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ABSTRACT

PREDICTING THE BINDING AFFINITIES OF DRUG-PROTEIN
INTERACTION BY ANALYZING THE IMAGES OF BINDING SITES

Erdaş, Özlem

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Ferda Nur Alpaslan

Co-Supervisor : Prof. Dr. Erdem Büyükbingöl

July 2013, 78 pages

Analysis of protein-ligand interactions plays an important role in designing safe and
efficient drugs, contributing to drug discovery and development. Recently, machine
learning methods have been found useful in drug design, which utilize intelligent tech-
niques to predict unknown protein-ligand interactions by learning from specific prop-
erties of known protein-ligand interactions. The aim of this thesis is to propose a novel
computational model, Compressed Images for Affinity Prediction (CIFAP), to predict
binding affinities of structurally related protein-ligand complexes. The novel method
presented here is based on a protein-ligand model from which computational affinity
information is obtained by utilizing 2D electrostatic potential images determined for
the binding site of the proteins with its inhibitors. The patterns obtained from the
2D images were used for building a predictive model whose strength was tested us-
ing Partial Least Squares Regression (PLSR), Support Vector Regression (SVR) and
Adaptive Neuro-Fuzzy Inference System (ANFIS) in comparison. The experiments
were conducted on two distinct protein-ligand complex systems, which were complexes
of CHK1-thienopyridine derivatives and CASP3-isatin sulfonamide derivatives. It is
observed that the pixels of the images which are close to the surfaces of the interaction
site have better explanation of the binding affinity. Moreover, PLSR is found to be
the most promising prediction method for CIFAP as compared to SVR and ANFIS
with the lowest error and the highest correlation between the observed and experi-
mental binding affinities. The computational algorithm presented here is proposed to
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have a great potential in pharmacophore-based drug design, especially in prediction of
binding related properties.

Keywords: protein-drug interactions, binding affinity prediction, feature selection, re-
gression algorithms
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ÖZ

BAĞLANMA ALANLARININ GÖRÜNTÜLERİNİ İNCELEYEREK
İLAÇ-PROTEİN ETKİLEŞİMİNİN BAĞLANMA EĞİLİMİNİN TAHMİN

EDİLMESİ

Erdaş, Özlem

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ferda Nur Alpaslan

Ortak Tez Yöneticisi : Prof. Dr. Erdem Büyükbingöl

Temmuz 2013 , 78 sayfa

Protein-ligand etkileşimlerinin analizi güvenli ve etkili ilaçların tasarımında, ilaç keşfi
ve geliştirilmesinde önemli rol oynamaktadır. Yakın zamanda, bilinen protein-ligand et-
kileşimlerinin belirli özelliklerini öğrenerek bilinmeyen protein-ligand etkileşimlerinin
tahmininde akıllı yöntemler kullanan makine öğrenimi metotları ilaç tasarımı konu-
sunda yararlı bulunmuştur. Bu tezin amacı, Eğilim Tahmini için Sıkıştırılmış Görüntü-
ler (CIFAP) adında yapısal benzerlik taşıyan protein-ligand komplekslerinin bağlanma
eğilimlerinin tahmininde kullanılmak üzere yeni hesaplamalı bir model geliştirmektir.
Burada sunulan yeni metot, hesaplamalı eğilim bilgisinin proteinlerin inhibitörleri ile
bağlandıkları bölgede belirlenen iki boyutlu elektrostatik potansiyel görüntüleri kulla-
narak elde edilen bir protein-ligand modeline dayalıdır. İki boyutlu görüntülerden elde
edilen örüntüler tahminsel bir model etmekte kullanıldı ve bu modelin gücü Kısmi
En Küçük Kareler Regresyonu (PLSR), Destek Vektör Regresyonu (SVR) ve Adaptif
Nöro-Bulanık Çıkarsama Sistemi (ANFIS) yöntemleri ile test edildi. Deneyler iki farklı
protein-ligand kompleks sisteminde gerçekleştirildi. Bu sistemler, CHK1-tienopiridin
türevleri ve CASP3-izatin sülfonamid türevleri bileşikleriydi. Görüntü piksellerinden
bağlanma yüzeylerine yakın olanlarının bağlanma eğilimini açıklamakta daha iyi ol-
duğu gözlendi. Bununla birlikte, SVR ve ANFIS ile karşılaştırıldığında deneysel ve
tahmin edilen bağlanma eğilimleri arasında en düşük hata ve en yüksek korelasyonu
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sağlayan PLSR’ın CIFAP için en umut verici yöntem olduğu tespit edildi. Burada sunu-
lan algoritmanın farmakofora dayalı ilaç tasarımında, özellikle bağlanma eğilimlerinin
tahmininde, büyük bir potansiyele sahip olduğu görülmektedir.

Anahtar Kelimeler: protein-ilaç etkileşimleri, bağlanma eğilimi tahmini, özellik seçimi,

regresyon algoritmaları
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Scientists have made progress in understanding the insights of diseases by developing
new techniques in the fields of genomics, proteomics, and medicine in recent years. As
long as the knowledge at a molecular level is gathered and blended, finding safe and
efficient drugs will be promising in medical treatment [3]. However, drug discovery and
development is an expensive process which takes almost 20 years and costs billions of
dollars. The process includes many steps as follows [4]:

• authenticating the drug targets (the proteins which the drug might affect)

• finding the promising compound to interact with the selected target

• testing the novel drug in the laboratories

• conducting clinical trials

• getting the approval

• offering the drug to the market

There are a lot of failures in drug discovery. Among the thousands of compounds
which are studied, only one can get the approval. Understanding protein-ligand in-
teractions are important to design new drugs which are safe and efficient and to help
drug discovery and development. Computational methods, especially molecular dock-
ing, are useful for investigating protein-ligand interactions. However, scoring functions
of docking programs which are used for predicting the strength of the interaction are
not always reliable. Recently, intelligent methods have become popular in drug de-
sign. It is possible to gather information from known interactions, to search for or
predict specific properties of the interactions, and design new drugs with the help of
bioinformatics and machine learning methods [5].
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1.2 Basic Concepts

The terminology of protein, ligand and interaction should be defined in order to un-
derstand protein-ligand interactions.

Proteins are large molecules composed of an exact sequence of amino acids which are
small molecules composed of an amino group (NH2), a carboxyl group (COOH), and
a hydrogen atom attached to a carbon at the center [6, 7, 8, 9]. There are 20 groups of
amino acids. Although all proteins are constructed by the union the same 20 groups,
they are dissimilar in terms of amino acid arrangement, meaning that some proteins
consist of an excess amount of one amino acid while other proteins may be deficient in
some members of the group[8]. The arrangement of amino acids causes the protein to
be folded into a specific three dimensional geometry, so called conformation. It should
be noted that proteins are chemical and flexible structures which allow them to carry
on their vital functions in the cells [6].

The molecule which binds to the protein in order to form a complex and to accomplish
a duty like inhibiting an enzymes activity is called a ligand. The word “ligand” comes
from “ligare” which means “band” or “tie” [6, 10]. A ligand may either be a single
atom, a molecule or a protein [6]. However, the drug-like molecules will be referred as
ligands during this thesis. The protein to which a ligand binds will also be addressed
as "target" or "receptor".

There should be a simultaneous set of weak bonds such as hydrogen bonds, ionic
bonds, Van der Waals bonds besides a hydrophobic interaction between the ligand
and its protein for the formation of a strong binding. Such a strong binding may
not occur unless the surface profile of the ligand strictly fits to the target like “a
hand in a glove” [6]. The proteins contain a smaller region called the binding site
which allows ligands to bind selectively. The binding of the ligands can be detected
by drug design methods such as Nuclear Magnetic Resonance (NMR) or by X-ray
crystallography[11, 9]. The protein changes its shape for helping the ligand easily
dock to the binding site. This docking is generally reversible [6].

The strength of the protein-ligand interaction is measured by binding affinity which
is affected by thermodynamical and chemical forces. In general, high-affinity ligand
binding results from greater intermolecular force between the ligand and its receptor
than that of low-affinity ligand binding. Moreover, ligands with high-affinity resides
in the binding site longer than the ligands with low-affinity. The understanding of
the principles of binding thermodynamics and the calculation of binding affinity are
difficult because it is based on calculating the binding free energy of the complex which
is really smaller than the individual free energies of the ligand and the protein [12].
Because of the difficulty in calculation of binding affinity, the “half maximal inhibitory
concentration” (IC50) is used as a standard of the impact of a ligand in inhibiting
biological function of a protein. This numerical scale states how much of a specific
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ligand is required “to inhibit a given biological process by half” [13].

1.3 Problem Statement

Calculation of the binding affinity is a difficult task with today’s technology using
the computational methods of the drug design. Novel methods should be developed
for estimating the strength of the protein-ligand interaction without experimenting
on thousands of potential molecules. These methods should represent the interaction
data well enough in order to obtain precise estimations.

Data representation schemes in drug design, which are explained in details in Chapter
2, are mainly based on three groups of features: ligand-based, target-based and binding
pocket related [14, 15, 16, 17, 18, 19, 20, 21, 22]. Reviewed studies either used one of
these types of representations or a combination of them. It is observed in the study of
Li et al. [20] that the combined representations of ligands and binding pockets are more
informative than the other combinations. In the same study, it is also stated that some
of the molecular and geometrical descriptors such as electrostatic and hydrophobic
properties of the ligand are more promising in predicting the binding affinity of protein-
ligand complexes. Moreover, it is required that both prediction and classification
algorithms work fast in order to search huge biological and molecular spaces. Also,
the chosen algorithms should be tuned easily to handle noise and to achieve optimal
goals.

The main problem addressed in this thesis is the absence of an efficient data model
to represent the binding affinity of drug molecules to the protein of interest. The aim
of this thesis is to propose a novel data model of protein-ligand complexes in order to
predict binding affinity of the complex. The proposed data model uses the structural
information of the complexes and be represented by 2D images of the electrostatic
potential. Utilizing machine learning methods for analysis of the 3D structure of
protein-ligand complexes would be helpful in the quest of finding the most promising
drug candidates. The thesis addresses the second problem as to provide a methodology
for predicting the binding affinity of protein-ligand complexes using the proposed data
model. A combination of feature selection and regression methods is provided as the
solution.

1.4 Contributions

The primary goal in this thesis is to propose and establish a groundwork for a novel
data modelling and prediction methodology, so called Compressed Images For Affinity
Prediction, CIFAP, to predict binding affinities of novel compounds which may be used
in medical treatment.
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The contributions of the thesis are summarized as follows:

• A novel data model of protein-ligand interactions is proposed. The data rep-
resentation utilizes the 3D geometrical information and electrostatic potential
energy of protein-ligand complexes.

• A visualization in form of 2D images is provided for interaction data by com-
pressing 3D grid cube of electrostatic potential map.

• It is revealed that the most important portion of a protein-ligand complex lies in
the vicinity of the ligand surface when the aim is to predict the binding affinity.

• A prediction system is built for forecasting the binding affinity of protein-ligand
complexes using the 2D images of the binding site of the complex.

• Linear regression explains the relationship between the binding affinity and ge-
ometrical/electrical structure of protein-ligand complexes more accurate than
non-linear or fuzzy regression.

1.5 Organization of the Thesis

Previous machine learning studies, which will be explained in Chapter 2 in details, an-
alyze the protein-ligand pairs by handling ligand and protein separately. Only molec-
ular docking studies use the structural information but their scoring calculations take
excessive time. The aim of this study is to construct a novel data representation
and methodology, the so-called Compressed Images for Binding Affinity Prediction
(CIFAP), for predicting binding affinity of protein-ligand interaction by analyzing the
2D images of the binding sites of complexes which uses the geometrical and electrical
information of protein-ligand complexes.

The CIFAP includes two phases. The first phase is the data modelling phase which
will be explained in Chapter 3. The data modelling phase involves docking process
of the ligands into the binding site of the X-ray coordinates of the target protein,
generation of an electrostatic potential grid box covering the binding pocket of the
complex, and compression of the grid points through the X, Y, and Z dimensions into
2D electrostatic images of the binding site. After obtaining the compressed images, the
aim becomes to find certain patterns by filtering the 2D images via the Sequential For-
ward Selection (SFS) and Sequential Floating Forward Selection (SFFS) techniques to
avoid redundant features in the prediction. The second phase is called the prediction
phase as mentioned in Chapter 4, which initially aims to apply regression and learning
procedures on the filtered 2D-images. Here, Partial Least Squares Regression (PLSR),
Support Vector Regression (SVR) and Adaptive Neuro-Fuzzy Inference System (AN-
FIS) methods, which are thought to be promising prediction tools in drug discovery,
were applied to test the regression and learning features of CIFAP, and the strength
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Figure 1.1: Flow chart of the proposed method.

of these methods are discussed in Chapter 5. Figure 1.1 shows the flow chart of the
proposed method.

Protein-ligand interaction data which belong to a single protein in complex with multi-
ple ligands were selected to be tested in this study. Moreover, the ligands with similar
pharmacophore structures were preferred for building a consistent model. Checkpoint
1 kinase (CHK1) [1] and Caspase 3 (CASP3) inhibitors, which will be mentioned in
Chapter 5 in details, were utilized for the experimental work.
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CHAPTER 2

RELATED WORK

This section provides an overview of recent studies which use machine learning tech-
niques for classification and prediction of binding properties of protein-ligand interac-
tions.

2.1 Classification: To Bind or Not To Bind

2.1.1 SVM with Different Kernels

In silico (computer-based) methods in drug design are categorized into ligand-based
and structure-based (docking) approaches. Ligand-based methods use a candidate
ligand in comparison with the known ligands of the receptor for predicting specific
properties using machine learning algorithms while structure-based methods utilize the
geometrical structure of the receptor for finding out how well each candidate interacts
with the receptor. The classical approaches are not applicable for a given target with
unknown 3D structure and unknown ligands [15].

Jacob and Vert [15] used the idea of chemogenomics in their study. The goal of
chemogenomics is searching through the entire chemical space of all small molecules
for interactions with the biological space of all proteins, especially drug targets. This
study attacks to the problem of deciding whether a given protein-ligand pair interacts.

Compound interaction data were collected from the KEGG BRITE Database including
three receptor types; enzyme, GPCR, ion channel; and a list of known ligands for each
class. For simplification, data were classified as positive (interacting) and negative
(not interacting). Hence, a positive data set was constructed from the known inter-
actions while a negative data set was constructed from targets and ligands which are
not known to interact experimentally. This resulted in 2436 data points for enzymes
(1218 known enzyme-ligand pairs and 1218 generated negative points) representing
interactions between 675 enzymes and 524 compounds [15].

In this research, separate kernels for targets and ligands were calculated and were
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combined by tensor product. Ligands were represented as 2D graphs. For ligands,
Tanimoto kernel which is formulated using binarized vector representation of graphs
was calculated by ChemCPP program. For targets, five different kernels were con-
structed:

1. Dirac kernel simply represents different targets as orthonormal vectors. For
instance, Dirac kernel is 1 if two targets are equal and 0 if not.

2. The multitask kernel takes away the orthogonality of different proteins letting
information be shared. However, the kernel cannot measure how well currently
known interactions contribute to the model.

3. The mismatch kernel compares target proteins and determines the dissimilarities.

4. The local alignment kernel calculates scores for each target and determines how
similar the proteins are with respect to their primary sequences.

5. The hierarchy kernel, which was defined by the authors, between two proteins
of the same family is the number of common ancestors in the corresponding
hierarchy summed by one.

Support Vector Machines (SVM) was trained on the data sets with the kernels pro-
posed. The performance measure was the area under the ROC curve (AUC). Hierarchy
kernel was observed to give rise to the best results with 90% accuracy of classifica-
tion. The results on experimental ligand data sets pointed that target kernels sharing
information across the targets improved the prediction to a great extent, particularly
considering targets with few known ligands.

2.1.2 Ensemble Learning

Quantitative structure-activity relationship (QSAR) analysis plays a crucial role in the
drug discovery process by facilitating the search for new drugs. QSAR assumes that
there is a relationship between the structural or molecular properties of a ligand and
its biological activity. The goal of QSAR analysis is to determine these relationships
for calculating the activity of novel molecules with respect to their physiochemical
features [16, 17].

Ensemble learning techniques work on the training samples to create a collection of
classifiers. The selected learner and a training data set serve as the input to the learning
algorithm which executes the base learner numerous times on the different distributions
of the training set samples. The newly created classifiers are then incorporate to
generate a final classifier which is utilized to classify the test set. In this study of Liu,
two of the most popular techniques for constructing ensembles, Bagging and AdaBoost,
were investigated [16].
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Bagging (bootstrap aggregating) [23] tries to carry out the training data by replacing
the original training data by randomly selected items. Each replacement training
set, so called bootstrap replicate, has 63.2% of the original training set, mean-
ing that some training samples may appear multiple times while some training
samples do not appear at all. The final classifier is generated by combining the
constructed classifiers by voting.

AdaBoost [24] is based on equally weighing every sample. In each iteration, it at-
tempts to reduce the weighted error on the training set and generates a classifier.
The weighted error of every classifier is calculated in order to update the weights
on the training samples. The weight of each sample adapts according to its
effects on the classifier’s outcome. A misclassified sample gains more weight
while a correctly classified sample loses weight. The final classifier is generated
by a weighted vote of the previously constructed classifiers according to their
performance based on the weighted training set.

For this study, two data sets including 74 instances of Pyrimidines with 28 features
and 186 instances of Triazines with 61 features were collected from the literature. Fea-
tures were arranged according to the positions of possible substitutions and contained
molecular descriptors like polarity, size, flexibility, hydrogen-bond donor, hydrogen-
bond acceptor, π donor, π acceptor, polarizability, σ effect, branching and biological
activity [16].

Decision Tree C4.5, 1-R (p < 0.05), Naïve Bayesian (NB) and 1-Nearest Neighbor
(1-NN) methods were trained with AdaBoost and Bagging on these data sets. It was
observed that ensemble learning methods improved the performance of single learning
methods like C4.5 and 1-R which are not statistically stable. However, NB and 1-NN
were not affected from ensembling. The accuracy was around 80% for both data sets
and for the algorithms which used ensemble methods. It was also reported that the
ensemble learning method worked better on the pyrimidine data set because of its
simpler structure.

2.1.3 SVM vs. Other Machine Learning Methods

In this study of Burbidge et. al.[17], the problem was to predict the inhibition of dihy-
drofolate reductase by pyrimidines. The biological activity was measured as log(1/Ki),
where Ki is the equilibrium constant for the interaction of the ligand to dihydrofolate
reductase. Data were the pyrimidine data as mentioned in the previous research [16].
However, 55 instances were selected among 74 pyrimidine compounds.

The aim here was to transform the regression problem into a classification problem.
The prediction task became learning the relationship great(dn, dm) which declared
that the nth drug’s activity is higher than that of the mth drug. Each data sample
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contained a couple of drugs having 54 features, and a label ’true’ or ’false’, indicating
the value of the relationship great().

For this classification problem, SVM with Gaussian Kernel, multi-layer perceptron
(MLP), radial basis function (RBF) networks and C5.0 decision trees were used for
comparison. It was observed that SVM outperformed the other methods except MLP
which is however 10 times slower than SVM.

2.2 Prediction: Strength of the Interaction

2.2.1 Geometrical Descriptors

The goal of the study of Deng et. al.[18] was to predict the binding affinity of ligand-
protein interactions. The algorithm presented in this was based on the number of
the appearance of each atom type pair that included atoms from both ligand and
binding site of the receptor within a certain distance range. This information was
exploited to arrange features for quantitative structure activity/-property relationships
(QSAR/QSPR) analysis. Each feature value is then defined as the appearance of a
special atom pair within a specified distance bin of 1 Å width.

Two distinct data sets containing 61 and 105 co-crystalized complexes were collected
from RSCB Protein Data Bank as training sets. The experimental dissociation values
for each complex were obtained from the literature. Two distinct test sets containing 6
and 10 complexes were also constructed externally as test set. The 1445 features were
the number of the appearance of protein-ligand atom pairs within a specified distance
bin. Since the number of features was much greater than the number of complexes,
Genetic algorithms (GAFEAT) were used for avoiding redundant features and “curse
of dimensionality”. After feature selection, the kernel partial least squares (K-PLS)
method with RBF kernel was applied 100 times for better generalization. The results
were compared to those of multiple adaptive regression splines (MARS) method and
were found to be similar. It was reported that the proposed feature selection method
improved the accuracy of prediction [18].

2.2.2 Quantitative Logical Rules

Most of the docking programs are considered to be notable at correctly locating the
ligand in the binding site as compared to X-ray structures. On the other hand, the
problem of predicting the binding affinity of a ligand to a particular target is hard to
solve [19].

Amini et al. [19] studied on X-Ray structures of five inhibitors; HIV protease, carbonic
anhydrase II (CA II), trypsin, thrombin, and factor Xa whose binding affinities were
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taken from the literature. Tanimoto coefficient which is based on the number of similar
fragments two molecules share was calculated for every molecule in one-to-all manner.

Inductive logic programming (ILP) is a qualitative method, which manipulates logic
to form rules describing particular properties of each instance of a data set. In this
work [19], support vector inductive logic programming (SVILP) which is a quantitative
version of ILP was utilized for predicting binding affinities of collected protein-ligand
complexes.

According to the proposed algorithm [19], each ligand molecule was fragmented by
determining a central non-hydrogen atom to which other atoms were bonded as a
fragment. The distance was computed between the atom at the center of each frag-
ment and all residual protein atoms having at least one atom within 5 Å radius of a
compound atom. The data set was splitted into positives and negatives with respect
to their activity for letting ILP construct rules specifying the distances with predictive
power. Support vector machine (SVM) assessed ILP rules using the SVILP methodol-
ogy. A model was developed in form of a matrix having the activity of each molecule
versus each rule. “1” corresponded to the occurrence of a rule for a molecule while “0”
corresponded to the absence of the rule. A resembling matrix was built for testing
molecules with unknown activities and the model obtained from training matrix was
used for quantitative prediction of these molecules.

The results of SVILP were compared to results of comparative molecular field anal-
ysis (CoMFA), comparative molecular similarity analysis (CoMSIA), GoldScore, and
DrugScore. It was shown that SVILP gave rise to lower mean squared error (MSE)
values than GoldScore and DrugScore, and could also be compete with CoMFA and
CoMSIA methods. Moreover, the outcome of SVILP was more human interpretable
by humans and could be helpful for calculating rescoring functions on different systems
with the same procedure.

2.2.3 Selection of Promising Features

In the research of Li et. al. [20], it is stated that the binding affinity of a ligand to a
given protein can be calculated experimentally by NMR spectrometry, microcalorime-
try, and surface plasmon resonance, but these methods are not often feasible con-
sidering the time and money. Therefore, many in silico ways are proposed for pre-
dicting the binding affinity which make use of the structural and chemical properties
of protein and ligand. The most successful in silico methods are docking and scor-
ing methods which use mainly three classes of scoring functions; such as force field-
based (e.g. DOCK, GOLD, SIE, and LIE), knowledge-based (e.g., DrugScore, DFIRE,
DDFT, PMF, BLEEP, ITScore, and M-Score), and the empirical scoring functions with
some varieties of statistical techniques (X-Score, FlexX Score, VALIDATE, SCORE1
(LUDI), SCORE, Chem-Score, SMoG, GEMDOCK, and SODOCK). Lately, other in
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silico methods including statistical and machine learning have been developed as an
alternative to docking and scoring. These methods have proved that they have some
particular benefits such as ease of use, speed, and good generalization ability and
usability as a fast filter in the virtual screening of large chemical databases [20].

In this study [20], 1300 refined protein-ligand complexes were collected from PDBBind
2007 database to be used as data set in which 493 samples have the binding affinity of
dissociation constant (Kd) value and 807 samples have inhibition constant (Ki) value.

The protein-ligand complexes were described by three blocks of descriptors: sequence
information of protein, ligand structural information, and binding pocket structural
information. For proteins, 1497 descriptors were calculated which represented their
structural and physicochemical properties. Ligands which were drawn using Hyper-
Chem had 1664 features calculated by Dragon program. Binding pockets which were
minimized using Tripos force field in Sybyl software had 125 descriptors. The data
were divided into training and test sets based on Euclidean distance.

The number of descriptors were firstly reduced by removing the redundant variables
who have a pair correlation higher than 0.9. Then, features were selected using ReliefF
method which assigns a weight to each feature by sampling an instance multiple times
and determining the value of the given property for the nearest samples belonging
to the same and different classes. After ranking the features, 35 features having the
best correlation values were selected by LS-SVM and leave-one-out cross validation
techniques. Two models of LS-SVM were generated to handle Kd and Ki separately.
It was found to be interesting that none of the selected features were from protein
structure block. Also, it was seen that electrostatic and hydrophobic properties were
very essential information for protein-ligand interaction. Although the hydrophobic
effect of the ligand was important for Ki, Kd was dominated by the hydrophobic effect
of the binding-pocket. Considering the geometrical descriptors, aromacity of the ligand
seemed to be the most important property for both Kd and Ki models. The proposed
method performed better than other similar published studies in terms of the trade off
between predictive ability and model complexity. Because of its satisfied performance,
the predictive model was reported to be a promising method as a fast filter for the
rapid virtual screening of large chemical databases.

2.2.4 Random Forests

Molecular docking is an in silico method whose goal is to determine whether and how
a certain ligand will tightly bind to a receptor. Ballester and Mitchell [21] define the
two stages of molecular docking as: “docking molecules into the target’s binding site
(pose identification), and predicting how strongly the docked conformation binds to
the target (scoring).”
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In this study[21], a new scoring function was proposed for docking using Random
Forest (RF) [25] which is based on a collection of decision trees constructed from
bootstrap instances of training data, with predictions computed by general agreement
of all trees. This non-parametric machine learning technique because it is difficult
to model the docking procedure when other resampling methods such as bagging and
cross validation cannot guarantee the generalization capability of parameter estimation
for scoring functions.

Data collected from PDBbind 2007 database were refined by removing protein-protein
and protein-nucleic acid complexes. The refined complexes had known dissociation
and inhibition constants and contained ligand molecules which consisted of only the
common heavy atoms (C, N, O, F, P, S, Cl, Br, I). The final step in refinement of
the data set was to cluster the data into 65 clusters with a 90% similarity cutoff using
BLAST sequence similarity. In order to distribute the binding affinity uniformly over
the clusters, three complexes having the highest, median and lowest binding affinity
were chosen for each cluster. 36 features were obtained each of which is the number of
appearances of a specific protein-ligand atom type pair interacting within a particular
extent [21].

A modified algorithm for Random Forests was used in the study [21]. First, boot-
strap samples were used for growing each tree without pruning instead of using the
same training data. Second, a small number of randomly selected features were used
instead of the whole feature set. The RF-Score was compared with the top scoring
functions such as X-Score, DrugScoreCSD, ChemScore and DS-PLP1. As a result, it
was observed that RF-Score was highly correlated with experimental binding affinities.

2.2.5 Image Processing for Prediction

Saghaie et al. [22] implemented the multivariate image analysis method for investigat-
ing quantitative structure activity relationship of Cyclin dependent kinase 4 (CDK4)
inhibitors. In the proposed multivariate image analysis (MIA) QSAR method, descrip-
tors were pixels of bitmaps of molecules which resulted in large number of descriptors
and the problem of high correlation between them. To solve the problem of collinearity,
partial least squares (PLS) and radial basis function neural networks with principal
component analysis (PC-RBFNN) were preferred as regression algorithms.

Compounds collected from the literature consisted of 94 indenopyrazole derivatives of
which inhibitory activity in terms of logIC50 were also provided. The two dimensional
structures of 94 molecules were drawn using ChemDraw 7.0, and then saved in form
of bitmaps which were set to 940 × 600 pixels and were fixed by selecting a common
pixel. The number of features were reduced to 14775 by eliminating features with the
zero variance. 20 samples out of 94 were selected as the test set while the remaining
samples established the training set. The test set was constructed with a rational
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heuristic requiring that each test sample were close to at least one training sample.

The performance of developed models namely PLS and PC-RBFNN were tested by
well-known statistical measures such as root mean squared error (RMSE) and correla-
tion coefficient (R2) between observed and predicted inhibitory activity. The resulting
PLS model had a higher statistical quality than PC-RBFNN for predicting the activ-
ity of the compounds. Because of high correlation between values of predicted and
observed activity, MIA-QSAR was found to be a highly promising approach in predic-
tion of inhibitory activity. It was also indicated that the linear method (PLS) had a
higher performance than the nonlinear method (PC-RBFNN) in prediction of activity
of studied CDK4 inhibitors.
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CHAPTER 3

DATA MODELLING METHODS

3.1 Ligand Preparation and Docking

The ligands are drawn and minimized by the MM2 force field using the HyperChem
5.1 [26], which are then saved in MOL2 format. The ligands are then saved in PDB
format by Discovery Studio Visualizer v.1.7[27]. X-ray coordinates for the selected
receptor, in complex with the reference compound, generally the compound with the
highest affinity, are obtained from the Protein Data Bank[28].

The reference compound initially removed from the binding site of the receptor. MGL
Tools v.1.5.4[29] is used for preparing the ligands and the receptor, for which non-
polar hydrogens are removed and the ligands and the receptor are saved in PDBQT
format for docking. AutoDock Vina v.1.1.2[30] is used for docking the ligands flexibly
into the binding site of the rigid coordinates of the receptor. Docking of the ligands
is implemented in a confined grid box determined by MGL Tools v.1.5.4. The most
suitable docked poses of the ligands are selected based on the pharmacophore showing
the best superposition with that of the X-ray coordinates of the reference compound.
Protons of the best poses for docked ligands are added by MGL Tools v.1.5.4, which
are then saved in PDB format.

3.2 Obtaining 3D Electrostatic Potential Grid Maps

A cubic frame centering docked ligands and the inner boundaries of the binding site
of the receptor is set by MGLTools v.1.5.4, with size by 37× 37× 37. The center coor-
dinates of the cube are determined by averaging the center coordinates of all ligands.
Electrostatic potential grid map files in ASCII format are generated using the coordi-
nates and size of the cubic frame, and the PDBQT coordinates of the docked ligands
and the receptor by the AutoGrid4 module of AutoDock v4.2 suite of programs[31].
The cubic grids contain 37 grid points in each dimension, each separated by 0.5 Å.
Each point has the electrostatic potential values corresponding to the coordinates of
that point. The cube is preferred to be small because the images seem more significant
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when the cube is focused on the ligand and the binding site.

3.3 Compressing 3D Cube into 2D Image

3D electrostatic potential matrices for the binding site of the complexes are constructed
by MATLAB[32] using the corresponding electrostatic potential grid map files as in-
put. The matrices are compressed into 2D images by summing up the electrostatic
potential values at the grid points through the X, Y, and Z directions, resulting in
three 2D images for each complex, so called the X-image, the Y-image, and the Z-
image, respectively. Each image possesses a total of 1369 pixels of the compressed
electrostatic potential values, which are used as feature sets in the feature selection
step.

3.4 Feature Selection

The success of the learning system is determined by the representation and quality of
data. Irrelevant and redundant features affect the quality of data and make learning
complicated. Although, there are usually many features in a real-world problem, only
some of them are related to the solution. The features are mainly distinguished in
three categories: relevant, irrelevant, and redundant. The relevant features affect the
output directly, so that any other feature cannot mimic their role. On the other hand,
the irrelevant features do not affect the result at all, meaning that removal of them do
not change the output. The redundant features have similar influence on the output
as other features [33].

After achieving the 2D images, each compressed 2D image defined by 37 x 37 pixels is
further processed to generate the corresponding feature vector (X/Y/Z-vector), having
a total of 1369 compressed features, by sequentially lining up each of the 37 rows
of the compressed 2D image next to each other. The Sequential Forward Selection
(SFS)[34] and the Sequential Floating Forward Selection (SFFS)[35] methods, which
are explained in details in the succeeding subsections, are then applied to reduce the
number of features in the vectors to avoid the irrelevant and redundant features.

3.4.1 Sequential Forward Selection

SFS starts with an empty feature set, to which new features are added greedily so
as to not to be deleted at a later stage, yielding a newly learned model with the
best generalization ability at each step. Addition of new features by SFS ends at
a point where the lowest root mean square error, RMSE, converges [36]. SFS with
Multiple Linear Regression[37] is applied with leave-one-out cross validation, which
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will be explained in Chapter 4, in order to find the best feature subset with the lowest
RMSE.

One of the drawbacks of SFS is the failure of adding the interdependent features since
it includes only one feature at each step. Furthermore, SFS cannot remove a feature,
once it is added to the set. On the other hand, the algorithm has several advantages
like being fast and achieving features which are operative and few in number.

Algorithm 1 :Sequential Forward Selection
Input: P = ∅ - initial feature set
Q - the full set of features
J - criterion function to minimize

Output: P - final feature set
repeat

for all x ∈ Q do
set P ′ ← P ∪ {x}
calculate J(P ′)

end for
set P ← P ∪ {x+} where x+ = argmin[J(P ′)]

set Q← Q \ {x+}
until no further improvement in J

3.4.2 Sequential Backward Elimination

Sequential Backward Elimination (SBE) which was introduced by Marill and Green
[38] should be mentioned in order to explain SFFS. SBE starts with all features in the
initial feature set and greedily removes one feature according to the criterion function
at each step. SBE extracts the feature whose removal generates a feature set with the
best generalization. Like SFS, SBE removes a feature permanently so that it cannot
add it to the feature set later [39].

The algorithm works slower when the number of initial features increases. Moreover,
SBE is not convenient to use with linear regression methods when the number features
exceeds the number of data samples. Nevertheless, it is able to construct feature sets
with good generalization ability since it can keep the interdependent features in the
same feature set.

3.4.3 Sequential Forward Floating Selection

Sequential Forward Floating Selection (SFFS) [35] is a combination of SFS and SBE.
The algorithm starts with an empty feature set and applies a forward selection step to
add a single feature. Then, it performs variable steps of backward elimination. The
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Algorithm 2 :Sequential Backward Elimination
Input: P - the full set of feature set
J - criterion function to minimize

Output: P - final feature set
repeat

for all x ∈ P do
set P ′ ← P \ {x}
calculate J(P ′)

end for
set P ← P \ {x−} where x− = argmax[J(P ′)]

until no further improvement in J

forward selection and backward elimination steps continue until there is no further
improvement in the criterion function, which is RMSE in this study.

The algorithm works slower than SFS but faster than SBE. The main advantage of
SFFS is that it overcomes the problem of "nesting"[35, 40, 41]. "Nesting", which is a
common problem for both SFS and SBE, is defined as the assumption that the subset
of the k best features selected contains the subset of the k− 1 best features. However,
the subset of the k best features may not include the subset of the k− 1 best features
in the real-world problems [41].

Algorithm 3 :Sequential Forward Floating Selection
Input: P = ∅ - initial feature set
Q - the full set of features
J - criterion function to minimize

Output: P - final feature set
repeat

Step 1. Select the best feature x+ = argmin[J(P ∪ {x+})]
set P ← P ∪ {x+}
Step 2. Select the worst feature x− = argmax[J(P \ {x−})]
if J(P \ {x−}) < J(P ) then

set P ← P \ {x−}
go to Step 2

else
go to Step 1

end if
until no further improvement in J
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CHAPTER 4

PREDICTION METHODS

Regression analysis is commonly utilized in prediction. A concerning problem in re-
gression is to anticipate the functional dependence of the variable y ∈ ℜ on an m-
dimensional independent variable x. Thus, a mapping from ℜm to ℜ leads to an ap-
proximation to the real valued function of f(x) = y[42]. A data set of n input-output
pairs can be described as D = {[xi, yi]|xi ∈ ℜm, yi ∈ ℜ, i = 1, ..., n}. In this study,
xi’s and yi’s relate to feature vectors extracted from compressed 2D images and the
corresponding experimental (observed) pIC50 values. The following sections describe
the sample set selection methods, the prediction methods Multiple Linear Regression
(MLR), Partial Least Squares Regression (PLSR), Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Support Vector Regression (SVR), and statistical analysis used
to test the CIFAP algorithm on protein-ligand complexes.

4.1 Selection of training and test sets

The prediction phase of CIFAP utilizes two different sample set selection methods
that are applied through the regression analysis methods, described in the following
sections, of pattern vectors of the protein-ligand complex systems: Leave-one-out cross
validation [43] and repeated random subsampling [43]. The leave-one-out cross valida-
tion method used a X-feature, Y-feature, and Z-feature vector for testing and the rest
of the X-feature, Y-feature, and Z-feature vectors for training. The leave-one-out cross
validation tests were implemented by the regression analysis methods for the number
of vectors times by picking up a different X-feature, Y-feature, and Z-feature vector as
a new testing data set at each cycle.

The repeated random subsampling method shuffled the X-feature, Y-feature, and Z-
feature vectors of the protein-ligand complexes, then used the first 18%-20% of X-
feature, Y-feature, and Z-feature for test set and the rest of the X-feature, Y-feature,
and Z-feature vectors as a training set. The repeated random subsampling validation
was implemented by the regression analysis methods for 1000 times by reshuffling the
X-feature, Y-feature, and Z-feature vectors and using the aforementioned number of
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vectors at each cycle.

4.2 Regression Algorithms

4.2.1 Multiple Linear Regression

Multiple linear regression (MLR) is a method used to model the linear relationship
between a dependent variable and one or more independent variables. The depen-
dent variable is sometimes called the predictand, and the independent variables the
predictors. MLR assumes that there is a linear relationship between predictand and
predictors:

yi = β0 + β1xi1 + β2xi2 + ...+ βDxiD (4.1)

where β0 is the constant variable and β1 to βD are coefficients.

MLR is based on least squares: the model is fit such that the sum-of-squares of differ-
ences of observed and predicted values is minimized.

The details of implementation: MLR computations utilizing leave-one-out cross valida-
tion were implemented for predicting the binding affinities of protein-ligand complexes
in the feature selection process, for which SFS and SFFS algorithms described in the
data modelling methods section. RMSE values of the observed and predicted binding
affinity for each test vector was calculated in order to determine which features of the
X-, Y-, and Z-images were meaningful for prediction.

4.2.2 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) was published by Herman Wold for use in
social sciences specifically in financial sciences. Nevertheless, computational chemistry
researchers found PLSR useful after ’80s [38].

PLSR mainly intends to search for “dependent variable” Y given “independent vari-
ables” X and take out the statistical attributes which are similar. The regression
problem can be solved by multiple regression when the dependent variable is a vector
and independent variables form a matrix with the “maximum number of linearly in-
dependent columns”. The multiple regression cannot handle the problem when there
are more independent variables than examples because of multicollinearity1. The tech-
niques like Principal Component Regression (PCR) may eliminate multicollinearity by

1 “When the correlation between the predictors is of high degree, multicollinearity occurs. In this
case, effect of the predictors over prediction becomes hard to separate.”
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applying Principal Component Analysis (PCA) of X and removing some of them as
a result. The application of PCA yields the principal components of X which will
be utilized for predicting Y. The orthogonality of principal components prevents the
occurrence of multicollinearity. However, the method is a little problematic because of
the selection of the best subset of predictors. It is hard to choose the suitable compo-
nents for Y. However, PLSR aims to discover the appropriate components of X which
describe the covariance between X and Y as a recommended feature. This feature
shows the generalization ability of PCA. At last, solution of X let Y be predicted[38].

The details of implementation: PLSR computations used the leave-one-out cross-
validation [43] and repeated random subsampling [43] methods, which are described
in details in the training/test set selection subsection of the prediction methods sec-
tion. The feature vectors obtained from X-pattern, Y-pattern, and Z-pattern images
by SFFS method were inputs to compute a PLSR model which calculates the linear
coefficients of each variable for each training set. The coefficients computed by PLSR
were used for predicting the pIC50 values of the test vectors which were selected by
leave-one-out cross-validation and repeated random subsampling methods.

4.2.3 Support Vector Regression

The Support Vector Regression is an extension of Support Vector Machines which was
developed by Vapnik et. al. In the basic sense, the Support Vector Regression, SVR,
attempts to approximate the function in Equation 4.2

f(x) = w · x + b (4.2)

where x is a feature vector of input data, w is the weight vector, and b is the bias.
SVR computes the error of estimation instead of the margin as in Support Vector
Classification (SVC)[44]. The use of a loss function differs SVR from the old-school
regression techniques. ε-insensitive loss function[44] constructed by Vapnik, which
describes an tube with a radius of ε, so called the ε-tube, is defined by Equation 4.3

E(x, y, f) = |y − f(x)|ε =
{

0 if |y − f(x)| ≤ ε

|y − f(x)| − ε otherwise
(4.3)

where f,x, and y are the function between input and output data, the input vector of
independent variables and the output value to be predicted, respectively. The loss in
Equation 4.3 equals to zero if the estimated value is within the boundaries of the tube
whose radius is ε. When the estimated value is outside the boundaries of the tube,
the loss becomes the difference between the estimated value and the radius of ε-tube,
ε. For the reduction of the loss in Equation 4.3, the summation term in Equation 4.4
should be minimized,
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Figure 4.1: ε-tube, variables for noisy data, ξ, ξ∗ and loss function.

1

2
∥w∥2 + C

n∑
i=1

|y − f(x)|ε (4.4)

where C is a constant for a “trade-off between the error of approximation and model
complexity”.

If data used are noisy, for eliminating the results of the noise in the background as
represented in Figure 4.1, the new slack variables ξi and ξ∗i [45] are introduced as shown
in Equation 4.5,

1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i ) (4.5)

subject to
yi − f(x) ≤ ε+ ξi

f(x)− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(4.6)

where i = 1, ..., n. It should be noted that a large C results in smaller slack variables
and decreases error. Here, ε is the ε-tube’s radius which regulates the quantity of
support vectors which are placed on or outside the ε-tube. If ε becomes higher, the
quantity of support vectors decrease eventually to zero, invalidating the prediction[46].

A Lagrangian function is calculated for the solution of the problem and optimized for
finding the minimum/maximum problems. By exchanging the Karush-Kuhn-Tucker
(KKT) conditions into the related function, the problem is transformed into a dual
problem as in Equation 4.7

Ld(αi, α
∗
i ) = −1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )(xi · xj)

−ε
n∑

i=1

(αi + α∗
i ) +

n∑
i=1

(αi − α∗
i )yi (4.7)
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subject to

n∑
i=1

(αi − α∗
i ) = 0 (4.8)

0 ≤ αi, α
∗
i ≤ C (4.9)

where i = 1, ..., n.

When the learning process ends, n pairs of Lagrangian multipliers (αi, α
∗
i ) are yielded

as a result, and the multipliers which are different than zero determines the quantity
of support vectors. It is important to remind that the dimensions of the data are
irrelevant for finding the quantity of support vectors.

For finding the best solution, the KKT conditions below should be compensated:

αi(w · xi + b− yi + ε+ ξi) = 0 (4.10)

α∗
i (−w · xi − b+ yi + ε+ ξ∗i ) = 0 (4.11)

βiξi = (C − αi)ξi = 0 (4.12)

β∗
i ξ

∗
i = (C − α∗

i )ξ
∗
i = 0 (4.13)

It is clear that the slack variables become zero if 0 < αi, α
∗
i < C. Moreover, the

combination of the first and second conditions could be written as follows:

b = yi −w · xi − ε for 0 < αi < C (4.14)

b = yi −w · xi + ε for 0 < α∗
i < C (4.15)

The calculation of b is possible with the aforementioned equations. Nevertheless, it
is indicated in [42] that b should be computed by calculating the mean over the “free
support vectors” since the computation of b is sensitive. The “free support vectors”
are the data vectors where Lagrange multipliers are not zero and smaller than C.
However, when αi = C or α∗

i = C for the data vectors outside the ε-tube, these
vectors are named “bounded support vectors”.

In SVR prediction, the best weight vector, w, is yielded upon calculation of Lagrangian
multipliers αi and α∗

i [45] as in Equation 4.16.

w =
n∑

i=1

(αi − α∗
i )xi (4.16)

The data vectors which satisfy the condition of 0 < αi, α
∗
i < C are called support

vectors. As a result, the best regression hyperplane can be expressed as in Equation
4.17
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f(x) =
n∑

i=1

(αi − α∗
i )xi · x + b (4.17)

where xi’s are the input vectors used for building the predictive model and x is the
input vectors used for testing the model.

In a non-linear situation, the data is transformed into a space with higher dimension
by using the “kernel function” K(xi,xj) = Φ(xi)Φ(xj), eventually leading to Equation
4.18

f(x) =
n∑

i=1

(αi − α∗
i )K(xi,x) + b (4.18)

The details of implementation: LibSVM library which was developed by Chang and
Lin [47] was used for the implementation of SVR. Radial basis function was used as
the kernel shown in Equation 4.19

K(xi,x) = e−γ|x−xi|2 (4.19)

where γ is the width of the RBF-kernel which and regulates the organization of the
independent variables in the data[48].

Obtaining reliable results by SVR was found to greatly depend on the optimization of
the internal parameters C, ε and γ, which was implemented by a computationally time-
consuming grid search [46, 45]. Before applying the grid search, the feature vectors
were scaled in the range [−1,+1] in order to avoid domination of some features and
to simplify the numerical calculations [47]. The grid search method utilized the leave-
one-out cross-validation method[43], which is described in details in the training/test
set selection subsection of the prediction methods section. At first, a coarse grid
values which were {20, 21, ..., 215} for C, {20, 21, ..., 215} for C, {2−15, 2−14, ..., 23} for
γ, and {2−15, 2−14, ..., 23} for γ were set as recommended by Chang and Lin [47].
After determining the coarse parameters, a fine grid search was applied for which the
values of the parameters were iterated by 1 for the parameter C, and 0.0001 for the
parameters ε and γ. It should be noted that RMSE values tended to decrease as the
value of the parameter C increased. However, high values of C causes the model to be
complex and to have low generalization ability. The increase in the parameter C was
cut at the point when the decrease of RMSE was no more than 0.0001. The optimal
C, ε and γ values obtained by the grid search were also used in the SVR determination
of the repeated random subsampling method[43], which is described in details in the
training/test set selection subsection of the prediction methods section.
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Figure 4.2: The ANFIS architecture

4.2.4 Adaptive Neuro-Fuzzy Inference System

Fuzzy inference is a method of construction of mapping from a given input to an
output using the fuzzy logic. Then, the mapping forms a basis for decision making
or recognizing patterns. There are successful applications of fuzzy inference systems
in fields such as control, classification, decision support systems, expert systems, and
computer vision[49].

ANFIS, which is based on Sugeno model, was proposed by Jang in 1993 [50]. Assume
that two fuzzy IF-THEN rules of the first-order Sugeno kind are as follows:

1. R1: IF x is A1 and y is B1, THEN f1 = p1x+ r1y + t1

2. R2: IF x is A2 and y is B2, THEN f2 = p2x+ r2y + t2

where A1, B1, A2 and B2 are linguistic labels of fuzzy sets and p1, r1, t1, p2, r2, and
t2 are parameters. If the consequent (THEN) part is chosen as a constant, then the
rule is said to be a zeroth-order Sugeno type. ANFIS utilizes two types of parameters
which belong to the membership functions in the antecedent (IF) and the polynomial
functions in the consequent (THEN).

A six-layered ANFIS architecture can be defined as follows (Figure 4.2):

Layer 1: The first layer is the “input layer”. Neurons of the “input layer” simply pass
extraneous non-fuzzy signals to Layer 2.

Layer 2: Inputs are fuzzified in this layer. Adaptive nodes of this layer generate the
parameters for the bell-shaped membership functions as in Equation 4.20
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µAi(x) =
1

1 + [x−ci
ai

]bi
(4.20)

where µAi is the membership function of Ai specifying the degree to which the given
x satisfies the linguistic label Ai with the premise parameters ai, bi, and ci. Although,
bell-shaped membership functions are commonly used in this level, any continuous and
piecewise differentiable functions, such as trapezoidal and triangular-shaped member-
ship functions can be selected as node functions in this layer [50].

Layer 3: This layer is called the “rule layer”. Here, every single neuron matches to
a single “Sugeno-type fuzzy rule”. A rule neuron gets inputs from the corresponding
neurons of Layer 2 and computes the “firing strength” of the rule it represents. In an
ANFIS, the conjunction of the rule antecedents is evaluated by the operator product
[50]. Thus, the output of neuron i in Layer 3 is obtained as in Equation 4.21,

y
(3)
i =

k∏
j=1

x
(3)
ij (4.21)

where x
(3)
ij is the output of neuron j in Layer 2 which is connected to the neuron i in

Layer 3.

Layer 4: This layer is referred to as the “normalization layer”. Each neuron in this
layer receives inputs from all neurons in the rule layer, and calculates the normalized
firing strength of a given rule. The normalized firing strength is the ratio of the firing
strength of a given rule to the sum of firing strengths of all rules. It represents the
contribution of a given rule to the final result [50]. Thus, the output of neuron i in
Layer 4 is determined as in Equation 4.22,

y
(4)
i =

x
(3)
ii∑n

j=1 x
(4)
ij

=
µi∑n
j=1 µj

= µi (4.22)

Layer 5: This is the “defuzzification layer”. Each neuron of Layer 5 make a connection
to the corresponding normalization neuron, and besides gets initial inputs, i.e. x1 to
xn. A defuzzification neuron calculates the weighted consequent value of a given rule
as in Equation 4.23,

y
(5)
i = x

(5)
i [ki0 + ki1x1 + ...+ kinxn] = µi[ki0 + ki1x1 + ...+ kinxn] (4.23)

where x
(5)
i is the input and y

(5)
i is the output of “defuzzification neuron” i in Layer 5,

and ki0, ki1, ..., kin form a group of resulting parameters of the ith rule, Ri.

Layer 6: It is the layer possessing a single summation neuron which sums up the
outputs of all “defuzzification neurons” and calculates the final ANFIS output, y, as
in Equation 4.24,
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y =
n∑

i=1

x
(6)
i =

n∑
i=1

µi[ki0 + ki1x1 + ...+ kinxn] (4.24)

ANFIS does not need any prior knowledge for rule consequent parameters. It learns
parameters and tunes up membership functions. ANFIS commonly uses a hybrid
learning algorithm that combines the least-squares estimator and the gradient descent
method, in which each epoch includes a forward pass and a backward pass. In the
forward pass, a data set of training patterns is given to the ANFIS to compute neuron
outputs layer by layer and to identify the resulting rule parameters. In the backward
pass, the back-propagation algorithm is performed for propagating the error signals
from the output back to the input. During propagation, the antecedent parameters
are updated according to the chain rule [50].

The details of implementation: ANFIS computations utilized the leave-one-out cross-
validation [43] and repeated random subsampling [43] methods, which are described in
details in the training/test set selection subsection of the prediction methods section.
The feature vectors obtained from X-, Y-, and Z-images by SFFS method were given
seperately as inputs to compute a distinct ANFIS model for each feature set. By
using training feature vectors, the fuzzy inference system was generated by subtractive
clustering [51] which reduces the extensive requirements of time and memory. The
observed pIC50 values were supplied as output to the fuzzy inference system for tuning
up the bell-shaped membership functions and consequent parameters in the rules.
Backpropagation[50] method was preferred as the learning system in the backward
pass. ANFIS was trained for 10 epochs in order to avoid overfitting. The computed
ANFIS models were used for predicting the pIC50 values of the test vectors which were
selected by leave-one-out cross-validation and repeated random subsampling methods.

4.3 Statistical Analysis

The performance measures for prediction of pIC50 are root mean square error, RMSE,
in Equation 4.25 and coefficient of determination, R2, in Equation 4.26:

RMSE =

√∑
i (yi − ŷi)2

n
(4.25)

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − y)2
(4.26)

where yi, ŷi, and y are actual, observed, and mean response variables, respectively. In
regression, the R2 is a statistical measure of how well the regression function approx-
imates the real data points. An R2 of 1.0 indicates a perfect fit of a regression line
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with observed data while R2 of 0.0 shows no correlations at all. Tropsha et. al.[52, 53]
reported two criteria indicating that a regression model produced by a QSAR study is
predictive if the following conditions hold:

• R2
LOOCV > 0.5 for leave-one-out cross-validation, and

• an average of R2 > 0.6 for random subsampling which is also referred as leave-
many-out cross-validation [53].
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Checkpoint Kinase 1 and its inhibitors

The objective of cancer therapy is to specifically destroy cancerous cells while protect-
ing healthy cells. The cell cycle of a healthy cell is arrested at the G1 and the G2/M
cell cycle checkpoints by the p53 tumor suppressor protein upon DNA damage[54].
The cell cycle arrest prepares a cell for DNA repair, senescence or apoptosis[55, 56].
The function of free p53 in cell is down-regulated by mouse/human double minute-
2, (M/H)DM2, oncoprotein[57]. If free p53 level is extremely lowered by a mutation
in a cell, then the cell itself never arrest the cell cycle, transforming the cell into a
cancerous cell with uncontrollable mitotic cell divisions. Interestingly, inhibition or
knockout of checkpoint kinase 1 (CHK1), a serine / threonine protein kinase, arrests
the G2 or the S cell cycle checkpoint in p53-deficient cancer cells[58, 59], potentiating
the efficacy of DNA damaging anticancer agents such as 5-fluorouracil or doxorubicin.
In that regards, some CHK1 inhibitors have already been developed and patented[60].
Considering that almost half the human cancers are p53-deficient, it then becomes
an attractive choice to guide the current computer-assisted drug discovery technol-
ogy through the development of novel and more potent inhibitors of CHK1 in cancer
therapy.

5.1.1 Chemical Structures

In the experiments, 57 checkpoint kinase 1 (CHK1) inhibitors derived from the thienopy-
ridine pharmacophore were adopted from Zhao et al.[1], whose chemical structures and
the corresponding IC50 values in nM concentration were listed in the Figures 5.1, 5.2,
and 5.3. The corresponding figures were obtained from [1]. Briefly, the IC50 values for
the inhibitors vary between 1 nM and 2.7x104 nM. The observed IC50 for CHK1 in-
hibitors were converted to nanomolar pIC50 values by −log10IC50×10−9[61] for CIFAP
computations.
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Figure 5.1: SAR at 4-position of thienopyridine
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Figure 5.2: SAR at 2-position of thienopyridine
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Figure 5.3: SAR of core modification of thienopyridine
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5.1.2 Data Modelling Phase

As described in the data modelling methods section, 3D electrostatic potential grid
cubes with center coordinates of (20, –3, 11) and a size of 37× 37× 37 for 57 ligands
in complex with CHK1 were compressed by summing up electrostatic potential values
at grid points in orthogonal (X, Y and Z) directions into three 2D images with 37×37

pixels for each complex. The compression process for the complex of compound 70
and CHK1 is exemplified in Figure 5.4 which shows the grid cubes through the X-,
Y-, and Z-axis from left to right at the top of the figure, and the corresponding 2D
images at the bottom of the figure. It should be noted here that the X-Ray, PDB ID:
3PA3[1], and docked coordinates of bound compound 70 generated almost identical
2D compressed images. Therefore, only the docked coordinates of bound compound
70 was taken as granted and correlated with its experimental binding affinity in the
following sections. It is also essential that the cubic grid be as small as possible and
cover the inner boundaries of the binding site of the receptor as well as the ligand itself
in order to gain more meaningful information from compressed 2D images. The

Before the prediction phase of CIFAP, 2D compressed images were initially converted
to linear vectors, which were then used for feature selection to generate feature vectors
by SFS and SFFS. It should be noted that BFS is not applicable in this case since
the number of features is much higher than the number of samples. The best RMSE
values determined by MATLAB using Equation 4.25 and data obtained from SFS
computations were found to be 0.6355 for leave-one-out cross-validation of the X-
images, 0.5298 for leave-one-out cross-validation of Y-images, and 0.6297 for leave-one-
out cross-validation of Z-images. In order to visualize the patterns, the feature vectors
obtained by SFS were then converted into 2D X-pattern, Y-pattern, and Z-pattern
images, shown in Figure 5.5, by breaking the feature vectors into 37 fragments, each
having 37 points and the selected features (black pixels in the figures), and sequentially
stacking the fragments. The white area in each image of Figure 5.5 represents the sum
of electrostatic potential values through that direction which were not found to be
informative and were not used in regression analysis. SFS algorithm selected 14, 18,
and 16 features for X-pattern, Y-pattern, and Z-pattern images respectively. SFFS
implementation gave rise to better RMSE values by replacing the redundant features
with more informative ones. As demonstrated in Figure 5.6, SFFS algorithm yielded
15 features for X-pattern images, 21 features for Y-pattern images, and 25 features
for Z-pattern images. The best RMSE values obtained by SFFS implementation were
found to be 0.6355 for leave-one-out cross-validation of the X-images, 0.4749 for leave-
one-out cross-validation of Y-images, and 0.3962 for leave-one-out cross-validation of
Z-images. It is clearly seen that the RMSE values of Y- and Z-images were highly
improved while the RMSE value of X-image stayed the same.

The lowest RMSE values which were obtained by Y-images and Z-images shows that
the information conveyed by selected features of Y-images and Z-images has the better
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Figure 5.4: An exemplary illustration of the 3D electrostatic potential (EP) grid for the
CHK1-compound 70 complex and the corresponding compressed 2D images. A view of
the EP grid through (a) the X-axis (top) and the corresponding compressed X-image
(bottom), (b) Y-axis (top) and the corresponding compressed Y-image (bottom), and
(c) Z-axis (top) and the corresponding compressed X-image (bottom). The color scales
for the compressed images are shown on the right side.
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Figure 5.5: Two dimensional X-, Y- and Z-pattern images of CHK1-ligand complexes
obtained by Sequential Forward Selection, SFS.
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Figure 5.6: Two dimensional X-, Y- and Z-pattern images of CHK1-ligand complexes
obtained by Sequential Floating Forward Selection, SFFS.
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explanation of the pIC50 values. It is meaningful that the patterns are grouped around
the margins of the images, which correspond to the binding interface between the ligand
and the binding site of the receptor. As far as the CHK1-compound 70 complex is
concerned, the lowest RMSE values are obtained with the 2D Y-images and Z-images
due most likely to the greatest 2D area occupied by the ligand when looking at the
cubic grid of the binding site through the Y-axis and Z-axis as in Figures 5.4c and
5.4b (top), while the ligand seems to take up less space when looking at the cubic grid
through the X-axis, Figure 5.4a (top). Ideally an angle showing a bound ligand with
a shallower and broader size, especially as in the Z-axis view of bound compound 70
shown in Figure 5.4c (top), should provide more detailed information on drug-receptor
interactions in the form of compressed electrostatic potentials.

5.1.3 Prediction Phase

The features selected by SFFS were then used for prediction by three independent re-
gression analysis methods; Adaptive Neuro-Fuzzy Inference System (ANFIS), Support
Vector Regression (SVR), and Partial Least Squares Regression (PLSR). Figure 5.7
shows 2D affinity correlation plots showing the observed binding affinities on the x-
axis in pIC50 versus the binding affinities on the y-axis in pIC50, which were predicted
by the ANFIS applying the leave-one-out cross-validation method, using 57 different
sets of test vectors selected from the X-feature, Y-feature ,Z-feature vectors of the
CHK1-ligand complexes. Although the Y-affinity correlation graph, Figure 5.7b, and
the Z-affinity correlation graph, Figure 5.7c, seem to have less data distribution and
possibly better correlations as compared to that of the X-affinity correlation plot in
Figure 5.7a, as a matter of fact an RMSE of 1.0868 obtained for the Z-feature vectors,
and an RMSE of 1.1999 obtained for the Y-feature vectors indicate a weak correlation
between the predicted and observed binding affinities, suggesting that the leave-one-
out cross validation applied by ANFIS may not be suitable for optimal correlations in
all dimensions.

Aside from the leave-one-out implementation of ANFIS, ANFIS was also carried out
by applying the random subsampling set selection method, which used 1000 different
training sets, having 47 feature vectors in each set, and test sets, having 10 feature
vectors in each set, by shuffling 57 X-feature, Y-feature, and Z-feature vectors of the
CHK1-ligand complexes separately. RMSE and R2 values for the best three ANFIS
results (Random-1, Random-2 and Random-3) and average RMSE and R2 values out
of 1000 randomly selected training and test sets are given in Table 5.1 for the X-feature
,Y-feature, and Z-feature vectors. As seen in Table 5.1, the Y-feature and Z-feature
vectors gave rise to the lowest RMSE and the highest R2 values than those of the
X-feature vectors, suggesting that the Y-feature and Z-feature vectors provide more
useful information in correlating the predicted binding affinities with the corresponding
observed binding affinities. This finding is also visualized in Figure 5.8 showing affinity
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Figure 5.7: Affinity correlation plots constructed upon ANFIS determination of leave-
one-out cross validation. The plots show ANFIS correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using 57 different
testing sets selected from the X-pattern (a), Y-pattern (b), and Z-pattern (c) images
of the CHK1-ligand complexes.
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Table5.1: R2 and RMSE values for an average and the best 3 ANFIS determination
of random subsampling set selection method out of 1000 random training/test sets for
the X-feature, Y-feature and Z-feature vectors of CHK1-ligand complexes.

ANFIS test train
X R2 RMSE R2 RMSE

Random-1 0.4157 1.0237 0.9801 0.1185
Random-2 0.3197 1.0077 0.9895 0.0884
Random-3 0.2711 0.7131 0.9823 0.1292
Average 0.0947 3.5604 0.9832 0.1190

ANFIS test train
Y R2 RMSE R2 RMSE

Random-1 0.7379 0.6525 0.9495 0.1948
Random-2 0.6813 0.7306 0.9472 0.1975
Random-3 0.6084 0.7333 0.9456 0.2083
Average 0.1762 1.2035 0.9544 0.2008

ANFIS test train
Z R2 RMSE R2 RMSE

Random-1 0.7082 0.7052 0.9245 0.2354
Random-2 0.6992 0.6881 0.8455 0.3419
Random-3 0.6948 0.6500 0.8774 0.3123
Average 0.1945 1.4817 0.8903 0.3084

correlations plotted for the observed (x-axis) versus predicted (y-axis) binding affinities
(pIC50) using the best random subsampling set selection (Random-1 in Table 5.1) for
the X-feature, Figure 5.8a, Y-feature, Figure 5.8b, and Z-feature, Figure 5.8c, vectors
of 57 CHK1-ligand complexes, 10 of which were used for testing and the rest were used
for training.

As compared to the ANFIS determination of leave-one-out cross validation, the ANFIS
determination of the random subsampling set selection gave rise to more correlative
results with the Y-feature and Z-feature vectors which are able to explain 70% of
variance in pIC50 values. In terms of the ANFIS application of the CHK1-ligand
complexes and possibly of other complex systems, it should be known that learning
depends not only on the nature of the features but also design of the training and test
sets as well. Therefore, it is essential that the use of the features as well as the training
and test sets be optimized for a given complex system.

Another method of regression analysis, that was applied to predict the binding affinities
of the CHK1 inhibitors, is the Support Vector Regression, SVR, which is described
in details in the SVR subsection of the prediction methods section. As mentioned in
the SVR subsection of the Prediction Methods section, the C parameter is a trade-
off between error tolerance and model complexity, and its value should be optimized
along with the other internal parameters ε, the radius of the ε-tube, and γ, the width
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Figure 5.8: Affinity correlation plots constructed by ANFIS determination of random
subsampling set selection. The plots show ANFIS correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (Random-1 in Table 5.1) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 57 CHK1-ligand complexes, 10 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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Table5.2: Optimal values of the SVR parameters C, ε, and γ for CHK1-ligand com-
plexes.

C γ ε

X-image 2000 0.002 0.0005
Y-image 2000 0.001 0.0078
Z-image 2000 0.0009 0.0313

of the RBF-kernel to regulate the distribution of independent variables in the features.
In order to minimize the error of approximation regardless of the complexity of the
CHK1-ligand complex systems, a range of C values between 1 and 32,768 (215) were
included in the grid search by the SVR determination of leave-one-out cross validation,
which was carried out for each of the 57 feature vectors to determine the lowest RMSEs
that give rise to optimal values for the internal parameters C, ε, and γ. In general,
deviations in RMSE caused by slight variations in C were observed to be greater than
those of ε and γ. It was found that a value of 2000 for C afforded the lowest RMSE
and the highest R2 values as well as the optimal C, ε, and γ values for the X-feature,
Y-feature, and Z-feature vectors, which are presented in Table 5.2.

Using the optimal C, ε, and γ values given in Table 5.2 and 57 X-feature, Y-feature, and
Z-feature vectors of the CHK1-ligand complexes, the binding affinities of 57 bound lig-
ands were predicted by the SVR determination of leave-one-out cross validation. The
resulting predicted affinities (pIC50) obtained for the testing feature vectors were then
correlated with the corresponding observed (experimental) binding affinities (pIC50) of
the CHK1-ligand complexes as shown in Figure 5.9a for the X-feature vectors, Figure
5.9b for the Y-feature vectors, and Figure 5.9c for the Z-feature vectors. Figure 5.9c
clearly shows that the best correlations between the predicted and observed binding
affinities were obtained with the testing data obtained from the Z-feature vectors. In-
terestingly, the affinity correlation profile for the Z-feature vectors in Figure 5.10c looks
much better than the affinity correlation profile obtained by the ANFIS determination
of leave-one-out cross validation, shown in Figure 5.8c. An RMSE of 0.5940 obtained
for the Z-feature vectors, expresses a better correlation between the predicted and ob-
served binding affinities, suggesting that the leave-one-out cross validation applied by
SVR may be a better prediction system than the leave-one-out cross validation applied
by ANFIS. Moreover, an R2 of 0.6098 obtained for the Z-feature vectors, shows that
the model using SVR with Z-feature vectors is more predictive than the model using
ANFIS with Z-feature vectors according to the first Tropsha criterion [52, 53].

SVR computations were also implemented by utilizing the random subsampling set se-
lection method, described in details in the selection of training and test sets subsection
of the prediction methods section. The SVR determination of random subsampling
set selection used the optimal C, ε and γ values given in Table 5.2. R2 and RMSE
values for the best three SVR results (Random-1, Random-2 and Random-3) and
average RMSE and R2 values out of 1000 randomly selected training and test data
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Figure 5.9: Affinity correlation plots constructed upon SVR determination of leave-
one-out cross validation. The plots show SVR correlations between the observed (x-
axis) and predicted (y-axis) binding affinities (pIC50), determined using the optimal
C, ε and γ values given in Table 5.2 and 57 different testing sets (each including only
one feature vector) selected from the X-feature (a), Y-feature (b), and Z-feature (c)
vectors of the CHK1-ligand complexes.
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Table5.3: R2 and RMSE values for an average and the best three SVR determination
of random subsampling set selection out of 1000 random training/test sets for the
X-feature, Y-feature and Z-feature vectors of CHK1-ligand complexes.

SVR test train
X R2 RMSE R2 RMSE

Random-1 0.8875 0.2886 0.5897 0.6204
Random-2 0.8853 0.4016 0.5320 0.6109
Random-3 0.8859 0.4418 0.4757 0.6135
Average 0.5112 0.6464 0.6488 0.5764

SVR test train
Y R2 RMSE R2 RMSE

Random-1 0.8938 0.2272 0.7468 0.4981
Random-2 0.8512 0.4077 0.7325 0.4793
Random-3 0.8814 0.4199 0.6646 0.5099
Average 0.5245 0.6789 0.7780 0.4556

SVR test train
Z R2 RMSE R2 RMSE

Random-1 0.9276 0.1889 0.8309 0.3994
Random-2 0.9215 0.2715 0.8146 0.4082
Random-3 0.9087 0.2818 0.8196 0.4001
Average 0.5636 0.6271 0.8358 0.3826

sets are listed in Table 5.3 for the X-feature, Y-feature and Z-feature vectors. In a
similar manner to the RMSE results shown in Table 5.1 for the ANFIS determina-
tion of random subsampling set selection, the results presented in Table 5.3 for the
SVR determination of random subsampling set selection indicate that the Z-feature
vectors yield more correlative predicted binding affinities with an average RMSE of
0.6271 determined out of 1000 test sets and an RMSE of 0.1889 for the best test set
(Random-1). A correlation of the predicted binding affinities (pIC50) belonging to the
Random-1 training and test sets in Table 5.3, which gave the lowest RMSEs by the
SVR determination of random subsampling set selection, versus the observed binding
affinities (pIC50) of 57 CHK1 inhibitors, published by Zhao et al.[1], are shown in
Figures 5.10a-5.10c for the X-feature, Y-feature, and Z-feature vectors, respectively,
of 57 CHK1-ligand complexes, 10 of which were used for testing and the rest were
used for training. The affinity correlation profile shown in Figure 5.10c for 57 CHK1
inhibitors is indeed in good agreement with the low RMSE values given in Table 5.3
for the Random-1 training/test sets selected from the Z-feature vectors.

The last method of regression analysis, that was applied to predict the binding affini-
ties of for the CHK1 inhibitors, is Partial Least Squares Regression, PLSR, which is a
linear regression method and described in details in the PLSR subsection of the pre-
diction methods section. The correlation between the observed (x-axis) and predicted
(y-axis) binding affinities obtained by the PLSR determination of the leave-one-out
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Figure 5.10: Affinity correlation plots constructed by SVR determination of random
subsampling set selection. The plots show SVR correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (Random-1 in Table 5.3) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 57 CHK1-ligand complexes, 10 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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Figure 5.11: Affinity correlation plots constructed upon PLSR determination of leave-
one-out cross validation. The plots show PLSR correlations between the observed (x-
axis) and predicted (y-axis) binding affinities (pIC50), determined using 57 different
testing sets (each including only one feature vector) selected from the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of the CHK1-ligand complexes.
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cross-validation, using 57 different sets of test vectors selected from the X-feature,
Y-feature, and Z-feature vectors of the CHK1-ligand complexes, is demonstrated in
Figure 5.11. As in other regression models discussed earlier in this chapter, Z-feature
vectors resulting in an RMSE of 0.4109 and an R2 of 0.8133 are found to be more
informative than X-feature and Y-feature vectors.

Indeed, the RMSE values given in Table 5.4 to compare the experimental binding affini-
ties (pIC50) of 57 CHK1 inhibitors, published by Zhao et al.[1], with those predicted
by the PLSR, SVR, and ANFIS determination of leave-one-out cross validation, which
used the Z-feature vectors, further support the aforementioned observation, strongly
suggesting that the PLSR determination of leave-one-out cross validation gave rise
to more reliable predicted binding affinities by an RMSE of 0.4109 as compared to
both the SVR and ANFIS determination of leave-one-out cross validation, which re-
sulted in RMSE values of 0.5940 and 1.0868, respectively. Moreover, high correlation
(R2 = 0.8133) yielded by PLSR determination of the leave-one-out cross-validation
using Z-feature vectors indicates that the relationship between the data model and
binding affinity is more likely linear since PLSR, a linear regression algorithm, outper-
formed two strong regression methods SVR which is a non-linear method with the use
of RBF kernel, and ANFIS which is a fuzzy regression method.

In addition to leave-one-out cross-validation implementation, PLSR was applied by
using the random subsampling set selection method by randomly selecting 47 vectors
of CHK1-ligand complexes for training and 10 vectors of CHK1-ligand complexes for
testing without repetition. Table 5.5 reports the R2 and RMSE values for the best
three SVR results (Random-1, Random-2 and Random-3) and average RMSE and
R2 values out of 1000 randomly selected training and test data sets belonging to
the X-feature, Y-feature and Z-feature vectors. Along with the results of SVR and
ANFIS determination of random subsampling set selection, PLSR determination of
random subsampling set selection found out that the Z-feature vectors generate better
predictors with an average RMSE of 0.5388 determined out of 1000 test sets and an
RMSE of 0.1717 for the best test set (Random-1). In Figures 5.12a-5.12c for the X-
feature, Y-feature, and Z-feature vectors, the correlation between the observed and
predicted binding affinities (pIC50) belonging to the Random-1 training and test sets
in Table 5.5, is illustrated. Although the training/test sets selected from the Y-feature
vectors also yielded a low average RMSE of 0.5535 and a high average R2 of 0.6373, Z-
feature vectors provided a better explanation of the variability in the model considering
a lower average RMSE of 0.5388 and a higher average R2 of 0.7141.

Based on the analysis of all the regression and set selection methods applied on the
57 CHK1-ligand systems, it was observed that it was indeed the Z-feature vectors
obtained from the Z-images that presented more reliable and correlative information
to address the learning and prediction features of CIFAP. Therefore, it is more plausible
to opt the Z-images as the major sources of collecting information for learning and thus
predicting binding affinities of novel thienopyridine analogs. Although the concept of
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Table5.4: RMSE comparison between observed binding affinities (pIC50) for 57 CHK1
inhibitors, published by Zhao et al.[1], and the corresponding binding affinities (pIC50)
predicted by the PLSR, SVR, and ANFIS determination of leave-one-out cross valida-
tion for the Z-feature vectors of the testing data sets.

No. pIC50 PLS SVR ANFIS No. pIC50 PLS SVR ANFIS
1 8.6990 9.0802 8.5814 7.9482 35 8.3979 8.1192 7.9728 7.9640
19 7.6198 7.6262 7.6354 9.454 36 7.2218 6.7173 7.2321 7.3062
20 8.3010 8.4158 8.4011 9.065 37 7.7959 8.1512 8.3521 8.6034
21 8.3979 8.0800 7.9025 7.012 38 8.0458 8.1836 8.2123 8.6053
22 8.6990 8.9547 8.1661 7.165 39 8.0458 8.3955 8.5173 8.3451
23 8.6990 8.3763 8.1170 7.564 40 8.3010 7.7712 8.0305 8.4584
24 8.5229 8.7002 8.4405 7.767 41 8.6990 8.9038 8.9185 8.5310
25 8.6990 8.3792 8.2262 8.446 42 8.1549 8.4085 8.3877 7.8738
26 8.3010 7.5363 7.8269 8.494 43 8.3010 8.5079 8.4389 8.3080
27 8.3979 8.6195 8.4182 8.120 44 8.0458 8.1289 7.7554 7.1065
28 7.6778 7.0414 7.8371 6.935 45 7.2218 7.1325 7.5735 7.7385
29 8.3010 8.7442 8.5743 6.250 46 8.3979 7.7111 7.9410 8.0852
2a 8.5229 7.7007 8.3175 8.294 47 8.6990 8.4916 7.8556 7.2124
2b 7.8539 7.9671 7.2053 6.879 48 7.1739 8.0757 8.1005 9.2178
2c 6.1506 6.6419 7.0371 8.109 49 7.4685 7.0416 7.3380 7.3563
2d 6.1273 6.4896 7.2529 5.885 50 9.0000 9.2396 9.1386 8.0614
2e 8.5229 8.8622 8.6881 7.303 51 8.3010 8.2312 8.1397 8.7869
2f 8.1549 7.3352 7.4241 6.209 52 8.0969 7.9556 8.3526 8.9328
2g 6.5346 6.3794 5.7454 5.561 53 8.5229 8.5333 8.6080 7.0164
2h 6.7055 7.6442 7.8961 7.705 54 9.0000 9.3011 8.5512 11.1004
2i 6.0283 5.6129 5.7120 5.691 55 8.5229 8.2958 8.3550 8.2865
2j 6.8297 6.9519 7.6451 7.298 56 7.6990 7.7859 8.1327 7.5784
2k 6.6757 6.8728 6.4813 7.558 57 7.7959 7.9553 8.1287 9.7156
2l 4.5663 4.4159 6.1559 6.164 58 7.2518 7.5155 7.7758 7.1252
30 7.7212 7.8154 7.9624 8.201 59 6.1445 7.3787 7.6180 6.9379
31 8.5229 8.3959 8.3149 7.841 60 5.3389 5.1800 7.1871 8.2565
32 8.5229 8.5356 8.2682 7.818 69 8.0458 7.8547 8.0412 8.3827
33 8.5229 7.9691 7.9267 10.4276 70 9.0000 9.0852 8.5874 8.4834
34 8.3979 8.2727 8.1189 7.8277 RMSE 0.4109 0.5940 1.0868

46



0 2 4 6 8 10
0

2

4

6

8

10

observed
pr

ed
ic

te
d

PLSR RAND FOR X−VECTORS

 

 

train
test

(a)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

PLSR RAND FOR Y−VECTORS

 

 

train
test

(b)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

PLSR RAND FOR Z−VECTORS

 

 

train
test

(c)

Figure 5.12: Affinity correlation plots constructed by PLSR determination of random
subsampling set selection. The plots show PLSR correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (Random-1 in Table 5.5) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 57 CHK1-ligand complexes, 10 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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Table5.5: R2 and RMSE values for an average and the best three PLSR determination
of random subsampling set selection out of 1000 random training/test sets for the
X-feature, Y-feature and Z-feature vectors of CHK1-ligand complexes.

PLSR test train
X R2 RMSE R2 RMSE

Random-1 0.9363 0.3260 0.5280 0.5850
Random-2 0.9218 0.3206 0.5808 0.5850
Random-3 0.9169 0.3760 0.5402 0.5810
Average 0.5163 0.6868 0.6894 0.5252

PLSR test train
Y R2 RMSE R2 RMSE

Random-1 0.9707 0.1842 0.7861 0.4228
Random-2 0.9636 0.2595 0.7210 0.4179
Random-3 0.9607 0.2302 0.7781 0.4198
Average 0.6373 0.5535 0.8388 0.3773

PLSR test train
Z R2 RMSE R2 RMSE

Random-1 0.9805 0.1717 0.8542 0.3150
Random-2 0.9669 0.1755 0.8906 0.3129
Random-3 0.9563 0.3077 0.8313 0.3136
Average 0.7141 0.5388 0.9129 0.2776

the Z-images varies with different coordinates and angles of a 3D grid map for the
same or different protein-ligand complexes, in this particular CHK1-ligand complex
systems they are called the Z-images.

It appears that the PLSR determination of random subsampling set selection, which
gave the lowest average RMSE, 0.5388 for test sets and 0.2776 for training sets, for
the Z-feature vectors in Table 5.5, should be preferred to the SVR determination of
random subsampling set selection, which led to an average RMSE of 0.6514 for testing
and 0.3848 for training with Z-feature vectors in Table 5.3, and also ANFIS determi-
nation of random subsampling set selection, which led to an average RMSE of 1.2035
for testing and 0.2008 for training with Z-feature vectors in Table 5.1. In addition, it
should be noted that PLSR implementation is faster than SVR implementation which
requires an exhausting process of parameter optimization, and than ANFIS implemen-
tation which requires neural network training. As a result, the utilization of PLSR
for the Z-feature vectors should be the best choice of methodology for reliability on
learning and prediction in the development of more potent novel CHK1 inhibitors (the
thienopyridine analogs) by CIFAP.
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5.2 Caspase 3 and its inhibitors

Apoptosis is the mechanism of the cell death which has a major role in many biological
processes like growth, demolition of unhealthy cells, and immune system activities[62].
Caspases play important role in regulating apoptosis [63]. Caspase activity is related
with a number of diseases, including neurodegenerative diseases, stroke, cardiomy-
opathy, ischemia and cancers [63, 2, 64]. For instance, Caspase3 becomes active in
Alzheimer’s disease and affects apoptosis of neurons [63]. Controlling cell death by
inhibiting caspases is thought to be very helpful in the therapy of above diseases [64].
Recent studies have claimed that isatin sulfonamide analogues could be promising
inhibitors of Caspase3 in medical therapy [65, 66, 67].

5.2.1 Chemical Structures

35 Caspase 3 (CASP3) inhibitors derived from isatine sulfonamide pharmacophore
were collected from Wang et. al. [2] who, in fact, studied on 59 isatine sulfonamide
analogues. 14 cyano compounds [68] were eliminated immediately since it is reported
by Hasegawa et. al. [69] that cyano compounds interact with CASP3 through a
different biological mechanism. The chemical structures and calculated pIC50 values
which change within limits from 5.84 to 8.44 were listed in the Figures 5.13 and 5.14,
adopted from the study of Hasegawa et. al [69].

5.2.2 Data Modelling Phase

The reference ligand in this series of experiments was compound 1 which was at the
top of the list in Figure 5.13. 3D X-Ray structure of CASP3-compound 1 complex,
PDB ID: 1GFW [2], was used for modelling 35 inhibitors according to the best pose
and the minimum energy level obtained from docking process. The coordinates of
the docked compounds and associated experimental binding affinities were utilized
in the modelling and prediction experiments. For each complex, 2D images with
37 × 37 pixels were acquired by compressing 3D electrostatic potential grid cubes
with center coordinates (39,36,27) and size by 37 × 37 × 37 through the summation
of electrostatic potential values at grid points in orthogonal (X, Y and Z) directions.
Figure 5.15 demonstrates the views of the grid cube of docked CASP3-compound 1
complex through the X-, Y-, and Z-axis from left to right at the top of the figure, and
the related 2D images below each view.

The feature selection using SFS and SFFS algorithms took place before the prediction
phase in order to eliminate redundant features and to find out the most informative
features. For this purpose, X-, Y-, and Z-images were converted into feature vectors
as explained in the feature selection subsection under the data modelling section. The
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Figure 5.13: Chemical structures and binding affinities of Caspase3 inhibitors
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Figure 5.14: Chemical structures and binding affinities of Caspase3 inhibitors (contin-
ued)
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Figure 5.15: An exemplary illustration of the 3D electrostatic potential (EP) grid for
the Caspase3-compound 1 complex and the corresponding compressed 2D images. A
view of the EP grid through (a) the X-axis (top) and the corresponding compressed X-
image (bottom), (b) Y-axis (top) and the corresponding compressed Y-image (bottom),
and (c) Z-axis (top) and the corresponding compressed X-image (bottom). The color
scales for the compressed images are shown on the right side.
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Figure 5.16: Two dimensional X-, Y- and Z-pattern images of CASP3-ligand complexes
obtained by Sequential Forward Selection, SFS.
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Figure 5.17: Two dimensional X-, Y- and Z-pattern images of CASP3-ligand complexes
obtained by Sequential Floating Forward Selection, SFFS.
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best RMSE values yielded by SFS computations were 0.1025 for leave-one-out cross-
validation of the X-images, 0.1797 for leave-one-out cross-validation of Y-images, and
0.1442 for leave-one-out cross-validation of Z-images. The patterns obtained by SFS
were then transformed into 2D pattern images for visualization, as in Figure 5.16. The
black pixels represent the informative features which were found to be informative
for predicting pIC50 values. SFS algorithm found out that 19 features of X-images, 9
features of Y-images, and 13 features of Z-images were valuable to be used in regression
analysis. SFFS implementation slightly improved RMSE values which were found to
be 0.0964 for leave-one-out cross-validation of the X-images, 0.1797 for leave-one-out
cross-validation of Y-images, and 0.1421 for leave-one-out cross-validation of Z-images.
Figure 5.17 demonstrates the features selected by SFFS algorithm which resulted in
17 features for X-images, 9 features for Y-images, and 13 features for Z-images.

When Figures 5.16 and 5.17 are compared, it is observed that two more redundant
features were eliminated from X-images, the number and the location of the features
belonging to Y-images did not change at all, and a redundant feature was replaced by
an informative feature of Z-images. Unlike the results achieved from data modelling
experiments on CHK1 and its inhibitors, X-images of isatine sulfonamide analogues
in complex with CASP3 gave rise to the lowest RMSE values because the grid cube
along the X-direction probably revealed a better appearance of the ligand into the
binding site of CASP3 than the grid cube along the Y- and Z-directions. Once more,
the meaningful features were located away from the center, except a few patterns in
the X-pattern image (Figure 5.17a), determining the contact area of the ligand and
the protein which were compound 1 and CASP3 in this case.

5.2.3 Prediction Phase

The binding affinities (pIC50) of CASP3-ligand complexes were predicted by ANFIS,
SVR, and PLSR using the X-feature, Y-feature, and Z-feature vectors obtained by
SFFS algorithm. Three scatter plots in Figure 5.18 show the correlation between
the experimental and predicted affinity when ANFIS was applied with leave-one-out
cross-validation which utilized 35 distinct test sets for each of the X-feature, Y-feature,
and Z-feature vectors of CASP3-ligand complexes. X-scatter plot in Figure 5.18a and
Y-scatter plot in 5.18b achieve better correlation than that of Z-scatter plot in 5.18c
which has data distributed away from the y = x line, the so-called identity line.
Moreover, the RMSE values obtained by ANFIS determination of leave-one-out cross-
validation, which are 0.5299 for X-feature vectors, 0.7992 for Y-feature vectors, and
2.7216 for Z-feature vectors, denote that ANFIS failed to predict the binding affinities
of CASP3-ligand complexes by using the feature vectors obtained from Z-images.

ANFIS was also implemented using the random subsampling set selection method
which generates 1000 random training sets of 28 feature vectors, and test sets of 7
feature vectors by mixing up 35 X-feature, Y-feature, and Z-feature vectors of the
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Figure 5.18: Affinity correlation plots constructed upon ANFIS determination of leave-
one-out cross validation. The plots show ANFIS correlations between the observed (x-
axis) and predicted (y-axis) binding affinities (pIC50), determined using 35 different
testing sets selected from the X-feature (a), Y-feature (b), and Z-feature (c) vectors of
the CASP3-ligand complexes.
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Table5.6: R2 and RMSE values for an average and the best 3 ANFIS determination
of random subsampling set selection method out of 1000 random training/test sets for
the X-feature, Y-feature and Z-feature vectors of CASP3-ligand complexes.

ANFIS test train
X R2 RMSE R2 RMSE

Random-1 0.9552 0.1177 0.9255 0.1829
Random-2 0.9494 0.1229 0.9033 0.2044
Random-3 0.9462 0.1468 0.8958 0.2087
Average 0.4806 0.5360 0.9177 0.2010

ANFIS test train
Y R2 RMSE R2 RMSE

Random-1 0.9389 0.1283 0.9287 0.1810
Random-2 0.8915 0.1880 0.9327 0.1728
Random-3 0.8750 0.2188 0.9330 0.1686
Average 0.3344 0.9569 0.9508 0.1655

ANFIS test train
Z R2 RMSE R2 RMSE

Random-1 0.7711 0.2877 0.9836 0.0824
Random-2 0.7538 0.3734 0.9870 0.0701
Random-3 0.6680 0.4235 0.9809 0.0863
Average 0.1969 2.2922 0.9842 0.0792

CASP3-ligand complexes without repetition. Table 5.6 shows the best three and aver-
age RMSE and R2 values of ANFIS determination of random subsampling set selection
on X-feature, Y-feature, and Z-feature vectors. As indicated in Table 5.6, X-feature
vectors provided the lowest errors and the highest correlations between observed and
predicted binding affinities compared to Y-feature and Z-feature vectors when the av-
erage of the results are considered. However, the results are found to be similar in
the best training and test sets (Random-1 in Table 5.6) yielding the best RMSE and
R2 values when the scatter plots in Figures 5.19a-5.19c of the best training and test
sets of X-feature, Y-feature, and Z-feature vectors are investigated. It is also observed
that Z-feature vectors produce the best training errors although the test errors of Z-
feature vectors are higher than that of X-feature and Y-feature vectors, which indicates
an overfitting for ANFIS determination of random subsampling set selection using Z-
feature vectors. Furthermore, even the highest R2 of 0.4806 obtained by averaging
the results of X-feature vectors does not satisfy the condition R2 > 0.6 for ANFIS
determination of random subsampling set selection which indicates that ANFIS is not
a proper regression algorithm for CIFAP.

In order to predict binding affinities of the CASP3-ligand complexes, SVR with RBF-
kernel was applied to X-feature, Y-feature, and Z-feature vectors produced in data
modelling phase. Before the prediction of binding affinities, SVR parameters C, the
trade-off value between error tolerance and model complexity, ε, the radius of the

56



0 2 4 6 8 10
0

2

4

6

8

10

observed
pr

ed
ic

te
d

ANFIS RAND FOR X−VECTORS

 

 

train
test

(a)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

ANFIS RAND FOR Y−VECTORS

 

 

train
test

(b)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

ANFIS RAND FOR Z−VECTORS

 

 

train
test

(c)

Figure 5.19: Affinity correlation plots constructed by ANFIS determination of random
subsampling set selection. The plots show ANFIS correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (random-1 in Table 5.6) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 35 CASP3-ligand complexes, 7 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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Table5.7: Optimal values of the SVR parameters C, ε, and γ for CASP3-ligand com-
plexes.

C γ ε

X-image 100 0.0080 0.0063
Y-image 100 0.0032 0.0611
Z-image 100 0.0143 0.0249

ε-tube, and γ, the width of the RBF-kernel, were optimized by a grid search using
leave-one-out cross-validation. The optimal C, ε, and γ values for the X-feature ,Y-
feature, and Z-feature vectors which provided the lowest RMSE and the highest R2

values are listed in Table 5.7. Unlike the high C parameter of CHK1-ligand complexes
in the previous subsection, the optimal C parameter for CASP3-ligand complexes is
found to be 100 which is more preferable because a low value for C parameter causes
the predictive model to be smooth and general.

SVR with RBF-kernel was implemented for predicting the binding affinities (pIC50) of
35 CASP3 inhibitors, using leave-one-out cross-validation and the tuned C, ε, and γ

values listed in Table 5.7. The correlations between the observed (x-axis) and predicted
(y-axis) binding affinities were plotted in Figure 5.20a for the X-feature vectors, Figure
5.20b for the Y-feature vectors, and Figure 5.20c for the Z-feature vectors of CASP3-
ligand complexes. It is observed that feature vectors in all directions resulted in good
correlations, however, X-feature and Z-feature vectors lead to better correlations than
that of Y-feature vectors with a small margin as seen in Figure 5.20. All three SVR
models are capable of explaining at least 87% of the variability in the data. In addition,
the R2 of 0.9476 obtained for the X-feature vectors, 0.8791 obtained for the Y-feature
vectors, and 0.9213 obtained for the Z-feature vectors verify that all three SVR models
are predictive considering the first Tropsha criterion which is explained in the statistical
analysis subsection of the prediction methods section.

The tuned C, ε and γ values given in Table 5.7 were also utilized by the SVR determi-
nation of random subsampling set selection which shuffles the 35 X-feature, Y-feature,
and Z-feature vectors 1000 times and reserves 7 feature vectors for the test set and 28
feature vectors for training set. The best three (Random-1, Random-2 and Random-3)
and average results in terms of RMSE and R2 values were presented in Table 5.8 for
the X-feature, Y-feature and Z-feature vectors of CASP3-ligand complexes. According
to the results in Table 5.8, the X-feature vectors yield the minimum error between the
observed and predicted binding affinities with an average RMSE of 0.1966 determined
out of 1000 test sets and an RMSE of 0.0478 for the best test set (Random-1). In
addition to the RMSE values, the average R2 values for the test sets of X-feature,
Y-feature, and Z-feature vectors are higher than 0.8, satisfying the second criterion
of Tropsha. Unlike the ANFIS determination of random subsampling set selection
method, the results of SVR models indicate that Z-feature vectors also provide valu-
able information to be used in the prediction of binding affinities. The scatter plots

58



2 4 6 8 10

2

4

6

8

10

observed
pr

ed
ic

te
d

SVR LOO FOR X−VECTORS

(a)

2 4 6 8 10

2

4

6

8

10

observed

pr
ed

ic
te

d

SVR LOO FOR Y−VECTORS

(b)

2 4 6 8 10

2

4

6

8

10

observed

pr
ed

ic
te

d

SVR LOO FOR Z−VECTORS

(c)

Figure 5.20: Affinity correlation plots constructed upon SVR determination of leave-
one-out cross validation. The plots show SVR correlations between the observed (x-
axis) and predicted (y-axis) binding affinities (pIC50), determined using the optimal
C, ε and γ values given in Table 5.7 and 35 different testing sets (each including only
one feature vector) selected from the X-feature (a), Y-feature (b), and Z-feature (c)
vectors of the CASP3-ligand complexes.
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Table5.8: R2 and RMSE values for an average and the best three SVR determination
of random subsampling set selection out of 1000 random training/test sets for the
X-feature, Y-feature and Z-feature vectors of CASP3-ligand complexes.

SVR test train
X R2 RMSE R2 RMSE

Random-1 0.9967 0.0478 0.9914 0.0548
Random-2 0.9967 0.0508 0.9915 0.0530
Random-3 0.9964 0.0485 0.9913 0.0562
Average 0.8891 0.1966 0.9940 0.0478

SVR test train
Y R2 RMSE R2 RMSE

Random-1 0.9879 0.0807 0.9202 0.1770
Random-2 0.9860 0.0829 0.9209 0.1789
Random-3 0.9876 0.0925 0.9048 0.1838
Average 0.8210 0.2578 0.9395 0.1557

SVR test train
Z R2 RMSE R2 RMSE

Random-1 0.9856 0.0739 0.9756 0.10274
Random-2 0.9804 0.1211 0.9679 0.10432
Random-3 0.9733 0.1365 0.9688 0.10451
Average 0.8497 0.2418 0.9793 0.0900

in Figures 5.21a-5.21c for the best test sets (Random-1) of X-feature, Y-feature, and
Z-feature vectors give the correlation of the observed binding affinities versus the pre-
dicted binding affinities. The affinity correlation profile belonging to the X-feature
vectors of 35 CASP3-ligand complexes in Figure 5.21c also verifies the results listed in
Table 5.8.

The final method of regression analysis is Partial Least Squares Regression (PLSR),
which was applied to predict the binding affinities of the CASP3 inhibitors using the
X-feature, Y-feature, and Z-feature vectors produced by SFFS method. Figure 5.22
shows the correlation between the x-axis (observed) and y-axis (predicted) binding
affinities acquired by the PLSR determination of the leave-one-out cross-validation,
using 35 different sets of test vectors chosen from the X-feature, Y-feature, and Z-
feature vectors of the CASP3-ligand complexes. The X-feature vectors ending in an
RMSE of 0.1097 and an R2 of 0.9717 are discovered more informative than Y-feature
vectors having an RMSE of 0.2576 and an R2 of 0.8429, and Z-feature vectors RMSE
of 0.1562 and an R2 of 0.9422.

All three regression models mentioned earlier in this chapter agree that X-feature vec-
tors of CASP3 inhibitors are more valuable considering the information they provide.
Table 5.9 shows the observed binding affinities (pIC50) of 35 CASP3 inhibitors pub-
lished by Wang et al.[2] and the predicted binding affinities obtained by PLSR, SVR,

60



0 2 4 6 8 10
0

2

4

6

8

10

observed
pr

ed
ic

te
d

SVR RAND FOR X−VECTORS

 

 

train
test

(a)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

SVR RAND FOR Y−VECTORS

 

 

train
test

(b)

0 2 4 6 8 10
0

2

4

6

8

10

observed

pr
ed

ic
te

d

SVR RAND FOR Z−VECTORS

 

 

train
test

(c)

Figure 5.21: Affinity correlation plots constructed by SVR determination of random
subsampling set selection. The plots show SVR correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (Random-1 in Table 5.8) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 35 CASP3-ligand complexes, 7 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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Figure 5.22: Affinity correlation plots constructed upon PLSR determination of leave-
one-out cross validation. The plots show PLSR correlations between the observed (x-
axis) and predicted (y-axis) binding affinities (pIC50), determined using 35 different
testing sets (each including only one feature vector) selected from the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of the CASP3-ligand complexes.
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Table5.9: RMSE comparison between observed binding affinities (pIC50) for 35 CASP3
inhibitors, published by Wang et. al. [2], and the corresponding binding affinities
(pIC50) predicted by the PLSR, SVR, and ANFIS determination of leave-one-out cross
validation for the X-feature vectors of the testing data sets.

No. pIC50 PLS SVR ANFIS No. pIC50 PLS SVR ANFIS
1 6.92 6.7321 6.7343 6.8130 19 8.08 8.2158 8.1158 8.4373
2 6.62 6.8182 6.8415 6.7979 20 8.41 8.3566 8.3876 7.8571
3 7.91 7.8197 7.8416 7.9236 21 8.44 8.3868 8.3458 8.2555
4 7.84 7.8378 7.7962 8.1298 22 7.69 7.7639 7.6676 6.7577
5 7.92 8.0773 8.0937 7.8266 23 6.54 6.4630 6.6568 6.9685
6 7.91 7.8444 7.9712 8.0251 24 7.04 6.9840 7.0516 6.6491
7 7.92 7.8539 7.7916 6.5414 25 8.01 7.9913 8.0443 7.7015
8 7.87 7.8612 7.9271 7.8615 26 8.08 8.1287 8.0406 7.8752
9 8.01 7.9563 7.9009 8.0539 27 7.95 7.9886 7.9694 7.8291
10 7.99 8.0808 8.0790 8.1730 28 8.06 8.0264 8.0028 6.9894
11 7.67 7.6068 7.5624 7.4812 29 8.03 7.9798 7.6096 6.9992
12 8.04 8.1252 7.9809 7.7134 30 7.96 7.8192 7.8758 8.4012
13 8.01 8.1930 7.9631 7.7549 31 7.53 7.6330 7.7175 7.8267
14 7.23 7.4823 7.5135 7.5139 32 8.24 8.2430 8.1979 7.9824
15 7.63 7.4434 7.4080 7.1605 33 5.84 5.7997 5.9116 6.8290
16 8.28 8.2919 8.3048 8.1005 34 5.99 6.2235 6.4212 7.2851
17 8.41 8.3718 8.3344 8.0606 35 6.94 6.9903 6.9621 6.9803
18 8.36 8.4774 8.4788 8.5570 RMSE 0.1097 0.1488 0.5299

and ANFIS determination of leave-one-out cross validation, which used the X-feature
vectors. It is clearly seen that the predictions of PLSR determination of leave-one-out
cross validation were closer to the actual binding affinities by an RMSE of 0.1097 as
compared to both the SVR and ANFIS determination of leave-one-out cross validation,
which resulted in RMSE values of 0.1488 and 0.5299, respectively. PLSR determina-
tion of the leave-one-out cross-validation using Z-feature vectors also provided the
highest correlation with R2 = 0.9717 among the other two regression models, SVR
and ANFIS.

Besides the leave-one-out cross-validation implementation, PLSR was implemented by
using the random subsampling set selection method by randomly selecting 28 vectors
of CASP3-ligand complexes for training and 7 vectors of CASP3-ligand complexes for
testing without repetition. The R2 and RMSE values for the best three SVR results
(Random-1, Random-2 and Random-3) and average RMSE and R2 values out of 1000
randomly selected training and test data sets related to the X-feature, Y-feature and Z-
feature vectors are listed in Table 5.10. When compared to results of SVR and ANFIS
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Table5.10: R2 and RMSE values for an average and the best three PLSR determination
of random subsampling set selection out of 1000 random training/test sets for the X-
feature, Y-feature and Z-feature vectors of CASP3-ligand complexes.

PLSR test train
X R2 RMSE R2 RMSE

Random-1 0.9966 0.0877 0.9938 0.0552
Random-2 0.9962 0.1092 0.9947 0.0502
Random-3 0.9954 0.0772 0.9927 0.0581
Average 0.9041 0.1623 0.9937 0.0503

PLSR test train
Y R2 RMSE R2 RMSE

Random-1 0.9924 0.1160 0.8991 0.1573
Random-2 0.9901 0.1273 0.9282 0.1590
Random-3 0.9887 0.1109 0.9026 0.1592
Average 0.8235 0.2558 0.9527 0.1378

PLSR test train
Z R2 RMSE R2 RMSE

Random-1 0.9963 0.0910 0.9548 0.1206
Random-2 0.9962 0.0888 0.9667 0.1208
Random-3 0.9950 0.0862 0.9518 0.1188
Average 0.8913 0.1842 0.9741 0.1021

determination of random subsampling set selection, PLSR determination of random
subsampling set selection reveals that the X-feature vectors produce more predictive
model with an average RMSE of 0.1613 determined out of 1000 test sets and an RMSE
of 0.0877 for the best test set (Random-1). Figures 5.23a-5.23c for the X-feature, Y-
feature and Z-feature vectors show the correlation between the observed and predicted
biding affinities of the Random-1 training and test sets in Table 5.10. X-feature vectors
allows a better description of the variability in the model regarding a lower average
RMSE of 0.1613 and a higher average R2 of 0.9041 even though the test/training sets
chosen from the Z-feature vectors also resulted in a low average RMSE of 0.1842 and
a high average R2 of 0.8913.

The analysis of all the regression and set selection methods implemented on the 35
CASP3-ligand complexes inform that the X-feature vectors produced from the X-
images revealed more reliable and correlative information to address the learning and
prediction abilities of CIFAP. As a result, the Z-images is a better choice for forecast-
ing binding affinities of recently developed isatine sulfonamide derivatives in order to
inhibit CASP3 protein. Although the coordinate system and the angular view may
vary from one system to another system, the X-images are accepted as the source of
information for CIFAP algorithm regarding the CASP3-ligand complexes.

It seems that both PLSR and SVR methods that produce lower RMSE and higher
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Figure 5.23: Affinity correlation plots constructed by PLSR determination of random
subsampling set selection. The plots show PLSR correlations between the observed
(x-axis) and predicted (y-axis) binding affinities (pIC50), determined using the best
randomly selected training/test sets (Random-1 in Table 5.8) for the X-feature (a),
Y-feature (b), and Z-feature (c) vectors of 35 CASP3-ligand complexes, 7 of which
were used for testing (red dots) and the rest were used for training (blue circles).
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R2 for the X-feature vectors are preferable to ANFIS method which did not produce
reliable predictions for any of the X-feature, Y-feature, and Z-feature vectors. All the
models generated by PLSR and SVR methods are found to be predictive since they
satisfy the two criteria of Tropsha [52, 53] which are R2

LOO > 0.5 for the leave-one-out
cross-validation and an average R2 > 0.6 for random subsampling set selection. Besides
the better results of PLSR, the fast implementation of PLSR approves the fact that the
utilization of PLSR for the X-feature vectors is superior to SVR and ANFIS methods,
to be chosen for predicting the binding affinities of CASP3 inhibitors by CIFAP method
and for developing novel ligands based on isatine sulfonamide pharmacophore.
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CHAPTER 6

DISCUSSION AND CONCLUSION

A novel data representation method, CIFAP, is proposed in this study to predict the
binding affinities of protein-ligand complexes whose ligands share a common pharma-
cophore with the published empirical IC50 or pIC50 values. The application of the
CIFAP algorithm follows two phases: the data modelling phase and the prediction
phase. The first phase, the data modelling phase, of CIFAP involves the compres-
sion of 3D electrostatic cubic grid maps of the binding site of the selected protein,
in complex with docked coordinates of its inhibitors into 2D images in orthogonal X,
Y and Z directions. 2D images of the binding site of the protein-ligand complexes
step through the feature selection process implemented by Sequential Forward Selec-
tion (SFS) and Sequential Floating Forward Selection (SFFS) algorithms in order to
eliminate the redundancies in the images and to obtain informative feature vectors.
The second phase, the prediction phase, forecasts the binding affinities, pIC50, of the
protein-inhibitor complexes by application of promising statistical machine learning
methods, Partial Least Squares Regression (PLSR) [38], Support Vector Regression
(SVR) [44] and Adaptive Neuro-Fuzzy Inference System (ANFIS) [50], on filtered 2D-
images in training and test data sets. Training and test data sets were selected by the
leave-one-out cross validation[43] and repeated random sub sampling[43] methods.

CIFAP was applied to two distinct protein-ligand complex systems for evaluation. The
first system included the Checkpoint kinase 1 (CHK1), which is a primary target in
the cancer therapy, and its 57 inhibitors based on thienopyridine derivatives, whose
chemical structures and binding affinities (IC50) were published by Zhao et. al.[1]. In
a general sense, it was observed that 2D data points compressed through the surface
boundaries of docked ligands seem to possess more informative values in correlation
with empirical pIC50 values. It is observed that SFFS method is superior over SFS
method for feature selection of CIFAP because of the improved RMSE and R2 values
obtained from X-pattern, Y-pattern, and Z-pattern images and the capability of SFFS
to remove previously selected features which are found to be redundant or insignificant
later on. Furthermore, Z-feature vectors obtained from the Z-images gave rise to
more plausible data points to correlate with the empirical pIC50 values of the CHK1
inhibitors. The accumulation of the most useful information in the Z-direction is
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thought to reflect the ligand surface boundaries that interact with the binding site of
CHK1, see Figure 5.4.

Application of the CIFAP method on 57 CHK1-ligand complexes revealed that the
PLSR determination of leave-one-out cross-validation provided the best results, an
RMSE of 0.4109 and an R2 of 0.8133, while its competitors SVR yielded an RMSE of
0.5940 and an R2 of 0.6098, and ANFIS yielded an RMSE of 1.0868 and an R2 of 0.1705
by applying leave-one-out cross-validation for the Z-feature vectors of CHK1-ligand
complexes. Moreover, the PLSR implementation of random subsampling set selection
yielded the best prediction profile with the lowest average RMSE values, 0.5388 for
testing and 0.2776 for training, and the greatest R2 values, 0.7141 for testing and
0.9129 for training, for the Z-feature vectors. These findings strongly suggest that the
PLSR method should be preferentially chosen to enrich the library of the thenopyridine
derivatives and thus develop more potent novel CHK1 inhibitors.

The second system analysed by CIFAP method contained Caspase 3 (CASP3), which
plays a role in apoptosis of neurons, and its 35 inhibitors based on isatin sulfonamide
analogue, whose chemical structures were published by Wang et. al. [2] and related
pIC50 values were published by Hasegawa et. al. [69]. In the case of CASP3-ligand
complexes, X-images obtained by compressing 3D electrostatic grid map through X-
direction achieved better correlations with binding affinities as compared to Y-images
and Z-images. Moreover, the X-feature vectors produced from X-images using SFFS
method express that the margins of the interaction site provide significant information
related to binding affinities as can be seen in Figure 5.17.

Once more, the PLSR determination of leave-one-out cross-validation was discovered
as the most successful prediction method because of the lowest RMSE of 0.1097 and
the highest R2 of 0.9717 for X-feature vectors of CASP3-ligand complexes. On the
other hand, ANFIS determination of leave-one-out cross-validation yielded the worst
results, an RMSE of 0.3347 and an R2 of 0.5299, while the SVR determination of leave-
one-out cross-validation could be acknowledged as a promising method besides PLSR
for X-feature vectors of CASP3-ligand complexes with an RMSE of 0.1488 and an R2

of 0.94756. In addition to leave-one-out cross validation, the PLSR implementation
of random subsampling set selection achieved the best correlations with the lowest
average RMSE values, 0.1623 for testing and 0.0503 for training, and the highest R2

values, 0.9041 for testing and 0.9937 for training, for the X-feature vectors.

The choice of the prediction algorithms of CIFAP was made for representing three
different regression paradigms which are linear (PLSR), non-linear (SVR with RBF
kernel), and neuro-fuzzy (ANFIS). The results obtained so far indicate that the re-
lationship between the proposed data model and the binding affinities is more likely
linear since the best predictions were generated by PLSR method. ANFIS, which is a
rule based system using fuzzy relations and neural networks, is found to be complicated
for explaining the relation between the compressed binding site images and the binding
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affinities. Meanwhile, SVR is also a successful predictor although it was outperformed
by PLSR. It should be noted here that the CIFAP method has not been yet tested on
a variety of receptor-ligand systems other than the 57 CHK1-ligand complexes and the
35 CASP3-ligand complexes. Therefore, it is currently unwise to generalize the effect
of the CIFAP method on all receptor-ligand systems. As far as other receptor-ligand
systems are concerned, it would perhaps be more useful to apply other linear and
non-linear regression methods in the literature beside the methods described in this
dissertation to determine which method would yield optimal RMSE and R2 values.

Another point to raise here is that a pharmacophore-based docking algorithm was
applied to dock CHK1 and CASP3 inhibitors into the binding site of the mentioned
proteins, assuming that the thienopyridine/isatine sulfonamide phamacophore of all
ligands possess binding coordinates very similar to that of the X-ray coordinates of
a thienopyridine/isatine sulfonamide derivative, which is compound 70 (PDB ID:
3PA3)[1] in complex with CHK1 and compound 1 (PDB ID: 1GFW)[2] in complex
with CASP3. As a matter of fact, the absence of X-ray crystallographic coordinates
for the other bound CHK1/CASP3 inhibitors disables us to make a comparison be-
tween docked and empirical coordinates. It is therefore not known yet to what extent
the RMSE values will differ when different bound conformations of the CHK1/CASP3
inhibitors are likely. Nevertheless, the docked coordinates of the bound CHK1/CASP3
inhibitors studied here gave rise to the best predicted values in correlation with em-
pirical pIC50 values. As far as the development of novel CHK1 inhibitors is concerned,
one would make certain that a new substituent added to the thienopyridine/isatine
sulfonamide pharmacophore should not substantially change the bound conformation
of the pharmacophore in order for the CIFAP algoritm not to fail or to yield a false
positive or false negative result. It is therefore strongly suggested that a library of
compounds with a certain pharmacophore of interest be enriched as much as possible
and that the docked coordinates of the novel compounds be compared to experimental
bound coordinates when possible in order for CIFAP to be used more reliably in novel
drug development.

To conclude, the affinity between a protein and the corresponding ligand is an im-
portant attribute for determining the success of interaction. It is difficult to calculate
the binding affinity because the computations involve the calculation binding free
energy which is a very small quantity. Moreover, docking programs perform calcu-
lations assuming the medium is air, which is in fact, water. Analyzing 3D structure
of protein-ligand complexes in combination with electrical properties of the complex
may be helpful for the predicting of the activity of novel compounds. In this thesis, a
novel data model was presented which uses both 3D structure and electrical properties
of protein-ligand interactions. The results of binding affinity prediction which uses
the proposed data model were found to be more useful than the docking programs
which provide only the best conformation of the ligands with minimum energy rather
than the actual binding affinity. As a future work, the data model can be improved
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by using other important electrical properties such as hydrophobicity. Moreover, it
would be beneficial to obtain the images from a different angle of view by rotating the
protein-ligand complexes.
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