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ABSTRACT

AN EFFICIENT GRAPH-THEORETICAL APPROACH FOR INTERACTIVE
MOBILE IMAGE AND VIDEO SEGMENTATION

Şener, Ozan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

May 2013, 96 pages

Over the past few years, processing of visual information by mobile devices getting
more affordable due to the advances in mobile technologies. Efficient and accurate
segmentation of objects from an image or video leads many interesting multimedia
applications. In this study, we address interactive image and video segmentation on
mobile devices. We first propose a novel interaction methodology leading better satis-
faction based on subjective user evaluation. Due to small screens of the mobile devices,
error tolerance is also a crucial factor. Hence, we also propose a novel user-stroke
correction mechanism handling most of the interaction errors. Moreover, in order
to satisfy the computational efficiency requirements of mobile devices, we propose a
novel spatially and temporally dynamic graph-cut method. Conducted experiments
suggest that the proposed efficiency improvements result in significant computation
time decrease. As an extension to video sequences, a video segmentation system is
proposed starting after an interaction on key-frames. As a novel approach, we rede-
fine the video segmentation problem as propagation of Markov Random Field (MRF)
energy obtained via interactive image segmentation tool on some key-frames along
temporal domain. MRF propagation is performed by using a recently introduced bi-
lateral filtering without using any global texture or color model. A novel technique
is also developed to dynamically solve graph-cuts for varying, non-lattice graphs. In
addition to the efficiency, segmentation quality is also tested both quantitatively and
qualitatively; indeed, for many challenging examples, quite significant time efficiency
is observed without loss of segmentation quality.

Keywords: Image/Video Segmentation, MRF, Graph-cuts, Dynamic Algorithms
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ÖZ

ETKİLEŞİMLİ GEZGİN İMGE VE VİDEO BÖLÜTLEME İÇİN ÇİZGE TEMELLİ
ETKİN BİR YAKLAŞIM

Şener, Ozan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Mayıs 2013 , 96 sayfa

Bu tezde, imge ve videoların gezgin cihazlarda etkileşimli bolütlenmesi problem ele
alınmıştir. Hali hazırda var olan ve gezgin uygulamalara uygun etkileşim metodlarının
analizi, bu metodların kusurlarını ortaya çıkarmıştır. Bulunan kusurları çözmek için
yeni bir etkileşim yöntemi, boyama, onerilmiştir. Önerilen yöntemin deneysel analizi
için öznel bir değerelendirme uygulanmıştır. Gezgin cihazların küçük ekranları bir-
çok kullanıcı etkileşimi hatasına yol açmaktadir. Bu sorunun çözümü için de yeni bir
yöntem önerilmiş ve test edilmiştir. Gezgin cihazların işlemsel kapasite gereksinimleri
nedeni ile, uzaysal ve zamansal dinamik cizge kesit algoritması onerilmiştir. Deney
sonuçlar da önerilen yöntemin işlemsel verim artışını onaylamıştır. Tasarlanan video
bölütleme sistemi, bazı ana çerçevelerin etkileşimli bölütlemesi ile başlamaktadır. Etki-
leşimli çerçeve bölütlemesinin ardından, bulunan Markov Rastgele Alanı (MRF) enerji
fonksiyonu zamansal boyutta yayılmıştır. Yayılma operasyonu iki yönlü süzgeçlerle ev-
rensel bir model kullanmadan gerçekleştirilmiştir. İşlemsel verimi artırmak için, iki
yönlü üstsel süzgeçler kullanılmıştır. Buna ek olarak, değişen ve kafes yapısına sahip
olmayan cizgelerin dinamik olarak cizge kesitlerinin bulunması icin yeni bir teknik
önerilmistir. Uygulanan testlerde ciddi bir işlemsel verim artışı herhangi bir doğruluk
kaybı olmadan gözlenmiştir.

Anahtar Kelimeler: İmge/Video Bölütleme, MRF, Cizgeler, Dinamik Algoritmalar
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Next generation mobile devices have advanced display and processing technologies.
Hence, generation, processing and display of the multimedia content on mobile devices
are getting affordable. Even high quality user interaction is possible with the advance-
ment of multi-touch screens. All of these advancements let computer vision, computer
graphics and multimedia researchers migrate existing algorithms to the mobile domain.
Extracting an object of interest from image and/or video is one of these algorithms
due to its various applications, such as photo editing [67], interactive 2D/3D conver-
sion [2], collaborative segmentation [74], video cut-outs [48] and tapestry generation
[61]. However, crucial differences between requirements of classical computer based
multimedia applications and mobile ones demand tailoring of these applications for
mobile domain.

Although mobile devices have wide range of advantages and disadvantages over com-
puter based systems, there are three main points need to be considered for mobile
image and video segmentation problem; namely, rich interaction possibilities of touch
screen devices, small screen sizes and low computational capacities.

Touch-screen devices enable many interaction scenarios; for example, it is possible to
use pinch, scroll, pan, spread or rotate via touch-screen devices. On the other hand,
classical mouse based interfaces either use scribbles or point selection. Hence, in order
to improve user interaction quality, new interaction scenarios should be proposed.

Small screens of the mobile devices decrease the precision of the interaction quality
significantly. When the user aims for a specific pixel in screen, there is significant
uncertainty around the interaction point. Therefore, algorithms should tolerate a
significant amount of interaction error.

Although computational power of the mobile devices have been significantly improved
during the last years, they are still far from being comparable against desktop computer
systems. Hence, the proposed algorithms should have low computational complexity.

In summary, interaction quality, error-tolerance and computational efficiency are three
main factors need to be considered for an successful mobile segmentation application.
In addition to these, segmentation quality is still an important factor for user experi-
ence quality and successful mobile multimedia applications.
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1.2 Scope of the Thesis

In this thesis, segmentation is revisited from the perspective of mobile touch-screen
usage. All three factors explained in Section 1.1 has been considered for both image
and video segmentation problem, separately.

From the perspective of user interaction, image and video segmentation problems are
considered to be equivalent. Interaction for the video segmentation problem has been
applied to initial frame of the video only. Hence, user interaction for video segmenta-
tion algorithm is actually interactive image segmentation method. After the analysis of
existing interaction techniques, a novel interaction methodology, coloring, is proposed.

Error-tolerance problem is solved with the proposed pre-processing step. Before feeding
user interaction to the segmentation method, erroneous interaction is discarded by the
proposed method. Even correct user interaction is estimated as a result of graph based
search problem.

Graph-theory and Markov random fields (MRF) are common mathematical formula-
tion frequently used in the literature for the segmentation problem. Hence, the image
segmentation problem has been formulated as inference on MRF’s and solved by using
graph-based approaches. Furthermore, video segmentation problem is defined as MRF
energy propagation throughout the frames. Propagation is realized via bilateral filters,
and resulting energies are minimized via graph-based method. For computational ef-
ficiency, novel dynamic and iterative graph-cut solutions have been proposed for both
image and video segmentation problems. Information permeability filter is also used
for efficiency increase.

1.3 Outline of the Thesis

MRF energy functions and graph theory are two mathematical formulations used to
explain and analyse the proposed segmentation method. In Chapter 2, required back-
ground on MRF energy functions and graph theory is summarized. For the case of
binary segmentation problem, min-cut/max-flow algorithm is an efficient method to
compute MAP estimate on MRF energies; hence, min-cut/max-flow method has been
explained in detail. Necessary and sufficient conditions on exact MAP estimation is
also explained with discussions on submodularity.

Chapter 3 is devoted to interactive image segmentation problem. All three factors
stated in Motivation has been analysed for existing algorithms in the literature. Novel
improvements are also proposed for all three factors. An interaction method, coloring,
is proposed and subjectively analysed. An error-tolerance method is also proposed
and tested. In order to decrease computational complexity, a spatially dynamic and
iterative graph-cut method is also proposed and experimented.

In Chapter 4, available literature on interactive and automatic video segmentation
is summarized briefly. Existing algorithms have been experimented with the metric
of segmentation quality and execution time. A novel video segmentation algorithm
based on MRF energy propagation via bilateral filter is proposed. In order to increase
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the computational efficiency, information permeability/bi-exponential (IP/BE) filters
are used. Furthermore, necessary background on IP/BE filters are also presented. In
order to further increase the efficiency, min-cut/max-flow problem has been revisited
for varying graph-linear filtering scenario. A novel dynamic min-cut/max-flow method
is also presented. Proposed interactive video segmentation is extended for automatic
video segmentation problem as a speed-up tool. Both interactive and automatic video
segmentation methods has been experimentally compared for both computational ef-
ficiency and segmentation quality.

Finally, in Chapter 5, thesis is summarized and the conclusions of the experiments are
presented. Future research directions and existing open problems are also presented in
detail. Results of the computation time experiments are discussed both theoretically
and practically. Although all of the methods are discussed by using big O notation,
effect of implementation and data dependency is also discussed. Although proposed
method shares the same worst case complexity with many other methods in the liter-
ature, performed experiments suggest a significant computation time decrease.
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CHAPTER 2

GRAPH THEORETIC FORMULATION OF
INTERACTIVE SEGMENTATION

Human visual system and design of imaging devices induce a graph structure on sam-
pling and processing of visual information. Sampling of the visual space is usually
performed in a space-aware manner due to the structure of visual system and imag-
ing sensors. In this sense, image sensors has non-uniform Cartesian like geometries.
On the other hand, higher vertebrate visual systems are commonly based on space-
aware sampling [37]. Hence, exploiting space aware methods in processing of visual
information is consistent with sampling of the visual information.

First usage of graph theory in computer vision was for clustering feature points in order
to obtain Gestalt clusters [79]. Since then, graph theory has become a standard tool for
many low-level computer vision tasks such as segmentation [29, 64, 46, 12, 60, 79, 35]
and depth estimation [13, 62]. Graph clustering is also a widely studied problem in
mathematics [63]. Since segmentation is inherently a clustering problem, it is easy to
adopt available graph clustering methods for the segmentation problem.

Within the scope this thesis, we are mainly interested in the interactive segmenta-
tion problem. The differences between interactive segmentation and the automatic
segmentation problems are two folds. First; interactive segmentation aims to differ-
entiate foreground and background. Hence, this problem is binary graph clustering
problem. Second; there exist prior information to model foreground and background
in interactive segmentation problem due to the user interaction.

In the following sections, we will first create the graphical model for this problem.
Then, we will convert the MAP estimation problem to a well-known combinatorial
optimization problem, namely min-cut/max-flow [31]. Finally, we will summarize and
analyse the Ford & Fulkerson algorithm with Boykov & Kolmogorov heuristic [13],
which is the main tool used to solve min-cut/max-flow problem within the scope of
this thesis, in detail.

Before explaining details of the models and methods, we need to explain basic nota-
tions and definitions of combinatorial entities used in these models and methods; A
graph, which is a combinatorial structure combining nodes and edges, is represented as
G(V, E) where V is the set of nodes and E is the set of edges. Nodes are represented as
vi ∈ V, and edges are represented as eij ∈ E which combines node vi and vj . We also
use evivj to represent edge between node vi and vj . Weighted graph is a special type of
graph in which every edge is assigned a weight and represented as w(ei,j). Indeed, un-
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weighted graph is a specific case of a weighted graph where w(eij) = 1 ∀eij ∈ E . Hence,
all the theory developed for weighted graphs are applicable to unweighted graphs, as
well. The common representation for the number of nodes is n and the number of
edges is m; hence, we also use this notation.

2.1 Graphical Model for Interactive Image Segmentation

As we explained at the beginning of Section 2, within an interactive image segmentation
scenario there should be some prior information. Let us assume that this information
is given as a parametric prior model. It should be noted that this selection is for the
simplicity of the representation of the resultant model. The formulated mathematical
model is also applicable to non-parametric model case; hence, similar network can
easily be constructed for the non-parametric case. Let us consider that there exists a
set of parameters in a vector form θ. These parameters can be in the form of any global
color, texture or shape model like Gaussian mixture models (GMM) or kernel density
estimation (KDE). In addition to such a prior information, both biological model of
ganglion [37] and image sensor geometry suggest that relation between nodes should
be in immediate neighbours level. Hence, we can safely use the Markovian property.
In other words; given the parameter vector θ and its immediate neighbours, label
of any pixel is independent of the rest of the image. Graphical model satisfying the
Markovian property is defined as Markov random field (MRF). Hence, the dependency
graph suggested by interactive image segmentation problem is an MRF. The resultant
graphical model is illustrated in Figure 2.1.
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Figure 2.1: Dependency network for the image segmentation problem. In order to
make the figure more comprehensible, some edges are not drawn. Node θ is connected
to all xi’s and zi’s. Moreover, some of the zi’s are discarded. Every label node xi has
an observation node zi. It should also be noted that, edges are given as undirected
nodes; however, directions can also be added.

In the representation given by Figure 2.1, xi’s are the labels of each node vi, zi is
the feature vector (color pixel value or extracted texture information) of node vi,
and, θ is the parameter vector of the prior parametric model of the foreground and the
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background. Furthermore, labels are binary values as xi ∈ {0, 1} such that 0 represents
the background and 1 represents the foreground.

MRF models are generally factored using graph structure and inference problems are
solved using this factorization [59]. On the other hand; there are many cycles in the
resultant dependency network. Hence, it is not reasonable to use factorization over the
dependency network. Instead, we can use the Hammersley–Clifford theorem [16]. The
Hammersley-Clifford theorem states that probability distribution defined on a Markov
network is strictly positive if and only if it is a Gibbs random field [16]. Indeed,
Gibbs random fields are a specific form of Markov random field which has a clique
factorization whose probabilities are formulated as a Gibbs measure.

In our formulation, every labelling of the graph nodes is possible; therefore, probabil-
ity of every state of the resultant network is strictly positive. Non-negativity of the
probabilities of the states suggest a Gibbs random field and Gibbs measure for the in-
teractive image segmentation problem. Gibbs random fields have the following clique
factorization. In other words, probability of any state can be written as the product
of probabilities over cliques as

p(x|z, θ) =
∏
c∈C

Fc(xc|zc, θ). (2.1)

In this notation C represents the set of maximum cliques of edges. Clique is a fully
connected set of nodes, and maximal clique for an edge is a clique including that
specific edge and having maximum number of nodes. In our representation there are
two types of cliques, cliques having two immediate neighbour nodes as xi, xj , and
cliques including θ, xi and zi. Since distribution is a Gibbs random field, p(x|z, θ)
is also a Gibbs measure. A Gibbs measure can be written as an exponential energy
function as,

p(x|z, θ) =
1

Z
e−E(x,z,θ). (2.2)

In this notation, Z represents the normalization term, and E(x, z, θ) is a Gibbs energy
defined over cliques. Hence, maximizing p(x|z, θ) becomes equivalent to minimizing
E(x, z, θ). Indeed, since E(x, z, θ) is a Gibbs energy, it can also be decomposed over
cliques as,

E(x, z, θ) =
∑
vi∈V

U(xi, zi, θ) +
∑
eij∈E

V (xi, xj). (2.3)

In this representation, U represents the unary energy defined over (xi, zi, θ) cliques
and V represents the binary energy defined over (xi, xj) cliques.

We are interested in the state (labels of all nodes) having the highest probability among
all states; i.e. MAP (maximum posterior) solution. Moreover, this state is the state
minimizing the Gibbs energy. At this point, we define our fundamental optimization
problem. In the next section, we will construct a special type of a graph which will
convert the defined optimization problem into a combinatorial optimization problem.

7



2.2 Relation Between MAP Estimation Problem and Min-Cut/Max-
Flow Problem

General minimization of MRF energies is NP-hard (Non-deterministic polynomial
hard) and can not be solved in polynomial time [42]. On the other hand, there exist
approximate solutions which finds a non-optimal solution in polynomial time such as
simulated annealing [40] or belief propagation [78]. On the other hand, specific in-
stances of the minimization problem in (2.3) can be solved in polynomial time [42].
Graph representable binary energies are one of the important examples of these sub
problems which we can find optimal solution in polynomial time. Within the scope of
these thesis, we are interested only in graph representable energies of the form given
by (2.3). We first give the necessary and sufficient condition for binary energy func-
tion to be graph representable, and, construct a graph representation of the binary
energy function. Before moving to details of the representation, let us define a graph
representable energy function.

For the binary energy minimization problem, once can construct a special graph. We
introduce two auxiliary nodes to the graph namely source (s) and terminal (t). Then,
we connect each node to both source and terminal nodes. Finally, we choose edge
weights such that energy of any label vector x is equivalent to a specific s-t cut in the
graph. Any cut of the graph which separates source and terminal is defined as an s-t
cut. A sample constructed graph and an s-t cut is shown in Figure 2.2.
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(a) A sample constructed graph
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s-t cut

(b) A sample s-t cut on a constructed graph

Figure 2.2: Visualization of (a) a constructed graph and (b) an s-t cut.

Let us consider the following binary energy over a Markovian network:

E(x) =
∑
vi∈V

Ei(xi) +
∑
eij∈E

Eij(xi, xj). (2.4)

We slightly change the notation, since a constructed graph is much general than the
energy function given by (2.3). For this energy minimization problem, Kolmogrov and
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Zabih show the necessary and sufficient condition to be graph representable [42]. Any
sub-modular binary energy function over a Markovian network in the form of (2.4)
is graph representable and its global minimum can be found in polynomial time [42].
Sub-modularity constraint can be stated as,

E(x ∧ x′) + E(x ∨ x′) ≤ E(x) + E(x′) ∀x, x′ ∈ {0, 1}n. (2.5)

For the case of energy functions in the form of (2.4), this constraint is equivalent to

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0) ∀vi, vj ∈ V. (2.6)

Formal proof of the above statement for the binary energy minimization over Marko-
vian network can be found in [42]. Indeed, a general result of sub-modularity is avail-
able in [72]. Here, we restate the constructive graph creation for a binary energy
function. We limit ourselves to an energy function defined over two binary variables
x1, x2. Indeed, for any set of binary random variables, one can construct the graph by
using the same idea. First, let us state the closed form energy over two variables, as:

E(x1, x2) =
∑
i∈1,2

Ei(xi) +
∑
eij∈E

Eij(xi, xj) (2.7)

= E1(x1) + E2(x2) + E12(x1, x2). (2.8)

While constructing the graph, we consider the unary and binary terms separately by
using the additivity theorem [42]. The additivity theorem states that if two energy
functions are graph representable, their sum is also graph representable. Moreover,
the resultant graph is the graph having edge weights as the sum of corresponding edge
weights in the summand graphs. Let us first consider the unary energy of x1. If x1

is 0, it should be connected to s node, and cut should have E1(0) cost, if x1 is 1, it
should be connected to t node and cut should have E1(1) cost. Similar graph can also
be constructed for x2. Hence, the resultant graph is shown in Figure 2.3.

v1

t

v2

s

E1(1)

E1(0)

E2(1)

E2(0)

Figure 2.3: Construction of a graph representing unary energy

For the binary energy term, consider the binary energy cost table in Table 2.1.

In this representation, A is a constant term and can be discarded since adding constant
term to an optimization problem does not change the solution. Moreover, all the
other three terms can be represented as graphs. It should be noted that edge weights
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Table2.1: Binary energy factorization for two nodes Markovian network. [42]

E12(0, 0) E12(0, 1)
E12(1, 0) E12(1, 1)

=
A B
C D = A+

0 0
C-A C-A +

0 D-C
0 D-C +

0 B+C-D-A
0 0

should be non-negative in order to find min-cut in polynomial time, since majority
of the combinatorial algorithms are optimal under the condition of non-negative edge
weights. In this factorization, we assume that D ≥ C and C ≥ A. However, if this is
not the case, a similar factorization can be achieved via selecting C−D and/or A−C
as edge weights. On the other hand, non negativity of B + C − D − A is the result
of the sub-modularity (2.6). Hence, the constructed graph of the resultant energy is
shown in Figure 2.4.

t

s

C - D

v1 v2

(a)

t

s

C - A

v1 v2+

(b)

t

s

v1 v2
B + C - A - D+

(c)

t

s

v1 v2= B + C - A - D

C - D

C - A

(d) Final graph

Figure 2.4: Construction of a graph representing binary energy over a two-node Marko-
vian network. (a) is the graph representing the first table in Table 2.1, (b) is the graph
representing the second table in Table 2.1 and (c) is the graph representing the third
table in Table 2.1. (d) is found via the additivity theorem. It should be noted that
C ≥ D and C ≥ A is assumed; however, similar graph can also be constructed for the
inverse inequality cases.

This construction is applicable to any energy function in the form of (2.3) satisfying
sub-modularity condition (2.6). By constructing this graph, an energy minimization
problem is converted to a problem of finding minimum cut separating source(s) and
terminal(t) nodes. Although constructed graph and formulated theory is much more
general, we will construct special graph of interest using widely used Ising model
[32]. Within the scope of the problems in computer vision, the binary energy term is
usually selected as the Ising model [32]. In Ising model, only the label disagreements
are punished for the smoothness penalty. In other words, binary energy for the two
network node is chosen as in Table 2.2;

Table2.2: Binary energy factorization for Ising model over two nodes Markovian net-
work.

E12(0, 0) E12(0, 1)

E12(1, 0) E12(1, 1)
=

0 K
K 0
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Hence, the constructed graph is much simpler. In Figure 2.5, the constructed graph for
the Ising model is visualized and all possible cuts are shown. Extending this two-node
graph to a graph of pixels is indeed trivial.
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(a) Two nodes graph using
Ising model

E1(1)

E1(0)

E2(1)

E2(0)

E12(1,0) = E12(0,1) v2v1

s

t
E(0,0)=E1(0)+E2(0)

(b) cut corresponding to
E(0,0) energy

E1(1)
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E2(1)

E2(0)
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E(0,0) energy

E1(1)
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E2(1)

E2(0)

E12(1,0) = E12(0,1) v2v1

s

t

E(0,1)=E1(0)+E2(1)+E12(0,1)

(d) cut corresponding to
E(0,0) energy

E1(1)

E1(0)

E2(1)

E2(0)

E12(1,0) = E12(0,1) v2v1
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t

E(1,0)=E1(1)+E2(0)+E12(1,0)

(e) cut corresponding to
E(0,0) energy

Figure 2.5: Visualization of the constructed graph for the Ising model [32] and all the
possible cuts. In (a) a two-node Ising model Markovian network is shown. In (b), (c),
(d) and (e), all possible label configurations are shown and their corresponding cut
values are also visualized. It should be noted that the cost of every cut is the corre-
sponding value of the energy function. Hence, the proposed binary energy function in
(2.4) is represented with the constructed graph.

2.3 Min-Cut/Max-Flow Algorithms

The problem of interactive segmentation over a Markovian network is converted into
finding the minimum cut on a graph, in Section 2.2. How to find a minimum cut
on a directed graph is a widely studied problem in combinatorial optimization [31].
To convert an undirected graph into a directed graph in Figure 2.2 is a trivial task:
the edges between the source and nodes should be replaced with edges from source
to nodes. Furthermore, edges between nodes and terminal should be replaced with
the edges from nodes to the terminal. Finally, edges between immediate nodes should
be replaced with two edges for each direction. Then, the problem is expected to be
transformed into a combinatorial min-cut problem on a directed graph.
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The min-cut/max-flow equivalence theorem [31] states that the problem of finding the
minimum cut separating the source and the terminal is equivalent to the problem of
finding the maximum flow from the source to the sink. When linear programming (LP)
definitions of the problems over the directed graph is formulated, the two problems
are the dual of each other. The complete proof and formal discussion can be found in
[18]. Since formal discussion of min-cut/max-flow is beyond the scope of this thesis,
we try to summarize the basic idea behind the theory. We also give the sketch of the
specific case of the theorem applicable to our constructed graph.

An s-t cut is defined as a set of edges which separate source and terminal nodes,
completely. Separate means that after removing the edges of the s-t cut, the source
and the terminal would be disconnected. Moreover, two nodes are disconnected means
there exist no path connecting the two nodes. On the other hand, the maximum flow
problem is the problem of assigning a set of flows to the edges of the graph such that
1)flow of any edge is non-negative and less than edge weight; 2)conversation of flows is
not violated. In other words, for any node the sum of the input and output flows are
equal; 3)net flow from the source to the sink is maximum. Formally, max-flow problem
can be formulated as

max
f(e)

∑
e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

s.t.
∑

e∈δ+(v)

f(e) =
∑

e∈δ−(v)

f(e) ∀v ∈ V − {s, t}

f(e) ≤ we ∀e ∈ E
0 ≤ f(e) ∀e ∈ E .

(2.9)

In this formulation, δ+(v) represents the edges leaving node v and δ−(v) represents
the edges entering to node v. Moreover, f(e) represents the flow of edge e. In our
constructed graph, no edge enters to the source node, hence, δ−(s) is empty set and∑

e∈δ−(s) f(e) is 0 and can be discarded.
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e) ∀v ∈ V −
{s, t} represents the conservation of flows. Equality states that input flow to any
node is equal to output flow, except the source and the terminal nodes. Finally,
f(e) ≥ 0 ∀e ∈ E is for the non-negativity of the flows and f(e) ≤ we ∀e ∈ E states
that flows are bounded with the edge weights.

The main intuition behind the equivalence of problems (2.3) and (2.9) can be sum-
marized via a residual graph. Indeed, residual graph formulation is widely used in
most of the contributions in this thesis. After defining a set of flows over a graph (not
necessarily maximum flow), a residual graph is the graph having the same structure
as the original graph with the following edge weights:

re = we − f(e) ∀e ∈ E . (2.10)

In this representation re represents the weight of the edge in the residual graph. It
should also be noted that definition of the flow implies that re would be non-negative
since f(e) ≤ we.

After defining the residual graph, one can state the main claim behind the equivalence
theorem. Assume that the max-flow solution to (2.9) is obtained, then the source
and the terminal should be disconnected, when the edges having re = 0 are removed.
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Sketch of this proof is rather straightforward, i.e., if there exist a source to terminal
path having non-zero residual weights, minimum of these residual weights could be
added to the flows without violating any constraint. Hence, the flow would not be
maximum and will result in a contradiction. Clearly, there is no path between the
source and the terminal; moreover, edges satisfying re is the minimum cut, since the
cost of this cut is equal to 0.

The final step is to show that resulting minimum cut founded after pushing the maxi-
mum flow is equal to the minimum cut of the initial graph. We show only this step for
our specific constructed graph topology, although the claim is much general. The gen-
eral proof can be found in [31]. We show that pushing any flow through the available
graph only adds a constant term to the optimization problem. Hence, pushing any
flow does not change the solution. We show this claim by the analysis of our two-node
Markovian network. There are two types of flows and we will analyse them separately.
First type of flow is from source to sink through single node and the second type is
from source to sink through two nodes. Both of them are visualized in Figure 2.6

For the case of flows going through a single node as shown in Figure 2.6, E′i(0) =
Ei(0) − α and E′i(1) = Ei(1) − α in the resultant graph. Hence, E′(x) = E(x) − α.
This result shows that pushing any valid flow from source to sink through a single node
only adds a constant term to the optimization problem. Hence, it does not change the
solution.

For the case of flow going through two nodes; as visualized in Figure 2.6, the energy
function is updated as;

Table2.3: Energy function after pushing flow over two nodes Markovian network.

E′12(0, 0) E′12(0, 1)
E′12(1, 0) E′12(1, 1)

=
E12(0, 0) + α E12(0, 1) + α
E12(1, 0) + α E12(1, 1) + α

=
E12(0, 0) E12(0, 1)
E12(1, 0) E12(1, 1)

+ α

Hence, E′(x1, x2) = E(x1, x2) + α. And, this concludes that pushing any flow from
source to sink only adds a constant term to the optimization problem. Therefore, the
minimum cut before pushing the set of flows and after pushing the set of flows are
equivalent.

To find the minimum cut of a resultant residual graph, after finding the maximum flow
is straightforward. Union of edges having re = 0 should be selected as the minimum
cut since it has a 0 cost. Hence, solving for the maximum flow from the source to
the terminal inherently solves the problem of finding the minimum cut separating the
source and the terminal for our graph of interest. It should be noted that we only
show this equivalence for our specific graph of interest. However, this claim is much
more general. Furthermore, its proof and some applications can be found in [18].

An interactive segmentation formulation over a Markovian network results in a Gibbs
energy minimization procedure, and Gibbs energy minimization is equivalent to the
problem of finding a minimum cut over a specially constructed graph. Moreover, to find
the minimum cut is equivalent to the problem of finding the maximum flow. Hence,
we finally convert the problem of interactive segmentation to the problem of finding
the maximum flow for which there exist many polynomial time, globally optimum
algorithms to find the solution. Some of these algorithms and their corresponding
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Figure 2.6: Visualization of two types of flows applicable to a two-node Markovian
network. α represents the flow from the source to the terminal via single node and
β represents the flow from the source to the terminal via two nodes. Flows and
original graph are shown in (a). Flows are pushed and residual graph is visualized
in (b). In (c), (d), (e) and (f), costs of the cuts for all possible labels are shown.
For all label selections, the values of α and β are subtracted from the cost values.
Hence, the resulting optimization problem is added only a constant value (−α−β) i.e.
E′(x) = E′(x)−α− β. Therefore, the solution to the minimum cut problem does not
change after pushing any valid flow from the source to the terminal.
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computational complexities are summarized in Table 2.4 in a chronological order. In
complexity formulas, n represents the number of nodes of the graph, and m is the
number of the edges of the graph and U is the bound of the edge weights.

Table2.4: Computational Complexities of Some of the Existing Max-flow Algorithms.

Due to Computational Complexity
Ford & Fulkerson [30] O(nmU)
Edmonds & Karp [26] O(nm2)

Dinic [23] O(n2m)
Goldberg & Tarjan [33] O(nmlog(n2/m))

Orlin [56] O(nm), O(n2/logn) if m = O(n)

The algorithms mentioned in Table 2.4 are general algorithms applicable to all types
of graphs. Furthermore, their complexities are the worst case complexities. However,
the graphs arising in the computer vision problems are 2D grids or 3D grids. Hence,
topology of the graph should be taken into consideration for the selection of the max-
flow algorithms. According to the experimental comparison presented in [13], Ford &
Fulkerson algorithm [30] with an additional heuristic outperforms all other available
methods. Hence, within the scope of this thesis we only explain Furd & Fulkerson
algorithm with Boykov & Kolmogorov heuristic.

2.3.1 Ford & Fulkerson Algorithm with Boykov & Kolmogorov Heuristic

Ford & Fulkerson algorithm is the straightforward and basic extension of the equiv-
alence proof. Since pushing any flow does not change the solution, one can push as
much as possible flows via arbitrary selected paths until max-flow is reached. Further-
more, definition of the maximum flow is a combination of set of flows until there exist
no possible flow in the graph. Hence, the main idea of the algorithm is to start with
an empty flow and to find any valid flow from the source to the terminal until there
exist no possible flow in the graph. In other words, the algorithm can be summarized
as follows:

Algorithm 1 Ford & Fulkerson Algorithm.
1: Initialization: f(e) = 0 ∀e ∈ E , r(e) = w(e) ∀e ∈ E
2: while ∃p(s-t path) s.t. r(e) > 0 ∀e ∈ p do
3: Chose a valid p(s-t path) s.t. r(e) > 0 ∀e ∈ p
4: Push the maximum possible flow through the p(s-t path). i.e.
5: fmax = mine∈p r(e)
6: f(e) = f(e) + fmax ∀e ∈ p.
7: r(e) = r(e)− fmax ∀e ∈ p.
8: end while

Computation time of Ford & Fulkerson algorithm significantly depends on the selection
of the s-t path. Hence, selection of the s-t path requires some heuristics and prior
knowledge of the graph topology. One of the widely used ideas is the shortest path
heuristic of Dinic [23]. It starts with finding a shortest path from the source to the
terminal over at most k edges via breadth first search [22]. When there exist no
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valid path having k edges, k is increased to k + 1. k is generally started with a
small number. In terms of the search strategy, Dinic’s heuristic is similar to Iterative
Deepening method widely used in graph search [44]. This shortest path selection makes
the worst case complexity of the algorithm O(mn2).

The main computational drawback of this algorithm is performing search over trees
from scratch at every iteration. Boykov & Kolmogorov heuristic is mainly developed
to solve this redundancy. It starts with a tree expansion until an s-t path is found.
After the augmentation stage, Boykov & Kolmogorov heuristic recover the tree. The
main drawback of this heuristic is the lack of shortest path guarantee since recovering
some nodes may change the expansion order of the nodes and violate the optimality of
breadth first search [22]. The worst case computational complexity of the algorithm
becomes O(mn2C) where C is the minimum cut. On the other hand, the experimental
comparison suggests that average run time of Boykov & Kolmogorov heuristic outper-
forms other existing algorithms [13]. Hence, Ford & Fulkerson algorithm with Boykov
& Kolmogorov is the main method of interest in this thesis.

Since the main idea of the Ford & Fulkerson algorithm using Boykov & Kolmogorov
heuristic is the re-usage of the trees, nodes need to be tracked throughout the iterations.
Nodes in the graph are divided into three groups: active nodes, passive nodes and free
nodes. Furthermore, two trees are expended and kept throughout the iterations: one
rooted at the source and the one rooted at the terminal. The nodes which are not
a member of either trees are called as free nodes, and the nodes at which trees can
continue to grow are called as active nodes [13]. Finally, internal nodes are denoted as
passive nodes. These nodes are visualized in a sample graph in Figure 2.7.

s t

s-t path

P P P A

P P P A

P P A A

P A P P P PA

A P P PA

A P P

A P P

Figure 2.7: Visualization of active, passive and free nodes. Active nodes are the nodes
in which trees might grow via inserting free nodes to the trees. Passive nodes are the
internal nodes of the trees where there is no free node neighbour. Finally, free nodes
are the nodes not included in any tree. When two nodes, one from source tree and one
from terminal tree, become neighbours, an s-t path can obtained via following parents
of the neighbour nodes. A sample s-t path is illustrated in the green path.

The algorithm simply expands both trees until two active nodes of trees become neigh-
bours; i.e. trees touch each other. Then, an s-t path from the source to the terminal is
computed and augmented. The augmentation is simply the update of the flow values
and the residual weights of the graph according to the selected s-t path and maximum
possible flow value over the path. After the augmentation stage, trees become for-
est since some internal edges may saturate, i.e., they have zero residual edge weight.
Hence, some of the nodes loose their parents. Moreover, these nodes are called as
orphan nodes [13]. Finally, the trees are recovered from the forests. Let us represent
trees as S and T , set A as active nodes and set O as orphan nodes. Then, the resulting
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algorithm can be summarized as in Algorithm 2:

Algorithm 2 Ford & Fulkerson Algorithm with Boykov & Kolmogorov Heuristic.
1: Initialization: S = s, T = t, A = s, t, O = ∅, f(e) = 0 ∀e ∈ E , r(e) =
w(e) ∀e ∈ E ,

2: while ∃p(s-t path) do
3: Grow: Expand S and T until ∃vi ∈ S, vj ∈ T, vi ∈ N (vj)
4: Finds the s-t path via vi and vj .
5: Augment: Updates residual weights
6: fmax = mine∈p r(e)
7: f(e) = f(e) + fmax ∀e ∈ p.
8: r(e) = r(e)− fmax ∀e ∈ p.
9: Adopt: Find a valid parent for orphan nodes.
10: end while

Grow stage is accomplished via breadth-first [22] manner. At each stage, for each active
node, free neighbour nodes are added to the corresponding trees and the parents are
set accordingly. This stage is continued until there exist two nodes, one from the source
tree and one from the terminal tree, which are immediate neighbours.

After the growth stage, an s-t path is obtained by starting with neighbour nodes of S
and T trees and adding parents of them to the path, incrementally. When the roots
(s and t) are added to the path, the s-t path would be obtained. Then, the minimum
residual weight among these edges need to be selected as the maximum possible flow
through the path. Finally, this path is pushed through the path. The residual weights
and flow values are updated according to the pushed flow.

Adoption stage actually requires more elaboration than the growth and augmentation
stages. The main idea of the algorithm is to try to find a proper parent for each orphan
node. If the proper parent is not determined, node is left as a free node. Hence, the
resultant algorithm is summarized in Algorithm 3.

In Algorithm 3, tree(.) is a function which returns the current state of the node. In
other words, it checks whether the node is active(A), passive(P ) or orphan(O). The
algorithm processes every orphan node; it first tries to find a neighbour node having
a non-negative residual edge weight. If selected parent has a different state than the
orphan node in terms of active/passive/free status, the orphan node is added as an
active node. If not the status of the node is not changed.

Details on the implementation of the Ford & Fulkerson method with Boykov & Kol-
mogorov heuristic can be found in [13]. Different algorithms and heuristics for max-
flow are also compared experimentally for computer vision applications in [13]. Within
the scope of this thesis some novel improvements are introduced over Ford & Fulker-
son method with Boykov & Kolmogorov heuristic and an extensive computation time
analysis is performed in Chapters 3 and 4.
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Algorithm 3 Finding parents for orphan nodes.
1: for all p ∈ O do
2: for all q ∈ N (p) do
3: if q ∈ S and r(epq > 0) then
4: S = S ∪ p
5: parent(p) = q
6: if tree(q) 6= tree(p) then
7: A = A ∪ p
8: end if
9: end if
10: if q ∈ T and r(eqp > 0) then
11: T = T ∪ p
12: parent(p) = q
13: if tree(q) 6= tree(p) then
14: A = A ∪ p
15: end if
16: end if
17: if no valid parent (q) is founded then
18: tree(q) = free
19: end if
20: end for
21: O = O − p
22: end for
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CHAPTER 3

INTERACTIVE IMAGE SEGMENTATION

Extracting the object of interest from the non-trivial background is a crucial step
in many multimedia applications. Although, fully automatic image segmentation al-
gorithms have been improved significantly, it is still not possible to apply an auto-
matic image segmentation algorithm with a guaranteed performance in a general setup.
Therefore, interactive image segmentation algorithms are becoming more popular for
commercially related applications. [12, 60, 49, 35, 20].

Problem of interactive image segmentation has many perspectives. First of all, there
is an interaction part, which need to be handled considering application device and
target audience. After the interaction stage, there are variety of algorithms depending
on the required computational complexity and the segmentation accuracy to model the
features of the image and perform segmentation. Selection of the algorithm heavily
depends on the application scenario. Before going into the details of the proposed
method, some of the options for interaction, modelling and segmentation are summa-
rized in the following section.

3.1 Related Work

Interactive image segmentation work flow can be divided into three main parts. First,
user interacts with an image to be segmented. Then, some low level features, such
as color, texture and shape of foreground and background are modelled. Next, an
optimization problem defined via selected features. Finally, optimization problem is
solved to obtain final segmentation. Hence, the existing algorithms are analysed in
terms of these three sub-blocks, namely interaction, modelling and optimization, in
the following section. Some options for each of these sub-blocks have been summarized
in Figure 3.1.

There exist three main methods for user interaction, to select a bounding box around
the object of interest [60, 34], to draw scribbles on foreground and/or background
[55, 12, 14, 50], and to draw approximate boundary of the object of interest [49, 54]
are the most common and widely used interaction methods in the literature. Each
of these interaction methods have their own advantages and disadvantages, and their
usage depends heavily on the application scenario. For example, professional image
editing applications require near optimal segmentation quality; hence, computational
complexity drawback can be tolerated. On the other hand, consumer electronic appli-
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Figure 3.1: Main sub-blocks used in any interactive image segmentation algorithm. Se-
lection of the interaction method, model formulation and optimization method depends
on the application. Most of the available interactive image segmentation methods in
the literature are different combinations of these mentioned sub-blocks. For example,
combination of Bounding Box, GMM and Min-Cut/Max-Flow is the Grabcut algo-
rithm [60]. On the other hand, combination of approximate boundary, path cost and
dynamic programming is intelligent scissors algorithm [54].

cations require near real-time performances and robustness to interaction errors.

Within the scope of this thesis, attention is mainly given to interactive mobile mul-
timedia applications. Moreover, literature on mobile interactive image segmentation
is quite limited. Indeed, almost all the mobile methods are the extensions of classical
interactive image segmentation algorithms. Hence, they do not satisfy the interaction
quality requirement of mobile multimedia applications. In this thesis, user interaction
is revisited and a novel interaction method is proposed and explained in Section 3.2.1.

The energy function is modelled via set of low level features depending on the optimiza-
tion method and the interaction method. For example; if scribbles or bounding boxes
are used for interaction, global models are favoured, since there exist enough global
information. On the other hand, if an approximate boundary used as an interaction
method, the resulting problem is inherently local. Hence, local costs such as cost of
the boundary separating foreground and background is utilized. Within existing mod-
els in the literature, Gaussian Mixture Models (GMM) is mainly used as the global
model and boundary path cost is mainly used as the local model. Usage scenario of
GMM in segmentation problems is explained in Section 3.1.2, whereas boundary cost
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approach is explained in Section 3.1.3. Moreover, optimization method is also a con-
straint for the selection of the low level models. For example, some family of functions
-submodular functions- can efficiently be minimized via min-cut/max-flow methods.
Hence, using such functions for foreground/background modelling is desired.

For the optimization sub-block, dynamic programming is used for local models. Since
interaction is approximate boundary, one can assume that true boundary is close to
the interacted boundary. Therefore, global optimum is close to the initial point. We
can assume that energy function is convex around the interacted boundary and local
methods results in global optimum point. However, erroneous user interaction, small
size of mobile screens and high amount of color variation and/or noise makes this
assumption invalid and the local search finds a local minimum of the energy function.
Detailed theoretical and experimental analysis of local search is also performed in
Section 3.1.3 and Section 3.3.

On the other hand, global models can be solved optimally, if some constraints are
introduced like sub-modularity of the energy function. Although some local optimiza-
tion techniques, such as simulated annealing [40] and belief propagation [78] methods
are utilized for the interaction image segmentation problem, extensive analysis of the
probabilistic modal make the global optimization possible for most of these cases. As
explained in Chapter 2, it is possible to find the global optimum of the MRF energy de-
fined over the image via an efficient combinatorial algorithm, namely min-cut/max-flow
algorithm. Indeed, quality difference between local and global methods are significant
due to the erroneous user interaction, small size of mobile screens and high amount of
color variation and/or noise [69].

Grabcut [60] and intelligent scissors [54] algorithms are two main example of global
and local methods. Moreover, their detailed analysis explain the details of all main
sub-blocks used in the literature and stated in Figure 3.1. Furthermore, there exist
some heuristic based region grow/merge type methods which achieve high quality
segmentation. Although heuristic methods are out of the scope of this thesis, they will
be summarized for the sake of completeness.

3.1.1 Region Grow/Merge Type Methods

User interaction can actually be formulated as providing seeds to an algorithm. Con-
sider the interaction type of bounding box or scribbles; clearly scribbles are the seeds
for foreground or background. On the other hand, bounding box of an object is also a
seed for the background. Naive idea is to start with this seeds and to apply a region
grow procedure [27] by using a fixed or an adaptive threshold. However, finding a ro-
bust threshold or an adaptive algorithm is not possible in general. Hence, algorithms
developed via this perspective are ad-hoc methods relying on a greedy metric.

There exist a strong relationship between graph-based methods and region grow-merge
like methods. A metric which needs to be optimized via region grow/merge operations
can be formulated as a measure on a grid graph defined over image pixels. For example,
cutting weakest edge at each iteration is just a local search to find the minimum cut of
the graph. Indeed, most of the region grow/merge type of algorithms are just greedy
versions of the graph clustering algorithms. Moreover, it might be possible to solve
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the resultant optimization problem globally. On the other hand, if you consider the
max-flow algorithm explained in Section 2.3, at each iteration a maximal flow is pushed
through an s-t path and at least one of the edges of the path is saturated; i.e. removed
from the graph. This operation can be observed as a region grow/merge type move
with guaranteed global optimality. Hence, most of the region grow/merge like methods
in the literature are mainly replaced with graph theoretical methods.

On the other hand, greedy algorithms are quite useful in graph theory when their
convergence and optimality is properly considered [18]. It is a widely used approach
to use greedy algorithms to approximately solve many NP-Hard problems in the lit-
erature. Main advantage of greedy algorithms is their low computational complexity.
When the size of the problem is large, greedy algorithms might be the only reasonable
solution [18]. Indeed, some greedy algorithms such as Kruskal’s minimal spanning tree
algorithm [45], are proven to be optimal. Hence, with proper selection of the greedy
move algorithm, it is possible to achieve an acceptable segmentation accuracy in al-
most real-time. For example, maximal similarity based region merge algorithm [55] is
a high quality segmentation method which relies on this formulation.

3.1.1.1 Maximal Similarity Based Region Merge

Maximal similarity based region merge [55] starts with a highly redundant represen-
tation of the image (set of oversegments) and merge every node with its maximally
similar node, if it is also the maximally similar node of the node to be merged. This
definition of maximal similarity is more powerful than the thresholding methods. As a
similarity measure, Bhattacharyya coefficient [9] of the histograms is used. Moreover,
initial over-segmentation is obtained via the mean shift algorithm [17].

One should first define the similarity measure used in the method, namely Bhat-
tacharyya coefficient. Initially features are extracted from the regions in terms of RGB
histograms. RGB space is divided into 16x16x16 = 4096 bins. Then, a histogram con-
sisting of 4096 bins is extracted from the regions. Let the normalized histogram of the
region R be represented as HistR. Similarity measure between histograms is selected
as Bhattacharyya coefficient. Formally;

ρ(R,Q) =

4096∑
u=1

√
HistuR ×HistuQ. (3.1)

Geometric interpretation of Bhattacharyya coefficient is the cosine between the angles
of unit vectors(√

Hist1R . . .
√
Hist4096

R

)T
and

(√
Hist1Q . . .

√
Hist4096

Q

)T
.

Hence, Bhattacharyya coefficient is higher when regions are similar to each other and
lower if they are different. Extraction of RGB histograms requires high computation
time. However, we consider it as a preprocessing step. Moreover, one can say that
algorithm works near real-time. After the merge operations, the histograms are up-
dated. However, histogram updates can efficiently be handled since histograms are
monoids [38].
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The maximal similarity based region merge algorithm starts with the over-segmentation
of the image via the meanshift [17] algorithm. After over-segmentation, interaction
is performed via drawn scribbles for foreground and background. Then, region merge
operations are handled for each superpixel separately. Initially, a merge operation is
performed for each superpixel in the foreground set. Then, for each superpixel in the
background set, a merge operation is performed. Finally, the merge operation is per-
formed for all other superpixels. These processes are iteratively repeated throughout
the segmentation until there is no possible merge operation in the image. Indeed,
convergence of the maximal similarity based merging is proven in [55].

The merging operation for a superpixel is performed by using maximum similarity.
Assume that a candidate superpixel is being searched to be merged with a superpixel
R. Initially, we need to find a neighbour superpixel Q which has the highest similarity
to R. In other words;

Q = MaxSim(R) = arg min
S∈N (R)

ρ(R,S). (3.2)

Then, we check the maximum similarity condition. If the region having highest simi-
larity to Q is also R then we merge them. In other words,

T = MaxSim(Q) = arg min
S∈N (Q)

ρ(Q,S) (3.3)

If T = R, then Q and R is merged. Moreover, maximal similarity based region merging
algorithm can be summarized in Algorithm 4.

Algorithm 4 Maximal Similarity Based Region Merging [55].

1: F = ∅,B = ∅
2: Over-segment the image
3: Make user draw scribbles on foreground and background (populate F ,B)
4: while ∃Merge Operation do
5: for all vi ∈ G ∩ (F ∪ B) do
6: vj = arg maxv∈N (vi) ρ(vi, v)
7: vk = arg maxv∈N (vj) ρ(vj , v)
8: if vk = vi and (vi, vj ∈ F or vi, vj ∈ B) then
9: Merge vi&vj
10: end if
11: end for
12: for all vi ∈ G ∩ (F ∪ B) do
13: vj = arg maxv∈N (vi) ρ(vi, v)
14: vk = arg maxv∈N (vj) ρ(vj , v)
15: if vk = vi and (vj , vi /∈ F or vj , vi /∈ G) then
16: Merge vi&vj
17: end if
18: end for
19: end while

Maximal similarity based region merging algorithm [55] requires computationally ex-
pensive preprocessing due to the histogram extraction and the meanshift algorithm;
therefore, it is not desirable in mobile scenarios. Indeed, in this method, user is re-
quired to give interaction input for both foreground and background. As explained in
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(a) Interaction for
Lemon Data [55]

(b) Output for Lemon
Data [55]

(c) Interaction for
Girl Data [55]

(d) Output for Girl
Data [55]

(e) Interaction for
Mona Lisa Data [55]

(f) Output for Mona
Lisa Data [55]

(g) Interaction for
Toucan Data [55]

(h) Output for Tou-
can Data [55]

Figure 3.2: Interactions and segmentation results for Maximal Similarity Based Region
Merging algorithm [55]. Interactions are shown by using the color notation of blue as
background and green as foreground. Oversegment boundaries are also visualized.

Chapter 1, in mobile touch screen scenarios this type of interaction is not favoured.
Therefore, we did not include maximal similarity based merging algorithm during the
experimental comparisons. However, to give an idea about the segmentation accuracy
of the algorithm, we include some results of the algorithm in Figure 3.2.

3.1.2 Grabcut

Grabcut algorithm [60] is based on the iterative estimation of global color models
and the solution of min-cut/max-flow. Furthermore, Grabcut algorithm [60] is the
first algorithm that uses only background information. Algorithm can efficiently and
accurately segment an image given only bounding box of the object of interest. Grab-
cut algorithm [60] is also the first algorithm that utilizes color statistics via Gaussian
mixture models (GMM).

Grabcut [60] algorithm is formulated on a pixel-based representation. As explained in
Section 2, oversegmenting an image into a set of superpixels is a common technique in
the literature. Indeed, for graph theoretical approaches, there is no difference between
superpixel-based and pixel-based representations in terms of graph formulation and
optimization. Hence, it is reasonable to formulate the algorithms in the superpixel
domain to satisfy the efficiency requirement of mobile devices. Therefore, Grabcut
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algorithm [60] will be explained in a superpixel setting, although the original algorithm
is based on a pixel representation.

Grabcut [60] starts with a bounding box of the object of interest supplied by the user.
The outside of this box is considered as background and GMM for the background
is estimated. Then, inside of the box is used as the foreground model. After this
coarse initialization, min-cut/max-flow based binary segmentation is performed. After
the segmentation, the resultant foreground and background regions are used to esti-
mate the GMM’s; and, the segmentation procedure is applied iteratively. The process
is finalized, when the background/foreground region converges and does not further
change throughout the iterations.

An input image is represented as a color vector of the form z = (z1, ..., zn, ..., zN ).
In this representation, zi is the concatenated color vectors of the pixels of superpixel
i. Then, segmentation of the image is represented as a binary vector of form α =
(α1, ..., αn, ..., αN ) with αi = 1, if the superpixel i is foreground and αi = 0, if the
superpixel i is background.

GMM is used to model the color information; therefore, there is also an additional
GMM vector, which assign a unique GMM to each superpixel k = (k1, ..., kn, ..., kN ).
The parameters of the GMM for the color values are also stored in a vector θ. Then, the
energy function, whose minimum corresponds to a segmentation result that is guided
by color models and having coherent foreground and background, is formulated. This
energy is in the form of a Gibbs energy [32] and it is represented as

E(α, θ, z,k) = U(α, θ, z,k) + V (α, z).

In this energy function, U(α, θ, z,k) corresponds to a fit measure of the image data z by
the estimated parameters θ and k to the segmentation mask α. This term is defined
as the sum of the fitness terms of each superpixel. Moreover, fitness terms of each
superpixel is represented by the mean of fitness of its pixels. Hence, if zni represents
the color vector of ith pixel of nth superpixel and ‖zn‖ represents the number of pixels
in the superpixel n, U(α, θ, z,k) can be written as

U(α, θ, z,k) =
∑
n

1

‖zn‖
∑
i∈n

D(αn, θ, zni , kn),

where D(αn, θ, zni , kn) is the inverse of conditional-log-likelihood of the color vector
zni as

D(αn, θ, zni , kn) = − log p(zni |αn, kn, θ),
which up to a constant can be written as:

D(αn, θ, zni , kn) =
1

2
log detΣ(αn, kn)+

1

2
(zni − µ(αn, kn))TΣ(αn, kn)−1(zni − µ(αn, kn)).

On the other hand, V (α, z) corresponds to the coherency of the segmented foreground
and background. This term is a typical smoothness term and enforce smooth fore-
ground and backgrounds. Therefore, it is defined as

V (α, z) = γ
∑

(m,n)∈C

[αm 6= αn]e−βdis(m,n),
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where [ψ] is the indicator function, which gives 1, if the ψ is true and 0 if ψ is false.
C represents the neighboring superpixels. Moreover, dis(m,n) represents the distance
between superpixels and this distance is taken as the Euclidean distance between mean
color vectors of each superpixel. Finally, the constant β is selected as [13]

β = (2 < dis(m,n) >)−1

where < . > denotes average over the entire image. It should be noted that, this
coherency is the Ising model explained in Section 2.3.

At any step, current foreground and background regions are used to estimate the GMM
parameters, θ = (µ(α, k), Σ(α, k)), by the expectation maximization (EM) algorithm.
In the initialization stage, outside of the supplied box is used as a background and
inside of the box is used as a foreground.

This energy function is submodular and can be minimized with the min-cut/max-
flow method, as explained in Section 2.3. Furthermore, Grabcut [60] is explained in
Algorithm 5. It should be noted that Grabcut [60] includes a further correction stage
which let the user corrects the erroneous regions by drawing scribbles on them. Since
the proposed application area -mobile multimedia- puts a significant emphasis on the
user interaction, we did not include any user correction stage for any algorithm.

Algorithm 5 Grabcut [60] algorithm without user correction.

1: F = ∅, B = ∅
2: Oversegment the image
3: User draws the bounding box of the object
4: F = {vi|i ∈ Box}, B = {vi|i /∈ Box}
5: while F and B Changes do
6: Expectation Maximization to learn Foreground and Background GMMs (learn

θ)
7: Assign most possible gaussian (estimate ki)
8: Solve min-cut (minimize E(α, θ, z,k) = U(α, θ, z,k) + V (α, z))
9: F = {vi|αi = 1}, B = {vi|αi = 0}
10: end while

In order to visualize the process further, we also include the intermediate results of
the algorithm for a sample input. Iteration of the Grabcut is visualized in Figure 3.3.
Figure 3.3.a is the interaction supplied by the user in the form of a bounding box.
Moreover, subsequent subfigures are the results of the iterations in Figure 3.3.b, 3.3.c,
3.3.d, 3.3.e, 3.3.f.

3.1.3 Intelligent Scissors

Intelligent scissors algorithm [54] is one of the earliest and widely used interactive
segmentation methods in the literature. It is also included in a widely used image
editing software Adobe Photoshop [67]. Intelligent scissors [54] is a dynamic process.
Interaction method of the intelligent scissors [54] is based on an approximate boundary
drawn around the object of interest. User starts from some point on the boundary and
draws the approximate boundary while moving the mouse. Throughout the interaction,

26



(a) Interaction (b) 1st Iteration (c) 2nd Iteration

(d) 3rd Iteration (e) 4th Iteration (f) 5th Iteration

Figure 3.3: Interaction and intermediate segmentation results for Grabcut [60] algo-
rithm. In (a) rectangle supplied by the user is shown. In (b), (c), (d), (e) and (f)
segmentation result of the 1st, 2nd, 3rd, 4th and 5th iteration of the algorithm is
shown, respectively. Fast convergence of the algorithm is clearly visible.

boundary of the object is computed and updated dynamically. To explicitly add some
points to the boundary, user can click on these points. Intelligent scissors algorithm is
built on the idea of local optimization. Indeed, the main idea is snapping the drawn
approximate boundary to the nearest strong and consistent edge simultaneously and
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locally.

In order to explain the algorithm, we first need to define local energy function mini-
mized via dynamic programming. A boundary should have a high gradient magnitude,
a consistent gradient direction with the rest of the path and should be at Laplacian zero
crossings of the image. Hence, the cost function for the boundary element connecting
pixel p and q is the weighted sum of these functionals:

l(p, q) = ωzfz(q) + +ωdfd(p, q) + ωgfg(q). (3.4)

In this formulation, fz(q) represents the Laplacian zero crossing such that fz(q) is 1,
if q is at zero crossing and 0 otherwise:

fz(q) =

{
0 if 5I(q) = 0
1 if 5I(q) 6= 0

(3.5)

However, a regular image has very few non-zero Laplacian crossings, if this definition
of Laplacian zero crossing is used. Hence, definition is replaced with the sign changes
of neighbour nodes. If the sign of the Laplacian of two neighbour nodes are different,
the node having the smaller Laplacian is selected as the Laplacian zero crossing of the
image.

Laplacian crossing gives equal weights to each edge. The gradient magnitude is used
in order to differentiate between the strong and the week edges. fg represents the
gradient magnitude such that,

fg(q) = 1−
√
Ix(q)2 + Iy(q)2

max(
√
I2
x + I2

y )
(3.6)

On the other hand, fd represents the consistency of the gradient direction. Moreover, it
is used for the smoothness of the resultant path. Let D(p) be a vector perpendicular to
the gradient direction at pixel p such that D(p) = (Iy(p),−Ix(p)). Moreover, assume
that L(x, y) represents the bidirectional link between pixels p and q such that

L(p, q) =

{
q− p if q ≥ p
p− q if p ≥ q (3.7)

Then, the smoothness penalty can be written as

fd(p, q) =
1

π
(cos[D(p)TL(p, q)]−1 + cos[L(p, q)D(q)T ]−1). (3.8)

This cost function gives high and positive values if the gradient directions are not
similar to each other and low values, if they are similar. Then, the problem is to find
the minimum path boundary. However, there exist a boundary having zero length
(all image is foreground or all image is background). In order to solve this problem,
one should use some seed points. While user is moving the mouse, user can select a
point as a seed point by clicking on it. Moreover, the selected point is required to be
included in the resultant boundary. Then, the problem is equivalent to problem of
finding a minimum path going through these seed points. Indeed, this problem can
easily be solved via Dijkstra algorithm [22]. Some results of the algorithm can be seen
in Figure 3.12, 3.13, 3.14 and 3.15.
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3.1.4 Isoperimetric Graph Partitioning

Images and videos inherently impose a grid graph structure. Hence, statistical infer-
ence is achieved in terms of energy minimization over grid graphs. Isoperimetric graph
partitioning [35] approaches to the problem from a different perspective: an object is
defined as the segment having the minimum isoperimetric constant.

Isoperimetric constant is defined as the ratio of a closed surface to an enclosed volume
for any regular manifold. In other words, isoperimetric constant of any closed manifold
h is;

h = inf
S

|∂S|
V olS

(3.9)

Where S is a region on the manifold, V olS defines the volume of region S and |∂S| is
area of the boundary of region S. Moreover h is the infimum of the ratio over all possi-
ble regions. In other words, isoperimetric graph partitioning algorithm [35] searches for
the segment having the minimum area and the maximum volume simultaneously. To
convert the graph clustering problem into a problem of finding a isoperimetric cut, one
can define the area as the difference between segment and rest of the image, whereas
define the volume as within segment similarity. This problem can be defined over a
weighted graph as follows.

If we consider the weighted graph G = (V,E), the isoperimetric constant can be
computed as [53]:

hG = inf
S

|∂S|
V olS

(3.10)

|∂S| =
∑
eij∈∂S

w(eij) (3.11)

V olS =
∑

i,∀vi∈S
di (3.12)

where w(eij) is the weight of the edge ij and di is the degree of the node i computed
as di =

∑
eij ,∀eij∈E . Moreover, ∂S is the s-t cut and S is the set of nodes labelled as

foreground.

In order to show the usefulness of the isoperimetric constant, we need to define our
graph first. Consider the graph of superpixels or pixels of the image; we connect each
node to 4-connected or 8-connected neighbours for the pixel graph case and assign
color/intensity difference as edge weights. Similarly, we also connect each superpixel
to its immediate neighbours and assign mean color/intensity difference as the edge
weight. We also define the degree of a node as the sum of its edge weights. Hence,
if a pixel/superpixel is dissimilar from its neighbours, its degree is higher. When this
graph is defined, circumference of the cut is the sum of the edges it cuts. Moreover, its
volume is the sum of the degrees of the nodes included in the boundary (a foreground
pixels).

Representing isoperimetric cuts as segments is similar to Shi and Malik’s [64] definition
of average cut. However, there are still significant differences between these formula-
tions. Isoperimetric segment can be considered as the segment having the maximum
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volume (inter similarity) and the minimum area (intra similarity). However, find-
ing the isoperimetric cuts on general graphs are proven to be NP-hard [53]. Hence,
method of isoperimetric segmentation [35] can be considered as an heuristic to find
isoperimetric cuts.

In order to formulate the solution, we need to represents the isoperimetric minimization
functional in terms of combinatorial structures. Consider a partition vector as a binary
vector over nodes such that

xi =

{
0 if vi ∈ S̄
1 if vi ∈ S

(3.13)

Furthermore, Laplacian or admittance matrix L is defined as:

Lvivj =


di if i = j
−w(eij) if eij ∈ E
0 otherwise

(3.14)

We can also represent the degrees of nodes in vector from as vector d. Then, isoperi-
metric minimization equation can be converted into the following relation:

hG = inf
S

|∂S|
V olS

= inf
x

xTLx

xTd
. (3.15)

Isoperimetric segmentation [35] uses the constant volume hypothesis. If we fix the
volume of the segment we search for (xTd = k). Then, the minimization problem
becomes equivalent to the minimizing xTLX with constraint xTd = k. If we apply
Lagrange multiplication, the cost function becomes

Q(x) = xTLx− Λ(XTd− k). (3.16)

After differentiating with respect to x and equating to 0, the following relation is
obtained:

2Lx = Λd. (3.17)

Scalar terms can be ignored, since the solution will be extracted from x in scale inde-
pendent form. Furthermore, L is rank deficient and non-invertible since all rows and
columns of L sum to 0. At this point, interaction comes into consideration: assume
c nodes are selected by the user as the foreground. Then, corresponding rows and
columns can be removed from the matrix. These c nodes are assumed to be fore-
ground. Foreground is the set of nodes having xi = 0. Physical analogy from circuit
theory can be used to explain this selection. If you consider the electrical circuit,
(3.17) represents the Kirchoff’s Voltage/Current Law, and, selecting c nodes is analo-
gous to the selection of a ground node. Without selecting a ground node, voltages can
not be obtained. After removing c rows and columns corresponding to ground nodes,
n− c by n− c matrix will be full rank and invertible. Let us call this matrix L0, the
corresponding label vector x0 and the degree vector d0. Then, (3.17) becomes

L0x0 = d0. (3.18)

Moreover, this linear system can be solved efficiently. After finding x0, x can be
obtained via inserting 0’s to the entries corresponding to the ground nodes. However,
the resultant x vector is not binary since we did not put any constraint on x. Indeed,
it is not possible to solve for the binary vector in polynomial time. Hence, the best
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segmentation can be computed after trying every possible threshold in linear time.
Some indicator results of the algorithm is shown in Figure 3.11.

It should be noted that originally iso-perimetric image segmentation method is pro-
posed as an automatic image segmentation method. The ground node is selected as the
node having the highest degree and partitioning is applied until the segments converge.

Isoperimetric graph cut is fundamentally different than Gibbs energy formulation.
However, it also has some similarities. We want to explicitly state the relation be-
tween isoperimetric segmentation and graph-cut procedure. Consider the simplified
case of graph-cut where only one node is selected as a foreground and one node is se-
lected as a background. These two nodes are connected to the source and the terminal
with infinite/zero weights as shown in Figure 3.4. Binary weights are assigned as color
differences. Then, the problems become similar to each other. A cost function mini-
mized via isoperimetric segmentation is xTLX

xT d
. However, the cost function minimized

by graph-cut is xTLx.

FG

BG

(a) Input image with interacted
nodes

s

t

FG

BG

(b) Simplified graph for min-
cut/max-flow

Figure 3.4: Toy example image and interactions are shown in (a) to compare isoperi-
metric segmentation and min-cut/max-flow. In (b), a simplified version of the s-t is
visualized. It should be noted that unary terms are discarded in this simplified graph.
Hence, it is only constructed to compare the algorithms.

Within this simplified comparison case, graph-cut based approach finds the minimum
cut; hence, it finds the smallest object-like region. On the other hand, the isoperimetric
segmentation finds the largest object like region. This difference is visualized in a
toy example. Consider the nested circles in Figure 3.5, foreground and background
nodes are selected as shown in Figure 3.5. Graph-cut finds the inner circle, since its
objective is to find the minimum cut. On the other hand, isoperimetric segmentation
finds the outer circle since it has the highest volume with the smallest circumference.
A practical consequence is as follows: for a quite small amount of interaction, a low
amount of noise and a multi-color object profile graph-cut will only find the smallest
object. On the other hand, the isoperimetric segmentation will find the largest segment
which has a higher possibility of being the object of interest. However, for many
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practical situations, unary energy obtained via interaction and global models is much
more representative than the binary energy. Since the isoperimetric segmentation does
not utilize unary energy properly, in practical scenarios the segmentation accuracy of
isoperimetric segmentation procedure is limited.

FG

BG

(a) Input image with inter-
acted nodes.

BG

FG

(b) Output of simplified min-
cut/max-flow.

BG

FG

(c) Output of isoperimteric
segmentation.

Figure 3.5: Input image to isoperimteric segmentation and simplified min-cut/max-
flow methods are visualized in (a). In (b) the result of the simplified min-cut/max-flow
is shown. Moreover, in (c) result of the isoperimetric segmentation is shown. Isoperi-
metric segmentation selects the object-like region with the highest area to circumfer-
ence ratio. On the otherhand, min-cut/max-flow prefers the object like region having
the minimum circumference.

3.2 Proposed Method

All of the algorithms explained in Section 3.1 are mainly developed for mouse/keyboard
based interfaces. Since algorithms are interactive, application scenario is an important
aspect to consider. None of these algorithms are natively applicable to mobile touch-
screen devices. Apart from the interaction method, the computational power of mobile
devices is also another serious limitation for such methods. The main motivation of
the proposed method is to solve the drawbacks of the existing algorithms that make
them inapplicable to mobile scenarios.

Three main drawbacks of the existing interactive image segmentation algorithms are
discussed in Section 1.1. Mainly, user centred interaction, interaction error robustness
and computational efficiency are the three fundamental issues to be handled. The
proposed method deals with all of these problems. A novel interaction method based on
coloring gesture is explained in Section 3.2.1. Coloring is a dynamic process requiring
only foreground scribbles. Moreover, it is specifically tailored for mobile touch screen
applications. Apart from this improvement, a heuristic procedure to improve the
error robustness is also proposed in Section 3.2.2. The most common interaction error
that occurs in mobile scenarios, that is called "overfills", is handled via the proposed
method. Finally, in Section 3.2.3, a novel spatially and temporally dynamic graph-cut
method is proposed to improve the computational efficiency further.
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Figure 3.6: Block diagram of the overall proposed algorithm.

The proposed interactive and dynamic algorithm is summarized in Figure 3.6 as a
block diagram. The coloring method is explained in Section 3.2.1. Details of the user
stroke error correction sub-block is explained in Section 3.2.2. Moreover, the dynamic
and iterative graph-cut sub-block is discussed in Section 3.2.3. A block diagram is used
to visualize the dynamic nature of the proposed method and interaction procedure. It
is observed that, to keep the user in the process throughout the entire procedure is
promising idea to increase interaction quality. Indeed, superior interaction quality of
the proposed method is shown via subjective user evaluation results in Section 3.3.

It should be noted that formulation of the energy function is based on Grabcut algo-
rithm [60]. The same MRF energy formulation and iterative GMM estimation proce-
dure are also used in the proposed method.

3.2.1 Segmentation via Coloring

Existing image segmentation algorithms in the literature are generally batch processes.
User interacts with an input image, then runs the segmentation. If the segmentation
fails, the user need to update the result by an extra interaction or need to start from
scratch. Furthermore, common interaction types are scribbles on foreground and/or
background, bounding box of the object of interest and approximate boundary of the
object of interest. Although such approaches are reasonable for professional editing
applications, mobile applications should be more interactive for a better user/consumer
experience. Hence, we revisited the problem of interaction for the interactive image
segmentation problem.

The proposed interaction method is a dynamic process. In the proposed interaction
scenario, when the user selects a color image, a gray scale version of the image is
initially displayed to the user. Then, the user starts to colourize the object of interest
by the finger strokes on the screen. In order to differentiate a gray region, we also
decrease the contrast of the image by adding a constant white layer via alpha matting.
Hence, the user might even colorize a gray region and see the result.

By each stroke, a global segmentation is performed, and the result on the display is
updated in real-time. It should also be noted that only the foreground scribbles are
used. To discard background scribbles actually increase the interaction quality, signifi-
cantly. Since the only interaction tool is finger strokes on mobile touch screen devices,
there should be a button to switch between foreground and background scribbles, if
both foreground and background scribbles are needed to be used. Coloring interaction
is more appropriate for a better user experience, since it does not require processing
pressing a button or a key. Moreover, coloring is a well known action; hence, the
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(a) Initial Step (b) Intermediate Step (c) Intermediate Step

(d) End of Interaction (e) Final Result

Figure 3.7: Sample illusturation of user interaction. Initially, gray-scaled version of
the image is shown to the user as in (a). User starts to colorize the object of interest -a
flower in this case-. With each stroke, the result is updated and displayed to the user
as shown in (b), (c), (d). When the user is satisfied with the result, the segmentation
result is shown to the user as visualized in (e).

proposed segmentation process is as intuitive as the process of coloring a color book.

In order to structure the proposed interaction in a more intuitive form, we restrict
the effect of scribbles in a local window around the interacted region. Although the
segmentation is computed for the entire image, the result of the local region around the
interaction is presented to the user. Although this increases the segmentation time, it
also increases the interaction quality. By keeping the effect of the interactions local,
we simply aim to provide the gesture of coloring a color book. Furthermore, size of
the local window is also enlarged to decrease the segmentation time throughout the
process.

The proposed interaction method is also visualized in Figure 3.7. Initially, the user
starts with an arbitrary region around the center of the flower. Then, the user continues
to interact. After each action, the segmentation result is computed and displayed to
the user. The user might stop, when he/she is satisfied by the segmentation result.
Final segmentation result is also presented in Figure 3.7.

As explained in Section 1.1, due to the small screen sizes of the mobile devices, the
algorithms should tolerate user interaction errors. From the error correction point of
view, in the proposed method, a user always has a chance to correct the foreground
segments classified as the background. Indeed, segmentation process becomes more
engaging by showing the result to the user dynamically. Moreover, the process implic-
itly guides the user to correct segmentation errors. Error correction process is a part of
the interactive segmentation. On the other hand, the user might not have a chance to
correct background segments classified as foreground without restarting the algorithm
from scratch. Therefore, it is better to prevent these types of errors before they occur.
The procedure to handle the interaction errors is explained in Section 3.2.2.

The proposed interaction method is also experimented by a subjective user experience
test. We compare the crucial factors of user interaction for the mobile segmentation
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problem with the state-of-the-art interaction methods in the literature. Superior per-
formance of the coloring and the details of the experimentation procedure is discussed
in Section 3.3.

3.2.2 Error Correction

Regardless of the interaction quality or the computational complexity, the segmenta-
tion accuracy is the most crucial factor for all interactive segmentation algorithms.
Most of the algorithms in the literature use global models and globally optimum op-
timization methods. Hence, given accurate and adequate interaction, it is possible to
reach near optimal segmentation accuracy. Lack of interaction is solved by the help
of proposed interaction method. User can provide foreground scribbles until he/she
is satisfied with the result. Hence, we can assume there is always enough amount of
interaction. However, erroneous interaction is still a problem. Therefore, interaction
quality is the crucial factor affecting the segmentation accuracy.

Due to the small screens of the mobile devices, the users generally make finger stroke
errors during interaction and these errors typically occur around the boundary of the
object of interest. Overfills are the most common example of this type of errors. User
generally left the boundary of the object of interest accidentally and either left the
finger or went back to the object of interest. In order to eliminate such interaction
errors, we propose a correction method which is summarized in Algorithm 6. We
simply keep track of the low level features of the region where user interacted, and try
to correct, if interaction is not consistent with the features of the region.

We assume that user starts interaction within the object. Then, the algorithm ac-
cumulates the color statistics of the current region in a single RGB Gaussian model.
When the user moves from current superpixel to a new one, the algorithm checks this
new superpixel. If the new superpixel fits to the learned model, the algorithm accepts
this new superpixel. If not, the algorithm stores the superpixel which the user left the
object. Then, the new superpixels are stored in a temporary queue and not inserted
to the algorithm. In the mean time, color model of these new superpixels are stored
in another temporary single RGB Gaussian model.

When yet another superpixel is examined, if this new superpixel fits to the previously
learned color model, superpixels accumulated in the temporary queue are discarded,
and the correct path between the superpixel user left and the superpixel user returned
back to the object is calculated and inserted in to the dynamic graph-cut. This situa-
tion corresponds to the case that user left the object accidentally and goes back to the
object of interest. If the next interaction does not fit to the previous model and fits to
the current temporary model, the algorithm continues to add this next superpixel to a
temprorary queue and update current temporary Gaussian model. If the next super-
pixel fits neither to the previous nor to the current model, it means that the object has
a multi color profile and interaction in the temporary queue may or may not be correct.
Hence, algorithm tries to find the correct path between the starting of temporary queue
and end of the temporary queue. As a fit measure, Euclidean distance between the
color GMM means are used; i.e. dist(NewOS,ColorModel) = |zNewOS − µColorModel|
and scalar multiple of standard deviation (kσColorModel) is used as a threshold.
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In order to find the correct path between any two superpixels which user left the object
and returned to object, a minimum cost path finding problem is defined and solved.
The correct path is assumed to be the geodesic path between these two points. Correct
path should have minimum color variation and minimum Euclidean distance. Hence,
one can define the cost of the path as weighted some of color and spatial difference as,

Cost(path) =
∑

u,v∈path
|xu − xv|+ λ|Iu − Iv|, (3.19)

where, u and v are the nodes incident to the same edge in a path, xi is the mean position
vector of superpixel i and Ii is the mean RGB vector of superpixel i. This problem
can actually be converted to a minimum path finding problem over a graph. Each
superpixel is connected to its neighbours, with edge weights, as |xu − xv|+ λ|Iu − Iv|.
Then, problem is equivalent to find the minimum path connecting two specified node
over this graph. Since all edge weights are Euclidean distances, they are positive and
minimum path can be obtained via Dijkstra’s algorithm [22] over the superpixel graph
efficiently in polynomial time. λ is the parameter which sets the relative importance of
spatial and color distances. Furthermore, throughout the experiments, we have fixed
the value of parameter λ = 0.5. If any prior information exists about the application
domain, λ value can be found empirically or via Bayesian learning [11].

Algorithm 6 User input correction algorithm
1: Initialization: PossibleError ← 0, clear TempQueue
1: InsertNewOversegment(NewOS):
2: if not PossibleError then
3: if dist(NewOS,CurrentMdl) ≤ kσcurrent then
4: insert NewOS to Dynamic-Graph-Cut
5: update CurrentMdl with NewOS
6: else
7: PossibleError ← 1, LeftOS←NewOS, PrevMdl ← CurrentMdl
8: end if
9: else
10: if dist(NewOS,PrevMdl) ≤ kσprev then
11: CurrentMdl ← PrevMdl, PossibleError ← 0, FindPath(LeftOS,NewOS)
12: insert found path to Dynamic-Graph-Cut
13: else if dist(NewOS,CurrentMdl) ≤ kσcurrent then
14: insert NewOS to TempQueue
15: update CurrentMdl with NewOS
16: else
17: PossibleError ← 0, FindPath(LeftOS,NewOS)
18: insert founded path to Dynamic-Graph-Cut
19: end if
20: end if

In order to visualize the performance of the proposed error correction algorithm, we
summarized the three main error correction scenarios in Figure 3.8.a, 3.8.b and 3.8.c on
a sample image. In Figure 3.8.a, 3.8.b and 3.8.c, blue superpixels are the ones accepted
as the correct user interaction, whereas the green line is the discarded user interaction
(considered as an interaction error). Moreover, red superpixels are obtained from the
minimum cost path solution. Therefore, only the blue and the red regions are used for
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(a) Error - 1 color (b) Error - 2 colors (c) False Positive

Figure 3.8: Visualization of the proposed error correction algorithm for three main
interaction error scenarios. In all figures the green line is the discarded user interaction,
blue is the accepted user interaction and red is the estimated correct path. In (a), (b)
user leaves the object and returns back for the single color and the multi color case. In
(c) false positive of the error correction algorithm is shown. Although the correct user
interaction is discarded, the resultant path is still correct. In summary, the proposed
method successfully handles all three cases for this example.

the dynamic and iterated graph-cuts algorithm. It should be noted that these lines
are not presented to the user as part of the algorithm. These markers are only drawn
to explain the algorithm. In the final version, only the current segmentation result is
shown to the user.

In Figure 3.8.a, the user first accidentally left the object boundary and then returned
back to object of interest. The proposed algorithm discards the erroneous interaction
and finds the correct path. This case is considered to be of primary interest, since this
type of interaction errors are the main set of errors which we aim to solve. It should
also be noted that even when there are only a few correct interactions in the starting
phase, the proposed method still effectively learn the color statistics of the region and
detects the inconsistency. Indeed, this behaviour is result of over-segmenation. Even
a single over segment includes enough number of pixel to accurately estimate the color
distribution.

In Figure 3.8.b, the user left the object accidentally from the yellow coloured region,
then returned to a white coloured region. The proposed algorithm also handles this
case successfully. Since all the paths connecting these two nodes need to cross the
white/yellow boundary, they all need to pay the cost of this boundary. Hence, the
proposed algorithm selects the one which is most consistent with the white/yellow
regions and with the minimum length.

In Figure 3.8.c, user left the yellow region and then continued along the white region
(multi-color case). When the user enters the region with shadow, the algorithm detects
the color change and solve the path finding problem. Indeed, the resulting path is also
correct. In other words, in case of false alarm, the resulting minimum path is still
expected to be contained in the object; therefore, false alarm has no side effects for the
algorithm. Indeed, if λ is not too small, the resultant path will not diverge due to the
cost of Euclidean distance. Hence, if this false positive is not close to the boundary of
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the object of interest, the resultant path will stay inside the object.

3.2.3 Dynamic Graph-Cut

Mobile devices generally have significantly less computational power when compared
against standard computers. Hence, we need to decrease the computation complexity
of the method to make it applicable to mobile scenarios. When computation of dif-
ferent blocks of the algorithm is considered, there exist room for improvement. For
oversegmentation, SLIC [1] is utilized and it is a simple implementation of constrained
K-means algorithm. Global model used in the system is a GMM; GMM is generally
slow to converge, however, after the initialization stage, the algorithm is quite fast.
One can claim that parameters of the GMM does not change significantly with each
scribble. Hence, we can update the GMM throughout the interaction efficiently in less
iteration. One can safely state that global feature modelling and over-segmentation
steps are efficient enough. However, for min-cut/max-flow, there is significant room
for improvement. At each stroke, min-cut/max-flow is recomputed from scratch. How-
ever, one can use previous solution to increase the efficiency. Furthermore, a dynamic
graph-cut is developed entirely based on this idea [41]. In this section, we first explain
this method. Then, we further improve its efficiency by the proposed novel spatially
dynamic graph-cut.

In addition to dynamic improvements, there exist faster graph-cut methods in the
literature, too. Hierarchical graph-cut [51] segmentation starts from the pyramidal
representation of the graph and uses the previous coarse solution to warm start the
fine solution. Band-level graph cut [52] also starts with an approximate boundary and
only solves the graph-cut around this boundary. All of these solutions are approximate
and local solutions and they might not be equal to the globally optimum solution.
Hence, these approximate solutions are discarded.

The dynamic graph-cut algorithm is explained first in detail in Section 3.2.3.1. Then,
the proposed novel improvement is explained in Section 3.2.3.2.

3.2.3.1 Temporally Dynamic Graph-Cut [41]

Consider the problem of video segmentation. If we consider the pixel grid as a graph,
the structure of the graph does not change throughout the video. Number of nodes is
the same and the edges are at exactly same locations (incident to same nodes). We can
also state that unary and binary energies are not changing significantly, since most of
the video is stationary. Then, idea of dynamic graph-cut is to reuse the flows of previous
frame in the current frame. Although our problem is not video segmentation, each
iteration of the algorithm can be considered as a different frame. Hence, formulation
of temporally dynamic graph-cut is applicable to our problem. It should be noted
that the name of the algorithm in [41] is dynamic graph-cut. Since we also proposed
another dynamic graph-cut, we call our novel algorithm as the temporally dynamic
graph-cut.

We start with formally defining the algorithm [41]. There exist two minimization
problems with the same graph structure. Hence, one can consider both problems to
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be defined on the same graph G(V, E). Consider the weights of graph-1 and graph-2
as w1

ij and w2
ij . The main idea is to reuse all the flows of the solution of graph-1 in

the solution of graph-2. We can use the definition of the residual weights in order to
accomplish this task. The residual weights of graph-1 can be written as,

r1
ij = w1

ij − f1
ij , (3.20)

where fij represents the flow at edge eij and wij represents the weight of the edge eij .
If the same flows are used in graph-2, the resultant residual graph would be equal to

r2
ij = w2

ij − f1
ij (3.21)

r2
ij = w2

ij − (w1
ij − r1

ij) (3.22)

r2
ij = r1

ij + (w2
ij − w1

ij). (3.23)

Hence, instead of solving the graph having weights w2
ij , we can find the updated

residual graph via formula r2
ij = r1

ij +(w2
ij−w1

ij) and solve the updated residual graph.
The main advantage of this approach can be stated as follows: Since two energy
functions will be similar to each other, most of the weights will be either 0 or close to
0. Hence, updated graph can be solved with much small number of flows. Therefore,
the convergence is expected to be much faster.

The main problem, which can arise during this formulation, is the edges having neg-
ative weights. Min-cut/max-flow procedure is optimal, if all edge weighs are non-
negative. Moreover; in its standard(non-dynamic) representation, graph-2 will not
have any negative edge weights. Moreover, applying an arbitrary flow does not change
the optimization problem. Hence, the resulting updated graph-2 can be converted to
a graph having no negative edge weights via set of additional flows.

To make the algorithm optimal, one need to propose an algorithm to find required
additional flows. These flows should not violate the conservation of the flow and
should replace the negative edge weight with non-negative ones. If weight of any edge
within terminal and non-terminal node is negative, one can push flow with magnitude
equal to the magnitude of negative edge weight via the source node, problematic node
and the terminal node. Assume wsi is negative (−α); then, one can push flow of α
through s, i and t. Let wij be negative (−β); then, one can push flow of β through s,
i, j and t to make edge weights non-negative. These flows are visualized and explained
in Figure 3.9. This procedure is named as the re-parametrization of the graph [41].

Re-parametrization for the terminal weights are quite trivial as shown in Figure 3.9;
however, in order to validate the correctness of the re-parametrization of the non-
terminal weights (β flows), we need an extra constraint. Since non-terminal edges are
two sided, an increase in one direction should correspond to a decrease in the other
direction. Hence, we need to show that re-parametrization results in non-negative
edge weights for both directions. This constraint comes from the principle of sub-
modularity. The sub-modularity principle states that:

E(1, 0) + E(0, 1) ≥ E(1, 1) + E(0, 0) (3.24)

E12(1, 0) + E12(0, 1) ≥ E12(1, 1) + E12(0, 0) (3.25)

E12(1, 0) + E12(0, 1) ≥ 0. (3.26)
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Figure 3.9: Re-parametrization of the updated residual graph having negative edge
weights. In (a), an updated graph having negative edge weights at both terminal and
non-terminal edges is represented with a required terminal weight re-parametrization.
In (b), graph after terminal re-parametrization is visualized with required non-terminal
weight re-parametrization. In (c), re-parametrized graph having non-negative edge
weights is shown. Non-negativity of γ − β is the result of sub-modularity property.

Constraint in (3.26) proves that the re-parametrization always results in non-negative
edge weights. For example, consider the graph in Figure 3.9.a. By sub-modularity,

E12(1, 0) + E12(0, 1) ≥ 0 (3.27)
−β + γ ≥ 0. (3.28)

Hence, in the final re-parametrized graph, γ − β is always non-negative. Correctness
of re-parametrization concludes the temporally dynamic graph-cut formulation.

3.2.3.2 Proposed Spatially and Temporally Dynamic Graph-Cut

Temporally dynamic solution [41] improves the computation efficiency significantly
but there is still some room for additional improvement. In the proposed interaction
method, user colourize the object of interest locally; therefore, the required solution
should also be a local one. However, min-cut/max-flow solution is determined for the
entire graph; therefore, there must be some redundant processing. A straightforward
remedy to this problem is to solve the sub-graph including the user interaction. How-
ever, performed experiments showed that it is not possible to find a generic size for this
sub-graph. Therefore, an adaptive method to find an appropriate size of this subgraph
is proposed.

First, we need to relate the spatially and temporally dynamic graph-cut to the tem-
porally dynamic graph-cut. Consider the sub-graph at time t, and enlarged sub-graph
at time t + 1; One should show that flows in time t can be re-used for the graph in
time t+ 1. If the edges are divided into two groups, as edges exist in both graphs and
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the edges exist only in graph in time t + 1, for the first group of edges we can reuse
the flows as

r2
ij = r1

ij + (w2
ij − w1

ij). (3.29)

Since there exist no flow for the second group, we can find the residual weight as

r2
ij = w2

ij . (3.30)

It should be noted that this equation is analogues to the temporally dynamic graph-
cut, if we assume that the edges in the second group also exist in the first graph with
edge weights equal to zero. Since their flow value equals to zero, their residual weights
should also be zero. If we put these values into the temporally dynamic graph-cut
equation, we obtain

r2
ij = r1

ij + (w2
ij − w1

ij) (3.31)

r2
ij = 0 + (w2

ij − 0) (3.32)

r2
ij = w2

ij . (3.33)

Hence, starting with a small graph and enlarging it is equivalent to the case of assigning
zero weights to the edges not included in the sub-graph at time t. Since the number
of edges and nodes in the subgraph will be much smaller than the number of edges
and nodes in the original graph, the solution to the resultant optimization problem
should be much faster. The only remaining problem is to adaptively find the size of
this sub-graph. If we can find this size, one can solve the graph-cut for this sub-graph
and in the next iteration, one can enlarge this graph and update the residual sub-graph
as in the case of temporally dynamic graph-cut.

In order to find the size of this sub-graph, one should define the desired properties of
this sub-graph. After a set of scribbles drawn for foreground, the sub-graph definitely
needs to include the interacted region. Hence, if we assume a rectangular sub-graph;
it should include the bounding box of the interaction. Segmentation result of this
sub-graph should be robust. In other words, if we enlarge the sub-graph further in
the current iteration, the resultant segmentation for the initial sub-graph should not
change. In other words, the rest of the graph should not change the solution of the
sub-graph. Finally, the resultant sub-graph should be the minimum of sub-graphs
satisfying other requirements to have the highest computational efficiency.

The proposed algorithm starts with the smallest possible sub-graph and checks for the
robustness requirement. The smallest possible sub-graph is the bounding box of the
interaction. Moreover, we need to formalize the requirement of robustness in terms of
graph properties. Starting with the smallest possible rectangle and enlarging it until
robustness requirement is satisfied, we always find the smallest sub-graph satisfying
the robustness requirement. At this point, we need to formalize only the robustness
requirement.

First, consider a robustness requirement for a set of connected nodes. Assume there
exist a set of connected nodes R, such that all nodes of set R is either foreground
or background. Then, assume that a sub-graph including nodes in R is chosen and
min-cut/max-flow operation is performed and the residual graph is obtained. Then,
the solution for a subset of connected nodes R having the same segmentation result
can not be changed simultaneously by the external flow, if the conditions in (3.34a)
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and (3.34b) are satisfied. Simultaneous change corresponds to the flipping the label
of all nodes in region R. Robustness condition can be formulated by using residual
weights as:

If R is foreground (connected to source)∑
i∈R

wiS − wiT >
∑

iR,j /∈R

wij (3.34a)

If R is background (connected to sink)∑
i∈R

wiT − wiS >
∑

j /∈R,i∈R

wji (3.34b)

where wiS and wiT denote the terminal weight of node i with source and sink, respec-
tively.

This condition holds since the cost of changing the solution (cutting terminal edges)
is larger than the cost of cutting all the non-terminal edges. It should be noted that
solution to some of the nodes in R might still change; however, the result for the entire
R can not change. In other words, only some part of the nodes in region R might flip
their labels.

On the other hand, this condition can also be defined in terms of edge weights between
the sub-graph and the rest of the global graph. It should be noted that there is no
available path within the sub-graph since this would conflict with the augmenting
paths algorithm as explained in Section 2.3. Therefore, all the paths which change
the solution should go through edges between the sub-graph and the rest of the global
graph. Moreover, if the sum of the possible flows through these paths is less than
the terminal weights of the nodes, the resultant labelling can not be changed via
enlargement of the sub-graph; because, cost of the changing the solution (cutting only
the terminal edges) is larger than cutting all edges between sub-graph and the rest of
the graph.

The condition for the sub-graph case can be formulated as: if N is the set of nodes
neighbour to the nodes in the sub-graph, and ∃Path(i, j) indicates the existence of a
path between i and j; then the following condition should hold for robustness:

If R is foreground (connected to source)∑
i∈R

wiS − wiT >
∑

i∈R,j∈N
∃Path(i,j),e∈E∩Path(i,j)

min(we), (3.35a)

If R is background (connected to sink)∑
i∈R

wiT − wiS >
∑

i∈R,j∈N
∃Path(j,i),e∈E∩Path(j,i)

min(we). (3.35b)
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Minimum weight in the path is used as a flow value, since it corresponds to the maxi-
mum amount of the flow which can go through the path. It should be noted that when
the conditions in (3.34a) and (3.34b) are satisfied, labels of all the nodes in region R
can not change simultaneously.

If R is taken as a single super-pixel and all the superpixels in the selected sub-graph
satisfy the condition in (3.34a) and (3.34b), the solution of any node in the graph
can not change when sub-graph is enlarged. However, it is not efficient to check this
condition. Indeed, this condition is too strict to be satisfied.

One can relax this condition by using clustering. Instead of superpixels, we can use the
cluster of superpixels. If one can find some reliable clustering, and (3.34a) and (3.34b)
are satisfied for each of these clusters, one can safely claim that sub-graph is robust.
Indeed, this clustering is already supplied by the GMM algorithm. Moreover, in our
experimental analysis, all sub-graphs satisfying (3.34a) and (3.34b) give the exact same
segmentation results compared to the global solution. Hence, we can safely use the
GMM clustering and conditions given by (3.34a) and (3.34b).

The resulting algorithm first starts with a bounding box of the user interaction, and
then enlarges this sub-graph until the condition in (3.34a) and (3.34b) are satisfied for
all GMM clusters.

Figure 3.10: Visualization of the automatic sub-graph finding procedure. In (a) ground
truth foreground and background information given as green and blue nodes, respec-
tively. Blue rectangle is the initial bounding box of the interaction. Moreover, red
rectangle is the enlarged subgraph obtained via the proposed algorithm. The result of
the blue rectangle is shown in (b) and result of red rectangle shown in (c) via color
coding of green for resultant foreground and blue for resultant background. Although
the initial bounding box results in an erroneous segmentation, enlarged graph results
in a more accurate segmentation.

Consider the example in Figure 3.10.a, in which the green nodes represent the ground-
truth for the foreground, whereas the blue nodes represent the ground-truth for the
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background nodes. In Figure 3.10.a, the blue rectangle is the bounding box of the
interacted superpixels, and this rectangle does not satisfy the condition. Enlarged
version, which satisfies the condition, is computed via the proposed algorithm and
shown with the red rectangle. The corresponding solutions are given in Figure 3.10.b
and 3.10.c, respectively. In Figure 3.10.b and 3.10.c, the green and blue nodes represent
the computed foreground and background nodes, respectively. As presented in this
figure, although the initial solution is erroneous, the enlarged rectangle leads to the
correct solution.

3.3 Experimental Results

Many aspects of the proposed algorithm is tested by using an extensive dataset with
various color and texture profiles. Tests are conducted to compare the segmentation
accuracy of the proposed method, as well as to experimentally validate the improve-
ments achieved via the novel coloring interaction method, the stated error tolerance
algorithm and the proposed spatially and temporally dynamic graph-cut algorithm.

3.3.1 Analysis of Segmentation Accuracy

Segmentation accuracy of the resultant method is compared against the intelligent
scissors [54], grabcut [60] and isoperimetric segmentation [35] algorithm. The main
reason for the selection of these algorithms is their interaction methods. Interactions,
such as right-click and key press, are not desirable in touch-screen mobile application
interfaces. Moreover, these algorithms are the only state-of-the-art options which do
not require such types of interactions. Therefore, these methods are assumed to be
the only natively applicable ones to the mobile touch-screen based scenarios. In [60],
a bounding box drawn around the object of interest is used as the interaction. In [54],
a roughly drawn boundary of the object is used for the interaction. Moreover, in [35],
scribbles on foreground are used as the interaction.

Usage of isoperimteric image segmentation as an interactive tool did not yield promis-
ing results. As explained in Section 3.1.4, isoperimteric segmentation is not originally
a binary segmentation algorithm. It performs multi-object segmentation and some of
them actually corresponds to the object of interest. However, binary segmentation
results are generally erroneous. This problem is visualized in Figure 3.11. In Fig-
ure 3.11, some interactions, binary segmentation results and automatic multi object
segmentation results are shown. As shown in Figure 3.11, although the isoperimetric
segmentation algorithm is an accurate automatic segmentation tool, its interactive ex-
tension does not produce accurate segmentation results. Indeed, selection of a ground
node is not a strong prior for an interactive image segmentation scenario.

Algorithms are visually compared by some images having different level of textures
and color profile. Interactions and their corresponding results are presented in Figure
3.12, 3.13, 3.14 and 3.15.

As it can be observed from the results in Figure 3.12, 3.13, 3.14 and 3.15, intelligent
scissors algorithm [54] requires many seed points for a robust operation. Even with
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Figure 3.11: Comparison of automatic and interactive segmentation scenario of iso-
perimetric image segmentation algorithm [35]. In the first row, the interaction is
visualized. In the second row, the interaction is fed as the ground nodes to the linear
system and the binary segmentation results are shown. In the final row, no interaction
is used and multi-object automatic segmentation results are shown.

(a) Interaction for grabcut
[60]

(b) Interaction for intellgient
scissors [54]

(c) Interaction for the pro-
posed method

(d) Result for grabcut [60] (e) Result for intellgient scis-
sors [54]

(f) Result for the proposed
method

Figure 3.12: Comparison of the interactive segmentation methods.

dense input seed points, the performance is quite limited, if there is local texture around
the boundary. For all the test images, the resulting segmentation is neither smooth nor
correct. Even for the strong boundary in Figure 3.15, the intelligent scissors algorithm
[54] fails to find correct object boundary. Furthermore, the results are not smooth at
all.

Grabcut [60] algorithm yields acceptable results, if the object of interest has a different
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(a) Interaction for grabcut
[60]

(b) Interaction for intellgient
scissors [54]

(c) Interaction for the pro-
posed method

(d) Result for grabcut [60] (e) Result for intellgient scis-
sors [54]

(f) Result for the proposed
method

Figure 3.13: Comparison of the interactive segmentation methods.

(a) Interaction for grabcut
[60]

(b) Interaction for intellgient
scissors [54]

(c) Interaction for the pro-
posed method

(d) Result for grabcut [60] (e) Result for intellgient scis-
sors [54]

(f) Result for the proposed
method

Figure 3.14: Comparison of the interactive segmentation methods.

colour characteristics than the background as in the case of Figure 3.15. However,
the performance of the Grabcut algorithm is limited in other cases. In Figure 3.12,
there is a second object in the rectangle apart from the object to be segmented. The
algorithm could not separate the objects, since both objects are contained within the
rectangle. In Figure 3.13, the color characteristics of the head of the bird is similar to
the background; therefore, the head of the bird is segmented as background. Finally,
in the Figure 3.14, there is not enough background information; therefore, Grabcut
fails to segment the object.
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(a) Interaction for grabcut
[60]

(b) Interaction for intellgient
scissors [54]

(c) Interaction for the pro-
posed method

(d) Result for grabcut [60] (e) Result for intellgient scis-
sors [54]

(f) Result for the proposed
method

Figure 3.15: Comparison of the interactive segmentation methods.

The proposed method has superior performance for all the test examples visualized in
Figure 3.12, 3.13, 3.14 and 3.15. In Figure 3.12 and 3.15, the proposed method yields
much smoother and more accurate segmentation results. In Figure 3.13, the foot of
the bird is not segmented correctly due to the limitations of touch screen. However,
the proposed method still outperforms the others. In Figure 3.14, there is an erroneous
additional small head around the shoulder of the cyclist. This artifact is caused by
the shrinking bias. Some small objects having strong edges around the boundary may
be segmented erroneously by min-cut/max-flow methods, since the sum of terminal
weights (the sum of background likelihoods) might be less than the coherence penalty
of the boundary. This phenomenon is called as shrinking bias. Indeed, solving this
problem is possible by empirically adjusting the parameter which controls the effect of
coherence penalty or by designing a learning based inference algorithm if there exist a
training data.

3.3.2 Analysis of Interaction Quality

In order to analyse the performance of the proposed interaction method -coloring-
experimentally, we designed a subjective user evaluation procedure.

We have compared 3 different interaction methods, namely Intelligent Scissors [54],
Grabcut algorithm [60] and the proposed method. These methods are given to the user
with anonymous names as Algorithm A, B and C. In order to evaluate the algorithms,
4 different evaluation metrics are used: segmentation performance, entertainment, eas-
iness and overall satisfaction.

At the beginning of the experiment, each subject is shown a tutorial about the usage
of each algorithm. Then, users are provided with a sample image to segment by using
each algorithm. This instructive sample image is selected as the same image in all
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experiments and is not used in the rest of the experiment.

After the initial tutorial and segmentation of a sample image, the user is asked to
segment 4 images randomly selected from the dataset composed of 10 images with
various difficulty. For each image, the algorithms are applied in a random order.

The user is asked to rate each algorithm for each of these 4 metrics. Metrics are
explained to the user with the questions: "How much are you satisfied the resultant
segmentation accuracy ?", "How entertaining was the overall process of segmentation
?", "How easy was to segment the image ?" and "What is your overall rating of the
segmentation algorithm ?" Rating is conducted by grading at the level of 1-5. The
tests were conducted with a capacitive mobile touch screen. 15 subjects, composed of
undergraduate engineering students, have been participated in the tests.

For the analysis, median ratings of each metric for each algorithm, as well as in-
terquartile ranges (IQR) and standard deviations (STD) are summarized in Table 3.1.
Dependent ANOVA test is applied to find p-values and p-values are the same for each
metric and equal to 0.0005 [5].

Table3.1: Interaction quality subjective evaluation results in the format of Median
(IQR, STD), For each metric, p-values are obtained via dependent ANOVA test and
they all are equal to 0.0005.

Performance Easiness Entertainment Overall
Proposed Met. 5 (1, 0.45) 4 (0, 0.86) 5 (1, 0.74) 4 (1, 0.45)
GrabCut[60] 3 (2, 0.92) 4 (1, 0.75) 2 (1, 0.61) 3 (1, 0.77)
Intelligent Scissor[54] 3 (1, 0.51) 2 (1, 0.74) 3 (2, 0.89) 2 (1, 0.76)

The proposed method has the best segmentation performance result. Superior segmen-
tation quality of the proposed method is also visible in Figure 3.12, 3.13, 3.14 and 3.15.
Although the results of intelligent scissors is much close to the correct segmentation
result when compared to the Grabcut, it has the have same segmentation accuracy
when compared to the Grabcut subjectively. We think that this behaviour is a result
of the non-smoothness of the results of intelligent scissors.

Grabcut algorithm requires only a rectangle around the object so we expect it to be the
easiest one. However, the proposed method is thought to be as easy as Grabcut. We
conclude that, this result is due to the intuitive coloring gesture used in the algorithm.
Intelligent scissors has the worst result in terms of easiness, since the selection of
landmarks and movement around the boundary is quite unattractive. Most of the
subjects actually commented about the unattractiveness of intelligent scissors.

The proposed method has the best entertainment result. This result is expected,
since coloring is an entertaining process. On the other hand, Grabcut has the worst
entertainment result. This result is surprising, since comments of the users suggest
that intelligent scissors is an unattractive process. We argue that this surprising result
is due to the time spent for the interaction. When the user spends more time, he/she
likes the process more.

We can easily conclude that the proposed technique has the best overall satisfaction
result. With its superior performance and interaction quality, this result was expected.
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3.3.3 Analysis of Computational Efficiency

Proposed spatially and temporally dynamic graph cut algorithm is compared against
the conventional min-cut/max-flow solution [13], as well as the temporally dynamic
graph-cut [41] solution. Proposed method is dynamic; hence, all of the interaction
given by the user until the end of the current optimization stage, is fed to the system.
It is not fair to compare algorithms independently, since amount of the interaction at
any step might differ significantly. It is also not fair to compare total interaction time,
since it is dependent on the speed of the user. Fair comparison is only possible by
feeding the same input to all algorithms.

In the proposed experimentation scenario, a complete segmentation is obtained from
a user. Then, interaction throughout the segmentation is divided into equal parts;
introduction of each new k superpixels is considered as a new interaction. Hence,
all algorithms are performed after each k new superpixels are fed into the system.
This experiment is both fair and realistic. Input is real interaction obtained from a
subjective evaluation and all algorithms are fed with same inputs. We select k as 3 for
all the experiments.

For the segmentation of a single image, computation times of three different algo-
rithms are calculated for each iteration (each k new superpixels). Execution times are
computed on a mobile device having 600 MHz ARM-Cortex-A8 CPU and Maemo 5
GNU/Linux operating system. Then, plot of the computation time throughout the
entire process is obtained as in Figure 3.16. At any time, only the computation time
for the current iteration is shown.
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Figure 3.16: Execution times of each iteration of the algorithms for Ford& Belkorson
algorithm with Boykov& Kolmogrov heuristic [13], Temporally Dynamic Graph-Cut
[41] and the proposed method. Each iteration corresponds to the introduction of 3 new
superpixels via user interction. Exactly the same inputs are fed into each algorithm
at each iteration.

Obviously the original min-cut/max-flow algorithm [13] has the highest computation
time, since it is the base algorithm for the other two. Dynamic graph-cut [41] starts
with the full solution of graph-cut. After the initial iteration, dynamic graph-cut
only updates the residual solution; hence, it has a lower computation time. At the
initial iteration, the computation times of the dynamic graph-cut and the original min-
cut/max-flow are equal. The only time difference is caused by the extra bookkeeping
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Table3.2: Average computation times per iteration for Boykov& Kolmogrov [13],
Kohli& Torr [41] and proposed method

Boykov&Kolmogrov [13] Kohli&Torr [41] Proposed Method
771 msec 278 msec 201 msec

required for the dynamic graph-cut. Moreover, the proposed algorithm initially starts
with a small sub-graph and it is much more efficient than the other methods at the
starting phase of the algorithm. Throughout the process, the computation time of the
proposed method increases, since interacted region and the resulting sub-graph gets
larger. Eventually, the sub-graph converges to the full graph and the computation
time of the proposed method converges to that of the dynamic graph-cut.

Since the proposed algorithm enlarges the sub-graph until (3.35a) and (3.35b) are satis-
fied, there are points which enlargement and augmenting flow algorithm are performed
many times. At those iterations, the proposed method spends more time compared
to that of the dynamic graph-cut, as expected. This situation is observable in Figure
3.16 at the 13th iteration. Since enlargement is performed many times at these itera-
tions, the algorithm converges much faster for the rest of the iterations. For all other
iterations, superior time performance of the proposed method is visible in Figure 3.16.

As a second test, a total of 50 segmentation procedures for different images are per-
formed and recorded. User interactions for these segmentation procedures are divided
into discrete steps including interaction of k = 3 superpixels. Then, these iterations
are fed to all the tested algorithms. Moreover, average computation time of each al-
gorithm for each iteration is computed. The average computation time per iteration
of these 3 algorithms is tabulated in Table 3.2. It is also clear from Table 3.2 that the
proposed algorithm yields the best computation time.

3.3.4 Analysis of Error Correction

As explained in Section 1.1, due to the small size of the mobile touch screens, there
will always be some errors during user interaction. In order to prevent such interac-
tion errors, a method is proposed in Section 3.2.2. Furthermore, the proposed error
correction mechanism is experimented for such scenarios.

The proposed error correction algorithm corrects errors before the optimization stage.
On the other hand, correction can also be incorporated within the graph-cut formu-
lation. If hard constraints (terminal edges with infinite weight) are replaced with soft
constraints (terminal edges with weights calculated from GMM), graph-cut framework
supposed to handle these interaction errors. However, these hard labels on the fore-
ground are semantically meaningful, and the proposed algorithm tries to utilize these
interactions.

We compare three main scenarios. The first scenario trusts user interaction and han-
dling errors before the segmentation stage; i.e. the proposed method. The second
scenario does not trust user interaction at all, and assigns soft weights (likelihood
values) instead of infinite weights i.e. soft label graph-cut. The final scenario trusts
the user and does not do any error correction i.e. hard-label graph-cut. Non-terminal
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weights are selected as the same in all methods. The results of this experiment are
shown in Figure 3.17.

(q) Interaction (r) Hard-label
graph cut

(s) Soft-label graph
cut

(t) Proposed
method

Figure 3.17: Comparison of the proposed error correction method against the hard-
label graph-cut and the soft-label graph-cut. Columns show the interaction and cor-
responding results for the hard-label graph-cut, soft-label graph-cut and the proposed
method, respectively. For hard-label graph-cut, no error correction is utilized in the
system. Moreover, for soft-label graph-cut, infinite weights at the terminal edges of
nodes user interacted are replaced by the GMM likelihood values.

Figure 3.17 suggests that the proposed algorithm has a superior error correction per-
formance. Hard-labeled graph-cut leads to a solution with extra erroneous regions,
since no error correction is utilized. In the soft-label graph-cut case, discarding spa-
tial information related to the user interaction results in a much worse segmentation
performance.

In the first and the third row of Figure 3.17, the input image has highly complex color
structure; furthermore, the color profiles of foreground and background are similar to
each other. Therefore, to use only the likelihood terms fail to properly segment the
image. In the last row, there are two objects in the image and the user is interested
with only one of them. Soft-label graph-cut fails to distinguish between these two
objects since both of the objects have almost the same color profile. Indeed, it also
erroneously classify part of the background as foreground due to the color similarity.
In the second row, there is no interaction around the head of the bird. Furthermore,
color of the head is also available in the background. Moreover, in the fourth row, color
of the hand and the ground are similar to each other. Therefore, resulting foregrounds
areas found by the soft-label graph-cut algorithm are erroneous in both cases. It is
surprising that soft-label graph-cut algorithm yields worse performance than no error
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correction (hard-label graph cut). This result actually shows the importance of the
hard-labels (infinite terminal weights).

It can be argued that the main reason for the performance degradation of soft-label
graph-cut is the lack of spatial information. Since all models used in the system are
global color models, spatial information is not used in the energy definition. Only
available spatial information is the nodes having infinite weights and this is discarded
in the soft-label graph-cut.

In addition to the explained method, there exist an error correction mechanism which
is recently proposed. In [66], energy definition and probabilistic model are altered
to overcome interaction errors. All hard weights are replaced by the soft weights
(likelihood values). In order to overcome the problem associated with the lack of spatial
information, unary energies are not changed; however, binary energies are changed.
Every node is connected to all other nodes in the graph. In other words, grid graph is
replaced by a fully connected graph. Connections are set as sum of absolute differences
(SAD) of image patches. Even if the interaction is erroneous, strong connections
between the similar nodes does not let nodes having erroneous interactions to have
erroneous labels. Furthermore, in order to achieve an acceptable efficiency, image
patch differences are approximated over a manifold embedding computed via multi
dimensional scaling [19] algorithm.

Graph formulation of [66] makes the method inapplicable to our framework due to the
computational complexity of optimization and distance computation. However, for the
sake of completeness, we also include experimental comparison of the proposed method
and the method given in [66]. In Figure 3.18, sample images with user interactions
are visualized together with their corresponding results. In all of the examples, the
proposed method has a comparable error correction accuracy.
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(a) Interaction for Bike Data. (b) Result of [66].
(c) Result of the proposed

method.

(d) Interaction for Cow Data. (e) Result of [66].
(f) Result of the proposed

method.

(g) Interaction for Penguin
Data. (h) Result of [66].

(i) Result of the proposed
method.

(j) Interaction for Skeleton
Data. (k) Result of [66].

(l) Result of the proposed
method.

Figure 3.18: Comparison of the proposed method and binary accurate segmentation
algorithm [66]. Interactions and results of the algorithm given in [66] and the pro-
posed method are shown in each column, respectively. Both methods have comparable
segmentation accuracies and error tolerances.
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CHAPTER 4

INTERACTIVE VIDEO SEGMENTATION

Similar to image segmentation, video segmentation is another crucial step in many
multimedia and computer graphics applications. Hence, problem of video segmentation
has been widely studied in many application scenarios. Moreover, both automatic and
interactive video segmentation problems have been dealt with by many researchers.

A video can be seen as a sequence of frames; hence, one can clearly claim that given
a reliable segmentation procedure for each frame, the data associations among frames
can easily be handled. Therefore, any image segmentation method can be converted
into a video segmentation algorithm. However; as explained in Section 3, there is
no automatic image segmentation method with a guaranteed performance in general.
Although interactive segmentation algorithms are more successful, interacting with
each frame is not reasonable. Even the extension of image segmentation methods to
3D is not reasonable, since the information among the temporal direction is highly
correlated and requires special attention. Therefore, video segmentation problem is
significantly different than that of images and need to be solved independently.

When an interactive multimedia application is considered, efficiency, segmentation
quality and quality of user interaction are all equally crucial. Therefore, the interaction
should be at minimum level, whereas the algorithm should be efficient and the results
should be accurate. Indeed, these requirements pose a serious dilemma for video
segmentation problems in multimedia applications. Current state-of-the-art algorithms
are analysed in terms of these three aspects in Section 4.1. A novel algorithm which
overcomes the drawbacks of the existing algorithms is explained in Section 4.2. Finally,
the proposed algorithm and the existing state-of-the art methods are compared in terms
of explained metrics in Section 4.3.

4.1 Related Work

Automatic image segmentation is considered to be an ill-posed problem due to the
ambiguous definition of an "object" and lack of prior information for a successful
object segmentation. On the other hand, when temporal consistency of the objects
in a video is considered, it is possible to re-define object segmentation as moving
object segmentation. By the help of extraction of accurate motion information from
a video, it is possible to accurately segment a moving objects in the video [3, 73,
65]. However, general multimedia or computer graphics applications do not put any
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constraint on the object of interest, the object of interest might not be moving in
the video at all. Main ambiguity is caused by the definition of an object. If the
object is defined properly, it is possible to incorporate this information and resolve the
ambiguity. Definition of the object is revisited by the help of a saliency metric [4, 39].
It is possible to incorporate saliency based definition of object, motion information
and statistical graph-based methods to obtain accurate segmentations automatically
[47]. Although fully automatic video segmentation is out of the scope of this thesis,
details of the Key-Segments algorithm [47] is explained in Section 4.1.1 for the sake of
completeness.

Interactive video segmentation algorithms start with an interaction stage on a single
frame [8, 20, 48] or along the spatio-temporal domain [75]. After the interaction stage,
as in the case of graph-based interactive image segmentation method, a set of low-level
features are extracted from the video. Motion information, color, texture and shape are
the most common features used in video segmentation scenarios. Then, an either two-
dimensional (spatial) or three dimensional (spatio-temporal) energy function is defined.
Moreover, this energy function is minimized via discrete optimization methods for
binary or multi-label cases. Selection of the dimension depends on the modelling of the
features and their relations, as well as, computational efficiency requirements. Higher
order models are more reliable in terms of temporal coherency; however, optimization
over a two dimensional grid is much more complicated. In Rotobrush [8], interaction
in the form of scribbles is combined with spatial information, motion information and
energy minimization which are explained in Section 4.1.2.

Although energy minimization methods and global color/texture models are commonly
used in the literature, it is not possible to reach real-time performances by these ap-
proaches. Classical implementation of a min-cut/max-flow energy minimization re-
quires 200 millisecond by a conventional desktop PC having 2.8 GHz Intel Core i7
processor . In order to solve the computational efficiency drawback, there exist fast
heuristic-based methods in the literature. For example, geodesic video matting [20]
uses fast marching algorithm and computationally simple matting update rule. Details
of the geodesic video matting procedure is explained in Section 4.3.

In addition to the energy minimization based methods, there exist graph-clustering
based approaches. In a typical energy minimization-based approach, interaction is
assumed to be in the form of foreground/background regions or boundaries. However,
it is also possible to design a general clustering algorithm dependent on some param-
eters and let the user interact with the system through these parameters. In [36], a
spatio-temporal graph clustering algorithm is developed via motion information, over-
segmentation and color features. Then, parameter to adjust object sizes is left as a free
parameter to the user. Finally, a multi-object segmentation is performed via graph
clustering. However, it requires a huge memory size and a computation capacity; entire
video or a large chunk of frames is required to be stored into the memory. Moreover,
spectral clustering and optical flow computation requires high computational power.
Hence, the algorithm [36] is not applicable to the mobile multimedia scenarios.

There are also heuristic-based extensions of the interactive image segmentation meth-
ods. These methods [48, 76] start with an interaction in a key-frame and use global
shape and color models for the entire video. Next, segmentation is performed for the
video using this extracted global model. However, these methods discard the motion
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information and spatial information. Therefore, their segmentation results are reliable
only for a few frames.

4.1.1 Key-Segments Algorithm for Automatic Video Segmentation

Key-segments algorithm [47] consider the problem of video segmentation as an auto-
matically finding object-like regions in each frame of the video. Then, these object-like
regions are assigned an objectness score via saliency information. Final segmentation
is obtained via processing of these objectness scores.

Possible object-like regions are found via category independent object proposals [28]
method. Category independent object proposals method starts with the over-segmentation
of the image obtained via hierarchical over-segmentation. Then, possible regions are
obtained by giving each over-segment as a seed to the binary segmentation algorithm.
Therefore, a large number of regions are extracted from the image by using many seed
points.

After finding possible object like regions, the algorithm needs to find top-regions that
possibly correspond to the objects. This ranking is performed in two parts. First,
a set of features are extracted from each region r and regression based approach is
used to find an objectness score A(r) for each region. Regression is performed in a
category independent manner [28]. The second score is obtained via motion informa-
tion. Histograms of the optical flow of region r and its outside r′ are computed in L1

normalized form. Then, a motion-based objectness measure is computed in terms of
χ2 distance as

M(r) = 1− e−χ
2
flow(r,r′). (4.1)

This equation can be considered as the motion saliency information. Final objectness
S(r) is the combination of appearance and motion objectness scores by the relation:

S(r) = M(r) +A(r). (4.2)

After the region proposals are found and a score is assigned to each region, a set of top
scoring regions from each frame are gathered in a pool redundantly covering the video.
Since these regions are the most likely object like regions, all objects are expected to
be the combinations of these regions. Hence, these regions are needed to be clustered
into sets of object proposals. Clustering is performed via the spectral graph clustering
method. Each pair of regions in the top scored regions set is assigned a distance with
a metric utilizing color and size differences. The distance metric is selected as a χ2

distance of unnormalized color histogram as:

K(rm, rn) = e−
1
Ω
χ2
color(rm,rn), (4.3)

where Ω represents the mean of χ2 distance over entire image. Finally, this similarity
matrix, K, is used to find clusters. Each eigenvector of K corresponds to a single
cluster. Then, resulting eigenvectors are also ranked according to their objectness value
S(r). For now, a set of object hypothesis, with their objectness score, is obtained.

Key-segments algorithm [47] considers the highest ranking region group as foreground
model. Moreover, shape and color models are estimated from this top ranking region.
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Finally, a spatio-temporal graph is constructed by using the 4-neighbour spatial ar-
rangement and temporal links obtained from optical flow information. Energy function
using color and shape features is constructed over the spatio-temporal graph. Finally,
min-cut/max-flow energy minimization is used to segment the entire video.

Entire process of the key-segments algorithm is summarized in the Figure 4.1. Some
key segments, shape and color likelihood maps are also presented in Figure 4.1.

Input: video

A high-ranked
hypothesis

Shape exemplars

Frame t Color Fg estimate Shape Fg estimate

+
Fg estimate

Space-time MRF Binary graph-cut

(c) Buildsegmentationmodels

(d) Foreground likelihoodestimation for each frame

(e) Space-timeMRFfor foregroundobject segmentation

Color Model

(a) Score each region:S(r) =A(r) +M(r)

…
High score low score

…

(b) Discover key-segments,
rankhypotheses

High rank

Low rank
Output:
Foreground object segments for all frames

t-1

t

t+1

Figure 4.1: Key-segments [47] algorithms work flow [47].

Although the results of key-segments algorithm look quite promising, to find mo-
tion estimation and saliency measures are computationally expensive. Therefore, it
is almost impossible to use them in any interactive or mobile multimedia applica-
tion. On the other hand, the resultant segmentation framework is entirely based on
graph-theoretical formulation. Moreover, our proposed efficiency improvements are
applicable to key-segments [47] algorithm. Therefore, we extend the key-segments [47]
by using the proposed MRF energy propagation as explained in Section 4.2.1. An
extended version of key-segments is explained in Section 4.2.4; moreover, efficiency of
the key-segments algorithm and the proposed extensions are analysed in Section 4.3.

4.1.2 Video Snap Cut (RotoBrush)

Video Snap-Cut [8] is a state-of-the-art high quality interactive video segmentation tool
with wide range of users. After its introduction; due to its accuracy and interaction
quality, video snap-cut was included in a widely used video editing tool, namely Adobe
After Effects [68] by the name of Rotobrush.

Interaction scenario of Rotobrush [8] depends on interactions at some key frames of
the video. Furthermore, any interactive segmentation tool can be used to initialize
Rotobrush [8]. After the interactive segmentation stage, algorithm iteratively solves
for all other frames of the video. Moreover, every frame of the video is processed
independently. Independent processing of frames has two reasons: time and memory
efficiency. Solving two dimensional optimization problems are much more efficient
than solving their three dimensional counterparts. Moreover, keeping all frames in the
memory is not possible for most of the long videos.

It is not possible to use the formulation of the interactive image segmentation during
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interactive video segmentation scenario with a guaranteed segmentation accuracy. This
result is due to the fact that in most of the interactive image segmentation methods
only the color information is used and the spatial information is discarded. Moreover,
most of the interactive image segmentation algorithms use global models, such as
Gaussian mixture models (GMM) or Kernel Density Estimation (KDE). Rotobrush
[8] is introduced two solve these two main problems.

In the formulation of Rotobrush [8], boundary of the object of interest is obtained
via localized classifiers. The boundary of the object of interest is represented via a
set of overlapping local windows. Consider Figure 4.2; jumping baseball player is the
object of interest and it is represented via a set of rectangular overlapping classifiers.
Moreover, every local classifier has a probability density function (pfg) in terms of
color and shape features. These feature sets are combined to obtain a final probability
map. Finally, the resultant probability map is used to obtain a final segmentation
mask as shown in Figure 4.2.

Initialization of the algorithm starts with a uniform sampling of the initial object
boundary at the interacted key frame. After the initial interaction, a set of constant
size overlapping local windows covering the entire boundary are obtained via a uni-
form sampling. Each rectangle overlaps one-third of its size by the next rectangle.
Then, motion information for each local rectangle is obtained via a dense optical flow
estimation procedure [10]. Such moved boundary is used to update color and shape
models for the next frame.

While moving local classifier among temporal direction, color models are estimated
in terms of GMM in Lab color space [8] and shape features are modelled in a non-
parameteric manner. Gaussian windows are used at each boundary point to model the
shape features via Parzen window approach [24]. Variance of the Gaussian windows
are selected by considering the color information. If the color profile is discriminative
enough, shape prior is not needed. Therefore, variances of the Gaussian windows
should be high. If the color profile is not discriminative, i.e. foreground and background
have similar color profiles, shape prior should be given more importance. Therefore,
variances of the Gaussian windows should be low. In order to define these models
formally, we should start with color modelling. Probability of being foreground for a
single pixel in terms of only color information can be stated as

pc(x) =
pc(x|F )

pc(x|F ) + pc(x|B)
(4.4)

where pc(x|F ) and pc(x|B) are the corresponding GMM likelihoods. Furthermore,
color confidence value can be formulated as expected value of the error on estimated
probability. Since model is initially generated for a known segmentation result for the
keyframe, the desired pc(x) values are equal to 1 for the known foreground and 0 for
the known background. Expected value of the drift from the desired values can be
considered as a confidence. By given more importance to the pixels near the object
boundary, the color confidence can be formulated as [8]

fc =

∫
Wk
|L(x)− pc(x)| · e−

d2(x)

σ2
s∫

Wk
e
− d

2(x)

σ2
c dx

(4.5)
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where Wk is the local region used by the classifier, d(x) is the distance to the object
boundary and L(x) is the desired binary probability map. Moreover, σc is fixed to be
the half of the window size.

Then, the color confidence value inversely affects the variance of Gaussians used to
model the shape feature as [8]

σs =

{
σmin + σmax−σmin

(1−fcutoff )r (fc − fcutoff )r fcutoff ≤ fc ≤ 1

σmin 0 ≤ fc ≤ fcutoff
(4.6)

where σmin, σmax and fcutoff values are tunable parameters. For the detailed analysis
of the behaviour of the algorithm in terms of these parameters, the reader is referred
to the original paper [8].

After finding the standard deviation of Gaussians are found, shape confidence for each
pixel can be computed as [8]

fs(x) = 1− e−
d2(x)

σ2
s . (4.7)

Shape confidence is combined by a shape prior to obtain the final a priori shape
information. Shape prior is just the transformed local boundary by using the obtained
optical flow information. Transformation is selected as the mean optical flow vector of
the foreground pixels of the local window. Only foreground pixels are used, since we
are interested in modelling the foreground object.

After these models are generated, the final probability map is obtained via a linear
combination of color model, shape confidence and shape priors as shown in Figure 4.2.

The resultant probability map is combined by the Ising model [32] to define an MRF
energy function. Moreover, this energy function is used to obtain the final segmentation
mask. If it is desired, this resultant segmentation mask can be re-used to model color
and shape. Moreover, the process can be continued until the convergence, as in the
case of Grabcut [60].

Segmentation quality of the Rotobrush [8] is extensively discussed in Section 4.3 to-
gether with its computation time analysis. Although the results of the Rotobrush [8] is
accurate, due to the usage of a computationally complex optical flow subprocedure and
GMM estimation, Rotobrush [8] is highly inefficient. Therefore, it is not applicable
to mobile scenarios. Even its Graphical Processing Unit (GPU) implementation is far
from being real-time.

4.1.3 Geodesic Interactive Video Matting

As explained in Section 4.1.2, the main drawback of the interactive image segmentation
methods in a video segmentation scenario is not exploiting the spatial information
properly. The main idea of Geodesic Video Matting method [7] is to design a fast
method which is solely based on spatial information. Indeed, geodesic video matting
[7] is the direct extension of geodesic image segmentation.
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Figure 4.2: Visualization of the work flow of Rotobrush [8]. Local classifiers are the
shown rectangles in time t (a). Then, local classifiers are moved to the corresponding
positions in time t + 1 by using motion information (b). Final probability map is
obtained as weighted sum of the local classifiers (c) and minimized via min-cut/max-
flow method (d) [8].

Consider the input image as a graph of nodes. It should be noted that final geodesic
matting is an O(N) algorithm. Hence, to convert the pixel based image representation
into a superpixel-based image representation is not reasonable. It should be noted
that computation time of oversegmentation is generally much higher than the time
improvements obtained via a superpixel based representation.

Geodesic matting algorithm starts with the extraction of the set of low level features
from the input image. By using the interactions and these low level features, one can
estimate some global models and probability of being foreground for each pixel. GMM
or KDE of color or texture features are widely used examples. A prior probability of
being foreground can be computed as [7]

pF (x) =
p(x|F )

p(x|F ) + p(x|B)
. (4.8)

After this computation, the main novelty of geodesic mating is to obtain actual prob-
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ability values by considering spatial information. Probability of being foreground is
modelled as the inverse distance to the foreground. Distance is defined as the geodesic
distance to the interacted pixels via a weight graph of prior probabilities. Weight (W )
is assumed to be the gradient of the prior probability map; hence

W (x) = ∇pF (x). (4.9)

Then, this distance is defined over the weight graph as:

d′(s1, s2, C) =

∫ s2

s1

|W (x) · Ċs1,s2(x)|dx, (4.10)

where Cs1,s2(x) is the path connecting s1 and s2, and Ċ(x) is the edge on the path
C(x). Hence, the distance over a path is defined as the sum of edge weights of the
edges of the path. Then, a distance between two points is defined as the minimum
of these distances. In other words, the distance between two points is the geodesic
distance between points [20] by the following relation:

d(s1, s2) = minCd
′(s1, s2, C). (4.11)

In other words, the distance between two points is the minimum of distances of all
possible paths connecting these points. Furthermore, distance to foreground is de-
fined as the minimum of distances to the foreground scribbles. Similarly, distance to
background is defined as minimum of distances to the background scribbles as

Dl(x) = mins∈Ωld(x, s) l ∈ F,B (4.12)

where Ωl is set of foreground or background scribbles depending on l. Finally, the
probability of being foreground can be computed as

fF (x) =
DF (x)

DF (x) +DB(x)
. (4.13)

If we assume KDE is used to model the global color feature, and explained definition
of foreground and background is used, the resultant probability values can be used to
either find matte values or binary segmentation results, trivially. fF (x) is the matte
value for pixel x and fF (x) > fB(x) is the binary decision rule for the binary segmen-
tation case. A sample input image with scribbles, probability maps for foreground and
background, as well as binary segmentation results are shown in Figure 4.3.

Idea of geodesic distance implicitly use spatial information. Since the image is not
smooth enough, even for the paths over the same image, the longer path will have
higher cost than the shorter path. Furthermore, one can increase the importance of
spatial information by modifying the weight function as

W (x) = ∇PF (x) + λ. (4.14)

Then, every edge in the path will induce a fixed λ cost. The value of λ parameter
can be tuned to control the relative weight of color difference and spatial information.
Moreover, computation of the geodesic path is efficient, if fast marching algorithm [77]
is used. It is possible to obtain the geodesic distance of all nodes in a liner time via
fast marching algorithm [77]. Details of the geodesic distance estimation is beyond the
scope of this thesis. Therefore, the reader is referred to the original manuscript [77].
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Figure 4.3: Visualization of input image, scribbles and distance values. In (a) in-
put image is shown with binary segmentation result and input scribbles. In (b) prior
probability map pF (x) is visualized where white represents high probability and black
represents low probability. Moreover, in (c) and (d) computed distances to the fore-
ground and background scribbles are visualized respectively where red represents high
distance and blue represents low distance.

Extension of geodesic matting to video segmentation case is rather trivial. However,
using global models in the frame other than the key-frame is not reasonable since
color profile may change significantly due to occlusions. The basic solution is to use
Euclidean color differences to find weights. Therefore, in the spatio-temporal graph,
the spatial edges are given the weight of gradient of the prior probability map and the
temporal edges are given the weight of Euclidean color differences between pixels.

The only problem arising in this extension is due to the occlusions. Consider the case
in Figure 4.4; region A is part of the foreground and B is the part of the background.
Moreover, they occlude each other at some frame between two key frames. Since
the distance is 0 when objects occlude each other, these distances will propagate and
region B will be erroneously classified as foreground. In order to solve this issue,
initial strategy is not to let paths in the negative time directions. This solution can
be accomplished via assigning infinite weights to the edges going in negative temporal
directions. This approach solves the tube going in backward direction as shown in
Figure 4.4.c. In order to solve the tube going in forward temporal direction, another
key frame is used. Consider a key frame in future time; then segmented object can be
back propagated and all operations can be applied in the reverse direction. Hence, the
resulting erroneous tube will disappear.

The experimental results for the segmentation accuracy and computation of geodesic
matting [7] are analyzed in Section 4.3. The main drawback of the geodesic matting is
the unreliable behavior of the geodesic distance in noisy images. Indeed, the proposed
method also utilize the idea of geodesic distance as explained in Section 4.2. However,
our method keeps the temporal support region limited and puts an extra coherency
penalty to get rid of this drawback.

4.2 Proposed Method

As explained in Section 4.1, the main dilemma of the interactive video segmentation
problem is the trade-off between computation time and segmentation accuracy. If spa-
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Figure 4.4: Visualization of the problem caused due to the occlusions. In (a) and
(b), A is selected as foreground and B is selected as background in key frame t1.
After an occlusion in t2, foreground leaked to the region B in all frames. By putting
forward temporal direction constraint, erroneous foreground region between time t1
and t2 is solved. Moreover, by selecting region A as foreground in t3 and applying
same procedure backwards in time, the erroneous region between time t2 and t3 is also
solved.

tial information and motion information are discarded, near real-time performances
are possible. However, segmentation accuracy significantly drop. On the other hand,
if motion information is included, segmentation accuracy increases; however, computa-
tion time increases. Geodesic video matting is a method, whose objective is to exploit
spatial information without extracting motion information. However, geodesic dis-
tance is not robust for long temporal directions. In summary, computation time and
segmentation accuracy requirements create a serious dilemma for the interactive video
segmentation problem.

For the proposed method, in order to solve this dilemma, we redefine the video object
segmentation problem as an estimation of the foreground probability density function
of each frame in terms of probability density functions of the previous frames. By
the help of Markovian property assumption, one can define such a problem as the
estimation of the MRF energy of each frame in terms of MRF energy for the previous
frames. By this definition, we constraint the explicit support of any frame only to the
subsequent frame. Long term support is implicitly possible after correction in each
frame. Hence, the main objective of the proposed method is to combine robustness
and accuracy of the energy minimization methods by the efficiency of the local graph
search, such as geodesic distance computation.

In our framework, we assume that MRF-based energy function for the first frame
is already known. In practice, this unknown energy function can be obtained via
user interaction. We propose an efficient method to propagate energy distributions
throughout the frames via bilateral filters. The weights of these filters are selected
by using texture similarities and spatio-temporal relations. Moreover, an increase in
the segmentation quality is expected by the help of simultaneous usage of spatial and
texture cues. In order to increase the efficiency of the method further, we also propose
a dynamic algorithm for the solution of the min-cut/max-flow problem for bilateral
filtering scenario. The proposed method does not use any global shape or color model;
it does not use motion information, either. We compensate for the lack of motion
information via extensive usage of spatial information during the calculation of the
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bilateral filter weights. Indeed, for the videos having limited amount of motion, the
proposed method results in a high quality segmentation result even for the non-rigid
objects. The proposed method is general enough to convert any MRF-based interactive
image segmentation algorithm to an interactive video segmentation method. Moreover,
it can also be used to speed-up any automatic video segmentation tool.

The proposed algorithm is explained in three main parts: In Section 4.2.1, a general
method to estimate the MRF energy of a frame by using MRF energy of the previous
frame is proposed via spatio-temporal bilateral filtering. In Section 4.2.2, an efficient
approximation of geodesic bilateral filter is introduced to increase the computational
efficiency. Finally, in Section 4.3.3, a dynamic method to efficiently solve graph-cuts
in linear filtering scenarios is proposed.

4.2.1 Video Segmentation as MRF Energy Propagation

The proposed framework solves video segmentation problem for each frame separately
in order to reduce the dimension since solving 2D graph-cuts is more efficient than solv-
ing 3D spatio-temporal graph-cuts. Hence, one can define video segmentation problem
as estimating the MRF energy of the current frame by utilizing the MRF energy of
the previous frame. In other words, the proposed estimation method propagates the
energy functions throughout the frames.

Before starting to explain the details of this propagation method, we should sum-
marize the usage scenario for such a propagation. The proposed method can either
be used as an interactive video segmentation tool or speed-up tool for an automatic
video segmentation procedure. Any MRF energy minimization-based interactive im-
age segmentation method [60, 21, 12] can be used to generate MRF energy of the
initial frame. Then, the obtained energy function can be propagated via the proposed
algorithm. Hence, the overall algorithm can be used as an interactive segmentation
tool. For an automatic video segmentation case, any optical flow based method that
exploits MRF energies can be used to segment the initial frame [36]; then, the resultant
energy can be propagated by the proposed method to speed-up the algorithm for the
rest of the video.

In order to explain the method, which estimates MRF energies in terms of the MRF
energy of the previous frame, we first need to state the explicit form of the energy
function. As explained in Section 2.3, there exist a particular class of MRF energies
which can be optimized efficiently via min-cut/max-flow method; namely sub-modular
energy functions [42]; we are specifically interested in this class of energy functions.
Generally, these energies composed of two main parts; the first part is the unary term
which represents the consistency of the segmentation labels against some predefined
models. The other term is the binary one and represents the coherency of the segmen-
tation result. MRF energy over a graph, G(V, E), can be represented as

E(α) =
∑
vi∈V

U(αi, zi) +
∑
vi∈V

∑
vj∈N(vi)

V (zi, zj)φ[αi 6= αj ]. (4.15)

We will refer to the nodes as regions in the image; these regions might correspond

65



to pixels or over-segments depending on the application. In this representation, αi
represents the label of the region i, zi represents the color, shape and/or motion
information related to region i and N(vi) represents the neighbour regions of region
i. φ[x] is an indicator function, yields one, if x is true and zero otherwise. U(αi, zi) is
the unary energy corresponding to feature vector zi and label αi. Moreover, V (zi, zj)
term represents the penalty associated for giving different labels to two neighbour
regions, where α represents the concatenation of labels of each region in the image. As
a clarification to the notation, V corresponds to set of nodes (set of vi) and V (vi, vj)
corresponds to the binary energy terms associated with node i and j.

When we consider the limited amount of object motion, we can safely assume that
there exists a matching region (i.e. a region with a similar appearance) in the previous
frame for each region in the current frame, except for the occlusion regions. Therefore,
one can argue that MRF energy of the current frame can be approximately predicted
in terms of the MRF energy of the all regions in the previous frame.

In order to proceed further, one should assume that there exists a distance metric be-
tween each region in the current frame and the previous frame. This distance metric
should correspond to the spatio-temporal distance and texture similarity, simultane-
ously. Among alternatives, geodesic distance is a suitable metric to be used in such a
setting. Geodesic distance can be considered as the minimum cost among the paths
connecting two specified regions. In the proposed framework, this cost can be defined
as the weighted sum of the color differences along the spatio-temporal path and length
of the path. In the proposed method, an approximation to the geodesic distance is
utilized; the details of this distance metric are explained in Section 4.2.2.

The representation of the energy function in terms of the previous energy function is
defined separately for U and V terms. For the unary terms (U), the unary energy
of each region in the current frame t is estimated by the weighted sum of the energy
of each region in the previous frame t − 1. Moreover, these weights are selected as
inversely proportional to distances between regions. In other words, for any region in
t, unary term is written in terms of the weighted sum of the unary terms in t− 1 as;

U t(αti, z
t
i) =

1

γti

∑
vt−1
j ∈Vt−1

U t−1(αt−1
j , zt−1

j )e−dis(z
t
i ,z

t−1
j ), (4.16)

where superscripts represent the time instants and dis(zti , z
t−1
j ) represents the afore-

mentioned distance metric between region i in time t and region j in time t− 1. γti is
used for normalization and it can be computed as

γti =
∑

vt−1
j ∈Vt−1

e−dis(z
t
i ,z

t−1
j ). (4.17)

The main rationale behind the relation in (4.16) can be explained by considering each
region in the previous frame as a model, and assuming the current setup as a mixture of
these already calculated models. As in the case of mixture models, the resultant unary
energy is a weighted sum of the each model in the mixture. Another rationale can
be put forward by considering each region in the previous frame as a moving object.
Therefore, every region in the current frame will either corresponds to an object in
the previous frame or alpha matting of different overlapping objects. When the small
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segments generated by an over-segmentation algorithm or even pixels are considered
as regions, every region in the current frame should have many matches in the previous
frame; therefore, instead of exact matches, linear combination of all matches can be
used. The selection of these matches and computation of their corresponding weights
are implicitly performed by the help of the proposed distance metric.

For the binary terms (V ), the conventional approach typically utilizes the frequently

preferred Potts Model; V (zi, zj) = e
−
|zi−zj |

β (β is used for normalization). This penalty
is generally considered as inversely proportional to the color differences in order to
generate coherent segmentation results. However, if we use this conventional approach,
it is impossible to use the proposed dynamic optimization method explained in Section
4.3.3, since both unary and binary energy terms of the current frame are assumed to be
linearly dependant on unary and binary energy terms of the previous frame. Therefore,
we slightly change the coherence penalty; we consider the graph of edges (i.e. dual
graph of nodes) and apply the same propagation rule to this graph. Therefore, the
relation between the current and previous binary energies are represented as:

V t(zti , z
t
j) =

1

γtij

∑
vk∈Vt−1

∑
vl∈N(vk)

e−dis(z
t
i ,z

t−1
k )e−dis(z

t
j ,z

t−1
l )V t−1(zt−1

k , zt−1
l ). (4.18)

This definition of the binary energies can actually be related to smoothing the con-
ventional binary terms. For the case of linear and piecewise linear penalty functions,
it can be shown that the definition of the proposed binary penalty is equivalent to
applying spatio-temporal edge-aware smoothing to video frames, and then, comput-
ing conventional binary terms. In other words, defined binary energy is equivalent to
the conventional binary energy used in [13] with an extra prior smoothing operation.
Hence, defined binary energy can be considered as color smoothness penalty with an
additional temporal smoothness. Furthermore, this equivalence can easily be proven
via straightforward application of linearity.

Main advantages of the proposed estimation method are generality in terms of distance
function selection and extended support region. Although the proposed system is based
on geodesic distances, the proposed energy propagation can also be accomplished by
a variety of distance functions accompanying color, motion and shape. Moreover, in
this formulation, each region in the previous frame actually supports every region in
the current frame. Therefore, any region in the current frame is supported by all the
regions of the previous frame. Such an approach relaxes limited motion assumption
significantly, and eliminates the necessity to use any global model.

In order to visualize energy propagation, we apply the proposed method to a typical
example. The energy of the first frame is computed via the interactive image segmen-
tation method [21], whereas the energy of the 5th frame is estimated via the proposed
method. As in the case of [21], over-segments are obtained by using SLIC algorithm
[1]. The resultant propagation is illustrated in Figure 4.5, where it suggests that the
estimated unary terms are much smoother than the original terms due to the wide
support region. It can also be observed that utilization of (4.18) for binary weights is
feasible and the result is consistent with the edge map.
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(c) Û5(α5
i , z

5
i ) (d) V̂ 5(z5i , z

5
j )

Figure 4.5: Visualization of Energy Propagation. Unary U t(αti, z
t
i) (a) and Binary en-

ergy V t(zti , z
t
j) (b) terms of frame t=1 is computed via user interaction, whereas energy

terms of frame t=5 are estimated via the proposed energy propagation method. Esti-
mated binary energy (d) is consistent with the real edge map of the image. Estimated
unary energy (c) is also consistent with the actual foreground/background probabili-
ties of the regions. Furthermore, estimated unary energy (c) is much smoother than
the unary energy found via user interaction (a) due to the wide support region.

4.2.2 Information Permeability Filter / Bi-exponential Edge Preserving
Smoother

Energy propagation method, explained in Section 4.2.1, estimates the MRF energy of
each frame via the formulation using the bilateral filtering. Hence, segmentation re-
sults can be obtained via minimization of the corresponding energy function. However,
the proposed energy propagation method is not applicable to interactive and mobile
multimedia applications due to high computational complexity of bilateral filters and
computation of geodesic distances. It should be noted that the relations in (3.16) and
(3.18) correspond to a cross filtering by a bilateral filter [15]. Naive implementation of
a bilateral filter requires O(n2) operations; indeed, each operation requires a compu-
tation of a geodesic distance which has a linear time complexity via a fast marching
algorithm [77]. Therefore, the overall complexity of the estimation is O(n3) which is
far from being acceptable. In order to solve this efficiency problem, we utilize the
recently proposed approximation of geodesic bilateral filter [15, 71].
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Bilateral filters are widely used for edge-preserving smoothing operations in vision re-
search [6]. They can be considered as smoothing filters whose weights are obtained from
a Gaussian kernel. Later, bilateral filters are also attributed to anisotropic-diffusion
filters [58]. However, their high computation cost made them unfavourable until some
recent improvements of the computation time are achieved. In [25], bilateral filter is
accelerated by using quantization and piecewise linear approximations. Alternatively,
in [57], bilateral filtering is performed by using linear convolutions in higher dimen-
sions. Recently, a constant time bilateral filter is proposed independently by Cigla et.
al. [15] and Thevenaz et. al. [71] under different names as Information Permeability
(IP) and Bi-Exponential (BE) filter. For the sake of fairness, we refer to this filter as
IP/BE.

In IP/BE filter, bilateral filtering is performed by using a dual one-tap recursive filter
(IIR) for each dimension in the 2D spatial domain (vertical and horizontal). By the
help of the recursive filter, one can achieve full image support for any pixel by a Gaus-
sian kernel. 1D one tap recursion filter is applied in two directions (both horizontal
and vertical) separately. For a sequence x[n] of length N , the recursion is applied as
follows;

For positive direction (left to right, [15, 71]):

x̂1[k] = x1[k] + x̂1[k − 1]r(x[k], x[k − 1])

whereas, for negative direction (right to left):

x̂2[k] = x2[k] + x̂2[k + 1]r(x[k], x[k + 1]).

In this representation, r(x[k], x[k − 1]) is the filter weight and can be computed as

r = e−
|x[k]−x[k−1]|

σ2 . Moreover, this recursion should be initialized as x1[n] = x2[n] =
x[n]. The values after the recursion needs an extra normalization operation. During
this normalization, the constants are computed via the same recursion. Consider a
sequence of 1’s with length N , as 11[n] and 12[n]; then the normalization constants
are, for positive direction,

1̂1[k] = 11[k] + 1̂1[k − 1]r(x[k], x[k − 1]),

and, for negative direction,

1̂2[k] = 12[k] + 1̂2[k + 1]r(x[k], x[k + 1]),

The final smoothed values are computed as [15, 71]:

y[k] =
x̂1[k] + x̂2[k]

1̂1[k] + 1̂2[k]
.

These 1D recursion filters can be applied to horizontal, spatial and temporal directions
separately. Moreover, these results can be combined as explained in [15, 71]. It should
be noted that, IP/BE filter is explained for smoothing scenario. In the proposed
method, IP/BE filter is used as a cross filter. x[k] values correspond to the unary and
the binary energy terms at t − 1, and, x̂[k] values correspond to unary and binary
energy terms at t. Moreover, the weight values are obtained via the color values of
the image instead of the energy terms. In other words, r(x[k], x[k − 1]) is replaced by
r(zk, zk−1).
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It should also be noted that these 1D filters are applied along horizontal, vertical
and temporal dimensions separately. Hence, their ordering changes the result. We
apply the filters in both orders in the spatial domain, then in the temporal domain
(horizontal, vertical, temporal and vertical, horizontal, temporal), and use the average
of the results as the final propagated energy.

In [15], it is argued that IP/BE filter approximates a geodesic bilateral filter. Although
the weights do not correspond to the geodesic distances, they correspond to the cost of
the path having a single horizontal and a single vertical piece. Moreover, the quality of
this approximation is demonstrated in an edge preserving smoothing problem [15, 71].
Although this approximation could have some failure cases, it can still be used in most
of the practical cases.

Framet-1
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Figure 4.6: Illustration of step-like paths used in IP/BE filter. Instead of a geodesic
path shown as red dashed line (arbitrarily selected), a path having single horizontal,
vertical and temporal components is used. Distance between two nodes is computed
as the sum of color differences along this step-like path via the IP/BE filter.

When such filtering is used, the resulting MRF energy for the current frame is equiv-
alent to the energy defined in Section 4.2.1 by dis(zti , z

t−1
j ) as the cost of the step

like path shown in Figure 4.6. In other words, instead of taking the distance as the
minimum of the sum of the color differences among the paths connecting point zti and
zt−1
j , this distance is taken as the sum of the color differences along the path having
three components on each dimension (x, y and t). For the videos not having serious
level of noise or high amount of motion, the proposed cost approximates the geodesic
distance [15].

For the visualization of the effectiveness of the approximation, a sample image is shown
in Figure 4.7. A set of sample pixels of the image are selected. Moreover, filter weights
for this sample point is visualized in Figure 4.7. As shown in Figure 4.7, only the
pixels of the object affects the selected pixel. Hence, the resultant filter have wide and
accurate spatial support. It should also be noted that the filter adaptively adjusts its
support region as shown in Figure 4.7.

When the proposed method is analysed, the number of operations is linear with the
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A

B

(a) Selected pixels (b) Support region for -A- (c) Support region for -B-

Figure 4.7: Input image with two sample selected pixels is shown in (a). The support
region for the selected pixel -A- (center of the red square) is shown in (b), whereas the
support region for the selected pixel -B-(center of the green square) is shown in (c).
Adaptive size of the filter support and its accurate shape consistent boundary of the
object are clearly visible in (b) and (c).

number of regions in the frames, if the number of overlapping regions is bounded by a
constant. Indeed, most of the over-segmentation algorithms have a parameter which
controls the number of superpixels or the maximum size of a superpixel. Therefore,
maximum number of overlapping regions can be adjusted. Hence, by proper selection of
over-segmentation parameters, the proposed method runs in linear time. In summary;
it is possible to approximate MRF energy propagation explained in (3.16) and (3.18)
via an algorithm having linear time complexity by using the IP/BE filter.

4.2.3 Dynamic Graph-Cut for Varying Graph Structure

By using IP/BE filter and linear filtering based MRF energy propagation scheme,
we propose a linear-time method to estimate MRF energy of a frame by using the
previous frame. Moreover, for each frame, this energy function can be minimized
via the min-cut/max-flow method optimally [13]. However, due to our challenging
efficiency requirements, we need to further improve the min-cut/max-flow approach to
increase the overall efficiency. Hence, we propose a method to recycle residual flows in
a bilateral filtering scenario for non-lattice graphs.

Solution methods for MRF energy minimization problems via the min-cut/max-flow
based approaches are explained in Section 2.3. Moreover, a dynamic version of the
problem for the case of non-varying graph structure is explained in Section 3.2.3.1.
However, this method is not applicable to a more general case, since the structure of
the graph might change significantly due to superpixel-based representation. Over-

71



segment positions and sizes might change in each iteration of the over-segmentation
method. Therefore, we propose another dynamic version of the min-cut/max-flow
algorithm for such a varying graph structure case in linear filtering scenario.

In order to apply the conventional dynamic method to varying graph structure case, a
computationally expensive graph matching problem needs to be solved between graph
of the current frame and that of the previous frame. However, in the proposed method,
there exists a linear relation between each node in the current frame and each node
in the previous frame. Moreover, edge weights of the graph of the current frame are
defined in terms of the edge weights of the graph of the previous frame, as in (3.16)
and (3.17). Therefore, this relation needs to be exploited.

We propose to propagate the flows in the previous frame to the current frame via
bilateral filter that is computed during the estimation step of MRF energies. More
interestingly, we show that if the flows in the previous frame are propagated and pushed
to the current frame, the resultant residual graph will be equivalent to applying the
same bilateral filter (IP/BE cross filter) to the residual graph of the previous frame.
In other words, in order to find the updated residual graph in time t, we simply apply
the proposed bilateral filter to the residual graph in time t − 1. Moreover, we claim
that minimum cut result will be same. This claim is also explained in Figure 4.8 by
an example. In order to keep the results as general as possible, we prove this claim for
the general bilateral filtering scenario.
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Figure 4.8: Example for Proposition 1. The solution at t+ 1 is obtained by applying
a linear transformation to the graph at t and solving the graph at t+ 1. Note that the
graph structure significantly changes at t + 1 (a new node is inserted). On the other
hand, residual graph at t + 1 is obtained by applying the same linear transformation
to the residual graph at t that is already computed while solving the graph at t.
Moreover, the residual solution for t + 1 is obtained by solving the residual graph at
t + 1. Proposition states that the solution at t + 1 and the residual solution at t + 1
are equal to each other. Indeed, computation time for the minimization of residual
graph at t+ 1 is much less than the minimization of graph at t+ 1. (In order to make
the illustration less dense wba, wbs, wac, wbc, wcb, rba, rbs, rac, rbc and rcb are not shown
in the figure. Linear transformations are also only displayed for node to source edges,
while the rest can be computed trivially).

Proposition 1. Binary labels obtained by minimizing the MRF energy, resulted after
applying the bilateral filter on the energy function which is defined via the residual
graph, is equivalent to the minimization of the MRF energy obtained via application of
the bilateral filter on the original energy function.

The proof of this proposition is deferred to Appendix. By using Proposition 1, instead
of propagating MRF energy completely, we only propagate residual graphs throughout
the frames. This dynamic propagation results in significant computation time reduc-
tion as explained in Section 4.2. Efficiency obtained via dynamic graph-cut can be
crucial factor to increase the interaction quality for interactive multimedia applica-
tions. In [21], a similar dynamic extension of the graph-cut is used for mobile inter-
active image segmentation experiment. The result of the subjective evaluation shows
that the increase in the efficiency leads to a significant improvement in the interaction
quality specifically for the mobile applications [21]. On the other hand, the proposed
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technique is the only dynamic min-cut/max-flow method which is applicable to the
graphs whose structures are also time varying.

In summary, the proposed video segmentation method starts with an already known
MRF energy for the first frame, solves the min-cut/max-flow problem; then, propagates
the residual energy to the next frame via the proposed linear time algorithm. The
proposed method continues to iterate through the frames.

4.2.4 Automatic Video Segmentation Extension

Although the proposed method is not applicable to automatic video segmentation
problem directly, it can be used as a speed-up tool. Consider a video segmentation
tool which process each frame or small chunk of frames, separately. Due to the high
computation cost of motion information extraction, these methods are far from being
efficient. Moreover, some of them use MRF energy based formulation after extracting
a set of low level features from the video. For example, key-segments [47] algorithm
uses motion and saliency information to produce high quality segmentation results
using a high computation time (around 8 minutes per frame for standard definition
consumer video).

The main idea is to use inefficient and high quality video segmentation tool for the
initial frames or chunk of frames. Next, the available MRF energy function is used
to initialize the proposed method and segment the rest of the video, efficiently. For
videos with a long temporal length, the resulting time difference can be significant.
The analysis of the computation time and the accuracy is performed in Section 4.3.

In addition to initialization via any motion aware-method and blind application of the
proposed method, a feedback mechanism can also be added to the system in order
to detect the scene changes and re-initialize the proposed method. It is possible to
compute the confidence level of the min-cut/max-flow optimization easily. The most
basic approach is to use the margin of the MRF solution as the threshold. Max-margin
of any MRF energy can be computed efficiently as explained in [70]. Therefore, the
resultant automatic video segmentation algorithm starts with an initialization by the
video segmentation procedure, and continues with an inefficient and high accuracy
motion aware segmentation method. Moreover, initialization is fed to the proposed
MRF energy propagation to obtain segmentation for the next frames. Furthermore,
after segmentation of each frame, a MRF margin is computed and compared with a
specific threshold. If the margin is higher than the threshold, the algorithm is re-
initialized via the motion aware segmentation method.

4.3 Experimental Results

Proposed MRF energy propagation method can be used either as an interactive video
segmentation algorithm with an existing interactive image segmentation method or as
a speed-up method for an automatic video segmentation algorithm. Hence, we have
experimented the proposed method for both of these scenarios. In Section 4.3.1 and
4.3.2, we utilize recently proposed mobile and dynamic image segmentation tool [21] in
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order to experiment with the interactive video segmentation scenario. Moreover, seg-
mentation quality and computational efficiency results are compared against existing
interactive video segmentation algorithms from the literature. On the other hand, in
Section 4.3.4, we use the proposed method to speed-up a recently proposed automatic
video segmentation tool [47]. We compare the segmentation quality and computational
efficiency of the original method and propose a speed-up extension.

4.3.1 Analysis of Segmentation Quality for Interactive Video Segmenta-
tion

For the evaluation of the interactive video segmentation scenario, we utilize the "coloring-
based" interactive image segmentation technique [21] to segment the initial frame.
Then, we use the proposed method to propagate the initial segmentation results.
Throughout the video, only the initial frame is interacted; no other user interaction
is applied for the other frames. We compare the proposed method against two high-
performing methods from the literature [7, 8]. The first one is a geodesic segmentation
method [7]. Due the the fact that the permeability filter [15] actually approximates
the geodesic distances, our proposed method approximates a bilateral filter using the
geodesic distances as the filter weights. Therefore, our algorithm can be accepted
as an extension of [7] with a larger support region, additional coherency term and
smoother energy propagation. The other algorithm is a local classifier based segmen-
tation method [8] which is included in Adobe After Effects CS5 [68] as the roto-brush
tool. We use exactly the same interaction for the segmentation of initial frames for all
three algorithms. Then, without any further interaction, we use these algorithms for
the entire video sequence.

For the subjective comparison of the algorithms, we have used the dataset used in
[36]. For the IceSkater sequence, the resultant segmentation and input video are
presented in Figure 4.9. It can be observed in Figure 4.9, that roto brush tool [8] and
the proposed method have similar performances. On the other hand, geodesic video
matting tool [7] fails to propagate the segmentation results. The main reason for this
performance drawback is its single pixel support region. Furthermore, the motion
information is discarded in the geodesic video matting tool. For the first 50 frames,
both the proposed method and roto brush [8] give near optimal segmentation results.
Then, both algorithms segment part of the background as foreground erroneously. In
addition to these, at frames 76 and 91, the region around legs of the ice skater are
segmented as foreground by roto brush. The main reason for this observation is due
to the shrinking bias of MRF energies [13]. However, the proposed method handles
shrinking bias successfully due to its wide support region. Hence, one might conclude
that the segmentation quality of the proposed method is slightly superior than that of
the roto brush [8].

For the quantitative comparison of the algorithms, we have used SegTrack dataset
[73]. The initial frame is segmented by using the same user interaction, and the
algorithms are executed for the rest of the video. Then, pixel-based precision and recall
values are computed for each frame via the following relations: precision = tp

tp+fn and
recall = tp

tp+fp ; where tp is true positive, fp is false positive and fn is false negative.
The resulting precision-recall curves for each video sequence is plotted in Figure 4.10.
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Table4.1: Overall Computation Time per Frame

Geodesic Segmentation [7] Roto Brush [8] Proposed Method
2,7 sec 2,3 sec 1,3 sec

It can be observed from Figure 4.10 that in all videos, both the proposed method
and roto brush [8] have superior performances against the geodesic method [7]. The
main reason for this result is due to the incorporation of motion information in [8] and
implicit usage of spatial information and wide support region (whole frame) for the
proposed method. This result clearly indicates the benefit of the spatial information
usage in video segmentation problem.

For BirdFall sequence, the proposed algorithms have better recall values compared
to roto brush [8]. For the points having recall value higher than 0.6, the algorithms
show almost the same performance. For the Cheetah sequence, roto brush and the
proposed method have again similar performances. For the Girl sequence, roto brush
[8] outperforms the proposed method. This behaviour is due to the high motion blur in
the sequence. For the motion blur case, the color differences are low even at the object
boundaries; therefore, the filter coefficients are not computed properly. An example
of the motion blur in the dataset is shown in Figure 4.11. Hence, in Girl sequence,
there is almost no edge information to be used in the frames due to the motion blur;
therefore, the proposed method fails.

For Monkey sequence, the proposed method outperforms roto brush [8]. The motion
occurs around the frame boundary; therefore, there is no enough local color information
to be used for roto brush [8]. This characteristic of the video is also visualized in
Figure 4.11. For Penguin sequence, utilized interactive image segmentation algorithm
fails to segment the initial frame. Hence, the performance drawback is not due to
the proposed energy propagation method. An example image is also shown in Figure
4.11. Finally, for the Parachute sequence, both roto brush [8] and the proposed
method have precision and recall values higher than 0.9; both algorithms have similar
precision values; however, the proposed method has better recall values.

4.3.2 Analysis of Computational Efficiency for Interactive Video Segmen-
tation

In order to compare the computational efficiencies of the algorithms, we have used the
SegTrack [73] dataset. Each sequence in the dataset is rescaled to 640x480 resolution,
and, segmentation time for each frame is computed for all sequences. The mean
computation time for each frame is summarized in Table 4.1. These execution times
are obtained using a standard desktop PC having processor of 2.4 Ghz and memory
of 4Gb.

As it can be observed from the Table 4.1, the proposed method has the highest compu-
tational efficiency. It should also be noted that the significant part of the computation
time for the proposed method is consumed by SLIC algorithm [1]. Convergence of
SLIC algorithm takes approximately 0.9 second per frame. Hence, by the introduc-
tion of efficient over-segmentation algorithms, it is possible to reach a much better
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computation time for the proposed method.

In order to visualize the performance vs time trade-off for all the algorithms, we have
also performed performance vs time comparisons. For the SegTrack [73] dataset, we
have computed mean precision and mean recall values, as well as the corresponding
computation times. Precision vs computation time and recall vs computation time
graphs are presented in Figure 4.12.
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Figure 4.12: Recall and Precision versus Computation Time (Top and left indicates
a better performance). The results suggest that the proposed method reaches twice
the efficiency with superior recall and comparable precision values. It should also
be noted that, significant part of the computation time (0.9 second) is consumed by
SLIC algorithm [1]. Hence, much better computation time is possible via faster over-
segmentation algorithms.

As it can be observed from Figure 4.12.a, the proposed method has better recall and
computation time, when it is compared against other algorithms. In Figure 4.12.b,
roto brush [8] has slightly better precision values with a higher computational burden.
One can conclude that the proposed method reaches segmentation quality of roto
brush [8] with much higher computational efficiency.

4.3.3 Dynamic Bilateral Graph-Cut

In order to experiment the computational improvements obtained by dynamic compu-
tation of graph-cut in filtering scenario, we have performed MRF energy propagation
via both conventional min-cut/max-flow method [13] and the proposed dynamic-graph
cut. As explained in Section 4, dynamic graph-cut presented in [41] is not applica-
ble to our scenario since the structure of the graph in the proposed method changes
significantly due to the SLIC [1] over-segmentation method.

For the conventional min-cut/max-flow, we propagate MRF energy via the proposed
method and apply the min-cut/max-flow method [13]. For the dynamic graph-cut, we
use the proposed dynamic method. Only the graph-cut execution times for each frame
are computed and plotted in Figure 4.13.
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Figure 4.13: Computation times for dynamic graph-cut of each frame. It should be
noted that only the minimization times are plotted. Moreover, the proposed improve-
ments result in around 3 times efficiency increase.

As shown in Figure 4.13, the proposed improvements result in a significant reduction
in the computation time for the min-cut/max-flow procedure.

4.3.4 Analysis of Automatic Video Segmentation

The proposed energy propagation tool can actually be used to speed-up any automatic
video segmentation tool. We have experimented on a recently proposed automatic
segmentation algorithm, Key-Segments [47]. In Key-Segments algorithm, graph-based
2D clustering of frames is performed to generate as many hypothesis as possible. Then,
these hypothesizes are ranked by using a saliency-like measure and this measure is
computed by using both shape, texture and motion information. Both extraction
of optical flow vectors and computation of saliency-like measure are computationally
expensive. In our setup, Key-Segments [47] method is applied only to initial k frames
(k=3). Then, the resultant MRF energy used by key-segments [47] is used to initialize
the proposed MRF energy propagation. In summary, computationally expensive video
segmentation tool is used to initialize the proposed algorithm for automatic video
object segmentation scenario for initial few frames; then efficient energy propagation
tool is used to compute the video object segmentation for the rest of the video.

We have used SegTrack [73] dataset in order to analyse the performance of these
speed-up procedures. As explained in [47], Penguin dataset is discarded due to the
ambiguous ground truth. For the initial 3 frames, Key-Segments algorithm is per-
formed and for the rest of the video, the proposed algorithm is used. The computation
time and precision-recall values for each frame of each video are recorded and the
resulting precision-recall curves are plotted in Figure 4.14. The average computa-
tion time for each frame is also computed and summarized in Table 4.2. For a fair
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Table4.2: Computation Time per Frame (in MATLAB)

Key-Segments [47] Speed-up Key-Segments (Proposed Method)
260.6 sec 4.0 sec

comparison, MATLAB source code distributed with [47] is used, and the proposed
method is reimplemented in MATLAB. The execution times in Table 4.2 are obtained
in MATLAB framework for both methods.

When the precision recall curves in Figure 4.14 are considered, except for the Girl
sequence, the proposed speed-up method performs comparable against the original
Key-Segments [47] method. In Birdfall sequence, the proposed method has better
recall values than the original Key-Segments [47]. Moreover, in Cheetah and Monkey
sequences, both algorithms perform very similar to each other. In Parachute sequence,
both algorithms perform near optimal and the performance drawback of proposed
method is mostly due to the superpixel errors caused by SLIC [1] algorithm. Finally,
in Girl sequence the proposed algorithms perform much worse than the original Key-
Segments [47]. The main reason of this performance degradation is due to the high
amount of motion blur in the sequence. The edge information is used extensively by the
permeability filter; therefore, lack of edges results in a serious performance degradation.
Motion blur in the Girl sequence is visualized in Figure 4.11, and discussed in Section
4.3.1. In conclusion, except for the case of very high motion blur, the proposed speed-
up results in similar segmentation quality, when compared to the original segmentation
algorithm.

On the other hand, when computational complexity is considered, the proposed algo-
rithm results in around 65 times speed-up, compared to the original algorithm. With
its slight performance drawback and enormous speed-up ratio, the proposed speed-
up method is a perfect candidate for any multimedia application which requires an
efficient and automatic video object segmentation procedure.
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Frame: 16

Geodesic Video Segm. [7] Roto Brush [8]

Frame: 16

Proposed Method

Frame: 16

Frame: 31 Frame: 31 Frame: 31

Frame: 46 Frame: 46 Frame: 46

Frame: 61 Frame: 61 Frame: 61

Frame: 76 Frame: 76 Frame: 76

Frame: 91 Frame: 91 Frame: 91

Figure 4.9: Visual comparison of interactive video segmentation algorithms for
IceSkater sequence. The left column shows the result of geodesic video segmenta-
tion tool [7], the middle column shows the result of roto brush tool [8], and the right
column shows the result of the proposed algorithm. Superior performance of the roto
brush and proposed method against geodesic video segmentation is clear in all frames.
Superior performance of the proposed method against roto brush can also be observed
in Frame 61 and 76.
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Figure 4.10: Precision-Recall curves for SegTrack[73] dataset (A curve near to top-
right corner indicates better performance). Precision-recall curves suggest that for the
interactive video segmentation problem, the proposed method shows either superior or
comparable performances against the available methods in the literature. The main
performance degradation in Girl sequence is due to the motion blur in the video.
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(a) Girl frame 16 (b) Monkey frame 19 (c) Penguin frame 1

Figure 4.11: Visualization of the motion blur and color characteristic in SegTrack [73]
dataset that causes performance drawback in the proposed method and roto brush.
Motion blur in the Girl sequence is clearly visible in (a). The black monkey in
Monkey sequence is at the image boundary; therefore, local windows have no color
information. Moreover, in penguin dataset, the ground truth is selected as a single
penguin. Hence, interactive image segmentation algorithm fails due to the repetitive
structure of the image.
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Figure 4.14: Precision-recall curves for automatic video segmentation on SegTrack
[73] (A curve near to top-right corner indicates better performance). The proposed
method does not cause significant performance drawback in any of the videos except
Girl sequence. The reason for this performance drawback is the motion blur visualized
in Figure 6.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

Within the scope of this thesis, we consider the problem of interactive image and video
segmentation on mobile touch-screen devices. We attack three main perspectives of the
problem, namely, interaction quality, error robustness and computational efficiency.

After making an analogy by the gesture of coloring a color book, we have proposed a
novel interaction method. Effectiveness of the proposed interaction method is subjec-
tively studied for general mobile multimedia scenarios. Subjective evaluation suggests
that proposed interaction method is easier and more user-friendly to use when com-
pared to state-of-the-art interaction methods.

For the correction of user interaction errors, we have further proposed an error handling
mechanism based on consistency via Gaussian mixture models. Effectiveness of the
proposed method is also experimentally validated.

Dynamic graph-cut is an iterative and dynamic process that is introduced to de-
crease the computational complexity of the min-cut/max-flow optimization algorithm.
Within the scope of this thesis, the dynamic graph-cut algorithm is further improved
with the addition of a novel spatially dynamic graph-cut extension.

For the video extension, the interactive segmentation problem is reformulated as the
propagation of the MRF energies that are obtained via an interactive image segmen-
tation procedure on some video key-frames. A bilateral filtering based algorithm is
proposed to propagate MRF energies efficiently throughout the frames. Efficiency
of the proposed algorithm is further increased with a bi-exponential edge preserv-
ing smoother. A general case of minimization of linearly related energy functions on
arbitrary and varying graphs is studied. Furthermore, a novel dynamic graph-cut
algorithm is proposed and formally proven to have globally optimum result. The seg-
mentation accuracy of the proposed propagation and the computational efficiency are
also investigated both subjectively and objectively through simulations.

Finally, the proposed MRF propagation method is reformulated as a speed-up tool for
automatic video segmentation methods. Significant time efficiency increase (around
65 times) is obtained without any loss in segmentation quality.
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5.2 Conclusion and Future Directions

Interactive image/video segmentation problem has many aspects, such as interaction,
error robustness and computational efficiency. Furthermore, these aspects are highly
correlated. Therefore, it is not reasonable to study these aspects separately. The
experiments suggested that time efficiency and error robustness have significantly pos-
itive effect on interaction quality for users. On the other hand, by proper selection
of the interaction method, it is possible to achieve high error robustness. Coloring
implicitly solves false negatives of the segmentation algorithm. Moreover, ordering of
the interaction induced by coloring ease error correction. In addition to these, utiliza-
tion of a common gesture of coloring a colorbook increases the user interaction quality
significantly. Performed subjective evaluation indicates that the resultant user interac-
tion method is easier, more user-friendly to use and leads more accurate segmentation
results.

Images have many spatial redundancies and analysis of these redundancies results in
significant time improvements. The proposed spatially dynamic graph-cut and over-
segmentation are two basic solutions for the removal of these redundancies. By using
the locality of the problem, we decreased the computation time of the min-cut/max-
flow algorithm by half. In order to achieve this efficiency improvement, we show that
it is possible to find a sub-graph of an image grid which gives approximately the same
result by the global solution. Although the theoretical analysis only guarantees an
approximate equivalence, the proposed algorithm gives the same result with the global
graph for all test examples utilized during the experimental procedure.

Superior performance of the proposed error prevention method implies the importance
of the spatial information included within user interaction. If global models are used
for color and texture modelling, the coordinates of the user interaction is the only
feature which carry spatial information. Hence, this information should be exploited,
and error prevention should be handled prior to the min-cut/max-flow solution.

It is possible to formulate the video segmentation problem as the estimation of the
MRF energies along the temporal dimension. A linear estimator formulated via re-
liable spatio-temporal distance metric results in high quality segmentation results.
Furthermore, filtering via spatio-temporal distance metrics overcomes the limitations
of the generative global models, since global models are not capable of utilizing spatial
information. Spatial information is specifically important for video segmentation prob-
lem, since consecutive frames have strong spatial relations; hence, exploiting spatially
aware distances, such as the geodesic distance have huge potential for the segmentation
problem.

Conducted experiments suggest that it is possible to compensate the lack of mo-
tion information via reliable spatio-temporal distance metric. It is possible to com-
pute the approximate spatio-temporal geodesic distance efficiently by using the bi-
exponential/information permeability filters. Hence, overcoming the necessity of mo-
tion information usage via bi-exponential/information permeability filters reduces the
computation time significantly. Furthermore, the experimental results suggest that
approximation does not cause any loss in the segmentation quality.
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Min-cut/max-flow algorithm is a linear and iterative algorithm. Therefore, efficiency
of the min-cut/max-flow algorithm can be significantly increased by a linear problem
definition. Hence, the proposed linear dynamic min-cut/max-flow algorithm results in
significant computation time decrease. Moreover, the proposed algorithm is general
enough to be applicable to any linear estimation problem.

Exploiting graph structure of the min-cut/max-flow problem might be a promising
future research direction. Super-pixel based representation of images induce a graph
structure different than grid graphs. Moreover, properties of the super-pixel graphs
are not yet studied enough. One can study the graph theoretical properties of super-
pixel graphs, such as degree of the nodes and maximum cliques. Furthermore, by the
proper analysis of the graph structure, it might be possible to achieve better accuracy
and time efficiency. Such an analysis could also be useful in order to design an over-
segmentation algorithm which guarantees some graph-theoretical properties.

Min-cut/max-flow is just a one interpretation of the problem. There is also a linear
programming based representation of the optimization problem, as well. By applying
the recently proposed Lagrange duality [43], it might be possible to divide the min-
cut/max-flow problems into a set of related optimization problems. One can also
use such a formulation to propose a parallel algorithm for the solution of the energy
minimization problem.
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APPENDIX A

PROOF OF PROPOSITION 1

Proposition 1. Binary labels obtained by minimizing the MRF energy, resulted after
applying the bilateral filter on the energy function which is defined via the residual
graph, is equivalent to the minimization of the MRF energy obtained via application of
the bilateral filter on the original energy function.

Proof. We prove this proposition by constructing sets of flows at time t. The flows are
constructed by applying bilateral filter to the flows at time t− 1. Moreover, we show
that application of these flows converts the propagated energy function to a propagated
residual energy.

We consider the flows in terminal weights and non-terminal weights, separately. Fur-
thermore, our proof is based on edge flows; not source-sink flows. Since source-sink
flows are combination of flows on edges, these flows can be obtained via a concatenation
of edge flows.

For the flows on terminal edges, consider f t−1
iT (T is either source or sink) as flows at

time t− 1:

f tjT =
1

γti

∑
vi∈V t−1

f t−1
iT e−dis(z

t−1
i ,ztj). (A.1)

For the non-terminal flows, consider f t−1
ij as flows at time t− 1:

f tij =
1

γtij

∑
vk∈V t−1

∑
vl∈N(vk)

f t−1
kl e−dis(z

t
i ,z

t−1
k )e−dis(z

t
j ,z

t−1
l ). (A.2)

As explained in Section 2, γ values are normalization constants. Moreover, for the
clarification on the notation, superscript t represents time and sub-script T represents
the terminals of the graph. It is shown that the application of any flow through the
graph does not change the solution to the minimum cut problem [13]. Therefore, the
solution after applying these flows does not change. The residual weights are obtained
after applying these flows as:
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rtiT = U t(t, zti)− f tiT (A.3)

=
1

γti

∑
vt−1
j ∈V t−1

U t−1(t, zt−1
j )e−dis(z

t
i ,z

t−1
j ) − 1

γti

∑
vj∈V t−1

f t−1
jT e−dis(z

t
i ,z

t−1
j )

(A.4)

=
1

γti

∑
vt−1
j ∈V t−1

(U t−1(t, zt−1
j )− f t−1

jT )e−dis(z
t
i ,z

t−1
j ) (A.5)

=
1

γti

∑
vt−1
j ∈V t−1

rt−1
jT e−dis(z

t
i ,z

t−1
j ). (A.6)

A similar relation can also be obtained for the non-terminal weights as well:
rtij = V t(zti , z

t
j)− f tij (A.7)

=
1

γtij

∑
vk∈V

∑
vl∈N(vk)

e−d(zti ,z
t−1
k )e−d(ztj ,z

t−1
l )V (zt−1

k , zt−1
l ) (A.8)

− 1

γtij

∑
vk∈V t−1

∑
vl∈N(vk)

f t−1
kl e−dis(z

t
i ,z

t−1
k )e−dis(z

t
j ,z

t−1
l ) (A.9)

=
1

γtij

∑
vk∈V

∑
vl∈N(vk)

e−d(zti ,z
t−1
k )e−d(ztj ,z

t−1
l )rt−1

kl . (A.10)

This result corresponds to the application of the bilateral filter to the weights in the
residual graph. In summary, we prove that propagating flows used in the min-cut/max-
flow and recycling them for the next frame, corresponds to propagating residual graph
via bilateral filters. The only question that might arise is the non-negativity of the
weights. If the weights of the bilateral filter are positive, all edge weights in the
propagated residual graph are also required to be non-negative.
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