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ABSTRACT 

 

PARALLELIZATION OF K-MEANS AND DBSCAN CLUSTERING ALGORITHMS ON A HPC 

CLUSTER 

 

Durrani, Hunain 

M.Sc., Computer Engineering 

Supervisor: Assoc. Prof. Dr. Ahmet Coşar 

 

 

January 2013, 32 pages 

 

The amount of information that must be processed daily by computer systems has reached huge 

quantities. It is impossible, or would be prohibitively expensive, to build such a powerful 

supercomputer that could process such large data in the required time limits. Cluster computing has 

emerged to address this problem by connecting hundreds of small computers using ultra-fast switches 

so that their combined computational power and parallel processing techniques make it possible to 

quickly solve many difficult problems. In fact, cloud computing has emerged to market the data 

processing power collected in cluster computing centers with hundreds of thousands of computers and 

allow the customers to purchase additional data processing power, storage, memory, and 

communication capacity when needed.  

 

Data mining has been one of the most favorite topics for all the researchers as it’s the technique that 

helps large scale business to extract useful data from the heap of irrelevant data. In this era of big 

data stores parallel implementation of data mining is the basic tool of all the large scale businesses. 

In this research, parallel versions of two popular clustering algorithms, K-Means and 

DBSCAN, are developed and it is experimentally shown that their performance continues to improve 

even as the input data size keeps increasing, making these parallel implementations ideally suited to 

parallel computing environments. 

 

Keywords: clustering, data mining, k-means, dbscan, parallel processing. 
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ÖZ 

 

DBSCAN VE K-MEANS KÜMELEME ALGORİTMALARININ BİR HPC KÜMESİ ÜZERİNDE 

PARALELLEŞTİRİLMESİ  

 

 

Durrani, Hunain 

  Yüksek Lisans, Bilgisayar Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Doç. Dr. AhmetCoşar 

 

Ocak 2013, 32 sayfa 

 

Günlük olarak bilgisayar sistemleri tarafından işlenmesi gereken bilgi miktarı çok büyük miktarlara 

erişmiştir. Bu kadar çok datayı istenen sürede işleyebilecek bir super bilgisayarın inşa edilmesi hem 

çok zor hem de çok pahalı olacaktır. Küme hesaplama bu problem çözmek için yüzlerce küçük 

bilgisayarın çok-hızlı anahtarlar ile birbirine bağlanmasıyla ortaya çıkmıştır ve toplam işlemci gücü 

ve parallel işleme teknolojileri kullanılarak bir çok zor problemin çabucak çözülmesini sağlamıştır. 

Aslında bulut hesaplama küme hesaplama merkezlerinde toplanan  yüzbinlerce bilgisayarın parallel 

bilgi işleme güçlerinin pazarlanmasını sağlamış ve müşterilerin gerek oldukça ek bilgi işleme gücü, 

veri depolama yeri, bellek, ve komünikasyon kapasitesi satın almalarına izin vermiştir.  

Veri madenciliği büyük ölçekli işletmelerin çoğu ilişkisiz verilerin içinden yararlı olanlarının 

çıkartılmasını sağlayan bir teknik olarak araştırmacıların en çok çalıştığı konulardan biri olmuştur. 

Büyük veri depolarının yaygınlaştığı günümüzde veri madenciliğinin parallel gerçekleştirilmesi bütün 

büyük işletmelerin temel aracıdır. 

Bu çalışmada, iki popular kümeleme algorittmasının, K-Means ve DBSCAN, parallel 

sürümleri geliştirilmiş ve deneysel olarak very miktarı arttıkça başarımdaki iyileşmenin sürdüğü 

gözlenerek bu parallel sürümlerin parallel ortamlar için çok uygun olduğu gösterilmiştir. 

 

 

AnahtarKelimeler: kümeleme, veri madenciliği, k-means, dbscan, paralel işleme 
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CHAPTER 1 

INTRODUCTION 

For future planning, gathering useful information from existing data has always been an important 

task for human beings. However, day by day the past data in the data warehouse is increasing with a 

high rate due to which it becomes difficult for an individual to extract the required knowledge by 

manual techniques. It is also difficult to extract knowledge from that bundle of data even by using 

computing technologies that are usually based on single sequential processors. In order to fulfill such 

information extraction tasks there is a need for developing a technique that can provide the results 

much more efficiently and without losing accuracy, within a limited amount of time.  

 

In the following sections the rapidly increasing rate of Internet usage and its threats are discussed, 

giving the problem definition and why it’s required to develop parallel algorithms for clustering 

massive amount of data, such as Internet traffic data, in order to extract valuable information and 

identify malicious threats that can be discovered in network traffic data. At the end of the chapter a 

brief description of the road map of this document will be given. 

1.1 The Threats Coming Through Internet 

According to Moore’s law [4], the size of Internet doubles every year and so the amount of the threats 

to the large networks grows exponentially with increasing Internet usage. As a side effect of this 

growth, the network traffic data also increases rapidly and it is not possible to identify which part of 

network traffic data belongs to normal traffic and which part might contain malicious attacks and/or 

traffic. Hackers are the bigger threats nowadays they are dangerous both locally and they also pose 

threats to remote computer systems over Internet. For example, someone can upload a virus or a trojan 

into our computer or someone can hack our network, steal and misuse our financial data which might 

cause a big threat for the integrity and confidentiality of trade secrets and/or reputation of our 

organization. From this perspective, the development of fast, adaptive and accurate anomaly detection 

algorithms attract more research. 

1.2 Importance of Parallel Data Mining Methods 

Data mining aims at processing data in order to filter or discover the desirable rules or patterns in a 

database. It is a multi-disciplinary field, which combine research areas such as machine learning, 

statistics, and high performance parallel computing. More than often, data mining tasks have to 

operate on very large sets of data and require a lot of data storage and processing resources. The 

amount of data arriving from various sources can be huge in size varying from gigabytes to terabytes, 

and this further increases the need to develop efficient parallel data mining algorithms that can run on 

a distributed architecture system such that there will be sufficient capacity both for storing and also 

processing data in parallel, possibly even reading data from many disks (in parallel) attached to nodes 

of a cluster computer. Another important reason for dividing the work on data is the memory 

limitations of a single processor that would be typically around 4GB. Many modern database 

management systems use parallel architectures both for storing data and also for assigning each query 

request to one of the many query processing nodes, all working in parallel. Therefore, the task of 

processing data which is already distributed to many nodes/computers over a network can be ideally 

done in parallel obtaining maximum speed-up. Since data mining tasks often require processing of 

huge amounts of data, parallel implementation for common data mining operations are very much in 

demand. 

 

The common techniques for implementing parallelism in data mining operations are “task 

parallelism” and “data parallelism”, according to [15] in task parallelism the search space is 
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distributed into portions among separate processors whereas in data parallel approach the data set is 

distributed over the available processors so that they can be processed in parallel by many processors.
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CHAPTER 2 

DATA MINING CONCEPTS 

 

Data mining is a technology used for extracting hidden information from massive datasets, so that we 

can use this extracted information to make predictions about future events and/or behaviors. It is an 

attractive technique since it helps large scale businesses and companies to extract and concentrate only 

on the part of data that it requires to make decisions and plans for future. Since data mining tools are 

able to better predict future trends and behaviors, large scale business companies can make proactive 

and knowledge-driven decisions. The term "knowledge discovery", as used in the phrase “Knowledge 

Discovery from Data” (KDD), is taken as a synonym for data mining. The processes of KDD consist 

of the following steps; 

1) Cleaning noise and other irrelevant information from useful data  

2) Integrating the data by reducing multiple occurrences of the same data item to one. 

3) Selecting the relevant data in order to perform required analysis for some specific tasks. 

4) Determining the data patterns occurring in the selected data. 

5) Presenting the extracted data to the end user so that it is easy for the user to find the desired 

information. This can be done by various data presentation tools. 

Figure 1 [6] presents and describes the flow of data mining steps. The data can be obtained from any 

database repository; a data warehouse of any large scale business organization can be used to perform 

data mining for extracting meaningful information from that data. The data which is available over 

World Wide Web can also be helpful in mining the useful information. Any type of text formatted file 

such as comma separated values (".csv") files can also be used as sources of input in order to perform 

KDD operations on relatively meaningful and useful data. 

 
Figure 1. Architecture of a typical data mining system [6]. 

 

2.1 Clustering Approaches 

We are in an era in which the access to the Internet data has become so easy that we can reach that 

data with a few clicks, and due to the increasing numbers of Internet users, the data traffic over 
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Internet is also increasing in parallel. In Table 1.1 taken from [10], the statistics for world Internet 

usage and population are given from 2000 to 2010. 

 

Table 1. World Internet usage and population statistics [Usage2011]. 

World 

Regions 

Population  

(2010 Est.) 

Internet 

Users 

(2000) 

Internet 

Users 

(2011) 

Penetrati

on 

(%) 

Growth 

2000-

2010 

% of All 

Users 

Africa 
1,013,779,0

50 
4,514,400 110,931,700 10.9 % 

2,357.3 

% 
5.6 % 

Asia 
3,834,792,8

52 
114,304,000 825,094,396 21.5 % 621.8 % 42.0 % 

Europe 813,319,511 105,096,093 475,069,448 58.4 % 352.0 % 24.2 % 

Middle 

East 
212,336,924 3,284,800 63,240,946 29.8 % 

1,825.3 

% 
3.2 % 

N. 

America 
344,124,450 108,096,800 266,224,500 77.4 % 146.3 % 13.5 % 

Caribbean 592,556,972 18,068,919 204,689,836 34.5 % 
1,032.8 

% 
10.4 % 

Australia 34,700,201 7,620,480 21,263,990 61.3 % 179.0 % 1.1 % 

TOTAL 
6,845,609,9

60 
360,985,492 

1,966,514,8

16 
28.7 % 444.8 % 100.0 % 

 

From the numbers if Table 1, it is quite clear that with such massive amounts of data it is very 

difficult, if not impossible, for a human to manually extract any meaningful information from this data 

for further use.  

 

 

Cluster analysis or simply named as clustering is a very useful data mining method which groups sets 

of “similar” (using a distance metric) objects in a multidimensional space into so-called “clusters”. 

The clusters obtained from the clustering operation will contain a subset of all objects that more 

similar to objects in the same cluster rather than the objects in other clusters. The phenomenon of 

clustering is depicted in Figure 2, where part (a) shows the input dataset and the four discovered and 

output clusters are shown as circles in (b). The data that are not assigned to any cluster are treated as 

noise. 

http://www.internetworldstats.com/stats10.htm
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Figure 2. Clustering phenomenon. 

 

 

As seen from Figure 2, Cluster analysis greatly helps in grouping together the objects of similar 

behaviour from a multidimensional data space. Clustering a phenomenon follows the idea that if a rule 

is valid for an object in the data space it is also possible that the same rule is applicable to other 

objects in the space that are similar to it. This is how clustering helps in tracing dense and sparse 

regions in the data space and can discover the hidden relationships between data objects. 

 

Therefore, from all of the above discussion we can say that clustering is the process of data mining in 

which objects with similar attributes are grouped in a cluster to form a single group of objects (also 

called a “class”). In order to cluster data using data mining we can use the following two approaches: 

1) Supervised Clustering 

2) Unsupervised Clustering 

The objective of supervised clustering is that it is applied on a classified example and its task is to 

identify the objects with high probability density with respect to a single class. Furthermore, in 

supervised clustering the number of output clusters are kept as small as possible and the objects are 

assigned to their respective clusters on the basis of minimum distance from its assigned cluster 

obtained by using the given distance formula.  

 

In unsupervised clustering we don’t have any prior knowledge of the actual number of clusters. This 

type of clustering can be performed by attempting, repeatedly, to cluster for several C (the number of 

clusters) values which can be costly in terms of the CPU time.  Unsupervised clustering, then, 

performs some measurements in order to select the best partitioning of the data. Another approach that 

can be used for performing unsupervised clustering can be the process of performing several passes 

over the dataset, the algorithm proceeds by seeking one cluster at a time and removes it from the data 

set in order to add it to the similar clusters [1]. A threshold value used by this technique can widely 

vary for different size of data sets which in turn reduces the validity of the output taken from this type 

of technique. 

 

As in Compatible Cluster Merging [2] unsupervised clustering can also be performed by starting 

clustering with a default number of clusters and during the process similar clusters are merged 

together and the suspicious ones are eliminated, this process continues until the algorithm comes up 

with the requested number of clusters. Competitive Agglomeration [3] is one of the recent 

approaches used for unsupervised clustering, in this approach the dataset is partitioned into N distinct 
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clusters, each clusters “competes” with its neighbors for the data points and the winning clusters 

eliminate the losing clusters, thus trying to obtain exactly N clusters.  

 

In the following section we will be talking about data mining algorithms, K-Means and DBSCAN. 

 

2.2 K-Means Clustering Approach 

 

K-Means is one of the simplest clustering algorithms which cluster the given dataset under K number 

of clusters also named as centroid; this K number of clusters and cluster center points are provided to 

the algorithm as starter clusters. The dataset objects are gathered under the selected centroids on the 

basis of having the smallest distance between the cluster centroids and the dataset point. After all the 

datasets are gathered under their respective centroids, the process of recalculation of new centroids is 

started giving as output a new set of centroids. Then, these new centroids are used for gathering the 

dataset objects under the newly created centroids. The process of recalculation of centroids and the 

reassembling of dataset under these centroids is performed within a loop which ends when no new 

centroid can be generated in the recalculation of centroids phase. 

2.3 The K-Means Algorithm  

K-Means algorithm is composed of the following steps; 

INPUT 

K: number of centroids 

D: set of data points 

OUTPUT 

 C: vector of centroids 

 CL[ ][ ]: list of data point indices for each cluster center 

 

PREVC= [-1]*K // initialize list of previous centroids 

for(i=0;i<K; i++): 

C[i] = randomly_select_centroid (D) 

While (! PREVC.equals(C) ): 

PREVC= C 

for(j=0;j< |D|; j++): 

nearest= find_nearest_centroid(D[j], C) 

CL[nearest].append (j) // add data point D[j] to nearest cluster 

for(i=0;i<K;i++): 

NC[i]= calculate_new_centroid(CL[i], D) 

 

 

K-Means algorithm is the simplest clustering algorithm but its biggest drawbacks are the usage of 

Euclidean distance for cluster identification and requiring the number of clusters as an input. Hence, 

K-Means cannot identify the number of clusters by itself and also because of the random initialization 

of cluster centroids it might not be able to generate clusters of some shape. 

2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN) 

 

DBSCAN was introduced by Ester, et al. [8] in 1996 to discover the clusters and noise in a spatial 

database. DBSCAN generates groups of similar data objects from larger space of data, and these 

groups are named as clusters whereas those data points not belonging to any cluster are named as 

noise. According to the definition of DBSCAN in Ester, etsal. [8], a subset of similar objects is called 
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cluster C with respect to Epsilon (i.e. "radius") and minimum number of points (minPts) in database, 

D, of points if : [8] 

 

i) p, q: if pC and q is density reachable from p wrt. Eps and MinPts, then q C. 

(Maximality). 

ii) p, qC: p is density connected to q wrt. Eps and MinPts. (Connectivity). 

 

The data points other than those found in any one of discovered clusters are called noise if: [8] 

i) Let Cı,…, Cκ be the clusters of the database D with respect to parameters Epsᵢ and MinPtsᵢ 

where i = 1,2,3,….,k, then we define the noise as the set of points in the database D not 

belonging to any cluster Cᵢ, i.e. noise={nD | i: n  Cᵢ}. 

 

Here Eps is the radius that delimits the neighborhood area of a point and MinPts is the minimum 

number of points that must exist in the Eps-neighborhood. To obtain the ideal result from DBSCAN 

we should provide the accurate values for Eps and MinPts but it is one of the problems in DBSCAN to 

identify the accurate Eps and MinPts. However, there can be a heuristic method to determine the 

values for Eps and MinPts. 

2.5 The Algorithm 

 

The DBSCAN algorithm randomly chooses a point p as a cluster center and finds all those data points 

which are neighboring to p and which are “density-reachable”. The notion of “density reachability” is 

determined by using the Eps parameter that is used to compare with the calculated distance of a data 

point from p. If the distance is smaller than Eps, then the data point is included in the cluster of data 

points around p. If p is a core point, this procedure will generate a cluster with respect to Eps and 

MinPts which must also satisfy the condition that the number of “density reachable” points to p is 

more than or equal to MinPts.  If p is a border point, no points are density-reachable from p and 

DBSCAN algorithm will continue looking for new clusters using the next point in the database. It is 

also possible that even after two (or more) clusters are discovered, DBSCAN may decide to merge 

clusters to the other using the same Eps and MinPts parameters. The two clusters are separated into 

two separate clusters only if the distance between all possible pairs of points X (in cluster-1) and point 

Y(in cluster-2), are larger than Eps. This can be implemented with a recursive call to DBSCAN 

algorithm that tries to identify clusters. This recursive call must be handled carefully in order to 

minimize the data communication overhead caused by recursive calls. 

2.6 DBSCAN Pseudo Code  

 

The pseudo code for DBSCAN is given below:[16] 

 

DBSCAN ( D , eps, MinPts) // D: Dataset eps: cluster members distance 

   clusterID=0 

   foreach ( unvisited P in Dataset) 

 P.visited = True 

 NeigborPts= regionQuery(P, eps) 

 If sizeof(NeigborPts)< MinPts 

  P.mark= NOISE 

Else 

 C= ++clusterID 

ExpandCluster (P, NeigborPts, C, eps, MinPts) 

End if 

   endfor 
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The algorithm accepts the dataset, eps and MinPts as its inputs.  In the algorithm setofPoints.get(i) 

returns the i-th point in the dataset. Here, ExpandCluster is the most important method. In this method 

the point is being expanded i.e. its neighbors are being calculated and decision of noise or normal 

point is given. 

 

ExpandCluster (P, NeighborPts, C, eps, MinPts) 

   Add P to cluster C 

   C.clusterID= C 

   Foreach P’ in NeghborPts 

 If P’.visited == FALSE 

     P’.mark= VISITED 

     NeigborPts’ = GetNeighbors(P’, eps) 

    if sizeof (NeighborPts’) >= MinPts then 

  NeigborPts= NeighborPts UNION NeighborPts’ 

                   If P’.clusterID == NOTASSIGNEDYET 

  Add P’ to cluster C 

  P’.clusterID= C 

GetNeighbors(P, eps) 

   return all points within P's eps-neighborhood 

 

In the above algorithm the call to GetNeighbors(P, epsilon) method returns the neighbors of the 

provided point, P, on the basis of epsilon value. 
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CHAPTER 3 

PARALLEL PROGRAMMING WITH MPI 

 

Message Passing Interface (MPI) is an API used for programming parallel applications that are able to 

communicate among themselves from different computers. MPI is a language independent 

communication protocol that supports both Point-to-Point and collective communication. MPI 

interface provides synchronization and communication functionality among the processes with 

language bindings for example language syntax. MPI routines that are specifically used for 

communication are divided into two categories:  

1) Point-to-Point Communication 

2) Collective Communication 

 

3.1 Point-to-Point communication Routine 

 

Message Passing Interface (MPI) provides a standard library of messaging functions that are used for 

performing point-to-point messaging operations between nodes of a cluster computer. The messages 

may identify a cluster node as the destination/sender of a message it is trying to send/receive and also 

optionally may select a subset of messages by using “message tags” that are assigned to messages by 

senders. It is also possible to perform broadcast operations where all nodes involved in the broadcast 

call the same broadcast function. The send/receive operations could have other features such as: 

1) Synchronous send 

2) Blocking Send / Blocking Receive 

3) Non-Blocking Send / Non-Blocking Receive 

4) Buffered Send 

5) Combined Send / Receive 

6) Ready Send 

It is possible to match any kind of send operation with any type of receive operation. In an ideal 

world, every send operation would be matched with exactly one receive operation and if the receiver 

of an MPI send operation is not available then the sender must be able to store the contents of the send 

operation until the receiver is ready to fulfill its part. For example what will happen to the data in the 

following two situations where both send and receive operations are not synchronized. 

1) A node performs a send few seconds before the receiver becomes ready to accept it 

2) Several nodes perform send operations and multiple messages arrive at the same receiving node 

meaning the receiver must choose and accept only one of these messages 

In the situations mentioned above MPI maintains a system buffer that holds the data in transition as 

shown in the Figure 3 below. 
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Figure 3. Message transmissions between processes. 

 

The system buffer space has the features like it is invisible to the programmer and is the MPI library 

can use it freely. It can exist in the sender side, the receiver side or on both sides as well. By 

permitting asynchronous send/receive operations the performance of parallel nodes increases because 

they don’t have to wait for each other to become available to accept the sent message.  

 

 

3.1.1 Blocking and Non-Blocking Communication 

 

In case of blocking mode of Point-to-Point communication routine the send routine will return only 

when it confirms that the application buffer is safe to reuse. The send operation can be synchronous 

(i.e. the partner must respond) meaning that the receiver task must be ready to accept the sent message 

and confirm that it was safely received. It can also be done in asynchronous mode in which the send 

data is buffered in the system buffer for eventual delivery to the recipient.  

 

In case of non-blocking mode of Point-to-Point communication routine, both send and receive 

routines need not wait for these communication operations to be completed. The send/receive 

operations require primitive operations such as copying message data from user program’s memory 

space to the communication system’s buffer. A similar operation is performed when a message arrives 

at the destination node and the addressed/waiting process is identified. There are no real-time message 

delivery guarantees and the sender and receiver may go on other businesses causing messages to be 

delayed in message buffers while awaiting to be processed. In order to eliminate the negative effects 

of such message processing delays and responses, it is possible for senders to send “asynchronously”, 

and then going about doing its other tasks. 

3.2 Collective Communication Routines 

These messaging functions can provide an easy method for all tasks/processes working on the same 

problem to receive the same message (i.e. a broadcast operation). All of these routines are blocking 

operations. 
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3.3 Fundamental MPI Concepts 

3.3.1 MPI Communicator 

MPI communicators are the communication channels that MPI uses to communicate with the nodes 

for message passing.  Communicator can have group of processes, the default communicator is 

MPI_COMM_WORLD whose group contains initial processes. MPI communicators can be of two 

types: 

1) Intra-Communicator, it’s a collection of processes that use collective communications for 

message sending. 

2) Inter-Communicators are for sending messages between processes of disjoint intra-

communicators. 

3.3.2 MPI Process Rank 

An MPI communicator can have group of processes, each process in a group has its own identity 

which is named as rank of that process. Ranks are contiguous and begin at zero. 

3.4 Basic MPI Functions 

Below are the basic MPI functions that can be used for communication between the nodes. 

a) MPI_Send: This routine sends messages using blocking phenomenon and for each send 

routine and there should be a receive routine in order to release the blockings.  

int MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest, int   tag, 

MPI_Commcomm) 

 

 

Table 2. MPI_Send ( ) Parameters Description. 

Parameter Name Description 

Buffer (buf) [in] Address of the buffer for data to be send. 

Count [in] Number of elements in the send data. 

Data Type (datatype) [in] Data type of the send data. 

Destination (dest) [in] Destination rank. 

Tag [in] Key value to tag the send message. 

Communicator (comm) [in] Communicator group. 

 

b) MPI_Recv: This routine is used to receive the data sent by MPI_Send routine.  

Int MPI_Recv ( void *buf, int count MPI_Datatype datatype, 

                        int source, int tag, MPI_Comm comm,  

  MPI_Status *status) 

 

Table 3. MPI_Recv ( ) Parameters Description. 

Parameter Name Description 

Buffer (buf) [out] Address of the buffer for data storage. 

Count [in]    Number of elements in the received data. 

Data Type (datatype) [in]    Data type of the send data. 

Destination (dest) [in]    Destination rank. 

Tag [in]    Key value to tag the send message. 

Communicator (comm) [in]    Communicator (handle) 

Status [out]  Communicator group. 

 

To store the count number of succeeding datatype elements with constant size, receive buffer is used. 

The starting memory address is buf. 
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The received message’s length should not be more than the length of this buffer. Overflow error is 

reported if the incoming data does not fit into the receive buffer causing truncation. 

Since the incoming message’s length is known in advance, when it arrives at receive buffer, only the 

memory locations that correspond to the message are modified. 

Maximum length of the message is indicated by the count argument and the message’s actual length is 

determined with MPI_Get_count. 

 

 

 

 

 

 

c) MPI_Init: This routine Initializes execution environment for MPI programs. 

int MPI_Init(  int argc, char **argv ) 

 

Table 4. MPI_Init ( ) Parameters Description. 

Parameter Name Description 

argc [in] Total  number of sent arguments 

argv [in] An argument vector pointer. 

 

The purpose of this routine is to initialize MPI execution environment and it must be called once in a 

program. 

d) MPI_Comm_size: This routine gives the communicator group. 

            int MPI_Comm_size(  MPI_Commcomm,  int *size ) 

 

Table 5. MPI_Comm_size ( ) Parameters Description. 

Parameter Name Description 

Communicator (comm) [in]   Associated communicator 

Size [out] Total number of processes in the communictor. 

 

In order to know the number of process that are in the communicator group we use MPI_Comm_size 

routine.  

e) MPI_Comm_rank: The rank information about the calling process can be determined using 

this routine 

int MPI_Comm_rank ( MPI_Comm comm,  int *rank ) 

 

Table 6. MPI_Comm_rank ( ) Parameters Description. 

Parameter Name Description 

Communicator (comm) [in]   Associated communicator 

Rank [out] provides rank information for the calling process. 

 

f) MPI_Finalize: int MPI_Finalize (void) 

This routine completely closes the MPI execution environment and after this routine no MPI functions 

can be can execute even MPI_INIT method cannot be run. It is therefore recommended that the user 

should make sure that all the communications are finished before the call to MPI_Finalize routine. 

  

 

 

A sample Program ("Hello World") 

#include <stdio.h> 

#include <mpi.h> 

int main (int argc, char *argv[ ]) 
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{ 

 int rank; 

 int size; 

 MPI_Init(&argc, &argv); 

 MPI_Comm_size( MPI_COMM_WORLD, &size); 

 MPI_Comm_rank( MPI_COMM_WORLD, &rank); 

 printf("Hello world from process %d of %d\n", rank, size); 

 MPI_Finalize(); 

 return 0; 

} 

3.5 MPI Data Types 

 

Table 7. MPI Data Types. 

Data Type Name Description 

MPI_CHAR 8-bit character 

MPI_SHORT 32-bit floating point 

MPI_INT 32-bit integer 

MPI_LONG 32-bit integer 

MPI_UNSIGNED_CHAR 8-bit unsigned character 

MPI_UNSIGNED_SHORT 16-bit unsigned integer 

MPI_UNSIGNED 32-bit unsigned integer 

MPI_UNSIGNED_LONG unsigned long int 

MPI_FLOAT 32-bit floating point 

MPI_DOUBLE 64-bit floating point 

MPI_LONG_DOUBLE 64-bit floating point 

MPI_BYTE Untyped byte data 

MPI_PACKED Packed data (byte) 

 

 

 

Besides these, MPI also supports “struct”s and derived data types. 

3.6 MPI Job Management 

In this part the MPI job management is discussed and some commands are defined for job submission 

and job tracking. MPI uses a script file for managing the jobs. All the mandatory commands are 

written into this script file and some of the script commands are described below: 

1) PBS -N used to give the name to the output file. 

e.g. PBS -N PGDBScan 

2) PBS –q used to mention the queue used by the job. 

e.g. PBS –q cenga 

3) PBS –M used to mention the email in order to notify any runtime errors via mentioned email 

address. 
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4) #PBS -m used to mention the condition when to send the email i.e. (a) for abort, (b) begin 

and (e) for end of the program. 

e.g. #PBS –m a 

 

5) mpiexec command to run the program executable. 

       A sample PBS file is given below. 

#!/bin/sh 

# name of the job -can be anything- 

#PBS -N PGDBScan 

# name of the queue that the job will be sent 

#PBS -q cenga 

# to use the environment variables of the shell that the job sent 

#PBS -V 

# e-mailadres 

#PBS -M hunain.durrani@ceng.metu.edu.tr 

# mailing options: 

# (a)bort 

# (b)egin 

# (e)nd 

#PBS -m a 

# change directory ! YOU SHOULD CHANGE ! 

cd /home1/e1692433/ParallelDbScan 

# run the executable over infiniband 

mpiexec -hostfile $PBS_NODEFILE GDBScan 611170  networkDataset16MB.csv 

/tmp/cellDatasetFile /tmp/dbscanOutputFile normalOutputFile.csv anomalyOutputFile.csv 1 

3.7 MPI Job Submission 

After writing the script file we can submit the MPI job using the script file as parameter: 

$ qsub –l nodes=n [script name] 

After we submit the job, the job is automatically given a jobid such as:  

 9012.kavun-ib 

We can use the above provided jobid to track the status of the job using the qstat command: 

 $ qstat 9012 

We can also delete the job by using the qdel command:  

$ qdel 9012 

3.8 High Performance Computing 

High-Performance Computing (HPC) is hardware which is a combination of multi processors. HPCs 

are used for the computation of huge amount of data which are not possible to compute on normal 

desktop computers which is generally comprised of a single processing chip named as CPU. An HPC 

system in general is a network node that contains multiple processing chips as well as its own RAM 

and hard disk storage. 

 

3.9 Parallel Computing 

 

HPC systems split up the programs into many smaller processes. These small processes run separately 

on different nodes and/or cores. In order to combine the results of these partial processes each process 

should be able to communicate with the others. 
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The purpose of HPC systems is to execute the programs that compute huge amount of data and require 

large amount of space in the memory. Standard file systems cannot work for large data because of 

their limited max data size. HPC systems can be efficiently process huge data and can perform data 

comparison in an efficient way.  

 

For solving a problem we have to write a computer program which is a set of instructions given to 

computer, the computer will process these instructions serially, i.e. one instruction is executed at one 

time and the proceeding instruction must always wait for the preceding instruction to be executed. In 

this way suppose if our program has a large number of instructions and also has large number of data 

items to process, it may take too much time to finish the processing. Parallel computing overcomes 

this problem by dividing the big problem into fragments and let these fragments run independently on 

separate nodes.  

 

Figures 4 and 5 [13] depict a clear picture for serial and parallel computing.  

 

 
Figure 4. Serial computing [13]. 

 

 
Figure 5. Parallel computing [13]. 

 

 

Doubling the number of processing nodes will reduce the processing time to half as compared to the 

previous execution time this process is known as speed-up parallelization. For some other reasons 

such as communication cost, the speed-up processing may not be linear. 
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3.10 An Example Parallel Program: Quick Merge Sort  

The “Parallel Quick Merge Sort” shortly named as “Parallel QM Sort” is the combination of famous 

sorting algorithms “Quick Sort” and “Merge Sort”. An array of randomly generated integers has been 

used as dataset for experimental purposes. 

3.10.1 Methodology 

The methodology used in “Parallel QM Sort” is explained in the following steps: 

1. The algorithm follows the master-slave mechanism. 

2. The “Master Node” prepares the dataset by creating random integer numbers. The total number of 

elements to be produced is provided by the user as a command line parameter. 

3. During the preparation of data the “Master Node” has to check whether the data scattered to each 

“Slave Node” is even or not. Suppose the total number of elements in the data set is 8 and the 

total number of nodes is 2 then, the data set will be evenly divided with a slot of 4 between each 

node but what if the total number of elements is 7, in this case the “Master Node” will add an 

extra element in order to make the distribution even. This process is explained in the Figures 8 

and 9 and the process explained in this text is also presented. 

 

 
Figure 6. Even number of data elements. 
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Figure 7. Extra elements inserted to balance the transmission. 

        

               
 

 

 

4. After each “Slave Node” receives their part of the dataset, they perform the “Quick Sort” on their 

received dataset. 

5. The merging phenomenon is the critical part of QM Sort since it merges all the data set parts into 

a single sorted data set. Suppose that S1 and S2 are two sorted parts of a bigger data set S, with 

elements n1 and n2 respectively. The merge function then compares each single value of S1 with 

S2 and saves the lower one in the resultant array. The efficiency of the merge function will be 

high if all the values in one part of data set is lower than the other part because the function will 

just have to append the part with higher values to the part with lower values and the merge 

function will have a complexity of O(n1 + 1) or O(n2 + 1). Where n1 and n2 are the number of 

elements in the subparts of the data set. 

 

The merge function will perform worst if the elements in both the parts are in shuffled state. In 

that case the merge function will show a complexity of  O(n1 + n2). 

One way of implementing the merge function could be that the “Master Node” gathers the 

partitioned data set from each “Slave Node” and merge them respectively but this could be also 

very costly since the “Master Node” will have to call merge function for N-1 times where N is the 

number of nodes used to perform the sorting. Therefore the complexity rate will be O((N-1)(n1 + 

n2)) 

 

In order to overcome this problem we used the tree based merge mechanism suggested 

byPuneetKataria[7].In tree based merge sort each node sends its sorted data set to its neighbor 

and the respective node upon receiving the data set performs merge process and in this way the 

merge operation is performed at each step. This reduces the overhead burden of merging on 
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“Master Node” and the complexity to O ((log N)(n1 + n2)). The merging mechanism for 8 nodes 

is shown in Figure 10. 

 

 
Figure 8. Tree merge phenomenon. 

 

3.11 Experimental Measurements for QM Sort 

We perform the QM Sort on different size of data set using 2, 4, 8, 16 and 32 processors. The table 8 

provides the information about the data set we used. 

 

Table 8. Dataset size used for QM Sort. 

File Size Number of Elements 

2 MB 300,000 

4 MB 600,000 

8 MB 1180000 

16 MB 2200000 

 

We ran our algorithm on the above mentioned data set by keeping the data set size constant and 

increasing the number of nodes and evaluated the performance of the algorithm. Table 4.3-2 shows 

the time taken by each node for 2, 4, 8 and 16 MB of dataset size. 

 

 

Table 9. Time taken by nodes to perform QM Sort in seconds. 

Nodes 2 MB 4 MB 8 MB 16 MB 

 Time Taken in Seconds 

2 0.05835720 0.12183700 0.19592400 0.40170900 

4 0.03640380 0.07690410 0.145364 0.26718100 

8 0.08321720 0.09822840 0.183156 0.30866300 

16 0.18145300 0.18638300 0.25014600 0.33414700 

32 0.38420600 0.397043 0.50261500 0.51052700 

 



 

19 

The graphical representation of the above table is presented in as line graph below. In the graphs 

above the Y-axis represents the time in seconds and X-axis represents the number of nodes. 

 

 
Figure 9. Relationships between time(seconds) and nodes for 2MB dataset. 

 

 
Figure 10. Relationships between Time in sec and nodes for 4MB dataset. 

 

 
Figure 11. Relationship between time in sec and nodes for 8MB dataset. 
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Figure 12. Relationship between time in sec and nodes for 16MB dataset. 

 

In our experiments for “QM Sort” we kept the dataset constant but increased the number of nodes in 

order to check the behavior of the proposed method for “QM Sort”. During the experiment we took 20 

readings for each of the nodes and then calculated the average of those readings.  

 

We can observe that there is a linear decrease and increase in the graph. This is due to the reason that 

as the number of nodes increases so as the communication time increases between the nodes for 

message passing. We observed that the behavior of the algorithm for 4 nodes is consistent which 

means that it keeps consuming the small time than the other nodes. Therefore we can say that the 

algorithm is suitable for 4 nodes. The time taken by 32 nodes is maximum due to the increase rate of 

the message communication between nodes. 

 

 

 

 

 
Figure 13. Combined graph for all of the dataset size. 

 

Figure 15 is the combined version of all the four graphs mentioned above, here we can notice that 

each node shows a linear increase in time taken as the dataset size increases we can say there is a 

proportional relationship between time and the dataset size. 
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CHAPTER 4 

IMPLEMENTATION OF K-MEANS AND DBSCAN 

 

Since in large business scale organizations the quantity of data store is bigger enough to extract useful 

information (cluster) from that data.  This is where data mining clustering algorithms play their role 

for human beings to extract the useful information from the irrelevant data store. But these algorithms 

show higher efficiency if the dataset is smaller which does not meet today’s requirements. This is 

where the need of parallelizing the data mining clustering algorithms arises. In this chapter we will 

describing the methodology we used to parallelized the DBSCAN algorithm over the HPC hardware 

using C++ as programing too and MPI library for communication between the nodes. 

 

Before we explain P-DBSCAN, since we are using Weka clustering libraries in next section we will 

briefly discuss about Weka. 

 

4.1 Weka Machine Learning Tool  

Weka (Waikato Environment for Knowledge Analysis) developed at university of University of 

Waikato, New Zealand in one of the popular tool of machine learning software written in Java. Weka 

together with it strong visualization tools and algorithms for data analysis and predictive modeling 

provides a user friendly interface for easy access to these functionalities. We can perform several 

standard data mining tasks using weka, such as data processing, clustering, classification, regression, 

visualization, and feature selection. Weka supports input data in the form of single flat file or relation. 

These input files contain data points that are described by a fixed number of attributes. By using weka 

we can also connect to SQL databases or oracle databases and can process the data derived from the 

database queries.  

Weka’s user interface contains an explorer which has several panels for different data mining 

operations. We can call weka library functions in our java or C++ codes such as, below where we are 

calling Weka’s DBSCAN function in C++. 

“java -Xmx1024m –classpath Path/weka-3-6-1/weka.jar weka.clusterers.DBScan  

4.2 Parallel K-Means Implementation 

We parallelize the K-Means between N numbers of nodes. The master slave methodology is being 

used. All the nodes read data from CSV files, master nodes make the initial selection of centroids and 

broadcasts them to other nodes then each slave node perform the K-Means independently, below is the 

state diagram for parallel K-Means.  

http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand
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Figure 14. Parallel K-Means algorithm work distribution. 

 

 

4.3 Parallel DBSCAN Implementation 

Parallel DBScan is the parallel implementation of the classical sequential DBScan explained in 

section 2.5. It follows the Master and Slave format of parallelization. A CSV file is provided as an 

input to the master node which prepares the dataset. Then, the master node send point wise data to the 

slave node in order to calculate the neighbors of the point. The master node after receiving the 

neighbors for all the points from the slave nodes starts the DBScan algorithm.  This is how we achieve 

the parallel DBScan. Below is the state diagram for parallel DBScan. 

 
Figure 15. State diagram for parallel DBScan. 
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1 EXPERIMENTAL RESULTS 

 

This chapter explains the performance test for “Parallel K-Means” and “Parallel DBScan” algorithms. 

The results of the experiments are explained with graphics created using Microsoft Excel. 

 

This chapter starts with the discussion of the environment used for performing the performance tests 

followed by the discussion about the dataset used for each of the above algorithms. The last section of 

the chapter presents results taken from the performance tests experiments. 

5.1 Experimental Environment 

The entire performance test discussed in the following sections is performed on the cluster 

environment of the High Performance Computing laboratory at the Department of Computer 

Engineering at Middle East Technical University. The hardware properties of the High Performance 

Clustering machine consists of 2 x Intel Xeon E5430 Quad Core CPU 2.66 GHz, 12 MB L2 

Cache,1333 MHz FSB processor a 16 GB of memory and 2 x 3Com 4200G 24 Port Gigabit Ethernet 

Switch & Voltaire 9240D 24 Port Infiniband Switch for connectivity.  

 

Open MPI and mpich / mvapich libraries are installed on the cluster along with multiple compilers 

such as GNU Compiler Collection (gcc) and Intel C++ Compiler (icc). We can install additional 

software on the users root directory according to needs. Weka is one of the best data mining tools 

available these days; therefore we are using the DBScan libraries of weka in our algorithm. We 

installed weka on HPC on our root directory for utilization. 

We used special MPI methods such as MPI_Aint, MPI_Datatype and MPI_Address for creating the 

custom data types other than the primitive data types of MPI.  

5.2 Experimental Measurements 

In this section we will be discussing about the measurements taken from the performed experiments. 

The section starts with describing the data set structure we used and next we discuss about the 

graphical representation of the measurements.  

  

5.2.1 Structure of the Dataset used 

We used two different datasets for our P-DBScan algorithm 

 Network Dataset (KDD Dataset 1999) 

 Wine Dataset 

 

Table 10 and 11 show the fields for Network and Wine datasets respectively. 

 

Table 10. Network Dataset Structure. 

Feature Name Description Type 

ProtocolType Type of the protocol, e.g. tcp, udp, etc.  Discrete 

Service Network service on the destination, e.g., http, telnet, etc.  Discrete 

Source Bytes Number of data bytes from source to destination. Continuous 

Destination Bytes Number of data bytes from destination to source. Continuous 

Flag Normal or error status of the connection. Discrete  
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Table 11. Wine Dataset Structure. 

Field Name Data Type 

CultivarId Integer 

Alcohol Float 

MalicAcid Float 

Ash Float 

AshAlkalinity Float 

Magnesium Float 

TotalPhenols Float 

Flavonoids Float 

NonflavanoidPhenols Float 

Proanthocyanins Float 

ColorIntensity Float 

Hue Float 

OD280_OD315 Float 

Proline Float 

 

Before performing the experiment directly on network dataset we used wine dataset for testing 

purpose. We ran our algorithm on the wine dataset and compared its result with the result generated 

by weka itself. We found no difference between the two generated outputs. 

5.3 Comparison of Weka K-Means and our Sequential Approach  

We made a comparison between weka and our proposed approach for sequential K-Means.  The 

results taken from our experiments are shown in Table 12 and 13. 

 

Table 12. Time analysis for weka. 

 #Rows 

# Clusters 40K 60K 80K 

10 4.64 7.42 3.33 

15 11.1 7.35 5.99 

20 17.58 9.55 7.33 

 

Table 13. Time analysis for proposed sequential method. 

 #Rows 

# Clusters 40K 60K 80K 

10 1.8225 2.5445 1.3158 

15 3.2179 6.2109 3.2195 

20 6.9889 13.7919 3.8798 

 

It is quite clear from the results that our proposed approach is faster than the Weka’s K-Means. Our 

algorithm is almost 3 times faster than the weka’s K-Means. It can be noted that as the number of 

centroids are increased the time take to perform K-Means is also increased and the increase rate is 

almost 2 times the previous time take for lesser number of centroids. 

5.4 Graphical Representation of Sequential K-Means 

Figures 18 and 19 present the graphical form of the above readings. The x axis represents the number 

of centroids whereas the y axis represents the time taken in seconds to run the algorithm. The graph 

also represents a linear increase in the time taken as the number of centroids increases. 
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Figure 16. Weka K-Means. 

 

 
Figure 17. Proposed sequential K-Means. 

5.5 Experimental Measurements for Parallel K-Means 

In order to measure the performance of parallel K-Means we ran our algorithm for 40K, 60K and 80K 

respectively on 10, 20, 30, 40 and 50 nodes. We also kept the number of centroids as 10, 15 and 20. 

The tables from 14 to 18 show the measurements taken during the experiments.  

     

 

Table 14. Computation time of Parallel K-Means in sec with K=10 

Nodes 10 20 30 40 50 

Data Set Size Time in Seconds 

40K 0.520 0.375 0.273 0.221 0.198 
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60K 0.700 0.413 0.321 0.216 0.211 

80K 0.937 0.714 0.621 0.442 0.342 

 

 

Table 15. Computation time of Parallel K-Means in sec with K=15 

Nodes 10 20 30 40 50 

Data Set Size Time in Seconds 

40K 2.763 1.887 1.576 1.321 1.112 

60K 3.892 2.768 2.334 2.211 1.967 

80K 4.454 3.879 2.678 2.567 2.311 

 

 

Table 16. Computation time of Parallel K-Means in sec with K=20 

Nodes 10 20 30 40 50 

# Clusters Time in Seconds 

40K 3.211 2.673 2.344 2.123 1.993 

60K 4.231 4.007 3.784 3.238 2.778 

80K 6.294 5.523 5.042 4.834 4.233 

5.6 Graphical Representation of Parallel K-Means 

The graphical representation of the results is shown below. 

 

                    Figure 18.  Parallel K-Means performance for 10 clusters. 

 
Figure 19. Parallel K-Means performance for 15 clusters. 
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Figure 20. Parallel K-Means performance for 15 clusters. 

 

 
Figure 21. Parallel K-Means performance for 20 clusters. 

5.7 Experimental Measurement for Sequential & Parallel DBScan  

In this section we will be discus the experimental results taken for the sequential DBScan and parallel 

DBScan.  We made a test run for our test dataset which wine in order to make the result confirmation. 

We matched our result with weka’s output which was same as ours. We performed the experiments of 

network dataset.    

5.8 Graphical Representation of Sequential DBScan 

Tables 24 and 25 present the tabular and graphical form for sequential DBScan. The x-axis represents 

the dataset size in K whereas the y axis represents the time taken in seconds to run the algorithm. The 

graph also represents a linear increase in the time taken as the size of dataset increases. 
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Table 17. Sequential DBScan. 

Dataset Time (Sec) 

2000 17 

3000 43 

4000 67 

5000 97 

 

 
Figure 22. Sequential DBScan on network data. 

5.9 Experimental Measurements for Parallel DBScan 

In order to measure the performance of parallel DBScan we ran our algorithm for 20K, 40K, 60K and 

80K respectively on 5, 10, 15, 20, 25, 30 and 40 nodes. The tables 20 show the measurements taken 

during the experiments.  

 

 

Table 18. Parallel DBScan execution times with increasing number of nodes. 

 Nodes 

Dataset 

size 5 10 15 20 25 

 

30 

 

40 

Time (Sec) 

20K 136.465 74.5752 56.9424 48.5689 43.5946 40.4853 36.4378 

40K 552.299 304.206 233.062 199.291 179.546 166.67 151.009 

60K 3704.39 3168.17 2422.96 2139.73 2004.74 1985.02 1740.67 

80K 12301.5 11858.3 11198.7 10253.8 9633.11 8882.79 8705.4 
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Figure 23. Parallel DBScan graph. 

 

We can observe that there is almost a straight line for dataset size 2K since the size is very less and 

also there is also negligible amount of communication time between the nodes. On the other hand as 

the dataset size increases so as the clustering time increases. We can notice that as the number of 

nodes increases the clustering time decreases. 
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CHAPTER 6 

CONCLUSIONS 

 

In this last chapter of the thesis, an interpretation of the results presented in the previous chapter is 

given, providing conclusions and discussing possible future work which would be beneficial. 

 

According to our previous discussions the rapid increase of data in large scale or medium scale 

business forced to develop the data mining techniques in parallel. Just developing these techniques in 

parallel would not be a solution but also achieving high performance would also be the basic need of 

this era data mining. 

 

As our experiments show that the speed-up of the algorithm doubles as the number of nodes increase 

but in some cases in cannot be linear as of the data set size distributed to the nodes. Even then we can 

achieve efficiency from our approach. This is one of the achievements of our approach. 
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