
BATCH MODE REINFORCEMENT LEARNING FOR CONTROLLING GENE
REGULATORY NETWORKS AND MULTI-MODEL GENE EXPRESSION DATA

ENRICHMENT FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

UTKU ��R�N

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2013

Approval of the thesis:

BATCH MODE REINFORCEMENT LEARNING FOR CONTROLLING
GENE REGULATORY NETWORKS AND MULTI-MODEL GENE

EXPRESSION DATA ENRICHMENT FRAMEWORK

submitted by UTKU ��R�N in partial ful�llment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Volkan Atalay
Computer Engineering Department, METU

Prof. Dr. Faruk Polat
Computer Engineering Department, METU

Assoc. Prof. Dr. Tolga Can
Computer Engineering Department, METU

Assist. Prof. Dr. Öznur Ta³tan
Computer Engineering Department, Bilkent University

Assist. Prof. Dr. Mehmet Tan
Computer Engineering Department, TOBB ETÜ

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: UTKU ��R�N

Signature :

iv

ABSTRACT

BATCH MODE REINFORCEMENT LEARNING FOR CONTROLLING GENE
REGULATORY NETWORKS AND MULTI-MODEL GENE EXPRESSION DATA

ENRICHMENT FRAMEWORK

��R�N, UTKU

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

July 2013, 132 pages

Over the last decade, modeling and controlling gene regulation has received much
attention. In this thesis, we have attempted to solve (i) controlling gene regulation
systems and (ii) generating high quality arti�cial gene expression data problems. For
controlling gene regulation systems, we have proposed three control solutions based
on Batch Mode Reinforcement Learning (Batch RL) techniques. We have proposed
one control solution for fully, and two control solutions for partially observable gene
regulation systems. For controlling fully observable gene regulation systems, we have
proposed a method producing approximate control policies directly from gene expres-
sion data without making use of any computational model. Results show that our
proposed method is able to produce approximate control policies for gene regulation
systems of several thousands of genes just in seconds without loosing signi�cant perfor-
mance; whereas existing studies get stuck even for several tens of genes. For controlling
partially observable gene regulation systems, �rstly, we have proposed a novel Batch
RL framework for partially observable environments, Batch Mode TD(λ). Its idea
is to produce approximate stochastic control policies mapping observations directly
to actions probabilistically without estimating actual internal states of the regulation
system. Results show that Batch Mode TD(λ) is able to produce successful stochastic
policies for regulation systems of several thousands of genes in seconds; whereas ex-
isting studies cannot produce control solution for regulation systems of several tens of
genes. To our best knowledge, Batch Mode TD(λ) is the �rst framework for solving
non-Markovian decision tasks with limited number of experience tuples. For control-
ling partially observable gene regulation systems, secondly, we have proposed a method

v

to construct a Partially Observable Markov Decision Process (POMDP) directly from
gene expression data. Our novel POMDP construction method calculates approximate
observation-action values for each possible observation, and applies hidden state iden-
ti�cation techniques to those approximate values for building the ultimate POMDP.
Results show that our constructed POMDPs perform better than existing solutions
in terms of both time requirements and solution quality. For generating high quality
arti�cial gene expression data, we have proposed a novel multi-model gene expression
data enrichment framework. We have combined four gene expression data generation
models into one uni�ed framework, and tried to bene�t all of them concurrently. We
have sampled from each generative models separately, pooled the generated samples,
and output the best ones based on a multi-objective selection mechanism. Results show
that our proposed multi-model gene expression data generation framework is able to
produce high quality arti�cial samples from which inferred regulatory networks are
better than the regulatory networks inferred from original datasets.

Keywords: Gene Regulatory Networks, Reinforcement Learning, Markov Decision Pro-
cess, Partially Observable Markov Decision Process, POMDP Learning, TD(λ) algo-
rithm, Control of GRN, Gene Expression Data, Data Enrichment

vi

ÖZ

GEN A�LARININ KISM� GÖZLEMLENEB�L�R MARKOV SÜREÇLER� �LE
MODELLENEREK ETK�N OLARAK KONTROLÜ

��R�N, UTKU

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Temmuz 2013 , 132 sayfa

Gen düzenleme sistemlerinin modellemesi ve kontrolü son on y�lda çok dikkat çekmi³-
tir. Bu tezde, (i) gen düzenleme sistemlerini kontrol etme ve (ii) yüksek kaliteli yapay
gen ifade verisi üretme problemleri çözülmeye çal�³�lm�³t�r. Gen düzenleme sistemlerini
kontrol etmek için, Y�§�n Modunda Peki³tirmeli Ö§renme (Batch RL) tekniklerine da-
yanan, üç kontrol çözümü önerilmi³tir. Tam gözlemlenebilir gen düzenleme sistemleri
için bir, k�smi gözlemlenebilir gen düzenleme sistemleri için iki kontrol çözümü öne-
rilmi³tir. Tam gözlemlenebilir düzenleme sistemlerinin kontrolü için, hiçbir berimsel
yöntem kullanmadan, direkt olarak gen ifade verisinden yakla³�k kontrol politikalar�
üreten bir yöntem önerilmi³tir. Sonuçlar gösteriyor ki, mevcut çal�³malar birkaç on gen-
lik sistemler için çözüm üretemezken, bizim önerdi§imiz yöntem, sadece birkaç saniye
içinde, kayda de§er bir performans kayb� olmadan, binlerce genlik düzenleme sistemleri
için yakla³�k kontrol politikalar� üretebilmektedir. K�smi gözlemlenebilir düzenleme sis-
temlerinin kontrolü için, ilk olarak, k�smi gözlemlenebilir ortamlar için yeni bir Batch
RL tasla§�, Y�§�n Modunda TD(λ), önerilmi³tir. Temel �kir, gen düzenleme sisteminin
gerçek iç dinamiklerini hesaplamadan, gözlemleri direkt olarak aksiyonlara olas�l�ksal
olarak e³leyen yakla³�k kontrol politikalar� üretmektir. Sonuçlar gösteriyor ki, mevcut
çal�³malar birkaç on genlik sistemler için çözüm üretemezken, Y�§�n Modunda TD(λ),
saniyeler içinde, binlerce genlik düzenleme sistemleri için ba³ar�l� olas�l�ksal kontrol
politikalar� üretebilmektedir. Bildi§imiz kadar� ile, Y�§�n Modunda TD(λ), k�s�tl� de-
neyim bilgisi ile Markov özelli§i göstermeyen karar problemlerini çözmek için önerilen
ilk taslakt�r. K�smi gözlemlenebilir düzenleme sistemlerinin kontrolü için, ikinci olarak,
direkt gen ifade verisinden K�smi Gözlemlenebilir Markov Karar Süreci (POMDP) ku-
ran bir yöntem önerilmi³tir. Önerdi§imiz yeni POMDP kurma yöntemi, yakla³�k olarak

vii

gözlem-aksiyon de§erleri hesaplamakta, ve nihai POMDP'yi kurmak için, bu yakla³�k
de§erlere gizli durum belirleme yöntemlerini uygulamaktad�r. Sonuçlar gösteriyor ki,
önerdi§imiz POMDP kurma yöntemi, mevcut çal�³malardan hem zaman gereklili§i
hem de çözüm kalitesi olarak daha iyi sonuçlar üretmektedir. Yüksek kaliteli yapay
gen ifade verisi üretmek için, yeni bir çoklu-model gen ifade verisi zenginle³tirme tas-
la§� önerilmi³tir. Dört gen ifade verisi üretme modeli tek bir taslakta birle³tirilmi³,
ve hepsinden ayn� anda faydalan�lmaya çal�³�lm�³t�r. Her üretici modelden veri al�n�p,
bu veriler birle³tirilmi³ ve en iyileri çoklu-amaçl� seçme mekanizmas� ile üretilmi³tir.
Sonuçlar, önerilen çoklu-model veri üretme sisteminin üretti§i yüksek kaliteli yapay
gen ifade verilerinden ç�karsanan düzenleme a§lar�n�n, orijinal gen ifade verilerinden
ç�karsanan düzenleme a§lar�ndan daha iyi oldu§unu göstermektedir.

Anahtar Kelimeler: Gen Düzenleyici A§lar, Peki³tirmeli Ö§renme, Markov Karar Sü-

reci, K�smi Gözlemlenebilir Markov Karar Süreci, POMDP Ö§renme, TD(λ) algorit-

mas�, GDA'lar�n Kontrolü, Gen �fade Verisi, Veri Zenginle³tirme

viii

To my bad luck

ix

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Faruk Polat. He has always welcomed me

and my endless questions genially. He has been always there for my personal problems,

as well. My academic perspective has been in�uenced greatly from his exclusive big

picture view. I would like to thank Prof. Reda Alhajj for his collaboration and generous

feedbacks. It was fun to collaborate with him.

I would like to thank Dr. Utku Erdo§du for his valuable support and friendship. It

was much harder for me to �nish my thesis without his generous helps. I would like

to thank Assist. Prof. Mehmet Tan for his helpful materials.

I would like to thank our chair Prof. Adnan Yaz�c�, and vice chair Prof. P�nar Karagöz

for welcoming me warmly to the department.

I would like to thank my father Hayrettin, mother Hatice, and sister Duygu for their

constant supports. I have always been motivated by their supports. I would like to

thank my girlfriend Selen for his lovely support and deep understanding.

Finally, I would like to thank residents of the o�ce A-310 for their warm welcome and

for the nice environment to work.

This work is supported by the Scienti�c and Technological Research Council of Turkey

(TÜB�TAK) under Grant No. 110E179 and TÜB�TAK-B�DEB MS scholarship (2210)

program.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ALGORITHMS . xxi

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Markov Decision Processes . 7

2.2 Reinforcement Learning . 10

2.3 Batch Mode Reinforcement Learning 13

2.3.1 Least-Squares Fitted Q Iteration 13

2.4 Partially Observable Markov Decision Processes 15

3 CONTROLLING GENE REGULATORY NETWORKS: FULL OB-
SERVABILITY . 19

xi

3.1 Introduction . 19

3.2 Batch RL for Controlling GRNs 21

3.2.1 Experience Tuples . 21

3.2.2 Features . 22

3.3 Experimental Evaluation . 24

3.3.1 Melanoma Application 24

3.3.1.1 State Feature Results 25

3.3.1.2 Gaussian Feature Results 29

3.3.1.3 Distance Feature Results 32

3.3.2 Yeast Application . 36

3.3.2.1 State Feature Results 37

3.3.2.2 Gaussian Feature Results 40

3.3.2.3 Distance Feature Results 43

3.3.3 Large Scale Melanoma Application 47

3.3.4 Time Requirements 49

3.4 Discussion . 50

4 CONTROLLINGGENE REGULATORYNETWORKS: BATCHMODE
TD(λ) . 53

4.1 Introduction . 53

4.2 Monte-Carlo Value Estimation 55

4.3 TD(λ) . 56

4.4 Batch Mode TD(λ) for Partially Observable Environments . . 57

4.5 Batch Mode TD(λ) for Controlling Partially Observable GRNs 60

4.5.1 Experience Tuples . 60

xii

4.5.2 Features . 61

4.6 Experimental Evaluation . 62

4.6.1 Melanoma Application 62

4.6.1.1 Experiments on λ 62

4.6.1.2 Comparative Results 63

4.6.2 Large Scale Melanoma Application 66

4.6.3 Time Requirements 67

4.7 Discussion . 68

5 CONTROLLINGGENE REGULATORYNETWORKS: BATCHMODE
POMDP LEARNING . 71

5.1 Introduction . 71

5.2 POMDP Learning . 72

5.2.1 Hidden State Identi�cation 74

5.3 Batch Mode POMDP Learning for Controlling Partially Ob-
servable GRNs . 75

5.4 Experimental Evaluation . 77

5.4.1 Melanoma Application 77

5.4.2 Yeast Application . 80

5.5 Discussion . 85

6 MULTI-MODEL GENE EXPRESSION DATA ENRICHMENT FRAME-
WORK . 87

6.1 Introduction . 87

6.2 Multi-Model Approach . 89

6.3 Generative Models . 92

6.3.1 Probabilistic Boolean Network 92

xiii

6.3.2 Ordinary Di�erential Equations 94

6.3.3 Multi-Objective Genetic Algorithm 97

6.3.4 Hierarchical Markov Model 98

6.4 Experimental Setup . 99

6.4.1 Datasets . 99

6.4.2 Experimental Settings 100

6.4.3 Evaluation Semantics 102

6.5 Experimental Evaluation . 103

6.5.1 Experiments on Sample Quality Using Small Number
of Samples . 103

6.5.2 Experiments on Sample Quality Using Large Number
of Samples . 107

6.5.3 Experiments on Multi-Model Justi�cation 112

6.5.4 Gene Regulatory Network Inference 115

6.5.5 Experiments on Number Of Required Samples for Train-
ing . 120

6.6 Discussion . 123

7 CONCLUSION AND FUTURE WORK 125

REFERENCES . 127

xiv

LIST OF TABLES

TABLES

Table 3.1 List of genes for the extended 28-gene melanoma dataset 51

Table 4.1 Input & Observation genes . 64

Table 4.2 Comparative results for Exp#1− 4 65

Table 4.3 Comparative results for Exp#5− 7 65

Table 6.1 Network evaluations for BANJO algorithm 117

Table 6.2 Network evaluations for ARACNE algorithm 120

xv

LIST OF FIGURES

FIGURES

Figure 1.1 Genes . 1

Figure 1.2 An example Gene Regulatory Network extracted from yeast cell cycle

pathway . 2

Figure 1.3 Controlling a GRN . 3

Figure 2.1 A simple Markov Decision Process 8

Figure 2.2 Reinforcement Learning framework 10

Figure 2.3 Batch RL framework . 13

Figure 2.4 Partially Observable Markov Decision Process 16

Figure 2.5 Belief state & action values . 17

Figure 3.1 Flowchart of control solutions . 20

Figure 3.2 Batch RL for controlling GRNs . 21

Figure 3.3 Average cost over the iterations of LSFQI for State Features 26

Figure 3.4 Value function after convergence for State Features 26

Figure 3.5 Policy comparison for State Features 27

Figure 3.6 Steady-state probability distribution for State Features 28

Figure 3.7 Expected costs for State Features 29

xvi

Figure 3.8 Average cost over the iterations of LSFQI for Gaussian Features . . 30

Figure 3.9 Value function after convergence for Gaussian Features 30

Figure 3.10 Policy comparison for Gaussian Features 31

Figure 3.11 Steady-state probability distribution for Gaussian Features 32

Figure 3.12 Expected costs for Gaussian Features 32

Figure 3.13 Average cost over the iterations of LSFQI for Distance Features . . 33

Figure 3.14 Value function after convergence for Distance Features 34

Figure 3.15 Policy comparison for Distance Features 34

Figure 3.16 Steady-state probability distribution for Distance Features 35

Figure 3.17 Expected costs for Distance Features 36

Figure 3.18 Average cost over the iterations of LSFQI for State Features 37

Figure 3.19 Value function after convergence for State Features 38

Figure 3.20 Policy comparison for State Features 38

Figure 3.21 Steady-state probability distribution for State Features 39

Figure 3.22 Expected costs for Distance Features 40

Figure 3.23 Average cost over the iterations of LSFQI for Gaussian Features . . 41

Figure 3.24 Value function after convergence for Gaussian Features 41

Figure 3.25 Policy comparison for Gaussian Features 42

Figure 3.26 Steady-state probability distribution for Gaussian Features 43

Figure 3.27 Expected costs for Gaussian Features 43

Figure 3.28 Average cost over the iterations of LSFQI for Distance Features . . 44

Figure 3.29 Value function after convergence for Distance Features 45

xvii

Figure 3.30 Policy comparison for Distance Features 45

Figure 3.31 Steady-state probability distribution for Distance Features 46

Figure 3.32 Expected costs for Distance Features 47

Figure 3.33 Large scale melanoma steady-state probability shift 49

Figure 3.34 Execution time for our method . 50

Figure 4.1 Flow of alternative control solutions 55

Figure 4.2 Batch TD(λ) for controlling partially observable GRNs 60

Figure 4.3 Average reward for di�erent λ values 63

Figure 4.4 Large scale melanoma steady-state probability shift 67

Figure 4.5 Execution time . 68

Figure 5.1 System before merge . 74

Figure 5.2 System after merge . 75

Figure 5.3 Flow of our POMDP construction method 75

Figure 5.4 State values obtained from Batch RL 78

Figure 5.5 Average reward per time step . 80

Figure 5.6 Execution time . 81

Figure 5.7 State values obtained from Batch RL 82

Figure 5.8 Average reward per time step . 83

Figure 5.9 Execution time . 84

Figure 6.1 Block diagram of our sample generation method. 90

Figure 6.2 The entropy and coverage values for melanoma dataset 99

xviii

Figure 6.3 The entropy and coverage values for yeast dataset 99

Figure 6.4 The entropy and coverage values for HUVECs dataset 100

Figure 6.5 Compatibility, diversity and coverage results for di�erent number of

samples produced . 103

Figure 6.6 T-test results for di�erent number of samples produced 106

Figure 6.7 Compatibility, diversity and coverage values based on training and

test sets for each generated sample set from yeast dataset 108

Figure 6.8 Compatibility, diversity and coverage values based on training and

test sets for each generated sample from HUVECs 109

Figure 6.9 T-test results for di�erent number of samples produced 110

Figure 6.10 Contribution of each model for the samples generated from melanoma

dataset . 112

Figure 6.11 Contribution of each model for the samples generated from yeast

dataset . 113

Figure 6.12 Contribution of each model for the samples generated from HUVECs

dataset . 114

Figure 6.13 Compatibility, diversity and coverage values for each single model

and for our multi-model framework . 115

Figure 6.14 The reference subnetwork for yeast cell cycle 116

Figure 6.15 The regulatory network obtained from original dataset using BANJO 117

Figure 6.16 The regulatory network obtained from samples generated by our

framework using BANJO . 118

Figure 6.17 The regulatory network obtained from original dataset using ARACNE119

Figure 6.18 The regulatory network obtained from samples generated by our

framework using ARACNE . 120

xix

Figure 6.19 The E. coli subnetworks used for generating synthetic datasets . . . 121

Figure 6.20 Comparison of generated sample sets for synthetic datasets 122

Figure 6.21 Comparison of generated sample sets for HUVECs dataset 123

xx

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Value Iteration . 9

Algorithm 2 Q-Learning . 12

Algorithm 3 Least-Squares Fitted Q Iteration 14

Algorithm 4 Monte-Carlo Algorithm . 56

Algorithm 5 TD(λ) Algorithm . 58

Algorithm 6 Least-Squares Fitted TD(λ) Iteration 59

xxi

LIST OF ABBREVIATIONS

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

Batch RL Batch Mode Reinforcement Learning

FQI Fitted Q Iteration

LSFQI Least-Squares Fitted Q Iteration

GRN Gene Regulatory Network

LSFTDI Least-Squares Fitted TD(λ) Iteration

PBN Probabilistic Boolean Network

BN Boolean Network

ODE Ordinary Di�erential Equation

HIMM Hierarchical Markov Model

GA Genetic Algorithm

TSNI Time Series Network Identi�cation

xxii

CHAPTER 1

INTRODUCTION

Genes are meaningful and functional molecular units of DNAs or RNAs as shown in
Figure 1.1. A Gene regulation system is a system composed of a set of interacting
genes that are regulating each other. Many cellular activities are accrued through the
interactions of genes that are regulating each other. The basic idea for modeling a gene
regulation system is to represent the system as a Gene Regulatory Network (GRN),
where each node corresponds to a gene, and each edge corresponds to an interaction
between genes. Hence, GRNs model gene regulation in terms of multivariate interac-
tions among the genes. Figure 1.2 shows an example GRN which is a sub-network

Figure 1.1: Genes

extracted from yeast cell cycle pathway obtained from KEGG [72]. There are di�erent
approaches for modeling gene regulation such as Bayesian networks, Boolean networks,
and ordinary di�erential equations [31]. The idea is to understand the mathematical
relationships between the genes. One of the major goals of modeling gene regulation,
on the other hand, is to predict the behavior of the cellular system and to control it for
developing therapies or drugs that would intervene the system dynamics. By designing
intervention strategies, gene regulation systems can be controlled and prevented from

1

Figure 1.2: An example Gene Regulatory Network extracted from yeast cell cycle
pathway

2

falling into diseased absorbing states.

In this thesis, we have attempted to solve two major problems, controlling gene regula-
tion systems and generating high quality arti�cial gene expression samples. Controlling
a gene regulation system means to control the state of the system by intervening a
speci�c set of genes, namely action genes. To illustrate, it may be the case that a
laboratory specialist tries to keep deactivated a speci�c set of genes, which we name
as target genes, by suppressing the speci�ed action genes. Figure 1.3 shows a subnet-
work of E. coli network which we automatically extracted by the tool GeneNetWeaver
(GNW) [58]. Blue arrows indicate up regulating, red arrows indicate down regulating
e�ects. Genes cueR and modA are selected as action genes, and gene modB is selected
as target gene. The goal of the control problem is to control expression value of modB
by externally activating cueR and deactivating modA. Observe that the action applied
to gene cueR up regulates expression value of cueR, whereas the action applied to
gene modA down regulates expression value of modA. As a real life biological corre-
spondence of control studies, gene regulation system of melanoma dataset presented in
[5] is one of the good examples. It is reported that gene WNT5A has a signi�cant e�ect
on metastasizing of melanoma. Hence, a control policy for the regulation system of
melanoma keeping deactivated WNT5A may considerably reduce the metastasis e�ect
of melanoma [5, 12]. We have tried to provide control solutions for keeping WNT5A
deactivated in Chapter 3, Chapter 4, and Chapter 5.

Figure 1.3: Controlling a GRN

3

We have proposed three solutions for controlling gene regulation systems, one solution
for controlling fully observable gene regulation systems, and two solutions for con-
trolling partially observable gene regulation systems. Fully observable gene regulation
system means to be able to observe all genes in the regulation system. Observing a
gene in a gene regulation system corresponds to be able to measure expression value
of that gene during the experiments in the laboratory. For controlling fully observ-
able gene regulation systems, we have proposed to obtain a control policy directly
from available gene expression data without making use of any computational model.
A control policy is a sequence of actions that should be applied to the gene regula-
tion system so that, at the end, the state of the system will be one of the desirable
states. Existing works for this control task �rstly construct a computational model
from gene expression data, mostly a Probabilistic Boolean Network (PBN), and then
try to control the constructed computational model [12, 51, 22]. However, time series
gene expression data can actually be interpreted as a series of experiences collected
from the gene regulation system. A gene regulation system is not di�erent than any
dynamic system who has a transition dynamics between its states, and reacts to ap-
plied actions probabilistically, which perfectly �ts to the framework of Markov Decision
Processes (MDPs) explained in Chapter 2, Section 2.1. Hence, it is highly suitable to
think the gene regulation system as an environment, and the specialist in the labora-
tory as an agent, in which agent applies actions to the selected genes in the regulation
system, observes the state transitions in the system, and thereby gathers some ex-
periences from the environment. Hence, in our work, we have treated available gene
expression data as if they were generated by applying some actions to the actual gene
regulation system, and converted the gene expression data into a series of experiences
collected from the environment. Once we have done the conversion of gene expression
samples into a series of experiences, we can directly use those experiences to obtain an
approximate control policy based on Batch Mode Reinforcement Learning (Batch RL)
techniques. Batch RL basically produces generalized and approximate control poli-
cies from limited number of available experiences. Thereby, since we are not dealing
with any computational model, we are able to bene�t from great reduction on time
and space requirements. Results show that our proposed Batch RL based method is
able to produce approximate policies for regulation systems of several thousands of
genes just in seconds; whereas existing studies cannot solve the control problem even
for several tens of genes. We have also measured the quality of our produced control
policies with respect to the control policies generated by existing works. We have done
the comparison by applying the produced policies to a constructed PBN, separately,
and checking the probability distribution of the controlled PBNs. We expect to shift
probability mass from undesirable states to desirable states. The results show that our
generated approximate policies shift the probability mass almost as successfully as the
ones generated by existing optimal solutions.

Partially observable gene regulation system, on the other hand, means to be able to
observe only a set of genes in the regulation system. The main problem for controlling

4

partially observable gene regulation systems is that we do not know the actual internal
states of the regulation system, but only a set of observations having a probabilistic
relationship with the actual internal states. For solving the control problem of partially
observable gene regulation systems, we have proposed two methods. The �rst method
skips the internal state estimation phase, and produces approximate stochastic policies
mapping probabilistically observations directly to actions. We have interpreted time
series gene expression data produced as a sequence of observations from the gene regu-
lation system we want to control, and obtained a generalized and approximate control
policy directly from those observations. In order to do this, we bene�t from the ideas
of Jaakkola et al. (1994), Singh et al. (1994), and Sutton and Barto (1998) (check
Section 5.8 and 7.11 for Sutton and Barto (1998)'s book). We have combined Batch
RL techniques with Sutton's TD(λ) algorithm (1988) [64], and proposed a novel Batch
RL framework for non-Markovian decision tasks, Batch Mode TD(λ). Batch Mode
TD(λ) assigns an approximate observation-action value for each possible observation-
action pair, and produces stochastic policies based on the ratio of those approximate
observation-action values. Since Batch Mode TD(λ) does not deal with any com-
putational model, and skips the internal state estimation of the partially observable
environment, it can produce stochastic policies for regulation systems of several thou-
sands of genes in seconds; whereas existing studies cannot solve the control problem
even for several tens of genes. To our best knowledge, Batch Mode TD(λ) is the �rst
solution for non-Markovian decision tasks with limited number of available samples.
Note that partially observable environment and non-Markovian environment refer to
the same concept, and are used interchangeably.

In our second solution for controlling partially observable gene regulation systems, un-
like our previous solution Batch Mode TD(λ), we identify the actual internal states
of the regulation system we want to control. We have calculated an approximate
observation-action value for each possible observation-action pair based on Batch RL
methods as we have done in our previous control solutions. Then, we have applied
hidden state identi�cation techniques to those approximate observation-action val-
ues to identify the actual internal states and their Bayesian relationships with the
observations [47, 45, 48, 46]. The idea is that observations having similar observation-
action values should be produced from similar internal state dynamics. With respect
to the identi�ed internal states, and their identi�ed Bayesian relationships with the
observations, we have constructed a Partially Observable Markov Decision Process
(POMDP). Results show that our constructed POMDPs are more successful than the
previous studies in terms of both solution quality and time requirements.

Here, it is important to note that in all of our control solutions we have assumed
the available gene expression data is times series. Though the number of time-series
datasets are relatively less with respect to the number of steady-state datasets, we
believe our proposed control solutions will encourage to produce time series real life
gene expression data, and control the gene regulation systems producing those time

5

series gene expression data.

Since all our proposed control solutions obtain control policies directly from gene ex-
pression data, the number of samples in gene expression datasets are one of the de-
termining factors for our solutions. However, gene expression datasets are generally
composed of small number of samples, which restricts not only our control solutions,
but also the whole genome research since most of the genome research is driven by gene
expression data. Hence, in the second part of this thesis, we have proposed a novel
multi-model gene expression data generation framework in order to solve the problem
of generating high quality arti�cial gene expression data. We aimed to mitigate low
number of samples problem of gene expression datasets. The idea is, although there
are many computational models for gene regulation, none of them is able to capture
the biological relationships comprehensively. Hence, instead of trying to improve a sin-
gle computational model, we have combined di�erent computational models into one
framework. Thereby, we aimed to bene�t from di�erent computational models con-
currently, and provide a robust framework for generating high quality arti�cial gene
expression data. We have used four generative models, Probabilistic Boolean Net-
works (PBNs), Ordinary Di�erential Equations (ODEs), Hierarchical Markov Model
(HIMM), and Genetic Algorithm (GA). In order to generate k samples from our multi-
model framework, we �rstly sample from each generative model separately and pool
them. The pool of the generated 4k samples constitutes a rich set of gene expression
samples. We evaluate each of the 4k samples with respect to three well-de�ned metrics
and rank them multi-objectively. At the last step, we output the top k samples as the
best arti�cial gene expression samples. Results show that our proposed multi-model
framework produces samples that are very close to the original gene expression data,
and always carry new information with respect to the generated sample sets. Our
multi-model framework works always better than any single model it constitutes, and
captures biological relationships that cannot be captured by original gene expression
datasets.

6

CHAPTER 2

BACKGROUND

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a framework composed of a 4-tuple (S,A, T,R),
where S is the �nite set of states; A is the �nite set of actions; T (s′|s, a) is the transition
function which de�nes the probability of observing state s′ by �ring action a at state s;
and R(s, a) is the expected immediate reward received in state s �ring action a. The
transition function de�nes the dynamics of the environment, and the reward function
speci�es the rewards with respect to the state and action con�gurations [2]. MDPs
de�ne discrete time stochastic control processes �owing in a �nite set of states with
respect to the applied actions by the agents in the environment. An agent can be
anything that can act in the environment and observe state of the environment such
as a robot or a specialist in a laboratory environment. Figure 2.1 presents a simple
MDP with �ve states and two actions. If the action �red by the agent is a2 and state
of the system is s1, for example, then the system in Figure 2.1 gets into state s5 with
probability 0.7, and into state s3 with probability 0.3. Note that probability values
should sum up to 1.0 for each state action pairs. Note also that, in Figure 2.1, state
s3 is an absorbing state, in which the agent cannot escape once it gets in.

The ultimate goal of an MDP is to �nd the optimal control policy π∗, which is a
mapping of states to actions, such that for a state s, its associated action a will
result in getting the maximum future rewards after passing through state s. The
actions producing maximum future rewards are named as optimal actions, and the
function mapping states to their optimal actions is named as the optimal control
policy, π∗ : S → A. The optimal policy can actually be found by searching in policy
space in a brute-force manner. For each state, there are |A| actions to apply, and
the total number of possible policies are |A||S|. We run each possible policy for large
number of steps, compare the sums of the obtained rewards, and output the policy
producing the maximum sum of rewards. However, brute-force search in policy space
requires exponential search time in terms of the number of states, which would fail
even for MDPs with small number of states and actions. For an MDP with 30 states
and 2 actions, for example, there are more than 1 billion possible policies, which is

7

Figure 2.1: A simple Markov Decision Process

highly infeasible to search in [65].

The optimal control policy of an MDP, however, can also be found by applying the
Dynamic Programming algorithm, Value Iteration, shown in Algorithm 1. Value It-
eration tries to maximize future rewards in terms of expected return values, where
the return, Rt, is a speci�c function of rewards. A simple return function can be just
summation of the rewards obtained after passing through state s, and applying action
a as Equation 2.1 shows [65].

Rt = rt+1 + rt+2 + ...+ rN (2.1)

where N is the last step agent takes. Value Iteration keeps an intermediate data
structure, namely the state-action function Q; and for each state-action pair, it accu-
mulates expected return values in that Q data structure. By accumulating expected
return values iteratively in the Q function, Value Iteration converges to �nd the op-
timal state-action function Q∗, which further provides to �nd the optimal policy π∗.
The relationship between the expected return values, E{Rt|st = s, at = a}, and the
state-action function Q is shown in Equations 2.2 to 2.6 [65].

8

Q(s, a) = E{Rt|st = s, at = a} (2.2)

= E{
∞∑
k=0

γkrt+k+1|st = s, at = a} (2.3)

= E{rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s, at = a} (2.4)

= rt+1 +
∑
s′

T (s′|s, a)γ(E{
∞∑
k=0

γkrt+k+2|st = s, at = a}) (2.5)

= rt+1 + γ
∑
s′

T (s′|s, a)max
a′
Q(s, a′) (2.6)

Note that since Value Iteration is expected to converge, the discount factor γ where
0 ≤ γ ≤ 1, is introduced for �nding the expected return. Equation 2.1 and Equation
2.3 are same except the the discount factor γ. As γ gets close to 1, agent gives more
importance to future rewards. As γ gets close to 0, agent gives more importance to
immediate rewards. Observe that Equation 2.6 is exactly the same equation Value
Iteration applies to update its Q function in Line 7 of Algorithm 1. This equation
is called as the Bellman optimality equation. In order to �nd the optimal policy π∗,
Value Iteration iterates over the Bellman equation, and provably converges to �nd
the optimal state-action function Q∗ for su�ciently large number of iterations [2, 65].
Once Q∗ function is found, it easy to �nd the the optimal policy π∗ based on Equation
in Line 11 of Algorithm 1.

Algorithm 1: Value Iteration

1 Input: discount factor γ, stopping criteria ε
2 Q← 0, q ← ε

3 while |q −Q| ≥ ε do
4 q ← Q

5 for s ∈ S do
6 for a ∈ A do
7 Q(s, a)← r(s, a) + γ

∑
s′ T (s′|s, a)max

a′
Q(s, a′)

8 end

9 end

10 end
11 π∗(s) = arg max

a
Q∗(s, a)

12 Output: π∗

The complexity of Value Iteration is |A| × |S|2, which is linear in terms of number of
actions, and quadratic in terms of number of states [42]. Note that max

a′
Q(s, a′) stands

for the value of state s. It is found by setting the value of the maximizing action as
Equation 2.7 shows [65].

9

V (s) = max
a′

Q(s, a′) (2.7)

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a framework to �nd the optimal state-action function,
Q∗, without using the model of the environment, which is T (s′|s, a), the transition
function, and R(s, a), the reward function [65]. Agent in the environment does not
know anything about how the environment will react to its actions, and successively
interacts with the environment. The idea is to �nd the optimal state-action function
Q∗ based on the reward and state values observed during the interaction with the
environment [32]. Figure 2.2 depicts the RL framework.

Figure 2.2: Reinforcement Learning framework

Just like Value Iteration, Q-Learning tries to �nd the optimal policy π∗ by maximizing
the expected return values. Again, there is a state-action function Q which keeps the
expected return values for each state-action pairs. Since agent does not know the tran-
sition function T (s′|s, a) of the environment in RL setting, it cannot calculate return
values by expectation over all possible next states as in Equation 2.2 to 2.6. Instead,
RL algorithms maintain return values by functions that depend only on observed fu-
ture rewards. One simple return function is to take the average of the obtained rewards
after experiencing a speci�c state-action pair shown in Equation 2.8.

Rt =
rt+1 + rt+2 + ...+ rN

N − t
(2.8)

where N is the last step agent takes. Then, the relationship between the Q function

10

and the return values Rt is as shown in Equations 2.9 to 2.15 [65].

QN (s, a) = E{Rt|st = s, at = a} (2.9)

=
rt+1 + rt+2 + ...+ rN

N − t
(2.10)

=
rt+1 + rt+2 + ...+ rN−1

N − t
+

rN
N − t

(2.11)

=
(N − t− 1)QN−1

N − t
+

rN
N − t

(2.12)

= QN−1 −
QN−1

N − t
+

rN
N − t

(2.13)

= QN−1 +
1

N − t
[rN −QN−1] (2.14)

= QN−1 + α[rN −QN−1] (2.15)

where QN is the evaluation of the Q function upto the N th step with respect to the
observed state s and applied action a at time t. Equations 2.9 to 2.15 show how
expected return values are accumulated in the Q function incrementally. Equation
2.15 forms the basic update equation for RL algorithms. The general form is Qnew =

Qold + LearningRate[Target − Qold]. This is actually a simple learning equation
in which [Target − Qold] stands for the error we have in the old Q estimation and
LearningRate determines how much we will get close to the Target value at each
iteration. With respect to how we assigned the Target and LearningRate components,
the RL algorithm shapes itself. For example, Monte-Carlo value estimation algorithm
sets the Target as the discounted sum of rewards,

∑T
l=t+1 γ

l−tr(sl, al); Q-Learning
algorithm sets the Target as the immediate reward plus the expected next state value,
rt+1 + γmaxa′ Q(st+1, a

′); and Sarsa algorithm sets the Target as immediate reward
plus the next state-action value, rt+1 + γQ(st+1, at+1) [65].

Algorithm 2 presents Watkin's Q-Learning algorithm (1989) [69]. Observe that Q-
Learning has a lot common with Value Iteration. Both algorithms uses the same
data structure, namely the Q function, and iteratively updates it to �nd the optimal
state-action Q∗ and the optimal policy π∗. The only and most important di�erence,
however, is that while Value Iteration applies full backup for updating the Q function,
Q-Learning applies sample backup. Value Iteration takes all possible next states into
account for updating the Q function as Equation in Line 7 of Algorithm 1 and 2.6
show. Q-Learning, on the other hand, considers only the value of the next state
maxa′ Q(s′, a′) for updating the Q function since in RL setting agent is assumed to
know nothing about the transition function T (s′|s, a) of the environment. However,
as it is the case for Value Iteration, Q-Learning provably converges to produce the
optimal state-action function Q∗ as well. What is done is to start with a randomly
selected state as shown in Line 5 and get into the inner update loop for updating the
Q. At each iteration, Q-Learning �rstly decide on the action that the agent should

11

take, applies it to the environment, observes the returned reward and next state values,
and lastly updates its Q function based on the equation in Line 14. The algorithm
continues by setting the current state s as the next state s′.

One important point about Q-Learning is the action-selection mechanism. Most of
time, actions are selected as the ones maximizing the state-action function for current
state s, i.e., arg max

a
Q(s, a). However, this way has always the risk of falling into an

absorbing state due to an intermediate local maximum. In order to avoid from getting
stuck to a local maximum, at some points, agent selects its action randomly instead
of selecting the maximizing ones. One of the action selection mechanisms is ε-greedy
method. ε-greedy de�nes a small probability value ε. At each iteration, agent guesses
a random �oating number between [0, 1], µ value in Line 7 of Algorithm 2. If µ is less
than the ε, agent selects its action randomly. Otherwise, agent follows its usual way
to select an action maximizing its state-action function for the current state. ε-greedy
action selection mechanism is shown between Lines 7− 12 of Algorithm 2.

Algorithm 2: Q-Learning

1 Input: discount factor γ, learning rate α, ε, stopping criteria ε,
2 episode number E
3 Q← 0, q ← ε

4 while |q −Q| ≥ ε do
5 iter ← 1, q ← Q, s← randomStateSelection

6 while iter ≤ E do
7 µ← randomFloat[0, 1] // ε-greedy action selection
8 if µ < ε then
9 a← randomActionSelection

10 else
11 a← arg max

a
Q(s, a)

12 end
13 Take action a, observe R(s, a) and s′

14 Q(s, a) = Q(s, a) + α(r(s, a) + γmaxa′ Q(s′, a′)−Q(s, a))

15 s← s′

16 iter ← iter + 1

17 end

18 end
19 π∗(s) = arg max

a
Q∗(s, a)

20 Output: π∗

12

2.3 Batch Mode Reinforcement Learning

Batch Mode Reinforcement Learning (Batch RL) is an extension of classical RL. In
Batch RL, the learner directly takes several number of experience tuples that are
already collected from the environment. The experience tuples can be collected arbi-
trarily, even randomly in the exploration stages of the learner [38]. The main idea is to
use these limitedly available experience tuples in batch to obtain an approximate and
generalized state-action function. Hence, unlike classical RL employing exploration
and learning phases consecutively as shown in Figure 2.2, Batch RL clearly separates
the exploration and learning phases as Figure 2.3 shows [38, 8, 21]. Learner collects
a set of experience tuples without updating its Q function, and then updates the Q
function in batch. Note that an experience tuple is a 4-tuple (s, a, s′, r), where s is
the current state, a is the current action, s′ is the next state and r is the immediate
reward. Experience tuples are the formal expressions of one step experiences gathered
from the environment that the agent interacts with.

Figure 2.3: Batch RL framework

There are several Batch RL algorithms. The Experience Replay algorithm presented
in [41] assumes the learner experiences again and again what it had experienced before.
Hence, it can only know the state-action values of the state action pairs that it had
visited before, and have limited application. The Kernel-Based RL in [50] introduces
kernel functions to get an approximate and generalized state-action function. Based
on the knowledge of the values for experienced state-actions, it �nds the values for
unexperienced state-actions by applying some kernel functions. Taking the average of
the state-action values of the most similar three experience tuples would be an exam-
ple of a kernel-function application. The Fitted Q Iteration (FQI) algorithm presented
in [21], on the other hand, converts the Batch RL problem into a supervised learning
problem. The main idea is that it is actually a supervised learning problem to �nd an
approximate and generalized state-action function mapping all possible state action
pairs into their state-action values. Since there are di�erent supervised learning algo-
rithms, FQI provides di�erent ways to solve Batch RL problem for di�erent problem
domains.

2.3.1 Least-Squares Fitted Q Iteration

In this thesis, we have extensively used one of the Batch RL methods, Least-Squares
Fitted Q Iteration (LSFQI) algorithm presented in [8, 21]. All of our proposed solutions
for controlling gene regulatory networks, somehow, are making use of LSFQI algorithm.

13

LSFQI employs parametric approximation to obtain an approximate and generalized
state-action function Q̂. Q̂ is parameterized by an n-dimensional vector Θ, where
every parameter vector Θ corresponds to a compact representation of the approximate
state-action function Q̂ as Equation 2.16 shows.

Q̂(s, a) = [F (Θ)](s, a) (2.16)

The calculation of [F (Θ)](s, a), on the other hand, is done by utilization of feature
values as Equation 2.17 shows.

[F (Θ)](s, a) = [φ1(s, a), ..., φn(s, a)]T · [Θ1, ...,Θn] (2.17)

where φi stands for a single feature speci�c for state s, and the action a, Θi stands for
the parameter corresponding to the ith feature, and Θ is the parameter vector of Θi's.
LSFQI algorithm, iteratively train the parameter vector Θ with respect to the de�ned
feature values and calculated state-action values for each experience tuples by using
least-squares linear regression. Note that the number of parameters in LSFQI is same
as the number of features de�ned. The overall algorithm is shown in Algorithm 3.

Algorithm 3: Least-Squares Fitted Q Iteration

1 Input: discount factor γ,
2 experience tuples {(si, ai, ri, s′i)|i = 1, ..., N}
3 j ← 0, Θj ← 0, Θj+1 ← ε

4 while |Θj+1 −Θj | ≥ ε do
5 for i = 1...N do
6 Ti ← ri + γmax

a′
[F (Θj)](s

′
i, a
′)

7 end
8 Θj+1 ← Θ∗,
9 where Θ∗ ∈ arg min

Θ

∑N
i=1(Ti − [F (Θ)](si, ai))

2

10 j ← j + 1

11 end
12 Output: Θj+1

We begin with an initial parameter vector Θ0. At each iteration, LSFQI �rstly assigns
a target state-action value Ti for each experience tuple. This is achieved by summing
immediate reward ri and the discounted future reward γmaxa′ [F (Θj)](s

′
i, a
′) for each

experience tuple. Note that this equation is same as Equation in Line 14 of Algorithm
2 with learning rate (α) as 1. Then, those target values and available feature values are
used to train the parameter vector Θ by using least squares linear regression, which
provides the next parameter vector Θj+1. The algorithm continues with the next
iteration by using the same feature values but the re�ned parameter vector. Once

14

the parameter vector is converged, the algorithm outputs the parameter vector which
can be used to �nd the approximate state-action function based on the Equation 2.17.
Then, it is easy to �nd the approximate in�nite horizon control policy by taking the
minimizing action for each state as Equation 2.18 shows.

π(s) = arg max
a′

[F (Θj+1)](s, a′) (2.18)

2.4 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is a 6-tuple (S,O,A, T,Ω, R),
where S is the �nite set of states; O is the �nite set of observations; A is the �nite set of
actions; T (s′|s, a) is the transition function which de�nes the probability of observing
state s′ by �ring action a at state s; Ω(o|s) is the observation function which de�nes
the probability of observing observation o at state s; and R(s, a) is the immediate
reward received in state s �ring action a [9]. The transition function and the reward
function are same as the ones in Markov Decision Process (MDP). The Observation
function, on the other hand, determines the Bayesian relationship between the actual
internal states of the system, and the observations that the agent in the environment
observes.

POMDPs are actually generalizations of Markov Decision Processes (MDPs). MDP
framework models fully observable environments. That is, an agent moving in the state
space of an MDP framework always gets complete state information about where it is
in the state space. In POMDP framework, however, agent never knows where it is in
the state space precisely. Agent only gets some partial state information returned by
the environment that is probabilistically related to the actual internal state dynamics
of the environment, which we name as observations. Figure 2.4 depicts a POMDP
with three states, three observations and two actions. Agent can only observe the
observations with respect to the probabilities it is assigned by the observation function
Ω. To illustrate, once an agent applies action a2 at state s1 in the POMDP of Figure
2.4, even if it makes a transition from the s1 to s2 with probability 1.0, the agent
is able to observe only the observations that can be produced from the s2 which are
o2 and o3. Enclosed in di�erent boxes in Figure 2.4, in a POMDP setting, internal
dynamics of the environment including state transitions are unobservable to the agent.

In a POMDP framework, the aim is to �nd the optimal control policy maximizing
expected discounted sum of rewards just as in the MDP framework. Here, the basic
challenge is that the environment is not Markovian in terms of the observations. That
is, the environment may seem unchanged after an action application, though its in-
ternal state has actually changed. For example, making transition from s1 to s2 by
applying action a2 in the POMDP of Figure 2.4 may result in observing the same

15

Figure 2.4: Partially Observable Markov Decision Process

observation o2, although the agent makes a transition from s1 to s2. Therefore, we
cannot keep a Q function mapping state-action pairs into their expected reward values,
and obtain a policy based on the states in the POMDP, which is done by the Value
Iteration shown in Algorithm 1. What can be done, however, is that agent can try
to build a control policy not over the state-action pairs, but over belief state & action
pairs. Belief state is a probability distribution over the set of states representing the
belief of the agent on where it is in the state space. For the POMDP in Figure 2.4,
an example belief state can be [0.2 0.8 0.0] implying that the agent is in s1 with prob-
ability 0.2, in s2 with probability 0.8, and certainly not in s3 due to 0.0 probability.
In order to �nd an optimal control policy in a POMDP setting, we actually solve the
MDP whose state space is the space of the belief states of the POMDP. That means,
we have an MDP with continuous state space. Hence, instead of keeping a value in a Q
as in MDP setting, we keep an n dimensional vector, a hyperplane for each belief state
& action pairs, where n is the number of states. Because we multiply belief state vector
element by element with the reward values of each state separately. That means the
hyperplanes for belief state & action pairs are linear with respect to the belief states
[9]. Therefore, instead of keeping a discrete Q function, we keep a set of hyperplanes
corresponding for each belief state & action pairs. Figure 2.5 presents an example for
a two state, two actions belief state POMDP [57, 9]. The x-axis shows the probability
value of state 1 in the belief state, and the y-axis shows the corresponding belief state
& action value for each action in the POMDP framework. Here, the value of doing
action 1 in state 1 is 3, in state 2 is 1. The value of doing action 2 in state 1 is 1, in
state 2 is 2. If probability of state 1 is zero, i.e., the agent is in state 2, the value of
doing action 1 is 1. If probability value of state 1 is 1, i.e., the agent is in state 1, the
value of doing action 1 is 3. That's why the red line presenting the value of applying
action 1 in Figure 2.5 goes from 1 to 3. For the belief states between [0 1] and [1 0],
the value of doing action 1 is just the expectation of the reward values with respect to
the belief state as Equation 2.19 and the lines in Figure 2.5 shows. The belief state &

16

action values shown in Figure 2.5 corresponds to horizon 1 values, indeed. Hence, the
optimal action for horizon 1 for the POMDP of Figure 2.19, is 2 for belief states having
less than ∼ 0.32 probability value for state 1, and is 1 for belief states having more
than ∼ 0.32 probability value for state 1. In order to calculate belief state & action
values for horizon 2, we will apply the same procedure we have done for horizon 1,
indeed. However, instead of using directly the R(s, a) for calculating the hyperplanes,
we will use the already calculated horizon 1 values [57, 9].

ρ(b, a) =
∑
s

b(s) ·R(s, a) (2.19)

where b is the belief state.

Figure 2.5: Belief state & action values

17

18

CHAPTER 3

CONTROLLING GENE REGULATORY NETWORKS:
FULL OBSERVABILITY

3.1 Introduction

The control problem for GRNs is de�ned as controlling the state of the regulation
system through interventions of a set of genes. That is, we apply a series of actions
to some pre-selected set of genes, and expect the regulation system not to fall into
undesirable states. There are several studies in the area of controlling GRNs. They
all model gene regulation as a Probabilistic Boolean Network (PBN) and attempt
to identify the best intervention strategy over the constructed PBN [60]. The study
described in [12] tries to �nd an optimal �nite horizon intervention strategy for PBNs
so that at the ultimate horizon, the system achieves the highest probability of being in
a desirable state. The study in [51] �nds optimal in�nite horizon intervention strategy
by formulating the control problem as a Markov Decision Process (MDP) and then
solving the problem with the help of the Value Iteration algorithm. They showed that
the optimal policy can shift the probability mass from undesirable states to desirable
ones in the constructed PBN. The study in [22, 23] applies Reinforcement Learning
(RL) techniques to obtain an approximate control policy of the constructed PBN. Note
that an in�nite horizon control policy corresponds to a control policy mapping states
into their optimal actions without depending on the time step that the action applied.
To illustrate, a �nite horizon policy assigns optimal actions to the states with respect
to the time steps that the actions are applied. An optimal action found by a �nite
horizon policy may not be the optimal action for an in�nite horizon policy since it may
result in getting into bad states in future. Similarly, an optimal action found by an
in�nite horizon policy may not be the optimal action for a �nite horizon policy since it
may result in getting into bad states unnecessarily in the time window of the speci�ed
�nite horizon [32].

The basic and most important problem with the existing solutions for controlling GRNs
is that none of them can solve the control problem for systems with more than several
tens of genes due to their exponential time and space requirements. The �nite horizon
study of [12] builds a �nite horizon MDP, and the in�nite horizon study of [51] builds an

19

in�nite horizon MDP over the PBN. Both require exponential time and space in terms
of the number of genes. A 30-gene system, for example, requires dealing with more
than 1 billion states which is highly infeasible even to keep in the memory. Although
the study in [22] proposes an approximate algorithm that runs in polynomial time, it
again requires exponential space since they explicitly keep a state-action function Q.
Besides, their approximate solution still requires to construct a PBN, which already
takes O(dk×nk+1) time and space, where n is the number of genes, k is the maximum
number of predictor genes and d is the discretization level of gene expression samples
[60]. The study in [22] reports that the construction of the PBN for their 10-gene
system takes more than 3 days for k = 3 and d = 2. Moreover, for the same 10-gene
system, it requires almost one hour for their proposed algorithm to produce su�ciently
good policies, which is a long time compared to our method.

In this chapter, we propose a novel method to control GRNs making use of Batch
Mode Reinforcement Learning (Batch RL) approach. Batch RL provides approximate
in�nite horizon control policies without requiring the model of the environment. That
is, it tries to obtain a generalized control policy based on limitedly available experience
tuples collected from the environment. Our idea is that time series gene expression
data can actually be interpreted as a sequence of experience tuples collected from
the environment. Each sample represents the state of the system, and successive
state transitions demonstrate system dynamics. Therefore, instead of modeling gene
regulation as a PBN and obtaining a control policy over the constructed PBN, we
directly use the available gene expression samples to obtain an approximate control
policy for gene regulation using Batch RL. Using this method, we are able to bene�t
from the great reduction on both time and space since we get rid of the most time
consuming phase, inferring a PBN out of gene expression data and running it for
control. Figure 3.1 depicts the two alternative solution methods, where the �ow in the
box summarizes our proposal. The results show that our method can �nd policies for
regulatory systems of several thousands of genes just in several seconds. Interestingly,
the results also show that our approximate control policies have almost the same
solution quality compared to that of the existing PBN-based optimal solutions. This
means our method is not only much faster than the previous solution alternatives but
also provides almost the same solution quality.

Figure 3.1: Flowchart of control solutions

20

The rest of this chapter is organized as follows. Section 3.2 describes our proposed
method for controlling GRNs. Section 3.3 shows the experimental evaluations of our
method and Section 3.4 concludes with a discussion.

3.2 Batch RL for Controlling GRNs

This section describes our proposed method for solving the GRN control problem.
We have used the LSFQI algorithm explained in Section 2.3.1. Figure 3.2 shows
the block diagram of our proposed method. First, we convert gene expression data,
which is sampled from the gene regulation system that we want to control, into a
series of experience tuples. Then, we calculate feature values for each experience tuple
to use them in the LSFQI algorithm. Note that as Equation 2.17 shows, feature
values depend only on the current state and action values of each experience tuples.
Therefore, they do not change over the iterations of LSFQI shown in Algorithm 3.
Hence, we calculate them once for each available experience tuples beforehand, and let
LSFQI use them. Lastly, we invoke the LSFQI algorithm given in Algorithm 3, and
obtain the approximate control policy. Thereby, we obtain a control policy for a gene
regulation system directly from the gene expression data without making use of any
computational model. In the following subsections, we will describe how we convert
the gene expression samples into experience tuples and what features we used with the
Batch RL algorithm.

Figure 3.2: Batch RL for controlling GRNs

3.2.1 Experience Tuples

This section describes how we converted gene expression data into a series of experi-
ence tuples, which is one of the most critical steps of our solution. An experience tuple
is a 4-tuple (s, a, s′, c), where s is the current state, a is the current action, s′ is the
next state and c is the immediate cost. It represents one-step state transition in the
environment. Here, we explain how each of the four elements of each experience tuple
is obtained from the gene expression data. Note that instead of associating reward

21

values for the desirable states, in our method we have associated cost values for unde-
sirable states as presumed by previous studies [12, 51]. Instead of maximizing reward,
this time we will try to minimize the cost [65].

States: As all previous studies for controlling GRNs, the state of a GRN is de�ned
by the discretized form of the gene expression sample itself [12, 51, 22]. Hence, the
ith and (i + 1)th gene expression samples constitute the current state s and the next
state s′ values for the ith experience tuple. Similar to most of the previous studies, we
have used binary discretization [12, 51, 22]. Note that there are 2n possible states if
the number of genes is n.

Actions: The action semantics for a gene regulation system is mostly implemented
through reversing the value of a speci�c gene or a set of genes, i.e., changing its value
from 0 to 1 or 1 to 0 [12, 51, 22]. Those reversed genes are named as input genes and
should be speci�ed in the context of the control problem. If the value of an input gene
is reversed, the action is assumed as 1, if it is left as it is the action is assumed to be
0. Hence, there are 2k distinct actions given k input genes. In order to obtain the
action values from the gene expression samples, we have checked the absolute value of
the di�erence between the values of the input genes in the successive gene expression
samples. For a regulation system of six genes, for example, let the gene expression
sample at time t be 101001 and at time t+ 1 be 011000. If the input genes are the 2nd

and 5th genes, the action value, i.e., a in the experience tuple, at time t is 10 in bi-
nary representation since the 2nd gene has changed its value while the 5th gene has not.

Costs: The only remaining values to be extracted from the gene expression samples
is the cost values, i.e., c in the experience tuples. Costs are associated with the goal of
the control problem. The goal can be de�ned as having the value of a speci�c gene as
0 as in [51], or as reaching to a speci�c basin of attractors in the state space as in [7].
If the state of the regulation system does not satisfy the goal, it is penalized by a
constant value. Moreover, applying an action for each input gene also has a relatively
small cost to realize it. So, the cost function can be de�ned as follows:

cost(s, a) =

{
0 + n× c if goal(s)
α+ n× c if ¬ goal(s)

(3.1)

where α is the penalty of being in an undesirable state, n is the number of input genes
whose action value is 1, and c is the cost of action to apply for each input gene.

3.2.2 Features

This section describes the features that are built from the experience tuples obtained
from the gene expression samples. In our study we have de�ned three feature sets,

22

which we name as State Features, Gaussian Features, and Distance Features.

State Features: In the GRN domain, state values are composed of the discretized
forms of gene expression samples, hence they provide a deep insight and rich infor-
mation about the characteristics of the GRN. Based on this fact, we decided to use
the current state values of the experience tuples, i.e., the discretized gene expression
samples itself, directly as features, as the �rst feature set. That is, for each experience
tuple, there are exactly as many features as the number of genes and feature values
are equal to the binary discretized gene expression values, which can be formulated as
below.

φi(s) =

{
0 if s(i) == 0

1 if s(i) == 1
(3.2)

where 0 ≤ i ≤ n, n is the number of genes and φi is the ith feature in the feature
vector and it is equal to the expression value of the ith gene in the discretized gene
expression sample. So, for a 6-gene regulation system, a state having binary value as
101011 has its feature vector same as 101011.

Gaussian Features: As the second feature set, we have used Gaussian kernel as
proposed by [8]. Gaussian kernel function is shown in Equation 3.3.

φi(s, si) = exp(−|s− si|
2

2σ2
) (3.3)

where 0 ≤ i ≤ m, m is the number of samples and φi is the ith feature in the feature
vector. For each experience tuple, we have applied Gaussian kernel to all the other
experience tuples and set it as the feature φi. Hence, this time there are exactly as
many features as the number of samples, and each has the value of the Gaussian kernel
function applied to the current state s and the ith state si.

Distance Features: As the third feature set, we have de�ned four features manually.
Firstly, we have used the Euclidean distance between the state of the current experience
tuple and the zero state, which is the state having 000...0 value in binary, as shown by
Equation 3.4.

φ1(s) =
√
s2 + 0 (3.4)

Secondly, we have used the Euclidean distance between the state of the current ex-
perience tuple and the one state, which is the state having 111...1 value in binary, as
shown by Equation 3.5.

23

φ2(s) =
√
s2 + (2n − 1) (3.5)

where n is the number of genes. Thirdly, we have taken the mean of the index values
of the 1 bits in the binary state value of the current experience tuple. Lastly, we have
taken the mean of the index values of the 0 bits in the binary state value of the current
experience tuple. Note that for the third and forth feature values, we assumed the
�rst bit has index value as 1. Through de�ning those four feature values, we aim to
be able to de�ne the characteristics of each experience tuple.

Note that as suggested in [8], we have used di�erent parameter vectors for each possible
actions, therefore the action does not a�ect the feature values in Equation 3.2 to 3.5.

3.3 Experimental Evaluation

This section describes the experimental evaluation of our proposed method for control-
ling gene regulation systems in terms of its solution quality. Firstly, we will compare
solution qualities of our method and the previous work of [51] on controlling GRNs
with respect to melanoma and yeast cell cycle microarray datasets [5, 63]. Secondly,
we will validate our method on a large scale gene regulation system. Lastly, we present
the time requirement of our method, and present how our method is e�cient to solve
control problems of several thousands of genes just in seconds.

3.3.1 Melanoma Application

This section describes the application of our method to melanoma dataset presented in
[5]. Melanoma dataset is composed of 8067 genes and 31 samples. It is reported that
the WNT5A gene is highly discriminating factor for metastasizing of melanoma, and
deactivating the WNT5A signi�cantly reduces the metastatic e�ect of WNT5A. Hence,
a control strategy for keeping the WNT5A deactivated may mitigate the metastasis of
melanoma [5, 12, 51, 22].

We have compared our method with the previous in�nite horizon solution for the
GRN control problem presented in [51] in terms of their solution qualities. Hence, our
experimental settings are the same as that of [51]. We considered a seven-gene subset
of the complete melanoma dataset, which are WNT5A, pirin, S100P, RET1, MART1,
HADHB, and STC2, in order, i.e., WNT5A is the most signi�cant bit and STC2 is the
least signi�cant bit in the state values. We have selected the 2nd gene, pirin, as the
input gene. Therefore, there are two possible actions de�ned in the control problem,
reversing the value of pirin, a = 1, or not reversing it, a = 0. We also set the cost
of applying an action as 1. The goal objective is to have WNT5A deactivated, its

24

expression value as 0. We set penalty of not satisfying the goal as 5. Hence, the cost
formulation mentioned in Section 3.2.1 can be realized as follows:

cost(s, a) =


0 if goal(s) and a = 0
1 if goal(s) and a = 1
5 if ¬ goal(s) and a = 0
6 if ¬ goal(s) and a = 1

(3.6)

Note that for states [0− 63] WNT5A has the value of 0, and for the remaining states
[64 − 127] WNT5A is 1 since WNT5A is the most signi�cant bit in the state values.
Hence, the states [0−63] are desirable while states [64−127] are undesirable. We also
set our discount factor in the Algorithm 3 as 0.9.

Based on these experimental settings, we obtained an approximate control policy from
our proposed method and compared it with the optimal policy obtained by the method
proposed in [51]. The following subsections show the results for the three features sets
we de�ned in Section 3.2.2, State Features, Gaussian Features, and Distance Features,
respectively.

3.3.1.1 State Feature Results

This section presents the results for our proposed method adapting Least-Squares
Fitted Q Iteration (LSFQI) to control gene regulation based on the �rst feature set we
de�ned, namely State Features. Figure 3.3 shows the average costs over the iterations
of LSFQI when we run LSFQI with the control policy it produced over the iterations
and without any control, i.e. choosing the action value as always 0. We see that
average cost is always less with control policy than without control. We also see that
average cost converges to its ultimate value at the 84th iteration.

Figure 3.4 shows the ultimate cost values for each state after the convergence again
with and without control policy. We see that cost values are less with control policy
than without control. We also see that costs of the desirable states, the states between
0 − 63 are generally less than the costs of the undesirable states, the states between
64− 127, which is also consistent with the de�nition of the problem and our solution.
Note that, these cost values are approximate cost values, which is the reason for
having negative cost for some states. Because, without approximation it is impossible
to obtain a negative cost with the cost formulation we de�ned in Equation 3.6.

Figure 3.5, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. We observe that
the two policies are almost the same, which actually proves the well-behavior of our
LSFQI based method. Because our method computes a control policy directly from
gene expression data without making use of any computational method, such as PBN.

25

Figure 3.3: Average cost over the iterations of LSFQI for State Features

Figure 3.4: Value function after convergence for State Features

26

However, the policy our proposed method produced is almost same as the one produced
by the PBN-based Value Iteration method of [51].

Figure 3.5: Policy comparison for State Features

Up to now, we have tried to present the transient behavior of our method throughout
the learning process. Now, we will give the comparative results of our method and the
previous work on controlling GRNs proposed by [51]. Remember that [51] models gene
regulation as a PBN and then tries to obtain the in�nite horizon optimal control policy
of the constructed PBN. They formulate the control problem as an MDP and apply the
Value Iteration algorithm. In our comparative experiment, we do the following. First,
we have constructed a PBN from the seven-gene melanoma dataset. It is done based
on the PBN construction algorithm presented in [60]. Then, we obtained a control
policy from the method presented in [51] and from our proposed method separately.
Lastly, we applied both of the policies to the same constructed PBN separately and
checked the steady-state probability distributions of the controlled PBNs. Note that
the method proposed by [51] used the constructed PBN to obtain a control policy.
Whereas, our method did not use the constructed PBN, but obtained a control policy
directly from the gene expression data as explained in Section 3.2. In fact, our aim
is not to control the constructed PBN, but to control directly the gene regulation
system that produced the real gene expression data. However, to be able to compare
the quality of the two produced policies, we applied the two policies separately to the
same constructed PBN and checked the steady-state probability distributions of the
controlled PBNs, which is also the way the other studies, e.g., [51, 22, 13] follow.

Figure 3.6 shows the results of the probability distributions. In the left-hand side
of Figure 3.6, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN. Note that uncontrolled PBN means to run the PBN without any

27

intervention, i.e., the action value is always 0. If we compare the two probability shifts
provided by the policy of our Batch RL based method and provided by the policy of
the existing Value Iteration based method, we see that our method is able to shift the
probability mass better than the existing method. The probability values of being in
the states 39, 53 and 55, which are among the desirable states, are signi�cantly larger
for the policy of our method while the other probability values are almost the same.
In the right-hand side of Figure 3.6, we sum the probability values of the desirable
states for both policies. As it is seen, we get 0.54 for the probability distribution of
the uncontrolled PBN; 0.96 for the probability distribution of the PBN controlled by
the existing method; and 0.98 for the probability distribution of the PBN controlled
by our method.

Figure 3.6: Steady-state probability distribution for State Features

If we compare the expected costs for the two control solutions, we see that our method
is able to reduce the expected cost near to the optimal. The expected cost for a control
solution is calculated as the dot product of the steady-state probability distribution of
the controlled PBN and the cost function, which is given below (Equation 3.7).

E[C(π)] =
N∑
s=1

p(s) · cost(s, π(s)) (3.7)

where N is the number of states, p(s) is the steady-state probability value of state s,
π is the produced control policy, and cost is the cost function de�ned in Equation 3.6.
Remember that uncontrolled PBN refers to the PBN without any intervention, i.e.,
π(s) = 0 for all the states of the uncontrolled PBN. Figure 3.7 shows the expected costs
for uncontrolled and the two controlled PBNs. The expected cost for the uncontrolled
PBN is 2.29, for the controlled PBN via Value Iteration is 0.21, and for the controlled
PBN via Batch RL is 0.40. Since Value Iteration provably produces the optimal
solution with the minimum possible expected cost of 0.21 [2], our method is able to
produce a near-optimal solution producing expected cost of 0.40, by requiring much
less time.

It is indeed a very interesting result. Because our method has nothing to do with

28

Figure 3.7: Expected costs for State Features

PBN, but its produced policy is almost the same as the optimal policy. Moreover
it works almost as successful as the optimal policy obtained over the constructed
PBN itself with the Value Iteration algorithm. Hence, it can be said that instead
of building a gene regulation model such as PBN and dealing with complex details
of the constructed computational model, a control problem can be solved by using
directly the state transitions available in the gene expression data with almost the
same solution quality. Moreover, since PBN is the most time consuming part of the
available control solutions, it reduces the time requirements of the problem greatly as
presented in detail in Section 3.3.4.

3.3.1.2 Gaussian Feature Results

This section presents the results for our proposed method adapting LSFQI to control
gene regulation based on the second feature set we de�ned, namely Gaussian Features.
We have done the same experiments with Section 3.3.1.1. Figure 3.8 shows the average
costs over the iterations of LSFQI when we run LSFQI with the control policy it
produced over the iterations and without any control, i.e. choosing the action value
as always 0. We see that average cost is always less with control policy than without
control. We also see that average cost converges to its ultimate value at the 7th

iteration.

Figure 3.9 shows the ultimate cost values for each state after the convergence again
with and without control policy. We see that cost values are less with control policy
than without control. We also see that costs of the desirable states, the states between
0 − 63 are generally less than the costs of the undesirable states, the states between
64− 127, which is also consistent with the de�nition of the problem and our solution.

29

Figure 3.8: Average cost over the iterations of LSFQI for Gaussian Features

Figure 3.9: Value function after convergence for Gaussian Features

30

Figure 3.10, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. We observe that the
two policies are almost the same, which again proves the well-behavior of our LSFQI
based method.

Figure 3.10: Policy comparison for Gaussian Features

As comparative results of our proposed LSFQI based method and previous work of [51],
we have again checked the steady-state probability distributions of the controlled PBNs
with the policy obtained by our LSFQI based method and with the policy obtained by
the method of [51]. Remember that the method proposed by [51] used the constructed
PBN to obtain a control policy. Whereas, our method did not use the constructed PBN,
but obtained a control policy directly from the gene expression data as explained in
Section 3.2. We applied the two policies separately to the same constructed PBN and
checked the steady-state probability distributions of the controlled PBNs, as the other
studies, e.g., [51, 22, 13] follow.

Figure 3.11 shows the results of the probability distributions. In the left-hand side
of Figure 3.11, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN. If we compare the two probability shifts provided by the policy
of our Batch RL based method and provided by the policy of the existing Value
Iteration based method, we see that our method and the existing method of [51] shift
the probability mass equally. The right-hand side of Figure 3.11 shows the sum of
the probability values of the desirable states for both policies. As it is seen, we get
0.54 for the probability distribution of the uncontrolled PBN; 0.96 for the probability
distribution of the PBN controlled by the existing method; and 0.96 for the probability
distribution of the PBN controlled by our method.

31

Figure 3.11: Steady-state probability distribution for Gaussian Features

If we compare the expected costs for the two control solutions, we see that our method
is able to reduce the expected cost almost optimally. We have again used the expected
cost function in Equation 3.7. Figure 3.12 shows the expected costs for uncontrolled
and the two controlled PBNs. Remember that uncontrolled PBN refers to the PBN
without any intervention, i.e., π(s) = 0 for all the states of the uncontrolled PBN.
The expected cost for the uncontrolled PBN is 2.29, for the controlled PBN via Value
Iteration is 0.21 and for the controlled PBN via Batch RL is 0.26. Since Value Iteration
provably produces the optimal solution with the minimum possible expected cost of
0.21 [2], our method is able to produce almost optimal solution producing expected
cost of 0.26, by requiring much less time.

Figure 3.12: Expected costs for Gaussian Features

3.3.1.3 Distance Feature Results

This section presents the results for our proposed method adapting LSFQI to control
gene regulation based on the third feature set we de�ned, namely Distance Features.

32

We have done the same experiments with Section 3.3.1.1 and 3.3.1.2. Figure 3.13
shows the average costs over the iterations of LSFQI when we run LSFQI with the
control policy it produced over the iterations and without any control, i.e. choosing
the action value as always 0. We see that average cost is always less with control policy
than without control. We also see that average cost converges to its ultimate value at
the 119th iteration.

Figure 3.13: Average cost over the iterations of LSFQI for Distance Features

Figure 3.14 shows the ultimate cost values for each state after the convergence again
with and without control policy. We see that cost values are less with control policy
than without control. This time costs of the desirable states and undesirable states
are similar, which we guess due to the approximation we had. Indeed, this shows
our de�ned third feature set, Distance Features, are not successful enough to capture
di�erence between experience tuples, which will be clearer in the experiments later in
this section.

Figure 3.15, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. We observe that the
two policies are almost the same, which again proves the well-behavior of our LSFQI
based method. However, we can also observe that there are more di�erence between
the two policies in Figure 3.15 than the di�erences shown in Figure 3.5 and 3.10.

As comparative results of our proposed LSFQI based method and previous work of [51],
we have again checked the steady-state probability distributions of the controlled PBNs
with the policy obtained by our LSFQI based method and with the policy obtained by
the method of [51]. Remember that the method proposed by [51] used the constructed
PBN to obtain a control policy. Whereas, our method did not use the constructed PBN,
but obtained a control policy directly from the gene expression data as explained in
Section 3.2. We applied the two policies separately to the same constructed PBN and

33

Figure 3.14: Value function after convergence for Distance Features

Figure 3.15: Policy comparison for Distance Features

34

checked the steady-state probability distributions of the controlled PBNs, as the other
studies, e.g., [51, 22, 13] follow.

Figure 3.16 shows the results of the probability distributions. In the left-hand side
of Figure 3.16, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN. If we compare the two probability shifts provided by the policy of
our Batch RL based method and provided by the policy of the existing Value Iteration
based method, we see that our method shift the probability mass worse than that of
Value Iteration, but still performing reasonably well. The right-hand side of Figure 3.16
shows the sum of the probability values of the desirable states for both policies. As it
is seen, we get 0.54 for the probability distribution of the uncontrolled PBN; 0.96 for
the probability distribution of the PBN controlled by the existing method; and 0.90

for the probability distribution of the PBN controlled by our method. Hence, although
our de�ned third feature set, Distance Features, performs reasonably well for shifting
the probability mass, it is worse than our de�ned �rst and second features sets, State
Features and Gaussian Features.

Figure 3.16: Steady-state probability distribution for Distance Features

If we compare the expected costs for the two control solutions, we see that our method
is able to reduce the expected cost close to the optimal. We have again used the
expected cost function in Equation 3.7. Figure 3.17 shows the expected costs for
uncontrolled and the two controlled PBNs. Remember that uncontrolled PBN refers
to the PBN without any intervention, i.e., π(s) = 0 for all the states of the uncontrolled
PBN. The expected cost for the uncontrolled PBN is 2.29, for the controlled PBN via
Value Iteration is 0.21 and for the controlled PBN via Batch RL is 0.51. Since Value
Iteration provably produces the optimal solution with the minimum possible expected
cost of 0.21 [2], our method is able to produce a solution that is close to the optimal
solution having expected cost of 0.51, by requiring much less time. Note that this
results also veri�es our conclusion that our de�ned third feature set performs worse
than the �rst and second feature sets we de�ned. When we compare with the existing
work of [51], however, we can still say that our third feature set performs considerably
well since it requires much less time than that of [51] and shifts the probability mass
signi�cantly.

35

Figure 3.17: Expected costs for Distance Features

3.3.2 Yeast Application

This section describes the application of our method to yeast cell cycle dataset pre-
sented in [63]. Yeast cell cycle dataset is composed of 6178 genes and 77 samples. We
have again compared our method with the previous in�nite horizon solution for the
GRN control problem presented in [51] in terms of their solution qualities.

We considered an ten-gene subset of the 25-gene yeast cell cycle dataset used by [3] and
[67]. The 25-gene dataset is a subset of the complete yeast cell cycle dataset. The genes
are MCM1, CLB5, ACE2, SWI6, MBP1, CTS1, STB1, SWI4, HTA1, and NDD1, in
order, i.e., MCM1 is the most signi�cant bit and NDD1 is the least signi�cant bit in
the state values. We have selected the 5th gene, MBP1, as the input gene. We set the
cost of applying an action as 1. The goal objective is to have MCM1 deactivated, its
expression value as 0. We set penalty of not satisfying the goal as 5. Hence, the cost
formulation is same as the one shown in Equation 3.6 Note that for states [0 − 511]

MCM1 has the value of 0, and for the remaining states [512− 1023] MCM1 is 1 since
MCM1 is the most signi�cant bit in the state values. Hence, the states [0 − 511] are
desirable while states [512− 1023] are undesirable. We also set our discount factor in
the Algorithm 3 as 0.9.

Based on these experimental settings, we obtained an approximate control policy from
our proposed method and compared it with the optimal policy obtained by the method
proposed in [51]. The following subsections show the results for the three features sets
we de�ned in Section 3.2.2, State Features, Gaussian Features, and Distance Features,
respectively.

36

3.3.2.1 State Feature Results

This section presents the results for our proposed method adapting LSFQI to control
gene regulation based on the �rst feature set we de�ned, namely State Features. Figure
3.18 shows the average costs over the iterations of LSFQI when we run LSFQI with the
control policy it produced over the iterations and without any control, i.e. choosing
the action value as always 0. We see that average cost is always less with control policy
than without control. We also see that average cost converges to its ultimate value at
the 34th iteration.

Figure 3.18: Average cost over the iterations of LSFQI for State Features

Figure 3.19 shows the ultimate cost values for each state after the convergence again
with and without control policy. We see that cost values are less with control policy
than without control. We also see that costs of the desirable states, the states between
0− 511 are generally less than the costs of the undesirable states, the states between
512−1024, which is also consistent with the de�nition of the problem and our solution.
Note that the negative values of the costs are again due to the approximation.

Figure 3.20, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. We observe that,
although the two policies have common results, they have also signi�cant di�erences
with respect to the results we obtained in Section 3.3.1. We see that for the 453

states of the all 1024 states, the policies have the same values, whereas for the rest 571

states, they have di�erent values. Hence, we can say that for yeast cell cycle dataset
our method is not as successful as it is for the melanoma dataset. The comparison
between the qualities of the policies will be analyzed in detail later in this section.

As comparative results of our proposed LSFQI based method and previous work of [51],

37

Figure 3.19: Value function after convergence for State Features

Figure 3.20: Policy comparison for State Features

38

we have again checked the steady-state probability distributions of the controlled PBNs
with the policy obtained by our LSFQI based method and with the policy obtained by
the method of [51]. Remember that the method proposed by [51] used the constructed
PBN to obtain a control policy. Whereas, our method did not use the constructed PBN,
but obtained a control policy directly from the gene expression data as explained in
Section 3.2. We applied the two policies separately to the same constructed PBN and
checked the steady-state probability distributions of the controlled PBNs, as the other
studies, e.g., [51, 22, 13] follow.

Figure 3.21 shows the results of the probability distributions. In the left-hand side
of Figure 3.21, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN. That shows both of the control policies are working correctly. If
we compare the two probability shifts provided by the policy of our Batch RL based
method and provided by the policy of the existing Value Iteration based method, we see
that our method shifts considerable amount of probability mass to desirable states, but
less than the probability shift of the optimal policy. The right-hand side of Figure 3.26
shows the sum of the probability values of the desirable states for both policies. As
it is seen, we get 0.28 for the probability distribution of the uncontrolled PBN; 0.56

for the probability distribution of the PBN controlled by the existing method; and
0.41 for the probability distribution of the PBN controlled by our method. Since
LSFQI basically applies an approximation over the gene expression data, our method
highly depends on the gene expression data we are using. Because all of the features
are derived from the data, which indeed limits our method in a sense. Therefore, it is
reasonable for our method to have worse performance than the optimal policy. Indeed,
if we count the great reduction on time requirements by our method, the performance
of 0.41 probability shift is signi�cantly good, which will be clearer by the experiments
in Section 3.3.3 and 3.3.4.

Figure 3.21: Steady-state probability distribution for State Features

Figure 3.22 shows the expected costs for uncontrolled and the two controlled PBNs.
We have again used the expected cost function in Equation 3.7. Remember that
uncontrolled PBN refers to the PBN without any intervention, i.e., π(s) = 0 for all the
states of the uncontrolled PBN. The expected cost for the uncontrolled PBN is 3.58,

39

for the controlled PBN via Value Iteration is 2.28 and for the controlled PBN via Batch
RL is 3.57. The cost of 2.28 is the minimum possible cost since it has produced by the
Value Iteration, which is provably optimal. Our method, however, can reduce the cost
value only 0.01 with respect to the uncontrolled PBN. The main reason for this is that
our method produces policies applying more actions than the optimal policy. If we
check Figure 3.20, it can be seen that there are much more 1 action's in the policy of
our method than the optimal policy. Hence, our method cannot capture the fact that
letting the PBN evolve itself both provides better probability shift and costs less. Yet,
since the approximate policy produced by our LSFQI based method shifts probability
mass reasonably well, it can still be said that our method is successful.

Figure 3.22: Expected costs for Distance Features

3.3.2.2 Gaussian Feature Results

This section presents the results for our proposed method adapting LSFQI to control
gene regulation based on the second feature set we de�ned, namely Gaussian Features.
We have done the same experiments with Section 3.3.2.1. Figure 3.23 shows the
average costs over the iterations of LSFQI when we run LSFQI with the control policy
it produced over the iterations and without any control, i.e. choosing the action value
as always 0. We see that average cost is always less with control policy than without
control. We also see that average cost converges to its ultimate value at the 114th

iteration.

Figure 3.24 shows the ultimate cost values for each state after the convergence again
with and without control policy. We see that cost values are less with control policy
than without control. We also see that, for the controlled case, costs of the desirable
states, the states between 0− 511 are generally less than the costs of the undesirable
states, the states between 512 − 1024, which is also consistent with the de�nition of
the problem and our solution.

40

Figure 3.23: Average cost over the iterations of LSFQI for Gaussian Features

Figure 3.24: Value function after convergence for Gaussian Features

41

Figure 3.25, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. Once again observe
that there is signi�cant di�erence between the obtained policies. While for 483 of the
all 1024 states, the policy values are same, the rest of the 541 states policy values are
di�erent. Hence, we can again say that, for yeast cell cycle dataset, our method is not
as successful as it is for melanoma dataset with Gaussian Features as well.

Figure 3.25: Policy comparison for Gaussian Features

As comparative results of our proposed LSFQI based method and previous work of
[51], we have again checked the steady-state probability distributions of the controlled
PBNs with the policy obtained by our LSFQI based method and with the policy
obtained by the method of [51]. We have applied the two policies separately to the
same constructed PBN and checked the steady-state probability distributions of the
controlled PBNs, as the other studies, e.g., [51, 22, 13] follow.

Figure 3.26 shows the results of the probability distributions. In the left-hand side
of Figure 3.26, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN. That shows both of the control policies are working correctly. If
we compare the two probability shifts provided by the policy of our Batch RL based
method and provided by the policy of the existing Value Iteration based method, we
again see that our method performs worse than the Value Iteration. The right-hand
side of Figure 3.26 shows the sum of the probability values of the desirable states
for both policies. As it is seen, we get 0.28 for the probability distribution of the
uncontrolled PBN; 0.56 for the probability distribution of the PBN controlled by the
existing method; and 0.43 for the probability distribution of the PBN controlled by
our method. Since State Features provide to shift the probability mass up to 0.41, we
can say that Gaussian Features are more successful for yeast cell cycle dataset. Since
our method is approximation of the optimal control policy, we can again say that the

42

performance of 0.43 probability shift is signi�cantly good in consideration with the
great reduction on time requirement of our method.

Figure 3.26: Steady-state probability distribution for Gaussian Features

Figure 3.27 shows the expected costs for uncontrolled and the two controlled PBNs.
We have again used the expected cost function in Equation 3.7. The expected cost for
the uncontrolled PBN is 3.58, for the controlled PBN via Value Iteration is 2.28 and for
the controlled PBN via Batch RL is 3.44. This time, we can reduce the expected cost
comparatively better than we have done with State Features. But still, we cannot get
close to the optimal expected cost of 2.28. Again, we can say that our method applies
unnecessary actions making the expected cost greater than the optimal expected cost.
Yet, thanks to the considerable amount of probability shift shown in Figure 3.26,
we can say that the approximate policy generated by our method is successful with
Gaussian Features, and more successful than it is with State Features.

Figure 3.27: Expected costs for Gaussian Features

3.3.2.3 Distance Feature Results

This section presents the results for our proposed method adapting LSFQI to control
gene regulation based on the third feature set we de�ned, namely Distance Features.

43

We have done the same experiments with Section 3.3.2.1 and 3.3.2.2. Figure 3.28
shows the average costs over the iterations of LSFQI when we run LSFQI with the
control policy it produced over the iterations and without any control, i.e. choosing the
action value as always 0. This time we see that there is not much di�erence between
the controlled and uncontrolled iterations of LSFQI. That means, the policy obtained
by our method with Distance Features includes many 0 actions, which has also been
shown in Figure 3.30. Since the optimal policy of the value iteration shown in Figure
3.20, 3.25 and 3.30, has many 0 actions as well, it is reasonable to have many 0 actions
in the produced policy, and to have close average cost values in the controlled and
uncontrolled iterations of the LSFQI. We also see that average cost converges to its
ultimate value at the 130th iteration.

Figure 3.28: Average cost over the iterations of LSFQI for Distance Features

Figure 3.29 shows the ultimate cost values for each state after the convergence again
with and without control policy. We observe that, although cost values of the control
policy less than that of without control for some states, it is vice versa for some other
states. For 589 states, the cost with the control policy is greater than the cost without
control; and for the rest of the 435 states, the cost with the control policy is less than
the cost without control. This is an undesired result. Although it is good to have a
policy close to the optimal policy, our algorithm is expected to provide less cost values
when its produced policy is used to calculate the costs. Hence, from the transient
behavior of the learning process of our method with Distance Features, we can say
that the approximation is not that much successful with Distance Features.

Figure 3.30, on the other hand, compares the two policies obtained from our LSFQI
based method and the previous work of [51] on the same plot. We observe that the
two policies has a lot in common with respect to the other features we have used in
Section 3.3.2.1 and 3.3.2.2. For 877 states, the two policies has the same value, while
for 147 states, they are di�erent.

44

Figure 3.29: Value function after convergence for Distance Features

Figure 3.30: Policy comparison for Distance Features

45

As comparative results of our proposed LSFQI based method and previous work of
[51], we have again checked the steady-state probability distributions of the controlled
PBNs with the policy obtained by our LSFQI based method and with the policy
obtained by the method of [51]. We have applied the two policies separately to the
same constructed PBN and checked the steady-state probability distributions of the
controlled PBNs, as the other studies, e.g., [51, 22, 13] follow.

Figure 3.31 shows the results of the probability distributions. In the left-hand side
of Figure 3.31, we see that the steady-state probability distributions are shifted from
undesirable states to the desirable states in the controlled PBNs with respect to the
uncontrolled PBN, which shows both of the produces policies are working correctly. If
we compare the two probability shifts provided by the policy of our Batch RL based
method and provided by the policy of the existing Value Iteration based method,
we observe that our method performs worse than the Value Iteration, although the
produced policies shown in Figure 3.30 has a lot of common actions. The right-hand
side of Figure 3.26 shows the sum of the probability values of the desirable states
for both policies. As it is seen, we get 0.28 for the probability distribution of the
uncontrolled PBN; 0.56 for the probability distribution of the PBN controlled by the
existing method; and 0.38 for the probability distribution of the PBN controlled by
our method. Since sum of the probability shifts were 0.41 and 0.43 for State and
Gaussian Features, respectively, we can say that our method performs worse with
Distance Features than State and Gaussian Features. This is an interesting result,
indeed. Because the produced policy of Distance Features has the most common
actions with the optimal policy with respect to the other de�ned features, while the
shift of the probability mass is the least one. Therefore, we can conclude that, despite
the commonality with the optimal policy, Distance Features cannot capture some
critical actions making the PBN evolve to the optimal probability distribution having
maximum probability mass in desirable states.

Figure 3.31: Steady-state probability distribution for Distance Features

Figure 3.32 shows the expected costs for uncontrolled and the two controlled PBNs.
We have again used the expected cost function in Equation 3.7. The expected cost
for the uncontrolled PBN is 3.58, for the controlled PBN via Value Iteration is 2.28

46

and for the controlled PBN via Batch RL is 3.17. Distance Features can reduce the
expected cost comparatively better than the State and Gaussian Features. The main
reason for this is to have less 1 actions in the produced policy of the Distance Features
as Figure 3.30 shows. But still, we cannot get close to the optimal expected cost of
2.28. Since there is not much di�erence between the approximate policy produced
by our method with Distance Features and the optimal policy, the main reason of
high expected cost is to have high probability mass in the undesirable states of the
converged PBN, which is shown by 3.31. Thanks to time requirement of our method,
the result of our approximate policy produce by Distance Features is still acceptable.
However, if it will be applied to yeast cell cycle regulation, utilization of State or
Gaussian Features would be better.

Figure 3.32: Expected costs for Distance Features

3.3.3 Large Scale Melanoma Application

This section describes the results of our method on a large scale gene regulation system.
We have used a subset of the melanoma dataset presented in [5]. We combined the
10 interacting genes presented in Table 3 of [37] and the 22 highly weighted genes
that form the major melanoma cluster presented in Figure 2b of [5]. The 10-gene set
includes the genes pirin, WNT5A, S100, RET-1, MMP-3, PHO-C, MART-1, HADHB,
synuclein and STC2. The 22-gene set includes the genes WNT5A, MART-1, pirin,
HADHB, CD63, EDNRB, PGAM1, HXB, RXRA, ESTs, integrin b1, ESTs, syndecan4,
tropomyosin1, AXL, EphA2, GAP43, PFKL, synuclein a, annexin A2, CD20 and
RAB2. Since the four genes WNT5A, pirin, MART1 and HADHB, are available in
both sets, we have 28 genes in total and 31 samples that the melanoma dataset already
provides. Table 3.1 presents the list of genes with their descriptions. Our objective is
again to have WNT5A deactivated, its expression value as 0, and use the same cost
formulation shown in Equation 3.6. We have used State Features due to their best
probability mass shift to desirable states in the experiments of melanoma dataset,

47

Section 3.3.1. We again set the WNT5A as the most signi�cant bit and STC2 as the
least signi�cant bit. Hence, the desirable states are [0 − 227) since WNT5A has its
expression value as 0, and undesirable states are [227 − 228) since WNT5A has its
expression value as 1. The input gene is also the 2nd gene, pirin. The order of the
genes in the state value representation is WNT5A, pirin, MART1, HADHB, CD63,
EDNRB, PGAM1, HXB, RXRA, ESTs, integrin b1, ESTs, syndecan4, tropomyosin1,
AXL, EphA2, GAP43, PFKL, synuclein a, annexin A2, CD20, RAB2, S100P, RET1,
MMP3, PHOC, synuclein and STC2.

We have applied our proposed method to the extended 28-gene subset of the melanoma
dataset. As in Section 3.3.1 and Section 3.3.2, we have again measured the quality
of the policy produced by our method with respect to the shift of the probability
mass from undesirable states to the desirable states in a controlled PBN. Hence, �rstly
we applied our proposed method to the 28-gene melanoma dataset and obtained an
approximate control policy for the 28-gene regulation system. Then, we constructed
the PBN of the 28-gene regulation system with the algorithm presented in [60]. We
applied the policy produced by our method to the constructed PBN and checked the
steady-state probability distribution of the controlled PBN with respect to the steady-
state probability distribution of the uncontrolled PBN. Since it is almost impossible
to plot the probability value of each possible 228 states, here, we sum the probability
values in the desirable states and in the undesirable states. Then, we compared the
probability sums of the desirable states and the undesirable states in the controlled
and uncontrolled PBNs. Figure 3.33 shows the results.

For the uncontrolled PBN, the probability sum of desirable states is 0.01 and the
undesirable states is 0.99. For the controlled PBN, on the other hand, the probability
sum of desirable states is 0.8 and the undesirable states is 0.2. This means, by applying
the policy obtained by our method to the constructed PBN, we can signi�cantly shift
the probability mass from undesirable states to desirable states. It was 0.99 probability
to be in one of the undesirable states in the uncontrolled PBN. However, this value
reduces to 0.2 if we control the PBN with respect to the control policy produced by our
method. Therefore, we can say that our method not only works for small regulatory
systems, but also solves large scale control problems; this is a good justi�cation for
verifying its robustness and e�ectiveness.

Note that, 28-gene regulatory system may not seem as large enough since our method
can easily produce control policies for regulation systems composed of several thou-
sands of genes. However, here, we verify our method with respect to a constructed
PBN as existing methods have done, and PBN construction algorithm limits our ex-
periments due to its O(dk×nk+1) time and space complexities, where n is the number
of genes, k is the maximum number of predictor genes and d is the discretization level
[60]. Actually, PBN construction algorithm does not work for regulation systems larger
than 50 genes for k = 3 and d = 2 with our current hardware con�guration, Intel i7
processor and 8-GB memory, especially due to its space requirement. Still, to the best

48

of our knowledge, it is the �rst study successfully producing a control solution for a
gene regulation system with more than 15 genes.

Figure 3.33: Large scale melanoma steady-state probability shift

3.3.4 Time Requirements

This section describes the time requirement of our proposed solution for controlling
GRNs. We show how our method signi�cantly reduces time requirements of the GRN
control problem. We again used the gene expression data presented in [5], and again
the same con�gurations explained in Section 3.3.3. This time, we gradually increased
the number of genes in the dataset from 10 genes to 8067 genes, applied our method
and checked the elapsed time to obtain a controlling policy. Figure 3.34 shows the
results. As it is shown, time increases linearly with the number of genes in the dataset
and the maximum required time to obtain a control policy for the complete gene
regulation system of 8067 genes is just about 6 seconds 1. It is a great improvement
since existing PBN-based studies cannot solve control problems even for several tens
of genes. Moreover, to our best knowledge, it is the �rst solution that can produce
policies for regulation systems with several thousands of genes.

One important point here is that LSFQI solves a regression problem at each iteration,
and regression problem scales at best quadratically in terms of the number of features.
The reason for our method scales linearly with the number of genes, i.e., number
of features, however, is that, the computation time for one iteration of the LSFQI
algorithm is not large enough to capture the quadratic relationship. To illustrate, if
the number of genes would increase to much larger numbers, such as 100.000, most
probably, the quadratic behavior would show itself clearer. This issue will be clearer

1 We have used MATLAB's pinv (Moore-Penrose pseudoinverse) function for solving the least-
squares regression problem in the Least-Squares FQI algorithm

49

when we explained the time requirement of our �rst partial observability solution in
Chapter 4, in its Section 4.6.3.

Figure 3.34: Execution time for our method

3.4 Discussion

In this chapter, we have proposed a novel method for controlling GRNs. Our algorithm
makes use of Batch Mode Reinforcement Learning to produce a control policy directly
from the gene expression data. The idea is to treat the time series gene expression
data as a sequence of experience tuples and compute an approximate policy over
those experience tuples without explicitly generating any computational model for
gene regulation such as Probabilistic Boolean Network. The reported results show
that our proposed method is successful in producing control policies with almost the
same solution qualities compared to the previous control solutions. Moreover, it can
solve control problems with several thousands of genes just in seconds, whereas existing
methods cannot solve the control problem even for several tens of genes. To the best
of our knowledge, it is the �rst study that can generate solutions for gene regulation
systems with several thousands of genes.

50

Table3.1: List of genes for the extended 28-gene melanoma dataset

Clone ID Title Gene Description
324901 WNT5A wingless-type MMTV integration

site family, member 5A
234237 pirin pirin
266361 MART1 Human melanoma antigen

recognized by T-cells (MART-1) mRNA
108208 HADHB hydroxyacyl-Coenzyme A dehydrogenase/

3-ketoacyl-Coenzyme A thiolase/
enoyl-Coenzyme A hydratase (trifunctional protein),

beta subunit
39781 CD63 CD63 antigen (melanoma 1 antigen)
49665 EDNRB endothelin receptor type B
39159 PGAM1 Phosphoglycerate mutase 1 (brain)
23185 HXB hexabrachion (tenascin C, cytotactin)
417218 RXRA Retinoid X receptor, alpha
31251 ESTs ESTs
343072 integrin, b1 integrin, beta 1 (�bronectin receptor,

beta polypeptide,
antigen CD29 includes MDF2, MSK12)

142076 ESTs ESTs
128100 syndecan4 Syndecan 4 (amphiglycan, ryudocan)
376725 tropomyosin1 Tropomyosin alpha chain (skeletal muscle)
112500 AXL AXL receptor tyrosine kinase
241530 EphA2 EphA2
44563 GAP43 growth associated protein 43
36950 PFKL Phosphofructokinase (liver type)
812276 synuclein, a synuclein, alpha (non A4 component of amyloid precursor)
51018 annexin A2 Annexin II (lipocortin II)
306013 CD20 CD20 antigen
418105 RAB2 RAB2, member RAS oncogene family
759948 S100P S100 calcium-binding protein, beta (neural)
25485 RET1 reticulon 1
324700 MMP3 matrix metalloproteinase 3 (stromelysin 1, progelatinase)
43129 PHOC phospholipase C, gamma 1 (formerly subtype 148)
40764 synuclein synuclein, alpha (non A4 component of amyloid precursor)
130057 STC2 stanniocalcin 2

51

52

CHAPTER 4

CONTROLLING GENE REGULATORY NETWORKS:
BATCH MODE TD(λ)

4.1 Introduction

There are two di�erent ways of de�ning the GRN control task. The �rst one is to
assume full observability in the environment implying that all of the genes in the gene
expression data is observable [12, 51]. Our proposed LSFQI based method in Chapter
3 solves the control problem of fully observable GRNs, for example. The second one,
on the other hand, is to assume partial observability implying that only a subset of the
genes in the gene expression data is observable [13]. Whereas full observability provides
complete information about the state of the regulation system, partial observability
provides only observation signals that are incomplete but probabilistically related with
the states of the regulation system [13]. The aim is to �nd an intervention strategy
solely based on those incomplete signals to avoid undesirable states of the system. In
this chapter, we are concentrated on controlling partially observable GRNs.

There are several studies for controlling partially observable GRNs. The study in [13]
models gene regulation as a Probabilistic Boolean Network (PBN), then tries to �nd
a �nite horizon optimal intervention strategy over the constructed PBN. Based on the
initial belief state, it branches over all possible paths in the belief space for a �nite
horizon and �nds the optimal action sequence for each time step based on the Dynamic
Programming algorithm of [4]. The study in [7] also models gene regulation as a PBN
and searches over the belief state space, but unlike the study of [13] searching all belief
space blindly, it applies AO* algorithm searching only for the beliefs that are on the
path of the optimal policy. These two studies formulates the control problem as a �nite
horizon Partially Observable Markov Decision Process (POMDP), indeed. The study
in [18], on the other hand, formulates the GRN control problem as an in�nite horizon
POMDP. Their basic di�erence from the two other previous works is that, instead
of making use of PBN for de�ning system dynamics of gene regulation, they check
the similarities between the expression patterns of genes. By solving the constructed
POMDP with the fast point-based POMDP solver symbolic Perseus [56], they produce
an in�nite horizon control policy for partially observable GRNs.

53

The basic and most important problem with the existing works for controlling partially
observable GRNs is again that none of them can solve control problems with more than
several tens of genes. The �nite horizon work of [13], scales exponentially with respect
to the horizon since it branches for all possible action & observation tuples. Their
time and space complexity is O(d(h×(o+a))), where d is the discretization level, h is
the length of the horizon, o is the number of observation genes and a is the number
of action genes. For a regulation systems of 50 genes in which 30 genes are observable
and binary discretization is used, it requires to deal with more than 1-billion belief
nodes, which is highly infeasible even to keep in the memory. Although the other
�nite horizon work of [7] employs a heuristic to decrease the search time, still they
could not scale for horizons larger than 8 even for small 7-gene regulation systems as
Section 4.6.1.2 shows in detail. Moreover, both of the �nite-horizon studies requires
to build a PBN, which already takes O(dk × nk+1) time and space complexity, where
n is the number of genes, k, is the maximum number of predictor genes and d is the
discretization level [60]. The in�nite horizon work of [18], on the other hand, requires
to solve a POMDP, which still cannot scale for large number of genes.

In this chapter, we propose a novel framework, Batch Mode TD(λ), combining Batch
Mode Reinforcement Learning (Batch RL) methods and TD(λ) algorithm for control-
ling partially observable GRNs [21, 64]. Our idea is to interpret time series gene expres-
sion data as a sequence of observations that the gene regulation system produced, and
to obtain an approximate stochastic policy directly from those observations without
estimation of the internal states of the environment [61, 30]. In their study, Singh et al.
(1994) and Jaakkola et al. (1994) have shown that stochastic policies can be arbitrar-
ily better than deterministic policies in partially observable environments. They have
also shown that, Temporal-Di�erence (TD) learning methods can produce arbitrarily
worse stochastic policies than Monte-Carlo methods in non-Markovian environments
since TD methods bootstrap, which is also pointed out by [65] in its Section 5.8 and
7.11. Hence, in our work, we have coupled Sutton's TD(λ) algorithm (1988) subsum-
ing Monte-Carlo methods, and the Batch RL method Least-Squares Fitted Q Iteration
(LSFQI) proposed by [21] to solve the control problem of partially observable GRNs.
We convert the time series gene expression samples into a series of experience tuples
and feed them into our novel Batch Mode TD(λ) framework producing an approxi-
mate stochastic policy mapping all possible observations to actions probabilistically.
By doing so, we are able to reduce the time and space complexity greatly since we get
rid of the two most time consuming processes of the previous works, inferring a PBN
from the gene expression data and solving a �nite/in�nite horizon POMDP. Figure
4.1 shows the alternative solution methods including our proposal in the box. Results
show that we can generate control policies for several thousands of genes just in sec-
onds, while existing studies get stuck even for several tens of genes. Results also show
that our approximate stochastic policies have almost the same solution qualities with
the deterministic optimal policies produced by the previous works. Moreover, to our
best knowledge, it is the �rst study proposing a Batch RL framework non-Markovian

54

decision problems with limited number of experience tuples. Since our method is in-
dependent of any computational model, it can easily be adapted for di�erent problem
domains and used for solving di�erent non-Markovian decision tasks when there are
limited number of experience tuples.

Figure 4.1: Flow of alternative control solutions

The rest of this chapter is organized as follows. Section 4.2 explains Monte-Carlo value
estimation method. Section 4.3 explains TD(λ) algorithm. Section 4.4 describes our
novel Batch Mode TD(λ) framework. Section 4.5 explains how we adapt our proposed
Batch TD(λ) framework for solving the control problem of partially observable GRNs.
Section 4.6 presents experimental evaluation of our method and Section 4.7 concludes
with a discussion.

4.2 Monte-Carlo Value Estimation

This section describes Monte-Carlo Value estimation method. An RL task can be ba-
sically solved by two approaches, Monte-Carlo (MC) learning and Temporal-Di�erence
(TD) learning. We have already explained one of the TD learning methods, Q-Learning
in Section 2.2, Algorithm 2. The basic di�erence between MC and TD learning ap-
proaches is the way they update the state-action function. TD learning methods basi-
cally bootstrap. That is, they update value of an observed state based on the value of
an observed successor state. Technically speaking, Q-learning makes use of the value
of maxa′ Q(s′, a′), which is the value of the successor state s′, in order to update the
value of current state-action pair, Q(s, a), as the Equation in Line 14 of Algorithm
2 shows. MC learning methods, however, instead of updating state-action values by
bootstrapping, take averages of the return values obtained after the experienced state-
action pairs. Note that return value of a state-action pair is future discounted sum of
rewards after visiting that state-action pair up to the end of the episode. Algorithm 4
shows the Monte-Carlo algorithm.

After generating an episode, meaning to collect a series of experience tuples from the

55

Algorithm 4: Monte-Carlo Algorithm
Input : discount factor γ, learning rate α, number of episodes E
1 for episode = 1, ..., E do
2 [Rw,St,Ac] = generateEpisode()

3 for t = 1, 2..., T do
4 Rt ←

∑T
l=t γ

l−tRw(St(l), Ac(l))

5 Q(St(t), Ac(t))← Q(St(t), Ac(t)) + α(Rt −Q(St(t), Ac(t)))

6 end

7 end
Output: Q

environment, MC calculates return values for each visited state-action pair, i.e., the
Rt's shown in Line 4; and uses it to update the state-action function Q. Note that the
way we have presented to implement MC is called as �rst-visit MC, since we use only
the �rst visits to the state-action pairs at each episode to calculate return values Rt's.
However, a state-action pair may be visited more than once in an episode. Hence, MC
can also be implemented by taking the average of return values of every visits to each
state-action pair at each episode, which is called as every-visit MC [65]. By the theory
of large numbers the state-action function will converge to the optimal state-action
function for su�ciently large number of episodes both for every-visit and �rst-visit
MC methods [65]. As it is seen, MC method has never done bootstrapping as TD
learning does.

4.3 TD(λ)

This section describes Sutton's TD(λ) algorithm (1988) [64] that we will use in our
novel Batch RL framework, Batch Mode TD(λ). TD(λ) is generalization of TD and
MC learning methods. TD(λ) provides di�erence value estimation schema for di�erent
values of λ. While TD(0) is same as TD learning algorithm, TD(1) is same as MC
learning algorithm. The idea is to combine both TD and MC learning methods into
one framework to bene�t both of them together. TD learning methods use 1-step
return to update the state-action function Q(s, a). If we check Line 14 of Algorithm 2,
it can be seen the basic update element is R(s, a) + γmaxa′ Q(s′, a′), which is actually
1-step return. MC learning methods, on the other hand, use T -step return, where
T is the length of the episode. T -step return is basically future discounted sum of
rewards up to the end of the episode. If we check Line 4 of Algorithm 4, it can be seen
that the basic update element is

∑T
l=t γ

l−tRw(St(l), Ac(l)), which is actually T -step
return. Then the question of TD(λ) is whether we can use both 1-step return and
T -step return together to update the state-action function Q. A very simple example
would be just taking the average of 1-step return and T -step return to update the
state-action function Q as Equations 4.1 to 4.4 show.

56

R
(1)
t = R(st, at) + γmax

a′
Q(s′t, a

′) (4.1)

R
(T)
t =

T∑
l=t

γl−tR(sl, al) (4.2)

Ravt =
1

2
R

(1)
t +

1

2
R

(T)
t (4.3)

Q(st, at) = Q(st, at) + α(Ravt −Q(st, at)) (4.4)

What TD(λ) does is indeed generalizing the idea of using both 1-step and T -step
returns together to update the state-action function Q. In order to do this, TD(λ)
de�nes n-step return which can be formulated as below.

R
(n)
t = R(st, at)+γR(st+1, at+1)+· · ·+γn−1R(st+n−1, at+n−1)+max

a′
Q(st+n, a

′) (4.5)

Instead of bootstrapping from next state value by using maxa′ Q(s′t, a
′) as 1-step return

does, and never bootstrapping from any state as T -step return does; n-step return uses
future discounted sum of rewards up to the (t+n−1)th time step, and bootstrap from
the (t+ n)th state value. What TD(λ) does is to update the value of the state-action
pair at time t, Q(st, at), by taking weighted averages of n-step returns, namely R(n)

t ,
for t ≤ n ≤ T , with respect to the λ value, given a T -step episode. Algorithm 5 shows
the TD(λ) algorithm. Line 2 of the Algorithm 5 generates an episode constituting a
series of experience tuples. Between Lines 4− 6, TD(λ) calculates the n-step returns.
Then, as shown by Line 7, it averages the n-step returns with respect to the λ value
to �nd the Rλt value. Lastly, it updates the value of the state-action pair St(t+ 1) and
Ac(t + 1), Q(St(t + 1), Ac(t + 1)), based on the averaged return value Rλt . TD(λ) is
the same as the MC algorithm for λ = 1 and same as the TD learning algorithm for
λ = 0. For 0 < λ < 1, it is somewhere between MC and TD learning. As λ gets close
to 1 TD(λ) get closes to MC learning, and vice versa for TD learning.

4.4 Batch Mode TD(λ) for Partially Observable Environments

This section describes our proposed Batch Mode TD(λ) algorithm for partially observ-
able environments, Least-Squares Fitted TD(λ) Iteration (LSFTDI). What we have
done is to embed Sutton's TD(λ) algorithm (1988) into the LSFQI algorithm of Ernst
et al. (2005), explained in Section 2.3.1. Our main motivation is that, in partially ob-
servable environments, where state information is incomplete, the bootstrapping e�ect

57

Algorithm 5: TD(λ) Algorithm
Input : discount factor γ, learning rate α, weight λ, number of episodes E
1 for episode = 1, ..., E do
2 [Rw,St,Ac] = generateEpisode()

3 for t = 0, 1..., (T − 1) do
4 for n = 1, 2, ..., (T − t) do
5 R

(n)
t ← Rw(t+ 1) + γRw(t+ 2) + ...+ γn−1Rw(t+ n) +

γn maxa′ Q(St(t+ n), a′))

6 end

7 Rλt ← (1− λ)[R
(1)
t + λR

(2)
t + ...+ λT−t−2R

(T−t−1)
t] + λT−t−1R

(T−t)
t

8 Q(St(t+ 1), Ac(t+ 1))←
Q(St(t+ 1), Ac(t+ 1)) + α(Rλt −Q(St(t+ 1), Ac(t+ 1)))

9 end

10 end
Output: Q

of TD learning methods, such as Watkin's Q-learning (1989), signi�cantly reduces the
quality of the produced policy [61]. The main reason for this is TD learning methods
update the value of an observed state based on the value of an observed successor
state. For example, Q-learning makes use of the value of the successor state s′ in order
to �nd the value of current state-action pair, Q(s, a), as the Equation in Line 14 of the
Algorithm 2 shows. However, since state information is incomplete, it results in accu-
mulating mistakenly observed state values into mistakenly observed other state values
[61, 65]. Therefore, Jaakkola et al. (1994) have proposed a Reinforcement Learning
(RL) algorithm for partially observable environments, which basically calculates an
action value for each observation based on the Monte-Carlo (MC) value estimation
method, and assigns a probability value for each action of observations in proportion
to the calculated observation-action values. By doing so, in their methods [30] and [61]
avoid the negative e�ect of bootstrapping of TD learning, and produce a stochastic
policy mapping observations directly to actions probabilistically without estimation
of the internal states of the partially observable environment. It has also been shown
that their MC-based stochastic policy estimation method is guaranteed to converge to
local maximum.

Motivated by the ideas of [61] and [30], and suggestions of [65] in its Section 5.8 and
7.11, we have combined LSFQI and TD(λ) algorithms into a uni�ed Batch RL algo-
rithm, LSFTDI, to solve the problem of controlling partially observable GRNs. Note
that, unlike the studies of Jaakkola et al. (1994) employing MC value estimation
method, we have used TD(λ) for estimating values of the observations. This is be-
cause TD(λ) algorithm is generalization of TD and MC learning into one framework.
Therefore, it provides di�erent value estimation schema's for di�erent values of the λ,
enabling us not only to test the validity of the proposed claim that MC methods are ac-

58

tually more successful than TD learning methods in non-Markovian environments, but
also provide a more �exible framework which can work in di�erent problem domains.

Algorithm 6 shows our proposed LSFTDI method. LSFTDI basically changes the way
of calculating the state values of the observations in the LSFQI from TD learning
to TD(λ). Instead of using the TD learning equation, ri + γmaxa′ [F (Θj)](s

′
i, a
′), to

assign target values between the lines 5− 7 of the Algorithm 3, we have embedded the
TD(λ) algorithm into the LSFQI, shown between the lines 3 − 10 of the Algorithm
6. By doing so, we propose a novel Batch RL framework for partially observable
environments. Note that the s variables in the Algorithm 3 and 5 are turned into o
in Algorithm 6 since LSFTDI works on partially observable domains, which actually
subsumes the fully observable domains.

Algorithm 6: Least-Squares Fitted TD(λ) Iteration
Input : discount factor γ, learning rate α, n-step return weight λ,

approximation mapping F, experience tuples
{(oi, ai, ri, o′i)|i = 1, 2, ..., T}

1 j ← 0, Θj ← 0, Θj+1 ← ε

2 while |Θj+1 −Θj | ≥ ε do
3 for t = 0, 1..., (T − 1) do
4 for n = 1, 2, ..., (T − t) do
5 Vt+n ← max

a′
[F (Θj)](o

′
t+n, a

′)

6 R
(n)
t ← rt+1 + γrt+2 + ...+ γn−1rt+n + γnVt+n

7 end

8 Rλt ← (1− λ)[R
(1)
t + λR

(2)
t + ...+ λT−t−2R

(T−t−1)
t] + λT−t−1R

(T−t)
t

9 Vt+1 ← Vt+1 + α(Rλt − Vt+1)

10 end
11 Θj+1 ← Θ∗, where Θ∗ ∈ arg min

Θ

∑N
i=1(Vi − [F (Θ)](oi, ai))

2

12 j ← j + 1

13 end
Output: Θj+1

As LSFQI does, LSFTDI iteratively trains a parameter vector and outputs the pa-
rameter vector when it is converged. This parameter vector will be used to �nd the
approximate action values for each possible observation. Unlike the LSFQI, however,
LSFTDI �nds a stochastic policy mapping observations into actions probabilistically.
This is done by getting the ratio of the approximate action values of observations. We
again use the Equation 2.17 to �nd the approximate action values for each observation.
Then, based on the Equation below,

π(o, ai) =
[F (Θ)](o, ai)∑k
j=1[F (Θ)](o, aj)

(4.6)

59

where k is the number of actions, we set the probability values for each action of
observations. Note that, to avoid zero divisions and distribute probability values pro-
portional to the action values fairly, sometimes, we are required to shift the action
values appropriately.

4.5 Batch Mode TD(λ) for Controlling Partially Observable GRNs

This section describes how we adapt our proposed LSFTDI algorithm to solve the
control problem of partially observable GRNs based solely on gene expression data
without making use of any computational model. What we have done is �rstly to
convert the time series gene expression data into a series of experience tuples, and
extract feature values for each experience tuple. Then, we feed the experience tuples
and feature vectors into the LSFTDI algorithm to obtain an approximate in�nite
horizon stochastic policy. Figure 4.2 shows the block diagram of our solution for
controlling partially observable GRNs. The following subsections will describe how we
convert gene expression data into a series of experience tuples, and what the features
we have used are.

Figure 4.2: Batch TD(λ) for controlling partially observable GRNs

4.5.1 Experience Tuples

This section describes how we convert gene expression data into a series of experi-
ence tuples. An experience tuple for a partially observable environment is a 4-tuple
(o, a, o′, r), where o is the current observation, a is the current action, o′ is the next
observation and r is the immediate reward. It represents one-step transition in the
environment. Here, we explain how each of the four elements of each experience tuple
is obtained from the gene expression data.

Observations: In order to de�ne how to obtain observations from the gene expression
data, we should �rstly explain states. The state of a GRN is de�ned by the discretized
form of the gene expression sample itself [12, 13]. The observation of a GRN, on the
other hand, is de�ned by assuming that we can only observe only a subset of the set
of genes in the gene expression data [13, 7]. It is done by specifying the observation
genes in the context of the control problem. The discretized expression value of the

60

observation genes of the ith and (i + 1)th samples constitute the current observation
o and the next observation o′ values for the ith experience tuple. Similar to most of
the previous studies, we have used binary discretization [13, 7]. There are 2n possible
observations given n observation genes.

Actions: The action semantics for a gene regulation system is mostly implemented
through suppressing value of a speci�c gene or a set of genes, i.e., setting its value as
0 [13, 7]. Those suppressed genes are named as input genes and should be speci�ed in
the context of the control problem. In order to obtain the action values from the gene
expression samples, we have checked the change in values of the input genes from 1 to 0

in the successive gene expression samples. For a regulation system of six genes, for ex-
ample, let the gene expression sample at time t be 111001 and at time t+1 be 001000.
If the input genes are the 2nd and 5th genes, the action value, i.e., a in the experience
tuple, at time t is 10 in binary representation since the 2nd gene has changed its value
from 1 to 0 while the 5th gene has not. There are 2k distinct actions given k input genes.

Rewards: The only remaining values to be extracted from the gene expression samples
is the reward values, i.e., r in the experience tuples. Rewards are associated with the
goal of the control problem. Goals can be de�ned as having the value of a speci�c gene
as 0 as in [13], or as reaching to a speci�c basin of attractors in the state space as in
[7]. If the state of the regulation system satis�es the goal, it is awarded by a constant
value κ. Moreover, applying an action for each input gene also has a relatively small
cost to realize it. So, the reward function can be de�ned as follows:

R(s, a) =

{
κ− n× c if goal(s)
0− n× c if ¬ goal(s)

(4.7)

where κ is the reward of being in an desirable state, n is the number of input genes
whose action value is 1, and c is the cost of action to apply for each input gene.

4.5.2 Features

This section describes the features that are built from the experience tuples obtained
from the gene expression samples. We have used the State Features explained in
Section 3.2.2. Since, this time we are in partially observable environments, we do not
have state information, but observation information. Hence, we have used the current
observation values of the experience tuples, i.e., the discretized gene expression values
itself, directly as features. That is, for each experience tuple, there are exactly as many
features as the number of observation genes, and feature values are equal to the binary
discretized expression values of observed genes, which can be formulated as below.

61

φi(o) =

{
0 if o(i) == 0

1 if o(i) == 1
(4.8)

where 0 ≤ i ≤ n, n is the number of observed genes and φi is the ith feature in the
feature vector and it is equal to the expression value of the ith gene in the discretized
gene expression sample. So, for a 15-gene regulation system in which 6 of them is
observable, an observation having binary value as 101011 has its feature vector same
as 101011. Note that as suggested in [8], we have used di�erent parameter vectors for
each possible action, therefore the action does not a�ect the feature values in Equation
4.8.

4.6 Experimental Evaluation

4.6.1 Melanoma Application

This section describes our experimental evaluation of the proposed algorithm Least-
Squares Fitted TD(λ) Iteration (LSFTDI) for controlling partially observable GRNs.
As all the three previous studies for controlling partially observable GRNs, we have
used the same melanoma dataset used by Section 3.3.1 [5] to evaluate our algorithm
[13, 7, 18]. The dataset contains 31 samples and is composed of 8067 genes. Bittner
et al. (2000) reports that WNT5A is highly discriminating factor for metastasizing of
the melanoma, and deactivating WNT5A reduces the metastatic e�ect of melanoma
signi�cantly. Therefore, a control strategy keeping WNT5A deactivated is critical to
mitigate the metastasis.

We have again considered a 7-gene subset of the complete melanoma dataset, which
are WNT5A, pirin, S100P, RET1, MART1, HADHB, and STC2, in order [13]. We
have set the κ value in the reward formulation of Equation 4.7 as 10 and set the cost
of applying an action, c value in Equation 4.7 as 1. We have set the goal objective
of the control problem as having WNT5A deactivated, meaning to have its expression
value as 0. We have set our discount factor, γ as 0.9. As LSFQI does, we have set our
learning rate α = 1. In the following subsections we will investigate the e�ect of λ for
our proposed framework LSFTDI, and present comparative results with all the three
previous works in terms of both time and solution quality.

4.6.1.1 Experiments on λ

In this section, we have investigated the e�ect of λ in our proposed Batch RL framework
for partially observable environments. We have set the input gene always as pirin,
which is one of the most frequently used input gene in controlling GRNs works [12,

62

Figure 4.3: Average reward for di�erent λ values

13, 7]. To measure the quality of the stochastic policies for di�erent values of λ, we
follow the way of Datta et al. (2004). We have constructed a Probabilistic Boolean
Network (PBN) from the 7-gene melanoma dataset and run the stochastic polices
produced by our method on the PBN until it reaches to steady state. Then, we have
checked the average rewards provided by each set of stochastic policies for di�erent
values of λ. For all possible observations in the 7-gene melanoma dataset speci�ed
above, consisting of the observations of the length 1, 2, ..., 7 summing up to 27 = 128

di�erent observations, we run LSFTDI on the 7-gene melanoma dataset for di�erent
values of λ = 0.1, 0.2, ..., 1.0, and take the average. Figure 4.3 shows the results.

What we see is that the average reward tends to increase as λ goes to 1 in a zigzag
manner. This is consistent with the claims of [61] and [30] that Monte-Carlo (MC)
methods are actually better for non-Markovian environments since TD(1) equals to
the MC method. However, we also see that the maximum three average rewards,
which are 9.2128, 9.2105 and 9.2093, are obtained when we have λ = 0.4, λ = 0.8,
λ = 1.0, respectively. This result, on the other hand, con�rms our concerns that
it is also possible to obtain successful stochastic policies for di�erent values of λ.
Because TD(0.4) and TD(0.8) performs better than both TD(0) and TD(1). Therefore,
though TD(λ) tends to perform better as λ gets close to 1, it is possible to have better
performance than TD(1) for di�erent values of λ for a non-Markovian decision problem.

4.6.1.2 Comparative Results

This section presents our comparative results with the three previous works on con-
trolling partially observable GRNs. In order to evaluate our algorithm e�ectively, we

63

Table4.1: Input & Observation genes

Input Gene(s) Observation Gene(s)
Exp #1 pirin WNT5A
Exp #2 pirin pirin, RET-1
Exp #3 WNT5A pirin, S100P, HADHB
Exp #4 WNT5A WNT5A, S100P, MART-1, STC2
Exp #5 pirin pirin, S100P, RET1, HADHB, STC2

Exp #6 WNT5A
WNTA5, pirin, S100P, MART1,

HADHB, STC2

Exp #7 pirin
WNTA5, pirin, S100P, RET1,
MART1, HADHB, STC2

have done experiments with di�erent number of observation genes and with di�erent
input genes. Table 4.1 shows speci�cations for each experiment we conduct. For all of
the experiments, we set the λ value as 1.0 due to producing one of the three maximum
average rewards in the experiments of Section 4.6.1.1. α and γ values are as in speci�ed
in Section 4.6.1.

We have compared our work with the three previous studies, Dynamic Program-
ming (DP) method of [13], AO* algorithm of [7], and in�nite horizon POMDP (Inf.
POMDP) of [18], in terms of elapsed time to produce a control policy and the quality
of the produced policy. To compare the quality of the produced policies, we again
followed the ways of the previous works. We have constructed a PBN from the 7-gene
melanoma dataset, and run it for the di�erent control policies obtained from di�erent
solutions. Then, we have checked the average rewards produced by the policies while
running the PBN under each of the control policy. Table 4.2 and 4.3 show the results.
Note that that the results in Table 4.2 and 4.3 have been obtained by averaging 500

runs of each experiment.

Note that DP of [13] and AO* of [7] are �nite-horizon. That means, the horizon should
be speci�ed in the context of the control problem. In order to compare those works
with our in�nite horizon control solution fairly, we have �rstly identi�ed maximum
horizon that DP and AO* can scale. As it is done in [7], we set the maximum time as
20 minutes and killed the processes exceeding 20 minutes to �nish. The �rst rows of
the AO* and DP in Table 4.2 and 4.3 show the maximum horizon, Hmax, values for the
two previous studies. Observe that Hmax is decreasing exponentially as the number
of observation genes increases, both for DP and AO*. This is because both of the
algorithm branch for all possible actions and observations from the initial belief state,
which takes O(d(h×(o+a))) time and space in worst case, where d is the discretization
level, h is the length of the horizon, o is the number of observation genes and a is the
number of action genes. Although AO* scales better for Exp#1 and Exp#3 than DP,
they are both far from being scalable by scaling up to Hmax of 8 for the small 7-gene

64

Table4.2: Comparative results for Exp#1− 4

Exp#1 Exp#2 Exp#3 Exp#4

AO*
Hmax 8 4 3 2
AvRew 6.86 7.05 7.37 6.55
Time 1135.7 170.34 1449.4 262.83

DP
Hmax 5 4 2 2
AvRew 6.37 7.05 6.40 6.55
Time 442.13 1036.0 22.23 283.56

Inf. POMDP
AvRew 4.49 4.53 8.82 8.84
Time 7.6 9.19 8.70 14.02

LSFTDI
fAvRew 6.09 6.56 5.70 4.82
iAvRew 9.24 9.29 9.23 9.43
Time 0.07 0.41 0.33 0.26

Table4.3: Comparative results for Exp#5− 7

Exp#5 Exp#6 Exp#7

AO*
Hmax 1 1 1
AvRew 4.55 4.25 4.75
Time 7.68 68.92 312.65

DP
Hmax 1 1 1
AvRew 4.55 4.25 4.75
Time 1.48 9.76 13.73

Inf. POMDP
AvRew 4.57 8.81 4.50
Time 18.08 34.48 101.98

LSFTDI
fAvRew 4.53 4.06 4.52
iAvRew 9.27 9.33 9.36
Time 0.43 0.54 1.43

melanoma dataset.

After identifying Hmax values for the �nite horizon works, we obtained control policies
from AO* and DP for Hmax horizon, and from LSFTDI for in�nite horizon. Then, we
have run the constructed PBN separately for Hmax number of steps with those control
policies. Time rows of Table 4.2 and 4.3 present the required time to construct the
policies and AvRew rows present the average reward per time step gathered during
the execution of the PBNs under di�erent control solutions. Since LSFTDI produces
in�nite horizon policies, we can run the PBN with the policy of LSFTDI either until
the PBN reaches to steady state, or for a �xed number of steps. iAvRew row of
LSFTDI shows the average reward for running until steady state, and fAvRew of
LSFTDI row shows the average reward for running Hmax number of steps of AO*.
We see that the required times to construct a control policy is signi�cantly less for

65

LSFTDI than it is for AO* and DP. LSFTDI always produces in�nite horizon policies
less than 2 seconds, whereas the �nite horizon studies not only get stuck for more than
1 horizon in Exp#5−#7, but also require much more time to construct a policy even
for small horizons. When we compare the AvRew values of AO* and fAvRew values
of LSFTDI, on the other hand, we see that LSFTDI is able to produce near-optimal
policies. Both AO* and DP solutions produce the optimal policy for the determined
time window, whereas our proposed LSFTDI algorithm produces an approximate and
in�nite horizon policy. Still, we see that the quality of the policies produced by LSFTDI
are comparatively good with respect to the optimal policies of the previous works since
the fAvRew values are very close to the AvRew values of AO*. Hence, we can say
that LSFTDI is able to produce control policies with much less required time without
losing signi�cant performance. Observe that, in Exp#5 − 7, AO* requires more time
than DP, which is an unexpected result actually, since AO* employs a heuristic to
improve DP. However, this case is also reported by [7] in their Section 7.3 with the
same melanoma dataset and same experimental settings. The reason is that AO*
repeatedly evaluates same belief states due to loose upper bound on the reward value
10. AO* expands the belief states only on the path of the optimal policy, and prunes
all the other belief state nodes at each iteration. Once the path of the optimal policy
changes more than one time, it may be required to expand the same belief state node
again and again, which are the cases for the Exp#5− 7.

When we check the iAvRew row of LSFTDI, we again observe a very good perfor-
mance. Since we set the κ value in Equation 4.7 as 10, maximum average reward per
time step can be at most 10. The iAvRew values are always larger than 9 indicating
a very good performance indeed. If we compare iAvRew, with the AvRew of Inf.
POMDP, we see that our method produces always better average reward than Inf.
POMDP, and always requires much less time, verifying the e�ectiveness of our method
in in�nite horizon as well.

4.6.2 Large Scale Melanoma Application

This section describes the evaluation of our scalable LSFTDI algorithm on a large-
scale melanoma dataset. We have used the same 28-gene melanoma dataset presented
in Section 3.3.3. We set the input gene as pirin and the observation genes as pirin,
MART1, CD63, EDNRB, PGAM1, integrin b1, syndecan4, tropomyosin1, EphA2,
GAP43, CD20, RET1. We select the observation genes randomly. λ, γ and α values
are as in Section 4.6.1.2.

We run LSFTDI on the 28-gene melanoma dataset with the given setting, and checked
the quality of the produced policy by running it on the PBN constructed from the
28-gene melanoma dataset. We run the PBN until it reaches to its steady-state.
The average reward per time step we get is 9.3140, which is a very good value when
compared with the iAvRew values of the Table 4.2 and 4.3.

66

Figure 4.4: Large scale melanoma steady-state probability shift

To understand better whether LSFTDI works properly for the large-scale dataset, we
also checked the steady-state probability distribution of the PBN when we run it under
the control policy of LSFTDI. Note that we set the WNT5A as the most signi�cant
bit in the gene expression data. Therefore, the states of the PBN between [0−227) has
WNT5A as deactivated, and the states of the PBN between [227−228) has WNT5A as
activated. Therefore, we can say that the states between [0−227) are desirable whereas,
the states between [227−228) are undesirable. We compared the sum of the probability
values of the desirable and undesirable states in the controlled and uncontrolled PBNs.
Figure 4.4 shows the results. We see that, the control policy produced by our LSFTDI
method is able to shift the probability mass from undesirable states to desirable states
signi�cantly. The probability value of being in one of the desirable states increases
from 0.01 to 0.63 when we control the PBN with respect to the policy produced by our
LSFTDI method, which shows the e�ectiveness of our method for a partially observable
large scale gene regulation systems.

4.6.3 Time Requirements

In this section, empirically, we tried to analyze time requirement of our method for
regulation systems of several thousands of genes. We again used the gene expression
data presented in [5]. As in Section 3.3.4, we gradually increased the number of
observation genes in the dataset from 10 genes to 8067 genes, applied our method and
checked the elapsed time to obtain a controlling policy. We set the input gene as pirin,
and the λ, γ and α as in Section 4.6.1.2. Figure 4.5 shows the results. We observe that
the maximum required time is just about 16 seconds to obtain a control policy for a
regulation system of 8067 genes. This is a great improvement since existing studies

67

Figure 4.5: Execution time

does not work for the control problems of even several tens of genes. We also observe
that the curve in Figure 4.5 presents quadratic behavior, which can be explained by
solving a regression problem at each iteration of LSFTDI scaling quadratically with
the number of features. We have used MATLAB's pinv (Moore-Penrose pseudoinverse)
function for solving the least-squares regression problems in LSFTDI.

Note that in Section 3.3.4 we have mention an important point about the linear behav-
ior of our LSFQI implementation. Although we are applying the same computational
process both in this section and Section 3.3.4, we get linear behavior for LSFQI, and
quadratic behavior for LSFTDI. We think the reason for getting quadratic behavior
for our partial observability solution, LSFTDI, is that the computation time for one
iteration of LSFTDI is considerably large comparing that of LSFQI. Because, at each
iteration, we apply TD(λ) algorithm spanning all of the experience tuples. Hence, it
is enough for LSFTDI to present its original behavior. If we the dataset we have used
in Section 3.3.4, for example, had much larger number of genes, such as 100.000, it
would most probably present quadratic behavior as well.

4.7 Discussion

In this chapter, we have proposed a novel Batch RL framework for partially observ-
able environments to solve the control problem of partially observable GRNs. Our
idea is to interpret gene expression data as a series of observations produced by the
gene regulation system we want to control, and obtain an approximate stochastic pol-
icy mapping observations to action probabilistically without estimation of the internal
states. Results show that our method is able to solve control problems of several thou-

68

sands of genes in seconds, whereas existing studies cannot solve the control problem
of several tens of genes. Results also show that the approximate policies produced
by our method has near-optimal quality with respect to the previous �nite horizon
works and better than the only existing in�nite horizon work. Moreover, to our best
knowledge, our proposed Batch TD(λ) framework is the �rst study providing approxi-
mate control policies from limited number of experience tuples in partially observable
environments. Since Batch TD(λ) is independent of any computational model, it can
easily be adapted for di�erent non-Markovian decision tasks, especially when there are
limited number of experience tuples.

69

70

CHAPTER 5

CONTROLLING GENE REGULATORY NETWORKS:
BATCH MODE POMDP LEARNING

5.1 Introduction

In this chapter, we introduce our second proposed algorithm for solving control prob-
lem of partially observable GRNs. Since the environment is partially observable, as
in Chapter 4, we do not know actual internal states of the gene regulation system.
Remember that in our previous solution presented in Chapter 4, we skip to �nd the
actual internal states of the regulation system, and produce stochastic policy mapping
observations directly to actions probabilistically. However, in our second solution for
controlling partially observable GRNs, we have �rstly tried to identify the actual in-
ternal states of the system, and then tried to solve the control problem based on the
identi�ed internal states and their relations with the observations the system produces.
Remember that observations that a gene regulation system produces are consecutive
gene expression samples.

In order to do this, we have used the ideas of POMDP learning methods presented
in [46]. POMDP learning basically means to apply Reinforcement Learning (RL) in
partially observable environments, and learn the POMDP model of the partially ob-
servable environments based on the experience tuples collected from the environment,
i.e., the interactions between the agent and the environment. The core of the POMDP
learning methods is to learn the actual internal states of the partially observable en-
vironment. Because, without learning the internal states, solving a POMDP would
always be incorrect as explained in Section 2.4. To do this, agent keeps an observation-
action function, and checks the statistical di�erences between the observation-action
values for di�erent observations [47, 45, 48, 46]. The idea is that, for the same action,
observations having similar observation-action values should be produced from similar
states, and vice versa. In our gene regulation control domain, we interpret successive
gene expression samples as successive observations produced from the gene regulation
system that we want to control, and make use of Batch Mode Reinforcement Learning
(Batch RL) methods to obtain approximate observation-action values for each possi-
ble observation-action pairs as explained in Chapter 3. Based on those approximate

71

observation-action values, we tried to identify the actual internal states of the gene
regulation system and construct a POMDP model. Note that the problem of identi-
fying the actual internal states of a partially observable environment is also called as
hidden state identi�cation problem, since internal states are hidden, and we are trying
to identify them [46]. Again, our method does not depend on a speci�c GRN model
such as Probabilistic Boolean Network (PBN), but is directly applied to the avail-
able gene expression data. Therefore, it can easily be adapted for di�erent partially
observable control problems. Results show that our POMDP construction method is
successful as it produces both faster and better solutions than all the previous studies
for controlling partially observable GRNs.

The rest of this chapter is organized as follows. Section 5.2 introduces POMDP learning
methods and hidden state identi�cation technique we used. Section 5.3 explains our
POMDP model for partially observable GRN control problem. Section 5.4 presents the
experimental evaluation of our method. Lastly, Section 5.5 concludes with a discussion.

5.2 POMDP Learning

POMDP learning is learning the POMDP model of the environment. That is, an
agent who does not know anything about the environment starts to interact with the
environment by applying its own actions, and gathers some experience tuples from
the environment. Based on those collected experiences, the agent tries to deduce the
components of the POMDP model. The common way to do this is to assume an hypo-
thetic POMDP including hypothetic set of states, state transition function, observation
function and then to re�ne them statistically based on the collected experiences [46].
Remember that a POMDP is a 6-tuple (S,O,A, T,Ω, R), where S is the �nite set of
states; O is the �nite set of observations; A is the �nite set of actions; T (s′|s, a) is the
transition function which de�nes the probability of observing state s′ by �ring action a
at state s; Ω(o|s) is the observation function which de�nes the probability of observing
observation o at state s; and R(s, a) is the immediate reward received in state s �ring
action a [9].

Let us review the components of the POMDP and try to understand which components
the agent should learn, and how this will happen. The core part of POMDP learning
tasks is to learn the internal states of the partially observable environment. This
mainly because of the fact that without knowing the internal states of the partially
observable environment we cannot apply the available RL methods to �nd a policy
as explained in Section 2.4. Note that the problem of identifying internal state of a
partially observable environment is called as hidden state identi�cation problem [46].
So, the set of states, S, component is the most critical component for the agent to
learn. In order to do this, initially, agent assumes each newly encountered observation
is produced from a di�erent internal state. Then, it collects a set of experience tuples

72

and updates its observation-action function just like it is done by Q-Learning shown in
Algorithm 2. After collecting enough number of samples, agent checks the statistical
di�erence between the observation-action values for di�erent observations. The idea
is that, for the same action, observations that do not have statistically signi�cant
di�erence between their observation-action values should be produced from the same
internal states. That leads to merge the assigned internal states into one internal
state for the observations identi�ed as having no statistically signi�cant di�erence
between their observation-action values. This operation is named as merge operation.
If there is statistically signi�cant di�erence between the observation-action values, on
the other hand, the observations are assumed to be produced from di�erent internal
state dynamics. That leads to split the assigned internal state for the observations
having statistically signi�cant di�erence between their observation-action values, if
they were assigned to be produced from the same state somehow in the learning process.
Thereby, POMDP learning methods is able to �nd the set of states component of the
POMDP model [46]. The set of observations O is learned by the observations coming
the environment. The set of actions A is known since actions are internally de�ned
by the agent. The transition function T is not known. In order to �nd it, POMDP
learning methods just counts the state transitions in the collected experience tuples,
and normalizes it. The observation function Ω is not known. It is again learned
by counting the observations observed from each identi�ed internal state. Note that
transition and observation functions are recalculated when a new internal state is
discovered and added to the set of state component. The reward function R is learned
by the reward values obtained from the environments.

There are several well-de�ned hidden state identi�cation algorithms. The Perceptual
Distinction Approach (PDA) proposes to split the collected experience tuples into two
parts and measure the statistical di�erence between the observation-action values of
the observations seen in the �rst and second part of the experiences [11]. Utile Dis-
tinction Memory (UDM) algorithm, on the other hand, checks the statistical di�erence
between the observation-action values of di�erent observations and uses the idea that
similar states would produce similar observation-action values [47]. Utile Su�x Mem-
ory (USM) builds a su�x tree from the history of the agent, so that each leaf of the
su�x tree corresponds to one state of the environment. The su�x tree is split not
only based on the statistical di�erences between the observation-action values, but
also path of of the history chain of the experience tuples [48]. Nearest Sequence Mem-
ory (NSM) algorithm again makes use of the history of the agent. For each newly
encountered observation, its idea is to average the observation-action values of the k
previous observations whose history chains are most similar to the history chain of the
newly encountered observation [45].

73

5.2.1 Hidden State Identi�cation

This section describes how we capture the statistical signi�cance between the observation-
action values. The basic di�erence between the POMDP learning methods is the way
they capture the statistical di�erence. PDA, USM and NSM extensively uses the his-
tory of the agent. UDM, on the other hand, checks the statistical di�erence between
observation-action values without making use of any history information, which makes
it less successful than USM and NSM, but much more applicable for our problem
domain. Hence, we have used UDM's hidden state identi�cation technique.

UDM computes a con�dence interval for each observation-action value based on the
Equation 5.1.

q ± t(n−1)
α/2 (

s√
n

) (5.1)

where q is the observation-action value for a speci�c observation-action pair, t(n−1)
α/2

is the Student's t function with n − 1 degrees of freedom and α/2 con�dence level,
s is the standard deviation of the observation-action values and n is the number of
observations. If, for the same action, the calculated con�dence intervals intersect for a
set of observations, it is assumed there is not statistically signi�cant di�erence between
the observations. Hence, a merge operation is applied. If con�dence intervals do not
intersect for a set of observations, they are assumed to be produced from di�erent
system dynamics. Hence, a split operation is applied.

Figure 5.1 shows a system before a merge operation; and Figure 5.2 shows the same
system after the merge operation. After merge/split operations, the probability value
of observing an observation are equal for all observations produced from the same
state. Here, it is important to note that the merging process is NP-complete, but
greedy merging works well enough [47]. At the �rst step, we merge all of the states
having overlapped con�dence intervals with the �rst state. Next, we do merging with
the kth state, which is the �rst state that has not been overlapped with the �rst state,
and we continue so on.

Figure 5.1: System before merge

74

Figure 5.2: System after merge

5.3 Batch Mode POMDP Learning for Controlling Partially Observ-

able GRNs

This section describes our novel Batch Mode POMDP Learning method building a
POMDP model directly from gene expression data for controlling partially observable
GRNs. Figure 5.3 depicts the �ow our approach. What we have done is to convert
gene expression data into experience tuples, extract feature values from the experience
tuples, and apply Least-Squares Fitted Q Iteration (LSFQI) to obtain an approxi-
mate and generalized observation-action function, just like it is done in Chapter 3,
Section 3.2. Then, based on the approximate and generalized observation-action func-
tion coming from LSFQI, we have applied the hidden state identi�cation technique
explained in Section 5.2.1, which enables us to learn the internal state of the gene reg-
ulation system, and construct the ultimate POMDP model. Note that we have used
State Features for LSFQI explained in Section 3.2.2. Note also that since we assume
gene regulation system we want to control is partially observable, the gene expression
samples constitute observations the regulation system produced, and the approximate
state-action function coming from LSFQI is approximate observation-action function,
indeed. Below, we have explained how each of six component of the POMDP model,
(S,A,O, T,Ω, C), is obtained.

Figure 5.3: Flow of our POMDP construction method

75

Set of States: We have learned the set of state component by applying the hidden
state identi�cation technique explained in Section 5.2.1. In order to this, we have
applied the same procedure explained in Chapter 3, Section 3.2 with State Features
upto LSFQI application process. Due to our problem domain, we have only a series
of gene expression samples, whose size is generally very small. Hence, the procedure
explained in Section 3.2 provides an approximate and generalized observation-action
function which enables us to apply the hidden state identi�cation technique explained
in Section 5.2.1. Based on those approximate observation-action values, we cluster the
observations into states, and get the set of state component along with their Bayesian
relationship with the observations as Figure 5.2 shows.

Set of Observations: Each gene expression sample is the concatenation of the con-
tinuous gene expression values. We assume the successive gene expression samples are
the observations that the gene regulation system produces. So, the set of observations
is the set of all possible values of gene expression samples. Since there would be in-
�nitely many number of observations if we use continuous values for gene expressions,
we discretized gene expression values. As most of the previous studies have done, we
used binary discretization [13, 7, 18]. Hence, if there are n genes, then the number
of all possible observations, i.e., the length of the set of observations |O|, is 2n. Note
that this de�nition is same as the state de�nition explained in Section 3.2.1. Since
our problem de�nition in this chapter assumes gene regulation system is partially ob-
servable, gene expression samples constitutes observations coming from the regulation
system, rather than the actual internal states.

Set of Actions: In GRN control problem, action semantics is de�ned in terms of
input genes. An input gene is the gene that the agent in the laboratory applies its
actions. The set of input genes are de�ned in the scope of the GRN control problem.
Action application, on the other hand, is to reverse the expression value of the input
genes or not reversing them. Since, we use binary discretization, action 1 means to
reverse the value of the input gene from 0 to 1, or 1 to 0; and action 0 means not to
interfere the value of the gene. There may be more than one input genes. The number
of all possible actions, i.e., the length of the set of actions |A|, is 2k if there are k input
genes.

State Transition Function: The state transition function is obtained by counting
the number of state transitions in the gene expression data. Based on the Bayesian
relationship between states and observations, we have just counted the states observed
in the gene expression data. For the states that are not observed in the gene expression
samples, it is assumed that they have transition to themselves with probability 1.0.

Observation Function: Based on the Bayesian relationships between states and
observations, we have calculated the observation probabilities as distributed equally
among the observations produced from same state. For example, if there are �ve
observations produced from the same state s, the probability of observing oi, for 1 ≤

76

i ≤ 5, in s, Ω(oi|s) = 0.2.

Cost Function: Costs are associated with the observations, i.e., gene expression
samples with respect to whether they satisfy the goal objective of the control problem
or not. A POMDP, however, requires to associate costs with states of the system.
In order to do this, for each state, we have take the probabilistic expectation of the
costs of the observations that can be produced from that state. As in Section 3.2, we
set a constant penalty for observations not satisfying the goal and �nd the expected
cost value for each state with respect to the observations produced from that state.
Equation 5.2 and 5.3 show the cost formulation.

costobservation(o, a) =

{
0 + n× c if goal(o)
κ+ n× c if ¬ goal(o)

(5.2)

coststate(s, a) = n× c+
k∑
i

Ω(oi|s)× costobservation(oi, a) (5.3)

where κ is the penalty of being in an undesirable state, n is the number of input genes
whose action value is 1, c is the cost of action to apply for each input gene, and k is
the number of observations that can be produced from state s. To illustrate, if a state
can produce 2 of 5 observations not satisfying the to goal, the total penalty for that
state is multiplied by 0.4. Goal of a control problem can be having value of a speci�c
gene as 0 or reaching to a desirable basin of attractors.

5.4 Experimental Evaluation

5.4.1 Melanoma Application

This section describes the experimental evaluation of our novel Batch Mode POMDP
Learning method for controlling partially observable GRNs on the melanoma dataset
presented in [5]. It is reported that WNT5A gene is highly discriminating factor for
metastasizing of melanoma and deactivating the WNT5A signi�cantly reduces the
metastatic e�ect of WNT5A [5, 12, 7]. Hence, a control strategy for keeping the
WNT5A deactivated may mitigate the metastasis of melanoma [12].

We have used the same LSFQI setting explained in Section 3.3.1 to obtain approximate
observation-action function. We have used seven most signi�cant genes in the complete
melanoma dataset, which are WNT5A, pirin, S100P, RET1, MART1, HADHB, and
STC2, in order [13, 7, 18]. Therefore WNT5A is the most signi�cant bit, and STC2
is the least signi�cant bit in binary observation encoding. We have selected 2nd gene,
pirin, as input gene. That is, there are two possible actions de�ned in the control
problem, reversing the value of pirin, or not reversing it. We set the cost of applying

77

an action as 1. We have de�ned the goal objective to have WNT5A deactivated and
set penalty of not satisfying the goal as 10. Hence, the cost formulation in Equation
5.2 is as following.

cost(o, a) =


0 if goal(o) and a = 0
1 if goal(o) and a = 1
10 if ¬ goal(o) and a = 0
11 if ¬ goal(o) and a = 1

(5.4)

Note that for observations between 0 − 63, WNT5A has the value of 0 and for the
remaining observations 64 − 127, WNT5A is 1. Hence, we can say that observations
between 0− 63 are desirable while observations 64− 127 are undesirable. We set the
α value as 0.05 in Equation 5.1. Note that unlike our previous partially observable
solution explained in Chapter 4, here, we did not do di�erent experiments for di�erent
number of observation genes. Instead, we assumed all the genes included in the gene
expression data constitutes the observation genes. So, for the melanoma dataset we
are using, the number observation genes is 7. It corresponds to the Exp#7 of the
experimental evaluation of our previous solution shown in Section 4.6.1.2.

Figure 5.4: State values obtained from Batch RL

Based on these experimental settings, we run LSFQI (LSFQI) algorithm on the 7-gene
melanoma dataset, and obtain the approximate and generalized observation-action
function. Figure 5.4 shows the observation values over the iterations of LSFQI. Note
that each line stands for a di�erent observation. Hence, there are 128 di�erent lines
in Figure 5.4 as required for a 7-gene regulation system. Based on those observation

78

values, we applied the hidden state identi�cation technique explained in Section 5.2.1
and construct the POMDP model for controlling the 7-gene melanoma regulation sys-
tem. We observe that we learned 26 hidden states based on the observation values
shown in Figure 5.4. We have used the point-based POMDP solver Persues [62] to
solve the POMDP we learned. We have compared our method with the previous �nite
horizon methods, Dynamic Programming (DP) of Datta et al. (2004), AO* algorithm
of Bryce and Kim (2010), the previous in�nite horizon POMDP solution of Erdogdu
et al. (2011), and our proposed solution LSFTDI for controlling partially observable
GRNs explained in Chapter 4, in terms of average reward per time step, and required
time to construct a policy.

Figure 5.5 shows the average reward per time step produced by di�erent solutions for
controlling partially observable GRNs. As shown, our novel POMDP model is able
to provide much better average reward per time step than all of the previous works,
AO* of [7], DP of [13] and previous POMDP solution of [18]. Here it is important to
note that the �nite horizon works of AO* and DP can only scale upto 1 horizon as
explained in Section 4.6.1.2, shown in Exp#7 of the Table 4.3. Remember that we set
the maximum time limit as 20 minutes, and killed the processes exceeding 20 minutes.
So, the average rewards for the �nite horizon works are just for horizon 1, which is
the reason for our POMDP model to produce greater average reward then the �nite
horizon works. Because �nite horizon works are provably optimal. Yet, the shown
results con�rm that the POMDP model we constructed works well enough to produce
more the average reward per time step than the two �nite horizon works. Moreover, our
POMDP model exceeds the in�nite horizon POMDP solution of [18], as well. Hence,
we can say that the POMDP we constructed directly from gene expression data based
on LSFQI is successful enough to produce better policies then the previous �nite and
in�nite horizon works. The only method our POMDP model cannot exceed is LSFTDI,
which is the other solution we have proposed for controlling partially observable GRNs.
Hence, once again we have veri�ed that LSFTDI is a very successful method providing
almost optimal solutions as explained in Section 4.6.1.2 as well.

Figure 5.6 shows the execution times for constructing policies for di�erent solution
methods. As it is seen AO* perform much worse than all of the methods. Although DP
solves the control problem in 13.73 seconds, this is the result for only horizon 1. This
also means that, for horizon 2, DP cannot produce a solution within 20 minute time.
Hence, we can say that the �nite horizon works of AO* and DP search entire belief
state ine�ciently. For the previous in�nite horizon work of [18], our in�nite horizon
POMDP requires less time to construct a control policy. Since, it has also been showed
that our POMDP produces better average reward then the POMDP solution of [18],
we can say that our novel POMDP solution is better than the previous in�nite horizon
POMDP work of [18] in terms of both time requirements and solution quality. For
the �nite horizon works, we can again say that our method provides reasonably good
policies providing larger average reward per time step than the �nite horizon works of

79

Figure 5.5: Average reward per time step

[13] and [7], and requires much less time providing not a �nite both an in�nite horizon
policy. Again, the only method that our POMDP solution cannot exceed is LSFTDI,
which is the other partial observability solution we proposed. LSFTDI requires only
1.43 seconds to provide a stochastic policy producing 9.36 average reward per time
step.

Observe that AO* requires more time than DP, which is an unexpected result actually,
since AO* employs a heuristic to improve DP. However, this case is also reported by [7]
in their Section 7.3 with the same melanoma dataset and same experimental settings.
The reason is that AO* repeatedly evaluates same belief states due to loose upper
bound on the reward value 10. AO* expands the belief states only on the path of the
optimal policy, and prunes all the other belief state nodes at each iteration. Once the
path of the optimal policy changes more than one time, it may be required to expand
the same belief state node again and again, which are the cases for the Exp#5− 7 of
Section 4.6.1.2 as well.

5.4.2 Yeast Application

This section describes the experimental evaluation of our POMDP model for control-
ling partially observable GRNs on the same 10-gene yeast cell cycle dataset we have
used in Chapter 3, Section 3.3.2. We have used the same LSFQI setting explained
in Section 3.3.2 to obtain approximate observation-action function. We have selected

80

Figure 5.6: Execution time

5th gene, MBP1, as input gene. That is, there are two possible actions de�ned in the
control problem, reversing the value of MBP1, or not reversing it. We set the cost of
applying an action as 1. We have de�ned the goal objective to have MCM1 deactivated
and set penalty of not satisfying the goal as 10. Hence, the cost formulation is same
as the one in Equation 5.4.

Note that for observations between 0 − 511, MCM1 has the value of 0 and for the
remaining observations 512− 1024, MCM1 is 1. Hence, we can say that observations
between 0 − 511 are desirable while observations 512 − 1024 are undesirable. We set
the α value as 0.05 in Equation 5.1. Note that unlike our previous partially observable
solution explained in Chapter 4, here, we did not do di�erent experiments for di�erent
number of observation genes. Instead, we assumed all the genes included in the gene
expression data constitutes the observation genes. So, for the melanoma dataset we
are using, the number observation genes is 10.

Based on these experimental settings, we run LSFQI (LSFQI) algorithm on the 10-gene
yeast cell cycle dataset, and obtain the approximate and generalized observation-action
function. Figure 5.7 shows the observation values over the iterations of LSFQI. Note
that each line stands for a di�erent observation. Hence, there are 1024 di�erent lines
in Figure 5.7 as required for a 10-gene regulation system. Based on those observation
values, we applied the hidden state identi�cation technique explained in Section 5.2.1
and construct the POMDP model for controlling the 10-gene yeast regulation system.
We observe that we learned 48 hidden states based on the observation values shown

81

Figure 5.7: State values obtained from Batch RL

in Figure 5.7. We have used the point-based POMDP solver Persues [62] to solve the
POMDPmodel we constructed. We have compared our method with the previous �nite
horizon methods, Dynamic Programming (DP) of Datta et al. (2004), the previous
in�nite horizon POMDP solution of Erdogdu et al. (2011), and our proposed solution
LSFTDI for controlling partially observable GRNs explained in Chapter 4, in terms of
average reward per time step, and required time to construct a policy. Note that we
could not compare our method with AO* algoritm of Bryce and Kim (2010) due their
extreme time requirement. We have run AO* on the 10-gene yeast cell cycle dataset
for horizon 1, and wait more than 12 hours for AO* to �nish. However, we could not
get any result. We anticipate the reason is again the repeated belief estimation of
AO*, which made it perform worse in terms of time requirements than DP in Section
5.4.1 as well.

Figure 5.8 shows the average reward per time step produced by di�erent solutions
for controlling partially observable GRNs. As shown, our novel POMDP model is
able to provide better average reward per time step than all of the previous works,
DP of [13] and previous POMDP solution of [18], and our previous solution LSFTDI
as well. The �nite horizon work DP can only scale upto 1 horizon as explained in
Section 4.6.1.2. So, the average rewards for DP is just for horizon 1, which is the
reason for our POMDP model to produce greater average reward then DP. Because
DP is provably optimal. Yet, the shown results con�rm that the POMDP model we
constructed works well enough to produce more the average reward per time step than
DP. Our POMDP model exceeds the in�nite horizon POMDP solution of [18], as well.

82

Figure 5.8: Average reward per time step

Hence, we can say that the POMDP we constructed directly from gene expression data
based on LSFQI is successful enough to produce better policies then the previous �nite
and in�nite horizon works. Unlike the results in Section 5.4.1, this time our POMDP
model exceeds the other method we have proposed to solve control problem of partially
observable GRNs, LSFTDI. That means, while both of the control solutions we have
proposed to control partially observable GRNs produce better control policies than the
existing works both for melanoma and yeast datasets, they cannot beat each other in
terms of the solution quality they provide. While LSFTDI is works more successfully
with melanoma dataset, our POMDP construction method produces better control
policies with yeast cell cycle dataset.

Figure 5.6 shows the execution times for constructing policies for di�erent solution
methods. As it is seen DP performs much worse than all of the methods. It requires
more than 1.5 hours to �nd a control policy for the 10-gene yeast dataset with horizon
only 1. Hence, we can again say that the �nite horizon work DP searches entire belief
state ine�ciently. For the previous in�nite horizon work of [18], our in�nite horizon
POMDP requires much less time to construct a control policy. Since, it has also been
showed that our POMDP produces better average reward then the POMDP solution
of [18], we can again say that our novel POMDP solution is better than the previous
in�nite horizon POMDP work of [18] in terms of both time requirements and solution
quality. For the �nite horizon works, we can again say that our method provides
reasonably good policies providing larger average reward per time step than the �nite

83

Figure 5.9: Execution time

horizon works of [13] and [7], and requires much less time providing not a �nite both an
in�nite horizon policy. That actually means, our proposed POMDP solution, together
with our other proposed solution LSFTDI, makes solvable many gene regulation control
problems for systems larger than several tens of genes. Again, the only method that our
POMDP solution cannot exceed in terms of time requirement is LSFTDI, which is the
other partial observability solution we proposed. LSFTDI requires only 2.31 seconds
to provide a stochastic policy producing 4.72 average reward per time step. Note
that since our POMDP solution requires reasonable amount of time, 25.99 seconds, to
�nd the control policy, it is acceptable to use for yeast application since it provides
more average reward than LSFTDI. However, as the scale of the regulation system gets
larger, indispensably, our POMDP solution will require much more time than LSFTDI.
This is basically due to the fact that, we have to solve a POMDP to construct a policy
which is intractable idealistically [9, 62].

To our best knowledge, together with our other partial observability solution LSFTDI,
our POMDP construction method are the two only studies providing approximate
control policies from limited number of experience tuples in partially observable envi-
ronments. Since both of our methods does not depend on any computational model
such as Probabilistic Boolean Network (PBN) for modeling GRNs, they both can eas-
ily be adapted for di�erent non-Markovian decision tasks, especially when there is
limitedly available experience tuples.

84

5.5 Discussion

In this chapter, we have proposed a novel algorithm, Batch Mode POMDP Learning,
for controlling partially observable GRNs constructing a POMDP directly from gene
expression data. We have assumed gene expression samples are the observations that
the gene regulation system produces and the actual states are hidden. Our method is
based on hidden state identi�cation techniques checking statistical di�erence between
observation-action values. The idea is that, for the same action, observations having
similar observation-action values should be produced from similar states. We have used
one of the Batch RL algorithms, LSFQI, to obtain an approximate and generalized
observation-action function from gene expression data for each possible observation.
We have applied hidden state identi�cation techniques to the approximate observation-
action values coming from LSFQI for learning the actual internal states of the gene
regulation system we want to control. Based on the learned internal states and their
Bayesian relationship with the observations, we have constructed the ultimate POMDP
model. Results show that our POMDP construction method is better than both �nite
and in�nite horizon previous control solutions for partially observable GRNs in terms
of both solution quality and time requirements. Our other proposed control solution for
partially observable GRNS, LSFTDI, on the other hand, worked better for melanoma
dataset and worse for yeast dataset from our constructed POMDP in terms of solution
quality. Since LSFTDI does not deal with internal states of the gene regulation system,
it always provides the fastest solution among all the previous works and our POMDP
construction method.

85

86

CHAPTER 6

MULTI-MODEL GENE EXPRESSION DATA
ENRICHMENT FRAMEWORK

6.1 Introduction

Gene expression data has vital importance for genome research. In fact most of the
research in genome research is driven by the gene expression data, and it is generally
di�cult to come up with datasets having large number of samples. Further, for small
datasets the number of genes is very high compared to number of samples. Unfortu-
nately, the low number of samples is a problem for computational methods. The low
number of samples usually decreases the con�dence levels in the results of the compu-
tational methods that work on gene expression data [55, 10, 25, 35]. Datasets might
draw an accurate picture of the underlying genome mechanics, however computation-
ally, low number of samples is a challenge regardless of the expressive power of the
data. Several domains, especially health informatics and molecular biology research
is e�ected by the low number of samples and the knowledge discovery task becomes
more challenging. An example domain where low number of samples forms a signif-
icant problem is cancer biomarkers prediction. In such studies predictive gene sets
constructed by di�erent research groups have very small number of similar genes in
general. Thus, high number of samples is necessary to construct reliable predictive
gene lists [16]. Another example domain is control domain which we have studied
in Chapter 3, Chapter 4 and Chapter 5. All of the solutions we proposed to control
GRNs are directly based on the gene expression data, and number of available gene
expression samples certainly determines our boundaries on the quality of the control
solutions.

There are several studies proposed to overcome the problem of low number of samples
of gene expression datasets. For instance, the works described in [39, 52, 68, 59] try to
obtain a formula for the number of required samples based on di�erent experimental
parameters and apply the most appropriate experiment to increase the available sam-
ples. The study in [39] proposes to repeat the microarray experiments to increase the
number of samples. The studies described in [19, 20], have applied di�erent types of
generative models and try to enhance the available data by combining the simulated

87

results from the di�erent generative models. Once they sample di�erent generative
models separately, they evaluate each sample, and selects the best ones to output.
However, both [19] and [20] employ a weak sample selection mechanism. Their sample
selection mechanism determines the quality of the generated samples based on a linear
combination of the metrics that cannot be transformed to each other. Furthermore,
in the experimental evaluations, the samples used for model building have also been
used in the metric evaluation. In other words, the training and test sets were identical,
which is a crucial drawback and makes the experimental justi�cation also weak and
unreliable.

In this chapter, we have proposed a robust multi-model gene expression data enrich-
ment framework. We have continued the line of research initiated by [17]. Our main
observation is that although there are many gene regulation models in the literature,
none of them is able to perfectly capture the system dynamics of gene regulation.
Hence, we have decided to built a comprehensive multi-model gene expression data
generation framework by integrating four di�erent computational generative models,
in which each are responsible for carrying di�erent types of relations from existing
gene expression data. Whatever the model is, single gene regulation model will most
likely converge to its own system dynamics. However, by integrating di�erent mod-
els, we are able to bene�t from di�erent models concurrently and activate the most
successful one according to the contextual information that the systems demonstrate.
Our framework �rstly builds four di�erent gene regulation models. Then, it generates
samples from all the constructed models and pool the generated samples. The pool
of generated samples is a rich source of gene expression data carrying various charac-
teristics of gene regulation. To utilize the diverse types of generated gene expression
samples e�ectively, our framework applies a multi-objective sample selection mech-
anism based on three de�ned metrics providing to evaluate generated samples from
di�erent aspects. Each generated sample is evaluated multi-objectively based on these
metrics. The samples having the best scores in terms of their metric results are out-
putted by our multi-model data generation framework at the �nal stage. Results show
that our multi-model framework is certainly much more e�ective than single compu-
tational models it includes. Moreover, the produced samples by our framework is so
valuable that it can even capture new biological relations that can not be captured
by real gene expression datasets. We have also proposed a bound for the number of
required samples to train our multi-model framework, which may give a bound for the
cost of the real life gene expression data generation experiments.

The rest of this chapter is organized as follows. Section 6.2 describes the multi-model
gene regulation approach, the de�ned metrics to evaluate the produced samples from
di�erent models, and the multi-objective selection mechanism. Section 6.3 describes
the formulation of the four generative models. Section 6.4 presents the the experimen-
tal setup. Section 6.5 presents the experimental results justifying the e�ectiveness of
our proposed sample generation method. Section 6.6 concludes with a discussion.

88

6.2 Multi-Model Approach

Multi-model gene regulation means to integrate di�erent gene regulation models into
one uni�ed framework. There are many gene regulation models, such as Probabilistic
Boolean Networks (PBNs) or Ordinary Di�erential Equations (ODEs) [60, 1]. How-
ever, each of them has di�erent intrinsic drawbacks to simulate gene regulation. Under
di�erent contextual information, di�erent models may present very di�erent results.
For one type of dataset, for example, ODE may simulate system dynamics more suc-
cessfully than PBN; whereas, for another type of dataset, PBN may simulate system
dynamics more successfully than ODE. In their study Hurley et al. (2011) [29] and
Marbach et al. (2012) [43], propose to infer Genetic Regulatory Networks (GRNs)
based on several GRN inference algorithms, such as ARACNE, BANJO, MIKANA
and SiGN-BN [44, 70, 36, 73], and to combine the inferred networks for capturing rela-
tionships more clearly and successfully, which is actually named as wisdom of crowds
by [43]. In our work, on the other hand, we also propose to compare and combine dif-
ferent gene regulation models, not over the inferred networks, but over the generated
gene expression samples. We construct alternative gene regulation models and try to
produce high quality gene expression data based on the combination of samples. That
means we propose a new way to infer a better GRN, indeed. Instead of combining
di�erent inferred networks as in [29] and [43], or improving single GRN inference algo-
rithm [73], we propose to improve the size and quality of the available gene expression
data by combining gene expression samples from di�erent computational models for
gene regulation. We enrich gene expression dataset arti�cially, and infer more realistic
GRNs based on those arti�cially enriched set of gene expression samples.

The block diagram of our proposed framework is shown in Figure 6.1. For generating
k samples from our multi-model framework, we generate k di�erent samples from
each of four generative models, which are Probabilistic Boolean Networks (PBNs),
Ordinary Di�erential Equations (ODEs), multi-objective Genetic Algorithm (GA) and
Hierarchical Markov Model (HIMM). Then, we evaluate each generated samples based
on well-de�ned three metrics and employ a multi-objective sample selection mechanism
over the three metrics to select the best k samples from the 4k samples collected
from the di�erent generative models. For the sample selection phase, each generated
sample is evaluated by three metrics that are calculated both by using training and
test data. Final samples are determined by a multi-objective selection mechanism.
This mechanism determines the quality of the generated samples separately on all
metrics and then ranks them in a multi-objective way. In the last step, the highest
scoring samples are selected for inclusion in the newly generated dataset. Note that, as
shown in Figure 6.1, except the ODE model, all of the three models works on discrete
domain. That is, they both use and produce discretized gene expression samples.
Hence, to build the PBN, GA and HIMM models, we used binary discretized values
of available gene expression samples and convert the generated binary gene expression
samples from the models into continuous samples just before feeding them into selection

89

Original Gene Expression Data

Discretization

ODE PBN GA HMM

Continuous Sampling

k Samples k Samples k Samples k Samples

Multi-Objective Selection

k Samples

Figure 6.1: Block diagram of our sample generation method.

mechanism. We have also applied a rich set of experiments for proving the e�ectiveness
of our multi-model framework and the quality of the generated samples from our multi-
model framework.

The four models employed in the process are not closely related so that each model
might contribute its own characteristics to the generated data. The �rst model is the
PBN [60]. This model is an extension of boolean networks [34]. The second model
is ODE formulation of gene regulation system. This model tries to �nd a regulation
function for the dynamics of each gene in the regulation system. Hence, the dynamic
system of each gene is associated with all other genes in terms of the internal e�ects
on each other. There are several studies about modeling gene regulations by using
ODEs. The work described in [26] proposed an algorithm named `Network Identi�ca-
tion by Multiple Regression' (NIR) by applying multiple regression to the system of
ODEs. It requires both steady-state gene expression data and knowledge of speci�c
perturbations for each gene. The work described in [15] proposed an algorithm named
`Microarray Network Identifcation' (MNI) which also requires steady-state data, but
�nds perturbations automatically from the gene expression data. The other study
about modeling gene regulation as system of ODEs is described in [1], which proposed
the algorithm `Time Series Network Identi�cation' (TSNI). TSNI can cover time se-
ries gene expression data. Besides, it can discover the perturbations of the system
automatically from the gene expression data and can be applied to very large datasets
comprised of thousands of genes. The algorithm proposed in [14] performs multiple
regression of each gene on all other genes, whereas the `Inferelator' proposed in [6]
uses L1 shrinkage method for modeling gene regulatory systems with ODEs. The al-

90

gorithm `Di�erential Equation-based Local Dynamic Bayesian Network' (DELDBN)
proposed in [40] combines di�erential equation modeling with Bayesian networks as
the name suggests. The third generative model we used is multi-objective GA. It
applies crossovers to the available gene expression samples and try to produce better
candidate samples based on a multi-objective �tness function. And the forth model
is the HIMM. HIMM constructs probabilistic Context Free Grammar rules for each
gene, based on the string of discretized gene expression values.

The three de�ned metrics are Compatibility, Diversity and Coverage measuring dif-
ferent aspects of the generated data. Compatibility measures how much the newly
generated samples are close with the original gene expression samples. Diversity mea-
sures how much the newly generated samples di�erent from the original and already
generated samples. Lastly, coverage measures how much the generated samples cover
the sample space.

• Compatibility: We want the newly generated samples to be similar to the
existing ones. For any new sample, we measure Euclidean distances to all samples
in the original dataset. The compatibility of a newly generated sample is the
mean of these calculated distance values.

• Diversity: We do not desire the new samples to be duplicates of the existing
ones. We calculate the diversity of each new sample as the change in the total
entropy of the original dataset. In order to �nd out the change in information
content, for each ith newly generated sample, we append all newly generated
samples up to i − 1 to the original dataset. Then, we calculate the entropy of
each sample in the appended dataset and sum the di�erences of entropy values
of samples. This forms a basis for the total information held by the appended
dataset. For the ith newly generated sample, we calculate the total information
with the same procedure explained above except adding just the ith newly gen-
erated sample to the previous appended dataset. By dividing the latter value of
total information by the former one we get a ratio representing the contribution
of each newly generated ith sample to the total information held by the original
dataset and the samples produced up to the (i−1)th sample. This value is taken
as diversity metric value.

• Coverage: This metric is to measure how close a new sample is to the other
samples created by our method. Coverage of a new sample is calculated as the
sum of the Euclidean distance values to all the other new samples. If a single
sample is created, the value of the coverage metric is set to the maximum of the
normalization interval.

In order to select k samples among collected 4k samples, we have usedmulti-objective
selection mechanism based on the three de�ned metrics. The mechanism is based of
Fonseca-Flemming ranking [24]. The ranking checks vector dominance between pairs

91

of samples with respect to the three metrics. For each sample, there is a 1×3 vector of
metric results. The ranking value of each sample is set as the number of samples whose
vectors of metric results strictly dominate the vector of metric results of the selected
sample. Hence, the most successful candidates are the ones that are least dominated
by the other samples. Based on Fonseca-Flemming ranking, the 4k samples are sorted
and the best k samples are chosen to output. Ties are broken randomly if necessary.
Having the multi-objective selection mechanism, we generate samples having di�erent
characteristics, which improves the e�ectiveness of our multi-model framework.

6.3 Generative Models

This section describes the four generative models that we have integrated in our multi-
model data generation framework. We can list them as following.

1. Probabilistic Boolean Network

2. Ordinary Di�erential Equations

3. Multi-Objective Genetic Algorithm

4. Hierarchical Markov Model

The idea behind all these models is to use the existing data for building up the models
and generating samples having di�erent characteristics. That provides to simulate
gene regulation much realistically and successfully.

6.3.1 Probabilistic Boolean Network

Probabilistic Boolean Networks (PBNs) model gene regulation as a collection of Boolean
Networks [60, 34]. PBN represents gene regulation as a Boolean interactions among
genes. Each gene is represented as a node and each interaction is represented as a
Boolean function and a wiring diagram. There are several Boolean functions associ-
ated with each gene and several wiring diagrams associated with each Boolean function.
Additionally, there is a probability distribution over the associated Boolean functions
and wiring diagrams for each gene. At each time t+ 1, the values of genes are deter-
mined based on the associated Boolean functions, wiring diagrams and the probability
distribution over the Boolean functions.

In order to construct a PBN, we have used the method proposed by Shmulevich et
al. [60]. It uses coe�cient of determination (COD) value for each possible Boolean
function and its wiring diagram for each gene[60]. The COD value of a Boolean
function determines the error di�erences between the constant Boolean function and

92

the actual Boolean function. For the ith gene xi, its kth Boolean function f ik and its
lth wiring diagram ωil , the COD value can be formulated as in Equation 6.1.

Cik =
∆−∆(xi, f

i
k(ω

i
l))

∆
(6.1)

where ∆ is the error for constant Boolean function and ∆(xi, f
i
k(ω

i
l)) is the error for

actual Boolean function. Among all possible Boolean functions and wiring diagrams
we are able to �nd the best estimators with respect to the COD values. Moreover, by
normalizing the COD values for each Boolean function and wiring diagram we can get
the required probability distribution to construct the PBN.

This approach is sound for choosing the best estimators among the possible Boolean
Network functions and wirings and combining these best estimators for building the
PBN. However, actually it is not possible to enumerate and evaluate all possible
Boolean Network functions and wirings. If there are n genes in the network, the
number of possible wirings for a single gene is 2n, since each wiring is a subset of
genes. Each wiring has a cardinality k, which is the cardinality of the gene subset.
Each wiring of k cardinality is associated with a Boolean function of k parameters
and a Boolean value, thus there are 2k possible functions that can be assigned to each
wiring of cardinality k. If we sum up the number of all possible Boolean functions, we
get:

2 ∗ [

(
n

0

)
.20 +

(
n

1

)
.21 +

(
n

2

)
.22 + ...+

(
n

k

)
.2k] (6.2)

For a very simple gene expression data of 20 genes, each gene has around 1 million
possible wirings and 3 billion Boolean functions should be evaluated to �nd the best
wiring and Boolean function. So, it is mandatory to restrict the wiring and Boolean
functions to a smaller set in order to be able to evaluate each and every candidate.
Hence, we have set the number of wirings and the number of Boolean functions as 3

for each gene as it is suggested in [60].

We have constructed the PBN based on the available gene expression data. We specify
the �rst [1; s - 1] samples as inputs and the last [2; s] samples as outputs of the
PBN. Hence, for each sample at time t, the output of the PBN is the sample at
t + 1. By adjusting the parameters of the PBN based on the output values obtained
from the available gene expression samples, and the COD values calculated over the
output values, we are able to construct the PBN that would best �t the available gene
expression data.

Having constructed the PBN, the network can be easily used for generating new data
by simply running the constructed PBN k times recursively. Note that we set the
initial value of the PBN as the last sample in the available gene expression sample.

93

Moreover, we use perturbation to consider the diversity in the PBN. At each time
step, there is a 0.1 of perturbation probability that the value of a gene may change
independently.

6.3.2 Ordinary Di�erential Equations

Modeling gene regulatory systems by using ordinary di�erential equations (ODEs) is
one of the oldest and common methods. Speci�cally, di�erentiation of each gene is
associated with a regulation function of the expression levels of the other genes [31]

.
xi = fi(x), (6.3)

where 1 ≤ i ≤ N,x = [x1, ..., xN]′ and N is the number of genes in the system. ODEs
provide a continuous time dynamical system framework for modeling the interactions
in a gene regulatory system. They are simple to use and powerful for capturing the
relations between all variables.

Among di�erent approaches capable of constructing the ODE model for gene regu-
lations, in this work, we have used the Time Series Network Identi�cation (TSNI)
algorithm presented in [1] due to its prevailing properties on other regulation model-
ing algorithms. TSNI is not only able to cover time series data but also can be applied
to large datasets as facilitated by the principal component analysis. Moreover, it is
able to determine the external perturbations to the system automatically from the
available data. After �nding the regulation equations by using the TSNI algorithm, it
is easy to generate new samples by just simulating the system of the ODEs.

The main task in gene regulation modeling using ODEs is to �nd the regulation func-
tions for each gene. The TSNI algorithm assumes the regulation functions have the
form

.
xi(tk) =

N∑
j=1

aijxj(tk) +

P∑
l=1

bilul(tk) (6.4)

where 1 ≤ i ≤ N, 1 ≤ k ≤ M , N is the number of genes, and M is the number of
samples in the existing data. Here xj(tk) is the gene expression level of gene j at time
tk, aij is the e�ect of gene j on gene i, bil is the e�ect of lth external perturbation to
gene i and ul(tk) is the lth external perturbation to the system at time tk.

If we combine all di�erential equations in a single matrix equation, we can rewrite
Equation (6.4) as

94

.
X(tk) = A ∗X(tk) +B ∗ U(tk) (6.5)

Here, X(tk) is the N element vector of the gene expression levels at time tk and
.
X(tk) is the N element vector of the �rst derivative of X(tk). U(tk) is the P element
perturbation vector storing the P external perturbations to the system at time tk. A is
the N ×N regulation matrix and B is the N ×P perturbation matrix. It is important
to note that U(tk) represents the P external perturbations to the system, whereas, B
represents the e�ects of the P perturbations to each of the N genes.

As ODEs provide continuous time modeling approach, TSNI converts Equation (6.5)
into its discrete time space form

X(tk+1) = Ad ∗X(tk) +Bd ∗ U(tk), (6.6)

where, Ad is the discrete time space form of regulation matrix A and Bd is the discrete
time space form of perturbation matrix B. These two matrices will be converted back
to the continuous time space form with the bilinear transformation in Equations (6.7)
and (6.8):

A =
2 ∗Ad − I

∆t ∗Ad + I
(6.7)

B = (Ad + I)−1 ∗A ∗Bd, (6.8)

where I is the identity matrix and ∆t is the sampling interval. In our study, we assume
that sampling interval is 1.

Having the compact form of di�erential equations as in Equation (6.6), the only un-
knowns are the regulation matrix Ad and the perturbation matrix Bd. X(tk+1) is the
last M − 1 data points, X(tk) is the �rst M − 1 data points and U(tk) is the M − 1

perturbations that are done to the system for each time tk. Hence, it can be said
that Ad and Bd are still N ×N and N × P matrices, respectively, whereas X(tk+1) is
N × (M − 1), X(tk) is N × (M − 1) and U(tk) is P × (M − 1) matrices.

By combining the unknowns in a single matrix, Equation (6.6) may further be rewritten
as:

X(tk+1) = H ∗ Y, (6.9)

95

where

H =
[
Ad Bd

]

Y =

[
X(tk)

U(tk)

]

In order to solve the Equation (6.9) for the two unknown matrices Ad and Bd, we
have to have M ≥ N +P , which means that the number of samples should be greater
than or equal to the sum of the number of genes and the number of perturbations.
However, the number of genes is usually much greater than the number of samples.
TSNI applies Principal Component Analysis (PCA) to overcome this problem. Matrix
Y is decomposed by singular value decomposition,

X(tk+1) = H ∗ U ∗ S ∗ V ′ (6.10)

This will provide to reduce the dimension of Equation (6.9) and take only k singular
vectors of U or V ′ depending on the number of singular values in matrix S. After
reduced the dimension of Equation (6.9), Equation (6.10) can be solved easily as
described in [1] leading to Ad and Bd. Using Equations (6.7) and (6.8), A and B can
be computed from Ad and Bd, concluding the algorithm.

There are two important points about the TSNI algorithm: the k value, i.e., the
number of principal components to be considered and the P value, i.e., the number of
external perturbations to the system. The number of principal components depends on
the noise in the data. If the noise level is very low then 3 PCs (Principle Components)
are the best, if the noise level is about 10% then 2 PCs are better and if the noise level
is higher than 10% then 1 PC works best [1]. Though this parameter may be adjusted
by the user of the system, in this study, we assume that the noise is about 10% and
take the k value as 2. The number of external perturbations to the system may also
be adjusted by the user of the system, however, in this study we set the P value to be
1 as in [1].

After �nding the regulation and perturbation matrices of the di�erential equation
model, it is easy to generate new samples from the model by just solving the system
of di�erential equations numerically. At each time tk, the system takes an N × 1

vector of gene expression levels X(tk) as input, �nds the instantaneous di�erence by
using the regulation and perturbation matrices and gives an N × 1 vector X(tk+1) as
the simulated output at time tk+1. Dynamics of the system continue by taking the
simulated output vector X(tk+1) as input vector at the next time step.

96

6.3.3 Multi-Objective Genetic Algorithm

Genetic algorithm is a popular method which have been used for solving DNA sequence
prediction, protein structure prediction or gene expression data generation [28, 53, 54,
20]. In our work, we have used multi-objective genetic algorithm method as our third
generative model, which we have adapted from the genetic algorithm data generation
method proposed in [20]. As its name suggests, our multi-objective genetic algorithm
applies multi-objective �tness function and selection mechanism.

Multi-objective genetic algorithm applies iteratively crossovers over the available indi-
viduals and try to produce better generations in terms of their �tness. Each individual
corresponds to binary value of a gene expression sample. Crossovers among the in-
dividuals are uniform crossovers [49, 66]. That is, value of each gene in the next
generation is decided based only on the value of that gene in the parent generations.

Every time the crossover step is applied, two parents should be selected among the pop-
ulation. We have used a multi-objective selection method for this task. Three criteria
we used for evaluating and selecting best samples from di�erent models, explained in
Section 6.2, are also used as �tness functions of the genetic algorithm. Compatibility,
diversity and coverage criteria are calculated for each individual in the population to
use in the selection process. Compatibility measures how much an individual is close
to the other individuals, diversity measures how much an individual is di�erent from
other individuals and coverage measures how much an individual covers the sample
space (See Section 6.2 for detailed explanations of the metrics). Compatibility and
diversity values used in the �tness function are calculated as outlined in the sample se-
lection process. However coverage value used in the sample selection process measures
the coverage value of a set of samples. For the �tness function, we need to measure the
coverage value of a single sample, thus an incremental version of the coverage calcula-
tion is used here. For measuring the coverage value of a single individual we actually
measure how the coverage of the whole population changes when the individual is
removed.

After calculating three criteria for all of the individuals in the population, a multi-
objective selection is applied. The multi-objective selection method used is based on
a ranking mechanism proposed by Fonseca and Flemming [24]. This ranking is based
on vector dominance of an individual by another individual. The ranking of a given
individual is the number of individuals in the population whose �tness values dominate
the �tness values of the given individual. After the ranking is formed by the outlined
method, the best two individuals, who are the least dominated ones in the population,
are selected as mates for the crossover phase. Ties in the ranking are randomly broken
if necessary.

The population is initialized as the original dataset and genetic algorithm steps are
applied to individuals continuously. At each step of the genetic algorithm, there is also

97

0.1 probability of mutation which may change value of a gene randomly. After the kth

iteration, genetic algorithm produces the required k many new samples.

6.3.4 Hierarchical Markov Model

Hierarchical Markov Model (HIMM) have been �rstly proposed by [71]. In his study
Witten, proposed to formulate a Probabilistic Context Free Grammar to store texts.
The idea is to group similar strings in the text and introduce a set of probabilistic
hierarchical rules to model the strings in the text. As gene expression dataset also
constitutes a set of strings, HIMM suitably �ts to integrate into our multi-model
framework as the forth generative model [20].

To be able to construct HIMM over the available gene expression data, we �rstly
discretized the gene expression samples. Then, for each gene we introduced a set of
rules that are modeling the substrings of the binary values of that gene. If there are 6

samples in the dataset, for example, and 101110 is the values of the �rst gene in the
dataset. Then HIMM introduces a rule as X → 10 and represent the 101110 string
as X11X. This is because the substring 10 is the longest common substring in the
original string. In the next iteration, a new rule will be introduced as Y → 11 and
the string X11X will be represented as XYX. This will constitute a hierarchical rule
set for each gene in the dataset. Note that there may also be uncertain rules. For a
string 110010, HIMM introduces a rule X → 1(1|0) and represents the string as X00X.
Here, the symbol X has two possible values, 11 and 10, each has a probabilistic value
to occur. For a probabilistic rule, we assumed the probability of producing di�erent
strings is shared equally among the all possible values for the rules. So, its probability
value is 0.5 for the rule X → 1(1|0) to produce 11 or 10. We also assume the longest
common substrings are matched from beginning of the string and end of the string due
to reduce the exponential search time to match substrings in the original strings.

Having constructed the HIMM, the rules for each gene can be used to generate new
samples. One important point is to generate �xed length of strings for each gene. This
may not be possible at each step since rules are derived from �xed length of strings,
which is the number of available gene expression samples in the original dataset. Hence,
to generate k samples, we run the HIMM, s times such that s ≥ k. In case, we
generate more than required number of samples for a gene, we just delete some values
randomly to obtain exactly k many samples. By concatenating the gene expression
values produced from the HIMM for each gene, we obtain the required k samples from
HIMM.

98

6.4 Experimental Setup

In order to quantitatively measure the performance and quality of the proposed frame-
work, we conducted �ve sets of experiments with three real life biological datasets and
two synthetic datasets. The following sections explain the datasets, experimental set-
tings and evaluation semantics.

6.4.1 Datasets

The �rst real life dataset we used is the gene expression pro�le of metastatic melanoma
cells [5]. This data originally contains 8067 genes and 31 samples; however, we used
seven most signi�cant genes and their expression levels [12]. We will call this dataset
as melanoma. The second real life dataset is the previously selected set of 25 genes
related to yeast cell cycle of Saccharomyces cerevisiae [67, 3]. Gene expression data
for this set of genes is available from Spellman et al. [63], consisting of 6178 genes and
77 samples in total. We will call this dataset as yeast. The third and last real life
dataset we used is siRNA disruptant dataset in human umbilical vein endothelial cells
(HUVECs) [29]. It has 379 genes relevant to Rel/NFkB family and 400 samples. We
will call this dataset as HUVECs.

Figure 6.2: The entropy and coverage values for melanoma dataset

Figure 6.3: The entropy and coverage values for yeast dataset

99

Figure 6.4: The entropy and coverage values for HUVECs dataset

In order to be able to understand the results of the experiments e�ectively, for each
real life biological dataset, the diversity and coverage values of each set of samples with
respect to their original datasets are shown in Figure 6.2, Figure 6.3 and Figure 6.4.
Here, we see that the average informational contribution of each original sample to
its original dataset (which is the diversity value of each sample) is 1.06 for melanoma
dataset, 1.03 for yeast dataset and 1.005 for HUVECs dataset. Therefore, it can be
said that the overall informational contribution of each original sample to its original
dataset is about 3.2% on average. The coverage value, which represents the average
distance of each sample to their original dataset, is 21.61 for melanoma dataset, 33.26

for yeast dataset and 24.12 for HUVECs dataset. Hence, the overall average distance
for an original sample to its original dataset is 26.33. These diversity and coverage
values will constitute the basis for results of the experiments.

We also generated two di�erent synthetic datasets for set of experiments in Sec-
tion 6.5.5. We used the tool GeneNetWeaver presented in [58] for generating the
synthetic datasets. By using the tool, we extracted two subnetworks from automat-
ically loaded E. coli network and simulated the subnetworks still by using the tool.
The �rst synthetic dataset contains 25 genes and 600 samples and the second synthetic
dataset contains 40 genes and 600 samples.

6.4.2 Experimental Settings

We conducted �ve sets of experiments to test the e�ectiveness of our framework. In
the �rst set of experiments, we generated new samples by using the two real life bio-
logical datasets, melanoma and yeast, which are composed of relatively small number
of samples, 30 and 77 samples, respectively. By using these two datasets we trained
our multi-model data enrichment framework, produced di�erent number of samples
and showed the quality of the produced samples. The important point here is we have
obtained the metric results based on all of the samples [19, 20]. That is, we trained and
tested our framework based on the same dataset. Although training the models and

100

testing the results with respect to the same dataset lowers the con�dence level of our
evaluation, small number of samples does not allow to separate the data into training
and testing parts (although the yeast dataset has enough number of samples to split
the data, we have used it in this set of experiments to see the results for di�erent
datasets). Here, we aimed to achieve the quality of the produced samples and show
the e�ectiveness of our framework when we have small number of samples to train our
model. We showed the quality of the produced samples both by evaluating the metric
results and by applying unpaired two-sample t-test to each generated dataset.

In the second set of experiments, on the other hand, we have used the yeast and
HUVECs datasets, which are composed of relatively large number of samples, 77 and
400 samples, respectively. This time we divided each dataset into two disjoint parts
for training and testing purposes. We built the models based on the training samples
and assessed the quality of the new samples based on the testing samples. The idea
is to measure the performance of our system based on the samples that the system
has not seen while building the models. Thereby, we aimed to get more con�dent
insight about the quality of the generated data by our framework and improve the
con�dence level of �rst set of experiments. We again produced di�erent number of
samples and checked the quality of the results still by evaluating the metrics and by
applying unpaired two-sample t-test to each generated dataset.

We also conducted a set of experiments for justi�cation of our multi-model data gen-
eration framework. As one of our major claims is that we can simulate the complex
internal dynamics of gene regulation by combining di�erent models together, we an-
alyzed the contribution of each single model to our multi-model framework. We gen-
erated di�erent number of samples by using our multi-model framework, and at each
generated sample set, we identi�ed which samples are generated from which model.
Based on this identi�cation, we estimated the contribution of each single model to our
multi-model framework. Moreover, we compared the metric results for the samples
that are produced by only single models and for the samples that are produced by our
multi-model framework. This set of experiments provided a con�dent veri�cation for
e�ectiveness and robustness of our multi-model framework.

In the next set of experiments, we try to understand the quality of the data gener-
ated by our framework by comparing inferred GRNs from the data generated by our
framework and from the original data. Based on a reference network and its original
dataset, we checked the precision and recall values of the inferred network of the origi-
nal dataset and the inferred network of the generated dataset. We aimed to show that
improving the quality of the original dataset with our framework leads to infer better
regulatory networks which may reveal some new biological discoveries.

Lastly, we conducted experiments on the number of required samples for training
our multi-model framework. Empirically, we tried to assess the required number of
training samples by generating datasets with increasing number of training samples

101

and checking the quality of each generated dataset with respect to the previous one.
We expect to see that after some point the increase in the number of training samples
will not improve the quality of the data generated by our multi-model framework. We
aimed to get a hypothetic number for the samples to be generated in the laboratory
environment so that the biologists can enlarge their datasets con�dently. That will not
only be a guidance on how many real samples will be enough to generate in laboratory
environment, but also will bound the cost of the experiments on gene expression data
generation.

6.4.3 Evaluation Semantics

The details of the evaluation criteria are discussed in Section 6.2. As compatibility
and coverage metrics are distance based metrics, their results are mapped into 0− 100

interval so that higher compatibility and coverage means newly generated samples are
relatively more similar to the original dataset and comprehensive in its solution space,
respectively. The diversity measure, on the other hand, represents the ratio of change
in the total entropy of the original dataset for each newly generated sample. So, it
remains as it is. One important point about diversity is that the expected diversity
value for each newly generated sample is a value greater than 1.0 because any value
greater than 1.0 means to carry new information with respect to the available samples
(See Section 6.2 for detailed explanation of diversity). For evaluation semantics, it can
be said that higher values for coverage is desired as the increase in covered sample
space improves the quality of the generated data. For compatibility and diversity
metrics, it can be said that there is a balance between them. As an optimum result we
want to have high values of compatibility and high values of diversity, which implies
that we do not duplicate the original data, and have very close samples still carrying
new information. If we have lower values of compatibility, on the other hand, lower
values of diversity is desired. Because, if the data is not close to the original data
we want it to be similar to the original one. Although this case is not an optimum
result, it may reasonably be acceptable. For the other cases, however, higher values
of compatibility and lower values of diversity, and lower values of compatibility and
higher values of diversity implies either duplication or irrelevance of original data,
respectively. After evaluating the newly generated samples by the de�ned metrics, we
applied the multi-objective selection mechanism for determining the valuable samples.

Our multi-model framework has a highly probabilistic nature. Except the ODE model,
all the other three models have probabilistic results. Hence, each step of each exper-
iment is repeated 10 times to decrease the e�ects of the probabilistic nature of our
framework. The reported metrics are the average values over 10 repetitions.

102

6.5 Experimental Evaluation

6.5.1 Experiments on Sample Quality Using Small Number of Samples

First, we want to analyze how our proposed framework performs when there is small
number of available samples. We have used both melanoma and yeast datasets to
be able to see the di�erence between the results and check the dependency of the
performance of our system to di�erent datasets. Here, the performance is evaluated
based on the complete original dataset. We have run our system 50 times, produced
10, 20, ..., 500 new samples and checked the results of the metrics. The compatibility,
diversity and coverage results are shown in Figure 6.5.

Figure 6.5: Compatibility, diversity and coverage results for di�erent number of
samples produced

For both datasets, compatibility values increase as the number of generated samples
increases. It is mainly because of the fact that system produces more similar samples
to the original dataset as the number of produced samples increases. We can say that
generated samples converge to the original dataset in terms of compatibility. This
proves that our system does not produce irrelevant but highly compatible samples with
respect to the original dataset. Moreover, if we compare the compatibility values with
respect to the coverage values of the original samples, as examined in Section 6.4.1,
we can say that our generated samples are much closer to the original samples than
the original samples are close to each other. The average coverage value of the original

103

samples is 21.61 for the melanoma dataset, and 33.26 for the yeast dataset. However,
here we have always compatibility values greater than 90.0 which is even more than
twice of the original coverage values. That means, in terms of compatibility metric,
our system achieved very good results. One critical point here is that very much high
compatibility values may lead to duplication of the original samples, which we consider
while evaluating the diversity values of the resultant samples.

Diversity values decrease as the number of produced samples increase, which is an
expected result since we are calculating the diversity values in a cumulative way. For
the ith newly generated sample, we calculated the entropy value with respect to the
samples composed of the original dataset plus all the generated samples up to the
(i − 1)th newly generated sample. There are several important points here. First, all
newly generated samples, even for 500 produced samples, have diversity value greater
than 1.0. This proves that our multi-model system produces samples always carrying
some new information with respect to the original dataset. If we combine this result
with the compatibility results, we can safely say that our system generates valuable
samples since they are both close to the original ones and always carry new information.
The other point is the comparison of diversity values of the newly generated samples
with respect to the diversity values of the original samples explained in Section 6.4.1.
For the melanoma dataset, the average diversity value for its original samples is 1.06.
In the generated datasets, on the other hand, interestingly greater diversity value
for the generated dataset is noticed up to 100 samples. Each original sample brings
6% more information to the original dataset, whereas, our newly generated samples
always bring information greater than %6 to the original dataset up to generating
100 samples. That means our system produces not only very close samples to the
original melanoma dataset as their compatibility values are so high, but also produces
samples carrying even more information than the original ones. Since we only have 31

samples in the original dataset of melanoma, con�dently generating 100 new samples
is fortunately a very good result. For generating more than 100 samples, we still have
a reasonable diversity value, which is 1.03 on average and these samples also may be
used to enrich the dataset although not having as much con�dence as for the sample
sets up to 100 samples. For the yeast dataset, the results are fairly well. Up to
generating 100 samples, we have 1.02 diversity value on the average and for rest of the
produced samples we have 1.014 average diversity value. The average diversity value
for the original yeast dataset is 1.03. Therefore, the results for the yeast dataset is not
as good as the results for the melanoma dataset. However, they are still acceptable
since their diversity values are always greater than 1.0. Hence, we can say that our
framework generates samples that are very close to the original ones and always carry
reasonably good amount of new information with respect to the original samples.

The coverage values decrease as the number of produced sample increases for the sam-
ples generated from the melanoma dataset. We can observe a similar situation for
the yeast dataset case but having proportionally greater values. This is consistent

104

with the compatibility and diversity values meaning that the generated data is getting
closer to each other. As we produce more data, the possibility of generating a sample
similar to one of the original samples increases. Hence, after some point, our generated
samples started to resemble each other, lowering the coverage value. The impressive
result here is again the comparison between the coverage values of the original samples
explained in Section 6.4.1 and the coverage values of the newly generated samples. For
the melanoma dataset, the average coverage value for the original samples is 21.64.
The coverage values for the generated samples, on the other hand, is greater than
this value up to generating 200 samples. This not only supports the claim that our
framework generates successful results mostly up to generating 100 new samples, but
also improves it up to 200 samples for the melanoma dataset. Since our framework
applies a multi-objective selection mechanism, we can say that coverage values com-
pensate the diversity values between 100 and 200 values. Therefore, up to generating
200 samples, it can be said that the generated samples have high quality. For yeast
dataset, we have even better results in terms of coverage. The average coverage value
for the original samples is 33.26 in Section 6.4.1. In the generated datasets, however,
we never have a coverage value less than 43.0. This shows that we always have greater
coverage values for the samples generated by our framework from the yeast dataset.
Although the diversity values of the generated samples from the yeast dataset is less
than the diversity values of the original samples, the multi-objective selection mech-
anism always compensate the diversity value in terms of coverage value. Therefore,
we can again say that the samples generated from the yeast dataset also have high
quality.

In order to improve our estimation on the samples generated by our framework, we
also applied unpaired two-sample t-test to the generated datasets. We compared the
generated datasets, 10, 20, ..., 500, and the original datasets with the null hypothesis
that they have normal distribution, equal means and variances. We rejected the null
hypothesis at the 5% signi�cance level and checked the results of the p-values of the t-
test for each generated dataset. T-test is applied to each gene separately. That is, each
gene's distribution is compared in the two datasets, which are the generated dataset by
our framework and the original dataset; then the mean of the p-values of the all of the
genes are plotted. Since our signi�cance level (the α-value) is 0.05 we reject the null
hypothesis for p-values less than 0.05. As we do not want that our generated samples
are signi�cantly di�erent than the original samples, we want the p-value results to be
greater than 0.05. Figure 6.6 shows the p-value results. For the melanoma dataset, we
only get close to 0.05 p-value for around 130 and 210 sample generation experiments.
Other than these, we always have a p-value higher than 0.05. Even, for experiments
generating 250 and more samples, we get higher p-values, meaning that our generated
samples poses increasingly similar distribution to the original melanoma dataset. For
the yeast dataset, on the other hand, we always have p-values between 0.3 and 0.4,
meaning that we never get close to p-value of 0.05 but have reasonably high p-values.
Hence, once again we can say that the generated datasets and the original datasets

105

always have highly similar distributions.

Figure 6.6: T-test results for di�erent number of samples produced

Having very high compatibility results, still carrying new information, spanning sample
space better than the original samples and resulting in high p-values of the t-tests, we
can say that our framework produces highly valuable samples. Although some metric
results drop at some points in the experiments, we observe that our system compensates
the decrease in one metric with an increase in another metric multi-objectively, thereby
producing high quality of samples. To give an approximate value for the number of
samples that can be generated con�dently by our framework for melanoma and yeast
datasets, we can say that it is safe to generate 200 samples from melanoma dataset
since at least two of the three metrics pose better results than the original samples.
On the other hand, it is safe to generate samples up to 500 from yeast dataset since
there are always at least two metrics having always greater values than the original
samples have.

One important point here is that all of the results of the experiments in this section
are based on original sample sets from which the generative models were already built.
Hence, it can be said that the training and test sets are same in this set of experiments,
which lowers the con�dence level of the results, indeed. Since all of used generative
models adapt a general estimation rather than learning a supervised dataset, we can
actually say that the results in this section have a reasonable con�dence level and our
framework �ts well for datasets having small number of samples. However, we believe
that our system should also be trained and tested based on di�erent datasets. This is
because, superposing di�erent models in such a big multi-model framework may lead
to over learn the internal dynamics of gene regulation, and re�ect somehow skewed or
misleading results when tested with the samples from which the models are already
built. Therefore, in the following section, we examine our experimental results based

106

not only on the training set, but also on a separated test set that our system has not
seen during the model building phase. That will certainly improve the con�dence level
of our experiments and will allow us to evaluate the results much more reliably.

6.5.2 Experiments on Sample Quality Using Large Number of Samples

In the previous section, we have evaluated our de�ned metrics with respect to the
original datasets. The aim was to measure how much valuable the newly generated
samples are relative to the original samples. Although this comparison gives fair results
and represents the quality of the generated data acceptably, we cannot be sure about
the results since the original datasets are used not only for training, but also for testing
purposes.

In this section, thereby, we have divided yeast and HUVECs datasets into two parts,
training and test sets. The reason for choosing these datasets is that they contain
relatively large number of samples. For yeast dataset we have used the �rst 50 samples
as training set and the last 27 samples as test set. For HUVECs dataset we have used
the �rst 300 samples as training set and the last 100 samples as test set. We have used
training sets for building the models, and the test sets for evaluating and selecting the
best k samples from the generated 4k samples from the 4 di�erent generative models.
We have calculated metric results relative to the training set as well to be able to see
the di�erence. As in previous section, we have run our system 50 times to produce
10, 20, ..., 500 samples and checked the results of the metrics.

In Figure 6.7, the compatibility, diversity and coverage values are shown for the gen-
erated samples from yeast dataset with respect to both training and test sets. From
the plots, it can clearly be seen that our generated samples are closer to training set
than to test set since the compatibility values are less with respect to the test set than
with respect to the training set. The diversity values of the generated samples, on the
other hand, are larger with respect to the test set than with respect to the training set.
These two results validate our intuition about the misleading evaluations and skewed
metric results when we test the generated samples with respect to the training set
itself. This is because, the generated samples seemed to be more close to the original
sample set than actually they are and less diverse from the original sample set than
actually they are. Moreover, it misleads us to estimate the results as going to be du-
plication of original samples. However, the actual results show that while we still have
reasonably high values for the compatibility metric, we have much better diversity
values. If we compare the compatibility and diversity values with those values of the
original samples explained in Section 6.4.1, the importance of the results will be more
apparent. The compatibility values are still much higher than the coverage values of
the original samples. The average coverage value of the original samples was 33.26

for yeast dataset, however, here we have always compatibility values greater than 85.0

which is even more than twice the original coverage values. Again, it means that our

107

Figure 6.7: Compatibility, diversity and coverage values based on training and test
sets for each generated sample set from yeast dataset

generated samples are much closer to the original samples than the original samples
are close to each other.

The average diversity value for the original samples was 1.03 for the yeast dataset.
Here, it can be seen that the diversity values are always less than 1.03 with respect to
the training set for the generated samples from the yeast dataset. However, we can see
that the diversity values are greater than 1.03 up to generating 100 samples and it is
about 1.02 up to generating 300 samples with respect to the test set. Therefore, we can
claim that our results are even better than we think they are since their informational
content shows itself better when it is evaluated with respect to an unseen dataset, the
test set. For yeast dataset, up to 100 samples, the generated datasets are very close
to the original samples and carry more information than the original samples carry.

The coverage values for the generated samples are very similar with respect to the
training and test sets up to generating 100 samples. After 100 samples, we generated
better samples based on the test set than based on the training set in terms of coverage.
Note that, again the coverage values are always better than the coverage values for the
original sample set explained in Section 6.4.1. This means that we always cover the
sample space better than the original dataset. Moreover, this result shows that our
multi-objective selection mechanism works e�ectively since it immediately compensate
the diversity value with coverage value after generating 100 samples. Because, after

108

100 samples the diversity values decrease below the 1.03 value, the diversity value of
the original samples, and the system compensates this decrease by generating samples
having better coverage. Therefore, for yeast dataset we con�dently claim that our
system produces very good samples especially up to generating 100 samples since all
three metrics are better than the metric results for the original samples explained in
Section 6.4.1. After that point, we still produce good samples, since the compatibility
and coverage values are much better than the values of the original ones, and the
diversity value is always greater than 1.0, which means that it always brings new
information to the available dataset.

Figure 6.8: Compatibility, diversity and coverage values based on training and test
sets for each generated sample from HUVECs

The results for the HUVECs dataset are shown in Figure 6.8. They are similar to
that of yeast dataset. The compatibility results are less with respect to the test set
compared to the training set, and the diversity values are greater with respect to the
test set compared to the training set. Again, we can say that the evaluation based
on the training set misleads us posing skewed results, and the evaluation based on
the test set shows that our samples are actually better than what we think they are.
The average coverage value for its original samples in the HUVECs dataset was found
as 24.12 in Section 6.4.1. From the plot, we can see that the average compatibility
value is about 94% which is more than four times of the value of the original samples.
Therefore, again, this means that our generated samples are much closer to the original
samples than the original samples are close to each other.

109

Moreover, the diversity values of the newly generated samples present very good re-
sults. Figure 6.8 shows that the diversity values for the generated samples are always
much better than 1.005, which is the average diversity value of the original samples
shown in Section 6.4.1. Even, it never gets below to 1.01, and up to generating 200

samples, it is 1.02 which is about four times the original diversity value. Note that,
when we calculate the diversity values with respect to the training set, we again see
that the skewed results mislead us since the values on the plot converge to a value
below 1.01 whereas the values are almost always greater than 1.01 with respect to the
test set.

The coverage values on the other hand, are almost greater than twice of the average
coverage values of the original samples calculated in Section 6.4.1, 24.12. This means
that in this set of experiments we always cover the sample space better than what the
original samples cover.

Figure 6.9: T-test results for di�erent number of samples produced

In order to improve our estimation on the samples generated by our framework, we
again applied unpaired two-sample t-test to the generated samples, 10, 20, ..., 500, from
the yeast and HUVECs datasets. The null hypothesis is again that the generated
samples have normal distribution, equal means and variances. The t-test is again
applied to each gene separately as explained in Section 6.5.1. Note that, unlike it is
done in Section 6.5.1, this time we used the separated test set in the t-tests, instead of
the whole original dataset. We reject the null hypothesis at the 5% signi�cance level
and check the results of the p-values of the t-test for each generated dataset. As before,
we reject the null hypothesis for the p-values less then 0.05. Since we do not want that
our generated samples are signi�cantly di�erent than the original samples, we want
the p-value results to be greater than 0.05. Figure 6.9 shows the p-value results. For
yeast dataset, p-values are always between 0.3 and 0.4 just like in Figure 6.6. This

110

is expected because we use the similar dataset for generating the models, instead of
using all of the 77 samples in yeast dataset, we used only 50-sample training set. Since
we always have higher values than 0.05 for the p-values, our generated samples always
have highly similar distribution with the original dataset. For the HUVECs dataset,
on the other hand, the results never get close to 0.05 but �ows between 0.18 and 0.25.
Although these results are not as high as the previous t-test results, we can still say
that our generated samples have similar distributions with the original dataset as we
never get below 0.05. The relatively lower p-values can be related to the number of
genes in the HUVECs dataset since we are applying the t-test to each gene separately.
There are 379 genes, and it is hard to perfectly maintain all of the genes' distributions
for our system. Still, we have high results of p-values implying the required sample
distribution is achieved on the average.

To give an approximate value for the number of samples that can be generated con�-
dently by our framework for yeast and HUVECs datasets we can say it is always safe
to generate samples up to 500 from the yeast dataset since there are always at least
two metric results for the generated sample sets having better values than the original
samples as in the case in Section 6.5.1. For the HUVECs dataset, it is even safer to
generate samples up to 500 since all the three metric results of the generated sample
sets have always better values than the original samples.

The metric results for the HUVECs dataset are the best we achieved up to now. First
of all, we separated the training and test sets. Therefore, we have high con�dence
level in the results of the experiments. The compatibility value is about 94%, which
is a very high result. The diversity and coverage results, on the other hand, are
always greater than the diversity and coverage values of the original ones. First time
in the experiments, we do not need to use the multi-objective mechanism, and get
always better results than the original samples. It is a very impressive result, indeed.
Because it can be stated that computationally we are able to generate many new
samples which are highly quali�ed with respect to the original samples. The complex
internal dynamics of the gene regulation can be simulated successfully by superposing
di�erent models and generating data as if it were generated by the complex internal
dynamics. This does not only show the power of the computational methods but also
provide practically quali�ed gene expression data, which can be used for many other
purposes.

We believe that the main reason for being able to generate more valuable results with
HUVECs dataset is the number of samples we used while building the models. We
have used 300 samples from HUVECs dataset for building the generative models, while
it was 50 for yeast and 31 for melanoma dataset. Therefore, if there is enough data
to train our multi-model framework, which actually will be examined in Section 6.5.5
in detail, it can be said that integrating machine learning techniques can produce
successful results for generating new samples without even trying to deal with the
details of di�erent models and the complexity of the internal dynamics of the gene

111

regulation. Instead of doing real experiments with very high costs, combining di�erent
generative models from di�erent domains and producing arti�cial new samples with
our multi-model gene expression data generation framework is a very e�ective way of
enriching the available, and generally low number of, gene expression samples.

6.5.3 Experiments on Multi-Model Justi�cation

In this section, we try to show the e�ectiveness of our multi-model approach experi-
mentally. In order to do this, we generated 10, 20, ..., 500 samples by our framework,
and checked the contribution of each model to the resultant sample set. To illustrate,
for a generated 50 samples, we checked the number of samples produced by PBN,
HIMM, genetic algorithm, and ODE separately. Then, we map those numbers into
0 − 100 interval and get a percentage value of the contributions. Figure 6.10, 6.11,
and 6.12 show the results of the contributions with respect to the number of generated
samples from melanoma, yeast and HUVECs datasets, respectively.

Figure 6.10: Contribution of each model for the samples generated from melanoma
dataset

Figure 6.10 shows the contribution percentages for the samples generated from melanoma
dataset. Up to generating 150 samples, it can be seen that the PBN generally produces
%50 of the samples, and the rest is partitioned between ODE, HIMM and genetic al-
gorithm in proportion %30, %15, and %5 respectively. However, after 150 samples,
ODE contributes to the resultant samples with increasing percentages reaching to
%70−%80 at the end. PBN mostly holds the remaining parts of the generated sam-
ples, since HIMM and genetic algorithm goes down to %2−%3 contributions. We can
say that ODE and PBN govern the multi-model framework for melanoma dataset as
the number of generated samples increases.

112

Figure 6.11: Contribution of each model for the samples generated from yeast dataset

In Figure 6.11, the contribution percentages for the samples generated from yeast
dataset is shown. Here, we see that PBN almost always contributes most among the
generative models. However, here, PBN and ODE do not have much di�erence as
in melanoma case, but fairly share contributions. PBN has contribution percentage
between %35− 40, whereas ODE has contribution percentage of %30 on the average.
Both HIMM and genetic algorithm contribute %15 on the average. We can again
say that PBN and ODE govern the multi-model framework, however the di�erence
between the contribution proportions of the generative models is relatively small with
respect to the melanoma dataset.

Figure 6.12, lastly, shows the contribution percentages for the samples generated from
HUVECs dataset. Interestingly, in this plot, the HIMM increases its contribution
signi�cantly. PBN still contributes almost %50 of the samples, however, unlike the
previous contribution results, here, HIMM governs the two other models, ODE and
genetic algorithm. Moreover, most of the time, ODE seems the worst model contribut-
ing to the system although it was reported among the two best models in Figure 6.10
and 6.11. ODE and genetic algorithm have contribution percentages as %10. This
result shows that our multi-model framework actually works very e�ectively since it
chooses samples from di�erent models with respect to the quality of the samples that
the models generated. If there would not be such a multi-model framework, instead
only single model for example, the system would have always to choose the samples
from that single model, which may lead to produce highly low quality samples. For
example, for the samples generated from the HUVECs dataset, if we used only ODE,
which is a popular model in the literature, it would be terrible since we would pro-
duce almost one-tenth quality of the samples that we are able to generate now with our
multi-model gene expression data generation framework. Therefore, we can con�dently

113

Figure 6.12: Contribution of each model for the samples generated from HUVECs
dataset

say that our multi-model framework is so robust that, even if one of the models in our
framework produces low quality samples due to some characteristics of the datasets,
other models provide to generate samples that have always high quality, which can
also be observed by the experiments in Section 6.5.1 and Section 6.5.2.

In order to show the robustness of our system, we also show the metric results for
the samples that are generated from each single model of our multi-model framework,
and the metric results for the samples that are generated from our multi-model frame-
work. Here, we have used HUVECs dataset for training and testing our framework.
We have generated 10, 20, ..., 500 samples for checking the results. Figure 6.13 shows
the compatibility, diversity and coverage values for each single model and for our
multi-model framework. As can be seen from the plot, by combining valuable samples
multi-objectively from di�erent models our system always produces samples having
better quality than a single model can produce. If we would choose samples only from
HIMM whose coverage values are better than our multi-model framework, for example,
our compatibility and diversity values would be less than the ones generated by our
multi-model framework. If we choose samples only from ODE, whose diversity val-
ues are better than our multi-model framework, the compatibility and coverage values
would be much less than the ones generated by our multi-model framework. There-
fore, we further support our claim that our multi-model approach e�ectively combines
quali�ed samples from di�erent models so that the resultant samples always have
higher quality than each single model since the results of the multi-model framework,
multi-objectively, are always better than the results of each single model.

114

Figure 6.13: Compatibility, diversity and coverage values for each single model and
for our multi-model framework

6.5.4 Gene Regulatory Network Inference

In this set of experiments, we aimed to show the e�ectiveness of our multi-model
data generation framework through showing the quality of the inferred GRNs from
the samples generated by our framework. The idea is to improve the quality of the
inferred GRN by improving the quality of the dataset that the network is inferred from,
instead of improving the algorithm that infers the network. Since many gene regulatory
inference algorithms try to improve the algorithm to infer better regulatory networks,
e.g., [44, 70, 27, 36, 73], here we propose a new way of improving quality of the inferred
regulatory networks.

We have used 14-genes reference sub-network of the yeast cell-cycle pathway obtained
from KEGG [33] presented in [72]. We extracted the original dataset of the 14 genes
from the complete dataset of the yeast cell-cycle [63]. It contains 77 samples. By using
this 77-sample-original dataset, we generated 77 new samples with our multi-model
framework. Then, we inferred two regulatory networks by using the original 77 samples
and the 77 samples generated by our framework and evaluated them with respect to
the reference network we have. The reference network is shown in Figure 6.14.

The evaluation of the inferred network is done by using the precision, recall and f-
measure metrics, which are formulated as below.

115

Figure 6.14: The reference subnetwork for yeast cell cycle

precision =
#_of_correctly_predicted_edges

#_of_predicted_edges
(6.11)

recall =
#_of_correctly_predicted_edges

#_of_edges_in_the_reference_network
(6.12)

f −measure = 2 ∗ precision ∗ recall
precision+ recall

(6.13)

We have used two di�erent network inference algorithms for obtaining the networks.
The �rst algorithm is BANJO presented in [73], which obtains a dynamic Bayesian
network from the gene expression data. The second algorithm is ARACNE presented
in [44], which obtains a GRN based on mutual information. Note that the two algo-
rithms are designed to work on di�erent types of data in the ideal case. BANJO tries
to capture the system dynamics by using time series gene expression data, whereas,

116

Dataset Precision Recall F-measure
Original 0.3846 0.0962 0.1538
Arti�cial 0.4211 0.1538 0.2253

Table6.1: Network evaluations for BANJO algorithm

ARACNE obtains a network by using steady-state gene expression data. We have used
di�erent types of algorithms to be able to see the e�ectiveness of our framework more
clearly.

Figure 6.15: The regulatory network obtained from original dataset using BANJO

The networks obtained from the BANJO algorithm using the original dataset and
using the samples generated by our framework are shown in Figure 6.15 and 6.16,
respectively. The results on precision, recall and f-measure metrics are shown in Ta-
ble 6.1. As can be seen from Figures 6.15 and 6.16, the network inferred from the
original dataset has predicted 5 correct edges, whereas the network inferred from the
samples generated by our framework predicted 8 correct edges. This is an important
improvement in the regulatory network. Moreover, the three metric results, precision,
recall and f-measure values, are all greater for the network obtained from the generated
dataset compared to the network obtained from the original dataset. Having better
precision value means that false positive edge ratio is also better for the network in-
ferred from the generated data. Having better recall value means that the network
inferred from the generated data covers the reference subnetwork better. Hence, we

117

Figure 6.16: The regulatory network obtained from samples generated by our frame-
work using BANJO

can safely say that the network inferred from the generated dataset is better than the
one inferred from original dataset.

The networks obtained from the ARACNE algorithm using the original dataset and the
samples generated by our framework are shown in Figure 6.17 and 6.18, respectively.
Results on precision, recall and f-measure metrics are shown in Table 6.2. Note that
we have taken the p-value which determines the the threshold for mutual information
in the ARACNE algorithm as 10−6 since ARACNE is able to produce safe results for
p-values up to 10−4 as stated in [44]. ARACNE infers undirected networks, therefore
we have removed the direction of the edges in the reference network to be able compare
the inferred networks. The network in Figure 6.18 shows that our generated dataset
produced very good results with the ARACNE algorithm. From 38 undirected total
number of edges in the reference network, ARACNE predicted 24 correct edges by
using the dataset produced by our framework. The number of correctly predicted
edges in the network inferred from the original dataset, on the other hand, is only 3,
which is a very low number compared to the 24 correctly predicted edges from our

118

Figure 6.17: The regulatory network obtained from original dataset using ARACNE

generated dataset. Moreover, the precision, recall and f-measure values are also much
better for the network inferred from our generated dataset than for the network inferred
from the original dataset. Based on the precision values we can say that our dataset
improves not only the number of correctly predicted edges but also the precision, i.e.,
the ratio of correctly predicted edges over the false positive edges. The recall values
are much better for the network inferred from the generated data since the number of
correctly predicted edges is almost 8 times larger than the number of correctly predicted
edges in the network inferred from the original dataset. These results show that our
generated dataset is certainly highly quali�ed since the network inferred from our
generated dataset is much better than the network inferred from the original dataset.
We can relate this result with the fact that we combined di�erent gene regulation
models and obtained a multi-model system dynamics simulation. This multi-model
framework simulates the system in such a realistic way that the samples produced by
the framework re�ect the internal dynamics of gene regulation much better than the
original samples. Therefore, we can con�dently say that the samples generated by our

119

Figure 6.18: The regulatory network obtained from samples generated by our frame-
work using ARACNE

Dataset Precision Recall F-measure
Original 0.2143 0.0789 0.1161
Arti�cial 0.4898 0.6316 0.5517

Table6.2: Network evaluations for ARACNE algorithm

framework are highly quali�ed so that the inferred regulatory networks may lead to
discover some new biological foundations that may not be caught from the original
samples, which is one of the most important contributions of this chapter.

6.5.5 Experiments on Number Of Required Samples for Training

In this section, we tried to assess the required number of samples to train our multi-
model framework. We try to assess this number empirically by checking the quality of
the samples generated from di�erent sets of training samples. We train our system with
increasing number of training samples and produce always 50 samples from our trained
framework. Then, we compared the generated 50 samples in terms of their metric
results and try to understand when the quality of the generated samples stabilizes.

We generated two synthetic datasets by using the tool GeneNetWeaver (GNW) [58]
in order to be able to carry out the experiments. The tool provides the complete E.

120

coli network automatically loaded and provide to extract some subnetworks of the E.
coli network and simulate them. We have extracted two subnetworks of the E. coli

network using the GNW tool. The extracted subnetworks are shown in Figure 6.19.
Then, by again using the tool we simulated the extracted subnetworks and got two
synthetic datasets comprising of 25 genes and 600 samples in the �rst one and 40 genes
and 600 samples in the second one.

Figure 6.19: The E. coli subnetworks used for generating synthetic datasets

After having generated the synthetic datasets, we applied the following procedure to
each dataset. We have separated the last 40 samples as test set. Then, successively
we generated 50 samples by using the �rst 40, 60, ..., 560 samples for training. After
having those sample sets generated by di�erent number of training samples, for each
ith sample set, we compared it with the (i − 1)th sample set by checking the multi-

121

objective quality of the ith sample set with respect to the (i − 1)th sample set. The
multi-objective quality is achieved by concatenating the (i − 1)th and ith sample sets
and sorting them multi-objectively. In the �rst 50 samples of the concatenated and
sorted 100 samples, we checked the percentage of the samples that are coming from
the ith sample set and use this value as the contribution of the ith sample set to the
(i − 1)th sample set. At some point, we expect to observe a stabilization in terms of
the contribution of the ith sample set to the (i−1)th sample set. Figure 6.20 shows the
results for the two synthetic datasets. Here, interestingly we see that contribution of
each sample set to its previous sample set is decreasing exponentially, which supports
our expectations on the number of required samples for training our system. Moreover,
from the plots we can see that after having 240 samples for training our framework the
contribution values nearly do not change. Therefore, empirically we can say that, 240

samples is the bound for the required number of samples to build our multi-model data
enrichment framework. That is, enlarging the training samples up to 240 is expected
to improve the quality of the generated samples by our framework. After having 240

samples, however, it is not necessary to enlarge the training samples since the quality
of the generated samples most probably will not change signi�cantly after having 240

samples for training as Figure 6.20 shows.

Figure 6.20: Comparison of generated sample sets for synthetic datasets

We have applied the same procedure explained above to the real life HUVECs dataset
as well. We again split the last 40 samples as test set, and successively generated
50 samples by using the �rst 40, 60, ..., 360 samples for training. Note that we have
400 samples in total in the HUVECs dataset. Then we calculated the contribution
values for each ith sample set just as explained above. Figure 6.21 shows the results.
Here, we again see that the decrease in contributions occurs exponentially. There
is only one jump between 220 and 240 after having 200 training samples. However,
after having 240 samples for training the contributions again stabilizes. This veri�es

122

Figure 6.21: Comparison of generated sample sets for HUVECs dataset

our claim that 240 samples for training our multi-model framework will be enough to
generate quali�ed samples. Because having more samples than 240 samples to train
our framework most probably will not change the quality of the generated samples
signi�cantly as Figure 6.21 veri�es once again.

Note that 240 is a rough bound for the required number of samples to train our
framework. As explained and proved in Section 6.5.1, our multi-model framework still
produces very good results even with very small number of samples such as melanoma
dataset whose sample size is 31. By providing the bound on the required number of
samples to train our framework, we both guide the scientists on how many real samples
should be generated in the laboratory environment and give a way to estimate and
bound the cost of the real life gene expression data generation experiments. We believe
that this is an important contribution of our multi-model framework to the literature.

6.6 Discussion

In this chapter, we proposed a comprehensive multi-model data generation framework
integrating four di�erent generative models. The generative models carry di�erent
types of characteristics for gene regulation dynamics so that the built multi-model
framework bene�ts from all of them as much as possible. In order to enrich the exist-
ing gene expression datasets, we generated samples from di�erent generative models
and pool them. Then, we evaluated the pooled samples by using three well-de�ned
metrics: compatibility, diversity, and coverage. Having these three metrics evaluated,
we outputted the best samples to the user. The selection mechanism considers these
three metrics together, therefore applies a multi-objective selection mechanism based

123

on dominance of samples. The three metrics check how much the samples are close to
the original samples, reasonably diverse from original samples, and cover the sample
space. Therefore, produced gene expression samples sustain those three important
characteristic and improve the resultant samples from di�erent aspects.

Experimental results showed that our multi-model framework generates samples that
are highly close to the original samples, always carrying reasonable amount of new
information and cover the sample space successfully. Moreover, the experiments on
multi-model justi�cation showed that our multi-model approach certainly improves
each single model. Our system adapts itself by choosing samples from di�erent gener-
ative models for di�erent datasets with respect to the quality of the generated samples,
which proves the robustness of our multi-model framework. Moreover, we showed that
the samples generated by our multi-model framework lead to infer much better regu-
latory networks than what the original samples lead to. Therefore, we can con�dently
say that merging di�erent generative models into one multi-model framework not only
improves the single model quality and produces qualitative samples, but also may lead
to �nd some new biological relations. This means that without dealing with real life
experimental di�culties, we can catch new biological relations by generating synthetic
samples from a multi-model framework mitigating the need for costly real life experi-
ments. Furthermore, empirically we tried to achieve a bound for the required number
of samples to train our framework so that the generated samples are su�ciently quali-
tative. This estimation also provides a bound for the required number of real samples
to be obtained in the laboratory environment, thereby a bound for the cost of the real
life experiments.

Having successful results on sample quality, multi-model justi�cations, regulatory net-
work inference and obtaining a bound for the required number of samples to train our
framework, it can be stated that our multi-model framework can be used for many
areas su�ering from scarcity of samples, and mitigates the need for gene expression
data.

124

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we have proposed three solutions for controlling gene regulation systems,
and a multi-model gene expression data generation framework. The �rst control solu-
tion we proposed is for controlling fully observable gene regulation systems. The idea
is to convert the available gene expression data into a series of experience tuples, and
apply available Batch RL techniques to obtain approximate and generalized control
policies directly from those experience tuples. Results show that we can generate con-
trol policies for regulation systems of several thousands of gene just in seconds, while
existing studies cannot solve control problems even for several tens of genes. Interest-
ingly, results also show that our generated approximate policies are almost as good as
the ones generated by the existing optimal solutions. The second control solution we
proposed is to solve the control problem of partially observable gene regulation sys-
tems. In order to do this, we have proposed a novel framework Batch Mode TD(λ), and
its novel algorithm Least-Squares Fitted TD(λ) Iteration (LSFTDI), combining Batch
RL works and Sutton's TD(λ) algorithm (1988). The idea is to obtain a probabilistic
mapping of observations to actions by generalizing from the available gene expression
data. Again, we have converted gene expression data into experience tuples, and ap-
plied our novel LSFTDI algorithm to those experience tuples. Results show that the
stochastic policies LSFTDI generates are almost as good as the ones generated by the
optimal solutions. Result also show that LSFTDI can produce successful stochastic
policies for regulation systems of several thousands of genes, while existing studies can-
not solve control problem of even several tens of genes. To our best knowledge, Batch
Mode TD(λ) is the �rst framework solving non-Markovian decision tasks with limited
number of experience tuples. The third solution we have proposed is to again control
partially observable gene regulation systems. Unlike the second solution we proposed,
this time we have tried to identify the actual internal states of the gene regulation
system we want to control. We have again converted gene expression samples into a
series of experience tuples, and apply Batch RL to assign an approximate observation-
action value for each possible observation-action pairs. Then, we have used hidden
state identi�cation techniques to �nd the internal states and their Bayesian relation-
ships with the observations, which leads to construct a POMDP. Results show that
our constructed POMDPs are more successful than the previous studies in terms of

125

both solution quality and time requirements. To our best knowledge, Batch Mode
POMDP Learning is the �rst study that can construct a POMDP directly from a
limited number of experience tuples.

We have also proposed a novel multi-model gene expression data generation frame-
work combining di�erent computational models into a uni�ed framework. Our idea is
that, in order to capture biological relationships more accurately, instead of trying to
improve a single computational model, integrating di�erent models provides a more
robust framework. We have integrated four generative models, PBN, ODE, HIMM
and GA. What we do is to sample from each generative model separately and pool
them together; then, based on a multi-objective selection mechanism, to rank the gen-
erated samples, and output the best ones. Results show that the generated samples
from our multi-model framework not only very close to the original samples, but also
always extend the informational content hold by the data. Results also show that our
multi-model framework generates always higher quality samples than any single model
it includes, and provides to capture biological relationships that cannot be captured
by real gene expression samples.

As future work, we are planning to match our two solutions on controlling gene reg-
ulation systems and generating high quality arti�cial gene expression data. Since all
of our proposed control solutions are obtaining a control policy directly from data, it
is highly suitable to match these two studies. We plan to investigate the relationship
between the produced control solutions and the number of samples in the datasets.
Secondly, we are planning to extend our novel solutions for controlling partially ob-
servable GRNs, which are Batch Mode TD(λ) and Batch Mode POMDP Learning, for
di�erent non-Markovian decision tasks. Since both of the solutions do not depend on
any computational model for gene regulation, they are highly suitable for employing
di�erent decision tasks. We are also planning to improve our proposed Batch Mode
POMDP Learning method by integrating it with di�erent state learning algorithms.

126

REFERENCES

[1] M. Bansal, G. D. Gatta, and D. Di Bernardo. Inference of Gene Regulatory
Networks and Compound Mode of Action from Time Course Gene Expression
Pro�les. Bioinformatics, 22(7):815�822, Apr. 2006.

[2] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[3] A. Bernard and A. Hartemink. Informative Structure Priors: Joint Learning of
Dynamic Regulatory Networks from Multiple Types of Data. In A. R., D. A.K.,
H. L., J. T., and K. T., editors, Paci�c Symposium on Biocomputing 2005
(PSB05). World Scienti�c: New Jersey, 2005.

[4] D. P. Bertsekas. Dynamic Programming and Optimal Control. Academic Press,
New York, 1976.

[5] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher,
R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Mar-
incola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillan-
ders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, and V. Sondak.
Molecular Classi�cation of Cutaneous Malignant Melanoma by Gene Expression
Pro�ling. Nature, 406(6795):536�540, Aug. 2000.

[6] R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and
V. Thorsson. The Inferelator: An Algorithm for Learning Parsimonious Reg-
ulatory Networks from Systems-biology Data Sets de novo. Genome Biology,
7(5):R36, 2006.

[7] D. Bryce, M. Verdicchio, and S. Kim. Planning Interventions in Biological Net-
works. ACM Transactions Intelligent Systems Technology, 1(2):11:1�11:26, 2010.

[8] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst. Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press, 2010.

[9] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting Optimally in Par-
tially Observable Stochastic Domains. In Proceedings of the Twelfth National
Conference on Arti�cial intelligence (vol. 2), AAAI'94, pages 1023�1028, Menlo
Park, CA, USA, 1994. American Association for Arti�cial Intelligence.

[10] W. Chen, H. Lu, M. Wang, and C. Fang. Gene Expression Data Classi�cation
Using Arti�cial Neural Network Ensembles Based on Samples Filtering. Proceed-
ings of the International Conference on Arti�cial Intelligence and Computational
Intelligence, 1:626�628, 2009.

[11] L. Chrisman. Reinforcement Learning with Perceptual Aliasing: the Perceptual
Distinctions Approach. In Proceedings of the Tenth National Conference on Ar-
ti�cial Intelligence, AAAI'92, pages 183�188. AAAI Press, 1992.

127

[12] A. Datta, A. Choudhary, M. L. Bittner, and E. R. Dougherty. External Control in
Markovian Genetic Regulatory Networks. Machine Learning, 52:169�191, 2003.

[13] A. Datta, A. Choudhary, M. L. Bittner, and E. R. Dougherty. External Control
in Markovian Genetic Regulatory Networks: The Imperfect Information Case.
Bioinformatics, 20(6):924�930, Apr. 2004.

[14] P. D'Haeseleer, X. Wen, S. Fuhrman, S. Fuhrman, and R. Somogyi. Linear Mod-
eling of mRNA Expression Levels during CNS Development and Injury. pages
41�52, 1999.

[15] D. di Bernardo, M. J. Thompson, T. S. Gardner, S. E. Chobot, E. L. Eastwood,
A. P. Wojtovich, S. J. Elliott, S. E. Schaus, and J. J. Collins. Chemogenomic Pro-
�ling on a Genome-wide Scale Using Reverse-engineered Gene Networks. Nature
Biotechnology, 23(3):377�383, 2005.

[16] L. Ein-Dor, O. Zuk, and E. Domany. Thousands of Samples are Needed to Gen-
erate a Robust Gene List for Predicting Outcome in Cancer. PNAS, 103:5923 �
5928, 2006.

[17] U. Erdogdu. E�cient Partially Observable Markov Decision Process Based For-
mulation of Gene Regulatory Network Control Problem. PhD thesis, Ankara,
Turkey, 2012.

[18] U. Erdogdu, R. Alhajj, and F. Polat. The Bene�t of Decomposing POMDP
for Control of Gene Regulatory Networks. In Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, pages 381�385. IEEE Computer Society, 2011.

[19] U. Erdo§du, M. Tan, R. Alhajj, F. Polat, D. Demetrick, and J. Rokne. Employing
Machine Learning Techniques for Data Enrichment: Increasing the Number of
Samples for E�ective Gene Expression Data Analysis. In Bioinformatics and
Biomedicine (BIBM), 2011 IEEE International Conference on, pages 238 �242,
nov. 2011.

[20] U. Erdo§du, M. Tan, R. Alhajj, F. Polat, J. Rokne, and D. Demetrick. Integrating
Machine Learning Techniques into Robust Data Enrichment Approach and Its
Application to Gene Expression Data. International Journal of Data Mining and
Bioinformatics, 2012.

[21] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement
Learning. Journal of Machine Learning Research, 6:503�556, 2005.

[22] B. Faryabi, A. Datta, and E. Dougherty. On Approximate Stochastic Control in
Genetic Regulatory Networks. Systems Biology, IET, 1(6):361 �368, 2007.

[23] B. Faryabi, A. Datta, and E. R. Dougherty. On Reinforcement Learning in Ge-
netic Regulatory Networks. In Proceedings of the 2007 IEEE/SP 14th Workshop
on Statistical Signal Processing, SSP '07, pages 11�15, Washington, DC, USA,
2007. IEEE Computer Society.

[24] C. Fonseca, P. Fleming, et al. Genetic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generalization. In Proceedings of the �fth in-
ternational conference on genetic algorithms, volume 1, page 416. Citeseer, 1993.

128

[25] H. Franz, C. Ullmann, A. Becker, M. Ryan, S. Bahn, T. Arendt, M. Simon,
S. Paabo, and P. Khaitovich. Systematic Analysis of Gene Expression in Human
Brains Before and After Death. Genome Biology, 6(13):R112, 2005.

[26] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring Genetic
Networks and Identifying Compound Mode of Action via Expression Pro�ling.
Science, 301(5629):102�105, 2003.

[27] T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins. Inferring Genetic
Networks and Identifying Compound Mode of Action via Expression Pro�ling.
Science, 301(5629):102�105, July 2003.

[28] J. Holland. Adaptation in Natural and Arti�cial Systems. University of Michigan
Press, 1975.

[29] D. Hurley, H. Araki, Y. Tamada, B. Dunmore, D. Sanders, S. Humphreys, M. Af-
fara, S. Imoto, K. Yasuda, Y. Tomiyasu, K. Tashiro, C. Savoie, V. Cho, S. Smith,
S. Kuhara, S. Miyano, D. S. Charnock-Jones, E. J. Crampin, and C. G. Print.
Gene Network Inference and Visualization Tools for Biologists: Application to
New Human Transcriptome Datasets. Nucleic Acids Research, 2011.

[30] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement Learning Algorithm for
Partially Observable Markov Decision Problems. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Processing Systems,
pages 345�352. MIT Press, Cambridge, MA, 1994.

[31] H. D. Jong. Modeling and Simulation of Genetic Regulatory Systems: A Litera-
ture Review. Journal of Computational Biology, 9:67�103, 2002.

[32] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A
Survey. Journal of Afti�cial Intelligence Research, 4:237�285, 1996.

[33] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res., 28:27�30, 2000.

[34] S. A. Kau�man. The Origins of Order: Self-Organization and Selection in Evo-
lution. Oxford University Press, USA, 1 edition, June 1993.

[35] M. Kim, S. B. Cho, and J. H. Kim. Mixture-model Based Estimation of Gene Ex-
pression Variance from Public Database Improves Identi�cation of Di�erentially
Expressed Genes in Small Sized Microarray Data. Bioinformatics, 26:486�492,
2010.

[36] S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian Network and Nonparamet-
ric Regression for Nonlinear Modeling of Gene Networks from Time Series Gene
Expression Data. In Proceedings of the First International Workshop on Com-
putational Methods in Systems Biology, CMSB '03, pages 104�113, London, UK,
UK, 2003. Springer-Verlag.

[37] S. Kim, H. Li, E. R. Dougherty, N. Cao, Y. Chen, M. Bittner, and E. B. Suh.
Can Markov Chain Models Mimic Biological Regulation? Journal of Biological
Systems, 10:337�357, 2002.

129

[38] S. Lange, T. Gabel, and M. Riedmiller. Reinforcement Learning: State of the Art.
Springer, 2011.

[39] M. Lee and G. Whitmore. Power and Sample Size for DNA Microarray Studies.
Statistics in Medicine, 21(23):3543�3570, 2002.

[40] Z. Li, P. Li, A. Krishnan, and J. Liu. Large-scale Dynamic Gene Regulatory
Network Inference Combining Di�erential Equation Models with Local Dynamic
Bayesian Network Analysis. Bioinformatics, 27(19):2686�2691, Oct. 2011.

[41] L.-J. Lin. Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching. Machine Learning, 8(3-4):293�321, 1992.

[42] M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the Complexity of Solving
Markov Decision Problems. In Proceedings of the Eleventh International Confer-
ence on Uncertainty in Arti�cial Intelligence, pages 394�402, 1995.

[43] D. Marbach, J. C. Costello, R. Ku�ner, N. M. Vega, R. J. Prill, D. M. Camacho,
K. R. Allison, M. Kellis, J. J. Collins, and G. Stolovitzky. Wisdom of Crowds for
Robust Gene Network Inference. Nature Methods, 9(8):796�804, Aug. 2012.

[44] A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and
A. Califano. ARACNE: An Algorithm for the Reconstruction of Gene Regula-
tory Networks in a Mammalian Cellular Context. BMC Bioinformatics, 7(Suppl
1):S7+, 2006.

[45] A. Mccallum. Instance-Based State Identi�cation for Reinforcement Learning. In
Advances in Neural Information Processing Systems 7, NIPS 7, pages 377�384.
MIT Press, 1994.

[46] A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, The University of Rochester, 1996.

[47] R. A. McCallum. Overcoming Incomplete Perception with Utile Distinction Mem-
ory. In Proceedings of the Tenth International Conference on Machine Learning,
ICML'93, 1993.

[48] R. A. Mccallum. Instance-Based Utile Distinctions for Reinforcement Learning
with Hidden State. In Proceedings of the Twelfth International Conference on
Machine Learning, ICML'95, pages 387�395, 1995.

[49] M. Mitchell. An Introduction to Genetic Algorithms. The MIT press, 1998.

[50] D. Ormoneit and S. Sen. Kernel-Based Reinforcement Learning. Machine Learn-
ing, 49:161�178, 2002.

[51] R. Pal, A. Datta, and E. R. Dougherty. Optimal In�nite Horizon Control for Prob-
abilistic Boolean Networks. IEEE Transactions on Signal Processing, 54:2375�
2387, 2006.

[52] W. Pan, J. Lin, and C. Le. How Many Replicates of Arrays are Required to
Detect Gene Expression Changes in Microarray Experiments? A Mixture Model
Approach. Genome Biol, 3(5):0022�1, 2002.

130

[53] R. Parsons, S. Forrest, and C. Burks. Genetic Algorithms for DNA Sequence
Assembly. In Proceedings of the International Conference on Intelligent Systems
for Molecular Biology, page 318. AAAI Press, 1993.

[54] J. T. Pedersen and J. Moult. Genetic Algorithms for Protein Structure Prediction.
Current Opinion in Structural Biology, 6(2):227�231, 1996.

[55] G. Piatetsky-Shapiro, T. Khabaza, and S. Ramaswamy. Capturing Best Prac-
tice for Microarray Gene Expression Data Analysis. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 407�415, 2003.

[56] P. Poupart. Exploiting Structure to E�ciently Solve Large Scale Partially Observ-
able Markov Decision Processes. PhD thesis, Toronto, Ont., Canada, Canada,
2005.

[57] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach. Prentice-
Hall, Englewood Cli�s, NJ, 2nd edition edition, 2003.

[58] T. Scha�ter, D. Marbach, and D. Floreano. GeneNetWeaver: In Silico Benchmark
Generation and Performance Pro�ling of Network Inference Methods. Bioinfor-
matics, 27(16):2263�2270, 2011.

[59] M. Schilling, T. Maiwald, S. Bohl, M. Kollmann, C. Kreutz, J. Timmer, and
U. Klingmüller. Quantitative Data Generation for Systems Biology: the Impact
of Randomisation, Calibrators and Normalisers. IEE Proceedings on Syst Biol
(Stevenage), 152(4):193�200, 2005.

[60] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean
Networks: A Rule-Based Uncertainty Model for Gene Regulatory Networks.
Bioinformatics, 18(2):261�274, 2002.

[61] S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning Without State-Estimation in
Partially Observable Markovian Decision Processes. In Proceedings of the Eleventh
International Conference on Machine Learning, pages 284�292. Morgan Kauf-
mann, 1994.

[62] M. T. J. Spaan and N. Vlassis. Perseus: Randomized Point-based Value Iteration
for POMDPs. Journal of Arti�cial Intelligence Research, 24(1):195�220, 2005.

[63] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K. Anders, M. Eisen, P. Brown,
D. Botstein, and B. Futcher. Comprehensive Identi�cation of Cell Cycle-
regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridiza-
tion. Molecular Biology of Cell, 9:3273�3297, 1998.

[64] R. S. Sutton. Learning to Predict by the Methods of Temporal Di�erences. Ma-
chine Learning, 3(1):9�44, 1988.

[65] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA, 1998.

[66] G. Sywerda. Uniform Crossover in Genetic Algorithms. In Proceedings of the
International Conference on Genetic Algorithms, pages 2�9, 1989.

131

[67] M. Tan, M. AlShalalfa, R. Alhajj, and F. Polat. In�uence of Prior Knowledge in
Constraint-Based Learning of Gene Regulatory Networks. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 8:130�142, 2011.

[68] M. van Iterson, P. 't Hoen, P. Pedotti, G. Hooiveld, J. den Dunnen, G. van
Ommen, J. Boer, and R. Menezes. Relative Power and Sample Size Analysis on
Gene Expression Pro�ling Data. BMC Genomics, 10(1):439, 2009.

[69] C. Watkins. Learning from Delayed Rewards. PhD thesis, University of Cam-
bridge,England, 1989.

[70] J. Wildenhain and E. J. Crampin. Reconstructing Gene Regulatory Networks:
from Random to Scale-free Connectivity. IEEE Systems biology, 153(4):247�256,
July 2006.

[71] I. H. Witten. Adaptive Text Mining: Inferring Structure from Sequences. Journal
of Discrete Algorithms, 2(2):137�159, 2004.

[72] R. Q. Yiqian Zhou and A. Sacan. Data Simulation and Regulatory Network
Reconstruction from Time-series Microarray Data Using Stepwise Multiple Linear
Regression. Network Modeling Analysis in Health Informatics and Bioinformatics,
2012.

[73] J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to
Bayesian Network Inference for Generating Causal Networks from Observational
Biological Data. Bioinformatics, 20(18):3594�3603, Dec. 2004.

132

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background
	Markov Decision Processes
	Reinforcement Learning
	Batch Mode Reinforcement Learning
	Least-Squares Fitted Q Iteration

	Partially Observable Markov Decision Processes

	Controlling Gene Regulatory Networks: Full Observability
	Introduction
	Batch RL for Controlling GRNs
	Experience Tuples
	Features

	Experimental Evaluation
	Melanoma Application
	State Feature Results
	Gaussian Feature Results
	Distance Feature Results

	Yeast Application
	State Feature Results
	Gaussian Feature Results
	Distance Feature Results

	Large Scale Melanoma Application
	Time Requirements

	Discussion

	Controlling Gene Regulatory Networks: Batch Mode TD()
	Introduction
	Monte-Carlo Value Estimation
	TD()
	Batch Mode TD() for Partially Observable Environments
	Batch Mode TD() for Controlling Partially Observable GRNs
	Experience Tuples
	Features

	Experimental Evaluation
	Melanoma Application
	Experiments on
	Comparative Results

	Large Scale Melanoma Application
	Time Requirements

	Discussion

	Controlling Gene Regulatory Networks: Batch Mode POMDP Learning
	Introduction
	POMDP Learning
	Hidden State Identification

	Batch Mode POMDP Learning for Controlling Partially Observable GRNs
	Experimental Evaluation
	Melanoma Application
	Yeast Application

	Discussion

	Multi-model Gene Expression Data Enrichment Framework
	Introduction
	Multi-Model Approach
	Generative Models
	Probabilistic Boolean Network
	Ordinary Differential Equations
	Multi-Objective Genetic Algorithm
	Hierarchical Markov Model

	Experimental Setup
	Datasets
	Experimental Settings
	Evaluation Semantics

	Experimental Evaluation
	Experiments on Sample Quality Using Small Number of Samples
	Experiments on Sample Quality Using Large Number of Samples
	Experiments on Multi-Model Justification
	Gene Regulatory Network Inference
	Experiments on Number Of Required Samples for Training

	Discussion

	Conclusion and Future Work
	REFERENCES

