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  ABSTRACT 

 

INVESTIGATION OF ROUGH SURFACE SCATTERING OF 

ELECTROMAGNETIC WAVES USING FINITE ELEMENT METHOD 

 

Aşırım, Özüm Emre 

M.S.  Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Mustafa Kuzuoğlu 

Co-Supervisor : Assoc. Prof. Dr. Özlem Özgün 

 

July 2013, 152 pages 

 

 

This thesis analyzes the problem of electromagnetic wave scattering from rough 

surfaces using finite element method. Concepts like mesh generation and random 

rough surface generation will be discussed firstly. Then the fundamental concepts 

of the finite element method which are the functional form of a given partial 

differential equation, implementation of the element coefficient matrices, and the 

assemblage of elements will be discussed in detail. The rough surface and the 

overall mesh geometry will be implemented with the functional form of the wave 

equation, in the form of a global coefficient matrix using finite element method. 

Along with an incident wave, boundary conditions on the rough surface will be 

imposed and the scattering from different rough surfaces will be analyzed by 

solving the resulting linear system of equations that is yielded by the finite element 

method. The issues of wave resolution, required mesh size, and the required 

computation time will also be discussed as part of the analysis.        

  

Keywords: Rough Surface, Finite Element Method, Scattering 
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ÖZ 

 

BOZUK YÜZEYLERDEN ELEKTROMANYETİK DALGA SAÇILIMININ 

SONLU ELEMANLAR YÖNTEMİ KULLANILARAK İNCELENMESİ 

 

     Aşırım, Özüm Emre 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü  

Tez Yöneticisi:  Prof. Dr. Mustafa Kuzuoğlu 

Ortak Tez Yöneticisi:  Doç. Dr. Özlem Özgün 

 

Temmuz 2013, 152 sayfa 

 

 

Bu tezde bozuk yüzeylerden saçılım problemi sonlu elemanlar yöntemi kullanılarak 

incelenmektedir. Anlatımda öncelikle bozuk yüzey modellenmesi ve örgü 

modellenmesi incelenecektir. Daha sonra, sonlu elemanlar yönteminin temel 

içerikleri olan eleman katsayı matrisleri ve eleman birleştirilmesi gibi konular 

detaylıca anlatılacaktır. Dalga denkleminin fonksiyonel formu bozuk yüzeyi içeren 

örgü geometrisi ile birlikte sonlu elemanlar yöntemi kullanılarak katsayı matrisine 

çevrilecektir. Bunu takiben, bozuk yüzeye gelen dalga ile birlikte bozuk yüzey 

üzerindeki sınır değer problemi tanımlanacak ve bozuk yüzeyden saçılım problemi 

sonlu elemanlar tekniği ile elde edilen lineer denklem sisteminin çözümü ile analiz 

edilecektir. Dalga çözünürlüğü, analiz için gereken örgü boyutu, ve analiz için 

gereken işlem zamanı gibi problemlerde analizde yer alacaktır.    

 

 

Anahtar Kelimeler:  Bozuk Yüzeyler, Sonlu Elemanlar Yöntemi, Saçılım 
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                                                      CHAPTER 1 

 

                                            INTRODUCTION 

 

 

Electromagnetic waves propagate in space as stated by Maxwell’s equations. Based on the 

characteristics of the medium of propagation, we may simplify the formulation of Maxwell’s 

equations. The propagation of electromagnetic waves can be described in a much simpler 

form when the medium of propagation is an unbounded medium that has no scatterers in it. 

However this is usually not the case and we may have many scatterers in a given medium. 

Therefore the propagation of electromagnetic waves in a medium that contains scattering 

objects requires more detailed analysis and discussion. 

The analysis and discussion of electromagnetic wave propagation in a bounded media that 

contains scattering objects involves the determination of the scattered wave given an incident 

wave. To determine the scattered wave from an incident wave, we focus our interest on the 

shape and the structure of the scatterer. Using Maxwell’s equations based on the shape and 

the constitutive parameters of the scatterer, we can determine the scattered wave. 

In this thesis, we are interested in the determination of the scattered field in a media that is 

bounded by another media which has a rough boundary. Therefore we are interested in a 

rough surface scattering problem. In other words, our aim is to determine the scattered field 

from the rough surface boundary by applying Maxwell’s equations given an incident field. 

The determination of the scattered field allows us to examine its far field pattern and to 

discuss the effects of surface roughness on the scattering of a given incident wave. 

The effect of surface roughness on the scattered field pattern has been studied by many 

scientists. It is found that as the roughness of the scattering surface increases, the far field 

peak amplitude of the scattered field decreases. However there are no exact analytical 

formulations that give the relation between surface roughness and the far field peak scattered 

field amplitude. Furthermore, the critical roughness levels of a surface that may cause 

significant or complete distortion in the far field scattered field pattern for a given incidence 

angle are not very well known and there is still considerable ambiguity about “ How rough a 

given rough surface really is? ”. In this thesis, our aim is to determine the amount of 

distortion of a scattered field pattern for a given surface roughness and an incidence angle.  

In literature, there are two approximate formulas that are called “Ament’s formula” and 

“Boithias’ formula”, both of these formulas gives an idea about the relation between surface 

roughness and the far field peak scattered field amplitude. However, it is still not clear which 

of these two formulas is more accurate. The amount of error yielded by these two formulas is 

not negligible for all incidence angles and it changes with respect to the angle of incidence. 

Especially for grazing incidence angles, the amount of error increases significantly. 
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One purpose of this thesis is to determine the amount of distortion in the scattered field 

pattern for different surface roughness levels and for different angles of incidence by 

measuring the correlation coefficient of the rough surface scattered field patterns with that of 

a flat surface scattered field pattern. 

The second and the main purpose of this thesis is to numerically determine an accurate 

relation between the peak amplitude of the scattered field and surface roughness. Afterwards, 

our goal is to compare the determined relation with Ament’s formula and Boithias’ formula 

to decide which of the two formulas is more accurate for a given surface roughness at a 

specific incidence angle. We produce a table of results that will give the reader a firm idea 

about the relation between the peak scattered field amplitude decay and surface roughness. 

By looking at this table, one can have a better understanding of the effect of different surface 

roughness levels on the far field scattered field pattern. 

All of the computations in this thesis are performed by employing Finite Element Method 

(FEM), which is often used for solving partial differential equations. We will utilize 

Maxwell’s equations to get a second order wave equation and we will solve for a scalar 

second order wave equation for the     case. The solution of a second order partial 

differential equation in a domain that has an arbitrary boundary can be very accurately 

obtained by using FEM. In order to solve a 2D rough surface scattering problem using FEM, 

one has to deal with the problem of mesh generation. Generating meshes for regions with 

arbitrary boundaries will be discussed in detail. Since the scattering problem is an open 

boundary problem, the domain of interest must be limited to a manageable size. This 

requires the use of an absorbing boundary condition. As an absorbing boundary condition, 

we will use a Perfectly Matched Layer (PML) for absorbing the outgoing waves without 

reflection.  

Our rough surface boundary will be lossy, which indicates that the scattering media is 

conductive, therefore an impedance boundary condition on the rough surface will be 

imposed by the FEM formulation. Since we are interested in the scattered field only, the 

transmitted wave in the conductive medium will not be investigated. 

The scattered field plots are given for different surface roughness levels and different 

incidence angles for the purpose of illustration in chapter 6. 

Along with the main purpose of this thesis, the necessary background for the application of 

FEM on a rough surface scattering problem is discussed in very detail. If the reader is 

already familiar with the FEM concept, chapter 6 and chapter 7 should be of more interest.  

The essence of this thesis is mostly given in chapter 7, which discusses and illustrates the 

effect of surface roughness on the far field scattered field pattern. Our computational results 

are compared with Ament’s formula and Boithias’ formula and the accuracy of each formula 

is tested for different surface roughness levels and for different angles of incidence. 

In the conclusion chapter, the obtained results in chapter 7 are analyzed and discussed. Based 

on these results, the potential for future investigations is established. 
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                                                                       CHAPTER 2   

 

 

       MAXWELL’S EQUATIONS AND SURFACE BOUNDARY CONDITIONS  

 

 

 

Maxwell’s equations simply describe field behaviour according to the properties of the 

medium of interest. They are the summary of electromagnetic theory and are considered as 

physical laws describing the relation between electric fields, magnetic fields, charge 

densities and current densities. These equations were seperately found as the result of many 

experiments and they are summarized by James Clerk Maxwell. Since the electric and 

magnetic fields are vector quantities, these equations are also vector equations which can 

be decoupled into their scalar forms for each dimension. Maxwell’s equations can be stated 

in differential or integral form, here we are more interested in their differential form,  

therefore only the differential forms are stated here. 

The differential form of Maxwell’s equations are stated below 

 

        
  

  
                                         

          
  

  
                                     

                                                                                    

                                                                                   

 

All of the quantities written in bold are vectors and     and     are scalar quantities. The 

description of all quantities are given below 

 

                                       E = Electric field intensity (volts/meter) 

                                       H = Magnetic field intensity (amperes/meter) 

                                       D= Electric flux density (coulombs/square meter) 

                                       B= Magnetic flux density (webers/square meter) 

                                          = Impressed electric current density (amperes/square meter) 

                                               = Conduction electric current density (amperes/square meter) 

                                               = Displacement electric current density (amperes/square meter) 
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                                              = Impressed magnetic current density (volts/square meter) 

                                              = Displacement magnetic current density (volts/square meter) 

                                           = Electric charge density (coulombs/cubic meter) 

                                          = Magnetic charge density (webers/cubic meter)                                

 

The equation of continuity can be derived directly from the Maxwell’s equations, as 

follows: 

  

  (     )   
    

  
                

    

  
   (                      ) 

 

The quantities  E , H , D , B ,         are related through the constitutive parameters of the 

media of interest. These constitutive parameters are different for each media, and they are 

related with the physical properties of the material that forms the media of interest. The 

constitutive relations are listed below for isotropic media 

 

                             

                                                         𝝐  :  Permittivity of the medium (Farad/meter) 

                                                         µ :  Permeability of the medium (Henry/meter) 

                                                         σ :  Conductivity of the medium (Siemens/meter) 

 

Since the curl operator is a first order vector differential operator, Maxwell’s equations are 

first order, vector differential equations. In order to have a unique solution, differential 

equations require boundary conditions. In electromagnetics, the field values of interest 

must be specified across the boundaries of the solution region in order to determine a 

unique solution for that region. Boundary conditions for finitely conductive media and 

infinitely conductive media will be considered respectively and then they will be modified 

when there are source currents or source charges at the boundaries. 

 

2.1 Boundary conditions for a media with finite conductivity 

The relationship between the two electric field intensities at the interface between two 

different media is related with the unit normal vector of the interface as follows 

                                         (     )                           
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Where    is the electric field intensity at media 2 and    is the electric field intensity at 

media 1 and if we consider the interface between the two media as a two dimensional 

surface,   is the unit normal vector pointing towards media 2. 

The conductivities of media 1 and media 2 are    and    respectively, where         

      implies that both of the two media have finite conductivity. 

An identical relationship is valid for the magnetic field intensities at the interface between 

two finitely conductive media 

                                         (     )                           

Both of the equations for electric and magnetic fields imply that the tangential components 

of the electric and magnetic fields are continuous at an interface between two media with 

finite conductivities. However if there are source charges or currents at the interface 

between the two media or if either of the two media is a perfect conductor these two 

equations do not hold and they must be modified. Boundary conditions for electric and 

magnetic fields at perfectly conducting interfaces and for source containing interfaces will 

be discussed here respectively. 

The boundary condition for the electric flux densities at an interface between two finitely 

conductive media is stated below 

                                                           (     )                           

This equation states that the normal components of the electric flux densities at an interface 

between two finitely conductive media which have no source charges or source currents are 

continuous. The same equation can be written in terms of the electric field intensities and 

permittivities of the two media as 

                                          (         )                           

Which states that the normal components of the electric field intensities at an interface 

between two finitely conductive media which have no source charges or source currents are 

discontinuous. This is expected since their tangential components are continuous. 

Similarly the boundary condition for the magnetic flux densities at an interface between 

two finitely conductive media is stated as 

                                          (     )                           

This equation states that the normal components of the magnetic flux densities at an 

interface between two finitely conductive media which have no source charges or source 

currents are continuous. The same equation can be written in terms of the magnetic field 

intensities and permeabilities of the two media as 

                                          (         )                           

Which states that the normal components of the magnetic field intensities at an interface 

between two finitely conductive media which have no source charges or source currents are 

discontinuous. This is expected since their tangential components are continuous. 
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2.2 Boundary conditions for a media with infinite conductivity 

The previously-stated four boundary conditions which are given for a finitely conductive 

media must be modified if one of the media is of infinite conductivity or if there are source 

charges or currents at the interface between the two media. Assume that media 1 has 

infinite conductivity, this implies that   =0,  so the boundary condition for the electric 

field intensities is modified as 

                                                        ,         

Which states that the tangential component of the total electric field intensity       is zero at 

the interface given that media 1 is a perfect electric conductor and      . 

From the first equation of Maxwell, we can find that      also, since      

      
   

  
                                                      

Since medium1 is a perfect electric conductor, there will be an induced electric current 

density and an induced electric charge density along the interface between media 1 and 

media 2, in that case the boundary condition for the magnetic field intensities must be 

modified to account for the induced charges as stated below 

                                  (     )                                                   

                                                                      

                                   = Induced electric current density (amperes/square meter) 

Which states that the tangential component of the total magnetic field intensity    ,  is 

equal to the induced electric current density along the interface given that media 1 is a 

perfect electric conductor and      . 

The boundary condition for the electric flux densities at a perfectly conductive interface 

between two media, where media 1 is a perfect electric conductor is given as                  

                          (     )                                                     

                                                                           

       
   

 
                                             

                           = Surface electric charge density (coulombs/square meter) 

These equations state that the normal components of the electric flux density and electric 

field intensity are discontinuous at a perfectly conducting interface, where an induced 

surface charge density exists. 
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2.3 Boundary conditions when there is a source along the interface (General case) 

If none of the two media is a perfect electric conductor, and if there are electric and 

magnetic sources existing at the boundary (or interface) , the four boundary conditions are 

modified to include the impressed (source) current and charge densities as 

 

   (     )                

  (     )             

  (     )               

  (     )               

 

                                        (
     

     
)       

                                        (
       

     
)      

                                            (
      

            
)     

                                      (
        

            
) 

                             

                 2.4 Summary of the boundary conditions                                             

                                               Finitely conductive media 

                                                                          (     )    

                                                                          (     )    

                                                                              (     )    

                                                                              (     )    

                                                               

                                                Infinitely conductive media 
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                                                                    General case 

                     (     )                               

                   (     )                            

                                                                 (     )                              

                  (     )                            

 

2.5 Maxwell’s equations in anisotropic media 

Maxwell’s equations for isotropic media are 

                
  

  
                                                        

           
  

  
                                                               

                                                                                

                                                               

                                                                                              

Substituting         into the first equation and       into the second equation we get 

                                              
  

  
                                                               

                                     
  

  
                                                                          

Since these two equations are 3 dimensional vector differential equations, each of them can 

be decoupled into 3 scalar differential equations as follows 

    

 

  
   

 

  
   

 

  
                                            

                                                              

                                                             

 

                          (
   

  
 

   

  
)    (

   

  
 

   

  
)    (

   

  
 

   

  
)                           

                          (
   

  
 

   

  
)    (

   

  
 

   

  
)    (

   

  
 

   

  
)                        
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Therefore, we seperate each vector to its  {x,y,z}  components 

 

 
   

  
 

   

  
            

   

  
                

   

  
 

   

  
            

   

  
                

   

  
 

   

  
            

   

  
                

   

  
 

   

  
          

   

  
                       

   

  
 

   

  
          

   

  
                       

   

  
 

   

  
          

   

  
                       

Where     , and   are scalars. However, for anisotropic media     , and   are not scalars 

but they are expressed as direction dependent tensors, therefore the last 6 equations must be 

modified since     , and   are not scalar quantities anymore and behave differently for 

each component of   and H. 

For anisotropic media     , and   are expressed as 

            [

         

         

         

]         µ  [

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

]            [

         

         

         

]        

Therefore    𝝐   and µ in anisotropic media are related to   and H by dot product operation 

                                                                     𝝐                 µ.H  

 

                       
 (   )

  
            ( 𝝐   )                   

                       
 (𝝐  )

  
             (    )              

Therefore the corresponding scalar equations for field components in anisotropic media are 

   

  
 

   

  
      (   

       
       

   )  
 

  
( 

  
    

  
    

  
  ) 

   

  
 

   

  
      (   

       
       

   )  
 

  
(                 ) 

   

  
 

   

  
      (   

       
       

   )  
 

  
(                 ) 
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     (                 )  

 

  
(                 )              

   

  
 

   

  
     (                 )  

 

  
(                 )              

   

  
 

   

  
     (                 )  

 

  
(                 )              

Now let us consider the case of an anisotropic media where   and   are scalars and 

conductivity is diagonally direction dependent 

µ  [
   
   
   

]                      𝝐   [
   
   
   

]                       [

    
    

    

] 

where   is not a scalar but a diagonal tensor with ,                       , in that 

case, the corresponding scalar equations for field components become 

   

  
 

   

  
        

     
   

  
                

   

  
 

   

  
        

     
   

  
                

   

  
 

   

  
        

     
   

  
                

   

  
 

   

  
           

   

  
                       

   

  
 

   

  
           

   

  
                       

   

  
 

   

  
           

   

  
                       

 The two examples of anisotropic media are the ionosphere and the artifical PML medium. 

 

 

2.6 Impedance boundary conditions 

 

There may be infinitely many solutions that satisfy a given differential equation, but we are 

usually interested in the unique solution. For a differential equation to have a unique 

solution over a given solution region, the boundary conditions of the differential equation 

over the boundary of the solution region must be specified. An electromagnetic problem is 
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said to be completely described if the associated Maxwell’s equation is given along with its 

boundary conditions. If we consider two different media that are seperated by an interface, 

we know that in order to solve the fields in both media, we need to know the boundary 

conditions along the interface. 

 

                              Figure2.1:Interface between two different media [1]  

If the first medium is a perfect electric conductor, we do not need to use an impedance 

boundary condition, because since the first medium has infinite conductivity, all fields in 

the first medium will become zero. Therefore we only have to deal with the tangential 

component of the total field in the second medium, where the total field contains the 

incident field and the scattered field. This case results in an easy way of solving the 

scattered fields with the use of the general boundary conditions. However if the first 

medium and thus the interface is an imperfect conductor, some of the incident field in the 

second medium is transmitted into the first medium and some of it is scattered back into the 

first medium. In that case the determination of the boundary conditions and therefore the 

solution of the transmitted and the scattered fields is available with the use of the 

impedance boundary conditions. 

When medium 1 is an imperfect conductor, it can be shown that the electric and magnetic 

fields at the surface of the conductor are approximately related by 

                                                            (   )    (   )            ( )             

                                                                [(   )   ]            ( )           

                                                    

Equation (2) can be directly found from equation (1) by using the principle of duality. 

[  (   ) ]    (   ) 

     [  (   ) ]   
 

  
(   ) 

Or, by applying cross product operation on both sides of equation (1) , we can get  (2) 
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  [  (   ) ]    [     ] 

      [ (   )   ] 

The terms    (   )    and        can be expressed in terms of their components as 

  (   )    [(    
 )                ]    [        (    

 )   

      ]    [               (    
 )  ]  

      [         ]    [         ]    [         ] 

Therefore we can express the first equation in terms of a 3   linear system 

  (   )    (   )                         

[

(    
 )           

     (    
 )      

          (    
 )

] [

  

  

  

]  [

  (         )

  (         )

  (         )
] 

[

(    
 )           

     (    
 )      

          (    
 )

] [

  
    

 

  
    

 

  
    

 

]  [

  (    
      

 )

  (    
      

 )

  (    
      

 )

]  [

  (    
      

 )

  (    
      

 )

  (    
      

 )

]  

[

(    
 )           

     (    
 )      

          (    
 )

] [

  
    (    

      
 )

  
    (    

      
 )

  
    (    

      
 )

]  [

  (    
      

 )    
 

  (    
      

 )    
 

  (    
      

 )    
 

] 

Similarly, the second equation can be expressed as a 3   linear system 

      [(   )   ]                          

[

(  
   )         

    (  
   )     

        (  
   )

] [

  

  

  

]  

[
 
 
 
 
 
 
 

  

(         )

 

  

(         )

 

  

(         )]
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So there are 6 equations and 6 unknowns, therefore the systems can be easily solved to 

yield the values of  {   
      

     
     

     
     

    given the surface impedance and the 

surface normal.  

Note that each of the field components consists of the incident and scattered fields in 

medium 2, but in medium 1, they are equal to the absorbed (transmitted) field. 

The fields {                           in medium 2 can be expressed as 

       
     

                 
     

                 
     

   

       
     

                 
     

                 
     

  

The incident field components are known, therefore we have only the scattered components 

as unknowns 

     
      

      
      

      
      

                                

Since we have 6 equations at hand, all the scattered field components can be solved, we can 

also solve the transmitted field components using the general boundary conditions on the 

same imperfectly conducting surface  

                                       
      

      
      

      
      

                                

  (     )                  (     )                         

                                                                 

  (        )                  (        )                          

i) There are 3 unknown components of     which are      
      

      
    and we have 3 

equations from    (        )       , therefore     
      

      
    can be solved. 

ii) There are 3 unknown components of     which are     
      

      
    and we have 3 

equations from    (        )      , therefore     
      

      
    can be solved. 
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                                                           CHAPTER 3 

 

                                                    WAVE EQUATION 

 

3.1 Wave equation for isotropic media 

 

Although Maxwell’s four equations simply describe the field behaviour in general, the first 

two equations involving E and H are coupled to each other which makes it hard to 

understand the field behaviour. Instead we use some vector algebra to obtain single 

variable field intensity equations for both E and H at the expense of increased order, but 

the equations then become uncoupled and it becomes much easier to understand the 

behaviour of the field intensities  E and H. In other words we simply convert the two first-

order coupled vector differential equations into two second-order vector differential 

equations each of which has a single variable and therefore not coupled to each other. To 

get these single variable equations, we start with the first two of Maxwell’s equations 

         
  

  
       ( )     

                      
  

  
       ( )              

Taking the curl of both sides of these equations and assuming a homogenous medium, we 

can write that 

             [  
  

  
]         

 

  
[   ]       ( ) 

            [   ]   [  
  

  
]        [   ]   

 

  
[   ]       ( ) 

Substituting ( ) into the right side of ( ) and using the vector identity ( ) at the left side 

       (   )              ( ) 

We get (6) and (7) as 

 (   )             
 

  
[       

  

  
]           ( )      

 (   )             
   
  

   
  

  
   

   

   
        ( )    

Substituting Maxwell’s third equation       (   )      into equation ( ) and 

rearranging terms, we get 
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         ( ) 

Which is an uncoupled second order differential equation for   . 

Using the same procedure for  (4) , we can get the second-order uncoupled equation for       

            [   ]   [  
  

  
]        [   ]   

 

  
[   ] 

 (   )            [     
  

  
 ]   

 

  
[     

  

  
 ]        ( ) 

Substituting Maxwell’s fourth equation       (   )      into equation ( ) and 

rearranging terms, we get 

               
 

 
[    ]    

  

  
  

   

  
   

   

   
        (  ) 

Which is an uncoupled second order differential equation for  . 

Equations (8) and (10) are called vector wave equations for         . We will simply call 

them “Wave Equations”. These two wave equations are complicated, but they can be 

simplified according to the media properties. A media may be sourceless, lossless or both. 

If the media is both sourceless (   =0,    =0,     =0 ,     =0) and lossless (   ), the 

wave equations simplify greatly and it is much more easier to derive an analytic solution 

for them. 

For a source free medium (   =0,    =0,     =0 ,     =0) , the wave equations simplify to 

           
  

  
   

   

   
          (  )     

      
  

  
   

   

   
          (  ) 

For a source free and lossless medium (   =0,    =0,     =0 ,     =0 ,    ) , the wave 

equations simplify to 

         
   

   
              (  )     

      
   

   
             (  ) 

For time harmonic fields involving time variations of the form       , we can use phasor 

transform to replace the derivative term  
 

  
  with      . The equations (8) and (10) can then 

be written as follows 

                           
    

 
        (  ) 
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[    ]                        (  ) 

For a source free medium (   =0,    =0,     =0 ,     =0) ,  (  ) and  (  ) simplify to 

                               (  ) 

                             (  ) 

                         [     ]                        

Where    is called as the lossy propagation constant. 

Since   is complex valued, we can write it in terms of its real and imaginary parts 

                                         

                                 α :  Attenuation constant  (Nepers/meter)      

                                 β :  Phase constant  (Radians/meter) 

                                                   : Lossy propagation constant        

For a source free and lossless medium (   =0,    =0,     =0 ,     =0 ,    ) , (  ) and 

(  ) simplify to 

                       (  ) 

                      (  ) 

                                                         k =   √   

                                 k : Propagation constant    (Radians/meter) 

 

3.2 Wave equation in PML (Perfectly Matched Layer) media 

PML is an anisotropic, lossy medium that is used to terminate the computational region for 

computer memory consideration. It is commonly used in scattering and radiation problems 

to limit the size of the computational medium and to simulate the computational solution as 

if the computational medium size is infinity. This is achieved by adjusting the parameters 

of the PML media such that the outer reflections are minimized so that the computational 

solution tends to the actual analytical one. 

Since PML is a lossy medium, the wave that enters the PML is completely absorbed after a 

certain depth which is related with the wavelength of the incident wave. Remembering the 

vector wave equations in lossy media and considering cartesian coordinates for analysis, 

we can write the scalar {x,y,z} components of the vector wave equations in a lossy medium 

as 

                      (     )        (     )         (     )      (     )             
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                  (     )        (     )         (     )      (     )          

                      (     )        (     )         (     )      (     )               

                      (     )        (     )         (     )      (     )             

                   (     )        (     )         (     )      (     )          

                      (     )        (     )         (     )      (     )               

Which can be coupled into their vector forms that are previously described, as follows  

                                            

                                           

                [     ]                   

                                           (                             )                                

                                      α  : Attenuation constant  (Nepers/meter) 

                                      β  :  Phase constant  (Radians/meter) 

The lossy and anisotropic nature of the PML dictates that its conductivity tensor must not 

be a scalar one. The conductivity tensor of the PML is a diagonal matrix with parameters 

         and    , but the permeability ( ) and the permittivity ( ) of the PML medium are 

treated as scalars and must have appropriate values related with the electric and magnetic 

conductivities of the PML to ensure reflectionless transmission of the incident wave into 

the PML medium.  

In a 3D PML, we have the following electric and magnetic conductivity tensors 

                          [

    
    

    

]                              [

  
   

   
  

    
 
]  

In a 2D PML, these tensors are expressed as 

  [
   
   

]                              [
  

  
   

 ] 

We will deal with a 2D PML medium, therefore the     conductivity tensors will be our 

concern, but we must choose          
    

  such that there are no reflections from the 

PML boundaries. In Berenger’s journal [2] it is suggested that we must choose the values 

of the conductivities such that they satisfy the below relationships 

  

  
 

  
 

 
 

           
  

  
 

  
 

 
 

           
  

  
 

  
 

 
 

            

Where    and  
 
 are the permittivity and permeability of free space respectively, assuming 

that the computational medium which is surrounded by the PML, is simply free space. 
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Using Maxwell’s equations, we can derive the vector wave equations that are valid inside 

the PML medium, since the perfectly matched layer is an artificial medium that is created 

for absorbing the outgoing waves, inside the PML medium we have 

                                                     =0,    =0,     =0 ,     =0 

The first two equations of Maxwell can be written here as 

                   
  

  
       ( )       

         
  

  
     ( ) 

Taking the curl of both sides of the equations we have  

         [    ]   [  
  

  
]     [    ]   

 

  
[   ]       ( ) 

        [   ]   [  
  

  
]    [   ]   

 

  
[   ]       ( )         

First let us deal with (3) to determine the wave equation for    

       (   )              ( ) 

          (   )    [    ]   
 

  
[   ]               ( )     

 Taking the phasor transform of (6) we get (7) as 

     (   )    [    ]     [   ]               ( )     

                    
   

 
                                           

      [    ]     [   ]             ( )     

Substituting (2) into (8) and using the vector identity    [    ]  [    ]    ,  we get 

    [    ]      [        ]           ( )          

               (
   

 

  
 

   
 

  
)    (

   
 

  
 

   
 

  
)    (

   
 

  
 

   
 

  
)             (  )  

         
   

 

  
 

   
 

  
 

   
 

  
 

   
 

  
 

   
 

  
 

   
 

  
                

       [        ]           (  )                    

                  [         ]                (  )                             

Equation 12 can be written in terms of its components as 

                     (     )         (     )         (     )   
 
   (     )                      
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                    (     )         (     )         (     )   
 
   (     )                      

                     (     )         (     )         (     )   
 
   (     )                       

Where the coefficients   
 
      

 
     

 
   are the propagation constants along x, y and z 

directions respectively. 

 
 
                  

 
        

        
 
                  

 
               

 
 
                  

 
        

An identical procedure is used to derive the wave equation for    , therefore the wave 

equation for     has exactly the same form as (12). But instead of going through the same 

procedure to derive the wave equation for     , one can use the principle of duality. The 

dual of (12) yields  

                                     [          ]                (  )                             

Equation 13 can be written in terms of its components as 

           (     )       
   (     )         (     )    

 

 
  (     )                      

            (     )       
   (     )         (     )    

 

 
  (     )                      

            (     )       
   (     )         (     )    

 

 
  (     )                        

Where the coefficients    
 

 
     

 

 
    

 

 
  are the propagation constants along x,y and z 

directions respectively. 

 

  
 

 
      

           
    

 
                  

    
 

 
      

          
    

 
                     

      
 

 
      

           
    

 
                      

 

The PML must have a certain depth to prevent outer reflections by attenuating the outgoing 

waves. The depth of the PML is related with the wavelength of the incident wave. As the 

depth of the PML increases, the accuracy of preventing outer reflections also increases, 

however increasing the depth of the PML also increases the required computer memory. 

Therefore appropriate lower and upper limits must be determined to effectively minimize 

outer layer reflections by using minimum amount of computer memory. 
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                                         Figure3.1: Anisotropic structure of the PML  [2]    

 

                               Summary of the properties of PML  

1) PML is a lossy medium with an associated conductance value in a given direction. 

2) PML is an anisotropic medium, with a nonscalar conductivity tensor. 

3) PML requires impedance matching with the computational media to prevent reflection. 

4) PML requires a certain amount of depth to prevent outer reflections. 
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                                                            CHAPTER 4 

 

                                               MESH GENERATION 

 

The finite element method requires the domain of interest to be discretized by a number of 

elements,  the accuracy of the finite element method depends strongly on how accurately 

we have discretized the entire domain, i.e., the solution region. One of the biggest problems 

in the finite element method is to discretize the solution region accurately. The accuracy 

depends on the number of elements used and how accurately the discretized solution region 

resembles the actual solution region. 

Since increasing the number of elements yields more accurate solutions, we generally 

require a large number of elements to discretize the region of interest. This requires a huge 

data preperation step for the geometry of the problem and for the elements in the solution 

region, since the coordinates of the boundary of the solution region and each of the 

elements must be given as inputs to the computer program. For problems requiring very 

accurate solutions we may have to use thousands of elements and for complex solution 

regions we may have to use even more. Thus manual data entry for domain discretization, 

which is usually called mesh generation, requires huge effort and too much time 

consumption and they are very likely to yield results with serious errors. That is why we 

come up with automatic mesh generation algorithms, which effectively, systematically and 

quickly discretize the region of interest to a specified number of elements. Using automatic 

mesh generation algorithms with different levels of automation we can greatly decrease the 

amount of necessary data entry to describe the problem at hand. Another big advantage is 

that since the process is now computer automized, calculation errors due to human 

imperfection become eliminated. Utilizing mesh generation algorithms with the modern 

tools of computer graphics, we can visualize the solutions of a given problem on a 

specified domain. 

There are different mesh generation algorithms in literature. These mesh generation 

algorithms are created by considering the computational time efficiency and the complexity 

of the solution region. A difficulty arises when the solution region is not a rectangular, but 

an arbitrary solution region. Another problem in mesh generation is the computational time 

required to assemble each element in the solution region due to a large number of elements. 

Taking this fact into account, an optimization must be made between the number of 

elements used and the time spent for computation by checking the convergence of the 

computed solutions. Today’s mesh generation programs use thousands of elements to 

discretize very complex domains involved in applications like structural analysis and 

electromagnetics in a very time efficient manner. Most basically computational time 

efficiency can be increased by efficient global node numbering and using an efficient 

element assembling algorithm as will be discussed later.  We will consider here three basic 

mesh generation algorithms which involves  
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1)  Mesh generation for rectangular regions. 

2)  Mesh generation for nonrectangular regions with curved boundaries. 

3)  Mesh refinement for computational accuracy. 

The commonly used element for discretization is a triangle, since triangles easily fit to 

curved boundaries. Quadrilaterals can also be used for discretization, but since a 

quadrilateral can be split into two triangles and triangles fit better to curved boundaries, 

people prefer discretizing with triangles. Different types of elements (triangle, 

quadrilateral) can be used at the same solution region for discretization, but this will 

increase computational complexity. So, it is better to use only one type of element in a 

given solution region, which are usually triangles. Discretization requires that the elements 

must not overlap with each other.   

    

                       Figure 4.1  :  Discretization of a region enclosed by a circle [3] 

 

4.1    Mesh generation for rectangular domains 

If we are dealing with a rectangular geometry of size a x b , the first thing to do is to divide 

the solution region into smaller rectangles, then these rectangles are divided into 2, each of 

which are triangular elements.The number of elements used in the solution region depends 

on how we divide the x and y directions. The more divisions we use in x and y directions, 

the more the number of elements becomes.  
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Assuming there are    divisions in the x axis and    divisions in the y axis,we find that 

there are 2       elements and (    )(     ) global nodes in the solution region. 

Total number of elements =   = 2      

Number of global nodes =    = (    + 1 )(     ) 

Based on how we partition the rectangular geometry, we must determine an efficient 

algorithm for element and node numbering necessary for mesh generation, since the 

boundary is rectangular this is easy to do in a systematic way. 

First we define two arrays containing the widths of each sub-rectangle along x and y 

directions as ∆    and ∆    where {i,j}={1,2,3,…,N}, here ∆   indicates the distance 

between two global nodes that are adjacent to each other along the x direction, similarly 

∆   indicates the distance between two global nodes that are adjacent to each other along 

the y direction. After defining the arrays which contain the width information between 

global nodes along x and y directions, we start numbering the global nodes in a specified 

convention.The easiest convention is to number the nodes from left to right along the x 

axis, and from bottom to the top along the y axis. With this convention the global nodes 

and their x and y coordinates can be defined in a systematic way. An example 4x4 mesh 

with nonuniform spacing of the global nodes in both directions is shown in Figure 4.2 with 

the following specifications 

  

 

 Number of divisions along the x axis =     = 4 

 Number of divisions along the y axis =     = 4 

 Number of elements = 2       = 32 

 Number of global nodes = (    + 1 )(     ) = 25 

 Number of global nodes along the x axis =         5 

 Number of global nodes along the y axis =         5 

 Spacings between adjacent nodes along the x axis = ∆x = {0.2 , 0.5 , 0.3 , 0.6} 

 Spacings between adjacent nodes along the y axis = ∆y = {0.4 , 0.2 , 0.5 , 0.5} 
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             Figure  4.2  :  Automatic mesh generation with nonuniform spacings 

 

Using this convention, we can create rectangular meshes, both with uniform and 

nonuniform spacing of the global nodes. If the variable of interest varies very rapidly in 

some parts of the solution region, nonuniform spacing of the global nodes should be our 

preferance since we can narrowly space the global nodes in the specified part of the 

solution region such that there will be a larger number of elements in the specified region 

which will yield more accurate solutions. An example of such case is shown in Figure 4.3 

assuming that there are rapid variations through the corners. If there are no rapid variations 

in the solution region , we can also use uniform spacing of the nodes such that   ∆      ,  

∆   = ∆y  , {i , j}={1,2,3,…,N}. 

An example 10x10 mesh with uniformly spaced nodes along the x and y axes is shown in 

Figure 4.4. In this example both ∆x and ∆y are equal to 1 and the node numbering 

convention is the same as before. Therefore the same formulas with the previous example 

apply. The spacings ∆x and ∆y can take different values other than 1 and ∆x does not 

necessarily have to be equal to ∆y for uniform spacing of the nodes. 
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                       Figure4.3:Automatic mesh generation with nonuniform spacings      

 

                         Figure4.4: Automatic mesh generation with uniform spacings 
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4.2 Mesh generation for regions with nonrectangular boundaries 

When the boundary of the solution region is not rectangular, we need to determine a new 

systematic algorithm for discretizing the solution region. Since the boundary is now a 

curved boundary, we can discretize the solution region using quadrilaterals since 

quadrilaterals are efficient for approximating curved boundaries and they can be easily 

divided into triangles. 

First we need to discretize the solution region very efficiently using quadrilaterals, we need 

to make sure that the approximate boundary formed by quadrilateral sides resembles the 

actual boundary of the solution region very well. When discretizing the solution region, 

another thing we must consider is to use minimum number of quadrilaterals in order to 

minimize the amount of input data. Note that here the only input data is the coordinates of 

the four corners of each quadrilateral. So the more quadrilaterals we use, the more input 

data we have to prepare manually. Instead we can use minimum amount of quadrilaterals 

for discretization, but we can develop an efficient mesh generation algorithm that 

discretizes each quadrilateral into a large number of triangles for accurate computation. So 

in this algorithm the solution region is discretized manually into a small number of 

quadrilaterals and each quadrilateral is automatically discretized into a large number of 

triangles. 

So our task is to discretize a quadrilateral and to apply this idea to every quadrilateral in the 

solution region. We start with our simplest example of splitting a quadrilateral into four 

triangles as shown in Figure 4.5. 

 

                        Figure4.5: Division of a quadrilateral into four triangles 

 

To discretize a quadrilateral into a specified number of elements, there are a few ways. A 

good way is to define connection points or nodes on and inside the quadrilateral that are to 

be used to split the quadrilateral into sub-quadrilaterals. 

1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

4.5

5



27 
 

Each sub-quadrilateral is then divided into four triangles as shown in figure, an example of 

a 2 2 division of a quadrilateral into four subquadrilaterals each with an inner connection 

point (node) is shown in Figure4.6. 

Number of rows  =     = 2  

Number of columns =          

Number of subquadrilaterals =        = 4 

Number of nodes =  (    )(     )          = 13 

Number of triangles in each subquadrilateral =   = 4 

Total number of triangles =          = 16 

 

                 Figure4.6:Division of a quadrilateral into four subquadrilaterals 

 

Similarly a 4   division of a quadrilateral with a total number of 64 triangles (elements) 

and 41 nodes is shown in Figure4.7. 
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                   Figure4.7:Division of a quadrilateral into 16 subquadrilaterals 

 

 

After determining a method for discretizing each quadrilateral in the solution region, it is 

up to a computer program that can systematically split each quadrilateral into triangles and 

manage connections between nodes after interconnecting each quadrilateral in the solution 

region. There are no limits for the maximum number of triangles that can be generated 

inside a quadrilateral. We can simply determine the total number of elements required to 

discretize a solution region that can yield the desired accuracy and split each quadrilateral 

accordingly. The computer program for a     division of a quadrilateral is given in the 

appendix part. Figures4.8 and 4.9 also show two regions with arbitrary boundaries which 

are discretized by quadrilaterals. 

To increase the number of elements inside an     divided quadrilateral we can also use 

mesh refinement. A mesh refinement simply increases the overall number of triangles 

(elements) in a solution region. This can be accomplished in many different ways, here we 

achieve mesh refinement by splitting each triangle into a specified number of smaller 

triangles i.e the triangles inside each subquadrilateral is seperately splitted into smaller 

triangles to increase the number of total elements in the solution region for improved 

accuracy.     
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                          Figure4.8:Discretizing a region with an arbitrary boundary 

 

                          Figure4.9:Discretizing a region with an arbitrary boundary 
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4.3 Mesh refinement 

Mesh refinement is generally used if the geometry of the solution region is complicated and 

irregular in size from one portion to another, or if the solution is expected to vary rapidly in 

some regions inside the overall solution region. In such regions where rapid changes occur 

we have to use more elements for accurate interpolation to the actual solution. 

Mesh refinement can be achieved either by increasing the order of each element from 1 to a 

higher value, or, by simply dividing each element into smaller elements thereby increasing 

the total number of elements. 

Increasing the order of each element means increasing the order of the interpolating 

polynomial by defining more nodes on each element, therefore interpolating the actual 

solution by a higher order interpolation function, which increases accuracy. But here we 

will simply divide each element into smaller elements by following a certain convention. 

We can divide a triangular element into as much elements as we want to split a triangle into 

sub-triangles. We define a certain amount of nodes on each triangle according to the 

number of smaller triangles that we want to produce. The discretization of each triangle is 

shown in Figures 4.10, 4.11 and 4.12 each with a different discretization order N. 

 

 

                     Figure 4.10: Discretization of a triangle into subtriangles, N=2  
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                     Figure 4.11:Discretization of a triangle into subtriangles, N=3 

 

                     Figure4.12:Discretization of a triangle into subtriangles, N=4 
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 Discretization Order                  Number Of Nodes             Number Of Elements 

              1                                                  3                                         1 

              2                                                  6                                         4 

              3                                                 10                                        9 

              4                                                 15                                       16 

              5                                                 21                                       25 

              6                                                 28                                       36 

              .                                                    .                                          . 

              .                                                    .                                          . 

              .                                                    .                                          . 

 

To refine a generated mesh, we split each triangle in the original mesh to smaller triangles 

using a specified discretization order. As an example we can discretize each element of the 

geometry given in Figure 4.8 using a discretization order of N=4 as shown in Figure 4.13. 

                                                                                       

                        Figure4.13: Refined mesh for the geometry given in figure4.8                            
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4.4 Generating Gaussian rough surfaces 

A rough surface S, where S=h(x) , can be modeled by considering its height as a random 

variable with a certain mean and variance. In this sense generating rough surfaces can be 

thought as generating a random sequence with h representing the value of height at a 

certain location x, where x denotes the location of the surface height on an one-dimensional 

axis. Rough surfaces can be realistically modelled as Gaussian random sequences, i.e., with 

a Gaussian distributed h(x). Here h(x) is a Gaussian random sequence since for each 

discrete value of x={  ,   ,…,   } , we have a Gaussian distributed probability density 

function p(h(  )). Mathematically, “ h ” has the following probability density function 

p(h) = 
 

√   
      ( 

(   ) 

    )   , where                         

h  is the value of the surface height, 

   is the standard deviation of the distribution, 

µ  is the mean value of the distribution. 

 

At each location of the surface corresponding to    , i=1,2, … ,N  , we have a different 

value of height    . This is because the Gaussian probability density function for each 

random variable    , p(  )  will generate different values of    at each computation. If we 

sample N locations    on an one-dimensional axis, the corresponding     on that axis for 

each    will be h(  ) =    . So we can model rough surfaces as vectors of random variables 

 h 

[
 
 
 
 
 
 
  

  

  

 
 
 

  ]
 
 
 
 
 
 

                                                                    

In order to generate an accurate Gaussian rough surface, we have to simulate an accurate 

Gaussian random number generator. There are various methods for generating random 

numbers from a specified distribution. Here we will use “ The Rejection Sampling” 

method, since it is a simple and a powerful technique. In this method, we start with the two 

random variables     and    which are uniformly distributed on the interval (0,1). 

    (   )  ,      (   )        

where the sign  ~  denotes distribution, and  (   ) denotes uniform distribution on the 

interval (0,1).    

Our aim is to simulate a random variable with a desired probability distribution p(x) on a 

given interval a     . In addition, we create another two uniformly distributed random 

variables    and    which depend on    and    as 
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     (   )    ,           ( )               

    (   )          (        ( ) )   

The algorithm accepts those values of    as samples of the probability distribution p(x) , 

which satisfy the inequality 

      (  )           

and those do not, are rejected. Basically in the rejection sampling technique, the values of 

    that lie above the curve of the desired probability distribution are rejected, and the ones 

that are on or below the curve of the desired distribution are accepted as samples of the 

desired distribution.      

Figures 4.14 to 4.16 show a Gaussian random process h(x) with                 having 

a mean of   = 0.5 and standard deviations of  = {0.05, 0.1, 0.15} respectively that are 

generated using the rejection sampling method. 

Here h(  )=    , and ,  p(  ) = 
 

√   
      ( 

(    ) 

    )    ,   i=1,2,…,100 

 

                                                                                                                                         

                       Figure 4.14:Gaussian random process with  = 0.5 and  = 0.05 
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                         Figure4.15:Gaussian random process with  = 0.5 and  = 0.10      

                         Figure4.16:Gaussian random process with  = 0.5 and  = 0.15 
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A question that arises is how exactly does the generated sequence behaves like Gaussian? 

We need to verify that the generated sequence has a Gaussian distribution. A basic and 

accurate method for classifying the resulting distribution of the generated sequence h is to 

group the samples according to their amplitudes. This is achieved by splitting the total 

amplitude range into a number of subranges of amplitudes. A couple of examples are 

shown below for different sequences with the following properties  

   

N= Number of samples generated in the sequence 

h = Amplitude of the samples in the sequence 

     Number of amplitude subranges 

 

Sequence 1 :  µ=0.5,  =0.1, N=1000 ,   =10, h ~ [0.2,0.8] 

  

 Interval 1: 0.20                    Number of samples=0 

 Interval 2: 0.26                   Number of samples=0 

 Interval 3: 0.32                   Number of samples=8 

 Interval 4: 0.38                    Number of samples=66 

 Interval 5: 0.44                    Number of samples=253 

 Interval 6: 0.50                   Number of samples=335 

 Interval 7: 0.56                   Number of samples=257 

 Interval 8: 0.62                   Number of samples=74 

 Interval 9: 0.68                   Number of samples=7 

 Interval 10: 0.74                 Number of samples=0 

 

Figure 4.17 shows the resulting distribution for sequence 1. The distribution somewhat 

resembles a Gaussian, but in order to improve the accuracy of approximation to a perfect 

Gaussian, the number of used sub-intervals must be increased.   
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                             Figure4.17:The resulting distribution for sequence 1 

                      Sequence 2 :   =0.5,  =0.1, N=10000 ,   =20, h ~ [0.2,0.8] 

       

                              Figure4.18:The resulting distribution for sequence 2 
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                       Sequence 3 :   =0.5,  =0.1, N=10000 ,   =100, h ~ [0.2,0.8] 

 

                              Figure4.19:The resulting distribution for sequence 3 

 

                       Sequence 4 :   =0.5 ,  =0.1, N=100000 ,   =100, h ~ [0.2,0.8] 

 

                              Figure4.20:The resulting distribution for sequence 4 
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4.5 Mesh generation for analyzing rough surface scattering problem 

If we are analyzing a rough surface scattering problem, we should be careful when 

triangulating the region around the rough surface. Rough surface scattering problems can 

be analyzed in regions with a rectangular outer PML boundary. Therefore the previously 

described automatic mesh generation algorithm for rectangular domains can be used to 

triangulate the solution region, except the region near the rough surface since the rough 

surface has an irregular curvature due to its statistical property of having a Gaussian 

distribution with a certain mean and standard deviation. That is why we need a seperate 

triangulation around the rough surface and the rest of the solution region can be 

triangulated identically the same as the previous description of automatic mesh generation 

for rectangular regions. In order to seperate the two regions as the region around the rough 

surface and the rectangular solution region which is the complement of the region around 

the rough surface to the overall solution region, we call the region around the rough surface 

as the “near-surface” region and the remaining part as the “complement region” and we use 

an upper limit for the upper boundary of the near-surface region which is determined 

according to the mean and the standard deviation value of the rough surface height.    

If we know the variance of the distribution of surface height, then we know that the range 

of the surface height (h) lies symmetrically within 3 standard deviations ( )  from the mean 

value (µ) as shown in Figure 4.21. 

 

 

                                      Figure4.21:    µ - 3      h       + 3     [4] 

Therefore, if we insert the upper limit at a little bit more than a 3  distance from the mean 

value, then the near-surface region can fully contain the rough surface with the given mean 

and variance. Another important issue is the triangulation inside the near-surface region. 

Since the near-surface region contains the rough surface, we have to triangulate the region 

between the upper boundary and the rough surface. The problem here is that some triangles 

between the boundary and the rough surface may become very narrow or much smaller in 

size compared to other triangles due to abrupt changes in the height of the rough surface. 

To avoid this problem we have to set the limit of the near-surface region to a higher value 

than 3 . Note that there is no certain deviation value from the mean value of the surface 

height to the upper limit, since the process is probabilistic, the surface height can take any 
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value. However the probability that the surface height may exceed a deviation of 3  from 

the mean value is very small, therefore inserting the limit to a distance that is greater than 

3  will usually result in more accurate triangulation with a lower probability of turning out 

ill conditioned results. As we increase the limit from 3  to higher values we get better 

results and the probability of getting ill conditioned results becomes smaller. 

The overall solution region is terminated with an artificial absorbing medium that is called 

“ PML” and is commonly used as an absorbing boundary condition in scattering or 

radiation problems to limit the use of computer memory to a specified amount and to 

effectively simulate the solution region to infinity by minimizing reflections from the outer 

boundary. PML was discussed in detail in its own section in the previous chapter, but here 

it is enough to know that PML surrounds the computational (solution) region and has a 

specified thickness required for termination of the solution region in order to be used as an 

artificial boundary. The thickness of the PML depends on the electrical characteristics of 

the impinging wave and the solution region of interest.  

The PML is a lossy medium which attenuates the incident wave with a rate that depends on 

the conductivity value of the medium as described by Berenger [2]. Usually the attenuation 

of the incident wave is very rapid. Therefore we should use smaller triangles with narrower 

widths when discretizing the PML medium to handle rapid changes and to yield accurate 

results. The size of the total mesh depends on the size of the solution region that we have 

determined to analyze the scattering or radiation problem at hand and also the size of the 

PML region necessary for terminating the solution region in order to minimize reflections. 

Figures 4.22 to 4.28 show some example meshes with rough surfaces having different 

mean and standard deviation values. The upper limits for rough surfaces is determined in 

conjunction with their statistical properties. Notice that the solution region in Figure 4.28 is 

discretized using more elements, and increasing the number of elements sharply increases 

the accuracy of computation. 

      

                         Figure4.22:Rough surface with std=0.15, mean=0.5, upper limit=1 
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                          Figure4.23:Rough surface with std=0.5, mean=2, upper limit=4 

 

                          Figure4.24:Rough surface with std=0.3, mean=2, upper limit=4 
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                         Figure4.25:Rough surface with std=0.4, mean=1.5, upper limit=3 

 

                         Figure4.26:Rough surface with std=0.4, mean=1.5, upper limit=3 

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5



43 
 

 

                     Figure4.27:Rough surface with std=1, mean=4, upper limit=10 

 

                     Figure4.28:Rough surface with std=1.5, mean=4, upper limit=10 
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                                                        CHAPTER 5 

 

        BASICS OF THE TWO DIMENSIONAL FINITE ELEMENT METHOD                 

 

In order to use the finite element method for solving a partial differential equation (PDE) , 

we first have to convert the PDE of interest into its functional or variational form. To 

convert a PDE into its functional form, we use the theory of calculus of variations which 

focuses on the theory of extreme values of functionals. A functional is obtained by an 

operator that operates on a function that is composed of one or more functions within 

certain limits. Given the values of the independent variables to determine the output of the 

function inside the operator, the output of a functional is a number which depends on the 

form of the function inside the operator, and the form of the operator as well. The output of 

a function depends only on the values of the independent variables. 

Here we will deal with integral operators with certain limits that operate on a function. Our 

aim is to determine the extreme values of the functional and the function that yields these 

extreme values. The following discussion, up to section 5.3, is mostly referenced from [5].  

Consider the functional   ( ) given below 

 ( )  ∫  (      
  

  

)     

Here   is the independent variable and  ( ) is a function of  . Our goal is to find a 

function  ( ) that extremizes the functional  ( )  along with the boundary conditions 

 (  )           (  )          

The integrand  (      ) is a function with the independent variable    , the dependent 

variable   and its derivative    . Here  ( ) is called a functional, or variational to be 

extremized. 

The variational operator δ is used to calculate the variation of a given function. In our 

example, the variation δ  of the function  ( ) is the infinitesimal change in   for a fixed 

value of   where δ =0. The variation    of   vanishes at points where   is prescribed, 

since the prescribed value can not be varied, and it can take any value at points where it is 

not prescribed. 

Since the integrand  (      ) is a function of   , a change in   as δ  will result in a change 

in   which is   . Recalling the total differential of    which is 

   
  

  
   

  

  
   

  

   
    

We can write the first variation of    at   as 
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We know that      since   does not change as   changes to      ,     becomes 

   
  

  
   

  

   
    

If the functional depends on second or higher order derivatives as shown 

 ( )  ∫  (          
  

  

     ( ))     

Then the total differential and the first variational of   are respectively 

  

                      
  

  
   

  

  
   

  

   
    

  

    
       

  

  ( )
  ( ) 

   
  

  
   

  

   
    

  

    
       

  

  ( )
  ( ) 

Thus the variational operator   behaves like the differential operator. 

 If    =  ( ) and    =  ( ) , then the properties of the variational operator are as follows 

 

                                   ( )           (       )             

                                  (  )          (      )                   

                                  (   )         ( 
   

   
 )   

               

   
   

                                       (  )         (   )
   (   )

     (   ) 

                                       ( )          
 

  
(  )   ( 

  

  
 )  

                                       (  )          ∫  ( )     ∫   ( )  
 

 

 

 
  

For the functional  ( )  to have an extremum, its variational must be zero ,   =0. This is 

the starting condition for converting PDE s into their functional forms since this necessary 

condition on the functional is usually in the form of a differential equation with boundary 

conditions on the required function. 

5.1 Converting PDEs into their functional forms 

Given a partial differential equation, we can obtain its functional form using the following 

procedure 

1) Multiply the partial differential equation with the variational of the parameter of interest, 

and integrate over the solution region. 
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2) Use integration by parts to express the derivatives in terms of the variational term. 

3) Apply the boundary conditions to the resulting equation and bring the variational 

operator outside the integral. 

Let us start with a simple example of converting an ordinary differential equation into its 

functional form. Consider the differential equation 

                                                                                        

Let us determine the functional for this ordinary differential equation subject to the 

boundary conditions    ( )       ( )    

   

   
                  

Then  

   ∫ (
   

   
     )

 

 

(  )     

                        ∫
   

   

 

 

     ∫        ∫      
 

 

 

 

   

Using integration by parts to express the derivatives inside the variational operator, the first 

term becomes 

∫
   

   

 

 

     
  

  
   ] 

   ∫
  

  

 

 

(
 

  
    ) 

  

therefore      becomes          

   
  

  
   ] 

   ∫
  

  

 

 

 
 

  
      ∫      

 

 

  ∫      
 

 

 

Since a prescribed value can not be varied     ( )    ( )   . Therefore the first term 

vanishes ,      , using the properties of the variational operator δ , becomes 

     ∫
 

 

 

 

(
  

  
)     ∫

 

 

 

 

       ∫     
 

 

 

   
 

 
∫ [  (

  

  
) 

 

 

       ]     

 ( )  
 

 
∫ [    

 

 

        ]   

is the corresponding functional for the given differential equation. 

Our interest here is to solve the inhomogenous wave equation using finite element method, 

so we must determine the functional form of the inhomogenous wave equation  
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which will be solved by applying the finite element method to the functional form of the 

equation, assuming that we are solving the equation in a 2 dimensional region. Using the 

previously described procedure we will convert this PDE to its functional form as follows 

    

            

   ∬[            ] δ        

    ∬[   ] δ        ∬[     ] δ        ∬[ ] δ        

The first term can be integrated using integration by parts, expanding the first term as  

 ∬[   ] δ         ∬[
   

   
] δ        ∬[

   

   
]  δ        

and applying integration by parts by choosing              
 

  
(
  

  
)   

 ∫[∫
 

  
(
  

  
)      ]     ∫[ 

  

  
    ∫

  

  
  

  

  
    ]    

   ∬[ 
  

  
 
 

  
    

  

  

 

  
          δ  ]         ∫   

  

  
   ∫  

  

  
   

The single integrals become zero, if the boundary conditions are of the homogenous 

Dirichlet or Neumann type. As a result, for most of the radiation/scattering problems we 

have  

   ∬[ 
  

  
 
 

  
    

  

  

 

  
          δ  ]        

   
 

 
∬[ (

  

  
)   (

  

  
)           ]        

 ( )  
 

 
∬[ (

  

  
)   (

  

  
)           ]        

is the corresponding functional for the inhomogenous wave equation. 

The functional forms of the PDEs that are used in electromagnetics are given below for a 2 

dimensional solution region. Since we have determined the functional form of the 

inhomogenous wave equation, the functional forms of the other PDEs can be directly found 

by simplification. 
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 ( )  
 

 
∬[ (

  

  
)   (

  

  
)           ]        

 

                                                                                      

 ( )  
 

 
∬[ (

  

  
)   (

  

  
)       ]        

 

                                     

 ( )  
 

 
∬[ (

  

  
)
 

 (
  

  
)
 

    ]        

 

                                     

 ( )  
 

 
∬[ (

  

  
)
 

 (
  

  
)
 

]        

 

 ( ) for inhomogenous wave equation can also be determined using Mikhlin’s approach to 

solve the equation         

 ( )                   

where      [  ]    [  ]  is the operator of the equation. 

Other methods for deriving variational principles to solve electromagnetic problems also 

exist in literature. 
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5.2 Solution of the Laplace equation using finite element method 

We have already derived the functional for the inhomogenous wave equation  

          

for a 2 dimensional solution region which is  

 ( )  
 

 
∬[ (

  

  
)   (

  

  
)           ]       

Choosing          , we get the functional for Laplace’s equation         as 

 ( )  
 

 
∬[ (

  

  
)
 

 (
  

  
)
 

]        

Laplace's equation describes electrostatic problems with             . To apply the 

finite element method to solve Laplace's equation in a 2 dimensional region, we need to 

follow the following procedure 

1) Divide the solution region into finite elements, which are usually chosen as triangles. 

2) Determine the interpolation functions (or shape functions) for each element in the 

solution region. 

3)Assemble all elements inside the solution region to get the resulting system of equations, 

which is when solved, yields the approximate solution vector that we are looking for.  

For a 2 dimensional solution region, we use either triangles or quadrilaterals to discretize 

the solution region, since triangles fit better to curved boundaries we prefer to discretize 

using triangles. After we decide which element type to use for discretization, we must 

derive the representing equations for each element in the solution region. In other words we 

need to determine the interpolation functions for each element. After determining the 

interpolation functions for each element in the solution region, we use the three node 

potential values (or field values) to determine a potential distribution function for each 

element. Combining the potential distributions of all elements in the solution region, we get 

the overall potential distribution of the solution region.   

Figure 5.1 shows two solution regions, the one in the left being nonrectangular and other 

being rectangular. The nonrectangular solution region is discretized using both triangles 

and quadrilaterals,  the rectangular one is discretized by using triangles only. Note that 

there is always an unavoidable discretization error for nonrectangular solution regions. 
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                       Figure5.1:Discretization of rectangular and nonrectangular geometries.                     

If we know the potential distribution inside each element, which is   (x,y), then the 

approximate solution for the total region becomes 

 (   )  ∑  (   )

 

   

 

where N is the total number of elements used inside the solution region. 

  (x,y) which is the potential distribution inside each element can be assumed to be in 

polynomial form as,   (   )         ,  then for a given element with vertices 

{(     ) (     ) (     ) , we have 

              

              

              

[ 
   

   

   

]   [

     

     

     

] [
 
 
 
] 

 

[ 
 
 
 
]   [

     

     

     

]

  

 [ 
   

   

   

] 

Using this equation along with the polynomial approximation    (   )         , if 

we express the potential inside an element in terms of the basis functions             as 

  (   )  ∑  (   )    
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Then we get             as 

   
 

  
[(         )  (     )  (     )  ] 

   
 

  
[(         )  (     )  (     )  ] 

   
 

  
[(         )  (     )  (     )  ] 

where A is the area of the element with coordinates {(     ) (     ) (     )   , and can 

be found from     
 

 
[ (     )(     )  (     )(     ) ]. 

The value of the area is positive for counterclockwise numbering of the nodes, otherwise it 

is negative. 

Using the equation  

  (   )  ∑  (   )    

 

   

 

we can find the potential value anywhere inside an element, i.e., potential distribution is 

continuous unlike in the case of finite difference method where the potential values are 

known only at the grid points. 

 

Element shape functions have the following two properties 

   {
               

                     
 

∑  

 

   

(   )       

For example, an element with vertices 

  (   )  (   ) (   )     (     ) (     ) (     )   , has 

   
 

  
[(         )  (     )  (     )  ]     

   
 

  
[(         )  (     )  (     )  ]              

   
 

  
[(         )  (     )  (     )  ]            

with potential values at the three vertices as ,                     ,  the potential 

distribution inside the triangle is determined by the function 

  (   )  ∑  (   )    
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In order to solve Laplace’s equation, which has the functional 

 ( )  
 

 
∬[          ]           

 

 
∫[         ]     

in a two dimensional solution region, we use the energy functional given by  

  
 

 
∫            

 

 
∫             

where   is the energy per unit length. For a single element e ,   becomes    , which is 

the energy per unit length inside an element e, given by 

                                                   
 

 
∫        

     
 

 
∫         

     

We have defined    , the potential distribution inside an element e as 

   ∑   

 

   

  (   ) 

Therefore the gradient of the expression       is 

     ∑   

 

   

   (   ) 

Substituting this equation into the expression for        
  , we get 

      
  ∑∑      

 

   

 

   

        

Which is when substituted into the equation for     , yields 

 

  
 

 
∫   [ ∑∑      

 

   

 

   

         ]     

Moving the sums, along with      and      , out of the integral, we get 

   
 

 
 ∑∑      [∫   

 

   

 

   

         ]      

 The term inside the brackets is defined as the {i,j} th entry of the element coefficient 

matrix [  ( )]  , that is defined as 

   
( )  ∫          
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Therefore  

  
 

 
 ∑∑         

( )    

 

   

 

   

    

which can be written in matrix form as (with   denoting transposition) 

    
 

 
 [  ]

  [ ( )] [  ]            [  ]  [

   

   

   

] 

 

[  ( )]  [

   
( )    

( )    
( )

   
( )    

( )    
( )

   
( )    

( )    
( )

] 

Since  

   
( )  ∫          ∫             

( )                      

The element coefficient matrix  [ ( )] is symmetric. 

With       and    already known, we can directly determine     
( ) ,               , as 

    
( )  

 

  
[         ] 

   (     )              (     )              (     ) 

   (     )              (     )              (     ) 

    
 

 
 [  ]

  [ ( )] [  ] ,  is defined for a single element. To get the total energy per unit 

length inside the overall solution region, we sum the energies of all elements in the region 

  ∑   

 

   

 
 

 
 [ ]  [ ] [ ]             

[
 
 
 
 
  

  

     
  ]

 
 
 
 

 

Where   is the number of elements and   is the number of nodes in the solution region. 

[ ] is called the global coefficient matrix that is assembled using the individual element 

coefficient matrices, according to their connections. 

  can be expanded from its matrix equation form to its general equation form as  

  
 

 
 [                       ]   [

       

   
       

]   

[
 
 
 
 
  

  

  
 
  ]
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  [  
                                                 

      

                                                    

                                                   ]  

 

It can be shown that Laplace’s equation is satisfied, when     becomes minimum at all 

nodes inside the solution region, therefore we require 

  

   
 

  

   
 

  

   
   

  

   
   

  

   
                       

By satisfying the condition  
  

   
                          ,  at every node in the solution 

region  we get a system of linear equations  

  

   
                              

  

   
                              

  

   
                               

  

   
                               

So in general   
  

   
     yields   

  ∑     

 

   

 ∑     

 

   

  

Which has a solution for an arbitrary free node  , given as 

    
 

   
∑      
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The global coefficient matrix is assembled using the individual element coefficient 

matrices according to the connections of the elements. The formation process is much 

easier to describe with an example. Consider the simplest example in Figure 5.2 of a square 

which is formed by the assemblage of two triangles, the resulting global coefficient matrix 

that describes the square geometry is the assemblage of the local coefficient matrices of the 

two triangles. 

 

Figure 5.2: A mesh of two triangles. 

                                                                                                                  

               1                              1                               1                  0           0 

               1                              2                               2                  1           0 

               1                              3                               3                  0           1 

               2                              1                               2                  1           0 

               2                              2                               4                  1           1 

               2                              3                               3                  0           1 
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   (     )              (     )              (     ) 

we get the element coefficient matrices for the figure as 

 ( )  [
         

        
        

]          ( )  [
           
         
        

] 

According to the coordinate list of the local nodes of the two elements and the global 

coordinates, the assembly is done as follows 

              
( )                                                                                          

       
( )                                                                                 

                          

       
( )                                                                                 

                  

                                                                                   

             
( )     

( )                                                                                                                                                   

                                                                                                                                                              

            
( )     

( )                                                                                                                                               

                                                                                                                                                                                                         

                                                                                  

                                                                                  

            
( )     

( )                                                                                                                                                   

                                                                                                                                                            

                                                                            

The resulting global coefficient matrix is found as 

 

   [

          
          
          
          

] 

Consider a hexagonal geometry as a more complicated example with 6 elements and 7 

global nodes with the given coordinate list 
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               1                              1                               1                  0           0 

               1                              2                               2                  1           1 

               1                              3                               3                 -1           1 

               2                              1                               1                  0           0 

               2                              2                               3                 -1           1                              

               2                              3                               4                 -2            0 

               3                              1                               1                  0            0 

               3                              2                               4                 -2            0 

               3                              3                               5                 -1           -1 

               4                              1                               1                  0            0 

               4                              2                               5                 -1           -1 

               4                              3                               6                  1           -1 

               5                              1                               1                  0            0 

               5                              2                               6                  1           -1 

               5                              3                               7                  2            0 

               6                              1                               1                  0            0 

               6                              2                               7                  2            0 

               6                              3                               2                  1            1 
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Figure 5.3: A hexagonal mesh of six triangles. 
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Where  ( )            are the element coefficient matrices and   is the global 

coefficient matrix. Since most of the global nodes are not directly connected to each 

other    is a sparse matrix as expected.                                         

5.3 Solution of the wave equation using finite element method 

We have already derived the functional  ( ) for the inhomogenous wave equation. To 

solve the inhomogenous wave equation by using finite element method, we have to satisfy 
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the given boundary conditions and we have to minimize the functional  ( ) at each free 

node inside the solution region. Again, first we need to express  ( ) in terms of the global 

coefficient matrix to obtain a matrix equation form of  ( ). We will follow an identical 

procedure as we did for Laplace’s equation. Recall that the inhomogenous wave equation 

          

is expressed in its functional form as 

 ( )  
 

 
∬[ (

  

  
)   (

  

  
)           ]       

 
 

 
∬[                ]                   

Our aim is to determine the unknown   at every free node inside the solution region. The 

wave equation is inhomogenous, thus a prescribed source function   also exists in the 

solution region. We start by expressing         in terms of the element shape functions 

  (   )  ∑  (   )    

 

   

 

  (   )  ∑  (   )    

 

   

 

Where      and      are the values of   and   at node   in element   . 

Substituting the expressions for    and    into   ( ) , we get   (  ) as 

 (  )  
 

 
 ∑∑        ∫∫(     

 

   

 

   

    )         
  

 
 ∑∑        ∫∫(  

 

   

 

   

  )         

  ∑∑        ∫∫(  

 

   

 

   

  )         

Where the element coefficient matrices are defined as   

     
( )  ∫∫                       

( )  ∫∫            

                                        
( )  ∫∫           {

       
      

 

In matrix form, we can write   (  ) as 

 (  )  
 

 
 [  ]

  [ ( )] [  ]  
  

 
[  ]

  [ ( )] [  ]   [  ]
  [ ( )] [  ] 

where  [  ]  [           ]
   ,  [  ]  [           ]

  



60 
 

 (  ) is defined for a single element. To determine  ( )  which is defined for the 

assemblage of all elements, we sum the functionals   (  )            ,  of each 

element in the solution region , so that  ( )  becomes 

  ( )  ∑  (  )                                             

 

   

 

                                     
 

 
 [ ]  [ ] [ ]  

  

 
[ ]  [ ] [ ]   [ ]  [ ] [ ] 

[ ]  [              ]   ,   [ ]  [             ]  

Where [C] and [T] are global coefficient matrices. 

 

We can expand the matrix equation for   ( ) into its algebraic form and then minimize 

 ( )  at every free node in the solution region. To do this we split  ( ) into three parts as 

described below 

 

 ( )     ( )    ( )    ( )    
 

 
 [ ]  [ ] [ ]  

  

 
[ ]  [ ] [ ]   [ ]  [ ] [ ] 

            ( )  
 

 
 [ ]  [ ] [ ]           ( )   

  

 
[ ]  [ ] [ ]            ( )  [ ]  [ ] [ ]  

 

          ( )  
 

 
 [   (   

                                   )      

 (            
                         )   (                  

   
                ) + … + (                             

        )   ]  

 

          ( )   
   

 
 [   (   

                                   )      

 (            
                         )   (                  

   
                ) + … + (                             

        )   ]  

 

          ( )  [   (                             )        (                  

          )   (                            ) + … + (         

                            )   ]  
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We are trying to determine the vector  [ ]  [              ]     which satisfies 
  ( )

   
   at all free nodes                    So we need to determine the expression 

for  
  ( )

   
 ,           . The process is as described below 

  ( )

   
 

   ( )

   
 

   ( )

   
 

   ( )

   
 

   ( )

   
                           

   ( )

   
                           

   ( )

   
                           

 

   ( )

   
                           

Therefore, in general, we have  

 
   ( )

   
 ∑      

 

   

                          

Similarly  

   ( )

   
     [                         ] 

   ( )

   
     [                         ] 

   ( )

   
     [                         ] 

  

  

   ( )

   
     [                         ] 

   ( )

   
     [                         ]     ∑     

 

   

 

  ( ) contains the source term    therefore 

   ( )

   
  [                         ] 
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   ( )

   
  [                         ] 

   ( )

   
  [                         ] 

In general 

   ( )

   
 ∑     

 

   

  [                         ] 

Therefore ,  
  ( )

   
 

   ( )

   
 

   ( )

   
 

   ( )

   
 = 0,  is expressed as 

  ( )

   
 ∑     

 

   

   ∑     

 

   

 ∑     

 

   

   

  ( )

   
 ∑     

 

   

                                

 
  ( )

   
 ∑   [   

 

   

      ]                         

If there are no sources in the solution region         then the equation simplifies to 

  ( )

   
 ∑   [   

 

   

      ]                    

Equations are given for a homogenous medium with a constant value of the wavenumber   

which is determined from the constitutive parameters of the medium. If the medium is a 

homogenous, isotropic, and lossless    ,  is given as 

   √   

As we increase the mesh size and the number of elements used, the resolution also 

increases and we get better simulation results. However this greatly increases the required 

computation time of the problem. In order to find the solution of the wave equation in a 

given solution region with the specified boundary conditions, first, the computer assigns 

global node numbers to the coordinates of each node inside the mesh, then it determines the 

element coefficient matrices of each element in the solution region and finally it assembles 

all element coefficient matrices. Especially the assembling process requires a great amount 

of computation time. Therefore when simulating the solution of a partial differential 

equation in a given solution region, a huge trade-off exists between resolution and 

computation time. 

When the medium is not homogenous, or when the wavenumber, k, is not a constant but an 

element varying quantity, we have to introduce a different element coefficient matrix that 

takes the variation of ‘k’ from one element to another, into account. For an element varying 

wavenumber ‘k’  the functional  (  ) becomes 
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 (  )  
 

 
 ∑∑        ∫∫(     

 

   

 

   

    )        
 

 
 ∑∑           

 ∫∫(  

 

   

 

   

  )      

  ∑∑        ∫∫(  

 

   

 

   

  )         

 

     
( )  ∫∫                       

( )  ∫∫        

 (  )  
 

 
 ∑∑         [ ∫∫(        )           

 ∫∫(    )      ]

 

   

 

   

  ∑∑        ∫∫(  

 

   

 

   

  )         

Here, we can introduce the coefficient matrix      
( ) , which is defined as 

     
( )       

( )     
     

( ) 

     
( )  [   ∫∫(        )           

 ∫∫(    )       ]  

Therefore  (  ) can be written as 

 (  )    
 

 
  ∑∑        

 

   

 

   

    
( )     ∑∑            

( )

 

   

 

   

       

 (  )    
 

 
  ∑∑    

 

   

 

   

[        
( )           

( )] 

 (  ) , for element varying ‘k’ , can be written in matrix form as 

 (  )  
 

 
 [  ]

  [ ( )] [  ]   [  ]
  [ ( )] [  ] 

Summing   (  )  for all elements in the solution region, we get  

 ( )  ∑  (  )                                             

 

   

 

       ( )   
 

 
 [ ]  [ ] [ ]  [ ]  [ ] [ ]                 

[ ]  [              ]  ,   [ ]  [             ]   
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Where [M] and [T] are global coefficient matrices. [M] and [T] are assembled using the 

previously described procedure in which we have assembled [C]. 

  ( )    ( )    ( )                                       

     ( )  
 

 
 [ ]  [ ] [ ]             ( )  [ ]  [ ] [ ]   

Following the same procedure as before, we have  

 

                           
  ( )

   
 

   ( )

   
 

   ( )

   
                                               

   ( )

   
 ∑      

 

   

                                  

   ( )

   
 ∑     

 

   

  [                         ]        

Therefore, we have 

                         
  ( )

   
 ∑      

 

   

                                                                       

                                      ∑        

 

   

    ∑     

 

   

                                                                       

If there are no sources in the solution region 

∑       

 

   

                                       

Using the last two identities ,     ,  i=1,2,…,n  ,  can be easily solved. In this procedure we 

have treated the wavenumber ‘k’ as an element variable instead of a global node variable, 

but at the same time we have treated the source ‘g’ as a node variable. We can also assume 

that ‘g’ is an element variable along with ‘k’ , but then we would have to define another 

element coefficient matrix regarding the source ‘g’, this is the easiest approach for 

computation. 

As the final case, consider that both    and    are element variables, in that case  (  ) 

becomes 

 (  )  
 

 
 ∑∑         [ ∫∫(        )           

 ∫∫(    )      ]

 

   

 

   

     ∑∑    ∫∫(  

 

   

 

   

  )         
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Therefore  (  ) can be written as 

 (  )    
 

 
  ∑∑        

 

   

 

   

    
( )        ∑∑       

( )

 

   

 

   

 

 Since     
( ) is symmetric, i.e ,     

( )      
( ) , we can also write 

 (  )    
 

 
  ∑∑        

 

   

 

   

    
( )        ∑∑        

( )

 

   

 

   

 

This equation can be written in matrix form as 

 (  )  
 

 
 [  ]

  [ ( )] [  ]   [  ]
  [ ( )]    

In order for  (  ) to be a scalar quantity , [  ]
  [ ( )]    , must also be scalar, which 

dictates that the element coefficient matrix  [ ( )]     must actually be a [3x1] vector. 

Therefore, concerning    , we have an element coefficient vector    ( )  [ ( )]       

 which is 

  ( )    [

    
( )      

( )      
( )

    
( )      

( )      
( )

    
( )      

( )      
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]           ( )  [

    
( )      

( )      
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( )      

( )      
( )

    
( )      

( )      
( )

]    

Therefore  

 (  )  
 

 
 [  ]

  [ ( )] [  ]   [  ]
  [ ( )]  

Summing  (  ) for all elements in the solution region 

 ( )  ∑  (  )                                             

 

   

 

 ( )   
 

 
 [ ]  [ ] [ ]  [ ]  [ ]                

   
  ( )

   
                                               

Which yields to 

                                        
  ( )

   
 ∑[       

 

   

   ]                                                                   
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Using this identity ,     ,  i=1,2,…,n  ,  can be easily solved. 

The question here is, how do we assemble the element coefficient vector [F] ?  Since we 

know how to assemble [M] , [T] or [C] from the previous discussion, as they are assembled 

identically the same, after assembling [M] , we can easily assemble [F] . The assemblage of 

[F] can be best described by an example. 

Consider the element coefficient matrix [M]  given below, first we look at the main 

diagonal of [M] and then we observe how the indices of the main diagonal of [M] are 

assembled from the element coefficient matrices  ( ) . The assemblage of [F] using  ( ) is 

identical to that of     from  ( )  

 

[ ]   

[
 
 
 
 
    

( )     
( )    

( )    
( )    

( )    
( )  

   
( )    

( )    
( )   

   
( )    

( )    
( )    

( )    
( )    

( )    
( )    

( )

   
( )     

( )    
( )    

( )    
( )    

( )

     
( )    

( )    
( )]

 
 
 
 
 

  

 

When we look at the main diagonal, we see that 

    =    
( )     

( )    ,   therefore   ,        
( )    

( ). 

    =    
( )    ,   therefore   ,        

( ). 

    =    
( )     

( )    ,   therefore   ,        
( )    

( ). 

    =    
( )     

( )    ,   therefore   ,        
( )    

( ). 

    =    
( )    ,   therefore   ,        

( ). 

 

Therefore the global [F]  vector is 

[ ]  

[
 
 
 
 
   

( )    
( )

  
( )

  
( )    

( )

  
( )    

( )

  
( ) ]

 
 
 
 
 

                        

 

The coefficient matrices [M] and [F] indicate that we are assembling elements in a solution 

region that consists of 3 elements and 5 nodes. 
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Note that the symmetry property of the element coefficient matrices and the global 

coefficient matrices provides speed for computation, since we only have to calculate the 

upper triangular part of the matrices.    

5.4 Prescribed and free nodes of a solution region 

In order to evaluate the solution at all nodes inside a given region, we need to know the 

solution at the boundary of the given region. The nodes at the boundary are known as the 

prescribed nodes of the solution region where the solution is already known or prescribed. 

For the solution of Helmholtz equation or phasor domain wave equation, the values of 

prescribed nodes at the boundary of the solution region can be determined using the 

incident or incoming wave that impinges on the boundary of the solution region. Using the 

general boundary conditions described in chapter 2, the prescribed node values can be 

determined directly from the incident field if the wave equation contains no source term, i.e 

g=0.  But if the source term is not zero, the prescribed node values can be determined using 

the boundary conditions that occur when there are sources at the boundary between two 

different media (see chapter 2). 

Consider the FEM (Finite Element Method) solution of a 2D homogenous wave equation. 

The FEM solution to this problem can be obtained by solving the system linear of 

equations generated by the previously found formula 

 

  ( )

   
 ∑   [   

 

   

      ]                      √   

 

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

                                                                                • 

                                                                                • 

                                                                                • 

  [         ]    [         ]      [         ]    

  ( )

   
 ∑   [   

 

   

      ]                      √   
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   {  
                                                                

                                                         
  } 

Since the prescribed node values are known, we can rewrite the system of linear equations 

as 

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

                                                                                • 

                                                                                • 

   [             ]       [             ]     [             ]       [             ] 

Which can be solved for                           . 

As an example, the hexagon shown below has six nodes on the boundary, so it has six 

prescribed nodes. The node at the center of the hexagon is the only node that is not on the 

boundary, so there is only one free node. Assume that we want to solve the homogenous 

Helmholtz equation for the geometry given below. Since we have only one free node, only 

a single equation will be enough to get the value of  ф at the center of the hexagon, which 

is the only unknown. The equation is 

   [             ]     [             ]        [             ]                   

Where                     are the assigned node numbers.  

 

Figure 5.4: A hexagonal mesh of six triangles. 
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5.5 Examples of 2D FEM solutions of the Helmholtz equation in a closed region 

Consider the hexagon example given in the previous section. If the prescribed nodes at the 

boundary are numbered as {                         and the free node at the center is 

numbered as    , we can solve for    by using the linear system 

  ( )

   
 ∑   [   

 

   

      ]                      √   

Since in that case there is only one free node, we need only one equation to solve 

  [         ]    [         ]      [         ]    

    
[         ]

[         ]
   

[         ]

[         ]
     

[         ]

[         ]
   

    
( )  

 

  
[         ] 

   (     )              (     )              (     ) 

   (     )              (     )              (     ) 

   
( )  ∫∫           {

       
      

 

                                                   
( )         

( )                 

As another example, consider a triangular mesh with 15 nodes where 3 of the nodes are in 

the interior region of the triangle and the others are at the boundary. 

 

   {  
                                                                       

                                                                             
  } 
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Figure 5.5: A triangular mesh of sixteen triangles. 

Since there are only three free nodes, we need to solve only three equations, for n=15 

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

                                                                                • 

                                                                                • 

   [             ]       [             ]     [             ]       [             ] 

The free node values                  can be found by reordering the terms and using 

any of the three equations from the system. The general formula for the solution of a given 

free node which is in a solution region that has n nodes can be achieved by reordering the 

terms of the linear system as 

       ∑
[         ]

[         ]
  

   

                     

              

                                                                                            

For this triangular solution region with n=15 and i={13,14,15} , we have  

       ∑
[         ]

[         ]
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        ∑
[         ]

[             ]
  

    

                       

 

        ∑
[         ]

[             ]
  

    

                       

 

        ∑
[         ]

[             ]
  

    

                       

 

Solving this     system, we can get the values of ф at the free nodes. 

Using FEM we convert the Helmholtz equation into an     system of linear equations, 

especially problems that involve closed solution regions are very easy to solve using FEM. 

The following example is given here using MATLAB/ PDE Toolbox. This toolbox is very 

useful for closed boundary problems and it offers a high order of mesh refinement feature 

to produce more accurate results. This example involves a rectangular boundary with a 

Dirichlet boundary condition. 

Ex :                             {
                                                                   

                                                     
 

 

        Figure5.6:Discretization of the rectangular region R, and the distribution of  . 
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                                 Figure5.7:The actual distribution of   inside R. 

 

  

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4  

x  axis

   Color: 

 

y
  

a
x
is

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3



73 
 

 

                                                     CHAPTER 6 

 

APPLICATION OF FEM ON ROUGH SURFACE SCATTERING PROBLEMS 

 

We have previously described the conversion of the scalar wave equation in phasor form, 

into a linear system of equations. After this conversion we discretize the solution region 

using triangles and assemble the global coefficient matrix using the individual coefficient 

matrices of each element in the region to solve the linear system. In order to solve the 

linear system, we need prescribed values, which can be obtained by imposing the boundary 

conditions at the surface boundary. Having the global coefficient matrix values and the 

prescribed node values at hand, we can solve the linear system of equations to get the node 

values everywhere inside the solution region. 

Since we know the coordinates of each element in the solution region, assembling the 

global coefficient matrix can be thought as the easy part. What is important is to impose the 

surface boundary condition on the rough surface. 

In electromagnetics, surfaces, whether flat or arbitrary in shape, indicate the sudden change 

of constitutive parameters in an unbounded domain or space. Therefore a surface can be  

dielectric, good conductor, weak conductor, or a perfect conductor. Depending on the 

constitutive parameters of the surface an incident field produces a scattered field and a 

transmitted field on the surface. Here, we want to obtain the scattered field as we are 

interested in the domain where the incident field exists. 

For perfect electric conductor (PEC) surfaces, the tangential component of the scattered 

field is equal to the incident field in magnitude and there is a      phase difference 

between the two. Basically for a     incident wave, we have 

                                          
     

                                        

However, if the surface boundary is not a PEC, then we must use an impedance boundary 

condition on the surface, one approach is to use Kirchoff’s approximation  which 

approximates each point on the surface with a tangent plane at that point and evaluates the 

scattered field on that point as if the point is on a flat surface (tangential planar surface). 

Another approach is to apply the impedance boundary condition embedded in the finite 

element method itself by modifying the coefficient matrices of elements that are on the 

surface. In this approach, element coefficient matrices of surface elements are modified to 

include the loss effect of the surface, but the coefficient matrices of elements that are not 

on the surface remain unchanged. In the end, all of the element coefficient matrices are 

assembled to form the global coefficient matrix as before and using the incident field and 

the surface loss factor we form the output result vector and solve the linear system. We will 

use this latter approach and explain it in detail.    
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                Electromagnetic scattering problems involve open boundaries, and open boundary problems 

are more complicated compared to problems involving closed boundaries. When we are 

dealing with open boundary problems, we have to limit our computational domain of interest 

to a manageable size, otherwise the size of the computational region is infinite. This can be 

achieved by applying grid truncation techniques known as Absorbing Boundary 

Conditions(ABC). There are lots of ABC formulations in literature, the most commonly used 

one is Berenger’s Perfectly Matched Layer (PML) [2], which suggests the use of an artificial 

absorbing layer of material to realize the absorbing boundary condition. After the 

introduction of an initial PML model by Berenger in 1994, the concept has been further 

developed by many others. Modifications made on the initial concept of PML have led to 

much more applicable and accurate PML realizations regarding the realization of absorbing 

boundary conditions. One of them is the Locally Conformal Perfectly Matched Layer, which 

uses a non-Maxwellian approach to impose an absorbing boundary condition and achieves 

non-Maxwellian PML realization by using complex coordinate transformation. We will use 

the locally conformal PML approach and explain it in some detail, more detailed information 

about locally conformal PML can be found in the journal by Ozgun and Kuzuoglu[6]. 

Recall that the finite element method solution of a scalar 2D homogenous wave equation in 

phasor domain can be determined for each node    , from the linear system 

 

  ( )

   
 ∑   [   

 

   

      ]                      √   

 

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

  [         ]    [         ]      [         ]    

                                                                                • 

                                                                                • 

                                                                                • 

  [         ]    [         ]      [         ]    

 

   

   {  
                                                                

                                                         
  } 
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Using the incident field and the appropriate boundary condition on a given rough surface, 

we can get the field values of the rough surface nodes, which are called prescribed nodes 

therefore we can rewrite the system in terms of free and prescribed nodes as  

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

   [             ]       [             ]     [             ]       [             ] 

                                                                                • 

                                                                                • 

   [             ]       [             ]     [             ]       [             ] 

Which can be solved for                           . 

However, since we are interested in an open boundary problem which is rough surface 

scattering, we must first limit the size of the computational domain such that it will be 

enough for us to observe the scattered field behaviour. Because, in order to solve a linear 

system, we need to know the size of the linear system and the size of the linear system is 

determined by the total number of nodes in the solution region. Using PML, we can limit our 

solution region to a manageable size and only after we limit our solution region, we can get 

the total number of nodes in our solution region. Therefore the first thing to do when dealing 

with a scattering problem, is to limit the size of the domain in accordance with our solution 

region of interest and the required computer memory. This is achieved by using PML as an 

absorbing boundary condition. Due to its accuracy and ease of implementation, we will use 

the Locally Conformal Perfectly Matched Layer as described in[6]. 

After the implementation of a locally conformal PML, we must determine the values of the 

prescribed nodes using a surface impedance boundary condition over the rough surface. 

Having determined the size of the computational domain and the values of the prescribed 

nodes, we can solve the resulting linear system to get the node (field) values everywhere.  

So, first we will limit the size of the computational domain using a locally conformal PML 

and then we will impose an impedance boundary condition over a given rough surface. 

Therefore we will now discuss these two topics respectively, before proceeding into the 

solution of a rough surface scattering problem. 

6.1 Locally-conformal perfectly matched layer 

The perfectly matched layer (PML) is an artificial layer that is used to bound the 

computational domain when we are dealing with an unbounded domain. A PML must 

completely absorb the outgoing waves without yielding any reflections for any given 

frequency and incidence angle. In other words a PML must be reflectionless to provide 

accurate results. 
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In problems involving scattering, radiation or propagation of waves the physical domain 

extends to infinity, but since we have a limited computer memory, we should restrict the 

actual solution region to a region with limited size which is determined by the PML 

boundary. The restricted solution region effectively simulates the solution as if the solution 

goes to infinity provided that the PML is reflectionless and it completely attenuates the 

outgoing waves. 

Many of the current PML formulations in FEM literature use artificial absorbing materials 

which have certain constitutive parameters. These constitutive parameters are defined such 

that the resulting PML is an anisotropic, lossy medium associated with the necesary 

conditions to enable reflectionless transmission and attenuation of the outgoing waves. In 

locally-conformal PML technique, we do not need to use an artificial material with certain 

constitutive parameters,  we only transform the actual coordinates of the PML medium with 

their complex counterparts using an effective mathematical transformation given in [6]. This 

is a very simple and an effective PML formulation that accurately provides reflectionless 

transmission of the outgoing waves. 

In the locally-conformal PML method, we define the complex coordinate transformation 

which maps the coordinates of a point   in the PML region Ω into its complex counterpart  ̃ 

in the complex PML region Γ , where  Ω      ,  Γ       , by using the following 

transformation (see [6]) 

 

  ⃗⃗     
 

  
 ( ) ̂( )                                   ⃗⃗         √   

 ( )  
   

 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
 

  ‖      ⃗⃗ ⃗⃗ ‖      ⃗⃗ ⃗⃗          ̂( )  
      ⃗⃗ ⃗⃗ 

‖      ⃗⃗ ⃗⃗ ‖
 

  ⃗⃗     
 

  
 

   

 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
 ̂( ) 

  ⃗⃗     
 

  
  

   

 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
  

      ⃗⃗ ⃗⃗ 

‖      ⃗⃗ ⃗⃗ ‖
 

 

Where               ⃗⃗       are the position vectors of the points   in free space and  ̃ in 

complex space respectively ;      ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the position vector of      ,   ̂( ) is the unit vector 

along the direction of propagation and    √    is the wavenumber. Usually   is chosen 

as     due to increased accuracy and   can be chosen as 2 or 3 depending on the accuracy 

of computation, and it is related to the decay of the wave inside Ω .  
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Figure6.1:Locally conformal PML implementation, a PML with smooth curvature[6]. 

 

Figure6.2:Locally conformal PML implementation, a PML with curvature discontinuity[6]. 
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 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
  

      ⃗⃗ ⃗⃗ 
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           ‖      ⃗⃗ ⃗⃗ ‖      ⃗⃗ ⃗⃗        

  ⃗⃗     
 

  
  

 ‖      ⃗⃗ ⃗⃗ ‖ 

 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
  

      ⃗⃗ ⃗⃗ 

‖      ⃗⃗ ⃗⃗ ‖
          ⃗⃗ ⃗⃗       

This equation for    ⃗⃗  transforms the actual coordinates represented by the position vector    ⃗⃗  

into complex coordinates represented by the complex position vector    ⃗⃗⃗⃗  and enables the 

PML to effectively absorb the outgoing waves and to minimize reflections. This 

transformation also meets with the following three conditions which should be satisfied for a 

successful PML realization[6]: 

(i) the outgoing wave in the neighborhood of the point      must be transmitted into       

without any reflection. 

(ii) the transmitted wave must be subjected to a monotonic decay within       . 

(iii) the magnitude of the transmitted wave must be negligible on       . 

In this thesis, we are analyzing rough surface scattering problem, therefore a rectangular 

PML can be used to absorb the outgoing waves. The equation for    ⃗⃗  greatly simplifies over 

PMLs with rectangular boundaries. It can be proven that for a rectangular PML, the 

transformation 
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  ⃗⃗     
 

  
  

 ‖      ⃗⃗ ⃗⃗ ‖ 

 ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ‖   
  

      ⃗⃗ ⃗⃗ 

‖      ⃗⃗ ⃗⃗ ‖
          ⃗⃗ ⃗⃗       

In conjunction with figure6.3, simplifies into [6] 

 ̃    
 

  
(     )         ̃        (           ) 

 ̃    
 

  
(     )         ̃        (           ) 

 ̃    
 

  
(     )           ̃    

 

  
(     )     (           ) 

 

 

             Figure6.3:Locally conformal PML implementation, a rectangular PML [6]. 

Locally-conformal PML formulation, mathematically imitates an anisotropic, lossy PML by 

transforming real coordinates inside the PML region into complex coordinates and therefore 

absorbs the outgoing waves without reflection. Here the approach is geometrical rather than 

electrical, yet its simplicity makes it more favorable than PMLs that are implemented using 

artificial material formulations. 

In FEM formulations, we approximate the actual solution within each element in the solution 

region using interpolating polynomials,  i.e. basis functions. These functions are based on  

real coordinates of the elements. Since we have complex coordinates inside the PML region 

after applying the transformation, the basis functions of the elements inside the PML region 

are complex as well. For triangular elements we have  

  (   )  ∑  (   )    

 

   

 

   
 

  
[(         )  (     )  (     )  ] 

   
 

  
[(         )  (     )  (     )  ] 
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[(         )  (     )  (     )  ] 

If we consider region 3 in Figure6.3 as an example, after complex coordinate transformation, 

the coordinates and the formulation become 

 ̃     
 

  
(      )           ̃     

 

  
(      )       

 ̃  
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[( ̃  ̃   ̃  ̃ )  ( ̃   ̃ )  ( ̃   ̃ )  ] 

 ̃ (   )  ∑ ̃ (   ) ̃   

 

   

         

After the transformation, we follow the previously described FEM procedure, here the 

coordinates of the elements inside the PML region are complex, this will cause the 

outgoing waves to decay gradually and efficiently and enables us to analyze scattering 

problems accurately. 

6.2.1 Imposing boundary conditions on the rough surface – Kirchoff’s approximation 

The incident      wave hits on the rough surface boundary and based on the constitutive 

rough surface parameters, there will be a scattered field on the rough surface boundary. In 

the case of an infinite and a perfectly flat boundary, the incident and reflected fields are 

related with the                                             which are given for      

and      polarizations as 
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As for rough surfaces, since the surface is not flat, Fresnel reflection coefficients          

are not applicable because on a rough surface the surface normal is not constant but keeps 

changing from one surface point to another, therefore the incidence angle     and the 

refraction angle    differs at each point on the rough surface. 

Since at every point on the rough surface, the surface normal may change instantaneously, 

the incidence and refraction angles may also change instantaneously. Based on this 

assumption we may modify the Fresnel reflection coefficients to include this instantaneous 

effect such that for an instantaneous incidence angle   
  and an instantaneous refraction 

angle    
  we have instantaneous fresnel reflection coefficients    

  and    
 , this is known 

as Kirchoff’s approximation, which assumes that the surface is locally smooth and thus the 

field at a point on the surface is equal to the field that would be present on a tangent plane at 

that point. However Kirchoff’s approximation fails to evaluate field values at sharp edges on 

a rough surface since at sharp edges derivative does not exist and thus no tangent plane 

approximation is available. The coefficients    
  and    

  are given as follows[7] 
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 )       (  
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 Figure6.4: Variation of the incidence angle and the surface normal on a rough surface [7] 
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So, if there are N rough surface points at which the scattered field is evaluated using the 

incident field and the instantaneous Fresnel coefficients, and if we define a normal vector   

that describes the surface normal at each point on the surface, using Kirchoff’s 

approximation, at an arbitrary point on the surface where       , the incident and scattered 

fields are related as 

                             ( )  (
     (    

 )       (    
 )

     (    
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 )
) (                              ( ) ) 
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     (    
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) (                              ( ) ) 
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 ( )                              ( ) 

                             ( )      
 ( )                              ( ) 
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 ( )            
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     [                       ]                             
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                             (   
 )(                             )                                 

For a good conductor, we must have  (
 

  
)
 
  , if we consider sea surface as our rough 

surface, at radar frequencies sea surface behaves almost like a perfect electric conductor 

(PEC), therefore along the rough surface we should approximately have  

                               (                             )                                        

As an example, for sea surface with  =5S/m and f=3GHz, we have 

(
 

  
)
 

                               

Which behaves almost like a PEC,  so when we are dealing with a sea surface at a radar 

frequency we can simply take     
     along the sea surface. 

The following is the list of values of (
 

  
)
 
that gives an idea about, up to which range the sea 

surface behaves like a perfect electric conductor. 
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Kirchoff’s approximation is one of the most employed numerical methods. It is valid for 

locally smooth surfaces and is also known as tangent plane approximation. In high 

frequencies it is the same as the physical optics (PO) approximation. In this model the field 

on the surface is assimilated to the field that would be produced by a tangent plane at the 

same point. Thus it depends only on the Fresnel reflection coefficient at the local incidence 

angle. Kirchoff’s approximation is a local approximation in the sense that the supposed field 

at a surface point does not depend on other surface points[7]. 

Kirchoff’s approximation is especially very accurate for imposing boundary conditions 

numerically with a computer program. Though the approximation is accurate in general, 

small errors may occur depending on the incidence angle of the incoming wave for very 

rough surfaces. The amount of error further reduces if the rough surface medium is a good 

conductor, because as the conductivity of the medium increases the angle of incidence 

becomes mathematically less critical. Recall that for a PEC rough surface, the local 

reflection coefficients are all the same along the rough surface no matter what the incidence 

angle is. As a result, for sea surfaces at radar frequencies, the accuracy of the Kirchoff’s 

approximation further improves. The accuracy of the approximation also improves if the 

conductivity is very small and the rough surface medium can be considered as a perfect 

dielectric, similarly because the angle of incidence becomes mathematically less critical. 

In summary, if 

(
 

  
)
 

             (
 

  
)
 

                 

The accuracy of the Kirchoff’s approximation further increases. 

6.2.2 Imposing boundary conditions on the rough surface using FEM 

We know that the tangential component of the electric field is continuous at the boundary 

between two different media, as stated by the boundary condition 

 

                                        (     )                                              

Where  

                                                         

                             (         ) 

                                (         ) 

                                        (         ) 
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In medium1, the wave equation for the total field    is given as 

                           √       (          ) 

Which can be written as 

  (          )      (          )      

Also, the wave equations for the incident field and the scattered field are given as 

 

                    

                    

Assuming that we have a 2D rough surface problem defined on the x-y plane, for a      

incident wave, we have 

  (              )      (              )      

                                                                  

If medium 2 is an imperfectly conducting lossy media, along the boundary between the two 

media, the wave equation must be modified to include the loss factor as stated 

  (              )  (         )(              )                              

Since the tangential component of the electric field is continuous at the interface, we have 

                                                                                               

Therefore, the following formulations are equal 

             (         )                                    

  (              )  (         )(              )                              

 

As a result, at the interface the following identity is satisfied 

             (         )                                         

Along the boundary between the two media. 

 

Since 

                                              

is satisfied everywhere in space, at the boundary we have 

         (         )                        
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Which may also be expressed as 

                        (             )     

                   (             )     

                                   

For FEM analysis, we will use the following set of formulations to determine the scattered 

field everywhere in medium1 

         (         )                                               ( ) 
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Recall that in 5.3, for the “element to element” varying case, the functional inside an element 

was defined as  
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Summing for all elements, we have 
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 ( )  ∑  (  )                                             
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 Therefore, the FEM solution is given by (5) 
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For elements, which have one of its three sides at the boundary, we should introduce the 

source and loss factor, since 
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        should be evaluated at the center of each surface element. 

Therefore, for surface elements having one complete side (two nodes) at the boundary 
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For all of the other elements 
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The rest of the procedure is to assemble all elements as described previously, after forming 

the global coefficient matrix and the source vector, we can solve (5) to get the field values 

everywhere in medium1. After solving the linear system (5) , we can see that the field values 

at the boundary automatically satisfy the impedance boundary condition along the whole 

boundary. The resulting linear system can be written in its expanded form as 
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Section 5.3 can be revisited to recall the assembling procedure of the elements. 

 

 6.3 Examples of rough surface scattering using FEM 

Until now we have described the fundamental concepts that are necessary for solving the 

problem of rough surface scattering using FEM, basically we have discussed the followings 

1)Mesh generation for nonrectangular regions. 

2)Basics of the finite element method and its formulation. 

3)Locally conformal perfectly matched layer. 

4)Imposing boundary condition on a given rough surface. 

Once these concepts are fully understood and implemented, FEM can be applied on 

scattering and radiation problems. 

We will now see some examples of rough surface scattering using FEM, here we will 

concentrate on four parameters to specify a rough surface scattering problem 

1)PML width along x and y directions. 

2)Frequency of the incident wave 

3)Conductivity of the rough surface boundary. 

4)Mesh size of the computational region(excluding PML). 

Angle measure: Angle is measured from the positive x axis, that is, 

Ф=   for positive x axis, Ф=    for positive y axis and Ф=     for negative x axis. 

Incident wave: The incident wave is a uniform plane wave and has an amplitude of 100V/m, 

its incidence angle will be specified in each example.       

             
  (                  )                                                

             λ : Wavelength    ,      :  Standard deviation value of the surface roughness 
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Ex1:     Cond=5 S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=    ,           

 

 

        Figure6.5: Scattering from a rough surface with the given parameters, magnitude plot 

 

Note: In this chapter, all magnitude plots are in terms of (Volts/meter) and all phase plots 

are in terms of radians.  
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Ex1:     Cond=5 S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=    ,           

 

 

         Figure6.6: Scattering from a rough surface with the given parameters, phase plot 
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Ex2:     Cond=5 S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=      ,           

 

 

     Figure6.7: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex2:     Cond=5 S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=      ,           

 

 

          Figure6.8: Scattering from a rough surface with the given parameters, phase plot 

 

 

 

 

 

 

 

 

 

 

 



91 
 

Ex3:     Cond=5 S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=    ,           

 

 

     Figure6.9: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex3:     Cond=5 S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=    ,           

 

 

         Figure6.10: Scattering from a rough surface with the given parameters, phase plot 
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Ex4:     Cond=5 S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=      ,           

 

 

       Figure6.11: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex4:     Cond=5 S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=      ,           

 

 

         Figure6.12: Scattering from a rough surface with the given parameters, phase plot 
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Ex5:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,           

 

 

      Figure6.13: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex5:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,           

 

 

        Figure6.14: Scattering from a rough surface with the given parameters, phase plot 
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Ex6:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=     ,   =       

 

 

      Figure6.15: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex6:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=     ,           

 

 

        Figure6.16: Scattering from a rough surface with the given parameters, phase plot 
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Ex7:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,       

 

 

      Figure6.17: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex7:     Cond=100S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,       

 

 

         Figure6.18: Scattering from a rough surface with the given parameters, phase plot 
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Ex8:     Cond=5S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,       

 

 

     Figure6.19: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex8:     Cond=5S/m,  Angle of incidence=   , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,       

 

 

         Figure6.20: Scattering from a rough surface with the given parameters, phase plot 
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Ex9:     Cond=5S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,         

 

 

      Figure6.21: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex9:     Cond=5S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,         

 

 

          Figure6.22: Scattering from a rough surface with the given parameters, phase plot 
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Ex10:    Cond=5S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,         

 

 

      Figure6.23: Scattering from a rough surface with the given parameters, magnitude plot 
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Ex10:    Cond=5S/m,  Angle of incidence=    , Computational mesh size=         

             Frequency=3GHz,  Wavelength=  =0.1m,   PML Width=   ,         

 

 

          Figure6.24: Scattering from a rough surface with the given parameters, phase plot 

 

 

Notes: 

- Especially for very rough surfaces, the number of elements used may fall short,  this 

causes a lower resolution and to increase the resolution of the scattered field plot, the 

number of elements used must be increased by using mesh refinement. 

- Rough surfaces cause abrupt changes in phase pattern. 

- PML thickness should be  λ/2 or λ  for high accuracy. 
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6.4 Comparison of FEM solutions with analytical solutions 

FEM is based on the functionals of partial differential equations whose solutions are desired,   

we have previously derived the functional for the Helmholtz equation as 

                     √                     
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∬[                ]                   

The FEM solution of the Helmholtz equation is obtained by minimizing its functional at 

every point in the solution region as 
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If there are no sources in the solution region the solution becomes 

  ( )

   
 ∑   [   

 

   

      ]                         

Recall that in chapter2, the most general form of wave equation was given as 

                                                            
    

 
          

Since our domain of interest in analyzing the rough surface problem is lossless and 

contains no impressed sources, we have (   =0,    =0,     =0 ,     =0) , therefore the 
general form of the wave equation simplifies into the homogenous Helmholtz equation 

                                                                                                               

However, when an incident plane wave hits the rough surface, it induces an electrical current 

distribution on the rough surface, therefore our rough surface scattering problem is not 

sourceless along the rough surface boundary. The incident plane wave can be thought as a 

conduction current source along the rough surface boundary and the wave equation can be 

modified as 

                                                                                                                                

                                   = Impressed electric current density (amperes/square meter) 

                                   = Conduction electric current density (amperes/square meter) 

If the incident wave is a      plane wave, this equation becomes a scalar equation and can 

be written as 

                                                                                                                                  

Where J=     is the source current density along the rough surface. 
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The integral solution for the inhomogenous wave equation 

                                                                                                                                          

In the case of a free space,  is known to be 

  (   )    ( )   
   

 
∫   ( 

 )    
 

 

 

(       )                          

Therefore if we know the conduction current density    on the rough surface boundary, we 

can solve for the scattered field    
 (   ) by solving the above integral. Therefore 
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But the problem is, neither the current density on the rough surface boundary nor the 

scattered field on the rough surface boundary is known. However the scattered field on the 

rough surface boundary can be determined from the incident field using the Impedance 

boundary condition formulation as discussed in the previous section. Since our aim is to 

evaluate the integral expression (analytical formulation) numerically, and to compare the 

analytical results with the FEM results, we can directly use the FEM solution of the scattered 

electric field on the rough surface so that the only unknown remaining in the integral 

expression is the induced current density. In 2D rough surface scattering problem, the rough 

surface is described as a contour, so the integral is taken on a contour C. 
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(       )                           

Since the induced current density      is the only unknown in this expression, we can 

determine it using the method of moments. 

 

                                            Figure6.25:An example rough surface contour. 
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We divide the boundary C into N segments and apply the point matching technique. On each 

segment     , the equation becomes 
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 (        )    

Notice that the integration is replaced by summation, applying this formula for all segments 

on the rough surface contour, we get the system of linear equations as 
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Solving for     , we have 
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Where{        is the midpoint of     , e=2.718, and 𝛾=1.781. 

After finding     on each point on the rough surface contour, we can directly use 
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(       )                       

to get the scattered field at each point {     in the 2D solution region. In discrete form this 

integral is expressed as 
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In FEM formulation      
 (   )  is expressed as 
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 ( )                        ( )    

If there are M nodes in the solution region, the total error is given by 

      ∑
|       

 ( )        
 ( )|

 

|      
 ( )|

 

 

   

 

We will now compare (i) and (ii) to see the error between the two approximations. 

 

Ex1:                      
  (              )                                        

               f=3Ghz,  k=20π,  λ=0.1m,  pmlwidth=λ,  surface conductance=5S/m 

                   Meshsize=         ,                  (            )  

                  Number of elements =147456,   Number of nodes=74305  

                                                                             

       

 

                                            Figure6.26: Incident field of example1            
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                  Figure6.27: Scattered field magnitude plot of example1, FEM result. 

               Figure6.28: Scattered field magnitude plot of example1,  analytical result. 
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                     Figure6.29: Scattered field phase plot of example1, FEM result. 

 

                     Figure6.30: Scattered field phase plot of example1, analytical result.       
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With the parameters specified in this example, the error between the FEM solution and the 

analytical solution is found to be 

      ∑
|       

 ( )        
 ( )|

 

|      
 ( )|

 

       

   

        

 

Ex2:                      
                                           

               f=3Ghz,  k=20π,  λ=0.1m,  pmlwidth=λ,  surface conductance=5S/m 

                   Meshsize=         ,                  (            )  

                  Number of elements =147456,   Number of nodes=74305  

                                                                             

 

                                           Figure6.31: Incident field of example2   
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                Figure6.32: Scattered field magnitude plot of example2, FEM result.  

 

                Figure6.33: Scattered field magnitude plot of example2, analytical result. 
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                        Figure6.34: Scattered field phase plot of example2,  FEM result. 

 

                        Figure6.35: Scattered field phase plot of example2,  analytical result. 
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Ex3:                      
                                           

               f=3Ghz,  k=20π,  λ=0.1m,  pmlwidth=λ,  surface conductance=5S/m 

                   Meshsize=         ,              
 

 
   (             )  

                  Number of elements =122880,   Number of nodes=61985  

                                                                          

   

 

                                            Figure6.36: Incident field of example3   
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             Figure6.37: Scattered field magnitude plot of example3, FEM result.  

 

                         Figure6.38: Scattered field magnitude plot of example3, analytical result. 
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                  Figure6.39: Scattered field phase plot of example3,  FEM result. 

 

                            Figure6.40: Scattered field phase plot of example3,  analytical result. 
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Ex4:                        
  (              )                                        

                 f=3Ghz,  k=20π,  λ=0.1m,  pmlwidth=λ,  surface conductance=5S/m 

                   Meshsize=         ,              
  

 
   (             )  

                   Number of elements =122880,   Number of nodes=61985  

                                                                            

 

                                      Figure6.41: Incident field of example4           
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               Figure6.42: Scattered field magnitude plot of example4, FEM result. 

 

           Figure6.43: Scattered field magnitude plot of example4,  analytical result. 
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                             Figure6.44: Scattered field phase plot of example4,  FEM result. 

 

                          Figure6.45: Scattered field phase plot of example4,  analytical result. 
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                                                             CHAPTER 7 

 

FAR FIELD ANALYSIS OF THE ROUGH SURFACE SCATTERING PROBLEM 

 

In analyzing the rough surface scattering problem, what we are really interested in is the far 

field scattered field pattern. In this chapter we will analyze the far field rough surface 

scattered field patterns and investigate how the roughness of the surface affects the pattern. 

It is known that as the roughness of the scattering surface increases, the far field scattered 

field pattern becomes more distorted, and after some roughness level the major lobe of the 

far field pattern will be completely lost.  

For a given incidence angle, our aim is to determine the level of roughness, up to which the 

far field pattern still contains the major beam (lobe) in the direction of specular reflection. 

We will also calculate the correlation coefficients of rough surface scattered field patterns 

with that of a flat surface scattered field pattern for a given incidence angle to determine the  

similarity of the two patterns and to detect the level of roughness that causes a significant 

decrease in the correlation coefficient.  

For our analysis we will use a rough surface with a width of     that is symmetrically 

placed around the origin, along the horizontal axis, which will be sufficient for an accurate 

analysis of the far field scattered field pattern as surface widths of more than 10λ does not 

affect the far field pattern significantly. 

For each of the examples and cases given below, the patterns obtained are mean patterns of 

100 measurements and the problem parameters are chosen to be some common values for 

analyzing scattering from sea surfaces at a radar frequency, they are chosen to be as follows 

Frequency: The frequency in all of the examples is set to 3GHz. 

Wavelength: λ=0.1m, since f=3GHz. 

Rough surface conductivity: Sea surface conductivity=σ=5S/m.  

Rough surface width:                                                                                                         

Angle measure: Angle is measured from the positive x axis, that is, 

Ф=   for positive x axis, Ф=    for positive y axis and Ф=     for negative x axis. 

Incident wave: The incident wave is a uniform plane wave and has an amplitude of 100V/m, 

it’s incidence angle will be specified in each example.       

             
  (                  )                                                

                        Note :  Φ is in degrees and phase values are in radians for all plots in this chapter.  
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Far field measurement distance from the origin: Since we want to determine the far field 

pattern, the distance from the origin where the center of the rough surface alignment is, 

must be greater than the Rayleigh distance. 

  
   

 
                 

   

 
                                  

           D=    , therefore   
   

 
                                    

In all of the following examples, the radius of measurement is chosen to be          

from the origin so that our far field assumption is very well satisfied. 

                                      x=ρ cos(Ф)   ,   y=ρ sin(Ф)   ,   ρ=√         

where,           , and the increment of the measurement is          , therefore 

we measure the scattered field values at 1000 different points around the upper semicircle. 

Statistics of the rough surface: The rough surfaces are all gaussian distributed with zero 

mean, their standard deviation values which are given in terms of wavelength, will  

determine their roughness level  and will be specified in each of the examples. The 

probability density function of the surface height is given as 

                              p(h) = 
 

√   
      ( 

(   ) 

    )   , where                         

                              h, is the value of the surface height 

                              σ, is the standard deviation of the surface height 

                              µ , is the mean value of the surface height 

Note that in our case  µ=0, so that p(h) = 
 

√   
      ( 

  

    ).  An example rough surface is 

given in the below figure with µ=0 and σ=0.01m.  

 

                                 Figure7.1: An example rough surface contour  
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Figure7.2: Scattering of a normally incident plane wave from a flat surface, magnitude plot.  

 

      Figure7.3: Scattering of a normally incident plane wave from a flat surface, phase plot. 
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Ex1:  Angle of Incidence=     ,  Surface roughness= 
 

  
   ,  Mean pattern of 100 simulations 

Figure7.4: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

         Figure7.5: Scattering of a normally incident plane wave by a rough surface, phase plot. 
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Ex2:  Angle of Incidence=     ,  Surface roughness= 
 

  
   ,  Mean pattern of 100 simulations 

 

Figure7.6: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

      Figure7.7: Scattering of a normally incident plane wave by a rough surface, phase plot. 
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Ex3:  Angle of Incidence=     ,  Surface roughness= 
 

  
   ,  Mean pattern of 100 simulations 

 

Figure7.8: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

        Figure7.9: Scattering of a normally incident plane wave by a rough surface, phase plot.  
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Ex4:  Angle of Incidence=     ,  Surface roughness= 
 

 
   ,  Mean pattern of 100 simulations 

 

Figure7.10: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

    Figure7.11: Scattering of a normally incident plane wave by a rough surface, phase plot. 
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Ex5:  Angle of Incidence=     ,  Surface roughness= 
 

 
   ,  Mean pattern of 100 simulations 

 

Figure7.12: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

Figure7.13: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 
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Ex6:  Angle of Incidence=     ,  Surface roughness= 
 

 
   ,  Mean pattern of 100 simulations 

 

Figure7.14: Scattering of a normally incident plane wave by a rough surface, magnitude plot. 

 

If the main lobe of the pattern is uncertain, i.e, if there are many grating lobes, it means that 

the pattern does not contain much useful information. For the pattern to contain information 

there should be only one major lobe with a much higher amplitude value than the minor 

lobes. But as the surface roughness increases, we should expect more grating lobes and less 

information. So our purpose is to find the critical surface roughness standard deviation value 

that is the threshold value for the pattern to be detectable.      

 

As we can see in figure 7.13, the main lobe in the specular direction is lost, so if the surface 

roughness is more than  
 

 
 , the incident field direction is not much detectable regardless of 

the roughness level of the surface this observation is almost the same for all incidence 

angles. In addition, various measurements of the correlation coefficient of the pattern that 

occurs when the scattering surface is flat, and the pattern that occurs when the scattering 

surface has a roughness standard deviation of more than  
 

 
 , yields out almost zero. So as the 

surface roughness increases, the flat surface pattern and the rough surface patterns become 

more uncorrelated. However, this is not the case for grazing angles as we will see in the 

upcoming examples. 
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Ex7:  Angle of Incidence=      ,  Surface roughness= 
 

  
  ,  Mean pattern of 100 simulations 

 

                    Figure7.15: Scattering of an obliquely incident plane wave by a rough surface 

Ex8:  Angle of Incidence=      ,  Surface roughness= 
 

  
   ,  Mean pattern of 100 simulations 

 

                    Figure7.16: Scattering of an obliquely incident plane wave by a rough surface 
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Ex9:  Angle of Incidence=      ,  Surface roughness= 
 

 
  ,  Mean pattern of 100 simulations 

 

                  Figure7.17: Scattering of an obliquely incident plane wave by a rough surface 

Ex10:  Angle of Incidence=      ,  Surface roughness= 
 

 
  ,  Mean pattern of 100 simulations 

 

                  Figure7.18: Scattering of an obliquely incident plane wave by a rough surface 
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Ex11:  Angle of Incidence=      ,  Surface roughness= 
 

 
  ,  Mean pattern of 100 simulations 

 

                  Figure7.19: Scattering of an obliquely incident plane wave by a rough surface. 

Ex12:  Angle of Incidence=      ,  Surface roughness= 
 

 
  ,  Mean pattern of 100 simulations   

 

                  Figure7.20: Scattering of an obliquely incident plane wave by a rough surface. 
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Ex13:  Angle of Incidence       , Surface roughness= 
 

  
 , Mean pattern of 100 simulations 

 

                 Figure7.21: Scattering of a plane wave at a grazing angle by a rough surface. 

Ex14:  Angle of Incidence       , Surface roughness= 
 

  
 , Mean pattern of 100 simulations 

 

                 Figure7.22: Scattering of a plane wave at a grazing angle by a rough surface. 

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

 (angle)

|E
z
s
|

 

 

Flat

/20

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

 (angle)

|E
zs

|

 

 

Flat

/10



135 
 

Ex15:  Angle of Incidence       , Surface roughness= 
 

 
 , Mean pattern of 100 simulations 

 

                  Figure7.23: Scattering of a plane wave at a grazing angle by a rough surface. 

Ex16:  Angle of Incidence       , Surface roughness= 
 

 
 , Mean pattern of 100 simulations 

 

                  Figure7.24: Scattering of a plane wave at a grazing angle by a rough surface. 
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Ex17:  Angle of Incidence       , Surface roughness= 
 

 
 , Mean pattern of 100 simulations 

 

                   Figure7.25: Scattering of a plane wave at a grazing angle by a rough surface. 

Ex18:  Angle of Incidence       , Surface roughness= 
 

 
 , Mean pattern of 100 simulations 

 

                    Figure7.26: Scattering of a plane wave at a grazing angle by a rough surface. 
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7.1 Relation of the peak power of the scattered field patterns with surface roughness  

The peak amplitude of the scattered field decreases along the direction of reflection as the 

surface roughness increases. Our purpose is to determine the relation between the peak 

scattered field amplitude decay and the surface roughness. In the literature, there are many 

different formulas relating the amount of decay to the surface roughness, however none of 

them is perfectly accurate and some of them proved to be accurate only for some certain 

roughness levels and incidence angles. The most famous relation of power decay with 

surface roughness is derived by Ament, as, 

      [  (
      (  )

 
)

 

]                           

However, Boithias later claimed that the relation is also depending on the modified bessel 

function of order zero, and modified the formula as 
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      (  )
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]   [ (
      (  )

 
)

 

]                                 

It should be noted that when the bessel function argument is small, Boithias’ Formula is 

equal to Ament’s Formula. The factor    is the roughness standard deviation of a surface. 

We will now calculate and see which of the formulas is more accurate by measuring the peak 

scattered field amplitudes with respect to different surface roughness levels. In addition, we 

will also calculate the correlation coefficient (cor.coef) between the scattered field pattern of 

a flat surface and the scattered field patterns of rough surfaces with different roughness 

levels to check the similarity of the patterns. 
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Table 7.1:List of scattered field peak values and magnitude of the cor.coef  w.r.t  angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Incidence 
   Angle    

       Surface                 
    Roughness 

Scattered field 
Peak Amplitude 

 
(
 
 

      )
 

                                            2.8563                   1 

                                            2.8321              0.9998 

                                            2.7956              0.9993 

                                           2.7760              0.9986 

                                           2.7308              0.9932 

                                           2.7069              0.9874 

                                           2.6944              0.9751 

                                           2.7161              0.9477 

                                         3.2480              0.8148 

                                         4.8616                   1 

                                         4.8073              0.9999  

                                         4.6435              0.9984      

                                        4.5258              0.9970      

                                        4.1064              0.9931 

                                        3.6886              0.9895      

                                        2.9747              0.9734      

                                        2.0006              0.9286     

                                      0.4717              0.4647     

                                         8.6796              0.9999     

                                         8.4580              0.9996     

                                         7.8537              0.9982     

                                       7.3928              0.9974     

                                         5.6561              0.9873     

                                         4.3337              0.9714     

                                         2.9879              0.9429     

                                         0.8482              0.6853     

                                       0.5210              0.2399     

                                         11.5215              0.9998     

                                         10.9627              0.9993     

                                         9.4086              0.9953     

                                        8.5308              0.9948     

                                        4.8232              0.9662     

                                        3.4000              0.9430     

                                        1.2399              0.7574     

                                        0.4556              0.1459     

                                      0.3999              0.1525    

                                         13.3635              0.9997     

                                         12.2927              0.9990     

                                         9.7435              0.9940     

                                        7.9050              0.9863     

                                        3.5485              0.9206     

                                        1.3707              0.7063     

                                        0.4537              0.3401     

                                        0.3767              0.1481     

                                      0.6735              0.2035     



139 
 

 

 

 

 

 

 

 

 

 

 

                 

                                                         Table7.1 (continued)    

 

Note that   
(
 

 
      )

  i.e the correlation coefficient of the scattered field patterns of a rough 

surface with a roughness standard deviation value of  
 

 
  and a flat surface for a given 

incidence angle is actually a complex value. What we are interested in is it’s magnitude 

value, therefore it’s magnitude values are given in Table7.1.  

In order to see whether the scattered field peak loss fits to the Ament’s Formula or Boithias 

formula, we should plot the scattered field peak values versus the standard deviation of 

surface roughness for each incidence angle using Table7.1. 

It is also important to see the correlation of a rough surface scattered field pattern with that 

of a flat surface, given an incidence angle. The correlation coefficient of rough surface 

scattered field patterns with a flat surface is expected to decrease as surface roughness 

increases. For each incidence angle, we should calculate and plot the correlation coefficient 

magnitude of rough surface scattered field patterns with a flat surface, to have a better 

understanding of the pattern change with respect to surface roughness. 

 

 

 

 

 

 

                                         14.3587              0.9997     

                                         12.9495              0.9984     

                                         9.3382              0.9921     

                                        7.0680              0.9806     

                                        2.2844              0.8607     

                                        0.9570              0.5119     

                                        0.7117              0.0783     

                                        0.4327              0.1277     

                                      0.6122              0.0460    

                                        14.6786              0.9999     

                                        13.0730              0.9982     

                                        8.9484              0.9921     

                                       7.0290              0.9812     

                                       2.2409              0.8081     

                                       0.7158              0.3398     

                                       0.4812              0.1085     

                                       0.5383              0.1166     

                                     0.7828              0.0754     
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Case 1: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                         Figure7.27: Peak power decay w.r.t surface roughness 

 

                             Figure7.28: Correlation coefficient w.r.t surface roughness 
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Case 2: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                               Figure7.29: Peak power decay w.r.t surface roughness 

 

                              Figure7.30: Correlation coefficient w.r.t surface roughness 
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Case 3: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                                Figure7.31: Peak power decay w.r.t surface roughness 

 

                               Figure7.32: Correlation coefficient w.r.t surface roughness 
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Case 4: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                                Figure7.33: Peak power decay w.r.t surface roughness 

 

                                Figure7.34: Correlation coefficient w.r.t surface roughness 
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Case 5: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                                 Figure7.35: Peak power decay w.r.t surface roughness 

 

                                Figure7.36: Correlation coefficient w.r.t surface roughness 
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Case 6: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

                                 Figure7.37: Peak power decay w.r.t surface roughness 

 

                               Figure7.38: Correlation coefficient w.r.t surface roughness 
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Case 7: Angle of incidence        ,   Peak value of the scattered field = L( ) 

 

                                 Figure7.39: Peak power decay w.r.t surface roughness 

 

                               Figure7.40: Correlation coefficient w.r.t surface roughness 
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All of the investigated patterns show that after a surface roughness of  
 

 
 , the major lobe of 

the pattern which is expected to be in the direction of specular reflection, is shifted to another 

direction and it’s amplitude is very sharply reduced. Though this is usually not the case for 

grazing angles of incidence, an incident field at the grazing angle will produce a scattered 

field whose pattern is not much affected by the roughness of the surface. If the angle of 

incidence is more than about    , and if the roughness standard deviation is more than  ,   

the major beam of the scattered field in the specular reflection direction which is      , will 

be shifted to another direction and it’s amplitude will be sharply reduced such that it cannot 

be distinguished from the minor lobes of the pattern, therefore analyzing a rough surface 

scattering problem for surfaces with roughness standard deviation more than  , only has 

meaning if the incidence angle is small enough to be considered as a grazing angle.  

As the surface roughness increases, the correlation coefficient of the flat and rough surface 

scattered field patterns decreases as expected. Some small amount of random increase may 

occur due to randomness of the surface only after the surface becomes very rough. 

For incident fields at a grazing angle, the surface roughness does not affect the scattered field 

pattern very much, however this is valid up to some roughness level, let us further 

investigate, up to which roughness level and incidence angle, the scattered field pattern is not 

distorted for grazing incidence angles. This time we increase the surface roughness standard 

deviation value up to 5  to have a better understanding of the effect of surface roughness on 

pattern distortion of grazingly incident fields. Calculating the correlation coefficient between 

flat and rough surface patterns is an effective way of measuring distortion and it’s graph is 

indicated for each case. 

Case 8: Angle of incidence           ,   Peak value of the scattered field = L( ) 

 

        Figure7.41: Correlation coefficient w.r.t surface roughness (grazing angle incidence) 
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    Case 9: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

          Figure7.42: Correlation coefficient w.r.t surface roughness (grazing angle incidence) 

    Case 10: Angle of incidence         ,   Peak value of the scattered field = L( ) 

 

          Figure7.43: Correlation coefficient w.r.t surface roughness (grazing angle incidence) 
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The Boithias’ formula seems a little more accurate than Ament’s formula for   

             , but the Ament’s formula is a little more accurate than the Boithias’ 

formula for               , however the two formulas yield different amount of errors 

for different angles of incidence, so there is no definite answer of which of them should be 

used instead of the other. Usually both formulas yield an accurate result, so either of them 

can be used. As the roughness standard deviation value approaches and goes beyond   , the 

numerical results converges to the Boithias’ formula, however, beyond   the rough surface 

problem is not worth to investigate as the pattern is almost completely distorted and the 

major lobe is lost, this can be verified by checking the correlation coefficient with the pattern 

of a flat surface. Therefore convergence of the numerical results to the Boithias’ formula 

does not have much importance for us.   

Summary: 

- As the surface roughness increases the peak value of the pattern’s major lobe is reduced. 

 

- A rough surface scattered field pattern is usually completely distorted after a roughness  

  standard deviation value of   . And will not bear much information. 

 

-Usually both the Ament’s formula and the Boithias’ formula can be used for approximate   

 analytical results, their accuracy depends on the angle of incidence and the roughness of  

 the surface and either of them may yield greater error than the other depending on the 

 surface roughness and the angle of incidence.  

 

- Correlation coefficients of rough surface scattered field patterns with that of a flat surface 

  scattered field pattern, both at a specific incidence angle, can be calculated to check the 

  distortion in the rough surface scattered field pattern. Usually a correlation coefficient 

  below 0.3 means that the pattern is completely distorted, and a correlation coefficient value 

  below 0.45 means that the pattern is seriously distorted. Above a correlation coefficient 

  value of 0.7 there is not a serious distortion in the pattern.   

 

-When the incident wave comes at a grazing angle, the scattered field pattern will not be 

 significantly affected from the roughness of the surface, unless the change in surface  

 roughness is large.  
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                                                       CHAPTER 8 

 

                                               CONCLUSION 

 

The roughness of a given surface has a significant effect on the far field pattern of the 

scattered field. As the surface roughness increases, the scattered field pattern becomes more 

distorted. For small surface roughness values, the shape of the scattered field pattern is not 

affected considerably but the peak value of the pattern experiences a considerable decrease. 

For higher levels of surface roughness, the scattered field pattern is almost completely 

distorted and the actual major lobe of the pattern that exists for the flat surface scattering 

case is totally diminished. It is important to determine the critical roughness levels for each 

incidence angle that causes complete distortion in the pattern. We have done this job in the 

last chapter and tabulated the results for different roughness levels and for each incidence 

angle. This table can be expanded with the expansion of surface roughness values and 

incidence angle values into a much greater set of values. But the included results in this 

thesis is enough to give a valuable insight to the reader about the topic.  

All of the results obtained in chapter 7 are the mean results of 100 different measurements. 

Large number of measurements is necessary to provide certainty since the rough surfaces are 

all randomly generated. The certainty obtained in the results is a direct consequence of the 

central limit theorem. We should find the mean pattern of many different scattered field 

patterns in the far field to increase accuracy in measurements. 

As the surface roughness increases, the peak value of the scattered field pattern decreases. 

This relation was already proven and analyzed by Ament and Boithias, but their useful 

mathematical formulations about this relation were not exact and can be erroneous for some 

angles of incidence. In this thesis we have checked the accuracy of these formulations and 

we have stated our own computed values. Our results are compared with these two formulas.        

Based on the results and figures given in chapter 7, it is not clear to say whether Ament’s 

formula or Boithias’ formula is more accurate. Both of them become more accurate with 

respect to each other for different angles of incidence and for different surface roughness 

values. In general, both of the formulas yield accurate results for lower surface roughness 

values. However when the standard deviation value of the surface roughness becomes 

comparable to the wavelength, the accuracy of these two formulas may decrease and their 

accuracy can be examined with the numerical results given in this thesis. There is no point in 

comparing the two formulas for surface roughness standard deviation values of more than a 

wavelength (λ) as the scattered field pattern becomes completely distorted for such 

roughness levels and bears almost no information. 

For the grazing angle incidence case, the scattered field pattern is not much affected by the 

roughness of the surface up to a standard deviation value of surface roughness of λ .  

Above this level of roughness however, the scattered field pattern starts to distort and for 

roughness standard deviation values of 2λ or 3λ, the pattern becomes almost completely 
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distorted. For the grazing angle incidence case, the distortion rate is the smallest. The 

distortion rate is the largest in the normal incidence case. The table given in chapter 7 

indicates the amount of distortion for each roughness level in the grazing angle case and for 

other cases as well.  

The Ament’s formula and the Boithias’ formula are both not very accurate for the grazing 

angle incidence case and the scattered field pattern is not very much affected by the surface 

roughness for the grazing angle incidence case. The case of grazing angle incidence can be 

seperately investigated in detail in the future. 

As a measure of distortion in the scattered field pattern we have used the correlation 

coefficient of a rough surface scattered field pattern with a flat surface scattered field pattern. 

For different surface roughness values, we have checked the correlation coefficient value and 

we have concluded that above a correlation coefficient value of 0.7 the pattern is not 

seriously distorted. But a correlation coefficient value below 0.45 indicates a serious 

distortion in the scattered field pattern. If the correlation coefficient value is above 0.5, then 

the major lobe of the scattered field pattern and the angle of incidence is usually detectable. 

If the correlation coefficient value is below 0.35, then the major lobe of the scattered field 

pattern and the angle of incidence is usually not detectable. Measuring the correlation 

coefficient of rough and flat surface scattered field patterns is a useful and accurate method 

for checking pattern distortion. But some other methods may also be used to measure far 

field pattern distortion. 
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