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ABSTRACT 

COMPARISON OF BAYESIAN NETWORKS AND  DEMPSTER-SHAFER THEORY 

IN ATTRIBUTE TRACKING SYSTEMS 

Saka, Çağlar 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

 

June 2013, 177 pages 

In modern civil and military avionic systems, traffic control constitutes one of the most 

critical parts that requires high-speed, reliable and robust decisions to be done even under 

noisy conditions. In conjunction with the rapidly developing computer technology, systems 

became available to perform very long processes within milliseconds.  

In this thesis, probabilistic models will be used in order to classify a target and detect if the 

target is making use of electronic counter-measures (ECM). Thereafter, the performances of 

different systems under the same conditions will be compared.  

Bayesian Networks Theory and Dempster-Shafer Evidence Theory are two most well-

known and applicable approaches to classification and attribute tracking problems. 

Therefore, aforementioned two approaches are chosen in order to simulate desired attribute 

tracking and detection scenarios. 

Subsequent to presenting results obtained by applying abovementioned theories to the 

selected scenarios, improvements are made in order to increase system performance. The 

effects of quality of the information source and improvements are presented within this 

thesis as well as a general comparison of implemented theories. 

 

Keywords: Bayesian Networks, Dempster-Shafer, Evidence Theory, Attribute Tracking, 

ECM Detection, Probability Update, Belief Update. 
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ÖZ 

NİTELİK TAKİP SİSTEMLERİNDE BAYES AĞLARI VE DEMPSTER-SHAFER 

TEORİLERİNİN KIYASLAMASI  

Saka, Çağlar 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu 

 

Haziran 2013, 177 sayfa 

 

Günümüz askeri ve sivil havacılık sistemlerinde trafik kontrolü; gürültülü durumlarda bile 

hızlı, güvenilir ve sağlam kararlar alınması gereken en kritik kısımlardan biridir. Bilgisayar 

teknolojisinin gelişmesi ile birlikte, sistemler çok uzun işlemleri bile milisaniyeler 

seviyesinde gerçekleştirecek duruma gelmiştir. 

Bu tezde, hedef sınıflandırmasına ve hedefin herhangi bir elektronik karşı tedbir (ECM) 

kullanıp kullanmadığının belirlenmesine yönelik olarak olasılıksal modeller kullanılacaktır. 

Sonrasında, kullanılan farklı sistemlerin aynı şartlar altındaki performansları 

karşılaştırılacaktır.  

Bayes Ağları Kuramı ve Dempster-Shafer Kuramı, sınıflandırma ve nitelik takibi 

problemlerine uygulanabilir ve en çok bilinen iki yaklaşımdır. Bu sebeple, hedeflenen 

nitelik takibi ve belirleme senaryolarına uygulanmak üzere bahsi geçen yaklaşımlar 

seçilmiştir. 

Seçilen senaryolara bahsi geçen kuramların uygulanmasının ve sonuçların sunulmasının 

ardından, sistem performansını arttırmaya yönelik iyileştirmeler yapılmıştır. Bilgi sağlanan 

kaynağın kalitesi ve yapılan iyileştirmenin etkisi ile birlikte her iki yaklaşımın da genel bir 

kıyaslaması tez içinde sunulmaktadır.   

 

Anahtar Kelimeler: Bayes Ağları, Dempster-Shafer, Kanıt Kuramı, Nitelik Takibi, ECM 

Belirlenmesi, Olasılık Güncelleme, Kanaat Güncelleme.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 BACKGROUND AND SCOPE OF THESIS 

Since the beginning of the usage of first radar system, electromagnetic waves have been 

widely used to detect/track targets together with their attributes and identify their hostility 

status. The studies regarding detection and tracking of the targets involve many different 

techniques including various types of probabilistic theories.   

Probabilistic theories are being used among many application fields covering military areas 

such as target classification and electronic counter-measure (ECM) detection. Time and 

accuracy are two most important parameters that designate performance of the overall 

system and specify which system is superior to one another.  

After detection of a target, target’s attributes such as altitude, speed, identification (friend 

or foe), acceleration etc… will most probably be required to be determined and tracked 

depending on the purpose of the overall system. Tracking can be preferably defined as: 

“processing measurements obtained from a target in order to maintain an estimate of its 

current state, which typically consists of kinematic components (such as position, speed, 

acceleration etc.) and other components (radiated signal strength, spectral characteristic, 

feature information etc.)” [1] 

Tracking the abovementioned attributes increases chance of classifying the target and hence 

taking necessary precautions. Using the radar signals, the system can also keep track of the 

signal power level in order to detect if the target is using any kind of electronic counter-

measures (ECM) to fool the radar and lose its track. Upon deciding that the tracked target is 

using ECM, the radar may decide whether to use any electronic counter-countermeasures 

(ECCM) technique not to lose track of the target.   

In today’s world, it is of prime importance to correctly identify a target and correctly 

evaluate if it poses a treat. Since modern aircrafts are high-speed and capable of high 

destruction power, reliable systems that gives information beforehand are needed not to 

lose sight of the target or shoot own aircraft by mistake.  
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Bayesian Networks Theory (BNT) and Dempster-Shafer Evidence Theory (DST) are two 

different and most well-known approaches for classification problems. While BNT is 

dealing with probabilities, DST is concerned with beliefs. Beliefs provide a wider 

flexibility including “unknown” state which does not exist in BNT. These approaches are 

implementable to the abovementioned cases and their overall performances can be 

compared in order to identify each system’s advantages and disadvantages to the other.  

Throughout this thesis, BNT and DST approaches are studied together with their 

comparison. Both of these methods are applied to target classification and ECM detection 

problems in various cases. The main goal of both problems is to reach a convincing 

probability rate within a considerably short time interval.  

While these two approaches have a different belief update algorithm, they contain many 

important similarities as well.  

The studies in the literature on target classification via using BNT, DST and both of them 

together can be briefly summarized below: 

Firstly and most importantly, Bayes’ theorem, which is the underlying rule of BNT, is 

founded by Thomas Bayes in 18
th
 century. Bayes’ rule is used to update beliefs in the light 

of new or existing information. Bayesian statistics, having a wide range of application areas 

covering engineering, science, economics and medicine is based on this theorem. 

Development of microchips and thus computers has allowed implementing many successful 

applications which are based on Bayes’ rule.  Thomas Bayes’ work was documented in 

1763 [2]. 

In 1997, Dennis M. Buede and Paul Girardi published a paper to demonstrate how BNT and 

DST methods can address the same identification problem. Throughout the paper, 

demonstration of target identification by using multisensors via these two methods is made 

and their convergence time to a long run scenario is compared. In the conclusion part, it is 

shown that DST method has a higher complexity compared to BNT method. Furthermore, 

according to the simulations made, BNT method has a better convergence rate which 

indicates that BNT is a better method for combining statistical information [3]. 

In 2000, Henry Leung and Jiangfeng Wu studied a combined target identification and 

multitarget tracking approach. Four important attributes were chosen to be tracked in their 

study: identity of the target, height, speed and acceleration. In their publication, both BNT 

and DST methods are employed to develop a target track identification system for radar 

surveillance. It is stated that even though human operators are still used, the necessity of an 

automated decision system which takes into account many inputs from multiple sensors is 

inevitable. In conclusion; their work shows that both methods produce accurate information 

while BNT is computationally simpler and DST is more robust to clutter [4]. 

In 2003, Barry R. Cobb and Prakash P. Shenoy’s publication compares similarities and 

differences between BNT and DST approaches. Their claim is that given a model in one 

method, it is possible to transform the model to the other and achieve the same qualitative 

results. The example given in the document which was claimed to show superiority of DST 
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is discussed and it is argued that DST and BNT approaches could give identical results in 

case DST model is transformed to BNT model correctly. Computational complexity of DST 

approach is mentioned as well as the effect of causality on performance of both approaches. 

When causality is supplied, BNT approach is stated to be easier to implement [5]. 

In 2005, Don Koks and Subhash Challa published a public report in which two main 

approaches including BNT and DST methods are discussed. Both of these methods are 

considered within the scope of identification purposes and simulations obtained from single 

and multiple sensors are inspected. Results of the simulations clearly show that data fusion 

from multiple sensors increase reliability of the system. The necessity for initialization of 

both methods is stated implying the need to consider unknown states in DST case. A 

thorough comparison of these methods is included in the last part of the report concluding 

that DST method calculations are usually more complex and simulations of DST give 

slightly better results [6]. 

Taking all of these publications into account, it can be concluded that both BNT and DST 

methods are used for identification, tracking and classification purposes. There are cases 

and simulations which claim that BNT method is superior whilst there are also proponents 

of DST method despite its complexity. A general comparison for both of the methods will 

be presented in the last chapter. 

1.2 THESIS OUTLINE 

Target classification and detection of ECM using both BNT and DST methods are studied 

comparatively within the context of the thesis. Both of these methods are tested in 

numerous cases with various quality sensors and their performance is obtained using their 

convergence times. Convergence time is calculated by measuring the time required for 

probability or belief of the system to reach a pre-determined threshold value that indicates a 

certain amount of belief. When the system exceeds this value, it is considered that miscall 

ratio of the system is almost zero.  

Two different scenarios take place in the scope of this thesis:  

In the first scenario, speed and attribute information of an airborne target which is detected 

by the radar is tracked and used in order to classify the target. In the basic model, target is 

considered to be either an aircraft or a helicopter. This scenario can be considered as a data 

fusion problem which gets information from multiple sensors, namely speed and altitude 

sensors. Performances of BNT and DST methods are observed using the plots that indicate 

probabilities and beliefs.  

In the second scenario, the system keeps track of the signal level of the target right after 

detection. Modern aircrafts are usually capable of vanishing without a trace by using 

different ECM techniques. One of the well known ECM techniques is called Range Gate 

Pull-Off (RGPO) technique. Main idea behind this technique is to amplify signals that are 

coming from the radar before sending them back. After amplifying reflected signals to a 
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definite level, the aircraft reduces its signal level to normal level which causes the radar 

lose track of the target since radar’s minimum detection level is also increased. Keeping 

track of the incoming signal levels and comparing them for pre-defined time intervals allow 

the system to spot whether any ECM technique is used.  

The objective to be achieved in abovementioned problems is to construct a model that 

receives information in short time intervals at a level of seconds or milliseconds depending 

on the necessity level of promptness and reliability. Information is assumed to be received 

from various types of sensors such as speed, altitude and signal power level sensors. The 

quality of these sensors is defined to be different as well in order to inspect overall effects 

of sensor quality. After starting to collect information, the system updates its initial 

probability/belief regarding the target’s attributes. Depending on the problem, convergence 

time required to classify target’s type or deciding whether the target is using RGPO 

technique is calculated using both techniques. 

In Chapter 2, Bayesian Networks are explained in detail and some important properties are 

inspected. Naïve Bayes Networks, a subtype of Bayesian Networks are emphasized.  

In Chapter 3, Dempster-Shafer Theory is explained with basic assumptions and important 

properties. 

In Chapter 4, two different scenarios that will be used in simulations are explained in detail 

and algorithms of BNT and DST approaches are presented. 

In Chapter 5, simulation results are presented together with performance measurements. 

In Chapter 6, simulation results are evaluated and comparison tables are provided. 

Performances of BNT and DST approaches are compared one-to-one for each scenario and 

concluding remarks are presented.  
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CHAPTER 2  

 

BAYESIAN NETWORKS THEORY 

In this chapter, basic understanding of Bayesian Networks is to be given together with 

several examples to its application areas. Firstly, the fundamental theorem called “Bayes’ 

Theorem” is going to be explained with the main lines and an essential example will be 

given in order to emphasize power of Bayes’ Theorem. Afterwards, the Naive Bayesian 

Network model, which is going to be used throughout the thesis is presented and explained 

in detail.  

 

2.1 BAYES’ THEOREM 

18
th
 century mathematician Thomas Bayes stated a theorem used for calculating conditional 

probabilities. Bayes’ theorem, which can be considered as the underlying principle of 

probabilistic theory, is also known as Bayes’ Rule and Bayes’ Law. It can be stated as: 

 

( | ). ( )
( | )

( )

P E H P H
P H E

P E
  (3.1) 

In the above formula, H represents “hypothesis” and E represents “evidence”. Therefore, 

the theorem shows how the belief on hypothesis H is updated given evidence E. 

P(H|E) is known as the “posterior probability” as it points to the probability of H after 

taking into account the effect of E.  

The term P(H) is known as “prior probability” of H as it does not take into account of any 

effect coming from E. 

P(E|H) is known as “likelihood” as it gives the probability of E assuming H is true.  

Finally, P(E) is known as “expectedness” and is independent of the hypothesis. It can be 

thought of a scaling factor as it scales the probabilities to the range 0 to 1. P(E) can further 

be mapped out as: 

 ( ) ( | ). ( )i i

i

P E P E H P H  (3.2) 

The subscript “i” denotes one of the states of hypothesis H. Summation is taken for all 

states of H and all states of H. 
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2.2 INTRODUCTORY EXAMPLE: MONTY HALL PROBLEM 

In 1975, a question based on the popular TV show “Let’s Make a Deal” had been asked 

raising a question mark in minds. The solution of the question was given using the most 

basic probabilistic rule: Bayes’ rule. However, there were many objections to the solution 

since the solution is against intuition and thus called Monty Hall Paradox for a long time. 

After making computer simulations in the order of millions, the results showed that the 

solution was correct.  

Problem: In that TV show, the contestant was given a choice to select one of three doors. 

Behind one of the doors there was a car and behind others there were goats. As soon as the 

contestant picks a door, the host opens one of the other doors and reveals a goat. The host 

then asks the contestant if he would like to stick with his original choice or whether he’d 

like to switch doors.  

Even though first intuition is to assume there is 50%-50% chance of winning the car after 

the host opens one of the doors, the probability of winning the car increases to 2/3 from 1/3 

by switching the doors.  

Solution using Bayes’ Rule: 

The three doors are called X, Y, Z.  

C: the number of the door hiding the Car, 

S: the number of the door Selected by the player, and 

H: the number of the door opened by the Host.  

One of the randomly scenarios compatible with the problem definition can be stated as:  

The contestant chooses Door X initially and the host opens Door Z and reveals a goat. 

Then, the probability of winning the car by switching to Door Y can be found by using 

Bayes’ Rule as explained below:  

( , | )
( | , )

( | )

P H Z C Y S X
P C Y H Z S X

P H Z S X

  
   

 
 

 

{ , , }

( | , ) ( | )

( | , ) ( | )

1
1

23
1 1 1 1 3

1 0
2 3 3 3

i X Y Z

P H Z C Y S X P C Y S X

P H Z C i S X P C i S X


    


    



 

    



 

 

Because of the random placement of the car and the goats, the contestant initially has a 

chance of 1/3 winning the car. Thus, it can be concluded that switching the doors double 

the chance of winning the car.  
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2.3 BASICS OF BAYESIAN NETWORKS 

Probabilistic graphical models are concerned with dealing cases in a graph based model 

which shows probabilistic interaction between events such as conditional dependency and 

independency. Their popularity is increasing from day to day because of the facts that 

graphs are easy to understand and very complex cases can be modeled using these models 

[7]. 

Bayesian Networks (BN) can be described as a sub-branch of probabilistic graphical 

models that obey several fundamental rules and they are also known as Bayesian Belief 

Networks. They are basically used for representing information flow within a knowledge 

domain using Bayesian probabilities [8]. The main purpose is to infer posterior probabilities 

of a hypothesis using the information available. Decision within the light of posterior 

probability tables is left to the system or user.  

Bayesian Networks are directed acyclic graphs (DAG) consisting of nodes and edges 

between the nodes. DAG can be defined as a directed graph that contains no cycles. An 

example of a graphical network well-suited to DAG is given below:  

 

 

 

Figure 2-1: Example of a DAG 

 

 

In the figure above, numbered circles are called as “nodes” and the links between the nodes 

are called “edges”. Necessary conditions for a graph to be considered as a Bayesian 

Network are being formed of nodes and directed acyclic edges. Nodes represent random 

variables with a finite number of states and directed edges represent dependency between 

the nodes.  

The fundamental rules for a graphical model to be considered as BN can be listed as below 

[8]:  

Each node has a finite set of mutually exclusive states.  

The nodes form a DAG together with the directed edges. 
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A conditional probability table is attached to each node X with parents  

Y1, Y2,…, Yn: P(X| Y1, Y2, … , Yn). 

Direction of the edges between the nodes indicates influence. In Figure 2.1,  

Node-A has a direct effect on Node B. The types of nodes can be summarized as: 

Child Node: The node that is influenced by another one is called “Child Node” with respect 

to the node that influences. For example; Node-B is a child node of  

Node-A. 

Parent Node: The node that influences another node is called “Parent Node” of the node 

that is influenced. For example; Node-A is a parent node of Node-B. 

Root Node: A node is called “Root Node” if it does not have any parents which influence it. 

Leaf Node: A node is called “Leaf Node” if it does not have any child nodes connected to 

it. 

The convenience provided by using BN is going to be discussed in the following 

subsection.  

2.3.1 STRUCTURE OF BAYESIAN NETWORKS 

A Bayesian Network is composed of random variables that are represented by nodes and 

directed links represented by edges. In this thesis, all random variables are assumed to be 

discrete and have finite number of states. Nodes can be further classified according to the 

type of their states such as “hypothesis node” and “evidence node”.  

A hypothesis node consists of states which include one of the alternative hypotheses and 

these kinds of nodes are not directly observable.  

An evidence node, which is also known as observed node, consists of states which are 

directly observed and has assigned a probability value between (0,1). 

Evidence concept can be subdivided into “hard evidence” and “soft evidence”. When any 

state of a node has probability 1, that node is said to be instantiated with hard evidence and 

it can be said that node is “known”. On the other hand, if any state of that node has a value 

(0,1), it is said to be instantiated with soft evidence.  

In the following subsections, types of Bayesian Networks with respect to their structural 

design will be explained. 

 

2.3.1.1 CONNECTION TYPES 

2.3.1.1.1 SERIAL CONNECTIONS 

In the following connection type, nodes are serially connected as shown in the below 

figure. 
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Figure 2-2: Structure of Serial Connected Bayesian Network 

 

 

When the structure is inspected, it can be observed that X has a direct influence on Y and Y 

has a direct influence on Z. Information of X can affect Z and information of Z can 

inversely affect X over the node Y unless Y is fully known. When Y is known, the path 

between X and Z is blocked and they become independent. This situation is called as “X 

and Z are d-separated”.  

 

2.3.1.1.2 DIVERGING CONNECTIONS 

In these kind of connections, nodes are connected such that all nodes have a common 

parent as shown in the below figure. 

 

 

 

Figure 2-3: Structure of Diverging Connection 

 

 

It can be observed that information can flow between child nodes (X,Y,Z) through parent 

node A when A is not known. If the state of A is known, knowledge of any child node does 

not affect other child nodes since the channel (node A) is blocked. Hence, X and Y and Z 

are said to be d-separated. 

Naïve Bayesian Networks are a subclass of Bayesian Networks that only include one parent 

node and several child nodes.  
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2.3.1.1.3 CONVERGING CONNECTIONS 

In these kind of connections, nodes are connected such that all nodes have a common child 

node as shown in the below figure. 

 

 

 

Figure 2-4: Structure of Converging Connection 

 

 

When the state of child node A is not known, parent nodes have no effect on each other and 

therefore they are independent. X and Y and Z are said to be d-separated when A is not 

known. However, if state of A is known, any information about a parent node can increase 

or decrease probability of other parent node. This effect is called “explaining-away” effect.  

 

2.3.1.2 D-SEPARATION 

The concept of d-separation can be defined as a criterion of independence of distinct nodes. 

D-separation can be examined with respect to connection types: 

When figures in the previous part are considered, two separate nodes X and Z are said to be 

d-separated under the below-mentioned cases: 

 1) For serial connected structures, if the intermediate variable (node Y) connecting X and 

Z is known, 

2) For diverging connections, if the parent variable (node A) is known, 

3) For converging connections, if the child node (node A) is not known.  

If two nodes are d-separated, any change in the belief of one node will have no effect on 

probability of the other node.  
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2.3.2 CHAIN RULE FOR BAYESIAN NETWORKS 

2.3.2.1 GENERAL CHAIN RULE:  

The chain rule allows the calculation of joint distributions using conditional probabilities.  

Firstly, general rule for a set of random variables will be inspected: 

For a set of variables U={X1, X2,..., Xn}, the joint probability distribution is found by using 

the general chain rule:  

  

1 1 1 1 2 2 1 1( ) ( | ,..., ) ( | ,..., )... )( | ) ( )n n n nP U P X X X P X X X P X X P X    (3.3) 

  

1 1 1 1

1 1 1 1 2 1 2

1 2 2 1 1

( ) ( | ,..., ) ( ,..., )

( ,..., ) ( | ,..., ) ( ,..., )

:

( , ) ( , ) ( )

n n n

n n n n

P U P X X X P X X

P X X P X X X P X X

P X X P X X P X

 

   







 (3.4) 

  

2.3.2.2 CHAIN RULE FOR BAYESIAN NETWORKS:  

Secondly, chain rule for the set of variables U={X1, X2,..., Xn} which constitute a Bayesian 

Network will be inspected.  

BN provide opportunity to simplify the general chain rule and construct the joint 

probability distribution as:  

 
1

( ) ( | ( ))
n

i i

i

P U P X pa X


  (3.5) 

where pa(Xi) represents parent nodes of Xi in the Bayesian Network.  

2.3.3 NAIVE BAYESIAN NETWORKS 

Naive Bayes Network is a simple model that describes particular class of Bayesian 

Networks. The type of connection is diverging where the parent node is hypothesis node 

and child nodes are evident nodes. This type of connection is often called “Naive Bayesian 

Classifier” which is abbreviated as NBC. NBC have found many application areas as a 

result of its simplicity and high accuracy. Application areas include text mining, spam 

filtering, medical diagnosis and other classification problems.  
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A general structure of a Naive Bayesian Network can be modeled as below: 

 

 

Figure 2-5: Structure of Naive Bayesian Network 

 

 

In spite of the fact that child nodes are not independent given parent node Y, in NBC 

structures, it is assumed that all child nodes are mutually conditionally independent given 

node Y. This assumption is called “Naive Bayesian Assumption”.  

Joint probability distribution of the system S={X1, X2,…,Xn, Y} is: 

 
1

( ) ( ) ( | )
n

i

i

P S P Y P X Y


   (3.6) 

In this thesis, Naive Bayesian Classifier is used for classification purposes, namely target 

classification and ECM detection. The parent node is called class variable and the child 

nodes are called attribute variables in the cases inspected.  
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CHAPTER 3  

 

DEMPSTER-SHAFER THEORY 

In this chapter, a basic understanding of Dempster-Shafer Theory (DST) is to be given 

together with several examples to its application areas. Firstly, introduction to DST is given 

with differences to BNT and an example is presented. Afterwards, basics of DST are 

explained together with the necessary formulas and their explanations. In addition to these, 

the equations presented are explained via representative examples. 

 

3.1 BACKGROUND OF DEMPSTER-SHAFER THEORY 

Dempster-Shafer Theory was firstly introduced to the literature by Arthur Dempster and 

revised by Glen Shafer in the 1970s [9]. It is also known as “Evidence Theory” and 

sometimes used together with it as “Dempster-Shafer Evidence Theory”. In this thesis, 

short form of DST is used.  

DST is often considered as a generalization of BNT and provides a mathematically strong 

way to handle cases when incomplete or conflicting information about the problem is 

present. There are several key differences between DST and BNT. Two of the most 

important points can be listed as:  

Instead of assigning beliefs to prior probabilities, belief can be assigned to “unknown” 

cases when the information is limited and therefore preserve ignorance. Thus, this method 

does not require prior probability initiation. 

Beliefs are not restricted to single states and can be assigned to combination of several 

states.  

These two properties provide DST to handle situations where information is missing.  

DST has many application areas including target recognition and detection which are two 

scenarios to be examined in this thesis.   

3.1.1 EXAMPLE OF ASSIGNING BELIEFS 

In this example, a hypothesis set is considered including two aircraft types: Aircraft and 

Helicopter. A speed sensor is providing information in order to classify target. If this sensor 

provides information that the aircraft is 90% aircraft, BNT assigns P(Aircraft)=0.9 and 
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assigns the remaining part of the probability to P(Helicopter)=0.1. Unlike BNT approach, 

DST approach assigns a belief of 0.9 to aircraft and assigns 0.1 to the unknown state as 

there is no evidence to support that the target is a Helicopter. Unknown state can be 

considered as “Aircraft or Helicopter” in this example.  

While BNT approach takes information as something is either true or wrong, DST approach 

allows more ambiguous states since it does not assign any belief to the state that is missing 

information.  

 

3.2 BASICS OF DEMSPTER-SHAFER THEORY 

The basic probability assignment function (abbreviated as “bpa” or “m”), the Belief 

function (abbreviated as “Bel”), and the Plausibility function (abbreviated as  “Pl”) are 

three important functions that are in the scope of DST. The basic probability assignment 

(bpa) is the basis of DST. Even though bpa is measured against probability of BNT, it does 

not have to be exactly equivalent. In the following subsection, bpa will be examined in 

detail. 

 

3.2.1 BASIC PROBABILITY ASSIGNMENTS 

Assumption: H is the universal set consisting of all possible states such as H={X1, 

X2,…,Xn}. This set is often called “frame of discernment”. Bpa, often represented by “m”, 

provides a mapping from the power set 2
H
 to the interval 0 to 1. The power set 2

H
 includes 

all subsets of H including null set. Bpa of null set is 0 and summation of all other subsets of 

H is 1.  

 1 2Discernment Frame : { , ,..., }nH X X X  (4.1) 

Power set of H can be shown as follows: 

 
1 2 1 2 3 1 3

2 3 1 2 3 4

( ) { ,{ },{ },{ },{ },{ },

{ },{ },{ },..., }

P H X X X X X X X

X X X X X X H

   

  
 (4.2) 

Considering a subset A={X1, X4}, bpa assigned to subset A indicates the ratio of available 

information that show a particular state belongs to the set A.  However, it does not give any 

further information regarding any subsets of A such as bpa of {X4} in this case. If any 

subset of A is of interest, it could be represented by another subset, namely B such that 

B A . 

Unless any evidence is provided, bpa of null subset is assigned 0 and bpa of H (the set 

including all possible states) is assigned 1.  

The abovementioned explanations can be formally formalized as: 

  : ( ) [0,1]m P H   (4.3) 
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  ( ) 0m    (4.4) 

  
( )

( ) 1
A P H

m A


  (4.5) 

In the above formulas,  denotes null set and P(H) denotes the power set of H.  

In order to make a distinction between “basic probability assignment” and “probability” in 

the classical sense, three further properties can be stated. In bpa, unlike a classical 

probability, it is not required that: 

  ( ) 1m    (4.6) 

  ( ) ( )m A m B if A B   (4.7) 

and it does not require a relationship between m(A) and m(A’), where A’ denotes the 

complement of subset A. For that reason, “belief” and “probability” are going to have two 

distinct meanings in this thesis. 

 

3.2.2 BELIEF FUNCTIONS 

Using the bpa defined in previous section, upper and lower limits of a hypothesis can be 

calculated. These upper and lower limits are often called “plausibility” and “belief” 

functions.  

Assuming B represents all proper subsets of A, in order to calculate the belief function, 

masses of all m(B) are required to be summed up to obtain total evidence of support. Belief 

function is shown as Bel(A) and pre-requisites for Bel(A) to be classified as a belief 

function are listed as follows:  

  ( ) 0Bel    (4.8) 

  ( ) 1Bel H   (4.9) 

 
| | 1

1

[1,..., ]
[ ]

( ,..., ) ( 1) I

n i

I n i I
I

Bel A A Bel A

 


 
   

 
  (4.10) 

Belief function is a mapping from the power set 2
H
 to the interval 0 to 1.  

  : ( ) [0,1]Bel P H   (4.11) 

  ( ) ( )
B A

Bel A m B


  (4.12) 

Equation (3.12) gives the fundamental definition of a belief function and this equation can 

be explained through an example. 
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3.2.2.1 EXAMPLE OF BELIEF FUNCTION 

Assuming that there are four types of aircrafts that can be detected by the radar system, a 

belief function can be calculated as below. 

Firstly, we define the hypotheses set such that  

 

 

   

     

       

H F 16,  F 22,  MIG 29,  A 10

A F 22,  MIG 29,  A 10

Bel A Bel {F 22,  MIG 29,  A 10}

m {F 22,  MIG 29,  A 10} m {F 22,  MIG 29} m {F 22,  A 10}

m {MIG 29,A 10} m {F 22} m {MIG 29} m {A 10}

    

   

    

          

       

 

This example shows that Bel(A) is not the belief assigned only to A but it is the total 

amount of belief in A. When A is a subset of single element, it is called singleton. (i.e. 

A=({F-22})). In that case, belief function and mass become equal:  

  ( ) ( )Bel A m A  (4.13) 

When only information available is composed of belief functions, an inverse function of 

equation (3.12) can be used: 

               
| |( ) ( 1) ( )A B

B A

m A Bel B



   (4.14) 

A counterpart of belief function is plausibility function and it can be defined as the sum of 

all the basic probability assignments of subsets B which intersect the set A. A similar 

equation to (3.12) can be given as: 

  ( ) ( )
B A

Pl A m B
 

   (4.15) 

Plausibility shows the degree of hypotheses’ possibility and is not the complement of belief 

function. The connection between belief and plausibility functions can be shown via the 

following equation: 

  ( ) 1 ( )Pl A Bel A   (4.16) 

The common property of Belief and Plausibility functions are their nonadditiveness. 

Summation of all belief or plausibility functions does not require to be equal to 1. Equation 

(3.16) can be restated as follows using the mass functions:  

               ( ) 1 ( )
B A B A

m B m B
   

    (4.17) 

To conclude, since belief and plausibility functions are lower and upper limits, probability 

of an event is situated between these functions: 

    ( ) Prob( ) ( )Bel A A Pl A   (4.18) 
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3.2.3 COMBINATION OF EVIDENCE 

Information can be gathered via multiple sources and they need to be aggregated in order to 

calculate total belief. By using Dempster’s rule of combination, basic probability 

assignments can be combined given that all sources are independent. The rule for 

combining two mass functions is given by the following equation:  

 
1 2

12

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C

 

 







 (4.19) 

In equation (3.19), denominator is obtained by subtracting summation of all null sets and is 

used as a normalizing constant. In that equation, m12 represents the combined basic 

probability assignment.  

On the other hand, numerator sums the basic probability assignment products of B and C 

whose intersection is the set A. This rule can be explained through an example. 

 

3.2.3.1 EXAMPLE OF COMBINATION OF EVIDENCE 

Example: Assuming that there are two sensors observing an aircraft which can be classified 

as  F-16, F-22, MIG-29 or A-10. Therefore, H={F-16, F-22, MIG-29, A-10}. The sensors 

give the evidence as in the table below:  

 

 

Table 3-1: Evidence from sensors and their combination 

  

Sensor 2 

  

F-16,F-22=0.3 F-16,A-10=0.55  

Sensor 

1 

F-16,MIG-

29=0.8 {F-16}=0.24 {F-16}=0.44 {F-16,MIG-29}=0.12 

F-22=0.1 {F-22}=0.03 null=0.055 {F-22}=0.015 

 {F-16,F-22}=0.03 

{F-16,A-

10}=0.055  

 

 

The table shows individual masses assigned by Sensor-1 and Sensor-2 and their 

intersection. In order to calculate m12(F-16), the numerator of equation (3.19) will be used. 

However, the belief assigned to the null set (0.055) violates the rule in equation (3.4) and 

therefore denominator has to normalize total belief of F-16. Therefore, the combination of 

evidence can be applied as can be seen below: 

12

0.24 0.44
( 16) 0.72

1 0.055
m F


  


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In case there are more than two sources of information, the generalized rule is as follows: 

 1 2

1 2

1 1 2 2

...

1 1 2 2

...

( ) ( )... ( )

( )
1 ( ) ( )... ( )

n

n

n n

X X X Y

n n

X X X

m X m X m X

m Y
m X m X m X

  

  







 (4.20) 
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CHAPTER 4  

 

PROBLEM SCENARIOS  

AND  

PERFORMANCE CRITERIA 

In this chapter, the scenarios that are going to be inspected in Chapter 5 are defined. Each 

scenario is explained for both BNT and DST approaches and introductory examples are 

given in order to explain probability and belief updates. After each scenario is explained, 

corresponding algorithms are explained in detail and additional notes are added to the end 

of each algorithm.  

 

4.1 SCENARIO 1: ATTRIBUTE TRACKING 

In modern civil and military systems, it is of utmost importance to detect and identify a 

target well in advance. Therefore the air traffic can be organized and necessary precautions 

can be taken in both civil and military aviation. 

Problem Statement:  

A military base is monitoring air traffic through air defense radar that has approximately 

100 km range. As soon as a target is detected, two sensors start to record information 

regarding the detected target. Types of these two sensors are speed and altitude sensors 

which measure horizontal speed and vertical height respectively.  

Control system is receiving position information from the radar monitor and speed/altitude 

information from the sensors. The information coming from the sensors are aggregated in 

order to come to a decision for the target’s type. Type of the target is considered to be either 

an aircraft or a helicopter.  

Sensors do not give perfect information regarding the target and are assumed to have two 

different quality levels, namely “poor” and “good”. Furthermore, it is important to note that 

sensors provide discrete data such as “slow” or “fast” for speed sensor and “low” or “high” 

for altitude sensor.  

The main purpose of this scenario is to combine information gathered by multiple sources 

Therefore, probability of final decision is increased and the robustness of the system is 

improved.  
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4.1.1 BAYESIAN NETWORK THEORY APPROACH 

In BNT approach for the problem, several assumptions are made in order to start solution 

part.  

Firstly, the variables are defined as follows: 

TargetType={Aircraft, Helicopter}. “TargetType” is the hypothesis variable and denoted as 

“T” in the equations. Aircraft and Helicopter are denoted with lower-case letters “a” and 

“h” correspondingly. 

Speed={Slow, Fast} “Speed” is an evidence variable and denoted as “S” in the equations. 

Slow and Fast states are shown with “sl” and “fa” correspondingly.  

Altitude={Low, High} “Altitude” is an evidence variable and denoted as “A” in the 

equations. Low and High states are shown with “lo” and “hi” correspondingly.  

The scenario is presented via using a Naive Bayes Network model:  

 

 

 

Figure 4-1: Naive Bayes Model of the System 

 

 

Using the chain rule for Bayesian Networks which was stated in Chapter-2; 

    ( , , ) ( ) ( | ) ( | )P T S A P T P S T P A T  (5.1) 

As can be seen from the above equation, prior information for “TargetType” has to be 

initialized. Since there is no information regarding the target’s type, both aircraft and 

helicopter states are assigned 0.5 probabilities such that: 

P(TargetType=Aircraft)=0.5

P(TargetType=Helicopter)=0.5
 

Besides prior probability of P(TargetType), conditional probability tables of P(S|T) and 

P(A|T) are also required. The format of conditional probability tables are assigned as: 
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P(TargetType=Aircraft)=0.5

P(TargetType=Helicopter)=0.5
 

(A=lo|T=a) (A=lo|T=h)
(A|T)=

(A=hi|T=a) (A=hi|T=h)

P P
P

P P

 
 
 

 

Furthermore, as mentioned previously, sensors have two levels of quality and conditional 

probability tables for both quality levels are assumed as follows: 

If the speed sensor quality is poor: 

0.25 0.70
(S|T)

0.75 0.30
P

 
  
 

 

If the speed sensor quality is good: 

0.05 0.90
(S|T)

0.95 0.10
P

 
  
 

 

If the altitude sensor quality is poor: 

0.25 0.75
(A|T)

0.75 0.25
P

 
  
 

 

If the altitude sensor quality is good: 

0.08 0.85
(A|T)

0.92 0.15
P

 
  
 

 

The states of the evidence nodes may or may not be observed. Calculation of the posterior 

probability of TargetType in light of information coming from the sensors can be explained 

via the following example. 

 

4.1.1.1 EXAMPLE FOR POSTERIOR CALCULATION  

Considering a case where the quality of speed sensor is good and height sensor is poor, the 

following information is given: Target is moving fast and there is no information regarding 

its altitude.   

Before starting calculation of posterior probability of “TargetType”, it is of importance to 

note that prior probability of TargetType is assumed as  

[P(Aircraft=0.5)P(Helicopter=0.5)] 

Therefore, the following equation is used:  
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{ , )

{ , }
{ , }

( , , )
( , )

( | )
( ) ( , , )

0.5 0.95 0.25 0.5 0.95 0.75

0.5 0.95 0.25 0.5 0.95 0.75 0.5 0.1 0.75 0.5 0.1 0.25

0.475
0.905

0.525

A lo hi

T a h
A lo hi

P T a S fa A
P T a S fa

P T a S fa
P S fa P T S fa A






 
 

   
 

    


          

 





 

Therefore, posterior probability for TargetType’s being an aircraft is 0.905. Within only 

one observation, probability of P(TargetType=Aircraft) increased from 0.5 to 0.905.  

From the calculations above, it can be observed that quality of Altitude sensor has no effect 

on the result unless it provides information. 

 

4.1.1.2 ALGORITHMS FOR BNT APPROACH 

Two different cases will be examined under the scope of Scenario-1: 

First Case: The target is observed for k distinct time intervals and decisions are made 

regarding TargetType. In this case, previous decisions do not have any effect on the next 

stage. At each stage, prior probability of TargetType is set to 0.5 for both aircraft and 

helicopter. Hereinafter, this case will be called “Memoryless Case”.  

Second Case: Target is observed at each time interval and prior probability of TargetType 

is updated after each stage. Posterior probability of TargetType at time k is used as prior 

probability of TargetType at time (k+1). Therefore, after a certain time interval, decision of 

the system converges to either 0 or 1 depending on the observations and number/quality of 

the sensors. Hereinafter, this case will be called “Case with Memory”. 

Therefore, two different algorithms are going to be presented in the following subsection: 
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4.1.1.2.1 MEMORYLESS CASE 

Algorithm for BNT approach for “Memoryless Case” is given below: 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) TargetType is assigned a status (either aircraft or helicopter) for the intended number 

of time steps in which observations will be performed. 

3) The length of the observation period is called kmax. TargetType is fixed during kmax 

time steps.  

4) In order to measure performance of the system, confusion matrix variables (TP, TN, 

FP, FN),  Accuracy and TPR variables are created. Furthermore, different threshold 

values are set in the variable Threshold.  

5) Prior probability of TargetType is assigned as:  

 P(TargetType)=[P(Aircraft)=0.5 P(Helicopter) =0.5] 

6) Conditional probabilities for P(S|T) and P(A|T) are set taking into account the quality 

of the sensors (evidence nodes).  

7) FOR k=1: kmax (for each time step)  

a) Information from the sensors is received. For each sensor: 

 If the sensors are providing evidence, it is taken into account and the probability 

of TargetType is updated using the following equation: 

 

{ , }

( , , )( , , )
( | , )

( , ) ( , , )

i i i
i i i

i i

T a h

P T t S s A aP T S A
P T t S s A a

P S A P T S s A a


  
    

 
 

where ti, si and ai represent given information of “TargetType”, “Speed” and 

“Altitude” nodes at time instant “i” respectively.   

 If only one sensor is providing information, i.e. Speed sensor, the following 

equation is used: 

{ , }

{ , }
{ , }

( , , )
( , )

( | )
( ) ( , , )

i i

A lo hi

i i

i

T a h
A lo hi

P T t S s A
P T S

P T t S s
P S P T S s A






 

   





 

 If there is no information from both of the sensors, the prior probability of 

“TargetType” does not change. 

b) After updating probability of TargetType, the probability for the current prediction 

is compared to threshold level and confusion matrix is updated accordingly.   

END for 
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8) The posterior probability of “TargetType” at each time step is plotted with respect to 

time step k.  

Accuracy and TPR values are calculated. 

4.1.1.2.2 CASE WITH MEMORY 

Algorithm for BNT approach for “case with memory” is given below: 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) TargetType is assigned a status (either aircraft or helicopter) for the intended number 

of time steps in which observations will be performed.  

3) The length of the observation period is called kmax. TargetType is fixed during kmax 

time steps.  

4) In order to detect when the classifier reaches to a decision, convergence limit is set to 

0.99 so that time steps required to reach that point can be calculated as convergence 

time. 

5) Prior probability of TargetType is assigned as:  

P(TargetType)=[ P(Aircraft)=0.5 P(Helicopter)=0.5] 

6) Conditional probabilities for P(S|T) and P(A|T) are set taking into account the quality 

of the sensors (evidence nodes).  

7) FOR k=1: kmax (for each time step)  

a) Information from the sensors is received. For each sensor: 

 If the sensors are providing evidence, it is taken into account and the probability 

of TargetType is updated using the following equation: 

 

{ , }

( , , )( , , )
( | , )

( , ) ( , , )

i i i
i i i

i i

T a h

P T t S s A aP T S A
P T t S s A a

P S A P T S s A a


  
    

 
 

where t1, s1 and a1 represent given information of “TargetType”, “Speed” and 

“Altitude” nodes respectively.   

 If only one sensor is providing information, i.e. Speed sensor, the following 

equation is used: 

{ , }

{ , }
{ , }

( , , )
( , )

( | )
( ) ( , , )

i i

A lo hi

i i

i

T a h
A lo hi

P T t S s A
P T S

P T t S s
P S P T S s A






 

   





 

 If there is no information from both of the sensors, the prior probability of 

“TargetType” does not change. 
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b) Posterior probability of TargetType is assigned to prior probability of TargetType 

for the next time step.  

c) The time step where the probability exceeds 0.99 point is saved as convergence 

time. 

END for 

8) The posterior probability of “TargetType” at each time step is plotted with respect to 

time step k.  

The only difference of this case in comparison to “Memoryless Case” is updating prior 

probability of TargetType at each time step. By this way, probability of posterior decision 

for TargetType is increased and it is seen that the probability converges to either 0 or 1. 

While increasing reliability of the system, this method provides robustness to the instant 

information changes from the sensors.  

This case can be simulated via Monte Carlo Method by averaging the values of each time 

step.  

4.1.2 DEMPSTER-SHAFER THEORY APPROACH 

In DST approach for the same problem, the same topology is used and similar assumptions 

are made with only insignificant notational differences.  

Firstly, the variables are defined as follows: 

TargetType= {Aircraft, Helicopter}. “TargetType” is the universal set and shown as “T” in 

the equations. Aircraft and Helicopter are denoted with lower-case letters “a” and “h” 

correspondingly. BPA for TargetType is shown via mT(.).  

Speed= {Slow, Fast} “Speed” is an evidence variable and denoted as “S” in the equations. 

Slow and Fast states are shown with “sl” and “fa” correspondingly. BPA for Speed is 

shown via mS(.). 

Altitude= {Low, High} “Altitude” is an evidence variable and denoted as “A” in the 

equations. Low and High states are shown with “lo” and “hi” correspondingly. BPA for 

Altitude is shown via mA(.). 

Differently from BNT approach, there is no requirement for prior information in DST 

approach.  

The behavior of the sensors is characterized by the following classifier matrices: 

For speed sensor: 

 
( | ) ( | )

( | ) ( | )
S

P S fa T a P S sl T a
C

P S fa T h P S sl T h

    
  

    
 (5.2) 

For altitude sensor: 

 
( | ) ( | )

( | ) ( | )
A

P A hi T a P A lo T a
C

P A hi T h P A lo T h

    
  

    
 (5.3) 
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Since the sensors have two different levels of quality, classification matrices for both 

quality levels are presented as follows:   

If the speed sensor quality is poor: 

[0.75, 0.25; 0.30, 0.70]SPC   

If the speed sensor quality is good: 

[0.95, 0.05; 0.10, 0.90]SGC   

If the altitude sensor quality is poor: 

[0.75, 0.25; 0.25, 0.75]APC   

If the altitude sensor quality is good: 

[0.92, 0.08, 0.15, 0.85]AGC   

Classifier matrices of DST approach are analogous to conditional probability tables of BNT 

approach.  

Basic probability assignment for TargetType is assumed as: 

( 0, 0, 1)Tm a h    where  denotes unknown case which includes {aircraft, 

helicopter}. 

In the light of evidences, belief of “TargetType” is updated. Calculation of the posterior 

belief is performed using Dempster’s Combination of Evidence Rule. The following 

example illustrates a basic situation. 

 

4.1.2.1 EXAMPLE OF COMBINATION OF EVIDENCE 

The problem is the same as explained in previous subsection for BNT approach. The 

system is observing a target and trying to decide its type given that Target is moving fast 

and there is no information regarding its altitude. Quality of speed sensor is good and 

height sensor is poor.  

BPA for TargetType is ( 0, 0, 1)Tm a h   . 

BPA for Speed sensor is ( 0.95, 0, 0.05)Sm a h   using CAG. It is of importance to 

note that 0.05 belief is assigned to unknown state but not to the helicopter state.  

BPA for Altitude sensor is ( 0, 0, 1)Am a h   since there is no information coming 

from that sensor.  

In order to find posterior belief for TargetType, the following equation is used: 

1 1 1

1 1 1

2

1 1 1

1 1 1

( ) ( ) ( )

( )
1 ( ) ( ) ( )

T S A

T S A a

T

T S A

T S A

m T m S m A

m T
m T m S m A

  

  







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where 
2
( )Tm T denotes bpa of TargetType at time step 2.  

Combining evidences that are of the form m(0, 0, 1) has no effect on final bpa. Henceforth, 

posterior belief of TargetType is found as (0.95, 0, 0.05) which is the only information 

coming from Speed sensor. Therefore, ( ) 0.95, ( ) 0.05T Tm a m   after single 

observation is made.  

 

4.1.2.2 ALGORITHMS FOR DST APPROACH 

Two different cases will be examined under the scope of Scenario-1: 

The target is observed for k distinct time intervals and decisions are made regarding 

TargetType. In this case, previous decisions do not have any effect on the next stage. At 

each stage, prior bpa of TargetType is set to ( 0, 0, 1)Tm a h    . Hereinafter, this case 

will be called “Memoryless Case”.  

Target is observed at each time interval and bpa of TargetType is updated after each stage. 

Posterior bpa of TargetType at time k is used as prior bpa of TargetType at time (k+1). 

Therefore, after a certain time interval, decision of the system converges to either 0 or 1 

depending on the observations and quality of the sensors. Hereinafter, this case will be 

called “Case With Memory”. 

Therefore, two different algorithms are going to be presented in the following subsection. 

 

4.1.2.2.1 MEMORYLESS CASE 

Algorithm for DST approach for “Memoryless Case” is given below: 

1) TargetType is initialized with a fixed state for the intended number of time steps in 

which observations will be performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. Once TargetType is set, it does not change during kmax time steps.  

3) Prior bpa for sensors is set as ( 0, 0, 1)m a h     since no information is given 

before starting observations.  

4) In order to measure performance of the system, confusion matrix variables (TP, TN, 

FP, FN), Accuracy and TPR variables are created. Furthermore, different threshold 

values are set in the variable Threshold.  

5) Classification matrices are set depending on quality levels of the sensors.  

6) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensors are providing evidence, corresponding bpa’s are updated in the 

below format: 
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( ..., ..., ...), ( ..., ..., ...)S Am a h m a h        ,  

 If one or both of the sensors do not provide evidence, the belief is assigned to 

unknown state and the following bpa is used:  

( 0, 0, 1) or ( 0, 0, 1)S Am a h m a h         

b) Prior beliefs are updated using Dempster’s rule of combination: 

1 2

12

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C

 

 







 

c) The combined evidence is preserved in another bpa to be plotted in the end of the 

simulation. 

d) After updating probability of TargetType, the probability for the current prediction 

is compared to threshold level and confusion matrix is updated accordingly. 

END for 

7) Posterior belief of “TargetType” at each time step is plotted with respect to time step 

k. 

8) Accuracy and TPR values are calculated.  

4.1.2.2.2 CASE WITH MEMORY 

Algorithm for DST approach for “case with memory” is given below: 

1) TargetType is initialized with a fixed state for the intended number of time steps in 

which observations will be performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. Once TargetType is set, it does not change during kmax time steps.  

3) Prior bpa for sensors is set as ( 0, 0, 1)m a h    since no information is given 

before starting observations.  

4) In order to detect when the classifier reached to a decision, convergence limit is set to 

0.99 so that time steps required to reach that point can be calculated as convergence 

time. 

5) Classification matrices are set depending on quality levels of the sensors.  

6) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensors are providing evidence, corresponding bpa’s are updated in the 

below format: 

( ..., ..., ...), ( ..., ..., ...)S Am a h m a h         
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 If one or both of the sensors do not provide evidence, the belief is assigned to 

unknown state and the following bpa is used:  

( 0, 0, 1) or ( 0, 0, 1)S Am a h m a h         

b) Prior beliefs are updated using Dempster’s rule of combination: 

1 2

12

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C

 

 







 

c) The combined evidence is preserved in another bpa to be plotted in the end of the 

simulation. 

d) Initial belief of the sensor which had provided evidence is updated so that unknown 

state is not “1” in the next time step.  

END for 

7) Posterior belief of “TargetType” at each time step is plotted with respect to time step 

k. 

The only difference of this case in comparison to “Memoryless Case” is updating bpa’s of 

the sensor that are providing evidence. Via this step, belief assigned to TargetType is 

increased and it is seen that the belief of the states “aircraft” and “helicopter” converge to 

either 0 or 1. Adding this bullet to the algorithm provides robustness to the instant 

information changes from the sensors while increasing reliability of the system.  

This case can be simulated via Monte Carlo Method as explained BNT approach. 

 

4.2 SCENARIO 2: ECM DETECTION 

In today’s world, military applications have evolved so that a target is capable of 

understanding if it is being detected and applying preventive techniques in order to remove 

its trace. These preventive techniques are often called electronic counter-measures (ECM). 

Since military vehicles have high destructive capabilities, it is a matter of life and death for 

the tracking system not to lose track of the detected hostile target.  

Range Gate Pull-Off (RGPO) is one of the most commonly used ECM techniques that is 

being used by military air vehicles. When an air vehicle detects electromagnetic waves 

received from the radar, it can amplify the electromagnetic waves to be returned and 

therefore may cause a misconception in the radar side. The radar starts to receive amplified 

waves from the target and increases the threshold signal power level for detection. It is after 

that the hostile target stops amplifying the waves and vanishes without a trace.  

Problem Statement:  

A military base is monitoring air traffic through air defense radar that has approximately 

100 km range. As soon as a target is detected, the radar starts to receive information of the 

signal power level coming from the target. The purpose of keeping record of the signal 
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power level information is to give a clear understanding if the target is applying an ECM 

technique and take necessary precautions.  

According to the Scenario, the target will start with low signal power level and after some 

time, the target will increase its signal power level to “high”. Performance measurements 

and detection speed of the system will be observed. In the cases with memory, the system 

will be stabilized as soon as the probability and belief level of 0.99 is reached. The duration 

required to reach convergence level of 0.99 will be called “convergence time”.  

Via this problem, performance measurements and robustness of BNT and DST approaches 

will be examined under a “change of state” situation and their recovery times will be 

compared.  

In Scenario-2, differently from Scenario-1, ROC curves will be drawn by means of TPR 

and FPR values and these curves will help investigating performance of the classifier. In 

Scenario-1, since the target type is always same, TPR values are equal to Accuracy values. 

The reason why ROC curves cannot be used in Scenario-1 is since the FPR values cannot 

be calculated. Furthermore, an alternative approach that is called “Finite Memory Case” 

will be inspected that only uses latest n time steps in the memory and predicts accordingly.  

The problem will be studied in two main cases, namely “Memoryless Case” and “Case with 

Memory”. “Case with Memory” will further be divided to three different categories and 

studied thoroughly, which are named “Ordinary Case”, “Limited Case” and “Finite 

Memory Case”.  

In “Memoryless Case”, performances of single and multiple sensors will be studied 

together with performance measurements. Accuracies, costs, TPR and FPR values are 

going to be calculated and ROC curves will be drawn by setting different threshold values.  

“Case with Memory” will be studied under three sub-sections: 

In the first case, the target is observed for k distinct time intervals and decisions are made 

regarding ECM usage. Since usage of ECM is rare as explained previously, prior ECM 

probability is assigned as 0.1. The target will increase its signal power level at different 

time steps (i.e. 10,40 etc.).  

In the second case, simulations are performed with an improvement factor. In order to 

increase system performance, a lower limit is set for the probabilities and beliefs  to prevent 

their approaching very close to zero. Getting very small values prevents system from quick 

recoveries when target is applying ECM.   

In the last case, a hybrid approach is implemented by using latest time steps together with 

the current observation in order to predict ECM usage. 

 

4.2.1 BAYESIAN NETWORK THEORY APPROACH 

In BNT approach of the Scenario-2, several assumptions are made providing the 

algorithms:  
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ECM = {Yes, No}. “ECM” is the hypothesis variable and also shown as ECM in the 

equations. The states “Yes” and “No” are denoted with lower-case letters “y” and “n” 

correspondingly. 

Signal Power = {Low, High}. “Signal Power” is evidence variable and denoted as “SP” in 

the equations. Slow and Fast states are shown with “sl” and “fa” correspondingly. 

The scenario is presented via using a Naïve Bayes Network model: 

 

 

 

Figure 4-2: Bayesian Model of the System 

 

 

Using the chain rule for Bayesian Networks which was stated in Chapter-2;  

 ( , ) ( ) ( | )P ECM SP P ECM P SP ECM  (5.4) 

In order to use the above equation, prior information for “ECM” has to be initialized. ECM 

technique is often used in warfare or under critical situations such as an aircraft violating 

airfield of another country. Since the usage of ECM is rare when compared to “not used” 

cases, prior probabilities are assigned as:  

( ) 0.1

( ) 0.9

P ECM yes

P ECM no

 

 
 

Besides prior probability of P(ECM), conditional probability table of P(SP|ECM) is also 

required. The format of conditional probability table is assigned as: 

                      
(SP=hi|ECM=n) (SP=hi|ECM=y)

(SP|ECM)
(SP=lo|ECM=n) (SP=lo|ECM=y)

P P
P

P P

 
  
 

 (5.5) 

Similarly to Scenario-1, the source of information has two different levels of quality and 

conditional probability tables for “poor” and “good” levels are presented as: 
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If the signal power sensor quality is poor: 

0.25 0.75
(SP|ECM)

0.75 0.25
P

 
  
 

 

If the signal power sensor quality is good: 

0.05 0.90
( | )

0.95 0.10
P SP ECM

 
  
 

 

 

 

4.2.1.1 ALGORITHMS FOR BNT APPROACH 

4.2.1.1.1  MEMORYLESS CASE 

Algorithm for BNT approach for “Memoryless Case” is given below: 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

3) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps. 

4) In order to measure performance of the system, confusion matrix variables (TP, TN, 

FP, FN) and Accuracy, TPR, FPR variables are created. Furthermore, different 

threshold values are set in the variable Threshold.  

5) Prior probability of ECM is assigned as:  

P(ECM)=[P(Yes=0.1) P(No=0.9)] 

6) Conditional probability table for P(SP|ECM) is set taking into account the quality of 

the sensor which provide signal power level information. 

7) FOR k=1: kmax (for each time step)  

a) Information from the sensor is received. If there are more than one sensor providing 

information, the evidences are combined.  

 If there is no information from both of the sensors, the prior probability of 

“ECM” does not change. 

b) Posterior probability of ECM is compared to threshold value resulting in increase in 

one of TP,TN,FP or FN variables (confusion matrix variables). 

END for 
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8) Accuracy, TPR, FPR and Cost are calculated by using confusion matrix and cost 

matrix variables. 

9) The posterior probability of “ECM” at each time step is plotted with respect to time 

step k.  

10) ROC curve is plotted by using TPR and FPR values.  

 

 

4.2.1.1.2 CASE WITH MEMORY 

4.2.1.1.2.1 ORDINARY CASE 

Algorithm for BNT approach for “ordinary case” is given below: 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) ECM is assigned a status (either yes or no) for the intended number of time steps in 

which observations will be performed. According to the scenario, the signal power 

level will make an increase at time step “t”. This time step will be called “low signal 

period” henceforth.  

3) The length of the observation period is called kmax. ECM rises from “low” to “high” 

only once during kmax time steps.  

4) Prior probability of ECM is assigned as:  

P(ECM)=[P(Yes=0.1) P(No=0.9)] 

5) “Convergence Time” variable is defined as a matrix of 1x kmax. 

6) Conditional probability table for P(SP|ECM) is set taking into account the quality of 

the sensor which provide signal power level information. 

7) FOR k=1: kmax (for each time step) 

a) Information from the sensor is received.  

 If the sensor is providing evidence, it is taken into account and the probability of 

ECM is updated using the following equation: 

 

{ , }

( , )( , )
( | )

( ) ( , )

i i
i i

i

ECM y n

P ECM e SP spP ECM SP
P ECM e SP sp

P SP P ECM SP sp


 
   


 

where ei and spi represent given information of “ECM” and “Signal Power” 

nodes at time instant “i” respectively.   

 If there are several sensors providing information, evidences are combined. 



34 

 

b) Posterior probability of ECM is assigned to prior probability of ECM for the next 

time step.  

END for 

8) Convergence Time variable is assigned with the time step at which probability exceeds 

0.99.  

9) The posterior probability of “ECM” at each time step is plotted with respect to time 

step k.  

The same procedure can further be expanded so that Monte Carlo Simulation results are 

obtained. If the same procedure is applied for a predetermined number of times (i.e. 1000 

times) and the results are averaged in the end, performance of the systems can be compared.  

 

4.2.1.1.2.2 LIMITED CASE 

Algorithm for BNT approach for “limited case” is given below: 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) ECM is assigned a status (either yes or no) for the intended number of time steps in 

which observations will be performed. According to the scenario, the signal power 

level will make an increase at time step “t”. This time step will be called “low signal 

period” henceforth.  

3) The length of the observation period is called kmax. ECM rises from “low” to “high” 

only once during kmax time steps.  

4) Prior probability of ECM is assigned as:  

P(ECM)=[P(Yes=0.1) P(No=0.9)] 

5) “Convergence Time” variable is defined as a matrice of 1x kmax. 

6) “Lower Limit” is set so that P(ECM) cannot take values lower than that limit.  

7) Conditional probability table for P(SP|ECM) is set taking into account the quality of 

the sensor which provide signal power level information. 

8) FOR k=1: kmax (for each time step) 

a) Information from the sensor is received.  

 If the sensor is providing evidence, it is taken into account and the probability of 

ECM is updated using the following equation: 

 

{ , }

( , )( , )
( | )

( ) ( , )

i i
i i

i

ECM y n

P ECM e SP spP ECM SP
P ECM e SP sp

P SP P ECM SP sp


 
   


 

where ei and spi represent given information of “ECM” and “Signal Power” 

nodes at time instant “i” respectively.   
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 If there are several sensors providing information, evidences are combined. 

b) Updated ECM probability is compared to limit value at each time step and if 

posterior probability of ECM starts to get infinitesimal values, the lower limit is 

assigned to posterior probability of ECM and that value is used as prior probability 

of the next step.  

c) Posterior probability of ECM is assigned to prior probability of ECM for the next 

time step.  

END for 

9) Convergence Time variable is assigned with the time step at which probability exceeds 

0.99.  

10) The posterior probability of “ECM” at each time step is plotted with respect to time 

step k.  

The same procedure can further be expanded so that Monte Carlo Simulation results are 

obtained.  

 

 

4.2.1.1.2.3 FINITE MEMORY CASE 

4.2.1.1.2.3.1 APPROACH-1  

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

3) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

4) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps. 

5) Prior probability of ECM is assigned as:  

P(ECM)=[P(Yes=0.1) P(No=0.9)] 

6) Conditional probability table for P(SP|ECM) is set taking the quality of the sensor into 

account which provide signal power level information. 

7) FOR k=1: kmax (for each time step)  

a) Information from the sensor is received and following equation is used to update: 
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{ , }

( , )( , )
( | )

( ) ( , )

i i
i i

i

ECM y n

P ECM e SP spP ECM SP
P ECM e SP sp

P SP P ECM SP sp


 
   


  

b) Posterior probabilities are stored in ECM variable which are independently 

calculated as in “Memoryless Case”. For the final decision, latest three independent 

results (k-2,k-1,k) are combined. 

END for 

8) Posterior probability of “ECM” at each time step is plotted with respect to time step k. 

 

 

4.2.1.1.2.3.2 APPROACH 2 

1) Bayesian Network topology is created by assigning conditional dependencies between 

the nodes.  

2) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

3) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps. 

4) Prior probability of ECM is assigned as:  

P(ECM)=[P(Yes=0.1) P(No=0.9)] 

5) Conditional probability table for P(SP|ECM) is set taking the quality of the sensor into 

account which provides signal power level information. 

6) FOR k=1: kmax (for each time step)  

a) Weighted update algorithm is used where most of the belief is assigned to the latest 

observation.  

b) Update algorithm for Approach-2:   

m(k+1)=0.6×m(k)+0.25×m(k-1)+0.15×m(k-2)  

END for 

7) Convergence Time variable is assigned with the time step at which probability exceeds 

0.99. 

8) Posterior probability of “ECM” at each time step is plotted with respect to time step k. 
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4.2.2 DEMPSTER-SHAFER THEORY APPROACH 

In DST approach, the same topology is used and similar assumptions are made with only 

insignificant notational differences.  

First, the variables are defined as follows: 

ECM= {Yes, No}. “ECM” is the universal set and shown as “ECM” in the equations. Yes 

and No states are denoted with lower-case letters “y” and “n” correspondingly. BPA for 

ECM is shown via mECM(.).  

Signal Power= {Low, High} “Signal Power” is an evidence variable and denoted as “SP” in 

the equations. Low and High states are shown with “lo” and “hi” correspondingly. BPA for 

Altitude is shown via mSP(.). 

Differently from BNT approach, there is no requirement for prior information in DST 

approach.  

The behavior of the sensor is characterized by the following classifier matrix: 

(SP=hi|ECM=y) (SP=lo|ECM=y)

(SP=hi|ECM=n) (SP=lo|ECM=n)
SP

P P
C

P P

 
  
 

 

Since the sensor has two different levels of quality, classification matrices for both quality 

levels are presented as follows:   

If the speed sensor quality is poor: 

0.75 0.25

0.25 0.75
SPC

 
  
 

 

If the speed sensor quality is good: 

0.95 0.05

0.10 0.90
SGC

 
  
 

 

Basic probability assignment for ECM is assumed as: 

( 0, 0, 1)ECMm yes no    where  denotes the unknown case corresponding to 

{yes,no}. 

In light of evidences, belief of “ECM” is updated. Calculation of the posterior belief is 

performed using Dempster’s Combination of Evidence Rule.  
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4.2.2.1 ALGORITHMS FOR DST APPROACH 

4.2.2.1.1 MEMORYLESS CASE 

Algorithm for DST approach for “Memoryless Case” is given below: 

1) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps. 

3) In order to measure performance of the system, confusion matrix variables (TP, TN, 

FP, FN) and Accuracy, TPR, FPR variables are created. Furthermore, different 

threshold values are set in the variable Threshold.  

4) Prior bpa for the sensor is set as ( 0, 0, 1)m y n    since no information is given 

before starting observations.  

5) Classification matrix is set depending on quality levels of the sensor. 

6) FOR k=1: kmax (for each time step)  

a) Information from the sensor is received. If there are more than one sensor providing 

information, the evidences are combined by using Dempster’s Combination of 

Evidence. 

 If there is no information from both of the sensors, the prior belief of “ECM” 

does not change. 

b) Posterior belief of ECM is compared to threshold value resulting in increase in one 

of TP,TN,FP or FN variables (confusion matrix variables). 

END for 

7) Accuracy, TPR, FPR and Cost are calculated by using confusion matrix and cost 

matrix variables. 

8) The posterior belief of “ECM” at each time step is plotted with respect to time step k.  

9) ROC curve is drawn by using TPR and FPR values. 
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4.2.2.1.2 CASE WITH MEMORY 

4.2.2.1.2.1 ORDINARY CASE 

Algorithm for DST approach for “ordinary case” is given below: 

1) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps.  

3) Prior bpa for the sensor is set as ( 0, 0, 1)m y n    since no information is given 

before starting observations.  

4) “Convergence Time” variable is defined as a matrice of 1x kmax. 

5) Classification matrix is set depending on quality levels of the sensor.  

6) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensor is providing evidence, the bpa is updated in the below format: 

( ..., ..., ...)SPm y n    

 If the sensor is providing  does not provide evidence, the belief is assigned to 

unknown state and the following bpa is used:  

( 0, 0, 1)SPm y n    

b) Prior beliefs are updated using Dempster’s rule of combination: 

1 2

12

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C

 

 







 

c) The combined evidence is preserved in another bpa to be plotted in the end of the 

simulation. 

d) Initial belief of the sensor is updated so that unknown state is not “1” in the next 

time step. 

END for 

7) Convergence Time variable is assigned with the time step at which belief exceeds 

0.99. 

8) Posterior belief of “ECM” at each time step is plotted with respect to time step k. 

The same procedure can further be expanded so that Monte Carlo Simulation results are 

obtained.  
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4.2.2.1.2.2 LİMİTED CASE 

1) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps.  

3) Prior bpa for the sensor is set as ( 0, 0, 1)m y n    since no information is given 

before starting observations.  

4) “Convergence Time” variable is defined as a matrix of 1x kmax. 

5) Classification matrix is set depending on quality levels of the sensor.  

6) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensor is providing evidence, the bpa is updated in the below format: 

( ..., ..., ...)SPm y n    

 If the sensor does not provide evidence, the belief is assigned to unknown state 

and the following bpa is used:  

( 0, 0, 1)SPm y n    

b) Prior beliefs are updated using Dempster’s rule of combination: 

1 2

12

1 2

( ) ( )

( )
1 ( ) ( )

B C A

B C

m B m C

m A
m B m C

 

 







 

c) Updated ECM belief is compared to limit value at each time step and if posterior 

belief of ECM gets a value lower than the limit value, the lower limit is assigned to 

posterior belief of ECM and that value is used as prior belief of the next step. 

d) The combined evidence is preserved in another bpa to be plotted in the end of the 

simulation. 

e) Initial belief of the sensor is updated so that unknown state is not “1” in the next 

time step. 

END for 

7) Convergence Time variable is assigned with the time step at which belief exceeds 

0.99. 

8) Posterior belief of “ECM” at each time step is plotted with respect to time  

step k. 

The same procedure can further be expanded so that Monte Carlo Simulation results are 

obtained.  
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4.2.2.1.2.3 FINITE MEMORY CASE 

Two different approaches are given in this case: 

4.2.2.1.2.3.1 APPROACH-1:  

1) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps. 

3) Prior bpa for the sensor is set as ( 0, 0, 1)m y n    since no information is given 

before starting observations. 

4) Classification matrix is set depending on quality levels of the sensor.  

5) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensor is providing evidence, the bpa is updated in the below format: 

( ..., ..., ...)SPm y n    

 If the sensor does not provide evidence, the belief is assigned to unknown state 

and the following bpa is used:  

( 0, 0, 1)SPm y n    

b) Predictions are calculated by using Dempster’s rule of combination. Decisions are  

made at each time step independent of previous time steps and results are stored in 

a variable. For the final decision, latest three independent results (k-2,k-1,k) are 

combined. 

END for 

6) Posterior belief of “ECM” at each time step is plotted with respect to time step k. 

 

 

4.2.2.1.2.3.2 APPROACH 2 

1) ECM is initialized “no” for a period called “low signal period” which is shown with 

“t” and initialized “yes” for the rest of the period in which observations will be 

performed.  

2) The length of the duration of observation period is determined and this value is set to 

kmax variable. ECM only changes its state once during kmax time steps.  
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3) Prior bpa for the sensor is set as ( 0, 0, 1)m y n    since no information is given 

before starting observations.  

4) “Convergence Time” variable is defined as a matrix of 1x kmax. 

5) Classification matrix is set depending on quality level of the sensor.  

6) FOR k=1: kmax (for each time step) 

a) Information received from the sensors is evaluated: 

 If the sensor is providing evidence, the bpa is updated in the below format: 

( ..., ..., ...)SPm y n    

 If the sensor does not provide evidence, the belief is assigned to unknown state 

and the following bpa is used:  

( 0, 0, 1)SPm y n    

b) Weighted update algorithm is used where most of the belief is assigned to the latest 

observation.  

c) Update algorithm for Approach-2:   

m(k+1)=0.6×m(k)+0.25×m(k-1)+0.15×m(k-2)  

d) Initial belief of the sensor is updated so that unknown state is less than “1” in the 

next time step. 

END for 

7) Convergence Time variable is assigned with the time step at which belief exceeds 

0.99. 

8) Posterior belief of “ECM” at each time step is plotted with respect to time step k. 

The same procedure can further be expanded so that Monte Carlo Simulation results are 

obtained. If the same procedure is applied for a predetermined number of times (i.e. 1000 

times) and the beliefs of posterior “ECM” are averaged in the end, performance of the 

system is better understood. 

 

 

4.3 PERFORMANCE CRITERIA 

In order to organize classification methods and compare their performances in various 

cases, different techniques are defined. Broadly accepted performance measurement 

techniques that are applicable to the scenarios defined in parts 4.1 and 4.2 include: 
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Accuracy Calculation (via Confusion Matrix) 

Receiver Operating Characteristics (via Confusion Matrix) 

Cost Calculation (via Cost Matrix) 

Before going into detailed explanation for these three methods, it is important to present 

definitions of “Confusion Matrix” and “Cost Matrix”.  

Confusion Matrix: A matrix which shows the actual and predicted classifications for N 

number of different values is called a confusion matrix. A confusion matrix for N=2 is 

presented below: 

 

  
Predicted Class a   TP : True Positive 

  
Class=Yes Class=No b    FN : False Negative 

Actual Class 
Class=Yes a b c FP : False Positive 

Class=No c d d TN : True Negative 

 

 

“a” is the number of correct predictions that an instance is positive, 

“b” is the number of incorrect of predictions that an instance negative, 

“c” is the number of incorrect predictions that an instance is positive, and 

“d” is the number of correct predictions that an instance is negative. 

FP is also known as “Type-I error” and FN is known as “Type-II” error in the literature.  

Cost Matrix: A cost matrix can be defined as a modification of confusion matrix in which 

pre-defined costs are assigned to the cells. Positive numbers in the cells can be used as 

negative outcomes and negative numbers as positive outcomes. The systems that has lower 

cost is said to be better performing compared to the  

high-cost system. 

 

 

 
Predicted Class 

Actual 

Class 

C(i|j) Class=Yes Class=No 

Class=Yes C(yes|yes) C(no|yes) 

Class=No C(yes|no) C(no|no) 

C(i|j):Cost of misclassifying class j example as class i 
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4.3.1 ACCURACY CALCULATION 

Accuracy is a widely used performance measure in classification systems. Even though it is 

simple and assumes both types of errors (FP and FN) have the same effect, it provides a 

clear comparison of systems unless the observed class is imbalanced (i.e. one of the classes 

is dominant). 

Accuracy is calculated by dividing total correct predictions to the total number of 

observations:  

 
a+d TP+TN

Accuracy= =
a+b+c+d TP+TN+FP+FN

 (5.6) 

Accuracy ranges from 0 to 1 (0% to 100%) depending on the characteristics of the 

classifier. The following bullets sum up main properties of accuracy measurement.  

 90% accuracy means 10% error rate, 

 If the accuracy is increased from 90% to 95%, error rate is reduced by 50%.  

 

 

4.3.2 RECEIVER OPERATING CHARACTERISTICS (ROC) 

ROC technique involves plotting a graph by using the information provided by confusion 

matrix. It is useful for comparing classifiers and visualizing the information acquired.  

In order to plot ROC graphs, two additional definitions are needed to be given which are 

namely “True Positive Rate (TPR)” and “False Positive Rate (FPR)”.  

 
a TP c FP

TPR= = FPR= =
a+b TP+FN c+d FP+TN

 (5.7) 

Higher TPR and lower FPR indicate better performance in classification systems.  

ROC graphs are plotted by using TPR in y-axis and FPR in x-axis.  
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Figure 4-3: ROC Graph Template 

 

 

There are important points in the ROC graph that needs further explanation: 

Point (0,0) indicates the situation where the classifier never issues a positive classification. 

This situation results in never receiving positive errors but also never gaining true positives.  

Point (1,1) indicates the situation where the classifier is always issuing positive 

classifications. This situation can be noted as opposite of point (0,0).  

Point (0,1) indicates a perfect classification as TPR=1 and FPR=0 in this situation. TPR=1 

and FPR=0 is achieved when FP=0 and FN=0 as given in formula (4.6). 

The dashed line that is drawn from  (0,0) to (1,1) represents randomly predicting situation. 

Thus, if a classifier is plotted in the lower right triangle, that classifier is performing worse 

than random prediction. 

Curves in ROC space are obtained by applying different threshold levels to the classifier. 

The applied threshold levels decrease from +inf to 0.  

A threshold of +inf produces the point (0, 0). As the threshold is reduced to a level between 

(0,1) the first positive instance is classified positive, resulting in (0, x). When the threshold 

is further decreased, the curve climbs to the upper right corner ending up at point (1,1). 

If there is only one threshold level, the correspondent ROC graph can be drawn as below:  
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Figure 4-4: ROC Graph of a classifier with single threshold level 

 

 

 

By using the ROC curves, highest accuracy values can be found for different threshold 

levels.  

 

4.3.3 COST CALCULATION 

Using cost matrices by assigning different costs to the correct and incorrect predictions 

provides a significant convenience while handling imbalanced data sets. This method also 

gives a second idea regarding classification systems where accuracy is not sufficient or 

controversial (such as in cases where two different threshold levels result in almost same 

accuracy levels). 

The following example shows a case where accuracy and cost calculation methods lead to 

different conclusions regarding the systems.  

Example:  

Provided that there are two similar classifier systems, the performances can be compared 

according to their accuracies and costs. The cost matrix of the classification is given as:  

 

 
Predicted Class 

Actual 

Class 

C(i|j) + - 

+ -1 100 

- 1 0 
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The cost of classifying a positive class as a negative class (FN) is much higher than the cost 

of classifying a negative class as a positive class (FP).  

The following systems provide the numbers of detection values of both systems. The 

comparison will be made according to these matrices.  

 

Classifier 1 

 

Classifier 2 

 
Predicted Class 

  
Predicted Class 

Actual 

Class 

C(i|j) + - 
 Actual 

Class 

C(i|j) + - 

+ 180 48 
 

+ 300 54 

- 72 300 
 

- 6 240 

Accuracy-1=80% 

   

Accuracy-2=90%   
Cost-1=4692 

   

Cost-2=5106 
  

 

 

Even though Accuracy-2 is higher than Accuracy-1 (error rate of the second classifier is 

50% less than the first classifier), misclassifications of the second classifier result in a 

higher cost according to the pre-determined error costs.   
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CHAPTER 5  

 

SIMULATIONS AND RESULTS  

In this chapter, the scenarios that are explained in Chapter 4 are implemented and their 

outputs are inspected correspondingly. The performances of the scenarios are measured 

using performance methods such as accuracy, ROC curves and cost calculation methods. 

Important points such as convergence time step of the plot and average convergence time of 

the algorithm are added below the plots.  

 

5.1 SCENARIO 1: ATTRIBUTE TRACKING 

Firstly, attribute tracking scenario will be inspected using BNT and DST approaches 

respectively under the conditions given in Chapter 4.  

 

5.1.1 BAYESIAN NETWORK THEORY APPROACH 

The cases, namely “Memoryless Case” and “Case with Memory” will be examined. After 

presenting the plots, the accuracies will be presented in order to compare performances.  

 

5.1.1.1 MEMORYLESS CASE 

In this case, since the observed class is single type (aircraft at all times), Accuracy values 

will be the same with TPR values since FP and TN are zero. The cases will be examined 

with respect to quality of the sensor levels. Total number of observations, which is known 

as kmax, is selected as 200 and the threshold level for predicting the target as an aircraft is  

selected as 0.8 for the next 4 subsections: 
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Poor speed sensor and poor altitude sensor case 
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Figure 5-1: Poor speed sensor and poor altitude sensor case 

 

 

P(T=aircraft|S=fast,A=high)= 0.8824  P(T=aircraft|S=fast,A=low)= 0.4545 

P(T=aircraft|S=slow,A=high)= 0.5172  P(T=aircraft|S=slow,A=low)= 0.1064 

Target is aircraft for k=1:200.  

Accuracy of the classifier is found as 0.5626. 
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Poor speed sensor and good altitude sensor case 
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Figure 5-2: Poor speed sensor and good altitude sensor case 

 

 

P(T=aircraft|S=fast,A=high)= 0.9388  P(T=aircraft|S=fast,A=low)= 0.1905 

P(T=aircraft|S=slow,A=high)= 0.6866  P(T=aircraft|S=slow,A=low)= 0.0325 

Accuracy of the classifier is found as 0.6959.  

The accuracy is increased from 56.26% to 69.59% when only altitude sensor is improved. 
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Good speed sensor and poor altitude sensor case 
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Figure 5-3: Good speed sensor and poor altitude sensor case 

 

 

P(T=aircraft|S=fast,A=high)= 0.9661  P(T=aircraft|S=fast,A=low)= 0.7600 

P(T=aircraft|S=slow,A=high)= 0.1429  P(T=aircraft|S=slow,A=low)= 0.0182 

Accuracy of the classifier is found as 0.7108. 

The accuracy is increased from 56.25% to 71% when only speed sensor is improved. 
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Good speed sensor and good altitude sensor case 
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Figure 5-4: Good speed sensor and good altitude sensor case 

 

 

P(T=aircraft|S=fast,A=high)= 0.9831  P(T=aircraft|S=fast,A=low)= 0.4720 

P(T=aircraft|S=slow,A=high)= 0.2541  P(T=aircraft|S=slow,A=low)= 0.0052 

Accuracy of the classifier=171/200= 0.8704.  

The accuracy is increased to 87% when both speed and altitude sensors are improved. 

 

5.1.1.2 CASE WITH MEMORY 

In this case, TargetType probabilities are updated to be used for the following round. The 

observation period is chosen as kmax=50 since convergence is achieved much earlier than 

k=50.   

P(TargetType=aircraft)>0.99 is set as the limit for convergence. 
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Poor speed sensor and poor altitude sensor case 

Two random sequences are shown in order to examine convergence times: 
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Figure 5-5: Poor speed sensor and poor altitude sensor case with memory-1 
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Figure 5-6: Poor speed sensor and poor altitude sensor case with memory-2 

 

 

Using Monte Carlo Number=1000, average convergence value 5.66 is found for poor 

speed sensor and poor altitude sensor case. 
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Poor speed sensor and good altitude sensor case 

Two random sequences are shown in order to examine convergence times: 
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Figure 5-7: Poor speed sensor and good altitude sensor case with memory-1 
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Figure 5-8: Poor speed sensor and good altitude sensor case with memory-2 

 

 

Using Monte Carlo Number=1000, average convergence value 3.11 is found for poor 

speed sensor and good altitude sensor case. Convergence time is improved compared to 

the previous case.  
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Good speed sensor and poor altitude sensor case 

Two random sequences are shown in order to examine convergence times: 

 

0 5 10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1

Scan number

P
(T

)

Posterior Probability of P(T) given that Aircraft is fast and high

 

 

Groundtruth

BN rule

 
Figure 5-9: Good speed sensor and poor altitude sensor case with memory-1 
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Figure 5-10: Good speed sensor and poor altitude sensor case with memory-2 

 

 

Using Monte Carlo Number=1000, average convergence value 2.67 is found for good 

speed sensor and poor altitude sensor case. 
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Good speed sensor and good altitude sensor case 

Two random sequences are shown in order to examine convergence times: 
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Figure 5-11: Good speed sensor and good altitude sensor case with memory-1 
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Figure 5-12: Good speed sensor and good altitude sensor case with memory-2 

 

 

Using Monte Carlo Number=1000, average convergence value 2.23 is found for good 

speed sensor and good altitude sensor case. 

 

 

5.1.2 DEMPSTER-SHAFER THEORY APPROACH 

The cases, namely “memoryless case” and “case with memory” will be examined. 

 

5.1.2.1 MEMORYLESS CASE 

As explained in BNT case, Accuracy and TPR values are same in this case since the 

observed class is single type. The cases will be examined with respect to quality of the 

sensor levels. Total number of observations, which is known as kmax, is selected as 100 and 

the threshold level for predicting the target as an aircraft is  selected as 0.85 for the next 4 

subsections. 
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Poor speed sensor and poor altitude sensor case: 
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Figure 5-13: Poor speed sensor & poor altitude sensor case 

 

 

Accuracy of the classifier is found as 0.5631. 
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Poor speed sensor and good altitude sensor case: 
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Figure 5-14: Poor speed sensor & good altitude sensor case 

 

 

Accuracy of the classifier is found as 0.6868. 
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Good speed sensor and poor altitude sensor case: 
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Figure 5-15: Good speed sensor & poor altitude sensor case 

 

 

Accuracy of the classifier is found as 0.7179. 
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Good speed sensor and good altitude sensor case: 
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Figure 5-16: Good speed sensor & good altitude sensor case 

 

 

Accuracy of the classifier is found as 0.8715. 
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5.1.2.2 CASE WITH MEMORY 

In this case, TargetType beliefs are updated to be used for the following round. 

P(TargetType=aircraft)>0.99 is set as the limit for convergence. 

Poor speed classifier & Poor altitude sensor case: 
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Figure 5-17: Poor speed sensor and poor altitude sensor case with memory (DST) 

 

 

Average convergence time for poor speed classifier case = 4.15. 
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Poor speed classifier & Good altitude sensor case: 
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Figure 5-18: Poor speed sensor and Good altitude sensor case with memory (DST) 

 

 

Average convergence time for poor speed classifier case = 2.3. 
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Good speed classifier & Poor altitude sensor case: 
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Figure 5-19: Good speed sensor and poor altitude sensor case with memory (DST) 

 

 

Average convergence time for poor speed classifier case = 2.2. 
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Good speed classifier & Good altitude sensor case: 
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Figure 5-20: Good speed sensor and good altitude sensor case with memory (DST) 

 

 

Average convergence time for poor speed classifier case = 1.15. 

 

5.2 SCENARIO 2: ECM DETECTION 

Secondly, ECM detection scenario will be inspected using BNT and DST approaches 

respectively under the conditions given in Chapter 4. The inspections will be done for two 

cases, namely “memoryless case” and “case with memory”. The effect of using multiple 

sensors, especially for poor sensor case will be inspected. The case with memory will 

further be inspected with a lower limit in order to achieve convergence time improvement.  
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5.2.1 BAYESIAN NETWORK THEORY APPROACH 

5.2.1.1 MEMORYLESS CASE 

In the following sub-sections, single and multiple sensors are used respectively in both 

quality levels where the system does not keep prediction results of previous cases. Low 

signal period is set an average value (klow=40) for this case. The results are plotted together 

with Accuracy, TPR and FPR values.  

Single Poor Sensor Case: Threshold value of 0.2 is used.  
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Figure 5-21: Single Poor Sensor in Memoryless ECM Case 

 

 

Accuracy =0.7511, TPR =0.7498, FPR =0.2469. 

When the simulation is repeated 500 times, following values are achieved:, 

Accuracy=0.7532, TPR=0.7510, FPR=0.2433 
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Single Good Sensor Case: Threshold value of 0.8 is used.  
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Figure 5-22: Single Good Sensor in Memoryless ECM Case 

 

 

 

Accuracy =0.93, TPR =0.9508, FPR =0.1026.  

When the simulation is repeated 500 times, following values are achieved: 

Accuracy=0.9330, TPR=0.9539, FPR=0.0998. 
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Multiple Sensors Case: 4 poor sensors are used.  

This case will be examined in terms of accuracy, TPR, FPR and cost. ROC plot will be 

shown in order to observe effect of various threshold values. In order to obtain a ROC 

curve, following threshold values are chosen according to the values observed in the plot: 

Threshold=[+inf, 0.8, 0.4, 0.05, 0]. 

Results of first single run: 
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Figure 5-23: 4 Poor Sensors in Memoryless ECM Case-1 
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Figure 5-24: ROC Curve of 4 Poor Sensors in Memoryless ECM Case-1 
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Overall results can be summed up in the table below:  

 

Table 5-1: Performance Measures-1 (BNT) 

Threshold 1 0.8 0.4 0.05 0 

TPR 0 0.230 0.721 0.951 1.00 

FPR 0 0.026 0.026 0.282 1.00 

Accuracy 0.39 0.52 0.82 0.86 0.61 

 

 

Accuracy is highest when the threshold is 0.05.  

 

Results of second single run: 
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Figure 5-25: 4 Poor Sensors in Memoryless ECM Case-2 
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Figure 5-26: ROC Curve of 4 Poor Sensors in Memoryless ECM Case-2 

 

 

Overall results can be summed up in the table below:  

 

Table 5-2: Performance Measures-2 (BNT) 

Threshold 1 0.8 0.4 0.05 0 

TPR 0 0.262 0.754 0.934 1.00 

FPR 0 0.000 0.077 0.231 1.00 

Accuracy 0.39 0.55 0.82 0.87 0.61 

 

 

Accuracy is highest when the threshold is 0.05. 
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Average Results when the simulation is run 100 times: 
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Figure 5-27: Average ROC Curve of 4 Poor Sensors in Memoryless ECM Case 

 

 

Average results can be summed up in the table below:  

 

Table 5-3: Performance Measures-Average (BNT) 

Threshold 1 0.8 0.4 0.05 0 

TPR 0 0.324 0.736 0.949 1.0 

FPR 0 0.006 0.049 0.258 1.0 

Accuracy 0.3999 0.5921 0.8223 0.8665 0.60 

Cost 300050 203677 76753 18819 33989 

 

 

Accuracy is maximum and Cost is minimum when the threshold is 0.05. However, setting 

the threshold value so low can lead to misclassifications when no target is present. As a 

matter of fact, this type of misclassifications can be observed from the FPR values in the 

corresponding table:  

   FPR 0.05 5 FPR 0.4   

The threshold level must be set depending upon the requirements of the system and the 

importance of misclassifications, namely type-I error and type-II error. If FPR is needed to 

be lower than a certain level, such as 0.1, then threshold must be selected as 0.4 where 
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Accuracy=82.23%. On the other hand, if TPR is desired to be higher than a certain limit, 

such as 0.9, then threshold must be set as 0.05 where Accuracy=94.9%.  

Above study shows that observing only Accuracy does not provide most accurate 

information and several parameters should be observed together taking into account the 

requirements of the system.  
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5.2.1.2 CASE WITH MEMORY 

Performances of Single and Multiple Sensors will be presented for both ordinary and 

limited cases. Different low limit values will be conducted in single sensor simulations in 

order to observe best-performing lower limit.  

 

5.2.1.2.1 SINGLE SENSOR 

During the sub-sections, classifications with only one sensor will be simulated.  

 

5.2.1.2.1.1 ORDINARY CASE 

Poor Signal Power Sensor Case 

This case will be examined for different lengths of low signal periods: tlow=10,20,40,60,80. 

ECM is not used for the first 10 time steps: 
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Figure 5-28: Single poor signal power sensor, ordinary case, t=10 (BNT) 

 

 

Convergence time is 27 for single run. However, the predictions get lower values even after 

crossing over 0.99 threshold level.   
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When the simulation is performed 1000 times, convergence is achieved at 32.73. Therefore, 

average convergence time is: 22.73.  

Around k=10; probability is around: 4.1e-03. 

 

ECM is not used for the first 20 time steps: 
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Figure 5-29: Single poor signal power sensor, ordinary case, t=20 (BNT) 

 

 

Convergence time is 51-20=31 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 50.12. Therefore, 

average convergence time is: 30.12. 

Around k=20; probability is around: 6.27e-07. 
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ECM is not used for the first 40 time steps 
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Figure 5-30: Single poor signal power sensor, ordinary case, t=40 (BNT) 

 

 

 

Convergence time is 81-40=41 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 92.86. Therefore, 

average convergence time is: 52.86. 

Around k=40; probability is around: 9.56e-11. 
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ECM is not used for the first 60 time steps: 
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Figure 5-31: Single poor signal power sensor, ordinary case, t=60 (BNT) 

 

 

 

Convergence time is 139-60=79 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 133. Therefore, 

average convergence time is: 73. 

Around k=60; probability is around: 1.45e-14. 
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Good Signal Power Sensor Case 

This case will be examined for tlow=10,20,40,60,80. 

ECM is not used for the first 10 time steps 
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Figure 5-32: Single good signal power sensor, ordinary case, t=10 (BNT) 

 

 

 

Convergence time is 22-10=12 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 20.1. Therefore, 

average convergence time is: 10.1. 

Around k=10; probability is around: 1.76e-10. 
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ECM is not used for the first 20 time steps 
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Figure 5-33: Single good signal power sensor, ordinary case, t=20 (BNT) 

 

 

 

Convergence time is 37-20=17 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 38.4. Therefore, 

average convergence time is: 18.4. 

Around k=20; probability is around: 2.94e-20. 
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ECM is not used for the first 40 time steps 
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Figure 5-34: Single good signal power sensor, ordinary case, t=40 (BNT) 

 

 

 

Convergence time is 78-40=38 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 75.22. Therefore, 

average convergence time is: 35.22. 

Around k=40; probability is around: 8.21e-40. 
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ECM is not used for the first 60 time steps 
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Figure 5-35: Single good signal power sensor, ordinary case, t=60 (BNT) 

 

 

Convergence time is 113-60=53 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 111.73. 

Therefore, average convergence time is: 51.73. 

Around k=60; probability is around: 1.1e-52. 
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ECM is not used for the first 80 time steps 
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Figure 5-36: Single good signal power sensor, ordinary case, t=80 (BNT) 

 

 

Convergence time is 143-80=63 for single run.  

When the simulation is performed 1000 times, convergence is achieved at 148.37. 

Therefore, average convergence time is: 68.37. 

Around k=80; probability is around: 1.1e-76. 
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5.2.1.2.1.2 LIMITED CASE 

Poor Signal Power Sensor Case 

A. Lower Limit is set: 0.01. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-37: Poor signal power sensor, 0.01 limited case, t=10 (BNT) 

 

 

Convergence time is 24-10=14 for single run. 

Average convergence is achieved at 24.84. Then, tconv=14.84. 
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ii. ECM is not used for the first 40 time steps 

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

P
(E

C
M

)

Probability of P(ECM) given SignalPower

 

 

Groundtruth

BN rule

 
Figure 5-38: Poor signal power sensor, 0.01 limited case, t=40 (BNT) 

 

 

Convergence time is 60-40=20 for a single run. 

Average convergence time is achieved at 55. Then, tconv=15. 

The curve indicates system is not reliable for k<20 and k=[40,60]. 
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B. Lower Limit is set: 0.001. 

As in part A, two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-39: Poor signal power sensor, 0.001 limited case, t=10 (BNT) 

 

 

Convergence time is 31-10=21 for single run. 

Average convergence is achieved at 28.65. Then, tconv=18.65. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-40: Poor signal power sensor, 0.001 limited case, t=40 (BNT) 

 

Convergence time is 56-40=16 for single run. 

Average convergence is achieved at 58.9. Then, tconv=18.9. 
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Good Signal Power Sensor Case 

A. Lower Limit is set: 0.01. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-41: Good signal power sensor, 0.01 limited case, t=10 (BNT) 

 

 

Convergence time is 13-10=3 for single run. 

Average convergence is achieved at 13.39. Then, tconv=3.39. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-42: Good signal power sensor, 0.01 limited case, t=40 (BNT) 

 

 

Convergence time is 43-40=3 for single run. 

Average convergence is achieved at 43.49. Then, tconv=3.49. 
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B. Lower Limit is set: 0.001. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-43: Good signal power sensor, 0.001 limited case, t=10 (BNT) 

 

 

Convergence time is 13-10=3 for single run. 

Average convergence is achieved at 13.8. Then, tconv=3.8. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-44: Good signal power sensor, 0.001 limited case, t=40 (BNT) 

 

 

Convergence time is 43-40=3 for single run. 

Average convergence is achieved at 43.74. Then, tconv=3.74. 

 

 

5.2.1.2.1.3 FINITE MEMORY CASE 

Approach-1: 

In this case, decision is made by combining three independent predictions belonging to time 

steps k, k-1 and k-2.  
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Single Poor Sensor 
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Figure 5-45: Single poor signal power sensor, finite memory case-1, t=10 (BNT) 

 

 

Single Good Sensor 
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Figure 5-46: Single good signal power sensor, finite memory case-1, t=10 (BNT) 
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Approach-2: 

Belief is updated using previous n time steps that have weighted coefficients inversely 

proportional to their distance to the present time step.  

Update algorithm:        P k 1 0.6*P k 0.25*P k 1 0.15*P k 2       

Single Poor Sensor: Convergence duration is 45. 
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Figure 5-47: Single poor signal power sensor, finite memory case-2, single run, t=10 (BNT) 
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Figure 5-48: Single poor signal power sensor, finite memory case-2, Monte Carlo Average, 

t=10 (BNT) 
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Single Good Sensor: 
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Figure 5-49: Single good signal power sensor, finite memory case-2, single run, t=10 

(BNT) 
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Figure 5-50: Single good signal power sensor, finite memory case-2, Monte Carlo Average, 

t=10 (BNT) 
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Convergence duration is 11. 

Approach 2 makes approximately 40% improvement in good sensor case whereas the 

performance in poor sensor case remains almost same. However, despite the performance 

increase in good sensor case, the results obtained in this case are far away from the results 

obtained in “limited” case. 

 

5.2.1.2.2 MULTIPLE SENSORS 

During the sub-sections, classifications with different number of sensors will be simulated 

in order to observe the relationship between increasing sensor number and the performance 

of the classifier.  

 

5.2.1.2.2.1 ORDINARY CASE 

The following plots show averaged values for each time step that are obtained by Monte 

Carlo simulations. tlow=10,40 is selected in order to observe effect of Low signal periods on 

the classifier performance. 

Poor Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 2 sensors are used: 
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Figure 5-51: Multiple (2) poor signal power sensors, ordinary case, t=10 (BNT) 
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Monte Carlo simulation convergence time=30. 

When the simulation is performed 1000 times, average convergence time is: 17.12. 

Doubling the sensor number reduces Monte Carlo convergence time nearly 33%.  

 

ECM is not used for the first 40 time steps and 2 sensors are used: 
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Figure 5-52: Multiple (2) poor signal power sensors, ordinary case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=71. 

When the simulation is performed 1000 times, average convergence time is: 47.05. 
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ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-53: Multiple (4) poor signal power sensors, ordinary case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=22. 

When the simulation is performed 1000 times, average convergence time is: 13.17. 

ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-54: Multiple (4) poor signal power sensors, ordinary case, t=40 (BNT) 
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Monte Carlo simulation convergence time=60. 

When the simulation is performed 1000 times, average convergence time is: 43.32. 

 

ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-55: Multiple (8) poor signal power sensors, ordinary case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=17. 

When the simulation is performed 1000 times, average convergence time is: 11.40. 
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ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-56: Multiple (8) poor signal power sensors, ordinary case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=53. 

When the simulation is performed 1000 times, average convergence time is: 41.07. 
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Good Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 2 sensors are used: 
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Figure 5-57: Multiple (2) good signal power sensors, ordinary case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=11. 

When the simulation is performed 1000 times, average convergence time is: 7.97. 
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ECM is not used for the first 40 time steps and 2 sensors are used: 
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Figure 5-58: Multiple (2) good signal power sensors, ordinary case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=34. 

When the simulation is performed 1000 times, average convergence time is: 27.34. 
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ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-59: Multiple (4) good signal power sensors, ordinary case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=9. 

When the simulation is performed 1000 times, average convergence time is: 7.09. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-60: Multiple (4) good signal power sensors, ordinary case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=31. 

When the simulation is performed 1000 times, average convergence time is: 26.84. 
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-61: Multiple (8) good signal power sensors, ordinary case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=8. 

When the simulation is performed 1000 times, average convergence time is: 6.77. 



107 

 

ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-62: Multiple (8) good signal power sensors, ordinary case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=30. 

When the simulation is performed 1000 times, average convergence time is: 26.7. 

Increasing the sensor number used in classifiers increases the performance of the system by 

reducing time steps needed to converge. However, convergence times do not decrease 

evenly when sensor number is doubled at each case. When Monte Carlo results are taken 

into account, as sensor number is increased to 2, convergence time is decreased around 25-

38% whilst this ratio is around 7-10% when 16 sensors are used.  
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5.2.1.2.2.2 LIMITED CASE 

In limited case, lower limit is set to 0.001 in order to reduce convergence time of the 

classifier and make convergence time independent of the low signal period. Thus, after 

necessary simulations are observed, it will be seen that overall performance of the classifier 

is dramatically increased via implying lower limit together with multiple sensors.  

Low signal periods are chosen as tlow=10,40 while studying performances of 4 and 8 

sensors.  

Poor Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-63: Multiple (4) poor signal power sensors, limited case, t=10 (BNT) 

Monte Carlo simulation convergence time=10. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-64: Multiple (4) poor signal power sensors, limited case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=10. 
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-65: Multiple (8) poor signal power sensors, limited case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=6. 
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ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-66: Multiple (8) poor signal power sensors, limited case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=6. 

Applying a lower limit to the belief function has a dramatic effect on the overall 

performance as the convergence times become independent of low signal periods (tlow) and 

reduce significantly.  

When 4 poor sensors are used instead of one, convergence time reduces from 34 to 10. This 

is equivalent to saying that system converges 70.6% faster than single poor sensor case. 

Furthermore, when sensor level is increased to 8, system converges 40% faster than 4-

sensor case and 82.35% faster than single sensor case.  
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Good Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-67: Multiple (4) good signal power sensors, limited case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=2. 



113 

 

ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-68: Multiple (4) good signal power sensors, limited case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=2. 
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-69: Multiple (8) good signal power sensors, limited case, t=10 (BNT) 

 

 

Monte Carlo simulation convergence time=1. 
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ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-70: Multiple (8) good signal power sensors, limited case, t=40 (BNT) 

 

 

Monte Carlo simulation convergence time=1. 

It is important to note that using multiple poor sensors provide a performance which is 

equivalent to using a good sensor. Taking into account the correct prediction probability of 

the poor sensor, which is around 75%, multiplying the poor sensors can be more cost 

efficient. 
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5.2.2 DEMPSTER-SHAFER THEORY APPROACH 

5.2.2.1 MEMORYLESS CASE 

In the following sub-sections, single and multiple sensors are used respectively in both 

quality levels where the system does not keep prediction results of previous cases. Low 

signal period is set an average value (klow=40) for this case. The results are plotted together 

with Accuracy, TPR and FPR values. 

Single Poor Sensor Case: Threshold value of 0.7 is used. 
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Figure 5-71: Single Poor Sensor in Memoryless ECM Case 

 

 

Accuracy =0.73, TPR =0.7049, FPR =0.2308. 

When the simulation is repeated 500 times, following values are achieved:, Accuracy=0.75, 

TPR=0.7489, FPR=0.2483. 
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Single Good Sensor Case: Threshold value of 0.7 is used: 
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Figure 5-72: Single Good Sensor in Memoryless ECM Case (DST) 

 

 

Accuracy =0.95, TPR =0.9508, FPR =0.0513. 

When the simulation is repeated 500 times, following values are achieved:, 

Accuracy=0.9197, TPR=0.90, FPR=0.0498. 
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Multiple Sensors Case: 4 poor sensors are used.  

This case will be examined in terms of accuracy, TPR, FPR and cost. ROC plot will be 

shown in order to observe effect of various threshold values. In order to obtain a ROC 

curve, following threshold values are chosen according to the values observed in the plots: 

Threshold [+inf, 0.95, 0.9, 0.4, 0.01, 0]. 

Results of first single run: 
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Figure 5-73: 4 Poor Sensors in Memoryless ECM Case-1 (DST) 
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Figure 5-74: ROC Curve of 4 Poor Sensors in Memoryless ECM Case-1 (DST) 
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Overall results can be summed up in the table below:  

 

Table 5-4: Performance Measures-1 (DST) 

Threshold 1 0.95 0.9 0.4 0.01 0 

TPR 0 0.344 0.770 0.885 0.984 1.00 

FPR 0 0.000 0.051 0.359 0.590 1.00 

Accuracy 0.39 0.60 0.84 0.79 0.76 0.61 

 

 

Accuracy is highest when the threshold is 0.9.  

Results of second single run: 
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Figure 5-75: 4 Poor Sensors in Memoryless ECM Case-2 (DST) 
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Figure 5-76: ROC Curve of 4 Poor Sensors in Memoryless ECM Case-2 (DST) 

 

 

Overall results can be summed up in the table below:  

 

     Table 5-5: Performance Measures-2 (DST) 

Threshold 1 0.95 0.9 0.4 0.01 0 

TPR 0 0.295 0.754 0.967 1.00 1.00 

FPR 0 0.000 0.103 0.282 0.718 1.00 

Accuracy 0.39 0.57 0.81 0.87 0.72 0.61 

 

 

Accuracy is highest when the threshold is 0.4. 
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Average Results when the simulation is run 100 times: 
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Figure 5-77: Average ROC Curve of 4 Poor Sensors in Memoryless ECM Case (DST) 

 

 

Average results can be summed up in the table below:  

 

Table 5-6: Performance Measures-Average (DST) 

Threshold 1 0.95 0.9 0.4 0.01 0 

TPR 0 0.315 0.736 0.945 0.996 1 

FPR 0 0.003 0.048 0.269 0.693 1 

Accuracy 0.3999 0.5877 0.8222 0.86 0.72 0.6 

Cost 300050 205218 78023 18755 22685 33989 

 

 

Accuracy is maximum and Cost is minimum when the threshold is 0.4. However, as 

explained in BNT method of the same study, setting the threshold 0.4 can lead to 

misclassifications when no target is present. As a matter of fact, this type of 

misclassifications can be observed from the FPR values in the corresponding table:  

FPR(0.9)=0.048 is much lower than FPR(0.4)=0.269. 

Having difficulty in deciding which threshold level is suitable to the classification system 

can be overcome by evaluating the obligatory requirements. Setting the threshold to 0.4 

highly increases both TPR and FPR values which means that every one out of four 

predictions is incorrect when the target is not applying ECM. On the other hand, when 0.9 
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is selected as the threshold, one out of every four predictions is incorrect when the target is 

applying ECM.  

The contradictory results show that there are cases in which no exact algorithm can be 

applied to find the best solution. In these situations, several methods can be applied in order 

to gain a wider perspective to the problem and find an optimized solution. 

 

5.2.2.2 CASE WITH MEMORY 

Performances of Single and Multiple Sensors will be presented for both ordinary and 

limited cases. Different low limit values will be conducted in single sensor simulations in 

order to observe best-performing lower limit. 

 

5.2.2.2.1 SINGLE SENSOR 

During the sub-sections, classifications with only one sensor will be simulated. 

 

5.2.2.2.1.1 ORDINARY CASE 

Poor Signal Power Sensor Case 

This case will be examined for different lengths of low signal periods: t=10,20,40,60,80. 

ECM is not used for the first 10 time steps 
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Figure 5-78: Single poor signal power sensor, ordinary case, t=10 (DST) 
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Convergence time is 44-10=34 for single run.  

Convergence is achieved at 32.73 in average. Therefore, average tconv=22.73.  

 

ECM is not used for the first 20 time steps 
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Figure 5-79: Single poor signal power sensor, ordinary case, t=20 (DST) 

 

 

Convergence time is 38-20=18 for single run.  

Convergence is achieved at 45.85 in average. Therefore, average tconv=25.85. 
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ECM is not used for the first 40 time steps 
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Figure 5-80: Single poor signal power sensor, ordinary case, t=40 (DST) 

 

 

Convergence time is 74-40=34 for single run.  

Convergence is achieved at 84.58 in average. Therefore, average tconv=44.58. 
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ECM is not used for the first 60 time steps 
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Figure 5-81: Single poor signal power sensor, ordinary case, t=60 (DST) 

 

 

Convergence time is 156-60=96 for single run.  

Convergence is achieved at 124.56 in average. Therefore, average tconv=64.56. 
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ECM is not used for the first 80 time steps 
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Figure 5-82: Single poor signal power sensor, ordinary case, t=80 (DST) 

 

 

Convergence time is 176-80=96 for single run.  

Convergence is achieved at 164.4 in average. Therefore, average tconv=84.4. 
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Good Signal Power Sensor Case 

This case will be examined for different lengths of low signal periods: t=10,20,40,60,80. 

ECM is not used for the first 10 time steps 
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Figure 5-83: Single good signal power sensor, ordinary case, t=10 (DST) 

 

 

Convergence time is 23-10=13 for single run.  

Convergence is achieved at 26.22 in average. Therefore, average tconv=16.22. 
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ECM is not used for the first 20 time steps 
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Figure 5-84: Single good signal power sensor, ordinary case, t=20 (DST) 

 

 

Convergence time is 42-20=22 for single run.  

Convergence is achieved at 51.57 in average. Therefore, average tconv=31.57. 
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ECM is not used for the first 40 time steps 
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Figure 5-85: Single good signal power sensor, ordinary case, t=40 (DST) 

 

 

Convergence time is 92-40=52 for single run.  

Convergence is achieved at 102.26 in average. Therefore, average tconv=62.26. 
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ECM is not used for the first 60 time steps 
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Figure 5-86: Single good signal power sensor, ordinary case, t=60 (DST) 

 

 

Convergence time is 143-60=83 for single run.  

Convergence is achieved at 152.84 in average. Therefore, average tconv=92.84. 
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ECM is not used for the first 80 time steps 
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Figure 5-87: Single good signal power sensor, ordinary case, t=80 (DST) 

 

 

Convergence time is 157-60=97 for single run.  

Convergence is achieved at 203.55 in average. Therefore, average tconv=123.55. 
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5.2.2.2.1.2 LIMITED CASE 

Poor Signal Power Sensor Case 

A. Lower Limit is set: 0.01. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-88: Single poor signal power sensor, 0.01 limited case, t=10 (DST) 

 

 

Convergence time is 21-10=11 for single run. 

Average convergence is achieved at 20.78. Then, tconv=10.78. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-89: Single poor signal power sensor, 0.01 limited case, t=40 (DST) 

 

 

Convergence time is 52-40=12 for single run. 

Average convergence is achieved at 50.6. Then, tconv=10.6. 
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B. Lower Limit is set: 0.001. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-90: Single poor signal power sensor, 0.001 limited case, t=10 (DST) 

 

 

Convergence time is 25-10=15 for single run. 

Average convergence is achieved at 23.54. Then, tconv=13.54. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-91: Single poor signal power sensor, 0.001 limited case, t=40 (DST) 

 

 

Convergence time is 57-40=17 for single run. 

Average convergence is achieved at 54.16. Then, tconv=14.16. 
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Good Signal Power Sensor Case 

A. Lower Limit is set: 0.01. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 
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Figure 5-92: Single good signal power sensor, 0.01 limited case, t=10 (DST) 

 

 

Convergence time is 15-10=5 for single run. 

Average convergence is achieved at 14. Then, tconv=4. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-93: Single good signal power sensor, 0.01 limited case, t=40 (DST) 

 

 

Convergence time is 43-40=3 for single run. 

Average convergence is achieved at 44.03. Then, tconv=4.03. 
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B. Lower Limit is set: 0.001. 

Two different lengths of low signal periods are used: tlow=10,40. 

i. ECM is not used for the first 10 time steps 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

m
(S

ig
n
a
l 
P

o
w

e
r)

Estimation of belief assignment for ECM

 

 

Groundtruth

Demspters rule

 
Figure 5-94: Single good signal power sensor, 0.001 limited case, t=10 (DST) 

 

 

Convergence time is 14-10=4 for single run. 

Average convergence is achieved at 15.37. Then, tconv=5.37. 
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ii. ECM is not used for the first 40 time steps 
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Figure 5-95: Good signal power sensor, 0.001 limited case, t=40 (DST) 

 

 

Convergence time is 46-40=6 for single run. 

Average convergence is achieved at 45.35. Then, tconv=5.35. 

 

 

5.2.2.2.1.3 FINITE MEMORY CASE 

Approach-1:  

In this case, decision is made by combining three independent predictions belonging to time 

steps k, k-1 and k-2.  
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Single Poor Sensor 
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Figure 5-96: Single poor signal power sensor, finite memory case-1, t=10 (DST) 

 

 

Single Good Sensor 
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Figure 5-97: Single good signal power sensor, finite memory case-1, t=10 (DST) 
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Approach-2: 

Belief is updated using previous n time steps that have weighted coefficients inversely 

proportional to their distance to the present time step.  

Update algorithm:        m k 1 0.6 m k 0.25 m k 1 0.15 m k 2          

Single Poor Sensor: Convergence duration is 50. 
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Figure 5-98: Single poor signal power sensor, finite memory case-2, single run, t=10 (DST) 
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Figure 5-99: Single poor signal power sensor, finite memory case-2, Monte Carlo Average, 

t=10 (DST) 
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Single Good Sensor: Convergence duration is 30. 
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Figure 5-100: Single good signal power sensor, finite memory case-2, single run, t=10 

(DST) 
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Figure 5-101: Single good signal power sensor, finite memory case-2, Monte Carlo 

Average, t=10 (DST) 

 

 

Approach 2 makes an improvement in good sensor case whereas the performance in poor 

sensor case gets slightly worse. However, despite the performance increase in good sensor 

case, the results obtained are far away from the results obtained in “limited” case. 
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5.2.2.2.2 MULTIPLE SENSORS 

During the sub-sections, classifications with different number of sensors will be simulated 

in order to observe the relationship between increasing sensor number and the performance 

of the classifier. 

 

5.2.2.2.2.1 ORDINARY CASE 

The following plots show averaged values for each time step that are obtained by Monte 

Carlo simulations. tlow=10,40 is selected in order to observe effect of Low signal periods on 

the classifier performance.  

Poor Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 2 sensors are used: 
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Figure 5-102: Multiple (2) poor signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=27. 

When the simulation is performed 1000 times, average convergence time is: 13.0. 
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ECM is not used for the first 40 time steps and 2 sensors are used: 
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Figure 5-103: Multiple (2) poor signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=69. 

When the simulation is performed 1000 times, average convergence time is: 42.16. 
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ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-104: Multiple (4) poor signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=21. 

When the simulation is performed 1000 times, average convergence time is: 11.15. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-105: Multiple (4) poor signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=59. 

When the simulation is performed 1000 times, average convergence time is: 40.59. 
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-106: Multiple (8) poor signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=19. 

When the simulation is performed 1000 times, average convergence time is: 10.0. 
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ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-107: Multiple (8) poor signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=56. 

When the simulation is performed 1000 times, average convergence time is: 38.7. 
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Good Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 2 sensors are used: 
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Figure 5-108: Multiple (2) good signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=23. 

When the simulation is performed 1000 times, average convergence time is: 15.86. 
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ECM is not used for the first 40 time steps and 2 sensors are used: 

 

 
Figure 5-109: Multiple (2) good signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=75. 

When the simulation is performed 1000 times, average convergence time is: 62.0. 
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ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-110: Multiple (4) good signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=20. 

When the simulation is performed 1000 times, average convergence time is: 15.1. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-111: Multiple (4) good signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=71. 

When the simulation is performed 1000 times, average convergence time is: 61.3. 
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ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-112: Multiple (8) good signal power sensors, ordinary case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=19. 

When the simulation is performed 1000 times, average convergence time is: 14.73. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

m
(S

ig
n
a
l 
P

o
w

e
r)

Estimation of belief assignment for ECM

 

 

Groundtruth

Demspters rule

 
Figure 5-113: Multiple (8) good signal power sensors, ordinary case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=69. 

When the simulation is performed 1000 times, average convergence time is: 60.73. 

 

 

5.2.2.2.2.2 LIMITED CASE 

In limited case, lower limit is set to 0.001 in order to reduce convergence time of the 

classifier and make convergence time independent of the low signal period. Thus, after 

necessary simulations are observed, it will be seen that overall performance of the classifier 

is dramatically increased via implying lower limit together with multiple sensors.  

Low signal periods are chosen as tlow=10,40 while studying performances of 4 and 8 

sensors.  
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Poor Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-114: Multiple (4) poor signal power sensors, limited case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=14. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-115: Multiple (4) poor signal power sensors, limited case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=15. 

Applying a lower limit to the belief function greatly reduces the effect of low signal period. 

As can be seen from the above plots and convergence times, performances of the cases 

became almost same, which is the desired result.  
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-116: Multiple (8) poor signal power sensors, limited case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=13. 



158 

 

ECM is not used for the first 40 time steps and 8 sensors are used: 

 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scan number

m
(S

ig
n
a
l 
P

o
w

e
r)

Estimation of belief assignment for ECM

 

 

Groundtruth

Demspters rule

 
Figure 5-117: Multiple (8) poor signal power sensors, limited case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=14. 

When the sensor number is increased from one to four, convergence time of the system is 

halved. However, increasing sensor number to eight does not have a significant effect on 

the system. The most important point to note is that using multiple poor sensors result in a 

performance almost same with a system using single good sensor.  
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Good Signal Power Sensor Case 

ECM is not used for the first 10 time steps and 4 sensors are used: 
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Figure 5-118: Multiple (4) good signal power sensors, limited case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=6. 
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ECM is not used for the first 40 time steps and 4 sensors are used: 
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Figure 5-119: Multiple (4) good signal power sensors, limited case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=6. 

The performances of both cases are independent of the time step ECM is observed and the 

same.  
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ECM is not used for the first 10 time steps and 8 sensors are used: 
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Figure 5-120: Multiple (8) good signal power sensors, limited case, t=10 (DST) 

 

 

Monte Carlo simulation convergence time=5. 
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ECM is not used for the first 40 time steps and 8 sensors are used: 
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Figure 5-121: Multiple (8) good signal power sensors, limited case, t=40 (DST) 

 

 

Monte Carlo simulation convergence time=5. 

Performance of the systems with four good sensors is increased as the convergence times 

are halved with respect to a classifier using single good sensor. Increasing the sensor 

number more than four does not have a significant effect on the classifier performance.  
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CHAPTER 6  

 

CONCLUSION 

Throughout the thesis, two very commonly used statistical methods are studied in various 

aspects and their performances are measured by using different approaches.  

In the first scenario, a fixed target is tracked by the radar system and the classifier used 

information coming from attribute sensor in order to predict target’s type. The scenario is 

inspected in terms of the system’s memory.  

In the second scenario, a target is inspected by means of the electromagnetic waves 

reflected. When the returned electromagnetic waves are predicted to be amplified, ECM 

decision is given in order to take necessary precautions. 

The results obtained from simulations and performance measurements applied in Chapter-5 

are presented as a whole in this chapter and concluding remarks are provided. Moreover, 

BNT and DST methods are compared with each other in order to comprehend which 

method is superior to another in certain situations.  
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6.1 COMPARISON OF SCENARIO-1 

6.1.1.1 MEMORYLESS CASE 

BNT Method: 

When the target of interest is fixed and the system does not have memory, performance of 

BNT classifier is as shown in the below table:  

 

Table 6-1: Accuracy Table of Speed and Altitude Sensors (BNT) 

  
Speed Sensor 

  
Poor Good 

Altitude Sensor 
Poor  56.3% 71.0% 

Good 69.6% 87.0% 

 

 

DST Method: 

Accuracy values of DST classifier are as shown in the below table: 

 

Table 6-2: Accuracy Table of Speed and Altitude Sensors (DST) 

  
Speed Sensor 

  
Poor Good 

Altitude Sensor 
Poor  56.3% 71.8% 

Good 68.7% 87.2% 

 

 

Comparison: 

As it is expected, when sensor quality gets better, performance of the classifier is increased. 

While using both poor quality sensors results in accuracy slightly better than random 

guessing, increasing only one sensor’s quality level results in approximately 25% better 

accuracy and increasing both sensors’ quality levels results in 54%  better accuracy.  

The results obtained in BNT and DST methods are almost the same as can be seen in the 

tables 6-1 and 6-2.  

In this case, it is important to note that Accuracy and TPR values are equal. 
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6.1.1.2 CASE WITH MEMORY 

BNT Method: 

When the target of interest is fixed and the system updates the prior belief according to the 

latest prediction, convergence times are achieved within time steps shown in the below 

table: 

 

Table 6-3: Convergence Time Table for Speed and Altitude Sensors (BNT) 

  
Speed Sensor 

  
Poor Good 

Altitude Sensor 
Poor  5.66 2.67 

Good 3.11 2.23 

 
 

Updating the probability of TargetType based on previous knowledge makes the system 

more reliable than the system that decides based on only one time step.  

Comparing the “good speed sensor-poor altitude sensor” and “poor speed sensor-good 

altitude sensor” cases, first one is slightly better because of the quality of the good speed 

sensor is better than quality of the good altitude sensor.  

DST Method: 

When DST method is applied and the system updates beliefs according to the preceding 

time step, convergence times obtained are shown in the below table: 

 

Table 6-4: Convergence Time Table for Speed and Altitude Sensors (DST) 

  
Speed Sensor 

  
Poor Good 

Altitude Sensor 
Poor 4.15 2.2 

Good 2.3 1.15 

 

 

Comparison: 

Even though the results obtained in “Memoryless Case” were almost equal for BNT and 

DST approaches, convergence times differ from each other as DST holds upper hand 

against BNT method in this case.  

When convergence times in tables 6-3 and 6-4 are inspected, it is seen that increasing only 

one sensor’s quality level hastens the system around 45-50% and increasing both sensors’ 

quality level hastens the system 60% for BNT, 72% for DST methods. Further examining 
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the convergence time tables leads to the below differences between BNT and DST 

methods. 

DST method results in: 

 %26 better convergence time when poor speed and altitude sensors are used, 

 %17 better convergence time when good speed and poor altitude sensors are used,  

 48% better convergence time when good speed and altitude sensors are used.  

The reason for getting better convergence times in DST method is keeping certain amount 

of belief in unknown case while BNT method assigns probabilities only to two cases, 

namely “aircraft” and “helicopter”. 

 

 

6.2 COMPARISON OF SCENARIO-2 

6.2.1.1 MEMORYLESS CASE 

Firstly, results of using only single sensor are provided for each method.  

In order to inspect effect of using multiple poor sensors as using a good quality sensor 

might not always be cost effective, information coming from four different poor sensors is 

combined for both of the methods and overall averaged results are presented. 

BNT Method: 

 

Table 6-5: Performance Measurements in Memoryless Single Sensor Case (BNT) 

  
Accuracy TPR FPR 

1xSensor 
Poor 0.7532 0.7510 0.2433 

Good 0.9330 0.9539 0.0998 

 

 

Table 6-6: Performance Measurements of Memoryless 4 Poor Sensors (BNT) 

Threshold 1 0.8 0.4 0.05 0 

TPR 0 0.324 0.736 0.949 1 

FPR 0 0.006 0.049 0.258 1 

Accuracy 0.3999 0.5921 0.8223 0.8665 0.6001 

Cost 300050 203677 76753 18819 33989 

 

 



167 

 

DST Method: 

 

Table 6-7: Performance Measurements in Memoryless Single Sensor Case (DST) 

  
Accuracy TPR FPR 

1xSensor 
Poor 0.7500 0.7489 0.2483 

Good 0.9197 0.9000 0.0498 

 

 

Table 6-8: Performance Measurements of Memoryless 4 Poor Sensors (DST) 

Threshold 1 0.95 0.9 0.4 0.01 0 

TPR 0 0.315 0.736 0.945 0.996 1 

FPR 0 0.003 0.048 0.269 0.693 1 

Accuracy 0.3999 0.5877 0.8222 0.86 0.72 0.6 

Cost 300050 205218 78023 18755 22685 33989 

 

 

While working on multi poor sensor case, it is observed that maximum accuracy level is 

reached when either threshold is 0.4 or 0.9. 

 

Comparison: 

The results of poor single sensor cases are almost the same for BNT and DST approaches 

while good single sensor cases has several differences to note.  

Accuracy and TPR are higher in BNT approach as well as FPR is almost double of the FPR 

value of DST approach. Even though achieving greater accuracy is desired, having greater 

FPR points to classification problems when the target is not applying ECM. 

When tables 6-6 and 6-8 are inspected, it is observed that using multiple poor sensors 

highly increases performance of the classifier and TPR values of single good sensor case is 

obtained. However, since FPR values of multiple poor sensors are low, accuracies achieved 

are slightly lower than single good sensor case.  

Within the light of the information provided by these tables, it can be said that designing 

the classifier for highest accuracy may not always provide the best solution at all situations. 

This is due to the fact that highest accuracy comes with five times higher FPR value.  

In both cases, threshold levels can be set according to the system requirements, namely 

minimum and maximum TPR/FPR/Accuracy values. If the system is intolerant to false 

negatives, high TPR value is required while threshold level leading to lowest FPR value 

should be selected when the system is intolerant to false positives. 
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6.2.1.2 CASE WITH MEMORY 

6.2.1.2.1 SINGLE SENSOR 

6.2.1.2.1.1 ORDINARY CASE 

BNT Method: 

Firstly, in the below table, effect of prior probabilities are examined. In general, prior 

probability of 0.5 is assigned to both classes. However, as explained in previous chapters, 

prior probability P(ECM=yes) is assigned to 0.1 since coming up against a target that is 

using ECM is rare. 

The table is prepared according to the average time steps required to reach 0.99 probability 

level after signal power level is increased.  

 

Table 6-9: Average Convergence Time Table for Ordinary Case, Different Prior 

Probabilities (BNT) 

 
Poor Signal Power Sensor Good Signal Power Sensor 

Low Signal 

Period 
P(ECM=Yes)=0.1 P(ECM=Yes)=0.5 P(ECM=Yes)=0.1 P(ECM=Yes)=0.5 

10 22.73 18.76 10.1 9 

20 30.12 27.2 18.4 17.56 

40 52.86 48.72 35.22 34 

60 73 65.75 51.73 50.78 

80 73.2 68.14 68.37 68.47 

 

 

As expected, average convergence time is smaller when prior probability is assigned 0.5. 

However, starting the system with 0.5 probabilities lowers the system performance when 

the target is not applying ECM, which is the more common case. Furthermore, when prior 

probabilities are 0.5, the performance gets 1-10% better except poor signal power sensor 

case where low signal period is 10.  

It is also important to note that convergence time steps get larger values as low signal 

period is increased and advantage of good signal power sensor is lost. 
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DST Method: 

In DST method, no prior beliefs are assigned to the classes and the calculated average 

convergence times constitute below table: 

 

Table 6-10: Average Convergence Time Table for Ordinary Case, Different Prior 

Probabilities (DST) 

 

Poor Signal Power Sensor Good Signal Power Sensor 

Low Signal Period Average Convergence Time Average Convergence Time 

10 15.93 16.22 

20 25.85 31.57 

40 44.58 62.26 

60 64.56 92.84 

80 84.40 123.55 

 

 

Differently from BNT approach, poor signal power sensor results in better convergence 

times in this case which is an unexpected result. This is due to the fact that DST approach’s 

getting infinitesimally small values when the sensor is good. Therefore, as the low signal 

period is increased, the difference grows. 

Comparison: 

When the system of interest obtains information from a poor sensor, DST approach 

provides better results (about 15-30%). However, when the sensor quality is good, in DST 

approach leads to values very close to zero as low signal period is increased. This fact 

causes lengthy convergence time (40% longer than BNT approach) periods and puts BNT 

approach to better position.  

In general, convergence time increases as the low signal period is increased. Due to this 

undesired result, an alternative solution will be presented in the next subsection where the 

effect of low signal period is avoided. 

 

6.2.1.2.1.2 LIMITED CASE 

As low signal period is increased, the system performance reduces dramatically due to the 

probabilities’ getting smaller values close to zero. In order to solve this problem, lower 

probabilities and beliefs are assigned a low limit in order to prevent their approaching to 

zero.  

For this purpose, simulations are performed for two different lower limits: 0.01 and 0.001. 

Two different convergence times will be present in this case: First type is obtained by 

summing Monte Carlo simulations and averaging at each time step. Second type is obtained 

by averaging each single run’s convergence time as previous sub-section.  

Monte Carlo simulations will result in higher convergence times since each point is 

averaged in that method.  
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BNT Method: 

Monte Carlo Convergence Times: 

 

Table 6-11: Monte Carlo Convergence Time Table for Limited Case (BNT) 

 
Poor Signal Power Sensor Good Signal Power Sensor 

 

Convergence Time Using Monte 

Carlo 

Convergence Time Using Monte 

Carlo 

Low Signal 

Period 
Limit=0.01 Limit=0.001 

No 

limit 
Limit=0.01 Limit=0.001 

No 

limit 

10 28 34 53 6 7 26 

40 30 34 136 6 7 86 

 

 

Average Convergence Times: 

 

Table 6-12: Average Convergence Time Table for Limited Case (BNT) 

 
Poor Signal Power Sensor Good Signal Power Sensor 

 
Average Convergence Time Average Convergence Time 

Low Signal 

Period 
Limit=0.01 Limit=0.001 

No 

limit 
Limit=0.01 Limit=0.001 

No 

limit 

10 14.84 18.65 22.73 3.39 3.8 10.1 

40 15 18.9 52.86 3.49 3.74 35.22 

 

 

DST Method: 

Monte Carlo Convergence Times: 

 

Table 6-13: Monte Carlo Convergence Time Table for Limited Case (DST) 

 
Poor Signal Power Sensor Good Signal Power Sensor 

 

Convergence Time Using Monte 

Carlo 

Convergence Time Using Monte 

Carlo 

Low Signal 

Period 
Limit=0.01 Limit=0.001 

No 

limit 
Limit=0.01 Limit=0.001 

No 

limit 

10 26 30 37 9 11 26 

40 25 30 86 9 11 82 
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Average Convergence Times: 

 

Table 6-14: Average Convergence Time Table for Limited Case (DST) 

 
Poor Signal Power Sensor Good Signal Power Sensor 

 
Average Convergence Time Average Convergence Time 

Low Signal 

Period 
Limit=0.01 Limit=0.001 

No 

limit 
Limit=0.01 Limit=0.001 

No 

limit 

10 10.78 13.54 15.93 4 5.37 16.22 

40 10.6 14.16 44.58 4.03 5.35 62.26 

 

 

Comparison: 

When the target is not applying ECM, limiting the lower values that BNT and DST 

approaches highly increases performance of the system by removing effect of low signal 

period. The studies are conducted for two different low signal periods, namely 10 and 40. 

When above tables are examined, it is seen that convergence times are almost the same 

even though the low signal period is quadrupled.  

Besides that important result, results of two different lower limits can further be inspected. 

When limit=0.01, the systems seems to converge slightly faster than limit=0.001. However, 

when the plots of chapter-5 are examined, it is seen that limit=0.001 is more robust to 

sudden changes and provides a more stable system while limit=0.01 is prone to impulsive 

fluctuations. Therefore, 0.001 will be used in further studies throughout the thesis.  

Comparing average convergence periods of BNT and DST approaches lead to similar 

conclusion to the previous sub-section. When lower limit is set to 0.001, DST approach has 

approximately 28% better performance in poor sensor case while BNT approach’s 

performance is 30% better in good sensor case. These results are consistent with the 

“ordinary case” where no lower limit was set.  
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6.2.1.2.2 MULTIPLE SENSORS 

In modern tracking systems, it is very common to combine information coming from 

multiple sensors. By multiplying two or more sensors, redundancy is increased and the 

system becomes able to compensate in case one of the sensor stops working. Moreover, 

combining low quality and inexpensive sensors may provide the same performance where 

expensive and high quality sensors are used. 

“Ordinary Case” and “Limited Case” will be inspected respectively in the following sub-

sections. 

 

6.2.1.2.2.1 ORDINARY CASE 

When multiple sensors are used in ordinary case, following results are obtained for BNT 

and DST case. 

BNT Method: 

Monte Carlo Convergence Times: 

 

Table 6-15: Monte Carlo Conv. Time Table - Multiple Sensor Ordinary Case (BNT) 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

1xSensor 18 47 45 94 

2xSensor 11 34 30 71 

4xSensor 9 31 22 60 

8xSensor 8 30 17 53 

16xSensor 8 - 15 49 

 

 

Average Convergence Times: 

 

Table 6-16: Average Conv. Time Table - Multiple Sensor Ordinary Case (BNT) 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

1xSensor 10.10 35.22 22.73 52.86 

2xSensor 7.97 27.34 17.12 47.05 

4xSensor 7.09 26.84 13.17 43.32 

8xSensor 6.77 26.70 11.40 41.07 

16xSensor 6.60 - 10.58 40.41 
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Exception: No result could be calculated when 16 good sensors are combined as the 

probability reached to zero in MATLAB simulations. 

DST Method: 

Monte Carlo Convergence Times: 

 

Table 6-17: Monte Carlo Conv. Time Table - Multiple Sensor Ordinary Case (DST) 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

1xSensor 28 83 38 85 

2xSensor 23 75 27 69 

4xSensor 20 71 21 59 

8xSensor 19 69 19 56 

16xSensor 18 68 18 54 

 

 

Average Convergence Times: 

 

Table 6-18: Average Conv. Time Table - Multiple Sensor Ordinary Case (DST) 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

1xSensor 16.22 62.26 15.93 44.58 

2xSensor 15.86 62.00 13.00 42.16 

4xSensor 15.10 61.30 11.15 40.59 

8xSensor 14.73 60.73 10.00 38.70 

16xSensor 14.55 60.80 9.42 36.68 

 

 

Comparison: 

In “ordinary case”, convergence time is directly proportional to the low signal period as 

explained previously due to probabilities’ and beliefs’ approaching very close to zero. In 

multiple sensor studies, effect of combining information from multiple same quality sensors 

is investigated and required number of poor sensors that achieves performance of a high 

quality and expensive sensor is obtained.  

In BNT approach, it requires approximately eight low quality sensors to reach convergence 

time of a good sensor when low signal period is short. However, when low signal period 

gets longer, the required low quality sensor level increases to sixteen according to the tables 

6-15 and 6-16.  
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In DST approach, due to the fact explained in previous sub-sections, poor sensors tend to 

lead shorter convergence times as can be seen in table 6-18. Moreover, it can be calculated 

that increasing sensor number does not provide significant performance improvement 

except when sensor is poor and low signal period is 10.  

When sensor number is increased to eight, average convergence times are reduced by the 

ratios shown in below table: 

 

Table 6-19: Average Conv. Time Improvement - Multiple Sensor Ordinary Case 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

BNT 32.97% 24.19% 49.85% 22.30% 

DST  9.19% 2.46% 37.23% 13.19% 

 

 

Even though initial convergence times were lower in BNT approach for good sensor case, a 

significant performance increase is achieved for good sensor when t=10 and t=40. DST 

approach results in better convergence times for poor sensor case for single sensors. 

However, as sensor number is increased, BNT method approaches to the performance of 

DST method.  

 

6.2.1.2.2.2 LIMITED CASE 

In order to overcome the difficulty of reducing convergence time when low signal period is 

high, the same method used in single sensor case will be used: Setting a lower limit to the 

probabilities and beliefs. Lower limit value of 0.001 is going to be used in this section as it 

is providing robustness to the system while avoiding lengthy low signal periods.  

Monte Carlo simulation results are going to be provided in this section since systems are 

convergence at very short notices and average convergence times studied are very close to 

eachother.  

The improvement achieved in this case may be compared to the results obtained in previous 

section where tables 6-15 and 6-17 are provided.  

BNT Method: 

 

Table 6-20: Monte Carlo Conv. Time Table - Multiple Sensor Limited Case (BNT) 

  
Good Poor 

  
t=10 t=40 t=10 t=40 

BNT 

1xSensor 7 7 34 34 

4xSensor 2 2 10 10 

8xSensor 1 1 6 6 
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DST Method: 

 

Table 6-21: Monte Carlo Conv. Time Table - Multiple Sensor Limited Case (DST) 

  
Good Poor 

  
t=10 t=40 t=10 t=40 

DST 

1xSensor 11 11 30 30 

4xSensor 6 6 14 15 

8xSensor 5 5 13 14 

 

 

Comparison: 

When lower limit is used, it is seen that even by using single sensor, obtained results are 

much better than the results obtained in previous “ordinary case”. This result comes from 

the fact that probabilities and beliefs does not take values lower than 0.001 which enables 

them to recover quickly when received signal is increased.  

In both approaches, it is observed that multiplying sensors dramatically increases the 

performances. The improvement factors which shows reduction in convergence times when 

sensor number is multiplied to eight can be seen in the below table: 

 

Table 6-22: Monte Carlo Conv. Time Improvement - Multiple Sensor Limited Case 

 

Good Poor 

 

t=10 t=40 t=10 t=40 

BNT 85.71% 85.71% 82.35% 82.35% 

DST  54.55% 54.55% 56.67% 53.33% 

 

 

Above table shows that improvement factor is around 85% in BNT approach, whereas it 

remains around 55% in DST approach. While using single poor sensor results in better 

convergence times in DST method as previous studies, using multiple sensors leads to 

better performance in BNT method due to the significant improvement factor achieved. 

Furthermore, one of the most important points worth noting is achieving performance of a 

single high quality and expensive sensor by combining information from multiple low 

quality and inexpensive sensors.  
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6.3 CONCLUDING REMARKS 

Two different scenarios are studied throughout the thesis by applying BNT and DST 

approaches to both of the scenarios under the same conditions. The purpose of the first 

scenario was to detect type of the tracked target and the second scenario was to detect 

possible ECM usage of the target being observed. 

After obtaining results of the first simulations by two of the methods, the algorithms are 

improved in order to increase system performance and reliability.  

When overall results are analyzed comparatively, it can be concluded that BNT and DST 

methods perform almost same in some of the cases. However, there are many cases where 

one of the methods gets ahead of the other as well.  

The main differences of BNT and DST methods stem from the fact that BNT method is 

dealing with probabilities whereas DST method is working with belief functions where 

unknown knowledge can be assigned. Thus, BNT method always requires initial 

probabilities before starting simulations which has a direct affect on the results obtained.  

Even though there is an impression that DST method is more complex and cumbersome to 

apply, simulations performed by BNT method took up much more time while simulating 

the scenarios in this thesis.  

While BNT and DST methods can be alternatively used in single sensor cases depending on 

the sensor quality, BNT method has shown remarkable improvement when multiple sensors 

are used and lower limit is applied.  

Even though there are many studies involving BNT and DST methods in the literature, 

there is no strict evidence or a final decision indicating one of the methods is superior to the 

other. There are scenarios or cases where one of these methods can be preferred, however it 

is not advisable to make generalizations. If one of the methods is needed to be chosen for 

the system, the problem should be analyzed comprehensively by applying both methods in 

all possible scenarios and a profit/loss analysis should be conducted.  
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