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ABSTRACT 
 
 

A LEARNING-BASED METRIC FOR PERSON RE-IDENTIFICATION 

 
 

Oğul, Burçin Buket 

MSc, Department of Information Systems 

Supervisor: Assist.Prof. Dr. Alptekin Temizel 

 
 

April 2013, 58 pages 
 
 
 

Matching pedestrian images captured from different cameras is called person re-
identification problem. The problem is challenging due to the low resolution of 
images, differences in illumination, the positional variance and possible appearance 
of carried objects, such as a bag, at different viewpoints. In this thesis, we 
investigate the discriminative ability of different features extracted from image in a 
binary classification framework. We finally propose a learning based method to 
combine different feature sets, Hue, Saturation, Value (HSV) histogram, Maximally 
Stable Color Regions (MSCR) and Speeded up Robust Features (SURF) matches, in a 
single framework. The experiments on widely used benchmark sets have shown 
that the best accuracy is obtained with weighted and localized histogram features. 
We also argue that further division of pedestrian body along the horizontal axis has 
the potential to increase the reidentification performance. Final integrative 
framework that we built outperforms the existing state-of-the-art models in terms 
of prediction accuracy. 
 

Keywords: Person re-identification, learning based method, HSV histogram, 
Maximally Stable Color Regions (MSCR), Speeded up Robust Features (SURF)
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ÖZ 
 
 

KİŞİLERİN YENİDEN SAPTANMASI İÇİN ÖĞRENME TABANLI BİR YÖNTEM 

 
 

Oğul, Burçin Buket 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Y.Doç. Dr. Alptekin Temizel 

 
 

Nisan 2013, 58 sayfa 
 
 
 

Farklı kameralardan elde edilmiş yaya görüntülerinin eşleştirilmesi, kişilerin yeniden 
saptanması problemidir. Düşük çözünürlüklü görüntüler, aydınlatmadaki 
değişiklikler, konumsal değişimler ve çanta gibi taşınan bazı objelerin değişik 
açılardan görünür olup olmaması bu problemi zorlaştırmaktadır. Bu tezde 
görüntüden çıkarılmış değişik özniteliklerin ayırt edebilirlik yeteneği, bir ikili 
sınıflandırma altyapısında incelenmiştir. Sonuçta, değişik öznitelik kümelerini (HSV 
histogramı,  Maximally Stable Color Regions (MSCR)  ve Speeded up Robust 
Features (SURF)), tek bir çatı üzerinde birleştirebilen öğrenme tabanlı bir yöntem 
önerilmiştir. Bazı kıyaslama kümeleri üzerinde yapılan deneyler göstermiştir ki, en iyi 
doğruluk değerleri, ağırlıklandırılmış ve yerelleştirilmiş histogram özniteliklerinden 
elde edilmiştir. Yayaların vücut görüntülerinin yatay eksende daha da bölünmesinin, 
kişilerin yeniden saptanmasındaki performansı arttırdığını savunuyoruz. 
Gerçekleştirdiğimiz nihai entegre altyapı, doğruluk anlamında en gelişkin 
modellerden daha iyi sonuçlar üretmiştir. 
 

Anahtar Kelimeler: Kişilerin Yeniden Saptanması, öğrenme tabanlı yöntem, HSV 
histogramı, Maximally Stable Color Regions (MSCR), Speeded up Robust Features 
(SURF) 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 Motivation 

 
We are witnessing a ubiquitous use of surveillance cameras both in outdoor and indoor 
environments for different purposes such as security, traffic monitoring and employee 
management. One of the main problems in these video surveillance systems is the 
matching of a moving person over multiple cameras. If a pedestrian in a camera view is 
seen in another one, matching their equality could simplify the rest of the recognition 
process. This problem is called as the person re-identification problem. Although the 
problem has received a great attention of researchers in the field of computer vision, the 
desired level of recognition accuracy could not be achieved so far. Several obstacles exist to 
hinder a significant improvement in the prediction performance. First, it is difficult to 
observe spatial continuity between two disjoint camera views especially when the camera 
views do not overlap. Second, the illumination conditions may differ in different views and 
different time points, which make it hard to calibrate. Third problem is the potential 
variation in poses and occlusions across time and camera. For example, while a backpack 
belonging to a person is visible when the image of the person is captured from the side, it 
may not be visible in another camera view captured from the front. The similarities 
between dressing habits make also the problem harder. Many people dress jeans, or white 
and black are quite common choices in upward clothes. Finally, the current methods suffer 
from the low quality of input images. Since the cameras are usually located to monitor a 
wide area images of individual persons have low resolution. Therefore, viewpoint and scale 
invariant models are needed to solve the problem. 
 
 

1.2 Contributions 

 
Tough great effort has been spent, the problem of person re-identification is still far from 
being effectively solved and faces several challenges for further improvement. In this study, 
we attempt to overcome the limitations in the literature by a discriminative framework that 
combines several feature sets over a learning-based metric. We also propose to divide the 
body into a number of horizontal segments and compute distinct histograms for each of 
these segments. In this respect, the body is first extracted from the background and 
automatically divided into two sub-parts: torso and leg. Then, each sub-part is divided into 
further horizontal segments with equal vertical lengths. These features are then combined 
with other features like SURF and stable segment content over the proposed supervised
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distance metric. The experiments have shown that this approach can produce more 
accurate results in comparison with other feature sets and existing models.  
 
The contribution of this thesis is three-fold: 
 

 First, we propose to combine three major image feature sets in a single model; 
color features by histograms, texture features by MSCR, interest point features by 
SURF matches. We have shown that SURF matching can be useful when it is used in 
association with other features, while it is not so successful when used alone.  
 

 Secondly, we argue that a better identification performance can be achieved when 
the weights of these features are guided by a supervised learning metric for final 
decision instead of using fixed participant weights for each.  
 

 Finally, we report that dividing semantically segmented body parts (torso and leg) 
into further horizontal segments can improve the prediction accuracy. We have 
demonstrated that our final model can improve upon the state-of-the-art on a 
common challenging dataset. 

 
 

1.3 Organization of the Thesis 

 
The remainder of this thesis is as follows: 
 
In Chapter 2, related works are presented. In Chapter 3, the proposed methods are 
discussed. First, the general concepts of learning based metrics are described. Then feature 
sets that are used in this thesis are explained in detail. Finally, preprocessing methods and 
localized histograms on horizontal segments are presented. In Chapter 4, firstly, the dataset 
and validation methods used in thesis are described and then, the obtained results are 
shown. The summary of the thesis, the conclusion and the future work are given In Chapter 
5. 



3 
 

CHAPTER 2 

 
 

RELATED WORK 
 
 
 
The task of determining an object which appears in the field of view of one camera and 
recognizing the same object again in the same or another camera is called as “object re-
identification” (Hamdoun, 2010). The commonly used technique in object re-identification 
is object histogram matching used in Gandi and Trivedi (2007), Pham et al. (2007), Orazio et 
al. (2009). For object re-identification, using object texture characteristics (Lantagne et al., 
2003) and interest points are applied in some other works (Arth et al., 2007). Javed et al. 
(2008) combines object motion parameters with object appearance models. Two most 
common forms of object re-identification problem are vehicle and person re-identification. 
The former one is simpler (Gandi and Trivedi, 2007) because of the rigidity of the vehicles, 
paths they move on and the uniform color they have. In vehicle re-identification the most 
common features used are: size, velocity, lane position (Huang and Russel, 1998), color 
information (Kogut and Trivedi, 2007) and time of observation (Trivedi et al., 2005).  

Various models have been introduced for person re-identification in the literature to 
address the challenges described in previous chapter. They usually differ in the feature sets 
used to represent images and the strategy used to make the final decision of pedestrian 
matching. A summary of previous studies can be found in Table 1. 
 
In one of the earliest studies, Gheissari et al. (2006) defined an invariant signature based on 
a combination of normalized color and salient edgel histograms. They introduced a novel 
spatiotemporal segmentation algorithm to generate salient edgels that are robust to 
changes in appearance of clothing. The color information was captured by histograms 
based on hue and saturation. Final re-identification was achieved by evaluating pairwise 
histogram distances.  
 
Hamdoun et al. (2008) proposed another signature based on interest point descriptors 
obtained from a set of consequent images. They built a multi-view invariant model of each 
pedestrian by accumulating time-series interest points using an efficient variant of SURF 
[11]. To match pedestrians, they implemented the Best Bin First search in a KD-tree 
containing all models. The major limitation of this work is the fact that it requires multiple-
shot of each person across more than two cameras to effectively exploit time-series 
signatures. Another problem is that, as we also validated in our experiments, a high quality 
image set is required to detect valuable interest points, which is rarely the case in 
surveillance camera records. 
 
While several color and texture features had been exploited in image distance calculations 
for person matching, Gray and Tao (2008) introduced an automated selection scheme to 
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identify most representative feature sets. They released an accompanying dataset, called 
ViPeR, with their method Gray et al. (2007). In this challenging dataset, they showed that a 
viewpoint invariant feature set can be selected by an effective learning approach based on 
AdaBoost. They prove that most valuable feature for person recognition is localized Hue 
histogram. Their method is usually referred as ELF (Ensemble of Local Features) in the 
literature. 
 
Prosser et al. (2010) conducted a similar research, but they used Support Vector Machines 
instead of AdaBoost and retrieved top ranked results by redefining the person 
reidentification task as a ranking problem. They reported similar results to Gray and Tao 
(2008); emphasizing the importance of localized color features. 
 
Oliveira and Luiz (2009) developed a model based on the matching of interest points 
collected in a query image with those collected in each video sequence used for each 
previously seen person. They used hue information as feature descriptor. The interest 
points were detected in two steps: finding the image Hessian matrix and searching the 
points that are significant, i.e. maximum and minimum values in Hessian. For comparison, a 
Haar-wavelet is used as an invariant signature, calculated for a set of pixels in a circle 
centered at an interest point. 
 
Farenzena et al. (2010) reported the best results obtained to date on VIPeR dataset, 
currently the most difficult single-shot data set available. With a rigorous preprocessing of 
images, they extracted the whole body from the background and automatically divided it 
into three semantic parts: head, torso and leg. On vertically partitioned images, they 
accumulated horizontally symmetry-driven features to overcome the variance due to a 
different viewpoint. They also introduced a novel feature representation scheme based on 
the presence of Recurrent Highly Structured Patches. Overall model is called as SDALF 
(Symmetry Driven Accumulation of Local Features). 
 
A comparison of interest-point-based features for person reidentification was presented by 
Bauml et al. (2011). Similarly, a comparison of color histogram features can be found in 
Gray et al. (2007). According to experimental results, color features outperform the others 
in terms of cumulative matching characteristic (CMC) curve, a common experimental 
measure of person reidentification accuracy. 
 
Bak et al. (2010a) and Bak et al. (2010b) are two other examples of descriptive techniques 
which employ a set of local features extracted from image and then use a distance measure 
to match people. Former approach combined Haar-like texture features with dominant 
color descriptor. The latter one evaluated the performance of spatial covariance regions by 
segmenting the image into body parts. 
 
Cai and Pietikainen (2010) proposed a novel approach, inspired from topic models in 
document matching, which represented each image by the counts of a set of colorwords 
previously constructed using color features. The colorwords were created by applying a 
simple k-means algorithm on 3x3 windows in a set of training images. They reported that 
hue and opponent histograms could achieve fairly well accuracy in person reidentification. 
 
Hirzer et al. (2011) proposed a hybrid model that combines the descriptive and 
discriminative approaches. The image pairs were first evaluated by a region covariance 
descriptor and then fed into a discriminative model if a reasonably high rank was obtained. 
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The result of discriminative step was considered as a validation of first prediction, which in 
turn inhibited the number of false positives. They have shown that the hybrid solution 
could achieve better accuracy than single models. 
 
Brun et al. (2011) represented an image by a graph whose nodes refer to segmented 
regions in the body based on Statistical Region Matching (SRM). Each node comprises 
average RGB values and the number of pixels for the corresponding region. Similarity of 
two graphs then refers to the similarity of two persons. 

 

Table 1. Previous models for person re-identification 

Reference 

Features Decision  

Color Texture 
Feature Selection 
and Use 

Association 

Gheissari et al. (2006) HS Salient edgels Histograms Euclid distance 

Hamdoun et al. (2008) None SURF-like Interest points 

Sum of 
absolute 
differences  by 
Best Bin First 
search 

Gray and Tao (2008) 
RGB, HSV, 
YCbCr 

Gabor, Schmid 
filters 

Learning based 
(AdaBoost) 

AdaBoost 
result 

Oliveira and Luiz (2009) Hue SURF-like Interest points 
Sum of 
quadratic 
distances 

Prosser et al. (2010) 
RGB, HSV, 
YCbCr 

Gabor, Schmid 
filters 

Learning based 
(SVM) 

SVM-rank 

Farenzena et al. (2010) 
HSV, stable 
color regions 

RHSP Symmetry-driven Euclid distance 

Bak et al. (2010a) 
Dominant color 
descriptor 

Haar-like 
Binned 
descriptors 

An ad-hoc 
similarity 
measure 

Bak et al. (2010b) 
Oriented 
gradient 

Spatial 
covariance 

Binned 
descriptors 

Pyramid 
matching 

Cai and Pietikainen 
(2010) 

Hue, Opponent None 
Codeword 
composition 

Chi-square 
distance 

Bauml et al. (2011) None SIFT-like Interest points Point matches 

Hirzer et al. (2011) None 
Haar-like, 
region 
covariance 

Learning based 
(Boosting) 

Boosting rank 

Zheng et al. (2011) 
RGB, HSV, 
YCbCr 

Gabor, Schmid 
filters 

Learning-based 
(Probabilistic) 

Probabilistic 
Relative 
Distance 
Comparison 

Brun et al. (2011) 
RGB of 
segmented 
regions 

Area of 
segmented 
regions 

Graph of 
segmented 
regions 

Graph 
comparison 
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CHAPTER 3 

 
 

METHODS 
 
 
 
The overview of the proposed person reidentification system is illustrated in Figure 1. The 
study consists of three main steps: preprocessing, feature extraction and classification. First 
of all, in the preprocessing step, HSV color space is used with two operators, chromatic 
bilateral operator and spatial covering operator, to extract background information and 
body parts of each pedestrian. Feature extraction step is a combination of 3 feature sets, 
Weighted Histogram, Maximally Stable Colour Regions (MSCR) and Speeded up robust 
features (SURF) detector. In the final step, classification, we use FLDA to solve the binary 
classification problem. Further sections give the details of preprocessing, feature extraction 
and classification steps. 

 
 
3.1 Preprocessing 

 
Before the feature extraction process, a 3-step preprocessing phase is applied to eliminate 
unnecessary background information, to extract horizontal body parts and to find vertical 
symmetry axis for feature extraction. For background extraction structuring element 
component analysis, which is known to be a successful method for foreground/background 
separation, is customized for pedestrian images as suggested by Farenzena et al. (2010). 
The other parts of preprocessing will be described in the following subsections in detail.  

 
 
3.1.1 Body Part Detector (Horizontal Segments) 

 
In this thesis, the body part extraction and symmetric partitioning steps are performed as 
suggested by Farenzena et al. (2010). The body is first automatically divided into three 
meaningful parts: head, torso and leg. This extraction process starts with separating torso 
and leg, the two largest body parts characterized by different color distributions (e.g. the 
regions comprising t-shirt/pants or suit/legs). The process goes on with searching 
asymmetrical axis between head and shoulders. The operators used for symmetry-based 
silhouette partitions are: 

 

 Chromatic bilateral operator: For each horizontal axis, say  , in HSV image, the 
Euclidian distance of foreground pixel values at    and    ̂  which locates 
symmetrically with respect to the  th axis is calculated and summed over [    , 
   ].   equals to  /4 to achieve scale independency, where   is the image height.
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Figure 1. System Overview 
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Being a color operator, chromatic bilateral operator value is optimized with spatial 
covering operator at a point    , where two regions are most distinguishable by 
colors such as skirt-T-shirt or jean-shirt. Calculation of chromatic bilateral operator 
is given in Equation 3.1. 
 

 (   )   ∑   

 [       ]

(     ̂)  (Equation 3.1) 

 
where  (   ) is Euclidian distance,   is the subregion with respect to the  th 
horizontal axis with a height   and finally,    and   ̂  are the pixels which locate 
symmetrically with respect to the  th horizontal axis. 
 

 Spatial covering operator: Similar to chromatic bilateral operator, spatial covering 
operator calculates the difference of foreground areas for two regions which are 
symmetric to the  th horizontal line. It is given in the Equation 3.2: 
 

 (   )   
 

  
| ( [     ])    ( [     ])|  (Equation 3.2) 

 

where in  ( [     ])  A shows the foreground area with a width of   and vertical 

extensions [     ]. 

 

Figure 2. (a)  Torso-leg separation, (b) Head-torso separation 

 

    has an interval between [ , (  -  )] = [ /4, 3 /4]]. In Figure 2 (a), the regions with a 
height of   with respect to the  th horizontal line is shown. The horizontal line which 
separates the torso and the legs,  , is found at the 54th slice where the height of the image 
is,  , 128 and the range is between   =32,   -   =96.  The torso-leg separation axis is given 
by Equation 3.3. This equation gives the separating region with strongly different 
appearance and similar area.  
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              (   (   ))    (   ) (Equation 3.3) 

 

Once     found,     is searched between the range depending on    , [ ,    –  ], which can 
be between [0,  /2]. The magenta lines in (b) shows the head and torso separation line 
interval. Then,   becomes 32 and    -   becomes 22. The yellow dashed line shows the 
    line at 22nd slice.     is given by Equation 3.4. The formula gives the separating regions 
that strongly differ in area. 

              (  (   )) (Equation 3.4) 

 
 
3.1.2 Symmetric Partitioning (Vertical segments) 

 
To find vertical symmetry axis, chromatic bilateral operator and spatial covering operator 
are used in a similar manner. Since head partition consists of very few pixels, it is assumed 
that the head does not contain much information. Therefore, the symmetry axis is found 
for only torso and legs. For symmetry search, chromatic bilateral operator and spatial 
covering operator are calculated as described above, not for the regions that locates 
symmetrically with respect to the  th horizontal axis but for  th vertical axis. Since we want 
to locate symmetric vertical axis, we now look for the minimum distance, i.e. the maximum 
similarity between the appearance and area of these two regions. Hence, both for torso 

and leg the vertical axis is given by the Equation 3.5. 
 

                (   )    (   ) (Equation 3.5) 

 

 

Figure 3. Symmetric Partitioning sample 

Figure 3 shows the vertical axis,  =23, where the torso symmetry is found corresponding 
image. As described above, while calculating C and S, the regions are  -width regions which 

are symmetric to the  th vertical axis, where the width of image,   = 48, and   =  /4, 12.  
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3.2 Feature sets 

 
A feature is a numerical attribute that represents a local or global property of a given 
object. The selection of features usually depends on the problem under consideration. The 
discriminative abilities of some attributes usually impose their direct use in the inference 
model studied. In some cases, using a single set of features may not be successful to obtain 
a satisfactory inference performance. This usually leads to a decision of data integration to 
obtain higher accuracy. When the images are our concern, several feature sets have come 
into prominence in computer vision applications. In this thesis, we consider some of them 
that potentially provide more valuable discriminative information in recognition of 
pedestrian images. In addition to their single use, we also consider integrating them in a 
single framework using the model described in Section 3.3.  The feature sets that are 
considered in the thesis are (1) color features described by weighted histograms, (2) texture 
features described by maximally stable color regions and (3) interest points matches with 
two common practical approaches, called SIFT (Scale-Invariant Feature Transform) and 
SURF (Speeded Up Robust Features). The details of these features are explained in the 
following subsections. 
 
 
3.2.1 Weighted Color Histograms 

 
Most common representation of a pixel is three numeric values that refer three color 
channels; red, green and blue. A color histogram is a frequency representation of the 
distribution of these colors in an image. An example color histogram is shown in Figure 4 for 
each RGB channel of a pedestrian image (the image numbered by 0221001 in VIPeR data 
set, see Section 4.1.1): 

 

 

Figure 4: Histogram of each RGB channel of the image numbered by 0221001 in VIPeR dataset (Gray 
et al., 2007). 

 
Since RGB (Red, Green, Blue) color representation is related with the amount of the light 
that hits the object, it is easily affected by illumination changes. Due to this problem of RGB 
representation, HSV (Hue, Saturation, Value) which is also called HSB (Hue, Saturation, 
Brightness), became the most widely used color space in person re-identification problem. 
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While in some cases value of each channel is used as a direct feature (Gheissari, 2006; Gray-
Tao, 2008; Prosser, 2010; Zheng, 2011), remaining studies use color histograms (Cai, 2010; 
Farenzena, 2010). Colors are described in RGB color space as a combination of primary 
colors while in HSV outside of color, saturation and brightness terms are also used.  HSV 
simulates the perception of color by human since we interpret the colors based on their 
hue, saturation and brightness.  

 
 Hue represents the observed dominant color of an object (Plataniotis, 2000). It is 

represented on an angular dimension in which the start point at 0° is shown with 
Red. RGB to Hue conversion formula is shown in Equation 3.6: 

 
 

       {     }               {     }  

 

(Equation 3.6) 
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 Saturation represents the amount of white light on the color. The more pureness of 
the color (such as red, violet) the less white appears in the color. However colors 
such as pink and lavender which becomes integration of red+white and 
violet+white respectively are less saturated (Plataniotis, 2000). RGB to Saturation 
conversion is done: 
 

   {
                                  

  
   

   
                   

 (Equation 3.7) 

 

 Value is the brightness of the color (Equation 3.8). It has a range from 0 to 255; the 

former is dark and the latter is fully bright. 
 

      (Equation 3.8) 
 
In this thesis, for each horizontal segment, except head part of the body, we use 16 bins for 
each of the channels which convey color information (H and S), but for brightness value, we 
use bigger intervals between bins by using 4 bins to keep effects of different pose and 
illumination conditions in minimum. The head part is not used in any of the feature 
extraction steps as suggested by Farenzena et al. (2010). It is mentioned that this part 
carries very low information in discriminating two images since the color content does not 
change significantly between two people. Since it is proven to be more effective in this 
problem, we use Weighted Histogram approach proposed by Farenzena et al. (2010). 
Weighted histogram is a more specific color histogram in which a vertical axis of 
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appearance symmetry is used to weigh histograms. To count the pixels near the symmetry 
axis more in the histogram, a one-dimensional Gaussian kernel is used to weight each pixel 
based on its position with respect to the symmetry axis found. In Figure 5 (a) pedestrian 
numbered by 0221001 in VIPeR data set, (b) its HSV image (for illustration, HSV is directly 
mapped into RGB) and (c) its Gaussian kernel used in Weighted Color Histogram calculation 

is shown. 

 

Figure 5: (a) Same pedestrian in Figure 4, (b) HSV image of this pedestrian, (c) Gaussian kernel 
 
A distinct weighted histogram is extracted for each automatically extracted parts of the 
body; torso and leg. Further division of these parts is also considered obtaining several set 
of histograms for a single pedestrian image. Automated body part detection and the 
division of the image into lower segments are further elaborated in Sections 3.1 and 3.4. 

 
 
3.2.2 Maximally Stable Color Regions (MSCR) 

 
MSCR is an extension of Maximally Stable Extremal Regions (MSER) to color. The concepts 

of MSER are defined by Matas et al. (2002). A MSER in a gray level image, I, is given by: 
 

  ( )   {
            ( )   
                  

 (Equation 3.9) 

 
where t consists of all possible threshold values in the gray level image, I. A MSER is the 

connected regions in    with a size change below a predefined threshold value over a 
range of thresholds. Figure 6 depicts the MSER region in the input image (a). All the coins in 
the figure are detected as stable regions since the change on the size of the connected 
regions is relatively small from (d) to (h). 
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Figure 6: (b) to (h) depicts the MSER regions for the image in (a) 

MSCR is an operator to detect a number of stable regions obtained by clustering of pixels 
based on spatial color distribution (Forssen, 2007). This agglomerative clustering process 
clusters neighboring pixels with similar colors in which similarity of the colors is modeled by 
using Chi-Squared Distribution. Figure 7 illustrates a MSCR of an image. The regions 
detected by this operator are abstracted by some of their properties such as area, centroid 
and average color. To get an attribute value for learning-based metric, the minimum 
distance of closest regions detected in two camera image is calculated. 

 

Figure 7: (a) Image numbered by 0010001 in VIPeR, (b) Mask Image, (c) MSCR image of (a) 
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3.2.3 Recurrent High-Structured Patches (RHSP) 

 
RHSP, also called epitexture feature, consists of four main steps. Firstly, for each 
pedestrian, a random set of patches   are extracted from the foreground part. To eliminate 
non-informative ones, a thresholding operation which is based on the values of entropy of 
the patches is applied. After removing the uniformly colored patches, the transformation 
process is applied. To check each patch’s invariance to geometric variations of the object, a 
set of patches  ̂ generated for each patch by considering rotations along the y axis of the 
patch. The third step shows how recurrent a patch is. For each patch in  ̂, Local Normalized 
Cross-Correlation is evaluated and an average map is obtained by merging and thresholding 
the maps. The thresholding takes place to discard small values in each map. The last step 
clusters the patches to avoid similar patches. 
 
 

3.2.4 Interest Points 

 
Using interest points for extracting local features has been widely studied in matching 
images belonging to the same object from different view-points. An interest point can be 
defined as a local pattern in an image that describes it in a highly distinctive way, 
independently from the color information. We have seen a few applications of this 
approach for the person re-identification problem. Several variants of interest points 
matching has appeared in the literature. We start the introduction with a basic model 
called SIFT and describe its two improved versions, SIFT-Flow and SURF, which are used in 

this thesis as one of the feature sets to represent the pedestrian images. 
 
 
3.2.4.1  Scale-invariant feature transform (SIFT) 

 
SIFT is an interest point operator that extracts distinctive scale and rotation invariant 
features which are also robust to noise, clutter, occlusion, illumination and 3D camera 
viewpoint changes (Lowe, 2004). After extracting interest points, the aim is to compute 
descriptors for these interest points. SIFT is composed of the stages below:  

 

 Detection of the scale-space extrema : First stage aims to find stable keypoints in 
scale space using (Difference of Gaussians) DoG function. The candidate interest 
points are detected by finding local maxima and minima for the images computed 
using DoG function for different scales. 
  

 Keypoint localization: First stage gives stable candidate keypoints. In this stage, 
some candidates are removed due to their low contrast, sensitivity to noise and 
close appearance to the edges.  
 

 Orientation assignment: Each keypoint is characterized by the dominant gradient 
magnitude and the orientation calculated over designated pixels.  
 

 Keypoint descriptor: For each keypoint, a 128-dimensional vector is assigned as a 
result of 4x4 array of histograms with 8 orientation bins for each. 
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Figure 8: 1021 keypoints are found 

 
Figure 9: 579 keypoints are found 

 

 
In the Figures 8 and 9, the location, the scale and orientation of keypoints are given on two 
different images. The length of the arrows indicate the scale in which keypoint found, 
orientation of the arrows shows the dominant gradient orientations assigned to each 
keypoint and root of the arrow shows their location.  Matched features between these two 
images are displayed in Figure 10. 

 

 

Figure 10: 34 matched keypoints found 
 
 
3.2.4.2 SIFT Flow 

 
SIFT  Flow,  a  SIFT  descriptor  based  approach,  developed for image alignment (aka image 
registration) problem at scene level (Liu et al., 2011). In a large image database which 
consists of different scenes, SIFT Flow aligns the query image to its nearest neighbors in this 
database. The main idea behind the SIFT Flow approach is extracting SIFT features for all 
pixels in an image, not just for the keypoints. Liu et al. (2011) called this per-pixel SIFT 
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descriptor as SIFT Image. Pixel to pixel correspondences are used to find best matches and 
calculate warped images. Matching two SIFT images is very similar to optical flow, where an 
image is aligned to its temporally adjacent frame. The aim is to match SIFT descriptors from 
2 images along the flow vectors by using the energy function below (Liu et al., 2008): 
 

 ( )  ∑||  ( )     (   ) || 
 

  
 

  
∑(  ( )      ( ))

 

  ∑    ( | ( )   ( )|  )

(   )

 

     ( | ( )   ( )|  ) 

(Equation 3.10) 

 

where   is the index of pixels,  ( )  ( ( )  ( )) is the flow vector for every pixel.    and 
   represent the SIFT image for two frames, respectively. In image retrieval in a large 
database Liu et al. (2011) stated that the best matched pairs are the ones with the 
minimum energy.  
 
Using SIFT Flow in this thesis, our aim is to calculate a distance matrix for all pedestrian 
images in a given dataset. For every image in the dataset, densely sampled SIFT features are 
extracted and for each combination of these SIFT images the energy values are calculated 
as described in the method above.  

 
 
3.2.4.3  SURF (Speeded Up Robust Features) 

 
Similar to SIFT, SURF is also scale and rotation-invariant interest point detector and 
descriptor (Bay et al., 2008). However, it is more robust and much faster than SIFT 
approach. This strong performance is achieved by the use of Integral Image and changing 
the methods used in interest point detection and extracting descriptors.  
 

 Integral Image: The computational time and efficiency provided by Hessian matrix 
leads Bay et al. to use it as a detector. The Fast Hessian detector relies on integral 
image described by Bay et al. (2008) for image convolutions.  
 

 Detector and descriptor: For detection, Hessian matrix is used for speed 
considerations, as described above. For descriptor part, the sum of the Haar 
wavelet response around the point of interest is used. Also, instead of using a 128 
dimensional descriptor, it is reduced to 64. 

 

In this thesis, we used SURFmex implementation1 to find and match interest points. 
Number of matched interest points is counted as a similarity measure and used as an 
attribute in Fisher discriminant function. 

 
 

                                                           
1
 Available in: http://www2.maths.lth.se/matematiklth/personal/petter/surfmex.php 

http://www2.maths.lth.se/matematiklth/personal/petter/surfmex.php
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3.2.4 Distance Metrics 

 
To compare histograms obtained from two images or image parts, several distance metrics 
can be used. Given two vectors X = (  ,   , …,   ) and Y = (          ), say that they 
correspond to two distinct histograms, we can use the following metrics to identify their 
similarity. Indeed, these metrics usually define a distance between two samples to evaluate 
their dissimilarity, which in turn can be used a similarity measure: 
 

 Euclidean Distance: Euclidean Distance, also known as ‘Pythagorean distance’ is 
one of the most widely used distance metric. The distance between the points in X 
and Y is calculated as: 
 

 (   )  √∑(     ) 
 

   

 (Equation 3.11) 

 

 Chi (  )-Square Distance:    distance is useful when making a bin-to-bin 
comparison on histograms (Pele and Werman, 2010). The bin-to-bin dissimilarity 
measures just compare the corresponding histogram bins. Here, it is theoretically 
assumed that the domain of the histograms is aligned. The name of this distance 
metric comes from Pearson's    squared test statistic, (Pearson, 1900) which is 
used to show likeliness of one distribution being drawn from another one. In some 
cases, e.g. while comparing histograms; the difference between small bins becomes 
more important than the difference between large bins. This metric considers this 
issue and reduces the difference between small bins by: 

 

  (   )   
 

 
∑
(     )

 

(     )
 

 (Equation 3.12) 

 
This metric is used in several domains such as texture and object categories 
classification (Cula et. Al, 2004; Zhang et al., 2007; Varma et al., 2009), local 
descriptors matching (Forssen et al., 2007), shape classification (Belongie  et al., 
2002; Ling et al. 2007) and boundary detection (Martin et al., 2004). 
 

 Earth Mover’s Distance: Unlike bin-to-bin dissimilarity measures which compare 
corresponding histogram bins, in cross-bin measures, non-corresponding bins are 
also compared. Main disadvantage of bin-by-bin comparison is the assumption that 
aligned histogram bins are not practically possible due to the lightening conditions 
or noise effects. Earth Mover’s Distance is developed to overcome this problem 
(Rubner et al., 2000). This method defines the distance between two histograms as 
a solution of the transportation problem in which the minimal cost while 
transforming one histogram to another is tried to be found (Rubner et al., 1997). An 
example is illustrated in Figure 11, in which EMD performs superior to common bin-
to-bin comparison metrics. (a), (b) and (c) shows three shapes and log-polar grid on 
them. (d), (e) and (f) corresponds 2D histograms of the figures on them using the 
same 2D grids. (g) summarizes the distances calculated by using EMD and three bin-
to-bin distance metrics, L1, L2 and     between the histograms of the figures (a), 
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(b) and (c). In spite of the huge difference between the 2D histograms of (d) and 
(e), their corresponding figures, (a) and (b) has a small change in the blobs on them. 
This large change causes all bin-to-bin distance functions incorrectly describe that 
the similar pairs (d(a,b) > d(a,c)). However, EMD correctly states that the similarity 
between (a) and (b) is approximately 3 times larger than (b) and (c).   

 

Figure 11: An example where EMD measure performs better than bin-to-bin dissimilarity measures. 
Source: Ling and Okada (2007) 

Considering two signatures,    {(     )}   
 and    {(     )}   

 
 where the 

elements in   are supplies with a size   and located at    and the elements in   
are demands with a size   and located at   ,    and    give us the amount of supply 

and demand respectively. The EMD between two signatures is formalized as: 
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  {   }

∑          
∑       

  (Equation 3.13) 

 

with following constraints: 

 

∑        

 

 ∑        

 

 ∑        { ∑  
 

 ∑   
 

} 
   

         (Equation 

3.14) 

where    { 
  
} consists of a set of flows.     is the flow between    (supplies) and 

   (demands). The aim is to find the flow     that minimizes the amount of work. 

    called the ground distance between the position    and   . This formulation can 

be used accordingly for the histogram vectors X and Y described above. 
 

 Bhattacharyya Distance: Originally, in statistics, this distance measure is used to 
compare two probability distributions (Bhattacharyya, 1943). However, in our case, 
we use X and Y, the distributions of histogram bins, instead of probability 
distributions. Bhattacharyya distance is defined as,  
 

 (   )   √   (   )  (Equation 3.15) 
 

where  (   ) denotes Bhattacharyya coefficient (measure) (Bhattacharyya, 1943).  
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 (   )   ∑√ ( ) ( )

 

   

  (Equation 3.16) 

 

This measure is widely used in Computer Vision and Pattern Recognition, especially 
in surveillance systems (Sharif et al., 2010), feature extraction and selection (Xuan 
et al., 2006; Ke et al., 2010; Choi et al., 2003), clustering (Mak et al., 1996), 
recognition systems (You et al., 2010) and also in several domains such as Statistics-
Theory (Chaudhuri et al., 1991), Communication Technology (Kailath, 1967). 

 
 
3.3 Learning-based metric 

 
Our model takes two images as input and decides if they belong to the same person. Each 
image is taken from disjoint cameras and corresponds to the whole body view of a 
pedestrian. Since the model is built upon a discriminative framework, the problem turns 
out to be a binary classification problem where an image pair is represented by a fixed-
length of the feature vector and the system reports their match as a positive prediction. To 
settle a confidence measure for any pedestrian matching, we define the problem using a 

linear discriminant function which in turn will provide a rank for predicted matches: 
 

                        (Equation 3.17) 

Here,    denotes any attribute that represents the similarity (or distance) between two 
pedestrian images in some evaluation criteria, and    denotes the contribution of that 
feature in the final decision.   is a measure of potential match between two pedestrians 
included in the pair images. It also represents the confidence of prediction; i.e. a higher 
value indicates a higher probability of a correct match. Given a set of known 
matched/unmatched pairs, the problem is to find   which optimizes a function that 
discriminates best between correct and incorrect matches. In order to solve this equation 
we used 2 different methods: 
 
 

3.3.1 Fisher Linear Discriminant Analysis (FLDA) 

 
The main idea of the FLDA is to search for a projection line that well separates the objects 
from predefined classes (Fisher, 1936). The result of a linear combination of features 
created by LDA gives us the largest mean differences between the desired classes (Martinez 
and Kak, 2001).   
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Figure 12: Projection of sample 
 

 

Figure 13: Means of classes 1 and 2 

In Figure 12, the distance of projection of sample    is given by      where      is a unit 
vector which shows the line direction. Figure 13 shows the means of classes 1 and 2 
(  and   ) and the means of the projection of classes 1 and 2 (horizontal projections:   ̃ 
and   ̃ vertical projections:   ̂ and   ̂) where   ̃    

    and similarly   ̃    
   . From 

the definition of FLD above, the larger the distance of projections means the better is the 
expected separation. From the Figure 13, it is seen that the vertical axes is a better line than 
the horizontal axes to project to for class separability. However the distance in horizontal 
axes is bigger than vertical one. In order to eliminate such problems, the variance of the 
classes must be considered. Therefore, the means must be normalized by a factor which is 
proportional to variance called scatter. Scatter is the spread of data around the mean. If we 

define projected samples as     given by: 
 

     
    (Equation 3.18) 

 

then the scatter for projected samples of class k becomes: 

 ̃ 
   ∑ (      ̃)

 

          

                           (Equation 3.19) 

The objective function which creates a linear combination of the classes becomes: 

 ( )   
(  ̃     ̃)

 

 ̃ 
    ̃ 

  (Equation 3.20) 

To maximize this objective function, projected means must be far from each other while 
scatter values in each class must be as small as possible which means each class must be 
clustered around their projected means. To this end, two measures should be defined:  
 

 Within-class scatter matrix: Define the separate class scatter matrices     and     
for classes 1 and 2. They measure the scatter of original samples    (before 
projection):  

     ∑ (      )(      ) 
 

            

 (Equation 3.21) 

 

     ∑ (      )(      ) 
 

            

 (Equation 3.22) 

now within-class scatter matrix can be defined as: 
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              (Equation 3.23) 

 

 Between-class scatter matrix: measures separation between the means of two 
classes (before projection) and is given by 
 

     (      ) (      )
  (Equation 3.24) 

 

FLD tries to minimize within-class measure while maximizing the between-class measure.  

Rewriting the objective function gives the final criterion to maximize for FLDA: 

 ( )   
(  ̃     )̃

 

 ̃ 
    ̃ 

   
      

      
 (Equation 3.25) 

This function is proven to be optimized when; 
 

      
  (      ) (Equation 3.26) 

 

The computation of   refers to the training phase of FLDA. Each sample is then predicted 
by its projection into separating line by the formulation that we introduce in our learning-

based metric. 
 
 
3.3.2 Support Vector Machines (SVM) 

 
SVM classifier aims to find the optimal hyperplane that separates the data into two 
categories in which one side of the plane consists of the first category of the target variable 
and the other side consists of the second category. The N-dimensional hyperplane 
constructed by SVM analysis maximizes the margin between support vectors, the vectors 
near the hyperplane. 
 
SVM must deal with: 

(a) more than two predictor variables,  
(b) handling the cases where clusters cannot be completely separated, 
(c) nonlinear dividing lines , 
(d) handling classifications with more than two categories.  

 
 
These issues are clarified in more details below: 
 

a. The separating hyperplane: As described above, finding a separating hyperplane on 
a 2-dimensional plane geometrically means that inferring a rule that corresponds to 
drawing a line between the two clusters. For the data which are in N-dimensional 
space, there exists a separating hyperplane in N-1 dimension.  
 

b. Soft-margin: In many cases, the real data sets cannot be linearly separable; instead, 
some samples will appear that breaks the linear separability. In such cases, the 
amount of overlap between two categories is controlled by a cost parameter, to 
allow some error while separating them. In this way, a so-called soft-margin can be 
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created, which enables the seperating hyperplane to keep some samples inside the 
margin without changing its final position, and thus not affecting the training result.  
A high cost value C forces the SVM to create a more accurate model that may not 
generalize well and increase the cost of misclassification while a lower cost 
parameter leads to a simpler prediction function. 

 

c. Nonlinear dividing line: If the points are separated by a nonlinear region a 
nonlinear dividing line must be needed. However, to find the optimal hyperplane, 
nonlinear curves are not tried to fit the data. The data is mapped into upper spaces 
using a kernel function.  The aim of the kernel function is to perform optimal 
separation in higher dimensional space even in complex boundaries.  

 

Figure 14: (a) A non-separable 1D dataset, (b) Separation of (a), (c) A linearly non-separable 2D 
dataset 

Figure 14 (a) illustrates a nonseparable data distribution. While all AML values have 
large absolute values, ALL examples are grouped near zero. Since there is not any 
single point that can separate the two classes, the values are squared to get a new 
dimension. As seen in the Figure 14 (b), in this dimension, a straight line can 
separate the examples easily. In Figure 14 (c) the two-dimensional data cannot be 
separated linearly so by calculating the products of all pairs of features two-
dimensional data, it is projected to the four-dimensional space in which a kernel 
can be found. The data cannot be drawn in a four-dimensional space, but it can be 
projected the SVM hyperplane in that space back down to the original two-
dimensional space. The result is shown as the curved line in Figure 14 (c). 

 

Some common kernel functions used in SVM applications are as follows, where 
   and    are vectors in the input space: 

 
1. Linear: In Linear kernel no mapping is done. Linear discrimination (or 

regression) is done in the original feature space. Linear kernel is defined as: 
 

 (     )  (  
   ) (Equation 3.27) 

 
2. Polynomial: The Polynomial kernel is considered to be a non-stationary kernel. 

This kernel is especially convenient for the problems in which the training data 
is normalized before. For degree-d polynomials, it is defined as: 
 

 (     )  (   
     )

 
 (Equation 3.28) 
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Scalar parameter  , constant term   and polynomial degree   are adjustable 
parameters. 
 

3. Radial basis function (RBF): The RBF kernel is the most common kernel, which 
defined over a Gaussian assumption to map two data points using the following 
function (Vert et al., 2004): 
 

 (     )     ( 
 (     )

 

   
) (Equation 3.29) 

 
where   denotes a parameter and d the Euclidian distance between two 
vectors. 

 
Because of its popularity and reported success in computer vision applications such 
as object category classification and detection (Sreekanth et al., 2010), in this 
thesis, RBF kernel is used to separate between the samples that correspond to 
matched and unmatched image pairs.  

 
 

3.4 Localized histograms on horizontal segments 

 
While two body regions, torso and leg, have reasonably different characteristics due to 
different clothes worn in those parts, some internal differentiations can appear within each 
region. This issue has not been considered in previous studies including Farenzena et al. 
(2010). Lower part of the leg could be dominated by the color of shoes, which is not 
necessarily the same as trousers or skirt. For a person wearing a skirt and a boot, three 
horizontal segments (corresponding to the skirt, leg and boots) may appear with 
significantly different color characteristics in the same camera view, whilst the general 
characteristic is conserved in other camera view. Therefore, we argue that these semantic 
body parts can be separated into further horizontal segments for better discrimination. 
Since further divisions cannot be guided by a general semantic rule applicable to all images, 
we propose to create lower segments in each body part with vertically uniform lengths. 
Figure 15 (a), (c) shows an image pair representing the same pedestrian. The body is first 
segmented into torso and leg. Then each region is further divided into three sub horizontal 
segments with equal length (b), (d). Note the color difference between distinct segments in 
one leg and the similarity between two lower leg segments in different images. In following 
sections, we use the following notation to explain the use of this technique in histogram 
calculation: An attribute describing the whole body distance using HSV histogram is 
denoted with hist. When the body is divided into two semantic parts, this attribute is 
denoted with histPart, and if the body is divided into K total segments with further 
divisions, then the attribute is referred to as histKseg. 
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(a) 

 

 
 (b) 

 

 
 (c) 

 

 
 (d) 

 

Figure 15: (a) Image from the first camera, (b) Horizontal segments for the first camera image, (c) 
Image from the second camera, (d) Horizontal segments for the second camera image. 
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CHAPTER 4 
 
 

RESULTS 
 
 
 

4.1 Experimental setup 

 
We use a common experimental setup to assess the performance of our model. This 
section will introduce the datasets used and the procedures to evaluate the results. 
 
 

4.1.1 Dataset 

 
The experimental evaluation of the methods developed for the person re-identification 
problem requires a dataset composed of a set of pedestrian image pairs taken from two 
disjoint camera views. The images taken from one camera is usually called as the gallery 
set, while the ones taken from other camera, for which the reidentification is desired, is 
called as the probe set. In this thesis, it is expected to match single appearances of two 
pedestrians from different cameras, while some other approaches use more than one 
image belonging to same person in one camera view. Therefore, a single-shot data set is 
needed to evaluate the introduced methods. When a multiple-shot set is available, each 
case should be considered as a distinct sample. In this thesis, two challenging public 
benchmark datasets, VIPeR (Gray et al., 2007) and ETHZ (Schwartz and Davis, 2009), are 
used with their single-shot versions. 
 
Provided by Gray et al. (2007), the most challenging benchmark dataset currently available 
in person re-identification area is the VIPeR (viewpoint invariant pedestrian recognition) 
dataset. In many of the previous studies, this dataset is used to evaluate the identification 
performance of the proposed methods. It involves 632 pedestrian image pairs taken from 
two disjoint cameras. The images are captured from different locations over the course of 
several weeks. There are four main viewpoint angle changes, 45, 90, 135 and 180. In order 

to create a viewpoint invariant model, using 45 degree segments, ( 
 
) = 28 different 

viewpoint pairs should be used. But using symmetry, Gray et al. (2007) reduce 28 to 10. The 
viewpoint angles for two different images belonging to one person may vary: 45-0, 90-0, 
90-45, 135-0, 135-45, 135-90, 180-0, 180-45, 180-90, 180-135. Images are cropped and 
normalized to 128x48 pixels. Each pair shows the same person with a different pose, 
illumination and viewpoint. These significant changes in pose, illumination and viewpoint 
make re-identification a very challenging task. Some challenging cases are shown in Figure 
16. Each column shows the same person from different camera views. 
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Figure 16: Sample images from VIPeR dataset (Gray et al., 2007)  

In the second dataset, ETHZ, which was originally proposed to be used for the evaluation of 
pedestrian detection performance (Ess et al., 2007), but adopted by Schwartz and Davis 
(2009) for person re-identification task, each person was recorded using moving cameras as 
a video sequence. Images are recorded at a resolution of 640x480 pixels and at 15 FPS using 
a stereo pair of cameras mounted on a children’s stroller. The pose variations are not as 
much as VIPeR but there are higher illumination changes and occlusions. The dataset 
consists of 3 sequences: 1st sequence contains a total of 4857 images of 83 pedestrians and 
is taken under similar weather conditions, 2nd sequence contains a total of 1961 images of 
35 pedestrians including people moving in all directions and the last one contains a total of 
1762 images of 28 pedestrians and is taken on a sunny day on a sidewalk. A few example 
images are shown in Figure 17. 
 

Figure 17: Sample images from 1
st

 sequence of ETHZ dataset (Schwartz and Davis, 2009)  
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4.1.2 Procedure of evaluation 

 
In this thesis, all experiments are performed as a leave-one-out cross-validation. For 
training purposes, for each person from the first camera his/her image from the other 
camera is used as positive sample and remaining pairs are used as negative samples. 
However, a subset of this training set is used for each testing iteration. While comparing 
and calculating the distance values between the first image, p1, and all remaining images, 
such as (p1, p2), (p1, p3), …, (p1, p1264), firstly, all sample pairs including p1, either 
matched or unmatched, are removed from training set and the remaining subset of the 
data is used to train a classifier. Secondly the model given by the classifier is used to test all 
combinations between p1 and the remaining values.  
 
For validation, two image sets, so-called gallery and probe sets, are determined.  In the 
VIPeR dataset, the probe set consists of images from the first camera and images taken 
from the other camera are used as gallery set. In previous studies, the best results on VIPeR 
dataset was reported by Farenzena et al. (2010). To compare our results with theirs fairly, 
we employ the same splitting strategy in our validation. We run our method on 10 random 
subsets containing 316 pedestrians in the gallery set and take the average of the results. In 
ETHZ dataset, each person has a different number of images. To have only a single-shot 
case, the experiments are done on the first sequence of ETHZ dataset, as suggested by 
Farenzena et al. (2010). To build the gallery set, a random image for each person is selected 
and remaining images are used to construct the probe set. Then, the model evaluates the 
potential match between probe and gallery set. For every image in the probe set, the rank 
of the correct match is found. This entire procedure is repeated 10 times. 
 
All experiments are conducted on an Intel Core i7-2600, 3.4 GHz CPU with 8 GB of RAM 
running on Windows 7 operating system. The implementation is based on MATLAB. 
Creating positive and negative pairs and training the FLD classifier takes 12.16 seconds for 
each person on VIPeR dataset on average. 
 
To discern the ability of person reidentification methods, a common metric used is CMC 
(Cumulative Matching Characteristics) curve suggested by Gray et al. (2007). CMC curve 
shows the expectation of finding the correct match in the top n matches. A rank n matching 
rate indicates that the percentage of the images in the probe set correctly found in gallery 
set in the top n ranks. Moreover, as Farenzena et al. (2010) does, we also consider another 
useful measure, Area Under Curve (AUC). For a perfect identifier, AUC becomes %100. 
While it is common to compute AUC for the curve covering all hits until the target match is 
found, we argue that a good identification system should perform well in some early hits. 
Hence, we also use a new criterion called AUCk, to compute the area under the curve 
where the targets are found in first k hits. Since the ultimate goal of these surveillance 
systems is to detect the person in earliest hits, we believe that this measure is a better 
representation of the success of tested method. 
 
We assess the following issues in our experiments in the common benchmark setup defined 
above: 
 

 Effect of body part division and further segmentation of body parts on final 
accuracy, 

 Comparison of individual use of different features for person re-identification, 
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 The performance of integrative model based on learning-based metric, 

 Comparison of different learning methods, 

 Robustness of the best method by evaluating its performance on different datasets. 
 
Finally, we compare our best result with the method proposed by Farenzena et al. (2010). 
 

4.2 Empirical results 

 
Several experiments are conducted over the benchmark datasets described. For each 
experiment, detailed CMC curves and AUC tables are depicted. The results are reported 
rigorously to explain the effect of all contributors in the methodology applied. 
 
 

4.2.1 HSV Histogram 

 
In the previous studies, it was already proven that HSV color space has better performance 
than the others (such as RGB and YCbCr) in person reidentification (Gray and Tao, 2008). 
Therefore in this thesis, we adopt HSV histogram representation. First decision issue 
regarding the application of HSV histograms is whether to extract a histogram for the whole 
body or separate histograms for the body parts such as torso and leg. The head part is 
excluded in our experimental evaluation since it was already shown not to provide any 
positive contribution (Farenzena et al., 2010). Our second aim in this experiment is to 
observe the effect of weighted histogram in which the pixels near the vertical symmetry 
axis count more than others in the final histogram. The Table 2 and the Figure 18 shows the 
results of the previously mentioned items.  

 

 

 

Figure 18: CMC Results based on Histogram Feature in the VIPeR dataset 
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From the Figure 18, it is seen that, regardless of the fact that the body is partitioned or not, 
the weighted histograms show superior performances than the unweighted ones. We also 
observe that dividing the body into torso and leg part can improve the discriminative 
performance of the histogram feature by %5 in overall AUC100. Upon this conclusion, the 
weighted HSV histograms obtained from both torso and leg are fed separately in remaining 
part of the thesis. 

Table 2. AUC results based on Histogram Feature 

histogram 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

UnweightedWholeBody 83.45 39.05 23.88 16.71 4.72 

WeightedWholeBody 84.70 43.35 28.11 20.11 8.30 

UnweightedTorsoAndLeg 88.52 51.87 35.25 25.84 9.83 

WeightedTorsoAndLeg 90.03 58.97 41.27 30.72 14.02 

 
 

4.2.2 Comparison of distance metrics 

 
To compare HSV histogram in the previous experiments, the Bhattacharyya distance is 
used. To evaluate the performance of other distance measures, we repeat the experiments 
with three other distance metrics: Euclidian distance, EMD distance and chi-square 
distance. The results using the weighted HSV histograms obtained from both torso and leg 
are shown in the Figure 19: 

 

 

 

 

Figure 19: Different distance metrics used on Histogram comparison in VIPeR dataset 
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As the CMC curve given in Figure 19 and AUC records (including whole AUC and its all 
partial calculations) in Table 3 consistently demonstrate, the Bhattacharyya distance gives 
the best results in comparison of HSV histograms. In chi square distance, which is useful 
when making a bin-to-bin comparison on histograms, the AUC values are higher than the 
others except the Bhattacharyya measure. However, surprisingly, the other histogram 
comparison metric, EMD distance, provides worse results than Euclidian distance. This is 
probably due to the fact that the illuminations changes, which are usually promised to be 
recognized by EMD measure, are already considered by HSV histograms in an implicit way. 
 

Table 3. AUC results obtained using different distance metrics 

Metric 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

wHSVEmd 69.74 33.21 22.16 16.64 6.40 

wHSVEuclidean 87.58 51.35 34.26 25.85 11.93 

wHSVChiSq 89.49 57.50 40.71 30.58 13.86 

wHSVBhattacharyya 90.03 58.97 41.27 30.72 12.75 

 
 

4.2.3 Feature Sets 

 
The common feature representations that are used in this domain are described in the 
Section 3.2 in detail. In this subsection, the effect of the widely used color, texture and 
interest point features are to be analyzed.  

 

 

 

Figure 20: Comparison of different feature sets as single attributes for person reidentification in 
VIPeR dataset 
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From the Figure 20, it is clear that the color based features show superior performances 
than the texture based features. The most distinctive feature is weighted histogram 
whereas maximally stable color regions comes after that. Because of the low resolution of 
the images, the features based on keypoints matching cannot be representative enough. 
Subsequently, they do not show good performances on this dataset. However, we will 
revisit both SiftFlow and SURF features to see their contribution in overall performance 
when combined with other features.  
 

Table 4. AUC results obtained using different feature sets as single attributes 

Metric 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

EpitextDistance 50.15 8.07 3.32 1.74 0.32 

SURFDistance 57.05 13.75 7.08 4.42 1.04 

SiftFlowDistance 61.45 16.59 8.56 5.51 1.84 

MSCRDistance 83.29 45.06 30.30 21.87 9.72 

wHSVDistance 89.79 58.05 40.81 30.91 13.7 

 
 

4.2.4 Combining Features 

 
In this subsection, the results of combining different features described above are given.  
While combining features the same matching distance formula is used as proposed by 
Farenzena et al. (2010).  
 

 (     )                    (  (  )   (  ))

             (    (  )     (  ))

             (    (  )     (  ))  

 

Farenzena used this formula while comparing two pedestrians,    and   .  
 
The distance     evaluates the weighted color histograms extracted from the images of 
two pairs on different disjoint cameras. It is calculated via Bhattacharyya distance metric. 
       shows the minimum distance of each MSCR element b in    to each element a in   . 

  
     that compares the   component of the MSCR centroids, and   

   , that compares their 

mean color are the two components that are used to calculate the distance      . 

Euclidian distance is used to calculate for both   
    and   

   .        formula is: 

 

       ∑       
    (   )   

          
      

      

 

 
where γ takes values between 0 and 1. 
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Recurrent High-Structured Patches (RHSP), epitexture feature, is a texture feature that 
shows how much a patch is recurring. This step involves the accumulation of potential 
patches based on some color changes and ranking them in terms of the continuity of 
detected motifs inside the patches and the recurrence in several parts of the image.  
       is obtained by selecting the best pair of RHSP, one in    and one in   . The minimum 
Bhattacharyya distance is evaluated among the RHSP’s HSV histograms. This calculation is 
done independently for each body part. The final distance is then computed by normalizing 
the sum of these independent values.  
 

In the experiments, Farenzena et al. (2010) fixed all the   parameters to 0.4, 0.4 and 0.2 
respectively. We use their parameter set in this experiment without any change. Other 
distance measures are SiftFlow and SURF distances which use the matched keypoint count 
the generate distance matrix. 

 

 

 

Figure 21: Combination of features in VIPeR dataset 

Here, the first title in CMC curve and the AUC table, Hist+MSCR+Epitext, is the combination 
used by Farenzena et al. (2010). It should be noted that, Epitexture feature is not useful at 
all since the distance measure based on this feature produces the same value for all images. 
From the Figure 21 there is not any combination with an apparent advantage over the 
others. It is seen that the last combination, Hist+MSCR+SiftFlow+SURF, performs a slightly 
better performance on earlier hits such as 10, 15, 20 in comparison with the remaining 
combinations. Table 5 also confirms that the best performance is obtained using 4 features, 
weighted Histogram, MSCR, Siftflow, SURF on small hits. However, since Siftflow and SURF 
are in the same feature family, both used as an interest point detector and descriptor, and 
using two of them at the same time does not show any significant change. Hence, we 
decide not to use both of them. Because the results obtained using SURF with Histogram 
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and MSCR are better than using Siftflow, we select best feature combination set as 
Histogram, MSCR and SURF. These 3 features are used in remaining experiments. 

 

Table 5. AUC results obtained from different combinations of features 

Combination 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

Hist+MSCR+Epitext 91.89 64.86 47.90 37.37 19.21 

Hist+MSCR+SiftFlow 91.45 64.51 47.73 37.45 18.10 

Hist+MSCR+SURF         91.84 64.88  48.75  37.81 17.69 

Hist+MSCR+SiftFlow+SURF      91.79     64.94     49.50     39.33 19.84 

 
 

4.2.5 Effect of Learning Based Metric 

 
In this subsection, we discuss the effect of learning based metric on this problem. In the 
previous subsection while comparing two pedestrians, we used matching distance formula 
proposed by Farenzena et al. (2010) in which the    parameters, the coefficients of the 
features, are fixed. Our aim is to use a learning based metric to find optimal values for each  
  coefficient. Using the same features used by Farenzena, Histogram, MSCR and Epitexture, 
we got better results using FLD (Figure 22). 
 

 

 

 

Figure 22: Effect of learning based technique in VIPeR dataset 
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The unsupervised result shows the Farenzena’s original result, where the distance between 
the images calculated using 3 features with manually curated weights. In supervised result, 
since we want to find the coefficients of each distance matrix, FLD is trained with 2 
different distance matrix, weighted Histogram and MSCR. We do not include Epitexture 
feature in FLD because it has no discriminative ability. The calculated weights of Histogram 
and MSCR are not the same as Farenzena et al. (2010) claim. They set both the weights of 
Histogram and MSCR to %40. From FLD, the weight of Histogram becomes %53 and MSCR 
becomes %47 which proves the results we got at the section 4.2.3 Feature Sets.  From the 
Figure 22 and Table 6, we can say that learning based method improves the performance of 
the overall system which uses fixed parameters.  
 
 

Table 6. AUC results obtained from Farenzena's original results versus FLD 

Metric Used AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

Unsupervised 91.89 64.86 47.90 37.37 19.21 

Supervised (FLD) 92.47 66.24 49.80 39.01 19.46 

 
 

4.2.6 Effects of localized histograms on horizontal segments 

 
In section 4.2.1, we showed that dividing the body into parts improve systems ability to 
discriminate different people and correlate same people. In the Section 3.4, we argue that 
for better discrimination, we can separate the semantic body parts (torso and leg) into 
further horizontal segments. The Figure 23 shows the effect of localized histogram on 
further horizontal segments. When the body is divided into two semantic parts, this 
attribute is denoted with histPart, and if the body is divided into K total segments with 
further divisions, then the attribute is referred to as histKseg.  

 

 

 

 

Figure 23: Effects of localized histograms on horizontal segments in VIPeR dataset 
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Figure shows that dividing torso and leg into further horizontal segments and using their 
histogram features to train FLD brings us better results than using only torso and leg 
histogram information. Best results are obtained when dividing torso and leg into 5 
horizontal segments (hist10Seg). The curves show an increasing performance until we 
divide both torso and leg into 5 segments. After that, in hist12Seg, the results are getting 
worse, and further division cannot provide better performance except AUC %1. AUC 
records given in Table 7 consistently support our argument here. 

 

Table 7. AUC results obtained from using different number of horizontal segments 

histogram 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

histPart 89.79 58.96 42.67 32.51 13.51 

hist4Seg 90.68 61.81 45.06 34.87 15.7 

hist6Seg 91.50 64.17 48.72 37.74 16.87 

hist8Seg 91.93 65.08 48.85 37.82 17.44 

His10Seg 92.11 66.46 50.85 40.24 17.56 

His12Seg 91.61 64.44 48.93 38.82 18.07 

 
 

4.2.7 Comparing various machine learning techniques 

 
Using FLD, we show that learning-based selection of distance metric parameters can 
improve the performance of person reidentification without changing the feature sets and 
their individual comparison metric. In this subsection, we compare FLD with a popular 
machine learning technique, SVM. In this experiment, the SVM is run with widely-used 
training parameters: an RBF kernel, a capacity value, C, of 0.1 and gamma value, G, of 0.1. 
The negative set is selected in a way that the numbers of positive and negative examples 
are balanced. In the next experiment, it will be shown that this a better choice for training 
SVM as opposed to training FLD, where all possible negative samples are fed into training 
stage. Indeed, we want to obtain a fair comparison setup by creating best possible 
environment for each machine learning algorithm. The details of these dataset partitioning 
strategies will be discussed in following sections together with experimental results 
supporting our arguments. 
 
Figure 24 shows overall performances of FLD and SVM machine learning techniques on 
VIPeR using best feature sets. The CMC curve depicts that FLD outperforms SVM in this 
setup. 

 

The AUC records (Table 8) indicates that SVM still performs better than the Farenzena’s 
unguided version but does not provide as good results as FLD does. This superiority is more 
apparent in early hit performance (AUC10).   
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Table 8. AUC results obtained from FLD versus SVM 

Method 
used 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

Unsupervised 91.89 64.86 47.90 37.37 19.21 

SVM 92.80 68.26 52.86 42.52 21.99 

FLD 93.78 70.47 54.45 43.73 22.31 

 
 

 

 

 

Figure 24: Comparison of FLD and SVM in VIPeR dataset 

 
 

4.2.8 Effect of training set partitioning 

 
In here, we show the effect of training set partitioning on two learning methods that we 
introduce in previous subsections, FLD and SVM.  
 
Since the idea of FLD is based on the mean and scatter of the samples, we assume that 
increasing the size of training set even if the positive and negative sets are being 
unbalanced would be beneficial. Therefore, we anticipate that using all possible negative 
and positive samples will provide us the best results. The effects of other positive/negative 
partitioning ratios, 1/2, 1/10, 1/50, 1/100, 1/200 and 1/AllNegatives are shown in the 
Figure 25. 
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Figure 25: Effect of training set partitioning on FLD in VIPeR dataset 

 

The results confirm our argument. The fewer negative samples we use the poorer results 
we get. The increase in the size of negative samples has a significant effect on the CMC 
curve (such as 1/2, 1/10, 1/50), when the larger ratios are used, the curve slightly converges 
to one that all negatives are used. This result obviously indicates the benefit of using as 
many as available negative samples in FLD training. Upon this remark, our final model is 
designed to comprise all negative samples when FLD is used. 
 

Table 9. AUC results using different p/n training set ratio in FLD 

p/n ratio FLD AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

1/2 86.68 52.50 35.32 25.70 10.13 

1/10 89.42 60.11 43.45 32.73 12.18 

Farenzena 91.89 64.86 47.90 37.37 19.21 

1/50 92.26 67.09 51.51 41.34 19.37 

1/100 93.04 68.92 53.50 43.54 21.17 

1/200 93.26 69.66 53.90 43.18 22.18 

1/AllNegatives 93.78 70.47 54.45 43.73 22.31 

 
In SVM, we do not use as many negatives as we do in FLD. As we discuss earlier (3.3.2), the 
imbalance in the number of positive and negative samples significantly changes the 
occurrence and position of support vectors, which can cause our model to be affected 
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adversely in terms of classification accuracy. Therefore, we just consider four cases of 
positive to negative ratios; 1/2, 1/4, 1/10 and 1/20. 

 

 

 

 

Figure 26: Effect of training set partitioning on SVM in VIPeR dataset 

 

The CMC curve in Figure 26 and AUC records in Table 10 confirm our expectations about 
SVM accuracy. The best results with SVM is obtained when a 1/2 ratio is used between the 
sizes of positive and negative samples.  The AUC values are adversely affected by the 
increase in the number of negative samples in comparison to positive samples. This result 
suggests that balanced number of positive and negative samples is needed in training SVM. 
But in any case, FLD performs better than SVM in this application. 
 

Table 10. AUC results using different p/n training set ratio in  SVM 

p/n ratio 
SVM 

AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

1/20 64.96 30.76 22.93 17.86 9.15 

1/10 82.82 55.14 43.75 35.89 18.42 

Farenzena 91.89 64.86 47.90 37.37 19.21 

1/4 90.79 67.02 52.28 42.62 21.68 

1/2 92.96 68.91 53.52 43.32 22.03 
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4.2.9 Comparison with previous methods 

 
Based on the experiments until now, what we infer from the results can be summarized as 
follows: 

- Weighted histograms can provide a more discriminative information than the 
unweighted ones. 

- Best distance measure is the Bhattacharyya metric while comparing histograms 
- Best feature combination is Histogram + MSCR + SURF 
- Learning based metric can remarkably improve the results 
- Five horizontal segments in torso and five in legs give the best discriminative ability. 

An integrative model can then be introduced based on these observations. In this 
subsection, we experiment the integration of all these ideas on VIPeR and ETHZ datasets 
and compare our results with the best results previously reported in the literature on these 
datasets. 
 
 

4.2.9.1 Results on VIPeR dataset 

 
When compared to the best result reported in Farenzena et al. (2010), which was known as 
the current state-of-the-art, our method can result with a better CMC curve as shown in 
Figure 27. This result is consistent for all stages of the curve.  
 

 

 

 

Figure 27: Results on VIPeR dataset 
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The superiority of the present method can also be observed in AUC analysis. Table 11 
compares two methods in terms of AUC, AUC50, AUC20 and AUC10. It demonstrates that 
the present method is evidently more successful in identifying pedestrians in earlier hits 
(Note the difference in AUC10). 
 

Table 11. AUC results from Farenzena's original version versus this study on VIPeR 

Method AUC 100(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

Farenzena et al. (2010) 91.89 64.86 47.90 37.37 19.21 

This study 93.78 70.47 54.45 43.73 22.31 

 

Each row in Figure 28 shows first 10 matches of the input images found in VIPeR. From (a) 
to (c) the second camera view of the input images are found at first match. The retrieved 
results show the consistency between query and resulting images. Most of the matched 
images from (a) to (c) has the similar color distribution of their query image. For example in 
(a) the upper parts of the results mostly have orange/light brown and in leg parts the 
dominant color is grayish tones. In (b) the results with red torso and blue legs are found and 
in (c) the results are mostly the ones who wear sportswear. This tendency continues also in 
other queries not only in the images which found before 10th match but also in images 
which cannot be found at earlier hits for example in (g) and (h). The top 10 ranking images 
are not the second camera view of the inputs in (g) and (h) but the first query returns the 
results who wears jeans and white shirt while the second query returns who has dark tones 
on their upper part and jeans. Some other matched and unmatched pairs can be found in 
Appendix A. 
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Figure 28. First 10 matches found in VIPeR 



42 
 

4.2.9.2 Results on ETHZ dataset 

 

The results for both our implementation and single shot case of Farenzena et al. (2010) for 
sequence 1 on ETHZ are shown in the Figure 29. Since first sequence of ETHZ dataset 
contains 83 pedestrians, we just show first 10 hit rates of CMC curve in the figure. 
 

 

Figure 29: Results on ETHZ dataset 

 
From the Figure 29 and Table 12, we can say that, our model gives not only better results 
on VIPeR but also in ETHZ dataset.  
 

Table 12. AUC results from Farenzena's original version versus this study on ETHZ 

Method AUC 83(%) AUC 10(%) AUC 5(%) AUC 1(%) 

Farenzena et al. (2010) 95.61 82.45 77.55 67.46 

This study 96.48 86.21 82.23 73.90 

 

The best 10 matches for 4 input images in 1st sequence of ETHZ are shown in Figure 30. 
Similar to the results in Figure 28, in here the system also brings the persons who have 
similar clothing tendencies (in (b) the results are the ones who wear dark clothes while in 
(d) the results are most likely the ones who wear jean or dark pants and light coats). In 
4.1.1 we said that the biggest problem in ETHZ is occlusion. In Figure 30 (c) we see that 
even though the occlusion appears in the input image, the system finds her match at first 
hit. Other matched samples can be found in Appendix B. 
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Figure 30. First 10 matches found in ETHZ 1
st

 Seq. 

 

In the training part of the results given above, all the images for each person, except the 
test figure of each person, are used. Because of the two reasons, the large number of the 
training examples and the small number of the pedestrians, we get better results than we 
did on VIPeR dataset. Therefore, we conduct other experiment on ETHZ dataset as if we 
have two images of each person taken from two disjoint cameras. To do so in a fair manner, 
we take each person’s first and last frames, because these are the frames which have the 
most difference. The results are shown in Figure 31 and Table 13. 

 

Table 13. AUC results on ETHZ using two images of each pedestrian 

Method AUC 83(%) AUC 50(%) AUC 20(%) AUC 10(%) AUC 1(%) 

This study 84.85 75.99 57.62 45.56 23.27 

 



44 
 

 

 

 

Figure 31. Results on ETHZ dataset using two images of each pedestrian 
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CHAPTER 5 

 
 

CONCLUSION 
 
 
 

In a multi-camera network system, if a pedestrian in a camera view is seen, finding his/her 
image in other camera views is called as person re-identification. In this thesis, we deal with 
this problem where only a single shot image of a pedestrian is available from each camera 
view. To overcome the limitations of existing methods, we here introduce an integrative 
and learning-based model for person reidentification.  
 
The central points of our system lie in four main parts: background extraction, body part 
division, feature extraction and a learning based metric. For background extraction 
structuring element component analysis, which is known to be a successful method for 
foreground/background separation, is customized for pedestrian images as suggested by 
Farenzena et al. (2010). 
 
Several observations based on the rigorous experiments on two common benchmark sets 
are reported to facilitate the future research in the field. We show that the color is the 
most significant information in detecting pedestrians in different cameras. Among several 
color representation schemes, HSV color space was already shown to be the most 
discriminative in different illumination conditions and view-invariant recognition. Here, we 
also demonstrate that using semantically localized color information can contribute to the 
result more than using a global color context. When we investigate the effect of body part 
division using HSV histogram, it is revealed that extracting the histogram values both on 
whole body and on torso and leg brings us to see the positive effect of the division. 
Additionally, using the vertical symmetry axis, we find out that the pixels near the 
symmetry axis are more important than others.  
 
To compare the pedestrians, we need to calculate the distance between their HSV 
histograms. We compare Euclidian, Bhattacharyya, a well-known bin-to-bin histogram 
comparison metric, X2, and finally a cross-bin metric, EMD. The experimental results reveal 
that the best comparison metric which can be used in HSV histogram match is 
Bhattacharyya metric. 
 
We made a comparison of different feature sets as single attributes for person 
reidentification. The representatives of three common feature sets in computer vision, 
color features, texture features and interest point matches, are utilized to see their 
individual and combined effects on the prediction performance. According to the results, 
while the best distinguishable feature is weighted HSV histogram, MSCR, SiftFlow and SURF 
comes after that in a descending order. 
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We have shown that SURF matching can be useful when it is used in an integrative manner 
with other features, while it is not so successful when used alone. SURF is slightly better 
effect than the SIFT-Flow in integrated model, but their joint use does not enhance the final 
performance. 
 
We also report that dividing semantically segmented body parts (torso and leg) into further 
horizontal segments can improve the prediction accuracy. Despite its simplicity, this idea is 
used for the first time in comparison of local color content for person reidentification, to 
our knowledge. We use this idea in our final integrative model and observe a significant 
improvement in the identification performance. 
 
One of the contributions of this thesis is the introduction of a learning based metric which 
provides the integration of distinct feature sets to compare two pedestrian images. We 
have shown that a better identification performance can be achieved when the 
participation of these feature sets are guided by a supervised learning metric for final 
decision instead of using fixed participant weights for each. 
 
In the aim of designing a powerful learning framework, we explore the performances of 
two widely used machine learning techniques; FLD and SVM. The experiments show that 
the learning based metric with either of these methods show superior performances to the 
unguided one. When compared to each other, FLD performs better than SVM. This may 
have two reasons. First, the mathematical formulation of FLD approach is inherently closer 
to the distance measure that we actually attempt to model for person matching in two 
images. In our application, we do not use directly the local image features but instead, we 
indirectly feed the learning system with the distances computed from these features. In 
mapping feature vectors into higher dimensions, SVM might be losing the actual 
information contained in the distance values. Second reason is due to the training set 
partitioning. Due to the nature of our datasets, the number of negative samples is higher 
than positive samples. It is well-known that the SVM becomes worse when the positive and 
negative sets are unbalanced. On the other hand, FLD algorithm is not affected by this 
imbalance since its learning parameters are not based on the individual samples but on the 
mean and scatter of the data matrix. Therefore, an increase in the number of samples 
enhances the performance of the FLD algorithm as opposed to the SVM approach. To sum 
up, the FLD algorithm can benefit from the larger training set in this application. 
 
To assess the robustness and general applicability of the model, it has been tested on two 
benchmark datasets with different properties. Its high performance in both datasets 
encourages that the model can be successfully applied in distinct environments. We have 
demonstrated that our final model can improve upon the state-of-the-art on two 
challenging datasets. 
 
Although the research has successfully been completed, there were some limitations. First, 
the head part contains small number of pixels. Farenzena et al. (2010) mentioned that this 
part carries very low information in discriminating two images since the color content does 
not change significantly between two people. Therefore the head is not used in our 
experiments. Secondly, due to the challenging characteristics of the datasets some feature 
sets do not show their best performances, for instance, low resolution is a drawback for 
interest point detectors. 
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It is anticipated that the problem of person reidentification will continue to receive the 
attention of researchers in the field. One of the major concerns will be the identification in 
practical applications. A potential problem in this respect is the occlusion of a person by 
another one in crowded areas. In this case, some other preprocessing techniques should be 
used to detect the boundaries of person body. Another problem is the low resolution of 
images when the camera is inserted in a certain distance to viewing area. This requires the 
use of other techniques for enhancing the images. New feature representation schemes are 
still needed to improve the overall performance. 
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Appendix A. The top 10 ranking images for some of the images in VIPeR 
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Appendix B. The top 10 ranking images for some of the images in 1st sequence of ETHZ 
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