �t in our

pockets. Moreover, another major stepping stone towards a richer visual experience is

observed with the introduction of 3D capable displays for di�erent sizes and resolutions.

There has been a major increase in the popularity of 3D TVs in the last couple of years.

Mobile devices with 3D capability have also been introduced in the market. However,

the fast increase in the display side could not be matched as well in the capture and

broadcast side. Therefore, the popularity of the 3D devices have been lower than the

expectations. Various factors could be counted as a cause for such a slower reaction.

These factors and possible solutions for such problems are presented in this thesis.

This thesis deals with various aspects of the research in visual content analysis and

display technologies. The author's previous experience in real time processing of im-

age/video data, human visual perspectives for objective/subjective quality analysis,

stereoscopy and 3D perception, image understanding for object recognition, image
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feature descriptors using low-, mid- and region- level visual cues have been vastly

incorporated in this thesis. Applications of the proposed techniques for real world sce-

narios have been conducted and results are supported with performance evaluations

using objective and subjective quality metrics.

1.1 Problem De�nition

The current capture and display mediums are �xed to the shape of a rectangle. How-

ever, this is the result of an evolution starting from a round shape similar to the lens

of a camera. One of the many reasons for such an evolution is the ease of image repre-

sentation using �xed number of elements in the rows and columns of a matrix. Such a

representation has supplied various advantages in the data compression and broadcast

aspects of the technology. In this matrix representation, the value of each element cor-

responds to the color and brightness information corresponding to a speci�c physical

location on the image.

There has been previous e�orts towards alternative image representations from the

perspective that how the matrix values should be de�ned so that e�cient processing

might be possible. The contour representation technique presented in [11], computes

the boundaries of connected regions of pixels for a given gray level. For each gray

level the boundaries of connected regions of pixels are computed. Reconstruction of

the original image is possible from the assigned boundary values. Representation of

an image as a collection of those boundary lines (contour lines) associated with gray

levels is the contour representation of an image.

Pixel representation of an image is often redundant due to the spatial coherence within

the image. In order to reduce this redundancy, a preprocessing stage is proposed.

The idea of generating a representative region for small image patches is not totally

new, however superpixel naming convention is introduced by Ren et al. [103]. The

method groups pixels into homogeneous image regions, called superpixels (SPs). This

preprocessing step has been useful in many image processing applications. Since the

superpixel regions on the image, possess similar color and texture characteristics, they

provide an e�cient representation. This property supports the assumption that pixels

in the same superpixel belong to the same semantic object. Inspiring from this idea,

all the pixels in a superpixel can be assigned to speci�c models representing motion,

depth or segmentation structures. Such a representation can replace the utilization

of pixel primitives in various applications [122, 12]. By the utilization of superpixels

as the image representation, the inter-pixel details are captured and preserved in the

image. Furthermore, the extracted superpixel structure is crucial for graph-based

approaches. When the graph nodes are constructed with superpixels instead of pixels,

graph complexity and computation time would substantially reduce.

This thesis proposes a method for extracting superpixels using image color and tex-
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tural characteristics and presents the ways to utilize them in the image segmentation

and classi�cation framework. Such utilization proposes an e�cient representation of

the image and hence serves the purpose of reducing the computational complexity of

the pixel based methods. Superpixel representation is also proposed as a mid-level

information in the object recognition framework.

1.2 Existing Solutions

E�cient representation of an images has been previously addressed in [66]. The epit-

ome of an image is de�ned as its miniature, condensed version containing the essence

of the textural and shape properties. In this sense, Superpixels are also seen as an

e�cient image representation with reduced resolution (number of graph nodes) and

information encapsulation property.

The main purpose of the superpixel extraction is to create an alternative represen-

tation of the image. This has been observed to be bene�cial for computational and

representation purposes. Superpixel extraction is achieved by partitioning the graph

where nodes correspond to individual pixels and edge weights are assigned according to

a cost function relating inter pixel similarities. In [76], the graph is partitioned recur-

sively in order to minimize a global cost function based on color and texture cues until

desired number of superpixels is achieved. This approach satis�es the compactness

constraint required for superpixels in order to provide e�cient graph representation.

However, it su�ers from computational complexity. In [47], superpixel extraction is

improved in terms of complexity by grouping nodes of the graph via greedy decisions

through pairwise region comparisons on edge measures of minimum spanning trees.

This method, on the other hand, does not enforce a control on region compactness

and number of superpixels. In [88], a lattice structure is enforced by �nding horizontal

and vertical seams that cut the image optimally via graph cuts. The seams determine

the SP boundaries based on region compactness and total SP number. The study in

[118] aims to preserve the image topology for SP generation. A recent study [131]

proposes a novel method to generate 2D superpixels and 3D supervoxels (SV) in an

energy minimization framework utilizing graph cuts. It provides various controls on

the SP structure and distribution; however, it su�ers from computational complexity

during the optimization stage. Another recent study [142] presents a detailed eval-

uation of various SV methods by extending the common SP methods on temporal

volume. The details of how the conventional evaluation metrics should be extended

on the spatio-temporal domain are also presented.

Previous literature about extracting superpixels is further detailed in the following

section. The main challenges of the superpixel extraction addressed in this thesis can

be named as follows. A successful method should preserve local structure by adapting

to the local object and region boundaries. Secondly, undersegmentation of the regions
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should be avoided for realizing an expressive image representation. Moreover, regular

region identi�cation is targeted with quasi-uniform SP regions. Finally, computational

complexity should be kept at minimum. The �rst two challenges are related with the

local information encapsulation that enforces adaptation of SP boundaries to the object

boundaries. Uniform localization and compactness are required to form regular grid

structure among graph models with unbiased neighbor relations. This property has an

in�uence on the precision and accuracy of graph based solutions, especially in image

segmentation problem. Computational e�ciency is crucial for practical usability of

the method.

Pixel based descriptors are widely used in object recognition tasks due to their accepted

performance for dense image description [83]. However, the use of middle and higher

level descriptors has recently gained attention. Such mid-level cues are claimed to

be important for a better scene characterization. In this thesis, the low level image

information is explored for extending towards middle level region descriptors. The

advantage of the proposed mid-level description is that it does not require a �xed

region size or shape to de�ne the support area of the descriptor. Region shape is

adaptive depending on the spatial image characteristics. Possible contributions from

di�erent levels of information are fused with the proposed hierarchical region adaptive

superpixel based descriptor.

The applications of the superpixels on the image segmentation task has been previously

addressed. One of the early works in [79], proposes using an initial oversegmentation on

the image before computing the energy minimization procedure. Such a preprocessing

step would overcome the drawback of the graph based energy optimization methods

such that the required amount of time and memory would considerably reduce with the

size of the graph. Similar methods have been previously proposed [91, 28] in order to

merge regions automatically that are initially segmented by di�erent oversegmentation

techniques.

Image representation is of primary importance for various image understanding tasks.

A good image representation should capture the distribution of image features faith-

fully and e�ciently. The representation at low levels is a general and basic approach,

but its support at the semantic level is poor. The paper in [139] investigates a multi

layer neural network for image representation that is inspired by the human visual

system. A di�erent type of image representation proposes a transformation in the

feature space [62]. The intention is to map the image in the feature space to the tar-

get domain in order to generate a robust representation under di�erent visualization

conditions. Similar metric learning methods are proposed [141] for obtaining robust

transformations in the feature space.
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1.3 Highlights and Contributions

This thesis covers a wide range of subjects in the �elds of image processing, stereoscopy,

image feature descriptors, classi�cation and object recognition. In the �rst part of the

thesis, the superpixel representation of an image is utilized for the image segmentation

purposes. The results of the segmentation are used for converting the 2D monoscopic

data on stereo for 3D visualization. Moreover, the extension of the technique on the

stereo images is also presented. As an application of the stereo segmentation, disparity

remapping is proposed as a post-processing step in the stereoscopic content generation

pipeline. Finally, the superpixel primitives are used as a mid-level scene descriptor for

the object recognition purposes. The contributions of the thesis are many-fold and are

explained below in the order of presentation.

Superpixel extraction

The superpixel extraction method proposes contributions to the state-of-the-art in

terms of both the computational e�ciency and the segmentation performance. In the

proposed technique, superpixels and supervoxels are de�ned depending on the color

and spatial similarity. The boundary adaptation idea and the energy function selection

are the two main contributions of the proposed method enabling e�cient implementa-

tion and high segmentation accuracy. Experiments are conducted for di�erent energy

function combinations and two of them are selected for the comparisons against the

state-of-the-art. The e�ects of utilizing di�erent color spaces and distance metrics have

been examined during the experiments. Utilization of geodesic distance in the energy

function has shown improvements in segmentation performance. The proposed con-

vexity constraint is explicitly justi�ed through a graph based interactive segmentation

application. According to the extensive comparative tests with the state-of-the-art, the

proposed scheme is shown to yield a remarkable alternative in the current superpixel

and supervoxel extraction methods with faster execution times and competitive seg-

mentation performances. This has been also supported with the visual results where

the generated superpixels and supervoxels are observed to show strong adaptation on

the object boundaries.

Mono segmentation & 2D/3D conversion

The extracted superpixels are utilized in the user assisted object segmentation frame-

work with an application on 2D/3D image conversion. The segmentation framework

is established using the superpixel primitives. Graph-cut energy minimization tech-

nique is iteratively used for multiple object labeling purposes. The e�cient iterative

implementation of the geodesic distance metric proves to be useful for increasing �nal

segmentation performance especially at the boundary regions of the object. Visual

results are presented for a qualitative evaluation.
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Stereo segmentation

In order to extend the proposed mono image segmentation on the stereo footage, no

extra user assistance is required. The input seeds on the representative locations of just

one of the stereo image pairs is used for the stereo segmentation. This way the user is

saved from repeating the procedure on the second image. The information propagation

is handled via e�cient feature point based stereo matching. Hence, the necessity

of the computationally demanding dense disparity estimation module is eliminated.

The ground truth stereo database is tested for judging objective stereo segmentation

performance. With the additional user strokes, the proposed method is shown to

generate outstanding results compared to the state-of-the-art methods.

Disparity remapping

The proposed stereo segmentation technique is further used to propose a post-processing

step for retargeting stereoscopic footage on di�erent display sizes and resolutions. By

the help of the proposed disparity remapping technique, novel disparity adjusted views

are synthesized using the produced stereo object segments and background informa-

tion for the images. To our best knowledge, utilization of segmented stereo objects for

virtual depth adjustment purposes has not been addressed before. Subjective evalu-

ations support the usage of such a disparity remapping operation regarding di�erent

aspects of visual preferences. It has been observed that the processed images are pre-

ferred more frequently for the problematic categories, which in fact, are the target

applications for the proposed method.

Video segmentation

Using the segmentation of the initial frame of the video, succeeding frames are au-

tomatically segmented using a novel superpixel based feature descriptor. Object and

background regions are learned using the proposed superpixel based region descriptors.

Support vector machine is used to de�ne the individual likelihood (con�dence) of a su-

perpixel to be assigned to the object or background region. Final region segmentation

is performed using the graph-cut framework where sink and source energy links are

determined by the object and background likelihoods, estimated by the learned region

models.

Superpixel based mid-level descriptor for object recognition

Conventional object recognition pipeline is presented in a four step process. The �rst

step, dense feature extraction, utilizes pixel based descriptors for image classi�cation.

The proposed hypothesis is that pixel based low-level descriptions are useful but can be

further improved with the introduction of mid-level region information. A novel super-

pixel based region descriptor that encapsulates the mid-level information is proposed

in order to explore and evaluate the initial hypothesis. Image regions are described

by computing the directional mean di�erences between a central superpixel and its
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various orders of neighborhood. The variance of the neighbors is further included for

a better region description. The performance of the proposed descriptor is evaluated

on the image classi�cation task. Based on the experimental evaluations, increased

average precision scores verify the initial hypothesis that mid-level cues enrich the im-

age description and improve the performance of the low-level cues. Some qualitative

results are supplied in order to give a better feeling of the matching performance of

the proposed descriptor.

Geometry based region segmentation for spatial pooling

In an attempt to utilize region speci�c information, the third step, spatial pooling,

in the object recognition pipeline is also investigated. The spatial similarities in im-

ages for the purpose of object level image classi�cation are explored. This has been

achieved by an improvement on the spatial pyramid by adapting spatial regions with

respect to the underlying image characteristics. The method has been experimentally

evaluated and the results have shown that the region adapted spatial segments im-

prove the accuracy over the baseline. This also supports the intention to encapsulate

spatial statistics using the proposed region based segmentation. Increase in the MAP

(mean average precision) scores have shown that coherent spatial regions would consis-

tently improve performance for alternative scenarios. Sample qualitative results of the

proposed segmentation have also been supplied for illustration of the proposed region

adaptation.

1.4 Outline

The outline of the thesis is organized as follows. Following the introduction in Chapter

1, the proposed superpixel and supervoxel extraction method is presented in Chapter 2.

Detailed experiments on the segmentation dataset has been provided for performance

evaluation.

Chapter 3 presents the user assisted segmentation method. The energy function for

optimum image labelling, e�cient geodesic distance calculation on the superpixel graph

structure are explained in detail. Visual results for segmentation and the proposed

2D/3D conversion technique is provided. Underlying aspects of 3D visualization from

the human visual system perspective is also addressed in this chapter.

Chapter 4 is devoted to the extension of the mono image segmentation method on the

stereo and video footage. The sparse stereo matching and information propagation

on the stereo image are investigated. Subjective tests for visual quality evaluation

are conducted and discussed for the performance evaluation of the proposed disparity

remapping technique.

Chapter 5 deals with the object recognition task and proposes two main contributions
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on the conventional object recognition pipeline. The superpixel primitives are used

as a mid-level dense region descriptor. The average precision tests are conducted

for evaluating the performance of the proposed superpixel descriptor. Moreover, a

geometry based region segmentation is proposed as an improved spatial pyramid in

the object recognition pipeline. Similarly, detailed quantitative tests are done in order

to verify the initial hypothesis.

Chapter 6 concludes the thesis with �nal remarks, discussions and a route for the

future work.
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CHAPTER 2

SUPERPIXEL EXTRACTION

2.1 Introduction

This chapter presents an e�cient superpixel (SP) and supervoxel (SV) extraction

method that aims improvements to the state-of-the-art in terms of both accuracy

and computational complexity. Segmentation accuracy is improved through convex-

ity constrained distance utilization, whereas computational e�ciency is achieved by

replacing complete region processing by a boundary adaptation technique. Starting

from the uniformly distributed, rectangular (cubical) equal-sized superpixels (super-

voxels), region boundaries are iteratively adapted towards object edges. Adaptation is

performed by assigning the boundary pixels to the most similar neighboring SPs (SVs).

At each iteration, SP (SV) regions are updated; hence, progressively converging to

compact pixel groups. Detailed experimental comparisons against the state-of-the-art

competing methods validate the performance of the proposed technique in terms of

both accuracy and speed.

Pixel representation of an image is often redundant due to the spatial coherence within

the image. In order to reduce this redundancy, a preprocessing stage is pioneered by

Ren and Malik [103]. Their method clusters pixels into homogeneous image regions,

called superpixels (SPs). Afterwards, utilization of SPs has become important in many

image processing applications. Since the SP regions on the image possess similar color

and texture characteristics, they provide an e�cient representation. This property

supports the assumption that pixels in the same SP belong to the same semantic

object. Inspiring from this idea, all the pixels in a SP can be assigned to speci�c

models representing motion, depth or segmentation structures. Such a representation

can replace the use of pixels in various applications [122, 12]. By the utilization of

SPs as an image representation, the inter-pixel details are captured and preserved in

the image. Furthermore, the proposed SP structure is also crucial for graph-based

approaches. When the graph nodes are constructed with SPs instead of pixels, graph

complexity and computation time would substantially reduce.

SP extraction involves four main challenges: Firstly, a successful method should pre-
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serve local structure by adapting to the local object and region boundaries. Secondly,

undersegmentation of the regions should be avoided for realizing an expressive image

representation. Thirdly, regular region identi�cation is targeted with quasi-uniform SP

regions. Finally, computational complexity should be kept at minimum. The �rst two

challenges are related with the local information encapsulation that enforces adapta-

tion of SP boundaries to the object boundaries. Uniform localization and compactness

are required to form regular grid structure among graph models with unbiased neigh-

bor relations. This property has an in�uence on the precision and accuracy of graph

based solutions, especially in image segmentation problem. Computational e�ciency

is crucial for practical usability of the method.

In this chapter, a novel and e�cient SP and SV extraction algorithm is presented

addressing the four fundamental constraints mentioned above. Local structure is pre-

served with the selected energy function. Adaptation on the object boundary is satis-

�ed by a color-based similarity measurement and the proposed distance metric takes

care of the convexity constraint by penalizing irregularly shaped regions. Computa-

tional e�ciency is achieved by processing only the pixels at the region boundaries.

Following the related work in Section 2.2 for SP extraction, details of the proposed

algorithm are presented in Section 2.3. The extension of method on the temporal

volume is also explained in Section 2.3. Section 2.4 is devoted to experimental results

and the �nal Section 2.5 concludes the chapter with �nal remarks and restatement of

the contributions. In the rest of the thesis, the word �SP� is used for explaining the

algorithmic details for extraction of both SP and SV on the spatio-temporal volume.

2.2 Related Literature

The previous work on SP and SV extraction dates back to less than a decade. We

explore the related work in two categories: Graph based and gradient based methods.

Graph Based In graph based approaches, SP extraction is achieved by partitioning

the graph where nodes correspond to individual pixels and edge weights are assigned

according to a cost function relating inter pixel similarities. In [76], the graph is

partitioned recursively, as in Normalized Cuts segmentation [115], in order to minimize

a global cost function based on color and texture cues until desired number of SPs

is achieved. This approach satis�es the compactness constraint required for SPs in

order to provide e�cient graph representation. However, it su�ers from computational

complexity. In [47], SP extraction is improved in terms of complexity by grouping

nodes of the graph via greedy decisions through pairwise region comparisons on edge

measures of minimum spanning trees. This method, on the other hand, does not

enforce a control on region compactness and number of SPs. In [88], a lattice structure

is enforced by �nding horizontal and vertical seams that cut the image optimally via
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graph cuts. The seams determine the SP boundaries based on region compactness

and total SP number. The study in [118] aims to preserve the image topology for SP

generation. A recent paper [131] proposes a novel method to generate 2D SPs and

3D supervoxels (SV) in an energy minimization framework utilizing graph cuts. It

provides various controls on the SP structure and distribution; however, it su�ers from

computational complexity during the optimization stage. Another recent study [142]

presents a detailed evaluation of various SV methods by extending the common SP

methods on temporal volume. The details of how the conventional evaluation metrics

should be extended on the spatio-temporal domain are also presented.

Gradient Based On the other hand, gradient-based approaches start from initial

seeds of rough SPs. Pixel groupings are re�ned iteratively, depending on the local

similarities. Mean-Shift [31], which is one of the well known methods in image seg-

mentation, is adapted for SP extraction by the use of recursive smoothing kernel over

pixel feature space. The main weakness of this method is that it does not have a

control on the SP properties, such as compactness, distribution and total region num-

ber. In [134], an image is considered as a topographic structure and intensity gradient

vectors are utilized to form pixel groups. This approach also lacks control on SP prop-

erties. TurboPixels concept [76] introduces geometric-�ow over initial seeds which are

considered as the starting points of the SPs. Level set method is exploited to update

and re�ne SPs based on local image gradients. This approach enables regular distri-

bution of compact SPs with less complexity compared to graph-based approaches. In

[146], geodesic distance [19] is exploited to iteratively group neighboring pixels start-

ing from the initial seeds as proposed in TurboPixels [76]. Utilization of geodesic

distance enables higher structure sensitivity compared to geometric-�ow with almost

similar complexity. Initial seed placement in [76, 146] is re�ned in [28] by rectangular

shaped initial SPs. Instead of geometric-�ow, boundary pixels are re-assigned to SPs

iteratively based on color similarity and spatial distance. At each iteration, SP mean

intensity locations and color models are updated and hence enable compact and al-

most regularly distributed pixels groups. This approach re�nes SPs through boundary

pixels which also signi�cantly decreases the computational complexity. In [8], a similar

method is proposed, where all pixels are updated during the re�nement rather than

only boundary pixels. A recent method [128] proposes a similar boundary update idea

for region segmentation, where SPs are not constrained to be convex and have regular

distribution. A top-to-bottom partitioning is proposed on the initial large rectangular

SPs and an iterative process is exploited to re�ne SPs, based on color similarity and

SP histogram. Besides, no temporal extension capability is presented in this paper.

A broad look at the previous literature has been useful for de�ning the priorities to-

wards a successful SP extraction scheme. These challenges can be summarized as:

1) Adaptation on the object boundary; 2) E�cient region representation; 3) Quasi-

uniform distribution on the image; 4) Fast execution capability. For this purpose,
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Figure 2.1: Algorithmic �ow of the proposed SP generation algorithm

the iterative boundary re�nement approach in [28, 121] is improved by constructing

a general framework that utilizes color and locational similarity for pixel label as-

signment. Di�erent parametric evaluations of Euclidean and geodesic distances are

achieved in order to create structure sensitive SPs. Hence, through the utilization of

alternative energy metrics, a trade-o� between compactness and edge adaptation, as

well as computational complexity and segmentation accuracy is accomplished.

2.3 Proposed Method

The proposed algorithmic �ow of the method can be explored in four main steps: 1)

Initialization of the SPs; 2) SP boundary update; 3) SP structure update; 4) Termi-

nation. These steps are illustrated in Figure 5.1.

Superpixel Initialization

In the �rst step, image is divided into equal sized regions according to the desired

number of SPs. Each region initially has a rectangular shape and the centers are

equally spaced among the image in the region centroids. In the prior methods, regular

placement of SPs is a common technique where center pixels are considered as the

seeds of pixel groups. Starting from these seeds, SPs are enlarged and the boundaries

are constructed. However, the proposed technique approaches the problem from a

di�erent perspective. Instead of enlarging from the seed locations, SPs are re�ned

through boundary pixels based on speci�c energy cost functions. The re�nement is

achieved iteratively through boundary and structure update steps.

Boundary update

In the boundary update step, a greedy search is conducted on the boundary pixels.

During the boundary adaptation, the cost function relating similarity of the pixels to

the corresponding SP candidates is minimized. This approach assures that the SPs

are composed of connected pixels without any sub-detachment. Computational e�-

ciency is realized by performing a search between boundary pixels and neighboring SP

candidates. Label assignment of each boundary pixel is conducted in an eight neigh-

borhood search. Pixel p is assigned to SP Qi according to the following dissimilarity
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cost between the pixel and the neighboring SPs.

L(p) = argmin
Qi

(E(p,Qi)) , Qi ∈ Np, i = 1 : N (2.1)

where L(p) is the assigned SP label of the pixel p; E(p,Qi) is the dissimilarity en-

ergy between the corresponding pixel p and SP Qi. N is the number of neighbor

SPs surrounding the boundary pixel p and Np is the label of these neighboring SPs.

Therefore, starting from the initial SP distribution, the boundary pixels are reassigned

to the most similar neighboring SPs. When all the boundary pixels are visited, SP

centers and mean color values are updated with the current region labels.

Structure Update

During the structure update, the SP model (i.e. mean color values and SP centers) is

recalculated based on the removed or merged boundary pixels. This update provides

pixel groups to adapt changes along the boundaries and converge to compact SP models

in terms of pixel similarity. The boundary and structure update steps are iterated

several times until a stopping criteria is met.

Termination

Termination criteria can be set as a �xed number of iteration or it can be computed

by the ratio of updated boundary pixels over the unchanged ones.

An example for the proposed evolution of SP boundaries at di�erent stages of the

iteration is presented in Figure 2.2. SP boundaries are represented with blue lines,

while yellow pixels denote the SP center locations. The initial distribution of the

rectangle shaped SPs with a uniform spacing is given in Figure 2.2.a. A greedy search

is conducted on the region boundary among the neighboring SPs with respect to the

update rule in (5.16). An intermediate SP distribution is shown in Figure 2.2.b. It is

observed that the SP boundaries, as well as center locations, show powerful adaptation

to local edges without losing their connectedness. At the �nal step in Figure 2.2.c, the

iterative procedure is terminated due to small number of updated boundary pixels,

providing edge aware convex SPs with quasi-uniform distribution.

2.3.1 Why Convexity Constrained SPs?

Convexity constrain has been a major criteria for the proposed SP extraction method.

The main motivation behind that is to create regular oversegment grids over the entire

image. This aim is morphologically meaningful, since objects usually tend to have

regular boundaries. Moreover, such a constraint could also be useful for graph based

implementations, where individual SPs are assigned as graph nodes.
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Figure 2.2: Boundary and SP center update at di�erent iterations; a) 0 b) 4 and c) 10

In order to support the motivation towards the proposed convexity constrain on SP

extraction, we have incorporated an interactive image segmentation framework with

and without convexity bias in the SP structure. Our previous work on interactive

object segmentation [122] provides details about the energy function assignment for a

binary image classi�cation problem. Human assisted input strokes on representative

locations of the image are used to determine the binary segmentation of the image.

Graphcut [22] method is utilized for the solution of this combinatorial optimization

problem. For the purposes of a true comparison between convexity constraint on the SP

structure, the runtime performance of the graphcut optimization method for the image

segmentation framework is tested against two di�erent SP extraction methods. In the

�rst scenario, SPs are generated by using only color similarity; hence, no convexity

constraint is induced. In the second scenario, a distance function has been incorporated

in the SP energy formulation. The details of the energy formulations are explained later

in Section 2.3.2. Computation time comparisons for di�erent sized SPs are presented in

linear and logarithmic scales in Figure 2.3 for better interpretation. Depending on the

naive optimization time results, it can be observed that the computational times di�er

depending on the structure of the generated SPs. Moreover, as the SP size increases,

the di�erence in computation time also increases. This is an expected result, since the

irregularity in the region boundary increases with enlarged region size. In this manner,

the number of possible combinations for the graphcut optimization to be tested before

Figure 2.3: Graph cut time computations in (a) linear and (b) logarithmic scale
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Figure 2.4: (a)(c) : Interactive segmentation inputs on convex and non-convex super
pixels, (b)(d) Interactive segmentation results on convex and non-convex super pixels

reaching the optimum energy assignment increases with the increased SP size.

In addition to the computational advantages, accuracy of the segmentation with the

two di�erent SP extraction methods (with and without convexity bias) have been

evaluated in the same interactive segmentation framework. The SPs on Figure 2.4.a

are computed by using only color constraint, and Figure 2.4.c shows the case when

distance constraint is induced as well as color. As seen on the �gure, introduction of the

proposed geometrical constraint generates a very structured and evenly shaped SPs.

When the interactive segmentation framework in [122] is used to compute optimum

energy labeling for binary segmentation, di�erent results are obtained using the same

input scribbles for foreground (red) and background (green). Figure 2.4.b and Figure

2.4.d. show the resulting segmentation when SPs with(&out) convexity bias are used

as graph nodes in the energy optimization framework.

The mentioned advantages of utilizing structural SPs, in terms of computational time

and segmentation performance, has motivated our study towards developing a method

that utilizes a regional structure as a prior in the energy function.

2.3.2 Proposed Energy Formulation

The formulation de�ned in (5.16) is used on the boundary update of the SP structure.

At this step, all the boundary pixels of the SPs are visited and the cost of assigning

each boundary pixel to the neighboring SPs is computed. Depending on the computed

cost, the boundary pixel is assigned to the region that provides the minimum cost.

The cost function used in this study is composed of two main energy terms. The �rst
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term relates the color similarity of the boundary pixel to its neighboring SPs, whereas

the second term de�nes the spatial distance of the pixel from the SP centers. The

proposed two term energy function is de�ned in order to create color wise homoge-

neous and shape wise structural SP regions. The selection of cost functions and the

underlying reasoning is detailed in this section. Varying the cost function parameters

yields di�erent segmentation accuracy and computational complexity; hence, it serves

as a trade o� parameter for the target application.

2.3.2.1 Color Similarity Cost

During the SP boundary update, color similarity of a boundary pixel with its neigh-

boring SPs is of great importance for an accurate label assignment. Stemming from

the idea that a SP is composed of homogeneously colored pixels, the boundary pixels

are supposed to be assigned to the SPs with maximum similarity. The cost function

used in this study for calculating the color similarity is given below.

C(p,Q) =
3∑

i=1

(
pi −Qi

)2
(2.2)

The color similarity cost C(p,Q) in (2.2) is computed via fusion of 3 channel color

information of the boundary pixel p and its neighbor SP Q. pi represents the mean

color of the ith channel of pixel p and similarly Qi is the mean color of the ith channel

of SP Q. The experiments are conducted on two di�erent color spaces. RGB is a

common format for various image processing applications, whereas LAB has a superior

representation performance due to its perceptual uniformity [51]. The cost function

given in (2.2) enforces the boundary pixels to be assigned to the color wise most similar

SPs and hence strong adaptation at the object boundaries is satis�ed.

2.3.2.2 Distance Cost

As mentioned in the previous section, one of the main challenges of SP extraction is

to provide quasi-uniform distribution of convex SPs. Utilizing SPs, instead of pixels,

provides computational e�ciency, however, irregular shaped SPs can degrade perfor-

mance due to weak neighboring relations [8, 28]. Structural uniformity cannot be met

by the use of sole color similarity; therefore, some geometric constraints should be

provided. The proposed distance term in the energy function is useful for imposing

convexity constraint on the generated SPs. It is realized by penalizing the distant

pixels, so that they are re assigned to a di�erent closer SP.

During the selection of the distance metric, Euclidean and geodesic distances [19]

are considered. They are selected due to their individual advantages on the �nal
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Euclidean Distance

Geodesic Distance

A B

Figure 2.5: Abstract representation of geodesic vs. Euclidean distances

performance. By the selection of the distance function, di�erent trade-o� for the

convexity constraint has been observed. Euclidean distance D(p,Qc)E is computed

by comparing the spatial coordinates of the pixel p, (px, py), and the SP centroid Qc,

(Qcx, Q
c
y), as shown below.

D(p,Qc)E =
√

(px −Qcx)2 + (py −Qcy)2 (2.3)

Geodesic distance has been previously used for image segmentation purposes [100].

The motivation behind utilization of such a metric in the distance computation is

due to its region encapsulation property. Euclidean distance can a spatial measure

whereas, geodesic distance takes into account the path of the region that brings a

pixel to the center of the neighboring SP. Figure 2.5 illustrates the distinction between

two distance metrics as an abstract representation between two points.

Geodesic distance, D(p,Qc)G, between the boundary pixel p and the SP centroid, Qc

is de�ned as the sum of the cost of the shortest path from p to Qc [34].

D(p,Qc)G = minP=p1,p2,..,pn l(P ) (2.4)

Suppose P = {p1, p2, .....pn = Qc} is a path between the pixels p1 and pn = Qc, where

pi and pi+1 are connected neighbors. The path length l(P ), as de�ned in (5.20), is

the sum of individual neighbor distances dN (pi, pi+1) (5.21) between adjacent points

in the path.

l(P ) =

n−1∑

i=1

dN (pi, pi+1) (2.5)

For the computation of adjacent pixel distance dN , three color channels (RGB or

LAB) can be utilized using the formulations in (5.21). Since no signi�cant performance

di�erence has been observed, the formulation in (5.21) has been selected with k=1 in

the �nal implementation due to its computational e�ciency.
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dN (p, q) =
3∑

i=1

(|pi − qi|)k k = 1, 2 (2.6)

2.3.2.3 Combining Color and Distance Costs

The individual color and distance terms for SP boundary update are de�ned previously.

This section provides an in depth analysis of color and distance term combinations.

Utilization of a combined color and distance formulation is shown to be useful based on

the objective results presented in the next section. The proposed dissimilarity energy

cost function, de�ned in (5.16), combines both color and distance terms as shown

below.

E(p,Q) = λ C(p,Q) + (1− λ)D(p,Qc) (2.7)

where the parameter λ determines the weighting between these two terms.

Figure 2.6 illustrates the update procedure of a boundary pixel �x� on the junction of

four di�erent SP neighborhood according to two distance criteria. The neighboring SP

centroids are marked with blue dots and the blue line connecting the SP centroid and

boundary pixel indicate the shortest path in terms of the distance metric. Computation

of the shortest path from the boundary pixel p to the SP centroid Qc is performed

via the formulation provided in [40]. At each iteration, the shortest paths from the

neighboring boundary pixels to the SP centroid are computed. Since the termination

criteria for path computation is at the boundary, estimation of the shortest paths over

the whole image is avoided.

2.3.3 Energy Function for Supervoxel Generation

The extension of the proposed idea towards the spatio-temporal space for SV genera-

tion is a necessary and intuitive step for a video representation framework. Similar to

SPs in images, SVs has the ability to represent videos in a coherent structure where

3D segmentation of multiple frames become possible. Voxel based segmentation meth-

ods can be especially valuable for volumetric region processing. The optimization rule

given in (5.16) is revisited for the SV region estimation. In this case, boundary pixels

do not de�ne 2D, but 3D volumetric regions. At each iteration of the algorithm, pixels

at the volume boundaries are visited and are assigned to the neighboring voxel with

the maximum similarity. Section 2.3.2 explains the energy function and the selection

procedure. SV generation is realized with the same technique where at this time graph

nodes are de�ned as the pixels of the video frame.

Figure 2.7 shows the initial volumetric cubic region boundaries at the �rst iteration.

Similar to the SP case, SVs adapt to the 3D object boundaries at each iteration. An

important parameter to tune for the voxel estimation procedure is the number of the
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Figure 2.6: Illustration of the shortest (geodesic) path between the SP centroid and
the boundary pixel

Figure 2.7: Illustration of Supervoxel Boundary

frames to include for each cubic voxel region. Figure 2.7 shows a voxel composed

of 5 frames with 20 × 20 pixels in each frame. Three di�erent temporal dimensions

are tested for evaluation; 3,5 and 7. The number of temporal dimension is set as a

parameter in the implementation and can be adjusted to any value depending on the

application.

2.4 Experimental Results

This section presents quantitative and qualitative results regarding the proposed two

SP extraction methods (using Euclidean and geodesic distance) in comparison with the

state-of-the-art. The known methods in the literature, Graph-based [47], TurboPixels

[76], Structure Sensitive Geo [146] and SLIC [8], are evaluated in terms of accuracy

and computation time. The accuracy of the extracted SPs is measured in terms of

undersegmentation error, EUnSeg and boundary-recall statistics. Undersegmentation

error is calculated by measuring the �bleeding� of the segment boundaries with respect

to the ground truth (human) segmentation. Bleeding is measured by the following

relation in (2.8)
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EUnSeg =
1

N




L∑

l=1


 ∑

[Sj |Sj∩Gl>B]

Area(Sj)


−N


 (2.8)

where N corresponds to the number of pixels, L is the number of ground truth

segments Gl, and Sj is the extracted SP. In (2.8), pixel area of a SP intersecting with

the Gl is computed. B is selected to be equal to 5% throughout the experiments in

order to compensate for small errors in ground truth segmentation data.

EUnSeg measures how well the extracted SPs �t the ground truth segment boundaries.

The experiments are conducted on the Berkeley segmentation database [103] with their

manual segmentation results over 300 di�erent images for a resolution of 481x321. All

the presented undersegmentation error values denote the average error over the whole

dataset. The second error metric is the boundary recall and it is used to measure the

percentage of overlap between the ground truth boundary pixels and the generated

SP boundaries within one or two pixel neighborhood. Although this metric is itself

inconclusive, it is widely used and clearly gives an idea about the boundary precision

of the SP extraction algorithm. Di�erent number of SPs are tested for performance

evaluation to observe the performance of the algorithm.

The measurements are performed on 3.06GHz Intel Core i7 CPU with a 6 GB RAM. In

the �rst part of this section, comparative experiments are conducted on di�erent energy

functions for the proposed algorithm to optimize accuracy and computational load with

respect to various number of SPs and image resolutions. Once the best performances

are determined, further comparisons against the state of the art techniques are given

in the second part. The source code of the proposed implementation will be made

available in the authors' web page 1.

2.4.1 Parameter Optimization

The proposed method has been tested for various energy cost function combinations.

The weighting of color and distance cost given in (5.17) has a major impact on SP

boundary adaptation. A comparative visual evaluation for di�erent values of λ in (5.17)

is presented in Figure 2.8. As the weight of distance term increases, SPs converge

to a quasi-uniform distribution with increased convexity, which is desired for graph

based approaches. If this ratio is further increased as in Figure 2.8.d, the resulting

distribution becomes almost uniform and color homogeneity within SPs is violated.

According to the visual interpretation of Figure 2.8, equal color and distance weights

are utilized throughout the experiments. However, a di�erent weight selection might

also be preferred depending on the application and content.

In Table 2.1, the evaluation of execution times vs measured bleeding ratios are pre-

1 http://emrahtasli.com/SPExtraction.html
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Figure 2.8: SP boundaries under di�erent convexity weights (a) λ=0.9, (b) λ=0.6, (c)

λ=0.4 (d) λ=0.1

sented for eight (4× 2) di�erent energy function combinations. 1) Only color; 2) only

geodesic distance; 3) color and Euclidean distance combination, 4) color and geodesic

distance combination. All these combinations are tested both in RGB and LAB color

spaces. The measurements are obtained for three di�erent number of SPs as 500, 1000

and 2000 for the sake of completeness. Moreover, the average measurements are illus-

trated in Figure 2.9 to visualize the performance of di�erent combinations. According

to the obtained results, the execution times increase by LAB utilization due to addi-

tional overload for RGB to LAB conversion. The fastest execution time is obtained

when only the geodesic distance is selected as the energy function; it is followed by

the combination of color and Euclidean distance as the energy function. The fastest

two selections are further compared with respect to increasing image resolution over

original sizes of (481x321) by �xing the number of SPs to 1000. According to the

results given in Figure 2.10, geodesic distance enables faster computation for lower

resolutions; as the image size increases color and Euclidean combination yields faster

computation. The main reason of such a result is that, increasing the image resolu-

tion creates larger SPs; hence, more computation time is required during the geodesic

distance calculation to reach SP boundary pixels.

Examining Table 2.1, it is interesting to observe that combination of color and Eu-

clidean distance requires less computation compared to using only color term in the

energy function. This is a consequence of quasi-uniform distribution of convex SPs

provided by the distance term, which minimize the number of boundary pixels. Thus,
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Table2.1: Computation Time and Bleeding Ratio Comparison for Di�erent Energy
Functions

Number of Superpixel

Computation time/
Bleeding (msec/ %
ratio)

500 1000 2000 Averages

Color(RGB) 212 / 25.3 262 / 18.7 331 / 13.3 268 / 19.1
Color (LAB) 263 / 22.1 309 / 16.3 372 / 11.6 315 / 16.7
Geo (RGB) 200 / 24.0 191 / 17.4 202 / 12.4 198 / 17.9
Geo (LAB) 266 / 23.6 256 / 17.0 267 / 12.1 263 / 17.6
Color(RGB)+Euclidean 152 / 24.2 209 / 16.5 254 / 12.2 205 / 17.6
Color
(RGB)+Geo(RGB)

252 / 22.2 278 / 16.1 318 / 11.8 283 / 16.7

Color
(LAB)+Euclidean

209 / 20.8 258 / 15.0 300 / 11.2 256 / 15.7

Color
(LAB)+Geo(LAB)

317 / 20.5 345 / 15.0 390 / 10.7 351 / 15.4

Figure 2.9: Bleeding error vs. execution time for the selected eight energy functions

less number of greedy search among neighboring SPs is performed and this yields faster

computation.

LAB color space utilization increases segmentation accuracy for all combinations com-

pared to RGB. This is also an expected result, since LAB color space is selected due

to its perceptual uniformity. The best precision is provided by color and geodesic dis-

tance combination in LAB domain, which is followed by color and Euclidean distance

combination. The same accuracy order is also valid for RGB color space as well. This

result shows that the bleeding error decreases by the additional distance term, which

also enables quasi-uniform distribution. Among the presented di�erent alternatives for

the selection of energy function, two of these results turn out to be the optimum solu-

tion in terms of execution speed and segmentation accuracy. Hence, these two energy

functions, Euc + RGB and Geo + LAB, are selected for evaluating the performance

of the proposed methodology against the state-of-the-art techniques in the following

22



Figure 2.10: Computation time for the selected two energy functions for di�erent image
sizes

Figure 2.11: Bleeding error comparison for di�erent number of SPs

section 2.4.2. Geo+LAB is selected due to its very low bleeding error and Euc+RGB

is selected due to its fast execution time with acceptable bleeding error performance.

2.4.2 Comparison against state-of-the-art Techniques

The quantitative performance evaluation of the proposed method against the state-

of-the-art is achieved in terms of the computation time, EUnSeg (2.8) and boundary-

recall metrics. Moreover, the resulting boundaries are also presented for a visual

evaluation. At this point, it is important to note that segmentation accuracy results

of the state-of-the-art techniques are obtained from the corresponding references. The

undersegmentation error ratio of the generated SPs provided by Graph-based [47],

TurboPixels [76], Structure Sensitive Geo [146] and SLIC [8] and the proposed (Eucl+

RGB and Geo + LAB) two methods are presented in Figure 2.11. It is observed

that Structure Sensitive Geo algorithm [146] has superior performance in terms of

undersegmentation error, which is followed by our proposed method, especially when

the number of SPs is su�ciently high (≥ 500). SLIC is observed to perform better

than Geo+ LAB for small number of pixels.
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Figure 2.12: Boundary-recall ratio for various number of SPs in (a) 2-pixel neighbor-
hood, (b) 1-pixel neighborhood

Figure 2.13: Computation time comparison for di�erent image scales a) Logarithmic
scale b) Linear Scale

Boundary-recall ratio measures the amount of match between the super pixel bound-

aries and the ground truth segmentation boundaries. This metric is prone to errors,

since it is quite di�cult to distinguish the actual boundaries in pixel precision. Hence,

two versions of the metric are tested for measuring the ratio of boundary �t. The �rst

version of the metric checks, whether the indicated SP boundary is within two pixel

neighborhood of the actual boundary. Similarly one pixel neighborhood test is also

conducted. According to the results presented in Figure 2.12.a and Figure 2.12.b the

proposed two methods (Eucledian+RGB and Geodesic+LAB) outperforms state-of-

the-art techniques.

Final quantitative comparison is conducted in terms of the computational times of

the corresponding methods. In this case, the number of SPs is kept constant at 1000

and the images are scaled up and down using bicubic interpolation for di�erent ratios

of the original size. Seven di�erent scales of the original image (1/4, 1/2, 1, 2, 4, 8,

16) are used for measuring average running time of the methods. According to the

results presented in logarithmic scale in Figure 2.13.a, TurboPixels [76] and Structure
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Sensitive Geo [146] require orders of magnitude longer execution times compared to

SLIC [8], Graph based [47] and the proposed approach. The results are also shown in

logarithmic scales in order to visualize all methods on the same �gure. The previous

paper [8] presents the e�ciency of SLIC compared to the Graph based approach; hence,

a �nal detailed time analysis is conducted in Figure 2.13.b by comparing the proposed

methods to SLIC and Graph based method separately.

Apart from the quantitative comparisons, the visual results of the proposed two meth-

ods are presented in Figure 2.14 and Figure 2.15 for visual interpretation. It is observed

from the visual results that the extracted SP boundaries for the proposed method

perform well at the object boundaries. Moreover, region homogeneity and convexity

constraint is satis�ed with the proposed energy based region assignment.

2.4.3 Supervoxel Extension

As an extension of the SP framework on the temporal dimension, SV extraction has

also been implemented and tested. To our best knowledge, there are only limited

number of methods presented in the literature for SV extraction. The study in [131]

presents an energy based SP extraction and directs to a possible extension on the

temporal dimension for a SV generation. A more recent paper in [142] details an

evaluation of SV extraction methods. Although this study [142] does not o�er a new

method to the literature, it provides a framework where previous methods have been

analysed in detail. The results in that paper de�nes the quantitative framework for

SV performance evaluation, and it has been also used in our study for evaluating the

performance of the proposed SV extension.

The undersegmentation error de�ned in (2.8) is directly extended to 3D below.

E3DUnSeg =
1

N




L∑

l=1


 ∑

[Sj |Sj∩Gl>B]

Area(Sj)


−N


 (2.9)

where N is the number of pixels in the volume, L is the number of ground truth voxels

Gl, and Vj is the extracted SV. (2.9) computes the voxel volume of a SV intersecting

with the Gl. B is set to 5% throughout this study in order to compensate for small

errors in ground truth segmentation data.

2.4.3.1 Evaluation Metric

The segmentation accuracy metric as de�ned in [142] is used to test the accuracy of

the produced voxels with respect to the ground truth volumes. This metric (2.10)

measures the fraction of the correctly segmented pixels.
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Figure 2.14: SP boundaries (a) Eucl+RGB, (b) Geo+LAB, (c) SLIC [8], (d) Turbo
Pixel [76]
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Figure 2.15: (a) Original image, SP boundaries of (b) Eucl + RGB, (c)Geo + LAB,

(d)SS-Geo [146], and (e)Turbo Pixel [76]

Acc3D(gi) =

∑k
j=1 V ol(v̄j ∩ gi)
V ol(gi)

(2.10)

where gi represents the ground truth segment and the label of an individual SV, vj ,

is de�ned by the area that it mostly overlaps. The correctly labeled SVs v̄j de�ne the

percentage of overlap with respect to the ground truth volume.

Boundary-recall ratio of the 3D volume is also computed for evaluating the perfor-

mance of the proposed method. The quantitative experiments are conducted on di�er-

ent number of SP numbers for individual frames and three sets of temporal dimensions

(3,5,7 frames) are tested in our experiments. The size of temporal dimension is impor-

tant on the �nal performance of the SV. The higher the temporal dimension the harder

it gets to isolate a homogeneous voxel from the video. It is mainly because it might

get harder to follow a moving object between the frames and hence the voxels might

get irregularly shaped; this is penalized by our system. Another possible scenario is

that the voxel might just not be available during all the selected frames. It might get

occluded or deformed in shape so that it no longer exists. The quantitative results

also in parallel with these expectations.

2.4.3.2 Evaluation Dataset

SegTrack dataset [126] is used during the quantitative experiments. It provides a set

of videos with manually labeled foreground segments. They are selected from di�erent

di�culty levels with respect to color, motion and shape of the foreground segments.

There are six videos in the dataset with an average 41 frames per video.
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Figure 2.16: SV generation computation time. 3,5,7 dimensional SV for 8 iterations

Figure 2.17: SV generation computation time. 3,5,7 dimensional SV for 14 iterations

2.4.3.3 Comparisons

The proposed algorithm is compared against the methods that are implemented in the

evaluation paper [142]. The selected methods are namely, SWA [114], GB [47], GBH

[57] and mean-shift [31]. The di�erent methods are compared in terms of segmenta-

tion accuracy, boundary recall values. Computational time results are also supplied

for di�erent SV sizes, temporal dimensions and iteration numbers for the proposed

method.

Figure 2.16 and Figure 2.17 show the computational results of the proposed algorithm

with SP sizes of 200, 300, 500, 700 and 1000. Temporal dimension of the SV is selected

as 3,5 and 7. Figure 2.18 presents the segmentation accuracy of the di�erent methods

for varying SV numbers. The proposed method is observed to perform better with

respect to this metric. Figure 2.19 shows the boundary-recall measurements under

varying SV sizes. It has been observed from these results that the proposed method

performs better as the number of SV is increased. The quantitative results are the

obtained by averaging on the videos of the dataset.

In addition to the quantitative results, some visuals are also presented in order to show

how the SVs evolve during the temporal movement. Figure 2.20 and Figure 2.21 show
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Figure 2.18: 3D Segmentation Accuracy for SP Numbers 200 − 1000 and Frame
Number:5

Figure 2.19: 3D Boundary Recall Ratio for SP Numbers 200 − 1000 and Frame
Number:5

29



the changes in video for a selected slice in the image. A horizontal slice is extracted

from the image and the evolution of pixels in the same location has been observed for

the following frames in the video. At the lower part of Figure 2.20, there is a zoomed

version of a part of the temporal voxel boundaries. One can observe the coherency in

the voxel boundaries in the succeeding frames. The voxel boundaries can be identi�ed

for every 7 frame. Voxels are marked with di�erent colors for visualization. Figure

2.21 also displays similar boundary changes along the temporal dimension. One can

observe the di�erence due to selection of the voxel size and its e�ect on the generated

boundary.

2.5 Conclusion and Discussion

In this chapter a novel superpixel, as well as a supervoxel extraction method is pre-

sented with contributions in terms of both computational e�ciency and segmentation

performance. In the proposed technique, SPs and SVs are updated iteratively through

the boundary pixels based on color and spatial similarity. The boundary adaptation

idea and energy function selection are the two main contributions of the proposed

method enabling e�cient implementation and segmentation accuracy. The experi-

ments are conducted for di�erent energy function combinations and two of them are

selected for the comparisons against the state-of-the-art. The e�ects of utilizing dif-

ferent color spaces and distance metrics have been examined during the experiments

and it is observed that LAB color space has shown superior performance in terms of

boundary adaptation compared to RGB. Similarly, utilization of geodesic distance has

shown improvements in segmentation performance compared to the Euclidean metric.

Necessity of the proposed convexity constraint is also explicitly justi�ed through a

graph based interactive segmentation application. According to the extensive compar-

ative tests with state-of-the-art, it can be concluded that the proposed scheme yields a

remarkable alternative for SP and SV extraction methods with faster execution times

and competitive segmentation performances. This has been also supported with the

visual results where the generated SPs and SVs is observed to show strong adaptation

on the object boundaries.

Possible limitation of the proposed method could be observed when the initial SP

size is selected too large. In that case, boundary adaptation of the SP might not be

possible. A future direction in order to solve such issues might be to adaptively detect

optimum SP size or raise a warning in the case that SPs are not well adapted to the

object boundaries. This can be done by detecting the edges beforehand and checking

for an overlap between the obtained SP boundaries and the computed color/intensity

edges. Alternatively, dividing the SPs depending on the existing edges might also be

a way to overcome such issues.
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Figure 2.20: SV evolution in video frames for temporal dimension 7
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Figure 2.21: SV evolution in video frames for temporal dimension 7
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CHAPTER 3

USER-ASSISTED MONO IMAGE SEGMENTATION

3.1 Introduction

Previous chapter presents superpixel based image representation. The applications

using this representation is explained in the rest of the thesis. In this chapter, the

general framework towards achieving user-assisted (a.k.a. interactive) image segmen-

tation is presented. A multi-label object segmentation method is explained in detail;

an application of image segmentation for 2D/3D conversion purposes is discussed in

Chapter 3.4. This study approaches image segmentation as an energy minimization

problem on a Markov Random Field (MRF). The goal of the proposed energy min-

imization technique is to achieve minimum energy potential labelling, where pixels

labels correspond to image segments. This has been realized on a graphical framework

where graph nodes are generated from the superpixel atomic structures as explained

previously in Chapter 2. The performance of the proposed technique is evaluated using

objective metrics on a ground truth image segmentation dataset.

General pipeline of the proposed method can be summarized as follows; 1) User inputs

are used to determine the object locations. 2) Assignment of energy function on the

image is done regarding the user inputs and image statistics. 3) Iterative graph cut

energy minimization is used to de�ne optimal labeling. The output of the optimum

energy labeling will supply the segmented image.

The general outline of the chapter is as follows: Firstly, the related literature about

user-assisted image segmentation is summarized. Following that, the proposed image

segmentation method is explained in detail in Section 3.3. Following the presentation

of the 2D/3D conversion technique in Section 3.4, the chapter is concluded. Exten-

sion of the proposed idea on stereo and video data is presented in the next chapter.

Experimental results of the proposed method is also supplied in order to have a clear

evaluation of the proposed performance.

33



3.2 Related Work

There has been a considerable amount of work in the �eld of user-assisted image seg-

mentation for more than a decade now. Drawing lines (a.k.a. scribbles) on the image

has been mostly selected as the interaction medium with the image. The human oper-

ator �rst selects the object to be segmented and draws scribbles on the representative

areas of the object of interest. Similarly, scribbles on the background region are used to

learn which part of the image is intended to be segmented. An object and background

model for the given image is generated. Additional user input is also allowed for fur-

ther processing if the resulting segmentation is not satisfactory. The main constraint

on the whole system is that it should be fast enough so that the user can directly

interact with the image repeatedly. The time between the user interaction and seg-

ment generation should be kept at minimum in order to achieve a natural interface.

Moreover, the amount of help from the user should be at minimum in order to propose

a system with decent running time. This means that the system should understand

quickly and accurately what the user intends to segment. These criteria make the

system di�cult to be realized. The more the interaction, the more accurate the image

segments. However, this requires more of the user which is usually not preferred. The

academic literature regarding the user-assisted image interaction is presented in this

section in detail. Moreover, some commercial/open source products are also mentioned

for completeness.

A simple interaction method to segment an image is to draw bounding lines around

the object of interest and select the segment that lies inside the selected region. Such

a method does not require any region modelling for the object and/or background.

However, such methods are not only time consuming but also prone to errors since

pixel wise accurate drawing is di�cult for a standard user. The commercial image

editing software Adobe Photoshop [1] and the open source version GIMP [3] o�er such

selection tools. Another basic interaction method is to paint the object with a brush

tool and generate the pixel precision segment by selecting the painted pixels. This is

also time consuming and erroneous; hence, becomes impractical for a large number of

images. A smarter boundary interaction method is to select the rough boundaries of

the object and let the system adapt to the boundaries depending on the intensity edges.

This method is commercially known as the Magnetic Lasso tool in Adobe Photoshop

[1]. The Intelligent Scissors idea [90] is also implemented in the open source GIMP [3]

image editing software.

Intelligent Scissors [90] requires user to select object boundary manually. Depending

on the given user scribbles, a cost function is minimized for an optimum boundary

between the given input points. Figure [90] depicts a typical input point selection

for the method. Additional user interaction is possible if the resulting segment is not

satisfactory enough. The proposed cost function uses the Laplacian zero-crossings,

gradient magnitude and the direction of the gradient.
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Figure 3.1: Intelligent Scissors method with user interaction points spotted for opti-

mum boundary estimation

The general aim of the Intelligent Scissors method is to �nd the optimal path between

the two user inputs where sharp changes on the path are penalized. Although this

method performs well in terms of accuracy where strong gradients exist in the image

boundary; it requires too much user interaction and this makes it impractical for large

datasets. This method is further developed in [15] and [102] by the utilization of

oversegmented region representation.

Another early approach for user interaction is to use initial seed points for region

growing towards image segmentation. In this type of approach, the human operator

is supposed to initialize a seed point in order to indicate where the object center is

located. The object location is then estimated by grouping the pixels around the initial

seed point. An early example for such an approach by [149] starts with the initial label

and grows the region iteratively depending on an intensity or color based similarity

metric. Whenever the similarity between the segment and the candidate pixel goes

above a certain value, the pixel is assigned to the same region of the segment. This

iterative process depends on a brute-force search on all the pixels for labeling. The

major issue in such methods is the unreliability of the �nal performance since it is

mostly depending on the selected threshold and the region statistics. If there is a

smooth edge in the object boundary, it might end up generating a totally erroneous

segmentation. In order to overcome the ambiguity in the threshold selection, Seeded

Region Growing method has been proposed [9]. This method requires user to set the

initial region seeds where the region growing should start. The similarity between an

individual pixel and the neighbor region is de�ned as in (3.1).

pixSim(p,R) = I(p)− 1

|R|
∑

q∈R
I(q) (3.1)
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Figure 3.2: Segmentation boundaries for intermediate energy minimization steps
(1,3,10,20) for the Active Contour method [68]

I(p) is the intensity value of the pixel p. q is the pixels in region R and |R| is the
number of pixels in the region. An improvement of this approach is presented in [117]

where users are allowed to draw scribbles on the object regions for a better region iden-

ti�cation. Our earlier paper [123] further utilizes and improves this idea by proposing

superpixels as the region identi�ers for an e�cient graph based implementation for a

mobile device.

Another important study in the literature is the Active Contours, [68]. This method

proposes to use an energy metric for deciding the region boundary between the user

inputs. The energy function in this method utilizes two di�erent type of energies;

internal and external. Internal energy controls the shape of the contour. The aim is to

keep the length of the contour short and changes in the �rst derivative of the contour

at minimal. This is proposed to generate a smooth curve at the object boundary. The

external energy forces the contour to adapt the object edges by pulling it towards the

sharp gradients in the image.

The user is required to draw a rough contour initially. The energy minimization is

conducted via the gradient descent method. It is important to note that the �nal

energy level is not necessarily the global minimum, and hence the initial user input

becomes important on the �nal segmentation accuracy. A visual result on the active

contour iteration can be seen in Figure 3.2. This �gure is taken from the study [109]

and the implementation has been performed using the Active Contour Toolbox by

[36]. However, the main problem with this method is that the selection of the initial

contour is very crucial in the �nal output segmentation. This property makes the

method prone to errors in the case of wrong user initialization.

The study by Boykov and Jolly in [22] deals with the e�cient computation of the

global optima under the energy function assignment in (3.2).

E(L) =
∑

p∈P
Dp(Lp) +

∑

(p,q)∈Np
V(p,q)(Lp, Lq) (3.2)

In this formulation, L is the labeling of image P , Dp is the data penalty function, Vp,q
is the interaction potential and Np is the neighborhood of pixel p.
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The �rst term in (3.2) is the unary term and it employs a penalty value for each pixel

p by looking at the likelihood of assigning it to foreground or background. In the

original study this likelihood is estimated by the histogram of the user given seeds

on the image. The second term, the pairwise potential, penalizes similar neighboring

pixels when they are assigned to di�erent labels.

The energy minimization framework of graph-cut as de�ned in [24], satis�es the glob-

ally optimum binary solution in terms of the de�ned energy potentials. The resulting

binary segmentation among all possible solutions ensure the energy minimization under

the regional (unary) and boundary (binary) energy terms. The additional interactions

are inherited in the system by an e�cient recomputation method.

The proposed framework in this thesis utilize graph-cut based energy minimization

for obtaining �nal object segmentation. Therefore, further detailed discussion of the

graph-cut method is left to the next section 3.3.

An improvement to the seminal work of graph-cut [24] is proposed by [105] where

serious e�ort is invested in the foreground and background region modeling. This is

important for determining meaningful energy potentials for the unary term in (3.2).

Gaussian mixture model (GMM) of the user speci�ed region is incorporated in the

modeling task and more accurate segmentation results have been achieved. In this

framework user assistance is de�ned as drawing a rectangle around the object of inter-

est. The color models of the foreground and background regions are estimated from

pixels inside and outside the rectangle and the �rst step segmentation is performed

depending on the estimated models. Based on the intermediate segmentation, the

foreground color model is re-estimated for a better region identi�cation and the seg-

mentation procedure is performed again until a stable result is achieved. This method

also allows further interaction until the user is satis�ed with the �nal segmentation

output.

The GrabCut method [105] has proven success due to its easy interaction, speed,

accuracy and wide availability. The Microsoft O�ce 2010 software is shipped with a

foreground extraction functionality based on the GrabCut method.

The main drawback of the graph based energy optimization methods is that they

require a considerable amount of time and memory for the computation of global

energy minimization. A common way to decrease the amount of computation is to

use superpixels in order to reduce the size of the graph. The Lazy Snapping method

in [79] proposes using an initial oversegmentation on the image before computing the

energy minimization procedure. Since this thesis also utilizes such an oversegmentation

approach for obtaining e�cient image segmentation, detailed analysis will be provided

in the rest of the chapter.

The maximal similarity based region merging (MSRM) [91] method aims at merging

regions automatically that are initially segmented by the mean shift technique [31].
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Figure 3.3: Input strokes are shown with 'red' for the foreground region and 'green'

for the background region

The object contours are then e�ectively extracted by labeling all the non-marked

regions as either foreground or background. The region merging process is intended

to be adaptive to the image content; therefore, no initial threshold setting would be

necessary.

3.3 Proposed Image Segmentation

This chapter explains an image segmentation method where previously accepted method-

ologies are widely incorporated in order to propose an e�cient and accurate framework

for the user-assisted image segmentation problem. In addition to the single mono

image segmentation, the following chapter explains the extension of the method on

the stereo and video footage in order to propose a complete pipeline. The proposed

method utilizes the energy minimization framework as de�ned in [24]. This optimiza-

tion framework satis�es the globally optimum binary solution in terms of the de�ned

energy potentials. The resulting binary segmentation among all possible solutions

ensure the energy minimization under the de�ned regional (unary) and boundary (bi-

nary) energy terms. The additional interactions are also inherited in the system using

an e�cient energy recomputation method in case the resulting segmentation is not

visually satisfactory.

3.3.1 User Interaction

This study incorporates a common medium for interacting with the image. User assists

the region segmentation process by drawing lines (scribbles) on the image representa-

tive regions. Figure 3.3 shows an example interaction where red scribbles correspond

to the selection of the foreground object whereas green scribbles correspond to the

background region. The input strokes are selected from the locations of diverse color

and intensity in an attempt to cover a wider region characteristics for a more accurate

result. The �nal segmentation performance also depends on the superpixel boundary

adaptation that will be discussed later in the results section.
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The proposed framework also allows further user interaction. At the end of the initial

region segmentation, if the result is erroneous or unsatisfactory, user can further in-

teract and correct the possible erroneous regions on the image by supplying additional

scribbles.

3.3.2 Energy Function Selection

At this point, it is important to emphasize the underlying idea that produced the

seminal work of graph-cut optimization framework. The roots of the analogy between

images and statistical physical systems depend on the interpretations by Gemans [52].

Image is basically considered as a statistical mechanical system and the pixel gray levels

and the presence and orientation of edges are analysed as states of atoms in a lattice like

physical system. The energy function assignment of the mentioned system determines

its Gibbs distribution. As the equivalence relation between the Gibbs distribution and

Markov Random Field states; the MRF image model is also determined by this energy

assignment. The degradation mechanisms in the both image and physical system can

be restored using the maximum aposteriori probability (MAP) estimate de�ned by the

clique potentials. The MAP estimate is analogous to the isolation of low energy states

of the system.

The graphical illustration and neighborhood concept is helpful in de�ning and under-

standing the MRF and Gibbs distribution. Let G = (V,E) be an undirected graph

with nodes v and edges e. The set of nodes V = {v1, v2, ..., vN} and the neighborhood

N = {Nv, v ∈ V } are de�ned in the special context of application. An edge ei,j con-

nects two neighbor nodes vi and vj . Let F = {fv, v ∈ V } denote the family of random
variables indexed by the vertices of the graph. Let the possible states (labels) of the

vertices are de�ned as Λ = {0, 1, 2, ..., L− 1} so that fv ∈ Λ for all v. Let Ω be the set

of all possible combinations Ω = {f = (fv1 , fv2 , ..., fvN ) : fvi ∈ Λ, 1 ≤ i ≤ N}

The event {Fv1 = fv1 , ..., FvN = fvN } is abbreviated as {F = f}. Under these de�ni-
tions F is an MRF with respect to the neighborhood N if

P (F = f) > 0 ∀ f ⊂ Ω; (3.3)

P (Fv = fv | Fr = fr, r 6= v) = P (Fv = fv | Fr = fr, r ∈ Nv) (3.4)

for every v ∈ V and (fv1 , fv2 , ..., fvN ) ∈ Ω. For the graph G satisfying (3.3) and (3.4)

the joint probability distribution P (F = f) is uniquely determined by the conditional

probabilities on the right hand side of (3.4). The property states that a subset A ⊂ V
is said to be complete if each pair of vertices in A de�nes an edge of the graph.

Ordinary 1-D Markov chains are MRF relative to the order of nearest neighborhood

system. An rth order Markov process can easily be regarded as MRF by a careful
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neighborhood de�nition where all rth previous states are set as the neighbor nodes.

The Gibbs models were �rst applied to image representation by Hassner and Sklansky

[60]. A Gibbs distribution relative to {V,E} is a probability measure π on Ω with the

following representation:

π(f) =
1

Z
∗ e−U(f)/T (3.5)

Z and T are constants and U is an energy function of the form;

U(f) =
∑

c∈C
VC(f) (3.6)

Z is the normalizing constant and T stands for temperature.

Z =
∑

f

e−U(f)/T (3.7)

C is the set of cliques for N where a subset C ⊂ V is a clique if every pair of distinct

vertices in C are neighbors. Each VC is a function on Ω with the property that VC(f)

depends only on fv of f for which v ∈ C. Such a family of VC is called a potential.

Under the de�nition of the graphG and the neighborhood systemN ; F is an MRF with

respect to N if and only if π(f) = P (F = f) is a Gibbs distribution with respect to N .

The main bene�t of this equivalence property is that the MRF is easily de�ned using

the potentials VC(f) instead of local characteristics which is almost impossible. A basic

example of a potential function can be given as the di�erence between the degraded

and the local mean image, which in fact proves to be useful for image restoration

posterior probability assignment. The proof of the equivalence can be found in [17]

and [70].

Gemans [52] o�er a relaxation technique for the solution of MAP estimate of the MRF.

Further e�ort have been devoted to develop di�erent methods for the approximate or

accurate MAP estimation of MRF. Boykov et. al. [23] mainly focus on the global

energy minimization technique by solving a minimum binary (or multiway) cut on a

graph based representation. The e�cient computation of MAP estimate is the main

virtue in the proposed study.

The main result of Hammersley-Cli�ord theorem stating the relation of joint event

probability to clique potential in the neighborhood system N is stated as P (F =

f) ∝ exp(−∑
C

VC(f)). The clique potential VC describes the prior probability of a

particular realization of the elements of the clique C. As the MRF restricts cliques in

the neighborhood de�nition the correlation can be stated as;
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P (F = f)) ∝ exp
(
−
∑

p∈P

∑

q∈Np
V(p,q)(fp, fq)

)
(3.8)

The aim is to estimate f based on the observations O which is related to f with respect

to a likelihood function P (O|f). Ip is the observed intensity at pixel p and the event

of that realization is {Ip = ip}. The stated conditional probability of observing an

intensity given the true intensity is related to the noise model as follows.

P (O|f)) =
∏

p∈P
g(ip, fp) (3.9)

where g(ip, fp) = O(Ip = ip|Fp = fp) represents the noise model on an individual pixel.

Noise sensor is assumed to a�ect each pixel independently hence the general observed

image probability is modeled as the multiplication of probability of individual pixels.

The general aim is to assign labels L where l ∈ Λ to each pixel by maximizing the

MAP estimate of the given observations P (f |O). Bayes' rule is used here to convert the

problem to previously modelled probability density functions. P (f |O) ∝ P (O|f)P (f).

Utilization of (3.8) and (3.9) leads to the following result that in order to maximize

the posterior probability the following energy function should be minimized.

The minimization necessity declares the energy function as a penalty function. The

clique potential that causes an increase in the penalty is de�ned such that there is

absolutely no penalty in the case that the clique members (neighbor graph nodes or

pixels in the image restoration case) are of same value.

V(p,q)(fp, fq) = u{p,q}(1− δ(fp − fq)) (3.10)

where u{p,q} ≥ 0 and yields a Potts model if u{p,q} is constant for all {p,q}. Hence

discontinuities between any pair of labels are penalized equally. The potential is sym-

metric (independent of orientation) with respect to the set members u{p,q} and hence

MRF is isotropic. The value of u{p,q} can be interpreted as a penalty for the dis-

continuity between the di�erent labeled cliques. Hence the prior probability P (f)

favors continuous labeling against discontinuities. After the elimination of the �rst

summation the prior probability (3.8) becomes:

P (F = f)) ∝ exp
(
−
∑

p,q∈EN
2u{p,q}(1− δ(fp − fq))

)
(3.11)

Let the graph G(V,E) with non negative edge weights is constructed with the labeling

de�ned as Λ = {0, 1, 2, ..., L− 1}. The subset of edges C ∈ E is called a multiway cut

if the terminal points (labels) are completely separated after the removal of the cut

edges C. The graph obtained after the removal operation is called the induced graph
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Figure 3.4: Graph G(V,E), terminals Λ = {0, 1, 2, ..., L − 1} and p vertices are V =

{v1, v2, ..., vN}. Each p vertex is connected to at least one terminal vertex [22].

G(C) = 〈V,E−C〉 The cost of the cut is shown with |C| and is calculated by summing
its edge weights.

It is a well known �eld of study how to e�ciently �nd the minimum cost multiway

cut. Moreover, the equivalence of the minimization problem de�ned in (3.12) to the

multiway cut problem makes it more of an interest for the MAP estimation problem.

The equivalence is shown in detail in [23] and will be shortly summarized here. The

graph G is constructed with two types of vertices p (pixels) and L (labels). Later in

this chapter the p vertices will correspond to oversegment patches instead of pixels

but not detailed here for the sake of coherency. L vertices are the terminals points

to whom p vertices are linked through t-links. p vertices are connected to each other

through n-links if they are neighbors referred as EN . The constructed graph is shown

in Figure 3.4. Since the multiway graph cut -by de�nition- separates all terminals

only one t-link is left for each p vertex. A multiway graph is called feasible if each p

vertex is left with exactly one t-link. Since the weight assignments are in accordance

with the energy minimization formula, it is ensured that the minimum cost multiway

cut minimizes E(f) in (3.12). The general multiway minimum cut problem is NP-

complete. However, there are approximate solutions with linear running time [35].

The method by Boykov et al [23] which is also a linear time complexity, proposes an

iterative solution for the feasible cuts on G. Initially any feasible cut is considered,

at each iteration a pair of vertices are reallocated between two terminals, li and lj .

Hence a two terminal min cut problem is solved to �nd whether possible rearrangement

might reduce total cost energy. Each iteration considers a new pair of terminals until

all distinct pair combinations are visited. The algorithm continues until no possible

label switch can further decrease the total energy.

E(f) =
∑

p∈P

∑

q∈Np
V(p,q)(fp, fq)−

∑

p∈P
ln(g(ip, fp)) (3.12)
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Graph construction of a general MRF energy minimization problem is useful in order

to convert the problem into a multiway cut minimization problem on which iterative

accurate and approximate solutions exit. The iterative method depends on the binary

max �ow (min cut) solutions. Hence the binary max �ow case is of great importance

in obtaining a general solution. The general cost energy to be minimized (3.12) is

rearranged as follows.

E(L) =
∑

p∈P
Dp(Lp) +

∑

(p,q)∈Np
V(p,q)(Lp, Lq) (3.13)

where L is the labeling of image P , Dp is the data penalty function, Vp,q is the inter-

action potential and Np is the neighboring of pixel p. As in connection with (3.12)

data penalty is designed so as to increase as the probability of assigned label given

the observation decreases. Hence the previous minus sign is eliminated by interaction

potential favors coherence by increasing energy under discontinuities. Greig et al. [56]

who is �rst to relate min-cut/max-�ow algorithms from combinatorial optimization to

energy function minimization has constructed a two terminal graph whose minimum

cost cut gives globally optimal binary labeling. The terminal labels in this speci�c

con�guration are named as source, s and sink, t. Figure 3.5 shows a two terminal la-

belled graph on a 3×3 image. The vertices were previously considered as image pixels

but this work utilizes superpixel primitives in the energy minimization framework.

The energy minimization problem has been successfully converted to the estimation

of minimum cut on the constructed graph with carefully assigned neighborhood edge

weights (n-links) and data penalties (t-links). Combinatorial optimization fundamen-

tals reveal the equivalence of maximum �ow to the minimum cut solution where max-

imum �ow is interpreted as �ow from source to sink where edge weights are taken

as the pipe capacities. The theorem according to Ford and Fulkerson [50] states the

equivalence of max �ow to minimum cut solution by showing the maximum �ow graph

as saturated in the edges are in fact divided into two disjoint regions which actually

correspond to the minimum cut of the graph. Moreover, the maximum �ow value is

equivalent to the minimum cut value since the maximum �ow is calculated by the

saturated edges, which are actually cuts.

For the solution of min-cut problem, di�erent approaches with polynomial bound are

developed. The augmented paths based algorithm by Dinic [41] proposes pushing �ow

through the non saturated edges until no more �ow is possible. Each push in the graph

G reduces the residual capacity which is tracked using the residual graph Gf . Residual

graph is an update of the original graph with less capacity due to introduced �ow in

the previous state. At each cycle, the minimum distance path is obtained to push the

maximum �ow available through the given path. The updated capacities are stored

in the residual graph. Maximum capacity is achieved when there is no possible �ow

in the network or equivalently there is no path from source to sink without crossing a

saturated edge (cut).
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Figure 3.5: Directed graph. Edge costs are re�ected by their thickness [22]

There is the other approach named as push & relabel type algorithms [53]. A push

operation is sending a part of the excess �ow from one node to the other. If there is

available capacity between two nodes but the source sink direction is not met (�ow

from up to down is possible) relabelling operation is realized. After relabelling the

current vertex is moved to the front of the list for the next push operation and the

traversal push algorithm starts from the beginning of the list.

The method by Boykov et al. [22] presents an improvement to the standard augmented

paths type technique. The main handicap with the standard technique is the necessity

of repeated calculation of bread �rst search from sink to source which could be a

very expensive operation. The e�ciency is satis�ed with some modi�cations on the

standard search tree generation. There are two (instead of one) search trees generated

one from source and one from the sink. Re-usage of these trees is also presented for

higher e�ciency. The details of the algorithm is also summarized for completeness.

Two non overlapping search trees are constructed with roots S and T . In S tree edges

from each parent to children are non saturated but edges in T are non saturated from

child to parent. Nodes outside S and T are free. The nodes on the outer border are

active while internal nodes are passive and can no longer grow. An augmenting path

is found whenever a contact between two trees is encountered. The general �ow of the

algorithm is observed in three stages; growth, augmentation and adoption stage.

In the growth stage trees are expanded over the active nodes. Free nodes are included

in the tree as children and become active members for next expansion. As soon as

all the neighboring vertexes are explored the current node becomes passive. The

growth stage is terminated whenever an contact between the active and passive nodes

is encountered. The encounter creates a path from source to sink.

The path found in the previous stage is saturated by pushing the maximum �ow

available from source to sink. This causes some of the edges to be saturated and the

nodes to become orphans (no longer connected to the parent).

In the �nal adoption stage, new parents for the orphans are searched in order to retain
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the single S and T tree structure. In no parent is found for the node with positive

capacity, the node is isolated and set free, leaving its children as orphans. This stage

is repeated until there is no orphan in the tree.

The three stages are repeated until there is no grow possible and trees are separated

by saturated edges. This implies that the maximum �ow (minimum cut) is reached.

The general energy minimization framework using Gibbs distribution and MRF equiv-

alence is explained above. From this point on, the application of these �ndings on the

segmentation problem will be considered. User assisted segmentation is a popular �eld

of research due to its performance superiority compared to automatic methods. Many

successful methods are proposed in the literature [105], [144]. The interactive seg-

mentation problem is converted to the energy minimization problem where optimum

segmentation yields minimum energy con�guration among all possible segmentation.

User input values are used as primary ground truth data for the background and

foreground regions. Multi level segmentation is also possible within the same frame-

work. Given the user input scribbles, the rest of the image is automatically segmented

depending on a cost function de�ned as above (3.12).

The well known interactive segmentation work utilizing graph cut energy minimiza-

tion technique [24] indicates the de�nition of soft and hard constraints in the energy

function. The hard constraints are the user inputs which indicate if the corresponding

pixel belongs to the foreground or background. Soft constraints are determined by

the similarity of neighboring nodes. Figure 3.5 shows the graph construction of the

segmentation problem where S is the source terminal indicating �object� and T is the

sink terminal indicating �background�.

3.3.3 Superpixel Graph Generation

The explained pixel based energy optimization approach requires generation of pixel

size graph. However, this computationally complex approach limits the applicability

of the method to low resolution images due to memory and run time issues. Therefore,

the extension of the idea on the superpixel domain has been utilized. Superpixel based

image representation has gained interest due to increased e�ciency by converting pixel

based computations to superpixel framework. Widely known mean shift technique [31]

can easily be converted to an oversegmentation method with strong region homogene-

ity. However, the lack of region shape priors limits the usage of mean shift technique on

graph based approaches where lattice structure is not guaranteed. Hence, the relatively

new proposed turbopixel idea [76] is widely utilized for regular lattice generation. An

extension of this idea by imposing a convexity constraint on the oversegment regions

has been widely explained in the previous chapter.

The proposed image segmentation technique utilizes the �ndings of the graph cut en-
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Figure 3.6: 2D segmentation on a 3 × 3 image. Thickness of edges indicate weights

[22].

ergy minimization framework with the superpixel idea in order to obtain an e�cient

user-assisted image segmentation. It is important to note that segmentation is an in-

termediate output in obtaining a layer based representation of the segmented objects.

Further applications of segmentation (2D-3D conversion, disparity remapping and re-

gion based image classi�cation) are further presented in the following chapters of the

thesis.

In the selection of oversegment method main concern was to create regular grids on the

image region with convexity constraint. Regularity is important for graph generation

because it is aimed to keep the number of neighbors close and distance between nodes

similar for all nodes. These necessities and straight forward implementation has led

to turbopixel idea [76] with the additional convexity constraint as explained in the

previous chapter. The emphasized properties has proven advantages over mean-shift

[31], watershed [134] and normalized cut type oversegmentation methods. The main

advantage of the convexity prior is its compactness constraint while still showing pow-

erful adaptation at the object boundaries. The compactness constraint does not only

prevent undersegmentation but also proposes a deterministic run time with a rigid

graph structure.

The mentioned advantages can be observed in Figure 3.7. Oversegment boundaries

adapts to the local image edges and hence the assumption of assigning same label

to the pixels belonging to same superpixel region becomes valid. The validity of the
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assumption can also be observed on the same Figure 3.8 where superpixels are painted

with the mean RGB values preserving image integrity. The general structure of the

superpixel regions resemble a hexagonal honeycomb especially on the smooth areas

and hence creating a structured graph with similar neighbor numbers and similar

neighborhood distances as intended.

Figure 3.7: Oversegment Boundary Adaptation

After the SP extraction step, an additional region based �ltering idea is proposed in

order to increase the robustness of �nal segmentation by boosting inter region similar-

ity. What is aimed at this step is to increase the similarity of neighboring superpixels

whenever they belong to the same object. This motivation has been realized by an

iterative similarity propagation model as shown in Figure 3.9.

The similarity weight between the superpixel nodes p and qj are calculated individu-

ally for each color channel component (RGB color channel is utilized for illustration

purposes) (3.14).

weightR(p, qj) = e−
−(Rp(i)−Rqj (i))

2

σ2 (3.14)

p is the center node for which the intensity update is proposed, qj is the neighbor

of node p. Rp(i) and Rqj (i) represent the mean red values of the superpixels at the

ith iteration. The exponential function description causes the similarity component

to vanish rapidly whenever the mean di�erence in RGB components increases. σ

is computed as the variance of the mean values of SPs in the neighborhood. The

similarity weight between nodes are used to update the cumulative red values on the

center node p (3.15).

meanCumR(p)+ =
weightR(p, qj) ∗Rqj

neighNum(p)
(3.15)
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Figure 3.8: Oversegment Regions with Mean Intensity
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Figure 3.9: Node Weight Propagation

48



Figure 3.9 shows how node p interacts with the neighbor nodes qi in a four neighbor-

hood model. Total cumulative weight (3.16) coming from neighbors is also calculated

for the �nal update on the center superpixel (3.17).

totWeightR(p)+ =
weightR(p, qj)

neighNum(p)
(3.16)

Rp(i+ 1) =
meanCumR(p)

(1 + totWeightR(p))
(3.17)

The mean red value at iteration i + 1 is updated using the mean red value in the

previous iteration i. As the iteration steps proceed the inter region similarity increases

and the amount of updates in terms of total change in RGB values decreases. The

proposed update is realized for each color channel independently.

The proposed intensity based weighting model prevents the propagation of intensities

through dissimilar regions and hence encouraging the integrity of the object by dis-

criminating it from background and other objects. At each iteration, information from

the neighboring superpixels are exchanged. A total number of 10 iterations enables

information propagation from 10th order neighbors from each side of the center node.

Depending on the superpixel size it covers a considerable amount of the image region

successfully. (For an 20x20 oversegment region 10 iterations enables roughly a total of

400x400 sized region information to propagate on each center node.)

The proposed information propagation results in a boundary preserving color �ltering

as shown in Figure 3.10 where oversegment regions are painted with original and

updated mean values.

The intensity based similarity between two non neighbor superpixels which is neces-

sary for graph cut energy formulation is normally dependent only on the intensity of

two nodes. However, with the utilization of the proposed �lter, the intensity infor-

mation propagates through neighbor nodes. This propagation is powerful along the

similar superpixels; in other words, through the nodes which are close in terms of the

geodesic distance metric. If the information cumulation on a node from many non

neighbor nodes is strong; this proves that these non neighbour nodes are close through

a connected geodesic path although they can be further apart in terms of Euclidean

distance.

The general segmentation framework is designed such that many (N) object de�nitions

are possible with an individual segment assignment. Each object is assigned a label

L where L = {1, 2, ..N} and each patch p belongs to either one of the objects OL or

to the background B. User inputs are used to connect the selected patches to the

related object or to the background. It is conducted by assigning a comparably higher

(in�nite) weight to the user selected region. The energy function de�nition in (3.13)
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Figure 3.10: On the left side, mean color values of the SP regions are shown. Region
information propagation based �ltering shows the changes in mean region intensities
on the right side.

includes the cost of assigning a label to the corresponding patch as Dp(Lp). The multi

label de�nition is utilized as combination of succeeding binary segmentations. For each

individual object, all the other user selected objects and background is considered as

background and a binary segmentation is performed. This procedure is iterated for all

the objects individually. The binary segmentation problem is solved by the e�cient

maximum �ow algorithm [22].

The node-node and node-terminal edge weights are assigned according to the energy

formula to be minimized. Dp is the weight of the edge from nodes to terminals.

This is either set by the user during the initial strokes or automatically determined

by the system otherwise. Given inputs for each object and background determine a

limited model of the region. Hence, the similarity metric uses this limited model to

measure the similarity of a node to the object and background. Dp(B) is the edge

weight from node to �Source� (Background) and Dp(O) is the edge weight from node

to �Sink� (Object). Similarity measure is related to the input node statistics and the

distance of the current patch to the input nodes. Mean and standard deviation of

the nodes (oversegment regions) in the selected color domain can be used e�ectively

and e�ciently for statistical identi�cation. Weight of the edge between node p and

background terminal is assigned as;

Dp(B) = max
{
similarity(p, q), q ∈ B ∪O{L−l}

}
(3.18)

weight of edge between node p and Object terminal;
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Dp(Ol) = max
{
similarity(p, q), q ∈ Ol

}
0 (3.19)

weight of edge between node p and q where q ∈ Np;

V(p,q)(Lp, Lq) = similarity(p, q), q ∈ NP (3.20)

and similarity between two nodes of any kind is calculated as shown.

similarity(p, q) = e−λ1∗intDiff∗locDiff (3.21)

Intensity di�erence (intDiff) between the nodes p and q in the above formulation

(3.21) can be computed by mean, median or sum of intensity di�erences in a selected

color domain. Histogram-based comparison is also powerful, but computationally com-

plex. In our implementation mean intensity of the superpixel nodes in Lab color domain

is utilized (3.22).

intDiff =
∑

i=1:3

(abs(Meanp(i)−Meanq(i))) (3.22)

Lab color space is selected due to its perceptual uniformity. This assures that a measure

of distance between two color values is strongly correlated to the visually perceived

color di�erence. The edge weights from nodes to terminals for the scribbled regions

are set as follows.

Dp(Ol) = max
{
similarity(p, q), q ∈ Np

}
(3.23)

Equation (3.23) proposes that the scribbled regions are supposed to be hard wired to

the selected terminal. Therefore, assigning maximum of the similarity measure in the

neighborhood to the terminal is meaningful instead of assigning a constant high value

independent of the region characteristics.

3.3.4 Geodesic Distance Utilization

Input scribbles on the representative regions supply a valuable information regarding

the general characteristics of the background and foreground. Gaussian-mixture based

region modelling is often used to de�ne region characteristic. Such global methods

utilize color intensity relation between an unidenti�ed node and a terminal node for

similarity computation. However, we use an additional distance term to assure locality

in the similarity equation (3.21). This constraint makes sure that two di�erent regions

with similar color distribution can be di�erentiated on the image.
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Figure 3.11: Euclidean vs Geodesic Distance: X is closer to B (F) in Euclidean
(Geodesic) distance

In the selection of the distance metric, it is previously observed that Euclidean-wise

closeness usually does not reveal useful information. The distance of a node to a user

scribble might be close especially at the fg/bg boundaries. Point X in the foreground

object in Figure 3.11 is close to the background scribble B in Euclidean terms. How-

ever, it does not necessarily imply that this point is similar to the region de�ned by

the closest scribble point. Hence, geodesic type distance is utilized for resolving such

ambiguities. The geodesic path needed to be traversed in order to reach the target

point might be di�erent than Euclidean path. In the case of graph node similarity

assignment, Figure 3.11 shows a typical case where object regions close to background

scribbles might easily be assigned to background when Euclidean-wise closeness is

considered. Euclidean distance between a random point X and background seed B

is smaller than the distance between X and foreground seed F . In order to reach

point F there is a high contrast object boundary that must be passed. The minimum

intensity path between two points is computed for such an energy assignment. The

idea of geodesic distance has been previously addressed in a similar study [100].

Figure 3.12 illustrates the geodesic distance idea for the user input scribbles on the

object and background regions. The left image shows the minimum geodesic distance of

nodes to the regions de�ned as background by the user. The distances are normalized

to 0− 255 scale for visualization, higher intensity implies closer distance. The second

image on the right shows the minimum geodesic distance of the nodes to the selected

object regions (red lines). Notice that the propagation of node weights decrease as the
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Figure 3.12: Geodesic Distance From the Object and Background Seeds After 5 Iter-

ations

distance of the nodes are further from the input strokes. The utilization of geodesic

distance in the graph cut framework provides more realistic energy assignment on the

generated graph.

E�cient Distance Computation In this part, an e�cient geodesic distance com-

putation technique is presented. An iterative approach is proposed where information

is transferred through the graph nodes. Figure 3.13 illustrates the iterative distance

computation idea. Hexagonal regions represent the superpixel patches, the nodes in

graph. The node weights are assigned as in (3.21). At each iteration, neighbor nodes

send out and receive information through their connecting edges. In order to �nd the

geodesic distance between two nodes, su�cient number of iteration has to be com-

pleted to transfer information between two nodes. In other words, a path between two

nodes has to be established.

Figure 3.13 illustrates how the region coverage expands with increasing iterations. The

central node n1 has the �rst order neighbors n2...n7 and the second order neighbors

n8...n19. During the �rst iteration of the algorithm, nodes have only the self-distance

information, which is 0 as default. In the following iteration, neighboring 6 (this

number is selected for illustration purposes) nodes exchange their edge weights with

each other. The distance information of the �rst order neighbors are stored in the

look up table (LUT) of each node. As the iteration number increases, the distance

information table surrounding node n1 expands. At each iteration possible multiple

paths between nodes may become available, and only one path has to survive while

terminating the other that has a higher cost. Two possible paths are available from

n1 to n10 at the end of 2nd iteration; n1 → n2 → n10, and n1 → n3 → n10. One of

them is terminated depending on the calculated geodesic distance. The idea is also
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Figure 3.13: Region Coverage Increase per Iteration

(a) Input image with user
scribbles

(b) Geodesic distance to ob-
ject seeds

(c) Geodesic distance to
background seeds

Figure 3.14: Geodesic distance to the object and background seeds after 8 iterations
are shown. Red scribbles show the user inputs for the object and green scribbles show
the inputs for the background.
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Algorithm 1 Geodesic Distance Propagation Algorithm Pseudocode

1: Initialization:

2: for i = 1→ iteration number do

3: for j = 1→ total # of nodes in image do

4: for k = 1→ neighbor # of nj do

5: if nl ∈ LUT of nj then

6: if dist(nj , nl) > dist(nj , nk) + dist(nk, nl) then

7: update path and dist(nj , nl)

8: else

9: do nothing

10: end if

11: else

12: add nl in LUT of nj
13: end if

14: end for

15: end for

16: end for

explained in Algorithm Pseudo Code 1.

In this illustration an initial superpixel size of 20x20 has been considered. At the end

of 4th iteration, a total number of 38 nodes and an average of 160x160 pixel region

is covered at this hexagonal neighborhood structure. Since the graph nodes in the

segmentation framework are constructed on superpixel primitives, this method proves

to be computationally very e�cient. It is also useful since it o�ers a deterministic run

time depending on the number of iterations.

Figure 3.14 presents the geodesic distances between individual superpixels to the object

and background seeds. Distances are computed with the proposed implementation.

The computed distances are normalized to 8 bit integer for visualization. The intensity

levels indicate how close a node is to a user scribble. Figure 3.14-b shows distance

to the foreground scribbles and Figure 3.14-c shows the distance to the background

scribbles. This �gure clearly illustrates how region information propagates through

similar regions and how the object boundaries are preserved. During the simulations

in this con�guration, the number of iterations is limited to 8.

3.3.5 Experimental Results

Intermediate results of the SP extraction, estimated mean color intensities and geodesic

distance calculations are presented in the corresponding sections for keeping the in-

tegrity of the explained methods and visual representations. In this part, some quali-

tative results of the �nal single image segmentation is presented.
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Figure 3.15: Input Seeds and Resulting Segmentation

(a) Input strokes for object and bg regions (b) Object Segments

Figure 3.16: Multiple object segmentation user inputs and the output image segmen-
tation where each object is painted with di�erent colors.

Figure 3.15 presents both the user selected inputs on the image foreground - back-

ground areas and the resulting segmentation. In the user assistance, covering di�erent

color regions with the scribbles is intended. This way, a better region modelling could

be possible.

Quantitative results regarding the performance of the proposed segmentation method

is supplied in the next section together with the stereo extension of the proposed

segmentation method.

The proposed binary segmentation is further generalized to multi-label segmentation.

This is realized by iteratively segmenting images into multiple regions. Input strokes

are de�ned on the individual object locations as in Figure 3.16. User interaction is

performed as follows. The red object scribbles are drawn on the �rst object. At the end

of the interaction a new object is selected and required scribbles on the new object

is applied. This is done until all the objects are selected. Finally, the background
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Figure 3.17: Performance comparison; Original image, Segmentation using Euclidean
distance, Segmentation using Geodesic distance

scribbles are de�ned on the corresponding locations. The energy assignment of the

individual object regions is also performed accordingly. The input scribbles on the

selected object are used as foreground, whereas the remaining scribbles are used as the

background scribbles and the segmentation is performed accordingly. Visual results

for input strokes and output segmentation are presented in Figure 3.16. Each object

is shown with di�erent colors in �red�, �green� and �blue�.

Another important aspect of the proposed framework is the utilization of geodesic dis-

tance idea in the graph cut energy optimization framework. In order to emphasize the

importance of such a distance utilization, the output segmentation results are shown in

Figure 3.17. The energy function assignment using these two metrics produce compa-

rably di�erent results in terms of segmentation performance. It has been observed that

the object boundaries are well preserved when the geodesic information is enforced.

The over smoothing e�ect widely encountered in graph cut framework is hence pre-

vented with novel information propagation idea through neighbouring patches. The

quantitative results for images in the ground truth dataset reveals the performance

increase.

3.4 2D/3D Conversion

With the increased popularity and vast availability of 3D displays, media content

has gained great importance, however the lack of su�cient content generation has
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been a major handicap towards the popularity of 3D services. 3D movies have been

shot to account for the cinema theaters; however, the wider demand for 3D services

cannot be addressed due to the limited content. Introduction of the 3D TVs for the

end users without a wide broadcast network has led the manufacturers to come up

with intermediate solutions; conversion of standard 2D image or video footage into a

domain such that at least a pseudo 3D visualization is possible. This section addresses

the problem of limited 3D content availability and presents the proposed method for

converting monocular image to stereo.

The 3D viewing medium can be of di�erent types; mobile display or a 52" big display,

multiview, (auto) stereoscopic (active-passive glasses) or a volumetric display can be

the output medium. Each display type has its speci�c use areas and di�culties. As the

market indicators show that the mid-big sized stereoscopic displays are gaining/has

gained popularity, small sized mobile displays are predicted to follow the lead.

In the previous section, utilization of superpixel atomic structures are discussed mainly

for user-assisted image segmentation purposes. This section focuses on the generation

of stereo images from mono views, which basically corresponds to estimation of the

depth map of an image followed by a novel view synthesis by the depth image based

rendering (DIBR) method [45]. The proposed superpixel based user-assisted image

segmentation is used for segmenting the object. Following that, a depth value is

assigned to the selected object. Novel stereo view is synthesized considering the human

visual perception characteristics. As a further reference in stereoscopic visualization

and rendering issues, the studies in [58] and [145] could be visited.

At this point, background information about the human visual system is supplied and

the underlying mechanisms of depth perception in a real and arti�cial scene are ex-

plained. This is important for understanding the motivation for the proposed 2D/3D

conversion. Later in the following chapter, disparity remapping application for stereo-

scopic content will also bene�t from the background information presented in the

following section.

3.4.1 Human Visual System and 3D Perception

Human visual perception depends on various types of information to correctly grasp

the geometric properties of a scene. These cues range from intensity based information

to motion and maybe more importantly to previously learned structures. The visual

cues may be grouped into two main streams in terms of the number of views available.

Stereo cues are due to the binocular vision capability of human eyes and are mainly

the most important information for 3D perception. The eyes capture two images of

the scene from a slightly di�erent viewpoint. This di�erence in viewpoint causes a

horizontal disparity between two images and the amount of disparity is a valuable

information about the depth of the scene. Convergence of eyes on the image causes
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the focus of the lenses to be �xed at the interest point and hence blurring the other

regions. The point of convergence and focus are matched to supply visual comfort in

3D perception [14].

On the other hand, monocular information also plays an important role in 3D percep-

tion especially when the texture of the view is not rich enough for the eyes to discover

the exact disparity information. Experience based learned shapes and illumination rit-

uals are important for easier 3D perception. Sun and home lightning appliance usually

shine from above; the relative sizes of known objects (cars, people, buildings) supply a

comparable learned depth perception. Linear and aerial perspectives (vanishing lines,

haze due to increased distance), motion based occlusion and parallax, shade and fo-

cus/defocus are other valuable visual cues in understanding 3D formation of a scene

even from a 2D photograph.

As the list of visual cues goes further; it becomes apparent how complex it is to de�ne,

model and synthetically create (using only a part of the cues like in 3D displays) the

3D perception. Visual intelligence engages a signi�cant amount of brain activity [61],

70% of all receptors, 40% of the cortex and 4 billion neurons [138] are assigned during

the vision process [30].

When a conventional stereoscopic display is considered, the main cue utilized to gen-

erate the 3D perception is the disparity between two images. However, there is a

main di�erence between the actual and the virtually created 3D perception. In the

real life, the perceived depth and the actual depth of an object is the same. In this

virtually created scenario, the depth of the display is always constant, whereas the

observed depth might change depending on the imposed disparity in the image. This

unnatural situation is the main argument in the discussion of visual discomfort of 3D

displays. The so called �accomodation-vergence con�ict� is mainly due to the case that

accommodative stimulus (focus of the eye) remains �xed on the screen depth, whereas

convergence of the eyes adapt to the depth induced by the disparity between the im-

age pairs. Vergence movements are required for adjusting �xation from near to far

(divergence) or far to near (convergence) [7]. The stimulus creating the vergence eye

movements is primarily the horizontal disparity, and the stimulus for accommodation

(focus) is the perceived image blur. In a real world scene; both the retinal disparity

and the blur information contribute to a change in �xation. However; in the current

stereoscopic displays the disparity information is not accompanied by the required

retinal blur. The accommodation of the eyes are �xed at a constant depth no matter

how close or far the objects in the scene are. The following �gures help visualizing the

mentioned con�ict.

Figure 3.18-a shows a natural viewing experience where the vergence and focal distance

are the same. The yellow region in the �gure is named as �Zone of Comfort� where focal

and vergence cues agree up to a limit creating comfortable viewing experience. The

green layer covering the comfort zone is utilized to de�ne the limits of clear binocular
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(a) Natural Viewing (b) Stereoscopic Display

Figure 3.18: Vergence vs Accommodation [61]

vision. An object located in this layer can be perceived at the intended depth but may

cause discomfort when exposed continuously. Figure 3.18-b shows the case when the

focal and vergence distances are di�erent than each other. This situation generates

con�icting depth cues for brain causing visual fatigue. This is the case that happens

when a 3D display is viewed.

3.4.2 Related Literature

Depending on the existence of user interaction in the process, 2D/3D conversion meth-

ods can be investigated in two main streams; automatic and assisted. Automatic ap-

proaches are motivated generally for real time (on the �y) applications, where no time

or e�ort for use interaction is available. Model based, learning based or texture based

approaches are proposed for such automatic methods. Some TV producers, e.g. Sam-

sung, Sony, Vestel; have presented 3D equipped products with automatic conversion

capabilities. Although the performance of these techniques is questionable, there is a

great demand and tendency in the market to o�er such products. On the other hand

some user-assisted methods are proposed for a better depth image characterization.

Such systems can be valuable for visual studios where accurate depth generation is

necessary.

Training based automatic conversion methods [110], [67] try to learn image statistics

using pixel-level and mid-level cues for predicting the depth of a single image. The

paper in [110] proposes MRF based depth estimation by using the ground truth data

collected using 3D laser scanner. It uses a hierarchical method of Laws' texture map

identi�cation as feature vectors de�ned in [101]. Some papers o�er techniques that to-

tally ignore the actual depth estimation but instead, concentrate on the visual comfort

[116]. This method depends on the idea that the object edge discontinues contain the

highest information for 3D perception and hence, tries to �nd the sharpest boundaries

in the image to assign higher depth values. A similar idea proposes using visual at-

tention as a depth map. The method in [65] uses the saliency map as the depth map
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for stereo image synthesis.

Motion is also another important cue for understanding the depth of a scene. The

authors in [85] propose a depth sensing method based on motion parallax. It uses the

initial assumption that the scene is stationary and a translational camera motion is

present. Under these constraints the depth of the object corresponds to the motion

between the successive frames. A more in depth analysis has been pursued in [72]-[71]

where the basics of the structure from motion are utilized in order to estimate the

camera parameters and sparse 3D structure. The stereo pair for each frame in video

is generated by using perspective transformations; hence, estimation of dense depth

map (necessary for novel view synthesis) is avoided.

Most of the automatic methods create depth map using only one or a nicely blended

combination of many visual cues. However promising they are, it is always a major

issue to create a solution that is robust and stable in any general content. This justi�es

the necessity of human interaction for accurate stereo view generation. User assisted

2D/3D conversion is performed by segmenting an object of interest from the image.

Hence, the literature overlaps with the user-assisted image segmentation literature,

which has been previously addressed in 3.2.

3.4.3 Proposed Method

The proposed user-assisted 2D/3D conversion method is explained in a three step

approach. In the �rst step, user is required to select the representative locations of the

image for segmentation. In the second step, the depth map of the scene is determined

depending on the output object segmentation and the selected scene category. The

prede�ned scene categories are shown in Figure 3.19. Finally, the novel stereo pair of

the image is synthesized for visualization.

3.4.3.1 User Interaction

The required user assistance has been detailed previously in section 3.3.1. User is

expected to interact with the semantically representative parts of the image to locate

object and background regions. Figure 3.21-a presents the scribbles on the selected

image.

3.4.3.2 Depth Map Generation

The following step in the 2D/3D conversion pipeline is the assignment of the depth

map on the object and background segments. This can either be done automatically,

or depending on the user selection. This step can be seen as depth layer ordering
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Figure 3.19: Prede�ned depth hypothesis

Figure 3.20: A synthetic cube image, its depth map and left image rendered with
uncover region painted in black.

where user indicates the relative depths of multiple segmented objects. Background

depth is �lled using a depth prior. It can be a �xed depth or be assigned to change

gradually depending on the scene geometry. The proposed method uses �ve prede�ned

depth hypothesis as shown in Figure 3.19. In the depth assignment phase, it has to be

kept in mind that the ill-posed depth estimation problem does not aim to produce the

most accurate depth map, rather a perceptually comfortable, consistent and realistic

image rendering is pursued. This common gradient type of depth assignment keeps

smooth variations on the selected background region and hence satisfying comfortable

3D visualization. The assignment of relative (not actual) depth values for objects

at di�erent depths may be rough; however, the resulting perceptual quality of depth

discrimination is quite satisfying when it is combined with the monocular depth cues

at the viewer side. Figure 3.21-c shows the resulting depth map generated using the

proposed method.

3.4.3.3 Depth Image Based Rendering

Rendering of the virtual view using the depth map of the original view is performed

according to the geometrical relations of the scene. The amount of shift in the original

RGB values of the pixels is done depending on the disparity value corresponding to

the pixel. However it has to be kept in mind that possible multiple assignments of the

pixels have to be handled wisely. Similarly, some regions will be left unassigned due to

the horizontal shift (disoccluded areas in the virtual frame). The reason for that is the

area that is occluded in one view might be visible in the other view. Figure 3.20 shows

an image of a cube, its depth map and the rendered left image. The occlusion region
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(a) Input scribbles (b) Output segmented image

(c) Assigned depth image (d) Generated anaglyph image

Figure 3.21: 2D/3D conversion pipeline

is shown as black since it is not visible in the original view. These regions can be �lled

with simple foreground/background color interpolation; moreover, background color

mirroring or extrapolation methods are also used. Depending on the region texture

even inpainting [33] type of algorithms may result in visible artifacts. Presmoothing of

the depth map with a low pass �lter has gained a major acceptance for minimization

of this type of artifacts.

Figure 3.21 shows the 2D/3D conversion pipeline. User interaction as shown in Figure

3.21-a is followed by image segmentation in Figure 3.21-b. in this example the third

depth hypothesis in Figure 3.19 is used for depth generation. The generated depth

map in Figure 3.21-c is used to generate the stereo view that is shown in anaglyph

format for visualization purposes.
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(a) (b)

(c) (d)

Figure 3.22: Generated Depth Map and Stereo Images in Anaglyph Format

3.4.4 Experimental Results and Mobile Device Integration

The results of the proposed 2D/3D conversion technique is qualitatively presented.

Figure 3.22 shows the depth assignment and the generated stereo images. The syn-

thesized images are displayed in anaglyph format for visualization.

The proposed 2D/3D conversion technique is also implemented on a mobile device.

For this application, the Nokia N900 mobile phone with a special 3D capable auto-

stereoscopic display (parallax barrier type) is used. The �QT� framework is used for

cross compiling on the Linux-based �Maemo� operating system. The touch screen of the

mobile phone is used for user interaction with the object and the background regions.

The GUI is designed such that it allows user to select di�erent depth values (layers)

on the multiple objects. Figure 3.23 shows the interface on the phone. The top menu

buttons are from left to right are used to; open the image, select the segmentation
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Figure 3.23: The mobile phone interface. The drop down menu on the top enable
visualizing both the mono, stereo and depth images.

method, assign depth values for the selected object, select the visualization type, reset

image and switch full screen by hiding the top menu.

In the virtual view rendering step, there are a couple options that are explored in

the experiments. The �rst option is to keep the original image unchanged and render

the stereo pair with the assigned depth. Another option is to render both pairs with

half the original disparity. The advantage of the former is to keep one of the images

original, and the advantage of the latter is to render with half the disparity and hence

yielding a smaller uncover region. Depending on the user tests, the former is selected

in the virtual view rendering phase.
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3.5 Conclusion

This chapter presents a general purpose superpixel based user-assisted object segmen-

tation framework with an application on 2D/3D image conversion. The segmentation

framework is established using the superpixel primitives and the graph-cut energy

minimization technique is used iteratively for multiple object labeling. The overseg-

mentation step involves a novel weight propagation phase where a similarity based ob-

ject region integrity is enforced. The e�cient iterative implementation of the geodesic

distance metric proves to be useful for increasing �nal segmentation performance es-

pecially at the boundary regions of the object. Visual 2D/3D conversion results are

presented for a qualitative evaluation.
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CHAPTER 4

STEREO IMAGE SEGMENTATION

4.1 Introduction

Previous chapter presents the utilization of superpixels in the user assisted image

segmentation framework and application on the mobile device for 2D/3D image con-

version. In this chapter, the extension of the mono image segmentation on the stereo

footage is further explored. As an application of the stereo image segmentation, a

novel disparity remapping technique is proposed .

The energy formulation used for the stereo segmentation is an extension of the method

explained in Chapter 3. The stereo extension is realized using a feature based cor-

respondence estimation followed by the energy minimization. Similar to the mono

segmentation, superpixel atomic structures are used as the nodes of the graphical

framework. The proposed stereo segmentation method is used for retargeting the

stereoscopic footage on di�erent display sizes and resolutions. The performance of

the proposed technique is evaluated using objective metrics on a ground truth image

segmentation dataset. The qualitative user study is also conducted for evaluating the

subjective performance of the proposed disparity remapping technique. In order to be

complete, the extension of the idea on the video footage is also presented with some

qualitative results.

The general outline of the chapter is as follows: Firstly, the related literature about

user-assisted stereo image segmentation is explained. Following that, the proposed

stereo image segmentation is presented in Section 4.3. The disparity remapping tech-

nique is explained later in Section 4.4. Before concluding with �nal remarks, extension

of the proposed idea on the video data is presented in with experimental results in

Section 4.5.
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4.2 Related Work

This section presents a method to extend previously explained technique on mono

image segmentation towards the stereo with minimum extra e�ort. In that sense, the

input strokes on one image are used to produce segments on both image pairs. No

additional input is required by the system; hence, the amount of user interaction is

kept at minimum.

Previous studies for obtaining stereo image segmentation mostly utilize dense disparity

estimation. With the estimated disparity, it is intended to overcome possible percep-

tion, disparity, and occlusion issues. However, the methods proposed for estimating

per pixel disparities in two view stereo sometimes lack �ground truth� accuracy for

arbitrary scenes. The stereoscopic copy-paste idea [82] concentrates on the same prob-

lem and o�ers a method to segment the selected object in stereo image by interactively

merging the oversegmented regions. The regions are clustered according to a maximal-

similarity merging method, and then re�ned by graph cut. The propagation of left

eye segment on its right eye pair is realized through the disparity information corre-

sponding to the segmented object. A recent study [98] provides details of the joint

energy assignment in graph cut method for the stereo image pairs. However, the main

constraint on previous methods is the necessity of dense disparity estimation which is

a computationally complex step in the whole pipeline.

Since there is only limited literature about stereo image segmentation, mono segmen-

tation techniques are also investigated and utilized in the quantitative comparison.

The study in [13] proposes an interactive video segmentation method where structure

from motion techniques are utilized for information propagation through the succeed-

ing frames. However, quite long processing and interaction times cause this approach

to be highly impractical. The study proposed in [99] utilizes many di�erent cues for

obtaining segmentation. Color, gradient, color adjacency, shape, temporal coherence,

camera and object motion and easily-trackable points are the cues incorporated in the

graph-cut optimization framework. The weighting of the cues are achieved automat-

ically in order to boost performance using the most e�ective cues for segmentation.

However, it also requires long execution and interaction time for the �nal result. In

order to reduce the interaction and execution time, an e�cient method is proposed

where interaction with only one of the stereo pairs is required. This eliminates the

computational burden of dense disparity estimation.

4.3 Proposed Method

The goal of the method is to faithfully segment object and background regions in

stereoscopic image pairs. Algorithmic �ow is presented in four major steps:
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• Superpixel generation for graph generation [121].

• User assistance as scribbles on image representative areas [123].

• Feature matching for information propagation [122].

• Stereo segmentation via graph cut [119].

The generation of superpixel regions and user assistance on the image representation

areas are previously explained in Chapters 2 and 3. Therefore, the emphasis is directed

to the additional e�orts towards achieving stereo segmentation.

4.3.1 Detection and Description of Feature Points

Feature point detection and generating discriminative descriptors have been widely

investigated in the computer vision literature. In the proposed technique, feature

matching is used for the purpose of estimating the segmented object disparity. These

matched keypoints are used to transfer input scribbles supplied by the user on the

stereo pair.

Selection of the feature descriptor is an important aspect of the whole process. Most of

the widely known methods like SIFT [83] and SURF [16] rely on costly descriptors for

detection and matching. Among the state-of-the-art methods, ORB (Oriented FAST

and Rotated Brief) feature descriptor [107] steps ahead from its predecessors due to its

computational e�ciency and acceptable performance [107]. Another point that points

out the ORB descriptor is the fact that unlike SIFT it is freely available in OpenCV in

the PC and Android environment. ORB feature detector is introduced as a computa-

tionally e�cient replacement to SIFT [83] that has similar matching performance, and

is less a�ected by image noise. ORB combines the FAST keypoint detector [104] and

the BRIEF descriptor [25]. The comparison of the ORB descriptors against previous

art can be examined in [107]. Moreover, the study in [42] also compares the detection

and tracking performance of di�erent feature detection algorithms.

The matching of the detected keypoints is conducted using a brute-force method by

comparing the binary hamming distances of the corresponding descriptors. This has

proved satisfactory performance for most of the scenes. Additional epipolar constraint

and average disparity thresholding has also been performed for possible outlier elimi-

nation.

4.3.1.1 Disparity Estimation

Previous methods on stereo segmentation [98], [82] require a dense disparity map for

estimating pixel correspondences. However, this is a computationally complex process
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Figure 4.1: ORB feature point match

and causes the application to be non real-time. For an interactive procedure, longer

computational times is not tolerable for the human operator. Even with an e�cient

local implementation [29] the required times for this process is far from real time. The

rankings of the dense disparity estimation methods in Middlebury [111] web site clearly

state this fact with the quantitative experiments. Moreover, the estimated disparity

values are also prone to errors even with the performance oriented global implemen-

tations [86]. Our proposed method eliminates this procedure by applying an e�cient

sparse feature matching idea. Stereo feature matches as shown in Figure 4.1 are used

to �nd the average disparity of the segmented object. The estimated object disparity

is used to transfer the scribbles supplied from one image to the other. In this scribble

transfer, epipolar consistency is also considered. Hence, the feature matches are elimi-

nated for possible outliers using an adaptive thresholding method. For a keypoint Kx

the outlier control is done by �nding the average disparity in the neighborhood Nx. It

is computed by �nding all the keypoints Ky and averaging the disparity sum by the

number of keypoints M in the neighborhood Nx (4.1).

AvrDisp(Nx) =
1

M
∗
∑

Ky∈Nx
(disp(Ky)),Ky ∈ Nx (4.1)

If the matched disparity of the keypoint Kx is not compatible with the computed

average disparity, it is discarded. The matched image feature points are visualized in

a top-bottom format in Figure 4.1 where lines connecting the feature points indicate

the matching performance.
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(a) (b)

(c) (d)

Figure 4.2: Proposed method enables repeatable interaction for obtaining satisfying
segmentation results

4.3.1.2 Energy Minimization on the Stereo Image

At the �nal step of the stereo segmentation algorithm, the input seeds and their stereo

correspondences are integrated in the graph-cut energy formulation as explained in

Section 3.3.2. The calculated average disparity in the segmented object is used for

transferring seed location information on the stereo pair. The procedure uses the idea

that the segmented object area has similar disparity. Therefore, the average disparity

level estimated through the sparse correspondences can be used to transfer object and

background seeds on the stereo pair. The relocated input seeds are used in the binary

segmentation framework to create �nal stereo segmentation output as shown in Figure

4.3.

4.3.1.3 Additional User Input

In the proposed framework, the user is allowed to add additional inputs to the system

for a better performance. When the resulting segmentation requires additional adjust-

ments, the user might further indicate erroneously segmented regions on the image as

in the initial phase. Left click of the mouse is used to indicate foreground object and

right click to indicate the background region that is erroneously segmented at the ini-

tial stage. This step clearly enhances the �nal segmentation performance, but causes

an additional user interaction e�ort and time. In the results section, we have indicated

the resulting increase in segmentation performance as well as the time required for the

additional input step.
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Figure 4.2 presents a scenario where initial inputs do not produce a satisfactory seg-

mentation output. Figure 4.2-a shows the initial seed assignment. The output seg-

mentation by the proposed graph cut method is shown in Figure 4.2-b. On the same

�gure, one can observe the additional user strokes especially at the low gradient object

boundary. This procedure can be repeated until user is satis�ed by the result.

4.3.2 Experimental Results

The performance of the proposed stereo segmentation technique has been quantita-

tively evaluated. A ground truth dataset [98] containing binary stereo segmentation

results has been used for the tests. The dataset contains 30 stereo images and some

of them are from Middlebury dataset [111]. The images are labeled as foreground,

background and unknown regions. Unknown regions correspond to object boundaries,

where it is hard to accurately decide between foreground and background; i.e. hair

region around the head of a person. Stereo segmentation results have been tested to-

wards segmentation accuracy which measures the ratio of the correctly labeled pixels

over the total number of pixels.

The proposed segmentation algorithm is compared with the state-of-the-art methods

Livecut [99], SnapCut [13] and StereoCut [98]. These methods are selected due to

the utilization of similar scribble based user assistance for segmentation. Average

segmentation error of the proposed method with limited and extensive user interaction

for Euclidean and geodesic distance metric have been computed.

Any interactive system can be repeatedly tuned by supplying more user inputs in

order to produce satisfying results. However, the aim is to keep the time of user as-

sistance at minimum. We �rmly believe that the true performance of a user assisted

segmentation technique cannot be evaluated by pure segmentation results; amount of

interactions should also be considered. Hence, the time required for obtaining pro-

posed segmentation results is recorded. On the average, the proposed system requires

less than one minute per image including user interaction and CPU processing time.

Approximately 3 seconds for preprocessing (including superpixel generation and sparse

feature matching) and 50 ms for graph cut optimization is recorded for a very high

resolution (1920x1080) stereo image on a 3.06 GHz PC. Moreover, it should also be

noted that the method in [98] strictly requires a dense disparity estimation in order to

obtain a stereo segmentation. Time required to estimate the disparity takes more than

one minute with their utilized method [48] at this resolution. Therefore, the proposed

solution with sparse feature matches is computationally much feasible compared to

such a dense disparity estimation method.

Average segmentation error ratios for the images in dataset are shown in Table 4.1.

The table also presents the required time for human interaction and computer pro-

cessing. There are multiple conclusions that can be derived from the quantitative
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(e) (f)

(g) (h)

Figure 4.3: Input scribbles and proposed stereo segmentation
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analysis. Firstly, utilization of geodesic distance in the similarity cost enhances the

segmentation performance. It has been previously presented in Section 3, Figure 3.17

for a visual comparison. Secondly, proposed method with sparse feature matches is

computationally much feasible compared to a dense disparity estimation approach.

With the standard or additional user assistance, satisfying results are obtained in min-

imal processing and interaction time. Considering the objective metrics only, it can be

concluded that the proposed technique provides competitive performance with respect

to the state-of-the-art methods. Visual stereo segmentation results are presented in

Figure 4.3.

Table4.1: Average segmentation error

Methods Label Error
%

Process
Time

Interaction
Time

Livecut [99] 1.07 > 5sec ∼1 min
Snapcut [13] 0.37 > 5sec ∼1 min
StereoCut [98] 0.31 > 60sec ∼1 min
Proposed Euclidean 0.39 ∼3 sec ∼30 sec
Proposed Geodesic 0.32 ∼3 sec ∼30 sec

With additional in-
put

0.26 ∼3 sec ∼1 min

4.4 Disparity Remapping

This section explains how the proposed stereo image segmentation technique is applied

as a post processing step in a stereo content generation pipeline, also presented in our

paper in [120]. The basic layout and formation of the stereoscopic content production

setup is seen as easy as placing two cameras side by side; however, the virtue of

creating natural and comfortable viewing experience lies in correctly assembling the

required settings for the geometry of the scene, speci�c display medium and viewer

placement during the show. The ambiguity in the display side; namely the fact that the

output display size and resolution cannot be predicted during the shooting; is the main

challenge in the production step. The produced content can tolerate only a limited

amount of deterioration from the actual target size and resolution. This di�culty

in the production step motivated us to attack the problem of adjusting stereoscopic

content for retargeting purposes. This makes visually appealing 3D perception possible

in multiple output medium types other than the targeted size and resolution.

Human visual system depends on various cues while perceiving the depth of a scene.

Horizontal disparity information between the two retinal images is processed by the

brain to produce a single vision and stereoscopic depth [94]. In order to achieve this, eye

movements are required to position the image onto the fovea. Vergence movements are

required for adjusting �xation from near to far (divergence) or far to near (convergence)

[7].
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When an object is very close to the camera during shooting, it is displayed with great

negative disparity (> 10%). This may result in an uncomfortable viewing experience

and possibly a temporary diplopia, a problem that happens when two stereoscopic pairs

cannot be combined by the brain due to the excessive disparity. Hence, the amount of

disparity should be well optimized for the display medium [61]. It is not convenient to

apply a stereoscopic content optimized for a speci�c type of display (e.g. large theater

screen) on a di�erent target medium (e.g. a standard 42" TV or a 4" mobile display).

The reason is due to the fact that it might create either unimpressive (cardboard e�ect)

or uncomfortable (diplopia) viewing experience due to the mismatched disparity values.

However, directors or visual artists (namely, stereographers) might willingly impose

excessive negative disparity on the objects mostly for a very short time to create an

impressive impact. On the contrary, it might be the case that an object that deserves a

speci�c attention is shot with a con�guration that no impressive depth di�erentiation

is present. The director in such a case might prefer to emphasize the object which

is originally located on a similar depth with the background. The proposed method

can be used in such a scenario to impose a synthetic depth discontinuity between the

object and the background in order to create an artistic impact.

The mentioned various possible issues and scenarios cannot be handled simultaneously

during the production phase. In other words, it is not possible to create a general solu-

tion that gives optimum quality in di�erent viewing conditions. Hence, post processing

techniques, as proposed in this section, are developed to recreate (synthesize) stereo-

scopic scenes for a better visual experience.

4.4.1 Related Work

Image retargeting topic has been previously addressed in the �elds other than stere-

oscopy. The study in [113] proposes a method for warping mono images adaptively

on di�erent output formats. A comparative study on monoscopic image retargeting

applications can be examined in [106]. In the case of stereoscopic content, image re-

targeting aims at virtually adjusting the perceived depth of the image on the screen

so that no visual fatigue or visual con�ict is observed.

The study in [73] proposes a cost based automatic disparity remapping idea utilizing

the perceptual saliency cues extracted from the scene. This method approaches the

problem as a warping issue and is also of practical importance since it does not require a

conventional disparity estimation but a sparse correspondence analysis. The usefulness

of the results are validated with objective and subjective tests. Another warping based

method is also presented in [143]. This paper proposes a linear mapping method to

adjust the depth range of a stereoscopic video according to the viewing con�guration.

Display size, pixel density and viewer distance are considered for the �nal warped

image. The main limitation is stated as possible warping issues in case of small objects

in the scene.
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Another direction of disparity mapping methods require estimation of dense disparity

map. The study in [140] applies a non linear mapping operation on the estimated

disparity values. The mapping formulation is motivated by the basic gamma curve

mapping idea for visual representation of images on displays. This study also refers to

subjective tests for validating increase in visual comfort after the remapping operation.

However, the methods proposed for estimating per pixel disparities in two view stereo

sometimes lack �ground truth� accuracy for arbitrary scenes. The steroscopic copy-

paste idea [82] concentrates on the same problem and o�ers a method to segment the

selected object in stereo image by interactively merging the oversegmented regions.

The regions are clustered according to a maximal-similarity merging method, and

then re�ned by graph cut. The propagation of left eye segment on its right eye pair

is realized through the disparity information corresponding to the segmented object.

The geometric perspectives of remapping operation has been detailed by Devernay and

Duchene [38], where baseline and viewpoint modi�cation aspects are covered and a

hybrid method is proposed. It also supplies background information about the reasons

of observed visual deteriorations which mainly result from erroneous acquisition of the

scene.

Since the problem is well suited for post processing applications, commercial products

are also available in the market. The product released by Foundry [2] requires geo-

metric calibrations, such as camera parameters, followed by novel view synthesis and

occlusion handling. Another method utilizing user interaction for the modi�cation of

the 3D morphology is presented in [135].

4.4.2 Proposed Technique

The proposed method allows modi�cation of the depth of an individual object by

moving it virtually closer to or further away from the camera. This is done using the

previously explained stereo segmentation output. The segmented object on the stereo

image is horizontally moved in order to achieve the intended virtual depth adjustment.

The direction of movement is de�ned by the user depending on the intended visual

e�ect.

Novel View Synthesis The motivation behind moving an object closer to the cam-

era is to create a more appealing e�ect on the viewers by di�erentiating the selected

object from its background. This e�ect can be preferred by the post processing artists,

when a special emphasis on the object is required. The second case, where selected

object is pushed further away from the camera, might be useful when the stereoscopic

setup is not properly con�gured for the target viewing conditions. Excessive negative

disparity might prevent the scene from being comfortably viewed. Proposed virtual

depth adjustment might heal possible miscon�guration and enhance the perceptual

quality of 3D vision on the target medium.
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Figure 4.4: When the object is moved closer to (further away from) the camera,
(D3 > D1 > D2), disparity of the object increases (decreases) (d2 > d1 > d3).

In order to synthesize the disparity altered views, it is necessary to generate horizon-

tally shifted versions of the segmented stereo objects. Virtual move of the segmented

objects in camera direction, forward or backward, is only possible by moving the seg-

mented objects horizontally in reverse directions. For a side-by-side image, where left

eye image is located on the left side as in Figure 4.5, moving the stereo objects towards

each other will create a perception of moving the object closer to the camera, and sim-

ilarly it is enough to move objects apart from each other to push objects towards the

background. During the horizontal move, one of the images can be kept as it is, and

the stereo pair is moved with the required disparity. However, we prefer to modify both

of the stereo pairs. The reason is due to the fact that, with this setup the disparity

shift applied per image will be half, compared to the former case. This minimizes the

deformation and visual artifacts on both images as also proposed in [73].

The movement of the segmented objects and the corresponding disparity and depth

changes are illustrated by a parallel camera setup in Figure 4.4. The inverse relation

between disparity and depth is presented geometrically. (di, Di) pair corresponds to

the disparity and depth values of the segmented image where i ∈ 1, 2, 3 successively

corresponds to the original object location, object moved closer to the camera and

object moved further away from the camera. Horizontally shifted views are shown in

the results section in Figures 4.5-c and 4.5-d.

Due to the horizontal movement of segmented objects, some parts of the original

image are covered by the moved object and similarly some uncover regions arise at

the opposite side of the moved object boundary. Missing information of the uncover

regions are �lled from the background with conventional inpainting type methods [33].

Object borders are usually di�cult to de�ne with the pixel precision. Therefore, image

matting methods have been proposed to overcome such image synthesis tasks [59]. In
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The corresponding outputs at the intermediate steps of the algorithm
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the proposed technique, this problem is addressed by smoothing the disparity at the

object boundaries. This approach would cause the boundary pixels to be shifted with

a slightly di�erent disparity. With this con�guration, a smooth boundary inpainting

is performed. Furthermore, the recently introduced stereo inpainting method could

also be utilized for a seamless hole �lling operation [89]. Uncover regions and resulting

region �lling operation after disparity remapping operation are presented in Figure 4.5-

e and Figure 4.5-f.

In order to present the e�ect of the proposed disparity remapping technique, the

resulting disparity map of the generated stereo images are shown in Figure 4.6. The

method in [28] is used for estimating the disparity. The disparity histograms of the

remapped images are also illustrated for tracking the changes between the disparity

altered images.

4.4.3 Experimental Results

The performance of the proposed disparity remapping technique has been qualitatively

evaluated. 12 set of images from are selected for subjective evaluation of the disparity

remapping operation. Each set is composed of one original and two disparity altered

versions. Images used in subjective tests are selected depending on the initial disparity

con�guration from the stereo segmentation dataset [98], Middlebury and web.

Subjective tests are conducted on a 42" 3D LED TV with 1080x1920 resolution with

actual height and width of 53x94 cm. The participants are seated at a 3.2m distance

which is approximately 6 times the picture height. Input stereo images are of the

same resolution with the display; hence, no resizing operation is performed at the

TV scaler. TV has a stereoscopic pattern retarder type display which uses circularly

polarized passive glasses. Each odd and even pixel lines correspond to left and right

views of the image and they are paired with the polarization direction of the glasses.

Detailed analysis on di�erent types of stereoscopic displays can be obtained in the

following study [63].

The human based experiments have been performed in accordance with the ITU-R

BT.500-11 [4]. The recommendations for the subjective assessment of stereoscopic

television pictures has also been considered [6]. 18 non-expert subjects participated

during the qualitative evaluation tests. The ages of the participants ranged from 22

to 35 years. Those who normally required optical correction kept their glasses in

addition to the circularly polarized stereoscopic glasses. No information regarding

the experimental hypothesis have been shared with the participants. They have only

been asked to evaluate the randomly ordered stereoscopic content according the given

criteria. The test images are grouped under three categories; 1) Control group, 2)

Object very close to camera, 3) Image with limited disparity range. The images in

the 'control group' are selected such that no visual di�culty is present and a clear 3D
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(a) Object moved backward

(b) Object at original location

(c) Object moved forward

Figure 4.6: Disparity estimate and disparity histogram of original and remapped stereo
images
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Figure 4.7: Likert scale and evaluation criteria

perception is satis�ed. The disparity range of images in this category is limited to

+5% of the image width where no visual fatigue is expected [61]. The second category

contains the images where the object of interest is quite close to the camera. In this

category, negative disparity of the selected object is close to or larger than 10% of the

image width where convergence problem is expected. The �nal category consisted of

images with quite limited disparity range (less than 2% of image width) where salient

object is weakly discriminated from the rest of the background.

Each set of 12 images contained one original and two disparity adjusted stereo versions.

Disparity remapping is performed over the geodesic distance based segmentation re-

sults. In the �rst category, selected object is moved closer and further away from the

camera (3% increase and decrease in the object disparity compared to image width)

within the visual comfort zone as shown in Figure 4.8-a. The second category images

are processed so that the object is moved two steps further away from the camera

(3% and 6% decrease in the object disparity) inside the comfort zone as shown in

Figure 4.8-b. The selected objects in the �nal category which are tagged as having

limited disparity range are moved two steps forward (3% and 6% increase in the object

disparity) in the comfort zone as shown in Figure 4.8-c. The red circle in the �gures

correspond to the selected object. Notice that remaining scene is kept unchanged in

terms of the perceived depth. These three versions of 12 image sets constitute the

36 image dataset for subjective evaluation. Each category have equal number of 4

examples in the dataset.
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Table4.2: Mean opinion scores of the subjective evaluation

First Category: Normal Viewing Case
Q1 Q2 Q3 Q4 Q5 Q6

Original 3.93 3.96 3.92 3.9 3.8 48%
Forw. 3% 3.17 3.38 3.38 3.68 3.15 13%
Backw. 3% 3.83 3.71 3.58 3.7 3.68 39%

Second Category: Object quite Close to Camera
Q1 Q2 Q3 Q4 Q5 Q6

Original 2.62 3.32 2.69 2.82 2.42 22%
Backw. 3% 3.02 3.25 2.86 2.92 2.86 46%
Backw. 6% 2.86 3.1 2.52 2.42 2.55 32%

Third Category: Object with Limited Disparity
Q1 Q2 Q3 Q4 Q5 Q6

Original 3.62 3.76 3.66 3.76 3.33 33%
Forw. 3% 3.68 3.42 3.74 3.80 3.42 27%
Forw. 6% 3.46 3.33 3.77 3.94 3.39 40%

The test runs around 15-20 minutes depending on the participant. Participant is

provided with the control of the slide show. He/She could go back and forth in the

dataset as much as he/she wants and no time limitation has been pressured. For

the given �ve criteria, the subjects rated the images in a 5 point Likert scale [80],

where 1 indicates worst and 5, the best grade. Figure 4.7 shows the Likert evaluation

criteria used in the test. A �nal question indicates a general selection between the

three versions of each set of images. The �rst �ve questions are answered for each

image and the �nal question is answered for each set of three images.

The question regarding viewing di�culty measures the observed eye-strain while visu-

alizing the content. The second criteria about observed amount of artifact is important

for evaluating the rendering performance especially at the occlusion boundaries. Third

question regarding depth perception for various cases, is a key element for assessment

of the proposed method hypothesis. The fourth question, Fg/Bg separation, measures

the amount of separation between the object and background, some speci�c cases are

covered with this question in which object of interest with clear depth perception is

hardly discriminated from the background. The overall quality is also rated in ques-

tion 5 and that depends totally on the participants own subjective criteria. Finally, a

selection between the three versions of the image set is requested.

The results for each category are evaluated using the Mean Opinion Scores (MOS).

Computed MOS for each category are supplied in Table 4.2. The �rst �ve questions

record the ratings from a 1 to 5 scale as shown in Figure 4.7. The �nal question (Q6)

corresponds to the selection percentage. It indicates the preference of the image among

three alternatives. MOS for the �rst category indicate that the original images for an

appropriate disparity range is chosen with higher percentage (47%) compared to the

82



(a) Normal viewing case

(b) Object quite close to camera

(c) Object with limited disparity

Figure 4.8: Di�erent viewing scenarios that have been utilized during the subjective
tests
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processed images. This result is expected since the images in the control group are

classi�ed as having decent 3D perception and post processing of the object by moving

virtually in forward or backward direction creates visual artifact (Q2) and considerable

viewing di�culty, especially in forward move case (Q1). Having a control group in such

a visual experiment is highly crucial in order to judge the validity of the results. MOS

for the control group images has de�ned con�dence on the subjective evaluation of the

participants.

The second category consists of images that are shot with inappropriate negative dis-

parity, and hence, the scene creates an undesired convergence causing visual discomfort

as it can be observed from the results of Q1. The visual discomfort considerably de-

creases as the object is virtually moved back on to the display depth. On the other

hand, perceived visual artifact increases with increased horizontal movement of the seg-

mented object. MOS for the third question regarding depth perception reveals useful

information. The score of the original image is quite low due to the wrong camera-

display con�guration. Perception score increases as the object is moved 3% backwards.

However, the score decreases again when the object is moved 6% backwards. Ideally

the perception scores are expected to rise as the object is moved further away from the

camera with the decreased visual fatigue. One possible reasoning behind such a result

is the increased visual artifact with increased occlusion which diminishes the quality

of 3D perception. Similar characteristics have been observed for Q4 rating foreground

and background separation. The overall quality and selection rates indicate a serious

tendency towards the images with 3% backward move.

The �nal category containing limited disparity images are processed such that the

selected object is moved closer to the camera. The scenario is shown in Figure 4.8-c.

The results indicate that the images with 3% forward move are ranked �rst according

to the viewing di�culty metric. The observed visual artifact tends to increase as the

amount of object movement increases. MOS of the third question is a good indication

of the success of the proposed method. This conclusion is also supported by the rank-

ings of foreground - background separation. Overall quality rankings (Q5) indicates

the superiority of the 3% forward move. It can be argued that 3% forward move is an

optimum compromise considering visual artifact and depth perception. Although the

resulting selection of images seems to contrast the overall quality ratings, the partici-

pants seem to be inclined to the scenes where objects are closer to the camera despite

the observed visual artifact.

Figure 4.9 shows the disparity altered images in anaglyph format for a visual under-

standing. All the original and disparity remapped images used in the tests can be

reached in the authors' web site 1 in the side-by-side format.

1 http://emrahtasli.com/DispRemap.html
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Figure 4.9: Disparity altered images shown in anaglyph format. Left: Selected ob-
ject moved backward. Middle: Original stereo image. Right: Selected object moved
Forward.

4.4.4 Discussions

Looking back at Table 4.1 that presents the segmentation accuracy and required time

for human interaction and computer processing, it is observed that the average seg-

mentation error decreases from 0.39 % to 0.32% as a result of the utilization of geodesic

metric. In addition to the proposed geodesic metric, an additional user input scenario is

also incorporated for evaluating segmentation accuracy as explained in Section 4.3.1.3.

When the user is allowed to further interact with the system and correct possible er-

roneously segmented regions as in Figure 4.2, one can obtain superior segmentation

accuracy as shown in Table 4.1. The second important conclusion that can be derived

from Table 4.1 is regarding the computational complexity of the proposed method.

By avoiding the dense disparity estimation, our proposed method outperforms the

compared state-of-the-art in terms of computation time.

Possible limitations of the proposed method in di�erent stages of the pipeline can be

stated as follows. In the monocular segmentation step, low gradient region boundaries

are prone to be erroneously segmented by the superpixels. Low intensity changes on

the object boundaries can be inaccurately segmented by the generated superpixels.

Dividing superpixels into smaller regions to compensate for such inconsistencies can

be addressed as a future direction. Possible limitation regarding the stereo extension

might be inaccurate matching of feature points on the stereo correspondences. How-

ever, this has not been observed as a real concern, since stereo matching is performed

in a con�ned neighborhood with the epipolar constraint. View synthesis has been

performed by using single image inpainting methods. This can be further improved

by the recently introduced stereo inpainting method [89].

User study has shown a clear preference towards the proposed remapped images. More-
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Figure 4.10: Correlation coe�cient values between question 5 and questions 1-4 reveal
further information regarding the selection criteria during subjective evaluations.

over, a detailed analysis about correlation between each question and observed overall

quality reveals further information. Q3 and Q4 shows similar correlation in all of the

cases. This proposes that depth perception and foreground-background separation is

a major criteria in evaluating overall quality of the image. Q2 (Viewing di�culty)

shows strong correlation in the �rst and second case; however, correlation decreases

in the third case. This indicates that in the third category where object is too close

to the background, the overall quality is almost independent of the observed viewing

di�culty. Q2 (Amount of Artifact) shows strong positive correlation in the �rst case,

very low correlation in the second case and strong negative correlation in the third

case. These results indicate that people evaluate quality depending on more Q3 and

Q4, despite there is great amount of observed artifact in the image.

4.5 Video Extension

The user assisted image segmentation has been explored previously for mono and

stereo footage. In order to complete the analysis, the extension of the method on

video is investigated in this section. Proposed video segmentation method utilizes

the segmentation of the object in the �rst frame with the help of user assistance.

As soon as the �rst frame is segmented with a satisfactory accuracy, the object and

background region characteristics of the image are estimated with analysis on the

segmented regions. The estimated object and background model is further used for

processing the succeeding frames. Superpixel primitives that are used in the initial

step are also generated on each succeeding frame and a similar superpixel based image

segmentation is performed on the rest of the video. In this section, a superpixel

based region modelling has been investigated for the target foreground - background

region identi�cation. For this purpose, a novel a superpixel based feature descriptor is

proposed, which in fact is one of the �rst feature descriptors de�ned on the irregular

superpixel lattice.
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Figure 4.11: Philips BlueBox video segmentation & depth generation tool graphical
user interface

4.5.1 Related Work

There are numerous methods addressing the video segmentation problem utilizing

user assistance. Most of the pixel based methods still su�er from disturbingly long

computation times before obtaining the �nal segmentation result. In most of the

methods, it takes up to hours to process an average resolution one minute video.

Therefore, this service is provided by the professional art studios at reasonably high

prices. Philips Electronics has o�ered a commercial product under the name BlueBox

[5] that enables interactive object segmentation on video footage. The primary aim of

this product is to generate depth information from mono and stereo video for Philips

autostereoscopic displays. BlueBox is o�ered as a service, coming with client tools

and a dedicated hardware. An image from the user interface of the o�ered tool is

shown in Figure 4.11.

The paper by Agarwala et al. [10] proposes a boundary tracking based video segmenta-

tion using splines that follow object boundaries between keyframes. The method uses

both boundary color and shape cues for region identi�cation. This method fails espe-

cially in the case that single type of cue is insu�cient to select the object. On the other

hand, the study proposed in [99] utilizes many di�erent cues for obtaining interactive

video segmentation. Color, gradient, color adjacency, shape, temporal coherence, cam-

era and object motion and easily detectable points are the cues incorporated in the

graph-cut optimization framework. The cue weighting is done automatically in order

to boost performance using the most e�ective cues for segmentation. This study also

su�ers from very long pre and post processing times for the �nal segmentation. Up

to 30 minutes are required to process a 100 frame footage. This makes this system

totally impractical when a longer footage is to be segmented. Figure 4.12 shows the

di�erent cues used in the system.
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Figure 4.12: Di�erent cues inherited in the system [99]

The paper proposed by Li et al.[78], applies a 3D segmentation approach on spatio-

temporal volume by a tracking-based local re�nement. Users are required to segment

every tenth frame, and graph cut computes the selection between the frames using

global color models from the key-frames. Watershed based oversegment regions are

partitioned as foreground and background. This method requires a great deal of man-

ual assistance on many frames in addition to corrections. Proposed 3D segmentation

graph energy assignment is shown in Figure 4.13.

Figure 4.13: 3D graph cut energy assignment [78]

Interactive video cut-out, [136], presents a system where user draws scribbles in 3D

space. A hierarchical mean-shift preprocessing is employed to cluster pixels into super-

nodes, which greatly reduces the computation of the min-cut problem. Three step

approach is proposed; 1) hierarchical mean-shift as preprocessing, 2) interactive user

interaction and a global min-cut optimization, 3) a local min-cut optimization is done

to re�ne the �nal foreground boundary. This method again su�ers from high amount

of time required to complete the proposed segmentation. Only the preprocessing time

for a 720x480 resolution image of 200 frames takes up to 30 minutes. An example fo

3D user interaction is shown in Figure 4.14.

A learning based technique proposed in [13] utilizes collaboration of a set of local

classi�ers, each adaptively integrating multiple local image features for interactive

segmentation. Local classi�ers on object boundary are propagated onto the next frame

by motion estimation. Local classi�cation results are used to generate a foreground

probability map. Video matting technique is used for �nal segmentation. No detailed
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Figure 4.14: 3D User interaction for video segmentation [136]

analysis is supplied for the general time complexity, however less than 10 seconds has

been proposed per medium resolution frame. Motion blur and defocus are named as

the limitations of the method for de�ning accurate object boundaries.

A 2D-3D conversion method using video segmentation is also addressed in this section.

The study in [137] uses structure from motion techniques for propagating initial frame

segmentation on the succeeding frames. As an application, 2D-3D conversion has been

proposed where prede�ned depth templates are inserted on the segmented objects.

However, very long processing and interaction times (on the average more than one

minute per frame) cause this approach to be impractical.

A recent automatic video segmentation method proposed by [75] starts with detection

of object like regions (key-segments) on the unlabeled video. These regions are scored

according to shape and motion cues for clustering purposes. Final segmentation is

done according to the model learned from the key frames. This method can perform

well only if the required cues are available in the given video.

4.5.2 Proposed Method

The proposed method utilizes a superpixel based video segmentation. In this tech-

nique, �rst frame of the video footage is interactively segmented using the previously

explained graph cut framework. Geodesic distance information is used in the local

energy assignment. Additional interaction is allowed until the user is satis�ed with

the �nal segmentation. Since there is considerable coherency between two succeeding

frames of a video footage, the proposed system utilizes this coherency by de�ning a

superpixel based region classi�cation. The proposed method can be explained in four

steps.

• Superpixel based feature descriptor extraction.

89



• Classi�cation model training for fg/bg regions.

• Superpixel region con�dence estimation.

• Global optimization using region con�dences.

4.5.2.1 Superpixel Feature Descriptor Extraction

Superpixel (SP) based feature generation has been previously addressed for image

annotation [124] and image retrieval [133] purposes. The paper in [124] proposes a non-

parametric image parsing method where label queries are made using SPs in order to

reduce the complexity. 1708 dimensional SP features are de�ned where shape, location,

texture, color and appearance information of the SPs are stored. Another study [133]

uses local SP histograms and local binary patterns [92] as the SP descriptors for content

based image retrieval purposes. These methods utilize general feature descriptor ideas

on the SPs without any special emphasis on its nature. Moreover, high dimensional

features overrule the computational e�ciency gained by using SPs.

The proposed SP feature descriptor aims to infer as much information as possible

from the local color, location and neighborhood state of the SP nodes. Moreover, the

computational e�ciency is still highly valued. The initial segmented foreground and

background regions are used to extract information using the proposed features. The

proposed SP features are presented in the Figure 4.15.

Figure 4.15: Superpixel features used in the proposed SP feature descriptors
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(a) Superpixel up to 3rd

neighborhood
(b) Diagram of neighborhood
regions

(c) Diagram overlayed with
superpixel regions

Figure 4.16: SP neighborhood and directional bins used in the proposed feature de-
scriptor

The SP based feature descriptor proposed in this thesis accumulate three types of

information. The location information is utilized by computing the X and Y locations

of the SP centroid. This is a valuable information since two succeeding frames can only

have a limited displacement in both X and Y directions. A motion based model can

also be incorporated in the descriptor for a superior SP centroid localization. Color

based features include the three channel mean color values of the SP. RGB and LAB

color spaces has been tested for performance evaluation. LAB color space has been

selected due to its superior performance in region identi�cation. The third category

features are composed of SP neighborhood relations. We believe that the neighborhood

relations are valuable for de�ning a region. This is basically motivated from the pixel

based widely accepted descriptors such as SIFT and HOG where oriented gradient

information is utilized. Our proposed system utilizes up to 3rd level neighborhood

and stores the sum of mean color di�erence in three channels in an 8 bin angular

representation as shown in Figure 4.16. This can be compared to SIFT but di�ers

mainly due to the fact that there is no regular lattice in the SP framework.

4.5.2.2 Classi�cation Model Training

Once the SP features are obtained for the object and background regions of the initial

frame, the region model can be constructed using a classi�cation framework. In this

thesis, Support Vector Machine (SVM) maximum margin classi�er [32] is used for

region modelling. The stable C implementation of the SVM library supplied by [26] is

utilized in the classi�cation framework.

SVM is a maximum margin classi�er where the goal is to separate the bi-class anno-

tated data by a hyperplane. The quadratic solution of a convex function is obtained

using the stochastic gradient decent in order to achieve the maximum margin. Super-
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vised learning is used to �nd the optimal hyperplane for separating the data. The set

of input training data (SP features) and the class labels are used to create the model

of the data for prediction purposes. The test data (SP features in succeeding frames)

is assigned on one of the two categories using the trained model.

SVM classi�er models the training data in the feature space. The hyperplane is located

so that the features of the separate categories are divided by a clear gap that is as

wide as possible. Test features are then mapped into that same feature space and

binary prediction or likelihoods are obtained depending on the region the features are

assigned to in the generated model.

The goal of the classi�cation in this stage is to answer the ultimate binary output

question: �Does the current SP belong to background or foreground?� The linear

discriminant function used to answer this question is shown below:

f(x) = wTx+ w0 (4.2)

The output of the above equation is used as the prediction if the SP belongs to fore-

ground or not. In this equation x is feature vector and w is the weight term followed

by the bias term w0 where x ∈ RN , w ∈ RN and b ∈ R1. For a given set of training

vectors x1, x2..xn and training labels y1, y2, ...yn where yi ∈ {+1,−1}, the aim is to

�nd the optimum weighting vector w that best separates the training data. Among

the all possible hyperplanes, SVM select the one where the distance (margin) of the

hyperplane from the closest data points is as large as possible.

The distance dxi of a feature point xi to the hyperplane can be found as:

dxi =
wTx+ w0

||w|| (4.3)

If the training samples are linearly separable, the optimal hyperplane can be found by

maximizing the distance of the training vectors closest to the hyperplane.

maximize dxi subject to; yi(w
Tx+ w0) > d i = 1, 2, ...n (4.4)

This problem is solved using the Lagrange multipliers. If the training samples are

not linearly separable, the maximization is done by using a trade o� parameter to

compensate for the misclassi�ed samples.

A single SP feature as de�ned in the previous subsection, corresponds to a point in 32

dimensional space. This might seem like a limited representation of the image with

such a low dimensional feature selection, especially when compared with the 128 di-

mensional SIFT descriptor. However, for the purposes of the study this su�ces to
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be descriptive enough considering the coherency in the successive video frames. The

training phase is realized after the �rst frame of the video is segmented using the still

image segmentation principles. Segmented foreground and background regions of the

SP in the �rst image are used as binary labels for training the SVM model. Support

Vectors for the given data is calculated depending on the SVM parameters. Online

training using the segmentation results of the succeeding frames can also be consid-

ered for continuous model update and adaptation to changing illumination and object

deformation issues. However, online training carries the risk of unsupervised data as-

signment which might cause deviation from the actual model in the succeeding frames.

Hence, online training should be used considering its advantages and disadvantages.

4.5.2.3 Region Con�dence Estimation

The SP features are assigned a likelihood (unary potential Dp(Lp) in Section 3.13)

depending on the distance dxi of the feature point to the hyperplane 4.3. Estimated

likelihoods of the query SPs are used as a con�dence term of the SP belonging to the

assigned region. Figure 4.17-b and Figure 4.18-b show the region con�dence estimates

in the 2nd and 10th frames of the video. The con�dence levels decrease as the frame

number increases. Hence some online information propagation could be introduced in

the classi�cation model even with some user assistance at speci�c frames of the video.

4.5.2.4 Global Optimization Using Region Con�dences

The con�dence of the individual SP regions are used in the binary combinatorial opti-

mization framework for the �nal segmentation decision. The region con�dence values

are used in graph cut formulation as the unary potentials (�T� linkes). The binary po-

tential weights are assigned as explained in Section 3.3.2 depending on the similarity of

the SP mean values. Figures 4.17-c and 4.18-c show the graph cut energy assignment

in the 2nd and 10th frames of the video. The con�dence levels become less informative

as the frame distance to the reference frame increases.

The �nal segmentation output is computed after the assignment of the con�dence

levels. Figures 4.17-d and 4.18-d show 2nd and 10th frames without any user assistance.

4.5.3 Experimental Results

The visual results of the explained region con�dences, graph cut energy assignments

and automatic segmentation outputs are shown in Figure 4.17 and Figure 4.17.

The proposed system is also tested on the SegTrack dataset [126]. The dataset provides

a set of 6 videos with an average 41 frames per video. The videos are selected from
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(a) 2nd frame of the video footage (b) 2nd frame region con�dence

(c) 2nd frame graph cut energy assignment (d) 2nd frame output segment

Figure 4.17: Proposed video segmentation pipeline. Output segment is automatically
generated using the �rst frame user inputs

di�erent di�culty levels with respect to color, motion and shape of the foreground

segments. In the tests, user assistance is provided every 10 frames to achieve accurate

results. The 2D/3D conversion of the videos using the proposed technique is provided

for visual analysis.

4.6 Conclusion

The highlights of the proposed stereo segmentation method can be listed as follows:

The interactive segmentation framework utilizes MRF based energy minimization. Su-

perpixel primitives are used in the graph generation phase for e�cient maximum �ow

calculation. User assistance is required as input seeds on the representative locations

of just one of the stereo image pairs to save user from repeating the procedure for the

second image. The information propagation is handled via e�cient feature point based

stereo matching. Hence, the necessity for the computationally demanding dense dis-

parity estimation module is eliminated. The ground truth stereo database is tested for

judging objective stereo segmentation performance. With additional user strokes, the

proposed method is shown to generate outstanding results compared to state-of-the-art

methods.

The proposed stereo segmentation technique is also presented as a post processing step

for retargeting stereoscopic footage on di�erent display sizes and resolutions. By the

help of the proposed technique, novel disparity adjusted views are synthesized using the

produced stereo object segments and background information for the images. To our
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(a) 10nd frame of the video footage (b) 10nd frame region con�dence

(c) 10nd frame graph cut energy assignment (d) 10nd frame output segment

Figure 4.18: Proposed video segmentation pipeline. Output segments are automati-
cally generated using the �rst frame user inputs

best knowledge, utilization of segmented stereo objects for virtual depth adjustment

purposes has not been addressed before. Subjective evaluations support the usage of

such a disparity remapping operation regarding di�erent aspects of visual preferences.

Processed images are preferred more frequently for the problematic categories, which

in fact, are the target applications for the proposed method.

Using the user-assisted image segmentation, the succeeding video frames are auto-

matically segmented using a novel superpixel based feature descriptor. Object and

background regions are learned using the proposed superpixel based region descrip-

tors. Support vector machine is used to de�ne the individual likelihood (con�dence) of

a superpixel to be assigned to the object or background region. Final region segmen-

tation is performed using the graph cut framework where sink and source energy links

are determined by the object and background likelihoods, estimated in the previous

step.
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CHAPTER 5

SUPERVISED IMAGE CLASSIFICATION

In the previous chapters, superpixel generation, utilization of these atomic structures

in mono/stereo image/video segmentation and applications on 2D/3D conversion and

disparity remapping scenarios are widely discussed. In this chapter, attention is di-

rected to the object recognition task and ways of utilizing superpixels in various steps

of the image classi�cation pipeline is investigated.

5.1 Introduction

Recognizing and localizing semantic objects in a complex scene is a challenging problem

that is solved e�ciently and successfully by the human visual and cognitive system.

The �eld has been vastly studied in the literature and various methods for object

detection, recognition and segmentation have been proposed. Since these processes

are connected to each other, it is usually di�cult to isolate one from other [84], [127].

The information from each process contributes to the others and this creates a multi

dimensional problem with strong feedback between the dimensions.

Object recognition is usually de�ned as the ability to assign labels to objects at multiple

conceptual levels, from speci�c identi�cation to coarse categorization. Possible identity

preserving transformations like scaling, rotation, occlusion, changes in intensity, size

and pose might be present during the assignment procedure. Ideally, a classi�cation

system should provide accurate performance in the presence of such transformations.

However, no method has o�ered a human-like performance so far yet. This natu-

rally leads to the following question: Where is the "gap" in the image understanding

pipeline?

The aim in this chapter is to explore various steps in the object recognition process by

incorporation of spatial information using the superpixel (SP) structure. Therefore,

SP 2 based region segmentation and region description has been primarily investigated

and the e�ects on the object recognition task is experimented. The contributions of

this chapter are two-fold: Firstly, SP based mid-level region cues are incorporated in

the feature description phase. Secondly, SP based region segmentation is proposed
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as a spatial pooling method where pooled regions are de�ned in accordance with the

underlying image characteristics.

This section is organized as follows. Related work and motivation of the various aspects

in object recognition is explained in Section 5.2. Section 5.3 supplies a background

information on the utilized object recognition pipeline in accordance with the state-of-

the-art. Section 5.4 provides details on the construction of the superpixel descriptor

and the experimental evaluation of the proposed technique is presented in Section

5.4.2. The following section 5.5 on region segmentation illustrates the adaptive region

boundary extraction and utilization on the spatial pyramid pooling technique. The

experimental results are discussed before concluding with �nal remarks and future

directions.

5.2 Related Work

Object Recognition

Object recognition tasks have been vastly studied in the literature [43, 74, 125]. As

a general consensus, the typical object recognition pipeline is usually studied in four

major steps: 1) extraction of local image features, 2) encoding of local image descrip-

tors, 3) pooling of encoded descriptors into a global image descriptor, 4) training and

classi�cation of pooled image descriptors for the purpose of object recognition. In

this chapter, the �rst and third step will be widely discussed in which the local im-

age features are extracted and spatially pooled for incorporating spatial image region

statistics.

In the literature, several studies focus on evaluating the performance of the �rst step

in the pipeline in terms of the classi�cation and matching accuracy. Pixel based shape,

color, and texture descriptors are proposed for such purposes [97]. Biological insight is

also incorporated to obtain invariance under various viewing conditions [112]. Other

studies propose combining di�erent levels (low - mid - high) of information [148].

The second step of the object recognition pipeline has also been widely addressed in

the literature. For encoding a set of local descriptors into a single high dimensional

feature vector, the Fisher Vector method in [96], achieves state-of-the-art performance.

The (third) pooling step is also shown to provide improvements. Especially spatial and

feature space pooling techniques have been widely investigated [21, 54, 74]. Concerning

the �nal step of the pipeline, discriminative classi�ers like SVM are widely accepted

as e�cient and accurate in terms of classi�cation performance. Judging from the non

optimal �nal performance of the-state-of-the-art [44], one can claim that there is still

room for improvement in the pipeline.

The use of scene geometry for image classi�cation is �rstly proposed by the work of

Lazebnik et al. with the �spatial pyramid� idea [74]. In that paper, hard segment

boundaries are utilized for creating hierarchical rectangular windows as region seg-
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ments. As a further step, this chapter argues that this relation is useful but can be

better exploited where hard region assignment is improved using a SP based region

segmentation. The motivation behind such partitioning is to utilize the locality with

the combination of the global information in frames, ie. an image on the highway

is more likely to contain a car than a toaster [74]. With such geometric partitions,

one can better utilize the statistical information related to the location of individual

segments, ie. �Sky� is usually in the top part of the image.

A previous work on generic pooling for image classi�cation, proposes utilization of

similarities between image categories [129]. This has been shown to improve the clas-

si�cation scores with the introduced correspondence between the equivalence classes.

This study emphasizes the idea that geometric properties of the regions have a statis-

tical relevance to image categories.

Partitioning of images into semantic regions by using the top-down knowledge with

bottom-up grouping approach has been previously discussed in the literature [18],

[64]. Such methods aim to generate semantic segments that correspond to single

objects or regions. This has shown improvements in classi�cation scores when accurate

segmentation results are achieved.

In this chapter, the motivation of the proposed adaptive region segmentation is to

generate coarse boundaries on the spatial regions. This is performed according to a

given geometric prior where a convexity constrained energy term preserves the shape

of the initial geometry. This would yield adaptation of the region boundary while

preserving the region geometry.

Neuroscience Perspective

The goal of the studies regarding the semantic gap in the image understanding proce-

dure is to determine where the machines lack accuracy compared to humans. In order

to address this issue, the way the brain solves visual object recognition task has been

investigated. The fact that half of the primate neocortex is engaged during the visual

processing, proves the complexity of the whole recognition process [46]. Moreover,

recent studies propose strong evidence that a cascade of computations in the Inferior

Temporal (IT) Cortex (it is the cerebral cortex on the inferior convexity of the tem-

poral lobe in primates including humans) are engaged in the visual object recognition

process [39]. However, the underlying algorithm that produces this result stays mostly

undiscovered.

Neuroscientists deal with the underlying aspects of brain functionality during the recog-

nition process. The focus in this chapter is not to investigate the neural implications of

visual understanding. However, it is important to emphasize the results of the recent

studies. These results can be valuable to better understand the object recognition

process. It has been observed that the IT pattern of activity can be very informative
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for achieving robust and real time visual object categorization [77, 108]. Even a simple

weighted summation of IT spike counts (without any advanced classi�cation method)

can lead to high rates of validated performance for a wide range of object recognition

tasks. On the other hand, there is still very limited information regarding the encoding

of individual IT responses. What is known is that the IT neurons are activated by at

least moderately complex combinations of visual features [108].

To summarize the discussion from the neuroscience perspective; IT neuron outputs are

very explanatory and valuable for visual understanding. Hence, e�orts towards the

clustering methods might be directed towards obtaining �good� feature descriptions

and encodings. The goal of the study explained in this chapter is to develop and

analyze extensions in feature description and encoding schemes with exploration of

hierarchically classi�ed pixel (low level), region (mid level) and scene based (high

level) feature descriptors.

Mid-Level Cues

Finding the correct type of features is very important in the image classi�cation task.

Local features are generally used to extract pixel level information from the interest

points or in a dense grid. On the other hand, global features are used to de�ne the

whole image using a descriptor. In this thesis, mid-level descriptors are proposed in

order to incorporate mid-level region information of the image. For that purpose,

superpixel atomic structures are utilized. Superpixels can seen as an e�cient image

representation with reduced resolution and information encapsulation property. SP

extraction is previously explained in Chapter 2.

The study in [20] proposes mid-level features for object recognition and presents a

detailed analysis on di�erent levels of pooling strategies. They de�ne macro-feature

vectors as jointly encoded small neighborhoods of SIFT descriptors. The neighbor-

hoods are de�ned by a �xed size of squares that encode multiple SIFT descriptor into

one as the macro-feature vector. This method pursues a similar spatial information

utilization as proposed in this thesis. However, they use only �xed sized (multiple)

square regions independent of the region properties. The proposed technique in this

thesis on the other hand, aims at combining spatial characteristics of the region and

encoding it into a descriptor that has �exible and adaptive coverage depending on the

spatial region properties. A recent work [95] that investigates the role of local and

global information in image classi�cation also focuses on exploring the performance

limitations of current techniques. Another study that aims at labeling image regions

depending on the similarity of the SP features in the training set is presented in [124].

In that study, scene-level matching with global image descriptors is followed by SP

level matching of mid-level features. The study in [148] addresses the low-, mid-, and

high-level cues. Individual classi�ers are trained on di�erent levels of descriptors and
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classi�cation outputs are combined for the �nal decision. Descriptor level grouping

has also been addressed in a more recent study [49] where local histograms from larger

neighboring regions have shown to improve classi�cation performance. This method

uses a �xed neighborhood de�nition to aggregate the local histograms; whereas, in this

thesis a �exible and more natural region description is proposed.

5.3 Image Classi�cation Pipeline

As previously stated, the typical object recognition pipeline consists of four major steps

also presented in Figure 5.1; 1) extraction of local image features, 2) encoding of local

image descriptors, 3) pooling of encoded descriptors into a global image descriptor,

4) training and classi�cation of pooled image descriptors for the purpose of object

recognition. Prior to the detailed analysis of the proposed feature descriptor and

spatial pooling enhancement, general image classi�cation pipeline will be explained.

Figure 5.1: Algorithmic �ow of a general image classi�cation pipeline [27]

5.3.1 Local Image Features

The literature on producing robust local image descriptors dates back to a couple of

decades. However, the focus in this study is not to investigate the performances of

di�erent local image descriptors in the image classi�cation problem. Therefore, the

well known image descriptor SIFT [83] has been selected due to its widely accepted

descriptive performance. The publicly available VLFeat toolbox [132] has been used in

the descriptor computation. This is a much faster and a very close approximation to

the original implementation in [83]. The increase in the speed is important for dealing

with large datasets and dense sampling of the image points. Dense sampling of the

image is important for understanding the global statistics and the "gist" of the image

[125]. However, pixel resolution sampling might still be redundant. In this study every
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one out of 4 pixels is regularly sampled and the local descriptor has been computed

accordingly. It has been observed that reducing the dimension of the SIFT features

by using principal componenet analysis (PCA) [69] might provide not only e�ciency

but also an increase in the �nal classi�cation performance.

5.3.2 Feature Encoding

Encoding of the local image descriptors is based on the idea of partitioning the feature

space into structural regions in the sense that these can be de�ned by a grouping rule.

These regions are named as visual words, and by the combination of all the visual

words, the visual vocabulary is generated. In order to de�ne the regions of the visual

words in the d dimensional feature space, K-means clustering approach is utilized.

The set of n local image descriptors x1, ..., xn are used to de�ne the k visual regions.

The total number of training image descriptors n is de�ned by the dense number of

image samples multiplied by the total number of images in the training dataset. K-

means clustering aims to partition the n observations into k sets so as to minimize the

within-cluster sum of squares.

argmin
s

k∑

i=1

∑

xj∈Si
||xj − µi||2, (5.1)

where µ is the mean of points in Si.

The standard Lloyds algorithm [81] iterates between the search of best mean values

µi from the samples xj ∈ Si and best grouping from the estimated means. For a

given of k means µ1
1, µ

1
2,...µ

1
k, the algorithm iterates by alternating between the two

�assignment� and �update� steps. In the assignment step, each observation is assigned

to the cluster whose mean is closest to it (i.e. partition the observations according to

the Voronoi diagram generated by the means).

Sti = {xp : ||xp − µti|| ≤ ||xj − µtj ||, ∀1 ≤ j ≤ k}, (5.2)

where xp is assigned to one St. In the update step, the means to the centroids of the

observations in the new clusters are calculated.

mt+1
i =

1

|Sti |
∑

xj∈Sti

xj . (5.3)

The algorithm converges when there is no longer change in the assignment phase and

hence no update is necessary.

Bag-of-words model has been e�ectively used for object classi�cation and video re-

trieval purposes [147]. The success of this orderless method lies in the categorization
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of the whole scene without requiring any spatial coherency. For example, if many

number of words that de�ne a face is found in a scene, there is a high probability

that a face exists in that scene. This would be independent of the position of these

words and their spatial relation. The likelihood of a category existing in a scene is

usually computed by the histogram of the visual words. The vocabulary of size k

with the estimated means µ1, ..., µk. Assignment Si of the individual descriptors xi
is done as shown in (5.2). The histogram of the assigned values produce the general

description of the scene. The success of bag-of-words model has attracted attention

and hence improvements on the discrete representation of the feature space has been

proposed. A weak point on the bag-of-words idea is that it only allows a discrete

vocabulary assignment; however, a feature point can be similar to di�erent words in

the vocabulary at the same time. It has been shown that codeword uncertainty can

be improved with the soft assignment idea [130]. This method has produced superior

categorization performance for state-of-the-art datasets. Recent studies proposed sim-

ilar encoding techniques in order to better utilize the uncertainty. Fisher Kernel [96]

method improved the soft assignment idea by introducing the �rst and second order

statistics of the Gaussian mixture model (GMM) for the feature encoding procedure.

GMM model is derived from the K-means vocabulary centers as initialization points.

GMM clustering aims to model the parameters of a probability distribution p(x|θ)
(5.4) and (5.5). The set of individual samples are used to estimate the D dimensional

mean (µ), covariance (Σ) and the weight π of the mixture of Gaussian.

p(x|θ) =

K∑

k=1

p(x|µk,Σk)πk, (5.4)

p(x|µk,Σk) =
1√

(2π)DdetΣk

e−
1
2

(x−µk)TΣ−1
k (x−µk), (5.5)

where θ = (π1, µ1,Σ1, ...πK , µK ,ΣK) is the vector of estimated parameters of the

model. πi is the weight; µi ∈ RD is the mean and Σi ∈ RDxD is the covariance

matrices of each Gaussian mixture. Parameters are estimated by the Expectation

Maximization method [37] from the available sample points x1, ...xN . The likelihood

of individual samples belonging to one of the K regions are estimated as in (5.6)

qki =
p(xi|µk,Σk)πk∑K
j=1 p(xi|µj ,Σj)πj

, k = 1, ...K (5.6)

Fisher encoding [96] is an alternative way to bag-of-visual-words method where non-

discrete label assignment is encouraged. Fisher vectors are composed of two gradient

calculations where the average of �rst and second order distance between the feature

points and GMM means are computed. uk captures the distance between the image

descriptors and the mean of the corresponding Gaussian. The second order distance

vk similarly computes the variance, see equation 5.7.
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uk =
1

N
√
πk

K∑

i=1

qik
xi − µk
σk

, (5.7)

vk =
1

N
√

2πk

K∑

i=1

qik[
(xi − µk)2

σ2
k

− 1], (5.8)

where σ2 is the variance term in the diagonal covariance matrix Σ, and qij represent

the soft assignment term de�ned in (5.6). The �nal encoding of the vector is done

by direct concatenation of ui and vi for all N components. This structure produces a

vector of size 2DK. as shown in (5.9).

ffisher = [u1
T , v1

T , ..., uK
T , vK

T ]
T
. (5.9)

5.3.3 Pooling

The state-of-the-art object recognition pipeline includes a pooling step where the re-

sponses of encoded descriptors are combined either spatially or in the feature space.

The aim of combination of features is to transform the joint feature representations

such that the local information is preserved while irrelevant details are eliminated. The

success of the spatial pyramid idea [55, 74] illustrates an empirical motivation towards

spatial grouping for classi�cation purposes.

Spatial pooling is introduced as a weak geometry constraint on the image classi�cation

challenge. It was initially introduced as an extension to the bag-of-words representa-

tion but could be easily applied to any other encoding scheme. In the previous seminal

work of [74], image is partitioned into sub-regions and the feature encoding is realized

individually on these sub regions. Imposing locality constraints on the encoding step

has shown increase in the �nal classi�cation accuracy. The individual local region de-

scriptors are concatenated to produce the �nal global scene descriptor. In the original

work, the base line is selected by setting the spatial pyramid regions as 1 × 1, 3 × 1

and 2 × 2 on the image geometry. When the �sher vectors corresponding to all the

regions are concatenated, a descriptor of 8 times the original size is constructed.

5.3.4 Classi�cation

In the classi�cation phases, support vector machines (SVM) is usually utilized with

the publicly available library [26]. SVM is a method of binary classi�cation (1-1 or

sequential 1-all for multi class case) using supervised learning for data analysis and

pattern recognition. The set of input training data and their labels are used to create
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the model. The test data is supplied to the trained system and assignment is done

on one of the two categories. An SVM model is a representation of the features in

the feature space, mapped so that the features of the separate categories are divided

by the largest margin possible. Test features are then mapped into the same space

and prediction is done by computing the likelihood of the region that the test feature

is closest to. SVM performs classi�cation between two classes by �nding a decision

surface that is based on the most informative points of the training set.

For training the encodings in the object recognition task, human annotations are used

for training with a linear kernel. Even the non-linear kernels tend to yield better clas-

si�cation accuracy, linear kernels are usually selected for computational e�ciency. It

has also been observed that SVM performs better if the data is normalized. parameter

C of the SVM (regularization-loss trade o�) is determined on a validation set (on the

provided train and validation split in the dataset).

5.4 Mid-Level Cues from Superpixels

The individual steps in the object recognition pipeline is presented in the previous

section. This section focuses on the �rst step in the pipeline where feature extraction

is performed. Conventional feature extraction techniques are explored from the per-

spective that mid-level information could be incorporated in order to obtain a superior

scene description. It is hypothesized that pixel based low-level descriptions are useful

but can be improved with the introduction of mid-level region information. Hence, the

methods to acquire such mid-level information from the image regions are investigated

in order to improve the classi�cation and retrieval accuracy. Detailed experimental

evaluations on classi�cation and retrieval tasks are performed in order to validate the

proposed hypothesis.

Pixel based descriptors are widely used in object recognition tasks due to their accepted

performance for image description [83]. However, the use of middle and higher level

descriptors is important for a better scene characterization. In the proposed method,

the aim is to extend the low level descriptors towards middle level region descriptors.

The advantage of the proposed mid level description is that it does not require a

�xed region size or shape to de�ne the support area of the descriptor. Region shape

is adaptive depending on the spatial image characteristics. Therefore, the proposed

descriptor is based on the superpixel mean color and variance information in a spatial

neighborhood. Di�erent region and superpixel sizes as shown in Figure 5.2 and Figure

5.3 are used to explore possible contributions by fusing spatially di�erent levels of

information.

The proposed Superpixel based Angular Di�erences (SPAD) method uses the intensity

di�erence between the SPs in a local neighborhood. The angular intensity di�erences

in the SP neighborhoods are accumulated in order to de�ne the region covered by
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Figure 5.2: Describing an image with superpixels. Top: SPs with size 10x10 SP.
Bottom: 20x20 SP. From left to right: Original image; SP boundaries on the image;
Mean RGB values for each SP region; �rst (red), second (green) and third (blue) order
neigborhoods of randomly selected 3 SP regions.

the irregular shaped SPs. Figure 5.4 presents the proposed idea where central and

neighboring SPs are generated in a realistic con�guration for illustration purposes.

The coverage of the neighborhood depends on the size of the extracted SP and the

number of neighbor levels. Local SP neighborhood in Figure 5.2 and Figure 5.3 shows

the extracted SP boundaries on the original image. On the colored area, the di�erent

orders of neighborhoods of the central SP are emphasized with �red�, �green� and �blue�

colors.

5.4.1 Superpixel based Angular Di�erences (SPAD)

The proposed descriptor extraction method is explained in four steps as follows: 1)

Extraction of SPs for di�erent sizes in Section 5.4.1.1 (3× 3, 5× 5, 10× 10, 20× 20).

2) Generation of SP neighborhood structure in Section 5.4.1.2. 3) Computation of

the angular intensity di�erences and variances for di�erent (1st,2nd, and 3rd) levels

of neighborhood in Section 5.4.1.3. 4) Fusion of the computed angular di�erences for

di�erent sizes of SPs in Section 5.4.1.4.
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Figure 5.3: Describing an image with superpixels. Left: SPs with size 10 × 10 SP.
Right: 20 × 20 SP. From top to bottom: Original image; Mean RGB values for each
SP region; �rst (red), second (green) and third (blue) order neigborhoods of randomly
selected 3 SP regions.

5.4.1.1 Superpixel Extraction

For the purpose of the proposed mid-level descriptor, extracted SP patches should pos-

sess several structural properties. The SP extraction method as explained in Chapter

2 preserves local structure by adapting to the local object and region boundaries.

Moreover, undersegmentation of the regions is avoided to yield an expressive image

representation. Uniform localization and compactness are also satis�ed to form regular

grid structure among the graph models with unbiased neighbor relations. In order to

generate a scalable descriptor, di�erent sizes of SPs are hierarchically extracted based

on the initial grid structure (3× 3, 5× 5, 10× 10, 20× 20).

5.4.1.2 Superpixel Neigborhood Structure

Each SP patch p corresponds to a node v ∈ V of an undirected graph G = (V,E).

Each edge e ∈ E of the graph is assigned a weight depending on the similarity of the

nodes that it connects. For each SP, the neighborhood of p is de�ned as Nn
p where n

corresponds to the order of the neighborhood with n ∈ {1, 2, 3} in our implementation.
For the given parameter settings, rough calculation of the region coverage with 3 levels

of neighborhood for 20 × 20 SP size resutls in (2n + 1) × 20 → 140 × 140 pixels for

n = 3. This coverage can be adjusted with di�erent sized SPs or neighborhood levels.

In the proposed implementation, up to the 3rd level of neighborhood with the following

SP sizes: 3× 3, 5× 5, 10× 10, 20× 20 are utilized.

While generating the neighborhood structure, an iteration on the individual nodes

is conducted in order to de�ne the neighborhood relations. To obtain a color wise

distance dp,qi between the adjacent nodes p and qi (qi ∈ Np
n), the distance metric is

computed over three color channels:
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dcp,qi = e
−(µp

c−µcqi )
k

σcp sign(µcp − µcqi)k−1, k = 1, 2 (5.10)

, where µc is the mean color of the cth index of the color channel and σp is the variance

of the mean color values in the nth neighborhood:

σc 2
p =

1

‖Nn
p ‖

∑

i=1:‖Nn
p ‖

(µp
c − µcqi)2, (5.11)

where ‖Nn
p ‖ is the total number of neighbors of the SP p within the nth neighborhood.

In order to compute the angular di�erence, the angular orientation of each SP with

respect to the central SP is required. The angular orientation arg(p, qi) (argument of

the vector (~p− ~qi) in R2) between the adjacent nodes p and qi (qi ∈ Nn
p ) is computed

as:

arg(p, qi) =





arctan( (py−qiy)
(px−qix)) if x > 0

arctan( (py−qiy)
(px−qix)) + π if x < 0 y ≥ 0

arctan( (py−qiy)
(px−qix))− π if x < 0 y < 0

(5.12)

where px, py correspond to the x and y pixel coordinates of the SP p.

The calculated distance and angular orientations are used in the next step to compute

the angular intensity di�erences.

5.4.1.3 Angular Di�erence Computation

We divide the angular space in 8 equal bins to compute the intensity di�erences of

superpixels for di�erent orders of neighborhood. Figure 5.4 illustrates the proposed

idea where di�erent colored centers contribute to the intensity di�erence term in the

8 bin angular orientations.

Dc
θ is the angular intensity di�erence between the center SP p and its neighbors at the

selected angle θ and color channel c. In our implementation, we use 8 bin orientations

where θ ∈ {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}. The angular di�erence Dc
θ is

computed as the summation of the projection of 3 closest (in terms of angular orien-

tation) SPs in the selected neighborhood order (5.13). Figure 5.4 shows the projected

points for θ = 0 for the 1st neighborhood and θ = 3π/2 for the 2nd neighborhood. The

dashed lines show the projection of SP centers on the corresponding orientations and

intensity di�erences are accumulated on each orientation as follows:

Dc
θ =

∑

qi,i=1:3

dcp,qi cos(arg(p, qi)− θ), (5.13)
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Figure 5.4: Computation of angular di�erences on the superpixel grid. Projection of
the closest superpixels are accumulated on the �nal intensity di�erence. X represents
the central SP and circles in di�erent colors (�red�, �green�, and �blue�) represent the
1st,2nd, and 3rd order neighbor superpixel centers

where the 3 closest neighbors are selected as:

i = argmin
j

(|θ − arg(p, qj)|), j ∈ Np (5.14)

Incorporating Second Order Statistics In addition to the angular intensity dif-

ference, we also incorporate the angular distribution of second order statistics of the

SP patches. As in (5.13), we compute the angular variances in the SP patches as

shown below in (5.15).

V c
θ =

∑

qi,i=1:3

σcqi
2 cos(arg(p, qi)− θ) (5.15)

where σcqi
2 is the variance of the cth color channel in SP qi.

5.4.1.4 Descriptor Fusion

The computation of angular di�erence Dθ and angular variance Vθ for 8 orientations

produce a 8 × 1 length vector each. In the proposed method, up to 3 levels of neigh-

borhood information are used to generate a 48×1 sized vector for Dθ and Vθ together.
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Figure 5.5: Angular di�erence computation. Red, green, and blue colored regions

correspond to the 1st,2nd, and 3rd order neighborhood of the central SP. Angular

di�erences are combined for di�erent neighborhood and SP sizes.

This vector constitutes the �nal region descriptor for the given hierarchy as illustrated

in Figure 5.5 for di�erent orders of neighborhoods and SP sizes.

Di�erent sizes of SPs are used to obtain scale invariance and cover distinct mid-level

region cues that we aimed for. The �nal structure of the descriptor when the angular

di�erence and variance are combined is shown below.

v = [Dn
θ1
Dn
θ2

... Dn
θ8
V n
θ1
V n
θ2

... V n
θ8

]3n=1

As a �nal step, the two descriptors Dn
θ and V n

θ are independently `2 normalized over

all neighborhoods. The normalization step has provided with an increase in the �nal

classi�cation accuracy.

5.4.2 Experimental Results

Image Classi�cation The descriptive performance of SPAD is evaluated on image

classi�cation. This task aims at detecting the prede�ned class of each image in a test

set based on training samples. For this purpose, the Pascal VOC 2007 Dataset [43]

is used, which consist of a total number of 9,963 images (5,011 for training and 4,952

for testing). Some examples of the 20 classes in the dataset are: person, motorbike,

air plane, cat, cow, bottle, sofa, etc. The measure used to evaluate the performance

of a given system is the Average Precision (AP) metric. The Mean Average Precision
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(MAP) is the averaged AP over all the classes tested.

The conventional image classi�cation pipeline used in the experiments is presented in

previous section 5.3. In the feature extraction state, VLFeat toolbox [132] is used to

compute the SIFT descriptors. Following the `2 normalization of the SIFT descriptors,

principal component analysis (PCA) is performed and the dimensionality of the SIFT

features are reduced to 64. Encoding the local image descriptors is achieved using the

Fisher Vectors (FV), since it has been reported to outperform other encoding methods

on the classi�cation task [27].

Test scores are ranked depending on the output likelihood of each image to belong to

the classes in the training set. With the proposed modi�cation on the pipeline, SPADs

are computed on each image instead of dense SIFT descriptors. Fisher vectors and

SVm are used in accordance with the conventional pipeline.

An evaluation of the proposed system using various scales of SPAD is performed and

the results are shown in Table 5.1. SPs are extracted from di�erent grid sizes: 3× 3,

5 × 5, 10 × 10, and 20 × 20, see Figure 5.5. SPADs are computed hierarchically

on di�erent grids (SPAD3, SPAD5, SPAD10, SPAD20) for every image. The MAP

scores are calculated for each size and the combination of di�erent sized descriptors are

investigated for improving the accuracy. The combinations are performed at di�erent

steps of the pipeline, as called early-fusion and mid-fusion. Early-fusion encodes all

scales of SPAD together at the feature extraction level and builds a standard sized

�sher descriptor for the image. on the other hand, mid-fusion concatenates the �sher

vectors corresponding to individual scales that are separately encoded. This would

yield a larger image descriptor size compared to early-fusion.

Table 5.1 shows the MAP scores of di�erent scales of the proposed descriptor. As the

initial size of the SP goes smaller, the precision increases. This is expected since larger

sized SPs will group bigger image regions and hence making the image understanding

di�cult. Moreover, combinations of di�erent scales produce more accurate results

since several levels of region information is incorporated in the combined features. As

shown in the �nal result, mid-fusion is observed to outperform early-fusion in terms

of �nal MAP.

Table 5.2 evaluates the baseline method, using dense SIFT, and its combinations with

the proposed approach. The image descriptors of each method are combined using

mid-fusion. The combination of dense SIFT descriptors with SPAD o�ers better per-

formances and a 2.7% improvement in terms of MAP over the baseline is observed.

A class level detailed look at the AP scores is presented in Figure 5.6. The increase in

the AP score per class varies between 0.1% and 5.6%. On all of the classes there is an

increase in AP; and on the large majority of the classes, a very stable improvement,

between 2% and 4% is observed. Increase is obtained regardless of the nature of the

data, due to the adaptivity of the proposed descriptor. This observation supports the
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Table5.1: SPAD classi�cation MAP scores for Pascal VOC 2007, using Fisher vectors
with k=256 Gaussians. Descriptors are combined using early-fusion and mid-fusion.

Method Fisher 256 Dimensions

SPAD 3 0.381 48× 2× k
SPAD 5 0.356 48× 2× k
SPAD 10 0.300 48× 2× k
SPAD 20 0.252 48× 2× k
SPAD 3,5 Mid 0.406 2× 48× 2× k
SPAD 3,5,10 Mid 0.417 3× 48× 2× k
SPAD 3,5,10,20 Mid 0.421 4× 48× 2× k
SPAD 3,5,10,20 Early 0.410 48× 2× k

Table5.2: MAP scores for the standard pipeline and combination with SPAD for Pascal
VOC 2007, using Fisher vectors with k=256 Gaussians

Method Fisher 16 Fisher 64 Fisher 256

SIFT standard 0.440 0.491 0.549

SIFT & SPAD-Early 0.457 0.514 0.563

SIFT & SPAD-Mid 0.468 0.527 0.576

initial hypothesis concerning the information gained by utilizing the mid-level cues.

Image Matching In this part of the thesis, an image descriptor speci�c to image

classi�cation task is proposed. The aim is to accumulate mid-level information from

the scene which is hypothesized to be complementary to the low-level information such

as SIFT. Dense SIFT descriptors are used in the image classi�cation pipeline without

rotation invariance property and are accepted as the conventional way to describe

a scene [27]. Therefore, rotation variant SP descriptor is used in the classi�cation

experiments. To complete the evaluation, the proposed method is extended to have

rotation invariance property and is evaluated on the image matching task. For rotation

invariance, the orientation component of SIFT is computed and it is used to align the

SP descriptors along the main orientation. Hereby, some visual results in Figure 5.7

from the dataset [87] are shown; as an illustration of the rotation invariance property.

5.4.3 Discussion

Object recognition can be improved by exploring the limitations at the feature extrac-

tion step. Current low-level image descriptors are widely explored for such purposes;

however, utilization of mid-level cues can capture additional spatial information. Pre-

vious mid-level techniques mostly de�ne a �xed image region and accumulate the

112



0

1

2

3

4

5

6

Class AP Scores  

Figure 5.6: AP score increase with the proposed SPAD-Mid combination compared to
the standard SIFT, for individual classes of Pascal VOC.

low-level information in this prede�ned window. Di�erent scales of the SIFT descrip-

tor can also collect information from a larger but �xed sized area on the image. On the

contrary, in this section a descriptor in the SP domain is proposed and the regions are

de�ned according to the spatial characteristics of the image. The advantage of such

an approach is to incorporate region speci�c information in the descriptor. One can

also argue about the similarities of the proposed method with the LBP descriptor [93],

especially in the hierarchical neighborhood idea. However, the two techniques di�er.

The LBP method stores the sign of the di�erences in the prede�ned locations of the

image. The binary vectors of the sign di�erences are then accumulated in a histogram

on a prede�ned window. The proposed method on the other hand, stores not only the

sign but also the magnitude of the di�erence and covers a region that is adaptive in

terms of shape and size.

The experimental results show supporting evidence that the proposed method is useful

for improving the accuracy of the object recognition task. Visual results on image

matching performance is also promising and can be further studied.

5.5 Geometry Based Region Segmentation for Spatial Pooling

In the previous section, a method for region descriptor using SPs is presented. This

technique intends to utilize mid-level information in the image that are hypothesized to

be complementary to the low level pixel features. In this section similar region descrip-

tion idea is generalized on the pooling step of the image classi�cation pipeline. In that

aspect, a geometry-constrained region segmentation approach for image classi�cation

is proposed. Scene geometry is supplied as an input parameter for region segmen-
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Figure 5.7: Matched points on the rotated and scaled image pairs. Di�erent colors

represent the image neighborhoods.

tation. The resulting segmentation is performed in accordance with the prede�ned

geometric guidelines. Using an approximate global geometric correspondence exploits

the idea that images of the same category share a spatial similarity. This assumption

is evaluated and justi�ed in an object classi�cation framework, in which generated

region segments are used as an enhancement to the widely utilized �spatial pyramid�

method. Fixed region pyramids are replaced by the proposed locally coherent geo-

metrically consistent region segments. Performance of the proposed method on object

classi�cation framework is evaluated on the 20 class Pascal VOC 2007 dataset and a

consistent increase in the MAP score for di�erent experimental scenarios is observed.

In this section, region segmentation in order to obtain natural image layout for the

purpose of image classi�cation is explored. In order to do that, a method that segments

image regions automatically for a given input geometry is proposed. Region segmenta-

tion assigns pixels in one-to-one correspondence to the connected image regions. The

geometry utilization for image classi�cation is inspired by the work of Lazebnik et al.

with the �spatial pyramid� idea [74]. Hard image segment boundaries are de�ned for

creating hierarchical rectangular windows as region segments. The motivation behind

such partitioning is to utilize the locality with combination of the global information

in frames.

Proposed method o�ers an improved spatial pooling idea where an extension to the

standard spatial pyramid by enforcing a similarity measure on the region segmentation

is proposed. Some image categories occur more likely in the speci�c regions of the

image, ie. sky is on the top part, a car is in the middle or lower part. The formation of

image descriptors on the manually de�ned spatial regions might succeed in providing

information about the layout of image features. However, one can argue about the

optimality, since the manually de�ned grid structure may not adapt to �t the spatial

statistics of natural images. With the proposed geometry based segmentation, the
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statistical characteristics is further enforced by allowing boundary adaptation on the

object/region boundaries.

The proposed region segmentation is done on a graphical framework. The image is �rst

segmented in superpixels as explained in Chapter 2. Each small SP region corresponds

to the nodes of an undirected graph G = (V,E) where edges e connecting the SPs are

assigned a weight we depending on the similarity of the SP nodes v.

In the proposed region segmentation, manual image geometries are used as initial

region segments. Region boundaries are iteratively adapted depending on the color-

wise and spatial distance between the individual SP and the candidate region. During

the region boundary update, the cost function relating similarity of the SP to the

corresponding image region candidate is minimized. This approach aims to keep image

regions connected without any sub-detachment.

The proposed method initially segments the image into large number of (∼ 600) color

wise similar SP regions. The �nal goal is to partition the image into small number of

(3 or 4) spatially coherent regions by dynamically moving superpixel patches using the

initial geometry. With an iterative update procedure, an energy objective is pursued,

where superpixels are assigned to the region that satis�es minimum energy cost. Re-

gion updates are terminated either after a �xed amount of iteration or if the energy

reduction after the update is smaller than a threshold.

5.5.1 Proposed Region Segmentation

The proposed region segmentation method includes three main algorithmic steps: 1)

Initialization of the regions with the input geometry. 2) Region boundary update. 3)

Region structure update.

1) In the �rst step, generated SPs are assigned to the regions according to the initial

geometry. The SP boundaries as shown in Figure 5.8-a are initialized to the input

3× 1 geometry in Figure 5.8-b.

2) The second boundary update step performs a greedy search on the boundary SPs.

Figure 5.8-c shows the SP updates on the regions boundaries. During the boundary

adaptation, the cost function that relates the similarity of the SP to the corresponding

region candidates is tried to be minimized. This approach assures that the �nal regions

are composed of connected SPs without any sub-detachment. SP to region assignment

is performed according to the formula given in (5.16),

L(p) = argmaxi=1:N (Si(p,Qi)) , (5.16)

where L(p) is the region label of the SP p; S(p,Qi) is the similarity cost between the

corresponding SP p and region Qi. N is the number of neighboring region candidates.
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(a) Object Moved Backward (b) Object at Original Location

(c) Object Moved
Forward (d) Object Moved Forward

Figure 5.8: Region segment generation for 3×1 geometry. a) Initial SPs are generated.
b) 3× 1 geometry is imposed on the SP structure. c) Region adaptation is performed
on the boundary SPs d) After a number of iterations �nal spatial pyramid regions are
obtained
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Therefore, starting from the initial region geometry, boundary SPs are reassigned to

the most similar neighboring regions.

3) During the structure update, the region statistics are recalculated based on the

removed or merged boundary SPs. This update provides SP groups to adapt changes

along the region boundaries and converge to compact and coherent region model. The

boundary and structure update steps are iterated until the stopping criteria is met.

Termination criteria can be set as a �xed number of iteration or it can be computed

depending on the decrease in energy cost during the update step. Figure 5.8-d presents

the generated region segments after the termination condition is met.

The optimization rule given in (5.16) updates the region boundary. Each boundary SP

is visited and assigned to the region that provides maximum similarity. The proposed

cost function used is composed of two main energy terms as denoted in (5.17). The

�rst term relates the color similarity of the boundary SP to its neighboring regions.

The second term de�nes the spatial distance of the SP to the region centers.

E(p,Q) = λ C(p,Q) + (1− λ)D(p,Qc) (5.17)

The term λ in (5.17) is a trade o� parameter to be tuned depending on the content.

Selection of λ imposes the geometry constraint on the generated region segments. As

λ is increased, the input geometry constraint will be relaxed in favor of color similarity

in the region. The value of 0.5 is used in all the experiments. This value is selected

as a mid point between the imposed geometry constraint and region color similarity.

Lab color space is utilized in the experiments due to its perceptual uniformity. Color

distance is computed over the individual color channels i, see eqn (5.18).

C(p,Q) =

3∑

i=1

| pi −Qi|2 (5.18)

The spatial distance between the boundary SP p and the region centroid Qc is com-

puted using the geodesic distance. It is de�ned as the length of the shortest path from

p to Qc, as given in (5.19) [34].

D(p,Qc)G = minP=p1,p2,..,pn l(P ) (5.19)

Suppose P = p1, p2, .....pn = Qc is a path between the SPs p1 and pn = Qc where pi
and pi+1 are connected neighbors. The path length l(P ), as de�ned in (5.20), is the

sum of individual neighbor distances dN (pi, pi+1) between adjacent SPs in the path.
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l(P ) =
n−1∑

i=1

dN (pi, pi+1) (5.20)

For the computation of adjacent SP distance dN , three color channel (Lab) distance

is utilized (5.21).

dN (p, q) =
3∑

i=1

(pi − qi)k k = 1, 2 (5.21)

No signi�cant performance di�erence has been observed in the selection of k, hence, it

is selected as 1 in all the experiments due to its computational e�ciency.

Computation of the shortest path from the boundary SP to the region centroid is

performed via the shortest path algorithm in [40]. At each iteration, shortest paths

from the neighboring boundary SPs to the region centroid are computed. Since the

termination criteria for path computation is at the boundary, calculation of the shortest

paths over the whole image is avoided.

5.5.2 Experimental Results

The bene�t of the proposed region segmentation method is evaluated as an improved

pooling idea for image classi�cation. The utilized training based classi�cation method

aims to assign the test samples in the dataset to one of the prede�ned classes. Similar

to the previous section, PASCAL VOC 2007 [43] image classi�cation dataset is used

for the evaluation.

The details of the pipeline is previously explained in Section 5.3. Proposed region

segmentation explores the pooling step of the pipeline in order to combine the responses

of the encoded descriptors in a spatially coherent region structure. The common spatial

pyramid pooling introduces a weak geometry in the encoding phase. The conventional

image regions used in the pyramid are as follows: 1×1, 1×3 (three horizontal stripes),

and 2 × 2 (four quadrants) grids. Concatenation of the �sher vectors from the eight

spatial regions as in Figure 5.10, produces an image descriptor that is eight times

the initial encoded size. The contribution of the proposed region segmentation is

a replacement of this �xed image partitions. Instead, it is hypothesized that the

spatial information in the pyramid segments can be better exploited by the proposed

geometrically constrained region segmentation.

Mean average precision (MAP) scores of the 20 class dataset is presented in Table 5.3.

The experiments are conducted for two di�erent GMMs (128 and 256). Comparative

tests for di�erent geometry assignments and possible pyramid combinations are per-

formed. (1× 1, 3× 1, 2× 2 and possible combinations of these individual geometries).
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Number of GMMs

128 256

Spatial Pyramid Type Conventional Proposed Conventional Proposed

1× 1 52.90 52.90 54.87 54.87

3× 1 55.40 55.71 57.09 57.55

2× 2 53.71 54.57 55.60 56.98

1× 1 + 3× 1 56.40 56.88 58.17 58.28

1× 1 + 2× 2 55.28 56.12 57.02 58.05

1× 1 + 3× 1 + 2× 2 56.99 57.61 58.71 59.36

Table5.3: Pascal VOC classi�cation results (MAP) with di�erent spatial pyramid com-

binations

Figure 5.9: Change in AP scores for individual classes with the 3×1 and 2×2 geometry
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Figure 5.10: Spatial pyramid regions with conventional and proposed segmentation for
1× 1, 3× 1, 2× 2 con�gurations

Standard deviation in MAP scores is observed to be less than 0.2%.

A detailed look at the change in the AP scores of the individual classes for the proposed

segmentation might supply more information. Figure 5.9 shows the di�erence of the

class speci�c average precision scores for the 20 Classes. Red corresponds to the change

in AP for the 3 × 1 and blue for 2 × 2 spatial regions. One can observe that in the

3 × 1 geometry, 12 out of 20 classes have bene�ted form the proposed segmentation.

On the 2×2 case, 18 out of 20 classes have increased accuracy. This result would show

the advantage of proposed method especially for 2 × 2 geometry. One can also claim

that the 2× 2 geometry is inadequate for encapsulating region properties for the used

Pascal VOC Dataset hence greater improvement is observed with the proposed region

segmentation.

5.5.3 Discussion

A general observation of the MAP scores in Table 5.3 indicates that spatial pooling

with the proposed region segmentation introduces a stable increase in the classi�cation

accuracy for all of the scenarios. The MAP results are observed to be consistent with

the initial hypothesis that proposed region segmentation can better encapsulate local

coherency compared to the conventional �xed region assignment. However, one can

still argue that there is still room for improvement with di�erent geometry selection.
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Figure 5.11: Spatial pyramid regions with conventional and proposed segmentation for
1× 1, 3× 1, 2× 2 con�gurations

.

Figure 5.12: Spatial pyramid regions with conventional and proposed segmentation for
1× 1, 3× 1, 2× 2 con�gurations
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5.6 Conclusion and Future Work

In this section, the state-of-the-art object classi�cation pipeline is presented. The

application of the superpixel image segmentation on the di�erent steps of the pipeline

is explained. Primary focus is given on the feature extraction (�rst) and the spatial

pooling (third) steps of the pipeline.

In the conventional dense feature extraction step, the mid-level region information

is incorporated in order to obtain a superior scene description. The hypothesis that

pixel based low-level descriptions are useful but can be further improved with the

introduction of mid-level region information is evaluated. A novel SP based region

descriptor that encapsulates the mid-level information is proposed. Image regions are

described by computing the oriented mean di�erences between a central superpixel and

its various orders of neighborhood. The variance of the neighbors is further included

for a better description. The performance of the proposed descriptor is evaluated

on the image classi�cation task. For the experimental evaluations, baseline score is

achieved using dense SIFT descriptors and 2.7% MAP improvement over the baseline

is achieved. Based on the experimental evaluations, the initial hypothesis that mid-

level cues enrich the image description and improve the performance of low-level cues

has been veri�ed.

As a future direction, the proposed method can be extended on di�erent color spaces

and channels. Utilization of di�erent color spaces such as LAB, can improve the

description power with its perceptual uniformity property. Moreover, in order to eval-

uate the matching performance of the proposed descriptor, quantitative results could

provide an objective comparison with pixel based methods.

In an attempt to utilize region speci�c information, the spatial pooling step is also

investigated. The spatial similarities in images for the purpose of object level image

classi�cation are explored. This has been achieved by an improvement on the spatial

pyramid by adapting spatial regions with image characteristics. The method has been

experimentally evaluated and the results show that the region adapted spatial segments

improve over the image classi�cation baseline. This also supports the intention to

encapsulate spatial statistics using the proposed region based segmentation. Increase

in the mean average precision scores have shown that coherent spatial regions would

consistently improve performance for alternative scenarios. Sample visual results of the

proposed segmentation have also been supplied for illustration of the region adaptation.

Looking at the MAP scores one can still argue that there is still room for improvement

with di�erent geometry selection.

Individual class precision scores have shown that 2×2 geometry bene�ts more from the

proposed segmentation. This can be related to inadequate region coherency in the 2×2

geometry. This indicates a future perspective towards exploration of scene geometry

for region segmentation. Instead of the conventional �xed geometry, a preprocessing
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stage for estimating the scene geometry can be performed. This might help obtaining

�exibility both on the region borders and scene geometry.
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CHAPTER 6

CONCLUSION

This thesis covers a wide range of �elds and applications where the superpixel repre-

sentation of an image is utilized. Superpixels are used in the graph based mono/stereo

image/video segmentation framework. 3D related applications, e.g., 2D/3D conversion

and disparity remapping, are explored. The results are evaluated both qualitatively

and quantitatively with subjective and objective tests. Moreover, the superpixel prim-

itives are presented as mid-level cues in the object recognition framework and a mid-

level region descriptor is proposed. Moreover, adaptive spatial pooling using geometry

based region segmentation has shown superior results with respect to mean average

precision performance (MAP). [7]

6.1 Summary

After the introduction and outline of the thesis in Chapter 1, 2nd chapter presents in

detail an e�cient superpixel (SP) and supervoxel (SV) extraction method. Improve-

ments to the state-of-the-art in terms of both accuracy and computational complexity

are observed. Segmentation accuracy is improved through convexity constrained dis-

tance utilization, whereas computational e�ciency is achieved by replacing complete

region processing by a boundary adaptation technique. Starting from the uniformly

distributed, rectangular (cubical) shaped equal-sized superpixels (supervoxels), region

boundaries are iteratively adapted towards the object edges. Region adaptation is per-

formed by assigning the boundary pixels to the most similar neighboring superpixels.

At each iteration, superpixel regions are updated; hence, progressively converging to

compact pixel groups.

In Chapter 3, the general framework towards achieving user assisted image segmenta-

tion is presented. A multi-label object segmentation method is explained in detail; an

application of the proposed image segmentation for 2D/3D purposes is discussed. The

user assisted image segmentation is handled in a graphical domain where nodes are

constructed by the superpixels. This yields a considerable amount of computational

e�ciency compared to pixel based approaches. Segmentation performance is satis�ed
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by the boundary adaptation power of the superpixels that are extracted using color

and distance metrics. Image segmentation is approached as an energy minimization

problem on a Markov Random Field (MRF). The goal of the proposed energy mini-

mization technique is to achieve minimum energy potential labelling. The graph-cut

method is used for this purpose on the superpixel primitives. The performance of

the proposed technique is evaluated using objective metrics on a ground truth image

segmentation dataset.

Chapter 4 presents the extension of the mono image segmentation on the stereo footage.

As an application of the stereo image segmentation, a novel disparity remapping tech-

nique is proposed. The energy formulation as in mono segmentation is extended on the

stereo data. This is realized using a feature based correspondence estimation followed

by the energy minimization. The proposed technique is used as a post processing

step for retargeting stereoscopic footage on di�erent display sizes and resolutions. The

performance of the proposed segmentation is evaluated using objective metrics on a

ground truth image segmentation dataset. Moreover, the subjective user study is also

conducted for evaluating the performance of the proposed disparity remapping tech-

nique.

Chapter 5 directs the attention to the image classi�cation task. Di�erent ways of

utilizing superpixels in various steps of the image classi�cation pipeline is investigated

for this purpose. Initially, superpixel based mid-level region cues are incorporated

in the feature description phase. Secondly, superpixel based region segmentation is

proposed as a spatial pooling method where pooled regions are de�ned in accordance

with the underlying image characteristics. Detailed quantitative results support the

initial hypothesis that utilization of superpixels as mid-level information increases the

recognition accuracy compared to only pixel based representations. Moreover, the

adaptive spatial pooling method has also shown improvement over the conventional

spatial pyramid technique.

6.2 Conclusion

The superpixel extraction method proposed in chapter 2 sets the backbone of the pre-

sented applications for image segmentation and classi�cation. There has been major

quantitative improvements with the proposed superpixel extraction method in terms

of computational e�ciency and segmentation performance. The iterative boundary

adaptation idea and energy function selection are the two main contributions pre-

sented in this thesis. The success of the technique is veri�ed with detailed quantitative

experimental evaluations. Di�erent energy metrics are utilized for evaluating the per-

formance. The geodesic distance with LAB color space has shown the most accurate

performance. On the other hand, Euclidean distance with RGB color space has also

shown good performance and with a very high computation e�ciency. With such ob-
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servations, the proposed method proves to be a remarkable alternative for the current

superpixel extraction techniques in the state-of-the-art.

The user assisted image segmentation framework is established using the superpixel

primitives and graph-cut combinatorial optimization. The utilization of geodesic dis-

tance in the region similarity assignment yields advantages compared to Gaussian

mixtude model (GMM) based region modelling techniques. Moreover, the proposed

geodesic distance computation method provides an e�cient information propagation

technique on the superpixel lattice. The automatic extension of the user inputs on the

stereo pair is useful with minimal user assistance. With additional user strokes, the

proposed method is shown to generate outstanding results with e�cient computation

times.

The stereo segmentation technique is presented as a post processing step for retarget-

ing stereoscopic footage on di�erent display sizes and resolutions. By the help of the

proposed disparity remapping technique, alternative stereo images with remapped dis-

parity values are synthesized. To the best of our knowledge, utilization of stereo object

segmentation for virtual depth adjustment purposes, has not been addressed before.

With user experiments, the initial hypothesis is supported, i.e., the disparity adjusted

images could provide superior visual experience. By the help of this technique, it be-

comes possible to change the object disparity such that accommodation-convergence

con�ict is less distracting.

Single image segmentation technique is further extended on the video footage where

after the segmentation of the initial frame, succeeding video frames are automatically

segmented. A learning based framework is utilized for modelling the segmented fore-

ground and background regions. The large margin classi�er support vector machine

(SVM) is used to de�ne the individual likelihood of the superpixels to the object or

background region.

The utilization of superpixels as mid-level cues has been evaluated as a dense region

descriptor for the purpose of object recognition task. This novel feature descriptor has

been observed to increase recognition accuracy for alternating scenarios. As a con-

clusion of the experimented parameter settings, hierarchical fusion of di�erent sized

superpixels provide up to 3% increase as a mean average precision in the tested 20

classes of the Pascal VOC dataset. The results support the initial motivation that

acquiring mid-level information from the superpixel primitives could carry a comple-

mentary information with respect to the low-level cues.

The advantage of proposed region adaptive spatial pooling step is experimentally val-

idated using quantitative and visual results. The results support the main intention

of encapsulating spatial statistics using the proposed geometry based region segmen-

tation. Increase in the mean average precision scores have shown that coherent spatial

regions would consistently improve performance for alternative scenarios. Sample vi-
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sual results of the proposed segmentation have been supplied for illustration of the

region adaptation.

6.3 Discussions and future directions

The proposed techniques in this thesis have been both qualitatively and quantitatively

evaluated. Minor and major increases in the performance have been observed for

individual tasks. In the �nal discussion section of this thesis, possible limitations of

the individual methods and proposals for the future direction are presented.

Possible limitation of the proposed superpixel extraction technique could be observed

when the initial superpixel size is too large. In that case, superpixel boundary adap-

tation might not be accurate as expected. A future direction in order to solve such

issues might be to adaptively detect optimum superpixel size or raise a warning in the

case that superpixels are not well adapted to the object boundaries. This can be done

by detecting the edges beforehand and checking for an overlap between the obtained

superpixel boundaries and the computed color/intensity edges. Alternatively, dividing

the superpixels depending on the existing edges might also be a way to automatically

overcome such issues. However, this might loosen the control on the total region size

as an input parameter.

Extension of the image segmentation on the video footage is proposed as a proof of

concept idea. Therefore, minimal evaluation has been addressed to that direction.

Detailed investigation in this aspect can produce more accurate results. The proposed

method could be objectively evaluated for alternating scenarios and video types. More-

over, a user study on the proposed 2D/3D conversion on the video footage can supply

deeper understanding.

Stereo extension part of the method is quantitatively evaluated using the stereo seg-

mentation dataset. However, a possible limitation could be observed in the information

propagation part where user interacts only with one of the stereo images. In the pro-

posed information propagation part, a feature matching based disparity estimation

is realized. However, if the feature detection does not generate reliable results, the

estimated average disparity could also produce erroneous values. This could easily

be prevented by asking the user to supply interaction on the other stereo pair. This

would decrease the proposed e�ciency but could be easily tolerated for some erroneous

scenarios.

As a future direction for the proposed mid-level feature descriptor, it can be further

extended on di�erent color spaces and color channels. Utilization of di�erent color

spaces such as LAB, can improve the description power with its perceptual uniformity

property. Moreover, in order to evaluate the matching performance of the proposed

superpixel descriptor, quantitative results could provide an objective comparison with
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respect to the pixel based methods.

The results on the region adaptive spatial pooling indicate the fact that 2×2 geometry

bene�ts more from the proposed segmentation. This can be explained by the weakest

region similarity in the 2 × 2 geometry compared to other testes scenarios. This

indicates a future perspective towards exploration of the scene geometry for region

segmentation. Instead of the conventional �xed geometry, a preprocessing stage for

estimating the scene geometry can be performed. This could help obtaining �exibility

both on the region borders and scene geometry.
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 Algorithm implementation on the mobile platform with 

C++ using QT 

 

01/2007 – 09/2007 Master Thesis at Rohde & Schwarz, Munich, Germany 

 Software Solution for Video over IP transmission  

 C++ Implementation on PowerPC Processor 

 Video Data transfer through the IP on a RTOS 

 Experience in network architectures; UDP, RTP, MPEG 

TS, FEC, Multicast, IGMP, ASM, SSM, RTOS, DVB 

 

11/ 2006 – 01/2007 Project “WCDMA uplink receiver implementation” 

 Design of a high SNR WCDMA uplink receiver 

 Implementation in Matlab 

 

08/2006 – 12/2006 Imaging Scientist Infineon Technologies, Munich, Germany 

 Image processing on AIMS images 

 Optimal proximity correction (OPC) in the optical 

lithography process 

 Automatic reporting with MATLAB Report Generator 

 

03/2006 – 07/2006 Image Video Compression Laboratory 

 Lossy & Lossless image and video compression 

 Matlab implementation of variable bit-rate video encoding 

and decoding 

 Experience in DCT, DWT, Motion Compensation, 

MpegX, H.26X. 

 

02/2006 – 03/2006  Internship in Siemens AG, Munich CT IC3, Germany 

 Research on TPM (Trusted Platform Module) for mobile 

equipment integration 

 Reporting and use scenario implementation 

 

01/2005 –05/2005 Bachelor Project 

 Audio/Video enabled human mimicking robot 
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 A software & hardware design to recognize & repeat 

human gestures   

 

07/2004 – 08/2004 Internship, TUBITAK (Information Technologies and 

Electronics Research Institute) 

 Automatic Video Text Detection for huge image 

databases.  

 

Honors & Awards 

  

DAAD (German Academic Exchange Service) Master Scholarship 

METU honor student 

Runner-up of the national mathematics Olympiads  

 

Selected Publications 

  

Journal Papers 

[2013]   H. Emrah Tasli and A. Aydin Alatan "Interactive Disparity Remapping for Stereo 

Images"; Elsevier Signal Processing: Image Communication; accepted. 

[2013]  H. Emrah Tasli, Cevahir Cigla, A. Aydin Alatan "Efficient Superpixel Extraction via 

Convexity Induced Boundary Adaptation"; submitted to Elsevier Image Vision Computing. 

 

Conference Papers 

 [2013]  H. Emrah Tasli, Ronan Sicre, Theo Gevers and A. Aydin Alatan, "Geometry 

Constrained Region Segmentation" Submitted to ACM International Conference on 

Multimedia 2013 

[2013]  H. Emrah Tasli, Cevahir Cigla, Theo Gevers and A. Aydin Alatan, "Superpixel 

Extraction via Convexity Induced Boundary Adaptation" International Conference on 

Multimedia and Expo 2013 

 [2012]  H. Emrah Tasli and A. Aydin Alatan, "User Assisted Stereo Image Segmentation" 

3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 

3DTV-CON 2012 

[2011]  H. Emrah Tasli and A. Aydin Alatan, "Interactive object segmentation for mono and 

stereo applications: Geodesic prior induced graph cut energy minimization." ICCV 2011, 

Workshop on Human Interaction on Computer Vision. 

[2011]  H. Emrah Tasli.; Murat Sayinta ; A. Aydin Alatan, " Pixel-Wise Intensity 

Compensation for Locally Dimmed Backlight Displays Based on an Objective Metric" 

Society of Information Display Symposium, SID 2011   
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[2011]  H. Emrah Tasli and Kemal Ugur, "Interactive 2D 3D image conversion method for 

mobile devices," 3DTV Conference: The True Vision - Capture, Transmission and Display 

of 3D Video, 3DTV-CON 2011 

 

Local Conference Papers 

[2013]  H. Emrah Tasli, Theo Gevers and A. Aydin Alatan, "User Assisted Stereo Image 

Retargetting" IEEE Conference on Signal Processing and Communications Applications, 

SIU 2013 

[2012]  H. Emrah Tasli and A. Aydin Alatan, "User Interactive Segmentation Method on 

Stereo Images" IEEE Conference on Signal Processing and Communications Applications, 

SIU 2012 

[2012]  H. Emrah Tasli, and A. Aydin Alatan, "Crosstalk Reduction for Pattern Retarder 

Stereoscopic Displays" IEEE Conference on Signal Processing and Communications 

Applications, SIU 2012  

[2012]  Cevahir Cigla, H. Emrah Tasli, A. Aydin Alatan, "Efficient Superpixel Extraction for 

Image Segmentation" IEEE Conference on Signal Processing and Communications 

Applications, SIU 2012. 

[2011]  H. Emrah Tasli and A. Aydin Alatan, "Pixel compesation for locally dimmed 

backlight displays," IEEE Conference on Signal Processing and Communications 

Applications, SIU 2011 

 

Patents 

[2012]  H. Emrah Tasli "A Method for Reducing Crosstalk in Stereoscopic Displays and 

Display Systems" Pending 

[2011]  Burak Ozkalayci, H. Emrah Tasli "Superresolution enhancement method for N-view 

and N-depth multiview video" EP2369850A2 

[2011] Burak Ozkalayci, H. Emrah Tasli "Superresolution based N-view N-depth multiview 

video coding"  EP2373046A2 

[2011]  H. Emrah Tasli "A method for local dimming boost up using depth map", 

TR201100485 

[2011]  H. Emrah Tasli "Edge led local dimming" TR20110038 

[2011]  H. Emrah Tasli, Cevahir Cigla "A method for local dimming boost using salient 

features" EP2372686A1 

[2010]  H. Emrah Tasli " Brightness correction for LCD  displays with backlight 

modulation" EP2312567A1 

 

 

 

 



 147 

PhD Thesis 

[2013] “Superpixel-based Efficient Image Representation for Segmentation and 

Classification” Advisor: Prof. A. Aydin Alatan, Middle East Technical University, Ankara, 

Turkey. 

 

Master Thesis 

[2007] “A software solution for MPEG2 Datastream delivery over IP through Gigabit 

Ethernet (ASI over IP)”, Advisor: Prof. Eckehard Steinbach, Munich Technical University, 

Germany 

 

  


