
IMPROVING THE PERFORMANCE OF HADOOP/HIVE BY SHARING SCAN AND
COMPUTATION TASKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

SERKAN ÖZAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2013

Approval of the thesis:

IMPROVING THE PERFORMANCE OF HADOOP/HIVE BY SHARING SCAN
AND COMPUTATION TASKS

submitted by SERKAN ÖZAL in partial ful�llment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ahmet Co³ar
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. �smail Hakk� Toroslu
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Co³ar
Computer Engineering Dept., METU

Prof. Dr. Adnan Yaz�c�
Computer Engineering Dept., METU

Prof. Dr. Özgür Ulusoy
Computer Engineering Dept., Bilkent University

Asst. Prof. Dr. �smail Sengör Alt�ngövde
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SERKAN ÖZAL

Signature :

iii

ABSTRACT

IMPROVING THE PERFORMANCE OF HADOOP/HIVE BY SHARING SCAN AND
COMPUTATION TASKS

Özal, Serkan

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ahmet Co³ar

June 2013, 53 pages

MapReduce is a popular model of executing time-consuming analytical queries as a batch of
tasks on large scale data. During simultaneous execution of multiple queries, many oppor-
tunities can arise for sharing scan and/or computation tasks. Executing common tasks only
once can reduce the total execution time of all queries remarkably. Therefore, we propose to
use Multiple Query Optimization (MQO) techniques to improve the overall performance of
Hadoop Hive, an open source SQL-based distributed warehouse system based on MapReduce.
Our framework, SharedHive, transforms a set of correlated HiveQL queries into new global
queries that can produce the same results in remarkably smaller total execution times. It is ex-
perimentally shown that SharedHive outperforms the conventional Hive by %20-90 reduction,
depending on the number of queries and percentage of shared tasks, in the total execution
time of correlated TPC-H queries.

Keywords: Hadoop, Hive, Multiple-query Optimization, Distributed Data Warehouse

iv

ÖZ

TARAMA VE HESAPLAMA ��LER�N�N PAYLA�TIRILMASIYLA HADOOP/HIVE
ÜZER�NDE PERFORMANS �Y�LE�T�R�M�

Özal, Serkan

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Ahmet Co³ar

Haziran 2013 , 53 sayfa

MapReduce zaman alan analitik sorgular�n büyük ölçekli veriler üzerinde toplu olarak i³-
letilmesi için popüler bir yöntemdir. Çoklu sorgular�n e³zamanl� i³letilmelerinde, tarama ve
hesaplama i³lemleri için birçok yöntem kullan�labilmektedir. Ortak k�s�mlar�n sadece bir kere
i³letilmesi toplam i³lem süresini önemli ölçüde dü³ürebilmektedir. Buradan yola ç�karak, biz
Hadoop üstünde çal�³an aç�k kaynak kodlu SQL tabanl� da§�t�k veri ambar� yönetim sistemi
olan Hive framework'ü ile çal�³an Çoklu Sorgu �yile³tirimi (ÇS�) yöntemi öneriyoruz. Bizim fra-
mework'ümüz, SharedHive, benzer k�s�mlar� bulunan HiveQL sorgular�n� ortak k�s�mlar�n bir-
likte kullan�lmas�n� sa§layarak genel HiveQL sorgular�na dönü³türmektedir. Bu sayede toplam
i³letim süresinde önemli iyile³meler görülebilmektedir. SharedHive ile ortak k�s�mlar� bulunan
TPC-H sorgular�nda toplam i³letim süresi olarak %20-90 aras�nda iyile³tirme sa§lanabilmek-
tedir.

Anahtar Kelimeler: Hadoop, Hive, Çoklu-Sorgu �yile³tirimi, Da§�t�k Veri Ambar�

v

Dedicated to all my family

vi

ACKNOWLEDGMENTS

I would like to thank my supervisor Associate Professor Ahmet Co³ar for his constant support,

guidance and friendship. It was a great honor to work with him and our cooperation in�uenced

my academical and world view highly. I also would like to thank Tansel Dökero§lu for his

support and guidance. He also motivated and in�uenced me highly in scienti�c context.

My family also provided invaluable support for this work. I would like to thank specially to

my parents, Periha Özal and Ahmet Özal, and my dear sister Ye³im Özal. In addition, I am

so grateful for all the love and support given by my aunt Yurdagül Özal and my grandfather

Sad�k Özal throughout my life.

And �nally very special thanks to a group of people who've taught me real meaning of friend-

ship lately. Special thanks to my colleagues, �brahim Gürses, Bar�³ Cem �al, Mert Çal�³kan

and Yusuf Erdem.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Large Scale Data Processing . 1

1.2 The Motivation of the Study . 2

2 RELATED WORK . 3

2.1 The Hadoop Approach . 3

2.2 Map-Reduce . 3

2.3 Map-Reduce in Hadoop . 5

2.4 Hadoop Distributed File System (HDFS) 5

2.5 Namenode . 6

2.6 Datanode . 6

viii

2.7 Jobtracker and Tasktracker . 6

2.8 Hive . 6

2.9 Multiple Query Optimization on Cloud 8

3 SHAREDHIVE SYSTEM ARCHITECTURE 11

3.1 Query Processing for Multiple Query Optimization 11

3.2 The Compiler Layer . 13

3.3 The SharedHive Layer . 14

4 MULTIPLE-QUERY OPTIMIZATION ON HIVEQL QUERIES 15

4.1 The SharedHive Optimization Algorithm 15

4.2 Selection of Correlated Queries . 17

5 EXPERIMENTAL SETUP AND RESULTS . 23

5.1 Experimental Environment . 23

5.2 Query Sets . 23

5.2.1 TPC-H Query Set 1 . 24

5.2.1.1 Pricing Summary Report Query (Q1) 24

5.2.1.2 Forecasting Revenue Change Query (Q6) 24

5.2.2 TPC-H Query Set 2 . 24

5.2.2.1 Promotion E�ect Query (Q14) 24

5.2.2.2 Discounted Revenue Query (Q19) 25

5.2.3 TPC-H Query Set 3 . 25

5.2.3.1 Shipping Priority Query (Q3) 25

5.2.3.2 Large Volume Customer Query (Q18) 25

5.3 Benchmark Setup . 25

5.4 System Setup for Evaluating SharedHive 25

ix

5.4.1 Setup of the SharedHive System 26

5.4.2 Generating TPC-H Data . 26

5.4.3 Uploading TPC-H Data to HDFS 27

5.5 Con�guration . 27

5.6 Execution . 28

5.7 Query Execution Results . 28

5.7.1 All TPC-H Queries . 28

5.7.2 Q1 (Pricing Summary Report Query) 30

5.7.3 Q1 (Pricing Summary Report Query) + Q6 (Forecasting Rev-
enue Change Query) . 31

5.7.4 Q14 (Promotion E�ect Query) + Q19 (Discounted Revenue
Query) . 32

5.7.5 Q3 (Shipping Priority Query) + Q18 (Large Volume Customer
Query) . 33

5.7.6 Q1+Q6 Execution Results with Increasing Node Count 34

6 CONCLUSIONS AND FUTURE WORK . 37

REFERENCES . 39

APPENDICES

A Q1 AND Q6 HIVEQL . 43

A.1 Q1 (Pricing Summary Report Query) as HiveQL 43

A.2 Q6 (Forecasting Revenue Change Query) as HiveQL 43

A.3 Q1+Q6 as HiveQL . 44

B Q14 AND Q19 HIVEQL . 45

B.1 Q14 (Promotion E�ect Query) as HiveQL 45

B.2 Q19 (Discounted Revenue Query) as HiveQL 45

x

B.3 Q14+Q19 as HiveQL . 46

C Q3 AND Q18 HIVEQL . 49

C.1 Q3 (Shipping Priority Query) as HiveQL 49

C.2 Q18 (Large Volume Customer Query) as HiveQL 50

C.3 Q3+Q18 as HiveQL . 51

VITA . 52

xi

LIST OF TABLES

TABLES

Table 5.1 Hardware and Software Con�gurations. 23

Table 5.2 Default Hadoop and Hive cluster settings. 24

Table 5.3 Q1 Execution Results. 30

Table 5.4 Q1+Q6 Execution Results. 31

Table 5.5 Q14+Q19 Execution Results. 32

Table 5.6 Q3+Q18 Execution Results. 33

Table 5.7 Q1+Q6 Execution Results with Increasing Node Count. 34

Table 5.8 Symbols and Explanations for Calculating Scalability. 35

xii

LIST OF FIGURES

FIGURES

Figure 2.1 MapReduce tasks. x values are input splits and y values are output splits . 4

Figure 2.2 Map and reduce tasks run on nodes where individual records of data. 5

Figure 2.3 Hive Architecture. 7

Figure 3.1 SharedHive, A novel Hadoop Hive system architecture with MQO support. . 12

Figure 4.1 Query plan for multi-table insert query. 16

Figure 4.2 Sample correlated queries on Table-1 and Table-2. 18

Figure 4.3 Parallel and shared execution of correlated queries. 18

Figure 5.1 All TPC-H Queries Execution Times. 29

Figure 5.2 Q1 Execution Times. 30

Figure 5.3 Q1+Q6 Performance Improvements. 31

Figure 5.4 Q14+Q19 Execution Times. 32

Figure 5.5 Q3+Q18 Execution Times. 33

Figure 5.6 Q1+Q6 Execution Results with Increasing Node Count. 34

Figure 5.7 Scalability % of Q1+Q6 With Increasing Node Count. 35

xiii

LIST OF ABBREVIATIONS

SQL Structured Query Language

MQO Multiple Query Optimization

HOD Hadoop on Demand

HDFS Hadoop Distributed File System

HiveQL Hive Query Language

CLI Command Line Interface

xiv

CHAPTER 1

INTRODUCTION

1.1 Large Scale Data Processing

Processing large-scale data in the amounts of hundreds of terabytes is a very di�cult task.
Solving the problems associated with high volume data requires can be achieved by dividing
the data and work to many computers that will all work together in parallel to complete the
task in a reasonable time. However, the use of so many computers for co-operatively solving
this problem increases the risk of any one of these machines failing before the data processing
task completed, ruining the work done by the other computers as well. The probability of any
machine failing in a given time interval is small but when hundreds of computers are involved
the probability because quite high. In such a environment the system designers must expect
any large task to have at least one failure before completing and take precautions to handle
this case. Another kind of failures is network failures where a network device such as a switch
or router.Network failures may cause data to be lost or arrive with arbitrary delays. Hard disk
failures, overheating problems and memory CRC errors are also possible. Software library and
network protocol mismatch errors may occur over long executing tasks and operating systems.
Memory leaks, buggy softwares not releasing shared resource locks (causing deadlocks) and
not properly closing �les may also cause co-operation between local and remote processes to
fail. No matter what combination of such errors occur the failing node must not prevent the
remaining machines to continue doing useful work and eventually successfully completing the
parallel big data tasks. Over the decades many operating systems have been developed to
address each of these di�erent kinds of failures but usually have ignored most of the failure
types other than the one they were designed to solve. The Hadoop system does not provide
protection against any speci�c failure and cannot guarantee correct operation if the software
itself is buggy or has been compromised. Hadoop will detect a computing node that has been
unresponsive due to some failure and resolve the problem and continue the computation of
big data task. A big data computation will typically have inputs of several terabytes which
could be stored on a single machine's hard disk. However, intermediate operations could
multiply the sizes of intermediately generated data and this could easily exceed the capacity
of a single machine requiring automatic distribution onto the available computing machines.
The distribution such a large amounts of data requires very large network bandwidths which
could be available on a gigabit LAN but distant cluster machines on separate racks would not
have such a high space connection between them.

A distributed system would typically use RPC requests for coordinating execution of big data
tasks on many machines. However, unless carefully controlled unrestricted execution of such
RPC requests between many pairs of compute nodes could easily saturate the network and

1

introduce unacceptable delays. In a big data compute system where 100 compute nodes are
collaborating a big data processing task, if one of the nodes fails the remaining 99 nodes must
be able to still complete their parts of the task and also allocate one of them to re-compute
the task that was originally assigned to the failing node. Thus, the computations on 99 nodes
are not lost and a minimal penalty of recomputing 1/100 of the big data task with minimal
negative a�ect on the whole computation.

1.2 The Motivation of the Study

When users want to bene�t from both MapReduce and SQL interface, mapping SQL state-
ments to MapReduce tasks can become a very di�cult job [9]. Hive does this work by translat-
ing queries to MapReduce jobs, thereby exploiting the scalability of Hadoop while presenting
a familiar SQL abstraction [10]. These attributes of Hive make it a suitable tool for data ware-
house applications where large scale data is analyzed, fast response times are not required,
and data is not updated frequently [4].

Because most data warehouse applications are implemented using SQL based RDBMSs, Hive
lowers the barrier for moving these applications to Hadoop, thus, people who already know
SQL can use Hive easily. Similarly, Hive makes it easier for developers to port SQL-based
applications to Hadoop. Since Hive is based on query-at-a-time model and processes each
query independently, issuing multiple queries in close time interval decreases performance of
Hive due to its execution model. From this perspective, it is important that there has not been
any study that incorporates the Multiple-query optimization (MQO) technique [11, 12, 13] for
Hive to reduce the total execution time of the queries.

Studies concerning MQO on traditional warehouses have shown that it is an e�cient technique
that increases the performance of time-consuming decision support queries remarkably [2,
14, 15, 16]. In order to improve the performance of Hadoop Hive in massively issued query
environments, we propose SharedHive which processes HiveQL queries as a batch and improves
the total execution time by merging correlated queries before passing them to Hive query
optimizer [10, 17, 18]. Our contributions in this study can be listed as:

1. MQO technique is used by an SQL-to-MapReduce translator for the �rst time.

2. The execution plans of correlated HiveQL queries are analyzed, merged (with an opti-
mization algorithm), and executed together.

3. The developed model is introduced as a novel component for Hadoop Hive architecture.

In Chapter 2, we give information related work on MQO, other SQL-to-MapReduce translators
that are similar to Hive, and recent query optimization studies on MapReduce framework.
Chapter 3 explains traditional architecture of Hive and introduces our novel MQO component.
Chapter 4 explains the process/algorithm of generating a global plan from correlated queries.
Chapter 5 discusses the experiments conducted for evaluating SharedHive framework. Finally
our concluding remarks are given in Chapter 6.

2

CHAPTER 2

RELATED WORK

2.1 The Hadoop Approach

HADOOP [1] is a popular open source software framework that allows distributed processing
of large scale data sets. It employs MapReduce paradigm [2] to divide the computation tasks
into parts (Figure 2.1) that can be distributed to a cluster of computers therefore, providing
horizontal scalability [3, 4, 5, 6].

Current technology can build powerful machines with very large data processing capacities
by employing cheap low price computers that can all work in parallel. A large single super-
computer with 1000 CPUs would be prohibitively expensive compared to a cluster machine
containing 1000 single core or 250 quad-core machines to obtain the same processing power.
The Hadoop system architecture enables all of these cheap computers to work in collaboration
on very large amounts of data and form a very powerful data processing system. In order
to allow parallel processing of large data on all CPUs, data are distributed uniformly to all
computers while it is being loaded onto the Hadoop system. The Hadoop Distributed File
System (HDFS) automatically splits big data �les into fragments each having a user-de�ned
size and can be processed independently on a dedicated machine. In order to enable recovery
from a failing node without loss of data each fragment of a data �le is also replicated (the
default is three replicas). The Hadoop system continuously monitors the nodes and when it
discovers that one of them has failed the replicas will be re-arranged to reach the same number
of replicas again and are still accessible by all nodes. In order to have maximum parallelism
HDFS data are record-oriented and each Hadoop operation creates new records from the in-
put sets of data records. Since the amount of data is much and the computation tasks are
very simple map and reduce operations it is very easy to move a computation to any node
and restart a failed operation on one of the available replicas when a node fails. In order to
eliminate unnecessary network tra�c the data to be processed must be preferred to be stored
on the hard disk of the local machine.

2.2 Map-Reduce

The Map-Reduce framework is introduced by Google.

A simple and powerful interface that enables automatic parallelization and dis-
tribution of large-scale computations, combined with an implementation of this

3

interface that achieves high performance on large clusters of commodity PCs (def-
inition by Google paper on Map-Reduce).

The Map-Reduce framework broadly consists of two mandatory functions to implement: "Map
and reduce" (Figure 2.1). A map is a function which is executed on each key-value pair from
an input split, does some processing and emits again a key and value pair. After map is
completed and before reduce can begin there is a phase called shu�e which copies and sorts
the output on key and aggregates values of matching key values using a function (e.g. count,
sum, avg, etc.).

These key and "aggregated value" pairs are captured by reduce and outputs a reduced key
value pair. This process is also called aggregation as you get values aggregated for a particular
key as input to reduce method. Again in reduce you may play around as you want with key-
values and what you emit now is also key value pairs which are dumped directly to a �le.

Now simply by expressing a problem in terms of map-reduce we can execute a task in parallel
and distribute it across a broad cluster and be relieved of taking care of all complexities of
distributed computing. Indeed "Life made easy", had you tried doing the same thing with
MPI libraries you can appreciate the complexity there scaling to thousands or even hundreds
of nodes.

There is a lot more happening in map-reduce than just map-reduce. But the beauty of the
hadoop is that it takes care of most of those things and a user need not dig into details for
simply running a job, though it would be useful if one has knowledge of those features and
can help in tuning parameters and thus improve e�ciency and fault tolerance.

Figure 2.1: MapReduce tasks. x values are input splits and y values are output splits

4

2.3 Map-Reduce in Hadoop

The performance success of Hadoop is achieved by its dividing input data to sets of records
and performing very little communication between nodes because each node performs its
operation in isolation from other nodes. The simplicity of these operations what makes the
Hadoop framework so powerful. Hadoop uses a programming model called "MapReduce"
where the input records are �rst processed by Mapper tasks (Figure

Figure 2.2: Map and reduce tasks run on nodes where individual records of data.

From Yahoo Map-Reduce Tutorial ([52])

Unlike traditional data processing systems where communication occurs explicitly by using
MPI calls and data streams between nodes, Hadoop uses key-value pairs to decide the desti-
nation nodes of the output of each operation. The Hadoop system manages allocation of data
and Map-Reduce operations on computation nodes. When a node fails its task can assigned
to a new node and restarted with the same inputs (which are also replicated so are not lost).
There is no need for complex message exchanges and recovery/checkpoint operations.

2.4 Hadoop Distributed File System (HDFS)

Hadoop has its own implementation of distributed �le system called Hadoop Distributed File
System, which is coherent and provides all facilities of a �le system. It implements ACLs and
provides a subset of usual UNIX commands for accessing or querying the �lesystem and if
one mounts it as a fuse dfs then it is possible to access it as any other Linux �lesystem with
standard unix commands.

5

Hadoop Distributed File System (HDFS) is the underlying �le system of Hadoop MapRe-
duce. Because of its simplicity, scalability, fault-tolerance, and e�ciency Hadoop has gained
signi�cant support from both industry and academia. However, it has some limitations on its
interfaces and performance [7]. Querying the data with Hadoop as if in a traditional RDBMS
infrastructure is one of the most common problems that Hadoop users face. This a�ects a
majority of users who are not familiar with internal details of Map Reduce jobs to extract
information from their data warehouses.

2.5 Namenode

A namenode stores information about HDFS �le system and it forms a single point of failure
for an HDFS installation. It contains information regarding a block's location as well as the
information of entire directory structure and �les. By saying it is a single point of failure - it
is meant that, if namenode goes down - whole �lesystem will be unreachable. Hadoop also has
a secondary namenode which contains edit log, which in case of a failure of namenode can be
used to replay all the actions of the �lesystem and thus restore the state of the �lesystem. A
secondary namenode regularly contacts namenode and takes checkpointed snapshot images.
At any time of failure these checkpointed images can be used to restore the namenode. Current
e�orts are going on to have high availability for Namenode.

2.6 Datanode

A Datanode on HDFS stores actual blocks of data and stores and retrieves them when asked.
They periodically report back to Namenode with a list of blocks they are storing.

2.7 Jobtracker and Tasktracker

There is one JobTracker(is also a single point of failure) running on a master node and several
TaskTrackers running on slave nodes. Each TaskTracker has multiple task-instances running
and every task tracker reports to JobTracker in the form of a heartbeat at regular intervals
which also carries message of the progress of the current job it is executing and idle if it has
�nished executing. JobTracker schedules jobs and takes care of failed ones by re-executing
them on some other nodes.

2.8 Hive

Hive, an open source SQL-based distributed warehouse system is proposed to solve problems
mentioned above by providing SQL like abstraction on top of Hadoop framework (Figure 2.3).
Hive is a SQL-to-MapReduce translator and has an SQL dialect, HiveQL, for querying data
stored in a cluster [41]. In terms of storage Hive can use any �le system supported by Hadoop,
although HDFS is by far the most common.

Hive provides its own query language HiveQL (similar to SQL) for querying data on a Hadoop
cluster. It can manage data in HDFS and run jobs in MapReduce without translating the

6

queries into Java. When MapReduce jobs are required, Hive doesn't generate Java MapReduce
programs. Instead, it uses built-in, generic Mapper and Reducer modules that are driven by
an XML �le representing the "job plan". In other words, these generic modules function
like mini language interpreters and the "language" to drive the computation is encoded in
XML. Hive Queries are translated to a graph of Hadoop MapReduce jobs that get executed
on your Hadoop grid. Hive Query Language (HQL) is based on SQL, and there are many
of the familiar constructs such as "SHOW", "DESCRIBE", "SELECT", "USE" and "JOIN".
Similar to an RDBMS in Hive there are "Databases" that contain one or more "Tables" that
contain some data de�ned by a "Schema".

Hive also supports User De�ned Functions (UDFs) and Serialization/Deserialization functions
(SerDe's). UDFs allow programmers to write functions to abstract common tasks in Hive. It
also allows you to seamlessly connect a Query Language in Hive with functional, procedural
or scripting languages. SerDe's allow for the management of arbitrarily structured or unstruc-
tured data in Hive. One particularly useful and popular SerDe is the now built-in one for
Avro.

Hive uses a metadata store to keep the data warehouse information that links Hive and the
raw data. Data loaded into Hive can be maintained in an external location or a copy made
into the Hive warehouse. In this way you can create a self-contained data warehouse, or share
the infrastructure with MapReduce and Pig programmer.

Figure 2.3: Hive Architecture.

Hive can be accessed via a command line and Web User interfaces. Hive also can be used
through the JDBC or ODBC APIs provided. The Thrift server exposes an API to execute

7

HiveQL statements with a di�erent set of languages (PHP, Perl, Pyhton and Java).

The Metastore component is a system catalogue that contains metadata regarding tables,
partitions and databases.

It is in the Driver and in the Compiler components that most of the core operations are made.
They parse, optimize and execute queries. The SQL statements are converted to a graph (a
DAG graph actually) of map/reduce jobs in run time, and this are run in the Hadoop cluster.

2.9 Multiple Query Optimization on Cloud

Hadoop emerged as a cost-e�ective way of dealing with large scale data [46, 47, 48]. Hadoop is
implemented with Java programming language and an Apache top-level project being built and
used by a global community of contributors. Hadoop implements a computational paradigm
called MapReduce, a particular programming model, for decomposing the computation tasks
into junks that can be assigned to a cluster of commodity. Therefore Hadoop provides an
e�cient and scalable system. Hadoop Distributed Filesystem (HDFS) is the underlying �le
system. The �lesystem is pluggable and there are many other available open source distributed
�lesystems [49]. However, when the infrastructure is based on conventional RDMBS and the
Structured Query Language (SQL) a challenging problem emerges. How will the Hadoop
tackle with these queries issued as SQL statements? How will the large number of user that
are familiar with SQL use SQL to extract information from their data warehouses?

Hive [50], an e�cient SQL-to-mapreduce converter, is the solution of this problem. Hive is a
data warehouse system for Hadoop facilitating data analysis, ad-hoc queries, and the analysis
of large scale data stored in HDFS. Hive provides a mechanism to project structure onto this
data and query the data using a SQL-like language called HiveQL. At the same time this
language also allows traditional map/reduce programmers to plug in their custom mappers
and reducers when it is inconvenient or ine�cient to express this logic in HiveQL. SQL is
widespread, e�ective, reasonably an intuitive model for organizing and using data. Mapping
these familiar data operations to the low-level MapReduce Java API can be boring. Hive does
this work and translates most queries to MapReduce jobs, thereby exploiting the scalability
of Hadoop, while presenting a familiar SQL abstraction.

Multiple query optimization (MQO) problem was introduced in 1980s and �nding an optimal
global query plan by using MQO was shown to be an NP-Hard problem [11, 19]. Since then,
considerable amount of work was done on RDBMSs and data analysis applications [20, 21].
The problem of identifying common subexpressions is an NP-hard problem [51]. Therefore,
Jarke indicates that multirelation subexpressions can only be addressed heuristically [51].
Finkelstein shows how an ad hoc query may be improved by comparing an incoming query with
materialized results (intermediate results and �nal answer) produced from earlier queries [19].
He deals only with equivalent expressions. Jarke discusses the common subexpression isolation
in relational algebra, domain relational calculus, and tuple relational calculus. Chakravarthy
and Minker identify the equivalence and subsumption of two expressions at the logical level,
using heuristics [22]. Rosenthal and Chakravarthy use an and/or graph to represent queries
and detects subsumption by comparing each pair of operator nodes from distinct queries [11].
Another issue in MQP is the representation and the processing of multiple queries. The
multigraph is proposed for representing multiple Select-Project-Join type queries in [22]. This
multigraph can facilitate query processing by using Ingres' instantiation and substitution [22].

8

In [23], the multigraph was modi�ed for representing the initial state of multiple queries.

Mehta and DeWitt considered CPU utilization, memory usage, and I/O load variables in a
study during planning multiple queries to determine the degree of intra-operator parallelism
in parallel databases to minimize the total execution time of declustered join methods [22].
A proxy-based infrastructure for handling data intensive applications is proposed by Beynon
[23]. This infrastructure was not as scalable as a collection of distributed cache servers avail-
able at multiple back-ends. Chen et al. considered the network layer of a data integration
system and reduced the communication costs by a multiple query reconstruction algorithm
[24]. IGNITE [25] and QPipe [26] are important studies that use the micro machine concept
for query operators to reduce the total execution time of a set of queries. A novel MQO
framework is proposed for the existing SPARQL query engines in [28]. Yasin et al. designed a
cascade-style optimizer for Scope, Microsoft's system for massive data analysis [28]. In recent
years, a signi�cant amount of research and commercial activity has focused on integrating
MapReduce and structured databases technologies. Mainly there are two approaches: Either
adding MapReduce features to parallel database or adding databases technology to MapRe-
duce. The second approach is more attractive because there exists no widely available open
source parallel database system whereas MapReduce is available as an open source project.
Furthermore, MapReduce is accompanied by a plethora of free tools as well as cluster avail-
ability and support. Hive [41], Pig [29], Scope [15], and HadoopDB [7, 30] are the projects that
provide SQL abstractions (SQL-to-MapReduce translators) on top of MapReduce platform to
familiarize the programmers with complex queries. SQL/MapReduce [31] and Greenplum [16]
are recent projects that use MapReduce to process user-de�ned functions (UDF). Recently,
there are interesting studies to apply MQO to MapReduce frameworks for unstructured data.
MRShare [32] is one of these studies that processes a batch of input queries as a single query.
The optimal grouping of queries for execution is de�ned as an optimization problem based
on MapReduce cost model. The experimental results reported for MRShare demonstrate its
e�ectiveness. In spite of some initial MQO studies to reduce the execution time of MapReduce-
based single queries [33], to the best of our knowledge there is no study like ours that is related
to optimize the execution time of multi-queries on SQL-to-MapReduce translator tools.

9

10

CHAPTER 3

SHAREDHIVE SYSTEM ARCHITECTURE

In this Chapter, we give brief information about architecture of SharedHive which is the
modi�ed version of Hadoop Hive with new MQO component as shown in Figure 3.1. Inputs
to compiler-optimizer-executer are pre-processed by a Multiple Query Optimizer component
which examines incoming queries and produces a single HiveQL command to execute a group
of correlated queries. System catalog and relational database structure (relations, attributes,
partitions, etc.) are stored and maintained by Metastore. Once a HiveQL statement is sub-
mitted, it is maintained by Driver which controls the execution of tasks to answer the query.
First, a directed acyclic graph is produced by HiveQL to de�ne the MapReduce tasks to be
executed. Next, the tasks are executed.

3.1 Query Processing for Multiple Query Optimization

HiveQL statements are submitted via the Command Line Interface (CLI) or the Web User
Interface ([42]). Normally the query is directed to the driver component in a conventional Hive
architecture. In the architecture we proposed, MQO component receives the incoming queries
before the driver component. The set of the incoming queries are inspected, their common
tasks (redundant join processes) are detected, and merged with a global HiveQL query that
answers all the incoming queries. Details of this process is explained in Chapter 4. The driver
component passes the global query to the Hive compiler that produces a logical plan using
information in Metastore and optimize this plan using a single rule-based optimizer. The
execution engine receives a directed acyclic graph of MapReduce tasks and associated HDFS
tasks and executes it in accordance with the dependencies of the tasks.

The new MQO component does not require any big changes in the system architecture of
Hadoop Hive. Therefore, it can be integrated easily by Hive without requiring many modi�-
cations. Other SQL-to-MapReduce translators can take advantage of this technique as well.

The following components are the main building blocks in Hive ([42]):

• Metastore � The component that stores the system catalog and metadata about tables,
columns, partitions etc.

• Driver � The component that manages the lifecycle of a HiveQL statement as it moves
through Hive. The driver also maintains a session handle and any session statistics.

11

Figure 3.1: SharedHive, A novel Hadoop Hive system architecture with MQO support.

• Query Compiler � The component that compiles HiveQL into a directed acyclic graph
of map/reduce tasks.

• Execution Engine � The component that executes the tasks produced by the compiler
in proper dependency order. The execution engine interacts with the Hadoop instance.

• HiveServer � The component that provides a thrift interface and a JDBC/ODBC server
and provides a way of integrating Hive with other applications.

• Clients components like the Command Line Interface (CLI), the web UI and JDBC/ODBC
driver.

• Extensibility Interfaces which include the SerDe and ObjectInspector interfaces already
described previously as well as the UDF(User De�ned Function) and UDAF(User De�ned
Aggregate Function) interfaces that enable users to de�ne their own custom functions.

A HiveQL statement is submitted via the CLI, the web UI or an external client using the
Thrift, ODBC or JDBC interfaces [42]. The driver �rst passes the query to the compiler
where it goes through the typical parse, type check and semantic analysis phases, using the
metadata stored in the Metastore. The compiler generates a logical plan that is then optimized
through a simple rule based optimizer. Finally an optimized plan in the form of a DAG of
map-reduce tasks and hdfs tasks is generated. The execution engine then executes these tasks
in the order of their dependencies, using Hadoop.

12

3.2 The Compiler Layer

The driver invokes the compiler with the HiveQL string which can be one of DDL, DML
or query statements. The compiler converts the string to a plan. The plan consists only
of metadata operations in case of DDL statements, and HDFS operations in case of LOAD
statements. For insert statements and queries, the plan consists of a directedacyclic graph
(DAG) of map-reduce jobs. ([42])

• The Parser transforms a query string to a parse tree representation.

• The Semantic Analyzer transforms the parse tree to a block-based internal query repre-
sentation. It retrieves schema information of the input tables from the metastore. Using
this information it veries column names, expands "select *" and does type-checking
including addition of implicit type conversions.

• The Logical Plan Generator converts the internal query representation to a logical plan,
which consists of a tree of logical operators.

• The Optimizer performs multiple passes over the logical plan and rewrites it in several
ways:

� Combines multiple joins which share the join key into a single multi-way join, and
hence a single map-reduce job.

� Adds repartition operators (also known as ReduceSinkOperator) for join, group-by
and custom map-reduce operators. These repartition operators mark the boundary
between the map phase and a reduce phase during physical plan generation.

� Prunes columns early and pushes predicates closer to the table scan operators in
order to minimize the amount of data transfered between operators.

� In case of partitioned tables, prunes partitions that are not needed by the query

� In case of sampling queries, prunes buckets that are not needed Users can also
provide hints to the optimizer to

� Adds partial aggregation operators to handle large cardinality grouped aggregations

� Adds repartition operators to handle skew in grouped aggregations

� Performs joins in the map phase instead of the reduce phase

• The Physical Plan Generator converts the logical plan into a physical plan, consisting
of a DAG of mapreduce jobs. It creates a new map-reduce job for each of the marker
operators � repartition and union all � in the logical plan. It then assigns portions of the
logical plan enclosed between the markers to mappers and reducers of the map-reduce
jobs.

In Hive, there is "query optimizer" layer for optimizing queries before converting them to
map-reduce jobs and executing them. But "query optimizer" is only a single query based so
there is no way to customize multiple queries in Hive with customer "query optimizer" layer.

13

3.3 The SharedHive Layer

In our solution, SharedHive is a layer before Hive "query optimizer". It takes multiple Hive
queries and builds their execution plan by using Hive "query parser". This parser generates
query plan in a tree structure. Then SharedHive sends multiple query plans from multiple
Hive queries to SharedHive "optimization" layer. SharedHive "optimization" layer is a plug-in
based layer. New optimization rules can be added as new plugin to this layer and they are used
for optimization of queries. After "optimization" layer processed query plans, there are global
query plans less than original query plans. Suppose there are "m" original query plans, there
will be "n" global query plans after optimization with "n <= m" condition. Unfortunately,
Hive doesn't support executing multiple queries at same time. For this reason, all optimized
global queries are executed as sequential. For executing an optimized global query, its query
plan is sent to Hive's "`semantic analyzer"' sub-layer of "`compiler"' layer directly by bypassing
"parser" sub-layer

14

CHAPTER 4

MULTIPLE-QUERY OPTIMIZATION ON HIVEQL
QUERIES

In this Chapter, we introduce our global query construction algorithm for HiveQL queries. We
use an optimization algorithm for constructing a global HiveQL query from a set of correlated
queries which produces answers for all of the input queries as HDFS �les that could be used
as inputs to further HiveQL queries.

4.1 The SharedHive Optimization Algorithm

Our optimization method is based on "multi-table-insert" support provided by Hive [43].

In Listing 4.1 we give a sample multi-table-insert query and next present its execution plan:

Listing 4.1: Sample Multi-Table-Insert query.

FROM

(

SELECT a.status , b.school , b.gender

FROM status updates a JOIN profiles b

ON (a.userid = b.userid AND a.ds = '2009-03-20')

) subq1

INSERT OVERWRITE TABLE gender summary

PARTITION(ds = '2009-03-20')

SELECT subq1.gender , COUNT (1)

GROUP BY subq1.gender

INSERT OVERWRITE TABLE school summary

PARTITION(ds = '2009-03-20')

SELECT subq1.school , COUNT (1)

GROUP BY subq1.school;

This query has a single join followed by two di�erent aggregations. By writing the query as a
multi-table-insert, we make sure that the join is performed only once. The plan for the query
is shown in Figure 4.1) below.

15

Figure 4.1: Query plan for multi-table insert query.

From Facebook Data Infrastructure Team. VLDB-2009 ([42])

16

The nodes in the plan are basic database operators and edges connecting nodes represent
�ow of data between operators. The last line in each node represents the output schema of
that operator. The plan has three map-reduce jobs. Within the same map-reduce job, the
portion of the operator tree below the repartition operator (ReduceSinkOperator) is executed
by the mapper and the portion above is executed by the reducer. The repartitioning itself
is performed by the execution engine. Notice that the �rst map-reduce job writes to two
temporary �les on HDFS, "tmp1" and "tmp2", which are consumed by the second and third
map-reduce jobs, respectively. Thus, the second and third map-reduce jobs wait for the �rst
map-reduce job to �nish. ([42])

As you can see in Figure 4.1 above, Part-1 and Part-2 of query plan are independent from each
other and they can be executed in parallel. We use this method in SharedHive, which detects
commons parts of queries and merges intersecting queries by executing common parts only once
and the other independent parts of input queries can be executed in parallel. In order to enable
parallel execution in Hive, parallel execution �ag must be set by "set hive.exec.parallel=true;".
From the viewpoint of Hive, the simple "gender_summary" query has 2 stages and
"school_summary" has 2 stages also. If they are executed as sequential queries separately
from each other, there will be 4 stages in total. By executing them with "multiple-table-insert"
support in Hive, the number of stages is reduced to 3 as shown in Figure 4.1.

The syntax of Hive multi-table insert query is given in Listing 4.2:

Listing 4.2: Hive Multi-Table-Insert query syntax.

FROM from_statement

INSERT OVERWRITE TABLE tablename_1

[PARTITION (partcol1=val1 , partcol2=val2 , ...)

[IF NOT EXISTS]] select_statement_1

[

INSERT OVERWRITE TABLE tablename_n

[PARTITION ... [IF NOT EXISTS]]

select_statement_n

] ...;

4.2 Selection of Correlated Queries

Correlated query candidates are queries having the same input table (given in the "FROM"
clause). As shown in Figure 4.2, "Query-1" and "Query-3" have the same input table (same
"FROM" statement) named "Table-1" and also "Query-2" and "Query-4" have the same input
table (same "FROM" statement) named "Table-2". Only their data selection and conditions
statements ("SELECT" and "WHERE") are di�erent and speci�c to query.

Executing these queries sequentially causes two table read operations on Table-1 and Table-2
which will read all the contents of these tables twice. If SharedHive determines that Query-1,
Query-2, Query-3 and Query-4 have the same data sources and these datasources are read
only once, we can reduce the total execution times of these queries signi�cantly (especially if
the data common data source has a very large number of records (e.g. big data)). As shown
in Figure 4.3, after their common tasks are executed only once, remaining and query speci�c
tasks can be executed in parallel separately from each other.

17

Figure 4.2: Sample correlated queries on Table-1 and Table-2.

Figure 4.3: Parallel and shared execution of correlated queries.

18

The algorithm used in SharedHive for detecting common tasks and merging them into global
queries is given below in Algorithm 1:

Algorithm 1 Generating Global HiveQL Queries.
Input Qorg=HiveQL (q1 ,..., qn);
Output Qopt=HiveQL (q

′

1 ,..., q
′

m), where (m<=n);
Qopt:=create_HiveQL_list (); //optimized query list
for qi ∈ Qorg do
FROM_clause=get_FROM_clause(qi);
MAP[FROM_clause]:=qi ∪ map[FROM_clause];

end for
for ki ∈ MAP.key do
qlist:=MAP[ki];
if (qlist.size()==1) then
add_query (Qopt, qlist[0])

else
new_query_node = create_HiveQL (ki);
for (qj ∈ qlist) do
(qj := qj − ki);
add_query (new_query_node, qj);

end for
add_query_node (Qopt, new_query_node);

end if
end for

Symbols q i and Q denote a single query and the set of the incoming queries, respectively.
The MQO formulation used by SharedHive can be given formally as:

Input: a set of queries Q1={q1,...,qn}.
Output: a set of modi�ed queries Q

′

1={q
′

1,...,q
′

m}.
The total execution time of queries in Q

′

1 is less than Q1.
m∑
i=1

execution_time(q
′

i) <
n∑

i=1

execution_time(qi)

If qm is the merged query obtained by merging q i and qj then all of the tuples and columns
required by these queries must be produced by qm by preserving the attributes of the predicates
of q i and qj .

The architecture of Hive cannot evaluate more than one HiveQL query and produces many
jobs that run in parallel to answer the queries. The output global HiveQL query produced
by SharedHive MQO component is has a valid syntax to be given as input to the Hive query
optimizer and processor.

In the merging process, �rst we generate the query execution plans of the input queries and
classify each query execution plan according to the related tables in the FROM clause of
HiveQL statements. The FROM clause of HiveQL queries can have one or more relations
speci�ed in it. Therefore, our algorithm �nds a global plan to execute the queries by merging
them. These query plans are inserted into a tree structure that maintains the similar queries

19

of the parent query node. Children of this tree are the query plans that share the same tables
with the parent query node. By using this technique, the input relations are not scanned
redundantly while executing the child queries. This merged HiveQL query is passed to the
query execution layer of Hive. The detailed explanation of the merging process is given in
Algorithm 1.

The example below shows a merged global HiveQL query from two correlated TPC-H queries
(Q1 and Q6). The output for each original query is written to separate �les qr1 and qr2 after
the execution of the merged query is completed which adds a minimal overhead to the global
query execution time.

Merging TPC-H Queries Q1 and Q6 :

Listing 4.3: Content of "Query Q1".

CREATE EXTERNAL TABLE LINEITEM

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

CREATE TABLE q1_pricing_summary_report

(L RETURNFLAG STRING , ..., COUNT_ORDER INT);

--

INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG , ..., COUNT(*)

FROM LINEITEM

WHERE L_SHIPDATE <= 1 9 9 8 0 9 0 2

GROUP BY L_RETURNFLAG , L_LINESTATUS

ORDER BY L_RETURNFLAG , L_LINESTATUS;

Listing 4.4: Content of "Query Q6".

CREATE EXTERNAL TABLE LINEITEM

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

CREATE TABLE q6_forecast_revenue_change (REVENUE DOUBLE);

--

INSERT OVERWRITE TABLE q6_forecast_revenue_change

SELECT SUM (...) AS REVENUE

FROM LINEITEM

WHERE

L_SHIPDATE >= '1994-01-01' AND

L_SHIPDATE <= '1995-01-01' AND

L_DISCOUNT >= 0.05 AND

L_DISCOUNT <= 0.07 AND

L_QUANTITY < 24;

Listing 4.5: Merged Global Query for "Q1" and "Q6".

CREATE EXTERNAL TABLE LINEITEM

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

20

CREATE TABLE q1_pricing_summary_report

(L RETURNFLAG STRING , ..., COUNT_ORDER INT);

--

CREATE TABLE q6_forecast_revenue_change (REVENUE DOUBLE);

--

FROM LINEITEM

INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG , ..., COUNT(*)

FROM LINEITEM

WHERE L_SHIPDATE <= 1 9 9 8 0 9 0 2

GROUP BY L_RETURNFLAG , L_LINESTATUS

ORDER BY L_RETURNFLAG , L_LINESTATUS

INSERT OVERWRITE TABLE q6_forecast_revenue_change

SELECT SUM (...) AS REVENUE

WHERE

L_SHIPDATE >= '1994-01-01' AND

L_SHIPDATE <= '1995-01-01' AND

L_DISCOUNT >= 0.05 AND

L_DISCOUNT <= 0.07 AND

L_QUANTITY < 24;

In the last phase of execution, the "INSERT OVERWRITE TABLE" part of query is converted
into its original form and the reducer tasks write the result of the query to its corresponding
query result �le, qr i.

21

22

CHAPTER 5

EXPERIMENTAL SETUP AND RESULTS

5.1 Experimental Environment

We have run experiments on input queries 10 times and reported their averages. The observed
variance in the experiments were negligible. We performed experiments with TPC-H queries
adapted to HiveQL [34] and the number of submitted queries was increased up to 160 and
no degradation was observed in the performance. Our experiments were performed on a
High Performance Cluster (HPC) machine (using 20 nodes). The software and hardware
con�gurations are given in Table 5.1 and the con�guration of Hadoop and Hive used during
the experiments is given in Table 5.2.

Table 5.1: Hardware and Software Con�gurations.

Hardware/Software Model/Version
CPU 20 x 2 = 40 CPUs
Core 20 x 2 x 4 = 160 Cores
Memory 20 x 16 GB = 320 GB
Disk 20 x 146 GB = 3 TB
Network 2 x 3Com 4200G 24-port Gigabit Ethernet Switch

1 x Voltaire 9240D 24-port In�niband Switch
Operating System Linux A Scienti�c Linux v5.2 64-bit
File System Lustre v1.6.7 (Parallel File System)
Resource Manager Torque v2.3.6
Job Scheduler Maui v3.2.6
Hadoop 0.20.1
Hive 0.9.0

5.2 Query Sets

In the experiments of this thesis, we use three TPC-H query sets that each query set has two
TPC-H queries (totally 6 TPC-H queries are used in the experiments) over TPC-H dataset.
These queries are selected because of their potential of sharing their input tables.

23

Table 5.2: Default Hadoop and Hive cluster settings.

Con�guration Default value
�le bu�er size 4 KB
blocksize 64 MB
replication 3
namenode.handler.count 10
maximum map tasks 2
maximum reduce tasks 2
reduce tasks 1
parallel thread count 8
merge size per task 256 MB
number of nodes 20

5.2.1 TPC-H Query Set 1

5.2.1.1 Pricing Summary Report Query (Q1)

This query lists totals for extended price, discounted extended price, discounted extended
price plus tax, average quantity, average extended price, and average discount. These ag-
gregates are grouped by RETURNFLAG and LINESTATUS, and listed in ascending order
of RETURNFLAG and LINESTATUS. A count of the number of lineitems in each group is
included [35].

5.2.1.2 Forecasting Revenue Change Query (Q6)

This query considers all the lineitems shipped in a given year with discounts between DISCOUNT-
0.01 and DISCOUNT+0.01. The query lists the amount by which the total revenue would have
increased if these discounts had been eliminated for lineitems with L_QUANTITY less than
quantity. Note that the potential revenue increase is equal to the sum of [L_EXTENDEDPRICE
* L_DISCOUNT] for all lineitems with discounts and quantities in the qualifying range [35].

5.2.2 TPC-H Query Set 2

5.2.2.1 Promotion E�ect Query (Q14)

The Promotion E�ect Query determines what percentage of the revenue in a given year and
month was derived from promotional parts. The query considers only parts actually shipped
in that month and gives the percentage. Revenue is de�ned as (L_EXTENDEDPRICE*(1-
L_DISCOUNT)) [35].

24

5.2.2.2 Discounted Revenue Query (Q19)

The Discounted Revenue query �nds the gross discounted revenue for all orders for three
di�erent types of parts that were shipped by air or delivered in person. Parts are selected
based on the combination of speci�c brands, a list of containers, and a range of sizes [35].

5.2.3 TPC-H Query Set 3

5.2.3.1 Shipping Priority Query (Q3)

The Shipping Priority Query retrieves the shipping priority and potential revenue, de�ned
as the sum of L_EXTENDEDPRICE * (1-L_DISCOUNT), of the orders having the largest
revenue among those that had not been shipped as of a given date. Orders are listed in
decreasing order of revenue. If more than 10 unshipped orders exist, only the 10 orders with
the largest revenue are listed [35].

5.2.3.2 Large Volume Customer Query (Q18)

The Large Volume Customer Query ranks customers based on their having placed a large
quantity order. Large quantity orders are de�ned as those orders whose total quantity is
above a certain level. This query �nds a list of the top 100 customers who have ever placed
large quantity orders. The query lists the customer name, customer key, the order key, date
and total price and the quantity for the order [35].

5.3 Benchmark Setup

We evaluated the performance of the Hive system with 1GB, 10GB, 25GB and 50GB standard
datasets generated with the TPC-H DBGEN program. We pre-loaded the data onto the
Hadoop Distributed File System (HDFS) before running all the queries. We do not consider
loading time as part of the evaluated timing results. All the query results are saved into Hive
tables which are also stored in HDFS. The time for storing the results into HDFS are included
in the calculated timings.

5.4 System Setup for Evaluating SharedHive

In this benchmark, to support Hadoop and Hive, we have installed Hadoop on Demand (HOD)
[38], a system for provisioning virtual Hadoop clusters over a large physical cluster.

We set up our Hive system on a 20 node cluster running Linux. In order to execute Hive/Hadoop
system, we selected one node to be the Hadoop master/name and the rest are used as job
tracker. Remaining 18 nodes are used as Hadoop slaves which execute the data nodes and task
trackers. The NameNode is the centerpiece of an HDFS �le system. It keeps the directory
tree of all �les in the �le system, and tracks where across the cluster the �le data is kept. It
does not store the data of these �les itself. The JobTracker is the service within Hadoop that

25

farms out MapReduce tasks to speci�c nodes in the cluster, ideally the nodes that have the
data, or at least are in the same rack.

A TaskTracker is a node in the cluster that accepts tasks - Map, Reduce and Shu�e operations
- from a JobTracker.

A DataNode stores data in its HDFS that is a functional �lesystem has more than one DataN-
ode, with data replicated across them. On startup, a DataNode connects to the NameNode
and starts waiting for requests. It then responds to requests from the NameNode for �lesystem
operations.

5.4.1 Setup of the SharedHive System

1. Copy "shared-hive.jar" to "$HIVE_HOME/lib"
2. "cp $HIVE_HOME/bin/ext/cli.sh $HIVE_HOME/bin/ext/ shared-hive-cli.sh"
3. Open "shared-hive-cli.sh" and edit as follows:

Listing 5.1: Content of "shared-hive-cli.sh".

THISSERVICE=sharedHiveCli

export SERVICE_LIST="${SERVICE_LIST}${THISSERVICE}"

sharedHiveCli () {

CLASS=tr.edu.metu.ceng.sharedhive.cli.SharedHiveCliDriver

if $cygwin; then

HIVE LIB =`cygpath -w "$HIVE_LIB"`

fi

JAR=${HIVE_LIB}/shared hive.jar

exec $HADOOP jar $JAR $CLASS "$@"

}

sharedHiveCli_help () {

sharedHiveCli "--help"

}

5.4.2 Generating TPC-H Data

1. We downloaded DBGen tool to generate TPC-H data from
"http://www.tpc.org/tpch/spec/tpch_2_8_0.zip"

2. We unzipped the downloaded �le and edit "make�le.suite" as follows:

Listing 5.2: Content of "make�le.suite".

...

CC = gcc

DATABASE = SQLSERVER

MACHINE = LINUX

WORKLOAD = TPCH

26

3. The command "make �f make�le.suite" is executed from the command line.

4. "./dbGen �s 1" is executed from the command line. (scale factor 1 means approximately
1GB of data will be generated)

5. Finally, we run "ls *.tbl" command from command line and verify that all test data �les
were generated successfully.

5.4.3 Uploading TPC-H Data to HDFS

a. We downloaded "https://issues.apache.org/jira/secure/attachment/12416615/
TPC-H_on_Hive_2009-08-14.tar.gz"

b. The downloaded archive is unzipped to the allocated directory location.
(Say "$TPCH_HIVE_HOME")

c. We copied the data generated by DBGen (*.tbl �les) to "$TPCH_HIVE_HOME/data"
folder.

d. We run "$TPCH_HIVE_HOME/tpch_prepare_data.sh". This would load the DBGen
generated data to HDFS.

e. Finally, the successfull loading of the generated TPC-H data on HDFS is veri�ed by using
"$HADOOP_HOME/bin/hadoopfs -ls /tpch;". The data were visible in HDFS.

5.5 Con�guration

1. We set the required values for "HADOOP_CMD" and "HIVE_CMD" in
"$TPCH_HIVE_HOME/benchmark.conf", "HADOOP_HOME", "HIVE_HOME" and
"HADOOP_CONF_DIR=$HADOP_HOME/conf"

2. In "$TPCH_HIVE_HOME/benchmark.conf", the value "NUM_OF_TRIALS" is set to
"10" giving the number of times the entire query set is to be executed.

3. The folder name is "$TPCH_HIVE_HOME/tpch" for the actual hive queries.

4. We only executed "Q1", "Q3", "Q6", "Q14", "Q18" and "Q19" in TPC-H queries for this
section. So go to "$TPCH_HIVE_HOME/benchmark.conf" �le and comment queries with
"#" except "Q1", "Q3", "Q6", "Q14", "Q18" and "Q19" as follows:

Listing 5.3: Content of "make�le.suite".

#hive

HIVE_CMD="$HIVE_HOME/bin/hive --service sharedHiveCli"

#hive tpch queries

#hive all benchmark queries

HIVE_TPCH_QUERIES_ALL=(

"tpch/ q 1 p r i c i n g s u m m a r y r e p o r t .hive"

#"tpch/q2_minimum_cost_supplier.hive"

27

"tpch/q3_shipping_priority.hive"

...

"tpch/q6_forecast_revenue_change.hive"

#"tpch/q7_volume_shipping.hive"

#"tpch/q8_national_market share .hive"

...

"tpch/q14_promotion_effect.hive"

#"tpch/q15_top_supplier.hive"

#"tpch/q16_parts_supplier_relationship.hive"

...

"tpch/q18_large_volume_customer.hive"

"tpch/q19_discounted_revenue.hive"

#"tpch/q20_potential_part_promotion.hive"

...

)

"Q1" and "Q6" queries are considered in TPC-H Query Set 1. "q1_pricing_summary_report.hive"
and "q6_forecast_revenue_change.hive" queries can be found at "APPENDIX A" section.

"Q14" and "Q19" queries are considered in TPC-H Query Set 2. "q14_promotion_e�ect.hive"
and "q19_discounted_revenue.hive" queries can be found at "APPENDIX B" section.

"Q3" and "Q18" queries are considered in TPC-H Query Set 3. "q3_shpping_priority.hive"
and "q18_large_volume_customer.hive" queries can be found at "APPENDIX C" section.

5. No other changes are made on Hadoop or Hive con�guration. The queries are executed
with default Hadoop and Hive con�gurations. Some important Hadoop and Hive con�guration
properties and default values are shown at Table 5.2.

5.6 Execution

1. We run "$TPCH_HIVE_HOME/tpch_benchmark.sh" from command line.

2. The queries were executed and the statistics were printed on screen.
(and in "$TPCH_HIVE_HOME/benchmark.log")

5.7 Query Execution Results

5.7.1 All TPC-H Queries

The Hive system is evaluated with 1GB, 10GB, 25GB and 50GB standard datasets generated
with the TPC-H DBGEN program ([37]). We pre-loaded the data onto the Hadoop Distributed
File System (HDFS) before running all the queries. We do not consider loading time as part
of the benchmark results. All the query results were saved into Hive tables which are stored
in HDFS. We included those storing time in the results.

There are totally 22 queries in the TPC-H benchmark. According to the TPC-H Benchmark

28

requirement [36], we ran those queries for 10 times and collected their timings. The average
query execution times are plotted in Figure 5.1.

The con�guration of the system is summarized in Table 5.1 and also the con�guration of
Hadoop and Hive used during the experiments is given in Table 5.2.

In all of the experiments, the HPC system had 20 nodes and two of them are "name" and
"jobtracker" nodes so there are 18 "tasktracker" nodes. Each of them can run 4 tasks (default
con�guration) at most. So there can be "18 x 4 = 72" parallel tasks at most. Since "Default
block size" is 64MB, 64MB x 72 = 4608MB, approximately 4.5GB. Hence we can say that
there can be 4.5GB data processed in parallel at most as theoretical and processing data
bigger than 4.5GB can be done at multi-job cycles and these cycles are executed sequentially.
This means that processing time for data bigger than 4.5GB increases almost linearly with
increasing size of data. As shown in Figure 5.1, for 10GB, 25GB and 50GB datasets, there
is a linear ratio between their execution times and corresponding data sizes. However, this
ratio was not observed for data sizes between 1GB and 10GB. Since 4.5GB is the limit of our
system only data upto 4.5GB can be processed in parallel.

Figure 5.1: All TPC-H Queries Execution Times.

29

5.7.2 Q1 (Pricing Summary Report Query)

In this experiment, we generated Q1 (Pricing Summary Report Query) queries for di�erent
"L_SHIPDATE" values in "WHERE" condition. Since all generated Q1 queries have the same
datasource (FROM statement such as "FROM lineitem"), they can be correlated and merged
into one optimized global query. In Table 5.3, there are execution times of these generated
Q1 queries for sequential execution and for parallel execution by using same datasource with
di�erent generated query counts.

Table 5.3: Q1 Execution Results.

Non-Shared execution (sec.) With MQO (sec.)
Number of Queries 1GB 10GB 25GB 50GB 1GB 10GB 25GB 50GB
1 96 143 233 396 96 143 233 396
5 480 715 1,165 1,980 223 474 796 1,374
10 960 1,430 2,330 3,960 346 805 1,549 2,465
15 1,440 2,145 3,495 5,940 467 1,176 2,056 3,409
20 1,920 2,860 4,660 7,920 590 1,519 2,477 4,178
30 2,880 4,290 6,990 11,880 838 2,186 3,255 5,873
40 3,840 5,720 9,320 15,840 1,082 2,716 4,089 7,519
60 5,760 8,580 13,980 23,760 1,575 3,478 6,148 11,043
80 7,680 11,440 18,640 31,680 2,066 3,734 8,074 14,705

Figure 5.2: Q1 Execution Times.

30

5.7.3 Q1 (Pricing Summary Report Query) + Q6 (Forecasting Revenue Change
Query)

In this experiment, we generated Q1 (Pricing Summary Report Query) queries for di�er-
ent "L_SHIPDATE" values in "WHERE" condition and generated Q6 (Forecasting Revenue
Change Query) queries for di�erent "L_SHIPDATE" values in "WHERE" condition like Q1.
Since all generated Q1 and Q6 queries have the same datasource (FROM statement such as
"FROM lineitem"), they can be correlated and merged into one optimized global query (6).
In Table 5.4, there are execution times of these generated Q1 and Q6 queries for sequential
execution and for parallel execution by using same datasource with di�erent generated query
counts. Number of queries presented in Table 5.4 and Figure 5.3, means number of Q1 and
Q6 query sets (Each set has two query, Q1 and Q6).

Table 5.4: Q1+Q6 Execution Results.

Non-Shared execution (sec.) With MQO (sec.)
Number of Queries 1GB 10GB 25GB 50GB 1GB 10GB 25GB 50GB
1 130 204 374 582 113 176 251 452
10 1,300 2,040 3,740 5,820 403 1,043 1,931 3,712
20 2,600 4,080 7,480 11,640 708 1,784 3,524 6,845
30 3,900 6,120 11,220 17,460 979 2,445 4,845 9,287
40 5,200 8,160 14,960 23,280 1,206 2,788 5,988 11,470
60 7,800 12,240 22,440 34,920 1,848 3,523 8,407 16,579
80 10,400 16,320 29,920 46,560 2,356 3,876 11,078 21,047

Figure 5.3: Q1+Q6 Performance Improvements.

31

5.7.4 Q14 (Promotion E�ect Query) + Q19 (Discounted Revenue Query)

In this experiment, we generated Q14 (Promotion E�ect Query) queries for di�erent
"L_SHIPDATE" values and generated Q19 (Discounted Revenue Query) queries for di�er-
ent "L_QUANTITY" and "P_SIZE" values in "WHERE" conditions. Because of all gen-
erated Q14 and Q19 queries have same datasource ("FROM part p JOIN lineitem l ON
l.L_PARTKEY = p.P_PARTKEY"), they can be correlated and merged into one optimized
global query (A.3). In Table 5.5, there are execution times of generated Q14 and Q19 queries
for sequential and parallel execution. Note that joining "lineitem" and "part" tables will have
a large cost because "lineitem" table includes 70 percent of all generated data. By correlating
these queries, FROM statement is executed only once and so gained performance for correlated
Q14 and Q19 queries are bigger than that gained from correlated Q1 and Q6 queries. Number
of queries presented in Table 5.5 and Figure 5.4, means number of Q14 and Q19 query sets
(Each set has two query, Q14 and Q19).

Table 5.5: Q14+Q19 Execution Results.

Non-Shared execution (sec.) With MQO (sec.)
Number of Queries 1GB 10GB 25GB 50GB 1GB 10GB 25GB 50GB
1 204 364 721 1,163 161 300 608 979
10 2,040 3,640 7,210 11,630 194 331 852 1,567
20 4,080 7,280 14,420 23,260 226 411 1,367 2,249
30 6,120 10,920 21,630 34,890 262 454 1,834 3,323
40 8,160 14,560 28,840 46,520 298 477 2,049 4,032
60 12,240 21,840 43,260 69,780 363 573 2,870 5,401
80 16,320 29,120 57,680 93,040 427 603 3,342 6,390

Figure 5.4: Q14+Q19 Execution Times.

32

5.7.5 Q3 (Shipping Priority Query) + Q18 (Large Volume Customer Query)

In this experiment, we generated Q3 (Shipping Priority Query) queries for di�erent
"L_SHIPDATE" values and generated Q18 (Large Volume Customer Query) queries for dif-
ferent "T_SUM_QUANTITY" values in "WHERE" conditions. But in this case, datasources
(FROM statements) of Q3 and Q18 are not exactly same. Their datasources are similar. Be-
cause of SharedHive can optimize queries having same datasource, we merged these queries
manually (B.3). In Table 5.6, there are execution times of generated Q3 and Q18 queries
for sequential and parallel execution with di�erent generated query counts. Note that joining
"lineitem", "orders" and "customers" tables has a large cost. By correlating these queries,
their costly JOIN statements are executed only once. For this reason, the performance gain
for correlated Q3 and Q18 queries is bigger than that gained from Q1 and Q6 queries. Number
of queries presented in Table 5.6 and Figure 5.5, means number of Q3 and Q18 query sets
(Each set has two query, Q3 and Q18).

Table 5.6: Q3+Q18 Execution Results.

Non-Shared execution (sec.) With MQO (sec.)
Number of Queries 1GB 10GB 25GB 50GB 1GB 10GB 25GB 50GB
1 549 780 1,491 2,119 382 620 1,313 1,891
10 5,490 7,800 14,910 21,190 1,176 1,352 2,459 4,857
20 10,980 15,600 29,820 42,380 2,062 2,416 3,347 5,806
30 16,740 23,400 44,730 63,570 2,955 3,343 4,314 6,847
40 21,960 31,200 59,640 84,760 3,845 4,106 4,622 7,831
60 32,940 46,800 89,460 127,140 5,647 5,661 5,406 10,194
80 43,920 62,400 119,280 169,520 7,426 7,512 6,891 12,263

Figure 5.5: Q3+Q18 Execution Times.

33

5.7.6 Q1+Q6 Execution Results with Increasing Node Count

As you can see in Table 5.7, scalability of performance is observed with increased data size.
Since for small data sizes, system doesn't run at full capacity and adding new nodes doesn't
improve performance (i.e. scalability limit is reached). Since the system is not running at full
capacity, newly added nodes are not used for processing data. Adding new nodes can gain us
just a few seconds, because all TaskTracker nodes send heartbeat signals to the JobTracker
node periodically and its default value is 3 seconds. By this heartbeat, JobTracker �nds a
new empty TaskTracker node. If we increase the number of TaskTracker nodes by adding new
nodes, possibility of �nding an empty TaskTracker node in less than 3 seconds is increased.
This explains why execution times is reduced in 1GB data in Table 5.7 with unused new
tasktracker nodes.

Table 5.7: Q1+Q6 Execution Results with Increasing Node Count.

Execution Time (sec.) Map Tasks / Reduce Tasks
Number of Nodes 1GB 10GB 25GB 50GB 1GB 10GB 25GB 50GB
5 127 367 819 1,434 3/7 29/7 74/7 148/7
10 121 255 440 793 3/16 29/16 74/16 148/16
15 118 194 337 594 3/25 29/25 74/25 148/25
20 113 176 251 452 3/34 29/34 74/34 148/34

Figure 5.6: Q1+Q6 Execution Results with Increasing Node Count.

34

Table 5.8: Symbols and Explanations for Calculating Scalability.

Symbol Explanation
i Id of experiment
i-1 Id of previous experiment of experiment i
Si Scalability of experiment i
Ni Number of nodes of experiment i
Ei Execution Time of experiment i

If we calculate scalability percentage as,

Si =
(Ei−1−Ei)∗100
Ei−1∗(1−

Ni−1
Ni

)

We get scalability percentages as in Figure 5.7. As shown in Figure 5.7, the more data size
increases, the more scalability percentage increases. Because count of actively used tasktracker
nodes increase with big data usage.

Figure 5.7: Scalability % of Q1+Q6 With Increasing Node Count.

35

36

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this study, we proposed a multiple query optimization (MQO) based framework, Shared-
Hive, to improve the performance of conventional Hadoop Hive. To our knowledge, this is
the �rst time that the performance of Hive is being improved with MQO techniques. In
SharedHive, we detected and categorized sets of correlated HiveQL queries and merged them
into optimized HiveQL statements to run on Hadoop. With this approach, we showed that
signi�cant performance improvements can be achieved. Since SharedHive is designed as a
new component on top of the existing Hive optimizer, it can be integrated into other SQL-to-
MapReduce translators as well.

In this thesis, it is possible to process only those queries that have exactly the same datasources,
not partially similar datasources. If we can detect similar common tasks (such as similar
FROM statements), we can merge and optimize more TPC-H queries, increasing the potential
bene�ts that can be achieved by SharedHive. As future work, �rst we plan to work on
detecting correlated queries having similar datasources (FROM statements) which need not
match exactly and merging them into optimized global queries.

Next, we are planning to apply MQO to the tasks in a single query. By this way, we intend to
eliminate redundant tasks in queries and improve the overall performance of native rule-based
query optimizer of Hive.

37

38

REFERENCES

[1] Hadoop project. http://hadoop.apache.org/.

[2] Dean, J., and Ghemawat, S. (2008). MapReduce: simpli�ed data processing on large
clusters. Communications of the ACM, 51(1), 107-113.

[3] Condie, T., et al. (2010). MapReduce online. In Proceedings of the 7th USENIX conference
on Networked systems design and implementation.

[4] Stonebraker, M., et al. (2010). MapReduce and parallel DBMSs: friends or foes. Commu-
nications of the ACM, 53(1), 64-71.

[5] DeWitt, D., and Stonebraker, M. (2008). MapReduce: A major step backwards. The
Database Column,1.

[6] Lee, K. H., et al. (2012). Parallel data processing with MapReduce: a survey. ACM SIG-
MOD Record, 40(4), 11-20.

[7] Abouzeid, A., et al. (2009). HadoopDB: an architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. Proceedings of the VLDB Endowment, 2(1), 922-933.

[8] Hive project. http://hadoop.apache.org/hive/.

[9] Ordonez, C., Song, I. Y., and Garcia-Alvarado, C. (2010). Relational versus non-relational
database systems for data warehousing. In Proceedings of the ACM 13th international
workshop on Data warehousing and OLAP (67-68).

[10] Thusoo, A., et al. (2010). Hive-a petabyte scale data warehouse using hadoop. ICDE,(996-
1005).

[11] Sellis, T.K. (1988). Multiple-query optimization. ACM Transactions on Database Systems
(TODS), 13(1), 23-52.

[12] Bayir, M. A., Toroslu, I. H., and Cosar, A. (2007). Genetic algorithm for the multiple-
query optimization problem. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 37(1), 147-153.

[13] Cosar, A., Lim, E. P., and Srivastava, J. (1993). Multiple query optimization with depth-
�rst branch-and-bound and dynamic query ordering. In Proceedings of the second inter-
national conference on Information and knowledge management (433-438).

[14] Zhou, J., Larson, P. A., Freytag, J. C., and Lehner, W. (2007). E�cient exploitation of
similar subexpressions for query processing. In Proceedings of ACM SIGMOD (533-544).

[15] Chaiken, R., et al. (2008). SCOPE: easy and e�cient parallel processing of massive data
sets. Proceedings of the VLDB Endowment, 1(2), 1265-1276.

39

[16] Cohen, J., et al. (2009). MAD skills: new analysis practices for big data. VLDB, 2(2),
1481-1492.

[17] He, Y., et al. (2011). Rc�le: A fast and space-e�cient data placement structure in
mapreduce-based warehouse systems. ICDE (1199-1208).

[18] Lee, R., et al. (2011). Ysmart: Yet another sql-to-mapreduce translator. ICDCS (25-36).

[19] Finkelstein, S. (1982). Common expression analysis in database applications. SIGMOD
(235-245).

[20] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S. (2000). E�cient and extensible algo-
rithms for multi query optimization. SIGMOD Record 29(2), 249-260.

[21] Giannikis, G., Alonso, G., and Kossmann, D. (2012). SharedDB: killing one thousand
queries with one stone. Prof. of VLDB, 5(6), 526-537.

[22] Mehta, M. and DeWitt, D.J. (1995). Managing intra-operator parallelism in parallel
database systems. VLDB (382-394).

[23] Beynon, M., et al. (2002). Processing large-scale multi-dimensional data in parallel and
distributed environments. Parallel Computing, 28(5), 827-859.

[24] Chen, G., et al. (2011). Optimization of sub-query processing in distributed data integra-
tion systems. Journal of Network and Computer Applications, 34(4), 1035-1042.

[25] Lee, R., Zhou, M., and Liao, H. (2007). Request Window: an approach to improve
throughput of RDBMS-based data integration system by utilizing data sharing across
concurrent distributed queries. VLDB (1219-1230).

[26] Harizopoulos, S., Shkapenyuk, V., and Ailamaki, A. (2005). QPipe: a simultaneously
pipelined relational query engine. SIGMOD (383-394).

[27] Le, W., Kementsietsidis, A., Duan, S., and Li, F. (2012). Scalable multi-query optimiza-
tion for SPARQL. ICDE (666-677).

[28] Silva, Y. N., Larson, P., and Zhou, J. (2012). Exploiting Common Subexpressions for
Cloud Query Processing. ICDE (1337-1348).

[29] Apache Pig. http://wiki.apache.org/pig.

[30] Bajda-Pawlikowski, K., Abadi, D. J., Silberschatz, A., and Paulson, E. (2011). E�cient
processing of data warehousing queries in a split execution environment. In Proceedings
of international conference on Management of data (1165-1176).

[31] Friedman, E., Pawlowski, P., and Cieslewicz, J. (2009). SQL/MapReduce: A practical
approach to self-describing, polymorphic, and parallelizable user-de�ned functions. VLDB,
2(2), 1402-1413.

[32] Nykiel, T., et al. (2010). Mrshare: Sharing across multiple queries in mapreduce. VLDB,
3(1-2), 494-505.

[33] Gruenheid, A., Omiecinski, E., and Mark, L. (2011). Query optimization using column
statistics in hive. In Proceedings of the 15th Symposium on International Database Engi-
neering and Applications (97-105).

40

[34] Running TPC-H queries on Hive. http://issues.apache.org/jira/browse/HIVE-600.

[35] TPC BENCHMARK H (Decision Support) Standard Speci�cation Revision 2.3.0.
http://www.tpc.org/tpch/spec/tpch2.3.0.pdf.

[36] TPC-H Benchmark Document. http://www.tpc.org/tpch/spec/tpch2.8.0.pdf.

[37] TPC-H DBGEN. http://www.tpc.org/tpch/spec/tpch_2_8_0.zip.

[38] Hadoop on Demand. http://hadoop.apache.org/docs/r0.17.0/hod.html.

[39] Introduction to Hadoop. http://developer.yahoo.com/hadoop/tutorial/module1.html

[40] Hadoop, An Elephant can't jump. But can carry heavy load. Prashant Sharma

[41] Hadoop Fundamentals: An introduction to Hive.
http://�erydata.com/2012/12/03/hadoop-fundamentals-an-introduction-to-hive/

[42] Facebook Data Infrastructure Team. VLDB (2009). Hive - A Warehousing Solution Over
a Map-Reduce Framework

[43] Facebook Data Infrastructure Team. ICDE (2010). Hive - A Petabyte Scale Data Ware-
house Using Hadoop

[44] Hawaniah Zakaria, Shamsul Sahibuddin, Harihodin Selamat. Common Sub-Expression
Identi�cation. Proceedings of the Postgraduate Annual Research Seminar (2006)

[45] Swathi Kurunji, Tingjian Ge, Benyuan Liu, Cindy X. Chen. Communication Cost Opti-
mization for Cloud Data Warehouse Queries. IEEE 4th International Conference on Cloud
Computing Technology and Science (2012).

[46] http://en.wikipedia.org/wiki/Apache_Hadoop

[47] Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., and Welton, C. (2009). MAD skills:
new analysis practices for big data. Proceedings of the VLDB Endowment, 2(2), 1481-1492.

[48] Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H.,
... and Aiyer, A. (2011). Apache Hadoop goes realtime at Facebook. In Proceedings of the
2011 international conference on Management of data (1071-1080).

[49] Capriolo, E., Wampler, D., and Rutherglen, J. (2012). Programming Hive. O'Reilly Me-
dia.

[50] http://hive.apache.org/

[51] Jarke, M. (1985). Common subexpression isolation in multiple query optimization. In
Query Processing in Database Systems (pp. 191-205). Springer Berlin Heidelberg.

[52] http://developer.yahoo.com/hadoop/tutorial/module4.html

41

42

APPENDIX A

Q1 AND Q6 HIVEQL

A.1 Q1 (Pricing Summary Report Query) as HiveQL

Listing A.1: Content of "Query Q1".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

CREATE TABLE q1_pricing_summary_report

(L RETURNFLAG STRING , ..., COUNT_ORDER INT);

--

INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG , ..., COUNT(*)

FROM lineitem

WHERE L_SHIPDATE <= 1 9 9 8 0 9 0 2

GROUP BY L_RETURNFLAG , L_LINESTATUS

ORDER BY L_RETURNFLAG , L_LINESTATUS;

A.2 Q6 (Forecasting Revenue Change Query) as HiveQL

Listing A.2: Content of "Query Q6".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

CREATE TABLE q6_forecast_revenue_change (REVENUE DOUBLE);

--

INSERT OVERWRITE TABLE q6_forecast_revenue_change

SELECT SUM (...) AS REVENUE

FROM lineitem

WHERE

L_SHIPDATE >= '1994-01-01' AND

L_SHIPDATE <= '1995-01-01' AND

L_DISCOUNT >= 0.05 AND

L_DISCOUNT <= 0.07 AND

L_QUANTITY < 24;

43

A.3 Q1+Q6 as HiveQL

Listing A.3: Merged Global Query for "Q1" and "Q6".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

--

CREATE TABLE q1_pricing_summary_report

(L RETURNFLAG STRING , ..., COUNT_ORDER INT);

--

CREATE TABLE q6_forecast_revenue_change (REVENUE DOUBLE);

--

FROM lineitem

INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG , ..., COUNT(*)

FROM LINEITEM

WHERE L_SHIPDATE <= 1 9 9 8 0 9 0 2

GROUP BY L_RETURNFLAG , L_LINESTATUS

ORDER BY L_RETURNFLAG , L_LINESTATUS

INSERT OVERWRITE TABLE q6_forecast_revenue_change

SELECT SUM (...) AS REVENUE

WHERE

L_SHIPDATE >= '1994-01-01' AND

L_SHIPDATE <= '1995-01-01' AND

L_DISCOUNT >= 0.05 AND

L_DISCOUNT <= 0.07 AND

L_QUANTITY < 24;

44

APPENDIX B

Q14 AND Q19 HIVEQL

B.1 Q14 (Promotion E�ect Query) as HiveQL

Listing B.1: Content of "Query Q14".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE part

(P_PARTKEY INT , ..., P_COMMENT STRING);

--

CREATE TABLE q14_promotion_effect (PROMO_REVENUE DOUBLE);

--

INSERT OVERWRITE TABLE q14_promotion_effect

SELECT

100.00

SUM

(

CASE

WHEN P_TYPE LIKE 'PROMO%'

THEN L_EXTENDEDPRICE * (1 - L_DISCOUNT)

ELSE 0.0

END

) /

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS PROMO_REVENUE

FROM part p JOIN lineitem l ON l.L_PARTKEY = p.P_PARTKEY

WHERE l.L_SHIPDATE < '1995-10-01';

B.2 Q19 (Discounted Revenue Query) as HiveQL

Listing B.2: Content of "Query Q19".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE part

(P_PARTKEY INT , ..., P_COMMENT STRING);

--

CREATE TABLE q19_discounted_revenue (REVENUE DOUBLE);

45

--

INSERT OVERWRITE TABLE q19_discounted_revenue

SELECT SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE

FROM part p JOIN lineitem l ON l.L_PARTKEY = p.P_PARTKEY

WHERE

(

P_BRAND = 'Brand#12' AND

P_CONTAINER REGEXP 'SM CASE SM BOX SM PACK SM PKG' AND

L_QUANTITY >= 1 AND

L_QUANTITY <= 11 AND

P_SIZE >= 1 AND

P_SIZE <= 5 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

)

OR

(

P_BRAND = 'Brand#23' AND

P_CONTAINER REGEXP 'MED BAG MED BOX MED PKG MED PACK' AND

L_QUANTITY >= 10 AND

L_QUANTITY <= 20 AND

P_SIZE >= 1 AND

P_SIZE <= 10 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

)

OR

(

P_BRAND = 'Brand#34' AND

P_CONTAINER REGEXP 'LG CASE LG BOX LG PACK LG PKG' AND

L_QUANTITY >= 20 AND

L_QUANTITY <= 30 AND

P_SIZE >= 1 AND

P_SIZE <= 15 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

);

B.3 Q14+Q19 as HiveQL

Listing B.3: Merged Global Query for "Q14" and "Q19".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE part

(P_PARTKEY INT , ..., P_COMMENT STRING);

--

CREATE TABLE q14_promotion_effect (PROMO_REVENUE DOUBLE);

46

CREATE TABLE q19_discounted_revenue (REVENUE DOUBLE);

--

FROM part p JOIN lineitem l ON l.L_PARTKEY = p.P_PARTKEY

SELECT

100.00

SUM

(

CASE

WHEN P_TYPE LIKE 'PROMO%'

THEN L_EXTENDEDPRICE * (1 - L_DISCOUNT)

ELSE 0.0

END

) /

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS PROMO_REVENUE

WHERE l.L_SHIPDATE < '1995-10-01'

SELECT SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE

WHERE

(

P_BRAND = 'Brand#12' AND

P_CONTAINER REGEXP 'SM CASE SM BOX SM PACK SM PKG' AND

L_QUANTITY >= 1 AND

L_QUANTITY <= 11 AND

P_SIZE >= 1 AND

P_SIZE <= 5 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

)

OR

(

P_BRAND = 'Brand#23' AND

P_CONTAINER REGEXP 'MED BAG MED BOX MED PKG MED PACK' AND

L_QUANTITY >= 10 AND

L_QUANTITY <= 20 AND

P_SIZE >= 1 AND

P_SIZE <= 10 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

)

OR

(

P_BRAND = 'Brand#34' AND

P_CONTAINER REGEXP 'LG CASE LG BOX LG PACK LG PKG' AND

L_QUANTITY >= 20 AND

L_QUANTITY <= 30 AND

P_SIZE >= 1 AND

P_SIZE <= 15 AND

L_SHIPMODE REGEXP 'AIR AIR REG' AND

47

L_SHIPINSTRUCT = 'DELIVER IN PERSON'

);

48

APPENDIX C

Q3 AND Q18 HIVEQL

C.1 Q3 (Shipping Priority Query) as HiveQL

Listing C.1: Content of "Query Q3".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE orders

(O_ORDERKEY INT , ..., O_COMMENT STRING);

CREATE EXTERNAL TABLE customer

(C_CUSTKEY INT , ..., C_COMMENT STRING);

--

CREATE TABLE q3_shipping_priority

(

L_ORDERKEY INT ,

REVENUE DOUBLE ,

O_ORDERDATE STRING ,

O_SHIPPRIORITY INT

);

--

INSERT OVERWRITE TABLE q3_shipping_priority

SELECT

L_ORDERKEY ,

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE ,

O_ORDERDATE ,

O_SHIPPRIORITY

FROM

customer c

JOIN

orders o ON c.C_CUSTKEY = o.O_CUSTKEY

JOIN

lineitem l ON l.L_ORDERKEY = o.O_ORDERKEY

WHERE

C_MKTSEGMENT = 'BUILDING' AND

O_ORDERDATE < '1995-03-15' AND

L_SHIPDATE > '1995-03-15'

GROUP BY

L_ORDERKEY , O_ORDERDATE , O_SHIPPRIORITY

49

ORDER BY

REVENUE DESC , O_ORDERDATE

LIMIT 10;

C.2 Q18 (Large Volume Customer Query) as HiveQL

Listing C.2: Content of "Query Q18".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE orders

(O_ORDERKEY INT , ..., O_COMMENT STRING);

CREATE EXTERNAL TABLE customer

(C_CUSTKEY INT , ..., C_COMMENT STRING);

--

CREATE TABLE q18_tmp (L_ORDERKEY INT , T_SUM_quantity DOUBLE);

CREATE TABLE q18_large_volume_customer

(

C_NAME STRING ,

C_CUSTKEY INT ,

O_ORDERKEY INT ,

O_ORDERDATE STRING ,

O_TOTALPRICE DOUBLE ,

SUM_QUANTITY DOUBLE

);

--

INSERT OVERWRITE TABLE q18_large_volume_customer

SELECT

C_NAME ,

C_CUSTKEY ,

O_ORDERKEY ,

O_ORDERDATE ,

O_TOTALPRICE ,

SUM(L_QUANTITY)

FROM

customer c

JOIN

orders o ON c.C_CUSTKEY = o.O_CUSTKEY

JOIN

lineitem l ON l.L_ORDERKEY = o.O_ORDERKEY

JOIN

q18_tmp t ON t.T_ORDERKEY = o.O_ORDERKEY

WHERE t.T_SUM_QUANTITY > 300

GROUP BY

C_NAME ,

C_CUSTKEY ,

O_ORDERKEY ,

O_ORDERDATE ,

50

O_TOTALPRICE

ORDER BY O_TOTALPRICE DESC , O_ORDERDATE

LIMIT 100;

C.3 Q3+Q18 as HiveQL

Listing C.3: Merged Global Query for "Q3" and "Q18".

CREATE EXTERNAL TABLE lineitem

(L_ORDERKEY INT , ..., L_COMMENT STRING);

CREATE EXTERNAL TABLE orders

(O_ORDERKEY INT , ..., O_COMMENT STRING);

CREATE EXTERNAL TABLE customer

(C_CUSTKEY INT , ..., C_COMMENT STRING);

--

CREATE TABLE q3_shipping_priority

(

L_ORDERKEY INT ,

REVENUE DOUBLE ,

O_ORDERDATE STRING ,

O_SHIPPRIORITY INT

);

CREATE TABLE q18_tmp (L_ORDERKEY INT , T_SUM_quantity DOUBLE);

CREATE TABLE q18_large_volume_customer

(

C_NAME STRING ,

C_CUSTKEY INT ,

O_ORDERKEY INT ,

O_ORDERDATE STRING ,

O_TOTALPRICE DOUBLE ,

SUM_QUANTITY DOUBLE

);

--

FROM

customer c

JOIN

orders o ON c.C_CUSTKEY = o.O_CUSTKEY

JOIN

lineitem l ON l.L_ORDERKEY = o.O_ORDERKEY

JOIN

(

SELECT

L_ORDERKEY AS T_ORDERKEY ,

SUM(L_QUANTITY) AS T_SUM_QUANTITY

FROM lineitem

GROUP BY L_ORDERKEY

) t ON t.T_ORDERKEY = o.O_ORDERKEY

51

INSERT OVERWRITE TABLE q3_shipping_priority

SELECT

L ORDERKEY ,

SUM(L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS REVENUE ,

O_ORDERDATE ,

O_SHIPPRIORITY

WHERE

C_MKTSEGMENT = 'BUILDING' AND

O_ORDERDATE < '1995-03-15' AND

L_SHIPDATE > '1995-03-15'

GROUP BY

L_ORDERKEY , O_ORDERDATE , O_SHIPPRIORITY

ORDER BY

REVENUE DESC , O_ORDERDATE

LIMIT 10

INSERT OVERWRITE TABLE q18_large_volume_customer

SELECT

C_NAME ,

C_CUSTKEY ,

O_ORDERKEY ,

O_ORDERDATE ,

O_TOTALPRICE ,

SUM(L_QUANTITY)

WHERE T_SUM_QUANTITY > 300

GROUP BY

C_NAME ,

C_CUSTKEY ,

O_ORDERKEY ,

O_ORDERDATE ,

O_TOTALPRICE

ORDER BY O_TOTALPRICE DESC , O_ORDERDATE

LIMIT 100;

52

VITA

PERSONAL INFORMATION

Surname, Name: Özal, Serkan
Nationality: Turkish (TC)
Date and Place of Birth: 15 September 1986, Çank�r�/Turkey
Marital Status: Single
Phone: +90 312 476 93 98
GSM: +90 542 680 39 18
E-Mail: serkan.ozal@metu.edu.tr

EDUCATION

Degree Institution Year of Graduation
B.S. Hacettepe University - Computer Engineering 2009
High School Kastamonu Mustafa Kaya Anatolian High School 2004

WORK EXPERIENCE

Year Place Enrollment
2009-2010 TÜB�TAK - UEKAE / G222 Software Developer
2010-2011 MilSOFT Software Developer
2011- T2 Yaz�l�m Senior Software Developer

FOREIGN LANGUAGES

Advanced English

53

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Large Scale Data Processing
	The Motivation of the Study

	Related Work
	The Hadoop Approach
	Map-Reduce
	Map-Reduce in Hadoop
	Hadoop Distributed File System (HDFS)
	Namenode
	Datanode
	Jobtracker and Tasktracker
	Hive
	Multiple Query Optimization on Cloud

	SharedHive System Architecture
	Query Processing for Multiple Query Optimization
	The Compiler Layer
	The SharedHive Layer

	Multiple-query Optimization on HiveQL Queries
	The SharedHive Optimization Algorithm
	Selection of Correlated Queries

	Experimental Setup and Results
	Experimental Environment
	Query Sets
	TPC-H Query Set 1
	Pricing Summary Report Query (Q1)
	Forecasting Revenue Change Query (Q6)

	TPC-H Query Set 2
	Promotion Effect Query (Q14)
	Discounted Revenue Query (Q19)

	TPC-H Query Set 3
	Shipping Priority Query (Q3)
	Large Volume Customer Query (Q18)

	Benchmark Setup
	System Setup for Evaluating SharedHive
	Setup of the SharedHive System
	Generating TPC-H Data
	Uploading TPC-H Data to HDFS

	Configuration
	Execution
	Query Execution Results
	All TPC-H Queries
	Q1 (Pricing Summary Report Query)
	Q1 (Pricing Summary Report Query) + Q6 (Forecasting Revenue Change Query)
	Q14 (Promotion Effect Query) + Q19 (Discounted Revenue Query)
	Q3 (Shipping Priority Query) + Q18 (Large Volume Customer Query)
	Q1+Q6 Execution Results with Increasing Node Count

	Conclusions and Future Work
	REFERENCES
	APPENDICES
	Q1 and Q6 HiveQL
	Q1 (Pricing Summary Report Query) as HiveQL
	Q6 (Forecasting Revenue Change Query) as HiveQL
	Q1+Q6 as HiveQL

	Q14 and Q19 HiveQL
	Q14 (Promotion Effect Query) as HiveQL
	Q19 (Discounted Revenue Query) as HiveQL
	Q14+Q19 as HiveQL

	Q3 and Q18 HiveQL
	Q3 (Shipping Priority Query) as HiveQL
	Q18 (Large Volume Customer Query) as HiveQL
	Q3+Q18 as HiveQL

	VITA

