

iv

PARALLELIZATION OF K-MEANS AND DBSCAN CLUSTERING

ALGORITHMS ON A HPC CLUSTER

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

HUNAIN DURRANI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTOR ENGINEERING

JANUARY 2013

v

Approval of the thesis:

A PARALLEL IMPLEMENTATION AND VERIFICATION OF K-MEANS AND DBSCAN

CLUSTERING ALGORITHMS ON A HPC CLUSTER

submitted by Hunain Durrani in partial fulfillment of the requirements for the degree of Master of

Science in Computor Engineering, Middle East Technical University by,

Prof. Dr. Canan Özgen _________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _________________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ahmet Coşar

Supervisor, Computer Engineering Dept., METU _________________

Examining Committee Members:

Prof. Dr. Ismail Hakkı Toroslu

Computer Engineering Dept., METU _________________

Assoc. Prof. Dr. Ahmet Coşar

Computer Engineering Dept., METU _________________

Assoc. Prof. Dr. Veysi İşler

Computer Engineering Dept., METU _________________

Umut Tosun, MS

Siemens EC, Ankara _________________

Assoc. Prof. Dr. Uğur Güdükbay

Computer Engineering Dept., BILKENT _________________

 Date: January 14, 2013

iii

I hereby declare that all information in this document has been obtained and presented in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Hunain, Durrani

Signature:

iv

ABSTRACT

PARALLELIZATION OF K-MEANS AND DBSCAN CLUSTERING ALGORITHMS ON A HPC

CLUSTER

Durrani, Hunain

M.Sc., Computer Engineering

Supervisor: Assoc. Prof. Dr. Ahmet Coşar

January 2013, 32 pages

The amount of information that must be processed daily by computer systems has reached huge

quantities. It is impossible, or would be prohibitively expensive, to build such a powerful

supercomputer that could process such large data in the required time limits. Cluster computing has

emerged to address this problem by connecting hundreds of small computers using ultra-fast switches

so that their combined computational power and parallel processing techniques make it possible to

quickly solve many difficult problems. In fact, cloud computing has emerged to market the data

processing power collected in cluster computing centers with hundreds of thousands of computers and

allow the customers to purchase additional data processing power, storage, memory, and

communication capacity when needed.

Data mining has been one of the most favorite topics for all the researchers as it’s the technique that

helps large scale business to extract useful data from the heap of irrelevant data. In this era of big

data stores parallel implementation of data mining is the basic tool of all the large scale businesses.

In this research, parallel versions of two popular clustering algorithms, K-Means and

DBSCAN, are developed and it is experimentally shown that their performance continues to improve

even as the input data size keeps increasing, making these parallel implementations ideally suited to

parallel computing environments.

Keywords: clustering, data mining, k-means, dbscan, parallel processing.

v

ÖZ

DBSCAN VE K-MEANS KÜMELEME ALGORİTMALARININ BİR HPC KÜMESİ ÜZERİNDE

PARALELLEŞTİRİLMESİ

Durrani, Hunain

 Yüksek Lisans, Bilgisayar Mühendisliği Ana Bilim Dalı

Tez Yöneticisi: Doç. Dr. AhmetCoşar

Ocak 2013, 32 sayfa

Günlük olarak bilgisayar sistemleri tarafından işlenmesi gereken bilgi miktarı çok büyük miktarlara

erişmiştir. Bu kadar çok datayı istenen sürede işleyebilecek bir super bilgisayarın inşa edilmesi hem

çok zor hem de çok pahalı olacaktır. Küme hesaplama bu problem çözmek için yüzlerce küçük

bilgisayarın çok-hızlı anahtarlar ile birbirine bağlanmasıyla ortaya çıkmıştır ve toplam işlemci gücü

ve parallel işleme teknolojileri kullanılarak bir çok zor problemin çabucak çözülmesini sağlamıştır.

Aslında bulut hesaplama küme hesaplama merkezlerinde toplanan yüzbinlerce bilgisayarın parallel

bilgi işleme güçlerinin pazarlanmasını sağlamış ve müşterilerin gerek oldukça ek bilgi işleme gücü,

veri depolama yeri, bellek, ve komünikasyon kapasitesi satın almalarına izin vermiştir.

Veri madenciliği büyük ölçekli işletmelerin çoğu ilişkisiz verilerin içinden yararlı olanlarının

çıkartılmasını sağlayan bir teknik olarak araştırmacıların en çok çalıştığı konulardan biri olmuştur.

Büyük veri depolarının yaygınlaştığı günümüzde veri madenciliğinin parallel gerçekleştirilmesi bütün

büyük işletmelerin temel aracıdır.

Bu çalışmada, iki popular kümeleme algorittmasının, K-Means ve DBSCAN, parallel

sürümleri geliştirilmiş ve deneysel olarak very miktarı arttıkça başarımdaki iyileşmenin sürdüğü

gözlenerek bu parallel sürümlerin parallel ortamlar için çok uygun olduğu gösterilmiştir.

AnahtarKelimeler: kümeleme, veri madenciliği, k-means, dbscan, paralel işleme

vi

To My Family

This thesis is dedicated to my parents who were always praying for my success and also worked hard

to bring me up to who I am today.

vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Ahmet Coşar, whose encouragement, guidance and support

throughout my thesis work enabled me to complete this work. His careful advices, constructive

criticisms, and encouraging me to continue my research have aided me to complete this thesis

successfully. I would also like to thank Dr. Pınar Karagöz for her guidance that showed me how to go

on the right way. I would also like to add thanks for Dr. Murat Manguoğlu for his valuable advices.

Finally, I would like to thank Mr. Umut Tosun for his helps in debugging my parallel code and

suggestions to improve the achieved parallelism.

Finally, I would pay my greetings to my parents who have supported me throughout my education for

my success.

viii

TABLE OF CONTENTS

ÖZ ... v

TABLE OF CONTENTS .. viii

LIST OF TABLES .. x

1 INTRODUCTION ... 1

1.1 The Threats Coming Through Internet .. 1

1.2 Importance of Parallel Data Mining Methods ... 1

2 DATA MINING CONCEPTS ... 3

2.1 Clustering Approaches .. 3

2.2 K-Means Clustering Approach .. 6

2.3 The K-Means Algorithm ... 6

2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN) 6

2.5 The Algorithm ... 7

2.6 DBSCAN Pseudo Code ... 7

3 PARALLEL PROGRAMMING WITH MPI .. 9

3.1 Point-to-Point communication Routine ... 9

3.1.1 Blocking and Non-Blocking Communication ... 10

3.2 Collective Communication Routines ... 10

3.3 Fundamental MPI Concepts .. 11

3.3.1 MPI Communicator .. 11

3.3.2 MPI Process Rank ... 11

3.4 Basic MPI Functions ... 11

3.5 MPI Data Types ... 13

3.6 MPI Job Management .. 13

3.7 MPI Job Submission .. 14

3.8 High Performance Computing ... 14

3.9 Parallel Computing .. 14

3.10 An Example Parallel Program: Quick Merge Sort .. 16

3.10.1 Methodology ... 16

3.11 Experimental Measurements for QM Sort .. 18

4 IMPLEMENTATION OF K-MEANS AND DBSCAN .. 21

4.1 Weka Machine Learning Tool ... 21

4.2 Parallel K-Means Implementation ... 21

ix

4.3 Parallel DBSCAN Implementation ... 22

5 EXPERIMENTAL RESULTS ... 23

5.1 Experimental Environment ... 23

5.2 Experimental Measurements... 23

5.2.1 Structure of the Dataset used ... 23

5.3 Comparison of Weka K-Means and our Sequential Approach ... 24

5.4 Graphical Representation of Sequential K-Means .. 24

5.5 Experimental Measurements for Parallel K-Means .. 25

5.6 Graphical Representation of Parallel K-Means .. 26

5.7 Experimental Measurement for Sequential & Parallel DBScan ... 27

5.8 Graphical Representation of Sequential DBScan ... 27

5.9 Experimental Measurements for Parallel DBScan .. 28

6 CONCLUSIONS .. 30

REFERENCES ... 31

x

LIST OF TABLES

Table 1. World Internet usage and population statistics [Usage2011]. ... 4

Table 2. MPI_Send () Parameters Description. .. 11

Table 3. MPI_Recv () Parameters Description. ... 11

Table 4. MPI_Init () Parameters Description. .. 12

Table 5. MPI_Comm_size () Parameters Description. ... 12

Table 6. MPI_Comm_rank () Parameters Description. .. 12

Table 7. MPI Data Types. ... 13

Table 8. Dataset size used for QM Sort. ... 18

Table 9. Time taken by nodes to perform QM Sort in seconds. .. 18

Table 10. Network Dataset Structure. ... 23

Table 11. Wine Dataset Structure. .. 24

Table 12. Time analysis for weka. .. 24

Table 13. Time analysis for proposed sequential method. .. 24

Table 14. Computation time of Parallel K-Means in sec with K=10 .. 25

Table 15. Computation time of Parallel K-Means in sec with K=15 .. 26

Table 16. Computation time of Parallel K-Means in sec with K=20 .. 26

Table 17. Sequential DBScan. .. 28

Table 18. Parallel DBScan execution times with increasing number of nodes. 28

xi

LIST OF FIGURES

Figure 1. Architecture of a typical data mining system [6]. .. 3

Figure 2. Clustering phenomenon. .. 5

Figure 3. Message transmissions between processes. ... 10

Figure 4. Serial computing [13]. ... 15

Figure 5. Parallel computing [13].. 15

Figure 6. Evenly distribution. .. 16

Figure 7. Extra elements generated to balance the transmission. .. 17

Figure 8. Tree merge phenomenon.. 18

Figure 9. Relationships between time in sec and nodes for 2MB dataset. 19

Figure 10. Relationships between Time in sec and nodes for 4MB dataset. 19

Figure 11. Relationship between time in sec and nodes for 8MB dataset. 19

Figure 12. Relationship between time in sec and nodes for 16MB dataset. 20

Figure 13. Combined graph for all of the dataset size. .. 20

Figure 14. Parallel K-Mean state diagram. .. 22

Figure 15. State diagram for parallel DBScan. .. 22

Figure 16. Weka K-Means. ... 25

Figure 17. Proposed sequential K-Means. ... 25

Figure 18. Parallel K-Means performance for 10 clusters. ... 26

Figure 19. Parallel K-Means performance for 15 clusters. .. 26

Figure 20. Parallel K-Means performance for 15 clusters. .. 27

Figure 21. Parallel K-Means performance for 20 clusters. .. 27

Figure 22. Sequential DBScan on network data. ... 28

Figure 23. Parallel DBScan graph. .. 29

1

CHAPTER 1

INTRODUCTION

For future planning, gathering useful information from existing data has always been an important

task for human beings. However, day by day the past data in the data warehouse is increasing with a

high rate due to which it becomes difficult for an individual to extract the required knowledge by

manual techniques. It is also difficult to extract knowledge from that bundle of data even by using

computing technologies that are usually based on single sequential processors. In order to fulfill such

information extraction tasks there is a need for developing a technique that can provide the results

much more efficiently and without losing accuracy, within a limited amount of time.

In the following sections the rapidly increasing rate of Internet usage and its threats are discussed,

giving the problem definition and why it’s required to develop parallel algorithms for clustering

massive amount of data, such as Internet traffic data, in order to extract valuable information and

identify malicious threats that can be discovered in network traffic data. At the end of the chapter a

brief description of the road map of this document will be given.

1.1 The Threats Coming Through Internet

According to Moore’s law [4], the size of Internet doubles every year and so the amount of the threats

to the large networks grows exponentially with increasing Internet usage. As a side effect of this

growth, the network traffic data also increases rapidly and it is not possible to identify which part of

network traffic data belongs to normal traffic and which part might contain malicious attacks and/or

traffic. Hackers are the bigger threats nowadays they are dangerous both locally and they also pose

threats to remote computer systems over Internet. For example, someone can upload a virus or a trojan

into our computer or someone can hack our network, steal and misuse our financial data which might

cause a big threat for the integrity and confidentiality of trade secrets and/or reputation of our

organization. From this perspective, the development of fast, adaptive and accurate anomaly detection

algorithms attract more research.

1.2 Importance of Parallel Data Mining Methods

Data mining aims at processing data in order to filter or discover the desirable rules or patterns in a

database. It is a multi-disciplinary field, which combine research areas such as machine learning,

statistics, and high performance parallel computing. More than often, data mining tasks have to

operate on very large sets of data and require a lot of data storage and processing resources. The

amount of data arriving from various sources can be huge in size varying from gigabytes to terabytes,

and this further increases the need to develop efficient parallel data mining algorithms that can run on

a distributed architecture system such that there will be sufficient capacity both for storing and also

processing data in parallel, possibly even reading data from many disks (in parallel) attached to nodes

of a cluster computer. Another important reason for dividing the work on data is the memory

limitations of a single processor that would be typically around 4GB. Many modern database

management systems use parallel architectures both for storing data and also for assigning each query

request to one of the many query processing nodes, all working in parallel. Therefore, the task of

processing data which is already distributed to many nodes/computers over a network can be ideally

done in parallel obtaining maximum speed-up. Since data mining tasks often require processing of

huge amounts of data, parallel implementation for common data mining operations are very much in

demand.

The common techniques for implementing parallelism in data mining operations are “task

parallelism” and “data parallelism”, according to [15] in task parallelism the search space is

2

distributed into portions among separate processors whereas in data parallel approach the data set is

distributed over the available processors so that they can be processed in parallel by many processors.

3

CHAPTER 2

DATA MINING CONCEPTS

Data mining is a technology used for extracting hidden information from massive datasets, so that we

can use this extracted information to make predictions about future events and/or behaviors. It is an

attractive technique since it helps large scale businesses and companies to extract and concentrate only

on the part of data that it requires to make decisions and plans for future. Since data mining tools are

able to better predict future trends and behaviors, large scale business companies can make proactive

and knowledge-driven decisions. The term "knowledge discovery", as used in the phrase “Knowledge

Discovery from Data” (KDD), is taken as a synonym for data mining. The processes of KDD consist

of the following steps;

1) Cleaning noise and other irrelevant information from useful data

2) Integrating the data by reducing multiple occurrences of the same data item to one.

3) Selecting the relevant data in order to perform required analysis for some specific tasks.

4) Determining the data patterns occurring in the selected data.

5) Presenting the extracted data to the end user so that it is easy for the user to find the desired

information. This can be done by various data presentation tools.

Figure 1 [6] presents and describes the flow of data mining steps. The data can be obtained from any

database repository; a data warehouse of any large scale business organization can be used to perform

data mining for extracting meaningful information from that data. The data which is available over

World Wide Web can also be helpful in mining the useful information. Any type of text formatted file

such as comma separated values (".csv") files can also be used as sources of input in order to perform

KDD operations on relatively meaningful and useful data.

Figure 1. Architecture of a typical data mining system [6].

2.1 Clustering Approaches

We are in an era in which the access to the Internet data has become so easy that we can reach that

data with a few clicks, and due to the increasing numbers of Internet users, the data traffic over

4

Internet is also increasing in parallel. In Table 1.1 taken from [10], the statistics for world Internet

usage and population are given from 2000 to 2010.

Table 1. World Internet usage and population statistics [Usage2011].

World

Regions

Population

(2010 Est.)

Internet

Users

(2000)

Internet

Users

(2011)

Penetrati

on

(%)

Growth

2000-

2010

% of All

Users

Africa
1,013,779,0

50
4,514,400 110,931,700 10.9 %

2,357.3

%
5.6 %

Asia
3,834,792,8

52
114,304,000 825,094,396 21.5 % 621.8 % 42.0 %

Europe 813,319,511 105,096,093 475,069,448 58.4 % 352.0 % 24.2 %

Middle

East
212,336,924 3,284,800 63,240,946 29.8 %

1,825.3

%
3.2 %

N.

America
344,124,450 108,096,800 266,224,500 77.4 % 146.3 % 13.5 %

Caribbean 592,556,972 18,068,919 204,689,836 34.5 %
1,032.8

%
10.4 %

Australia 34,700,201 7,620,480 21,263,990 61.3 % 179.0 % 1.1 %

TOTAL
6,845,609,9

60
360,985,492

1,966,514,8

16
28.7 % 444.8 % 100.0 %

From the numbers if Table 1, it is quite clear that with such massive amounts of data it is very

difficult, if not impossible, for a human to manually extract any meaningful information from this data

for further use.

Cluster analysis or simply named as clustering is a very useful data mining method which groups sets

of “similar” (using a distance metric) objects in a multidimensional space into so-called “clusters”.

The clusters obtained from the clustering operation will contain a subset of all objects that more

similar to objects in the same cluster rather than the objects in other clusters. The phenomenon of

clustering is depicted in Figure 2, where part (a) shows the input dataset and the four discovered and

output clusters are shown as circles in (b). The data that are not assigned to any cluster are treated as

noise.

http://www.internetworldstats.com/stats10.htm

5

Figure 2. Clustering phenomenon.

As seen from Figure 2, Cluster analysis greatly helps in grouping together the objects of similar

behaviour from a multidimensional data space. Clustering a phenomenon follows the idea that if a rule

is valid for an object in the data space it is also possible that the same rule is applicable to other

objects in the space that are similar to it. This is how clustering helps in tracing dense and sparse

regions in the data space and can discover the hidden relationships between data objects.

Therefore, from all of the above discussion we can say that clustering is the process of data mining in

which objects with similar attributes are grouped in a cluster to form a single group of objects (also

called a “class”). In order to cluster data using data mining we can use the following two approaches:

1) Supervised Clustering

2) Unsupervised Clustering

The objective of supervised clustering is that it is applied on a classified example and its task is to

identify the objects with high probability density with respect to a single class. Furthermore, in

supervised clustering the number of output clusters are kept as small as possible and the objects are

assigned to their respective clusters on the basis of minimum distance from its assigned cluster

obtained by using the given distance formula.

In unsupervised clustering we don’t have any prior knowledge of the actual number of clusters. This

type of clustering can be performed by attempting, repeatedly, to cluster for several C (the number of

clusters) values which can be costly in terms of the CPU time. Unsupervised clustering, then,

performs some measurements in order to select the best partitioning of the data. Another approach that

can be used for performing unsupervised clustering can be the process of performing several passes

over the dataset, the algorithm proceeds by seeking one cluster at a time and removes it from the data

set in order to add it to the similar clusters [1]. A threshold value used by this technique can widely

vary for different size of data sets which in turn reduces the validity of the output taken from this type

of technique.

As in Compatible Cluster Merging [2] unsupervised clustering can also be performed by starting

clustering with a default number of clusters and during the process similar clusters are merged

together and the suspicious ones are eliminated, this process continues until the algorithm comes up

with the requested number of clusters. Competitive Agglomeration [3] is one of the recent

approaches used for unsupervised clustering, in this approach the dataset is partitioned into N distinct

6

clusters, each clusters “competes” with its neighbors for the data points and the winning clusters

eliminate the losing clusters, thus trying to obtain exactly N clusters.

In the following section we will be talking about data mining algorithms, K-Means and DBSCAN.

2.2 K-Means Clustering Approach

K-Means is one of the simplest clustering algorithms which cluster the given dataset under K number

of clusters also named as centroid; this K number of clusters and cluster center points are provided to

the algorithm as starter clusters. The dataset objects are gathered under the selected centroids on the

basis of having the smallest distance between the cluster centroids and the dataset point. After all the

datasets are gathered under their respective centroids, the process of recalculation of new centroids is

started giving as output a new set of centroids. Then, these new centroids are used for gathering the

dataset objects under the newly created centroids. The process of recalculation of centroids and the

reassembling of dataset under these centroids is performed within a loop which ends when no new

centroid can be generated in the recalculation of centroids phase.

2.3 The K-Means Algorithm

K-Means algorithm is composed of the following steps;

INPUT

K: number of centroids

D: set of data points

OUTPUT

 C: vector of centroids

 CL[][]: list of data point indices for each cluster center

PREVC= [-1]*K // initialize list of previous centroids

for(i=0;i<K; i++):

C[i] = randomly_select_centroid (D)

While (! PREVC.equals(C)):

PREVC= C

for(j=0;j< |D|; j++):

nearest= find_nearest_centroid(D[j], C)

CL[nearest].append (j) // add data point D[j] to nearest cluster

for(i=0;i<K;i++):

NC[i]= calculate_new_centroid(CL[i], D)

K-Means algorithm is the simplest clustering algorithm but its biggest drawbacks are the usage of

Euclidean distance for cluster identification and requiring the number of clusters as an input. Hence,

K-Means cannot identify the number of clusters by itself and also because of the random initialization

of cluster centroids it might not be able to generate clusters of some shape.

2.4 Density Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN was introduced by Ester, et al. [8] in 1996 to discover the clusters and noise in a spatial

database. DBSCAN generates groups of similar data objects from larger space of data, and these

groups are named as clusters whereas those data points not belonging to any cluster are named as

noise. According to the definition of DBSCAN in Ester, etsal. [8], a subset of similar objects is called

7

cluster C with respect to Epsilon (i.e. "radius") and minimum number of points (minPts) in database,

D, of points if : [8]

i) p, q: if pC and q is density reachable from p wrt. Eps and MinPts, then q C.

(Maximality).

ii) p, qC: p is density connected to q wrt. Eps and MinPts. (Connectivity).

The data points other than those found in any one of discovered clusters are called noise if: [8]

i) Let Cı,…, Cκ be the clusters of the database D with respect to parameters Epsᵢ and MinPtsᵢ

where i = 1,2,3,….,k, then we define the noise as the set of points in the database D not

belonging to any cluster Cᵢ, i.e. noise={nD | i: n Cᵢ}.

Here Eps is the radius that delimits the neighborhood area of a point and MinPts is the minimum

number of points that must exist in the Eps-neighborhood. To obtain the ideal result from DBSCAN

we should provide the accurate values for Eps and MinPts but it is one of the problems in DBSCAN to

identify the accurate Eps and MinPts. However, there can be a heuristic method to determine the

values for Eps and MinPts.

2.5 The Algorithm

The DBSCAN algorithm randomly chooses a point p as a cluster center and finds all those data points

which are neighboring to p and which are “density-reachable”. The notion of “density reachability” is

determined by using the Eps parameter that is used to compare with the calculated distance of a data

point from p. If the distance is smaller than Eps, then the data point is included in the cluster of data

points around p. If p is a core point, this procedure will generate a cluster with respect to Eps and

MinPts which must also satisfy the condition that the number of “density reachable” points to p is

more than or equal to MinPts. If p is a border point, no points are density-reachable from p and

DBSCAN algorithm will continue looking for new clusters using the next point in the database. It is

also possible that even after two (or more) clusters are discovered, DBSCAN may decide to merge

clusters to the other using the same Eps and MinPts parameters. The two clusters are separated into

two separate clusters only if the distance between all possible pairs of points X (in cluster-1) and point

Y(in cluster-2), are larger than Eps. This can be implemented with a recursive call to DBSCAN

algorithm that tries to identify clusters. This recursive call must be handled carefully in order to

minimize the data communication overhead caused by recursive calls.

2.6 DBSCAN Pseudo Code

The pseudo code for DBSCAN is given below:[16]

DBSCAN (D , eps, MinPts) // D: Dataset eps: cluster members distance

 clusterID=0

 foreach (unvisited P in Dataset)

 P.visited = True

 NeigborPts= regionQuery(P, eps)

 If sizeof(NeigborPts)< MinPts

 P.mark= NOISE

Else

 C= ++clusterID

ExpandCluster (P, NeigborPts, C, eps, MinPts)

End if

 endfor

8

The algorithm accepts the dataset, eps and MinPts as its inputs. In the algorithm setofPoints.get(i)

returns the i-th point in the dataset. Here, ExpandCluster is the most important method. In this method

the point is being expanded i.e. its neighbors are being calculated and decision of noise or normal

point is given.

ExpandCluster (P, NeighborPts, C, eps, MinPts)

 Add P to cluster C

 C.clusterID= C

 Foreach P’ in NeghborPts

 If P’.visited == FALSE

 P’.mark= VISITED

 NeigborPts’ = GetNeighbors(P’, eps)

 if sizeof (NeighborPts’) >= MinPts then

 NeigborPts= NeighborPts UNION NeighborPts’

 If P’.clusterID == NOTASSIGNEDYET

 Add P’ to cluster C

 P’.clusterID= C

GetNeighbors(P, eps)

 return all points within P's eps-neighborhood

In the above algorithm the call to GetNeighbors(P, epsilon) method returns the neighbors of the

provided point, P, on the basis of epsilon value.

9

CHAPTER 3

PARALLEL PROGRAMMING WITH MPI

Message Passing Interface (MPI) is an API used for programming parallel applications that are able to

communicate among themselves from different computers. MPI is a language independent

communication protocol that supports both Point-to-Point and collective communication. MPI

interface provides synchronization and communication functionality among the processes with

language bindings for example language syntax. MPI routines that are specifically used for

communication are divided into two categories:

1) Point-to-Point Communication

2) Collective Communication

3.1 Point-to-Point communication Routine

Message Passing Interface (MPI) provides a standard library of messaging functions that are used for

performing point-to-point messaging operations between nodes of a cluster computer. The messages

may identify a cluster node as the destination/sender of a message it is trying to send/receive and also

optionally may select a subset of messages by using “message tags” that are assigned to messages by

senders. It is also possible to perform broadcast operations where all nodes involved in the broadcast

call the same broadcast function. The send/receive operations could have other features such as:

1) Synchronous send

2) Blocking Send / Blocking Receive

3) Non-Blocking Send / Non-Blocking Receive

4) Buffered Send

5) Combined Send / Receive

6) Ready Send

It is possible to match any kind of send operation with any type of receive operation. In an ideal

world, every send operation would be matched with exactly one receive operation and if the receiver

of an MPI send operation is not available then the sender must be able to store the contents of the send

operation until the receiver is ready to fulfill its part. For example what will happen to the data in the

following two situations where both send and receive operations are not synchronized.

1) A node performs a send few seconds before the receiver becomes ready to accept it

2) Several nodes perform send operations and multiple messages arrive at the same receiving node

meaning the receiver must choose and accept only one of these messages

In the situations mentioned above MPI maintains a system buffer that holds the data in transition as

shown in the Figure 3 below.

10

Figure 3. Message transmissions between processes.

The system buffer space has the features like it is invisible to the programmer and is the MPI library

can use it freely. It can exist in the sender side, the receiver side or on both sides as well. By

permitting asynchronous send/receive operations the performance of parallel nodes increases because

they don’t have to wait for each other to become available to accept the sent message.

3.1.1 Blocking and Non-Blocking Communication

In case of blocking mode of Point-to-Point communication routine the send routine will return only

when it confirms that the application buffer is safe to reuse. The send operation can be synchronous

(i.e. the partner must respond) meaning that the receiver task must be ready to accept the sent message

and confirm that it was safely received. It can also be done in asynchronous mode in which the send

data is buffered in the system buffer for eventual delivery to the recipient.

In case of non-blocking mode of Point-to-Point communication routine, both send and receive

routines need not wait for these communication operations to be completed. The send/receive

operations require primitive operations such as copying message data from user program’s memory

space to the communication system’s buffer. A similar operation is performed when a message arrives

at the destination node and the addressed/waiting process is identified. There are no real-time message

delivery guarantees and the sender and receiver may go on other businesses causing messages to be

delayed in message buffers while awaiting to be processed. In order to eliminate the negative effects

of such message processing delays and responses, it is possible for senders to send “asynchronously”,

and then going about doing its other tasks.

3.2 Collective Communication Routines

These messaging functions can provide an easy method for all tasks/processes working on the same

problem to receive the same message (i.e. a broadcast operation). All of these routines are blocking

operations.

11

3.3 Fundamental MPI Concepts

3.3.1 MPI Communicator

MPI communicators are the communication channels that MPI uses to communicate with the nodes

for message passing. Communicator can have group of processes, the default communicator is

MPI_COMM_WORLD whose group contains initial processes. MPI communicators can be of two

types:

1) Intra-Communicator, it’s a collection of processes that use collective communications for

message sending.

2) Inter-Communicators are for sending messages between processes of disjoint intra-

communicators.

3.3.2 MPI Process Rank

An MPI communicator can have group of processes, each process in a group has its own identity

which is named as rank of that process. Ranks are contiguous and begin at zero.

3.4 Basic MPI Functions

Below are the basic MPI functions that can be used for communication between the nodes.

a) MPI_Send: This routine sends messages using blocking phenomenon and for each send

routine and there should be a receive routine in order to release the blockings.

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Commcomm)

Table 2. MPI_Send () Parameters Description.

Parameter Name Description

Buffer (buf) [in] Address of the buffer for data to be send.

Count [in] Number of elements in the send data.

Data Type (datatype) [in] Data type of the send data.

Destination (dest) [in] Destination rank.

Tag [in] Key value to tag the send message.

Communicator (comm) [in] Communicator group.

b) MPI_Recv: This routine is used to receive the data sent by MPI_Send routine.

Int MPI_Recv (void *buf, int count MPI_Datatype datatype,

 int source, int tag, MPI_Comm comm,

 MPI_Status *status)

Table 3. MPI_Recv () Parameters Description.

Parameter Name Description

Buffer (buf) [out] Address of the buffer for data storage.

Count [in] Number of elements in the received data.

Data Type (datatype) [in] Data type of the send data.

Destination (dest) [in] Destination rank.

Tag [in] Key value to tag the send message.

Communicator (comm) [in] Communicator (handle)

Status [out] Communicator group.

To store the count number of succeeding datatype elements with constant size, receive buffer is used.

The starting memory address is buf.

12

The received message’s length should not be more than the length of this buffer. Overflow error is

reported if the incoming data does not fit into the receive buffer causing truncation.

Since the incoming message’s length is known in advance, when it arrives at receive buffer, only the

memory locations that correspond to the message are modified.

Maximum length of the message is indicated by the count argument and the message’s actual length is

determined with MPI_Get_count.

c) MPI_Init: This routine Initializes execution environment for MPI programs.

int MPI_Init(int argc, char **argv)

Table 4. MPI_Init () Parameters Description.

Parameter Name Description

argc [in] Total number of sent arguments

argv [in] An argument vector pointer.

The purpose of this routine is to initialize MPI execution environment and it must be called once in a

program.

d) MPI_Comm_size: This routine gives the communicator group.

 int MPI_Comm_size(MPI_Commcomm, int *size)

Table 5. MPI_Comm_size () Parameters Description.

Parameter Name Description

Communicator (comm) [in] Associated communicator

Size [out] Total number of processes in the communictor.

In order to know the number of process that are in the communicator group we use MPI_Comm_size

routine.

e) MPI_Comm_rank: The rank information about the calling process can be determined using

this routine

int MPI_Comm_rank (MPI_Comm comm, int *rank)

Table 6. MPI_Comm_rank () Parameters Description.

Parameter Name Description

Communicator (comm) [in] Associated communicator

Rank [out] provides rank information for the calling process.

f) MPI_Finalize: int MPI_Finalize (void)

This routine completely closes the MPI execution environment and after this routine no MPI functions

can be can execute even MPI_INIT method cannot be run. It is therefore recommended that the user

should make sure that all the communications are finished before the call to MPI_Finalize routine.

A sample Program ("Hello World")

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[])

13

{

 int rank;

 int size;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf("Hello world from process %d of %d\n", rank, size);

 MPI_Finalize();

 return 0;

}

3.5 MPI Data Types

Table 7. MPI Data Types.

Data Type Name Description

MPI_CHAR 8-bit character

MPI_SHORT 32-bit floating point

MPI_INT 32-bit integer

MPI_LONG 32-bit integer

MPI_UNSIGNED_CHAR 8-bit unsigned character

MPI_UNSIGNED_SHORT 16-bit unsigned integer

MPI_UNSIGNED 32-bit unsigned integer

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT 32-bit floating point

MPI_DOUBLE 64-bit floating point

MPI_LONG_DOUBLE 64-bit floating point

MPI_BYTE Untyped byte data

MPI_PACKED Packed data (byte)

Besides these, MPI also supports “struct”s and derived data types.

3.6 MPI Job Management

In this part the MPI job management is discussed and some commands are defined for job submission

and job tracking. MPI uses a script file for managing the jobs. All the mandatory commands are

written into this script file and some of the script commands are described below:

1) PBS -N used to give the name to the output file.

e.g. PBS -N PGDBScan

2) PBS –q used to mention the queue used by the job.

e.g. PBS –q cenga

3) PBS –M used to mention the email in order to notify any runtime errors via mentioned email

address.

14

4) #PBS -m used to mention the condition when to send the email i.e. (a) for abort, (b) begin

and (e) for end of the program.

e.g. #PBS –m a

5) mpiexec command to run the program executable.

 A sample PBS file is given below.

#!/bin/sh

name of the job -can be anything-

#PBS -N PGDBScan

name of the queue that the job will be sent

#PBS -q cenga

to use the environment variables of the shell that the job sent

#PBS -V

e-mailadres

#PBS -M hunain.durrani@ceng.metu.edu.tr

mailing options:

(a)bort

(b)egin

(e)nd

#PBS -m a

change directory ! YOU SHOULD CHANGE !

cd /home1/e1692433/ParallelDbScan

run the executable over infiniband

mpiexec -hostfile $PBS_NODEFILE GDBScan 611170 networkDataset16MB.csv

/tmp/cellDatasetFile /tmp/dbscanOutputFile normalOutputFile.csv anomalyOutputFile.csv 1

3.7 MPI Job Submission

After writing the script file we can submit the MPI job using the script file as parameter:

$ qsub –l nodes=n [script name]

After we submit the job, the job is automatically given a jobid such as:

 9012.kavun-ib

We can use the above provided jobid to track the status of the job using the qstat command:

 $ qstat 9012

We can also delete the job by using the qdel command:

$ qdel 9012

3.8 High Performance Computing

High-Performance Computing (HPC) is hardware which is a combination of multi processors. HPCs

are used for the computation of huge amount of data which are not possible to compute on normal

desktop computers which is generally comprised of a single processing chip named as CPU. An HPC

system in general is a network node that contains multiple processing chips as well as its own RAM

and hard disk storage.

3.9 Parallel Computing

HPC systems split up the programs into many smaller processes. These small processes run separately

on different nodes and/or cores. In order to combine the results of these partial processes each process

should be able to communicate with the others.

15

The purpose of HPC systems is to execute the programs that compute huge amount of data and require

large amount of space in the memory. Standard file systems cannot work for large data because of

their limited max data size. HPC systems can be efficiently process huge data and can perform data

comparison in an efficient way.

For solving a problem we have to write a computer program which is a set of instructions given to

computer, the computer will process these instructions serially, i.e. one instruction is executed at one

time and the proceeding instruction must always wait for the preceding instruction to be executed. In

this way suppose if our program has a large number of instructions and also has large number of data

items to process, it may take too much time to finish the processing. Parallel computing overcomes

this problem by dividing the big problem into fragments and let these fragments run independently on

separate nodes.

Figures 4 and 5 [13] depict a clear picture for serial and parallel computing.

Figure 4. Serial computing [13].

Figure 5. Parallel computing [13].

Doubling the number of processing nodes will reduce the processing time to half as compared to the

previous execution time this process is known as speed-up parallelization. For some other reasons

such as communication cost, the speed-up processing may not be linear.

16

3.10 An Example Parallel Program: Quick Merge Sort

The “Parallel Quick Merge Sort” shortly named as “Parallel QM Sort” is the combination of famous

sorting algorithms “Quick Sort” and “Merge Sort”. An array of randomly generated integers has been

used as dataset for experimental purposes.

3.10.1 Methodology

The methodology used in “Parallel QM Sort” is explained in the following steps:

1. The algorithm follows the master-slave mechanism.

2. The “Master Node” prepares the dataset by creating random integer numbers. The total number of

elements to be produced is provided by the user as a command line parameter.

3. During the preparation of data the “Master Node” has to check whether the data scattered to each

“Slave Node” is even or not. Suppose the total number of elements in the data set is 8 and the

total number of nodes is 2 then, the data set will be evenly divided with a slot of 4 between each

node but what if the total number of elements is 7, in this case the “Master Node” will add an

extra element in order to make the distribution even. This process is explained in the Figures 8

and 9 and the process explained in this text is also presented.

Figure 6. Even number of data elements.

17

Figure 7. Extra elements inserted to balance the transmission.

4. After each “Slave Node” receives their part of the dataset, they perform the “Quick Sort” on their

received dataset.

5. The merging phenomenon is the critical part of QM Sort since it merges all the data set parts into

a single sorted data set. Suppose that S1 and S2 are two sorted parts of a bigger data set S, with

elements n1 and n2 respectively. The merge function then compares each single value of S1 with

S2 and saves the lower one in the resultant array. The efficiency of the merge function will be

high if all the values in one part of data set is lower than the other part because the function will

just have to append the part with higher values to the part with lower values and the merge

function will have a complexity of O(n1 + 1) or O(n2 + 1). Where n1 and n2 are the number of

elements in the subparts of the data set.

The merge function will perform worst if the elements in both the parts are in shuffled state. In

that case the merge function will show a complexity of O(n1 + n2).

One way of implementing the merge function could be that the “Master Node” gathers the

partitioned data set from each “Slave Node” and merge them respectively but this could be also

very costly since the “Master Node” will have to call merge function for N-1 times where N is the

number of nodes used to perform the sorting. Therefore the complexity rate will be O((N-1)(n1 +

n2))

In order to overcome this problem we used the tree based merge mechanism suggested

byPuneetKataria[7].In tree based merge sort each node sends its sorted data set to its neighbor

and the respective node upon receiving the data set performs merge process and in this way the

merge operation is performed at each step. This reduces the overhead burden of merging on

18

“Master Node” and the complexity to O ((log N)(n1 + n2)). The merging mechanism for 8 nodes

is shown in Figure 10.

Figure 8. Tree merge phenomenon.

3.11 Experimental Measurements for QM Sort

We perform the QM Sort on different size of data set using 2, 4, 8, 16 and 32 processors. The table 8

provides the information about the data set we used.

Table 8. Dataset size used for QM Sort.

File Size Number of Elements

2 MB 300,000

4 MB 600,000

8 MB 1180000

16 MB 2200000

We ran our algorithm on the above mentioned data set by keeping the data set size constant and

increasing the number of nodes and evaluated the performance of the algorithm. Table 4.3-2 shows

the time taken by each node for 2, 4, 8 and 16 MB of dataset size.

Table 9. Time taken by nodes to perform QM Sort in seconds.

Nodes 2 MB 4 MB 8 MB 16 MB

 Time Taken in Seconds

2 0.05835720 0.12183700 0.19592400 0.40170900

4 0.03640380 0.07690410 0.145364 0.26718100

8 0.08321720 0.09822840 0.183156 0.30866300

16 0.18145300 0.18638300 0.25014600 0.33414700

32 0.38420600 0.397043 0.50261500 0.51052700

19

The graphical representation of the above table is presented in as line graph below. In the graphs

above the Y-axis represents the time in seconds and X-axis represents the number of nodes.

Figure 9. Relationships between time(seconds) and nodes for 2MB dataset.

Figure 10. Relationships between Time in sec and nodes for 4MB dataset.

Figure 11. Relationship between time in sec and nodes for 8MB dataset.

20

Figure 12. Relationship between time in sec and nodes for 16MB dataset.

In our experiments for “QM Sort” we kept the dataset constant but increased the number of nodes in

order to check the behavior of the proposed method for “QM Sort”. During the experiment we took 20

readings for each of the nodes and then calculated the average of those readings.

We can observe that there is a linear decrease and increase in the graph. This is due to the reason that

as the number of nodes increases so as the communication time increases between the nodes for

message passing. We observed that the behavior of the algorithm for 4 nodes is consistent which

means that it keeps consuming the small time than the other nodes. Therefore we can say that the

algorithm is suitable for 4 nodes. The time taken by 32 nodes is maximum due to the increase rate of

the message communication between nodes.

Figure 13. Combined graph for all of the dataset size.

Figure 15 is the combined version of all the four graphs mentioned above, here we can notice that

each node shows a linear increase in time taken as the dataset size increases we can say there is a

proportional relationship between time and the dataset size.

21

CHAPTER 4

IMPLEMENTATION OF K-MEANS AND DBSCAN

Since in large business scale organizations the quantity of data store is bigger enough to extract useful

information (cluster) from that data. This is where data mining clustering algorithms play their role

for human beings to extract the useful information from the irrelevant data store. But these algorithms

show higher efficiency if the dataset is smaller which does not meet today’s requirements. This is

where the need of parallelizing the data mining clustering algorithms arises. In this chapter we will

describing the methodology we used to parallelized the DBSCAN algorithm over the HPC hardware

using C++ as programing too and MPI library for communication between the nodes.

Before we explain P-DBSCAN, since we are using Weka clustering libraries in next section we will

briefly discuss about Weka.

4.1 Weka Machine Learning Tool

Weka (Waikato Environment for Knowledge Analysis) developed at university of University of

Waikato, New Zealand in one of the popular tool of machine learning software written in Java. Weka

together with it strong visualization tools and algorithms for data analysis and predictive modeling

provides a user friendly interface for easy access to these functionalities. We can perform several

standard data mining tasks using weka, such as data processing, clustering, classification, regression,

visualization, and feature selection. Weka supports input data in the form of single flat file or relation.

These input files contain data points that are described by a fixed number of attributes. By using weka

we can also connect to SQL databases or oracle databases and can process the data derived from the

database queries.

Weka’s user interface contains an explorer which has several panels for different data mining

operations. We can call weka library functions in our java or C++ codes such as, below where we are

calling Weka’s DBSCAN function in C++.

“java -Xmx1024m –classpath Path/weka-3-6-1/weka.jar weka.clusterers.DBScan

4.2 Parallel K-Means Implementation

We parallelize the K-Means between N numbers of nodes. The master slave methodology is being

used. All the nodes read data from CSV files, master nodes make the initial selection of centroids and

broadcasts them to other nodes then each slave node perform the K-Means independently, below is the

state diagram for parallel K-Means.

http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/University_of_Waikato
http://en.wikipedia.org/wiki/New_Zealand

22

Figure 14. Parallel K-Means algorithm work distribution.

4.3 Parallel DBSCAN Implementation

Parallel DBScan is the parallel implementation of the classical sequential DBScan explained in

section 2.5. It follows the Master and Slave format of parallelization. A CSV file is provided as an

input to the master node which prepares the dataset. Then, the master node send point wise data to the

slave node in order to calculate the neighbors of the point. The master node after receiving the

neighbors for all the points from the slave nodes starts the DBScan algorithm. This is how we achieve

the parallel DBScan. Below is the state diagram for parallel DBScan.

Figure 15. State diagram for parallel DBScan.

23

1 EXPERIMENTAL RESULTS

This chapter explains the performance test for “Parallel K-Means” and “Parallel DBScan” algorithms.

The results of the experiments are explained with graphics created using Microsoft Excel.

This chapter starts with the discussion of the environment used for performing the performance tests

followed by the discussion about the dataset used for each of the above algorithms. The last section of

the chapter presents results taken from the performance tests experiments.

5.1 Experimental Environment

The entire performance test discussed in the following sections is performed on the cluster

environment of the High Performance Computing laboratory at the Department of Computer

Engineering at Middle East Technical University. The hardware properties of the High Performance

Clustering machine consists of 2 x Intel Xeon E5430 Quad Core CPU 2.66 GHz, 12 MB L2

Cache,1333 MHz FSB processor a 16 GB of memory and 2 x 3Com 4200G 24 Port Gigabit Ethernet

Switch & Voltaire 9240D 24 Port Infiniband Switch for connectivity.

Open MPI and mpich / mvapich libraries are installed on the cluster along with multiple compilers

such as GNU Compiler Collection (gcc) and Intel C++ Compiler (icc). We can install additional

software on the users root directory according to needs. Weka is one of the best data mining tools

available these days; therefore we are using the DBScan libraries of weka in our algorithm. We

installed weka on HPC on our root directory for utilization.

We used special MPI methods such as MPI_Aint, MPI_Datatype and MPI_Address for creating the

custom data types other than the primitive data types of MPI.

5.2 Experimental Measurements

In this section we will be discussing about the measurements taken from the performed experiments.

The section starts with describing the data set structure we used and next we discuss about the

graphical representation of the measurements.

5.2.1 Structure of the Dataset used

We used two different datasets for our P-DBScan algorithm

 Network Dataset (KDD Dataset 1999)

 Wine Dataset

Table 10 and 11 show the fields for Network and Wine datasets respectively.

Table 10. Network Dataset Structure.

Feature Name Description Type

ProtocolType Type of the protocol, e.g. tcp, udp, etc. Discrete

Service Network service on the destination, e.g., http, telnet, etc. Discrete

Source Bytes Number of data bytes from source to destination. Continuous

Destination Bytes Number of data bytes from destination to source. Continuous

Flag Normal or error status of the connection. Discrete

24

Table 11. Wine Dataset Structure.

Field Name Data Type

CultivarId Integer

Alcohol Float

MalicAcid Float

Ash Float

AshAlkalinity Float

Magnesium Float

TotalPhenols Float

Flavonoids Float

NonflavanoidPhenols Float

Proanthocyanins Float

ColorIntensity Float

Hue Float

OD280_OD315 Float

Proline Float

Before performing the experiment directly on network dataset we used wine dataset for testing

purpose. We ran our algorithm on the wine dataset and compared its result with the result generated

by weka itself. We found no difference between the two generated outputs.

5.3 Comparison of Weka K-Means and our Sequential Approach

We made a comparison between weka and our proposed approach for sequential K-Means. The

results taken from our experiments are shown in Table 12 and 13.

Table 12. Time analysis for weka.

 #Rows

Clusters 40K 60K 80K

10 4.64 7.42 3.33

15 11.1 7.35 5.99

20 17.58 9.55 7.33

Table 13. Time analysis for proposed sequential method.

 #Rows

Clusters 40K 60K 80K

10 1.8225 2.5445 1.3158

15 3.2179 6.2109 3.2195

20 6.9889 13.7919 3.8798

It is quite clear from the results that our proposed approach is faster than the Weka’s K-Means. Our

algorithm is almost 3 times faster than the weka’s K-Means. It can be noted that as the number of

centroids are increased the time take to perform K-Means is also increased and the increase rate is

almost 2 times the previous time take for lesser number of centroids.

5.4 Graphical Representation of Sequential K-Means

Figures 18 and 19 present the graphical form of the above readings. The x axis represents the number

of centroids whereas the y axis represents the time taken in seconds to run the algorithm. The graph

also represents a linear increase in the time taken as the number of centroids increases.

25

Figure 16. Weka K-Means.

Figure 17. Proposed sequential K-Means.

5.5 Experimental Measurements for Parallel K-Means

In order to measure the performance of parallel K-Means we ran our algorithm for 40K, 60K and 80K

respectively on 10, 20, 30, 40 and 50 nodes. We also kept the number of centroids as 10, 15 and 20.

The tables from 14 to 18 show the measurements taken during the experiments.

Table 14. Computation time of Parallel K-Means in sec with K=10

Nodes 10 20 30 40 50

Data Set Size Time in Seconds

40K 0.520 0.375 0.273 0.221 0.198

26

60K 0.700 0.413 0.321 0.216 0.211

80K 0.937 0.714 0.621 0.442 0.342

Table 15. Computation time of Parallel K-Means in sec with K=15

Nodes 10 20 30 40 50

Data Set Size Time in Seconds

40K 2.763 1.887 1.576 1.321 1.112

60K 3.892 2.768 2.334 2.211 1.967

80K 4.454 3.879 2.678 2.567 2.311

Table 16. Computation time of Parallel K-Means in sec with K=20

Nodes 10 20 30 40 50

Clusters Time in Seconds

40K 3.211 2.673 2.344 2.123 1.993

60K 4.231 4.007 3.784 3.238 2.778

80K 6.294 5.523 5.042 4.834 4.233

5.6 Graphical Representation of Parallel K-Means

The graphical representation of the results is shown below.

 Figure 18. Parallel K-Means performance for 10 clusters.

Figure 19. Parallel K-Means performance for 15 clusters.

27

Figure 20. Parallel K-Means performance for 15 clusters.

Figure 21. Parallel K-Means performance for 20 clusters.

5.7 Experimental Measurement for Sequential & Parallel DBScan

In this section we will be discus the experimental results taken for the sequential DBScan and parallel

DBScan. We made a test run for our test dataset which wine in order to make the result confirmation.

We matched our result with weka’s output which was same as ours. We performed the experiments of

network dataset.

5.8 Graphical Representation of Sequential DBScan

Tables 24 and 25 present the tabular and graphical form for sequential DBScan. The x-axis represents

the dataset size in K whereas the y axis represents the time taken in seconds to run the algorithm. The

graph also represents a linear increase in the time taken as the size of dataset increases.

28

Table 17. Sequential DBScan.

Dataset Time (Sec)

2000 17

3000 43

4000 67

5000 97

Figure 22. Sequential DBScan on network data.

5.9 Experimental Measurements for Parallel DBScan

In order to measure the performance of parallel DBScan we ran our algorithm for 20K, 40K, 60K and

80K respectively on 5, 10, 15, 20, 25, 30 and 40 nodes. The tables 20 show the measurements taken

during the experiments.

Table 18. Parallel DBScan execution times with increasing number of nodes.

 Nodes

Dataset

size 5 10 15 20 25

30

40

Time (Sec)

20K 136.465 74.5752 56.9424 48.5689 43.5946 40.4853 36.4378

40K 552.299 304.206 233.062 199.291 179.546 166.67 151.009

60K 3704.39 3168.17 2422.96 2139.73 2004.74 1985.02 1740.67

80K 12301.5 11858.3 11198.7 10253.8 9633.11 8882.79 8705.4

29

Figure 23. Parallel DBScan graph.

We can observe that there is almost a straight line for dataset size 2K since the size is very less and

also there is also negligible amount of communication time between the nodes. On the other hand as

the dataset size increases so as the clustering time increases. We can notice that as the number of

nodes increases the clustering time decreases.

30

CHAPTER 6

CONCLUSIONS

In this last chapter of the thesis, an interpretation of the results presented in the previous chapter is

given, providing conclusions and discussing possible future work which would be beneficial.

According to our previous discussions the rapid increase of data in large scale or medium scale

business forced to develop the data mining techniques in parallel. Just developing these techniques in

parallel would not be a solution but also achieving high performance would also be the basic need of

this era data mining.

As our experiments show that the speed-up of the algorithm doubles as the number of nodes increase

but in some cases in cannot be linear as of the data set size distributed to the nodes. Even then we can

achieve efficiency from our approach. This is one of the achievements of our approach.

31

REFERENCES

[1] J. M.Jolion, P. Meer, and S. Bataouche. Robust clustering with applications in computer vision.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):791-802, Aug. 1991.

[2] R. Krishnapuram and C.-P. Freg. Fitting an unknown number of lines and planes to image data

through compatible cluster merging. Pattern Recognition, 25(4), 1992.

[3] H. Frigui and R. Krishnapuram. Clustering by competitive agglomeration. Pattern Recognition,

30(7):1109-1119, 1997.

[4] K. G. Coffman and A. M. Odlyzko, Internet growth: Is there a ”Moore’s Law” for data traffic? ,

AT&T Labs, 2001.

[5] Eskin, E. , Arnold, A., Prerau, M., Portnoy, L.&Stolfo, S.A Geometric Framework for

Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. (2002)

[6] Jiawei Han & Micheline Kamber, Data Mining: Concepts and Techniques, 3ed., Morgan-

Kaufmann, 2012.

[7] Parallel Quick Sort Implementation Using MPI and PThreads. [PDBCCOB] W.K. Ng et al. (eds.):

PAKDD 2006, LNAI 3918, pp. 179—188, 2006.

[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander and XiaoweiXu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise”, The Second Int. Conf. on Knowledge

Discovery and Data Mining (KDD-96), Portland, Oregon, USA, 1996

[16] A Density Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise,

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu

Online References:

[9]Url: http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.pe431.mpiprog.d

oc/am106_pmd.html, last accessed …

[10]Url: http://www.internetworldstats.com/stats.htm (2010)

[11] Geodetic Datum Overview, Last Date Accessed: 10/01/2010, Owner: Dana, Peter H. (2010), Url:

http://www.colorado.edu/geography/gcraft/notes/datum/ datum.html

[12] GDI+, Last Date Accessed: 13/01/2010, Owner: Microsoft Corporation,(2010)

Url:http://msdn.microsoft.com/en-us/library/ms533798(VS.85).aspx

[13] Blaise Barney, Lawrence Livermore National Laboratory, Introduction to Parallel Computing,

Url: https://computing.llnl.gov/tutorials/parallel_comp/

[14] Amdahl’s Law, Url: http://en.wikipedia.org/wiki/Amdahl%27s_law,

http://en.wikipedia.org/wiki/Parallel_computing#cite_note-12

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.pe431.mpiprog.doc/am106_pmd.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.pe431.mpiprog.doc/am106_pmd.html
http://www.internetworldstats.com/stats.htm
http://www.colorado.edu/geography/gcraft/notes/datum/%20datum.html
http://msdn.microsoft.com/en-us/library/ms533798(VS.85).aspx
http://en.wikipedia.org/wiki/Amdahl%27s_law

32

[15] Parallel and Distributed Data Mining by Dr (Mrs). Sujni

Paul.(http://www.intechopen.com/source/pdfs/13261/InTech-

Parallel_and_distributed_data_mining.pdf)

