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ABSTRACT 

 

 

ASSESSMENT OF OPEN PIT DEWATERING REQUIREMENTS AND  PIT LAKE 

FORMATION FOR  KIŞLADAĞ GOLD MINE, UŞAK-TURKEY 

 

Ünsal, Burcu 

Ph.D., Department of Geological Engineering 

Supervisor: Prof. Dr. Hasan Yazıcıgil 

June 2013, 145 pages 

 

 

 

 

The main purposes of this research are (1) to quantify the dewatering requirements for 

Kışladağ gold mine (Uşak–Turkey) in order to provide stable and dry conditions for mining 

during the operational period, (2) to assess the pit lake formation in post-closure period, and 

(3) to assess the impacts of these effects on groundwater resources. Following the 

development of the site conceptual model, a numerical groundwater flow model is set up and 

calibrated under steady state conditions and sensitivity analyses are conducted. The 

calibrated model is used as a tool for the determination of groundwater flow rates into the 

pit, applying two different simulation approaches: steady state and transient. The results 

show that steady state simulated pit-inflow rate was almost half of the maximum rates 

calculated by the transient simulations. The average pit-inflow rates however are very close 

to each other indicating the reliability of the model results. Following the cessation of 

dewatering activities during the post-closure period, a pit lake is expected to form. Pit lake 

water balance calculations are conducted to predict the lake levels with time until the 

equilibrium conditions are reached. The results show that pit lake levels stabilize at 816 m, 

585 years after dewatering ceases. The results also show that 829 m is a critical level, below 

which pit will behave as a sink and for the higher levels, it will be a flowthrough system 

which may adversely affect the quality of downstream groundwater resources. 

 

Keywords: groundwater, dewatering, pit lake, numerical modeling, Kışladağ 
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ÖZ 

 

 

KIŞLADAĞ ALTIN MADENİ AÇIK OCAK SUSUZLAŞTIRILMASI VE OCAK GÖLÜ 

OLUŞUMUNUN DEĞERLENDİRİLMESİ, UŞAK-TÜRKİYE 

 

Ünsal, Burcu 

Doktora, Jeoloji Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Hasan Yazıcıgil 

Haziran 2013, 145 sayfa 

 

 

 

 

Bu araştırmanın temel amaçları (1) Kışladağ Altın Madeni (Uşak – Türkiye) açık ocağında 

işletme dönemi boyunca, madencilik açısından güvenli ve kuru kazı şartlarının 

sağlanabilmesi için gerekli olan susuzlaştırma miktarının belirlenmesi, (2) kapama 

döneminde ocak gölü oluşumunun değerlendirilmesi ve (3) bütün bu süreçlerin yeraltısuyu 

sisteminde yaratacağı etkilerin ortaya koyulmasıdır. Sahayı temsil eden kavramsal modelin 

oluşturulmasının ardından, sayısal bir yeraltısuyu akım modeli kurulmuş ve kararlı akım 

koşulları altında kalibre edilerek, duyarlılık analizleri yapılmıştır. Kalibre edilen model  

aracılığıyla, iki farklı yaklaşım uygulanarak (kararlı ve kararsız akım koşulları), açık ocağa 

gelecek yeraltısuyu miktarı belirlenmiştir. Sonuç olarak, kararlı akım koşulları altında 

hesaplanan yeraltısuyu akım miktarının, kararsız akım koşullarında hesaplanan maksimum 

yeraltısuyu akım miktarının neredeyse yarısına eşit olduğu görülmüştür.  Ancak, kararsız 

akım koşulları altında hesaplanan ortalama miktarın, kararlı akım koşulları altında 

hesaplanan akım miktarına oldukça yakın olması model sonuçlarının güvenilirliğini ortaya 

koymaktadır. Kapama döneminde ise, susuzlaştırma faaliyetlerinin son bulması ile birlikte 

açık ocakta bir ocak gölü oluşumu beklenmektedir. Ocak gölü su bütçesi oluşturularak, 

sistem denge şartlarına ulaşıncaya kadar geçen sürede, göl su seviyelerindeki zamansal 

değişim belirlenmiştir. Sonuçlar, ocak gölünün susuzlaştırma faaliyetlerinin sona ermesinden 

585 yıl sonra 816 m seviyesinde dengeye ulaşacağını göstermektedir. Bunun yanı sıra, 

yapılan simülasyonların sonucunda, 829 m’nin kritik bir seviye olduğu, bu seviyenin altında 

alıcı bir ortam oluşturan ocak gölünün, daha yüksek seviyelerde akışı ileten bir ortam gibi 

davranacağı ve dolayısıyla akış aşağısındaki yeraltısuyu sistemini olumsuz yönde 

etkileyebileceği ortaya konulmuştur. 

 

Anahtar Kelimeler: yeraltısuyu, susuzlaştırma, ocak gölü, sayısal modelleme, Kışladağ 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

One of the most significant environmental issues of bulk mining is the impact on 

groundwater resources. Bulk mining, by means of which low grade ore is extracted, 

generally requires deep excavations that shall be completed under the static groundwater 

level. In order to provide safe and stable conditions for mining during the operational period, 

it is required to dewater the excavation area and attain relatively dry operating conditions. 

Once dewatering ceases after the closure of such operations, groundwater and surface water 

flows into the pit together with the rainfall, contribute to the formation of a pit lake. 

Depending on the components of the pit lake water budget, it may take many years until an 

equilibrium state is reached and water level of the lake is stabilized. Determination of this 

equilibrium conditions is very crucial in the sense they reflect the interactions of the pit lake 

and surrounding groundwater system. Therefore, this permanent modification on the 

groundwater system has to be investigated in detail.  

 

This study presents the dewatering scheme of Kışladağ Gold Mine during its 17 years of 

operation phase, pit lake formation process in the post-closure period and finally 

characteristics of the ultimate pit lake. 

 

 

1.1 Purpose and Scope 

 

The purpose of this study is to; 

 Quantify the dewatering requirements by predicting the discharge rates (groundwater 

inflow to pit) during the operational period as the excavation advances to final 

operational depth;  

 Assess the impact of dewatering operations on the surrounding groundwater system, 

 Predict the future pit lake level after closure and filling period for long term daily 

meteorological conditions and  

 Characterize the hydraulic relation between the ultimate pit lake and surrounding 

groundwater system. 

 

In order to meet the purposes given above, a numerical three dimensional groundwater 

model is constructed and used as a tool to simulate the operational and the post-closure 

groundwater system. The modeling process, simulating the operational phase of the mine, is 

completed within three stages. Initially a conceptual groundwater model is constructed with 

the data provided by TÜPRAG and the data collected from the site. Then a numerical 

groundwater flow model is constructed in accordance with the conceptual model and 

calibrated to site conditions (with the observed groundwater levels). Finally, dewatering 
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simulations are completed using the calibrated model and applying two different approaches: 

steady state and transient. The aim of these simulations is to quantify the groundwater 

inflows to pit as a consequence of dewatering actions throughout the operational period and 

to predict the potential impact on the groundwater resources in the close vicinity of the area.  

As the mining operations will be finalized in 2030, the dewatering program will be ceased. 

Thus, a lake is expected to form in Kışladağ open pit during the post-closure period. At this 

point a spreadsheet model is integrated with the numerical groundwater flow model, which is 

used to determine the groundwater inflow rates to the pit. Pit lake water balance calculations 

are conducted to simulate the lake levels with time until the equilibrium conditions are 

reached and to predict the steady pit lake level. The pit lake water balance calculations are 

completed for a 800-year period with the spreadsheet model with the daily evaporation and 

precipitation data set, prepared by the repetition of the long term daily meteorological data. 

Finally, the resulting steady pit lake level is introduced to the numerical groundwater model 

in order to predict the hydrologic status of the ultimate pit lake at its steady state conditions. 

 

 

1.2 Location and Extent of the Study Area 

 

Kışladağ Gold Mine is located in west-central Turkey between the major centers of İzmir, 

lying 180 km to the west on the Aegean coast, and the capital city Ankara, 350 km to the 

northeast. The Mine site is located 35 km southwest of the city of Uşak (population 170,000) 

near the village of Gümüşkol. The studies are conducted within a frame covering an area of 

around 440 km
2
 (Figure 1.1). 

 

The mine site is located on the water divide between the Gediz and Büyük Menderes River 

Basins. Open pit and present heap leach pad facility is located in the Gediz River basin and 

the present waste rock storage area is located in the Büyük Menderes River basin. All of the 

planned expansion facilities (proposed leach pad and waste rock storage areas) are within the 

Gediz River Basin. The elevations in the area range from approximately 1300 masl in the 

hilly areas to 600 masl at the base of the valleys which are draining these hills. 
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Figure 1.1. Location of the study area 
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1.3 Mining Activities at Kışladağ 

 

Kışladağ open pit gold mine has been operating since 2006 with surface facilities consisting 

of heap leach pad, waste rock storage area, ADR plant, crushing plant and ancillary buildings 

Current fenced area of the mine is around 8.5 km
2
. The mine operation is a standard drill and 

blast truck and shovel open pit operation. The mine operates 24 hours a day seven days a 

week. 

 

The ore is processed in a standard heap leach facility containing a three stage crushing plant, 

conveyors, a stacker for placing the ore and also a carbon adsorption facility (ADR plant) for 

recovering the gold. The carbon is treated on site in a refinery and the final product is a gold 

doré bar. The heap leach pad is a permanent facility employing a two part liner system of a 

compacted layer of low permeability clay soil, with a 2 mm thick HPDE/LLDPE synthetic 

liner. 

 

Kışladağ Gold Project received its EIA Positive certificate in 2003 (ENCON, 2003) and 

completed the construction of the mine in 2005. The initial plan of TÜPRAG was to produce 

180 million tons of ore for a period of 17 years. Then within time, with the exploration of 

new resources and positive change in the gold mining economy, a capacity increase is 

planned to produce 600 million tons of ore (for the whole life of mine) by 2029. In addition 

to ore, over 1 billion tons of waste rock will be moved to waste rock storage areas.  

 

The excavation will end up with a giant pit having almost 2000 m by 1600 m of crest 

dimensions and more than 700 m total depth from the original topography. The ultimate pit 

will cover 268ha area. Figure 1.2 shows the mine layout by the end of 2012, while final mine 

layout is given in Figure 1.3. Kışladağ open pit will be one of the greatest when it reaches to 

its ultimate geometry with the current design. In order to give an insight on how big the 

Kışladağ open pit will be, its dimensions can be compared to that of the greatest man-made 

excavation which is the Bingham Canyon Mine.  Bingham Canyon Mine, also known as the 

Kennecott Copper Mine, is an open-pit mining operation extracting a large porphyry copper 

deposit southwest of Salt Lake City, Utah. The mine has been in production since 1906, and 

has resulted in the creation of a pit over 970 m deep, 4 km wide and covering 770 ha 

(http://en.wikipedia.org/wiki/Bingham_Canyon_Mine).  

 

Figure 1.4 shows the cross-sections passing through the open pit in E-W and N-S directions. 

On these cross-sections present (by the end of 2012) and final (by the end of 2029) pit 

layouts are shown, together with the present groundwater table. The excavations at the open 

pit will continue under the static groundwater level after the pit bottom reaches the 

groundwater level which is around 870 m elevation (by the end of 2013). Thus, further 

operations in the pit will include a dewatering program until the end of production in 2029. 

After 2029 once the mining ceases, a pit lake is expected to form in the pit.  
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Figure 1.2. Mine site layout by the end of 2012 
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Figure 1.3. Planned mine site layout by the end of 2029 
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Figure 1.4. Cross-sections showing open pit layout in 2012 and 2029 

 

 

 

1.4 Previous Studies 

 

Many studies have been completed on the geology, hydrology, hydrogeology and water 

resources for the Kışladağ Gold Mine. Some of these studies have been completed for the 

mine site while others covered the region. These studies are summarized below. 

 

 

1.4.1 Previous Studies on Geology 

 

 General Directorate of Mineral Research and Exploration have completed 1/50,000 

and 1/25,000 scaled geological maps for the area covering Uşak, Eşme, Ulubey, 

Banaz, Güre and Sivaslı. 

 TÜPRAG’s exploration group completed detailed geological studies in the close 

vicinity of the mine site. Other than TÜPRAG, many researchers (academics and 
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consultants) completed several studies, especially on the structural geology of the 

area. These studies are given below: 

o A report on geological map and structural geology of Kışladağ Gold Mine 

(Lewis Geoscience Services Inc., 2002) 

o Structural interpretation for 179/33 coded Landsat ETM+ satellite image 

(Murphy Geological Services, 2004) 

o Structural Mapping of Kışladağ Gold Mine Open Pit (Kuşçu, 2008). 

o Geology of Kışladağ-Sayacık Area (Hudson, 2009) 

o Kışladağ Structural Geology (Herod ve Hodkiewicz, 2010) 

o Geology of North of Kışladağ (ARC, 2011) 

 

 

1.4.2 Previous Studies on Hydrology 

 

 Detailed hydrologic studies have been completed for Kışladağ by Yazıcıgil et al. 

(2011) for the evaluation of the surface water potential. During this study, data on 

surface water discharge rates have been evaluated to obtain the run off coefficients. 

 

 

1.4.3 Previous Studies on Hydrogeology 

 

 Initial regional hydrogeological study was completed by State Hydraulic Works 

(DSI) for the water supply of the villages of Karahallı and Ulubey districts in 1955. 

Then in 1960, DSI completed a hydrogeological study on Uşak, Banaz and Sivaslı 

Plains and completed 13 investigation wells. A report on this study was published in 

1976 by Koç et al. 

 In 1979, DSI II. District completed the report “Hydrogeological Investigation Report 

on Water Resources of Uşak” (Aysan, 1979). Later in 1985, in an extensive region, 

covering Banaz Plain (Uşak-Banaz-Sivaslı-Ulubey-Karahallı Sub-plains), DSI II. 

District completed another hydrogeological investigation study. This study has been 

published in 1986 by Bilgisu and Çil. As a follow up study, DSI completed nine 

investigation wells between 1987 and 1990.  

 After 1990, an additional drilling program was completed to the south and 6 more 

investigation wells were completed. Then these studies have been compiled by 

Kadıoğlu in 1993 and the report on hydrogeological investigation on Uşak-Banaz-

Ulubey-Sivaslı and Karahallı Plains have been published. 

 Most recent study was completed in 2006 by Vaytaş Sondaj İnşaat Turizm San. ve 

Tic. Ltd. Şti. on the drinking water resources of Uşak and “Hydrogeological 

Investigation on Uşak Centeral District-Susuzören Area” report was prepared. 

 Ulubey aquifer is the most important aquifer in regional sense. Therefore, Yazıcıgil 

et al. (2008) completed a study for the characterization of Banaz Stream Basin and 

development of groundwater management plan for the Ulubey aquifer system in an 

area covering 3972 km
2
. During this study, hydrogeological characterization of the 

Ulubey and Asartepe Formations have been completed and a numerical groundwater 
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model was utilized to develop and test groundwater management plans for the future 

water supply for irrigation cooperatives and the districts for the next 20 year period. 

 Initial hydrogeological study in the vicinity of Kışladağ Gold Mine was completed 

by Yazıcıgil et al. (2000) for the water supply alternatives of the proposed gold 

mine. Following Yazıcıgil et al. (2000), SRK Consulting completed a series of 

studies for Kışladağ Gold Mine. These studies can be summarized as; 

o Surface and Groundwater Monitoring Plan for Kışladağ Gold Mine (SRK, 

2002) 

o Groundwater Sampling and Analyses Report (SRK, 2003) 

o Water Supply Studies – Aquifer Test (SRK, 2003) 

o Groundwater Exploration Studies (SRK, 2005) 

o Conceptual Model Studies for Kışladağ Gold Mine (SRK, 2005) 

o Potential Impact of Waste Rock Dump on Groundwater Resources (SRK, 

2007) 

o Pit Lake Formation and Potential Impact on Groundwater Resources (SRK, 

2007) 

o Kışladağ Open Pit Dewatering / Depressurizing Study (SRK, 2012) 

o Evaluation of Dewatering Performance with Vertical Wells (SRK, 2013) 

 

Among all, a recent study that compiled and analyzed all the previous data, as well as new 

site characterization for the planned expansion activities, was completed by Yazıcıgil et al. 

(2013). Within the scope of this study a very detailed “Hydrogeological Survey Report for 

Kışladağ Gold Mine Site” was accomplished. 

 

Another recent study, which is in fact a continuation of the one conducted by Yazıcıgil et al. 

(2013), was completed by Yazıcıgil and Ünsal (2013). This final project titled “Assessment 

of Dewatering of Open Pit, Pit Lake Formation and Potential Impacts on Groundwater at 

Kışladağ Gold Mine”, focused on the open pit. It should be noted that the study conducted 

by Yazıcıgil and Ünsal (2013) formed the basis of the thesis. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

2.1 Literature Survey on Theory of the Pit Lake Formation 

 

Pit lakes occur at the end of open pit mining activities that are conducted below the pre-

mining groundwater levels. In such situations, where dewatering is performed during the 

mining activities; water table tends to recover to its original position, as soon as the 

dewatering operations ceases. Groundwater flow into the pit, together with the direct 

precipitation and surface runoff contributes to the formation of a pit lake (Castendyk and 

Eary, 2009). Hydrogeology determines how rapidly open pit mines fill with water after 

closure, and also influences the final steady state water budget of the lake that is formed 

(Gammons et al., 2009). 

 

Time for a pit lake to reach steady state and hydrologic status of the pit lake and surrounding 

groundwater regime at the steady state depend on many physical processes controlling pit 

lake hydrodynamics. These include the shape, orientation of the lake, and climatic conditions 

at the site (Miller et al., 1996; Huber et al., 2008). Under natural filling conditions, large 

open pit lakes can take a very long time (decades to centuries) to fill with water. This is 

particularly true in arid or semi-arid areas where precipitation and surface water inflow 

components are minimal. The rate of groundwater input varies quite a bit from mine to mine, 

and depends on the site geology, topography, and climate. A rough estimate of groundwater 

inflow can be obtained by noting the amount of water that was pumped during active mining 

operations, at least during the early stages of flooding. However, this rate will change as the 

pit fills with water, depending on the cross-sectional area of the flooded portion of the lake, 

and hydraulic gradient, in the zone of groundwater capture surrounding the lake. As the pit 

floods and the surface of the lake rises, the hydraulic gradient will decrease. However, this 

effect is offset by the fact that the value of cross-sectional area increases with time as the 

volume of the lake increases. The net result of these offsetting factors is that the filling rate 

of a pit lake may actually increase with time during the initial period of flooding, but will 

eventually level off and then slowly decrease to zero as the lake surface approaches its final 

equilibrium elevation. Once a pit lake has filled to its ultimate surface elevation, input and 

output components of the lake water budget will be equalized and lake level is stabilized 

except seasonal changes (Gammons et al., 2009). 

 

There are two types of systems can form when the system reaches steady state: flowthrough 

conditions and terminal conditions. These final states of the system, and also the transitions 

in between are defined by Niccoli (2009) as follows: 
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i. Flowthrough conditions: surface and/or groundwater flows into and out of this type 

of lake (Figure 2.1). This type of pit lakes is common in humid areas. They may also 

form where the bottom of the pit is above the water table and is filled by surface 

water. In such cases, outflows consist of vertical leakage and evaporation as shown 

in Figure 2.2. 

ii. Terminal conditions: groundwater flows into the pit and outflow occurs only as 

evaporation as shown on Figure 2.3. This type of pit lakes is common in arid areas. 

iii. Moreover, with seasonal or long term climatic changes, the hydrologic status of a pit 

lake may fluctuate between terminal and flowthrough. 

 

 

 

 
 

Figure 2.1. Flowthrough pit lake below the groundwater table (modified after Niccoli, 2009) 

 

 

 

 
 

Figure 2.2. Flowthrough pit lake above the groundwater table (modified after Niccoli, 2009) 
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Figure 2.3. Terminal pit lake (modified after Niccoli, 2009) 

 

 

 

Müller et al. (2010) states that pit lakes are both potential water resources and potential 

environmental risks and, as such, raise significant environmental issues for the mining 

industry. Increased social expectation, such as legislation and regulation and desired end 

uses by local communities, are increasingly requiring higher standards of environmental 

assessment and management for pit lakes (Müller et al., 2010). Therefore, determination of 

the final characteristics of a pit lake is very crucial in terms of environmental and social 

concerns. For this purpose, for every pit lake a water budget has to be set up and time-wise 

changes in each component of the lake water budget has to be determined until a steady state 

equilibrium is reached. Moreover, the level at which the lake will stabilize at steady state 

conditions is also very important. As stated by Braun (2002), depending on the magnitude of 

net evaporation, the steady state pit lake elevation can be lower than the surrounding 

groundwater aquifer, resulting in passive hydraulic containment. Under this scenario, the 

lake acts as a solute sink and the only outflow is by evaporation. Alternatively, groundwater 

outflow occurs, passive containment is lost, and the pit lake water can interact with 

groundwater down gradient of the pit. 

 

Hence, it is critical to have a good idea of how fast the pit lake will fill; if the pit lake is part 

of the final plan for a closed mine states Naugle and Atkinson (1993). There are many 

modeling approaches for the solution of this problem, with differing levels of complexity 

(Gammons et al., 2009). Below is a summary of the models that could be applied for the 

solution of such problems, together with the fundamentals of the modeling theory.  
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2.2 Literature Survey on the Use of Groundwater Models 

 

2.2.1 Description of the Model 

 

Models are the tools that are used to comprehend the mechanisms of the real world systems 

and to predict the responses of these systems under different pressures. In order to represent 

a real world system using a model, proper simplifications and assumptions should be made. 

A groundwater model, in this sense, is any computational method that represents an 

approximation of an underground water system (Anderson and Woessner 1992).  

 

There are basically three types of groundwater models: physical, analog and mathematical 

models. A physical model is the replication of the real world systems in a different scale, for 

instance sand tank models are miniature aquifer systems demonstrating flow and transport 

mechanisms as shown in Figure 2.4. An analog model is based on the similar characteristics 

and processes of different systems, even if they are physically irrelevant; for example flow of 

water can be associated with electrical current, where flow rate, hydraulic gradient, hydraulic 

conductivity are represented by electrical current, potential difference and resistance, 

respectively. A mathematical model differs from other models in its attempt to simulate the 

actual behavior of a system through the solution of mathematical equations (Schwartz et al., 

1990). Two different approaches are used to solve the governing equations that represent 

groundwater flow and transport processes in mathematical models.  

 

 

 

 

 

Figure 2.4. Sand tank model (www.envisionenviroed.net) 

 

http://www.envisionenviroed.net/
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These equations can either be solved by analytical methods, which provide exact solutions to 

equations that describe very simple conditions, or by numerical methods, which utilize 

approximations of equations (finite differences, or finite elements) that describe very 

complex conditions (Mandle, 2002). An analytical model makes simplifying assumptions to 

enable solution, such that properties of the aquifer are considered to be constant in space and 

time. On the contrary, a numerical model uses space and/or time discretization so that 

features of the governing equations and boundary conditions can be specified as varying over 

space and time. This enables more complex, and potentially more realistic, representation of 

a groundwater system than could be achieved with an analytical model (Barnett et al, 2012).  

 

Both groundwater flow and transport mechanisms can be modeled numerically. Groundwater 

flow models are capable of simulating the hydraulic head distribution and groundwater flow 

rates within and across the boundaries, as well as providing estimates of water balance of the 

systems under consideration. On the other hand, solute transport models, which are based on 

the groundwater flow models are used to simulate the concentration distribution for the 

substances dissolved in groundwater.  

 

While groundwater models are, by definition, a simplification of a more complex reality, 

they have proven to be useful tools over several decades for addressing a range of 

groundwater problems and supporting the decision-making process (Barnett et al, 2012).  

Mandle (2002) lists, widely used applications of groundwater flow and transport models, as 

follows: 

 Evaluation of regional groundwater resources 

 Prediction of the effect of future groundwater withdrawals on groundwater levels 

 Prediction of the possible fate and migration of contaminants for risk evaluation 

 Tracking the possible migration pathway of groundwater contamination 

 Evaluation of design of hydraulic containment and pump-and-treat systems 

 Design of groundwater monitoring networks 

 Wellhead protection area delineation 

 

 

2.2.2 Use of Models in Mining Applications 

 

Besides the above mentioned applications, groundwater models are widely and efficiently 

utilized in the solution of groundwater related problems associated with mining industry. 

Groundwater is a major issue that has to be taken into account during all the stages of 

mining, form the operation to the closure phases. Rapantova, et. al (2007) groups 

applications of the groundwater models for mining operations according to the development 

stage of the mine, namely active or closed. For the active mines, groundwater models can be 

used as tools in development of dewatering strategies and determination of discharge water 

quality/quantity. At closed mines, numerical modeling can be used to predict the future 

responses of the system under the pressures exerted by the changes in both the groundwater 

flow pattern and the natural drainage base due to geomorphologic changes (Rapantova, et. al, 
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2007). For modeling at mine sites, among a variety of hydrologic and geochemical codes, the 

most commonly used numerical groundwater flow code is MODFLOW (Harbaugh et al., 

2000), while the most widely used code for modeling water quality (including geochemical 

speciation and reaction path) is PHREEQC (Parkhurst, 1995).  

 

 

2.2.3 Use of Models for Simulating Dewatering Operations and Pit Lake Formation  

 

Models are widely used to quantify the dewatering requirements, to design dewatering 

systems and to test the effectiveness of such systems. Moreover, many research have been 

conducted so far in order to determine the pit lake filling process and the steady state 

characteristics of the final pit lake by means of models.  

 

Several analytical and numerical methods are applied depending on the size and site-specific 

conditions of the problem. For instance, if the pit lake is planned to be filled rapidly by 

diverted surface water or rapidly pumped groundwater; then the dominant component of the 

lake budget is quantitatively very well known and the contribution of natural groundwater 

inflow rate is negligible. In such cases, a simple spreadsheet model could suffice. It is also 

possible to estimate the initial rate of groundwater flow into an open pit using relatively 

simple analytical equations. For more sophisticated modeling, especially for long-range 

predictions or in cases where the lake is expected to fill slowly, a 3-D numerical 

groundwater flow model will be needed to predict the rate of groundwater seepage into or 

out of a pit lake (Gammons et al., 2009). As also stated by Marinelli and Niccoli (2000), 

numerical modeling may be required at advanced stages of mine planning, while simple 

analytical equations for estimating pit inflow rates can be informative during the initial 

stages of mine development. Fontaine et al. (2003) provides a brief but substantial summary 

on the applicability of numerical and analytical methods: Numerical modeling is commonly 

used to estimate the time of recovery and groundwater inflows, which by necessity requires 

extensive hydraulic data, time, and resources that are usually unavailable at the preliminary 

stages of mine planning. As an alternative, analytical methods, which are easily applicable 

and reliable, can be used as tools to provide preliminary estimates for mine feasibility studies 

and to determine potential environmental impacts.  

 

 

2.2.4 Types of Models Used to Simulate Dewatering Operations and Pit Lake 

Formation  

 

Analytical Models:  

 

Many analytical models can be found in the literature for prediction of groundwater flow 

into the mine excavations. These models often are developed based on some very specific 

assumptions and boundary conditions that restrict their applicability in many mining 

situations. Among those analytical models, most widely known model used to calculate 

groundwater inflow rate to a mine pit, is that suggested by Marinelli and Niccoli (2000). As 
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this model is also based on several simplifying assumptions, the applicability of the solution 

to a real mine site is directly related to the consistency of these assumptions with the actual 

site conditions. However, Marinelli and Niccoli (2000) states that the solution is capable of 

representing the hydrogeological conditions that may be encountered at many mine sites. 

Applicability of the solution is proven by a case study where this analytical model is applied 

to an actual pit lake existing at a non-operating gold mine in Nevada. The groundwater flow 

rate into the pit that is calculated by the analytical method is compared to that calculated by a 

detailed pit lake water balance considering all components (such as groundwater inflows, 

piped inflows from other areas of the mine site, direct precipitation onto the pit lake, surface 

water inflows, evaporation and changes in pit lake storage volume). Finally, it is stated that 

both methods result in similar groundwater flow rates. Marinelli and Niccoli (2000) 

mentioned that this method assumes steady state flow conditions, which is reasonable for 

moderate to high permeability materials and mine pits that are excavated over a period of 

years. 

 

Fontaine et al. (2003) also states that the solution recommended by Marinelli and Niccoli 

(2000) cannot be used to estimate transient inflows during pit lake recovery, and/or require 

that the final pit lake elevation be known a priori. In contrast, the Jacob-Lohman equation 

(Jacob and Lohman, 1952) can be used to estimate the time required to fill the pit lake and 

estimate transient inflow rates without a priori knowledge of the final pit lake level. It is a 

well-accepted, easily-evaluated equation that provides reliable estimates of inflow into a 

large diameter void based on the head difference between static ground water levels and the 

water level in the void space.  It should be noted that the Jacob-Lohman equation is based on 

the assumption that the aquifer is homogeneous, isotropic, and laterally extensive, that 

transmissivity and storativity are constant, and that inflow enters the pit horizontally. These 

are reasonable assumptions for many open-pit mines because vertical conductivity is 

typically much lower than horizontal. Moreover, Hanna et al. (1994) demonstrated that the 

Jacob-Lohman equation could be used for estimates of groundwater inflow for pit 

dewatering, and modified the equation to account for partial penetration of the pit and for 

possible effects of vertical flow (Fontaine et al., 2003).  

A recent analytical model is the CRYPTIC (Comprehensive Realistic Yearly Pit Transient 

Infilling Code) suggested by Fontaine et al. (2003). This model is based on the Jacob-

Lohman equation; however, it is modified to include the pit geometry and effects of 

precipitation and evaporation from the pit lake surface, as well as the input/output of external 

flows. It assumes that the aquifer is homogeneous and isotropic with laterally extensive 

horizontal flow but differs from other methods in that it includes transient inflows.  

 CRYPTIC was used to successfully model the Berkeley Pit Lake (Butte, Montana) 

recovery data, which is one of the best documented pit lakes (post-recovery) in the 

world. Underground mining began in the area during 1870’s, and groundwater 

encountered at depths of 6-122 m by the earliest shafts. In 1955, development of the 

Berkeley Pit, was initiated. The water levels in the area were drawn down to about 

600 m below the bottom of the Berkeley Pit, as underground mining was performed 

in conjunction with open pit mining. The pumps were turned off in 1982 and a pit 

lake was allowed to form. Recovery curve calculated by CRYPTIC model is 
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compared with the lake stages measured during the 15 years period between 1982 

and 1997; and it is observed an excellent agreement is attained with 0.3% of error. 

 

 Moreover, the predictions made by CRYPTIC are also compared favorably with 

results from the Pipeline Pit (north-central Nevada) numerical model. Numerical 

model developed for Pipeline pit is selected because of its good calibration and 

excellent post-model agreement with measured dewatering rates over a 53 month 

period between April 1996 and August 2000. The mine plan requires dewatering to 

continue for another nine years, at which point the pumps will be turned off and a pit 

lake will be allowed to form. It is a useful case study because the model structure has 

undergone numerous reviews and is well validated with over four years of data and 

also, it is well documented that 97% of the flow to the pit during filling inflows 

horizontally compared to only 3% vertically (Geomega, 1999), hence meeting the 

lateral flow condition of the analytical solution. The numerical model also includes a 

number of faults that act as partial barriers to flow; these were simulated using the 

horizontal-flow barrier (HFB) package for MODFLOW. Pit lake filling was 

simulated using the LAK2 package (Council, 1997) and MODFLOW-SURFACT 

(HydroGeologic 1999). CRYPTIC is observed to be in excellent agreement with the 

numerical model in estimating the correct pit level and transient inflow rates 

(Fontaine et al., 2003). 

 

However, as stated by Fontaine et al. (2003), while this analytical approach provides useful 

hydraulic insights at the feasibility stage of mine planning, more detailed analysis is required 

to determine critical mine permitting requirements. For example, the lateral extent of the 

drawdown cone, time to maximum extent of dewatering, and temporal effects on springs and 

seeps require deployment of a full numerical code and substantially more data (Fontaine et 

al., 2003). 

 

 

Numerical Models: 

 

Bair and O’Donnell (1983), criticize the application of the analytical models in designing the 

dewatering systems, stating that these analytical models are based on restrictive assumptions 

which may result in oversimplification of the groundwater flow system, excavation geometry 

and construction sequence and necessitate the use of large safety factors, resulting in 

overdesigned dewatering systems. Numerical models, on the other hand, are not restricted by 

many of the assumptions required by analytical models, and therefore, can provide more 

accurate solutions to problems involving complex geologic and hydrologic conditions. As 

stated by Bair and O’Donnell (1983), numerical models offer the capability to solve 

hydrogeological problems involving complex boundary conditions, heterogeneous and 

anisotropic aquifers, irregularly shaped aquifers, steady state and transient flow conditions, 

leakage from confining beds, non uniform recharge and evapotranspiration, variable 

pumping rates, partially penetrating wells, infiltration, confined-unconfined transitions and 
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other hydrologic phenomena. Therefore, numerical models can be used to aid in the design 

of dewatering and depressurization systems (Bair and O’Donnell, 1983).  

 

There are several numerical models that have successfully been used to simulate open pit 

dewatering and pit lake formation processes, depending the site-specific nature of each 

problem. As it is mentioned above, MODFLOW (Harbaugh et al., 2000) is the most 

commonly used numerical groundwater flow code used to simulate mine sites. MODFLOW 

requires a large amount of site-specific information including climate, topography, sources 

of groundwater recharge and discharge, and information on the hydrogeologic properties of 

geologic units in the sub-surface, including both the vadose zone and zone of saturation. 

Below is a short list of the widely used versions used in mining applications, together with 

the included package and/or coupled model.  

 

 

Application of MODFLOW-96 Model for Simulating Canisteo Mine Pit: 

 

Jones (2002) reports a study conducted by the U.S. Geological Survey, in cooperation with 

the Minnesota Department of Natural Resources, to characterize groundwater flow 

conditions between the Canisteo Mine Pit and surrounding aquifers in Minnesota. Since 

mine abandonment in 1985, water level in the pit has been continuously rising. The lake 

level reached to 397 m elevation, while the lowest pit wall altitude is 404 m.  Therefore, 

concern exists that as the lake level continues to rise, mine water may eventually discharge 

from the pit over land surface, resulting in undesirable downgradient erosion and localized 

flooding. Hence, the objective of the study was to estimate the amount of steady-state, 

ground-water flow between the mine and surrounding aquifers at pit water-level altitudes 

below the level at which surface-water discharge from the pit may occur. Groundwater flow 

rates into and out of the pit were estimated using a calibrated steady state groundwater flow 

model developed using MODFLOW-96 code (Harbaugh and McDonald, 1996). A series of 

steady state simulations at constant pit lake level altitudes between 396 and 404 m was 

completed to assess the effect of current and potential future pit lake levels on groundwater 

inflow and outflow from the pit. It is noted that when the pit lake level is at 396 m, the model 

calculated the groundwater inflow to the pit as 39.6 L/s, while groundwater discharge to 

local aquifers as 1.7 L/s. On the other hand, when the pit lake level rises to 404 m, 

groundwater inflow to the pit decreases to 28.3 L/s and groundwater discharge to local 

aquifers increases to 25.8 L/s. This study is important in the sense that it presents the 

changing behavior of the pit lake from terminal (where the groundwater outflow is almost 

negligible) to flowthrough while the lake level rises by 8 m. Although, the change in the lake 

level does not seem too much (8 m), changing behavior of the pit lake is very critical in 

terms of environmental concerns as it has potential to affect the downgradient groundwater 

system. 
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Application of MODFLOW Model and Manual Pit Lake Water Budget Calculations for 

Simulating Sleeper Mine: 

 

An important example of numerical modeling applications in mine dewatering and pit lake 

formation is documented by Dowling et al. (2004), which is applied at the Sleeper open pit 

gold mine in Nevada, USA that was operated from mid-1980s to the mid-1990s. Mining 

operations were mostly conducted below groundwater level. The final open pit was 

approximately 1675 m in length, 760 m in width, and had a maximum depth of about 177 m 

below the original ground surface. Groundwater was originally 4.5-9.0 m below the surface 

and at the end of the dewatering activities; it was lowered by about 180m. Major dewatering 

operations commenced in 1986 and peaked at a flow rate of approximately 930 L/s in 1993. 

At the time, this represented one of the largest mine dewatering operations worldwide. 

Predictive assessments of water level recovery in the pit and dewatered groundwater system 

were made using the MODFLOW code and manual water budget estimations. Evaluations 

were made of natural recovery and alternative rapid filling scenarios. Because of the 

environmental concerns, rapid filling option is applied during the post-closure period and it 

is observed that actual filling time closely matched the predictions made by coupling 

numerical groundwater flow model and manual pit lake water budget calculations (Dowling 

et al., 2004). 

 

 

Application of MODGLUE and MODFLOW Models for Simulating Collie Basin: 

 

In a recent study, by Müller et al. (2010) numerical modeling is applied to simulate pit lakes 

that have formed within the Collie Basin, which is a small sedimentary basin in the south-

west of Western Australia. There are an estimated 1,330 Mt of coal resource in the basin of 

which extractable reserves account for 480 Mt (Varma, 2002). Underground and open cut 

coal mining has taken place in the Collie basin since 1898. There are more than 15 mine 

lakes in Collie, with surface area between 1–10 ha, depth between 10–70 m and age between 

1–50 years. The numerical modeling software used in this project aims to reflect the 

physical, chemical, and biological processes of these pit lakes. In order to model this pit lake 

system, modeling knowledge from different scientific domains such as groundwater, lake 

circulation, hydrochemistry, and limnology needs to be combined. The pit lake system is 

simulated by MODGLUE (MODel for Prediction of Groundwater and Erosion influenced 

Lake Water Quality Using Existing Models) model (Müller, 2004), which is capable of 

coupling three models;  

 PCGEOFIM (Sames et al. 2005, Müller et al. 2003) is a finite volume groundwater 

flow and transport model that is specifically designed for mining and post-mining 

areas. It allows the subsurface parameters to be specified as time-dependent, 

allowing for modeling the excavation of mine pits, filling with overburden and 

creation of lakes all in one model run. While working with a regular grid, multiple 

nested grid refinements that may overlap can be used to get higher resolution in 

areas of special interest. Groundwater recharge may be specified as constant in time 

or depending on groundwater level below surface. This model provides a simple but 
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very useful mechanism to account for the interactions between lakes and 

groundwater. The lake is represented as a water level-volume relationship. Inflows 

and outflows (such as groundwater and rivers) are budgeted. Precipitation and 

evaporation yield a new lake water volume and hence a new water level. This water 

level is used as head for Cauchy boundary conditions that act jointly as “the lake” 

(Blankenburg et al., 2012).  

 CE-QUAL-W2 (Cole and Buchak, 1995) is a 2-D finite difference lake circulation 

water quality and hydrodynamic model.  

 PHREEQC (Parkhurst, 1995) is the most commonly used geochemical speciation 

and reaction path code (Maest et al., 2005), designed to perform a wide variety of 

aqueous geochemical calculations.  

 

MODGLUE has been successfully applied to several lakes in Germany for prediction of 

water quality and evaluation of effects of lake treatments. It can work without feedback to a 

groundwater model taking only specified inflows and outflows as input data. Therefore, 

MODGLUE can work with results input from other groundwater models using this off-line 

approach. Furthermore, the online coupling with PCGEOFIM is designed as a loose 

coupling: only spatially distributed inflow and outflow fluxes are exchanged at every time 

step. These fluxes can be provided by a different groundwater model than PCEGOFIM.  

 

In this application, groundwater inflow rates are calculated by the MODFLOW models, 

where the lakes were modeled as constant head boundary conditions by specifying the lake 

stage. Furthermore, the development of lake water levels could be computed with 

MODGLUE and used for the groundwater model as input for the boundary conditions 

representing the lakes in MODFLOW model. In turn, the resulting groundwater inflows 

could be used by the lake models as data inputs. This feedback loop would allow for more 

accurate groundwater inflow calculations.  

 

Another model, is the The Pit Lake Model (Müller 2004), which is created such that 

established models were engaged, coupled, and extended, rather than developing a totally 

new model. It is based on the coupling of the three codes mentioned above (CE-QUAL-W2, 

PHREEQC and PCGEOFIM) and also MODMST (Boy et al. 2001), which is a groundwater 

flow and transport model for density-driven flow. Therefore, it can be used as an alternative 

groundwater model instead of PCGEOFIM when density effects are of importance. This 

flexible model allows adaption to site-specific needs (Müller and Eulitz, 2010). 

 

 

Application of MODFLOW SURFACT Model and LAK2 Package for Simulating Rosemont 

Pit: 

 

Rosemont Copper Company (Rosemont) is planning the development of an open pit mine 

southeast of Tucson, Arizona. Operations will occur for approximately 22 years, during 

which the open pit will be incrementally expanded and dewatered.  
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Three numerical models were developed to simulate the different stages of the project: pre-

mining, mining-phase, and post-closure. The pre-mining model was calibrated based on 

existing water-level measurements and stream flows under steady state conditions and it 

formed the basis for the subsequent transient flow models. Results of the calibrated pre-

mining model were subsequently used as the start of the transient mining-phase model 

simulating the step-wise deepening of the open pit during the 22-year operational period. 

Dewatering of the open pit was simulated with drain cells, which removed water from the 

model when water levels reached a specified elevation below the bottom of the pit. 

Conditions simulated at the end of the mining-phase model were used as the input to the 

post-closure model, in which the LAK2 package (Council, 1999) is used to simulate the 

refilling of the pit following the end of dewatering. All three models used the finite-

difference model code MODFLOW-SURFACT (HydroGeologic 1999). 

 

MODFLOW SURFACT is a finite difference code applicable in mine dewatering projects. 

As stated by Ugorets (2012), this code goes beyond the standard MODFLOW code to 

simulate saturated/unsaturated conditions (multiple water tables), open pit excavation (using 

seepage face cells and collapsing model grid), and dewatering wells using the fractured well 

package. This model is widely used (1) to evaluate the most efficient dewatering option and 

to reduce residual passive inflow to the mine where active dewatering is required, (2) to 

define the optimal pumping rates and well spacings for the dewatering system (3) to reduce 

both pumping costs and hydrogeological risks to the project, optimising the mine plan, where 

hydrogeological conditions are complex (Ugorets, 2012). 

 

Following is a brief summary of the planned mining process and simulation results obtained 

from the consecutive three stages of numerical modeling work: Dewatering of the proposed 

open pit will result in groundwater levels being lowered to approximately 920 m elevation, 

which is about 670 m below the pre-mining water level. The projected bottom of the pit is at 

930 m elevation. Following the cessation of dewatering, the pit will naturally refill with 

water. The post-closure numerical groundwater flow model predicts the refilling process will 

take 700 to 1000 years to reach an equilibrium or steady-state condition. At this point, the 

equilibrium lake stage is predicted to be around 1300 m elevation. Due to the high 

evaporation rate in the area, the pit lake is predicted to be a hydraulic sink. A capture zone 

will exist around the pit, perpetually drawing groundwater into the pit or pit-lake. 

Flowthrough conditions, or a non-terminal pit-lake, would exist should the lake stage reach 

an elevation of 1430 m elevation. Sensitivity analyses were run on various model scenarios 

and model input parameters, such as changes in the evaporation rate and in groundwater 

recharge contributions from meteoric precipitation. None of the sensitivity model runs, 

however, caused the lake stage to reach the elevation of this groundwater divide.  
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Application of MODFLOW-SURFACT Model and LAK3 Package for Simulating an 

Ephemeral Pit Lake: 

 

Gabora et al. (2006) integrated LAK3 package (Merritt and Konikow, 2000) into 

MODFLOW-SURFACT in order to solve an ephemeral pit lake problem associated with a 

proposed hard rock quarry in northern California. As a result of the climate and low 

permeability of the bedrock in the vicinity of the quarry, an ephemeral pit lake was expected 

to form upon cessation of mining activities. Utilization of MODFLOW-SURFACT permitted 

free movement of the steeply dipping water table in unconfined layers adjacent to the 

dewatered quarry. While, the LAK3 package was required because it allows for efficient 

drying and rewetting of lake cells. The rewetting procedure in the LAK3 package uses the 

average hydraulic head in the cells underlying the lake cells, which, due to steep hydraulic 

gradients associated with the pit, created unrealistic starting heads during rewetting. A 

modified rewetting procedure was implemented in the LAK3 package to accurately simulate 

shallow ephemeral ponding in the reclaimed quarry whereby the lake stage was set to the 

quarry bottom plus a nominal head of 1.5 cm (Gabora et al., 2006). 

 

Lake (LAK3) Package documented by Merritt and Konikow (2000) is widely used to 

simulate lake-groundwater interactions. Hunt (2003) states that this package is a very 

effective replacement of the previous approach of simulating lake as either specified head 

boundary, or by general head boundary; or even as high-K (Anderson et al., 2002) nodes for 

the simulation of lake-groundwater interactions. Each of these approaches has some 

weaknesses such that the first two requires that lake levels to be known a priori, while the 

latter one may introduce some convergence difficulties. With the Lake package, the stage in 

the lake is computed by MODFLOW based on the water budget. The water budget is a 

function of inflow/outflow resulting from head differences between the aquifer and the lake. 

The flow budget also includes the effect recharge, evaporation, and anthropogenic inflow 

and discharge. The storage capacity of the lake is determined automatically based on the lake 

geometry. The Lake Package can be used for either steady state or transient simulations. 

Moreover, as it is mentioned by Hunt (2003), LAK3 package is superior to other lake 

simulation techniques. Its ability to simulate lake stage is an improvement over lake 

simulations using constant heads or head dependent flux boundaries because changes in lake 

stage can have appreciable effects on the groundwater system. Although High-K simulations 

and LAK3 results reported to compare well both at steady state and transient stages, it is 

known that LAK3 simulations are more stable and require less computational time.   

 

However, like all the other models Lake Package is also based on many assumptions and 

limitations documented by Merritt and Konikow (2000), several of which are listed below: 

 In some cases, a finer horizontal discretization in the vicinity of the lake and a finer 

vertical discretization than would be necessary to simulate heads in the aquifer, may 

be required to define the lake volume. 

 When the option of rewetting dry cells is not implemented, the model user must use 

the lakebed leakance specification to represent the combined leakance of the lakebed 

and the aquifer in the vertical direction. 
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 Lake-aquifer simulations may experience stability problems if inappropriate 

parameter values are specified in the input data for the setup of the wet-dry option. 

 If the head in the aquifer drops below the bottom of a lake still containing water, the 

seepage rate from the lake is limited to that which would occur if the aquifer head 

were the same as the elevation of the bottom of the lake. 

 In using the explicit method of updating lake stages, the time step length should be 

small enough that lake stages from the previous time step provide good estimates of 

lakebed seepage in the current time step. While using the explicit method of 

updating lake stages, there will be a limitation on time step size that must be 

observed to prevent time-wise oscillations in lake stage. Therefore, compared to the 

explicit method of updating lake stage, the semi-implicit and fully-implicit methods 

require more iterations, more run time, and tighter convergence criteria to minimize 

the percent discrepancy in the aquifer water budget. However, it should be noted that 

only explicit method of updating lake stage can be used when the Lake Package is 

used as part of a MODFLOW steady-state simulation. 

 The method used for computing lake stages as part of a MODFLOW steady state 

solution can fail if the initial estimate is substantially different from the solution 

value, so the user should choose an initial value that is as close as possible to the 

anticipated solution value. 

 When the Lake Package is used as part of a MODFLOW steady state solution, the 

option for simulating coalescing and dividing lakes will not work, and its use should 

not be attempted. 

 The Lake Package is not suitable for simulating tilted aquifer systems having a tilted 

grid because the package assumes that lake stage is uniform across the entire surface 

area of the lake. 

 

 

Application of MODFLOW and MINEDW Codes for Simulating an Open Pit in western US: 

 

Ding and Hodge, (2013) simulated the groundwater flow into an open pit mine in the 

western United States using a finite-difference code, MODFLOW and a finite-element code, 

MINEDW. MINEDW is a 3-D Finite Element groundwater flow model designed specifically 

for mining applications, developed from FEMFLOW 3D by USGS (Durbin and Bond).  It is 

used at more than 50 mines throughout the world for mining-related issues in diverse 

hydrogeological and climatic conditions. It is capable of simulating open pit and 

underground mining operations for dewatering design and input to slope stability analysis. It 

is also capable of simulating excavation and subsequent pit lake infilling to represent 

different mining schedules, as well as the interaction between groundwater and surface water 

(Ding and Hodge, 2013).  

 

Ding and Hodge (2013) compared the relative time and facility of using the above mentioned 

two codes to simulate mine dewatering and pit-lake formation. Groundwater flow models are 

developed to simulate mining and pit lake formations, pumping to dewater a pit lake, and 

current and future dewatering requirements to maintain 'dry' working conditions. To simulate 
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these mining sequences, four separate model simulations were needed when using 

MODFLOW and only two model simulations were needed when using MINEDW. 

Moreover, they encountered convergence issues using MODFLOW due to the gradients that 

resulted from complex geologic conditions and using the LAK3 package. However, it is 

noted that the MINEDW model generally had no convergence issue. Thus, using MINEDW 

can save considerable time on a modeling project. Additionally, MINEDW is able to 

represent pit geometry using a collapsing mesh, while MODFLOW is limited by 

discretization and the use of the LAK3 package. This study shows the ability of both 

groundwater models to simulate open pit mining and pit lake infilling. The comparison 

suggests, however, that MINEDW has the advantage of simulating complex geology and 

groundwater systems without convergence problems and can simulate mine sequences with 

one single model. 

 

Up to now, several examples where MODFLOW code is used to simulate the dewatering and 

pit lake formation processes in mining applications. Apart from MODFLOW, another code, 

of which applicability has recently been expanded, is FEFLOW.  Rapantová et al. (2007), 

describes the applicability of FEFLOW and advantages over MODFLOW code in the 

simulation of mining operations as follows: the FEFLOW (Diersch, 2006), overcomes the 

problems in conceptualization and modeling of the mining environment with its ability to 

describe and quantify the hydraulic properties of preferential pathways (by simulating double 

porosity flow as well as preferential flow along mine workings). Moreover, the flexibility of 

finite elements mesh design enables the geometrization of the deposits on an acceptable level 

of simplification. In addition to 3-D elements it is possible to work with combination of 

planar and linear elements applicable for simulation of fractures and vertical and horizontal 

mine workings. Within these elements there is a choice of hydraulic calculations after either 

Darcy law for porous media or Hagen-Poiseuille law for fracture flow or Manning-Strickler 

law for channel flow.  

 

Above, a list of the widely used models (both analytical and numerical, and sometimes 

coupled) is presented. It is obvious that there are many modeling applications to simulate 

open pit dewatering and pit lake formation processes, depending the site-specific nature of 

each problem. Examining the applications listed above, it is possible to conclude that the 

site-specific nature of each problem, reveals the advantages of a model over the others. 

Consequently, a model that is advantageous for any problem cannot be applicable to another. 

Therefore, when selecting the model to be applied and the methodology to be followed for 

any groundwater related problem during the operational and post-closure phases of the 

mines, it should be noted that each problem is site-specific and there is no single and correct 

way to set up a solution.  

 

Wels et al. (2012) states that the selected model should meet the modeling objectives, 

include relevant aspects of the conceptual model, and should be consistent with data 

available for model calibration. Furthermore, selection of the code that will solve the flow 

equations will depend, for example, on the level of assessment required (simple or complex; 

analytical or numerical), dimensionality (2-D plan, 2-D cross-section, axisymmetric or 3-D) 
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and the required outputs (Wels et al., 2012). If the groundwater inflow to an open pit is to be 

modeled specifically, it is noted that excavation of the pit and associated dewatering tend to 

create a significant drawdown in the surrounding aquifer somewhat analogous to a pumping 

well. In most mining projects, open pits reach significant depths and a representation of the 

vertical flow field is important. If the pit geometry is regular and the surrounding 

groundwater flow field is relatively uniform, a cross-sectional model may be adequate to 

simulate flow to the pit. However, in a more complex setting, a fully 3-D representation of 

the open pit and the surrounding aquifer may be required (Wels et al., 2012). 

 

Maest et al. (2005) approaches the above discussed issues by stating that individual codes 

have slight advantages and disadvantages, depending on the application, but the experience 

of the modeler, the choice of input parameters and data and the interpretation of the 

modeling output are more important than the choice of the code itself. Moreover, it should 

also be noted that all these models can be coupled depending on the needs and the site-

specific nature of the problem. Moreover, several models may also be used to cross-check 

the solutions.  
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CHAPTER 3 

 

 

DESCRIPTION OF THE STUDY AREA 

 

 

 

3.1 Topography 

 

The study area, specifically the mine site, is located on the water divide between the Gediz 

and Büyük Menderes River Basins (Figure 3.1). At the mine site, open pit and the present 

heap leach pad area lies within the Gediz River Basin and waste rock storage area lies within 

the Büyük Menderes River Basin. All of the planned expansion facilities (proposed leach 

pad and waste rock storage areas) are within Gediz River Basin. 

 

Since the mine site is located on the water divide, only ephemeral creeks are present in the 

area. The surface water features that are draining the mine site to the north are discharging to 

the branches of the Gediz River, while southerly ones discharge to the branches of the Büyük 

Menderes River.  

 

The elevations in the whole study area range from approximately 1300 masl in the 

mountainous areas to 600 masl at the base of the valleys which are draining these mountains. 

The terrain in the vicinity of the mine site is rolling hills from approximately 950 m in the 

leach pad area to 1300 m to the top of the Kışladağ Mountain (Figure 3.1).   

 

Digital Elevation Model (DEM) of the project site is initially produced from the digitized 10 

m interval contours from the 1/25000 scaled maps. For the mine site and very close vicinity, 

this DEM is refined with the 1 m interval contours obtained from a more detailed 

topographical mapping study. Resulting DEM with a grid size of 10m is presented in Figure 

3.1.  

 

 

3.2 Morphology 

 

The morphology of the region is characterized by the peneplains situated on the 

metamorphic basement rocks on the west and flat to nearly flat plateaus originated by 

Neogene-aged sedimentary rocks on the east. Between these features of the west and the east 

sides of the area, there are a number of young volcanic cones forming typical dome-like 

morphological features. On the other hand, the physiographic features of the mine site are 

mainly characterized by the presence of two volcanic cones on the SW-NE direction 

measuring 10 km in length by 9 km in width (Beydağı on southwest and Kışla on northeast).  

The Kışladağ gold deposit is associated with the northeastern stratovolcano, namely Kışla.   
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As it is mentioned above, topography of the study area is formed by the valleys having base 

elevations down to 600 masl, mountains having top elevations upto 1300 masl and gentle 

slopes in between. This topography is formed by the erosion of the plateau of metamorphic 

basement rocks overlain by laterally intercalating lacustrine limestones and volcanic rocks. 

Topographical highs are generally represented by the volcanic rock formations.  

 

 

 

 

 
 

Figure 3.1. Digital Elevation Model of the study area 

 

 

 

 

 

 



29 
 

3.3 Geology 

 

3.3.1 Regional Geology 

 

Regional geology of the study area has been described by Yazıcıgil et al. (2000).  The 

following description of the regional geology is a brief summary from this study. 

 The oldest rocks forming the basement in the study area are those of the permo-

triassic aged Menderes Metamorphic Complex, consisting of granitic gneisses and 

aplites of the Güneyköyü Formation overlain by calcareous schists, crystalline 

gneisses and augen gneisses of the Eşme Formation and, finally, the Musadağı 

marbles (Yazıcıgil et al., 2008).   

 The basement rocks are overlain by the Tertiary aged Hacıbey Group, comprised of 

a series of conglomerates, sandstones, claystones, and limestones.  The Hacıbey 

Group consists of three formations, namely Kürtköyü, Küçükderbent and Yeniköy 

Formations.   

 The Hacıbey Group is overlain by the İnay Group, comprised of an assemblage of 

sedimentary rocks known as the Ahmetler Formation, the Beydağı Volcanics and the 

Ulubey Formation, a widely distributed sequence of lacustrine limestones.   

 Asartepe Formation, of Pliocene age, unconformably overlies the İnay Group.  It 

consists of conglomerates, sandstones and siltstones of various compositions with 

minor lenses of marl and claystone occurring in some locations.   

 The alluvium consisting of gravels, sands, silts, and clays deposited along river 

courses, alluvial fan deposits, and colluvium represent unconsolidated Quaternary 

sediments on a regional scale.   

 

Figure 3.2 represents the generalized columnar section and Figure 3.3 shows the geological 

map of the study area. 
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Figure 3.2. Generalized columnar section of the study area 
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Figure 3.3. Geological map of the study area 
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After this brief description of regional geology, the units observed in the study are, which 

can be seen in the generalized columnar section (Figure 3.2), are given below in detail: 

 

 Eşme Formation: Outcrops of this formation is observed in the vicinity of Takmak,  

Eşme and Kayalı. Schists and gneisses of Eşme Formation form the crystalline 

basement (Yazıcıgil et al., 2008). Formation is made up of schists and gneisses such 

that schists cover the gneiss core. 

 Ahmetler Formation: Within the study area, Ahmetler Formation is observed 

unconformably above the basement rocks. In general, it forms a fining upward 

sequence made up of conglomerates, sandstone, tuffite, claystone and marl 

(Yazıcıgil et al., 2008). This formation is made up of the following three members 

(Ercan et al., 1978): 

o Merdivenlikuyu Member: This unit is made up of the angular blocks 

forming an old alluvial fan of un-distinct layers, originating from the 

metamorphic basement rocks. Outcrops of this unit having thicknesses of 

about 60 m, have very limited extension within the study area. 

o Balçıklıdere Member: This unit, overlying the Merdivenlikuyu Member 

conformably, is made up of alternating fluvial conglomerate, sandstone 

tuffite, claystones, marl and limestones. Tuffites of the units are originated 

from Beydağı Volcanics. Extensive outcrops of this unit are observed 

southwest of the Inay village, while smaller outcrops are also observed north 

and northwest of the mine site, especially along the valley bottoms. 

Thickness of the unit is less than 200 m, with almost horizontal layers of 

fining upward sequence.  

o Gedikler Member: This unit is made up of siltstone, claystone and tuffite 

alternations, which conformably overlies the Balçıklıdere Member. Volcanic 

sediments of the unit are originated from the Beydağı Volcanics. Presence of 

the volcanic bombs and blocks of the same origin indicate that the age of the 

unit is the same as Beydağı Volcanics.  Thickness of the unit is around 60 m. 

Outcrops are observed in the vicinity of Ahmetler and Gedikler villages.  

 Beydağı Volcanics: This andesitic volcanics of Miocene age are known to provide 

sediment input for the lower layers of Ahmetler and Ulubey Formations. This 

formation is made up of lava flow, agglomerates and tuffites. Extensive outcrops are 

observed at the study area. 

 Ulubey Formation: This formation, overlying Ahmetler Formation conformably, is 

made up of intercalating siltstone, claystone, marl and clayey limestones at the 

bottom and lacustrine limestones at the top. Thin layers of sandstone and 

conglomerates are also observed within the limestone. Limestones of middle to thick 

layers, having irregular cracks and karstic features are locally silicified. Age of the 

formation is determined as Miocene. Deposits of this formation have extensive 

outcrops especially east of the study area within the Banaz Stream Basin, in the 

vicinity of Uşak, Ulubey and İnay. It is also observed in the northern parts of the 

study area. Typical outcrops of the unit can be observed along the canyon formed by 
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Yavu Creek, east of the study area, where continuous outcrops of alternating 

limestone and clayey limestone and/or marl can be observed. 

 Asartepe Formation: This formation, overlying the older units unconformably, 

consists of alternating weakly cemented conglomerates, sandstones and siltstones 

with local lenses of marl and claystone.  Conglomerates are generally of 

metamorphic origin, grains are well-rounded to sub-angular and matrix is made up 

of sand, silt and clay sized grains. Middle-thick layers are gently dipping to 

horizontal. Thickness of the formation is about 200 m. Asartepe Formation is formed 

in a fluvial environment in Pliocene. The most extensive outcrops of this unit are 

observed in the vicinity of Eşme and also in the northern parts of the mine site. 

 Quaternary Units: alluvial fan deposits, colluviums and alluvium are the 

Quaternary units of the study area. They are observed along the river beds and made 

up of conglomerate, sand and silt sized sediments. 

 

 

3.3.2 Site Geology 

 

The volcanic stratigraphy in the mine site is very complex partially as a result of several 

successive phases of volcanic activity forming overlapping stratovolcanoes. Locally, the 

mine site occurs within intrusive, extrusive, and volcanoclastic rocks of an eroded 

stratovolcano, which is emplaced within and overlies the schists and gneisses of the 

Menderes Metamorphic Complex.  Therefore, main rock units in the vicinity of the mine site 

can be listed as extrusives and intrusives of the Beydağı Volcanics and the volcanoclastics 

formed by the erosion of these, together with the underlying metamorphic units forming the 

basement. Intrusives of Miocene age are emplaced within the Paleozoic basement rocks 

made up of schists and gneisses. Although overlain by a thick sequence of volcanic rocks, 

these basement rocks can be observed at the surface as a result of erosion. Extrusive and 

intrusive rocks of Beydağı Volcanics have broad extension within the mine site and in the 

close vicinity. Most of the volcanic sequence consists of coarse fragmental rocks, flows, and 

porphyritic intrusions, representing lithofacies proximal to the volcanic center.  Further away 

from the mine site, these rocks partially interfinger with and grade into clastic sedimentary 

rocks of the Ahmetler Formation and lacustrine limestones of the Ulubey Formation.  

 

Volcanic units at the mine site (Figure 3.4) are classified into six primary units by Lewis 

Geoscience Inc. (2002), as follows:  

i. monolithologic volcanic breccias (PBb);  

ii. massive flow-banded latite flows (PBf);  

iii. stratified tuffaceous and epiclastic rocks (PBvc);  

iv. quartz-phyric latite flows (PBq);  

v. monolithologic volcanic conglomerate (PBcg); and  

vi. porphyritic hypabyssal intrusions (PBi), which are locally further divided into three 

sub-units (PBi1,  PBi2 and PBi3) 

A cross-section in N-S direction passing through the ore within the open pit area is given in 

Figure 3.5. 
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Figure 3.4. Geological map of the mine site (SRK, 2005) 
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Geology of the mine site and close vicinity is studied in 2008 in 1:5000 scale (Hudson, 

2009). Later on concurrent with the planned capacity increase, this mapping study is 

extended to the north of the mine site (ARC, 2011). The detailed geological map of the mine 

site and its close vicinity, comprising these two studies, are given in Figure 3.6. The 

combined boundary of these two studies covers almost all planned expansion areas (Figure 

3.6). Geological cross-sections are also provided along the lines shown on the map given in 

Figure 3.6. Among these, cross-sections passing through the lines A-A’’, B-B’’’, C-C’, D-D’ 

and E-E’, prepared by Hudson (2009) are given in Figure 3.7, while those passing through 

the lines F-F’ and G-G’, prepared by ARC (2011) are given in Figure 3.8. 

 

These two studies, providing more precise boundaries of the geological units compared to 

the regional geological map, is very beneficial for hydrogeological site characterization. 

However, on the other hand, both of these studies include description of the units in too 

much detail, which is not required for the purpose of hydrogeological characterization and 

for the scope of this study. Therefore, within the content of this study, in order to make 

hydrogeological classification, detailed units determined with the two above mentioned 

studies are classified so that they are consistent with those provided in the regional 

geological map as follows: 

 Quaternary units 

 Asartepe Formation 

 Ulubey Formation 

 Beydağı Volcanics (further grouped into three units, as intrusives, lava flow, finally 

tuffs and agglomerates) 

 Eşme Formation 

 

Resulting geological map showing these major groups are presented in Figure 3.9.   
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Figure 3.8. Geological cross-sections FF’ and GG’ (ARC,2011) 
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Figure 3.9. Generalized geological map of the mine site and close vicinity (modified after 

Hudson, 2009 and ARC, 2011) 
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3.3.3 Structural Geology 

 

With the two studies conducted at 1:5000 scale (Hudson, 2009 and ARC, 2011), only small 

local faults are determined which do not have a unique trend and continuation within the 

study area. In the study conducted by Lewis Geoscience Inc. (2002) no major fault offsets of 

lithologic units was recognized. On the other hand, a couple of fault/fracture zones were 

identified. However these faults were not confirmed by the drilling data.  The strikes of main 

fracture-joint directions from the oriented core data are N10-20E, N68-75E and N27W.  Dips 

of these features range between vertical and approximately 55 degrees. 

 

These, together with generally gently dipping stratigraphic layering and limited development 

of outcrop-scale fractures and faults indicated the low intensity of deformation of the units 

within the study area.  As a result, it can be concluded that a significant fault system of 

regional importance is neither observed during the field studies nor determined with logging. 

Therefore, as in the previous studies, Kışladağ mine site could be defined as almost not 

deformed at all. 

 

 

3.4 Climate and Meteorology 

 

Detailed research on the climate and meteorology of the study area is completed in a 

previous study conducted by Yazıcıgil (2013). Below is a brief summary compiled from the 

previous studies. 

 

Kışladağ Gold Mine is located in the border between Aegean and Central Anatolian regions, 

where Mediterranean Transition Climate characteristics are dominant (Türkeş, 1996). 

Mediterranean Transition Climate’s distinct character is its relatively wet winters and 

springs.  

 

Turkish Meteorological General Directorate (MGM) installed a meteorological station near 

Uşak city center in 1929 and this station is still operating. According to the data collected 

from this station, long term annual average precipitation for Uşak is determined as 531.7 

mm. The hottest months are noted as July and August, where the coldest month is noted as 

January. Figure 3.10 shows the location of the Uşak Meteorological Station in comparison 

with the mine site together with the elevation profile between this station and the mine site. 
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Figure 3.10. Location of Uşak Meteorological Station (modified after Yazıcıgil et al., 2011) 

 

 

 

On April 2000, TÜPRAG started to operate a meteorological station at mine site and since 

then site-specific meteorological data has been collected for Kışladağ (Table 3.1, Figure 

3.11). Initially temperature, wet/dry bulb temperatures, wind speed and direction, 

precipitation and evaporation data was being recorded manually (three times a day, at 7:00, 

14:00 and 21:00) at this station. Later in August 2005, an automatic meteorological station 

(AWOS) was installed at the same location, to collect barometric pressure, temperature, 

relative humidity, wind speed and direction, solar radiation and precipitation data, on five 

minute intervals. At the same time, TÜPRAG continued to operate the manual station to 

collect precipitation and evaporation data. Furthermore, a second automatic meteorological 
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station was installed in the open pit, in April 2010. However operational period of this 

station was not long enough to use its data in this study.  

 

The precipitation and evaporation data collected from Kışladağ between 2000 and 2012 are 

evaluated during this study. Furthermore, a statistical analyses was conducted on daily data 

of precipitation and evaporation for the period between 1975 and 2000 from Uşak station to 

generate long term daily precipitation and evaporation data set for Kışladağ mine site for 

1975-2012 period. In addition to this, temperature and relative humidity data collected by 

Kışladağ AWOS is analyzed for the period between 2006 and 2012.  

 

 

 

Table 3.1. Information on the meteorological stations 

 

Station Operator UTM-X UTM-Y 
Elevation 

(m) 

Operational 

Period 

Kışladağ Manuel TÜPRAG 687692 4262462 997 04/2000-to date 

Kışladağ AWOS TÜPRAG 687692 4262462 997 08/2005-to date 

Kışladağ Open Pit AWOS TÜPRAG 687130 4260476 1026 04/2010-to date  

Uşak MGM 708760 4284370 930 1929-to date 
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Figure 3.11. Meteorological stations at the mine site 
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3.4.1 Precipitaton 

 

Since the meteorological station for Kışladağ is in operation for a relatively shorter period 

(2000-2012), long term precipitation data for Kışladağ is calculated by Yazıcıgil et al. (2011) 

with correlating the long term data collected at Uşak meteorological station (1975-2000) 

(Yazıcıgil et al., 2011). 

 

Uşak meteorological station is located 29 km northeast of the mine site. The precipitation 

data collected from Kışladağ and Uşak Meteorological Stations are correlated for the period 

between 2000 and 2012 (where the collected data overlaps). Using this correlation, long term 

precipitation data is extrapolated for the period between 1975 and 2000 for Kışladağ. As a 

result, long term (1975-2012) meteorological data is obtained for the mine site. Figure 3.12 

shows the obtained long term precipitation data and cumulative deviation from the average 

annual precipitation for Kışladağ. As can be noted from Figure 3.12, long term average 

annual precipitation for Kışladağ is calculated as 493 mm. Similarly the average annual 

precipitation for Kışladağ is noted as 491 mm between 2001 and 2012 (actual collected 

data).  

 

According to Kışladağ long term precipitation data, the driest year is 2004 (283 mm) and the 

wettest year is 2012 (693 mm). Furthermore, periodic wet and dry periods can be determined 

from the cumulative deviation graph given in Figure 3.12. According to this figure, 1978-

1981, 1997-2002 and 2009-2012 covers the wet periods, while 1984-1996, 2003-2008 covers 

the dry periods. When the operational period for Kışladağ Gold Mine is considered, a 

significant dry period is noted until 2008, followed by a wet period starting from 2009. 

 

Calculated long term (1975-2012) and measured short term (2001-2012) average monthly 

precipitation data is given in Figure 3.13 and Figure 3.14, respectively. Both data indicate 

significant seasonality, where winter is wettest and summer is driest seasons.  

 

When the monthly distribution of the average precipitation is examined (Figure 3.14), it is 

determined that 42% of the annual precipitation occurs during winter, followed by 26% in 

spring, 9% in summer and 23% in fall. Moreover, as shown on Figure 3.14, the wettest 

month is December (71.5 mm) and driest month is August (9.14 mm). 
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Figure 3.12. Annual Precipitation (mm) and cumulative deviation from the average annual 

precipitation (mm) graph for Kışladağ (1975-2012)   

 

 

 

 
 

Figure 3.13. Monthly Average Precipitation Data for Kışladağ Long Term (1975-2012) 
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Figure 3.14. Monthly Average Precipitation Data for Kışladağ Short Term (2001-2012) 

 

 

 

3.4.2 Temperature   

 

The monthly average temperature for Kışladağ AWOS (2006-2012) is given in Figure 3.15. 

The hottest and coldest months in the mine site are August (25.2
o
C) and January (2.23

o
C), 

respectively. Kışladağ’s average annual temperature is calculated as 13.3
 o

C. According to 

average annual minimum temperature data, coldest months are January (-9.4
 o

C) and 

February (-9.6
 o
C) which indicates icing and snow cover for winter and early spring (Figure 

3.16). According to average annual maximum temperature data, July (37.1
 o
C) is the hottest 

month for Kışladağ (Figure 3.17). 
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Figure 3.15. Monthly Average Temperature, Kışladağ Station (2006-2012) 

 

 

 

 
 

Figure 3.16. Monthly Average Minimum Temperature, Kışladağ Station (2006-2012) 
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Figure 3.17. Monthly Average Maximum Temperature, Kışladağ Station (2006-2012) 

 

 

 

3.4.3 Relative Humidity  

 

The monthly average relative humidity values observed in Kışladağ AWOS is given in 

Figure 3.18 for the period 2006-2012. According to this figure, relative humidity is 

considerably low for summer (between 38% and 50%), indicating hot and arid summers. On 

the other hand, relative humidity is noted as 75% for the wet and cold winters. 

 

 

 
 

Figure 3.18. Monthly Average Relative Humidity, Kışladağ Station (2006-2012) 
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3.4.4 Evaporation  

 

Daily evaporation at Kışladağ is measured generally between April and October, for 2000 

and 2012 period. This data set has some missing measurements and consequently, a set of 

correlation is conducted by Yazıcıgil et al. (2011) to estimate the missing data. 

 

First estimation is completed for the period where the evaporation measurements are missing 

for seven consecutive days or less. For this condition, if Uşak Meteorological Station’s data 

is present, the data is introduced to Kışladağ data set, with a correlation factor calculated by 

Yazıcıgil et al. (2011). If not, it is estimated with calculating the average evaporation rate for 

four days before and after the missing days’ data. Second estimation is completed for the 

period where the evaporation measurements are missing for more than seven consecutive 

days. For this condition, if Uşak Meteorological Stations data is present, the data is 

introduced to Kışladağ data set, also with a correlation factor calculated by Yazıcıgil et al. 

(2011). Otherwise, as estimated by Yazıcıgil et al. (2011), the missing data is estimated 

utilizing Penmann Equation (Dalgün, 1988). Furthermore, for winter months where the 

evaporation data is missing, the evaporation rates calculated by Dalgün (1988) are 

introduced to the data set.  

 

Similar estimations are completed for the missing evaporation rates of Uşak Meteorological 

Stations data, as described above. In order to generate the long term daily evaporation data, 

by Yazıcıgil et al. (2011) conducted a statistical analyses, similar to precipitation analyses, 

for Kışladağ and Uşak Meteorological Stations evaporation data for the period between 2000 

and 2012 (where the collected data overlaps). Using this analyses, long term daily 

evaporation data is generated for the period between 1975 and 2000 for Kışladağ. As a 

result, long term (1975-2012) daily evaporation data set is generated for the mine site.  

 

Monthly average evaporation rates measured at Kışladağ Meteorological Station (2001-

2012) are given in Figure 3.19. Calculated monthly average evaporation rates for Kışladağ 

Meteorological Station for long term (1975-2012) is given in Figure 3.20. According to these 

figures, it can be noted that short and long term data show similarity. The short-term (2000-

2012) data indicates that the highest evaporation is observed in July and August, as 233 mm 

and 226 mm, respectively. The long- term data indicates that the lowest evaporation is 

observed in December as 15.7 mm. 

 

A comparison is given in Figure 3.21 for the calculated annual precipitation and evaporation 

data. From this figure, it can be noted that the evaporation rate is considerably high between 

April and October. For the winter period, precipitation rate is higher than the evaporation, 

due to low temperatures. Thus, it can be noted that the highest recharge to groundwater is 

expected for the winter period.  

 

Calculated long term (1975-2012) annual evaporation data is given in Figure 3.22. This data 

set indicates that the long term average annual evaporation for Kışladağ is 1198 mm. 
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Between years 1990 and 1999 the annual evaporation rate is below the long-term average, 

while it is above the average after 2000.  

 

 

 

 
 

Figure 3.19. Calculated Monthly Average Evaporation for Kışladağ Short Term (2001-2012)  

 

 

 

 

 
 

Figure 3.20. Calculated Monthly Average Evaporation for Kışladağ Long Term (1975-2012) 
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Figure 3.21. Calculated Monthly Average Evaporation and Precipitation Data for Kışladağ 

(1975-2012) 

 

 

 

 

 
 

Figure 3.22. Calculated Long Term Annual Evaporation Rates for Kışladağ (1975-2012) 
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CHAPTER 4 

 

 

HYDROGEOLOGY 

 

 

 

4.1 Water Resources 

 

4.1.1 Surface Water Resources  

 

The study area and specifically the mine site are located on the water divide between the 

Gediz and Büyük Menderes River Basins (Figure 4.1). Since the mine site is located on the 

water divide, only ephemeral creeks are present in the area. Although only seasonal flow is 

generally observed along these creeks, heavy rainfall may result in sudden runoff. The 

surface water features that are draining the mine site to the north are discharging to the 

branches of the Gediz River, while southerly ones discharge to the branches of the Büyük 

Menderes River.  

 

In the whole study area, on the other hand, there are both perennial and ephemeral creeks 

(Geçemek, Değirmen, Kurbağalı Deresi etc.). The major creeks within and around the mine 

site are Kurbağalı Creek flowing west of the mine site and Geçemek Creek, flowing north of 

the mine site, with its tributaries, namely Söğütlü Creek (draining the mine area) and 

Değirmen Creek (Figure 4.1). These two major drainages combine at the northwest of the 

project area and discharges to the Gediz River. Radial drainage network of these surface 

waters is caused by the presence of the volcanic cones within the study area. 

 

Six weirs were installed at different dates in order to monitor the surface flow along the 

major creeks draining the mine site. Weirs 1 through 4 were installed in June 2005; while 

Weir-5 was installed in March 2008. The last one, Weir-6 was installed in October 2011 in 

order to monitor the flow discharging from the planned expansion areas in the north. 

Locations and drainage basins of the weirs are shown in Figure 4.2, while data regarding 

these weirs, such as drainage areas and operational periods are given in Table 4.1. As it can 

be seen from this figure drainage areas of the first five weirs, (Weir 1 to 5), cover all the 

surface flow occurring at the present mine site and the last one (Weir-6) covers most of the 

drainage from the planned leach pad area north of the present mine site.   
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Figure 4.1. Surface water resources (drainage, springs, seeps and fountains)  
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Figure 4.2. Location of the weirs and their drainage areas 
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Table 4.1. Drainage area and operational period of the weirs 

 

Weir ID Drainage Area (ha) Measurement Period 

Weir-1 234.98 1/6/2005 – present 

Weir-2 761.13 1/6/2005 – present 

Weir -3 161.88 1/6/2005 – present 

Weir -4 164.58 1/6/2005 – present 

Weir -5 610.04 1/3/2008 – present 

Weir -6 506.29 1/11/2011- present 

 

 

 

Figure 4.3 shows the average daily flow measurements (in log-scale) together with the 

precipitation values plotted against time. According to this graph, flows start to increase by 

November and start to cease after March. Maximum flows are generally observed in 

December, January, February and March, while almost no flow is observed during July, 

August and September.  Moreover, it is noted that average daily flow seldom exceeds 200 

L/s and only for a couple of times and only for a very short duration reaches to 1000 L/s. 

 

 

 

4.1.2 Springs and Fountains  

 

The springs having high yields (Karabol, Avgan, Sarıkız, Cabar, İnay, Kocapınar, Uyuz, 

Hasköy and Sivaslı Springs) discharge from the Ulubey aquifer, which has a broad extension 

at eastern and northern parts of the study area. Among these high-yield springs, only İnay 

Spring is located within the boundaries of the study area. This spring located approximately 

7 km away from the mine site (Figure 4.1), is the drinking and domestic water supply of İnay 

Village. Discharge of this spring is measured by DSI (State Hydraulic Works) during the 

period between the years 1986 and 1988. During this period lowest discharge is observed as 

2 L/s (in January 1988) and highest discharge is observed as 13 L/s (in July 1986) while 

average discharge is calculated as 8.5 L/s (Yazıcıgil et al., 2008). 

 

Apart from high-yield springs, there are several low-yield (<0.25 L/s) springs, seeps and 

fountains in the vicinity of the mine site. Eleven of these are included in the monitoring 

program, which was initiated in 2000 by TÜPRAG. At these locations, monthly sampling is 

conducted for water quality. Locations of these monitoring points are shown in Figure 4.4 

and data regarding these points are given in Table 4.2.   

 

 

 



57 
 

 

 
  

F
ig

u
re

 4
.3

. 
F

lo
w

 m
ea

su
re

m
en

ts
 (

in
 l

o
g
 s

ca
le

) 
an

d
 p

re
ci

p
it

at
io

n
 v

er
su

s 
ti

m
e 



58 
 

 
 

Figure 4.4. Monitored springs, fountains and seeps 
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4.1.3 Wells 

 

Wells within and in the vicinity of the mine site are shown on the hydrogeological map 

presented in Figure 4.5. These wells are grouped into three as follows:  

 Wells drilled by the governmental agencies (DSİ, Bank of Provinces, Rural 

Services): There are 16 wells within the study area, of which two of them are drilled 

by DSI, three by the Bank of Provinces and the rest are drilled by the Rural Services. 

The ones drilled by DSI are for the purpose of exploration and the rest are drilled for 

drinking purposes and domestic water supply. Wells drilled by the Rural Services, 

supply water to the neighboring villages, while the ones drilled by the Bank of 

Provinces supply water to the municipalities. 

 Wells drilled by individuals: within the study area apart from the five water supply 

wells of TÜPRAG, there are 18 wells drilled by individuals. They are all drilled in 

order to supply irrigational water, except the one drilled south of Çamdere village, 

which is drilled to supply drinking and domestic water.  

 

As it may be seen from the map given in Figure 4.5, most of the wells drilled by the 

governmental agencies and by the individuals are located on the Ulubey Formation and the 

rest are located along the boundary. Therefore, it can be concluded that nearly all the wells 

within these two groups are pumping water from Ulubey aquifer. 

 

 Wells drilled by TÜPRAG: These wells are drilled for the determination of 

hydrogeological conditions and hydraulic parameters of the mine site and also for 

the monitoring of groundwater levels and quality. There are a total of 82 wells, 33 of 

which were drilled before 2007 and 49 of them were drilled after 2011 within the 

scope of capacity expansion studies. Locations of these wells are shown on the map 

given in Figure 4.5. Data regarding these wells (name, coordinate, elevation, 

monitoring period, location with respect to the mining facilities, screened formation, 

screen interval, depth and hydraulic conductivity values) are presented in the Table 

4.3. 

 

 Monitoring activity, which was initiated in 2000, is still continued at 41 wells on 

monthly basis and groundwater level/pressure is recorded. 28 of them are also 

monitored for groundwater quality. In order to determine the hydraulic conductivity 

and storage parameters of the groundwater bearing formations, aquifer tests (namely 

packer, pumping, recovery and slug tests) are also conducted at several wells. With 

all this data gathered from the monitoring wells, site characterization is performed. 

 

 Below is a brief description of all these wells grouped according to the well ID’s: 

o WR Wells: These wells are located at the vicinity of the present waste rock 

storage area. So far a total of six wells are drilled for the monitoring of the 

waste rock storage area. One of these is a replacement well, therefore, at the 

moment there are six active monitoring wells in this locality.  
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o LP Wells: These wells are located around the present heap leach pad area. 

13 wells are drilled at this location, two of which are for replacement and 11 

of them are active monitoring wells.  

o PZ Wells: They are seven deep wells drilled for geotechnical purposes. They 

are all located at the perimeter of the open pit. They are screened and used to 

monitor the groundwater levels around the open pit. However, as a 

consequence of the excavations and progression of the pit, they are all 

cancelled except one.  

o WS Wells: These wells are drilled for water supply purposes; however they 

are then converted to monitoring wells. There are three WS wells, two of 

which are located in the vicinity of the present heap leach pad area and the 

third one is out of the mine site. At the moment, only one of them is used for 

monitoring purposes. 

o KWSP Wells: There are a total of 11 KWSP wells, which have been used 

for monitoring. Only one of these wells is currently used for monitoring, 

which is located near Söğütlü Creek. The rest, previously drilled at several 

locations either as monitoring and exploration wells or as shallow wells for 

water supply, is all inactive at the moment. 

o HY Wells: These 11 wells are drilled for the characterization of the planned 

expansion areas in the north. Except two of them (one is dry and the other 

one is closed because of the artesian conditions), the rest are currently being 

monitored twice a month for the determination of the groundwater levels 

and monthly for water quality. 

o GC Wells: There are 13 GC wells, drilled for geotechnical and exploration 

purposes. Three of them are inclined and one has collapsed during 

completion, but the remaining nine wells are available for groundwater level 

monitoring only. 

o DH Wells: These seven wells are drilled at the planned expansion areas for 

geotechnical purpose. They are shallow wells of depths around 30 m. They 

are not included within the monitoring program. 

o KPT Wells: These four wells are drilled at and just around the open pit in 

order to conduct pumping tests and to determine the hydraulic parameters in 

this area. 

o PBM Wells (and PBPW): These seven shallow wells (around 30 m depth) 

are drilled at the bottom of the open pit in order to conduct a pumping test 

and to determine the hydraulic parameters just below the pit bottom. 

Furthermore, the aim of drilling these wells was also to test dewatering 

performance with vertical wells. 
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4.2 Regional Hydrogeology 

 

Upon the assessment of all the available data gathered from the above mentioned water 

points, rock units outcropping within and around the study area are classified according to 

their lithologies and water-bearing capacities. Hydrogeological map given in Figure 4.5, 

shows these hydrogeologically classified units, together with water wells, springs and 

drainage network. A brief description of the hydrogeological units presented in this figure is 

summarized below: 

 

Schists and Gneisses (Eşme Formation) 

This unit, made up of schists and gneisses, forms the crystalline basement rocks. These 

metamorphic rocks crop out in the west and southwest parts of the study area around Kayalı, 

Eşme, Takmak and west of Örencik.  They are locally overlain by Ahmetler and Asartepe 

Formations in the west and volcanic rocks in the mine site. These rocks are classified as poor 

aquifers, with very low yielding wells and springs. The yields of the wells drilled in this 

formation at the mine site and in the vicinity of Eşme are around 2.5–3.0 L/s. These rocks, 

however, are important because of their regional extent and generally good quality of water. 

According to the results of the aquifer tests conducted at the mine site, average hydraulic 

conductivity of this unit changes between 1.19x10
-8

 m/s and 2.61x10
-6

 m/s, while geometric 

mean is calculated as 2.02x10
-7

 m/s. 

 

Volcanics (Beydağı Volcanics) 

These rocks, consisting of lava flows, agglomerates, and tuffs; cover extensive areas at the 

central part of the study area (Figure 4.5). These rocks intrude within and overlie the schists 

and gneisses at the mine site.  Toward east they interfinger and grade into the clastic 

sedimentary rocks and lacustrine limestones of the Ulubey and Ahmetler Formations. 

Groundwater bearing potential of these volcanic units is very low. Within the mine site, 

especially in the leach pad and waste rock storage areas, they form local perched aquifer 

systems over the schists and gneisses. Pump and slug test results show that hydraulic 

conductivity of the unit ranges between 4.56x10
-9

 m/s and 1.61x10
-6

 m/s, while geometric 

mean is calculated as 1.05x10
-7

 m/s. Hydraulic conductivity of the intrusive rocks of this 

unit, which are observed at and around the open pit, is almost the same; ranging between 

4.07x10
-9

 m/s and 1. 10x10
-6

 m/s, with the geometric mean of 1.67x10
-7

 m/s. 

 

Ahmetler Formation 

Merdivenlikuyu, Balçıklıdere and Gedikler are the members of the Ahmetler Formation. 

This formation made up of pebblestone, sandstone, siltstone, tuffite, mudstone, marl and 

limestone. Fine grained clastics are more common. It is known that limited number of wells 

drilled in this formation have very low yields (Yazıcıgil, et al., 2008); therefore, this 

formation is classified as impermeable. Moreover, it should be noted that forming the lower 

boundary of Ulubey aquifer, it is of regional importance. Ahmetler Formation overlies 

schists and gneisses at northern and southeastern parts of the study area.  
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Ulubey Formation 

Even though it is not located within the study area, having a broad extension at the eastern 

parts (around 1700 km
2
), this sedimentary unit is the major aquifer in the regional scale. It is 

made up of thick, very thick and locally massive lacustrine limestones and alternating marl 

units. Thickness of the unit is around 250 m. Bedding is horizontal to sub-horizontal. 

Formation has fractured, jointed and karstic nature. Karstic cavities and solution cracks are 

common. Wells having highest yields (15-30 L/s) and springs having highest discharge rates 

(250-500 L/s) are located within the Ulubey Formation. Among the 41 wells drilled in this 

formation, yields change between dry and 30 L/s, with average yields of 11 L/s; while 

specific capacity values range between 0 and 17.46 L/s/m, with average 2.78 L/s/m. 

According to the pumping test results conducted at wells drilled by DSI and the Bank of 

Provinces, transmissivity of this unit is determined to range between 6 and 5158 m
2
/day and 

hydraulic conductivity is determined in the range between 1.04x10
-6

 m/s and 1.45x10
-3

 m/s. 

While geometric mean of the hydraulic conductivity is calculated as 3.58x10
-5

 m/s using the 

results of 20 pumping tests. Storage coefficient of the unit having unconfined flow 

conditions is determined as 0.059, with the pumping test conducted at the well field of 

TÜPRAG  (SRK, 2003).  As stated by Yazıcıgil (2000), Ulubey Formation includes all the 

classes having poor, middle and good aquifer properties. Local good aquifer properties of the 

formation are believed to derive from the fracture, crack and fault induced karstification. 

Impermeable lower boundary of the unconfined Ulubey aquifer is formed by the Ahmetler 

Formation. Groundwater level of the Ulubey aquifer is given in Figure 4.6. According to this 

graph, groundwater level is around 900 m in the center of Uşak and decreases southwards, 

reaching 600 m levels around Ulubey town and decreases to 410 m at Adıgüzel Dam, in the 

southern boundary of the basin. 

 

Asartepe Formation 

Major outcrops of this formation are observed in northern and southeastern parts of the study 

area, where it overlies schists and gneisses. Its most extensive outcrops, on the other hand, 

are observed outside the boundaries of the study area, in the northeast around Sivaslı and 

Banaz (Yazıcıgil et al., 2008). It is made up of alternations of pebblestone, sandstone, 

siltstone, claystone and marl. Fine grained units are very common. At the field, they can be 

distinguished with their reddish brown color. This formation is classified as poor to middle 

aquifer, as the limited number of wells drilled in this formation has low yields. At the five 

wells drilled in Asartepe Formation, within and around the study area, yields range between 

1.46 L/s and 26 L/s, while its average is 11.3 L/s. Specific capacity of these wells are 

calculated in the range  0.06 L/s/m and 17.54 L/s/m, with average of 4.7 L/s/m. Pumping test 

results conducted at four DSI wells, indicated that transmissivity of the unit ranges between 

94 m
2
/day and 796 m

2
/day, while hydraulic conductivity ranges between  6.50x10

-6
 m/s and 

1.00x10
-4

 m/s. Four wells are drilled in this formation in the northern parts of the mine site. 

One of these wells is dry, and two have very low yields, therefore only slug tests could be 

conducted. According to the results of these slug tests, hydraulic conductivity of the unit is 

calculated as 1.16x10
-8

 m/s indicating that at the mine site this formation is less permeable. 
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Figure 4.6. Groundwater elevation map of Ulubey Aquifer (Yazıcıgil et al., 2008) 

 

 

 

Quaternary Deposits 

This units is made up of alluvial fan deposits, terrace deposits and alluvium. Apart from 

these, there are some deposits previously used for agriculture and named as agricultural 

disturbance, which are also grouped in this unit. Within the study area, this unit is observed 

west and north parts of the open pit, generally along stream beds and along steep slopes. 

Outside the study area, especially to the northeast around Uşak, Banaz and Güre many 

shallow and caisson wells drilled in alluvial aquifers are used efficiently for irrigation. 

Pumping test results conducted at four DSI wells, indicated that transmissivity of the 
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alluvium aquifer ranges between 67 m
2
/day and 482 m

2
/day, while hydraulic conductivity 

ranges between 3.93x10
-5

 m/s and 2.50x10
-4

 m/s. 

 

 

4.3 Site Hydrogeology 

 

In determination of the hydrogeological characteristics of the mine site and its close vicinity, 

the wells and springs, which are discussed above in detail, are used. The locations of these 

monitoring points are shown on Figure 4.7. Moreover, in order to give a better insight on the 

location of these wells and their position with respect to the main mining facilities (open pit, 

heap leach pad and waste rock storage facilities, and also planned north expansiomn areas), 

maps from Figure 4.8 to Figure 4.11 are presented, showing all the observation wells at the 

mine site. 

 

Within the content of this study, groundwater elevation map generated by the previous 

studies is revised with the recently available data obtained from the new wells. Especially for 

the northern parts of the mine site, where there was no data, many new wells are drilled for 

the characterization of the planned expansion areas. All these groundwater level 

measurements are used to develop a groundwater elevation map at regional scale. Apart from 

the well data, topographical elevations of the springs in the study area, which have been 

determined during several field studies, and those of the perennial surface waters are also 

considered during map generation. After a groundwater elevation map is generated, its 

consistency with the topographical surface and the groundwater levels of the Ulubey Aquifer 

determined by Yazıcıgil et al. (2008) is checked. Resulting regional groundwater elevation 

map is shown in Figure 4.12. 

 

The mine site is also located on the groundwater divide. As shown in Figure 4.12, highest 

groundwater elevations around 1000 m are observed along the surface water divide, at the 

present leach pad and waste rock storage areas, where higher recharge occurs due to higher 

elevations. Groundwater level at the open pit, situated just between these two locations, is 

very low (around 870 m) compared to that observed at leach pad and waste rock storage 

areas (around 1000 m). Low groundwater levels at the open pit area can be explained by the 

increased hydraulic conductivity at this locality due to the formation of joint and fracture 

systems developed during and after mineralization at the contact and intrusion zone, as well 

as the formation of new fractures and development of the existing ones as a result of the 

stress relief as the excavation advances. In other words, lower groundwater level at the open 

pit location is a consequence of the hydraulic conductivity difference between the host rock 

and intrusive units emplaced within those (Yazıcıgil et al., 2013). Moreover, results of the 

study conducted by Lewis (2002) suggest that joint and fracture systems are dominantly 

oriented NNW.  The anisotropy developed in this direction controls the groundwater flow as 

well. Groundwater levels reaching elevations around 1000 m within the mine site, decrease 

to 650-700 m levels, at the northwestern parts of the mine where schists are outcropping and 

at the southeastern parts where Ahmetler Formation crops out (Figure 4.12). 
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Figure 4.7. Monitoring wells and springs 
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Figure 4.8. Wells within and around open pit area 
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Figure 4.9. Wells within and around heap leach pad area 
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Figure 4.10. Wells within and around waste rock storage area 
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Figure 4.11. Wells within and around proposed expansion area 
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Figure 4.12. Regional groundwater elevation map 
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4.3.1 Detailed Hydrogeological Characterization of the Open Pit Area 

 

As this research focuses on the processes that will occur in the open pit area during the 

operational phase of the mine (dewatering activities) and also in the post-closure phase (pit 

lake formation), in this section hydrogeology of the open pit will be discussed thoroughly. 

While for the rest of the study area, results of the detailed hydrogeological characterization 

completed by Yazıcıgil et al. (2013) will be summarized. 

 

Open pit is located within the intrusive rocks (latite porphyry). In order to monitor the 

groundwater levels and to predict the hydraulic parameters of the units within and around the 

open pit, many monitoring and test wells are drilled. Locations of these wells are given in 

Figure 4.7, while detailed information is presented in Table 4.3. 

 

Groundwater level monitoring activities at the open pit area has initiated in 2002. KWSP-17 

(or its other name, GR-108) is an exploration well drilled in the ore zone and it is among the 

first wells included in the monitoring program. Besides, two slug tests are conducted at this 

well by SRK and Golder Associates, which resulted with hydraulic conductivity values of 

5.13x10
-9

 m/s and 3x10
-9

 m/s, respectively. However, these values are obtained from a single 

point in the open pit; therefore, they do not reflect the areal hydraulic properties of the open 

pit area. Hence, many other wells are drilled and several kinds of hydraulic tests are 

performed for the hydrogeological characterization of this area, which is quite different from 

the units surrounding it. 

 

SRK conducted several tests (packer, airlift and pumping tests) at the six wells which are 

originally drilled with geotechnical purposes and then converted to piezometers. Packer tests 

performed at these wells, at 78 different depth intervals, resulted in a hydraulic conductivity 

range between 1x10
-9

 m/s and 9x10
-7

 m/s, with a geometric mean of 7x10
-8

 m/s (SRK, 2012). 

Here it should be noted that packer tests can be performed in relatively strong and intact 

rocks. Hence, at a test well, at the elevations where the material to be tested is broken and 

weak (hence more porous), test interval is shifted to the closest zone having stronger material 

to allow testing. As a result, maximum hydraulic conductivity values obtained by the packer 

tests do not reflect the actual conductivity at the field.  

 

Therefore, in order to determine the hydraulic properties of this highly permeable and loose 

material (especially the Friable Zone), air lift and pumping tests are conducted by SRK. 

Results of the air lift test performed at GC-450 well are evaluated by SRK using Leaky 

Aquifer Model and hydraulic conductivity of the aquifer is calculated as 5.6x10
-9

 m/s, while 

hydraulic conductivity of the underlying and overlying aquitards are calculated as 1x10
-6

 m/s 

and 1x10
-4

 m/s. When the results of the same test are evaluated using Gringarten Model for 

fractured aquifers, hydraulic conductivity is calculated as 6.85x10
-6

 m/s (SRK 2012).  

 

In 2012, four wells are drilled at the open pit area by SRK in order to determine the 

groundwater levels and hydraulic parameters. One of the two tests performed using these 

wells, aims to test the Friable Zone and it is conducted by using one pumping well (KPT-2) 
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and two observation wells (KPT-3 and KPT-4). Using the results of this test, hydraulic 

conductivity of the Friable Zone is calculated as 1.4x10
-6

 m/s and specific storage value is 

calculated as 1.2x10
-6

 1/m.  The other test is conducted at KPT-1 well which is drilled within 

the volcanoclastic units enclosing the intrusives of the open pit. According to the results of 

this test, hydraulic conductivity of the volcanoclastic units is calculated as 2.1x10
-8

 m/s 

(SRK, 2012). 

 

Moreover, SRK conducted another pumping test at the bottom of the open pit, using one 

pumping well and 6 observation wells in order to predict the performance of the alternative 

systems that could be used to dewater the pit, in the progressive stages of the mining 

facilities. 

 

When the regional groundwater elevation map given in Figure 4.12 is examined, as it is 

mentioned above, groundwater levels  at the open pit (around 870 m) , are very low 

compared to those at the heap leach pad and waste rock storage areas (around 1000 m). The 

reasons for this difference are discussed in Section 4.3 in detail. 

 

 

4.3.2 Temporal Changes in Groundwater Levels within the Mine Site 

 

In order to assess the responses of groundwater levels to precipitation and to determine the 

seasonal fluctuation (if there is any), water level observations together with the precipitation 

measurements are plotted against time for all monitoring wells shown in Figure 4.7 

(Yazıcıgil et al., 2013). However, as open pit area is the focus of interest of this study, plots 

of all the wells at this locality is given below. Moreover, in order to show the vertical 

interactions of different lithologic units, plots of the clustured wells drilled at the heap leach 

pad area and at the north expansion areas are also given below. These clustered wells are 

very important for the hydrogeological characterization and very useful in setting up the 

conceptual model of the site.  

 

The long term groundwater levels measured at PZ wells are plotted against time and 

presented at the graphs given in figures from Figure 4.13 to Figure 4.18. These graphs also 

show the precipitation values measured at the mine site for the same time period. Examining 

those figures, it is noted that groundwater level at an approximate depth of around 150-200 

m below ground surface, has risen by 8-10 m, since 2009.  This increase is a natural 

consequence of the increased groundwater recharge caused by two factors: reduced thickness 

of the vadose zone and enlargement of the catchment due to excavations in the open pit area; 

and the wet period observed since 2009. Following the dry period during 2007 and 2008, 

2009 is a very wet year with a precititation increase of 75-110% compared to 2008’s 

precipitations. 
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Figure 4.13. Temporal changes in groundwater levels measured at PZ-2 

 

 

 
 

Figure 4.14. Temporal changes in groundwater levels measured at PZ-3 

 

 

 
 

Figure 4.15. Temporal changes in groundwater levels measured at PZ-4 
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Figure 4.16. Temporal changes in groundwater levels measured at PZ-5 

 

 

 
 

Figure 4.17. Temporal changes in groundwater levels measured at PZ-6 

 

 

 
 

Figure 4.18. Temporal changes in groundwater levels measured at PZ-7 
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At the mine site, there are several clustered wells screened at different depths in order to 

determine the vertical interactions between different hydrogeological units (Asartepe 

Formation, Beydağı Volcanics and Eşme Formation). 2 pairs of them are located around the 

heap leach pad area (LP-4A and LP-5A, LP-6 and LP-7), while the new ones (HY-1 and GC-

451) are also drilled at the north expansion area. Groundwater levels monitored at each 

clustered well pair are presented in the same graph together with the precipitation in order to 

investigate the responses of different lithological units to changes in precipitation and also to 

compare their groundwater levels. 

 

According to the collected data from the individual and clustered wells; 

 Figure 4.19 demonstrates the data from clustered well pair, LP-4A completed in schists 

and LP-5A completed in volcanics. Although data represents a relatively short term 

period, it is observed that the groundwater levels of the schists are slightly (0.5 m) above 

the volcanics. In Figure 4.20, data from clustered well pair, LP-6 completed in schists 

and LP-7 completed in Asartepe Formation, is given. According to this graph, 

groundwater levels of the schists are 4 m above the Asartepe Formation. These results 

indicate that the schists are showing a confined behavior in the current leach pad area.  

 When groundwater levels of HY-1 (completed in Asartepe Formation) and GC-451 

(completed in schists) are examined (Figure 4.21), it is observed that at the planned 

expansion area north of the mine site, groundwater level of the schists is almost 1 m 

lower than that of Asartepe Formation.  

 When the two different behavior of the schist units is examined (confined at the present 

heap leach pad area, while unconfined at the north expansion area), it is observed that 

there is not enough evidence to confirm the confined behavior of this unit throughout the 

study area.  

 Rather, it is concluded that groundwater levels monitored at different lithological units 

are very close to each other, all around the mine site. Moreover, different units show 

similar responses to the precipitation. 
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Figure 4.19. Temporal changes in groundwater levels measured at LP-4A and LP-5A 

 

 

 
 

Figure 4.20. Temporal changes in groundwater levels measured at LP-6 and LP-7 

 

 

 
 

Figure 4.21. Temporal changes in groundwater levels measured at HY-1 and GC-451  
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4.3.3 Results of the Hydraulic Tests Conducted within the Mine Site 

 

All  hydraulic tests conducted within the study area so far are first grouped according to the 

lithologies tested (Asartepe Formation, Beydağı Volcanics, Eşme Formation and intrusive 

units within and around the open pit area). A total of 38 test results, which are grouped 

according to the lithologic units is then analyzed in order to determine the maximum, 

minimum and also the geometric mean of the hydraulic conductivity values of each 

lithological unit. Results are both tabulated  (Table 4.4) and presented graphically (Figure 

4.22).  

 

 

 

Table 4.4. Maximum, minimum and geometric mean of hydraulic conductivity values (m/s)  

 

 
Number of Wells Tested Min K Max K Geo. Mean 

Asartepe Formation 2 2.50 x 10
-9

 5.34 x 10
-8

 1.16 x 10
-8

 

Beydağı Volcanics 25 4.56 x 10
-9

 1.61 x 10
-6

 1.02 x 10
-7

 

Intrusives (Open Pit) 5 4.07 x 10
-9

 1.10 x 10
-6

 1.67 x 10
-7

 

Eşme Formation 6 1.19 x 10
-8

 2.61 x 10
-6

 2.02 x 10
-7

 

All Units 38 2.50 x 10
-9

 2.61 x 10
-6

 1.08 x 10
-7

 

 

 

 

 
 

Figure 4.22. Maximum, minimum and geometric mean of hydraulic conductivity values  
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According to these results tabulated in Table 4.4 and presented in Figure 4.22, following 

conclusions are made: 

 As it is mentioned before, Asartepe Formation, forms a local aquifer outside the study 

area within the Banaz Stream Basin having extensive outcrops and high hydraulic 

conductivity values (6.50x10
-6

 – 1.00x10
-4

 m/s). On the other hand, within the study 

area, it has lower hydraulic conductivity (2.50x10
-9 

– 5.34x10
-8 

m/s) owing to its clayey 

content. 

 Moreover, within the study area, hydraulic properties of the volcanics and schists are 

very close. It can be concluded that in a regional point of view, hydraulic conductivity 

values of the units within the study area ranges between 2.50x10
-9 

and 2.61 x 10
-6 

m/s, 

with a geometic average of 1.08 x 10
-7

 m/s. 

 

 

4.4 Hydrologic Budget of the Study Area and Groundwater Recharge 

 

In the previous studies, recharge value for this site is determined by the analysis of the long 

term average monthly precipitation and temperature values recorded in Uşak Meteorological 

Station using different methods. It is observed that different recharge values are determined 

for the site in the previous studies as: 22 mm/year (SRK, 2007) by CN Method and 44 

mm/year (SRK, 2005) by Thornthwaite Method. Moreover, these two recharge values 

calculated using different methods do not reflect the areal recharge distribution. Therefore, a 

different methodology is applied by Yazıcıgil et al. (2013) using the Soil-Water-Balance 

(SWB; Westenbroek et al. 2010) model developed by the United States Geological Services. 

Below is a very brief summary of the sophisticated approach applied by Yazıcıgil et al. 

(2013).  

 

SWB model can be utilized to calculate the hydrologic parameters, as well as the aerial 

distribution of groundwater recharge (within a model domain discretized into cells and by 

assigning related parameters to each cell).  

 

The main equation for SWB model to calculate the hydrologic water budget is as follows: 

 

Change in Soil Moisture = Water inflow (to cell) – Water Outflow (from cell) – 

Groundwater Recharge 

  

where;  Water Inflow (to cell) = Rainfall + Snow + Runoff (to cell) 

Water Outflow (from cell) = Interception (by vegetation) + Runoff (from 

cell) + Actual Evapotranspiration 

 

 Rainfall: Daily precipitation data 

 Snow: Snow is allowed to accumulate or melt in accordance with the daily 

maximum and minimum temperatures 
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 Interception (by vegetation): Specified amount of rainfall is trapped by the 

vegetation 

 Runoff: An analytical model is utilized to predict the runoff rate that will 

originate from each cell. Then the excessive water is transferred to the 

downstream cell. This analytical model is based on U.S. Soil Conservation 

Service’s runoff curve number (CN) method (USDA, 1986) which is well known 

for the determination of the runoff rate. 

 Evapotranspiration: The rate of potential evapotranspiration can be calculated 

with different methodologies. These are; Thorntwaite-Mather (1957), Jensen-

Haise (1963), Turc (1961) ve Hargreaves and Samani (1985). 

 Soil Moisture: This parameter indicates the amount of water that is stored in a 

cell. 

 

SWB model is constructed for an area covering more than 400 km
2  

as shown in Figure 4.23, 

which is divided into cells having dimensions of 25 m x 25m. Then land use/vegetation 

cover (considering land slope and thickness) data is introduced to the model.  

Prior to the introduction of the evapotranspiration rates, a set of calculations are completed 

with different methods such as; Thorntwaite-Mather (1957), Jensen-Haise (1963), Turc 

(1961) and Hargreaves and Samani (1985).  

 

The calculated different evapotranspiration rates are introduced to the SWB model and the 

calculated runoff rates are compared with the site measured runoff rates for Weir-5. Then the 

curve numbers are iterated to reach a calibrated model. According to these calibrated models, 

following groundwater recharge rates are calculated by Yazıcıgil et al. (2013): 

 Thorntwaite-Mather  63.80mm/year 

 Jensen-Haise   49.94mm/year 

 Hargreaves-Samani  33.43mm/year 

 Turc    37.82mm/year 

 

Hargreaves-Samani and Turc methods resulted similar groundwater recharge rates for the 

calibrated SWB models. Furthermore, the runoff values calculated with Turc method are 

similar with 2010’s runoff values (here, it should be noted that the total precipitation in 2010 

is similar to long term average). Thus, Turc method is utilized to calculate the 

evapotranspiration losses of the water budget component (Yazıcıgil et al., 2013).  

 

According to the calculations, using this method, annual precipitation is distributed into its 

budget components as follows: 

 75.50%  evapotranspiration 

 6.80%  interception by vegetation 

 8.50%  runoff 

 6.64%  groundwater recharge 

 2.50 % change in soil moisture 
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To sum up, total annual groundwater recharge within the study area ranges between 0 (at the 

leach pad and waste rock storage areas) and 220 mm, while its  average over the study area  

is calculated as 37.8 mm. The resulting areal distribution map for the groundwater recharge 

is given in Figure 4.23.  

 

 

 

 
 

Figure 4.23. Areal distribution of recharge (Yazıcıgil et al., 2013) 
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CHAPTER 5 

 

 

CONCEPTUAL AQUIFER MODEL 

 

 

 

A conceptual (hydrogeological) model is a descriptive representation of a groundwater 

system that incorporates an interpretation of the geological and hydrological conditions 

(Anderson and Woessner 1992). It consolidates the current understanding of the key 

processes of the groundwater system, including the influence of stresses, and assists in the 

understanding of possible future changes (Barnett et al, 2012). In that sense, conceptual 

model, reflecting the hydrogeological characterization of the site, is the basis for numerical 

groundwater flow model. 

 

Within the content of this study, the conceptual model created by SRK (2005) for the site, is 

revised and improved using the recently available data, tests and analysis. For the 

systematical examination, first major lithological units of the study area are determined as 

follows: Eşme Formation, Beydağı Volcanics, Ahmetler Formation, Asartepe Formation and 

alluvium (Figure 5.1). Hydrogeological characteristics of these units are summarized in 

section 4.2, where regional hydrogeology is described in detail. 

 

According to this hydrogeological characterization, Eşme Formation and Beydağı Volcanics 

are the two units having the broadest extension within the study area. Here it should be noted 

that the results of the aquifer tests performed at the wells drilled in these two units, are very 

close; suggesting that these two units have very similar hydraulic characteristics (See Table 

4.4 and Figure 4.22). This fact is also proven by the data obtained from the clustered wells at 

the mine site, which have very close groundwater levels and parallel seasonal fluctuations.  

As it can be noted from the Table  4.4, all the lithological units tested (Asartepe Formation, 

Beydağı Volcanics, Eşme Formation and intrusive units within and around the open pit area), 

resulted in very similar hydraulic properties. The units that could not be tested (alluvium and 

Ahmetler Formation) within the study area, due to lack of data that can reveal the hydraulic 

properties of the formation, they are assumed to have similar hydraulic properties with those 

of Beydağı Volcanics and schists within the model area. On the other hand, Ulubey 

Formation, even though not located within the study area, is the major aquifer in the regional 

scale and constituting the east and north boundary of the model area, this unit very 

important. 

 

To sum up according to the hydrogeological characterization, all the lithological units tested 

resulted in very similar hydraulic properties. This is also proven by the close groundwater 

levels and parallel seasonal fluctuations. Therefore, all the units within the study area are 

assumed to have similar hydraulic properties and groundwater levels, consequently it is 

assumed that all units form a single system within the study area; hence, a single regional 

groundwater elevation map is generated representing all the units (Figure 5.1). 
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Figure 5.1. Hydrogeological map of the study area 
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Groundwater is recharged from the mountainous area located along the water divide 

separating Gediz and Büyük Menderes River Basins. For the study area, components of the 

water budget are calculated by Yazıcıgil et al. (2013), using Soil-Water-Balance (SWB; 

Westenbroek et al. 2010) model, developed by the United States Geological Services. 

According to the results of this model, average annual groundwater recharge from direct 

precipitation is calculated as 37.8 mm/year for the study area. 

 

When groundwater levels recorded at the wells drilled in mine site are examined, it is 

observed that there is no significant change in water levels, except seasonal fluctuations. At 

the mine site, an increasing trend is observed only in groundwater levels recorded at PZ 

Wells, which were drilled in 2007 for geotechnical purposes and then converted to 

monitoring wells. Groundwater levels recorded at these wells show an increasing trend of 

about 8-10 m, since 2009. This increasing trend is a consequence of increased groundwater 

recharge caused by two factors: reduced thickness of the vadose zone and enlargement of the 

catchment due to excavations in the open pit area; and the wet period observed since 2009. 

 

Within the content of this study, groundwater elevation map generated by the previous 

studies is revised with the recently available data obtained from the new wells. Especially for 

the northern parts of the mine site, where there was no data, many new wells are drilled for 

the characterization of the planned expansion areas. All these groundwater level 

measurements are used to create a groundwater elevation map at regional scale. Apart from 

the well data, topographical elevations of the springs in the study area, which have been 

determined during several field studies, and those of the perennial surface waters are also 

considered during map generation. After a groundwater elevation map is generated, its 

consistency with the topographical surface and with the groundwater levels of the Ulubey 

Aquifer, which are determined by Yazıcıgil et al. (2008), is checked. Resulting regional 

groundwater elevation map is demonstrated in Figure 5.1. 

 

As shown in this figure, highest groundwater elevations around 1000 m are observed along 

the water divide, at the present leach pad area and waste rock storage areas, where higher 

recharge occurs due to higher elevations. Groundwater level at the open pit, situated just 

between these two locations, is very low (around 870 m) compared to that observed at leach 

pad area and waste rock storage areas (around 1000 m). Low groundwater levels at the open 

pit area can be explained by the increased hydraulic conductivity at this locality due to the 

formation of joint and fracture systems developed during and after mineralization at the 

contact and intrusion zone. In other words, lower groundwater level at the open pit location 

is a consequence of the hydraulic conductivity difference between the host rock and intrusive 

units emplaced within those (Yazıcıgil et al., 2013).  

 

In the previous studies, Kışladağ mine site is defined as almost not deformed as no 

significant fault system is observed. Moreover, results of the study conducted by Lewis 

(2002) suggest that joint and fracture systems are dominantly oriented NNW.  The 

anisotropy developed in this direction controls the groundwater flow as well.  
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As shown in Figure 5.1, within the study area, groundwater is recharged from the 

mountainous areas located and around the mine site. Groundwater levels reaching elevations 

around 1000 m within the mine site, decrease to 650-700 m levels, at the northwestern parts 

of the mine where schists are outcropping and at the southeastern parts where Ahmetler 

Formation crops out (Figure 5.1). According to this trend, groundwater discharge occurs to:  

 Kurbağalı Creek forming the northwestern boundary, 

 Geçemek Creek at the north of the mine site, 

 Ulubey Formation at the eastern boundary and 

 Ahmetler Formation along the southeastern boundary. 
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CHAPTER 6 

 

 

GROUNDWATER FLOW MODEL 

 

 

 

6.1 Software Description 

 

A 3-D groundwater flow model is developed for the study area using the Visual MODFLOW 

2011.1 Premium software package developed by Schlumberger Water Services. Visual 

MODFLOW Premium is a 3-D groundwater flow and contaminant transport modeling 

application that integrates several packages including, MODFLOW-2000, SEAWAT, 

MODPATH, MT3DMS, etc. 

 

Using this software, groundwater flow equations are solved by MODFLOW-2000 (Harbaugh 

et al., 2000) code, known as “3-D modular finite-difference groundwater flow model” 

developed by the U.S. Geological Survey (Harbaugh et al., 2000). The applications of 

MODFLOW started to grow up by 1980’s and since then MODFLOW has continuously 

evolved with additional packages and programs. Simulations performed by MODFLOW are 

verified worldwide by modeling studies performed in the universities, as well as the public 

and private sectors. Moreover, in many legal cases, MODFLOW has been accepted as a 

legitimate approach in the analysis of groundwater systems, all over the world. 

 

 

6.2 Model Domain and Finite Difference Grid 

 

The first stage in the development of a numerical groundwater flow model is the 

determination of the expansion area and corresponding boundaries of the aquifer to be 

modeled. Flow model developed for this site, covers an area of 245 km
2 

surrounding the 

water divide separating Gediz and Büyük Menderes River Basins with a NE-SW trend 

(Figure 6.1).  

 

Next stage is setting up the finite difference grid and splitting the aquifer system into cells in 

which hydrogeological parameters are assumed to be uniform. Normally, the smaller the cell 

size, the better simulated the aquifer characteristics. On the contrary, the smaller the cell 

size, the more time and computer memory required to solve the model. Therefore, minimum 

number of cells that are capable of representing the heterogeneity of the aquifer, distribution 

of available data and aquifer boundaries should be utilized. Therefore, variable cell size is 

selected depending on the position of the cell within the model domain. The aquifer area is 

first splitted into cells with uniform size of 100x100 m, and then the grid is refined at the 

vicinity of the present and planned mining facilities, especially around the open pit. 

Therefore, the coarsest cell size is 100x100m along the model boundaries and finer grid size 

is preferred at the present and planned mining facilities (50x50 m) and at the open pit area 
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(25x25 m), where higher accuracy is required (Figure 6.1). This grid design resulted in 

86862 active cells in a single layer. The resulting grid is rotated 45°, so that it is aligned with 

the regional groundwater flow direction (NW-SE).  

 

Top boundary of the model is the topographical surface that has an elevation ranging 

between 600 m and 1300 m, within the model domain. Bottom boundary of the model is 

defined as no flow boundary at 0 m elevation, where it is 300 m below the ultimate pit 

bottom elevation. The thickness between these top and bottom surfaces is divided into 15 

layers in vertical direction, to enable the better simulation of dewatering activities during the 

next 17 years of mine operation. In the determination of the layer elevations, the thickness 

between the present pit bottom (870 m) and the ultimate pit bottom (300 m), is divided into 

11 layers vertically, so that the top layer has a thickness of 70 m and the lower 10 layers 

have thicknesses of 50 m. Below the ultimate pit bottom elevation, layers 12 and 13 have 

thicknesses of 50 m, while layers 14 and 15 have thicknesses of 100 m. Layer elevations 

designed as such at the open pit area, are applied to the whole model domain so that the ratio 

of the layer thicknesses at the open pit area will remain constant. Resulting distribution of 

the layers in the vertical direction is presented in Figure 6.2, on a cross-section passing 

through the line AA’ line shown in Figure 6.1.   
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Figure 6.1. Model grid and boundary conditions 

 

 

 
 

Figure 6.2. Vertical layout of the model layers 
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6.3 Boundary Conditions 

 

Boundary conditions simulated in the model are given in Figure 6.1. As it is demonstrated in 

this figure, model domain extends from Kurbağalı Creek along northwest boundary, to the 

lithological boundary formed by the Ulubey Formation along north and east boundaries.  

Southwest boundary of the model follows the lithological boundary between Beydağı 

Volcanics and Eşme Formation outcropping and extending westwards, which is locally 

overlain by Asartepe Formation along this boundary. There is no physical boundary 

southeast of the model domain as confirmed by the southeasterly groundwater flow direction 

outward from this boundary. 

 

In the next stage, these conceptual boundaries are defined in the numerical groundwater flow 

model. Groundwater flow towards the Kurbağalı Creek, which forms the northwest boundary 

of the model domain, is simulated with drain boundary condition assigned to the topmost 

model layer. Due to the absence of detailed hydrologic data regarding the Kurbağalı Creek, 

elevation of the drain cells located along this boundary are assigned to be 2 m below the 

topographical surface.  Below this layer the contact between model area and the outcropping 

Eşme and Ahmetler Formations are simulated with no flow boundary condition. 

 

Lithological boundaries along southwest and north-northeast of the model are assumed as  no 

flow boundaries according to the groundwater elevation map generated in conceptual aquifer 

model given in Figure 6.1.  

 

Along the eastern boundary of the model domain, general head boundary condition is used to 

simulate groundwater flow between Ulubey Formation extending eastwards of the study area 

and the modeled units. This boundary condition is assigned to the topmost three layers of the 

model, corresponding to the estimated thickness of Ulubey Formation at this locality (150 

m). Elevations of the general head boundary cells along this boundary are assigned using the 

hydraulic heads form the groundwater elevation map of the Ulubey aquifer (Figure 4.6). The 

boundary condition assigned in this manner, allows the simulation of groundwater exchange 

between the two units. 

 

As there is no physical boundary along the southeast of the model domain, this boundary is 

aligned with contours of the regional groundwater elevation map (Figure 6.1) and simulated 

using general head boundary condition. Along this boundary a uniform hydraulic head of 

650 m is assigned according to this map.  

 

Perennial and seasonal drainage within the model domain are simulated using drain 

boundary condition. However, due to the lack of detailed hydrologic data for these surface 

waters, the drain cells are assigned elevations, 2 m below the topographical surface so that 

simulated groundwater levels are close to the topographical surface. 
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6.4 Model Parameters 

 

After the determination of model grid and boundary conditions, recharge and discharge 

mechanisms of the system and hydraulic parameters of the units are defined in the model. In 

the next stage, these parameters are calibrated until a good match between the groundwater 

levels measured at the field and calculated by the model is achieved. In the following 

sections, the calibrated values of these parameters are compared to those set up in the 

conceptual aquifer model and calculated by the field tests.   

 

 

6.4.1 Recharge 

 

Located along the water divide separating Gediz and Büyük Menderes River Basins, mine 

site is situated on the recharge area in the regional sense. In the previous studies, recharge 

value for this site is determined by the analysis of the long term average monthly 

precipitation and temperature values recorded in Uşak Meteorological Station, using 

different methods. It is observed that different recharge values are determined for the site, in 

the previous studies as: 22 mm/year (SRK, 2007) and 44 mm/year (SRK, 2005). Moreover, 

these two recharge values calculated using different methods do not reflect the areal recharge 

distribution. Therefore, a new methodology is applied by Yazıcıgil et al. (2013), using the 

Soil-Water-Balance (SWB; Westenbroek et al. 2010) model developed by the United States 

Geological Services. This model allows the determination of areal distribution for each 

component of the surface water balance, including the recharge from precipitation. 

According to the results of this model, annual average groundwater recharge from 

precipitation is calculated as 37.8 mm/year for the study area. Resulting areal recharge 

distribution is assigned to the groundwater flow model and calibrated considering the 

hydrological and hydrogeological characteristics of the site, as well as the groundwater 

levels measured at the field. At some localities, initial recharge values are revised during 

calibration.For instance, recharge value calculated by the Soil-Water-Balance model in 

Emirli Hill is determined to be lower than expected considering the field conditions. Hence, 

at this location, discharge from Emirli spring is used to estimate the recharge value (76 mm). 

Moreover, it is known that at the open pit area groundwater level is very close to the current 

excavation surface (almost at 1 m depth), where high evaporation is expected. At this 

locality it is assumed that high evaporation rates, are balanced by high recharge and due to 

the fact that evaporation is not simulated in the model (neglected), groundwater recharge at 

this area is also set to be zero. Apart from these two localities, minor modifications are made 

on the groundwater recharge rates calculated by the SWB Model so that calculated 

groundwater levels match those observed at the field. No major modification is made for the 

distribution of areal recharge and at the end of calibration, recharge from precipitation is 

determined as 29.6 mm/year for the model domain. Figure 6.3 shows the areal distribution of 

recharge within the model domain. 
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Figure 6.3. Areal recharge distribution used in the calibrated model 
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6.4.2 Hydraulic Conductivity 

 

Hydraulic conductivity values obtained by the hydraulic tests conducted, are limited to the 

present mine site and the planned expansion area at north. On the other hand, all the 

lithological units present at the mine site, have continuity throughout the model domain.  

Therefore, hydraulic properties of these units, having extensions far from the mine site where 

there is no data, are assumed to be the same as those at the mine site. Hydraulic conductivity 

values assigned to these lithological units are changed within the ranges obtained from the 

field tests reflecting the hydraulic characteristics of the units. 

 

Based on the results of the study conducted by Lewis Geoscience Inc. (2002), indicating a 

NW-SE regional trend for the fracture system, an anisotropy ratio of (Ky/Kx) of 5, is applied 

in the model. Besides, RQD values obtained from the wells drilled at the mine site as well as 

the packer test results, which are performed at different depths, indicates that fracture 

frequency and apertures reduces with depth. Hence, it is concluded that hydraulic 

conductivity of the materials decreases with increasing depth and during the model setup and 

calibration processes, lateral hydraulic conductivity values are assigned to the layers in a 

downwards decreasing manner. The vertical hydraulic conductivity values of the units are 

determined with calibration as there is no data obtained from the field testing regarding this 

parameter. During calibration, ratio of lateral to vertical hydraulic conductivity (Kx/Kz) is set 

to be 10/1 for all the units, except the intrusives located at the open pit area, where this ratio 

is set to 2:1.  At the open pit area, owing to its lithological characteristics, Friable Zone is 

known to have higher conductivity and storage properties than the surrounding units. 

Therefore, this unit is assigned a relatively higher hydraulic conductivity value. Figure 6.4 

shows the regional hydraulic conductivity distribution for the top model layer, as well as the 

vertical change in the values along the cross-section passing through the line A-A’, shown on 

the map.  

 

 

6.4.3 Storage Coefficient 

 

There is not much data regarding the storage coefficient of the units within the study area. 

However, in the open pit area, within the Friable Zone (having relatively higher conductivity 

and storage properties), a pumping test is performed using a pumping well (KPT-02) and two 

observation wells (KPT-03 and KPT-04). Based on the results of this test, specific storage of 

the intrusive units at the open pit area is assigned as 1.2x10
-6 

1/m, and the rest of the model 

domain is assigned a smaller value (1.0x10
-7 

1/m). 

 

In the model, storativity parameter for the unconfined aquifers is assigned to be 0.01 for the 

whole model domain, as there is no specific value determined for this parameter. Later on, 

during the dewatering simulations, which are conducted under transient conditions, several 

values are tested in order to determine the effect of this parameter on the model results. 
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Figure 6.4. Hydraulic conductivity distribution used in the calibrated model 

 

 

 

 

 

 

 

 

6.5 Calibration Results 

 

After the groundwater flow model is set up with the meteorological, geological, hydrological 

and hydrogeological data collected at the field; it is calibrated to the field conditions by 

comparing the groundwater levels observed at the field and calculated by the model. 

 

During calibration, above mentioned input parameters of the model (hydraulic conductivity, 

anisotropy and recharge from precipitation) are modified within the geological, hydrological 
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and hydrogeological limits by trial and error, so that a good match between the groundwater 

levels observed at the field and calculated by the model is achieved. As the model calibration 

is conducted under steady-state conditions, storativity parameter could not be calibrated. 

Rather, as it is mentioned above, transient state dewatering simulations are performed with 

different storativityvalues for the unconfined conditions and effects of this parameter on the 

model results are determined. 

 

Under steady-state conditions, model is calibrated to the average groundwater levels 

observed during the period 2002-2012 and to the groundwater levels measured at the 

observation wells recently drilled at the present mine site and the planned expansion area.  

The temporal variations in observed groundwater levels were minor, except those observed 

at the open pit area, reasons of which are discussed in Chapter 5 in detail. 

 

Regarding the spatial distribution of groundwater levels, there is not much data except the 

present mine site and planned expansion area. Therefore, where there is no observation, 

results calculated by the model are compared to the regional groundwater levels and flow 

directions generated in the conceptual aquifer model   during the calibration.  

 

Consistency of the model calculated and field measured groundwater levels, is quantified 

using the two statistical parameters, equations of which are given below. During calibration, 

the aim is the minimization of both RMSE (Root Mean Square Error) and NRMS 

(Normalized Root Mean Square Error). 
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where, n : total number of observation points, 

h0 : observed groundwater level, 

hh : calculated groundwater level,  

(h0)max : maksimum value for observed groundwater level, 

(h0)min : minimum value for observed groundwater level. 

 

 

At the end of calibration, the graph presented in Figure 6.5 is obtained where groundwater 

levels observed at the field are plotted against groundwater levels calculated by the model. 

As it can be seen from this graph, a good match between the observed and calculated 

groundwater levels is achieved, with RMSE of 13.9 m and a correlation coefficient of 0.942. 
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Moreover, NRMSE value of the calibrated model is 6.3%, which is well below 10%, 

indicating that the calibration is successful.  

 

Groundwater levels calculated by the calibrated model are presented together with the 

regional groundwater level map generated in the conceptual model as shown in Figure 6.6. 

The two maps given in this figure show that groundwater levels and flow patterns are 

consistent in regional scale as well.   

 

As a result, it can be concluded that the model calibration under steady-state conditions is 

accomplished and hydraulic parameters assigned to the model efficiently represent the field 

conditions. Therefore, this calibrated model is capable of simulating the possible responses 

of the system to the imposed stresses. In other words, in the following stages, this model can 

be used as a tool to predict the amount of groundwater that has to be pumped during 

dewatering activities, theformation of the pit lake levels after the mine closure and the 

interaction of the pit lake with the surrounding groundwater regime.  
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Figure 6.5. Observed vs calibrated groundwater levels  

 

 

 

 

 



102 
 

 

F
ig

u
re

 6
.6

. 
O

b
se

rv
ed

 a
n
d
 c

al
cu

la
te

d
 g

ro
u
n
d
w

at
er

 l
ev

el
s 



103 
 

6.6 Calibrated Groundwater Budget 

 

The best practice in the determination of the groundwater budget and its components for the 

study area is to use the groundwater budget calculated by the model. Therefore, depending on 

the results of the calibrated model, a groundwater budget is set up for the site at steady state 

conditions, where recharge and discharge components the system are separately determined 

(Table 6.1). According to these results, for the model domain, annual recharge is calculated as 

7.36 Mm
3
. Almost all of this recharge (99%), comes from direct precipitation, while only a 

small portion (1%) comes from Ulubey Aquifer as lateral inflow. Nearly, 62% of the total 

recharge discharges to the surface waters within and along the model boundaries, while 29% 

discharges laterally out of the model domain along the southeast boundary and remaining 9% 

discharges laterally to the Ulubey Aquifer (Figure 6.1). 

 

 

 

Table 6.1. Groundwater budget for the calibrated model 

 

RECHARGE Mm3/yıl DISCHARGE Mm3/yıl 

Recharge from precipitation 7.25 
Discharge to surface waters 4.54 

Discharge by lateral flow 2.15 

Recharge from Ulubey Aquifer 0.11 Discharge to Ulubey Aquifer 0.67 

TOTAL 7.36 TOTAL 7.36 

 

 

 

6.7 Sensitivity Analysis 

 

Sensitivity analysis is very beneficial in determination of the parameter or parameters which are 

effective on the model results. The results of sensitivity analysis are not only useful in planning 

of possible data collection in the future, but also in the minimization of the model errors.  

A series of simulations are performed in order to test the sensitivity of the model to changes in 

the following parameters: 

 hydraulic conductivity in the whole model domain  

 hydraulic conductivity in the open pit area 

 ratio of lateral to vertical hydraulic conductivity in the open pit area 

 anisotropy in the whole model domain 

 recharge from precipitation 

 

During sensitivity analysis, at each attempt one of the above-listed parameters is modified while 

keeping others constant. For sensitivity analysis, RMSE value is used as a criterion to determine 

the sensitivity of the model to the changes imposed on the input parameters. At the end of each 

sensitivity run, calculated RMSE value is compared to that of the calibrated model.  
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Moreover, due to the fact that this calibrated model will be used as a tool in the determination of 

the groundwater flow rates, during the dewatering and closure phases, model results has to be 

very  precise especially at the open pit area. Therefore, in addition to RMSE, sensitivity of the 

model is also assessed with respect to the open pit groundwater levels at the end of each 

sensitivity run.  

 

Results of the simulations from sensitivity analysis are summarized in the graphs presented in 

Figure 6.7. In these graphs, for each parameter, imposed change in the parameter is plotted 

against the calculated RMSE value and the simulated open pit groundwater level corresponding 

to that change. 

 

 

 

 
 

Figure 6.7. Results of sensitivity analysis 
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Examining the responses of RMSE in these graphs, it is observed that among all the parameters 

tested, the model is most sensitive to the decrease in the hydraulic conductivity defined over the 

whole model domain, which is followed by the changes in anisotropy and recharge from 

precipitation. Moreover, the model is more sensitive to the decrease in hydraulic conductivity in 

the open pit area rather than the increase in the same parameter. Finally, it is observed that the 

model is not sensitive to the changes in the ratio of lateral to vertical hydraulic conductivity in 

the open pit area.  

 

The examination of the responses of open pit groundwater levels shows the highest sensitivity to 

the increases in the hydraulic conductivity defined over the whole model domain; such that 

doubling the hydraulic conductivity in the whole model domain, corresponds to an almost 40 m 

decrease in the open pit groundwater levels. Increasing anisotropy causes a similar response in 

the open pit groundwater levels. Recharge from precipitation, especially in the case of a 

decrease, is another important parameter determining the open pit groundwater levels. When the 

effects of the changes in hydraulic conductivity in the open pit area are examined, it is seen that 

groundwater levels at the open pit are more sensitive to the decreases compared to the increases 

in this parameter. 
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CHAPTER 7 

 

 

OPEN PIT DEWATERING 

 

 

 

At Kışladağ Gold Mine, open pit mining activities initiated by the year 2006. Topographical 

elevation of the pit bottom, which was initially around 1080 m, has been lowered ever since, 

reaching to 870 m level by the end of 2012. Corresponding groundwater elevation is measured 

as 869 m. Up to this level, dewatering actions were not required as the excavations were 

conducted above the groundwater level, where dry operating conditions was available. 

However, by the end of year 2013, pit bottom elevation is planned to be lowered below the 

groundwater level. Below this level groundwater inflow is expected into the pit. Therefore, after 

this level, groundwater level has to be kept below the excavation bottom in order to provide and 

sustain stable and dry conditions for the excavations. 

 

By the end of 2029 when the mining operations ceases, elevation of the pit bottom is planned to 

be lowered to 300 m level. Considering the present groundwater level, which is around 870 m 

level, during the next 17 years of the mine operations, groundwater level should be lowered by 

about 570m. To achieve this dewatering target, groundwater inflow rate, which is expected to 

increase with decreasing bit bottom elevation, should be quantified. Based on this result, proper 

dewatering systems should be designed. 

 

At this stage calibrated numerical groundwater flow model is used as a tool to predict the 

amount of groundwater that will flow into the pit, as the pit bottom is lowered. Different 

modeling approaches are tested during dewatering simulations and their results are compared. 

Following sections will summarize the results obtained by the simulations conducted under 

steady state and transient conditions. 

 

 

7.1 Steady-State Dewatering 

 

The first attempt in the determination of the amount of groundwater that has to be dewatered 

during the operational phase of the mine is simulating the system under steady state conditions. 

For this purpose, calibrated numerical groundwater flow model is used and new boundary 

conditions are imposed on this model in order to simulate the final layout of the open pit. To 

assign the new boundary condition, ultimate pit geometry of the pit, at the end of year 2029 is 

used and this geometry is simulated in the model with drain boundary condition. Drain 

elevations are assigned in such a way that they are equal to the ultimate elevation of the pit 

bottom at that cell, and groundwater is discharged from these drain cells. In this manner, 

groundwater elevation is equalized to the pit bottom elevation, at the final stage. Results of this 

steady-state simulation indicated that 57 L/s of groundwater is expected to discharge from the 

pit walls and the pit bottom, when the bottom elevation of the pit reaches to 300m level. 
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However, groundwater flow model running under steady-state conditions ignores the storage 

term. In other words, the calculated amount of groundwater discharge (57 L/s) does not include 

the amount of groundwater that would be released from storage, if the model were run under 

transient conditions. Therefore, the result of this simulation conducted under steady state 

conditions reflects the minimum amount of groundwater that is expected to flow into the pit. 

Consequently, it became compulsary to perform the dewatering simulations in transient state. 

 

 

7.2 Transient Dewatering 

 

The groundwater flow model calibrated under steady-state conditions is revised and it is run in 

monthly stress periods for the next 17 years of operation stage. In the transition from steady-

state to transient state, time dependent components of the budget should be determined and 

transformed into time series. In this case, the recharge from precipitation is the only time 

dependent component of the steady state budget. To assign recharge as time series, it is assumed 

that average annual recharge distribution that is determined under steady state conditions is not 

changing throughout the years. However, time-wise distribution of recharge throughout the year 

is considered and steady state calibrated recharge values are converted into the monthly 

recharge series, in this manner.  

 

Apart from the boundary conditions, specific storage and specific yield parameters have to be 

defined before the model is run under transient conditions. As it is mentioned in the Chapter 5, 

where the model parameters are discussed, there is not much data regarding the storage 

coefficient of the units within the study area. Therefore, based on the results of the test 

conducted in the open pit area, specific storage of the intrusive units at this location is assigned 

as 1.2x10
-6 

1/m, and the rest of the model domain is assigned a smaller value (1.0x10
-7 

1/m). 

Due to the absence of a specific yield parameter (in other words storage coefficient for the 

unconfined conditions) defined for the study area; this value is assumed to be 0.01.  Later on, 

dewatering simulations are performed using different specific yield values (0.020, 0.015, 0.010, 

0.005) and the effects of this parameter on the model results are tested. 

 

After the basic modifications are completed to transform the model from steady-state to 

transient state, progression of the pit in time has to be defined using boundary conditions. For 

this purpose, drain boundary condition is used to simulate the groundwater flow into the pit as 

the pit bottom is lowered, similar to the steady-state dewatering method described above. In 

addition to this, drain boundary condition is capable of simulating the time-wise progression of 

the pit by assigning time dependent head values to the drain cells. Head values are assigned in 

accordance with the mine development plan, which are available for different time periods 

during the 17 years of operational stage.  

 

Within this time interval between the years 2012 and 2029, mine development plans designed 

for the following time schedules are utilized: 

 for 2013 and 2014, quarterly 

 for 2015 and 2016, biannually, 
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 for 2017 and 2027, annually and  

 for 2029, corresponding to the final pit layout. 

 

During this period, mine layouts are interpolated for the months having no plans, assuming that 

the elevation linearly changes in between the periods of known design.   

 

Groundwater flow model modified in this manner is run under transient conditions for 17 years, 

divided into monthly stress periods and amount of groundwater flow that has to be dewatered 

during the operational phase of the mine is determined. 

 

Four sets of dewatering simulations under transient state are conducted using different specific 

yield values (0.020, 0.015, 0.010, 0.005). At the end of these simulations, amount of 

groundwater that will flow into the pit is determined on monthly basis (for 204 months). Figure 

7.1 shows the time-wise progression of the pit bottom together with the corresponding monthly 

groundwater inflow rates for different specific yield values. As it can be seen from this figure, 

as a consequence of lowering the pit bottom from 870 m to 300 m level, groundwater inflow 

rate will increase continuously and reach to 81-115 L/s (corresponding to simulations using 

different storage values) at the end of the 17 years. 

 

 

 

  
 

Figure 7.1. Groundwater flow rate into the pit and elevation of the pit bottom vs time 
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Tables 7.1-7.4 summarizes the annual groundwater budgets calculated by the model 

corresponding to the four set of simulations using different storage values, during the 17 years 

of dewatering period. Examining these annual budgets,  

 average annual groundwater flow rate into the pit is calculated as 41-62 L/s or 

 average annual amount of groundwater flow into the pit is calculated as 1.29-1.96 

Mm
3
/year 

The safe yield of this system is determined by Yazıcıgil et al. (2013), as 5.89 Mm
3
/year, which 

corresponds to 80% of the recharge (7.36 Mm
3
/year) for this model are. When this amount is 

compared with amount of groundwater that has to be pumped during the dewatering activities 

(1.29-1.96 Mm
3
/year), it is noted that the amount of groundwater that has to be pumped for 

satisfying the dewatering requirement, lie within the limits of safe pumping.  
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At the end of the dewatering period of 17 years, when pit bottom reaches 300 m level, hydraulic 

head distribution is inspected. Considering all the model thickness, which is divided into 15 

vertical layers; at the open pit area 300 m elevation corresponds to the first 11 layers. In other 

words, at the end of the 17 years, first 11 layers of the model should be dried for successful 

dewatering. Figure 7.2 shows the results of the dewatering simulations performed using 

different storage values on a cross-section passing through the open pit. As demonstrated on this 

figure, at the end of each simulation, pit is successfully dewatered and changing aquifer 

characteristics, represented by different storage values, resulted in different hydraulic head 

distributions.  

 

Another significant consequence of dewatering activities is that lowering the water table from 

870 m to 300 m, results in hydraulic head differences not only in lateral direction but also in 

vertical direction. Due to this vertical hydraulic gradient, groundwater flows into the pit from 

the pit bottom as well. It should be noted that defining the time-wise progression and geometry 

of the pit using drains with time dependent head values allows the simulation of groundwater 

flow into the pit from both the walls and the bottom of the pit, which is the case in the real field 

conditions. 

 

As it is shown on Figure 7.2, at the end of the dewatering period of 17 years when the pit 

bottom is lowered to 300 m level, different hydraulic head distributions are produced at each 

model layer. Areal distribution of the drawdowns at the end of 17 years are presented for the 

third model layer because this layer allows the best representation of the interaction between the 

modeled units and the Ulubey Aquifer. In the lateral extension, out of the model domain, below 

the elevations corresponding to the bottom of this layer, Ulubey Aquifer is underlain by the 

impermeable Ahmetler Formation. In Figure 7.3, areal extensions of the 20 m drawdown 

contours, produced as a result of simulations performed using different storage values, are 

shown. Due to the anisotropic characteristics of the aquifer, cone of depressions have elliptical 

shape, whose long axis extending 4.6-5.8 km from the center of the open pit, in NW-SE 

direction. As can be seen from this figure, showing the results of simulations conducted using 

different storage values, smaller storage values result in cone of depressions having wider 

extensions. However, examining the Tables 7.1-7.4, it can be seen that these drawdowns do not 

affect the interactions between the modeled units and the Ulubey Aquifer, significantly. 

Depending on the different storage values used in simulations, discharge from the model area to 

the Ulubey Aquifer decreases about 0.13-0.18 Mm
3
/year, while the recharge from the Ulubey 

Aquifer into the model domain is almost not affected at all at the end of 17 years. Decrease in 

the amount of groundwater discharging to the Ulubey Aquifer is negligible when compared to 

the annual of recharge of the Ulubey Aquifer (190 Mm
3
/year) calculated by Yazıcıgil et al. 

(2008). 
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Figure 7.2. Groundwater level and hydraulic head distribution at the end of 17 years 
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Figure 7.3. Distribution of the 20 m drawdown contour at the end of 17 years  
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CHAPTER 8 

 

 

PIT LAKE FORMATION 

 

 

 

Open pit mining activities at Kışladağ Gold Mine is initiated by the year 2006. Till the end of 

2012, mining activities were pursued above the water table; hence, during this period 

dewatering actions were not required. However, by the end of year 2013, pit bottom elevation is 

planned to be lowered below the groundwater level. Therefore, dewatering activities has to 

commence and continue throughout the operational phase of the mine (17 years until the end of 

2029) in order to provide and sustain stable and dry conditions for the excavations. The previous 

chapter gives detailed information on the simulations and calculations, which have been 

conducted for the operational phase, that will last 17 years, since 2013 till 2029. This chapter, 

on the other hand, focuses on the post-closure phase.  

 

By the end of 2029, the pit bottom will be lowered to the ultimate level (300 m) and operational 

phase will be completed; therefore dewatering activities will cease. The water table that is 

lowered by about 570 m during last 17 years of the operational phase, will tend to rebound and 

groundwater will inflow to the pit. A lake is expected to form in the open pit, with the water that 

will flow into the excavation area. The water sources that will contribute to the formation of the 

pit lake are groundwater inflow, direct precipitation falling onto the lake surface and runoff 

from the pit walls following a precipitation event. The outflow mechanisms of the pit are in 

general, evaporation from the lake surface and groundwater outflow, depending on the hydraulic 

conditions. The lake level will stabilize at an elevation when equilibrium is reached in terms of 

hyrogeological and hydrological components of the lake system, under the given meteorological 

conditions.  

 

In order to predict the final pit lake level, the time required to reach this level and the hydraulic 

status of the ultimate pit lake in the regional hydrogeological regime, water budget (total inflow 

and total outflow) calculations are formulated for the lake. In general, inflow components of this 

budget can be classified as (1) direct precipitation (2) runoff from the pit walls (3) groundwater 

inflow; while, the outflow components are (1) evaporation and (2) groundwater outflow to the 

downstream direction. A pit lake budget is formed, by which volumetric changes of all these 

components are calculated on daily basis.  

 

As the calculations are based on the “volumes” of each inflow and outflow component, pit lake 

geometry is used to convert the flow rates into volumetric flows. For this purpose, surface area 

and volume of the pit lake have to be determined corresponding to different pit lake water 

levels. Therefore, the ultimate configuration of the pit lake that will be reached by the end of 

2029 is used to calculate the relation between pit lake level – lake surface area – lake volume. 

These relations are demonstrated in Figure 8.1, which also shows the size of the final open pit. It 

can be noted from this figure that surface area of the pit walls at the final excavation level is 
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about 3.75 km
2
. These relations are introduced to the excel spreadsheet model together with the 

daily inflow and outflow components and time-wise change of the pit lake level is determined. 

 

 

 

 

 
 

Figure 8.1. Pit lake level – lake surface area – lake volume relation 

 

 

 

 

The equation to calculate the volumetric balance of the pit lake is given below: 

 

Inflow – Outflow = Net Change in Storage 

 

(VGWI + VDP + VPWR) – (VE + VGWO) = V 

 

where; 

 V = Net Change in Storage 

 VGWI = Groundwater Inflow 

 VDP = Direct Precipitation 

 VPWR = Pit Wall Runoff 

 VE = Evaporation from pit lake and 

 VGWO = Groundwater Outflow. 

 

The components of the conceptual lake water balance are schematically shown in Figure 8.2. 

Detailed description of each component and related assumptions are given below. 
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Figure 8.2. Components of the conceptual pit lake  

 

 

 

 Groundwater Inflow (VGWI) and Groudwater Outflow (VGWO): As the dewatering 

operations are completed, groundwater will start to flow into the pit. The rate of 

groundwater inflow and/or groundwater outflow will be controlled by the lake level and 

groundwater level surrounding the pit. The groundwater inflow and/or outflow rates are 

calculated with the numerical groundwater flow modelby running the model under 

steady-state conditions assuming a lake-level for every 50 meter interval from pit 

bottom to top. Then a regression analyses is completed on the data to calculate the total 

inflow and outflow rate for 1 m increments. Figure 8.3 shows the net inflow rates for 1 

m interval (Note that the negative inflow rates indicate an outflow from the pit lake). As 

can be noted from this figure, the groundwater inflow rate is calculated as almost 50 L/s 

at the beginning of the closure period when pit bottom is at 300 m level; while, it 

decreases to 10 L/s at 820 m of lake level. As it can be seen from this graph, 

groundwater inflow rate increases at the very early periods of lake filling, reaches a 

peak and then decreases continuously. As mentioned by Castendyk and Eary (2009), in 

theory, the rate of inflow is initially rapid because the hydraulic gradient is at maximum 

and decreases over time as the gradient becomes smaller. At the same time rising water 

table increases the area where groundwater discharges into the lake lake and in some 

cases this increase can offset the decrease in hydraulic gradient resulting in a constant 

filling rate for a period of time (Castendyk and Eary, 2009). In this case, the first 

increase in the flow rate could be explained by the rising water table, hence increasing 
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the discharge area. However, after a short time, the effect of decreasing gradient 

dominates over this effect and results in a continuous decline in the groundwater flow 

rates into the pit. Furthermore, at 830 m elevation, the inflow and outflow rates were 

calculated as 8 L/s and 0.12 L/s respectively, indicating a negligible outflow from the 

pit lake at 830 m elevation (0.12 L/s). On the other hand, as the lake level increases 

above 830 m elevation, the pit lake’s hydrologic status changes from sink to flow- 

through condition.  

 

 

 

 
 

Figure 8.3. Net inflow rate to pit at different elevations  

 

 

 

 Direct Precipitation (VDP): Long term (1975-2012) daily precipitation series that were 

generated using the data from both Kışladağ Meteorological Station and MGM’s 

(Turkish Meteorological General Directorate) Uşak Meteorological Station are used in 

the calculation of this budget component. As previously explained, this 38 years of data 

series covers three wet (1978-1981, 1997-2002 and 2009-2012) and two dry periods 

(1984-1996, 2003-2008). Hence, it can be concluded that the data set can represent 

long-term precipitation patterns expected in the area. The volumetric inflow amount to 

lake from direct precipitation is calculated by multiplying the daily precipitation with 

the pit lake surface area (for the same day). 

 

 Pit Wall Runoff (VPWR): An analytical model is utilized to predict the runoff rate that 

will be originated from the precipitation to the pit walls. This analytical model is based 
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on U.S. Soil Conservation Service’s flow curve number (CN) method (USDA, 1986) 

which is well known for the determination of the runoff rate. Following equations are 

used for the calculation of the runoff; 

10
1000


CN

S      ;    
)8.0(

)2.0( 2

SP

SP
Q




      

 S : potential maximum soil moisture retention after runoff begins (inch) 

 CN : Curve Number 

 P : Precipitation (inch) 

 Q : Runoff (inch) 

 

Considering the hydrogeological and hydrological conditions, together with the 

geometry of the Kışladağ open pit, the curve number (CN) is determined as 95. 

However, a series of additional simulations are also completed with CN values of 96, 97 

and 98, in order to assess the effects of this parameter on the pit lake water budget and 

on the equilibrium conditions of the system. The results of the calculations, which are 

made using different CN values, are presented together. To conclude, during the 

determination of the volumetric balance, the runoff is calculated by multiplying the 

daily precipitation with the pit wall area (for the same day). The pit wall area is 

calculated as the difference between the pit crest area and the lake surface area for the 

same day. 

 

 Evaporation (VE): The long-term (1975-2012) daily evaporation data set generated for 

the Kışladağ mine site as explained previously is used in the calculation of the 

evaporation losses from the lake surface. Daily evaporation values (pan evaporation 

values) are multiplied with the pan coefficient (taken as 0.75) to calculate the lake 

evaporation values. The daily evaporation rates calculated in this manner for the 1975-

2012 period are introduced to the spreadsheet model, repetitively. Then on a daily basis, 

lake surface area and daily lake evaporation value is multiplied to calculate the total 

daily volume evaporating from the pit lake. 

 

As described above, each component of the lake budget is calculated on a daily basis and 

included in the lake water budget in order to calculate the volume of the lake at that day. The 

surface area and elevation of the lake corresponding to that volume is determined from above 

mentioned the pit lake level – lake surface area – lake volume relations (Figure 8.1). These steps 

are repeated for each day throughout the simulation time, until the lake level stabilizes. 

Moreover, as it is mentioned above, the spreadsheet models is run with different CN values, and 

resulting the steady- state pit lake levels, together with the time required to reach those levels, 

are determined. Figure 8.4 shows the pit lake level changes for a period of 800 years for 

different CN values. According to the results of these runs, the pit lake level will be stabilized 

approximately 585 years after the closure of the mine (at year 2615). Furthermore, it is noted 

that (other than the climatic fluctuations) pit lake level reaches equilibrium at 816 m when CN 

value is 95, while lake level stabilizes at 829 m when CN value is 98. 
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Figure 8.4. Pit lake level changes within time for different CN values 

 

 

 

The components of the annual lake water budget for CN 95 over 800 year period are given in 

Figure 8.5  As can be noted from this figure, the groundwater inflow to the lake will be the most 

significant component of the pit lake water budget for the first 200 years period, because of the 

high hydraulic gradient caused by the dewatering operations. Later, as the hydraulic gradient 

decreases, the significance of groundwater inflow will decrease, and meanwhile as a result of 

increasing surface area, the significance of inflow from direct precipitation will increase. 

Similarly, the increase in the surface area of the pit lake will drastically increase the outflow by 

evaporation. On the other hand, the runoff from pit walls will normally show a decrease within 

time as the pit lake level increases.  

 

Another important outcome of Figure 8.5 is that components of pit lake water budget, except for 

the groundwater inflow, are quite sensitive to the climatic changes in precipitation and 

evaporation. As a consequence of the presence of wet and dry periods within the 38 years of 

precipitation and evaporation series, which are used repetitively; direct precipitation, pit wall 

runoff and evaporation components show significant fluctuations. To conclude, it should be 

noted that the climatic variations have a significant impact on the components of the pit lake 

water budget and hence on the lake levels at the equilibrium state conditions.   
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As noted in the above sections, pit lake water budget calculations showed that the pit lake 

level is expected to stabilize between 816 and 829 m for different CN values (95, 96, 97, 98). 

Furthermore, it is also noted that these equilibrium levels fluctuate in response to the 

changing climatic conditions introduced by the repetitive time series of precipitation and 

evaporation. For different scenarios, the highest pit lake levels are determined in the range 

from 818 m (CN:95) to 830 m (CN:98).  

 

To assses the hydraulic relation between the lake and the groundwater system, the maximum 

lake levels are simulated using the calibrated steady state numerical groundwater model after 

a few modifications. As these simulations should represent the post-closure phase of the 

mine, where open pit will totally be excavated, several approaches are tested to simulate the 

pit lake. In each approach tested lake level is simulated by the constant head boundary 

condition assigned to the final surface area of the pit. The approaches differ in the sense they 

are used to simulate the flow conditions within the open pit. The cells within the open pit are 

simulated (1) as the same with the surrounding cells without any modification, (2) as inactive 

cells, (3) with high hydraulic conductivity cells of conductivity set equal to 2000 m/d. A set 

of simulations are performed and their results as compared. Although computational time 

differed due to the convergence difficulties, in the end, all methods produced very similar 

results. The results presented below are obtained from the model where cells within the open 

pit are simulated with high hydraulic conductivity.  

 

As it is mentioned above, lake levels to be tested (818 and 830 m), are introduced to the 

numerical groundwater model as the elevation of the constant head boundary cells 

representing the equilibrium lake levels and steady state simulations are conducted in order 

to understand the hydraulic relation between the groundwater system and the pit lake. In this 

manner, it is possible to examine the hydraulic head distribution at the equilibrium 

conditions and to determine the interactions of the final lake and surrounding groundwater 

system. Figure 8.6 shows the hydraulic head distributions for the lake levels at 830 and 818 

meters under the steady state conditions. It can be depicted from these figures that while the 

lake level is at 818 meters, the lake behaves as a sink, in other words it becomes a terminal 

pit lake. As the level increases to 830 meters, the lake will change its hydraulic status from 

terminal to flow-through pit lake. It should be noted that groundwater outflow from the pit 

lake, which is negligible at 830 m level, would impact the downstream system at lake levels 

higher than 830 m. 
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Figure 8.6. Hydraulic head distributions corresponding to pit lake levels of 830 m and 818 m 
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CHAPTER 9 

 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

TÜPRAG Metal Mining Company is operating a gold mine in Uşak Province in western 

Turkey since 2006, currently with the main facilities consisting of a leach pad, waste rock 

storage area and an open pit. By the end of 2012, pit bottom elevation is almost 1 m above 

the groundwater level. According to the mine plans, pit bottom elevation is expected to reach 

300 m level by the end of 2029. Therefore, during the period between the years 2012-2029, 

groundwater levels have to be reduced by 570 m in order to provide slope safety and dry 

excavation conditions. Consequently, the rate of groundwater inflow into the pit, which is 

expected to increase as the pit bottom is lowered, has to be quantified and based on this rate 

dewatering systems have to be designed.  The mining operations will be finalized in 2030 

after which the dewatering program will cease. Thus a lake is expected to form in the open 

pit area. To assess the impact of the lake on groundwater resources, it is of utmost 

importance to determine the steady state conditions (lake levels, time required to reach 

steady state, groundwater-pit lake interactions etc) to be formed at the pit lake during post-

closure period.  

 

This study aimed to predict the dewatering discharge rates (groundwater inflow to pit) during 

the operational period as the excavation advances to the final operational depth; the future pit 

lake level after closure and filling period to reach the steady-state lake level under historical 

meteorological conditions and to assess the impact of dewatering operations on existing 

water resources and users and the hydraulic relation between the final pit lake and 

groundwater system.  

 

In order to achieve these purposes, a numerical three dimensional groundwater model was 

constructed to simulate the operational and the post closure groundwater regime. The 

numerical modeling process was completed within three stages. Initially a conceptual 

groundwater model was constructed, then based on this conceptual model a numerical 

groundwater flow model was constructed and calibrated to site conditions (with the observed 

groundwater levels). Finally, dewatering simulations were completed with the calibrated 

model in order to predict the groundwater inflows to pit during the dewatering period and the 

potential impact on the groundwater resources in the close vicinity of the area. To predict the 

post closure pit lake formation, a spreadsheet model was integrated with the numerical 

groundwater flow model that predicts groundwater inflow rates to the pit. Then simulations 

were completed to predict the filling period and the steady pit lake level. The simulations 

were completed for 800 year period with the spreadsheet model using the daily evaporation 

and precipitation data set prepared from long term daily meteorological data. Finally, the 

steady pit lake level was introduced to the numerical groundwater model in order to predict 

the hydrologic status of the pit lake at its steady state conditions. 
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The following  results and conclusions are made: 

 

Two different approaches are applied for the prediction of the groundwater inflow into the 

pit when pit bottom reaches to 300 m level. First one is the steady state simulation of pit 

dewatering, which resulted in a groundwater inflow rate of 57 L/s. However, as this 

approach (steady state simulation) does not account for the amount of groundwater that will 

be released from storage, transient simulations are also performed. 

 

The results of the dewatering simulations conducted under transient conditions show that 

groundwater inflow into the pit increased from zero to a maximum of 81-115 L/s (depending 

on the storage values used in the simulations) as water table is lowered from 870 m to 300 m 

elevation during 17 years of operational period. When these inflow rates are averaged over 

17 years, expected average groundwater inflow rates are calculated as 41-62 L/s, 

corresponding to an annual rate of 1.29-1.96 Mm
3
/year that has to be dewatered. 

 

When the results of the two approaches are compared, it is obvious that steady state 

simulations yielded almost half of the maximum rates calculated by the transient simulations, 

thus underpredicting the groundwater inflows at the later stages of dewatering but 

overpredicting them at the early stages. As it is mentioned above, this is due to the fact that 

steady state simulation does not account for the amount of groundwater that will be released 

from storage, while transient simulation does. However, when groundwater inflow rates 

calculated under steady state conditions (57 L/s) are compared with average groundwater 

inflow rates calculated under transient conditions (41-62 L/s), it is seen that they are very 

close, indicating the reliability of the model results. Transient approach is better in 

simulating the time-wise progression of the pit and corresponding time-wise change in the 

groundwater inflow rates into the pit. 

 

At the end of the dewatering period of 17 years when the pit bottom is lowered to 300 m 

level, due to the anisotropic characteristics of the aquifer, cone of depressions having 

elliptical shapes are formed and extended 4.6-5.8 km from the center of the open pit in NW-

SE direction. However, it is observed that these drawdowns do not affect the interactions 

between the modeled units and the Ulubey Aquifer significantly. Depending on various 

storage values used in the simulations, discharge from the model area to the Ulubey Aquifer 

decreases about 0.13-0.18 Mm
3
/year, while the recharge from the Ulubey Aquifer into the 

model domain is almost not affected at all at the end of 17 years. Decrease in the amount of 

groundwater discharging to the Ulubey Aquifer is negligible when compared to the annual 

recharge of the Ulubey Aquifer (190 Mm
3
/year) calculated by Yazıcıgil et al. (2008). 

 

At the end of the operational period of 17 years, the dewatering program will cease and 

groundwater is expected to flow into the pit, forming a pit lake.  Pit lake water balance 

calculations are performed for  800-year period with different CN values. According to the 

results of these runs, the pit lake filling period will be completed approximately after 585 

years (at year 2615). Furthermore, at CN 95, pit lake level reaches to 816 m and at CN 98, 

lake level reaches to 829 m, except the seasonal fluctuations. It can be concluded that for all 
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CN values tested, lake levels stabilize at levels below 830 m, such that pit will behave as a 

sink. Furthermore, it should be noted that as the lake level increases to above 830 meters, the 

lake will be a flowthrough system that may impact the downstream groundwater resources.  

 

Based on the results of this research following recommendations are made: 

 

The results presented in this study are calculated using a 3-D numerical groundwater flow 

model. It should be noted that in the whole area of 245 km
2
, available data is limited to the 

mine site. Therefore, the model should be revised as new data becomes available during 

operations. 

 

Moreover, the lack of data regarding the storage values of the water bearing units within the 

study area poses uncertainity on the model results. Hence, rather than using a single storage 

value, a range of values are tested with the simulations and the results are given as ranges. 

Results indicated a high dependency on the storage value, which is observed in the 

dewatering simulations as calculated wide range of groundwater flow rates into the pit. As 

model results are highly sensitive to storage value; in the further studies, this parameter 

should be determined with the field tests and the model has to be re-run with the value 

obtained from the tests, if it is not within the range tested. 

 

It should be noted that during these simulations, precipitation that will directly fall on the pit 

and runoff from the pit walls, are not taken into account. Therefore, in the design of 

dewatering systems, especially in the selection of pumps, this fact should be considered. 

Furthermore, all these simulations were conducted using the present pit design, therefore, 

any possible change in the production plans or the pit design should require the 

modifications to the groundwater flow model and simulations have to be re-run.   

 

Another issue that has to be pointed out is on the selection of the model to simulate 

dewatering and pit lake formation processes. A thorough discussion on the selection of a 

proper model for the solution of any groundwater related mining problem is given in Chapter 

2. As it is mentioned in that section, individual codes have slight advantages and 

disadvantages, depending on the application, and the choice of input parameters and data, as 

well as the interpretation of the modeling output are more important than the choice of the 

code itself. There are several analytical and numerical methods that can be applied 

depending on the size and site-specific conditions of the problem. In this study dewatering 

simulations are performed using MODFLOW 2000 (Harbaugh et al., 2000) code, where 

open pit is simulated by defining drain boundary condition to the cells representing the 

geometry of the pit and are assigned time dependent head values. In the light of the results of 

these dewatering simulations providing the groundwater flow rates into the pit as the pit 

progresses, future work could focus on a dewatering system design. Furher simulations could 

be performed using the 3-D model developed in this study as a tool to design and test the 

efficiency of several dewatering alternatives. For instance performance of dewatering 

systems using vertical and horizontal wells or a combination of both could be tested. 
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Pit lake formation process on the other hand, is simulated with a spreadsheet model, which is 

fed several inputs (climate data, pit geometry and also the groundwater inflow rates 

calculated by the 3-D steady state model). Moreover, results of the spreadsheet model are 

then used as inputs to the 3-D model to simulate the ultimate equilibrium conditions. For the 

further studies, simulation of the transient pit lake formation using the same 3-D model and 

LAK3 package (Merritt and Konikow, 2000), with several modifications on the calculation 

of the pit wall runoff component (which is very significant for this pit geometry and should 

be linked to the changing pit level) could be recommended. Several models may also be used 

to cross-check the solutions.  

 

In the lake water budget calculations using the spreadsheet model, runoff rate that will be 

originated from the precipitation to the pit walls is predicted by means of an analytical 

model, namely curve number (CN) method (USDA, 1986). Considering the hydrogeological 

and hydrological conditions, together with the geometry of the Kışladağ open pit, the curve 

number (CN) is determined as 95; however, different CN values are tested and results are 

presented within the possible ranges. Furthermore, it is noted that directly affecting the pit 

wall runoff component of the pit lake water budget, CN parameter is very effective on the 

model results. Therefore, its precise determination is crutial. It is known that during the 

ongoing excavations in the open pit throughout the operational phase of the mine, the water 

accumulating at the bottom of the pit as a consequence of precipitation will be collected in 

sumps and pumped out. The amount of water that will be pumped should continuously be 

monitored and recorded so that components of the precipitation, namely direct precipitation 

falling onto the pit bottom and runoff from the pitwalls, could be quantified. This calculation 

can be very useful in determination of the runoff ratio and/or CN value, which is a very 

significant parameter in pit lake water budget calculations for the post-closure period.  

 

Another important point that should be mentioned is that pit lake water budget calculations 

are conducted based on the the long term meteorological data assuming that past 38 year 

climatic trend will continue periodically, for the next 800 years. Moreover, the results 

indicated that direct precipitation, pit wall runoff and evaporation components of pit lake 

water budget are quite sensitive to the climatic changes in precipitation and evaporation. 

Hence, the climatic variations have a significant impact on the pit lake water budget and 

accordingly on the lake levels at the equilibrium state conditions. Therefore, further 

simulations that will examine the effects of the changing climate on the results are highly 

recommended. For this purpose, climatic projections should be downscaled to the study area 

and simulations have to be updated with the long term projected temperature and 

precipitation values. 

 

However, it should also be noted that both past climatic trends (Tayanç et al., 2009; Durdu, 

2013) and future predictions (compiled in Turkey’s National Climate Change Adaptation 

Strategy and Action Plan, by Talu et al., 2010) indicate increasing temperature and 

decreasing precipitation for this region. These trends in climate will definetly affect the 

budget of the pit lake so that evaporation component will be increased by increasing 

temperature; on the other hand direct precipitation and runoff from the pit walls components 
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will be decreased by decreasing precipitation. Considering the combined effects of these 

changes, it is obvious that pit lake level will be stabilized at a much lower elevation than 

predicted with the available data and a terminal pit lake will form, which will not affect the 

downgradient groundwater system. However, increasing evaporation and decreasing 

precipitation causing lower lake levels may increase the concentrations of the dissolved 

material within the pit lake, therefore has to be investigated in terms of water quality aspects, 

which is out of the scope of this work.  

 

Finally, it should be noted that the results presented in this study are calculated using a 3-D 

numerical groundwater flow model, based on several assumptions and hence, having 

uncertainities. All the models used in this study should be revised as new data becomes 

available during operations. 
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