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ABSTRACT

ON THE TRACE BASED PUBLIC KEY CRYPTOSYSTEMS OVER FINITE
FIELDS

Ashraf, Muhammad

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

Co-Supervisor : Dr. Barış Bülent Kırlar

August 2013, 104 pages

In this thesis, the trace based Public Key Cryptosystems (PKC) are explored from
theoretical and implementation point of view. We will introduce cryptographic
protocols for the ones they are not discussed yet. We introduce improved trace
based exponentiation algorithm for fifth degree recursive relation.

The Discrete Log Problem (DLP), that is computing x, given y = αx and
< α >= G ⊂ F∗q, based Public Key Cryptosystems (PKC) are being studied
since late 1970’s. Such development of PKC was possible because of the trapdoor
function f : Z` → G =< α >⊂ F∗q, f(m) = αm, is a group homomorphism.
Due to this fact, we have Diffie Hellman (DH) type key exchange, ElGamal type
message encryption, and Nyberg Rueppel type digital signature protocols. The
cryptosystems based on the trapdoor f(m) = αm are well understood and com-
plete. However, there is another trapdoor function f : Z` → G, f(m)→ Tr(αm),
where G =< α >⊂ F∗

qk
, k ≥ 2, which needs more attention from cryptographic

protocols point of view. There are some works for a more efficient algorithm
to compute f(m) = Tr(αm) and not wondering about the protocols. There are
also some works dealing with an efficient algorithm to compute Tr(αm) as well
as discussing the cryptographic protocols. In this thesis these works are studied
along with introduction of some protocols which are not discussed earlier and
trace based exponentiation for fifth degree recursive relation is improved.
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ÖZ

SONLU CISIMLER ÜZERINDE IZ TABANLI AÇIK ANAHTARLI
KRIPTOSISTEMLER ÜZERINE

Ashraf, Muhammad

Doktora, Kriptografi

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Dr. Barış Bülent Kırlar

Ağustos, 2013, 104 sayfa

Bu tezde, iz tabanli Açik Anahtarli Kriptosistemler (AAK), teorik ve uygulama
bakis açilarindan incelenmistir. Henüz üzerinde çok durulmamis olanlar için
de kriptografik protokoller tanitilmistir. Besinci dereceden özyinelemeli bagin-
tilar için, iyilestirilmis, iz tabanli üs alma yöntemi tanitacagiz. Ayrik Logaritma
Problemi (yani verilen y = αx ve < α >= G ⊂ F∗q degerleri için x’i hesaplama
problemi) tabanli Açik Anahtarli Kriptosistemler 1970’lerden beri çalisilmaktadir.
Bu AAK çalismalarini mümkün kilan arka kapili fonksiyon f : Z` → G =<
α >⊂ F∗q, f(m) = αm’in bir grup homomorfizmasi olmasi olmustur. Bunun
sayesinde, Diffie-Hellman (DH) tipi anahtar degisim, ElGamal tipi mesaj sifreleme
ve Nyberg-Rueppel tipi sayisal imza protokolleri mevcuttur. Arka kapili f(m) =
αm fonksiyonu üzerine kurulu kriptosistemler iyi anlasilmis ve eksiksizdir. Buna
ragmen, f : Z` → G, f(m) → Tr(αm), G =< α >⊂ F∗

qk
, k ≥ 2 seklinde, krip-

tografik bakis açisina göre daha fazla önemsenmesi gereken baska bir arka kapili
fonksiyon daha vardir. Literatürde, f(m) = Tr(αm)’i hesaplamak için etkili algo-
ritmalar üzerine çalismalar vardir ancak bunlar protokolleri önemsememektedir.
Ayrica, Tr(αm)’i etkili bir sekilde hesaplamak için ugrasan ve protokolleri de
gözönüne alan çalismalar da mevcuttur. Bu tezde, bu çalismalarla birlikte önceden
üzerinde durulmamis bazi protokoller de çalisilmistir. Ve Besinci dereceden özyinelemeli
bagintilar için iz tabanli üs alma yöntemi iyilestirilmistir.
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Anahtar Kelimeler : Açik Anahtarli Kriptosistemler, Ayrik Logaritma Problemi,
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CHAPTER 1

INTRODUCTION

The Discrete Log Problem (DLP), that is computing x, given y = αx and
< α >= G ⊂ F∗q, based Public Key Cryptosystems (PKC) are being studied
since late 1970’s. Such development of PKC was possible because of the trapdoor
function f : Z` → G =< α >⊂ F∗q, f(m) = αm is a group homomorphism.
Due to this fact we have; Diffie Hellman (DH) type key exchange, ElGamal type
message encryption, and Nyberg Rueppel type digital signature protocols. The
cryptosystems based on the trapdoor f(m) = αm are well understood and com-
plete. However, there is another trapdoor function f : Z` → G, f(m)→ Tr(αm),
where G =< α >⊂ F∗

qk
, k ≥ 2, Tr is the trace function from Fqk/Fq, which

needs more attention of the researchers from cryptographic protocols point of
view. In this case although f is a computable, but it is not clear how to pro-
duce protocols such as Diffie Hellman type key exchange, ElGamal type message
encryption, and Nyberg Rueppel type digital signature algorithm, in general. It
would be better, of course if we can find more efficient algorithm than repeated
squaring and trace to compute f(m) = Tr(αm) together with these protocols.
In the literature we see some works for a more efficient algorithm to compute
f(m) = Tr(αm) and not wondering about the protocols. We also see some works
dealing with an efficient algorithm to compute Tr(αm) as well as discussing the
cryptographic protocols. These works are presented by Smith, Lennon and Skin-
ner (LUC-PKC) in 1994 [71, 72], L.Horn and G.Gong, (GH-PKC) in 1998 [30, 31],
A.K.Lenstra and E.R.Verheul (XTR-PKC) in 2000 [47, 48, 16] and K.Giuliani,
G.Gong (GG-PKC) in 2003 [27] and Koray Karabina (KK-PKC) in 2009 [41, 42].

In the literature there are also so called torus based cryptosystems introduced by
K.Rubin and A.Silverberg in 2003 [64]. These systems depend on the parametric
representation of the group Tk(Fq) ∼= Gq,k =< α >⊂ F∗

qk
and Tk(Fq) rather than

the efficient algorithm to compute Tr(αm), where Tk(Fq) is torus consisting of
the elements in Fqk of norm 1 over every subfield.

The aim of this thesis is to study the so called trace based cryptography studied
in the literature and introduce cryptographic protocols for the ones they are not
discussed in the literature. As a result of this study we introduced GH-ElGamal
Encryption scheme, GH-NR-DSA, modified XTR-ElGamal encryption scheme,
GG-ElGamal Encryption scheme, GG-NR-DSA and KK-ElGamal type encryp-
tion schemes are added to the literature. The semantic security of encryption

1



schemes is ensured for the trace based cryptosystems. The key exchange security
depends upon the solving Discrete Logarithm Problem over finite field extensions
where as semantic security of encryption schemes depends upon splitting z ∈ Fq
into two numbers (X, Y ) ∈ F2

q such that z = X +Y where se 7→ X and s−e 7→ Y .
Moreover, e ∈ Z` and Zell is chosen large enough so that the brute force at-
tack becomes infeasible. The number of such (X, Y ) are equal to q−1

2
. Now we

introduce the general terminologies in cryptography.

The cryptography has made its way into all sphere of modern life. The main appli-
cations include but not limited to Internet, banking sector, e-commerce, security
agencies, and so on. In fact, as Internet and computers are becoming necessity
of modern life so is cryptography receiving attention. Therefore, cryptography
has an important role in present sciences and may become highly technical and
integral part of future sciences. The cryptography is divided into two branches
symmetric key cryptography and asymmetric key cryptography (public key cryp-
tography).

(i) Symmetric Key Cryptography : The sender and recipient use same key
for both encryption and decryption.

(ii) Asymmetric Key Cryptography : The sender and recipient use different
keys to agree on a shared secret.

Although symmetric key cryptography is generally used for large portion of data
but still asymmetric key is used to securely agree on same symmetric key. Another
advantage of the public key cryptography is its ability to provide confidentiality,
integrity and authenticity simultaneously through encryption and digital signa-
tures. Its importance may be measured from the fact that in many countries
digital signatures are considered legal. The PKC with all its advantages has
inherited expensive arithmetic operations. Which apparently lure away its use-
fulness. Therefore a large portion of research in PKC is dedicated to speeding up
arithmetic operations, without compromising its security.
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CHAPTER 2

PUBLIC KEY CRYPTOSYSTEMS BASED OVER
DISCRETE LOGARITHM PROBLEM

Since the introduction of hardness of intractability of discrete logarithm by Diffie
and Hellman in late 1970 [22] there have been many efforts to improve efficiency
of cryptosystems based upon this intractability. In literature there are efforts to
discover new one-way functions such as integer factoring, knapsack, lattices, braid
groups, coding theory and non-commutative groups. Despite all these systems,
the modern PKC are based on hardness of either integer factorization [63] or
Discrete Logarithm Problem [22]. In this chapter, we are briefly dealing with
DLP, its variants, attacks on DLP and various PKC based over DLP. Before
mentioning these subjects, we first define finite fields.

2.1 Finite Fields

Let q = pr, where p is a prime and r ∈ Z+. For every such prime and r there
exists a unique (up to isomorphism) finite field with q elements and denoted by
Fq, which can be constructed by the following methods:

(i) For every prime p, a finite field Fp ∼= Zp = {0, 1, · · · , p−1} can constructed
by integers modulo p. The operations such as addition and multiplication
can be carried out usually and then result can be reduced by p. However,
the inversion is carried out by using extended Euclidean algorithm.

(ii) Let p be a prime and r ∈ Z+ then there exists an irreducible monic poly-
nomial f(x) over Fp of degree r such that the simple algebraic extension
Fp[x]/f(x) of Fp can be identified by Fp(β) ⊂ F̄, where F̄ is an algebraic
extension and β is a root of f(x). The Fp(β) ∼= Fpr has exactly pr elements

uniquely represented by
∑r−1

i=0 ciβ
i, ci ∈ Fp. The arithmetic operations are

carried out using polynomial modulo f(x)

Definition 2.1 (Trace). Let Fqk be kth degree extension of Fq and α ∈ Fqk , then
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trace of α over Fq is given as:

Tr : Fqk → Fq,

T r(α) =
∑
i=0

k − 1αq
i

.

(i) Tr(α + β) = Tr(α) + Tr(β) where α, β ∈ Fqk .

(ii) Tr(uα) = uTr(α), and Tr(u) = ku for u ∈ Fq.

Notations: Let G be a subgroup of a multiplicative finite field F∗q of q − 1
elements, α be a generator of G and order of α that is ord(α) = `|(q − 1) such
that G =< α >⊂ F∗q, where q is a prime power. Let Fqk be a finite field extension
of Fq of degree k > 1 ∈ Z+ and Tr : Fqk −→ Fq. Let Tr(α) = s1 and Tr(αe) = se.

2.2 Discrete Logarithm Problem (DLP)

The DLP is defined as, computing x, given y = αx and G =< α >⊂ F∗q. Note that
computing y, given x and α is straight forward and well defined exponentiation i.e;

αx =

x︷ ︸︸ ︷
αα, · · · , α, but computing x, given y = αx is hard, hence the one-wayness

of discrete logarithm. The development of Public Key Cryptosystems based on
this one-wayness was possible because of the trapdoor function, f : Z` → G =<
α >⊂ F∗q, f(m) = αm is a group homomorphism. Along with DLP we also take
care of the following problems for PKC over finite fields.

Definition 2.2 (Computational Diffie Hellman Problem (CDHP)). : The CDHP
is defined as, given α, αm, αn determine αmn, for m,n ∈ Z.

Definition 2.3 (Decisional Diffie Hellman Problem (DDHP)). : The DDHP is
defined as, given α, αm, αn, αmn and αr such that αr 6= αmn, for random r ∈ Z,
determine αmn or αr is the solution to the DHP with αm and αn.

Based on DLP, and DHP following are three basic cryptographic protocols which
will be focused in this thesis:

(i) Diffie-Hellman type key agreement,

(ii) ElGamal type encryption scheme,

(iii) Nyberg-Rueppel type Digital Signature scheme.

Let Tr(α) = s1 and Tr(αm) = sm, where Tr is trace function from Fqk/Fq. Then,

Definition 2.4 (k-Trace-DLP). Given s1 and se, the problem of finding e > 1 ∈ Z
with is called the kth-Trace-Based-Discrete Logarithm Problem (k-Trace-DLP)
or alternatively kth-order LFSR-Based Discrete Logarithm Problem (k-LFSR-
DLP), where LFSR means Linear Feedback Shift Register.
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Definition 2.5 (k-Trace-DHP). Given s1, se and sr, the problem of determin-
ing ser is called the kth-Trace-Based-Diffie-Hellman Problem (k-Trace-DHP) or
alternatively kth-order LFSR-Based Diffie-Hellman Problem (k-LFSR-DHP).

Definition 2.6 (k-Trace-DDHP). Given s1, se, sr, ser and sc, where c is a
randomly chosen integer, the problem of determining the solution of k-Trace-
DHP whether ser or sc is called the kth-Trace-Based-Decisional Diffie-Hellman
Problem(k-Trace-DDHP) or alternatively kth-order LFSR-Based Decisional Diffie-
Hellman Problem (3-LFSR-DDHP).

2.3 Attacks on DLP

To solve DLP one has the option to compute all the values of αi for 1 < i < G
and compare with given value y = αx, but this is inefficient and becomes com-
putationally infeasible with growing values of G. In literature we see there are
algorithms which can solve DLP efficiently. Therefore, one should be careful in
selecting G to be large enough to avoid exploitation by these algorithms. Follow-
ing are the main algorithms which can solve DLP efficiently in sub-exponential
time:

(i) Baby-Step Jiant-Step: This algorithm is deterministic and is introduced

by Shanks [67]. It solves the DLP with time complexity O(
√
`).

(ii) Pollard’s ρ and λ Method: These are probabilistic methods. The ρ

method can solve DLP with complexity of O(
√
`) [61, 62]. The Pollard’s

λ method can solve DLP with complexity of O(
√
γ), where γ is the upper

bound of exponent and mostly smaller than ` and do not require prior
knowledge of the group order `.

(iii) Index Calculus Method: The Index Calculus method [33] is an other
sub-exponential time algorithm which can solve DLP with time complexity
of the order O(e

√
2 log ` log log `).

2.4 Finite Fields Based PKC

The general mathematical structure of the PKCs based on finite field and crypto-
graphic protocols such as Key Exchange, Encryption scheme, and Nyberg Ruep-
pel Digital signature algorithm are basic building blocks for the PKC. Also the
PKC is considered practical if we have cryptographic protocols and efficient al-
gorithm for computations involved in these protocols. Keeping this in focus, we
discuss DLP based PKC over subgroup G of a finite field.
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2.4.1 DLP Based PKC over G

Let,

G =< α >⊂ F∗q, q = pr, i.e; prime power

G =< α >∼= Z`, ord(α) = `

f : Z` → G; with f(m) = αm;

The f is a computable trapdoor, and polynomial time algorithm is as follows.

Algorithm 1 To Compute f(m) = αm ∈ G =< α >⊂ F∗q
Require: α ∈ Fq and m =

∑l−1
j=0 εj2

j ∈ Z, with εj = {0, 1}, εl−1 = 1
Ensure: αm

β ← 1
for j ← l − 1 to 0 do

β ← β · β
if εj = 1 then

β ← β · α
end if

end for
return (β)

The above algorithm performs t squaring and wt(m) − 1 multiplications by α,
where t = blog2mc and wt(m) is the number of 1’s in the binary representation
of m.

For the DLP on G such that given y ∈ G, find f−1(y), one has in general Polard’s

Rho(O(e
√

log `)) and Index Calculus (O(e
√

2 log ` log log `)) algorithms which are
sub-exponential time. By choosing the order G a large prime ` one can avoid
these algorithms so that f becomes one-way function on F∗q. With this setup now
we give the following cryptographic protocols:

2.4.2 Diffie-Hellman Key Exchange

1. System Public Parameters: G =< α >⊂ F∗q; ord(α) = `.

2. A’s public key PA = αa, and private key a ∈ Z`.

3. B’s public key PB = αb, and private key b ∈ Z`.

4. Their common key, K = PAB = PBA = αab:

A→ PAB = (PB)a = αab,

B→ PBA = (PA)b = αab.
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2.4.3 ElGamal Encryption Scheme

1. System Public Parameters: G =< α >⊂ F∗q; ord(α) = `.

2. A selects a random x ∈ Z`. A’s public key: h = αx, and private key =x.

3. Assumption : message M ∈ G.

4. Encryption : B encrypts message M as follows:

(i) Chooses a random r ∈ Z`, then computes c1 = αr, s = hr and c2 =
Ms.

(ii) Sends cipher text C = {c1, c2} ∈ G2 to A.

5. Decryption : A decrypts C ∈ G2 based upon his private key x as follows;

c−x1 c2 = α−xrMhr = Mαxrα−xr = M.

2.4.4 Nyberg-Rueppel Digital Signature Algorithm

1. System Public Parameters: G =< α >⊂ F∗q, ord(α) = `, and bijection
map f : G −→ Z`.

2. A’s public key PA = αx, and private key: x ∈ Z.

3. Assumption: message M ∈ G.

4. Signature : A signs the message M ∈ G as follows:

(i) Chooses a random k ∈ Z`.
(ii) Computes (r = Mα−k and s = k−1(1− f(r)x) (mod `).

(iii) Signature =(r, s) ∈ (G× Z`) and sends (M, r, s) to B.

5. Verification: B verifies by computing (PA)−f(r)rs = αsk−1−skM s = M sα−1.

On the DLP based PKC, the main point is the trapdoor function:

G =< α >⊂ F∗q, ord(α) = `,

f : Z` −→ F∗q, f(m) = αm.

Note that the trapdoor function f is a group homomorphism; f(m + k) =
f(m)f(k), and one should be careful to choose < α > G ⊂ F∗q to avoid algo-
rithms to attack DLP on G and choose, if possible, the smallest size G such that
DLP on G is computationally equivalent to DLP on F∗q.
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2.5 Elliptic Curve Based PKC

Since the advent of elliptic curve cryptosystems, independently by Miller (1985)
and Koblitz (1987), arithmetic of elliptic curves have been in focus for crypto-
graphic researchers. Since then, many methods to speed up the arithmetic of
elliptic curves have been proposed. These methods can be divided into four dif-
ferent categories:

(i) Use optimum underlying finite field extensions,

(ii) Use optimum coordinates for representation of group elements,

(iii) Use efficient arithmetic methods,

(iv) Use alternate models of elliptic curves.

An elliptic curve in affine coordinates of simplified Weierstrass form over the finite
field Fq with char(Fq) 6= 2, 3 is defined by

E : y2 = x3 + ax+ b, (2.1)

where a, b ∈ Fq. If we apply the process of homogenization with x = X/Z and
y = Y/Z for Z 6= 0 to (2.1), we obtain the homogeneous equation in projective
coordinates given by

E : Y 2Z = X3 + aXZ2 + bZ3, (2.2)

where a, b ∈ F (the algebraic closure of F). The curve E has exactly one point
with coordinate Z equal to zero, namely (0 : 1 : 0). This point is so called point at
infinity and denoted by∞. The curve E has an additive group structure together
with the identity element ∞.

Figure 2.1: Addition and doubling over Fq

The geometric interpretation of the addition law is given by the following way
using divisor theory from algebraic geometry [15]: Let P,Q ∈ E. Suppose the
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line between P and Q (tangent line if P = Q) has an equation L(x, y) = 0. By
Bezout’s theorem, this line L intersects E at a third point S = (xS, yS) in the
projective space. Then the divisor of L is div(L) = (P ) + (Q) + (S)− 3(∞). The
vertical line V (x) = (x− xS) passes through the points S and R = P +Q. Then
div(V ) = (S) + (R)− 2(∞). Therefore, the equation R = P +Q corresponds to
div(L/V ) = (P ) + (Q)− (R)− (∞).

This observation allows us to write down the explicit formula for point addition
and point doubling of the curve E as follows: Let P = (x1, y1) and Q = (x2, y2)
be the points on E with P,Q 6=∞ and Q 6= −P . Then

• If P 6= Q, then P +Q = R = (x3, y3), where
x3 = (

y2 − y1

x2 − x1

)2 − x1 − x2

y3 = (
y2 − y1

x2 − x1

)(x1 − x3)− y1

• If P = Q, then 2P = R = (x3, y3), where
x3 = (

3x2
1 − a
2y1

)2 − 2x1

y3 = (
3x2

1 − a
2y1

)(x1 − x3)− y1

Formulas that do not involve field inversions for adding and doubling points in
projective coordinates can be derived by first converting the points to affine co-
ordinates, then using the formulae above to add the affine points, and finally
clearing denominators. The computational cost of point addition and point dou-
bling in projective coordinates are 12M + 2S and 5M + 6S, respectively. Un-
til today, much more point representations were used in simplified Weierstrass
form of elliptic curves for fast computations, such as Jacobian, Chudnovsky and
mixed coordinates. The mixed addition formulae can also be obtained by re-
placing Z2 = 1 in this form that reduces the total costs to 9M + 2S. In 2002,
Brier and Joye [17] obtained the unified point addition formulae for simplified
Weierstrass curves in projective coordinates such that the computational cost is
11M + 5S + 1D.

Here, we enumerate the cost of field operations in terms of multiplication M,
squaring S, multiplication by a constant D, and addition/subtraction a in Fq.
With this preamble now we define Elliptic Curve DLP and give Public Key Cryp-
tosystem protocols.

Definition 2.7. Keeping the notations above, the Elliptic Curve DLP (ECDLP)
is to compute n, given P and Q such that Q = nP , where n ∈ Z.

For Elliptic Curve Cryptography (ECC), immediately, question arises that why
Elliptic Curves are used in cryptographic applications? The simple and straight
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forward answer is that ECC provide security equivalent to classical systems based
on finite fields while using fever bits. The fever bits mean implementation will re-
quire smaller chip size, lesser power consumption and with comparable execution
time. Following protocols are discussed here:

(i) Elliptic Curve (EC) Based Diffie-Hellman Key Exchange

(ii) EC Based ElGamal Public Key Encryption

(iii) EC Based ElGamal Digital Signatures

2.5.1 EC Based Diffie-Hellman Key Exchange

Alice and Bob agrees on E(Fq) such that the discrete log problem (DLP) is hard
in E(Fq). They also agree on a point P ∈ E(Fq) such that the group generated
by the P has large order usually a prime.

(i) Public Parameters: E(Fq), P ∈ E(Fq).

(ii) Private Keys of Alice and Bob: random m, and n respectively.

(iii) Alice computes Pm = mP , and sends to Bob.

(iv) Bob computes Pn = nP , and sends to Alice.

(v) Alice and Bob compute mPn and nPm respectively. In other words both
computes same key Q = mnP without knowing the secret information of
each other.

2.5.2 EC Based ElGamal Public Key Encryption

Let Alice wants to send message M to Bob.

1. System Public Parameters: An Elliptic Curve E(Fq) and P such that
the DLP is hard.

2. Bob’s Public Key: Q = mP .

3. Bob’s Private Key: Random positive integer m.

4. Encryption: To encrypt message M for Bob Alice does the following:

(i) Acquires Bob’s public key and expresses M as a point on E(Fq).
(ii) Chooses secret random integer r, computes M1 = rP and M2 = M +

rQ and sends M1,M2 to Bob.

5. Decryption: Bob retrieve M form M1 and M2 by using his private key m
by computing M = M2 −mM1.
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2.5.3 EC Based ElGamal Digital Signature

1. System Public Parameters: E(Fq), P ∈ E(Fq), ord(P ) = `, f :
E(Fq)→ Z`, Q = rP , where random r ∈ Z` is Alice’s Private key .

2. Signatures: To sign message M Alice does the following:

(i) Represent M as a point on E(Fq)
(ii) Choose random k ∈ Z` such that gcd(k, `) = 1 and compute R = kP .

(iii) Compute s = k−1(M − rf(R)) (mod `). The signatures are (M,R, s).

3. Verification: Bob verifies Alice’s signature by computing:
V1 = f(R)Q+ sR, V2 = MP . Bob accepts if V1 = V2.

Why it works? V1 = f(R)Q + sR = f(R)rP + k−1(M − rf(R))kP =
f(R)rP +MP − f(R)rP = MP = V2.

2.6 Non-Singular Circulant Matrices Based PKC

Until 2010, it was believed and showed by Menezes and Wu [54] that working with
DLP in a group of non singular matrices over finite fields do not offer advantage
over working with DLP over finite fields. A. Mahalanobis showed in 2010 [52]
showed that working with DLP in group of non singular circulant matrices over
finite fields of characteristic 2 offer better performance as compared with DLP
over finite fields and comparable performance when compared with elliptic curve
based PKC.

Definition 2.8. The DLP in group on non singular matrices is, given non-

singular k × k matrix D and D̂ = Dr over Fq, compute r ∈ Z.

A.Menezes and Wu in [54] exploited the fact that characteristic polynomial gD(x)

of D is nothing but gD(x) =
∏k−1

i=0 (x− αi), where αi ∈ Fqk are eigenvalues of D

and characteristic polynomial gD̂(x) of D̂ is nothing but gD̂(x) =
∏k−1

i=0 (x − βi),
where βi ∈ Fqk are eigenvalues of D̂. To solve DLP in such cases one has solve
DLP for eigenvalues and then apply Chinese Remainder Theorem (CRT). If k is
large enough and gD(x) is irreducible then it gives us nice security of Fqk−1 but
matrix multiplication becomes expensive as compared with working in Fqk . A.
Mahalanobis introduced in [53] PKC based on non singular circulant matrices
over finite fields of characteristic 2 with following properties are efficient.

(i) The circulant matrix D with determinant 1,

(ii) The circulant matrix D with row sum 1,

(iii) The polynomial gD(x)
x−1

is irreducible,
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(iv) The dimension of D i.e; k is prime, and

(v) gcd(q, k) = 1.

When above properties are satisfied then,

Fq[x]

xk − 1
∼=

Fq[x]

x− 1
× Fq[x]

ψ(x)
,

where ψ(x) = xk−1
x−1

. Therefore DLP reduces into two subgroups generated by

x−1 and xk−1
x−1

. If xk−1
x−1

is irreducible, which is of course for k odd prime [50], then
DLP in circulant matrix over finite fields is computationally equivalent to DLP
over Fqk−1 . Note that the subgroup generated by x− 1 reveals no information as
it is either 0 or 1, which is taken care of through property (ii) above.

2.6.1 Squaring Circulant k × k Matrix D : q = 2r, r ∈ Z

Computing square of a circulant matrix over finite field of characteristic 2 is
efficient [69]. Let D = (d0, d1, · · · , dk−1) be a k× k circulant matrix over Fq with
odd k > 1 ∈ Z. Then computing D2 is just computing (d2

λ(0), d
2
λ(1), · · · , d2

λ(k−1)),
where λ is the permutation of 0, 1, · · · , k − 1. Note that, other row vectors of
D2 are obtained by right circulant shift of (d2

λ(0), d
2
λ(1), · · · , d2

λ(k−1)). Following

theorem is proved in [52].

Theorem 2.1. Let q = 2r, r > 0 ∈ Z, D be a k × k circulant matrix over Fq,
with odd k > 1 ∈ Z such that gcd(k, q) = 1. Then D2 is computed by squaring
d2
i , 0 ≤ i < k.

Remark 2.1. Keeping notations above, computing Dm takes k2

2
logm field multi-

plications.

2.6.2 Circulant Matrices Based Diffie-Hellman Type Key Exchange

(1.) System Public Parameters: Circulant k × k matrix D, Fq , q = 2r,
k-odd prime.

(2.) Alice selects private key a random m > 1 ∈ Z and computes PA = Dm.

(3.) Similarly, Bob selects private key a random n > 1 ∈ Z and computes
PB = Dn.

(4.) Both compute common key K = PAB = PBA = (Dn)m = (Dm)n = Dmn.
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2.6.3 Circulant Matrices Based ElGamal Type Encryption

(1.) System Public Parameters: Circulant k × k matrix D, Fq , q = 2r,
k-odd prime.

(2.) Public key: Alice selects random n > 1 ∈ Z as private key and
computes public key Dn.

(3.) Encryption: Bob wants to send message M = (m0,m1, · · · ,mk−1) to
Alice. He does the following:

(i) Selects random u > 1 ∈ Z and computes Du, K = (Dn)u,

(ii) Encrypts M by computing KMT , where MT is transpose of vector M .

(iii) The cipher text is c = (Du, KMT ).

(4.) Decryption: Alice decrypts c by computing K = (Du)n and then
(KMT )K−1.

2.7 Torus Based PKC

Torus based public key cryptosystem is yet another system that enjoys the ex-
tension field security and carry out group operations in prime or intermediate
subfields. This system was proposed by K.Rubin and A. Silverberg in [64]. This
system is an improvement over Lucas functions based PKC[71], and GH-PKC
[30], where as, its performance is comparable with XTR [47] system.

Algebraic Tori. An algebraic torus T over Fp is an algebraic group defined
over Fp which over some extension field is isomorphic to (Gm)d, where Gm is the
multiplicative group and d is dimension of T . For every n an algebraic torus Tn
can be defined with the property that Tn(Fp) consists of the elements in F∗pn of
norm 1 over every subfield.

Definitions.

• Algebraic Variety. An algebraic variety is an object which can be de-
fined in a purely algebraic way, starting from polynomials or more generally
from finitely generated algebras over fields. The variety structure allows to
express all elements and operations in terms of polynomials.

• Weil Restriction. The Weil restriction (also known as ”Restriction of
scalars ”) is a functor which, for any finite extension of fields Fpn/Fp and
any algebraic variety X over Fpn , produces another variety ResFpn/FpX,
defined over Fp. This means Weil restriction decomposes a multiplicative
group ResFpn/FpGm as a product of algebraic tori, one for each divisor of n.

Fundamental Arithmetic for Torus Based Cryptography. As defined
above the ResFpn/FpGm is a torus. As per the property of Weil restriction of
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scalars gives an isomorphism:

(ResFpn/FpGm)(Fp) ∼= Gm(Fpn) = F∗pn , (2.3)

and norm map for Fp ⊂ Fpr ⊂ Fpn :

ResFpn/FpGm

NFpn/Fpr−→ ResFpr/FpGm. (2.4)

For Fp points we have:

Tn(Fp) ∼= {α ∈ F∗pn : NFpn/Fpr
(α) = 1}, (2.5)

whenever Fp ⊂ Fpr ⊂ Fpn . The dimension of Tn is ϕ(n). Tn(Fp) is a cyclic
subgroup Gp,n ⊆ F∗pn of order Φn(p), where Φn is the n−th cyclotomic polynomial.
This implies that the security of cryptosystems based on the group Tn is that of
F∗pn

Lemma 4, [64].

i). Tn(Fp) ∼= Gp,n,

ii). #Tn(Fp) = Φn(p).

iii). If α ∈ Tn(Fp) is an element of prime order not dividing n, then α does not
lie in any proper subfield of Fpn/Fp.

Definitions

• Rationality of Tori [64]: Let T be an algebraic torus over Fp of dimension
d. Then T is rational if and only if there is a birational map ρ : T → Ad

defined over Fp.

• Rational Parametrization of T [64]: There are Zariski open subsets W ⊂
T and U ⊂ Ad, and rational functions ρ1, . . . , ρd ∈ Fp[x1, . . . , xt] and
ψ1, . . . , ψt ∈ Fp[y1, . . . , yd] such that ρ : W → U and ψ : U → W are
inverse isomorphisms. Such a map is a rational parametrization of T .

In this way a compact representation of the group T (Fp) by means of rational
parametrization of torus T is obtained. Thus every element of W (Fp) ⊂ T (Fp) is
represented by d coordinates in Fq.

Rational parametrization of T2. To develop understanding for rational
parametrization for T2 we proceed as follows. Let char(p) 6= 2 and Fp2 = Fp(γ) :
γ ∈ F∗p2 with ω = γ2 ∈ F∗p. Since γp = −γ, this implies

Gp,2 = {a+ bγ : a, b ∈ Fp and (a+ bγ)p+1 = 1}, (2.6)

= {a+ bγ : a, b ∈ Fp and (a2 − ωb2) = 1}. (2.7)
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Define maps,

ρ : Gp,2 − {±1} → F∗p : ρ(c+ dγ) =
1 + c

d
(2.8)

and

ψ : F∗p → Gp,2 : ψ(a) =
a+ γ

a− γ
. (2.9)

Now ψ(a) ∗ ψ(b) = ψ
(
ab+d
a+b

)
. Therefore, all operations are carried out in Fp

directly and multiplication in T2 has been translated into the map (a, b) 7→ ab+d
a+b

from (F∗p)2 to F∗p.

Adaptation to Cryptographic Protocols[64]. As demo for cryptographic
adaptation, we give Diffie Hellman key exchange protocol based on concept of
torus.

• Torus Based DH Key Exchange

– System Public Parameters: Tk be a rational algebraic torus over
Fq with rational parameterization ρ : Tk → Am with its inverse ψ
where m = φ(k), G =< α >⊂ Tk(Fq),
α ∈ Tk(Fq) with ord(α) = ` and ρ(α) = g ∈ Fmq .

– A’s public PA = ρ(αe), private key= e
B ’s public PB = ρ(αt), private key= t.

– Common key K = ρ(αet):

A→ PAB = ρ(ψ(PB)e) = K,

B→ PBA = ρ(ψ(PA)t) = K.

Why it works? Since ρ◦ψ is the identity, we have ρ(ψ(PB)a) = ρ(αab) =
ρ(ψ(PA)b).

• Torus Based ElGamal Type Encryption Scheme

– System Public Parameters: Tk be a rational algebraic torus over
Fq with rational parameterization ρ : Tk → Am with its inverse ψ
where m = φ(k), G =< α >⊂ Tk(Fq),
α ∈ Tk(Fq) with ord(α) = ` and ρ(α) = g ∈ Fmq .

– A’s public key PA = ρ(αe) ∈ Fmq , private key e ∈ Z`.
– Assumption: messages are ∈ G.

– Encryption: B encrypts M ∈ G as follows:
Chooses a random r ∈ Z` and computes

∗ u = ρ(αr) ∈ Fmq
∗ v = ρ(Mψ(PA)r) ∈ Fmq , and sends the ciphertext c to A

∗ c = (u, v) ∈ Fmq .
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– Decryption: A decrypts c as follows:

∗ M = ψ(v)ψ(u)−e

• Torus Based ElGamal Type Signature Scheme

– System Public Parameters: G =< α >⊂ Tk(Fq), ord(α) = `,
rational maps ρ, ψ; φ(k) = m, and H : G→ Z` hash function.

– A’s public key PA = ρ(αe) ∈ Fmq , private key e ∈ Z`.
– Assumption : messages M are in G.

– Signing Process: A signs message M ∈ G as follows:

– Chooses a random integer r ∈ Z`, computes u = ρ(αr) ∈ Fmq , and

n = r−1(H(M)− eH(αr)) (mod `).

– A’s signature is (u, n,M).

– Verification: B accepts A’s signature onM if and only if ψ(PA)H(αr)ψ(u)n =
αH(M) ∈ Tk(Fq).

2.8 Trace Based PKC

Over the last few years, efforts were made to improve efficiency of Public Key
Cryptosystems (PKCs) in terms of compact representation and increased security.
These improvements resulted in form of LUC-PKC [72], GH-PKC [30], XTR-PKC
[47], GG-PKC [27] and KK-PKC [41]. In these systems, group operations are
carried out in intermediate or prime subfields of an extension field (i.e; Fqr , r | k
or Fq) whereas, security of extension field is ensured. Hence, high security is
achieved with operands of lesser number of bits. In contrast, for Diffie-Hellman
PKC both group operations and DLP are in same finite field. The Trace Based
PKC are discussed in the following chapters.

16



CHAPTER 3

ALTERNATE MODELS OF ELLIPTIC CURVES

3.1 Introduction

In the recent years, alternate models of elliptic curves have been studied. Such
well-known models are Edwards curves, Jacobi intersections and Jacobi quartics,
Hessian curves, Huff curves, and their variants to the more common Weierstrass
curve. These models sometimes allow for more efficient computation on elliptic
curves or provide other features of interest to cryptographers, such as resistance to
side-channel attacks. In this chapter, we first give the alternate models of elliptic
curves emphasizing point addition and point doubling formulae with computa-
tional costs, the suggested improvements in each model and then countermeasures
to side channel attacks if any. We also describe the geometric interpretation of
the addition law in each model. Note that the contents of this chapter were
published in International Journal of Information Security Sciences [6].

From the advent of elliptic curve cryptosystems, independently by Miller (1985)
and Koblitz (1987), arithmetic of elliptic curves have been so much interest from
cryptographic researchers. Along this period, they proposed many methods to
speed up the arithmetic of elliptic curves. These methods can be divided into
four different categories:

• Use optimum underlying finite field extensions,

• Use optimum coordinates for representation of group elements,

• Use efficient arithmetic methods,

• Use alternate models of elliptic curves.

In this work, we are dealing with the alternate models of elliptic curves to the
more common Weierstrass curve: Edwards curves, Jacobi intersections and Ja-
cobi quartics, Hessian curves, Huff curves, and their variants. These models allow
for more efficient computation on elliptic curves such that the group structure of
these curves have already been studied in [8], or provide other features of inter-
est to cryptographers, such as resistance to side-channel attacks. These attacks
reveal secret information of an elliptic curve cryptosystem based on the point
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multiplication operation, in which a point is multiplied by a scalar. The basic
method for implementing point multiplication is the double-and-add technique,
which uses a binary representation of the scalar and performs a sequence of point
additions and point doubling depending on the bits of the scalar. In double-and-
add point multiplication, a point doubling is done for every bit of the key k, but a
point addition is done only when a bit of the key is 1. If, in a side-channel analy-
sis, a point addition is distinguishable from a point doubling, then the bits of the
secret key can be determined. This is done by analyzing side channel information
such as power consumption [44], running time [43], differential fault analysis [13],
electromagnetic emissions [3] and so on. As a countermeasure of this attack, one
can use the unified addition formula which means point addition formula that can
be used for doubling. The unified formulae for point addition and point doubling
use the same sequence of field operations and hence are indistinguishable.

Edwards introduced the normal form of elliptic curves together with an explicit
addition law in [23]. He also showed that every elliptic curve over a non-binary
field is bi-rationally equivalent to a curve in Edwards form over an extension of
the field, and in many cases over the original field. In [7], Bernstein and Lange
introduced the notion of Edwards curves which is covering more curves than orig-
inal Edwards curves when those defined on finite fields. Twisted Edwards curve
was introduced by Bernstein et al. in [12] as a generalization of Edwards curves.
Hisil et al. introduced the extended twisted Edwards coordinates, and obtained
efficient point addition algorithm in [36] that is the fastest one in the literature.
These algorithms provide a natural protection from side channel attacks based on
Simple Power Analysis (SPA). Bernstein et al. [11] introduced Edwards curves
over finite fields of characteristic 2, and obtained addition and doubling formulae.

Jacobi form of the elliptic curves are introduced as the intersection of two quartics
in projective space of dimension 3 by Liardet and Smart in [49]. They showed
that these curves could provide a defense against Simple and Differential Power
Analysis (SPA/DPA) style attacks. The twisted Jacobi intersections which con-
tains Jacobi intersections as a special case is introduced by Feng et al. in [25].
Billet and Joye [14] re-investigated the Jacobi Form suggested by Liardet and
Smart. They showed that the addition law is directly derived from the underly-
ing quartics.

Hessian curves are investigated as a step towards resistance against side-channel
attacks by Joye and Quisquater in [39]. The efficient arithmetic on Hessian elliptic
curves are studied in [70] and [35]. They proposed efficient point multiplication
algorithms using the Hessian form over finite fields of characteristic 3. In 2010,
the family of generalized Hessian curves are proposed by Farashahi and Joye
[24]. They showed that these curves cover more isomorphism classes of elliptic
curves and that have efficient unified addition formulas. In [10], Bernstein, Kohel
and Lange introduced the twisted Hessian form that is similar to the generalized
Hessian curves up to the order of the coordinates.

Huff model of elliptic curve is introduced by Huff [38] over rational fields Q in
1948. Joye et al. [40] improved these curves to the fields of characteristic different
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than 2. They obtained point addition and doubling formulae on Huff curves. The
generalized form of Huff curve is introduced by Feng and Wu in [77]. Ciss and
Sow [20] investigated the new generalized Huff curve that the addition law in
projective coordinates is as fast as in the previous particular cases. In 2011,
Devigne and Joye [21] obtained the unified point addition formula for Huff curves
over fields of characteristic 2.

This chapter is organized as follows. In section II, we give Weierstrass form of
elliptic curves and its group law. In section III, Edwards curves and their variants
are discussed. In section IV, Jacobi intersection and Jacobi quartic with related
modifications and improvements are discussed. In section V, Hessian curves are
elaborated. In section VI, Huff curves and its generalizations are described. In
section VII, we compare the alternate models of elliptic curves and conclude the
paper.

3.2 Weierstrass Curves

This form of elliptic curve along with cryptographic protocols is discussed in
Chapter 1.

For the rest of the chapter, we enumerate the cost of field operations in terms
of multiplication M, squaring S, multiplication by a constant D, and addi-
tion/subtraction a in F.

3.3 Normal Form of Elliptic Curves

In this section, we will discuss salient features of Edwards curves and their variants
in respect of point addition and point doubling.

3.3.1 Edwards Curves

Edwards [23] introduced a new model of elliptic curves over F with char(F) 6= 2
which is defined by

Ec : x2 + y2 = c2(1 + x2y2), (3.1)

where c ∈ F. He obtained an efficient explicit formula for point addition of these
curves as follows: Let P = (x1, y1) and Q = (x2, y2) be two points on Ec. Then
P +Q = R = (x3, y3), where

x3 =
x1y2 + x2y1

c(1 + x1x2y1y2)

y3 =
y1y2 − x1x2

c(1− x1x2y1y2)
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Edwards showed that all elliptic curves over non-binary finite field F can be
transformed to Edwards curves if F is algebraically closed. However, over the
finite field F, only a small number of elliptic curves can be expressed in this form.

Bernstein and Lange [7] improved the notion of Edwards form defined by

Ed : x2 + y2 = 1 + dx2y2, (3.2)

where d ∈ F \ {0, 1}. They showed that more than 1/4 of all isomorphism classes
of elliptic curves over the finite field F could be transformed to Edwards curve
over the same field. The curve Ed has an additive group structure together with
the identity (neutral) element O = (0, 1). The point O′ = (0,−1) has order 2.
The points (1, 0) and (−1, 0) have order 4.

Figure 3.1: Addition and doubling over R for d < 0
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Figure 3.2: Addition and doubling over R for d < 1

Figure 3.3: Addition and doubling over R for 0 < d < 1

The geometric interpretation of the addition law for Edwards curves is given by
the following way [4]: We first observe that Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0) are
the points at infinity that have multiplicity 2. There is a conic C determined by
passing through the 5 points P,Q,O′ ,Ω1 and Ω2 has only one more intersection
point −R with the curve E. Let h1 be the function corresponding to C with
div(h1) = (P ) + (Q) + (O′) + (−R) − 2(Ω1) − 2(Ω2). In order to replace O′ by
O and −R by R, one can use another function h2 that is the product h2 = `1`2

of two lines. A horizontal line `1 passing through the point R is with div(`1) =
(R) + (−R) − 2(Ω2), and a vertical line `2 passing through the point O is with
div(`2) = (O) + (O′) − 2(Ω1). Therefore, the equation R = P + Q corresponds
to div(h1/`1`2) = (P ) + (Q)− (R)− (O).

Using this observation, Bernstein and Lange write down the explicit formula for
point addition and point doubling of the curve Ed as follows: Let P = (x1, y1)
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and Q = (x2, y2) be two points on Ed. Then P +Q = R = (x3, y3), where
x3 =

x1y2 + x2y1

1 + dx1x2y1y2

y3 =
y1y2 − x1x2

1− dx1x2y1y2

These formulae are strongly unified. If d is a non-square in F, the addition law
is complete, i.e, it works for all pairs of inputs. The inverse of the point (x1, y1)
on Ed is (−x1, y1).

In order to avoid the inversion in addition formulae, the notion of Edwards curves
in projective coordinates [7] is defined by

(X2 + Y 2)Z2 = (Z4 + dX2Y 2). (3.3)

The point addition for (3.3) is obtained by the following formulae: Let P = (X1 :
Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on (3.3), then P +Q = R = (X3 :
Y3 : Z3), where

X3 = Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2)[(X1 + Y1)(X2 + Y2)

−X1X2 − Y1Y2]

Y3 = Z1Z2(Z2
1Z

2
2 + dX1X2Y1Y2)(Y1Y2 −X1X2)

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z2

1Z
2
2 + dX1X2Y1Y2)

These formulae are also unified. The point (0 : 1 : 1) is the identity element of
addition law. The inverse of (X1 : Y1 : Z1) is (−X1 : Y1 : Z1). The computational
cost for addition, doubling, and unified addition is 10M + 1S + 1D + 7a, 3M +
4S + 6a, and 10M + 1S + 1D + 7a, respectively. The mixed addition formulae
can also be obtained by replacing Z2 = 1 in the above formulae that reduces the
total costs to 9M+1S+1D+7a. The presence of point of order 4 in the group of
elliptic curves in equation (3.3), reduces the number of elliptic curves in Edwards
model over F. To overcome this problem Bernstein et al. [12] introduced further
variation of Edwards curves which is so called Twisted Edwards curves.

3.3.2 Twisted Edwards Curves

Let F be a field with char(F)6= 2. Then twisted Edwards curve is defined by

Ea,d : ax2 + y2 = 1 + dx2y2, (3.4)

where a, d ∈ F \ {0}. The twisted Edwards curve Ea,d is a quadratic twist of the
Edwards curve E1,d/a. If a is square in F, then Ea,d is isomorphic to E1,d/a over F.
The set of these curves is invariant under quadratic twists, in other words, every
quadratic twist of a twisted Edwards curve is isomorphic to a twisted Edwards
curve. The point addition for (3.4) is obtained by the following formulae: Let
P = (x1, y1) and Q = (x2, y2) be two points on Ea,d. Then P +Q = R = (x3, y3),
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where 
x3 =

x1y2 + x2y1

1 + dx1x2y1y2

y3 =
y1y2 − ax1x2

1− dx1x2y1y2

These formulae are unified. The point (0, 1) is the identity element of addition
law and the inverse of the point (x1, y1) on Ea,d(F) is (−x1, y1). If a is square in
F and d is non-square in F, then the addition law for Twisted Edwards curve is
complete.

In order to avoid inversion in addition formulae given above, twisted Edwards
curves in projective coordinates is defined by

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (3.5)

For Z1 6= 0, the homogeneous point (X1 : Y1 : Z1) represents the affine point
(X1/Z1, Y1/Z1) on Ea,d. Bernstein et al. [12] obtained the following explicit
formulae for addition and doubling on twisted Edwards curves in projective co-
ordinates as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points
on (3.5), then P +Q = R = (X3 : Y3 : Z3), where

X3 = (X1Y2 − Y1X2)(X1Y1Z
2
2 +X2Y2Z

2
1)

Y3 = (Y1Y2 + aX1X2)(X1Y1Z
2
2 −X2Y2Z

2
1)

Z3 = Z1Z2(X1Y2 − Y1X2)(Y1Y2 + aX1X2)

and 2P = R = (X3 : Y3 : Z3), where
X3 = (aX2

1 + Y 2
1 − 2Z2

1)[(X1 + Y1)2

−X2
1 − Y 2

1 ]

Y3 = (aX2
1 + Y 2

1 )(aX2
1 − Y 2

1 )

Z3 = (aX2
1 + Y 2

1 )(aX2
1 + Y 2

1 − 2Z2
1)

The computational cost of point addition and point doubling are 11M + 2D + 9a
and 3M+ 4S+ 1D+ 7a, respectively. It turns out that a mixed addition requires
9M + 2D + 9a by setting Z2 = 1.

The unified addition formulae for twisted Edwards curves in projective coordi-
nates are also obtained as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2)
be two points on (3.5), then P +Q = R = (X3 : Y3 : Z3), where

X3 = Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2)[(X1 + Y1)

(X2 + Y2)−X1X2 − Y1Y2]

Y3 = Z1Z2(Z2
1Z

2
2 + dX1X2Y1Y2)(Y1Y2 − aX1X2)

Z3 = (Z2
1Z

2
2 + dX1X2Y1Y2)(Z2

1Z
2
2 − dX1X2Y1Y2)

The computational cost of unified addition is 10M + 1S + 2D + 7a.
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Another way to avoid inversions is to define inverted coordinates as follows:

(X2 + aY 2)Z2 = X2Y 2 + dZ4. (3.6)

where XY Z 6= 0. The homogeneous point (X1 : Y1 : Z1) with X1Y1Z1 6= 0
represents the affine point (Z1/X1, Z1/Y1) on Ea,d. In [9], Bernstein and Lange
introduced these inverted coordinates for the case a = 1, and observed that the
coordinates save time in addition. Bernstein et al. generalized to arbitrary a
in [12]. They also obtained the following explicit formulae for unified addition
and doubling on twisted Edwards curves in inverted coordinates as follows: Let
P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on (3.6), then
P +Q = R = (X3 : Y3 : Z3), where

X3 = Z1Z2(X1X2 + aY1Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)

Z3 = (X1Y1Z
2
2 − Z2

1X2Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

and 2P = R = (X3 : Y3 : Z3), where
X3 = (X2

1 + aY 2
1 )(X2

1 − aY 2
1 )

Y3 = [(X1 + Y1)2 −X2
1 − Y 2

1 ](X2
1 + aY 2

1 − 2dZ2
1 )

Z3 = (X2
1 − aY 2

1 )[(X1 + Y1)2 −X2
1 − Y 2

1 ]

The unified addition formulae for twisted Edwards curves in inverted coordinates
are also obtained as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be
two points on (3.5), then P +Q = R = (X3 : Y3 : Z3), where

X3 = (X1X2Y1Y2 + dZ2
1Z

2
2 )(X1X2 − aY1Y2)

Y3 = (X1X2Y1Y2 − dZ2
1Z

2
2 )[(X1 + Y1)(X2 + Y2)

−X1X2 − Y1Y2]

Z3 = Z1Z2(X1X2 − aY1Y2)[(X1 + Y1)(X2 + Y2)

−X1X2 − Y1Y2]

The computational cost of point addition, point doubling and unified addition
are 11M+2D+9a, 3M+4S+2D+6a, and 9M+1S+2D+7a, respectively. The
mixed addition formulae can also be obtained by replacing Z2 = 1, which gives an
obvious saving of 2M since Z1 ·Z2 = Z1, leading to a total cost of 9M + 2D + 9a.

Hisil et al. [36] introduced the extended Twisted Edwards coordinates by defining
an auxiliary coordinate t = xy to represent a point (x, y) on Ea,d in extended affine
coordinates (x, y, t). One can pass to the projective representation (X : Y : T : Z)
which satisfies (3.5) and corresponds to the extended affine point (X/Z, Y/Z, T/Z)
with Z 6= 0. The auxiliary coordinate T has the property T = XY/Z. Let
P = (X1 : Y1 : T1 : Z1) and Q = (X2 : Y2 : T2 : Z2) be two points on (3.5) with
Z1 6= 0 and Z2 6= 0, then P +Q = R = (X3 : Y3 : T3 : Z3), where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2)

Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dT1T2)

T3 = (Y1Y2 − aX1X2)(X1Y2 + Y1X2)

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + dT1T2)

24



These formulae are unified that derived from the addition formulae on Ea,d. It
is deduced from [7] and [12] that these formulae are also complete when d is not
a square in F and a is a square in F. The identity element is represented by
(0 : 1 : 0 : 1). The negative of (X1 : Y1 : T1 : Z1) on (3.5) is (−X1 : Y1 : −T1 : Z1).
The computational cost of point addition, point doubling and unified addition
are 9M + 1D + 7a, 4M + 4S + 1D + 7a, and 9M + 2D + 7a, respectively. The
mixed addition formulae can also be obtained by setting Z2 = 1 in the above
formulae, reduces the total costs to 8M + 1D + 7a. This means that one can add
(X1 : Y1 : T1 : Z1) and an extended affine point (x2, y2, x2y2), which is equally
written as (x2 : y2 : x2y2 : 1).

3.3.3 Binary Edwards Curves

Let F be a field with char(F)= 2. Then Binary Edwards curve is defined by

EB,d1,d2
: d1(x+ y) + d2(x2 + y2) = xy + xy(x+ y) + x2y2,

where d1 6= 0 and d2 6= d2
1 + d1. The point addition is obtained by the following

formulae: Let P = (x1, y1) and Q = (x2, y2) be two points on EB,d1,d2 . Then
P +Q = R = (x3, y3), where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2)

d1 + (x1 + x2
1)(x2 + y2)

+
(x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2)

d1 + (y1 + y2
1)(x2 + y2)

+
(y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

The addition law on EB,d1,d2 is strongly unified. The point (0, 0) is the identity
element of addition law and the inverse of the point (x1, y1) on EB,d1,d2 is (y1, x1).
The computational cost of addition and doubling in projective coordinates are
21M+1S+4D and 2M+6S+3D, respectively. When t2 +t+d2 6= 0 for all t ∈ F,
the addition law on the binary Edwards curve EB,d1,d2(F) is complete. The mixed
addition formulae lead to a total cost of 13M + 3S + 3D that can be obtained
by (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (x2, y2), where (X1 : Y1 : Z1) and (x2, y2) on
EB,d1,d2(F). Bernstein et al. introduced different methods for computing point
addition and point doubling with that of computational costs in [11].

3.4 Jacobi Curves

Jacobi curves gained special attention due to resistance against SPA attacks. In
this section, the various forms of Jacobi curves are discussed in respect of point
addition and point doubling.
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3.4.1 Jacobi Intersections

Liardet and Smart [49] introduced the Jacobi Intersections over the finite field F
with char(F) 6= 2 which are defined by

EJ,b :

{
x2 + y2 = 1
bx2 + t2 = 1

(3.7)

where b ∈ F and b(1 − b) 6= 0. They obtained an explicit unified formulae for
point addition on EJ,b as follows: Let P = (x1, y1, t1) and Q = (x2, y2, t2) be two
points on EJ,b. Then P +Q = R = (x3, y3, t3), where

x3 =
x1y2t2 + x2y1t1
y2

2 + x2
2t

2
1

y3 =
y1y2 − x1t1x2t2

y2
2 + x2

2t
2
1

t3 =
t1t2 − bx1y1x2y2

y2
2 + x2

2t
2
1

and 2P = R = (x3, y3), where

x3 =
2x1y1t1
y2

1 + x2
1t

2
1

y3 =
y2

1 − x2
1t

2
1

y2
1 + x2

1t
2
1

t3 =
t21 − bx2

1y
2
1

y2
1 + x2

1t
2
1

The point (0, 1, 1) is the identity element of addition law and the inverse of the
point (x1, y1, t1) on EJ,b is (−x1, y1, t1).

The affine version of Jacobi Intersections has inherent greater computational cost
due to the field inversion involved in addition formulae. In order to avoid inver-
sions in addition formulae, Jacobi Intersections in projective coordinates [49] is
defined by

EJ,b :

{
X2 + Y 2 = Z2

bX2 + T 2 = Z2 (3.8)

with the map (x, y, t) = (X/Z, Y/Z, T/Z) 7→ (X : Y : T : Z) for Z 6= 0.
The unified point addition for (3.8) is obtained by the following formulae: Let
P = (X1 : Y1 : T1 : Z1) and Q = (X2 : Y2 : T2 : Z2) be two points on (3.8), then
P +Q = R = (X3 : Y3 : T3 : Z3), where

X3 = X1Z1Y2T2 + Y1T1X2Z2

Y3 = Y1Z1Y2Z2 −X1T1X2T2

T3 = T1Z1T2Z2 − bX1Y1X2Y2

Z3 = Z2
1Y

2
2 +X2

2T
2
1
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The point (0 : 1 : 1 : 1) is the identity element of addition law and the inverse of
the point (X1 : Y1 : T1 : Z1) on EJ,b is (−X1 : Y1 : T1 : Z1). There are three points
of order 2, namely, (0 : 1 : 1 : 1), (0 : 1 : 1 : 1) and (0 : 1 : 1 : 1). In this case, the
computational cost of point addition, point doubling, and unified addition are
13M + 2S + 1D + 7a, 4M + 3S + 5a, and 13M + 2S + 1D + 7a, respectively. The
mixed addition formulae can also be obtained by replacing Z2 = 1 in the above
formulae that reduces the total costs to 11M + 2S + 1D + 7a.

3.4.2 Twisted Jacobi Intersections

In [25], the twisted Jacobi Intersections which contains Jacobi intersections as a
special case was introduced by Feng et al. These curves encompass more number
of elliptic curves and have explicit formulae for addition and doubling with almost
as fast as the Jacobi Intersections. The twisted Jacobi Intersections over F with
char(F) 6= 2 are defined by

EJ,a,b :

{
ax2 + y2 = 1
bx2 + t2 = 1

(3.9)

where a, b ∈ F and ab(a − b) 6= 0. They obtained an explicit unified addition
formulae on EJ,a,b as follows: Let P = (x1, y1, t1) and Q = (x2, y2, t2) be two
points on EJ,a,b. Then P +Q = R = (x3, y3, t3), where

x3 =
x1y2t2 + x2y1t1
y2

2 + ax2
1t

2
1

y3 =
y1y2 − ax1t1x2t2

y2
2 + ax2

1t
2
1

t3 =
t1t2 − bx1y1x2y2

y2
2 + ax2

1t
2
1

The point (0, 1, 1) is the identity element of addition law and the inverse of the
point (x1, y1, t1) on EJ,a,b is (−x1, y1, t1).

The twisted Jacobi Intersections in projective coordinates [49] is defined by

EJ,a,b :

{
aX2 + Y 2 = Z2

bX2 + T 2 = Z2 (3.10)

with the map (x, y, t) = (X/Z, Y/Z, T/Z) 7→ (X : Y : T : Z) for Z 6= 0.
The unified point addition on (3.10) is obtained by the following formulae: Let
P = (X1 : Y1 : T1 : Z1) and Q = (X2 : Y2 : T2 : Z2) be two points on (3.10), then
P +Q = R = (X3 : Y3 : T3 : Z3), where

X3 = X1Z1Y2T2 + Y1T1X2Z2

Y3 = Y1Z1Y2Z2 − aX1T1X2T2

T3 = T1Z1T2Z2 − bX1Y1X2Y2

Z3 = Z2
1Y

2
2 + aX2

2T
2
1
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The point (0 : 1 : 1 : 1) is the identity element of addition law and the inverse of
the point (X1 : Y1 : T1 : Z1) on EJ,a,b is (−X1 : Y1 : T1 : Z1). In this case, the
computational cost of addition, doubling, and unified addition are 12M + 11a,
3M + 4S + 1D + 7a, and 13M + 2S + 5D + 13a, respectively. For a mixed point
addition, the number of required multiplications drops to 10M + 11a.

3.4.3 Jacobi Quartics

Jacobi Quartic [14] curves over the finite field F with char(F) 6= 2, 3 are first
defined by

EJ,k : y2 = k2x4 − (k2 + 1)x2 + 1, (3.11)

where k 6= 0,±1. As usual to improve the security parameter that is to increase
number of elliptic curves, a modification in Jacobi Quartic was introduced by
Hisil et al. in [37]. The modified Jacobi Quartic curves are so called extended
Jacobi Quartic curves which are defined by

EJ,d,a : y2 = dx4 + 2ax2 + 1, (3.12)

where a, d ∈ F with char(F) 6= 2, 3. They showed that arithmetic on Jacobi
Quartics is faster as compared with Jacobi Intersections. Moreover, unified point
addition formulae offer additional security against some side channel attacks as
well. The curve EJ,d,a has an additive group structure together with the identity
element O = (0, 1). Note the fact O′ = (0,−1) is a point on the curve.

Figure 3.4: Addition and doubling over R

The geometric interpretation of the addition law for Jacobi Quartics is shown in
the following [76]: We first observe that there is a singular point Ω = (0 : 1 : 0)
in projective space, which is a point at infinity in affine plane. Let C be a conic
passing through the points P,Q,O′ and −R with div(C) = (P ) + (Q) + (−R) +
3(O′)−6(Ω). Let ` be the vertical line passing through the points O and O′ , then
div(`) = (O)+(O′)−2(Ω). Let fR be a function with div(fR) = (R)+(−R)−2(O).
Therefore, the equation R = P + Q corresponds to div(C/fR`

3) = (P ) + (Q) −
(R)− (O).

Using this observation, the explicit formulae for point addition and point doubling
of the curve EJ,d,a are adapted from [37] as follows: Let P = (x1, y1) and Q =
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(x2, y2) be two points on EJ,d,a, then P +Q = R = (x3, y3), where

x3 =
x1y2 + y1x2

1− dx2
1x

2
2

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2)

(1− dx2
1x

2
2)2

+
2dx1x2(x2

1 + x2
2)

(1− dx2
1x

2
2)2

and 2P = R = (x3, y3), where{
x3 = δx1

y3 = δ(δ − y1)− 1

where δ = 2y1/(2 + 2ax2
1 − y2

1). The inverse of the point (x1, y1) on EJ,d,a is
(−x1, y1).

In order to avoid inversion in addition formulae given above, the extended Jacobi
Quartic curves in Jacobian coordinates with x = X/Z and y = Y/Z2 are defined
by

Y 2 = dX4 − 2aX2Z2 + Z4, (3.13)

where a, d ∈ F with char(F) 6= 2, 3. Billet and Joye [14] proposed a faster
inversion-free unified addition algorithm on (3.13) as follows: Let P = (X1 :
Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on (3.13), then P +Q = R = (X3 :
Y3 : Z3), where 

X3 = X1Y2Z1 +X2Y1Z2

Y3 = [(Z1Z2)2 + d(X1X2)2](Y1Y2 − 2aX1X2Z1Z2)

+2dX1X2Z1Z2(X2
1Z

2
2 + Z2

1X
2
2 )

Z3 = (Z1Z2)2 − d(X1X2)2

The identity element of addition law is given by (0 : 1 : 1) and the negative of
the point (X1 : Y1 : Z1) on (3.13) is (−X1 : Y1 : Z1). The computational cost
of addition, doubling, and unified addition are 10M + 3S + 1D, 1M + 9S + 1D,
and 10M + 3S + 1D, respectively. The total cost of point addition reduces to
8M + 3S + 1D by replacing Z2 = 1.

An other improvement was obtained by Hisil et al. in [37]. They showed that the
extended Jacobi Quartic curves in extended projective coordinates was defined
by {

X2 − TZ = 0
Y 2 − dT 2 − 2aX2 − Z2 = 0

(3.14)

or simply
Y 2Z2 = dX4 + 2aX2Z2 + Z4, (3.15)

where T is omitted in the latter case. In this case, a point (x, y) ∈ EJ,d,a(F)
corresponds to the point (X : Y : T : Z), where T = X2/Z. The identity
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element is represented by (0 : 1 : 0 : 1) and negative of (X1 : Y1 : T1 : Z1) on
(3.15) is (−X1 : Y1 : T1 : Z1). They obtained the following explicit formulae
for addition and doubling on the extended Jacobi Quartic curves in extended
projective coordinates as follows: Let P = (X1 : Y1 : T1 : Z1) and Q = (X2 : Y2 :
T2 : Z2) be two points on (3.15), then P + Q = R = (X3 : Y3 : T3 : Z3) with
Z1 6= 0, Z2 6= 0 and P 6= Q, where

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2)

Y3 = (T1Z2 + Z1T2 − 2X1X2)(Y1Y2 − 2aX1X2

+Z1Z2 + dT1T2)− Z3

T3 = (T1Z2 − Z1T2)2

Z3 = (X1Y2 − Y1X2)2

and 2P = R = (X3 : Y3 : T3 : Z3), where

X3 = X1Y2Z1 +X2Y1Z2

Y3 = [(Z1Z2)2 + d(X1X2)2](Y1Y2 − 2aX1X2Z1Z2)

+2dX1X2Z1Z2(X2
1Z

2
2 + Z2

1X
2
2 )

T3 = (2X1Y1)2

Z3 = (Z1Z2)2 − d(X1X2)2

If a = −1/2, the computational cost of point addition and point doubling are
7M + 3S + 2D and 8S, respectively. The total cost of point addition reduces to
6M + 3S + 2D by replacing Z2 = 1.

They also obtained the unified addition formulae for extended Jacobi Quartics in
extended projective coordinates as follows: Let P = (X1 : Y1 : T1 : Z1) and Q =
(X2 : Y2 : T2 : Z2) be two points on (3.15), then P +Q = R = (X3 : Y3 : T3 : Z3)
with Z1 6= 0 and Z2 6= 0, where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dZ1T2)

Y3 = (Y1Y2 + 2aX1X2)(Z1Z2 + dT1T2)

+2dX1X2(T1Z2 + Z1T2)

T3 = (X1Y2 + Y1X2)2

Z3 = (Z1Z2 − dT1T2)2

If d is not a square in F, then the unified addition formulae are complete. The
computational cost is 8M + 3S + 2D + 17a when a = −1/2. More on formulae
and operation counts can be found Appendix B in [37].

3.5 Hessian Curves

In [39], Hessian elliptic curves are investigated by Joye and Quisquater. They
obtained the formulae of point addition, point doubling and unified addition.
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The Hessian elliptic curve over F with char(F) 6= 2, 3 is a plane cubic curve given
by

Hd : x3 + y3 + 1 = 3dxy, (3.16)

or in projective coordinates,

Hd : X3 + Y 3 + Z3 = 3dXY Z, (3.17)

where d ∈ F and d3 6= 1. The curve Hd has an additive group structure together
with the identity elementO = (1 : −1 : 0). The points (0 : 1 : −1) and (1 : 0 : −1)
are two points of order 3.

Figure 3.5: Addition and doubling over R

The geometric interpretation of the addition law for Hessian curves is given by the
following way [34]: For P,Q ∈ Hd, let `1 be the line passing through the points P
and Q. Then the divisor of L is div(`1) = (P )+(Q)+(−R)−3(O). Let `2 be the
line passing through the points −R and R. Then div(`2) = (R) + (−R)− 2(O).
Therefore, the equation R = P + Q corresponds to div(`1/`2) = (P ) + (Q) −
(R)− (∞).

This observation allows us to write down the explicit formula for point addition
and point doubling of the curve Hd as follows [39]: Let P = (X1 : Y1 : Z1) and
Q = (X2 : Y2 : Z2) be two points on (3.17), then P + Q = R = (X3 : Y3 : Z3),
where 

X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1

Y3 = X2
1Y2Z2 −X2

2Y1Z1

Z3 = Z2
1Y2X2 − Z2

2Y1X1

and 2P = R = (X3 : Y3 : Z3), where
X3 = Y1(Z3

1 −X3
1 )

Y3 = X1(Y 3
1 − Z3

1)

Z3 = Z1(X3
1 − Y 3

1 )

The inverse of the point (X1 : Y1 : Z1) on Hd is (Y1 : X1 : Z1). Owing to the
formulae 2(X1 : Y1 : Z1) = (Z1 : X1 : Y1)+(Y1 : Z1 : X1) and (X1 : Y1 : Z1)−(X2 :
Y2 : Z2) = (X1 : Y1 : Z1) + (Y2 : X2 : Z2), the following addition algorithm given
by Joye and Quisquater in [39] can be used also doubling and subtraction as well
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as addition: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on
(3.17), then P +Q = R = (X3 : Y3 : Z3), where

Step 1

{
L1 ← X1; L2 ← Y1; L3 ← Z1

L4 ← X2; L5 ← Y2; L6 ← Z2

Step 2


L7 ← L1 · L6; L1 ← L1 · L5

L5 ← L3 · L5; L3 ← L3 · L4

L4 ← L2 · L4; L2 ← L2 · L6

Step 3


L6 ← L2 · L7; L2 ← L2 · L4

L4 ← L3 · L4; L3 ← L3 · L5

L5 ← L1 · L5; L1 ← L1 · L7

Step 4

{
X3 ← L2 − L5; Y3 ← L1 − L4

Z3 ← L3 − L6

The computational cost of these operations are 12M+3a. The total cost of point
addition reduces to 10M + 3a by replacing Z2 = 1.

More recently, Farashahi and Joye [24] considered a generalized form of Hessian
curves that covers more isomorphism classes of elliptic curves. These curves are
similar to the twisted Hessian form [10], introduced by Bernstein, Kohel and
Lange, up to the order of the coordinates. The generalized Hessian curve over F
is defined by

Hc,d : x3 + y3 + c = dxy, (3.18)

where c, d ∈ F with c 6= 0 and d3 6= 27c. A generalized Hessian curve over F is
isomorphic over F to a Hessian curve if and only if c is a cube in F. It is easy to
adapt the addition and doubling formulae for generalized Hessian curves which
are so-called Sylvester formulas as follows: Let P = (x1, y1) and Q = (x2, y2) be
two points on Hc,d, then P +Q = R = (x3, y3), where

x3 =
y2

1x2 − y2
2x1

x2y2 − x1y1

y3 =
x2

1y2 − x2
2y1

x2y2 − x1y1

and 2P = R = (x3, y3), where
x3 =

y1(c− x3
1)

x3
1 − y3

1

y3 =
x1(c− y3

1)

x3
1 − y3

1

Furthermore, the inverse of the point (x1, y1) on Hc,d is the point (y1, x1). The
generalized Hessian curves in projective coordinates are defined by

Hc,d : X3 + Y 3 + cZ3 = dXY Z. (3.19)
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The point (1 : −1 : 0) is identity element and the inverse of the point (X1 :
Y1 : Z1) on Hc,d is (Y1 : X1 : Z1). They obtained point addition and doubling
formulae on generalized Hessian curves in projective coordinates as follows: Let
P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on Hc,d, then
P +Q = R = (X3 : Y3 : Z3), where

X3 = X2Z2Y
2

1 −X1Z1Y
2

2

Y3 = Y2Z2X
2
1 − Y1Z1X

2
2

Z3 = X2Y2Z
2
1 −X1Y1Z

2
2

and 2P = R = (X3 : Y3 : Z3), where
X3 = Y1(cZ3

1 −X3
1 )

Y3 = X1(Y 3
1 − cZ3

1)

Z3 = Z1(X3
1 − Y 3

1 )

In this case, the computational cost of point addition is 4M, 3M, or 2M corre-
spond to use of 3, 4 or 6 processors, respectively. The point addition formulae are
complete if the difference of all pairs of points on Hc,d is not equal the identity.
The cost of point doubling is 6M + 3S + 1D. The point doubling formulae are
complete for all inputs.

The unified addition formulae for generalized Hessian curves in projective coordi-
nates are also obtained as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2)
be two points on Hc,d, then P +Q = R = (X3 : Y3 : Z3), where

X3 = cY2Z2Z
2
1 −X1Y1X

2
2

Y3 = X2Y2Y
2

1 − cX1Z1Z
2
2

Z3 = X2Z2X
2
1 − Y1Z1Y

2
2

The computational cost of unified point addition is 12M+1D. The unified point
addition formulae on Hc,d are complete if c is not a cube in F. It turns out that
a mixed addition requires 10M + 1D by setting Z2 = 1.

Farashahi and Joye [24] obtained point addition, doubling and tripling formulae
for binary generalized Hessian curves with the computational cost of them. Dif-
ferential addition, that is, point addition with a known difference was also devised
for binary Hessian curves by them.

3.6 Huff Model of Elliptic Curves

In this section, we will give the details of the models of Huff curves, especially
their group structure and related formulae with associated computational costs.
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3.6.1 Huff Curves

In [38], Huff investigated the Huff elliptic curves over rational fields Q in 1948.
Joye et al. [40] improved these curves to the finite field F with char(F) 6= 2 that
are given by

Ea,b : ax(y2 − 1) = by(x2 − 1), (3.20)

where a, b 6= 0 and a2 − b2 6= 0. The unified point addition for (3.20) is obtained
by the following formulae: Let P = (x1, y1) and Q = (x2, y2) be two points on
(3.20). Then P +Q = R = (x3, y3), where

x3 =
(x1 + x2)(1 + y1y2)

(1 + x1x2)(1− y1y2)

y3 =
(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)

These formulae are complete whenever x1x2 6= ±1 and y1y2 6= ±1. The Huff
model of elliptic curves in projective coordinates are defined by

aX(Y 2 − Z2) = bY (X2 − Z2), (3.21)

where a, b 6= 0 and a2 − b2 6= 0. Huff curves has an additive group structure
together with the identity element O = (0 : 0 : 1). We note that a point at
infinity is its own inverse. Hence, there are three points at infinity, namely,
(1 : 0 : 0), (0 : 1 : 0) and (a : b : 0). The sum of any two of them is equal to the
third one.

Figure 3.6: Addition over R

The geometric interpretation of the addition law for Huff curves is given by the
following way [40]: For P,Q ∈ Ea,b, let ` be the rational function passing through
the points P and Q with div(`) = (P )+(Q)+(−R)−(1 : 0 : 0)−(0 : 1 : 0)−(a : b :
0), where −R is the third point of intersection of the line ` with the elliptic curve.
The neutral element of the group law is O = (0 : 0 : 1). Let f be the line function
with div(f) = (R) + (−R) + (O)− (1 : 0 : 0)− (0 : 1 : 0)− (a : b : 0). Therefore,
the equation R = P +Q corresponds to div(`/f) = (P ) + (Q)− (R)− (O).

This observation allows us to write down the explicit unified addition formulae
on (3.21) as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points
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on (3.21), then P +Q = R = (X3 : Y3 : Z3), where
X3 = (X1Z2 +X2Z1)(Y1Y2 + Z1Z2)(Y1Z2 + Y2Z1)

Y3 = (X1X2 − Z1Z2)(Z2
1Z

2
2 − Y 2

1 Y
2
2 )

Z3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)(Y1Y2 − Z1Z2)

These formulae are obtained by choosing O′ = (0 : 1 : 0) as the neutral element
results in translating the group law, in other words, the point addition P + Q
transforms to P + Q + O′ . The inverse of the point (X1 : Y1 : Z1) on (3.21)
is (X1 : Y1 : −Z1), which is unchanged. Note also that the above formulae are
complete provided that X1X2 6= Z1Z2 and Y1Y2 6= Z1Z2, and are independent
of curve parameters a, b ∈ F. The computational cost of point addition, point
doubling, and unified addition are 12M, 6M + 5S, and 11M, respectively. For a
mixed point addition (i.e., when Z2 = 1), the number of required multiplications
drops to 10M.

Joye et al. [40] investigated twisted Huff curves defined by

ax(y2 − d) = by(x2 − d), (3.22)

where abd(a2 − b2) 6= 0. These curves are also defined in projective coordinates
as follows:

aX(Y 2 − dZ2) = bY (X2 − dZ2), (3.23)

where abd(a2 − b2) 6= 0. They obtained point addition formulae with performing
12M. For more formulae, one can look at [40].

In order to improve the number of isomorphism classes, a generalized Huff curves
was introduced by Wu and Feng in [77]. It is note worthy that the Huff curve
family is included in the generalized Huff curves. These curves over the finite
field F with char(F) 6= 2 are defined by

x(ay2 − 1) = y(bx2 − 1), (3.24)

where ab(a − b) 6= 0. They obtained the following formulae for addition and
doubling on generalized Huff curves in affine coordinates as follows: Let P =
(x1, y1) and Q = (x2, y2) be two points on (3.24), then P + Q = R = (x3, y3),
where 

x3 =
(x1 + x2)(ay1y2 + 1)

(bx1x2 + 1)(ay1y2 − 1)

y3 =
(y1 + y2)(bx1x2 + 1)

(bx1x2 − 1)(ay1y2 + 1)

and 2P = R = (x3, y3), where
x3 =

2x1(ay2
1 + 1)

(bx2
1 + 1)(ay2

1 − 1)

y3 =
2y1(bx2

1 + 1)

(bx2
1 − 1)(ay2

1 + 1)
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In order to avoid inversion for addition formulae in affine coordinates, the gener-
alized Huff curves in projective coordinates are defined by

X(aY 2 − Z2) = Y (bX2 − Z2), (3.25)

with the map (x, y) 7→ (X : Y : Z) for Z 6= 0. In this case, there are three
infinite points, namely (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0). We will now discuss
addition of any two points by selecting (1 : 0 : 0) as identity element. The
negative of (X1 : Y1 : Z1) on (3.25) is (X1 : Y1 : −Z1). Let P = (X1 : Y1 : Z1) and
Q = (X2 : Y2 : Z2) be two points on (3.25). Then P + Q = R = (X3 : Y3 : Z3),
where 

X3 = (bX1X2 − Z1Z2)(bX1X2 + Z1Z2)

(Z1Z2 − aY1Y2)

Y3 = b(X1Z2 +X2Z1)(bX1X2 + Z1Z2)

(Y1Z2 + Y2Z1)

Z3 = b(X1Z2 +X2Z1)(bX1X2 − Z1Z2)

(aY1Y2 + Z1Z2)

These formulae are unified. The computational cost of point addition and dou-
bling corresponding the identity element (1 : 0 : 0) are 11M+3D and 6M+5S+
3D, respectively. For a mixed point addition (i.e., when Z2 = 1), the number of
required multiplications drops to 10M + 3D. It is possible to choose (0 : 1 : 0)
and (a : b : 0) as identity elements. In each case, the negative of (X1 : Y1 : Z1) on
(3.25) is (X1 : Y1 : −Z1). In order to examine the related point addition formulae
and more, we refer the reader to [77].

In 2011, Ciss and Sow [20] introduced the new generalized Huff curves over the
finite field F of char(F) 6= 2. These curves are defined by

ax(y2 − c) = by(x2 − d), (3.26)

where a, b, c, d ∈ F with abcd(a2c − b2d) 6= 0. The new generalized Huff curves
contains the generalized Huff’s model ax(y2−d) = by(x2−d) with abd(a2−b2) 6=
0 of Joye et al. [40] and the generalized Huff curves x(ay2 − 1) = y(bx2 −
1) with ab(a − b) 6= 0 of Wu and Feng [77] as a special case. Ciss and Sow
obtained the addition and doubling formulae of new generalized Huff curves in
affine coordinates as follows: Let P = (x1, y1) and Q = (x2, y2) be two points on
(3.26). Then P +Q = R = (x3, y3), where


x3 =

d(x1 + x2)(c+ y1y2)

(d+ x1x2)(c− y1y2)

y3 =
c(y1 + y2)(d+ x1x2)

(d− x1x2)(c+ y1y2)
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and 2P = R = (x3, y3), where
x3 =

2dx1(c+ y1
2)

(d+ x1
2)(c− y1

2)

y3 =
2cy1(d+ x1

2)

(d− x1
2)(c+ y1

2)

The addition formulae are complete if x1x2 6= ±c and y1y2 6= ±d and the doubling
formulae are complete if x1

2 6= ±c and y1
2 6= ±d and in particular if c and d are

not square in F.

In order to avoid inversion in addition formulae, the new generalized Huff curves
in projective coordinates are defined by

aX(Y 2 − cZ2) = bY (X2 − dZ2), (3.27)

where a, b, c, d ∈ F with abcd(a2c−b2d) 6= 0. The neutral element of the group law
is O = (0 : 0 : 1) and the negative of (X1 : Y1 : Z1) on (3.27) is (X1 : Y1 : −Z1).
The addition law in projective coordinates is as fast as in the previous particular
cases. They obtained point addition and point doubling on (3.27) by the following
formulae: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on (3.27),
then P +Q = R = (X3 : Y3 : Z3), where

X3 = d(X1Z2 +X2Z1)(cZ1Z2 + Y1Y2)2

(dZ1Z2 −X1X2)

Y3 = c(Y1Z2 + Y2Z1)(dZ1Z2 +X1X2)

(cZ1Z2 − Y1Y2)

Z3 = (d2Z2
1Z

2
2 −X2

1X
2
2 )(c2Z2

1Z
2
2 − Y 2

1 Y
2

2 )

and 2P = R = (X3 : Y3 : Z3), where
X3 = 2dX1(cZ2

1 + Y 2
1 )2(dZ2

1 −X2
1 )

Y3 = 2cY1(dZ2
1 +X2

1 )2(cZ2
1 − Y 2

1 )

Z3 = (d2Z4
1 −X4

1 )(c2Z4
1 − Y 4

1 )

The above point addition formulae are complete provided that X1X2 6= dZ1Z2

and Y1Y2 6= cZ1Z2. The computational cost of point addition and point doubling
formulae are 12M + 4D and 7M + 5S + 4D, respectively. The total cost of point
addition reduces to 11M + 4D by replacing Z2 = 1. For further details, we refer
the reader to look at [20].

3.6.2 Binary Huff Curves

Joye et al. [40] introduced the binary Huff curves over F with char(F) = 2 which
are defined by

ax(y2 + y + 1) = by(x2 + x+ 1), (3.28)
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or in projective coordinates

aX(Y 2 + Y Z + Z2) = bY (X2 +XZ + Z2), (3.29)

where ab(a− b) 6= 0. Devigne and Joye [21] described the addition law for binary
Huff curves. They showed that there are three points at infinity satisfying the
curve equation, namely (a : b : 0), (1 : 0 : 0), and (0 : 1 : 0). They obtained unified
point addition formulae as follows: Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2)
be two points on (3.29), then P +Q = R = (X3 : Y3 : Z3) with



X3 = (Z1Z2 + Y1Y2)[(X1Z2 +X2Z1)(Z2
1Z

2
2

+X1X2Y1Y2) + αX1X2Z1Z2(Z1Z2 + Y1Y2)]

Y3 = (Z1Z2 +X1X2)[(Y1Z2 + Y2Z1)(Z2
1Z

2
2

+X1X2Y1Y2) + βY1Y2Z1Z2(Z1Z2 +X1X2)]

Z3 = (Z1Z2 +X1X2)(Z1Z2 + Y1Y2)

(Z2
1Z

2
2 +X1X2Y1Y2)

where α = (a+ b)/b and β = (a+ b)/a. The computational cost of unified point
addition is 15M + 2D.

The generalized binary Huff curves over F with char(F) = 2 are also defined by
Devigne and Joye [21] which are of the form

ax(y2 + fy + 1) = by(x2 + fx+ 1), (3.30)

or in projective coordinates

aX(Y 2 + fY Z + Z2) = bY (X2 + fXZ + Z2), (3.31)

where abf(a− b) 6= 0. They obtained the unified addition formulae of generalized
binary Huff curves in affine coordinates which are given by the following formulae:
Let P = (x1, y1) and Q = (x2, y2) be two points on (3.30). Then P + Q = R =
(x3, y3), where 

x3 =
b(x1 + x2)(1 + x1x2y1y2)

b(1 + x1x2)(1 + x1x2y1y2)

+
f(a+ b)x1x2(1 + y1y2)

b(1 + x1x2)(1 + x1x2y1y2)

y3 =
a(y1 + y2)(1 + x1x2y1y2)

a(1 + y1y2)(1 + x1x2y1y2)

+
f(a+ b)y1y2(1 + x1x2)

a(1 + y1y2)(1 + x1x2y1y2)

The computational cost of point addition, point doubling and unified addition
formulae are 15M, 6M + 2D and 15M + 2D, respectively. For more information
and formulae, we refer the reader to [21].
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3.7 Comparison and Conclusions

In this chapter, the alternative models of elliptic curves are surveyed by pinning
down group operations, and performance in various coordinate systems. Table 1
summarizes the costs of addition, doubling, mixed addition and unified addition
on alternate models of elliptic curves. The comparison in affine coordinates is
skipped because the cost of field inversion is so expensive. We enumerate the cost
of field operations in terms of multiplication M, squaring S, and multiplication
by a constant D in F.

Table 3.1: Cost of Arithmetic on Alternate Models of Elliptic Curves

EC Model Coordinates Add Doubling Mixed Add Unified Add

Weierstrass Projective 12M + 2S 5M+6S 9M+2S 11M + 5S + 1D

Edwards Projective 10M+1S+1D 3M+4S 9M+1S+1D 10M+1S+1D

Projective 11M+2D 3M+4S+1D 9M+2D 10M+1S+2D

Twisted Edwards Inverted 11M+2D 3M+4S+2D 9M+2D 9M+1S+2D

Extended 9M+1D 4M+4S+1D 8M+1D 9M+2D

Jacobi Intersections Projective 13M+2S+1D 4M+3S 11M+2S+1D 13M+2S+1D

Twisted Jacobi Intersections Projective 12M 3M+4S+1D 10M 13M+2S+5D

Extended Jacobi Quartics Jacobian 10M+3S+1D 1M+9S+1D 8M+3S+1D 10M+3S+1D

Extended Proj. 7M+3S+2D 8S 6M+3S+2D 8M+3S+2D

Hessian Curves Projective 12M 12M 10M 12M

Generalized Hessian Curves Projective 12M+1D 6M+3S+1D 10M+1D 12M+1D

Huff Curves Projective 12M 6M+5S 10M 11M

Generalized Huff Curves Projective 11M+3D 6M+5S+3D 10M+3D 11M+3D

New Generalized Huff Curves Projective 12M+4D 7M+5S+4D 11M+4D Open Problem

where Add means addition. The unified addition formulae offer inherited coun-
termeasure against SPA with comparable performance. In these models, SPA
is avoided by employing the unified addition formulae or an algorithmic adap-
tation of it that behaves in similar fashion during the process of point addition
and point doubling. Hence, for algorithmic flexibility, alternate models of elliptic
curves with desirable properties are put together in this chapter for elliptic curve
cryptographic protocols.
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CHAPTER 4

MESSAGE TRANSMISSION AND NYBERG RUEPPEL
TYPE DIGITAL SIGNATURE FOR GH-PKC

4.1 Introduction

In this chapter we propose ElGamal type encryption scheme based on the concepts
of public key cryptosystem over cubic finite field extension proposed by Gong and
Harn (GH). The proposed GH-ElGamal type encryption scheme is semantically
secure and the semantic security is computationally equivalent to splitting z ∈ Fq
into two numbers (X, Y ) ∈ F2

q such that z = X +Y where se 7→ X and s−e 7→ Y .
Moreover, e ∈ Z` and Zell is chosen large enough so that the brute force at-
tack becomes infeasible. The number of such (X, Y ) are equal to q−1

2
. However

the security of Deffie-Hellman type key exchange depends upon the difficulty of
solving 3-LFSR-DLP, 3-LFSR-DHP and 3-LFSR-DDHP. The proposed encryp-
tion scheme is ephemeral-static, which is useful in situations like email where
the recipient may not be on line. We adapt efficient double exponentiation al-
gorithm for GH construction that leads us to propose GH-Nyberg-Rueppel-type
digital signature algorithm (GH-NR-DSA) with message recovery based on the
proposed scheme. We also give some countermeasures for GH-NR-DSA to resist
two well known forgery attacks. Moreover, since digital signatures with mes-
sage recovery is useful for the applications in which confidentiality, integrity, and
non-repudiation is required.

The PKC based on intractability of the discrete logarithm problem (DLP) was
first realized by Diffie and Hellman in 1976 [22]. Robust security, efficient group
operations, and economical transmission are desirable properties for PKCs. Over
the last few years, efforts were made to improve efficiency of PKCs in terms
of compact representation and increased security such as LUC-PKC [71, 72],
GH-PKC [30, 31, 32], XTR-PKC [47, 48, 16, 73, 68], and Torus-Based-PKC
[64, 65]. In these systems, the group operations are performed in intermediate or
prime subfields, whereas security of extension field is ensured. This gives rise to
attain higher security with compact representation of operands. It is pertinent
to note that for seminal Diffie-Hellman-PKC, both group operations and DLP
are in prime field. Before discussing mathematical details first we define few
terminologies which are used in the thesis.
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The static public key is the one which is long lived and authenticated by
certification authority where as the ephemeral public key is the one which
is short lived and unauthenticated. The PKC could use any of the following
combination of static, ephemeral public keys.

i) Case I: static-static public key, in which both sender and receiver use static
public keys. In this case the shared key is computed based upon life time
fixed keys.

ii) Case II: ephemeral-ephemeral public key, in which both sender and re-
ceiver use ephemeral keys. This case achieves perfect forward security but
public keys are unauthenticated. Moreover, it can also mitigate DoS attacks
to some extent as both sender and receiver have to compute expensive ex-
ponentiation. Moreover, both sender and receivers are to be on line to
establish communication.

iii) Case III: ephemeral-static public key, in which sender uses ephemeral and
receiver uses static key. In this case both sender and receivers are not
required to be on line to establish communication.

The basic reason for reusing ephemeral key is to improve efficiency by reducing
expensive exponentiations. On the other hand, to achieve better forward security
the reuse of ephemeral key is to be avoided. In the proposed GH-ElGamal type
encryption the security of key exchange depends upon the difficulty of solving
3-LFSR-DLP, 3-LFSR-DHP and 3-LFSR-DDHP, where as semantic security de-
pends upon splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that z = X + Y .

The number of such (X, Y ) are equal to q−1
2

.

Gong and Harn proposed GH-PKC [30] based on cubic finite field extension in
1998. In GH-PKC, the group operations are carried out in prime field Fp, whereas
DLP security lies in cubic extension field Fp3 . They used elements of order di-
viding p2 + p + 1 which does not lie in any proper subfields of Fp3 to construct
DLP in Fp3 and employed third-order recurrence relation to compute n-th term
in output sequence of a Linear Feedback Shift Register (LFSR). The output se-
quence of LFSR is computed over Fp where elements are represented by log p bits.
Therefore, this system achieves a compressed representation by a factor of 2/3 to
reduce bandwidth requirements.

In [30], Gong and Harn proposed the Diffie-Hellman public key distribution (GH-
PKD) scheme and the RSA-type (GH-RSA-type) encryption scheme as an ex-
ample of the applications of GH-PKC. Later, Gong, Harn and Wu obtained the
construction of the GH-ElGamal-type digital signature algorithm (GH-DSA) in
[31]. In GH-RSA-type encryption scheme, although the computation of n-th term
is more feasible, there are more number of field multiplications, pre-computational
overheads, and storage memory. Therefore an improvement in encryption proto-
col is proposed to make GH-PKD scheme more practical.

In [59], Nyberg and Rueppel proposed the first ElGamal signature scheme based
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on DLP that gives key exchange, message recovery and digital signature algorithm
in a single protocol. This was followed by several other proposals [60, 55, 1, 78].

This chapter is organized as follows. In section 4.2, we will review the necessary
mathematical background to construct GH-PKC, and describe briefly GH-PKC
protocols including GH-PKD scheme and GH-RSA-type encryption scheme. In
section 4.3 we will discuss exponentiation algorithm for GH-PKC. In section 4.4
we will propose a novel ephemeral-static encryption scheme based on the concepts
of GH-PKD scheme and then based on the proposed encryption scheme, the GH-
Nyberg-Rueppel-type digital signature algorithm (GH-NR-DSA) is also proposed
in section 4.5. We conclude the chapter in section 4.6.

4.2 GH-Public Key Cryptosystem

4.2.1 Preliminaries

Let q be a prime power and f(x) = x3 − ax2 + bx − 1 be a polynomial over
Fq. A third-order LFSR sequence s = {sn} = {sn(a, b)} over Fq is called the
characteristic sequence generated by f(x) if the elements of s satisfy

sn = asn−1 − bsn−2 + sn−3, n ≥ 3 (4.1)

with the initial conditions s0 = 3, s1 = a, and s2 = a2 − 2b.

We assume that f is irreducible over Fq and α is a root of f(x), then α, αq and

αq
2

are all three roots of f(x) in Fq3 . Therefore, by Newton’s formula, s can be

represented by sn = Tr(αn) = αn + αnq + αnq
2
, n ∈ Z. It follows from this fact

that n-th powers of the roots of f(x) are the roots of the polynomial fn(x), i.e.,

fn(x) = x3 − sn(a, b)x2 + s−n(a, b)x− 1 (4.2)

= (x− αn)(x− αnq)(x− αnq2

).

Since f(x) is irreducible, per(f), so-called the period of f(x) in Fq3 , is equal to
the per(s), which is a factor of ` = q2 + q + 1. If gcd(per(f), n) = 1, f(x) and
fn(x) have the same period, so fn(x) is irreducible over Fq.

We now give the following facts that play important roles to construct GH-PKD
scheme and our proposed encryption scheme. The details and the proofs can be
found in [30].

Lemma 4.1. Let f(x) = x3 − ax2 + bx− 1 be a polynomial over Fq, and let s be
its characteristic sequence. Then for all e, r ∈ Z+,

(ser, s−er) = (se(sr, s−r), s−e(sr, s−r)) = (sr(se, s−e), s−r(se, s−e)).

Remark 4.1. It follows from Lemma 4.1 that (ser, s−er) is computed when either
e ∈ Z+ and (sr, s−r) or r ∈ Z+ and (se, s−e) are known.
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Lemma 4.2. Let f(x) = x3 − ax2 + bx − 1 be an irreducible polynomial over
Fq with per(f) dividing ` = q2 + q + 1, and s be its characteristic sequence. Let
Z` = {0, 1, 2, · · · , ` − 1} and Z×` = {x ∈ Z` | gcd(x, `) = 1}. Let R` be the set
containing all elements in Z×` which are not conjugate each other modulo ` with
respect to q, i.e., R` = {e ∈ Z×` | e 6≡ rqi mod `, r ∈ Z, 0 ≤ i ≤ 2}. Then the
following mathematical function ψ

ψ : R` −→ Fq × Fq
e 7−→ (se, s−e)

is a bijective map from R` to Fq × Fq.

Remark 4.2. It follows from Lemma 4.2 that there will be different public keys
corresponding to different private keys in GH-PKD scheme. The number of the
space of private or public keys is φ(q2 + q + 1)/3, where φ is Euler function.

Lemma 4.3. Let s be the characteristic sequence over Fq with the characteristic
polynomial f(x) = x3 − ax2 + bx− 1. Then for any u, v ∈ Z+

i) s2u = s2
u − 2s−u

ii) susv − su−vs−v = su+v − su−2v.

Gong and Harn [30] showed that the elements of order dividing ` = q2 + q + 1
in F∗q3 could be identified by {sn, s−n} with a compression factor 2/3. They also
obtained an efficient exponentiation algorithm to calculate a pair of the n-th
terms sn and s−n by using Lemma 4.3, which needs 9 log n modulo q multiplica-
tions on average. This algorithm is more efficient than Fiduccia’s one that uses
modulo polynomial in [26]. Gong, Harn and Wu [31, Algorithm 1] also proposed
much more efficient algorithm utilizing the signed-digit representation that re-
sists against Simple Power Analysis (SPA) attacks. Using this representation to
calculate a pair of the n-th terms sn and s−n needs 4 log n multiplications and
4 log n squarings in Fq on average. This method is optimized where q is a prime
or a prime power in [32].

Remark 4.3 (Parameter selection). In [29, 47] an efficient method to select a
good prime p to construct the finite field Fq of characteristic p is given. Also it
is described how to select a subgroup of order dividing q2 + q + 1.

In [29], Giuliani and Gong define some complexity problems related to the kth-
order LFSR. Inspired by their definitions, we give some analogous problems for
third-order LFSR that the security of our proposed scheme will depend on these
problems, later.

Definition 4.1. Given (s1, s−1) and (se, s−e), the problem of finding e with 1 ≤
e ≤ q2 + q+ 1 is called the third-order LFSR-Based Discrete Logarithm Problem
(3-LFSR-DLP).

Definition 4.2. Given (s1, s−1), (se, s−e) and (sr, s−r), the problem of deter-
mining (ser, s−er) is called the third-order LFSR-Based Diffie Hellman Problem
(3-LFSR-DHP).
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Definition 4.3. Given (s1, s−1), (se, s−e), (sr, s−r), (ser, s−er) and (sc, s−c), where
c is randomly chosen, the problem of determining the solution of 3-LFSR-DHP
whether (ser, s−er) or (sc, s−c) is called the third-order LFSR-Based Decisional
Diffie Hellman Problem (3-LFSR-DDHP).

Remark 4.4. It is essentially proven that kth-order LFSR-DLP is computationally
equivalent to DLP over Fqk in [74]. Giuliani and Gong prove the analogous for
the Diffie Hellman and Decisional Diffie-Hellman problems in [29].

Semantic Security: Suppose that m1 ∈ Fq and (m2) ∈ Fq are two known
messages from the attacker E and A encrypts message m1 such that c = m1K =
m1(str + s−tr) and sends the ciphertext c to attacker E who wants to determine
whether c is encryption of m1 or,m2. To do this attacker E divides c with m1

such that Ḱ = c/m1. Now if attacker E can find out either str or s−tr from Ḱ
then he can form cubic equation ḡ(x) = x3 − strx2 + s−trx− 1 over Fq. Then he
determines the irreducibility of ḡ(x), if it is irreducible the attacker E concludes

that c is encryption of m1. But to determine str or s−tr from Ḱ is computationally
equivalent to splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that z = X+Y

where str 7→ X and s−tr 7→ Y . The number of such (X, Y ) are equal to q−1
2

.
Moreover, the product tr ∈ Z` and Zell is chosen large enough so that the brute
force attack becomes infeasible.

Remark 4.5 (Semantic Security). Given G =< α >⊂ Fq3 , (s1, s−1) and z ∈
Fq. Finding (se, s−e) such that z = se + s−e is computationally equivalent to
computing z = X+Y , (X, Y ) ∈ F2

q. Since there is no polynomial time algorithm
to split z as a sum of two elements in Fq, where the total number of unknown
such as (X, Y ) are equal to q−1

2
and se 7→ X and s−e 7→ Y . Moreover, e ∈ Z` and

Zell is chosen large enough so that the brute force attack becomes infeasible.

4.2.2 Motivation to Use LFSR Based Construction

The main reasons for developing cryptographic protocols based on LFSR Based
construction are as follows:

(i) Security: In GH-PKC, the LFSR based construction provide security of
extension field Fq3 that is DLP lies in Fq3 with faster exponentiation and
compressed data for transmission by a factor of 2/3.

(ii) The cost of exponentiation is lesser than the generic square and multiply
algorithm and elliptic curve (E(Fq)) based exponentiation. The details are
given in the table below:

(iii) Transmission Size: Due to compression factor of 2/3 in GH-PKC the
overall data transmission size is also reduced to implement PKC protocols.
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Table 4.1: Exponentiation Comparison

Process Multiplications over Fq Squaring over Fq

αn ∈ Fq3 , q = pr, r ∈ Z (7rlog 3 + 10.8r − 10.8) log n 3.8rlog3logn
sn, s−n, α

n ∈ Fq3 4 log n 4 log n
nP, P ∈ E(Fq) 4 dlog ne+ 12(weight(n)) 4 dlog ne+ 4(weight(n))

Algorithm 2 Compute s±n using signed-digit representation

Require: a, b ∈ Fq and n =
∑t

j=0 nj2
t−j, nj ∈ {−1, 0, 1} with T0 = n0 = 1,

Ti = ni + 2Ti−1 for 1 ≤ i ≤ t, and so Tt = n.
Ensure: (sn−1, sn, sn+1)
1: (sTi−1, sTi , sTi+1)← (3, a, a2 − 2b)
2: (s−Ti−1, s−Ti , s−Ti+1)← (b2 − 2a, b, 3)
3: if nt = 0 then
4: find h < t such that nh 6= 0 and nh+1 = nh+2 = · · · = nt = 0
5: else
6: h = t
7: end if
8: if h > 1 then
9: for j ← 1 to h− 1 do
10: if nj = 1 then
11: sTi−1 ← s2

Ti−1
− 2s−Ti−1

12: sTi ← sTi−1
sTi−1+1 − as−Ti−1

+ s−(Ti−1−1)

13: sTi+1 ← s2
Ti−1+1 − 2s−(Ti−1+1)

14: s−Ti−1 ← s2
Ti−1−1 − 2s−(Ti−1−1)

15: s−Ti ← sTi−1
sTi−1−1 − bs−Ti−1

+ s−(Ti−1+1)

16: s−Ti+1 ← s2
Ti−1
− 2s−Ti−1

17: else
18: sTi−1 ← s2

Ti−1−1 − 2s−(Ti−1−1)

19: sTi ← sTi−1
sTi−1−1 − bs−Ti−1

+ s−(Ti−1+1)

20: sTi+1 ← s2
Ti−1
− 2s−Ti−1

21: s−Ti−1 ← s2
Ti−1
− 2s−Ti−1

22: s−Ti ← sTi−1
sTi−1+1 − as−Ti−1

+ s−(Ti−1−1)

23: s−Ti+1 ← s2
Ti−1+1 − 2s−(Ti−1+1)

24: end if
25: end for
26: end if
27: for j = max{1, h} to t do
28: s±Ti ← s2

Ti−1
− 2s−Ti−1

29: end for
30: return (sTi−1, sTi , sTi+1) and (s−Ti−1, s−Ti , s−Ti+1)

Now briefly discuss GH-PKD scheme and GH-RSA-type encryption scheme. For
more details, one can refer to [30] and [31].
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4.2.3 GH-PKD Scheme

• Public Parameters: q is a prime power, and f(x) = x3 − ax2 + bx− 1 is an
irreducible polynomial over Fq with per(f) = ` dividing q2 + q + 1.

• A randomly selects e satisfying 0 < e < ` such that gcd(e, `) = 1 as her
static private key. She then computes her static public key (se, s−e) using
public parameters, and sends (se, s−e) to B.

• B randomly selects r satisfying 0 < r < ` such that gcd(r, `) = 1 as his
static private key. He then computes his static public key (sr, s−r) using
public parameters, and sends (sr, s−r) to A.

• A computes (ser, s−er) = (se(sr, s−r), s−e(sr, s−r)).

• B computes (ser, s−er) = (sr(se, s−e), s−r(se, s−e)).

• Both A and B agree on common key (ser, s−er).

Security: The security of GH-PKD scheme depends on the difficulty of solving
3-LFSR-DLP and 3-LFSR-DHP.

Cost of Protocol: In GH-PKD protocol, both parties can compute common key
in 8 trace based exponentiations

4.2.4 GH-RSA-Type Encryption Scheme

The RSA-type encryption scheme is based on third order characteristic sequence
over ZN which is an integer ring modulo N . Let A and B be two parties. A
wants to send a message M = (m1,m2) to B, then both proceed as follows:

• Public Parameters: Let e and N , such that N = pq, p and q are primes,
and gcd(e, p` − 1) = 1 for ` = 2, 3.

• Private Keys: Let d0, d1, . . . , d8 be decryption keys. Each dj with 0 ≤ j ≤ 8
are computed and selected as a function of ciphertext C = (c1, c2) such
that dje ≡ 1 (mod δj) for 0 ≤ j ≤ 8. Each δj with 0 ≤ j ≤ 8 are also
precomputed and selected as a function of C .

• Encryption: For a message M = (m1,m2), where 0 < m1,m2 < N , A com-
putes ciphertext C = (c1, c2) with c1 = se(m1,m2) and c2 = s−e(m1,m2).

• Decryption: B selects a proper decryption key in the set {d0, d1, . . . , d8},
then he computes message m1 = sdj(c1, c2) and m2 = s−dj(c1, c2) using the
selected key dj for 0 ≤ j ≤ 8.

Security Analysis: The security of GH-RSA-Type Encryption Scheme is based
on the difficulty of factoring a large composite integer.
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4.3 Improved Exponentiation Algorithms

Gong and Harn [30] showed that the elements of order ` dividing q2 + q + 1 in
F∗q3 could be identified by {sn, s−n} with a compression factor 2/3. They also
obtained an efficient single exponentiation algorithm to calculate a pair of the
n-th terms sn and s−n by using Lemma 4.3, which needs 9 log n modulo q multi-
plications on average. This algorithm is more efficient than Fiduccia’s one that
uses modulo polynomial in [26]. Gong, Harn and Wu [30, Algorithm 1] also pro-
posed much more efficient algorithm utilizing the signed-digit representation that
resists against Simple Power Analysis (SPA) attacks. Using this representation
to calculate a pair of the n-th terms sn and s−n needs 4 log n multiplications and
4 log n squarings in Fq on average.

A double exponentiation algorithm to calculate sak+bl for XTR proposed by
Lenstra with using matrices in [47]. Later, Stam and Lenstra [73] proposed
more efficient double exponentiation algorithm for XTR without using matrices.
Their algorithm is an adaptation of Montgomery’s method [57] that computes
Lucas construction. In this section, we propose efficient double exponentiation
algorithm to calculate s±(ak+bl) for GH construction adapting the techniques used
in [73, 57], while it is possible to use matrix methods. We also show how to use
double exponentiation algorithm to speed up single exponentiation algorithm and
compare it with the similar ones.

4.3.1 Improved GH Double Exponentiation

Let a, b > 0, s±k, s±l, s±(k−l) and s±(k−2l) be given. Then the double exponentia-
tion s±(ak+bl) is efficiently computed in Algorithm 3. The outline of Algorithm 3
is as follows: Let u = k, v = l, d = a and e = b. Then it follows from this fact that
du+ ev = ak+ bl and s±u, s±v, s±(u−v) and s±(u−2v) are known. Therefore, in the
main part of Algorithm 3, d, e, u and v will be updated so that du+ ev = ak+ bl
holds with d, e > 0 and d + e decreases until d = e. Also, s±u, s±v, s±(u−v) and
s±(u−2v) are updated according to the new values of u and v. If d = e, then
ak + bl = du + ev = d(u + v) so that s±(ak+bl) follows by computing s±(u+v) and
next s±d(u+v) by using the single exponentiation algorithm. Table 4.2 gives the
update rules for double exponentiation. Table 4.3 gives the cost of each update
operation in Fq. There are various ways in which d and e can be updated. The
method that we mention here is an adaptation of [73, ?] to GH construction.

Table 4.2: Computations and rules for double exponentiation

Name of Rule Condition d e ±u ±v s±u s±v s±(u−v) s±(u−2v)

if d > e
R1 d ≤ 4e e d− e ±(u + v) ±u s±(u+v) s±u s±v s±(v−u)

R2 d is even d/2 e ±2u ±v s±2u s±v s±(2u−v) s±2(u−v)

R3 e is odd (d− e)/2 e ±2u ±(u + v) s±2u s±(u+v) s±(u−v) s∓2v

R4 e is even e/2 d ±2v ±u s±2v s±u s±(2v−u) s±2(v−u)

else
RSubs e > d e d ±v ±u s±v s±u s±(v−u) s±(v−2u)
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Table 4.3: Computational cost for each rules

Name of Rule Condition Cost

if d > e
R1 d ≤ 4e 4 M
R2 d is even 4 M+4 S
R3 e is odd 4 M+4 S
R4 e is even 4 S
else
RSubs e > d 0

Algorithm 3 GH Double Exponentiation

Require: a > 0, b > 0, s±k, s±l, s±(k−l) and s±(k−2l).
Ensure: (sak+bl, s−(ak+bl))
1: f ← 0, d← a, e← b, u← k, v ← l
2: while d and e are both even do
3: d← d/2, e← e/2, f ← f + 1
4: end while
5: while d 6= e do
6: Apply the foremost applicable condition in Table 4.2
7: end while
8: Compute (su+v, s−(u+v)) using Lemma 4.3(ii) with inputs s±u, s±v, s±(u−v) and
s±(u−2v).

9: Compute (sd(u+v), s−d(u+v)) applying [30, Algorithm 1] or alternatively Algo-
rithm 4 described below with inputs d and (su+v, s−(u+v)).

10: Compute (s2fd(u+v), s−2fd(u+v)) using Lemma 4.3(i) with inputs 2 and
(sd(u+v), s−d(u+v)) f times.

11: return (s2fd(u+v), s−2fd(u+v))

Remark 4.6. As given in [73], it is also possible to include the optional case, which
d and e are both divisible by 3, into Algorithm 3.

Conjecture 4.4. Given 0 < a, b < `, s±k, s±l, s±(k−l), and s±(k−2l), according to
the experimental results obtained by [73, Table 1], the computational cost of a pair
of sak+bl and s−(ak+bl) can not exceed in about 6 log(max(a, b)) multiplications in
Fq using Algorithm 3. It may be possible to do further improvements by including
more cases into Table 4.2.

4.3.2 Improved GH Single Exponentiation

Let s±1 and n be given with 0 < n < `. Then the single exponentiation s±n is
efficiently computed in Algorithm 4 by just applying Algorithm 3 to k = l = 1
and any positive a, b with a+ b = n. In order to speed up the algorithm, the best
way to split up n in the sum of a and b by choosing b/a is close to the golden

ratio 1+
√

5
2

, i.e., asymptotic ratio between two consecutive Fibonacci numbers. In
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order to have b/a ≈ 1+
√

5
2

, we can choose b = z, which is equal to the closest

integer to 3−
√

5
2
n and a = n− b.

Algorithm 4 GH Single Exponentiation

Require: s±1, n with 0 < n < `, .
Ensure: (sn, s−n)
1: b← z, a← n− b, k ← 1, l← 1.
2: s±k ← s±1,s±l ← s±1, s±(k−l) ← s0, s±(k−2l) ← s∓1

3: Apply Algorithm 3 to a, b, s±k, s±l, s±(k−l) and s±(k−2l). return
(sak+bl, s−(ak+bl))

Conjecture 4.5. Given an integer n with 0 < n < ` and s±1, according to the
analysis obtained by [73], the computational cost of a pair of sn and s−n can not
exceed in about 5.2 log n multiplications in Fq, using Algorithm 4.

Algorithm 4.3 is lesser computational costs than the generic exponentiation al-
gorithm, elliptic curve exponentiation algorithm and the previously well known
algorithm for GH construction. The detailed comparison is given in Table 1,
where w(n) is the Hamming weight of the binary representation of n that is
equal to the number of non-zero digits.

Table 4.4: Comparison of Single Exponentiations

Process Computational Cost
Generic αn ∈ Fq3 , q = pr, r ∈ Z+ (7rlog 3 + 10.8r − 10.8) log n M + 3.8rlog 3 log n S
EC nP, P ∈ E(Fp) (4 dlog ne+ 12w(n)) M + (4 dlog ne+ 4w(n)) S
GH (sn, s−n) ∈ F2

q 4 log n M + 4 log n S

XTR sn ∈ Fp 8 log n M
Improved XTR sn ∈ Fp 5.2 log n M
Improved GH (sn, s−n) ∈ F2

q 5.2 log n M

4.4 Proposed Encryption Scheme

The proposed scheme is essentially an ephemeral-static public key scheme that
is sender uses ephemeral key and computes encryption key using receiver’s static
key. The advantage of ephemeral-static encryption scheme is that both parties
can communicate even when they are off line. Although the ephemeral-ephemeral
encryption scheme provide better forward security but it requires both parties
to be on line for communication. Moreover, ephemeral-ephemeral encryption
scheme is slower than ephemeral-static scheme. The proposed encryption scheme
is based on the concepts of GH-PKD scheme and semantic security depends upon
splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that z = X+Y . The number

of such (X, Y ) are equal to q−1
2

. It accrue the advantage of faster exponentiation
algorithm [30, Algorithm 1] and 2/3 compression of operands. The Proposed
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encryption scheme is faster than GH-RSA-Type encryption scheme with lesser
storage memory. We also propose GH-Nyberg-Rueppel type digital signature
algorithm (GH-NR-DSA) based on the proposed encryption scheme.

Remark 4.7. Let f(x) = x3 − ax2 + bx− 1 be a polynomial over Fq, and let s be
its characteristic sequence. It is well known that for some positive integer u, the
su and s−u are orthogonal in the variables (a, b).

Proposed GH-ElGamal type Encryption Scheme In this section, we will
propose a novel public key encryption scheme which provides secure message
transmission. It is essentially an ephemeral-static public key scheme where the
initiator’s public key is ephemeral and the responder’s public key is static. This
variant is especially useful for email where the recipient may not be on line and
therefore do not have to use an ephemeral public key. The proposed encryption
scheme is based on the concepts of GH-PKD scheme, which depends on the third-
order LFSR sequence proposed by Gong and Harn [30]. The security of proposed
encryption scheme depends on the difficulty of solving 3-LFSR-DLP, 3-LFSR-
DHP and 3-LFSR-DDHP so that the intractability of 3-LFSR-DDHP provides
the proposed scheme which is semantically secure.

Algorithm 3. Let q be a prime power, and let f(x) = x3 − ax2 + bx − 1 be an
irreducible polynomial over Fq with per(f) = ` dividing q2 + q + 1. Let A and B
be two parties. B randomly selects a static private key r ∈ Z satisfying 0 < r < `
such that gcd(r, `) = 1, and computes his static public key PB = (sr, s−r) ∈ F2

q. A
wants to send an encrypted message M ∈ Fq to B, then both proceed as follows:

• Encryption: A encrypts a message M ∈ Fq as follows:

i) A randomly selects an ephemeral private key t ∈ Z satisfying 0 < t < `
such that gcd(t, `) = 1 and she then computes her ephemeral public
key (st, s−t) ∈ F2

q.

ii) A computes (str, s−tr) = (st(sr, s−r), s−t(sr, s−r)) ∈ F2
q using the static

public key PB = (sr, s−r) of B.

iii) A computes K̄ = (str + s−tr) and c = MK̄ and , sends the ciphertext
C = (st, s−t, c) to B.

• Decryption: B recovers the message M ∈ Fq as follows:

i) B computes (srt, s−rt) = (sr(st, s−t), s−r(st, s−t)) using A’s ephemeral
public key (st, s−t).

ii) B computes K̄ = (str + s−tr) and recovers message M = cK̄−1.

Remark 4.8 (Security Analysis). The security of key exchange in proposed en-
cryption scheme depends on the difficulty of solving 3-LFSR-DLP, 3-LFSR-DHP
and 3-LFSR-DDHP where as semantic security depends upon splitting z ∈ Fq in
to two elements (X, Y ) ∈ F2

q such that z = X+Y , where str 7→ X and s−tr 7→ Y .
Moreover, tr ∈ Z` and Zell is chosen large enough so that the brute force attack
becomes infeasible. The details are given in Remark 4.5.
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Remark 4.9. A should validate the static public key of B so that the proposed
scheme is invulnerable to small-subgroup attacks which may be effective for some
discrete logarithm protocols [51]. It make sense that reusing ephemeral keys
appears to be sound since the recent NIST SP 800-56A [79] standard mandates
that all public keys be validated.

Table 4.5: Comparison of proposed encryption scheme with the similar ones

ElGamal GH-RSA-Type XTR-ElGamal Proposed

Encryption (2 + 2(9rlog 3 + 13r − 13) log n)M 10 M′ 10.4 log n M (10.4 log n) M

+4rlog 3 log n S

Decryption (2 + 2(9rlog 3 + 13r − 13) log n)M 12log N M′ 5.2 log n M (5.2 log n) M

+4rlog 3 log n S
Throughput m1 m1,m2 m1 m1

Comm. overhead in bits |q| with q = pr 2|N| |q| with q = p2 2|q|

Computational Cost: By improved singe exponentiation algorithm for GH con-
struction, computing ephemeral key require 5.2 log n multiplications in Fq on
average. Therefore, it requires about (4 + 15.6 log n) field multiplications over Fq
for both encryption and decryption of two field elements. On the other hand, if
we apply our proposed scheme to XTR construction with two message elements,
the total cost will be about (4+31.2 log n) field multiplications over Fp because of
the usage of two ephemeral keys. The detailed comparison is given in Table 5.6,
where we enumerate the cost of field squarings, field multiplications and modulo
N multiplications in terms of S, M and M

′
, respectively. The communication

overhead is determined by the message length which is also included in Table 5.6.

4.5 GH-Nyberg-Rueppel-Type Digital Signature Algorithm

The Nyberg-Rueppel-type digital signature algorithm is one of the digital sig-
nature algorithm in which message recovery is also possible. Due to the faster
and feasible encryption process of proposed encryption scheme, we propose GH-
Nyberg-Rueppel-type digital signature algorithm (GH-NR-DSA) based on GH-
ElGamal type encryption scheme so that key agreement, message recovery and
digital signature protocol can be embedded together. Although, GH-DSA was
already discussed in [30], as per our knowledge GH-NR-DSA is being proposed
for the first time in this case. Since digital signatures with message recovery is
useful for many applications in which message should be signed so that confi-
dentiality, integrity and non-repudiation is ensured. There are two well known
forgery attacks, namely the congruence equation attack and the homomorphism
attack, applicable to Nyberg-Rueppel signature, the GH-NR-DSA has exhibits
countermeasures for these attacks.
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4.5.1 Algorithm 4 (GH-NR-DSA Based on GH-ElGamal Type En-
cryption Scheme)

Let q be a prime power, and let f(x) = x3 − ax2 + bx − 1 be an irreducible
polynomial over Fq with per(f) = ` dividing q2 + q + 1. Let A and B be two
parties. A randomly selects a static private key e ∈ Z satisfying 0 < e < `
such that gcd(e, `) = 1, and computes her static public key PA = (se, s−e) ∈ F2

q.
B randomly selects a static private key r ∈ Z satisfying 0 < r < ` such that
gcd(r, `) = 1, and computes his static public key PB = (sr, s−r) ∈ F2

q. Let H
be a Z`-valued hash function. A wants to send a signed and encrypted message
M ∈ Fq to B containing an agreed upon redundancy, then both proceed as follows:

(1) Signature : A signs and encrypts the message M as follows:

(i) A randomly selects an ephemeral private key t ∈ Z satisfying 0 <
t < ` such that gcd(t, `) = 1 and computes her ephemeral public key
(st, s−t) ∈ F2

q.

(ii) A computes hash value of M i.e. h = H(M) ∈ Z`. Then computes ci-
phertext C by encrypting the message M using proposed GH-ElGamal
type encryption scheme in subsection 4.4 : C = M(strs−tr).

(iii) A computes n = t− eh mod `.

(iv) A sends the signature (n, (st, s−t), C) to B.

(2) Verification : B recovers the message M and verifies A’s signature as
follows:

(i) B performs check 0 < n < `, if not then failure.

(ii) B decrypts C to M using ephemeral public key (st, s−t) and his static
private key r : M = C(srts−rt)

−1. If M does not contain the agreed
upon redundancy, then failure.

(iii) B computes h = H(M) ∈ Z` and (seh, s−eh) = (sh(se, s−e), s−h(se, s−e))
using Algorithm 4, Lemma 4.1 and A’s static public key (se, s−e).

(iv) B computes s±(eh−2) using the characteristic sequence generated by
f(x) with s±(eh−1), s±eh and s±(eh+1) which are obtained in (iv).

(v) B computes (sn+eh, s−(n+eh)) using Algorithm 3, with a = 1, b =
n, (eh) 7→ k, l 7→ 1, s±(eh−2), s±(eh−1), s±eh, s±1.

(vii) B accepts if and only if (sn+eh, s−(n+eh)) = (st, s−t).

4.5.2 Algorithm 5 (GH-NR-DSA Based on Generic Symmetric En-
cryption)

By keeping the system public parameters same as in Subsection 4.5.1, we have
the following GH-NR-DSA based on the generic symmetric encryption.
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(1) Signature : A signs and encrypts the message M as follows:

(i) A randomly selects an ephemeral private key t ∈ Z satisfying 0 <
t < ` such that gcd(t, `) = 1 and computes her ephemeral public key
(st, s−t) ∈ F2

q.

(ii) A computes symmetric key K based on (st, s−t), B’s static public key
and encrypts message M to C using K and symmetric encryption
scheme.

(iii) A computes hash value of C i.e. h = H(C) ∈ Z`.
(iv) A computes n = t− eh mod `.

(v) A sends the signature (n,C) to B.

(2) Verification : B verifies A’s signature and recovers the message M as
follows:

(i) B performs check 0 < n < `, if not then failure.

(ii) B computes h = H(C) ∈ Z` and (seh, s−eh) = (sh(se, s−e), s−h(se, s−e), )
using Algorithm 4, Lemma 4.1 and A’s static public key (se, s−e).

(iii) B computes s±(eh−2) using the characteristic sequence generated by
f(x) with s±(eh−1), s±eh and s±(eh+1) which are obtained in step 2.(ii).

(iv) B computes (sn+eh, s−(n+eh)) using Algorithm 3, with a = 1, b =
n, (eh) 7→ k, l 7→ 1, s±(eh−2), s±(eh−1), s±eh, s±1.

(v) B computes symmetric key K based on (sn+eh, s−(n+eh)), his static
private key and decrypts C to M using symmetric encryption scheme.
B accepts if and only if M contains agreed upon redundancy.

Security Analysis: It is well known from [56] that Nyberg-Rueppel signature
scheme is vulnerable to two forgery attacks, which are congruence equation attack
and homomorphism attack. GH-NR-DSA resistant to such attacks due to the
following reasons.

(i) Congruence equation attack is avoided by using hash value of encrypted
message and the agreed upon redundancy in the message.

(ii) The homomorphism attack is avoided by the fact that trace function is not
an homomorphism, i.e., let f(x) be an irreducible polynomial over Fq and
α ∈ Fq3 be any root of f(x) of order ` dividing q2 + q + 1. Then for any
integer u and v,

Tr(αu+v)

Tr(αv)
=
su+v

sv
6= Tr(αu) = su,

where {sn} is called the third-order LFSR sequence over Fq generated by
f(x). It follows from this fact that LFSR based signature schemes resist
this attack.

Remark 4.10. In Algorithm 4 and Algorithm 5, the general cryptographic hash
functions published by NIST such as SHA family etc, can be used.
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Table 4.6: Comparison of GH-NR-DSA with the similar DSAs

GH-DSA XTR-NR-DSA EC-DSA GH-NR-DSA
Double exponentiation (sc(h−dl), s−c(h−dl)) (ss+hk) (u1 + u2d)P (sn+eh, s−(n+eh))

Cost 16 log ` M + 16 log ` S 6 log ` M 7 log ` M + 3.7 log ` S 10.4 log ` M
Throughput m1,m2 m1 m1 m1
Message recovery No Yes No Yes
Comm. overhead in bits 2|q| + |H| |q| + |H| |p| + |H| 2|q| + |H|

Computational Cost: In GH-DSA and GH-NR-DSA, there is a double expo-
nentiation in Fq, which the elements of order ` dividing q2 + q + 1 in Fq3 . In
XTR-NR-DSA, there is also a double exponentiation in Fq with q = p2, which
the elements of order ` dividing p2 − p + 1 in Fp6 . For EC-DSA, E(Fp) is the
group of points of an elliptic curve E over Fp and P ∈ E(Fp) is a point of prime
order `. GH-NR-DSA is efficient than GH-DSA and EC-DSA by considering the
computational cost and the message recovery. The detailed comparison is given
in Table 5.8, where we enumerate the cost of field multiplications and field squar-
ings in terms of M and S, respectively. In Table 5.8, h ∈ ZQ is the hash of
encrypted message, c(h− dl), s+ hk, u1 + u2d, n+ eh ∈ ZQ.

4.6 Conclusion

In this chapter we introduced GH-ElGamal type encryption scheme, which is
semantically secure and semantic security depends upon splitting z ∈ Fq into
two numbers (X, Y ) ∈ F2

q such that z = X + Y where se 7→ X and s−e 7→ Y .
Moreover, e ∈ Z` and Zell is chosen large enough so that the brute force attack
becomes infeasible. Whereas the key exchange security depends on the difficulty
of solving 3-LFSR-DLP and 3-LFSR-DHP. This scheme is faster than GH-RSA-
type encryption scheme with lesser storage memory. Based upon the proposed
encryption scheme, we also introduced GH-NR-DSA to embed key exchange,
message transmission and digital signature algorithm in a single protocol to ensure
confidentiality, integrity and non-repudiation.
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CHAPTER 5

TRACE BASED PUBLIC KEY CRYPTOSYSTEMS

5.1 Introduction

The Discrete Log Problem (DLP), that is computing x, given y = αx and
< α >= G ⊂ F∗q, based Public Key Cryptosystems (PKC) are being studied
since late 1970’s. Such development of PKC was possible because of the trapdoor
function f : Z` → G =< α >⊂ F∗q, f(m) = αm is a group homomorphism.
Due to this fact we have; Diffie-Hellman (DH) type key exchange, ElGamal type
message encryption, and Nyberg Rueppel type digital signature protocols. The
cryptosystems based on the trapdoor f(m) = αm are well understood and com-
plete. However, there is another trapdoor function f : Z` → G, f(m)→ Tr(αm),
where G =< α >⊂ F∗

qk
, k ≥ 2, which needs more attention of the researchers

from cryptographic protocols point of view. In the above mentioned case, even
though f is a computable, but it is not clear how to produce protocols such as
Diffie Hellman type key exchange, ElGamal type message encryption, and Ny-
berg Rueppel type digital signature algorithm, in general. It would be better, of
course if we can find more efficient algorithm than repeated squaring and trace
to compute f(m) = Tr(αm) together with these protocols. In the literature
we see some works for a more efficient algorithm to compute f(m) = Tr(αm)
and not wondering about the protocols. We also see some works dealing with
an efficient algorithm to compute Tr(αm) as well as discussing the cryptographic
protocols. These works are presented by Smith, Lennon and Skinner (LUC-PKC)
in 1994 [71, 72], L.Horn and G.Gong, (GH-PKC) in 1998 [30, 31], A.K.Lenstra
and E.R.Verheul (XTR-PKC) in 2000 [47, 48, 16, 73] and K.Giuliani, G.Gong
(GG-PKC) in 2003 [27, 28] and Koray Karabina (KK-PKC) in 2009 [41, 42].

In the literature there are also so called torus based cryptosystems introduced by
K.Rubin and A.Silverberg in 2003 [64]. These systems depend on the parametric
representation of the group Tk(Fq) ∼= Gq,k =< α >⊂ F∗

qk
and Tk(Fq) rather than

the efficient algorithm to compute Tr(αm), where Tk(Fq) is torus consisting of the
elements in Fqk whose norm in 1 down to every intermediate subfield. Therefore,
torus based cryptography is an area which does not fit to philosophy of this study.
Therefore, we shall not discuss it here.

The aim of this chapter is to review the so called trace based cryptography studied

57



in the literature and bring to the attention the challenges faced in these systems.
We will not only review these systems but also introduce cryptographic protocols
for the ones they are not discussed in the literature.

This chapter is organized as follows: in section 5.2, we will review the necessary
mathematical background and protocols for DLP based PKC. In section 5.3,
we review the trace based systems including mathematical structure for efficient
algorithm to compute f(m) = Tr(αm) and cryptographic protocols such as Diffie
Hellman key exchange, ElGamal type encryption scheme and Nyberg Rueppel
type Digital Signature algorithm. Although, most of the facts discussed here are
well known however, we have also added some new results such as ElGamal type
encryption and Nyberg Rueppel type signature schemes for some cases which
were not discussed in the literature. We also introduce efficient exponentiation
for 5th degree extensions in subsection 5.3.10. Finally, we conclude the chapter
in section 5.4.

5.2 Discrete Log Based PKC over Finite Fields

The general mathematical structure of the PKCs based on finite field and crypto-
graphic protocols such as Key Exchange, Encryption scheme, and Nyberg Ruep-
pel Digital signature algorithm are basic building blocks for the PKC. Also the
PKC is considered practical if we have cryptographic protocols and efficient al-
gorithm for computations involved in these protocols. Keeping this in focus, we
discuss DLP based PKC over subgroup G of a finite field.

5.2.1 DLP Based PKC over G

The DLP based PKC over G were discussed in Chapter 2 the brief introduction
is also given here Let,

G =< α >⊂ F∗q, q = pr, i.e; prime power

G =< α >∼= Z`, ord(α) = `

f : Z` → G; with f(m) = αm;

The f is a computable trapdoor, and well known repeated squaring algorithm
computes f in polynomial time. Therefore by choosing the order G a large prime
` one can avoid polynomial time algorithms to solve DLP so that f becomes
one-way function on F∗q. On the DLP based PKC, the main point is the trapdoor
function:

G =< α >⊂ F∗q, ord(α) = `,

f : Z` −→ F∗q, f(m) = αm.

The trapdoor function f is a group homomorphism; f(m + k) = f(m)f(k), and
one should be careful to choose < α >= G ⊂ F∗q to avoid algorithms to attack
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DLP on G and choose, if possible, the smallest size G such that DLP on G is
computationally equivalent to DLP on F∗q.

5.3 Trace Based Public Key Cryptosystems over Finite Fields

In this section we will discuss LUK-PKC, GH-PKC, GG-PKC, and KK-PKC. Let
α be an element over Fqk with the characteristic polynomial;

g(x) = xk − a1x
k−1 + · · ·+ (−1)kak,

over Fq and let, Tr, Norm: Fqk → Fq, given by;

Tr(β) =
k−1∑
i=0

βq
i

, Norm(β) =
k−1∏
i=0

βq
i

.

Note that,

g(x) =
k−1∏
i=0

(x− αqi),

and ai = σi(α, α
q, · · · , αqk−1

), σi is the i-th elementary symmetric function in k
variables. For any integer m, let gm(x) be the characteristic polynomial of αm,

gm(x) =
k−1∏
i=0

(x− (αm)q
i

),

= xk − f1(m)xk−1 + · · ·+ (−1)ifi(m)xk−i + · · ·+ (−1)kfk(m).

Note that; g1 = g.

This gives us for i = 1, 2, · · · , k,

fi : Zn −→ F∗q, fi(m) = σi(α
m, (αm)q, · · · , (αm)q

k−1

).

5.3.1 Relation of fi(m) with LFSR

Let, α be an element of finite field Fqk , with characteristic polynomial over Fq:

g(x) = xk + b1x
k−1 + · · ·+ bk.

For a given initial state {s0, s1, · · · , sk−1} one produces a unique periodic se-
quence, {sm = −b1sm−1 − b2sm−2 − · · · − bksm−k, m ≥ k}, generated by g(x).
The general term sn can be expressed uniquely in the form:

sn = c1α
n
1 + c2α

n
2 + . . .+ ckα

n
k , for some ci ∈ Fq,

and

g(x) =
k∏
i=1

(x− αi), αi ∈ Fqk .
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Remark 5.1. It is well known that, finding an efficient algorithm to compute
fi(m) = σi(α

m, (αm)q, · · · , (αm)q
k−1

) is computationally equivalent to finding al-
gorithm to compute sn, with given specific initial conditions s0, . . . , sk−1, where
for i = 1, 2, · · · , k; αi = (αm)q

i−1
.

Remark 5.2. We note that by means of Newton’s formula having an efficient
algorithm to compute f1(m) = Tr(αm) is computationally equivalent to finding
such an algorithm for fi(m).

From now on our work will be restricted to the function f1(m) = Tr(αm) and for
simplicity we denote f1 as f . For m = 1, 2, · · · and α ∈ Fqk , let,

gm(x) =
k−1∏
i=0

(x− (αm)q
i

),

g̃m(x) =
k−1∏
i=0

(x− (α−m)q
i

).

Here g̃m(x) = xkgm( 1
x
), is the reciprocal of gm(x).

Note that; for f : Z` → F∗q, f(m) = Tr(αm), computing f−1(β) is computationally
equivalent to solving DLP on G =< α >⊂ F∗

qk
. Since f(m) = Tr(αm) is not a

group homomorphism, it is not known, in general, how to obtain cryptographic
protocols like the the ones in DLP case based on α → αm. Certainly, the PKC
based on f(m) = Tr(αm) will give more compressed system versus the system
based on α→ αm in F∗

qk
. With this development we define the trace based PKC

as follows:

Definition 5.1. By a trace based cryptosystem we mean a Public Key Cryp-
tosystem based on the one-way function,

f : Z` → G =< α >⊂ F∗qk ,
f(m) = Tr(αm).

We mean a cryptosystem having an adaptability to cryptographic protocols such
as, DH type key exchange, ElGamal type message encryption scheme, and Nyberg
Rueppel type digital signature algorithm, based on f .

5.3.2 Main Challenges for Trace Based Cryptography

Let α be an element of Fqk having characteristic polynomial g(x) = xk−a1x
k−1 +

· · ·+ (−1)kak over Fq, find conditions on α such that:

(i) There is more efficient polynomial time algorithm than the algorithm that
first computes αm using square-and-multiply algorithm, then computes
trace of αm, for a given m ∈ Z.
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(ii) Introduce cryptographic protocols similar to protocols discussed above for
DLP-based system.

(iii) Compare the security and implementation of these protocols with the ex-
isting ones.

Remark 5.3. The problem (i) arose also in paring based cryptosystems and there
have been some works done there for some values of k and special conditions on
α such as ord(α) = `|Φk(q), where Φk(q) is kth cyclotomic polynomial evaluated
at q.

By keeping in view the above challenges, we now discuss the related work done in
the literature and in this respect following is the list of Public Key Cryptosystems.

(i) LUC-PKC : k = 2, q = prime power, p-arbitrary;[71, 72].

(ii) GH-PKC : k = 3, q = prime power, p-arbitrary;[30, 31].

(iii) GH-PKC Special Case : k = 3, q = p2, p-arbitrary;[47, 48, 16].

(iv) GG PKC : k = 5, q = prime power, p-arbitrary;[27].

(v) GG-PKC Special Case : k = 5, q = p2, p-arbitrary; [27].

(vi) KK-PKC : k = 4, p = 2, q = p2u+1, u ≥ 1

(vii) KK-PKC : k = 6, p = 3, q = p2u+1, u ≥ 1

5.3.3 Motivations to use Trace Based Public Key Cryptography

The main reasons for developing cryptographic protocols based on Trace Based
construction are as follows:

(i) Security: The trace based construction provide security of extension field
Fqk that is DLP lies in Fqk with faster exponentiation and compressed data
for transmission.

(ii) Transmission Size: Due to compression of operands the overall data
transmission size is also reduced to implement PKC protocols as given in
table below:

(iii) The cost of exponentiation is lesser than the generic square and multiply
algorithm for finite field and elliptic curve (E(Fq)) based exponentiation.
The details are given in the table below:
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Table 5.1: Trace Based Compression Factors for Cryptographic Protocols

Extension Field Compression Factor PKC System
αn ∈ Fq2 , q = pr, r ∈ Z 1/2 LUC-PKC
αn ∈ Fq3 , q = p2, 1/3 GH-PKC and XTR-PKC
αn ∈ Fq5 , q = p2, 2/5 GG-PKC
αn ∈ Fq6 , q = 32r+1, r ∈ Z 1/6 KK-PKC
αn ∈ Fq4 , q = 22r+1, r ∈ Z 1/4 KK-PKC

Table 5.2: Exponentiation Comparison over Fq2

Process Multiplications over Fq Squaring over Fq

αn ∈ Fq2 , q = pr, r ∈ Z weight(n)− 1 blog nc
sn, α

n ∈ Fq2 0.75 log n 0.17 log n
nP, P ∈ E(Fq2) 7 log n 3.6 log n

Table 5.3: Exponentiation Comparison over Fq3

Process Multiplications over Fq Squaring over Fq

αn ∈ Fq3 , q = pr, r ∈ Z (7rlog 3 + 10.8r − 10.8) log n 3.8rlog3logn
sn, α

n ∈ Fq3 5.2 log n -
nP, P ∈ E(Fq) 4 dlog ne+ 12(weight(n)) 4 dlog ne+ 4(weight(n))

Table 5.4: Exponentiation Comparison over Fq5

Process Multiplications over Fp Squaring over Fp

αn ∈ Fq5 , q = p2, 45(weight(n)− 1) 30 blog nc
sn, α

n ∈ Fq5 , q = p2 108.5 log n 13 log n
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5.3.4 Algorithm to compute mixed term su+v = Tr(αuαv), given
Tr(α), u, Sv = (sv−k+1 · · · sv), sj = Tr(αj) for j ∈ Z, and v-unknown.

Before discussing PKC systems we give generalized algorithm to compute mixed
term that is su+v = Tr(αuαv) given u, Tr(α), Sv = (sv−k+1, · · · , sv), v-unknown.
This algorithm will be required in Nyberg-Rueppel type digital signature system.
Note that the algorithm to compute Tr(αu) given Tr(α) and u will be discussed
in respective PKC and here we assume such an algorithm already exists. In fact,
one can always take repeated squaring and trace for such computations.

Let G =< α >⊂ F∗
qk

, p-arbitrary, q = pr, and g(x) be the characteristic polyno-
mial of α :

g(x) =
k−1∏
i=0

(x− αqi) = xk − a1x
k−1 + a2x

k−2 − · · ·+ (−1)k−1ak−1 + (−1)k.

Let A be companion matrix associated with g(x):

A =


0 0 · · · 0 (−1)k−1

1 0 · · · 0 (−1)k−2ak−1

0 1 · · · 0 (−1)k−3ak−2

...
...

...
...

...
0 0 · · · 1 a1

 . (5.1)

Using the algorithm for Tr(αu), we form the state matrix Mu associated with u as::

Mu =


su−k+1 su−k+2 · · · su−1 su
su−k+2 su−k+3 · · · su su+1

su−k+3 su−k+4 · · · su+1 su+2

...
...

...
...

...
su su+1 · · · su+k−2 su+k−1

 . (5.2)

Let the vector Sm = (sm−k+1, · · · , sm) be given for any integer m then we have,

Sm+1 = SmA,

and therefore for any integer r,

Sm+r = SmA
r.

This gives, Mu = M0A
u therefore, Au = M−1

0 Mu and vector,

Su+v = Sv(M
−1
0 Mu) = (su+v−k+1, · · · , su+v). (5.3)

Algorithm 5 to compute Su+v = (su+v−k+1, · · · , su+v) for v-unknown

Require: k ≥ 2, Sv, u, T r(α).
Ensure: Su+v.
1: Construct A as in equation (5.1),
2: Construct Mu as in equation (5.2),
3: Compute, M−1

0 ,
4: Compute, Au ←M−1

0 Mu,
5: Compute, C ← Sv(A

u).
6: return (C).
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Remark 5.4. Following is the step by step computational complexities:

(i) The computational cost to construct Mu is the cost of algorithm to compute
Su +O(k3) field multiplications.

(ii) M0 can be constructed form initial states with O(k3) field multiplications.

(iii) The complexity of computing M−1
0 and M−1

0 Mu is also bounded by O(k3).
Therefore, su+v = Tr(αu+v) can be computed in about O(k3) field multi-
plications.

5.3.5 LUC-PKC : Case k = 2, p-arbitrary, q = pr, for any positive
integer r

Let G =< α >∼= Z` ⊂ F∗q2 ,ord(α) = `|(q + 1), then, the polynomial

g(x) = x2 − ax+ 1, a = Tr(α), Norm(α) = 1, and

gm(x) = (x− αm)(x− (αm)q) = x2 − Vm(a)x+ 1, m ∈ Z.
Note that, g̃(x) = g(x) and g̃m(x) = gm(x).

Notation : For any integer r, let Vr : Fq → Fq be a function given by Vr(b) =
Tr(βr) = sr, where β is a root of x2 − bx + 1 = 0. It is clear that Vr is well
defined, namely it is independent than the choice of the root β of x2− bx+1 = 0.
Note that for any integer r

hr(x) =
1∏
i=0

(x− βrqi) = x2 − Vr(b)x+ 1 = x2 − srx+ 1,

in particular, s0 = 2, s1 = b. Furthermore, for any integer m, we have

hmr(x) =
1∏
i=0

(x− (βmr)q
i

) = x2 − Vm(Vr(b))x+ 1x2 − smrx+ 1

over Fq. Which implies that, for any integers r and m we have Vm(Vr(b)) =
Vmr(b) = smr.

The LFSR sequence {sm} with initial conditions {2, a} associated to characteristic
polynomial g(x) = x2 − ax+ 1, gives us the general term:

sm = Vm(a) = Tr(αm).

Properties: Following properties for all integers m and n are proved in [71] and
we list them;

(i) Vm(a) = V−m(a) = sm;

(ii) Vm(sn) = Vmn(a) = smn;
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(iii) s2m = s2
m − 2;

(iv) sm+n = smsn − sm−n.

These properties give us the following efficient algorithm to compute sm = Tr(αm).

Algorithm 6 to compute sm = Tr(αm)

Require: α ∈ Fq2 , ord(α) = `|(q + 1), T r(α) = a ∈ Fq and m =
∑t−1

j=0 εj2
j ∈ Z with εj =

{0, 1}, εt−1 = 1.
Ensure: (sm, sm+1)
1: (sy, sy+1)← (2, a)
2: for j ← t− 1 to 0 do
3: if εj = 1 then
4: sy ← sysy+1 − s1, sy+1 ← s2

y+1 − 2.
5: else
6: sy ← s2

y − 2, sy+1 ← sysy+1 − s1.
7: end if
8: end for
9: return (sy, sy+1)

Remark 5.5. For any integer m this algorithm actually computes (sm−1, sm) from
the initial conditions {2, a}.

This algorithm is more efficient than first computing αm and then Tr(αm). In
fact this algorithm does compute Tr(αm) by using 0.75 logm multiplications and
0.75 logm squaring over Fp.

5.3.5.1 LUC-DH Type Key Exchange

1. System Public Parameters: Let G =< α >⊂ F∗q2 , ord(α) = `|(q + 1),

and g(x) = x2 − ax+ 1, be the characteristic polynomial of α.

2. Private Keys: Random m, and r satisfying 1 < e, r < Z` are the private
keys of A and B respectively.

3. Public Keys: Both A and B computes their public keys as follows:

(i) A computes her public key PA = Ve(a) = se, by running algorithm 6
with inputs a = Tr(α) and her private key e.

(ii) B computes his public key PB = Vr(a) = sr, by running algorithm 6
with inputs a = Tr(α) and his private key r.

4. Common key: A and B agrees on the common key K = PAB = PBA = ser
as follows:

(i) A acquires B’s public key and constructs gr(x) = x2 − PBx + 1 =
x2 − srx + 1. Then she computes ger(x) = x2 − serx + 1, by running
algorithm 6 with inputs PB = sr and her private key e such that,

K = PAB = Ve(PB) = Ve(sr) = Ver(a) = ser.
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(ii) B does the similar things to compute,

K = PBA = Vr(PA) = Vr(se) = Vre(a) = sre.

5.3.5.2 LUC-ElGamal Encryption Scheme

1. System Public Parameters: Let G =< α >⊂ F∗q2 , ord(α) = `|(q + 1),

and g(x) = x2 − ax+ 1, be the characteristic polynomial of α.

2. B runs algorithm 6 with inputs a and his static private key 1 < r < Z` to
compute his static public key PB = sr, and publishes PB.

3. Assumption: messages M ∈ G.

4. A sends message M as follows:

(i) Chooses a random ephemeral private key 1 < t < Z` and runs algo-
rithm 6 with inputs a and r to compute ephemeral public key st.

(ii) Acquires B’s public key PB = sr and computes encryption key K =
Vt(PB) = Vt(sr) = Vrt(a) = srt, by running algorithm 6 with inputs
PB = st and session key r.

(iii) A encrypts M by computing c = KM = srtM and sends ciphertext
C = (st, c).

5. Decryption: B decrypts C as follows:

(i) Based upon ephemeral public key st and his private key r B computes
encryption key K = Vr(st) = Vtr(a) = str.

(ii) Decrypts c to obtain M with encryption key K (computed in 5(i)),
such that M = K−1c = s−1

tr c.

Remark 5.6. The LUC-ElGamal Encryption Scheme is semantically insecure. The
attacker can identify the encryption of either m1 or m2 without solving DLP over
Fq2 as discussed in chapter 4 Remark 4.5.

5.3.5.3 LUC-Nyberg Rueppel type Digital Signature Algorithm Based
on LUC-ElGamal Encryption

Let, A wants to send signed message M ∈ Fq to B and B verifies it. To do this,
they proceed as follows:

1. System Public Parameters: Let G =< α >⊂ F∗q2 , ord(α) = `|(q + 1),

and g(x) = x2−ax+1, be the characteristic polynomial of α, and H : G→
Z` valued hash function.

2. Public Keys:
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(i) A randomly selects 0 < e < Z` and computes public key PA = se by
running algorithm 6 with inputs a and her secret key e.

(ii) B randomly selects 0 < r < Z` and computes his public key PB = sr
by running algorithm 6 with inputs a and his secret key r.

3. Private Keys: The private keys of A and B are e and r, respectively.

4. Signature : A signs the message M ∈ G as follows:

(i) Randomly selects private ephemeral key 0 < t < Z` and computes
ephemeral public key st, by running algorithm 6 with inputs a, t and
computes encryption key Vt(sr) = Vtr(a) = str by running same algo-
rithm with inputs sr and ephemeral private key t.

(ii) computes the hash value of M i.e, h = H(M) mod ` and computes
ciphertext C by encrypting the message M .

(iii) Computes n = t− he mod `.

(iv) A sends the signature (n, st, C) to B.

5. Verification : B recovers message M and verifies A’s signature as follows:

(i) Computes computes encryption key srt by using Algorithm 6 with
inputs r, st and decrypts C to M : M = Cs−1

rt . If M contains required
redundancy B proceeds.

(ii) Computes h = H(M) ∈ Z`,
(iii) By running algorithm 6 with inputs PA = se and h, computes Vh(se) =

Vhe(a) = she. Note that, as stated in remark 5.5, algorithm 6 computes
both she as well as she−1.

(iv) Computes sn+he = śt by running algorithm 5 with inputs k = 2, She =
(she−1, she), n.

(v) B accepts if st = śt.

The analysis of LUC-NR-DSA is given Table 5.5 below:

Table 5.5: LUC-NR-DSA Analysis

Process Cost
Signature Generation 1 exponentiation (0.75 log q)M+(0.75 log q)S
Signature Verification 1 exponentiation (1.5 log q)M+(1.5 log q)S
Comm. Overhead 1 element over Fq

Public Key size 1 element over Fq

where M stands for multiplication and S stands for squaring.
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5.3.6 GH-PKC : Case k = 3, p-arbitrary, q = pu, u ≥ 1

Let, G =< α >∼= Z` ⊂ F∗q3 , α ∈ Fq3 , ord(α) = `|(q2 + q + 1). Then, one can

check that characteristic polynomial g(x) of α and its reciprocal g̃(x) have the
following properties;

g(x) =
2∏
i=0

(x− αqi) = x3 − ax2 + bx− 1, and

g̃(x) =
2∏
i=0

(x− α−qi) = x3 − bx2 + ax− 1,

namely a = Tr(α), b = Tr(α−1). In fact, for all integers m, let gm(x), g̃m(x) be
the following polynomials;

gm(x) =
2∏
i=0

(x− (αm)q
i

) = x3 − smx2 + s−mx− 1, and

g̃m(x) =
2∏
i=0

(x− (α−m)q
i

) = x3 − s−mx2 + smx− 1,

where sm = Tr(αm) and s−m = Tr(α−m).

Notation: For any integer r let Vr : F2
q → Fq be a function given by Vr(c, d) =

Tr(βr) = sr, where β is a root of x3 − cx2 + dx − 1 = 0. It is clear that Vr is
well defined, namely it does not depend on the choice of a root β of h(x) = 0. In
particular, s0 = 3, s1 = c and s2 = c2 − 2d. It is clear that:

hr(x) =
2∏
i=0

(x− (βr)q
i

) = x3 − Vr(c, d)x2 + V−r(c, d)x− 1 = x3 − srx2 + s−rx− 1,

and for any m ∈ Z we also have, Vm(Vr(c, d), V−r(c, d)) = Vmr(c, d) = smr =
Tr(βmr).

The LFSR sequence {si} with initial conditions {3, a, a2−2b} associated to g(x) =
x3−ax2 +bx−1, gives us the general term sn = Vn(a, b) = Tr(αn),for any integer
n.

Properties: For all integers m and n following properties are proved in [30] and
we list here;

(i) Vm(sn, s−n) = Vmn(a, b) = smn,

(ii) s2m = s2
m − 2s−m,

(iii) sm+n = smsn − sm−ns−n + sm−2n.

The cryptographic protocols related to GH-PKC construction are given in Chap-
ter 4
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5.3.7 GH-PKC : Special Case k = 3, p-arbitrary, q = p2

We keep the same notations above and now assume that ord(α) = `|(p2− p+ 1).
Note that (q2 +q+1) = (p2−p+1)(p2 +p+1). In the case q = p2, the important
point is that Tr(α−m) = Tr(αm)p = spm for any integer m which was shown in
[47]. Therefore for any integer m we get,

gm(x) =
2∏
i=0

(x− (αm)q
i

) = x3 − smx2 + spmx− 1,

where sm = Tr(αm).

The LFSR sequence {sm} associated to g(x) = x3 − ax2 + bx − 1, with initial
conditions {3, a, a2 − 2b} gives us the general term:

sm = Vm(a, b) = Tr(αm), and

s−m = V−m(a, b) = Vm(a, b)p = Tr(αm)p = spm.

Properties: For all integers m and n following properties are consequences in
[47] and they are the special case of GH-PKC;

(i) V−m(a, b) = Vm(a, b)p = spm.

(ii) Vm(Vn(a, b), Vn(a, b)p) = Vmn(a, b) = smn.

(iii) s2m = s2
m − 2spm.

(iv) sm+n = smsn − sm−nspn + sm−2n.

(v) sm + spm = Tr(Tr(αm)) over Fp.

Remark 5.7. Computing Tr(Tr(αm)) require negligible arithmetic operation that
is one addition over Fp2 .

Note that the advantage of special conditions on α and q is that g(x) can be
realized only by one element that is Tr(α). However, the same Algorithm 2
chapter 4, given in GH-PKC, can be used to compute Tr(αm), given Tr(α) and
m, for the special case as well. Now we discuss the cryptographic protocols for
the special case.

5.3.7.1 GH-DH Type Key Exchange : Special Case k = 3, p-arbitrary,
q = p2

1. System Public parameters. Let, G =< α >⊂ F∗q3 , p-arbitrary, q = p2,

ord(α) = `|(p2− p+ 1), and g(x) = x3− ax2 + bx− 1, be the characteristic
polynomial of α.

69



2. Both A and B choose random 1 < e < Z` and 1 < r < Z` respectively as
their static private keys.

3. A computes her static public key PA = se ∈ Fq, by applying Algorithm 2
chapter 4 with inputs e and a, b.

4. Similarly, B computes his static public key PB = sr ∈ Fq, by applying
Algorithm 2 chapter 4 with inputs r and a, b.

5. Both A and B compute their common key as follows:

(i) A acquires B’s public key PB and constructs gr(x) = x3−srx2+sprx−1.
Then she computes common key by running Algorithm 2 chapter 4
with inputs PB = (sr, s

p
r) and her private key e such that,

K = PAB = Ve(sr, s
p
r) = ser.

(ii) B does the similar things using his private key r to compute common
key:

K = PBA = Vr(se, s
p
e) = sre.

5.3.7.2 Modified GH-ElGamal Type Encryption (MXTR-ElGamal):
Special Case k = 3, p-arbitrary, q = p2

1. System Public parameters. Let, G =< α >⊂ F∗q3 , p-arbitrary, q = p2,

ord(α) = `|(p2− p+ 1), and g(x) = x3− ax2 + bx− 1, be the characteristic
polynomial of α.

2. B’s static public key PB = sr, private key : random 1 < r <∈ Z`.

3. Assumption: messages M ∈ Fp.

4. Encryption: A encrypts message M and sends to B as follows:

(i) Chooses a random ephemeral private key 1 < t < Z` , computes
ephemeral public key st, and encryption keyK = Vt(sr, s

p
r)+Vt(sr, s

p
r)
p =

srt + sprt ∈ Fp by running Algorithm 2 chapter 4 with inputs a, b, t and
sr, s

p
r.

(ii) Encrypts message M by computing c = MK = M(srt + sprt) ∈ Fp.
(iii) A sends ciphertext C = (st, c) ∈ (Fq × Fp) to B.

5. Decryption: B decrypts C by computing encryption key K with the
ephemeral public key st and his private key r : K = Vr(st, s

p
t )+Vr(st, s

p
t )
p =

str + sptr, and, decrypts c to obtain M : M = cK−1 = c(str + sptr)
−1.

Remark 5.8. The semantic security of MXTR-ElGamal encryption scheme is com-
putationally equivalent to splitting z ∈ Fp into two numbers (X, Y ) ∈ F2

p such
that z = X+Y where str 7→ X and s−tr 7→ Y . Moreover, tr ∈ Z` and Zell is cho-
sen large enough so that the brute force attack becomes infeasible. The number
of such (X, Y ) are equal to p−1

2
. More details are given in chapter 4 Remark 4.5.

70



Table 5.6: Comparison of GH ElGamal encryption scheme with the similar ones

ElGamal GH-RSA-Type MXTR-ElGamal GH-ElGamal

Encryption (2 + 2(9rlog 3 + 13r − 13) log n)M 10 log NM 1 + 5.2 log n M (10.4 log n) M

+4rlog 3 log n S

Decryption (2 + 2(9rlog 3 + 13r − 13) log n)M 12log N M 5.2 log n M (10.4 log n) M

+4rlog 3 log n S
Throughput m1 m1,m2 m1 m1

Comm. overhead in bits |q| with q = pr 2|N| |q| with q = p2 2|q|

The comparison is given in the table below: where N is product of two distinct
primes.

5.3.7.3 GH-Nyberg-Rueppel Type Signature : Special Case k = 3,
p-arbitrary, q = p2

In the special case q = p2, the GH-NR type signature given above in subsection ??
namely, (n, sr, s−r, C) will be changed to (n, sr, C) as we do not need to include
s−r in the signature because s−r = spr. So, we get shorter signature by applying
special condition for q = p2 above.

5.3.7.4 Lenstra and Verheul-Nyberg-Rueppel Type Signature Algo-
rithm

We would like to recall a work done by Lenstra and Verheul “The XTR Public Key
system” in 2000. In their paper they have constructed public key cryptosystem for
the parameters k = 3, q = p2. Their system is nothing but the GH-PKC special
case we just discussed above. The main contribution of XTR public key system
to the literature as we see, is nothing but the Nyberg Rueppel type signature
scheme which was not discussed before in the literature. In the light of above
discussion we now want to state their algorithm below.
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Algorithm 7 to compute Tr(αnαmh) for the given: Tr(α) =
s, (sm−1, sm, sm+1), n, h ∈ Z`, m ∈ Z is unknown.

Require: n, h, Sm = (sm−1, sm, sm+1), T r(α) = s.
Ensure: sn+mh.
1: Compute e = n/h (mod `),
2: Use algorithm 2 chapter 4 to compute (se−1, se, se+1),
3: Based on s and (se−1, se, se+1) compute;

A = D
−1

 2s2 − 6sp 2s2p + 3s− sp+2 sp+1 − 9

2s2p + 3s− sp+2 (s2 − 2sp)p+1 − 9 (2s2p + 3s− sp+2)p

sp+1 − 9 (2s2p + 3s− sp+2)p (2s2 − 6sp)p

 se−1
se

se+1



where, D = s2p+2 + 18sp+1 − 4(s3p + s3)− 27 ,
4: Compute (sm−1, sm, sm+1)A = se+m,
5: C ← Vh(se+m, s

p
e+m) = sh(e+m) = sn+mh.

6: return (C).

Remark 5.9. The Tr(αnαmh) can be computed in 8 log2(n/h (mod `))+8 log2(h)+
34 multiplications in Fp.

5.3.8 Simultaneous Double Exponentiation for Cubic Extensions

The double exponentiation algorithm for cubic extensions and 4th extension were
introduced by Stam and Lenstra [73] and Kpray Karabinal [41]. Let G =<
α >⊂ Fq3 , q = p2, ord(α) = `|(p2 − p + 1) and su = Tr(αu) for u ∈ Z. Let
0 < a, b, n,m < ` be integers then computing sbn+am, given sn, sm, Sn,m =
[sn−m, sn−2m] and positive integers a, b. Let u = n, v = m, d = b and e = a,
then we can write ud + ve = bn + am = constant. The sum d + e is decreased
until d = e in such a way that ud + ve = constant and d = e. At the point
ud + vd = d(u + v) = constant, single exponentiation is applied to compute
sd(u+v). The update rules and related algorithm are given below.

Table 5.7: Stam and Lenstra’s Rules for Double Exponentiation

Name of Rule Condition d e u v su sv su−v su−2v
if d > e
R1 d ≤ 4e e d− e u + v u su+v su sv s(v−u)

R2 d ≡ 0 (mod 2) d/2 e 2u v s2u sv s2u−v s2(u−v)

R3 e odd (d− e)/2 e 2u u + v s2u su+v su−v s−2v
R4 e ≡ 0 (mod 2) d e/2 2v u s2v su s2v−u s2(v−u)

else
Sub e > d e d v u sv su sv−u s2v−u
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Algorithm 8 Double Exponentiation for NR-GH-DSA

Require: (a > 0, b > 0) ∈ `, sl, sk,sk−l, and sk−2l.
Ensure: sbk+al

1: f2 ← 1, d← b, e← a, u← k, v ← l
2: while d and e are both even do
3: d← d/2, e← e/2, f2 ← 2f2

4: end while
5: while d 6= e do
6: Apply the foremost rule in Table 5.7
7: end while
8: compute sd(u+v) using algorithm [30, Algorithm 1] with inputs d and su+v.
9: return (sf2(d(u+v)))

Remark 5.10. The Algorithm 3 can compute sbk+al in 6 log(max(a, b)) multipli-
cations in Fp given sl, 0 < a, b < `, sk,sk−l, and sk−2l. Note that Algorithm 3
can be used for single exponentiation for given s1 and u ∈ `. In this case, single
exponentiation takes 5.2 log u multiplications in Fp.

Now we describe Lenstra and Verheul’s Modified XTR Nyberg-Rueppel Type
Digital Signature Scheme.

1. System Public parameters. Let, G =< α >⊂ F∗q3 , p-arbitrary, q = p2,

ord(α) = `|(p2− p+ 1), and g(x) = x3− ax2 + bx− 1, be the characteristic
polynomial of α, and H : G→ Z` valued hash function.

2. A’s public key PA = (sm) := (sm−1, sm, sm+1), private key : random 1 <
m <∈ Z`.

3. B’s public key PB = (se) := (se−1, se, se+1), private key : random 1 < e <∈
Z`.

4. Assumption: message M ∈ Fp contains agreed upon redundancy.

5. Signature : A signs the message M as follows:

(i) Chooses a random ephemeral private key 1 < r < Z` and computes
ephemeral public key sr.

(ii) Based on mask sr and B’s static public key se determines symmetric
key K = sre + spre .

(iii) Computes h = H(M) mod ` and encrypts message M −→ C : C =
MK using MXTR-ElGamal encryption scheme.

(iv) Computes n = (r −mh) (mod `).

(v) A’s resulting signature on M is (n, sr, C).

5. Verification : B verifies A’s signature as follows:

(i) Computes Checks whether 1 ≤ n < `. If not failure.
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(ii) Computes encryption key K = ser + sper and decrypts C 7→ M . If M
contains agreed upon redundancy then proceed.

(iii) Computes h = H(M) mod `,

(iv) Running Algorithm 2 chapter 4 with inputs h and sm and then Algo-
rithm 8 above with inputs n = a+ b, (shm−1, shm, shm+1), s, computes
sn+mh = Tr(αnαmh).

(v) If sn+mh = sr, B accepts.

The comparison of NR-DSA based on cubic extension is given in the table below:

Table 5.8: Comparison of GH-NR-DSA with the similar DSAs

GH-DSA MXTR-NR-DSA EC-DSA GH-NR-DSA
Double exponentiation (sc(h−dl), s−c(h−dl)) (ss+hk) (u1 + u2d)P (sn+eh, s−(n+eh))

Cost 16 log Q M + 16 log Q S 6 log Q M 7 log Q M + 3.7 log Q S 12 log Q M
Throughput m1,m2 m1 m1 m1
Message recovery No Yes No Yes
Comm. overhead in bits 2|q| + |H| |q| + |H| |p| + |H| 2|q| + |H|

5.3.9 GG Public Key Cryptosystem

We will introduce two cases given by K. Giuliani and G. Gong in 2003 [27, 28]
and fill the gap in this PKC by introducing GG-ElGamal type encryption scheme
and Nyberg-Rueppel type digital signatures.
Case 1: k = 5, p-arbitrary, q = pu, u ≥ 1 ∈ Z.
Case 2: k = 5, p-arbitrary, q = p2.

5.3.9.1 GG PKC : Case k = 5, p-arbitrary, q = pu

Let, G =< α >∼= Z` ⊂ F∗q5 , ord(α) = `|(q4 + q3 + q2 + q + 1), note that Φ5(q) =

(q4 + q3 + q2 + q + 1) is the 5th cyclotomic polynomial evaluated at q then, let
g(x) be the characteristic polynomial of α:

g(x) =
4∏
i=0

(x− αqi) = x5 − ax4 + bx3 − cx2 + dx− 1.

One can check that,

a = Tr(α), d = Tr(α−1), b =
∑

0≤i<j≤4

αq
i+qj , c =

∑
0≤i<j≤4

α−q
i−qj .

For all integers m, let gm(x) be the characteristic polynomial of αm:

gm(x) =
4∏
i=0

(x− (αm)q
i

) = x5 − amx4 + bmx
3 − cmx2 + dmx− 1.
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One can check that,

am = Tr(αm), dm = a−m = Tr(α−m),

bm =
∑

0≤i<j≤4

αmq
i+mqj , cm = b−m =

∑
0≤i<j≤4

α−mq
i−mqj .

So let, Vm(a, b, c, d) = am = sm, and V̂m(a, b, c, d) = bm = ŝm. In particular,
s0 = 5, s1 = a, s2 = a2 − 2b, s3 = a3 − 3ab+ 3c, s4 = s2

2 − 2b2 − 4d+ 4c. Then we
have,

gm(x) = x5 − smx4 + ŝmx
3 − ŝ−mx2 + s−mx− 1.

Now if we replace α above by β = αr for any integer r, then we have the charac-
teristic polynomial for βm in the form,

hm(x) =
4∏
i=0

(x− (βm)q
i

) =
4∏
i=0

(x− (αrm)q
i

) = grm(x).

Therefore,

Vm(sr, ŝr, ŝ−r, s−r) = Vmr(a, b, c, d) = smr,

V̂m(sr, ŝr, ŝ−r, s−r) = V̂mr(a, b, c, d) = ŝmr.

Properties: For all integers m and n following are the properties:

(i) s2n = s2
n − 2ŝn, and

ŝ2n = ŝ2
n + 2s−n − 2snŝ−n.

(ii) s3n = s3
n − 3snŝn + 3ŝ−n.

(iii) ŝ3n = ŝ3
n − 3s3

nŝn − 3snŝnŝ−n + 3s2
nsn + 3ŝ−2n − 3sn.

(iv) sn+m = snsm − sn−mŝm + sn−2mŝ−m − sn−3ms−m + sn−4m.

(v) ŝnŝm − s−mŝn−m + 3ŝn+m = snsmsn+msn−2msn−m + s2n−3m − sn+2msn −
s2n+msm + s2

n+m.

(vi) sn+2m = sn+mŝm − snŝm + sn−mŝ−m − sn−2ms−m + sn−3m.

Using above properties the algorithm introduced by K. Giuliani and G. Gong in
[27, 28] to compute nth terms of sequences {su, ŝu} is as follows:
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Algorithm 9 to compute sn = Tr(αn) and ŝn =
∑

0≤i<j≤4 α
nqi+nqj using triple-

add-subtract

Require: n ∈ Z` : n =
∑l

j=0 nj3
j ∈ Z+, nj ∈ {−1, 0, 1} with nl 6= 0, and initial

conditions (s−1, 5, s1, s2, s3), (ŝ−1, 5, ŝ1, ŝ2, ŝ3).
Ensure: (sn−2, sn−1, sn, sn+1, sn+2), (ŝn−2, ŝn−1, ŝn, ŝn+1, ŝn+2)

1: u← 1, S ← (s−1, 5, s1, s2, s3), Ŝ ← (ŝ−1, 5, ŝ1, ŝ2, ŝ3)
2: for i← 0 to l do
3: if ni = −1 then
4: S ← (s3u−3, s3u−2, s3u−1, s3u, s3u+1),

5: Ŝ ← (ŝ3u−3, ŝ3u−2, ŝ3u−1, ŝ3u, ŝ3u+1).
6: else if ni = 0 then
7: S ← (s3u−2, s3u−1, s3u, s3u+1, s3u+2),

8: Ŝ ← (ŝ3u−2, ŝ3u−1, ŝ3u, ŝ3u+1, ŝ3u+2).
9: else
10: S ← (s3u−1, s3u, s3u+1, s3u+2, s3u+3),

11: Ŝ ← (ŝ3u−1, ŝ3u, ŝ3u+1, ŝ3u+2, ŝ3u+3).
12: end if
13: u = 3u+ ni
14: end for
15: return ((sn−2, sn−1, sn, sn+1, sn+2), (ŝn−2, ŝn−1, ŝn, ŝn+1, ŝn+2)) = (Sn, Ŝn).

The average cost of computations is approximately 108.5 log n multiplications,
13 log n scalar multiplications and 280.1 log n additions.

For this case it is not difficult to give the cryptographic protocols to have a trace
based cryptosystem. However, it is not interesting from the implementation point
of view and therefore we leave this and discuss the next special case together with
cryptographic protocols.

5.3.9.2 GG PKC : Special Case, k = 5, p-arbitrary, q = p2

K. Giuliani and G. Gong introduced special case for their cryptosystem in 2004
[27] . Let G =< α >⊂ F∗q5 , p-arbitrary, q = p2, ord(α) = `|(p4 − p3 + p2 − p +

1)|(q4 +q3 +q2 +q+1). We keep the notations above and note that in this special
case for any integer m we have,

Tr(α−m) = Tr(αm)p = spm,∑
0≤i<j≤4

α−mq
i−mqj = Tr(α−m(p+1) + α−m(p2+1)) = Tr(αm(p+1) + αm(p2+1))p

= ŝpm.
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Thus, for any integer m the the characteristic polynomial gm(x) of αm is

gm(x) =
4∏
i=0

(x− αmqi) = x5 − smx4 + ŝmx
3 − ŝpmx2 + spmx− 1.

Properties: For all integers m and n following properties are proved by K.
Giuliani and G. Gong in [27, 28] and we list here. Let α ∈ Fq5 , having order
`|(p4 − p3 + p2 − p + 1), and characteristic polynomial g(x) = x5 − ax4 + bx3 −
cx2 + dx− 1, then,

(i) sm = Tr(αm), s−m = spm and,

ŝm = Tr(αm(p+1) + αm(p2+1)), ŝ−m = ŝpm.

(ii) Vm(sn, ŝn, ŝ
p
n, s

p
n) = smn, and

V̂m(sn, ŝn, ŝ
p
n, s

p
n) = ŝmn.

(iii) s2n = s2
n − 2ŝn, and

ŝ2n = ŝ2
n + 2s−n − 2snŝ

p
n.

(iv) s3n = s3
n − 3snŝn + 3ŝpn.

(v) ŝ3n = ŝ3
n − 3s3

nŝn − 3snŝnŝ
p
n + 3s2

nsn + 3ŝp2n − 3sn.

(vi) sn+m = snsm − sn−mŝm + sn−2mŝ
p
m − sn−3ms

p
m + sn−4m.

(vii) ŝnŝm − s−mŝn−m + 3ŝn+m = snsmsn+msn−2msn−m + s2n−3m − sn+2msn −
s2n+msm + s2

n+m.

(viii) sn+2m = sn+mŝm − snŝm + sn−mŝ
p
m − sn−2ms

p
m + sn−3m.

Remark 5.11. Algorithm 9 can also compute nth term just by replacing s−1 =
sp1 and ŝ−1 = ŝp1 and accordingly in subsequent computations. Actually GG
Algorithm computes for a given m and (s1, ŝ1); the terms
(sm−4, sm−3, sm−2, sm−1, sm+) and (ŝm−4, ŝm−3, ŝm−2, ŝm−1, ŝm).

With this setup, now we discuss the cryptographic protocols and add ElGamal
type encryption scheme and Nyberg Rueppel type digital signature scheme to
GG-PKC.

5.3.9.3 GG-DH Type Key Exchange : Special Case

1. System Public Parameters: Let, G =< α >⊂ F∗q5 , p-arbitrary, q = p2,

ord(α) = `|(p4− p3 + p2− p+ 1), and g(x) = x5− ax4 + bx3− cx2 + dx− 1,
be the characteristic polynomial of α.

2. A computes her static public key PA = (se, ŝe), by running Algorithm 9
with inputs a, b, c, d and her static private key, a random 1 < e < Z`.
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3. Similarly, B computes his static public key PB = (sr, ŝr), by running Algo-
rithm 9 with inputs a, b, c, d and his static private key, a random 1 < r < Z`.

4. Both A and B compute common key K = PAB = PBA = (ser, ŝer) as follows:

(i) A acquires B’s public key PB and constructs

gt(x) = x5 − srx4 + ŝrx
3 − ŝprx2 + sprx− 1.

Then she computes common key by running Algorithm 9 with inputs
PB = (sr, ŝr, ŝ

p
r, s

p
r) and her private key e such that,

K = PAB = (Ve(sr, ŝr, ŝ
p
r, s

p
r), V̂e(sr, ŝr, ŝ

p
r, s

p
r)) = (ser, ŝer).

(ii) B does the similar things using his private key r to compute the com-
mon key:

K = PBA = (Vr(se, ŝe, ŝ
p
e, s

p
e), V̂r(se, ŝe, ŝ

p
e, s

p
e)) = (sre, ŝre).

5.3.9.4 GG-ElGamal Type Encryption Scheme : Special Case

For the sake of completeness of GG-PKC, the ElGamal type encryption scheme
is being introduced for the first time . Let A wants to send a message M to B,
both proceed as follows:

1. System Public Parameters: Let, G =< α >⊂ F∗q5 , p-arbitrary, q = p2,

ord(α) = `|(p4− p3 + p2− p+ 1), and g(x) = x5− ax4 + bx3− cx2 + dx− 1,
be the characteristic polynomial of α.

2. Public Keys: Following are the public keys of A and B:

(i) A selects random 0 < e < Z`, and computes her static public key
PA = (se, ŝe) by running Algorithm 9 with inputs a, b, c, d and e.

(ii) Similarly, B selects random 0 < r < Z`, and computes static public
key PB = (sr, ŝr) by running Algorithm 9 with inputs a, b, c, d and r.

3. Private Keys: e and r are the static private keys of A and B respectively.

4. Encryption: A encrypts message M and sends to B as follows:

(i) A randomly selects ephemeral private key 0 < t < Z` and computes
static public key (st, ŝt) by running Algorithm 9 with inputs a, b, c, d
and t.

(ii) A acquires B’s public key PB = (sr, ŝr) and computes encryption

key K = (str + ŝtr) = (Vt(sr, ŝr, ŝ
p
r, s

p
r) + V̂t(sr, ŝr, ŝ

p
r, s

p
r)) by running

Algorithm 9 with inputs (sr, ŝr, ŝ
p
r, s

p
r) and t.

(iii) A computes, C = MK and sends the ciphertext C = ((st, ŝt), C) to
B.
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5. Decryption: B recovers the message M as follows:

(i) Using ephemeral public key (st, ŝt) and his static private key r, com-

putes encryption keyK = (srt+ŝrt) = (Vr(st, ŝt, ŝ
p
t , s

p
t )+V̂r(st, ŝt, ŝ

p
t , s

p
t )

as above.

(ii) Computes, M such that M = CK−1.

Remark 5.12. The semantic security of GG-ElGamal type encryption is compu-
tationally equivalent to splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that
z = X + Y where str 7→ X and s−tr 7→ Y . Moreover, tr ∈ Z` and Zell is chosen
large enough so that the brute force attack becomes infeasible. The number of
such (X, Y ) are equal to q−1

2
as discussed in chapter 4, Remark 4.5.

The analysis of GG-ElGamal type encryption is given in the Table 5.9 below.

Table 5.9: GG-ElGamal type Encryption scheme Analysis

Process Cost
Encryption ≈ 120 log pM
Decryption ≈ 120 log pM
Comm. Overhead 2 elements over Fq

Public Key size 2 elements over Fq

5.3.9.5 GG-NR Type Digital Signature Algorithm : Special Case

After introduction of GG-ElGamal type encryption scheme now we introduce
Nyber-Rueppel type digital signature scheme based on GG-ElGamal type en-
cryption scheme. Let A wants to send signed message M = (m1,m2) containing
agreed upon redundancy to B and B verifies it. To do this, A and B proceed as
follows:

1. System Public Parameters: Let, G =< α >⊂ F∗q5 , p-arbitrary, q = p2,

ord(α) = `|(p4−p3 +p2−p+1), and g(x) = x5−ax4 +bx3−cx2 +dx−1, be
the characteristic polynomial of α and H : G→ Z` valued hash function.

2. Public Keys:

(i) A chooses random 0 < e < Z`, and computes public key PA = (se, ŝe)
by running Algorithm 9 with inputs a, b, c, d, and e.

(ii) B chooses random 0 < r < Z`, and computes public key PB = (sr, ŝr)
by running Algorithm 9 with inputs a, b, c, d, and r.

3. Private Keys: The private keys of A and B are e and r, respectively.

4. Signature : A signs the message M as follows:
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(i) A chooses random ephemeral private key 0 < t < Z`, and computes

ephemeral public key (Vt(a, b, c, d), V̂t(a, b, c, d)) = (st, ŝt), and encryp-

tion key K = (Vt(sr, ŝr, ŝ
p
r, s

p
r) + V̂t(sr, ŝr, ŝ

p
r, s

p
r)) = (str + ŝtr).

(ii) Computes hash value of M : h = H(M) mod `.

(iii) A obtains ciphertext C by encrypting message M : C = MK =
M(str + ŝtr).

(iv) A computes n = t− he mod `.

(v) A sends the signature (n, (st, ŝt), C) to B.

5. Verification : B recovers message M and verifies A’s signature as follows:

(i) Checks 0 ≤ n < `, if not failure.

(ii) Computes encryption key K = (Vr(st, ŝt, ŝ
p
t , s

p
t ) + V̂r(st, ŝt, ŝ

p
t , s

p
t )) =

(srt + ŝrt) and decrypts C to M : M = CK−1 = C(srt + ŝrt)
−1. If M

does not contain agreed upon redundancy then failure.

(iii) Computes h = H(M) mod `, and

(she, ŝhe) = (Vh(se, ŝe, ŝ
p
e, s

p
e), V̂h(se, ŝe, ŝ

p
e, s

p
e)) from h and A’s public

key (se, ŝe). Note that Algorithm 9 computes vector She = (she−4, · · · , she).
(iv) Computes (sn+he) by running Algorithm 5 with inputs k = 5, vector

She, and n.

(v) B checks whether (sn+he, ŝn+he) is equal to (st, ŝt), if yes accepts.

The analysis of GG-NR-DSA is given in the Table 5.10 below.

Table 5.10: GG-NR-DSA Analysis

Process Cost
Signature Generation ≈ 120 log p M
Signature Verification ≈ 240 log p M
Comm. Overhead 3 elements over Fq

Public Key size 2 elements over Fq

5.3.10 Speeding Up GG-PKC

Here we introduce double exponentiation algorithm adopted from [41]. The dou-
ble exponentiation can be transformed to single exponentiation. This method
speeds up the double and single exponentiations.

Lemma 5.1. For all u, v, let

su+2v = su+vsv − suŝv + su−vŝ
p
v − su−2vs

p
v + su−3v, (5.4)

and

su+v = susv − su−vŝv + su−2vŝ
p
v − su−3vs

p
v + su−4v. (5.5)
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(i) s3u−v = sp2u+v − s
p
u+vs

p
u + spvŝ

p
u − su−vŝu + s2u−vsu,

(ii) s3u−2v = s2(u−v)su − su−2vŝu + sp2vŝ
p
u − s

p
u+2vs

p
u + sp2(u+v),

(iii) su+3v = su+2vsv − su+vŝv + suŝ
p
v − su−vspv + su−2v,

(iv) su+4v = su+3vsv − su+2vŝv + su+vŝ
p
v − suspv + su−v,

(v) s2u−v = su−vsu − spvŝu + spu+vŝ
p
u − s

p
2u+vs

p
u + sp3u+v,

(vi) s2u−3v = s2(u+v) − s2u+vsv + s2uŝv − s2u−vŝ
p
v + s2(u−v)s

p
v,

(vii) s3u+v = sp2u−v − s
p
u−vs

p
u + svŝ

p
u − su+vŝu + s(2u+v)su,

(viii) s2u+v = su+vsu − svŝu + spu−vŝ
p
u − s

p
2u−vs

p
u + sp3u−v.

Table 5.11: Substitution values for u, v and derived formulas

Substitution for u Substitution for v Equation Formulas
−v −u 5.4 s3u−v, (Lemma 5.1(i))
u− 2v u 5.4 s3u−2v, (Lemma 5.1(ii))
u+ v v 5.4 su+3v, (Lemma 5.1(iii))
u+ 2v v 5.4 su+4v, (Lemma 5.1(iv))
−v u 5.4 s2u−v, (Lemma 5.1(v))
2u+ v v 5.5 s2u−3v, (Lemma 5.1(vi))
v −u 5.4 s3u+v, (Lemma 5.1(vii))
v u s2u+v, (Lemma 5.1(viii))

Corollary 5.2. Give su, sv, su−v, su−2v, su−3v, su−4v, ŝu, ŝv, ŝu−v and ŝu+v

following holds;

(i) Computing su+2v = su+vsv− suŝv + su−vŝ
p
v− su−2vs

p
v + su−3v, takes 4M over

Fp2.

(ii) Computing s3u−v = s2usu−v−su+vŝu−v+s2vŝ
p
u−v−s

p
u−3vs

p
u−v+sp2(u−2v), takes

4M + 3S over Fp2.

(iii) Computing s3u−2v = s2(u−v)su − su−2vŝu + sp2vŝ
p
u − s

p
u+2vs

p
u + sp2(u+v), takes

4M + 3S over Fp2.

(iv) Computing su+3v = su+2vsv− su+vŝv + suŝ
p
v− su−vspv + su−2v, takes 4M over

Fp2.

(v) Computing su+4v = su+3vsv− su+2vŝv + su+vŝ
p
v− suspv + su−v, takes 4M over

Fp2.

(vi) Computing s2u−v = su−vsu − spvŝu + spu+vŝ
p
u − s

p
2u+vs

p
u + sp3u+v, takes 7M +

1S + 1I over Fp2.

(vii) Computing s2u−3v = su−2vsu−v− spvŝu−v + spuŝ
p
u−v− s

p
2u−vs

p
u−v + sp3u−2v, takes

4M over Fp2.
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(viii) Computing s3u+v = s2usu+v−su−vŝu+v+sp2vŝ
p
u+v−s

p
u+3vs

p
u+v+s2(u+2v), takes

4M + 3S over Fp2.

(ix) Computing s2u+v = su+vsu−svŝu+spu−vŝ
p
u−s

p
2u−vs

p
u+sp3u−v, takes 4M over

Fp2.

Fifth-degree Double Exponentiation:

The double exponentiation was introduced by P.L. Montgomery, Stam and Lenstra,
and Koray Karabina in [57, 73, 42] for second-degree, third-degree and fourth-
degree recursive relation, respectively. Here we adopt double exponentiation
techniques for fifth-degree recursive relation related to the irreducible polyno-
mial f(x) = x5 − a1x

4 + a2x
3 − ap2x

2 + ap1x − 1 over Fp2 . Let sbk+al represent
double exponentiation, where 0 < a, b, k, l < ` are positive integers. Let u = k,
v = l, d = b, and e = a, from which one can compute bk+ al = ud+ ve = χ. The
idea is to vary d, e, u, and v in such a way that ud + ve = χ holds, and (d + e)
decreases until d = e. During this variation the values of u, v, su+v, su−v, su−2v,
and su−3v are updated according to new values of u and v given in Table 5.12.
When d = e that is ud+ ev = d(u+ v) = χ, single exponentiation Algorithm 9 is
applied to compute sd(u+v).

Table 5.12: The Rules for Double Exponentiation for Fq5 , q = p2

Rule Condition d e u v su+v su−v su−2v su−3v
if d > e

R1 d ≤ 4e e d− e u + v u s2u+v sv s
p
u−v s

p
(2u−v)

R2 d ≡ 0 (mod 2) d/2 e 2u v s2u+v s2u−v s2(u−v) s2u−3v

R3 e odd (d− e)/2 e 2u u + v s3u+v su−v s
p
2v s

p
u+3v

R4 e ≡ 0 (mod 2) e/2 d 2v u su+2v s
p
u−2v s

p
2(u−v)

s
p
3u−2v

else
Sub e > d e d v u sv su sv−u s2v−u

Table 5.13: Analysis of Rules for Double Exponentiation for Fq5 , q = p2

Rule Condition Cost Reduction Factor for (d+ e) Average Usage Exp [42]
R1 d ≤ 4e 4M + 1S ≥ 5/4, < 2 0.61
R2 d ≡ 0 (mod 2) 8M + 1S 2 0.175
R3 e odd 8M + 1S ≥ 5/3, < 2 0.129
R4 e ≡ 0 (mod 2) 8M + 1S > 1, < 10/9 0.085

Note that the average usage of rules R1, R2, R3, and R4 does not depend upon
the group order `.
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Algorithm 10 Double Exponentiation for Fifth Degree Recursive Relation

Require: (a > 0, b > 0) ∈ `, sl, sk, sk+l, sk−l, sk−2l, sk−3l, ŝu, ŝv, ŝu+v, and ŝu−v.
Ensure: sbk+al

1: f2 ← 1, d← b, e← a, u← k, v ← l
2: while d and e are both even do
3: d← d/2, e← e/2, f2 ← 2f2

4: end while
5: while d 6= e do
6: apply the foremost rule in Table 5.12
7: end while
8: Compute sd(u+v) using [30, Algorithm 1] with inputs d and su+v.
9: Compute sf2(d(u+v)) using relation s2u = s2

u − 2ŝu.
10: return (sf2(d(u+v)))

Analysis: The complexity analysis of the Algorithm 10 is similar to the one
given in [42]. If rule R4 is never required then it is clear from Table 5.13 that of
second while loop never exceeds

max(4.8 log5/4(á+ b́)M, 8.8 log2(á+ b́)M, 8.8 log5/3(á+ b́)M) ≈ 14.4 log2(á, b́),

where á = a/gcd(a, b), and b́ = b/gcd(a, b). Without loss of generality, we as-
sumed that 1 squaring is equal to 0.8 multiplications. Now, let rule R4 is applied
for i > 0 times successively, with (d1, e1)← (d, e). This implies d1 > 4e1, d1 6≡ 0
(mod 2), d1 6≡ e (mod 2), and e1 ≡ (mod 2). Let (d2, e2) be the new value of
(d, e) after i − th applications of rule R4, then d2 = d1 and e1 = 2ie2. At this
stage let R2 becomes applicable and thereafter R3, possibly. Let R2 is applied
j > 0 times and then rule R1 (i.e. d ≤ 4e) qualifies or j ≤ i and new value of
(d, e) becomes (d3, e3). This implies e2 = e3 and d3 ≤ d2/2

i. If d3 ≤ 4e3 then,

(d1 + e1)

(d3 + e3)
≥ 5e1

5e3

= 2i.

If j = i then,

(d1 + e1)

(d3 + e3)
≥ d2 + e22i

d2/2j + e2

= 2i.

In both cases, the (d + e) value is reduced at least by a factor of 2i at the cost
of 8.8(i+ j)M ≤ 17.6iM . The experimental results in Table 5.13 shows that the
usage of rule R4 is only 8.5% as compared with 61% of R1. Therefore, most of
the computational cost in second while loop is contributed due to execution of
R1 which never exceeds 14.4 log2(á + b́)M and upper bound for the total cost is
14.4 log(a+ b)M .

Remark 5.13. Note that the experiments show that number of iterations for sec-
ond while loop in Algorithm 10 are 1.45 log(a+b) as given in [42] and the number
of multiplications required to compute sd(u+v) is small as compared with multi-
plications for second while loop.
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New Fifth-degree Single Exponentiation: The double exponentiation Algo-
rithm 10 can be used to speed up single exponentiation with some pre-computations
[42]. Let 0 < w ≤ ` be integer, also let w = b̄λ + b̄ for some λ ∈ Z. Use λ and
initial conditions s−1, s0, s1, s2, s3 and ŝ−1, ŝ0, ŝ1, ŝ2, ŝ3 in Algorithm 9 to compute
sλ−3, sλ−2, sλ−1, sλ, sλ+1 and ŝλ−3, ŝλ−2, ŝλ−1, ŝλ, ŝλ+1 as pre-computations. After
this let k = λ, l = 1, ā, b̄ as given above, and sλ+i, ŝλ+i for i = −3,−2,−1, 0, 1 be
given then following algorithm computes sw.

Algorithm 11 Single Exponentiation for Fifth Degree Recursive Relation

Require: (ā > 0, b̄ > 0) ∈ `, sλ+i, ŝλ+i for i = −3,−2,−1, 0, 1.
Ensure: sb̄k+āl = sw
1: f2 ← 1, d← b̄, e← ā, u← k, v ← l = 1
2: if ( thenā 6= 0 and b̄ 6= 0)
3: Compute sb̄k+āl = sw using Algorithm 10 with inputs ā, b̄, sλ+i, ŝλ+i for
i = −3,−2,−1, 0, 1.

4: end if
5: return (sb̄k+āl = sw)

Conjecture 5.3. The single exponentiation that is computing sw with Algorithm
11, given 0 < w < ` sλ+i, ŝλ+i for i = −3,−2,−1, 0, 1, takes about 36 log(ā + b̄)
multiplications over Fp where as Algorithm 9 takes 59 log(w) multiplications over
Fp

5.3.11 Koray Karabina PKC : Case k = 4, p = 2, q = p2u+1, u ≥ 1

K. Karabina introduced an efficient algorithm to compute Tr(αm) in [41] for
characteristic 2-case when q is odd power of 2. However, he has not discussed
some of the cryptographic protocols attached to his algorithm α→ Tr(αm). We
now discuss his algorithm and related protocols for the sake of completeness.

Let G =< α >⊂ F∗q4 , t =
√

2q, p = 2, q = p2u+1, u ≥ 1, ord(α) = `|(q − t +

1)|(q2 +1). Note that, Φ4(q) = q2 +1 = (q+ t+1)(q− t+1), is the 4th cyclotomic
polynomial evaluated at q. Let g(x) be the characteristic polynomial of α:

g(x) =
3∏
i=0

(x− αqi) = x4 − ax3 + bx2 − cx+ 1.

One can check that a = Tr(α), b = Tr(αq+1) = Tr(α)t, and c = Tr(α). So g(x)
is completely determined by only one variable that is Tr(α). For any integer m,
similarly gm(x) becomes;

gm(x) =
3∏
i=0

(x− αmqi) = x4 − Tr(αm)x3 + (Tr(αm)t))x2 − Tr(αm)x+ 1.

Let Vn : Fq → Fq be the function defined by Vn(a) = Tr(βn), where β is the root
of h(x) = x4 − ax3 + atx2 − ax + 1 = 0. It is clear that Vn is independent than
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the choice of the root β of h(x) = 0. Now replacing α by β = αm above we get
for any integer r the characteristic polynomial hr(x) of βr;

hr(x) =
3∏
i=0

(x− βrqi),

= x4 − Tr(αmr)x3 + (Tr(αmr))tx2 − Tr(αmr)x+ 1 = gmr(x).

This in particular gives, Vm(Vr(a)) = Vmr(a) = smr = Tr(αmr).

Properties: For all integers m and n we have following properties:

(i) sn = Tr(αn) = Vn(a).

(ii) sn = s−n.

(iii) s2u = s2
u.

(iv) smsn = sm+n + sm−n + sm+n(t−1) + sn+m(t−1).

(v) sm+n = smsn − sm−nsnt + sm−2nsn − sm−3n.

K. Karabina’s algorithm to compute Tr(αn), given Tr(α), and n, is as follows:

Algorithm 12 Compute sn = Tr(αn), given s = Tr(α) ∈ Fq, n, q = 22r+1

Require: n ∈ Z` : n =
∑l−1

i=0 ni2
i, ni ∈ {0, 1} with nl−1 6= 0, and initial condi-

tions (s1, 0, s1, s
2
1).

Ensure: (sn−1, sn, sn+1, sn+2).
1: Su ← [su−2, su−1, 0, su+1] = (s1, 0, s1, s

2
1).

2: m1 ← 1/st+1
1 and m2 ← 1/c1.

3: for r ← l − 2 to 0 do
4: s2u−1 ← m1((su+1 + s+ su−1 + su−2)2 + (su + su−1)2(st + s2)).
5: s2u ← s2

6: s2u+1 ← s2u−1 +m2((su+1 + su−1)2 + s2
us
t)

7: if nr = 1 then
8: s2u+2 ← s2

u+1, (s3u−3, s3u−2, s3u−1, s3u, s3u+1),
9: Su ← [s2u−1, s2u, s2u+1, s2u+2].
10: else
11: s2u−2 ← s2

u−1,
12: Su ← [s2u−2, s2u−1, s2u, s2u+1].
13: end if
14: end for
15: return (Su).

The above algorithm computes Tr(αn) given Tr(α), n in (1I + 1M) as precom-
putation and (4M + 4S)(l − 1) operations for main loop, where I, M, and S
stand for inversion, multiplication and squaring respectively.
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Simultaneous Double Exponentiation: Let 0 < a, b,m, n > ` be integers the
double exponentiation for this case is given below in Algorithm 13. The variation
rules and corresponding effects on variables are given in Table 5.14 below:

Table 5.14: The Rules for Factor-4 Double Exponentiation

Rule Condition d e u v sv s2u−v su−2v, su−v, su+v
if d > e
R1 d ≤ 4e d− e e u u + v su+v su−v su+2v, sv, s2u+v

R2 d ≡ e (mod 2) (d− e)/2 e 2u u + v su+v s3u−v s2v, su−v, s3u+v

R3 d ≡ 0 (mod 2) d/2 e 2u v sv s4u−v s2u−v, s2u−v, s2u+v

R4 e ≡ 0 (mod 2) d e/2 u 2v s2v s2u−v su−4v, su−2v, su+2v

else
Sub e > d e d v u sv su−2v s2u−v, su−v, su+v

Algorithm 13 Double Exponentiation for Factor 4, for NR-KK-DSA

Require: (a > 0, b > 0) ∈ Fq, sm, sn,sn−m, and sn−2m.
Ensure: san+bm

1: f2 ← 1, d← a, e← b, u← n, v ← m
2: while d and e are both even do
3: d← d/2, e← e/2, f2 ← 2f2

4: end while
5: while d 6= e do
6: Execute the first applicable rule in Table 5.14
7: end while
8: compute sd(u+v) using Algorithm 12 with inputs d and su+v.

9: return (sf2

(d(u+v)))

Remark 5.14. The Algorithm 13 can compute san+ml in ≈ 6.37 log(max(a, b))
multiplications in Fp given sm, 0 < a, b < `, sn,sn−m, and sn−2m.

Now we look at the protocols to validate this trace based PKC.

5.3.11.1 KK-DH Type Key Exchange : Case k = 4, p = 2, q = p2u+1, u ≥
1

1. System Public Parameters: Let G =< α >⊂ F∗q4 , p = 2, q = p2u+1, u ≥
1, t =

√
2q, ord(α) = `|(q − t+ 1), and g(x) = x4 − ax3 + bx2 − cx+ 1, be

the characteristic polynomial of α.

2. A computes her public key PA = Ve(a) = se by running Algorithm 12 with
inputs a and her secret key e, and B computes his public key PB = Vr(a) =
sr by running Algorithm 12 with inputs a and his secret key r.

3. Private Keys: Random 1 < r < Z` and 1 < r < Z` are secret keys of A
and B respectively.

4. Common key: Both A and B compute their common key K = PAB =
PBA = ser as follows:
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(i) A acquires B’s public key and runs Algorithm 12 with input sr and her
private key e to obtain common key: K = PAB = Ve(sr) = Ver(a) =
ser.

(ii) B does the similar things by using his private key r to compute com-
mon key: K = PBA = Vr(se) = Vre(a) = sre.

5.3.11.2 KK-ElGamal Type Encryption Scheme : Case k = 4, p = 2,
q = p2u+1, u ≥ 1

1. System Public Parameters: Let G =< α >⊂ F∗q4 , p = 2, q = p2u+1, u ≥
1, t =

√
2q, ord(α) = `|(q − t+ 1), and g(x) = x4 − ax3 + bx2 − cx+ 1, be

the characteristic polynomial of α.

2. B’s public key PB = Vr(a) = sr, private key: 1 < r < Z`.

3. Assumption: messages M are in G.

4. A sends message M as follows:

(i) Chooses a random 1 < e < Z` and computes encryption key K = ser+
ster such that Ve(PB) = Ve(sr) = ser, mask se, by running Algorithm
12 and then computes c = KM = serM .

(ii) A sends ciphertext C = (se, c) to B.

5. Decryption: B decrypts C as follows:

(i) Based on mask se and his private key r computes encryption key K =
ser + ster : Vr(se) = sre by running Algorithm 12 with inputs se and
his private key r.

(ii) Then decrypts message by computing, M = K−1c = (sre + stre)
−1c.

Remark 5.15. The semantic security of KK-ElGamal type encryption is compu-
tationally equivalent to splitting z ∈ Fq into two numbers (X, Y ) ∈ F2

q such that
z = X + Y where ser 7→ X and s−er 7→ Y . Moreover, er ∈ Z` and Zell is chosen
large enough so that the brute force attack becomes infeasible. The number of
such (X, Y ) are equal to q−1

2
as discussed in chapter 4, Remark 4.5.

5.3.11.3 KK-Nyberg Rueppel Type Digital Signature Algorithm Based
on Generic Symmetric encryption : Case k = 4, p = 2,
q = p2u+1, u ≥ 1

This scheme was introduced by Koray Karabina in [41]. Let A wants to send
signed message M to B and B verifies it. To do this, A and B do the following:

1. System Public Parameters: Let G =< α >⊂ F∗q4 , p = 2, q = p2u+1, u ≥
1, t =

√
2q, ord(α) = `|(q − t + 1), g(x) = x4 − ax3 + bx2 − cx + 1, be the

characteristic polynomial of α and H : G→ Z`-valued hash function.
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2. Public Keys:

(i) A randomly selects 1 < m < Z` and computes public key PA =
Vm(a) := Sm = {sm−2, sm−1, sm, sm+1} by running Algorithm 12 with
inputs a and her private key m.

(ii) B also randomly selects 1 < r < Z` and computes public key PB =
Vr(a) := Sr = {sr−2, sr−1, sr, sr+1} by running Algorithm 12 with in-
puts a and his private key r.

3. Private Keys: The private keys of A and B are m and r, respectively.

4. Signature : A signs the message M as follows:

(i) A randomly selects 1 < d < Z` , and computes mask Vd(a) = sd, and
extracts session key K = Ext(sd) from sd.

(ii) A obtains ciphertext C by encrypting the message M with K, using
generic symmetric encryption and computes the hash value of C, that
is h = H(C) mod `.

(iii) A computes n = d+mh mod `.

(iv) A sends the signature (n,C) to B.

5. Verification : B verifies A’s signature and recovers message as follows:

(i) Computes h = H(C) mod ` and replaces h by −h.

(ii) Computes shm+n from Sm = {sm−2, sm−1, sm, sm+1} and a using double
exponentiation Algorithm 13.

(iii) Computes session key Ḱ = Ext(sn+hm) from sn+mh and computes Ć

using Ḱ and M .

(iv) B accepts if and only if Ć = C.

The analysis of KK-NR-DSA based on generic symmetric encryption scheme is
given in the Table 5.15 below.

Table 5.15: Analysis of KK-NR-DSA based on Generic Symmetric Encryption

Process Cost
Signature Generation ≈ 6.37 log p M
Signature Verification ≈ 6.37 log p M
Comm. Overhead 2 elements over Fq

Public Key size 4 elements over Fq
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5.3.11.4 KK-Nyberg Rueppel Type Digital Signature Algorithm Based
on KK-ElGamal type encryption : Case k = 4, p = 2, q =
p2u+1, u ≥ 1

Let A wants to send signed encrypted message M containing agreed upon redun-
dancy to B and B verifies and recovers the message . To do this, A and B do
the following:

1. System Public Parameters: Let G =< α >⊂ F∗q4 , p = 2, q = p2u+1, u ≥
1, t =

√
2q, ord(α) = `|(q − t + 1), g(x) = x4 − ax3 + bx2 − cx + 1, be the

characteristic polynomial of α and H : G→ Z`-valued hash function.

2. Public Keys:

(i) A randomly selects 1 < m < Z` and computes public key PA =
Vm(a) = sm by running Algorithm 12 with inputs a and her private
key m.

(ii) B also randomly selects 1 < r < Z` and computes public key PB =
Vr(a) = sr by running Algorithm 12 with inputs a and his private key
r.

3. Private Keys: The private keys of A and B are m and r, respectively.

4. Signature : A signs the message M as follows:

(i) A randomly selects ephemeral private key 1 < d < Z` and computes
ephemeral public key Vd(a) = sd, and computes encryption key K =
sdr + stdr : Vd(sr) = sdr.

(ii) A computes h = H(M) mod `, obtains ciphertext C = MK.

(iii) A computes n = d−mh (mod `).

(iv) A sends the signature (n, sd, C) to B.

5. Verification : B recovers message M and verifies A’s signature as follows:

(i) Checks 0 ≤ n < `, if not failure.

(ii) Computes encryption key K = srd + strd : Vr(sd) = srd, and decrypts
C to M : M = CK−1. If M does not contain agreed upon redundancy
then failure.

(iii) Computes h = H(M) mod ` and computes Shm := {shm−2, shm−1, shm, shm+1}
using Algorithm 12.

(iv) Computes shm+n from Sm = {sm−2, sm−1, sm, sm+1} and a using double
exponentiation Algorithm 13.

(v) Accepts if sn+hm = sd.

The analysis of KK-NR-DSA based on KK-ElGamal encryption scheme is given
in the Table 5.16 below.

Remark 5.16. The KK-NR-DSA based on KK-ElGamal type encryption scheme
is resistant to both forgery attacks discussed in Remark ??.
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Table 5.16: Analysis of KK-NR-DSA based on KK-ElGamal Encryption

Process Cost
Signature Generation ≈ 6.37 log p M
Signature Verification ≈ 12.74 log p M
Comm. Overhead 2 elements over Fq

Public Key size 1 element over Fq

5.3.12 KK-PKC : Case k = 6, p = 3, q = pu, u ≥ 1, u = odd,t =
√

3q

Let α ∈ Fq6 with ord(α) = `|(q ± t + 1). Note that `|Φ6(q) = (q2 − q + 1) =
(q + t + 1)(q − t + 1). Here Φ6(q) is the 6th cyclotomic polynomial evaluated at
q. It is shown in [41] that the characteristic polynomial g(x) of α is nothing but
in the form,

g(x) =
6∏
i=0

(x− αqi),

= x6 − (Tr(α))x5 + (Tr(α)t + Tr(α))x4 − (Tr(α2) + 2Tr(α) + 2)x3

− (Tr(α)t + Tr(α))x2 + (Tr(α))x− 1.

Note that it is also shown in [41] that Tr(α2) = Tr(α)2 + Tr(α) + Tr(α)t, and
therefore g(x) becomes;

g(x) = x6 − (Tr(α))x5 + (Tr(α)t + Tr(α))x4 − (Tr(α)2 + Tr(α)t + 2)x3

− (Tr(α)t + Tr(α))x2 + (Tr(α))x− 1.

Hence g(x) is completely determined by Tr(α). For any integer m, let,

gm(x) =
6∏
i=0

(x− (αm)q
i

),

be the characteristic polynomial of αm, then it can be checked that

gm(x) = x6 − (Tr(αm))x5 + (Tr(αm)t + Tr(αm))x4

− (Tr(αm)2 + Tr(αm)t + 2)x3 − (Tr(αm)t + Tr(αm))x2

+ (Tr(αm))x− 1.

Now let us introduce Vr : Fq → Fq as follows, for any b; Vr(b) = Tr(β), where β
is a root of,

h(x) = x6 − bx5 + (b+ bt)x4 − (b2 + bt + 2)x3 + (bt + b)x2 − bx+ 1 = 0.

It is clear that Vr is well defined and for any integer m,

Vm(Vr(b)) = Vmr(b) = smr.

Properties: It is shown in [41] that for all integers m,n we have the following
properties;
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(i) s−n = sn.

(ii) s2n = s2
n + sn + stn.

(iii) snsm = sn+m + sn−m + sn+m(t−1) + sn+m(t−2) + sm+n(t−2).

(iv) sn+m = snsm−(sn−m+sn−3m)(stv+sv)+sn−2m(s2
v+s

t
v+2)+sn−4msm−sn−5m.

Based upon above properties K. Karabina in [41] also gave algorithm to compute
sn = Tr(αn), given n and Tr(α) which is as follows:

Algorithm 14 Compute sn = Tr(αn), given s = Tr(α), n, q = 3u, u = odd

Require: n ∈ Z` : n =
∑l−1

j=0 nj2
j, nj ∈ {0, 1} with nl−1 6= 0, and initial condi-

tions (s1, 0, s1, s2, s
3
1, s4).

Ensure: (sn−2, sn−1, sn, sn+1, sn+2, sn+3).
1: C2 ← s2

1 and Ct ← st+1
1 , C1,t ← s1 + st1, C1,t,2 ← C2 + st1 + 2,

2: s2 ← C1,t,2 + s1 + 1, s4 ← s2
2 + s2 + st2.

3: Su ← (su−2, su−1, su, su+1, su+2, su+3) = (s1, 0, s1, s2, s
3
1, s4).

4: M ← (st1(s3
1 + Ct + 2(st1 + 1)) + 2(s3

1 + s1 + 1))−1

5: for i← l − 2 to 0 do
6: s2u−4 ← s2

u−2 + su−2 + stu−2, s2u−2 ← s2
u−1 + su−1 + stu−1, s2u ← s2

u +
su + stu, s2u+2 ← s2

u+1 + su+1 + stu+1, s2u+4 ← s2
u+2 + su+2 + stu+2, s2u+6 ←

s2
u+3 + su+3 + stu+3,

7: Y1 ← s1(s2u+2 + s2u−2) + s2uC1,t,2,
8: Y2 ← s1(s2u+4 + s2u) + s2u+2C1,t,2,
9: Y4 ← C1,t(s2u + s2u−2) + s2u+2 + s2u−4,
10: Y5 ← C1,t(s2u+2 + s2u) + s2u+4 + s2u−2,
11: Y6 ← C1,t(s2u+4 + s2u+2) + s2u+6 + s2u.
12: s2u−1 ← M((s3

1 + 2(C2 + s1) + Ct)Y1 + C2Y2 + (2(C2 + st1) + s1 + 1)Y4 +
(2(C2 + Ct) + s1)Y5 + 2s1Y6)

13: s2u+1 ←M(2C2(Y1 + Y2) + s1(Y4 + Y6) + (2st1 + Ct + s1 + 1)Y5)
14: s2u+3 ←M(C2Y1 +(s3

1 +2(C2 +s1)+Ct)Y2 +2s1Y4 +(2(C2 +Ct)+s1)Y5 +
(2(C2 + st1) + s1 + 1)Y6)

15: if ni = 1 then
16: Su ← (su−1, su, su+1, su+2, su+3, su+4)
17: else
18: Su ← (su−2, su−1, su, su+1, su+2, su+3)
19: end if
20: end for
21: return (Su).

The above algorithm computes Tr(αn) given, Tr(α) and n in (1I + 2M + 2S)
as precomputation and (53A+ 6F + 23M + 6S)(l − 1) for the main loop, where
A, M, S, F, I stands for addition, multiplication, squaring, exponentiation by
the power of the finite field characteristic and inversion respectively. In litera-
ture we do not see cryptographic protocols for this case as well. We add the
cryptographic protocols to this system and comment it is a valid PKC.
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5.3.12.1 KK-DH Type Key Exchange : Case k = 6, p = 3, q = pu,
u = odd

1. System Public Parameters: Let G =< α >⊂ F∗q6 , p = 3, q = pu, u =

odd, t =
√

3q, ord(α) = `|(q − t + 1), and g(x) = x6 − ax5 + bx4 − cx3 +
dx2 − ex+ 1, be the characteristic polynomial of α.

2. Public Keys: A’s public key PA = Vm(a) = sm, and B’s public key
PB = Vr(a) = sr.

3. Private Keys: The private keys of A and B are random 1 < m < Z` and
1 < r < Z` respectively.

4. Common key: Both A and B computes common key K = PAB = PBA =
smr.

(i) A acquires B’s public key and runs Algorithm 14 with input sr and her
private key m to obtain common key: K = PAB = Vm(sr) = smr.

(ii) B does the similar things to compute common key using his private key r:
K = PBA = Vr(sm) = smr.

It is not difficult to give the KK-ElGamal Type encryption scheme and KK-
Nyberg Rueppel Type DSA for this case also. It is step by step similar to the
one discussed in subsections 5.3.11.2 and 5.3.11.4 respectively, so we leave it to
the reader for verification.

Remark 5.17. It is clear that the security of trace based Public Key Cryptosystems
so far discussed depends on the trapdoor function α→ Tr(αm) which is equivalent
to DLP on the group G =< α >⊂ Fqk . Therefore for the maximum security one
should choose α such that Fqk = Fq(α), namely characteristic polynomial of α is
equal to its minimal polynomial, and DLP on G is computationally equivalent
to DLP on F∗

qk
. Note that the semantic security is computationally equivalent

to splitting z ∈ Fq into two numbers (X, Y ) ∈ F2
q such that z = X + Y where

se 7→ X and s−e 7→ Y . Moreover, e ∈ Z` and Zell is chosen large enough so that
the brute force attack becomes infeasible. The number of such (X, Y ) are equal
to q−1

2
.

5.4 Conclusion

For a given α ∈ Fqk , one can compute for any integer m the Tr(αm) by repeated
squaring and then trace mapping in a polynomial time. We have searched the lit-
erature and found that for some special conditions on α, q, and k there are more
efficient algorithms to compute Tr(αm) from the above classical one. We also
found out that in some of these cases there are cryptographic protocols based
on these algorithms which work more efficiently and securely. In this chapter
we discussed most of these cases and introduced cryptographic protocols to the
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ones they were not discussed. We also ensured that the semantic security of the
encryption schemes is not compromised either by modifying existing ones or in-
troducing new ones, except LUC-PKC. We also introduced double exponentiation
and subsequently single exponentiation for fifth degree recursive relations. Con-
jecturally, proposed exponentiation is at least 25% faster than previous methods
for fifth degree extensions.
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CHAPTER 6

SUMMARY

Following is the summary of work done in this thesis:

(a) The alternative models of elliptic curves are surveyed by pinning down
group operations, and performance in various coordinate systems. A sum-
mary was written in tabular form including the costs of addition, doubling,
mixed addition and unified addition on various models of elliptic curves.
It was noted that the unified addition formulae offer inherited countermea-
sure against Simple Power Analysis(SPA) with comparable performance. In
these models, SPA is avoided by employing the unified addition formulae
or an algorithmic adaptation of it that behaves in similar fashion during
the process of point addition and point doubling. Hence, for algorithmic
flexibility, alternate models of elliptic curves with desirable properties are
put together in this chapter that can be adopted cryptographic protocols.

(b) The GH-ElGamal type encryption scheme is introduced, which is semanti-
cally secure and semantic security depends upon splitting z ∈ Fq into two
numbers (X, Y ) ∈ Fq such that z = X +Y . The number of such (X, Y ) are
equal to q−1

2
. Whereas the key exchange security depends on the difficulty

of solving 3-LFSR-DLP and 3-LFSR-DHP. The GH-ElGamal encryption
scheme is faster than GH-RSA-type encryption scheme with lesser storage
memory. Based upon the proposed encryption scheme, we also introduced
GH-NR-DSA to embed key exchange, message transmission and digital sig-
nature algorithm in a single protocol to ensure confidentiality, integrity and
non-repudiation.

(c) In addition to GH-PKC we introduced modified XTR-ElGamal(MXTR-
ElGamal) type encryption scheme for cubic extensions. In this modification
one can transmit encrypted message over Fp instead of Fq=p2 . The semantic
security is also ensured in this case, which depends upon semantic security
depends upon splitting z ∈ Fp into two numbers (X, Y ) ∈ Fp such that
z = X + Y . The number of such (X, Y ) are equal to p−1

2
. Based upon

MXTR-ElGamal encryption scheme the XTR-NR-DSA is also introduced.
The GG-ElGamal type encryption scheme and GG-NR-DSA are also added
to the literature. We also adopted efficient double exponentiation and sub-
sequently single exponentiation for Fq5 case.
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Problem : Theoretical computational cost of 2nd while loop in double exponen-
tiation algorithm may be worked out.
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