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Signature :

iv



ABSTRACT

GAUSSIAN GRAPHICAL APPROACHES IN ESTIMATION OF BIOLOGICAL
SYSTEMS

Ayyıldız, Ezgi

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Vilda Purutçuoğlu

May 2013, 71 pages

The Gaussian Graphical Model (GGM) is one of the well-known deterministic inference
methods which is based on the conditional independency of nodes in the system. In this
study we consider to implement this approach in small and relatively large networks under
different singularity and sparsity conditions. In inference of these systems we perform lasso
and L1-penalized lasso regression approaches and select the best fitted model to the data by
using different criteria. Among many alternatives, we apply the F-measure, false positive
rate, precision, and recall measures as well as cross validation method in Monte Carlo runs.
According to the results of their accuracies and computational time, we choose the best cri-
terion for the inference of realistically complex systems such as the JAK-STAT pathway. In
the calculation in case we can face with singularity problem, we evaluate the performance
of a recently developed technique for the matrix decompositions. This novel approach also
enables us to deal with the computational problems caused by the sparsity of the networks.
Finally, apart from the current model selection approaches in the GGM field, we investigate
other plausible alternatives for this type of inference problems.

Keywords: Gaussian Graphical Models, Penalty Selection in L1-Penalized Likelihood, Cross
Validation Algorithm, Threshold Gradient Descent Algorithm, Singularity Problem in Co-
variance Matrix

v



ÖZ

GAUSSİAN GRAFİKSEL MODELİ İLE BİYOLOJİK SİSTEMLERİN TAHMİNİ

Ayyıldız, Ezgi

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Vilda Purutçuoğlu

Mayıs 2013 , 71 sayfa

Gaussian Grafiksel Modeli, sistem düğümlerinin koşullu bağımsızlığına dayanan, en çok bi-
linen deterministik tahmin metotlarından biridir. Bu çalışmada, bu yaklaşım, farklı tekillik
problemleri ve seyreklik koşulları olan, küçük ve daha büyük sistemler için kullanılmıştır. Bu
sistemlerin tahmininde, lasso ve L1-cezalandırmalı lasso regresyon yaklaşımları uygulanmış
ve farklı kriterler kullanarak veriye en çok uyan model seçilmiştir. Bir çok alternatif arasın-
dan, F- ölçüsü, yanlış pozitif oranı, kesinlik ve hassasiyet ölçüleri ve çapraz doğrulama me-
todu Monte Carlo simülasyonları içinde kullanılmıştır. Sonuçların doğruluğu ve hesaplama
süreleri göz önünde bulundurularak da JAK-STAT yolağı gibi gerçekçi büyüklükteki karma-
şık sistemlerin tahmininde kullanılacak en iyi kriter seçilmiştir. Hesaplamalar sırasında te-
killik problemiyle karşılaşılması durumunda, yeni geliştirilen bir matris ayrıştırma tekniğinin
performansı değerlendirilmiştir. Bu yeni yaklaşım, aynı zamanda, sistemlerin seyrekliğinden
kaynaklanan problemleri çözebilmemizi de sağlamaktadır. Sonunda ise varolan model seçme
yaklaşımlarından farklı olarak, bu tür tahmin problemleri için olası başka alternatif yöntemler
araştırılmaktadır.

Anahtar Kelimeler: Gaussian Grafiksel Modeli, L1-Cezalandırılmış Olabilirlikte Ceza Seçimi,
Çapraz Doğrulama Algoritması, Eşik Meyil İniş Algoritması, Kovaryans Matrisinde Tekillik
Problemi
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CHAPTER 1

INTRODUCTION

Over the last few decades, biotechnology has been developed rapidly. There are many re-
searches to explore the human genome all over the world. Since the technology is increasing
day by day, more data are available about biochemical systems. So new methods are needed
to make a sense of this large amount of data. There are several modelling approaches to under-
stand the complex biochemical systems. Graphical models are widely used in the analysis of
the gene regulatory networks. In particular, Gaussian graphical model (GGM) is mostly pre-
ferred undirected graphical model which suggests a deterministic solution to estimate the true
structure of the network (Whittaker, 1990). In such modelling, we need to infer the inverse of
the covariance-variance matrix, which is also called the precision matrix. In the calculation
of the precision, due to the high dimensionality of the biological system of interest, singular-
ity problem is raised. There are a number of methods to unravel this challenge such as the
eigenvalue decomposition, singular value decomposition and the Cholesky decomposition.
But none of these methods explicitly deals with the actual structure of the linear relationship
between the states. Hereby in the first part of the thesis, the eigenvalue decomposition, singu-
lar value decomposition and the Cholesky decomposition methods are explained. After that,
several approaches which are used to model biological systems are described. Then in order
to evaluate these models, the well-known accuracy measures are given.

In the second part of the thesis, since the calculation becomes intractable under singularity
problem, we suggest an alternative approach that can deal with this challenge (Ayyıldız et
al., 2012). We explain the steps of our proposed algorithm in details. Moreover, a numerical
example are given as an implementation of this new method. Then, we work on the inference
of the systems via GGM. In GGM, the conditional independencies of two nodes are indicated
with the absence of an edge between these nodes and are represented with zero entries in the
precision matrix, under the normality assumption. Hence, in inference by GGM, we need to
estimate the precision matrix to understand the structure of the system. Different optimization
algorithms can be used to achieve this aim. Since the structure of the genetic networks is not
fully connected, the related precision matrix has a sparse construction. Thereby, when we es-
timate the precision matrix, we need to take into account the sparsity condition. In this study,
we consider the k-cross validation and the threshold gradient descent (TGD) methods since
both approaches have been suggested in the literature for the inference of GGM. Whereas
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they have not been applied yet for the estimation in different sizes of networks and under dis-
tinct level of sparsity. Between these two alternatives, basically, the k-cross validation method
divides the data into k folds and takes out one fold to compute the likelihood and uses (k − 1)
folds to estimate the precision matrix. On the other hand, TGD algorithm uses the gradient of
loss function which is the negative of the log-likelihood function in order to estimate the off-
diagonal entries of the precision matrix. In this approach, the diagonal entries of the precision
matrix are inferred via the Newton-Raphson algorithm that is one of the common iterative
methods based on the first order derivative of a maximized objective function.

Finally, for the assessment of all the underlying approaches in the analysis, we implement
distinct criteria. Firstly, we evaluate the performance of our new matrix-decomposition that
is suggested to overcome the singularity problems in covariance matrices in terms of compu-
tational demand and accuracy. Then, we assess plausible model selection criteria in inference
of the networks via GGM. Here we also propose certain alternative tools (i.e. model selec-
tion criteria), which have not applied yet in biological/biochemical networks to the best of
our knowledge, but have been previously used in different fields such as in computer engi-
neering. We assess the validity of each candidate criterion with the current ones in terms of
accuracy. In this calculation we compare the estimated networks with respect to true ones
by using the Monte Carlo runs. On the other hand, in the assessment of the cross valida-
tion and threshold gradient descent method, we evaluate their performances regarding distinct
model selection criteria from computational time to accuracy. Additionally, we choose the
best model selection criterion to infer different sizes of networks. In the end, we perform the
best algorithm and the best model selection criterion in inference of a realistically complex
JAK/STAT pathway generated by the simulated data. This pathways controls the immune sys-
tem of eukaryotes and includes a large numbers of genes in its description. The JAK/STAT
pathway provides a mechanism for transcriptional regulation by transmission of extracellular
information from membrane to nucleus. Hence, many immune disorders are related with the
disregulation of this signalling pathway. In the literature, this system has been already esti-
mated by using different stochastic and deterministic methods. Thereby, in this study we aim
to get certain new biological findings about this pathway which can be interesting for future
researches by implementing a different sort of inference method. On the other side to evaluate
the suggested approaches in a real dataset, we select the MAPK/ERK pathway which is one
of the very common signal transaction systems in all eukaryotes. This pathway controls the
cellular regulation and is widely worked on oncogene researches. In this study we have to use
a summary version of this system since the available dataset is observed merely for a small
set of proteins throughout the time.

As a result, in the organisation of this thesis, we initially explain the most well-known de-
composition methods which are used to solve singularity problem in the following chapter.
Then, we present the alternative approaches in modelling biological/biochemical systems and
state the assumptions of each method. Also, in the same chapter, we describe GGM and our
alternative solutions in inference of the L1-penalized least absolute shrinkage and selection
operator (Lasso) regression which is one of the promising methods in GGM. Moreover, we

2



represent the possible choices with our proposal criterion for the model selection in GGM.
Chapter 3 represents details related to our suggested new approach in singularity concept and
our suggested optimization algorithms adapted in GGM. In Chapter 4, all the applications and
comparisons based on the Monte-Carlo runs are given. Also, the description of the JAK/STAT
pathway and corresponding simulated data as well as the brief description of the MAPK/ERK
pathway and its available real time-course data are presented. Finally, we sum up our findings
and discuss the outputs by suggesting our future works in Chapter 5. On the other hand, our
original R functional codes are given in Appendix of the thesis.
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CHAPTER 2

BACKGROUND

In this part we present the available literature about three distinct topics that the thesis is con-
centrated on. The first topic is the matrix decomposition which can be seen as the competitive
approaches for our suggested matrix decomposition method and the second one is the existing
techniques in modelling biological/biochemical systems as the alternative of GGM. Finally
the third subsection presents the mathematical details about the model selection criteria that
is used in junction with the inference of the different dimension networks via GGM.

2.1 Singularity and Matrix Decomposition

The high-dimensional variances’s structures are commonly observed in many mathematical
sciences from linear algebra and statistical calculations to financial and genomic data analy-
sis. For instance in multivariate statistical analysis, the major concern is either the hypothesis
testing or inference of population parameters that are based on mainly high-dimensional ma-
trices where the covariances are typically used in the associated expressions (Kutner et al.,
2005). Alternatively in microarray studies within the genomic data analysis we need to deal
with the intensities from hundreds of genes simultaneously in which the mean and variance
estimates of genes are described as high-dimensional matrices. Thereby, when working on
such underlying high-dimensional covariance structures, we may face with a singularity prob-
lem if the distribution of the dataset is concentrated on a lower-dimensional subspace. Here
the singularity problem is observed if there are linear relationships between columns or rows
of the matrix, resulting in zero determinant in its calculation. This means that the inverse
of the underlying matrix becomes intractable, which leads to a computational problem in the
likelihood. For example if the covariance matrix of the data is singular and the distribution
function of the data is expressed via this covariance such as the density of the multivariate nor-
mal distribution, the associated likelihood function becomes intractable under the singularity
of this matrix.

There are a number of methods to unravel the underlying challenge. The most well-known
ones can be listed as the eigenvalue decomposition, singular value decomposition and the
Cholesky decomposition. These methods are explained in the following parts explicitly. Al-
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though there are a number of alternative approaches to unravel the singularity problem, none
of them explicitly deals with the actual structure of the linear relationship between the states.
In particular, in Bayesian inference, we may have partial observations of some states and the
information about all the states should be used for inference about diffusion. In that case,
simply focussing on a non-singular subspace of the states, may result in information loss.
Instead, in this study, we suggest an alternative method for these major approaches to solve
the singularity problem. It considers a lower-dimensional, nonsingular diffusion submatrix
and explicitly models the linear relation between its dependent and independent terms. The
mathematical details of our proposal method and its application are presented in the following
chapters. Here, as stated previously, we merely describe the current and the most well-know
matrix decomposition methods in the literature.

2.1.1 Eigenvalue Decomposition

Considering that A is a symmetric matrix, U denotes a matrix that includes the set of eigen-
vectors of A, and the diagonal matrix Λ stores the eigenvalues of A in the diagonal elements,
we can write the following equality for every A, U and Λ.

AU = UΛ. (2.1)

Hereby, the eigenvalue decomposition of A can be found by

A = UΛU−1. (2.2)

Accordingly, the square root of A can be calculated by taking the square root of Λ via

A1/2 = UΛ1/2U−1. (2.3)

If A is non-negative semi-definite, then the eigenvalue decomposition of this matrix always
exists and the associated eigenvalues are always positive or zero. The reason can be explained
as the following derivation:

Let e1, e2, ..., ek be normalized eigenvectors of A. Given a column vector u, we can write

u = α1e1 + α2e2 + ... + αkek. (2.4)

Thereby,

Au = α1λ1e1 + α2λ2e2 + ... + αkλkek, (2.5)

where λi associates to ei. Then, since eT
i e j = 0 for i , j and eT

i e j = 1 for i = j, the following
equation can be written as

uTAu = α2
1λ1 + α2

2λ2 + ... + α2
kλk. (2.6)

Hence, the quantity on the left-handside in Equation (2.6) is nonnegative if all λi’s are non-
negative.
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The correlation, covariance, and cross-product matrices can be given as examples of such
types of matrices (Healy, 1986). In this decomposition, the structure of the matrix can dis-
appear if the original matrix is singular and we need to convert this matrix into nonsingular
form by reducing the dimension (Johnson and Wichern, 2002; Rencher, 2002).

2.1.2 Singular Value Decomposition

Let A be an (m × n) rectangular matrix which can be written as a product of three matrices,
namely, an (m × m) orthogonal matrix U, an (m × n) diagonal matrix Λ and the transpose of
an (n × n) orthogonal matrix V. Here, Λ is a matrix containing singular values in diagonal
elements with descending order.

Accordingly, the singular value decomposition (SVD) of A can be declared in terms of U, Λ

and V by

A = UΛVT, (2.7)

where the columns of U and the columns of V are orthogonal eigenvectors of AAT and ATA,
respectively. Moreover, the columns of U are called the left singular vectors and the columns
of V are called the right singular vector. Thus, the square root of A can be written via

A1/2 = UΛ1/2VT. (2.8)

Similar to the eigenvalue decomposition, the structure of the original matrix A can change if
A is reconstructed in order to convert the matrix from singular to nonsingular form (Johnson
and Wichern, 2002; Rencher, 2002).

2.1.3 Cholesky Decomposition

The Cholesky decomposition method is based on the following theorem. Let M be any (n ×
n) symmetric, nonsingular matrix and A = MTM, then A is positive definite matrix. This
theorem implies that every positive definite matrix has the form MTM for some M.

If A denotes a symmetric and positive definite matrix, the Cholesky decomposition of A can
be found by an upper triangular matrix U having strictly positive diagonal entries such that

A = UTU. (2.9)

Here, the matrix U is called the square root of A and the matrix UT is called the Cholesky
factor of A. It is unique since U has strictly positive diagonal entries. If A is also symmetric,
then UT = U, hereby, A = UU. But if A is positive semi-definite, i.e., some eigenvalues are
zero, we use a numerical tolerance in the decomposition of A. In this approach, similar
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to its previous alternatives, it cannot preserve the original structure of the matrix when the
singularity problem is solved by this decomposition and a new nonsingular matrix is defined
under the original dimension of A (Johnson and Wichern, 2002; Rencher, 2002).

2.2 Modelling Biological Systems

The aim of the system biology is to understand the underlying mechanism of a living organ-
ism. An organism can be studied at several different levels from molecular to organs. Even
if we work on a molecular level, there are many components that interact with each other. At
the molecular level, we deal with which genes are expressed when and under which level.

Thereby, the gene regulatory systems give information about the interactions between DNA,
RNA and proteins. The structure of interaction for these molecules is represented by net-
works. Along with the development of biotechnology in the last decade, there is an expo-
nential increase in biological data. Hence, it is difficult but essential the analysis of the huge
amount of data to understand the behavior of all components and interactions. Modelling is
the key tool to overcome this challenge. In order to decrease the complexity in biological sys-
tems, mathematical models can be used without losing the important features of the system
(Wilkinson, 2006).

There are different modelling approaches which implement different kinds of information to
represent the state of a system (Bower and Bolouri, 2001; Wit et al., 2013; Purutçuoğlu and
Ayyıldız, 2013). Hereby, the basic modelling approaches can be listed as

1. Boolean Network Models,

2. Differential Equation Models,

3. Stochastic Models.

We present the details of each approach in the following parts. Then, we explain the Gaussian
graphical modelling (GGM) which is a sub-model under deterministic approach. But before
giving details about GGM, we describe the Bayesian network and probabilistic boolean ap-
proach as well since they are the close alternatives of GGM. Then, we explain our strategy
of estimation in GGM by giving the mathematical details. An application of the proposal
methods is given in Chapter 4.

2.2.1 Boolean Network Models

The Boolean model is the most primitive model to explain the biochemical system. This
model uses binary logic in such a way that the state of a model is represented as a list of fully
expressed or not expressed genes by denoting 1 and 0, respectively. In this type of network,
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there is a finite number of states and a Boolean function which determines the next state.
These attributes make the Boolean networks deterministic. Since the same components give
the same results in deterministic systems, the next state can be identified completely in this
model. Furthermore, its binary logic, i.e., 1 and 0 notations, enables us to reduce the noise of
the data. Moreover, the Boolean network model has an assumption such that the transitions
between genomic states occur synchronously (Whittaker, 1990; Purutçuoğlu and Ayyıldız,
2013).

There are two alternative ways to represent a system via Boolean models:

1. Truth table,

2. Finite-state machine.

In the truth table, the next states are defined by Boolean function which uses three Boolean op-
erators, namely, AND, OR and NOT. The truth table of these Boolean operators that contains
all possible combinations of variable p and q is presented in Table 2.1.

Table 2.1: The truth table of the Boolean operators with variable p and q.

p q p AND q p OR q NOT q
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

On the other hand, the finite-state machine indicates the system as a diagram made of circles
and arrows which stand for states and transitions, respectively.

For instance, consider a network consisting of three genes A, B, C, and three Boolean func-
tions to determine the next state of each gene as below although this network has 23 = 8
possible states:

A(next) = A(current) AND B(current),

B(next) = A(current) OR B(current), C(next) = NOT A(current) OR B(current),

where A(next), B(next), and C(next) denote the next state of the associated genes and A(current),
B(current) and C(current) stand for their current states. Hereby, a possible truth table of the
Boolean network for the three genes can be generated as in Table 2.2.

The truth table shows that if none of the genes is expressed in current state, C will be expressed
in the next state as shown in the first item. On the other hand, as stated previously, a finite-state
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Table 2.2: The truth table of the Boolean network for the three genes A, B, C.

Current state Next state
000 001
001 011
010 001
011 011
100 010
101 010
110 111
111 111

machine is another way to represent the changes of state. For a given example, the finite-state
machine is shown in Figure 2.1.

Since using the binary logic simplifies the data structure, the large regulatory networks can
be analyzed via Boolean network model. However, most of the time more complex models
which cover the different gene expression level are required.

Figure 2.1: Finite-state machine for the Boolean network.

2.2.2 Differential Equation Models

The chemical reactions are the basic parts of the biological modelling. To construct a mathe-
matical model, we need to convert qualitative data into quantitative form. Since the chemical
reactions use unique notations to represent complex chemical processes, mathematical models
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can be applied to analyze the biological structure.

A general chemical reaction can be simply represented via

nAA
k
−→ nA′A′. (2.10)

In Equation (2.10) the molecules which are on the left side of the arrow are called reactants
and the molecules which are on the right side are called products. Also the direction of the
arrow gives information about the direction of the process. For instance, in the given reaction,
nA amount of molecules of A is transformed to nA′ amount of molecules of A′. The n terms
in this expression are called stoichiometric coefficients. Moreover, the k value on the reaction
arrow is named as the rate constant. This value is used to determine the necessary time for
the completion or equilibrium of the reaction.

In differential equation models, the concentrations of each chemical type are applied to de-
scribe the state of the gene regulation processes. These concentrations are continuous and
time-dependent, i.e., they change over time with the rate constant of chemical reactions. In
this representation the rates can be calculated according to the ordinary differential equations
(ODE’s) which can capture the deterministic, i.e., steady state, behavior of the system. For
instance, if we consider the following chemical equation in terms of ODE,

A
k
−→ A′,

the rate of this reaction is expressed as k[A]. Here the increase in the concentration of A, i.e.,
[A], results in a linear increase in the rate of production of A′ and the concentration of the
reactant decreases while its product increases as the reaction occurs. Therefore, the change in
A and A′ over time can be displayed as

d[A]
dt

= −k[A] and
d[A′]

dt
= k[A]. (2.11)

From Equation (2.11), in order to infer the model parameters, which are the rate of laws, for
a given set of concentrations, the linear ODE’s are solved simultaneously. But when the stoi-
chiometric coefficients increase, ODE’s become non-linear equations, resulting in intractable
simultaneous equations. Under such conditions, different approximation methods can be im-
plemented and this is one of the major disadvantages of ODE’s since the solution set is not
unique (Bower and Bolouri, 2001; Purutçuoğlu and Ayyıldız, 2013). Moreover, as ODE’s are
deterministic, they are not suitable for systems which have more than one possible outcome
for the next state.
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2.2.3 Stochastic Models

In stochastic models, the level of details applied in modelling is more than the ones for ODE
and Boolean approaches in the sense that the description of the model is based on the exact
numbers of molecules of each gene type. Hereby, in this model, the changes in the states
are described with discrete quantity. Whereas, which changes occur and when they occur are
explained probabilistically. That means even if a system has the same initial state, different
next states can be produced. Here the probability per unit time of the discrete event, i.e.,
reaction, is indicated by the reaction rate constant which can also give us information about
the speed of the reaction. Under this modelling it is accepted that the biological systems have
naturally stochastic properties and ODE’s become insufficient to explain such randomness
(Wilkinson, 2006; Purutçuoğlu and Ayyıldız, 2013).

The stochastic modelling is based on the chemical master equation which is explained in the
following part in detail.

2.2.3.1 Chemical Master Equation

When the states represent the number of molecules, the probabilities of being in these states
are used as variables in the chemical master equation (CME) approach. Since these variables
are function of time, the differential equations can be used to identify the change in probabil-
ities.

Accordingly, in this equation if X indicates the number of molecules, a joint probability dis-
tribution p(X, t) can be defined as the probability of being at a state X at time t by

p(X, t + 4t) = p(X, t)

1 − m∑
j=1

α j4t

 +

m∑
j=1

β j4t. (2.12)

In this equation, m is the number of reactions that occurs in the system. The probability that
the reaction j will occur in the interval [t, t + 4t] given that the system is in the state X at t
is denoted by α j4t. Also the term β j4t indicates the probability that the reaction j will bring
the system in state X from another state in [t, t + 4t] (Purutçuoğlu and Ayyıldız, 2013).

Thus, the Chemical Master Equation describes the behavior of X by the differential equation
as below (Gillespie, 2001; Kampen, 2007; Purutçuoğlu, 2007):

∂

∂t
p(X, t) =

m∑
j=1

(β j − α j p(X, t)).

CME is useful only when the number of possible states is small. If the number of states in-
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creases, the complexity of differential equation system raises rapidly. Hence, solving CME is
very difficult both analytically and numerically, except for very small systems. Thus, CME
becomes inapplicable for the inference of model parameters. Thereby, under realistically
complex system, certain approximation methods such diffusion approximation as given in
Equation, or Euler-Maruyama approximation (Purutçuoğlu, 2012) can be implemented. The
major idea of all these alternatives is to solve the approximation of CME via certain Monte-
Carlo based computational methods (Golightly and Wilkinson, 2005; Wilkinson, 2006; Pu-
rutçuoğlu, 2012, Purutçuoğlu and Wit, 2012).

2.2.4 Bayesian Networks

The Gene Regulatory Networks (GRN) have fundamentally stochastic behaviors. Although
the ODE and Boolean network models reduce the number of model parameters, they are
deterministic. So, they cannot deal with the stochastic behavior of GRNs. The Bayesian Net-
work (BN) modeling is an alternative method to overcome this challenge, since it generates a
probabilistic network (Shmulevich and Dougherty, 2010).

The BN’s are based on the conditional probability theory since the calculation dependent
on the conditional probabilities is more convenient when we deal with the gene expression.
Because the probability that a gene having a particular expression level given the activity
levels of its potential regulators serves us more information than the absolute probability of
a gene expressed at some level. For instance, let’s say that when genes A and B are highly
expressed and gene C is off, gene D will be highly expressed. This information suggests that
genes A and B are activators and gene C is an inhibitor of the gene D expression.

Moreover, the BN’s are event-based models in the sense that they use the relationship between
the input values and the output states. Hence, a large amount of data is necessary to perform
the BN based modeling.

In BN’s, the directed acyclic graphs (DAG), as shown in Figure 2.2, are used to represent
conditional dependencies or independencies. The nodes, also called vertices of DAG, stand
for random variables X = (X1, ..., Xn)T and the directed edges display the dependency struc-
ture. For every node in DAG , there may be multiple inputs which come from parent nodes
and multiple outputs to descendant nodes. Furthermore, the DAG theory uses the Markov
assumption saying that when its parents are given, each variable Xi is independent on its non-
descendants. Hereby, via the agency of the chain rule of probabilities, any joint distribution
can be represented in terms of a product of the local conditional probabilities such that

P{x1, ..., xn} =

n∏
i=1

P{xi|Pa(xi)},

where Pa(xi) denotes the Markovian parents of Xi.
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Figure 2.2: Simple representation of the Bayesian Network

For instance, consider a Bayesian network consisting of five nodes as drawn in Figure 2.2.
The parents of C are D and E. Also B is only nondescendant of C. Hence, C is independent
on B given both D and E. This relation can be described in terms of probabilities as follows:

P{C|B,D, E} = P{C|D, E}.

Accordingly, the joint distribution of these five variables can be represented as

P{A, B,C,D, E} = P{A|B}P{B|D}P{C|D, E}P{D}P{E}.

If we have full data on A, C, D and E, C is called hidden node and the behavior of C can be
estimated. Moreover, it is not necessary to know D to predict A as long as B is known. Conse-
quently, a Bayesian network gives us an opportunity to express a joint probability distribution
with more understandable way. Another advantage of BN’s is that in order to build a model,
experimental data can be used directly. Furthermore, the uncertainties that come from data are
handled by probabilistic properties of BNs. There are many software tools, e.g., Hugin and
Bayesian packages in R programming language, to deal with the real life BN models which
contain large number of nodes (genes) (Bolouri, 2008). On the other hand, a disadvantage of
BN is that it represents a static probabilistic relationship of network. It means that if X → Y
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and Y → X, according to BN these two networks are equivalent. In addition, feedback net-
works cannot be represented by using DAGs. This type of networks include information about
sequential, i.e., dynamic, behavior of nodes. Hence, dynamic Bayesian networks (DBNs) are
used to model the conditional dependencies between nodes over time. So, the time-course
data are required to separate the sequences of events (Jong, 2002; Bolouri, 2008).

2.2.5 Probabilistic Boolean Networks

The Probabilistic Boolean network (PBN) is a stochastic generalization of the Boolean net-
works which enables us to understand the dynamical behavior of biological networks. Indeed,
the theory of Markov chains can be used to describe the biological system dynamics. In a first
order homogeneous Markov chain, a state at time t + 1 depends on only states at time t. Sim-
ilarly, the expression on the state for each gene at step t + 1 is determined by the expression
levels of genes at step t.

On the other hand, the Boolean term in PBN does not mean the binary quantization like in
the Boolean networks. Here, there is a finite quantization in the sense that the components of
PBN can be defined and formalized such as a sequence V = {xi}

n
i=1 of n nodes and a sequence

{ fl}ml=1 of vector-valued functions. Hereby, the expression value of a gene is denoted by xi,
where xi ∈ {0, ..., d − 1}, and d represents the number of quantization level. Moreover, a
context, or constituent network, of the PBN is determined by each vector-valued function
fl = ( f (1)

l , f (2)
l , ..., f (n)

l ). Also, when the network l selected, the function f (i)
l is used as a

predictor of gene i.

Switching the constituent network is determined by a binary random variable ξ. ξ = 0 in-
dicates that the current context is continued, whereas, ξ = 1 shows that using the selection
probability distribution {cl}

m
l=1, a new constituent network is randomly selected. Since the se-

lection is made from all constituent networks, the same context can be selected. It means that
the new context does not have to be different from the current one.

In addition to binary random variable, a random perturbation also causes to switch the con-
stituent networks. The external stimulus such as the stress condition or small molecule in-
hibitors can be given as examples of perturbation for biological systems. In the case of PBN
with perturbation, there exists a perturbation probability P(γi = 1) = p and a perturbation
vector γ = (γ1, γ2, ..., γn) where γi ∈ {0, 1}. If the constituent network is determined just by
the current network function fl, the probability of no perturbation equals to (1 − p)n. On the
other hand, the probability of a perturbation equals to 1 − (1 − p)n. In general, including a
perturbation probability in PBN gives more realistic results when we deal with the activity of
a gene (Whittaker, 1990; Shmulevich and Dougherty, 2010).
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2.2.5.1 State Transition Probabilities

A state transition probability Pi j is the probability of passing from one state to another. It is
denoted by

Pi j = Pr{Xn = j |Xn−1 = i}. (2.13)

As an example, the following state transition matrix belongs to a very small system that
contains two states,


1 2

1 0.3 0.7
2 0.6 0.4

.
Here, the probability 0.07 indicates the state transition probability P12. It means that if the
system is in state 1 currently, the probability of passing state 2 equals to 0.7.

If the state transition probabilities can be computed, the state transition matrix can be also
found and the steady-state distribution of the model can be determined. Consequently, the
long-run behavior of the model can be discovered. This information gives us an opportunity
to answer the questions such as What is the probability that the gene X will be expressed in
the long run? or What is the probability that gene Y and gene Z will both be expressed in the
long run? (Shmulevich and Dougherty, 2010).

In order to define the long-run behavior of a Markov chain, the periodicity is an important
property. This feature means that the period of a state i equals to k when any return to state i
occurs in k time step. An irreducible Markov chain, which refer to the communication of all
states with each other, can be classified whether it is a periodic or aperiodic (Gallager, 1996).

A Markov chain has a stationary distribution if a probability distribution Π = (Π1,Π2, ...,ΠM)
satisfies the following equality:

Π j =

M∑
i=1

ΠiPr
i j,

where Pr
i j indicates the r-step transition probability and j is an element of the finite state

space, S = {1, 2, ...,M}. Furthermore, the Markov chain has a steady-state distribution if a
probability distribution Π = (Π1,Π2, ...,ΠM) holds the equation below:

lim
r→∞

Pr
i j = Π j. (2.14)
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Equation (2.14) means that no matter what is the starting state, in the long run the probability
of the Markov chain being in state i is Πi if a steady-state distribution exists (Shmulevich and
Dougherty, 2010; Purutçuoğlu and Ayyıldız, 2013).

2.2.5.2 Steady-State Analysis of PBN

When the size of the network increases, computing the whole state transition matrix of
Markov chain becomes difficult since the number of the state space grows exponentially. Un-
der such challenge, the state transition matrix can be computed by different methods, rather
than computing each entry one by one. First method uses the characteristic of the state tran-
sition matrix which consists of two parts. A matrix of the state transitions of the constituent
Boolean networks creates one part. Other part is a matrix that belongs to perturbations. Com-
puting the perturbation matrix only once is enough due to the fact that it depends on merely the
number and the perturbation probability p of genes. Therefore it stays the same for different
networks.

Another method deals with the state transition matrix. Since it is a sparse matrix in practice,
that is, it contains many zero entries, dealing with only the nonzero entries decreases the
computational complexity.

The other method uses the information that the selection probabilities of many constituent
Boolean networks are very low. Hereby, if we define a threshold value, considering only
the Boolean networks which have greater probabilities than this threshold value, makes the
computation easier.

2.2.5.3 Steady-State Analysis via Simulation

It is known that the steady-state distribution can be computed from the state transition matrix
of Markov chain. Unfortunately, sometimes this calculation becomes intractable because of
the exponential growth of the dimension in the state transition matrix. The Monte-Carlo
simulation techniques give an efficient solution for these situations. The procedure of the
Monte-Carlo method to determine the steady-state probabilities can be explained into the two
parts. Firstly, until the convergence to the stationary distribution is achieved, the Markov
chain runs for a long time. Then the proportion of time that the process spends in which parts
of the state space is calculated. In order to rely on the results of Monte-Carlo runs, we need
to estimate the convergence rate of the process. It means that we need to guarantee that the
chain reaches its stationary distribution actually (Ross, 1996).
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2.2.6 Gaussian Graphical Models

In a biological system, the interactions between components can be represented by using
graphical models. The graphical models consist of a set of nodes which is totally p, and a set
of edges. The nodes represent the components, such as proteins and genes, in the system and
the edges display the interaction among these components. The nodes can be formalized as a
vector Y = (Y (1), ...,Y (p)).

The graphical models can be divided into two groups, namely, directed and undirected graph-
ical models. In directed graphical model, the edges represent both interactions and their
directions. Whereas, in undirected graphical model, the edges denotes only interactions but
not give information about their directions. A most widely used undirected graphical model
is a Gaussian graphical model (GGM). This model makes the assumption that the vector Y
has a multivariate Gaussian (or Normal) distribution, that is,

Y ∼ N(µ,Σ), (2.15)

where µ = (µ1, ..., µp) denotes the mean, Σ shows the (p × p) variance-covariance matrix
whose entries σi j present the covariances of Y (i) and Y ( j).

Many natural phenomena have the multivariate normal distribution. Since the multivari-
ate normal density is generalization of the univariate normal density, it is mathematically
tractable. A p dimensional normal density for the vector Y has the following form:

f (y) =
1

(2π)n/2|Σ|1/2
e{−

1
2 (y−µ)T Σ−1(y−µ)}, −∞ < y < ∞. (2.16)

In here, Σ is a symmetric and positive definite matrix. So, it is invertible. The multivariate
normal distribution has several properties. The key properties for a random vector Y can be
listed such as (Johnson and Wichern, 2002):

• Linear combinations of the components of Y are normally distributed.

• All subsets of the components have normal distribution.

• If there is zero covariance between components, it means that they are independently
distributed.

• The conditional distributions of the components are normal.

In GGM, the conditional independencies of two nodes are indicated with the absence of an
edge between these nodes and are represented with zero entries in the precision matrix, under
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the normality assumption. A precision or concentration matrix is an inverse of the variance-
covariance matrix Σ and is denoted by Θ via

Θ = Σ−1 = θi j. (2.17)

Also the precision matrix is composed of partial covariances. This means that the inverse
of the partial variances constitutes the diagonal entries of the precision matrix, such as θii =

1/var(Y (i) | rest), and that minus the partial correlation constitutes the scaled off-diagonal
entries.

πi j =
−θi j√
θiiθ j j

, (2.18)

where πi j represents the partial correlation of Y (i) and Y ( j) when all the other variables are
given. The networks that are generated by using partial correlations are called the gene asso-
ciation network. Since the genomic data generally have a large number of variables, p, and
few samples, n, i.e., n � p, the application of standard covariance and correlation is not ap-
propriate. Because in small n, large p data, the sample covariance estimator S turns a singular
matrix, i.e., non-invertible, because of large number of zero eigenvalues. Thus the estimation
of positive definited and well-conditioned covariance matrix is a crucial problem.

There are different ways to derive partial correlations of a network. One of these methods
is to apply the regression method in such a way that the regression functions for each node
against all remaining nodes give the conditional independence structure of the model.

When we divide the Gaussian vector Y into two parts such as Y = (Y(−p),Y (p))), in which
Y(−p) = (Y (1), ...,Y (p−1)) denotes the vector of all nodes except for the last one, we can obtain
the conditional distribution of node Y (p) on all the remaining nodes as

Y (p) | Y(−p) = y ∼ N(µp + (y − µ−p)tΣ−1
−p,−pσ−p,p, σp,p − σ

t
−p,pΣ

−1
−p,−pσ−p,p). (2.19)

Here (A)t denotes the transpose of A. Accordingly, the mean µ and covariance Σ can be
partitioned such that

µ =

µ−p

µp

 and Σ =

Σ−p,−p σ−p,p

σt
−p,p σp,p

 , (2.20)

where µ−p stands for the mean vector of all nodes except for the last one and µp indicates the
mean of the last node. Also Σ−p,−p is the ((p − 1) × (p − 1)) variance-covariance matrix of all
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nodes except for the last one. σ−p,p refers to the ((p − 1) × 1) covariance vector of Y(−p) and
Y (p) and lastly σp,p is the variance of the last node Y (p). Thereby, the conditional dependence
structure is identified by the regression coefficients β = Σ−1

−p,−pσ−p,p. We can say that Y (p)

and Y ( j) ( j = 1, ..., p − 1) are conditionally independent when β j = 0. In addition there is a
relation between the coefficients β and the precision matrix that can be formalized by (Wit et
al., 2013),

β = −θ−p,p/θp,p. (2.21)

To measure the strength of the interaction between two entries under the known structure,
that is for the given edges, the precision matrix Θ is estimated. In inference of θ we can use
the maximum likelihood estimation technique. Accordingly, if f (yi) denotes the joint density
function of observation y for the vector Y,

f (yi;µ,Σ) = (2π)−n/2|Σ|1/2 exp
{
−

1
2

(yi − µ)T Σ−1(yi − µ)
}
, (2.22)

the likelihood function L(µ,Σ) can be formalized by the multiplication of each joint density
function such that

L(µ,Σ) =

n∏
i=1

f (yi;µ,Σ). (2.23)

Then, the log-likelihood function becomes

l(µ,Σ) = log(L(µ,Σ)) = −
n
2

log |Σ| −
1
2

Σn
i=1(yi − µ)T Σ−1(yi − µ). (2.24)

When we replace the variance-covariance matrix by the precision matrix, we obtain the fol-
lowing equation:

l(µ,Θ) =
n
2

log |Θ| −
1
2

Σn
i=1(yi − µ)T Θ(yi − µ). (2.25)

In Equation (2.25), if we set µ to ȳ as the maximum likelihood estimator of µ,

l(µ,Θ) =
n
2

log |Θ| −
1
2

Σn
i=1(yi − ȳ)T Θ(yi − ȳ). (2.26)

We can rewrite,

Σn
i=1(yi − ȳ)T Θ(yi − ȳ) = Σn

i=1Trace
[
(yi − ȳ)T Θ(yi − ȳ)

]
. (2.27)

Since,

Σn
i=1(yi − ȳ)T Θ(yi − ȳ) = Σn

i=1Trace
[
(yi − ȳ)T Θ(yi − ȳ)

]
,

= Σn
i=1Trace

[
Θ(yi − ȳ)T (yi − ȳ)

]
,

= Trace
[
Θ

(
Σn

i=1(yi − ȳ)T (yi − ȳ)
)]
.
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Finally, the log-likelihood function of Θ can be expressed as

l(Θ) =
n
2

log |Θ| −
n
2

Trace(SΘ), (2.28)

where S = si j denotes the following sample covariance matrix

si j =
1
n

Σn
k=1(y(i)

k − ȳ(i))(y( j)
k − ȳ( j)). (2.29)

Now, by maximizing the log-likelihood l(Θ) under the zero constraints, the precision matrix
can be calculated. The maximum likelihood estimator of the precision matrix equals to Θ̂ =

S−1. This matrix can be also converted into the partial correlation matrix by Equation (2.18)
and the absolute value of its entries indicates the strength of interactions.

2.2.6.1 Maximum Likelihood Approach

The major aim of the GGM approach, as most of the statistical questions of interest, is to
estimate the model parameters and thereby, define a structure for the selected biological net-
works for us. A network can be inferred by maximizing the likelihood of observed data. As
we mentioned before, in a GGM, the precision matrix Θ is estimated by the inverse of the
sample covariance matrix which maximizes the log-likelihood function since Θ capture the
information of both the direction and strength of the interactions between the genes in the
system. Then, the partial correlations can be obtained from this estimated matrix. Finally, to
decide whether the partial correlations are significantly different from zero, statistical tests can
be applied. There are different alternatives for this purpose. When the true partial correlation
is zero, the estimated partial correlation is distributed as follows:

f (r, k) = (1 − r2)(k−3)/2 Γ(k/2)
√
πΓ((k1)/2)

, (2.30)

where k = n − p − 1 denotes the degrees of freedom, n is the sample size, and p displays the
number of variables. Moreover, Γ(·) refers to the Gamma function. This distribution can be
used to test the significance of partial correlations different approaches such as the likelihood
ratio or Wald statistics.

The z-transformation given below is another alternative approach to check the validity of the
partial correlation (Wit et al., 2013):

z(r) =
1
2

√
n − p − 1 ln(

1 + r
1 − r

). (2.31)

Similarly, the following likelihood ratio test can be applicable:

LR(r) = −n log(1 − r2), (2.32)

in which LR(r) has an asymptotic χ2
1 distribution under the null hypothesis of zero partial

correlation.

In general, although the MLE method is successful when the full data are available and Θ is
nonsingular, it cannot be applicable for non-invertible Θ (Whittaker, 1990).
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2.2.6.2 Shrinkage Approach

The shrinkage method is an approach to estimate the covariance matrix by using not only the
sample covariance but also a target matrix. Thereby, it estimates the covariance Σ with the
following formula:

S∗ = λT + (1 − λ)Su, (2.33)

where Su is the unbiased sample covariance (Su = n
n−1 S), T is a target matrix that includes

smaller number of parameters, and λ ∈ [0, 1] is the shrinkage intensity. Although Su is
an unbiased estimator, it has a large variance. On the other hand, T has a lower variance
but higher bias. The shrinkage approach uses these two estimators with a convenient trade-
off intensity. This new shrinkage estimator has a lower mean square error then the sample
covariance (Wit et al., 2013; Purutçuoğlu and Ayyıldız, 2013).

Accordingly, in this method, in order to find a good estimator to choose the target T and the
shrinkage intensity λ, a diagonal scalar matrix is suggested. The diagonal, unit variance or
diagonal, common variance or diagonal, unequal variance are the examples of target matrices
(Strimmer and Schäfer, 2005). The last one is widely preferred in genomic problems as it can
automatically generates a positive definite shrinkage covariance estimates. Furthermore, the
value of λwhich minimizes the mean square error can be used as a shrinkage intensity. Hence,
the mean square error loss function can be formalized as

R(λ) = E[Σi, j[(1 − λ)Sui j − σi j]2] + E[Σi(Suii − σii)2], (2.34)

where Sui j denotes the unbiased sample covariance.

Accordingly, the value of λ to minimize Equation (2.34) is given by

λ =
Σi, jV(sui j)

Σi, jE[s2
ui j]

. (2.35)

2.2.6.3 Lasso-Based Approach

The Lasso-based approach is mainly used to estimate a sparse network, i.e., the network has
small number of edges, resulting in many zero entries in the adjacency matrix. This matrix
shows which nodes are adjacent to which other nodes. It uses binary representation and the
entry 1 indicates that corresponding two nodes are adjacent. Because the sparsity is one of
the general features in biological networks.

In this approach, the precision matrix is estimated by using a regression-based approach.
The networks that are inferred with this method is called the dependency network. Although
the regression-based approach has important advantages, such as computational efficiency
and good approximations to the joint distribution of the variables, it does not guarantee a
symmetric variance-covariance matrix.
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The sparse graphical models can be obtained by implementing the sparse regression model
which searches the sparsity of each node one by one. Hereby, for the given all other variables
Y(−p), a regression model for the last node Y(p) is found via

Y(p) = Y(−p)β + ε, (2.36)

where ε denotes the independent and normally distributed error.

In standard regression models, a least-square criterion is applied to estimate the coefficients
β. On the other hand, a Lasso-regression model computes the L1-penalty for β such that
‖β‖1 = Σi|βip| < λ. Through this difference, the sparsity of the precision matrix can be
obtained and the solution is computed by

min
β

[‖Y(p) − Y(−p)β‖22 + λp‖β‖1] (2.37)

with tuning parameter λp that enables us to estimate of the parameters β. The large value
of λp corresponds to zero coefficients. In Figure 2.3, it can be seen that when the λp value
is increase, the corresponding network become sparse (Wit et al., 2013; Purutçuoğlu and
Ayyıldız, 2013). Since this approach gives exact zero coefficients, there is no need to apply
statistical test as implemented in the shrinkage approach. Conversely, non-symmetric results
are the main problems of this approach. It means that although Y ( j) from the rest can be
obtained for zero βi j, β ji is not zero when we predict Y (i) from the rest. In Equation (2.37),
‖·‖1 refers to L1−norm which means the sum of the absolute values of the columns (Whittaker,
1990; Witten et al., 2011).

One solution to unravel this challenge is to apply AND or OR rules. If we use AND rule, we
obtain the zero coefficients when both βi j and β ji are zero. Furthermore, if we use OR rule for
one of βi j’s zero is enough to obtain zero coefficients. So, it is seen that the OR rule generates
more sparse networks. However, we cannot calculate the actual strength of the edge since
these are two different values because of asymmetry.

In the Lasso-regression approach, another important issue is the selection of the penalty pa-
rameters λi. To get a false positive less than α, the following penalty equation can be calcu-
lated.

λi = 2
√

sii

n
Φ−1

(
1 −

α

2p2

)
, (2.38)

where Φ denotes the cumulative distribution function of the standard normal.

The penalized likelihood idea arises because that ordinal least squares (OLS) estimates have
problems in high-dimensional data. The prediction accuracy and interpretation are two main
problems of OLS. Since, generally the OLS estimates have low bias but large variance, by set-
ting regression coefficients exactly zero, the precision accuracy increases (Tibshirani, 1996).
Moreover, if the number of regression coefficients is greater than the observations, it is dif-
ficult to obtain an interpretable model. L1 and L2 penalties are used to overcome these chal-
lenges. L1 absolute value penalty and L2 quadratic (ridge) penalty shrink the coefficients
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towards zero. However, there is a difference between these two penalized estimation method.
The regression coefficients are small but non-zero in the L2 penalized method. On the other
side, the L1 penalized regression sets the coefficients exactly to zero. This feature causes to
obtain an interpretable results in the L1 penalized regression method (Goeman, 2010).

Figure 2.3: Simple representation of a network for different λp values (the penalty values λp

from left to right and from first to second line, i.e., λp = 0.01, 0.07, 0.11 and 0.15, respec-
tively).

2.2.6.4 Graphical Lasso (GLASSO) with L1-Penalised Likelihood Approach

In order to estimate a sparse and symmetric precision matrix Θ, the L1-penalty can be applied
on the entries of the precision matrix, rather than the regression coefficients.
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According to the Lagrangian dual form, the penalized likelihood optimization is given by

max
Θ

[log|Θ| − Trace(SΘ) − λ‖Θ‖1], (2.39)

in which λ denotes the non-negative Lagrange multiplier. Lagrange dual form is used to
solve optimization problem. It adds the constraints to the objective function via Lagrange
multiplier. When the value of λ increases, the sparsity of the precision matrix also increases.
In addition, the optimal solution satisfies the requirement of symmetry.

There are several approaches to find λ in Equation (2.39). The coordinate descent method is
one of these methods. In this approach, different penalty values are used for different entries
of the precision matrix. By this way, the equation that is needed to be maximized becomes

max
Θ

[log|Θ| − Trace(SΘ) − ‖Θ ∗ Λ‖1]. (2.40)

Here, Λ = λi j is a matrix of penalty parameters and (∗) denotes the dot product of matrices.

The selection of λ that gives the true interaction between the nodes is also crucial for this
method. An receiver operating characteristic (ROC) type of curve with different λ values
can be drawn to decide the optimal λ. In ROC, the y-axis shows the true positive rate (or
sensitivity) and the x-axis presents the false positive rate (or specificity). According to this
plot, the value of λ which corresponds to the most top-left point on the curve can be chosen
since this particular value has the lowest false positive rate (FPR) and the highest true positive
rate (TPR).

Figure 2.4 and Figure 2.5 show the ROC curve for two different dimensional data, namely, 20
by 20 and 40 by 40. In these figures, each curve belongs to different threshold values such
as 0.01, 0.05, 0.1 and 0.2. The threshold value is applied to convert the precision matrix into
a binary form. Then this binary form enables us to calculate the true positive rate and false
positive rate by comparing the estimated results with the true ones. The mathematical details
about this calculation is presented in Chapter 4, i.e. in Application part. Here, TPR and FPR
are computed for seven different penalty parameters λ based on each threshold value. Hence,
the best penalty parameter is chosen by looking at the cut-off point in the ROC curve. For
instance, in Figure 2.4 when the threshold value is equal to 0.05, the sixth penalty parameter
which approximately corresponds to FPR=0.1 and TPR=0.8 indicates the best fitted penalty
value.

The Banerjee methods can be other alternative approach to decide λ. It proposes the following
formula for λ which is adapted from Equation 2.38:

λ(α) = (max
i> j

√
siis j j)

tn−2(α/2p2)√
n − 2 + t2

n−2(α/2p2)
. (2.41)

25



Figure 2.4: ROC curve for the 20 by 20 dimensional simulated data.

Figure 2.5: ROC curve for the 40 by 40 dimensional simulated data.

Here, tn−2(α̂) denotes a student t-distribution with n − 2 degrees of freedom. This method
is more efficient than the cross-validation method in terms of the computational time. For
large datasets Banerjee method is better than the cross-validation method since it relies on the
likelihood of the network. Moreover, the Banerjee method considers the false positive rate.
But the false discovery rate can be also implemented to select the optimal λ for very sparse
networks.
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When the dimensionality is too high, that means the number of feature p is extremely larger
than the number of observations n, the graphical lasso becomes computationally inefficient.
Witten et al. (2011) suggest to write the estimated inverse covariance matrix as the block diag-
onal form in order to speed up the computation. Because they can describe a standard graph-
ical lasso in each block separately. But necessary and sufficient condition is required so that
the estimated inverse covariance matrix can be block diagonal. According to Karush-Kuhn-
Tucher conditions (Witten et al., 2011), the condition which maximizes Equation (2.39), is
satisfied by the following equality:

Θ−1 − S − λΓ(Θ) = 0, (2.42)

in which Γ(x) denotes the subgradient of |x|. That means, if Θi j > 0, Γ(Θi j) equals to 1. If
Θi j < 0, Γ(Θi j) sets to -1 and if Θi j = 0, the value of Γ(Θi j) lies from -1 to 1.

If the inequality |S ii′ | ≤ λ is satisfied for all i ∈ Ck, i
′

∈ Ck′ , k , k
′

, where C1,C2, ...,Ck

represent a partition of the p features, the solution of the graphical lasso problem becomes the
block diagonal matrix with K blocks such that

Θ̃ =


Θ1

Θ2
. . .

Θk

 . (2.43)

According to the results of the simulation study (Witten et al., 2011), the algorithms which use
the blocking idea are computationally efficient. Especially, if the value of tuning parameter λ
increases, the number of nodes that are fully unconnected from all other nodes increases. So,
the speed of the algorithm also raises.

In our application, we implement the k-cross validation and the gradient descent algorithm
which are adapted to GGM as another novelties of this thesis. In literature, both methods
have been previously suggested (Defterli et al., 2013; Wit et al., 2013). Whereas, they have
not been implemented in this context and their performances have not been evaluated in details
to the best of our knowledge. The mathematical details of both algorithms and alternative
model selection methods with their performances based on Monte Carlo runs are presented in
the following chapters, as stated beforehand.

2.2.6.5 Low-Order Partial Correlations Approach

In Gaussian graphical model, the low-order partial correlation is applied to infer the full-order
partial correlations. In this type of correlations, the correlation of two variables is calculated
by using all other variables in the network. However, the low-order partial correlation uses
only a subset of the other variables. When the network is sparse, the low-order partial cor-
relation gives a good approximation of full-order ones. Moreover, to calculate the first-order
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partial correlations, Pearson coefficient and Spearman rank correlation can be implemented.
The Pearson correlation coefficient has a normality assumption, whereas, the Spearman rank
correlation does not need it.

As we mentioned before, the Gaussian graphical model is based on the normality assumption.
If the normality assumption is violated, the GGM could not be used. In this case, the copula-
based models are suggested in the literature. Briefly a copula is a multivariate distribution
with uniformly distributed marginals and the copula decomposition of a general multivariate
distribution uses the Sklar’s theorem. This theorem states that every joint multivariate distri-
bution can be represented by a copula and its marginals (Abbruzzo, 2012; Wit, 2012). The
copula-based inference of the conditional independence graphs is one of the ongoing research
topics.

2.3 Model Selection Criteria

In this section, we describe the current and our suggested selection criteria, i.e., accuracy mea-
sures in this context, in details. The assessments of selection criteria are given in Application
Chapter (Chapter 4).

2.3.1 Accuracy Measures

In the literature, there are many measures used to evaluate the accuracy of the binary classifi-
cation. In this study, we first of all use the well-known accuracy measures such as precision,
recall, specificity, false positive rate, false discovery rate and accuracy. Then we assess the
performance of F-measure and Matthews correlation coefficient which are typically used in
networks in computer sciences. The explicit definitions and formulas related to these mea-
surements are given in the following sections.

In general, the measurements which are listed above are the functions of the following four
main values which are true positive, true negative, false positive and false negative value.
True positive (TP) implies the number of correctly classified objects that have positive label.
The true negative (TN) indicates the number of correctly classified objects that have negative
label. On the contrary, the false positive (FP) shows the number of misclassified objects that
have negative label and the false negative (FN) presents the number of misclassified objects
that have positive label. This information can constitute a confusion matrix as shown in Table
2.3, which represents the actual and predicted classification.

Hereby, as the function of TP and FP, the precision is calculated with the following formula.

Precision =
T P

T P + FP
. (2.44)

Equation (2.44) is the ratio of correctly classified objects with positive label to the total of the

28



Table 2.3: General confusion matrix.

Actual class
Positive Negative

Predicted class Positive TP FP
Negative FN TN

predicted objects as positive class. It is also called the positive predictive value (PPV) and
higher values indicate better classification.

The recall is calculated by using Equation (2.45) and describes the ratio of correctly classified
objects with positive label to the total of the positive class in actual case. It is also named as
the sensitivity or true positive rate (TPR).

Recall =
T P

T P + FN
. (2.45)

Additionally, the specificity denotes the ratio of correctly classified objects with negative label
to the total of the objects that are actually in negative class. It is calculated by using Equation
(2.46) and is also known as the true negative rate (TNR).

Specificity =
T N

T N + FP
. (2.46)

On the other hand, the false positive rate (FPR) is the ratio of misclassified objects with
positive label to the total of the negative class in actual case and the following formula is used
to calculate FPR.

FPR = 1 − Specificity =
FP

T N + FP
. (2.47)

Here, smaller values are interpreted as a better classification.

The false discovery rate (FDR), which is one minus the precision, is calculated as in Equation
(2.48). It is the ratio of misclassification objects with positive label to the total of the objects
predicted as positive class.

FDR = 1 − Precision =
FP

T P + FP
. (2.48)

Finally, the accuracy is the ratio of correctly classified objects in both labels to the total of all
classified objects. It is expressed by the following formula (Arslan, 2011):

Accuracy =
T P + T N

T P + FP + T N + FN
. (2.49)

Apart from these main accuracy measures, we also use the F-measure and the Matthews
correlation coefficient as given in the following expression. The F-measure is the harmonic
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mean of the precision and the recall, and it measures the overlap between actual and predicted
classes. It is also called Sorensen’s similarity coefficient (Labatut and Cherifi, 2011) and
calculated via

F = 2
Precision × Recall
Precision + Recall

. (2.50)

This value takes zero when there is no overlap between actual and predicted terms, and sets
to one when there is a complete overlap.

The Matthews correlation coefficient (MCC) can be found in Equation (2.51). In the literature,
it is accepted as a balanced measure. In contrast to other measurements explained above, it
ranges from -1 to 1. The value 1 corresponds to the perfect classification and -1 represents
the full misclassification (Fan et. al., 2009):

MCC =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

. (2.51)
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CHAPTER 3

METHODS

In this part we present the novelties in this thesis under two subtopics, namely, the perfor-
mance comparison of the novel matrix decomposition method and the modelling via the k-
cross validation with GGM as well as the threshold gradient descent (TGD) algorithm as an
alternative of GGM.

3.1 New Singularity Method

We suggest a new updating regime to solve the singularity problem of a covariance matrix A,
which enables us to reconstitute the covariance structure by working with a lower-dimensional
matrix A∗ and its linear recovery matrix B (Ayyıldız et al., 2012). Let A be a n× n symmetric
matrix of rank p < n. Without loss of generality, assume that the first p columns are linearly
independent. In practice, this is not a restriction, as the underlying states X can always be
reordered to achieve this. This means that the matrix A can be written as

A = [A1 A2],

where A1 is an (n × p) and A2 an (n × (n − p)) matrix, for which the latter can be written as

A2 = A1B,

for a (p × (n − p)) matrix B, since A2 is linearly dependent on A1 by the assumption of rank
p of A. In other words,

A = A1[Ip B]

for p dimensional identity matrix Ip. By decomposing A1 in an upper (p × p) dimensional
and a lower ((n − p) × p) dimensional matrix, A1 = [A11 A12]T, we can write A as

A =

 A11 A11B
A12 A12B

 .
Given the symmetry of A, we get that AT

12 = A11B and so
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A =

 A11 A11B
BT AT

11 BT AT
11B

. (3.1)

The crucial element of the decomposition in Equation (3.1) is that the distribution can be
described by means of the (p × p) non-singular matrix A11, whereas, the matrix B of the
linear coefficients allows us to reconstitute the linearly dependent elements.

For example, if this method is used in MCMC (Monte-Carlo Markov Chain) inference of
stochastic differential equations, a singular diffusion matrix can be first transformed into a
nonsingular and lower-dimensional form and the diffusion matrix can be updated under such
lower-dimensional space. Then the updated and independent columns are re-applied in the
generation of the omitted columns, which are eliminated previously due to the dependency,
by using the linear relations encoded in matrix B. Hereby, the steps of the algorithm for matrix
A can be listed as follow:

1. Each linearly dependent column A = [A1 A2] is identified by checking the columns of
A from left to right.

2. The dependent columns, A2, totally p, are described as the linear combination of inde-
pendent columns.

3. A new (n − p) × (n − p) dimensional covariance matrix A∗ is defined by eliminating p
dependent columns and rows from An×n.

3.1.1 Numerical Example

In genomics, finance and several other fields, the aim is to explain the change in state of a
gene, a stock or other variable by applying a deterministic drift term plus a stochastic diffusion
term, involving a Brownian motion. In inferring multivariate stochastic differential equations
(Golightly and Wilkinson, 2005; Purutçuoğlu and Wit, 2008) of the form

dXt = µ(Xt, t)dt + σ(Xt, t)dBt, (3.2)

the aim is to obtain estimates of the drift µ and diffusion matrix σ. The stochastic differen-
tial equation is the extension of the deterministic differential equation by adding stochastic
influences (Øksendal, 2003). Since many natural phenomena have random dynamics, such
an expression, which can deal with the randomness from the natural structure of the system,
becomes crucial. For instance, the biological processes like the transcription and translation
of the proteins can be only explained by this type of randomness.

Whereas, the inference problem of µ is relatively straightforward. But, in inference for σ can
involve computational problems. In fact, especially, in high-dimensional problem, the term
σ(Xt, t) can be computationally singular, or even exactly singular for particular values of Xt
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and t. In practice, this can occur when the number of financial instruments increases or when
the number of genes included in the model becomes large. Also as the system converges to
its stationary distribution, we are often faced with the problem of linear dependency between
the state space quantities that causes a singularity in diffusion matrix.

As an implementation of the new method, we give the following numerical example by ap-
plying Equation (3.2). Let the total number of substrates in the system be 3, n = 3, and the
time step dt is taken as dt = 0.1 unit. Also the drift term µ and diffusion matrix σ set to
µ = [3 5 7]T and

σ =


4 16 0
16 64 0
0 0 9

 ,
respectively. By controlling the column of σ from left to right, we see that the second column
of σ is four times of its first column, thereby, the corresponding B vector which shows the
linear dependence between the second column and the remaining columns is B = [4 0]. In
order to get the non-singular submatrix, we decompose the diffusion matrix σ as

σ = [σ1 σ2],

where

σ1 =


4 0
0 9
16 0

 and σ2 =


16
0

64

 .
Since σ2 is linearly dependent on σ1, the following equality is satisfied.

σ2 = σ1B =


4 0
0 9
16 0


 4

0

 .
Hereby, we can obtain an upper (2 × 2) dimensional matrix and a 2-dimensional vector by
decomposing σ1 = [σ11 σ12]T via

σ11 =

 4 0
0 9

 and σ12 =
[

16 0
]
.

Hence, we can generate the non-singular and lower-dimensional matrix σ∗ by σ∗ = σ11.
Then, in order to obtain ∆ j = σ∗1/2 × dBt according to Equation (3.2), resulting in the calcu-
lation of the diffusion term for the independent substrates changed by the Brownian motion,
we generate two random values from normal distribution with mean zero and variance as the
time step 0.1, i.e. dBt ∼ N(0, 0.1). Then we multiply them by σ∗1/2. The values of dBt are
found as dBt = [−0.524 −0.251] from R programme language with rnorm function. Accord-
ingly, ∆ j associated to the first and third substrates are obtained as ∆ j=1,3 = (−1.048,−0, 753).
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On the other hand for the update of the dependent term, i.e., the corresponding value of the
second term, we calculate ∆i=2 = α×∆ j = [4 0]×

(
−1.048
−0.753

)
= −4.192. And finally, the change

in state based on the diffusion model is computed as follows:

∆Xt = µ × dt + ∆

∆Xt = [3 5 7] × 0.1 + [−1.048 − 4.192 − 0.753]

= [−0.748 − 3.692 − 0.053]

In the further analysis if the result is used for a simulation purpose, this change is applied for
the update of the system in the next state. Hereby, the new state Xnew can be generated by
adding the current state Xold to the change ∆Xt , i.e., Xnew = Xold + ∆Xt (Purutçuoğlu and
Wit, 2006; Purutçuoğlu, 2007; Ayyıldız et al., 2012).

3.2 Suggested Optimization Algorithms Adapted in GGM

In this section, we explain the k-cross validation and the gradient descent algorithm in the
application of the inference in GGM. As we mentioned before, these two methods have been
suggested in the literature. However, they have not been applied in GGM context yet. The
mathematical details of both algorithms are given in the following part and their Monte-Carlo
results are presented in Application Chapter.

3.2.1 K-Cross Validation

The cross-validation method is an alternative approach to decide on the penalty parameter,
i.e., λ in the L1-penalized likelihood function. This method is based on the maximization
of the log-likelihood function with respect to Θ. Hereby, the cross validation separates the
available data into the two parts, namely, training set and test, i.e., validation set. The training
set is used to estimate the parameters and the validation set is applied to test it.

In the k-fold cross validation, we randomly split the data into k folds which have equal sizes.
In the literature, generally k equals to 10 (Friedman et al., 2008; Wit et al., 2013) in such a
way that (k − 1) folds are chosen as a training set and the parameter estimation is done based
on these data. Then, the remaining 1 fold is assigned as a test set. In this stage, the likelihood
function is computed. After that, these steps are repeated for k times. In each time, a different
fold becomes a test set. Finally, the value of λ, which maximizes the likelihood is determined
as the optimal penalty parameter.

Accordingly, we list the steps of the k-fold cross validation method as below:

1. Split the data randomly into k folds.
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2. Estimate the precision matrix by using a glasso model from (k − 1)/k of the data.

3. Use this matrix to compute the likelihood on the 1/k of the data taken out. Here, apply
the estimate of mean and covariance values found from (k − 1) data.

4. Repeat the steps 2 and 3 for all folds so that we get k likelihoods from each k fold.

5. Sum all likelihoods for each candidate penalty λ.

6. Choose the value of λ that maximizes this likelihood.

3.2.2 Threshold Gradient Descent Algorithm

As we mentioned earlier, the Gaussian graphical model (GGM) is based on the partial correla-
tion as a measure of independence between two genes. Since the structure of the genetic net-
works is not fully connected, the related precision matrix has a sparse construction. Thereby,
when we estimate the precision matrix, we need to take into account the sparsity condition.
Furthermore, the estimation of the precision matrix in GGM faces with small n and large p
problem. So, while the number of variables p is large with respect to the sample size n, the
maximum likelihood estimation method (MLE) can be applied to estimate the precision ma-
trix. On the other side, if n is smaller than p, MLE does not give unique solution. Therefore,
new procedures are required to overcome the challenges of multiple estimators in MLE. One
of these alternative procedures can be the threshold gradient descent (TGD) method (Streib
and Dehmer, 2008; Li and Gui, 2006). TGD penalizes the estimation of the off-diagonal
elements in the sparse precision matrix by the following way.

First of all, we split the precision matrix Θ into the two parts, namely, diagonal vector and
off-diagonal vector. Let θd = θ11, ..., θpp represent the vector of diagonal elements of the
precision matrix Θ and θo = {θi j}i, j present the vector of off-diagonal elements of Θ. Hence,
the upper triangular part of Θ includes q = p(p − 1)/2 elements as the precision needs to be
symmetric. Then, the likelihood function takes the following form:

Θ(θd, θo) =
n
2

log |Θ| −
1
2

n∑
k=1

X(k)′ΘX(k), (3.3)

where X(k) denoted the vector of the kth observation.

To deal with the sparsity of the precision matrix, the negative of the log-likelihood function
can be defined as a loss function via

l(θd, θo) = −Θ(θd, θo). (3.4)

Also the gradient of the loss function with respect to Θ can be written as

∂l
∂Θ

=
n
2

Θ−1 −
1
2

n∑
k=1

X(k)X(k)′ . (3.5)
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After setting the initial values of θd to unit vector and θo to zero vector, we start to update the
off-diagonal elements of the precision matrix θo by using the gradient descent step such that

Θ̂o(γ + 4γ) = Θ̂o(γ) + 4γd(γ). (3.6)

Here, Θ̂o(γ) denotes the value of θo for the current γ, 4γ shows very small increment (4γ > 0),
and d(γ) describes the direction of the tangent vector which corresponds to a descent direction
at each step.

Friedman and Popescu (2004) define d(γ) as the multiplication of two functions such that

d(γ) = w j(γ) · g j(γ) (3.7)

for j = 1, 2, ..., q, in which

w j(γ) = I[|g j(γ)| ≥ λ · max
1≤k≤q

|gk(γ)|]. (3.8)

In Equation (3.8), I[·] denotes an indicator function and λ stands for a threshold parameter
used to adjust the diversity of the values of w j(γ). λ takes the value between 0 and 1. Thus,
as the diversity increases, λ is closer to 1 meaning that λ = 1 implies the sparsest graph.

On the other hand, in order to update the diagonal elements of the precision matrix, these
diagonal entries are maximized with respect to the log-likelihood function in Equation (3.3).
In this stage, different iterative methods can be performed. Here, we choose the Newton-
Raphson approach for this purpose. The steps of the Newton-Raphson algorithm are explained
in the following part.

In conclusion, we can summarize the TGD algorithm in six steps as described below:

1. Initialy set θo(0) = 0, θd(0) = 1, and γ = 0.

2. Calculate g(γ) = −∂l/∂θo by using the current θo and θd.

3. Compute w j(γ) = I[|g j(γ)| ≥ λ · max1≤k≤q |gk(γ)|] and d(γ) by using w(γ) and g(γ) in
Equation (3.7) and Equation (3.8), respectively.

4. Update θo via θo(γ + 4γ) = θo(γ) + 4γd(γ) and γ via γ = γ + 4γ.

5. Update θd by using Newton-Raphson iterations.

6. Repeat steps from 2 to 5 until the convergence is achieved.

On the other hand, the Newton-Raphson algorithm which we use in the update of θd can be
described as follows:

The Newton-Raphson is a commonly used iterative method. This method is based on the
first order derivative of a function which is maximized. Accordingly, the Newton-Raphson
equation is derived from the first order Taylor series expansion via
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f (xn+1) = f (xn) − f
′

(xn)(xn+1 − xn). (3.9)

Here, if f (xn+1) is taken to be 0, the equation takes the following form,

0 � f (xn) − f
′

(xn)(xn+1 − xn). (3.10)

Hence, the Newton-Raphson equation can be written as

xn+1 = xn −
f (xn)
f ′(xn)

, (3.11)

in which xn denotes the current estimate, xn+1 represents the next estimate, and f
′

(·) is the
first derivative of f (·).

This equation is used iteratively until the convergence is satisfied. Although Newton-Raphson
is a commonly performed approach, there is a drawback of being affected by these initial
values. Thus, it is crucial to choose a feasible and good initial value in a reasonable range.

In the following chapter, we implement these two methods in inference of the small and large
systems via GGM. The newly adapted R codes of both algorithms are presented in Appendix.
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CHAPTER 4

APPLICATION AND RESULTS

4.1 Simulation Study for New Singularity Method

In order to compare the performance of the eigenvalue decomposition, singular value decom-
position and the Cholesky decomposition method, we use simulated datasets and generate
different covariance matrices which are symmetric and singular. In the matrix generation,
firstly, we produce independent columns one by one from left to right. Then, these columns
are used to construct the linearly dependent columns. From the empirical studies we observe
that the location of dependent and independent columns does not make any difference in our
method since whatever the order of the dependent and independent columns, we always check
each column of matrices from left to right sequentially and compare whether each proposal
column is linearly dependent on previous columns. To obtain the symmetric matrix from the
underlying singular matrix, the covariance matrix is calculated. These matrices are gener-
ated under two different scenarios. In the first plan, we generate matrices whose 80 % of the
columns are independent and the remaining 20 % of columns has linear dependency. Then in
the second scenario, we use matrices whose 80 % of columns are linearly dependent, and the
remaining ones are taken as independent. Under both scenarios, we apply matrices having
different dimensions, namely, 50 by 50, 100 by 100, 400 by 400, 500 by 500, and 750 by
750. In all computational works, we carry in the R programming language version 2.10.0 and
execute our codes on Core 2 Duo 2.0 GHz processor.

To compare the performance of alternative methods with our proposal approach, we check
the CPU (Central Processing Unit) times in seconds. In order to estimate the CPU times of
each method, we consider two scenarios. In the first scenario, we iterate the algorithm 1000
times for each matrix structure with distinct dimensions and take the mean of the underlying
Monte Carlo outputs once the selected methods decompose the singular matrices and detect
the linear relationships between their columns. However, because of the time restriction and
computational inefficiency, we iterate the algorithm 250 times for the matrix dimension 750
by 750.

Table 4.1 and Table 4.2 show the mean CPU times of each matrix decomposition. From the
results it is seen that there is no difference between methods per iteration on average in both
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data plans. On the other hand, in the second scenario, rather than computing each iteration
separately, we report the total CPU time of 1000 Monte Carlo iteration.

Although the new method has more computational steps, it is seen that there is no dif-
ference in mean CPU time of methods for low-dimensional like (50×50) and moderately
high-dimensional matrices such as the matrices under (100×100) and (400×400) dimensions.
Whereas, if we consider very high dimension like (500×500) or (750×750), the new method
slightly looses more time with respect to other methods under both scenarios. For instance,
the mean CPU times for the 750 by 750 matrix under the first scenario with 250 iterations
are 0.008, 0.008, 0.002, and 2.147 for the eigenvalue, singular value, Cholesky, and our new
method, respectively. Similarly the mean CPU times for this matrix dimension under the sec-
ond scenario are 0.014, 0.014, 0.003, and 0.785 for the same order of decomposition methods.
On the other hand, when we increase the number of dependent columns for the same dimen-
sional matrix, it is seen that all of the methods own smaller CPU times. However, the mean
CPU time of our method decreases more sharply. This result can be interpreted that our new
method can be preferable when the singularity of the matrix becomes a severe challenge.
Since CPU time of each iteration is an infinitesimal, when we take the mean of the underly-
ing Monte Carlo outputs, the results become zero. So the differences between decomposition
methods cannot be detected exactly. Thereby, we decide to calculate total CPU time of 1000
Monte Carlo iterations. In this calculations, we record the total time only to decompose sin-
gular matrices for eigenvalue, singular value, and Cholesky methods, and keep the time to
both decompose the singularity and detect the linear relationship between columns for our
suggested approach. We use the same two scenarios and the same dimensions as before.

Table 4.1: Comparison of mean CPU times under 1000 Monte-Carlo runs for eigenvalue, sin-
gular value, and Cholesky decompositions with new method based on different dimensional
matrices under the first scenario.

Dimensions
Methods (50 × 50) (100 × 100) (400 × 400) (500 × 500)
Eigen-value decomposition 0 0 0 0.001
Singular value decomposition 0 0 0 0.001
Cholesky decomposition 0 0 0 0.000
Our method 0 0 0 0.318

Table 4.3 shows CPU times of matrices with 4 different sizes under the first plan. From the
results it is observed that although the new method has more computational steps, there is no
difference in CPU times for low like (50×50) and moderately high-dimensional matrices such
as the matrices under (100×100) and (400×400) dimensions. Whereas, if we consider very
high dimensions like (500×500) or (750×750), the new method slightly looses more time with
respect to other methods under both scenarios. For instance, CPU times for the (750×750)
matrix under the first scenario with 250 iterations are 0.008, 0.008, 0.002 and 2.147 for the
eigenvalue, singular value, Cholesky and our new method, respectively. Similarly, CPU times
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Table 4.2: Comparison of mean CPU times under 1000 Monte-Carlo runs for eigenvalue, sin-
gular value, and Cholesky decompositions with new method based on different dimensional
matrices under the second scenario.

Dimensions
Methods (50 × 50) (100 × 100) (400 × 400) (500 × 500)
Eigen-value decomposition 0 0 0 0.007
Singular value decomposition 0 0 0 0.007
Cholesky decomposition 0 0 0 0.002
Our method 0 0 0 0.041

for this matrix dimension under the second plan are found as 0.014, 0.014, 0.003 and 0.785
for the same order of decomposition’s methods. On the other side, when we increase the
number of dependent columns under the same dimension as seen in Table 4.4, we observe
that all methods use less CPU times. However, the CPU time of our method decreases more
sharply and its becomes the most efficient method in computation when both dependency
and dimension are big. This findings can be interpreted that our new method can be mainly
preferable when the singularity becomes a severe challenge for the matrix.

Table 4.3: Comparison of total CPU times under 1000 Monte-Carlo runs for eigenvalue,
singular value and Cholesky decompositions with new method based on different dimensional
matrices under the first scenario.

Dimensions
Methods (50 × 50) (100 × 100) (400 × 400) (500 × 500)
Eigenvalue decomposition 0.05 0.03 34.86 27.28
Singular value decomposition 0.03 0.02 13.11 30.72
Cholesky decomposition 0.01 0.03 15.81 27.11
Our method 0.01 0.02 37.68 265.74

Table 4.4: Comparison of total CPU times under 1000 Monte-Carlo runs for eigenvalue,
singular value and Cholesky decompositions with new method based on different dimensional
matrices under the second scenario.

Dimensions
Methods (50 × 50) (100 × 100) (400 × 400) (500 × 500)
Eigenvalue decomposition 0.03 0.03 2.85 34.60
Singular value decomposition 0.02 0.05 1.47 29.35
Cholesky decomposition 0.03 0.04 0.09 23.48
Our method 0.05 0.05 0.94 9.44

In conclusion, from the assessment we have observed that all methods have the same CPU
times for low and moderately high-dimensional matrices. But, when the dimension increases
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and the singularity is not seen in the majority of the columns, our approach is comparable
to the other methods. However, if we also raise the percentage of dependent columns, i.e.,
the singularity, becomes severe in realistically large matrices, our proposal method becomes
more efficient.

Besides the simulation study, we also compare the Cholesky decomposition and our proposed
method, theoretically. Running times, i.e., T (n), are calculated by using Θ function. Here,
n represents the dimension of the matrix. In Θ function, asymptotic growth rate is bounded
both above and below. Running time of the Cholesky decomposition is Θ(n3) (Santos and
Chu, 2003). Moreover, required time for our algorithm changes with the rank of the matrix.
In the worst case, when the rank equals to the number of columns of a matrix, i.e., all columns
are independent, the running time of our proposed method is Θ(n4). However, in the best case,
when the rank equals to 1, the required time for our method is Θ(n2). These results support
that when the percentage of dependent columns increases, our proposed method becomes
more efficient.

Moreover, since our proposed method enables us to keep the same structure of the original
entries of matrix by saving the linear relationship between columns, it can be more effectively
applied in the reconstruction of the nonsingular version of the original matrix as needed in
simulation studies (Purutçuoğlu and Wit, 2006) or modelling of the complex network struc-
ture by stochastic differential equation (Golightly and Wilkinson, 2005) or implementing the
diffusion model in financial stochastic volatility models (Chib et al., 2006). Because in this
approach, the preserved information of the linear relationship in the actual matrix can be used
to regenerate eliminated columns. We believe that apart from these exemplified scenarios of
singularities, our proposal algorithm of decomposition can be helpful for other singularity
problems faced with in linear algebra and multiple statistical analysis.

4.2 Monte-Carlo Runs for the Model Selection Criteria

In order to compare the accuracy measures which are explained in Chapter 2, we use simulated
datasets and estimate precision matrices of these data by using the L1-penalized likelihood
approach. Then we calculate each accuracy measure. First of all, we generate true precision
matrices under two different scenarios. In the first scenario, the precision matrix has positive
entries which correspond to positive relations between genes. In the second scenario, it has
negative entries which represent negative relations between genes. Under both scenarios, we
apply matrices having different dimensions, namely, 5 by 5, 10 by 10, 20 by 20, 40 by 40
and 50 by 50. The precision matrices have different sparsity percentages. In literature, there
are several ways to generate a sparse matrix in distinct sciences. In graphical models, a band
matrix is commonly used. This matrix is a matrix structure whose diagonal and parallel to
diagonal entries are nonzero and remaining terms set to zero. According to the band width,
which determines how many parallel diagonals exist rather than main diagonal, the matrix
takes different names. For instance, if the band width is zero, the matrix is called as a diagonal
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matrix. If the band width equals to one, the matrix is called as a tridiagonal. The following
matrix A represents the structure of the tridiagonal matrix as illustration,

A =



x x 0 0 0
x x x 0 0
0 x x x 0
0 0 x x x
0 0 0 x x


. (4.1)

Here, x denotes the nonzero entries. Thus our precision matrices have a special form which is
similar to the tridiagonal matrix. The only difference between our precision and the tridiago-
nal matrix is that the right upper corner and left lower corner entries in our precision matrix
are nonzero whose general representation is given below,

B =



x x 0 0 x
x x x 0 0
0 x x x 0
0 0 x x x
x 0 0 x x


. (4.2)

For all different dimensional matrices, we use the form in Equation (4.2). So the matrices
which we deal with have distinct sparsity percentages. The 5 by 5, 10 by 10, 20 by 20, 40 by
40 and 50 by 50 matrices have 40%, 70%, 85%, 92.5% and 94% sparsity, respectively. Then,
we estimate precision matrices by using the L1-penalized likelihood with different parameters.
In order to compute true positive, true negative, false positive and false negative values as
described on Chapter 2, we convert the true and estimated precision matrices into a binary
form via a threshold value. In the calculation, we take this threshold as 0.01 since in most of
the biological studies whose real time-course data are not available and the information about
the system is uncertain, the expression values which may be higher than zero are typically
taken as the candidate genes in the system. Accordingly, by setting all the estimated values
less than 0.01 to zero, and allowing the remaining as 1, we enforce the system to be complex,
i.e., as highly connected as possible, since the most of realistic biochemical systems have
such structure from their natures. That is, the genes have dense connections and even some
of them are densely connected by generating hubs (Barabasi and Oltvai, 2004). Moreover,
the proteins in the different systems are interconnected with each other in different levels as
well (Wit et al., 2013). Thus, we iterate the algorithm 10000 times and take the mean of the
underling Monte-Carlo outputs. In each iteration, we choose the best score for each measure
among different scores which correspond to the different penalizing constant λ parameters.
In the L1-penalized likelihood method, there is no specific way to determine upper boundary
of λ. The selection of λ differs according to sample covariance matrix. We choose 0.1 as
a minimum value of λ. Also, the maximum value of sample covariance matrix is used as a
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maximum value of λ. After that, for each matrix, we divide these ranges with equal width
and obtain 7 different λ values. In all computational works, we carry in the R programming
language version 2.15.1 and execute our original codes on Core i5 3.10 GHz processor.

Table 4.5: Comparison of precision, recall, specificity and accuracy under 10000 Monte-
Carlo runs based on different dimensional matrices under only positive off-diagonal entries
(first scenario).

Dimensions Precision Recall Specificity Accuracy
Perfection Level 1 1 1 1
(5 × 5) 0.9734 0.9180 0.9668 0.8038
(10 × 10) 0.9635 0.8968 0.9911 0.8385
(20 × 20) 0.9703 0.8554 0.9975 0.9077
(40 × 40) 0.9817 0.7939 0.9995 0.9515
(50 × 50) 0.9852 0.7712 0.9996 0.9611

Table 4.6: Comparison of false discovery rate, false positive rate, F-measure and Matthews
correlation coefficient under 10000 Monte-Carlo runs based on different dimensional matrices
under only positive off-diagonal entries (first scenario).

Dimensions FDR FPR F-measure MCC
Perfection Level 0 0 1 1
(5 × 5) 0.0266 0.0332 0.8374 Not applicable
(10 × 10) 0.0365 0.0089 0.6917 0.6098
(20 × 20) 0.0297 0.0025 0.6021 0.5896
(40 × 40) 0.0183 0.0005 0.5511 0.5813
(50 × 50) 0.0148 0.0004 0.5399 0.5795

When we compare the results of Monte-Carlo runs, it is seen that both specificity and accuracy
close to 1 when the dimension of matrices increases in the first and second scenarios. Whereas
recall and F-measure decrease substantially. Also, the precision is not affected by change in
dimension of matrix. Since the false discovery rate (FDR) equals to one minus the precision
and the false positive rate (FPR) is found by one minus the specificity, their behaviors are
similar to the precision and the specificity, respectively. The only difference is that FDR
and FPR are calculated with respect to falsely classified objects, thereby, smaller values are
interpreted as better classification.

On the other hand, if any two values within true positive, true negative, false positive and false
negative value are zero, the Matthews correlation coefficient (MCC) is not calculated because
of the fact that the denominator of its function becomes zero. This situation frequently hap-
pens in small matrices such as the matrix with dimension 5 by 5.

Additionally, for 10 by 10, 20 by 20, 40 by 40 and 50 by 50 dimensional matrices, the speci-
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Table 4.7: Comparison of precision, recall, specificity and accuracy under 10000 Monte-Carlo
runs based on different dimensional matrices under only negative off-diagonal entries (second
scenario).

Dimensions Precision Recall Specificity Accuracy
Perfection Level 1 1 1 1
(5 × 5) 0.9973 0.9192 0.9973 0.7825
(10 × 10) 0.9946 0.8967 0.9989 0.8364
(20 × 20) 0.9944 0.8545 0.9996 0.9072
(40 × 40) 0.9960 0.7941 0.9999 0.9513
(50 × 50) 0.9968 0.7707 0.9999 0.9609

Table 4.8: Comparison of false discovery rate, false positive rate, F-measure and Matthews
correlation coefficient under 10000 Monte-Carlo runs based on different dimensional matrices
under only negative off-diagonal entries (second scenario).

Dimensions FDR FPR F-measure MCC
Perfection Level 0 0 1 1
(5 × 5) 0.0027 0.0027 0.8225 Not applicable
(10 × 10) 0.0054 0.0011 0.6862 0.6054
(20 × 20) 0.0056 0.0003 0.5987 0.5871
(40 × 40) 0.0040 0.0000 0.5489 0.5792
(50 × 50) 0.0031 0.0000 0.5378 0.5779

ficity is the best accuracy measure. Furthermore, from the tables, it is seen that the precision
gives the best result for 5 by 5 matrix. However, there is a very small difference between
precision and specificity for this matrix size as well. Therefore, we conclude that under both
scenarios, the specificity can be taken as the best measure for the model selection.

4.3 GGM via Suggested Optimization Algorithms

In this section, we apply the k-cross validation and threshold gradient descent algorithms to
estimate the precision matrix. The steps of these algorithms are explicitly defined in previous
chapter and corresponding R codes of both algorithms are presented in Appendix.

In order to compare the results, we use the same simulated dataset as the observation matrix
with L1-penalized likelihood approach. So, we have different matrices which have distinct
dimensions, namely, 5 by 5, 10 by 10, 20 by 20, 40 by 40 and 50 by 50. In addition, our
true precision matrices are generated by using two scenarios as previously described. Hereby,
in the first scenario, the precision matrices have positive entries and in the second one, they
include negative entries. After the precision matrices are estimated by the k-cross validation
and TGD methods, we convert these matrices into a binary form via same threshold value,
0.01. Then, we calculate TP, TN, FP and FN values by comparing true and estimated precision
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matrices. Finally, we compute the specificity which is chosen the best accuracy measure of
the binary classification in the previous section. F-measure is also computed in order to
make unbiased comparison. These specificity and F-measure values based on the mean of the
Monte-Carlo outputs of 10000 runs.

4.3.1 GGM via K-Cross Validation

In the application of the cross validation, we use the 10-fold cross validation method. As
we mentioned above, we use the same generated dataset with the L1-penalized likelihood
approach. So, each matrix includes 10 observations. Since 10-fold cross validation iterates 10
times, in each iteration, 9 observations are used to constitute the training set and the remaining
1 observation is taken as a test set. From the training set, the mean and covariance terms are
calculated. Moreover, for each penalty value, the precision matrix is estimated via the L1-
penalized likelihood approach. Then, by using these parameters, we calculate the likelihood
of the test set and sum up these 10 likelihood values. After that, we choose the best penalty
which gives the maximum likelihood. Finally, the precision matrix which correspond to the
best penalty parameter is estimated. Then, the accuracy measures, namely, specificity and
F-measure, are calculated. The mean values of specificity and F-measure under 10000 Monte
Carlo runs based on different dimensional matrices and different scenarios of precision matrix
are presented in Table 4.9.

Table 4.9: Comparison of specificity and F-measure under 10000 Monte-Carlo runs based on
different dimensional matrices under two different scenarios for the precision matrix.

Scenario 1 Scenario 2
Dimensions Specificity F-measure Specificity F-measure
(5 × 5) 0.6887 0.7112 0.8095 0.7500
(10 × 10) 0.8835 0.6100 0.8456 0.6344
(20 × 20) 0.9405 0.5521 0.9607 0.5614
(40 × 40) 0.9661 0.5076 0.9792 0.5210
(50 × 50) 0.9727 0.4957 0.9816 0.5091

The results in Table 4.9 show that there is no big difference in specificity values between two
scenarios except 5 by 5 dimensional matrix. However, specificity values differ with respect
to the matrix dimension. If the dimension of the matrix increases, the sparsity percentage
of matrices also increases in our generated matrix form. Hence, the specificity values close
to 1 when the matrix dimension increases. On the other side, when the matrix dimension
increases, the F-measure values decreases. However, these decreases are not sharp in high-
dimensional matrices. Additionally, the total CPU time of 10000 Monte-Carlo iteration is
recorded to check the performance of the 10-fold cross validation method. Table 4.10 shows
the total CPU times of different scenarios. There is no huge difference in required CPU times
for different dimensional matrices.
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Table 4.10: Comparison of total CPU’s under 10000 Monte-Carlo runs based on different
dimensional matrices and two different scenarios for the precision matrix.

Dimensions Scenario 1 Scenario 2
(5 × 5) 4.02 4.04
(10 × 10) 3.62 3.98
(20 × 20) 3.69 3.52
(40 × 40) 3.71 3.90
(50 × 50) 4.45 5.24

4.3.2 GGM via Threshold Gradient Descent

As we mentioned before, TGD method penalizes the estimation of the off-diagonal elements
of the precision matrix. For each type of matrix, initially, we use the identity matrix as the
precision. Then we update the off-diagonal elements by using TGD steps which are explained
in Section 3.2.2. Later, we estimate the diagonal entries of this updated matrix by using the
Newton-Raphson algorithm.

In order to run TGD algorithm, first of all, we have to define the threshold parameter, λ and
the increment, 4γ. The threshold parameter determines the sparsity of the estimated precision
matrix and takes the value between 0 and 1. When it closes to 1, the estimated matrix becomes
more sparse. Therefore, we choose three different λ values, namely, 0.3, 0.7 and 1, which
correspond to sparse, moderately sparse and highly sparse matrices, respectively. Also, 4γ is
taken to be 10−3 in all Monte-Carlo runs in order to grid the estimation space comprehensively.
In addition, the identity matrix is chosen as an initial matrix in TGD algorithm. Then, the
off-diagonal elements of this matrix is updated by using TGD steps. After that, the Newton-
Raphson algorithm is implemented to estimate diagonal elements of the precision matrix. To
do this, we use maxLik function which is built under maxLik package of the R programming
language. This function maxLik(loglik,initial,method) needs 3 inputs in its calculation, loglik
indicates the log-likelihood function, initial represents initial values of parameters and method
shows the maximization method which is Newton-Raphson in our case. The log-likelihood
function can be represented as

Θ(θd, θo) =
n
2

log |Θ| −
1
2

n∑
k=1

X(k)′ΘX(k). (4.3)

Moreover, the diagonal elements of the previously updated matrix are assigned as initial val-
ues. In the first iteration, they equal to 1 since the identity matrix is implemented. However,
if the precision matrix which is estimated by Newton-Raphson is not positive definited, the
algorithm turns back to the beginning of the maxLik function and changes the initial values.
Since Newton-Raphson is a general algorithm, it does not deal with the positive definited
property of the precision matrix. Hence, to guarantee the positive definited precision, we de-
cide on changing the initial values if we do not access the inner steps of the maxLik function.
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Accordingly, in order to stay in the reasonable limits, we add small fluctuations to the diag-
onals and use these new values as initials of parameters as long as the new proposal initials
satisfies the nonsingularity of the matrix. Here, the fluctuation terms that are added to the
initials under singularity are randomly generated from the standard normal distribution.

Finally, the estimated precision matrices are converted to the binary form with threshold value,
0.01. Then, since the TGD method is very demanding in CPU time, the specificity and F-
measure values are calculated for 3000 matrices. Also, we compute the specificity and F-
measure values for 5 by 5, and 10 by 10 matrices under 10000 Monte-Carlo runs and we
observe that there is no big difference in values between 3000 and 10000 runs and the change
can be observable merely after five or six digit after the comma on the decimal side. The mean
values of the specificity under 3000 Monte-Carlo runs are presented in Table 4.11 and Table
4.13. Moreover, Table 4.12 and Table 4.14 show the mean values of the F-measure under
3000 Monte-Carlo runs.

Table 4.11: Comparison of specificity under 3000 Monte-Carlo runs based on different dimen-
sional matrices and different threshold values λ for only negative off-diagonal entries (second
scenario).

Dimensions λ = 0.3 λ = 0.7 λ = 1
(5 × 5) 0.4487 0.7917 0.9015
(10 × 10) 0.6190 0.9187 0.9771
(20 × 20) 0.7212 0.9691 0.9942
(40 × 40) 0.7902 0.9876 0.9990

Table 4.12: Comparison of F-measure under 3000 Monte-Carlo runs based on different di-
mensional matrices and different threshold values λ for only negative off-diagonal entries
(second scenario).

Dimensions λ = 0.3 λ = 0.7 λ = 1
(5 × 5) 0.6695 0.5851 0.5468
(10 × 10) 0.4770 0.4899 0.4959
(20 × 20) 0.3334 0.4583 0.4890
(40 × 40) 0.2351 0.4552 0.4934

Table 4.11, Table 4.12, Table 4.13 and Table 4.14 show that there are no differences in terms of
specificity and F-measure values between two scenarios. On the other hand, when we look at
the different threshold values for all dimensional matrices, it is seen that the specificity values
increase as threshold value increase. Since our generated matrices are sparse, the threshold
value which equals to 1 gives the best specificity and F-measure values.

When we compare the cross validation and the threshold gradient descent algorithms in terms
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Table 4.13: Comparison of specificity under 3000 Monte-Carlo runs based on different di-
mensional matrices and different threshold values λ for only positive off-diagonal entries (first
scenario).

Dimensions λ = 0.3 λ = 0.7 λ = 1
(5 × 5) 0.4330 0.7896 0.9003
(10 × 10) 0.6194 0.9206 0.9772
(20 × 20) 0.7230 0.9698 0.9942
(40 × 40) 0.7951 0.9879 0.9990

Table 4.14: Comparison of F-measure under 3000 Monte-Carlo runs based on different di-
mensional matrices and different threshold values λ for only positive off-diagonal entries (first
scenario).

Dimensions λ = 0.3 λ = 0.7 λ = 1
(5 × 5) 0.6756 0.5882 0.5457
(10 × 10) 0.4761 0.4916 0.4962
(20 × 20) 0.3343 0.4588 0.4890
(40 × 40) 0.2373 0.4561 0.4934

of specificity, TGD method with threshold parameter 1 gives better results than the cross
validation approach. Even if the threshold parameter is equal to 0.7, the results of TGD
method are better than the ones for the cross validation method. When we compare these
two algorithms in terms of F-measure, CV gives better results than TGD method for low
dimensional matrices. However, for the high dimensional matrices, the specificity and F-
measure values of both methods are close to each other.

On the other side, if we compare Table 4.10 and Table 4.15, a huge difference between the
cross validation and the threshold gradient descent algorithms in terms of CPU times can be
seen. Although total CPU’s of TGD algorithm belongs to 3000 Monte-Carlo runs, it is higher
than total CPU’s of cross validation algorithm under 10000 Monte-Carlo runs. The reason
of this great CPU requirement of TGD algorithm depends on the Newton Raphson algorithm
which is used to estimate diagonal entries of the precision matrix. If the precision matrix
which is estimated by Newton-Raphson is not positive definited, the algorithm turns back to
the beginning of the maxLik function and changes the initial values. Thus, TGD algorithm
requires many iterations to estimate diagonal entries.

As a result, in high-dimensional matrices, the cross validation method can be more convenient
with less loss of accuracy but more gain in CPU time.
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Table 4.15: Comparison of total CPU times under 3000 Monte-Carlo runs based on different
dimensional matrices and two different scenarios for the precision matrix under threshold
value, λ = 1.

Dimensions Scenario 1 Scenario 2
(5 × 5) 15.643 16.409
(10 × 10) 25.587 24.878

4.4 Application of the JAK/STAT Pathway

4.4.1 Description of the JAK/STAT Pathway

When a living organism encounters with pathogens such as viruses, complex responses occur
in host cells. So the defence mechanisms of the host cells decide on generations of the out-
come as an antiviral response. The crucial parts of the innate antiviral response are Type I in-
terferons (IFN). The interferons represent the family of small proteins generated by vertebrate
cells in response to viral infection and as cytokines during an immune response (Lawrence,
2010). Accordingly, the Type I interferons are used to treat the hepatitis B and C virus in-
fections (Maiwald et al., 2010). An important signalling pathway activated by IFN is the
JAK/STAT pathway. Thereby, many immune disorders are related with disregulation of this
signalling pathway. Here, JAK stands for the Janus kinase and STAT denotes the signal of the
transducer and the activation of transcription. The JAK/STAT pathway provides a mechanism
for transcriptional regulation by transmission of extracellular information from membrane to
nucleus. The very simple representation of this pathway can be seen in Figure 4.1.

In mammalian, there are four members of the Janus kinase family, namely, JAK1, JAK2,
JAK3 and tyrosine kinase 2(TYK2). STATs are proteins which are translocated to the nucleus
and play the role of the transcription factors when they are phosphorylated by JAKs. There
are seven STATs components, which are called as STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5 and STAT6 in the system. Since the amino acid sequences of STATs are various, they
have different functions in responses to extracellular signaling proteins. Due to its importance
in particular immune system of living cells, it is widely worked on the treatment of illness
(Shuai and Liu, 2003; Maiwald et al., 2010). The hepatitis B is one of the illnesses which
is caused by the malfunction of the JAK/STAT pathway. Hereby, in this thesis, we take this
system as the pathway to be modelled and inferred via GGM with distinct approaches. In the
following parts, initially, we describe the simulated data used in this study since no real data
have been available yet. Then, we perform in inference of the network by GGM in junction
with cross validation and gradient descent algorithm.
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4.4.2 Description of the Simulated Data

In this study, we generate a time-course dataset by using the Gillespie algorithm. In order
to represent the stochastic behaviour of a system, the Gillespie algorithm uses the chemical
master equation as described in Chapter 2. This algorithm simply generates a random value
from the exponential distribution to determine the time of the next reaction, ∆t ∼ exp(h0(Y))
(Purutçuoğlu et al., 2011). The summation of total hazards in the system, h0, is used as
the rate of the exponential distribution. Here, Y indicates the number of molecules for each
protein and t denotes the change in time. After the time of the next reaction is calculated, the
reaction type is chosen randomly. In the end, by using the time and reaction type, the system
is updated.

Finally, in order to describe the JAK/STAT system, we generate a dataset which contains 10
time points for 38 proteins. The list of these proteins can be seen in Table 4.16. We run
this algorithm until the total simulation time T set to 200 and take the last integer 10 time
points from 190 to 199 so that all the proteins can reach in their steady state conditions and
we get these values as the time-course data for the system. In simulation, initial number of
molecules of each protein and the reaction rate constants are assigned as in Maiwald et al.
(2010). To show the changes in states through the observed time points, we draw the plots for
each protein. These plots are given in Appendix B.

Table 4.16: List of proteins used in the description of the JAK/STAT pathway as in the study
of Maiwald et al. (2010).

Symbols Name of proteins Symbols Name of proteins
P1 Receptor IFNAR1 P20 IRF9n
P2 TYK P21 Free TFBS
P3 Receptor Tyk Complex P22 Occupied TFBS
P4 Receptor IFNAR2 P23 mRNAn
P5 JAK P24 mRNAc
P6 Receptor Jak Complex P25 SOCS
P7 IFN_free P26 Stat2n_IRF9
P8 IFNAR dimer P27 STAT2n
P9 Active Receptor Complex_Stat2c P28 CP
P10 STAT2c_IRF9 P29 ISGF-3c_CP
P11 Active Receptor Complex_STAT2c P30 Stat1c*_Stat2c*_CP
P12 IRF9c P31 NP
P13 STAT2c P32 Stat1n*_Stat2n*_NP
P14 STAT1c P33 ISGF-3n_NP
P15 Active Receptor Complex_STAT2c_STAT1C P34 Occupied TFBS_NP
P16 STAT1c*_STAT2c* P35 PIAS
P17 ISGF-3c P36 PIAS_ISGF-3n
P18 ISGF-3n P37 STAT1n
P19 STAT1n*_STAT2n* P38 IFN_influx

51



4.4.3 Inference of the JAK/STAT Pathway via GGM

In this section, we apply the k-cross validation and threshold gradient descent algorithms to
estimate the JAK/STAT system. Since there is no real data in literature about this pathway, the
simulated data are preferred for the analysis. The description of simulated data is explicitly
defined in previous section. The true precision matrix for the JAK/STAT pathway is generated
by using the reaction list given in Maiwald et al. (2010). This precision matrix has the binary
form such that the absence of an edge between two proteins is represented with zero entries.
After the precision matrices are estimated by the k-cross validation and TGD methods, we
convert these matrices into a binary form via the same threshold value, i.e., 0.01. Then, by
comparing true and estimated precision matrices, TP, TN, FP and FN values are calculated.
Finally, we compute the specificity values. The results of the threshold gradient descent
algorithm based on the three different threshold values are be shown in Table 4.17. Since the
JAK/STAT system is sparse, the threshold value which equals to one gives the best specificity
values. On the other side, the specificity value based on the cross validation algorithm is
computed as 0.9848.

Indeed in order to represent the complex biological systems like the JAK/STAT pathway by
relatively small dimension, the coloured graphs can be used. Here, to obtain a sparse net-
work, a special kind of the coloured graphs, called the factorial graphs (Abbruzzo, 2012), is
implemented. This method creates subpartitions of the naturally partitioned networks in such
a way that the edges indicated with the same colours represent the specific elements of the
conditional correlation matrix. By this way, the number of parameter estimated decreases as
the coloured sub-graph is used as the summary of the actual partitioned network.

Table 4.17: Comparison of specificity for the JAK/STAT pathway based on three different
threshold values λ via TGD algorithm.

Dimensions λ = 0.3 λ = 0.7 λ = 1
(38 × 38) 0.9440 0.9660 0.9700

4.5 Application of the MAPK/ERK Pathway

4.5.1 Description of the MAPK/ERK Pathway

The MAPK/ERK (mitogen-activated protein kinase, also called ERK, i.e. extracellular signal-
regulated kinase) pathway is another important signal transduction system that transmits the
signals from the surface of the cell to the nucleus, resulting in changing the gene expression
levels on the pathway. This pathway affects the growth control and the cell death of all
eukaryotes (Purutçuoğlu and Wit, 2012). Thereby, the malfunction of this network causes
many disorders in the cell such as cancer. The MAPK/ERK pathway is a large system which
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includes many proteins whose main components are Raf, Ras, MEK and ERK proteins. The
very simple representation of this pathway can be seen in Figure 4.2. More biological details
about the system can be found in Purutçuoğlu and Wit (2008; 2012).

4.5.2 Inference of the MAPK/ERK Pathway via GGM

In this study, we analyze the MAPK/ERK pathway by using a real time-course dataset. The
dataset is taken from Purutçuoğlu and Wit (2012) and is collected under 8 time-points for 6
proteins, namely, Ras.GTP, Ras.GDP, Raf.Am, MEK.p2, ERK and ERK.p2 whose biological
descriptions are presented in Purutçuoğlu and Wit (2008; 2012). Here, the k-cross valida-
tion and the threshold gradient descent algorithms are applied to estimate this pathway. As
implemented in previous studies, the binary form of the true precision matrix is constructed
by looking at the edges between proteins that is generated from the quasi reaction list of the
system. On the other side, the estimated precision matrix is converted into a binary form
via the threshold value. Then, the accuracy measures, namely, specificity and F-measure, are
computed by comparing true and estimated precision matrices of the k-cross validation and
TGD method.

By using TGD algorithm, the specificity and F-measure values are computed as 0.9130 and
0.5720, respectively. On the other hand, the specificity and F-measure values based on the
cross validation algorithm equal 1 and 0.2670, respectively. From the estimation, it is ob-
served that the cross validation method seems better in terms of the specificity value. How-
ever, the difference between these two methods is not significant. In addition, F-measure in
cross validation is significantly smaller than F-measure in TGD. To sum up, when we check
both accuracy measures simultaneously, we conclude that TGD algorithm gives better results.
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Figure 4.1: Simple representation of the structure of the JAK/STAT pathway.
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Figure 4.2: Simple representation of the structure of the MAPK/ERK pathway.
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this study, it is aimed to model the complex biochemical systems by using the Gaussian
graphical model. In order to estimate the true structure of the network, GGM is widely used
for the undirected graphical model. In GGM, the precision matrix which is the inverse of
covariance matrix is used to represent the structure of the network. The zero entries in the
precision matrix indicate the conditional independencies of two nodes, i.e., genes, molecules.
Whereas, since the biochemical systems have high-dimensions, the singularity problem usu-
ally occurs in the calculations of the precision matrix.

In the first part of this thesis, the background information about three main topics are given.
First of all, the most well-known matrix decomposition methods, namely, eigenvalue decom-
position, singular value decomposition and Cholesky decomposition methods are explained.
Then, several methods which are used to model biological systems are described. In addition,
Gaussian graphical model, which is our main interest in this study, is explained in details. Af-
ter that, the well-known accuracy measures are given with explicit definitions and formulas.

In the second part of this study, initially, our suggested approach to unravel the singularity
problem is explained. Then, the k-cross validation and the threshold gradient descent algo-
rithms are implemented in GGM to estimate the precision matrix. These two methods have
been suggested in the literature, but they have not been applied in GGM context yet. The
cross validation method is used to decide on the best penalty parameter, λ which is necessary
in the estimation of the precision matrix via the L1-penalized likelihood function. We use the
10-fold cross validation method. This method splits the data into 10 parts, then it chooses
9 of them as a training set and uses remaining one as a test set. In the end, the precision
matrix is estimated via the L1-penalized likelihood approach with he chosen penalty. On the
other side, TGD algorithm applies the gradient loss function which is the negative of the log-
likelihood function to estimate off-diagonal entries of the precision matrix. Moreover, the
Newton Raphson algorithm is applied to estimate the diagonal entries. The adapted R codes
of both algorithms are presented in Appendix.

In the third part of this study, firstly, the performance of our new method is compared with
three decomposition methods, namely, eigenvalue decomposition, singular value decomposi-
tion and Cholesky decomposition in terms of the computational time. These decomposition
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methods are commonly used in the literature. There are two main advantages of our new
method. The first one is that by saving the linear relationship between columns, our alterna-
tive method preserves the structure of the original entries of matrix. The second advantages
is that when the percentage of dependent columns and dimension of the matrix increase,
our suggested method becomes more efficient. Moreover, when the percentage of dependent
columns is not high, our proposed method is comparable to the other three methods.

Secondly, the best model selection criteria is chosen by comparing several accuracy measures,
namely, precision, recall, specificity, false positive rate, false discovery rate, accuracy, F-
measure and Matthews correlation coefficient. All of these measures are the functions of true
positive, true negative, false positive and false negative values. In order to achieve this aim,
first of all, the precision matrices are estimated by using the L1-penalized likelihood approach
with different parameters. Then, the true and estimated precision matrices are converted into
a binary form via a threshold value. Hence, all accuracy measures are performed for different
matrix dimensions. In the end, the specificity measure is chosen as the best model selection
criterion.

After that, the k-cross validation and the threshold gradient descent methods are compared in
terms of accuracy and computational time by using Monte-Carlo runs. Then, we conclude that
TGD algorithm is better than the cross validation algorithm in terms of the specificity for each
dimensional matrix. However, TGD method requires more CPU time. In high dimensional
matrices, the specificity and F-measure values of both methods are close to each other. So,
the implementation of the cross validation method can be more appropriate.

In the end, the cross validation and TGD algorithms are performed in estimation of the
JAK/STAT pathway which is an important signalling pathway activated by Type I interferon.
The Type I interferon is used to treat the hepatitis B and C virus infections. Hence, the disreg-
ulation of the JAK/STAT pathway causes many immune disorders. So, it is important to create
network to better understand this pathway. Since there is no real data in the literature about
the underlying system, the simulated data are used in our study. By using Gillespie algorithm
that is based on the chemical master equation and enables us to successfully generate the
stochastic manner of the system, we generate a time-course dataset which contains 10 time
points for 38 proteins. In simulation of the dataset via Gillespie, the necessary reaction list,
reaction rate constants and initial number of molecules for each protein are taken from Mai-
wald et al. (2010). Then, in order to check the performance of the methods under real data,
we use the brief description of the MAPK/ERK pathway that has 8 time points for 6 proteins.
This pathway is one of the well-known systems in cellular growth control of all eukaryotes
and is typically worked on in details for oncogene researches. From both applications we
observe that, similar to previous findings, the threshold gradient descent algorithm estimates
the true quasi structure of the pathway better than the k-cross validation method within GGM
and the specificity measure can successfully capture the plausible penalty value that specifies
the inferred structure of the system.

As the future study, we consider to estimate the complex systems via GGM under distinct
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level of singularity problem by combining our suggested approach which can deal with the
singularity problem with the current codes for GGM. In addition, the Newton Raphson al-
gorithm which is used in TGD method can be improved to gain in CPU time. Because in
the current version of the Newton-Raphson algorithm, the singularity problem is not handled
smartly and the algorithm can stuck even in the first iteration if the initial values cause sin-
gularity challenge. Therefore, if the algorithm can suggest new nonsingular estimators, the
speed of TGD can increase significantly.

Finally, we believe that the way to deal with the inference problem in GGM can be also solved
via the logistic regression method, in which the connection of genes can be represented via
conditional probabilities of all other genes. We consider that this approach can be plausible
at least for small networks.
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[29] Purutçuoğlu, V. (2011). Stochastic Modelling and Parameter Estimation of the HCV Net-
work. Proceeding of the 16th INFORMS Applied Probability Conference, Stockholm,
Sweden, 81–82.
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[50] Wit, E., Vinciotti, V., and Purutçuoğlu, V. (2013). Statistics for Biological Networks:
How to Infer Networks from Data. Chapman and Hall/CRC (in publication).
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APPENDIX A

R CODES

A.1 R CODES FOR NEW METHOD TO SOLVE SINGULARITY

The following R codes are used to solve singularity problem of a matrix with our new method.
Omitsingular function takes a matrix called diffusion as an input covariance matrix and return
its square root as an output of the Omitsingular function. The output of the function is called
as sqrt.diffusion.prop in these codes.

omitsingular < − function(diffusion){
out.prop< − NULL
dependent.structure.prop < − NULL

——————————————————————————————————–
Identifying the linearly dependent columns

——————————————————————————————————–
for(h1in 2:ncol(diffusion)){

rank.diffus.prop < − qr(diffusion[,(1:h1)%w/o%out.prop])$rank
if(rank.diffus.prop ! = h1-length(out.prop)){

cols.A.prop < −(1:(h1-1))%w/o%out.prop
A.prop < − diffusion[,cols.A.prop]
b.prop < − diffusion[,h1]
dependent.structure.prop[[h1]] < − rep(0, ncol(diffusion))
dependent.structure.prop[[h1]][cols.A.prop]< −
round(qr.solve(A.prop,b.prop),5)
out.prop < − c(out.prop, h1)

}
}

——————————————————————————————————–
Obtaining low dimensional matrix

——————————————————————————————————–
new.subst.prop < − ncol(diffusion) - length(out.prop)
rest.prop < −(1:ncol(diffusion))%w/o%out.prop
diffusion.prop < − diffusion[rest.prop,rest.prop]
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sqrt.diffusion.prop < −chol(diffusion.prop)
return(sqrt.diffusion.prop)

}

A.2 R CODES FOR K-CROSS VALIDATION ALGORITHM

The following R codes are used to compute the k-cross validation algorithm. CrossValidation
function takes a matrix called observe as an input observation matrix and takes a vector called
penalty as an input penalty scores. The CrossValidation function returns the best penalty,
which maximizes the likelihood function, as an output. The output of the function is called as
best.penalty in these codes.

CrossValidation < −function(observe,penalty){
size.all< −dim(observe)
n< −size.all[1]
p< −size.all[2]
training.mat< −matrix(0,nrow=(n*0.9), ncol=p)
test.mat< −matrix(0,nrow=(n*0.1), ncol=p)
likelihood< −rep(0,length=length(penalty))
for(i3in 1:length(penalty))

{
test.likelihood< −rep(0,length=(n*0.1))

——————————————————————————————————–
Obtaining the test and the training sets

——————————————————————————————————–
for(i4 in seq(1,n,(n*0.1)))

{
test.mat< −observe[i4:(i4+n*0.1-1),]
training.mat< −observe[-(i4:(i4+n*0.1-1)),]
cov.mat< −cov(trainingt.mat)

——————————————————————————————————–
Estimating the precision matrix and choosing the best penalty

——————————————————————————————————–
train.glasso< −glasso(cov.mat,rho=penalty[i3],penalize.diagonal=F)
if(is.na(train.glasso$loglik))

{ test.likelihood[i4]< −0}
else

{train.pre< −test.glasso $wi
train.mean< −apply(training.mat,2,mean)
train.mean< −matrix(train.mean,nrow=1,ncol=5)
tt< −as.matrix(training.mat-test.mean)
cov.precision< −1/(n*0.1)*tt%*%train.pre%*%t(tt)
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test.likelihood[i4]< −(n*0.1)/2*log(det(train.pre))-(n*0.1)
2*sum(diag(cov.precision))}

}
likelihood[i3]< −sum(test.likelihood)
}
max.likelihood< −max(likelihood)
ind< −which(likelihood==max.likelihood)
best.penalty< −penalty[ind]
return(best.penalty)

}

A.3 R CODES FOR THRESHOLD GRADIENT DESCENT ALGORITHM

The following R codes belongs to threshold gradient descent algorithm. GradientDescent
function takes a matrix called observation as an input observation matrix and return the es-
timated precision matrix as an output of the GradientDescent function. The output of the
function is called as estimated.precision in these codes.

GradientDescent < −function(observation){
X< −observation
size.all< −dim(observation)
n< −size.all[1]
p< −size.all[2]
gamma< −0
delta.gamma< −0.001
lambda< −0.3
q< −p*(p-1)/2

——————————————————————————————————–
Calculating log-likelihood function

——————————————————————————————————–
loglike < −function(param){

diag(prop.prec)< −param
l1< −n/2*log(det(prop.prec))-1/2*sum(diag(X%*%prec%*%t(X)))
l1}

prec< −diag(p)
sumX< −matrix(0,p,p)

——————————————————————————————————–
Updating the precision matrix by using the gradient descent step

——————————————————————————————————–
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for(i2 in 1:n){
sumX< −sumX+X[i2,]%*%t(X[i2,])}

for(i1 in 1:200){
g< −1/2*sumX-(n/2)*solve(w)
goffdiag< −g[upper.tri(g,diag=FALSE)]
offdiag< −prec[upper.tri(g,diag=FALSE)]
w< −matrix(0,1,q)
for(i3in 1:q) {

if(abs(goffdiag[i3])>=lambda*max(abs(goffdiag)))
w[i3]< −1

else
w[i3]< −0 }

d< −w*goffdiag
prec.off< −offdiag+delta.gamma*d
c< −matrix(0,nrow=p,ncol=p)
c[upper.tri(c,diag=FALSE)]< −prec.off

e< −c+t(c)
diag(e)< −diag(prec)
prec< −e
gamma< −delta.gamma+gamma
condition< −-1
while(condition<=0){

prop.prec< −prec
eigen.initial< − -10
while(eigen.initial<0){

eigen.initial< −0
det.check< −det(prop.prec)
if(sum(det.check<=0)! =0){

fluc< −rnorm(p,0,1)
start.var< −diag(prop.prec)+fluc
diag(prop.prec)< −start.var
eigen.initial< − -10 }

else{
eigen.initial< −10 }

}
diag.start< −diag(prop.prec)
est.diag< −maxLik(loglike,start=diag.start,method="nr")
diag(prop.prec)< −coef(est.diag)
if(det(prop.prec)>0){

condition< −1
prec< −prop.prec }

else{
condition< −-1 }
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}
}
estimated.precision< −prec
return(estimated.precision)

}
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APPENDIX B

GRAPHICS FOR PROTEINS

The number of molecules is generated from the stochastic simulation of the JAK/STAT path-
way via the Gillespie algorithm. The results are taken as the last 10 integer time points under
the total time T = 200 (i.e., t =191, 192, 193, 194, 195, 196, 197, 198, 199 and 200) in the
Gillespie outputs. The full names of proteins are presented in Table 4.16 in the main study.

Figure B.1: Changes in the number of molecules for proteins P1, P4, P16, P17, P18, P23,
P25, P28, P29 and P38.
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Figure B.2: Changes in the number of molecules for proteins P2, P5, P7, P10, P11, P12, P15,
P20, P21 and P35.

Figure B.3: Changes in the number of molecules for proteins P9, P24, P30, P33, and P36.
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Figure B.4: Changes in the number of molecules for proteins P3, P6, P13, P19, P31, P32 and
P34.

Figure B.5: Changes in the number of molecules for proteins P8, P14, P22, P26, P27 and P37.
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