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Supervisor, Statistics Dept.

Examining Committee Members:

Prof. Dr. Gerhard Wilhelm Weber
Applied Mathematics Dept., METU

Assoc. Prof. Dr. Vilda Purutçuoğlu
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ABSTRACT

GENE EXPRESSION INDICES FOR SINGLE-CHANNEL MICROARRAYS

Akal, Tülay

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Vilda Purutçuoğlu

April 2013, 122 pages

The microarray technology is one of the recent and advance tools in biological sciences. This
optical technology aims to measure the amount of changes in transcripted message for each
gene by RNA via quantifying the colour intensity on the arrays. But due to the different exper-
imental conditions, these measurements can include both systematic and random erroneous
intensities.

In this study, we deal with one of these systematic sources of errors, called background sig-
nals, for one-channel microarrays. Hereby, we initially describe the most well-know methods
such as MAS 5.0, MBEI, RMA, and BGX approaches for estimating the gene expression
levels, i.e., gene expression indices. Then, we present a novel gene expression index, called
multi-RGX (Multiple Probe-Robust Gene Expression Index), which can be seen as a general-
ization of the FGX model and closely related to the BGX method developed for this type of ar-
rays. In multi-RGX, the FGX model is extended by both covering nonnormal log-expressions,
in particular, long-tailed symmetric (LTS) densities, and taking not only the probe mean in-
tensities, rather using all gene expressions in each probe for every gene. In inference of such
model, we apply the modified maximum likelihood method to deal with the unexplicit so-
lutions of the likelihood equations under LTS. Moreover, we derive the covariance-variance
matrix of model parameters from the observed Fisher Information matrix. Finally in order to
find the gain in information from the estimation, we evaluate the performance of our novel
index in different datasets.

Keywords: Background normalization, microarray, oligonucleotide, modified maximum like-
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ÖZ

TEK-KANALLI MİKRODİZİNLERİN GEN İFADE İNDEKSLERİ

Akal, Tülay

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Vilda Purutçuoğlu

Nisan 2013, 122 sayfa

Mikrodizin teknolojisi biyoloji bilimlerindeki yeni ve gelişmiş araçlardan birisidir. Bu optik
teknoloji, RNA tarafından her bir gen için transkrip edilen mesajdaki değişim miktarını, dizin-
lerdeki renk yoğunluğunu bularak ölçmeyi amaçlamaktadır. Fakat farklı deneysel koşullardan
dolayı, bu ölçümler hem sistematik hem de rassal hatalı yoğunlukları da içerebilir.

Bu çalışmada, tek - koşullu mikrodizinlerde, sistematik hata kaynaklarından biri olan ardalan
sinyalleriyle ilgilenmekteyiz. Bu amaçla, öncelikle gen ifade düzeylerini, yani gen ifade in-
dekslerini, tahmin etmek için kullanılan, en çok bilinen, MAS 5.0, MBEI, RMA, ve BGX
yaklaşımları gibi yöntemleri tanıtmaktayız. Daha sonra çoklu-RGX (Çoklu Prob-Sağlam
Gen İfade İndeksi) adlı, bu çeşit dizinler için geliştirilmiş, FGX modelinin genelleştirilmiş
hali olarak görülebilen ve BGX yöntemiyle de oldukça bağlantılı olan, yeni bir gen ifade in-
deksi sunmaktayız. Çoklu-RGX’de, hem normal olmayan, özellikle uzun kuyruklu simektrik
(LTS) dağılımlı, logaritmik ifadeleri kapsayarak, hem de FGX modelin uyguladığı gibi sadece
prob ortalama yoğunluklarını almak yerine, her gen ve her bir probdaki tüm gen ifadelerini
kullanarak FGX modeli genişletilmiştir. Böyle bir modelin tahmininde, LTS altında ola-
bilirlik denklemlerinin açık olmayan sonuçlarını çözebilen, uyarlanmış en çok olabilirlik
yöntemini uygulamaktayız. Ayrıca gözlemlenebilir Fisher Bilgi Matrisi yardımıyla, model
parametrelerinin kovaryans-varyans matrisini çıkarmaktayız. Son olarak, ölçümlerden ge-
len bilgi artışını bulmak için yeni indeksimizin FGX’e göre başarısını farklı veri kümeleriyle
değerlendirmekteyiz.

Anahtar Kelimeler: Ardalan normalizasyonu, mikrodizin, oligonükleotid, uyarlanmış en yüksek
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CHAPTER 1

INTRODUCTION

The genome, which represents all the genetic information of a living organism, has always
been in concern for scientists. This structure is composed of long deoxyribonucleic acid, also
shortly called DNA, molecules. These molecules are known as chromosomes. Each cell of an
organism consists of DNA in their nucleus and the gene is a specific part of DNA. As it can be
seen in Figure 1.1, it has a double helical structure, in other words, it is double stranded that
is basically generated with two-polynucleotide chains bonded with hydrogen bonds. DNA is
a polymer of a number of nucleotides containing a sugar, base and a phosphate. In DNA, a
nucleotide consists of four types of bases, which are adenine (A), thymine (T), guanine (G)
and cytosine (C) (Grant et al., 2013). Here adenine binds with thymine (A-T) and guanine
binds with cytosine (G-C).

Figure 1.1: Double helical structure of DNA (modified from Grant et al. (2013)).

In the procedure of the protein synthesis, the synthesis of another molecule, called the Ri-
bonucleic acid (RNA) is required. Unlike DNA, RNA is usually single stranded and it has
the base uracil, instead of thymine (Grant et al., 2013). While DNA has deoxyribose as sugar,
RNA contains ribose.

To synthesize a specific protein, firstly, DNA is copied into a type of RNA, called the mes-
senger RNA (mRNA), being a complementary to its DNA template. This process is called
the transcription. Then another type of RNA, which transfers RNA (tRNA) brings the amino
acids to the organelle, called ribosome, which is responsible from protein synthesis in a cell.
At last, the process of the protein synthesis is carried out. This process is known as the trans-
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lation (Grant et al., 2013). The transcription and the translation are also named as the central
dogma. The process of the very basic protein synthesis is shown in Figure 1.2.

Figure 1.2: Simple representation of the protein synthesis (modified from Grant et al. (2013)).

The synthesized protein molecule is very important in the sense that it gives information
about the cell with respect to the active genes. Furthermore, the gene expression is gathered
while transferring from DNA to RNA and from RNA to the synthesis of protein molecules
(Grant et al., 2013). Thus, it is a significant phenomenon in order to understand the biological
organisms. Accordingly, the microarray technology gives opportunity in this manner (Kerr,
2009) in the sense that it enables us to analyze the behavior of genes under different conditions
(Sanchez and Ruiz de Villa, 2008).

In the scope of the microarray analysis, there are some companies, such as Aligent and
Affymetrix, providing microarray platforms. Those make use of specificity and affinity of
complementary base-pairing of nucleic acid. A microarray, also known as the DNA chip,
gene chip or biochip, consists of thousands of DNA sequences, called probes, which are at-
tached to a solid surface. In order to measure the gene expressions, the extracted genetic
material, called the target, is labeled with a florescent dye. After hybridization in the probes,
using a special scanner, the amount of florescence is measured, and it is called the intensity
(Kerr, 2009). Hereby, the amount of mRNA transcripts is measured and it can be seen as an
approximation to the level of expression of the gene and the measurements are turned into
pictures (Sanchez and M. C. R. de Villa, 2008). A layout of microarray experiment can be
seen in Figure 1.3.

The oligonucleotide is a type of single channel microarray and the Affymetrix GeneChip is
an example of the popular oligonucleotides.

In these arrays, also called chips, we observe probes, which are the known segments of partic-
ular gene sequences. Each probe contains two parts, namely, the perfect match (PM) and the
mismatch (MM). The former stands for the perfect transcription of the cRNA and the latter is
aimed to measure the faulty signals on the arrays by changing the 13th base pair of the PM.

2



Figure 1.3: Simple representation of a microarray experiment (modified from Kerr (2009)).

In a microarray study, we can define three main sources of variation of signals, which are also
represented as the systematic error. The first one is named as the nonspecific hybridization,
which is caused by the misbinding of some parts of the target sequence to non-complementary
transcripts. This error measures the binding, which leads to the greater intensity value than
the actual measurement on the arrays. On the other hand, the second source of variation is
called the background signal that is the one gathered under no hybridization, hereby free from
any true signal. Finally, the third source of noisy signal is known as the stray signal, which
may be generated by binding the sequence to the surface of the slide, rather than to the probe,
resulting in variations in the intensity levels. We can call these three types of variations as the
systematic error (Purutçuoğlu, 2007; Purutçuoğlu, 2012).

On the other side, the term gene expression index stands for the mathematical method to
estimate the true expression level in the oligonucleotides.

There are a number of indices developed for this purpose. In this study we particularly deal
with the most well-known and current indices such as MAS 5.0, RMA, dChip (or MBEI), GC-
RMA, BGX, FGX, and RGX by specifying where they are applied in the biological literature.
Each of them has their own advantages and disadvantages.

For instance, MAS 5.0 includes bias in inference of the true signal since it is based on the
ad-hoc adjustment of the intensity when PM values are measured less than the associated
MM probes. On the other hand, the MBEI method can infer the true signals without ad-hoc
calculations, whereas, it cannot make estimation for large number of arrays as the inference
is done via the least square method. Similarly, RMA also fails under this condition. But it is
more sensitive than MBEI in terms of the detection of differential expressed genes. On the
other hand, GC-RMA gives more accurate results than MAS 5.0 and RMA. But it completely
ignores the information from MM in the estimation of the signals. FGX is advantageous
over its alternatives for reducing bias and computational demand. However it is based on
a strict normality assumption. Whereas, RGX can deal with non-normal densities and it is
computationally as fast as FGX. Moreover, we highlight the most recent studies based on
microarray normalization in general. For this purpose, we consider the doctorate thesis of

3



Ülgen (2010) and discuss the similarity and distinction with this thesis.

Hereby in this study, we initially explain the underlying most well known gene expression
indices and some recent methods in details and describe the current idea of normalization in
general. Then, we present our novel gene expression index, called multi-RGX, in order to
solve the problem of recently developed methods, which are FGX and RGX, and emphasize
the differences between the current researches. In this new method, we consider gene and
probe specific signal in the measurement of microarray and develop explicit expressions for
each model parameter via the modified maximum likelihood method. Furthermore, as the
second novelty, we present the explicit forms of the variances and covariances of model pa-
rameters via the Fisher Information Matrix. Moreover, we also represent other alternative
choices of the multi-RGX model and state the estimators of model parameters. As given in
the associated chapter, those alternative approaches do not produce explicit formula, hereby,
are still iterative procedures. Furthermore, as one of the major aims of our study is to sug-
gest computationally fast and accurate method, we evaluate those alternatives gene expression
indices with our novel method in the application parts.

Accordingly, in the thesis, we explain the idea of the modified maximum likelihood estimators
and assess the performance of multi-RGX with its strong competitive with respect to different
criteria such as the signal detect R2, R2, signal detect slope and CPU (Central Processing Unit)
time. Each of these criteria is presented in Chapter 4 and the code of the function, which is
originally developed in this study, is given in Appendix. In the assessment, we use four dif-
ferent datasets. The first two data are benchmark datasets from Affymetrix and GeneChips
brands, respectively. For those sets, we compare all the well-known and current indices via
distinct criteria. On the other hand, as the third and fourth datasets, we use simulated mea-
surements and compare only the results of FGX, RGX and our novel index, multi-RGZX,
due to the fact that these are the strong alternatives of multi-RGX and this index is indeed
developed to overcome the challenges of these two models. Finally, we report our results and
discuss our future directions in Conclusion.

As a result, we organize the thesis as the following plan. The recent studies and alternative
approaches in background normalization are presented in Chapter 2. Chapter 3 is dedicated
to our new algorithm (multi-RGX), mathematical derivation of model parameters and their
covariance-variance terms. Here, we also represent plausible alternative modelling of multi-
RGX and declare why we choose our model with respect to others. In Chapter 4, we evaluate
all methods via real and simulated datasets under different model selection criteria. Chapter
5 summarizes all outputs and suggests our future perspectives.
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CHAPTER 2

BACKGROUND NORMALIZATIONS’ METHODS

As stated beforehand, there are a number of gene indices in the literature, which aim to mea-
sure the true signals of the gene expression from noisy data. These indices are under the
background normalization approach, which is one of the steps in the overall normalization of
the microarray data.

There are two sources of error in the observations. These are randomized and systematic
errors. The normalization is the process to discard the systematic errors in the observed
microarray dataset. This process is typically implemented before the analysis of the data.
Therefore, it can be considered as the preprocessing steps of the actual analysis. The ran-
domized error cannot be discarded and its presence does not cause any bias in the analysis.
Whereas, the systematic error implies other sources of variations, which are not originated
from the changes in the gene expressions. Therefore, it may lead to bias in the analysis if it is
not eliminated from the measurements (Wit and McClure, 2004; Steen, 2002; Stekel, 2003).

The possible sources of the systematic errors can be separated under the three groups for
one-channel microarrays. These are

1) Spatial normalization, which enables us to exclude errorenous signals due to the prob-
lems during the scanning of the array, unevenly washing the chips or localization of the
array (Wit and McClure, 2004; Steen, 2002; Stekel, 2003).

2) Background normalization, which can detect any errorenous signal due to the non-
specific hybridization faulty signals in the probe or array on the scanners (Wit and
McClure, 2004; Steen, 2002; Stekel, 2003).

3) Within-between array normalization, which can handle any possible signals due to the
design of the genes/conditions on the arrays (Wit and McClure, 2004; Steen, 2002;
Stekel, 2003).

On the other hand, an alternative approach suggested by Kerr et al. (2000) and Kerr and
Churchill (2001), the estimation of the signal and the analysis of the differentially expressed
genes can be done within an ANOVA model in which the normalization is not applied sep-
arately as the preprocessing of the data before the actual analysis, rather, it can be done si-
multaneously within an ANOVA model. This idea is discussed and used in the analysis to
capture the changes in gene expressions as well in the study of Ülgen (2010). In this model it
is assumed that the gene expression on the ith array, jth probe, kth variety, i.e. condition, and
the gth gene, denoted by yi jkg, can be described on the logarithmic scale via
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log(yi jkg) = µ + Ai + Vk + Gg + (AG)ig + (VG)kg + εi jkg (2.1)

in which µ is the average signal, Ai and Vk denote the ith array effect and the kth treat-
ment/condition effect, respectively. Moreover, Gg shows the gth gene effect. Finally, (AG)ig

and (VG)kg represent the interaction effect of array on the gth gene as well as treatment on the
gth gene, in order. In the end, εi jkg stands for the random error, which comes from indepen-
dent and identically distributed density with mean zero. In general, εi jkl is accepted to have a
normal distribution (Kerr et al., 2000). But from the comparative analysis via real and simu-
lated datasets under Dixon’s outlier, mixture and contamination models, it is showed that the
choice of long-tailed symmetric distribution for ε, which enables us to implement robust anal-
ysis, is more realistic than the strick normality assumption (Ülgen, 2010). In this study, the
measurements are modelled under an unbalanced two-way classification fixed effect model
with interaction such that

log(yi jkg) = µ + Ai + Vk + Gg + (AG)ig + (VG)kg + εi jkg (2.2)

where l indices the measurement from 1 to nk , i.e., 1 ≤ l ≤ nk, and nk denotes the number
of observations in the kth treatment for every gene. In the estimation of the model param-
eters, as εkgl is not dependent on the strict normality, LTS density is accepted, resulting in
estimators via the modified maximum likelihood (MML) method, which we use in this study
as well and present its mathematical details in Chapter 3, and adaptive maximum likelihood
(AMML) approach (Dönmez, 2010; Tiku and Sürücü, 2009), that is also known as revised
MML or MML30. Moreover, the significance of the estimates in ANOVA model is evaluated
via different pairwise multiple comparison testing procedure based on MML estimators and
AMML, which are originally developed from the Dunnett (1982) pairwise t-test and simulated
comparison test based on noncentral F and W statistics (Ülgen, 2010). The performance of es-
timates is then compared with least squares and Huber’s M-estimators, respectively, regarding
their powers and relative efficiencies.

On the other hand, from the previous analyses, it is shown that the ANOVA approach with re-
spect to preprocessing procedure of normalization is computationally intensive, in particular,
when more complicated normalizations are required (Wit and McClure, 2004). In this thesis,
we accept that the researcher follows the second strategy that is based on the preprocessing
calculation of the data in advance of the actual analysis. Accordingly, we initially present
well-known and current background normalization methods before describing our novel ap-
proach as a plausible alternative of them. Then, we describe our suggested method in details.

2.1 MAS 5.0 Method

MAS 5.0 (Microarray Suite Software) method is one of the well known gene expression in-
dices specifically developed for oligonucleotides. It is already used in a number of microarray
analysis. For instance, it is implemented in a study to detect the role MAP kinase types in
adult mouse hearts (Mitchell et. al., 2005), to identify, diagnose and predict the survival of
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a lymphoma as well as lymphoproliferative disorder (Staudt et. al., 2011). Moreover, Klien-
stein et al. (2006) use it in the analysis about the diversity in Arabidopsis thaliana regarding
the gene expressions. Reppe et al. (2007) perform it in a study to seek for the effect of
abnormal muscles and hematopoieyic gene expressions on clinical morbidity in the primary
hyperparathyroidism. Kostek et al. (2007) apply this method to determine the molecular
mechanisms of lengthening and shortening constructions in human muscles. Additionally,
Yang et al. (2012) conduct a study regarding the survival in head and neck cancers and
perform this normalization approach and finally, Venezia et al. (2004) investigate the molec-
ular signatures of proliferation and quiescence in hematopoietic stem cells via the microarray
study with MAS 5.0 technique.

In this method, the true signal in the PM probe is considered to be affected by the stray signal
in an additive way, and the stray signal is the unique source of the MM probe (Hubbell et al.,
2002). In this approach, the true signal T is calculated as follows:

log Ti j = log (PMi j − S i j),

where i = 1, 2, ..., n, j = 1, 2, ...,m and Ti j = PMi j/S i j.

Here, S i j denotes the stray signal and PMi j describes the perfect match for the ith gene and
the jth probe. Accordingly, i and j stand for the gene and probe indicator, respectively. In
MAS 5.0, the decision of the amount of stray signals is presented as the following criterion:

• If PMi j > MMi j, then S i j = MMi j, that is, the stray signal is thought to merely come
from the mismatch.

• If PMi j ≤ MMi j, then log Si j = log PMi j − SB+
i ,

where S i j represents the stray signal and PMi j shows the perfect match. Moreover, SB+
i

indicates a specific background and aims to give a robust estimate of the typical log intensity
for gene i. Hence, it is calculated by

SB+
i = Tbi[log PMi j − log MMi j]

in which Tbi presents the one-step Tukey biweight estimator of location and reports the infor-
mation about the typical probe pair for the ith gene.

The Tukey biweight, also called the bisquare weight, is a robust statistic in the sense that it
assigns the weights to data points x j( j = 1, 2, . . . , n), which are expressed as x j = log PMi j −

log MMi j, with respect to their distances to the median. By this way, it aims to find a robust
average, which is not affected from the outliers (Affymetrix, 2002). Thereby, it is computed
as:

Tbi =
x j − µ̃

m
i

σ̃m
i

,
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where µ̃m
i is the median of the ith gene in the m probe, determining the center of the cor-

responding data and σ̃m
i denotes the median absolute deviation. The weight w is used for

determining how much each value should contribute to the average and gives the advantage
of reducing the effect of the outliers on the average. Hereby, it is found by

w(u) = (1 − u2)2, for 0 ≤ |u| ≤ 1 (2.3)

and zero otherwise. As seen in Equation (2.3), the outliers can be handled by a smooth
function since the weights are reduced to 0 for those, which are far from the median. Finally,
the corrected values are included in Ti j like a weighted mean via

Tbi =

∑n
j=1 w(u j)x j∑n

j=1 w(u j)
. (2.4)

Here, n is the total sample size of x. In MAS 5.0 method, S B+
i cannot be less than or equal

to 0. In order to guarantee its positivity, a threshold point γ is taken into account by using
the median of the distribution of (log PMi j − log MMi j). Accordingly, if S B+

i > γ, no further
adjustment is made to the data, otherwise, the following equation is applied in place of the
original S B+

i :

S B+
i =

γ

1 + 0.1(γ − S B+
i )

,

which shows a weighting function decreasing to zero slowly.

There are two main disadvantages of MAS 5.0 gene index. These are:

1. It assumes that MM values merely measure the stray signal and the noise additively.

2. The estimation of the true signal can have bias when PMi j ≤ MMi j .

2.2 MBEI(dChip) Method

MBEI (Model Based Expression Index) is one of the well-known gene expression indices. As
the examples of some microarray applications via this approach, we can consider the study
of Guerri et al. (2012), which detects a patient diagnosed with mantle cell lymphonia into
the category of indolent or conventional. Janne et al. (2012) use it in an analysis about
the cancer treatment with an anti-Erbis therapeutic agent that is related to an activation of
MET gene mutation or MET gene amplification. Additionally, Bonner-Weir et al. (2012)
apply this method in a study to investigate the glucose-responsive insulin secreting cells in an
enriched population of matures and to modulate the insulin expression, activity and secretion
in a subject. Then, Shlien and Malkin (2010) and Harbour (2011) perform dChip in the
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risk analysis of a mammal having a cancer and in a study to find out the risk of metastasis,
respectively.

For the mathematical details of this method, MBEI suggests a multiplicative model for the
observed signal and if the dependent and non-identically distributed probe-measures exist, it
can take into account the variability of each probe separately (Li and Wong, 2001).

Moreover, it assumes that there is a linearly increasing relation between the intensity of a
probe and the model based expression index, θa for a gene in the ath array (a = 1, 2, . . . , k).
This rate of increase changes in each probe and within the same probe pair. Furthermore, it is
accepted that the PM intensity raises faster than the MM intensity. As a result, the full model
is described as follows:

MMa j = v j + θaα j + εm
a j,

PMa j = v j + θaα j + θaφ j + ε
p
a j,

in which v j reports the baseline response resulting from the non-specific hybridization, α j

stands for the rate of increase in stray signal, φ j denotes the additional rate of increase in the
PM intensity (true signal, probe efficiency) for the jth probe pair, and both εm

a j and εp
a j are the

random error of MM and PM, respectively.

Then, the observed probe intensity for the ath array is computed as:

Ya j = PMa j −MMa j = θaφ j + εa j,

where the error term, εa j, is distributed normally with mean 0 and variance σ2.

In estimation of the model parameters, the MBEI performs the least square estimation method.
Accordingly, the major disadvantage of this index is its limitations working with for large
number of arrays. The reason is that the estimates cannot be found explicitly due to the fixed
probe effect. However, from the comparative analysis it has been shown that it gives better
results than MAS 5.0 in terms of the accuracy of the estimated signals (Purutçuoğlu, 2007;
Lemon et al., 2002).

2.3 RMA Method

This method is another very common approach in microarray analysis and often used in a
variety of biological researches. For instance Dash et al. (2012) and Greco et al. (2010)
use it in the study of gene expression resources for plants and plant pathogens, and study
about SV-40 immortalized human corneal epithelial cells cultured with an air-liquid interface,
respectively. Moreover, Obayashi et al. (2007) and Le et al. (2012) apply this approach in
the analysis to determine the co-regulated gene groups in arabidopsis and to investigate the
change in the gene expressions of soybean leaf tissues at the late developmental stages under
drought stress, in order.
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In the RMA (Robust Microarray Analysis) method, the intensities from MM probes are con-
sidered to include only the non-specific hybridization intensities, thereby, can be disregarded
during the estimation (Irizzary et al., 2003).

On the other hand, the intensities from the PM probes are thought to contain both the back-
ground and the true signal, which are composed of the optical noise and the non-specific
hybridization.

In this method, the following assumptions are accepted to calculate the true signal and get rid
of the background signal:

1. It takes into account the conditional expectation of the true signal.

2. It assumes the exponential true signal sai j and the normal background, bai j. Then, the
estimated true signal is modeled as below:

s∗ai j = E(sai j|sai j + bai j) ≡ E(sai j|PM),

where sai j is the true signal and bai j shows the background signal for the ith gene (i =

1, 2, ..., n), the ath array (a = 1, 2, ..., k), and the jth probe ( j = 1, 2, ...,m).

Finally, the gene expression index is described by:

log2 (s∗ai j) = µai + αi j + εai j, (2.5)

in which µai shows the expression level for the ath array on the logarithmic scale, αi j presents
the jth probe effect, and εai j indicates the error term with mean 0 for each gene i. In Equation
(2.5), before the estimation of underlying model parameters, the outlier probes are detected
and the assumption of

∑m
j=1 α j = 0 is set. Then the method implements the quantile normal-

ization, which represents a transformation of the arrays by setting the same distribution of the
probe intensities for each array (Bolstad et al., 2003). Finally, after this array’s normalization,
the intensities are transformed to the log-scale.

On the other hand, from the comparison of this method with others, there is a similarity be-
tween RMA and MBEI methods in terms of modeling the probe effect. However, for individ-
ual probe effect, RMA suggests an additive model on the log-scale, whereas, MBEI proposes
a multiplicative one on the original scale.

Also, due to the fixed effects model for the probe effects, RMA is not good at working with
large number of arrays, similar to MBEI.

Moreover, RMA has some advantages over MAS 5.0 and MBEI with respect to the stan-
dard deviations, in particular, for genes at lower intensities across replicated arrays (i.e. it
gives smaller standard deviations), and with respect to the higher consistency in fold-change
estimates under different concentrations. Furthermore, from the analysis via ROC (Receiv-
ing Operating Characteristic) curves, it can detect the differentially expressed genes better
(Purutçuoğlu, 2007).
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2.4 mgMOS Method

The mgMOS (Modified Gamma Model for Oligonucleotide Signal) method is another alter-
native model for single channel microarrays. In the literature this method is also widely used
in biological researches, such that Noyes et. al. (2011) apply it in a study for detecting cat-
tle identified candidate genes in pathways responding to Trypanosoma congolense infection.
Then Cusumano et. al. (2010) and Derrien et. al. (2011) implement it in the analysis of pre-
natal mouse cochlea and virulence plasmid harbored by uropathogenic escherichia coli (i.e.,
E-coli) in acute stages of pathogenesis, in order. Furthermore, Derrien et. al. (2011) and
Buler et. al. (2011) perform this method in the study about the modulation of the mucosal im-
mune response, tolerance and proliferation in mice colonized as well as in a study regarding
the energy sensing factors, respectively.

In this model, the MM probe intensities are treated as only coming from the background
signal and the true signal is modeled according to a joint probability density generated via a
gamma distribution for PM and MM probes (Milo et al., 2003). Different from RMA, in order
to model the correlation between the PM and MM intensities, this model makes use of latent
variables, standing for different binding affinity of probes within a specified probe set.

In this method, the PM and MM intensities are assumed to be distributed as gamma with the
same inverse scale but with different shape parameters. Thereby, the model can be expressed
as follows:

γi j = mi j + si j, (2.6)

where N is the number of probes on the chip ( j = 1, . . . ,N) and n j is the number of probes in
the jth probe set (i = 1, . . . , n j). In Equation (2.6), γ stands for the observed PM intensity, m
shows the observed MM intensity, and s presents the true probe signal.

Due to the advantage of the probabilistic model standing for the relationship between the
data and model parameters, by this model, it is possible to find credibility intervals for the
expression indices (Purutçuoğlu, 2007).

2.5 GC-RMA Method

The GC-RMA (Robust Microarray Analysis based on GC content) model is an extended ver-
sion of the RMA approach in the sense that it is the first method, which can come up with
the idea of presence of true signal intensities in the MM probes (Wu et al., 2004). In the
literature, this method is implemented in a variety of analysis such as the study about rhyth-
mic plant growth (Michael et al., 2008), the retinal gene expression in chicks during imposed
myopic defocus (Schippert et. al., 2008), Amacrine cell layer of chicks after myopic and hy-
peropic defocues (Asbby and Feldkaemper, 2010), non-small cell lung carcinoma cell lines
(Dalby et al., 2012), coordinated histone modifications (Ha et al., 2011), age and mortality of
humans (Kerber et al., 2009) and multiple myeloma (Meibner et al., 2011).

Hereby, in this approach, a fraction term is added in the MM probes to explain the amount
of true intensities. However, in practice it is assumed that it can set to zero as the minimum
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intensity from an array. On the other side, the PM values are considered to come from three
sources, namely, the optical noise, the non-specific binding, and the true signal. The first
two sources are treated as independent functions of the probe affinity, which is the sum of
position-base effects.

Thus, the underlying model for any particular probe pair can be shown as follows:

PM = OPM + NPM + S , (2.7)

MM = OMM + NMM + φS , (2.8)

where O shows the optical noise, N stands for the NSB noise and S is a quantity proportional
to RNA expression. The term φ presents the fact that MM intensities hasve some true values.

On the other hand, regarding the comparison of accuracy among GC-RMA, RMA and MAS
5.0 methods, GC-RMA and MAS 5.0 give better results than RMA, whereas, RMA performs
better with respect to the precision (Purutçuoğlu, 2007).

2.6 BGX Method

Different from GC-RMA, the BGX (Bayesian Expression Index) method does not assume the
value of the fraction in Equation (2.7) as zero. Instead, its value is estimated from the data
(Hein et al., 2005). The aim of this approach is to reduce the variances of the estimated
expression by the help of information from MM probes via the underlying fraction term.

Hereby, in this model, MM probes are considered to contain some fraction of the true signal
and the signal from the cross-hybridization. On the other hand, PM probes contain the signal
from cross-hybridization and the true signal. Additionally, both of the probe sets are assumed
to be normally distributed with the following parameters:

PMi j ∼ N(S i j + Hi j, ψ
2) and MMi j ∼ N(ΦS i j + Hi j, ψ

2), (2.9)

where S i j refers to the true signal and Hi j presents the non-specific and cross-hybridization
for probe j of gene i (i = 1, . . . , n). Moreover, ψ2 denotes the constant variance of each probe
while the fraction term lies within 0 and 1.

In the estimation of the model parameters, the Bayesian methods are applied. Accordingly,
on the logarithmic scale, the following hierarchical structure is considered:

log (S i j + 1) ∼ T N(µi, σ
2
i ) and log (Hi j + 1) ∼ T N(ϕ, η2),

in which µi and σ2
i display the gene specific hyperparameters of the true signal for the ith

gene and jth probe under the truncated normal distribution. Similarly, ϕ and η2 stand for the
associated hyperparameters of the non-specific and cross-hybridization signal Hi j under the
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same distribution. There are also some assumptions for the listed hyperparameters, which are
listed as below:

µi ∼ Uniform(0, 15)

log (σ2
i ) ∼ N(e, f 2)

φ ∼ Beta(1, 1)

ϕ ∼ N(0, 1000)

(ψ2)
−1

and (η2)
−1
∼ Gamma(0.001, 0.001),

where e and f 2 show the empirical mean and variance of σ2
i , respectively, in order to describe

the variance of log (S i j + 1) for each probe set i.

Finally, as the point estimator of BGX, the median of the posterior signal distribution is com-
puted.

On the other hand, as the advantages of this method over others, it provides smaller bias,
in particular, at low levels of gene expression and it gives better accuracy than MAS 5.0,
MBEI, and RMA. Moreover, BGX and RMA are better than the previous methods for ranking
genes regarding the extent of the differential expression. However, as its disadvantage, it is
computationally intensive (Purutçuoğlu and Wit, 2006; Purutçuoğlu, 2007). Therefore, it has
not yet commonly used in biological researches, apart from some recent studies such as a
research about type-one diabetes (Jailwala et al., 2009) and chondrogenic differentiation of
human bone marrow-derived mesenchymal stem cells (Herlofsen et al. 2011).

2.7 Multi-mgMOS Method

The Multi-mgMOS (Multiple Chips mgMOS) method suggests the same model of BGX as
shown in Equation (2.9), whereas, it uses the Bayesian estimation with a maximum likeli-
hood approximation in inference of the model parameters to reduce the computational cost of
BGX (Hubbell et al., 2002). In the application, this index is used all the biological analyses
presented for the mgMOS method.

Hereby, in this model, the binding fraction is estimated from the empirical knowledge gath-
ered from the spike-in genes with concentrations higher than 50 picoMolar (pM). Moreover,
for highly expressed spike-in genes, the background and the non-specific hybridization are
assumed to be zore.

In the parameter estimation, making use of maximum a posteriori estimate (MAP) under the
log-normal prior, the logarithm of the posterior probability is maximized. To find the index for
gene i on array a, the median of the expected log true probe signals across all probe pairs are
used. The distribution of these true signals depends on some probe-set specific parameters,
bi, di, and the posterior distribution of array specific parameter αai.

Although, Multi-mgMOS is computationally more efficient than BGX, the cost of the com-
putation is still demanding for large datasets since this model makes use of the Bayesian
approach, whereas, it gives as sensitive results as BGX finds (Purutçuoğlu, 2007).
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2.8 FGX Method

From the Q-Q (quantile-quantile) plots of Affymetrix genes, it is found that a correlation
between the values of PM and MM probes exists on the logarithmic scale (Purutçuoğlu and
Wit, 2006). The reason for this linear relation can be caused by the existence of some gene-
specific target values on the MM values. Indeed as stated in GC-RMA, BGX, and multi-
mgMOS methods, both PM and MM values contain this signal, resulting in a significant
correlation between PM and MM values.

Such correlation implies that PM and MM values possess a part of a common signal S . In
addition, in both PM and MM values, there exists a large non-specific hybridization compo-
nent µH , as an off-set term. On the other hand, the assumption of the log-normality gives the
opportunity to deal with the heterogeneity of the variance across the intensity range.

Then, the corresponding model is presented as follows:

log PMi j ∼ N(S i + µH , σ
2)

and

log MMi j ∼ N(pS i + µH , σ
2), (2.10)

where S i corresponds to the true expression value for gene i, p stands for the fraction of
specific hybridization to the mismatch probe and µH denotes the mean of the non-specific
signal, containing the non-specific hybridization, background, and the stray signal. Moreover,
i and j are the gene and probe indicators, respectively, where i = 1, . . . , n and j = 1, . . . ,m.

On the other side, in Equation (2.10), σ2 refers to the constant variance that is composed of
the nested variance of measurement error and background signal.

In inference of model parameters, because of the fact that the averages of log(PM) and
log(MM) values are sufficient statistics for the corresponding means and the analysis of the
Affymetrix data is done on a probe set, rather than on individual, level, the following averages
are considered in calculation.

PMi =

m∑
j=1

logPMi j

m
and MMi =

m∑
j=1

logMMi j

m
,

such that

PM ∼ N(S i + µH ,
σ2

m
) and MM ∼ N(pS i + µH ,

σ2

m
). (2.11)
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However, the expressions in Equation (2.11) are not sufficient statistics for estimating the
variance terms. One way to deal with this challenge can be to reformulate the likelihood
function in terms of all data after the estimation of the remaining parameters, S i, p, and µH

and then to compute the MLE for σ2 conditional on the estimates Ŝ i, p̂, and Ĥ by using the
invariance property of maximum likelihood estimation (MLE) (Purutçuoğlu, 2007). In the
biological literature, this method is not implemented often yet, apart from boron toxicity in a
sensitive barley cultivar leaves (Purutçuoğlu et al., 2012), but, it is performed different gene-
expression based comparative studies (Kennedy, 2008; Augugliaro and Mineo, 2010; Sarmah
and Samarasinghe, 2011; Purutçuoğlu, 2012).

2.9 RGX Method

The RGX (Robust Gene Expression Index) is a recently developed method, which can be
considered as the extension of the FGX approach (Purutçuoğlu, 2012) and in application via
real life data, it is used in the analysis of the boron toxicity of the barley leaves. In this
method, different from FGX, we can handle non-normal log-expressions, in particular, long-
tailed symmetric densities.

Accordingly, in RGX, the logarithms of PM and MM are thought to come from long-tailed
symmetric families (LTS). But under LTS, since the partial derivatives of log-likelihood func-
tions do not have explicit solutions for estimates of parameters, this method makes use of the
modified maximum likelihood estimation (MMLE) technique in inference.

On the other hand, the reason for the selection of LTS, rather than normality, can be observed
from the Q-Q plot of PM and MM probe values of the different microarray datasets. In these
data, it is seen that there exists deviations from the straight line, especially, in the tails, which
can be seen as the indictions of the underlying density. Hereby, the PM and MM in this model
are described as below:

log PMi j ∼ LTS(S i + µH , σ
2)

log MMi j ∼ LTS(pS i + µH , σ
2),

whose model parameters are derived from the MMLE via:

µ̂H =

∑m
j=1 β jMMi − p̂

∑m
j=1 β jPMi

(p − 1)
∑m

j=1 β j
,

σ̂ =
B +
√

B2 + 4nmC
2nm

,

where

B =
v
k

n∑
i=1

m∑
j=1

α j(PMi j −MMi j),

C =
v
k

 n∑
i=1

m∑
j=1

(PMi j − Ŝ i − µ̂H)2 +

n∑
i=1

m∑
j=1

(MMi j − p̂Ŝ i − µ̂H)2


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and

Ŝ i =
σ̂(1 + p̂)α j + (PMi j + p̂MMi j)β j − µ̂H(1 + p̂)β j

(1 + p̂)β j
.

In the estimation of p̂, the index requires a two-stage procedure, where in the first stage,
all the estimates are found based the least square estimate (LSE) of p, i.e., under normality
assumption. Once µ̂H , Ŝ i and σ̂ are computed, they are used in the MML estimator of p from
the invariance property of the MML method. Finally, all estimates are run three or four times
so that all the concommitants fix in the iteration.

From the comparative analysis, it has shown that RGX gives better results than its well
known alternatives in the detection of differentially expressed genes. Also, RGX is more
computationally efficient than FGX and under the non-normality, it outperforms FGX as well
(Purutçuoğlu, 2012; Purutçuoğlu et al., 2012).

In the following part, we present our novel gene expression index, called as multi-RGX with
the derivation of its estimator. Moreover, we describe other alternative modellings of our
index, give their derivations and discuss their challenges.
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CHAPTER 3

multi-RGX METHOD

As described in the previous chapters and stated in the Introduction part, the major aim of
our study is to suggest a new gene expression index, which is as fast as its strong alternatives
such as FGX and RGX, overcome the problems of computational challenge of BGX model
whose inference is based on the bayesian approach, and reach high accuracy in the estimated
signals without ignoring probe level information in the oligonucleotides like in the modelling
of FGX and RGX.

Accordingly, in general, the multi-RGX (multi-Robust Gene Expression Index) can be seen
as the extended version of the RGX method. Thereby, in this model, we suppose that the
intensities from PM and MM probes on the log-scale have the density from the long-tailed
symmetric families, similar to the idea of RGX. On the other hand, different from RGX, it
does not follow an iterative process, but it works with the explicit solutions of the desired
parameter estimates. In fact, we also consider possible other modelling approaches of multi-
RGX by including signal level variance, fraction, and background signal at different levels.
Whereas, as described in the following section in this chapter, none of these alternatives can
give explicit solutions in estimation and since one of the major goals of our study is to gain
from the computational time against the full modelling of the BGX approach based on the
iterative algorithms, we do not use these alternative modellings in the application.

In a standard Affymetrix GeneChip, there are m number of probes, and in each probe there
exists n number of genes coming from PM and MM probes.

As mentioned previously in FGX and RGX indices, we also try to model the intensities com-
ing from MM probes since it contains not only the false signal, but also a fraction of the
true signal. To define the amount of the underlying true signal, a fraction term p is applied.
Hereby, the intensities coming from PM probes is distributed as the long-tailed symmetric
with mean containing a constant term and a term, which stands for the true signal changing
from gene to gene. On the other hand, its variance is constant over genes and probes. Differ-
ent from PM, MM has the mean containing the same constant term and the part of the true
signal.

In the estimation of the model parameters, the modified maximum likelihood estimation
(MMLE) method is applied whose procedure is described as follows.

In finding the MLE, there are some situations where we cannot find the solution(s) of the
likelihood equation explicitly (Tiku and Akkaya, 2004). Under such challenges, rather than
applying iterative methods, Tiku has proposed an alternative approach, called the modified
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maximum likelihood estimation (MMLE), which can solve the nonlinearity problems in the
partial derivatives functions of model parameters in the underlying likelihood functions.

Basically, the MML method considers replacement of the intractable terms in the partial
derivative of the log-likelihood equations by their linear approximations via the first order
Taylor series expansion. The procedure for this approach can be described under a location-
scale family of the symmetric distribution, which has the form below (Tiku and Akkaya, 2004;
Akkaya and Tiku, 2007):

f (x) =
1

σ
√

kβ( 1
2 , v −

1
2 )

[
1 +

(X − µ)2

kσ2

]−v

, −∞ < x < ∞,

where k = 2v − 3 and the shape parameter v is greater than or equals to 2 (v ≥ 2) to guarantee
the existence of the expectation µ, where E(X) = µ and V(X) = σ2. Finally, β( 1

2 , v −
1
2 ) =

Γ( 1
2 )Γ(v− 1

2 )
Γ(v) , in which Γ( 1

2 ) =
√
π and Γ(v) = (v − 1)!.

In the estimation, considering that X1, . . . , Xn are a random sample of size n and v is known,
the corresponding likelihood function can be written as:

L(X1, X2, . . . , Xn|µ, σ
2) =

n∏
i=1

1

σ
√

kβ( 1
2 , v −

1
2 )

[
1 +

(Xi − µ)2

kσ2

]−v

, (3.1)

=

 1

σ
√

kβ( 1
2 , v −

1
2 )

n n∏
i=1

[
1 +

(Xi − µ)2

kσ2

]−v

. (3.2)

Since in Equation (3.2) the term 1
σ
√

kβ( 1
2 ,v−

1
2 )

is constant in terms of µ and σ, the function can

be simplified via:

L(X1, X2, . . . , Xn|µ, σ
2) ∝

1
σn

n∏
i=1

[
1 +

(Xi − µ)2

kσ2

]−v

and the log-likelihood can be written proportionally by:

ln L ∝ n lnσ − v
n∑

i=1

[
1 +

(Xi − µ)2

kσ2

]
. (3.3)

Then, by substituting Xi as zi =
Xi−µ
σ , Equation (3.3) can be described as:

ln L ∝ −n lnσ − v
n∑

i=1

[
1 +

1
k

z2
i

]
.
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Finally, the maximum likelihood (ML) estimators of µ and σ are derived from the following
partial derivatives:

∂ ln L
∂µ

=
2p
kσ

n∑
i=1

zi

1 + 1
k z2

i

=
2p
kσ

n∑
i=1

g(zi) (3.4)

and

∂ ln L
∂σ

= −
n
σ

+
2p
kσ

n∑
i=1

z2
i

1 + 1
k z2

i

= −
n
σ

+
2p
kσ

n∑
i=1

zig(zi). (3.5)

Since by setting g(zi) =
zi

1+
z2
i
k

, Equations (3.4) and (3.5) do not have explicit solutions, the

desired estimates can be found by MML, rather than MLE, method. In this approach, we
order the data from smallest to largest magnitude and write Equations (3.4) and (3.5) via:

∂ ln L
∂µ

=
2p
kσ

n∑
i=1

g(z(i))

and

∂ ln L
∂σ

= −
n
σ

+
2p
kσ

n∑
i=1

z(i)g(z(i)),

respectively, where z(i) =
X(i)−µ

σ and X(i) presents the ith order statistic for i = 1, . . . , n.

As we need to linearize ∂lnL
∂µ and ∂ ln L

∂σ in order to get explicit solutions, we apply the Taylor
series of the nonlinear function g(z(i)) as follows:

g(z(i)) � g(t(i)) + (z(i) − t(i))
[
g′(z)

]
=

t(i)

1 +
t2(i)
k

+ (z(i) − t(i))
1 +

z2
(i)
k − z(i)

1
k 2z(i)

1 + 1
k z2

(i)

=
t(i)

1 +
t2(i)
k

+ (z(i) − t(i))
1 +

t2(i)
k − z(i)

1
k 2t(i)

1 + 1
k t2

(i)

=
t(i)

1 +
t2(i)
k

+ z(i)
1 −

t2(i)
k

(1 +
t2(i)
k )

2 − t(i)
1 −

t2(i)
k

(1 +
t2(i)
k )

2

� αi + βiz(i),
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in which z(i) denotes the ordered zi with respect to gene i (i = 1, . . . , n) as the concommitant
while

αi =
2t3

(i)

k
and βi =

1 −
t2(i)
k

(1 +
t2(i)
k )

2

under
∑n

i=1 αi = 0 due to the symmetry. Here, t(i) stands for the ordered student-t values for
each gene i.

By this way, we can obtain a linear equation for g(z(i)) in place of its nonlinear expres-
sion. Then, we get the MML estimators from the following modified likelihood equations
∂ ln L∗/∂µ and ∂ ln L∗/∂σ:

∂ ln L
∂µ

≈
∂lnL∗

∂µ
=

2p
kσ

n∑
i=1

αi + βiz(i) (3.6)

∂ ln L
∂σ

≈
∂ ln L∗

∂σ
= −

n
σ

+
2p
kσ

n∑
i=1

z(i)(αi + βiz(i)). (3.7)

Thus, by solving Equation (3.6) and (3.7) simultaneously and equating them to zero, we
derive:

n∑
i=1

αi + βiz(i) = 0

n∑
i=1

αi +

n∑
i=1

βiz(i) = 0

n∑
i=1

βi
(X(i) − µ)

σ
= 0

n∑
i=1

βi(X(i) − µ) = 0

n∑
i=1

βiX(i) −

n∑
i=1

βiµ = 0.

Hence, the estimate for µ is obtained as:

µ̂ =

∑n
i=1 βiX(i)∑n

i=1 βi
.

Similarly,
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−
n
σ

+
2p
kσ

n∑
i=1

(z(i)αi + βiz2
(i)) = 0

−
1
σ3

nσ2 −
2pσ2

k

n∑
i=1

z(i)(αi + βiz(i))

 = 0

nσ2 −
2pσ2

k

n∑
i=1

(X(i) − µ̂)
σ

(αi + βi
(X(i) − µ̂)

σ
) = 0

nσ2 −
2pσ2

k

n∑
i=1

[
(X(i) − µ̂)αi

σ
+ βi

(X(i) − µ̂)2

σ2

]
= 0

nσ2 −
2pσ

k

n∑
i=1

((X(i) − µ̂)αi + βi
(X(i) − µ̂)2

σ
) = 0

nσ2 −
2pσ

k

n∑
i=1

(X(i) − µ̂)αi +
2p
k

n∑
i=1

βi(X(i) − µ̂)2 = 0

nσ2 − σ(
2p
k

n∑
i=1

X(i)αi −
2p
k
µ̂

n∑
i=1

αi +
2p
k

n∑
i=1

βi(X(i) − µ̂)2) = 0

nσ2 − σ
2p
k

n∑
i=1

X(i)αi +
2p
k

n∑
i=1

βi(X(i) − µ̂)2 = 0.

Thereby, the estimate for σ is found as:

σ̂ =
B +
√

B2 + 4nC
2
√

n(n − 1)
,

where

B =
2p
k

n∑
i=1

X(i)αi and C =
2p
k

n∑
i=1

βi(X(i) − µ̂)2.

Here n is replaced by
√

n(n − 1) to reduce the bias.

On the other hand, the procedure for g(z) yields the same result obtained from ML estimation
if g(z) is linear. Moreover, it has been shown that the limits of both Equations (3.4) and (3.6)
as well as Equations (3.5) and (3.7) are equivalent such that

lim
n→∞

∂ ln L
∂µ

n
≡ lim

n→∞

∂ ln L∗

∂µ
≡ 0

lim
n→∞

∂ ln L
∂σ

n
≡ lim

n→∞

∂lnL∗

∂σ
≡ 0.
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These results imply that the MML estimates are asymptotically equal to ML estimates. Ac-
cordingly, µ̂ and σ̂ derived from MML method are asymptotically unbiased and efficient (Tiku
et al., 1986; Tiku and Akkaya, 2004).

In the following parts, we initially present the summary of derivations of multi-RGX and then
describe other possible modelling approaches with their derivations because of the fact that
none of them can produce explicit forms for their estimators. The detailed derivations for
each model are given ,n Appendices.

3.1 Derivation of the multi-RGX Estimators

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we consider the following distributional assumption on the log-scale:

PMi j = ai j ∼ LTS(S i + µH , σ
2)

and

MMi j = bi j ∼ LTS(pS i + µH , σ
2),

where LTS denotes the long-tailed symmetric density.

Thereby, the corresponding likelihood is found via:

L(S i, µH , p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1
√

2πσ2
e−

(ai j−S i−µH )2

2σ2
1

√
2πσ2

e−
(bi j−pS i−µH )2

2σ2 ,

which is proportional to

L ∝ (
1
σ

)
n∏

i=1

m∏
j=1

(1 +
z2

ai j

k
)−v(

1
σ

)
n∏

i=1

m∏
j=1

(1 +
z2

bi j

k
)−v,

where v ≥ 2, k = 2v − 3.

In order to calculate the MLE of the model parameters, by making use of common nonlinear
functions stated in previous section, the first derivatives of the function ln L are taken with
respect to each parameter as below:
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∂ ln L
∂µH

=
2v
kσ

n∑
i=1

m∑
j=1

(ai j−S i−µH)
σ

(ai j−S i−µH)2

kσ2

+
2v
kσ

n∑
i=1

m∑
j=1

(bi j−pS i−µH)
σ

(bi j−pS i−µH)2

kσ2

∂ ln L
∂p

=
2v
kσ

n∑
i=1

m∑
j=1

S i(bi j−pS i−µH)
σ

(bi j−pS i−µH)2

kσ2

∂ ln L
∂S i

=
2v
kσ

m∑
j=1

(ai j−S i−µH)
σ

(ai j−S i−µH)2

kσ2

+
2v
kσ

m∑
j=1

−p(bi j−pS i−µH)
σ

(bi j−pS i−µH)2

kσ2

∂ ln L
∂σ

=

n∑
i=1

m∑
j=1

− 1
σ

+
(ai j − S i − µH)

σ3(1 +
(ai j−S i−µH)2

kσ2 )

2v
k


+

n∑
i=1

m∑
j=1

− 1
σ

+
(bi j − pS i − µH)

σ3(1 +
(bi j−pS i−µH)2

kσ2 )

2v
k

 ,

By first order Taylor expansions followings can be driven:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) .

In these expressions, zai( j) and zbi( j) show the ordered probes (in increasing magnitude) for each
gene i in PM and MM standardized intensities, respectively. Accordingly, g(zai( j)) and g(zbi( j))
are their associated linearized function via the Taylor series. Thereby, the partial derivatives
of MLE are as follows:

∂ ln L
∂µH

=
2v
kσ

n∑
i=1

m∑
j=1

g(zai( j)) +
2v
kσ

n∑
i=1

m∑
j=1

g(zbi( j))

∂ ln L
∂p

=
2v
kσ

n∑
i=1

m∑
j=1

S ig(zbi( j))

∂ ln L
∂S i

=
2v
kσ

m∑
j=1

g(zai( j)) +
2vp
kσ

m∑
j=1

g(zbi( j))

∂ ln L
∂σ

= −
2nm
σ

+
2v
kσ

m∑
j=1

g(zai( j))zai( j) +
2v
kσ

m∑
j=1

g(zbi( j))zbi( j) .

By making some substitutions µ̂H can be written in a way shown below:

µ̂H =
p
∑m

j=1 β jā. j −
∑m

j=1 β jb̄. j
(p − 1)

∑m
j=1 β j

.

Similarly, the form of Ŝ i can be derived as below:
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Ŝ i =
(
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j)p2

(p − 1)(p2 + 1)(
∑m

j=1 β j)

+
(
∑m

j=1 β jai( j) −
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j +
∑m

j=1 β jb̄. j)p

(p − 1)(p2 + 1)(
∑m

j=1 β j)

+

∑m
j=1 β jb̄. j −

∑m
j=1 β jai( j)

(p − 1)(p2 + 1)(
∑m

j=1 β j
,

for b̄. j =
∑n

i=1
ai( j)

n .

On the other hand, the estimate of the common fraction term p can be found as below:

p̂1 = p̂2 = 1

p̂3 =
(S S b − S S a) −

√
(S S a − S S b)2 + 4S S 2

ab

2S S ab

p̂4 =
(S S b − S S a) +

√
(S S a − S S b)2 + 4S S 2

ab

2S S ab
,

where

S S a =

n∑
i=1

m∑
j=1

β j

 m∑
j=1

β jai( j) −

m∑
j=1

β jā. j


2

S S b =

n∑
i=1

m∑
j=1

β j

 m∑
j=1

β jbi( j) −

m∑
j=1

β jb̄. j


2

S S ab =

n∑
i=1

m∑
j=1

β j

( m∑
j=1

β jai( j) −

m∑
j=1

β jā. j)(
m∑

j=1

β jbi( j) −

m∑
j=1

β jb̄. j)

 .
Finally, the MML estimate for σ can be presented by:

σ̂ =
B +
√

B2 + 4nmC
nm

,

for S i (i = 1, . . . , n). By adjusting the degree of freedom as 2nm − (n + 2), the estimate of σ
can be indicated as follows:

σ̂ =
B +
√

B2 + 4nmC
nm − n − 2

,
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in which

B =
v
k

 n∑
i=1

m∑
j=1

α j(ai( j) − bi( j))

 ,
C =

v
k

 n∑
i=1

m∑
j=1

β j(ai( j) − Ŝ i − µ̂H)2
+

n∑
i=1

m∑
j=1

β j(bi( j) − p̂Ŝ i − µ̂H)2

 .

The full derivation for all estimators can be found in Appendix A. The MMLE estimators are
also efficient and the covariances-variances of model can be found via the Inverse of the Fisher
Information matrix (Tiku et al., 1986; Tiku and Akkaya, 2004). In the following section, we
present the derivation of all covariance and variance estimators for our model parameters,
which are developed from the observed Fisher information matrix.

3.2 Observed Fisher Information Matrix and Estimators for Variances and Co-
variances

The Fisher Information Matrix is generated by making use of the second partial derivatives of
the loglikelihood function with respect to each parameter as below:

I11 = −
∂2l
∂µ2

H

I22 = −
∂2l
∂p2

Iii = −
∂2l
∂S 2

i

I12 = I21 = −
∂2l

∂µH∂p

I1i = Ii1 = −
∂2l

∂S i∂µH

I2i = Ii2 = −
∂2l

∂S i∂p

Iik = Iki = −
∂2l

∂S i∂S k
= 0,

where i, k = 1, . . . , n present the gene and j = 1, . . . ,m shows the probe indicator, respectively.
Moreover, l stands for ln L, the loglikelihood function.

Then, the Fisher information matrix is derived as below:
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I =



∂2l
∂µ2

H

∂2l
∂µH∂p

∂2l
∂µH∂S 1

... ∂2l
∂µH∂S n

∂2l
∂p∂µH

∂2l
∂p2

∂2l
∂p∂S 1

... ∂2l
∂p∂S n

∂2l
∂S 1∂µH

∂2l
∂S 1∂p

∂2l
∂S 2

1
... 0

. . . . . . . . . . . . . . .
∂2l

∂S n∂µH

∂2l
∂S n∂p 0 ... ∂2l

∂S 2
n
.



In order to find the variance-covariance matrix we take the advantage of the above information
matrix and derive the following variance and covariance terms:

V(µ̂H) =
1

C0

 2v
kσ2

n∑
i=1

m∑
j=1

S 2
i

1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

−

n∑
i=1

− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2



V( p̂) =
1

C0

 2v
kσ2

n∑
i=1

m∑
j=1


1 − (ai( j)−S i−µH)2

kσ2(
1 +

(ai( j)−S i−µH)2

kσ2

)2 +
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2



−

n∑
i=!

( 2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2 )2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


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Cov(µ̂H , p̂) =

 2v
kσ2

n∑
i=1

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

+

n∑
i=1

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

×

− 2v
kσ

m∑
j=1

(bi( j)−pS i−µH)
σ(

1 +
(ai( j)−S i−µH)2

kσ2

)2

+
2vp
kσ2

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2


 × 1

C0
,

where

C0 =

− ∂2l
∂µ2

H

−

n∑
i=1

(∂2l/∂S i∂µH)2

−∂2l/∂S 2
i

 × − ∂2l
∂p2 −

n∑
i=1

(∂2l/∂S i∂p)2

−∂2l/∂S 2
i


−

− ∂2l
∂p∂µH

−

n∑
i=1

(−∂2l/∂S i∂µH)(−∂2l/∂S i∂p)
−∂2l/∂S 2

i

 .
Moreover,

Cov(Ŝ i, µ̂H) =



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× −V(µ̂H)

−



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(µ̂H , p̂)
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and

Cov(Ŝ i, p̂) =



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× −Cov(µ̂H , p̂)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× V( p̂)

Also,

V(Ŝ i) = 1 −



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ i, µ̂H)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ i, p̂).
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Finally,

Cov(Ŝ i, Ŝ k) = −



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ k, µ̂H)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ k, p̂).

The derivation of each variance and covariance structure is presented in Section A.1 under
Appendix A. In the next chapters, we evaluate the performance of our model by comparing
the outputs of benchmark and simulated dataset whose estimated signals are already found
by other alternative approaches. For the calculation, we generate our own R codes as a new
function. The codes are also presented in Appendix F. But previously we derive plausible
modelling approaches of multi-RGX and show that all these models are based on iterative
techniques since none of them has close-form estimators.

3.3 Alternative Models of multi-RGX Index

Apart from the derivation given in the previous sections, we also derive the estimators of
possible alternative of multi-RGX in this part. In those models, we add the gene specific
variance (Alternative Model 1), the gene specific variance and fraction (Alternative Model 2),
the gene specific variance and background signal (Alternative Model 3), and finally, the gene
specific variance, fraction as well as background signal (Alternative Model 4), respectively.
Whereas, as seen in the corresponding sub-sections, none of these models produces explicit
expressions for model parameters, resulting in iterative approach in calculation. Therefore,
we choose the current model given in the previous section for multi-RGX as its estimators
are close and explicit forms and also, these estimators are asymptotically equivalent to MLE
results even though our selected model is based on simpler assumptions than its alternatives.
Summary of the derivations is given here and the details can be found in Appendices.

3.3.1 Alternative Model 1

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene i,
we consider the following distributional assumption (long-tailed symmetric LTS distribution)
on the log-scale:
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PMi j = ai j ∼ LTS(S i + µH , σ
2
i ),

MMi j = bi j ∼ LTS(pS i + µH , σ
2
i ).

Here S i is the true signal for gene i, µH refers to the constant background intensity, and σi

presents the gene specific standard deviation. Finally, p indicates the fraction of the true signal
in MM.

Accordingly, the associated likelihood function is found via:

L(S i, µH , p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µH )2

2σ2
i

1√
2πσ2

i

e
−

(bi j−pS i−µH )2

2σ2
i ,

which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

) 1 +
z2

ai j

k

−v n∏
i=1

m∏
j=1

(
1
σi

) 1 +
z2

bi j

k


−v

,

where the shape parameter v ≥ 2, k = 2v−3, a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm).

In order to get the MLE of model parameters, we take the first derivatives of lnL with respect
to each parameter as follows:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

+
2v
k

n∑
i=1

m∑
j=1

(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂S i

=
2v
k

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

−
2vp

k

m∑
j=1

(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂σi

=

n∑
i=1

m∑
j=1

− 1
σi

+
(ai j − S i − µH)

σ3
i (1 +

(ai j−S i−µH)2

kσ2
i

)

2v
k


+

n∑
i=1

m∑
j=1

− 1
σi

+
(bi j − pS i − µH)

σ3
i (1 +

(bi j−pS i−µH)2

kσ2
i

)

2v
k

 .
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Then, by making use os common nonlinear functions and by the first order Taylor expansions
we get the following equations:

g(zai( j)) = α j + β jzai( j)

and

g(zbi( j)) = α j + β jzbi( j) .

when ai( j) and bi( j) represent the ordered PM and MM with respect to the probes j, i.e.,
the concomitant. Hereby, by using the partial derivatives of MMLE with respect to each
parameter and by taking

∑m
j=1 α j = 0 due to the symmetry, we obtain the following equations:

µ̂H =

p
∑n

i=1
∑m

j=1
β j

σ2
i
a(i j) −

∑n
i=1

∑m
j=1

β j

σ2
i
b(i j)

(p2 + 1)
∑m

j=1 β j
,

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j)

(p2 + 1)
∑m

j=1 β j
−

p(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
ai( j)−

(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
bi( j)∑n

i=1
1
σ2

i

(p2 + 1)
∑m

j=1 β j
.

Hereby,

p̂ =

∑n
i=1

∑m
j=1

β jS i

σ2
i

bi( j) −
∑n

i=1
∑m

j=1 µH
β jS i

σ2
i∑n

i=1
∑m

j=1
β jS 2

i
σ2

i

.

Also,

σ̂i
2 =

km
v

 p(p − 1)
(p2 + 1)

m∑
j=1

β jai( j) −
(p − 1)
(p2 + 1)

m∑
j=1

β jbi( j)

−
p(p − 1)
(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
ai( j)∑n

i=1
1
σ2

i

 +
km
v

 (p − 1)
(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
bi( j)∑n

i=1
1
σ2

i

 .

We present the complete derivation of the alternative model 1 in Appendix B.

3.3.2 Alternative Model 2

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, the following distributional assumption under the long-tailed symmetric(LTS) density is
considered on the log-scale:
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PMi j = ai j ∼ LTS(S i + µH , σ
2
i )

and

MMi j = bi j ∼ LTS(piS i + µH , σ
2
i ),

where S i and µH are the gene specific true signal and background intensity, respectively, and
σi denotes the standard deviation for gene i as used in previous alternative models. On the
other hand, pi presents the fraction of the true signal in MM for each gene i.

Thereby, the corresponding likelihood is found via:

L(S i, µH , pi | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2
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e
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(ai j−S i−µH )2

2σ2
i

1√
2πσ2

i

e
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i ,

which is proportional to

L ∝
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(
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σi

)(1 +
z2

ai j

k
)−v

n∏
i=1

m∏
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(
1
σi

)(1 +
z2

bi j

k
)−v,

where the shape parameter v ≥ 2, k = 2v − 3, degree of freedom d = 2v − 1, and finally a and
b refer to nm-dimensional vectors a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm),
in order.

To obtain the MLE of model parameters, we take the first derivatives of ln L with respect to
each parameter as below:

∂ ln L
∂µH

=
2v
k

n∑
i=1
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+
2v
k

n∑
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i
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i
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kσ2
i
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=
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k
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kσ2
i

+
2v
k

m∑
j=1

−pi(bi j − piS i − µH)

σ2
i

(bi j−piS i−µH)2

kσ2
i

∂ ln L
∂σi

= −

n∑
i=1

m∑
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σi
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(ai j−S i−µH)2

kσ2
i

)

2v
k


+

n∑
i=1

m∑
j=1

− 1
σi
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i (1 +

(bi j−piS i−µH)2
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 .
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Then, we approximate the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM as, and

we get the following first order Taylor expansions:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

for the standardized and ordered PM and MM intensities (in increasing magnitude), in order,
with respect to the probes in each gene i. Moreover, here t( j) refers to the ordered associate
student-t quantile for each probe j ( j = 1, . . . ,m).

Then, the partial derivatives of MLE can be shown as follows:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zai( j)) +
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zbi( j))

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j))

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2v
k

m∑
j=1

pi

σi
g(zbi( j))

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)).

Accordingly, the form of µ̂H can be derived as below:

µ̂H =

∑n
i=1

∑m
j=1

β j
σi

(ai( j)+bi( j))∑n
i=1 β j

−
∑n

i=1
∑m

j=1
(pi+1)
(p2

i +1)
β j
σi

∑n
i=1 β jai( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

−

∑n
i=1

∑m
j=1

(pi+1)pi

(p2
i +1)

β j
σi

∑n
i=1 β jbi( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

.

Likewise,
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Ŝ i =
1

(p2
i + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

pi

(p2
i + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j

−
pi + 1

(p2
i + 1)

∑n
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∑m
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β j
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(ai( j) + bi( j))(
2
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1
σi
−

∑n
i=1

∑m
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(p2
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)∑m
j=1 β j

−
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∑m
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σi

bi( j)(
2
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1
σi
−

∑n
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∑m
j=1

(pi+1)2

(p2
i +1)σi

) .
Thereby,

p̂ =

∑m
j=1 bi( j) − µH

∑m
j=1 β j

S i
∑m

j=1 β j
.

Hence, the form of the variance term can be derived via:

σ̂i
2 =

km
v

m∑
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β j(ai( j) + bi( j))

−
(pi + 1)v

km

 1
(p2
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∑m
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j=1 β j
+

pi

(p2
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∑m
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i=1
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−
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−
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
+ 2

m∑
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β j


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2
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1
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−
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(p2
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 = 0.
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From this final expression, it is seen that similar to the first alternative model, Model 2 also
has none explicit expression for the model estimators. The full derivation of this model is
given in Appendix C.

3.3.3 Alternative Model 3

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we consider the following distributional assumption under the long tailed symmetric (LTS)
on the log-scale:

PMi j = ai j ∼ LTS(S i + µHi, σ
2
i ), (3.8)

MMi j = bi j ∼ LTS(pS i + µHi, σ
2
i ), (3.9)

in which S i, p and µH describe the true signal in gene i, constant fraction of true signal in MM,
and gene-specific background intensities, respectively, as described beforehand. Finally, σ2

i
is the gene-specific variance component.

Hereby, the associated likelihood is found via:

L(S i, µHi, p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µHi)
2

2σ2
i

1√
2πσ2

i

e
−

(bi j−pS i−µHi)
2

2σ2
i ,

for a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm), which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

) 1 +
z2

ai j

k

−v n∏
i=1

m∏
j=1

(
1
σi

) 1 +
z2

bi j

k


−v

and under the shape parameter v ≥ 2 and k = 2v − 3.

In order to get the MLE of model parameters, we take the first derivatives of ln L with respect
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to each parameter as follows:

∂ ln L
∂µHi

=
2v
k

m∑
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σ2
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i

(bi j−pS i−µHi)2
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=
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k
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σ2
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i

+
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σ2
i
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kσ2
i

∂ ln L
∂σi

=

m∑
j=1

− 1
σi

+
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σ3
i (1 +

(ai j−S i−µHi)2

kσ2
i

)

2v
k


+

m∑
j=1

− 1
σi

+
(bi j − pS i − µHi)

σ3
i (1 +

(bi j−pS i−µHi)2

kσ2
i

)

2v
k

 .
Then, by approximating the common nonlinear functions g(z) = z

1+ z2
k

for PM and MM, the

first order Taylor expansions can be written via:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

where

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

under the probe based ordered values of zi j for each gene i. Here t(i) indicates the quantile of
the student-t density for the jth probe, as used other alternative models. We can express the
partial derivatives of MMLE as below:

∂ ln L
∂µHi

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2v
k

m∑
j=1

1
σi

g(zbi( j)) (3.10)

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) (3.11)

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)) (3.12)

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)). (3.13)

Finally, µ̂Hi is found as:

µ̂Hi =
p
∑m

j=1 β ja(i j) −
∑m

j=1 β jb(i j)

(p2 + 1)
∑m

j=1 β j
.
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Similarly, Ŝ i can be written as:

Ŝ i =

∑m
j=1 β jbi( j) −

∑m
j=1 β jai( j)

(p − 1)
∑m

j=1 β j
.

Thereby,

p̂ =

∑n
i=1

∑m
j=1

β jS i

σ2
i

bi( j) −
∑n

i=1
∑m

j=1 µHi
β jS i

σ2
i∑n

i=1
∑m

j=1
β jS 2

i
σ2

i

.

Finally, we can obtain MLE of σ for each gene i as follows:

σ̂i
2 =

∑m
j=1 β j(ai( j) + bi( j)) − (p + 1)S i

∑m
j=1 β j − 2µHi

∑m
j=1 β j

km
v

.

Then, we get the estimate of σ̂i as below:

kmσ̂i
2

v
= 0.

Hereby,

σ̂i = 0,

which implies an infeasible estimate for σi. We describe the derivation of estimators for each
model parameter in Appendix D.

3.3.4 Alternative Model 4

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we assume the following relation under long-tailed symmetric (LTS) distribution on the
log-scale:

PMi j = ai j ∼ LTS(S i + µHi, σ
2
i ), (3.14)

MMi j = bi j ∼ LTS(piS i + µHi, σ
2
i ), (3.15)

for gene specific true signal S i, background intensity µHi, and variance σ2
i .

Thereby, the associated likelihood can be written as follows:

L(S i, µHi, pi | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µHi)
2

2σ2
i

1√
2πσ2

i

e
−

(bi j−piS i−µHi)
2

2σ2
i
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under a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm), which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

)(1 +
z2

ai j

k
)−v

n∏
i=1

m∏
j=1

(
1
σi

)(1 +
z2

bi j

k
)−v,

for the shape parameter v ≥ 2 and k = 2v − 3.

In order to get the MLE of model parameters, we take the first derivatives of ln L with respect
to each parameter as below:

∂ ln L
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+

n∑
i=1

m∑
j=1

− 1
σi

+
(bi j − piS i − µHi)

σ3
i (1 +

(bi j−piS i−µHi)2

kσ2
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Moreover, by approximating the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM,

we can find the first order Taylor expansions v,a

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

as well as

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

By using the partial derivatives of MLE as follows, we can find the forms of estimates as
below:

µ̂Hi =
pi

∑m
j=1 β ja(i j) −

∑m
j=1 β jb(i j)

(p2
i + 1)

∑m
j=1 β j

.
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Similarly,

Ŝ i =

∑m
j=1 β jbi( j) −

∑m
j=1 β jai( j)

(pi − 1)
∑m

j=1 β j
.

On the other side, we can get the estimate of the common fraction term pi as below:

p̂ =

∑m
j=1 bi( j) − µHi

∑m
j=1 β j

S i
∑m

j=1 β j
.

Above equation gives us no solution, which implies an infeasible estimate for pi.

Then, the variance term is derived as below:

kmσ̂i
2

v
=

m∑
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β j(ai( j) + bi( j)) − (pi + 1)

−
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∑m

j=1 β j


− 2
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j=1 β j(a(i j) −
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(p2
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β jai( j) +
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β jbi( j) −
pi + 1
pi − 1

m∑
j=1

β jbi( j) +
pi + 1
pi − 1

m∑
j=1
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−
2pi
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m∑
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β jai( j) +
pi + 1
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m∑
j=1

β jai( j) −
pi

pi − 1

m∑
j=1

β jai( j)

=

[
1 +

pi + 1
pi − 1

−
2pi

pi − 1

] m∑
j=1

β jai( j) +

[
1 −

pi + 1
pi − 1

+
2

pi − 1

] m∑
j=1

β jbi( j),

since

1 +
pi + 1
pi − 1

−
2pi

pi − 1
= 0 and 1 −

pi + 1
pi − 1

+
2

pi − 1
= 0.

Hereby, we obtain 0 as the estimate of the variance term σi as below:

kmσ̂i
2

v
= 0

σ̂i = 0,

which implies infeasible estimator for the standard deviation. The complete derivation for all
estimators can be found in Appendix E.
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CHAPTER 4

Application

4.1 Application via Real Datasets

4.1.1 Description of Real Datasets

In the analysis, we use two benchmark datasets, namely, dataset 1, which is the benchmark
Affymetrix spike-in data, and dataset 2, which is gathered from the GeneLogic spike-in data.
The first dataset, i.e., dataset 1, is available at http://affycomp.biostat.jbsph/edu/.
This dataset consists of 11 spike-in genes: AFFX-DapX-3, AFFX-DapX-5, AFFX-BioC-
5, AFFX-DapX-M, AFFX-CreX-3, AFFX-BioC-3, AFFX-BioB-5, AFFX-CreX-5, AFFX-
BioB-M, AFFX-BioB-3, and AFFX-BioDn-3 coming from four bacterial ancestor genes.
There are 59 arrays with 10864 probe pairs in this set.

For the analysis, the 16 spike-in probe pairs, which are used previously in other comparative
analyses are taken. Hereby, the selected spike-in probe pairs are numbered as 3777, 684,
1597, 38734, 39058, 36311, 36889, 1024, 36202, 36085, 40322, 407, 1091, 1708, 33818, and
546. Moreover, in this dataset, the gene expression values of the individual cRNA fragments,
which are hybridized to U95A GeneChip arrays at the same concentration are analyzed under
14 different concentration levels. The chosen concentration levels are 0.0, 0.25, 0.5, 1.0, 2.0,
4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, and 1024.0 pM (picoMolar). Accordingly,
every gene is described by 16 probes in each array. This dataset contains 176 (16 genes and
11 probes per genes) number of observations for each array.

On the other hand, the second dataset, i.e., dataset 2, contains 11 genes, namely, BioB-5,
BioB-M, BioB-3, BioC-5, BioC3, BoiDn-3, DapX-5, DapX-M, DapX-3, CreX-5, and CreX-
5 (with affix AFFX) in which each gene has 20 probes. Thereby in each array there are 220
(11 genes and 20 probes per gene) observations. Furthermore, 14 arrays, called as 92453,
92454, 92456, 92458, 92460, 92464, 92466 and 92491-92496 (with 9 suffix hgu95a11) are
used in the analysis. In this set of measurements, all spike-in genes, except CreX-3, on each
array are spiked-in at different concentration levels, which are 0.0, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0,
5.0, 12.5, 25.0, 50.0, 75.0, 100.0, and 150.0 pM and are composed of 20 probes.

4.1.2 Analysis of Affymetrix Dataset

In the analysis, we use the R programme language (version 2.0.1) because of the compatibil-
ity of some packages as the data can be readable under this version of R. Then, we write our
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newly developed codes as presented in Appendix. Accordingly, in the calculation, we imple-
ment affy and hgu95acdf R libraries to read the .cel files in all arrays. These two libraries
are specifically designed to read the data in Affymetrix and GeneLogic hgu files.

In the estimation of the model parameters for each dataset, we check the possible shape pa-
rameters for the long-tailed symmetric (LTS) distribution from 2 to 40 with 0.05 jump size.
The value, which maximizes the log-likelihood under the least square estimators is chosen as
the selected shape parameter of LTS for the taken array. From this calculation, we find that
most of the array can be defined with shape parameter 40 or close to 40, which indicates close
to normal distribution in practice for this Affymetrix dataset.
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Figure 4.1: (a) Average estimated signal versus concentrations on the nominal logarithmic
scale (log2) for the dataset 1 via multi-RGX method and (b) the same plot by excluding 0
concentration and corresponding estimated signal.

In Figure 4.1, we plot the average estimated signals versus nominal, i.e., log2, log-concentrations
values. As presented in these plots, while the level of concentrations increases, a nonlinear
pattern is easier to be seen in the structure of the estimated signals. In fact the same pattern
is also observed from the plots of other methods. Figure 4.2 shows the associated graph via
all other methods. For the estimated of RGX, as we find exactly the same structure of FGX
as represented in Figure 4.2(b), we do not draw it in a separate graph. On the other hand,
in Figure 4.1(b), we plot the same figure of 4.1(a) by replacing the zero concentration with
0.001 concentration since log2(0) = −∞ in the analysis.

Moreover, the estimated signals via multi-RGX versus nominal log-concentrations are plotted
for each array and the graph is reported in Figure 4.3.

Among all types of concentrations, we separate their levels into three groups, namely low,
medium and high concentrations. Hereby, the ones under 0.5, 1.0, 2.0, 4.0, 8.0 and 16.0
pM are defined as low concentrations, the signals under 32.0, 64.0, 128.0, and 256.0 pM are
described as medium concentrations, and finally, the concentrations 512.0 and 1024.0 pM are
expressed as high concentrations. The reason of such grouping is that the intensities under
low to high concentrations indicate distinct behaviours in the sense that the signals under low
and high concentrations possess more noisy signals, thereby, are more used to show nonlinear
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Figure 4.2: Average estimated signals of versus nominal log-concentrations of the dataset 1
(excluding 0.0 pM concentration) using MAS 5.0, dCHIP, RMA, GC-RMA, mgMOS, multi-
mgMOS, and FGX method.

and random pattern. On the other hand, under medium levels, the signals can be less affected
by the erroneous intensities and can be described via more linear pattern (Hein et al., 2005;
Purutçuoğlu and Wit, 2006; Purutçuoğlu, 2012). We show the average estimated signal under
each concentration type versus their associated nominal log-concentrations in Figure 4.4.

Then, in order to evaluate the performance of estimated line under each level of concentra-
tions, we apply the simple linear regression method. In the calculation, due to the fact that
some concentrations are measured more than once in each array, the mean values of those
concentrations are computed and assigned as their common concentrations. Furthermore, the
estimated signals under zero pM concentration are omitted. The associated coefficients of
determination R2 for all levels and separate groups are listed in Table 4.4. In this table the
computed R2 is called as the signal detect R2 and its associated slope term is named as the
signal detect slope. These values are one of the major comparison criteria to asses different
gene indices (Cope, 2003; Purutçuoğlu, 2012; Purutçuoğlu, 2007). On the other hand, for the
comparison based on the simulated dataset, we assess mainly the relative efficiency between
the most competitive approach of multi-RGX, namely, FGX and RGX, since their other scores
in real datasets are very close to each other. More details about this comparison can be found
in Chapter 5.

On the other hand, if the normalization was implemented within an ANOVA model as de-
scribed in Chapter 2, different model selection criteria could be applicable. For instance, in
order to test the significance of main and interaction effects in Equation2.2, Ülgen (2010)
performs W-test, as an alternative of F-test under non-normal density of errors. Moreover,
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Figure 4.3: Signal versus Log Concentrations for dataset 1

to detect the cause of rejection between the treatment means across treatment/variety in the
same equation (Equation 2.2), a modified version of pairwise multiple comparison t-test under
non-normality (Dunnett, 1982) is applied. This test uses the MML estimators of the location
and scale parameters for the model in Equation 2.2) in place of the original expressions in
the Dunnett pairwise multiple comparison test (Ülgen, 2010). Finally, in order to evaluate the
robustness of estimators between the W-test versus F-test and modified t-test versus Dunnett
t-test, the estimators found from MMLE and AMMLE methods are compared under different
scenarios from misspecification and Dixon’s mixture to contamination models based on their
type 1 errors and powers. Although such types of model selection criteria can be applicable
within an ANOVA based microarray analysis, they cannot be used if the researchers follow
the first approach, which implies the preprocessing steps in advance of the actual analysis. Be-
cause none of the method presented under background normalization can prepare the whole
data for the analysis without any further calculation. Accordingly, in order to detect such
significance of the genes under different treatments, the analysis of differentially expressed
genes is performed after the full steps of normalization and the quality control checks of the
calculations (Wit and McClure, 2004; Steen, 2002; Stekel, 2003). Additionally, as not all the
background models suggest the same terms in their models, the value estimated one model
cannot be directly comparable with a similar estimator in different model. For example, the
estimated signals under RMA are already normalized via between and within arrays normal-
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Figure 4.4: Average estimated signals under (a) low, (b) medium, and (c) high levels of con-
centration on nominal log-scale of multi-RGX for the dataset 1.
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ization (via the quantile normalization method (Bolstad et al., 2003)). Whereas, none of the
other gene expression indices uses the quantile-normalized data in their analysis. On the other
hand, not all of the suggested methods in this study applies a distribution assumption in their
analysis. For instance, MAS 5.0 and RMA models do not apply any distribution assumption
and their calculations are based on robust estimators. However, other methods like BGX,
FGX and RGX methods use some distributional assumptions in their computations.

Table 4.1: Estimated signal detect R2’s and their associated slope values for all levels of
concentrations together and separately for the dataset 1.

Case Signal detect R2 Signal detect slope

All Concentrations 0.74 1.68
Low Concentrations 0.28 1.08

Medium Concentrations 0.70 1.55
High Concentrations 0.06 0.10

Then, we compute the R2’s values and slope terms for each gene separately and later calculate
the mean of both values individually. The estimated statistics are presented in Table 4.4. From
both Table 4.3 and Table 4.2, it is seen that the performance of multi-RGX under gene based
evaluation is good and indicates a linear structure on average. Whereas, the estimated signals
under each level of concentration is still not convincing to accept that the relation between
signals versus concentration even under medium group is linear. In Table 4.3, we present the
associated values of other methods for comparison (Purutçuoğlu, 2012; Cope, 2003).

Table 4.2: Average estimated signal R2’s and their associated slope value for each gene for
the dataset 1.

Case R2 Slope
All Concentrations 0.92 0.45

In the final assessment, we calculate the array based results for the data and the give the mean
of these 59 arrays in Table 4.4. From the result, it is seen that since each array indicates its
own behaviour and the outlier in the data can be more effective in the evaluation, none of the

Table 4.3: Signal detect R2, signal detect slope and average R2, respectively, for the dataset 1
with their perfection values (Purutçuoğlu, 2012)

Method Signal detect R2 Signal detect slope R2

Perfection value 1.00 1.00 1.00
MAS 5.0 0.86 0.71 0.89
RMA 0.80 0.63 0.99
MBEI (dChip) 0.85 0.53 0.99
GC-RMA 0.84 0.97 0.99
mgMOS 0.82 0.76 0.96
multi-mgMOS 0.80 1.03 0.96
FGX 0.94 0.43 0.90
RGX 0.96 0.44 0.92
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separate level of concentrations shows linear relationship. Whereas, under all concentrations
simultaneously, the array indicates relatively more linear relation between estimated signal
and concentration on the nominal log-scale on the average.

Table 4.4: Average estimated signal R2’s and their associated slope value for each array for
the dataset 1.

Case R2 Slope

All Concentrations 0.79 1.04
Low Concentrations 0.46 0.26

Medium Concentrations 0.55 0.26
High Concentrations 0.02 -0.03

On the other hand, in order to compare the computational demand for alternative approaches
whose real time scores are stored, we check the real computation time of BGX, multi-mgMOS,
and FGX methods and add the results of multi-RGX. The findings are presented in Table 4.5.
From the table it is seen that multi-RGX is significantly fast than BGX and multi-mgMOS.
But with respect to FGX’s time, it is relatively slower. The reason is that we need to compute
the concommitant of probe sets, which converge to the true order in two or three iterations and
this computation causes extra time that is found in tabulated values. Moreover, the calcula-
tion of FGX is based on the mean probe level, on the contrary, the computation of multi-RGX
depends on both probe and gene specific values, which complicate the calculation.

Table 4.5: Real computational time of BGX, multi-mgMOS, FGX, and multi-RGX, respec-
tively, for the dataset 1.

Model Programme language Computational time

BGX C++ 32.5 hr
multi-mgMOS R and C 50 min

FGX R 4 sec
multi-RGX R 34 sec

4.1.3 Analysis of GeneLogic Dataset

In the analysis of the GeneLogic dataset, namely, dataset 2, we estimate the model parameters
from 13 arrays, in which each array is observed under single concentration as described pre-
viously. In the analysis, we initially draw the plots of estimated signal versus concentrations
on the nominal log-scale as seen in Figure 4.5(a). From the plot we observe that the signals
under 25 pM behave as outliers. In Figure 4.5(b) we draw the same plot by excluding 25 pM
and associated intensities.

Then, as implemented in previous analysis, we separate, in particular, the low concentrations,
namely, 0.5 and 0.75 pM since the noisy signals become more effective on the observed and
estimated signals. In Figure 4.6, we plot the remaining estimated signals versus concentra-
tions on the logarithmic scale. On the other hand, the results found via BGX, MAS 5.0, MBEI,
and RMA taken Figure 8 in (Hein et al., 2005) are displayed in Figure 4.7. From their compar-
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Figure 4.5: (a) Average estimated signal versus all concentrations and (b) excluding the 25
pM concentration and associated signals on the nominal logarithmic scale for the dataset2 via
multi-RGX method.

isons, it is observed that all plots (excluding the low concentrations) indicate similar pattern
apart from the scale of the estimates. The reason is that the multi-RGX, as FGX and RGX,
can measure the background intensities when no any gene on the array. Therefore, it can infer
the true noisy signal when the arrays are empty. Whereas, other methods combine this noisy
source of signal to their estimates, resulting in shifting the estimates with the amount µH on
average. We get similar findings from the comparative analysis of the Affymetrix dataset
(Figure 4.1 and Figure 4.2)

Furthermore, from all plots, it is seen that still the changes in estimated signals cannot be ex-
plained linearly via the change in concentrations. But different from previous analyses, here
the nonlinearly is strong, hereby, any detection of R2 is not meaningful. Therefore, the major
comparison criterion for this dataset is to evaluate the computational time. In Table 4.6, we
find that FGX is the fast method among its strong alternative and both RGX and multi-RGX
use the same computational demand. But the former has loss of information due to the ig-
norance of probe specific estimators. As a result, we can conclude that multi-RGX can be
accepted one of the promising methods in background normalization regarding its computa-
tional time and accuracy of its estimates with explicit and close forms of all estimators.

Table 4.6: Real computational time of BGX, multi-mgMOS, FGX, RGX, and multi-RGX,
respectively, for the dataset 2.

Model Programme language Computational time
BGX C++ 70 min

multi-mgMOS R and C 3 min
FGX R 1 sec
RGX R 6 sec

multi-RGX R 6 sec
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Figure 4.6: Average estimated signal versus concentrations on the nominal logarithmic scale
for the dataset 2 via multi-RGX method.
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Figure 4.7: Average estimated signal versus concentrations on the nominal logarithmic scale
for the dataset 2 via multi-RGX method.
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4.2 Application via Simulated Dataset

In order to asses the quality of our novel gene expression index when the data are far from
normal or have outliers, we generate, initially, two datasets from 10,000 Monte Carlo runs.
Each Monte Carlo run is conducted for 10 genes under 20 probe pairs, resulting in 200 ob-
servations for each simulated array. In the first data, we simulate the PM and MM values
under normal distribution and in the second data, we generate the data under mean shifted
normal density. Then we mix these two sets in order to get two location-mixture datasets with
different ratio of outliers. Hereby, the first set is presented as below:

0.5N(S i + µH , σ
2) + 0.5N(S i + µH + δσ, σ2) (4.1)

and the second location mixture has the following structure.

0.9N(S i + µH , σ
2) + 0.1N(S i + µH + δσ, σ2) (4.2)

where N(., .) indicates the univariate normal with the given parameters. On the other hand,
the second data have the following mixture ratio considering that the fist data possess a large
number of outliers, whereas, the second one own relatively moderate number of extreme
observations. Moreover, in all simulations, we assume that every gene is measured under
specific concentration. Thereby, the data are simulated under S i setting to S i = 2, . . . , 11 for
i = 1, . . . , 10, respectively, on the original scale for each presumed concentration level. Here
i stands for the gene indicator. Furthermore, in the simulation µH , p, σ are equated as 1, 0.7
and 1, in order. Finally, the shift of location, δ is set to δ = 10 for both datasets.

In the assessment of the estimated results, we select three accuracy criteria, which can be
implemented under nonlinear models as well. These three criteria are average error (AE)
(Purutçuoğlu and Wit, 2008), mean absolute error (MAE) and root mean square error (RMSE)
(Kartal-Koç et al., 2012) whose expressions are presented as below:

AE =
|θ̂i − θ|

|θ|
,

MAE =
1
n

n∑
i=1

|θi − θ̂i|,

RMSE =

√√
1
n

n∑
i=1

(θi − θ̂i)2,

where θ̂i denotes the estimated model parameters and θi is the true value of this model param-
eter for the gene indicator i (i = 1, . . . , n). Moreover, |.| describes the absolute value of the
given term.

In Table 4.7 and Tables 4.8, we list the estimated values, i.e., S i, µH , p and σ, of FGX, RGX
and multi-RGX for each gene and model parameters, in order, for the expression in 4.1 and
4.2, respectively, by computing the associated absolute errors.
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Table 4.7: Estimated model parameters of the first simulated location-mixture dataset (Ex-
pression in 4.1) via FGX, RGX and multi-RGX with their absolute errors (AE) and true val-
ues.

Parameter True value FGX AE RGX AE multi-RGX AE

p 0.7 0.88 0.25 0.87 0.24 0.88 0.25
µH 1 -23.91 24.91 -23.91 24.91 -20.99 21.99
σ 1 0.44 0.56 0.27 0.73 0.22 0.79
S 1 2 26.51 12.25 26.50 12.25 23.59 10.79
S 2 3 27.93 8.31 27.93 8.31 23.87 6.96
S 3 4 26.79 5.70 26.78 5.70 24.09 5.02
S 4 5 27.01 4.40 27.00 4.40 24.27 3.85
S 5 6 27.19 3.53 27.19 3.53 24.43 3.07
S 6 7 27.35 2.91 27.35 2.91 24.57 2.51
S 7 8 27.49 2.44 27.48 2.44 24.70 2.09
S 8 9 27.62 2.07 27.61 2.07 24.81 1.76
S 9 10 27.73 1.77 27.72 1.77 24.92 1.49
S 10 11 27.84 1.53 27.83 1.53 25.01 1.27

Table 4.8: Estimated model parameters of the second simulated location-mixture dataset (Ex-
pression in 4.2) via FGX, RGX and multi-RGX with their absolute errors (AE) and true val-
ues.

Parameter True value FGX AE RGX AE multi-RGX AE

p 0.7 0.95 0.36 0.93 0.33 0.95 0.36
µH 1 -25.63 26.63 -25.63 26.63 -22.18 23.18
σ 1 0.61 0.39 0.44 0.56 0.32 0.68
S 1 2 27.33 12.67 27.34 12.67 23.90 10.95
S 2 3 29.29 8.77 29.30 8.77 24.32 7.11
S 3 4 27.76 5.94 27.77 5.94 24.64 5.16
S 4 5 28.08 4.62 28.08 4.62 24.89 3.98
S 5 6 28.34 3.72 28.34 3.72 25.11 3.18
S 6 7 28.55 3.08 28.55 3.08 25.29 2.61
S 7 8 28.73 2.59 28.74 2.59 25.45 2.18
S 8 9 28.90 2.21 28.90 2.21 25.60 1.84
S 9 10 29.04 1.90 29.05 1.91 25.73 1.57
S 10 11 29.17 1.65 29.18 1.65 25.85 1.35
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Table 4.9: Mean absolute error (MAE) and root mean square error (RMSE) of FGX, RGX and
multi-RGX in the calculation of the estimated signals in the two simulated location-mixture
datasets.

MAE RMSE

First mixture FGX 20.85 65.92
RGX 20.84 65.90
multi-RGX 17.93 56.69

Second mixture FGX 22.02 69.63
RGX 22.03 69.65
multi-RGX 18.58 58.75

From Table 4.7 and 4.8, we observe that there is a large amount of bias in the estimates. There
are two reasons of such bias. The first one is that while generating the simulated values for
10 genes, we assume that they are simulated on the original scale with small value of intensi-
ties. Then we take log2 of all the assumed measurements in order to calculate the estimated
signals and other model parameters. By this way, indeed, we evaluate the performance of all
three modes under the very low and slightly high concentrations because of the fact that the
estimates of all indices are problematic, in particular, under the low concentrated values and
perform better when the concentrations are high or moderately high. Hereby, we consider
that the method which can work well under such challenging range, might work considerably
well under non-problematic range of concentrations and intensities. Accordingly, the second
reason of high bias is that as observed in Figure 4.2, FGX, RGX and multi-RGX can measure
the background intensity when the concentration is zero. In other words, they can calculate
the amount of the noisy signals on the array when there is no any effect on the gene. Hence,
we can consider the difference between the true and estimated values as the estimated errore-
nous signals from the surface of the array when the intensities of the genes are really very low
as our example.

On the other hand, in Table 4.9, we present the mean absolute error (MAE) and root mean
square error (RMSE) for the estimated signals via three selected models and in Table 4.10, we
list the real and CPU time of each index in the calculation of the estimated model parameters
for these two mixture data.

From all the tabulated values under each model selection criteria, it is seen that the estimates of
multi-RGX are more accurate that the ones computed via FGX and RGX indices by implying
that our suggested model can improve the accuracy of estimates in highly and moderately
fluctuated datasets. On the other hand, the computational demand of multi-RGX is more than
other two alternatives in real time. However, this difference is indeed can be tolerable if we
compare the results of CPU time. This output shows that with an effective programming the
real time of multi-RGX can be even improved since the calculation of the estimates is almost
performed under the same computer time in the end.

On the other side, in order to evaluate the performance of each alternative index in a large
dataset, we extent the calculation via the simulated data by 10000 and 20000 genes. In both
calculations, similar to the first two datasets, we consider that each gene has 20 probes and
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Table 4.10: Real and central processing unit (CPU) time (in seconds) of FGX, RGX and
multi-RGX in the calculation of the estimated model parameters in the two simulated location-
mixture datasets.

Real time CPU time

First mixture FGX 46.44 0.55
RGX 700.23 0.68
multi-RGX 2578.98 1.00

Second mixture FGX 45.15 0.56
RGX 752.77 1.56
multi-RGX 2648.55 1.90

Table 4.11: Absolute error (AE) of FGX, RGX and multi-RGX in the calculation of the
estimated p, µH and σ in large dataset with 10000 genes according to the two simulated
location-mixture models.

First
mixture True value FGX AE RGX AE multi-RGX AE

p 0.7 1.14 0.63 1.00 0.43 1.14 0.63
µH 1 5.65 4.65 5.65 4.65 5.66 4.66
σ 1 0.79 0.21 0.24 0.76 0.23 0.76
Second
mixture True value FGX AE RGX AE multi-RGX AE

p 0.7 1.12 0.60 1.00 0.43 1.12 0.60
µH 1 5.61 4.61 5.61 4.61 5.62 4.62
σ 1 0.44 0.56 0.14 0.86 0.13 0.86

both datasets are generated according to the mixture models as described previously. Fi-
nally to compare the results, we compute the average absolute error, mean absolute error
and root mean square error for estimated S i in which the first data have 10000 genes, i.e.,
i = 1, . . . , 10000, and the second data have 20000 genes, i.e., i = 1, . . . , 20000. On the other
hand, for the remaining model parameters p, µH and σ, we compute directly AE, MAE and
RMSE.

Hereby, in the simulation we set the true value of p, µH and σ to 0.7, 1 and 1, in order.
For the true signals S i (i = 1, . . . , 10000 and i = 1, . . . , 20000), we initially generate values
according to the number of total genes in the range from 2 to 11 from uniform distributions
assuming that the genes are measured under 10 distinct concentrations similar to the first two
simulated datasets and the intensities are measured on the original scale so that similar to
the first two simulations’ examples, we aim to evaluate the performance of all three methods
under the most problematic range of intensities that is the worse scenario for the comparison.
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Table 4.12: Average absolute error (AAE), mean absolute error (MAE) and root mean square
error (RMSE) of FGX, RGX and multi-RGX in the calculation of the estimated signals S i

(i = 1, . . . , 10000) in large dataset with 10000 genes according to the two simulated location-
mixture models.

First FGX RGX multi-RGX
mixture

AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE

S i 1.41 8.73 872.85 1.41 8.73 872.85 1.45 8.73 873.41
Second FGX RGX multi-RGX
mixture

AAE MAE RMSE AAE MAE RMSE AAE MAE RMSE

S i 1.31 8.16 816.43 1.31 8.16 816.43 1.33 8.17 817.08

Then, alike other estimates of other model parameters we calculate the average of all model
selection criteria, i.e., AAE, MAE and RMSE, for all signals. Thereby, the average of these
criteria for signals is found by using 10000 and 20000 values for the first and second dataset,
respectively. Whereas, they are computed for estimated p, µH and σ directly. The results are
presented in Table 4.11 and 4.12 for the first large dataset (with 10000 genes) whose mixture
proportions are arranged according to Equation 4.1 and 4.1, in order. And the outcomes of
the second large dataset (with 20000 genes) are listed in Table 4.13 and in Tables 4.14 - 4.15
whose mixture model is generated with respect to Equation 4.1 and 4.1, respectively.

From all findings with large datasets, we observe that the performance of all three indices
become very close to each other in such a way that under certain conditions, the findings of
multi-RGX are the same with the findings of FGX or RGX or even all the three results become
equal to each other. On the other hand, when we observe a difference between the indices,
the underlying difference is infinitesimal small meaning that all these alternative methods
perform almost equally under large dataset based on the our selected model selection criteria.
Moreover, in all models we see that the bias in the estimates decrease considerably, resulting
in that the performance of all the three indices are good even under the worse scenario for
intensities’ level.

Therefore, we conclude that under very large datasets, there is no difference in the application
of any suggested model. Whereas, from the results of real and simulated data under small
number of genes, we observe that there are differences among all indices. But still there is
no unique model which can give the best results according to all model selection criteria.
However, we find that FGX, RGX and multi-RGX estimates work well in the bench-mark
dataset and for the simulated data with small number of genes, multi-RGX performs better
than its strong alternatives, RGX and FGX. Hence, we believe that our suggested method
can be seen as a promising approach to estimate the true signals for one-channel microarray
datasets.
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Table 4.13: Absolute error (AE) of FGX, RGX and multi-RGX in the calculation of the
estimated p, µH and σ in large dataset with 20000 genes according to the two simulated
location-mixture models.

First
mixture True value FGX AE RGX AE multi-RGX AE

p 0.7 1.14 0.63 1.00 0.43 1.14 0.62
µH 1 5.64 4.64 5.64 4.64 5.64 4.64
σ 1 1.55 0.55 0.24 0.77 0.24 0.77
Second
mixture True value FGX AE RGX AE multi-RGX AE

p 0.7 1.11 0.59 1.00 0.43 1.11 0.59
µH 1 5.67 4.67 5.67 4.67 5.68 4.68
σ 1 0.78 0.22 0.14 0.86 0.14 0.86

Table 4.14: Average absolute error (AAE), mean absolute error (MAE) and root mean
square error (RMSE) of FGX and RGX in the calculation of the estimated signals S i

(i = 1, . . . , 20000) in large dataset with 10000 genes according to the two simulated location-
mixture models.

First FGX RGX
mixture

AAE MAE RMSE AAE MAE RMSE

S i 1.41 8.69 1229.42 1.41 8.69 1229.42
Second FGX RGX
mixture

AAE MAE RMSE AAE MAE RMSE

S i 1.32 8.20 1159.14 1.32 8.20 1159.14
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Table 4.15: Average absolute error (AAE), mean absolute error (MAE) and root mean square
error (RMSE) of multi-RGX in the calculation of the estimated signals S i (i = 1, . . . , 20000)
in large dataset with 10000 genes according to the two simulated location-mixture models.

First multi-RGX
mixture

AAE MAE RMSE

S i 1.45 8.70 1230.33
Second multi-RGX
mixture

AAE MAE RMSE

S i 1.34 8.20 1160.36
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CHAPTER 5

CONCLUSION AND OUTLOOK

This thesis gives a deep introduction to the idea of oligonucleotide and microarray. Thereby,
it gives the information about arrays, namely, chips, and on these arrays, we can display the
known segments of particular gene sequences, which is called probes. On these probes, there
are two components; the perfect match (PM), which is the perfect transcription of the cRNA
and the mismatch (MM) that is used to measure the faulty signals on the arrays by changing
the 13th base pair of the PM.

In Chapter 1, we have explained the three main sources of variation of signals, listed as
nonspecific hybridization, background signal and stray signal. These three types of errors can
be defined as the systematic error.

Then, we have discussed the possible ways to normalize data in order to discard the system-
atic error in the measurements. As explained in details in Chapter 2, there are two major
approaches of normalization for the microarray dataset. The first approach is based on the
ANOVA idea where the normalization is implemented while the analysis of the data is per-
formed. As presented in the associated part in junction with the current study about this
approach such as robust estimation procedure via MMLE and AMMLE, this method can be
computationally demanding if the inference is done via the least square or MLE methods.
Whereas, as the second approach, the normalization can be also performed in advance of the
actual analysis by eliminating possible sources of noisy signals in a particular order. In this
thesis, we have preferred this second approach since it is shown that this is computationally
less costly.

Later, we have introduced the term gene expression index as the method or model applied to
estimate the true expression level in the oligonucleotides, i.e., one-channel microarray. For
this purpose, we have given information about the most popular indices such as MAS 5.0,
MBEI, RMA, mgMOS, GC-RMA, BGX, multi-mgMOS, FGX and RGX, and indicated that
they have both advantages and disadvantages in their perspectives.

Since we have stated these methods have some problems besides their advantages, we have
proposed a new model, which is called multi-RGX, in order to handle the disadvantages of
recently developed methods, which are FGX and RGX.

Our method, namely, multi-RGX, works on the gene and probe specific signal level in the
measurement of microarray. We have generated explicit expressions for each model parameter
by the help of the modified maximum likelihood method. Also, we have developed explicit
forms of the variances and covariances of model parameters by applying observed Fisher
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Information Matrix. Apart from our suggested approach, we have also constructed other
alternative models, which accept more flexible assumptions, whereas, do not have either close
form for the expression of estimators or are not defined under feasible region.

In the assessment of our proposal gene expression, we have analyzed two real datasets that
are from Affymetrix and GeneLogic platforms. These measurements are benchmarks data in
the comparison of various methods and include spike-in genes under different concentrations.
We evaluate the performance of our model in terms of accuracy, linearity with respect to the
changes in concentrations and computational demand. Then, we have further assessed the
outcomes of our approach in simulated datasets. In the comparison, we have selected the
strongest alternatives of multi-RGX, which are FGX and RGX functions. In the analyses, we
have compared the accuracy and computational demand of each approach with certain criteria.
For the accuracy, the evaluation has been conducted under the absolute error, mean square
error and root mean square error values. On the other hand, for the speed of the function, the
assessment has been done via the real and CPU time. According to the results presented in
Chapter 4, we have observed that multi-RGX can keep high accuracy regarding alternatives
gene expression indices while preserving less computational cost under small dataset. But
there is no significant difference among any models in large dataset with ten thousands of
genes.

Moreover, as this index can use both probe and gene level of observations and has explicit
forms for each estimator with their associated covariance and variance terms, its advantages
can be better observed in small or moderately large data. Thus, we believe that multi-RGX can
be seen as a promising model in order to infer the true signal from one-channel microarrays.

As the extension of this study, we can implement adaptive modified maximum likelihood ap-
proach in the estimation of model parameters (Ülgen, 2010; Dönmez, 2010; Tiku and Sürücü,
2009) in order to increase the accuracy of the estimators. Furthermore, as a nonlinear re-
lationship is observed between signal and concentrations in particular under low and high
concentrations, we consider to implement multiple adaptive regression splines (MARS) ap-
proach in order to model this relationship via partial linear functions. This idea has been
previously performed in the study of Xu et al. (2010) in the analysis of the chip sequence data
to detect the function of histone modification levels and investigating the gene relationship
between chromatin feature levels and gene expression again in chip sequence data (Dong et
al., 2012). Moreover, Chang et al. (2008) apply this method in order to find out the cut-off

point for intensity in a microarray study so that the conserved and divergent genes in bacterial
identification and characterization can be detected. Furthermore, this approach is already per-
formed in the analysis of different multiple nonlinear datasets from financial to environmental
studies (Alp et al., 2011; Taylan et al., 2007). Accordingly, if we adapt this technique in our
model by fitting distinct functions for low, medium and high concentration data, separately,
we can explain the behaviour between signal and concentration level better than a single linear
model fitted to the whole dataset.
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APPENDIX A

DERIVATION of the multi-RGX ESTIMATORS

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we consider the following distributional assumption on the log-scale:

PMi j = ai j ∼ LTS(S i + µH , σ
2)

and

MMi j = bi j ∼ LTS(pS i + µH , σ
2), (A.1)

where LTS denotes the long-tailed symmetric density.

Thereby, the corresponding likelihood is found via:

L(S i, µH , p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1
√

2πσ2
e−

(ai j−S i−µH )2

2σ2
1

√
2πσ2

e−
(bi j−pS i−µH )2

2σ2 ,

which is proportional to

L ∝ (
1
σ

)
n∏

i=1

m∏
j=1

(1 +
z2

ai j

k
)−v(

1
σ

)
n∏

i=1

m∏
j=1

(1 +
z2

bi j

k
)−v,

where v ≥ 2, k = 2v − 3, and

zai j =
(ai j − S i − µH)

σ

zbi j =
(bi j − pS i − µH)

σ
v ≥ 2

k = 2v − 3.
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Then, the logarithm of L is found as

ln L ∝ −2nm lnσ +

n∑
i=1

m∑
j=1

ln
[
1 +

ai j − S i − µH

kσ2

]−v

+

n∑
i=1

m∑
j=1

ln
[
1 +

bi j − pS i − µH

kσ2

]−v

.

In order to calculate the MLE of the model parameters, the first derivatives of the function
ln L are taken with respect to each parameter as below:

∂ ln L
∂µH

=
2v
kσ

n∑
i=1

m∑
j=1

(ai j−S i−µH)
σ

(ai j−S i−µH)2
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kσ

n∑
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σ
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kσ
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S i(bi j−pS i−µH)
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kσ2
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∂S i
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kσ

m∑
j=1

(ai j−S i−µH)
σ

(ai j−S i−µH)2
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2v
k


+

n∑
i=1

m∑
j=1

− 1
σ

+
(bi j − pS i − µH)

σ3(1 +
(bi j−pS i−µH)2

kσ2 )

2v
k

 ,

in which

zai j =
(ai j − S i − µH)

σ
and zbi j =

(bi j − pS i − µH)
σ

.

Then, by approximating the common nonlinear functions g(z) = z
1+ z2

k

for PM:

as g(zai j) =

(ai j−S i−µH)
σ

1 +
(ai j−S i−µH)2

kσ2

and for MM:

g(zbi j) =

(bi j−pS i−µH)
σ

1 +
(bi j−pS i−µH)2

kσ2

,
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their first order Taylor expansions can be derived by:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

where

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

.

In these expressions, zai( j) and zbi( j) show the ordered probes (in increasing magnitude) for each
gene i in PM and MM standardized intensities, respectively. Accordingly, g(zai( j)) and g(zbi( j))
are their associated linearized function via the Taylor series. Thereby, the partial derivatives
of MLE are as follows:

∂ ln L
∂µH

=
2v
kσ

n∑
i=1

m∑
j=1

g(zai( j)) +
2v
kσ

n∑
i=1

m∑
j=1

g(zbi( j)) (A.2)

∂ ln L
∂p

=
2v
kσ

n∑
i=1

m∑
j=1

S ig(zbi( j)) (A.3)

∂ ln L
∂S i

=
2v
kσ

m∑
j=1

g(zai( j)) +
2vp
kσ

m∑
j=1

g(zbi( j)) (A.4)

∂ ln L
∂σ

= −
2nm
σ

+
2v
kσ

m∑
j=1

g(zai( j))zai( j) +
2v
kσ

m∑
j=1

g(zbi( j))zbi( j) . (A.5)

Finally, by setting the Equations (A.2) - (A.5) to zero, we get the MML estimates of parame-
ters. Accordingly, from Equation (A.2):

∂ ln L
∂µH

=
2v
kσ

n∑
i=1

m∑
j=1

g(zai( j)) +
2v
kσ

n∑
i=1

m∑
j=1

g(zbi( j)) = 0

1
σ

n∑
i=1

m∑
j=1

(g(zai( j)) + g(zbi( j))) = 0

n∑
i=1

m∑
j=1

(α j + β jzai( j) + α j + β jzbi( j)) = 0

n∑
i=1

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzai( j) +

n∑
i=1

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzbi( j) = 0,

by taking
∑m

j=1 α j = 0 because of the symmetry.

Then,
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∂ ln L
∂µH

=

n∑
i=1

m∑
j=1

β jzai( j) +

n∑
i=1

m∑
j=1

β jzbi( j) = 0

n∑
i=1

m∑
j=1

β j
(ai( j) − S i − µH)

σ
+

n∑
i=1

m∑
j=1

β j
(bi( j) − pS i − µH)

σ
= 0

n∑
i=1

m∑
j=1

β j(ai( j) − S i − µH) +

n∑
i=1

m∑
j=1

β j(bi( j) − pS i − µH) = 0

n∑
i=1

m∑
j=1

β jai( j) −

n∑
i=1

m∑
j=1

β jS i = −

n∑
i=1

m∑
j=1

β jbi( j) + p
n∑

i=1

m∑
j=1

β jS i + 2µHn
m∑

j=1

β j

2nµH

m∑
j=1

β j =

n∑
i=1

m∑
j=1

β j(ai( j) + bi( j)) − (p + 1)
n∑

i=1

m∑
j=1

β jS i,

when ai( j) and bi( j) display the ordered probes of PM and MM, respectively, for gene i (i =

1, . . . , n). As a result, µ̂H is found as:

µ̂H =

∑n
i=1

∑m
j=1 β j(ai( j) + bi( j)) − (p + 1)

∑n
i=1

∑m
j=1 β jS i

2n
∑n

i=1
∑m

j=1 β j
. (A.6)

On the other side, from Equation (A.4):

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σ

g(zai( j)) +
2vp

k

m∑
j=1

1
σ

g(zbi( j)) = 0.

So

2v
k

1
σ

 m∑
j=1

(g(zai( j)) + pg(zbi( j)))

 = 0

2v
kσ

m∑
j=1

((α j + β jzai( j)) +
2v
kσ

m∑
j=1

((α j + β jzbi( j)) = 0

1
σ2

m∑
j=1

β j(ai( j) − S i − µH) +
p
σ2

m∑
j=1

β j(bi( j) − pS i − µH) = 0

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µH

m∑
j=1

β j + p
m∑

j=1

β jbi( j) − p2
m∑

j=1

β jS i − pµH

m∑
j=1

β j = 0

(p2 + 1)S i

m∑
j=1

β j =

m∑
j=1

β jai( j) + p
m∑

j=1

β jbi( j) − (p + 1)µH

m∑
j=1

β j = 0 ,

70



we obtain the estimate of the true signal for each gene i as below:

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j) − (p + 1)µH

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j
. (A.7)

However, by substituting A.7 into A.6, we can define µ̂H in an alternative way as follows:

µ̂H =

∑n
i=1

∑m
j=1 β j(ai( j) + bi( j))

2n
∑n

i=1
∑m

j=1 β j

−

(p + 1)
∑n

i=1
∑m

j=1 β j

[∑m
j=1 β jai( j)+p

∑m
j=1 β jbi( j)−(p+1)µH

∑m
j=1 β j

(p2+1)
∑m

j=1 β j

]
2n

∑n
i=1

∑m
j=1 β j

µ̂H =
p
∑n

i=1
∑m

j=1 β ja(i j) −
∑n

i=1
∑m

j=1 β jb(i j)

n(p − 1)
∑m

j=1 β j
. (A.8)

Similarly, by substituting A.8 into A.7, an alternative form of Ŝ i can be written as below:

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j) − (p + 1)µH

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j

=

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j)

(p2 + 1)
∑m

j=1 β j

−

(p + 1)
[

p
∑n

i=1
∑m

j=1 β ja(i j)−
∑n

i=1
∑m

j=1 β jb(i j)

n(p−1)
∑m

j=1 β j

]∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j

Accordingly,

Ŝ i =
1

(p2 + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

p
(p2 + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j

−
p(p + 1)

n(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1 β ja(i j)∑n

i=1
∑m

j=1 β j

+
(p + 1)

n(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1 β jb(i j)∑n

i=1
∑m

j=1 β j
.

Let

∑n
i=1

∑m
j=1 β jai( j)

n
=

∑m
j=1

∑n
i=1 β jai( j)

n
=

m∑
j=1

β j

∑n
i=1 ai( j)

n
=

m∑
j=1

β jā. j,
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where ā. j =
∑n

i=1
ai( j)

n for total number of genes. Another form of Ŝ i can be described in the
following way:

Ŝ i =
(
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j)p2

(p − 1)(p2 + 1)(
∑m

j=1 β j)

+
(
∑m

j=1 β jai( j) −
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j +
∑m

j=1 β jb̄. j)p

(p − 1)(p2 + 1)(
∑m

j=1 β j)

+

∑m
j=1 β jb̄. j −

∑m
j=1 β jai( j)

(p − 1)(p2 + 1)(
∑m

j=1 β j
, (A.9)

for b̄. j =
∑n

i=1
ai( j)

n .

Similarly, µ̂H can also be shown by:

µ̂H =
p
∑m

j=1 β jā. j −
∑m

j=1 β jb̄. j
(p − 1)

∑m
j=1 β j

. (A.10)

On the other hand, from Equation (A.3), the estimate of the common fraction term p can be
found as below:

∂ ln L
∂p

=
2v
kσ

n∑
i=1

m∑
j=1

S ig(zbi( j)) = 0

n∑
i=1

m∑
j=1

S ig(zbi( j)) = 0

n∑
i=1

m∑
j=1

S iα j +

m∑
j=1

β j
(bi( j) − pS i − µH)

σ
S i = 0

n∑
i=1

m∑
j=1

β jS ibi( j) − p
n∑

i=1

m∑
j=1

β jS 2
i − µH

n∑
i=1

m∑
j=1

β jS i = 0.

Then, by substituting Equations (A.9) and (A.10) into the equation,
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0 =

n∑
i=1

m∑
j=1

β jbi( j)


 (

∑m
j=1 β jbi( j) −

∑m
j=1 β jā. j)p2

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+

 (
∑m

j=1 β jai( j) −
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j +
∑m

j=1 β jb̄. j)p

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+


∑m

j=1 β jb̄. j −
∑m

j=1 β jai( j)

(p − 1)(p2 + 1)(
∑m

j=1 β j




− p
n∑

i=1

m∑
j=1

β j(

 (
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j)p2

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+

 (
∑m

j=1 β jai( j) −
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j +
∑m

j=1 β jb̄. j)p

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+


∑m

j=1 β jb̄. j −
∑m

j=1 β jai( j)

(p − 1)(p2 + 1)(
∑m

j=1 β j

)2

−

 p
∑m

j=1 β jā. j −
∑m

j=1 β jb̄. j
(p − 1)

∑m
j=1 β j


×

n∑
i=1

m∑
j=1

β j(

 (
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j)p2

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+

 (
∑m

j=1 β jai( j) −
∑m

j=1 β jbi( j) −
∑m

j=1 β jā. j +
∑m

j=1 β jb̄. j)p

(p − 1)(p2 + 1)(
∑m

j=1 β j)


+


∑m

j=1 β jb̄. j −
∑m

j=1 β jai( j)

(p − 1)(p2 + 1)(
∑m

j=1 β j

).

By equating the above equation to 0 and solving in terms of p, we get the following roots for
p̂:

p̂1 = p̂2 = 1

p̂3 =
(S S b − S S a) −

√
(S S a − S S b)2 + 4S S 2

ab

2S S ab

p̂4 =
(S S b − S S a) +

√
(S S a − S S b)2 + 4S S 2

ab

2S S ab
,
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where

S S a =

n∑
i=1

m∑
j=1

β j

 m∑
j=1

β jai( j) −

m∑
j=1

β jā. j


2

S S b =

n∑
i=1

m∑
j=1

β j

 m∑
j=1

β jbi( j) −

m∑
j=1

β jb̄. j


2

S S ab =

n∑
i=1

m∑
j=1

β j

( m∑
j=1

β jai( j) −

m∑
j=1

β jā. j)(
m∑

j=1

β jbi( j) −

m∑
j=1

β jb̄. j)

 .

Finally, from Equation (A.5), we can get MLE of σ by setting this expression to zero via

∂ ln L
∂σ

= −
2m
σ

+
2v

kσ2

m∑
j=1

g(zai( j)) +
2v

kσ2

m∑
j=1

g(zbi( j))

= −
2m
σ

+
2v

kσ2

m∑
j=1

(g(zai( j)) + g(zbi( j))) = 0

2m
σ

=
2v

kσ2

m∑
j=1

(g(zai( j)) + g(zbi( j)))

σ =
v

knm

m∑
j=1

(g(zai( j)) + g(zbi( j))).

Accordingly,

v
knm

=
v

knm

 n∑
i=1

m∑
j=1

α jai( j) −

n∑
i=1

m∑
j=1

α jS i − µH

n∑
i=1

m∑
j=1

α j


+

v
knm

 1
σ

n∑
i=1

m∑
j=1

β j(ai( j) − S i − µH)2 +

n∑
i=1

m∑
j=1

α jbi( j)


−

v
knm

 n∑
i=1

m∑
j=1

α jS i p + µH

n∑
i=1

m∑
j=1

α j


+

v
knm

 1
σ

n∑
i=1

m∑
j=1

β j(ai( j) − S i − µH)2

 .
74



Thus,

σ2 =
σv

knm

 n∑
i=1

m∑
j=1

α j(ai( j) − bi( j)) − (p + 1)
n∑

i=1

m∑
j=1

α jsi


+

σv
knm

 n∑
i=1

m∑
j=1

α j(ai( j) − bi( j)) − (p + 1)
n∑

i=1

m∑
j=1

α jS i

 ,
nmσ2 =

σv
k

 n∑
i=1

m∑
j=1

α j(ai( j) − bi( j))


−

v
k

 n∑
i=1

m∑
j=1

β j(ai( j) − S i − µH)2 +

n∑
i=1

m∑
j=1

β j(ai( j) − S i − µH)2

 .

Hence, the MML estimate for σ can be presented by:

σ̂ =
B +
√

B2 + 4nmC
nm

,

for S i (i = 1, . . . , n). By adjusting the degree of freedom as 2nm − (n + 2), the estimate of σ
can be indicated as follows:

σ̂ =
B +
√

B2 + 4nmC
nm − n − 2

,

in which

B =
v
k

 n∑
i=1

m∑
j=1

α j(ai( j) − bi( j))

 ,
C =

v
k

 n∑
i=1

m∑
j=1

β j(ai( j) − Ŝ i − µ̂H)2
+

n∑
i=1

m∑
j=1

β j(bi( j) − p̂Ŝ i − µ̂H)2

 .
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A.1 Observed Fisher Information Matrix and Estimators for Variances and
Covariances

The Fisher Information Matrix is generated by making use of the second partial derivatives of
the loglikelihood function with respect to each parameter as below:

I11 = −
∂2l
∂µ2

H

=
2v

kσ2

n∑
i=1

m∑
j=1


1 − (ai( j)−S i−µH)2

kσ2(
1 +

(ai( j)−S i−µH)2

kσ2

)2 +
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2


I22 = −

∂2l
∂p2

=
2v

kσ2

n∑
i=1

m∑
j=1

S 2
i

1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

Iii = −
∂2l
∂S 2

i

=
2v

kσ2

m∑
j=1

1 − (ai( j)−S i−µH)2

kσ2(
1 +

(ai( j)−S i−µH)2

kσ2

)2 +
2vp2

kσ2

m∑
j=1

1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

I12 = I21 = −
∂2l

∂µH∂p
=

2v
kσ2

n∑
i=1

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

I1i = Ii1 = −
∂2l

∂S i∂µH

=
2v

kσ2

m∑
j=1

1 − (ai( j)−S i−µH)2

kσ2(
1 +

(ai( j)−S i−µH)2

kσ2

)2 +
2vp
kσ2

m∑
j=1

1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

I2i = Ii2 = −
∂2l

∂S i∂p

= −
2v
kσ

m∑
j=1

(bi( j)−pS i−µH)
σ(

1 +
(ai( j)−S i−µH)2

kσ2

)2 +
2vp
kσ2

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

Iik = Iki = −
∂2l

∂S i∂S k
= 0,

where i, k = 1, . . . , n present the gene and j = 1, . . . ,m shows the probe indicator, respectively.
Moreover, l stands for ln L, the loglikelihood function.
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Then, the Fisher information matrix is derived as below:

I =



∂2l
∂µ2

H

∂2l
∂µH∂p

∂2l
∂µH∂S 1

... ∂2l
∂µH∂S n

∂2l
∂p∂µH

∂2l
∂p2

∂2l
∂p∂S 1

... ∂2l
∂p∂S n

∂2l
∂S 1∂µH

∂2l
∂S 1∂p

∂2l
∂S 2

1
... 0

. . . . . . . . . . . . . . .
∂2l

∂S n∂µH

∂2l
∂S n∂p 0 ... ∂2l

∂S 2
n
.


In order to find the variance-covariance matrix we take the advantage of the above information
matrix. Hereby, we reformulate the matrix as follows:

I =

[
A B

BT C

]
,

where A is a (2×2) submatrix containing the entries at the top left hand side of I, B represents
the (2×n) submatrix at the top of right hand side of I. Finally, C indicates the (n×n) diagonal
submatrix at the bottom right hand side of I.

We can represent the inverse of the matrix I as below:

I−1 =

[
P Q

QT R

]
,

where

P = (A − BC−1BT )−1 (A.11)

Q = −(C−1BT P)T (A.12)

R = C−1 −C−1BT Q. (A.13)

From Equation (A.11), P is found via:

P = [A − B]−1 ,

whose entries are given below:

A =

 ∂2l
∂µ2

H

∂2l
∂µH∂p

∂2l
∂p∂µH

∂2l
∂p2


and

B =


∑ (∂2l/∂S i∂µH)2

−∂2l/∂S 2
i

∑ (−∂2l/∂S i∂µH)(−∂2l/∂S i∂p)
−∂2l/∂S 2

i∑ (−∂2l/∂S i∂µH)(−∂2l/∂S i∂p)
−∂2l/∂S 2

i

∑ (∂2l/∂S i∂p)2

−∂2l/∂S 2
i

 ,
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Thus, the matrix P corresponds to

P =

[
V(µ̂H) Cov(µ̂H , p̂)

Cov(µ̂H , p̂) V( p̂)

]
.

Similarly, we derive the matrix Q from Equation (A.12) as follows:

Q =

[
K . . . L
M . . . N

]
,

in which

K =
(−∂2l/∂S 1∂µH)V(µ̂H) + (−∂2l/∂S 1∂p)Cov(µ̂H , p̂)

−∂2l/∂S 2
1

L =
(−∂2l/∂S n∂µH)V(µ̂H) + (−∂2l/∂S n∂p)Cov(µ̂H , p̂)

−∂2l/∂S 2
n

M =
(−∂2l/∂S 1∂µH)Cov(µ̂H , p̂) + (−∂2l/∂S 1∂p)V(µ̂H)

−∂2l/∂S 2
1

N =
(−∂2l/∂S n∂µH)Cov(µ̂H , p̂) + (−∂2l/∂S n∂p)V(µ̂H)

−∂2l/∂S 2
n

.

Finally, the matrix R is calculated from the Equation (A.13) by:

R =


A . . . B
C . . . D
. . . . . . . . .

E . . . F

 ,

where

A = 1 −
(−∂2l/∂S 1∂µH)Cov(Ŝ 1, µ̂H) + (−∂2l/∂S 1∂p)Cov(Ŝ 1, p̂)

−∂2l/∂S 2
1

B = −
(−∂2l/∂S 1∂µH)Cov(Ŝ n, µ̂H) + (−∂2l/∂S 1∂p)Cov(Ŝ n, p̂)

−∂2l/∂S 2
1

C = −
(−∂2l/∂S 2∂µH)Cov(Ŝ 1, µ̂H) + (−∂2l/∂S 2∂p)Cov(Ŝ 1, p̂)

−∂2l/∂S 2
2

D = −
(−∂2l/∂S 2∂µH)Cov(Ŝ n, µ̂H) + (−∂2l/∂S 2∂p)Cov(Ŝ n, p̂)

−∂2l/∂S 2
2

E = −
(−∂2l/∂S n∂µH)Cov(Ŝ 1, µ̂H) + (−∂2l/∂S n∂p)Cov(Ŝ 1, p̂)

−∂2l/∂S 2
n

F = 1 −
(−∂2l/∂S n∂µH)Cov(Ŝ n, µ̂H) + (−∂2l/∂S n∂p)Cov(Ŝ n, p̂)

−∂2l/∂S 2
n

.
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Then, by making use of the above matrices we derive the following variance and covariance
terms:

V(µ̂H) =
1

C0

 2v
kσ2

n∑
i=1

m∑
j=1

S 2
i

1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

−

n∑
i=1

− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2



V( p̂) =
1

C0

 2v
kσ2

n∑
i=1

m∑
j=1


1 − (ai( j)−S i−µH)2

kσ2(
1 +

(ai( j)−S i−µH)2

kσ2

)2 +
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2



−

n∑
i=!

( 2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2 )2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2



Cov(µ̂H , p̂) =

 2v
kσ2

n∑
i=1

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2

+

n∑
i=1

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

×

− 2v
kσ

m∑
j=1

(bi( j)−pS i−µH)
σ(

1 +
(ai( j)−S i−µH)2

kσ2

)2

+
2vp
kσ2

m∑
j=1

S i
1 − (bi( j)−pS i−µH)2

kσ2(
1 +

(bi( j)−pS i−µH)2

kσ2

)2


 × 1

C0
,
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where

C0 =

− ∂2l
∂µ2

H

−

n∑
i=1

(∂2l/∂S i∂µH)2

−∂2l/∂S 2
i

 × − ∂2l
∂p2 −

n∑
i=1

(∂2l/∂S i∂p)2

−∂2l/∂S 2
i


−

− ∂2l
∂p∂µH

−

n∑
i=1

(−∂2l/∂S i∂µH)(−∂2l/∂S i∂p)
−∂2l/∂S 2

i

 .

Moreover,

Cov(Ŝ i, µ̂H) =



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× −V(µ̂H)

−



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(µ̂H , p̂)

and

Cov(Ŝ i, p̂) =



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× −Cov(µ̂H , p̂)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× V( p̂)
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Also,

V(Ŝ i) = 1 −



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ i, µ̂H)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ i, p̂).

Finally,

Cov(Ŝ i, Ŝ k) = −



2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ k, µ̂H)

−



− 2v
kσ

∑m
j=1

(bi( j)−pS i−µH )
σ(

1+
(ai( j)−S i−µH )2

kσ2

)2 +
2vp
kσ2

∑m
j=1 S i

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2

2v
kσ2

∑m
j=1

1−
(ai( j)−S i−µH )2

kσ2(
1+

(ai( j)−S i−µH )2

kσ2

)2 +
2vp2

kσ2

∑m
j=1

1−
(bi( j)−pS i−µH )2

kσ2(
1+

(bi( j)−pS i−µH )2

kσ2

)2


× Cov(Ŝ k, p̂).
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APPENDIX B

DERIVATION of ESTIMATORS of ALTERNATIVE MODEL 1

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene i,
we consider the following distributional assumption (long-tailed symmetric LTS distribution)
on the log-scale:

PMi j = ai j ∼ LTS(S i + µH , σ
2
i ),

MMi j = bi j ∼ LTS(pS i + µH , σ
2
i ). (B.1)

Here S i is the true signal for gene i, µH refers to the constant background intensity, and σi

presents the gene specific standard deviation. Finally, p indicates the fraction of the true signal
in MM.

Accordingly, the associated likelihood function is found via:

L(S i, µH , p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µH )2

2σ2
i

1√
2πσ2

i

e
−

(bi j−pS i−µH )2

2σ2
i ,

which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

) 1 +
z2

ai j

k

−v n∏
i=1

m∏
j=1

(
1
σi

) 1 +
z2

bi j

k


−v

,

where the shape parameter v ≥ 2, k = 2v−3, a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm).

zai j =
(ai j − S i − µH)

σi

zbi j =
(bi j − pS i − µH)

σi
.
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Then, the logarithm of L is derived as:

ln L =

n∑
i=1

m∑
j=1

ln

( 1
σi

) 1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

ln


(

1
σi

) 1 +
z2

bi j

k


−v

=

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

bi j

k


−v

= −

n∑
i=1

m∑
j=1

(lnσi) + vln

1 +
z2

ai j

k

 − n∑
i=1

m∑
j=1

(lnσi) + vln

1 +
z2

bi j

k


 .

In order to get the MLE of model parameters, we take the first derivatives of lnL with respect
to each parameter as follows:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

+
2v
k

n∑
i=1

m∑
j=1

(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂S i

=
2v
k

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

−
2vp

k

m∑
j=1

(bi j − pS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂σi

=

n∑
i=1

m∑
j=1

− 1
σi

+
(ai j − S i − µH)

σ3
i (1 +

(ai j−S i−µH)2

kσ2
i

)

2v
k


+

n∑
i=1

m∑
j=1

− 1
σi

+
(bi j − pS i − µH)

σ3
i (1 +

(bi j−pS i−µH)2

kσ2
i

)

2v
k

 ,
where

zai j =
(ai j − S i − µH)

σi

zbi j =
(bi j − pS i − µH)

σi
.

Then, we approximate the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM as:

g(zai j) =

(ai j−S i−µH)
σi

1 +
(ai j−S i−µH)2

kσ2
i

and g(zbi j) =

(bi j−pS i−µH)
σi

1 +
(bi j−pS i−µH)2

kσ2
i

,

respectively, by the first order Taylor expansions via:
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g(zai( j)) = α j + β jzai( j)

and

g(zbi( j)) = α j + β jzbi( j) ,

where

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

when ai( j) and bi( j) represent the ordered PM and MM with respect to the probes j, i.e., the
concomitant. Hereby, we can present the partial derivatives of MMLE as below:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zai( j)) +
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zbi( j)) (B.2)

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) (B.3)

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)) (B.4)

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)). (B.5)

Finally, to obtain the estimates of parameters, we set Equations (B.2) - (B.5) to zero. Accord-
ingly, from Equation (B.2):

∂ ln L
∂µH

=

n∑
i=1

m∑
j=1

1
σi

g(zai( j)) +

n∑
i=1

m∑
j=1

1
σi

g(zbi( j)) = 0

n∑
i=1

m∑
j=1

1
σi

(g(zai( j)) + g(zbi( j))) = 0

n∑
i=1

m∑
j=1

1
σi

(α j + β jzai( j) + α j + β jzbi( j)) = 0

n∑
i=1

m∑
j=1

α j

σi
+

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

m∑
j=1

α j

σi
+

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0

n∑
i=1

1
σi

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

1
σi

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0,
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by taking
∑m

j=1 α j = 0 due to the symmetry. Then,

∂ ln L
∂µH

=

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0

=

n∑
i=1

m∑
j=1

β j
(ai( j) − S i − µH)

σ2
i

+

n∑
i=1

m∑
j=1

β j
(bi( j) − pS i − µH)

σ2
i

= 0.

So
n∑

i=1

m∑
j=1

β j
ai( j)

σ2 −

n∑
i=1

m∑
j=1

β j
S i

σ2 − 2
n∑

i=1

m∑
j=1

β j
µH

σ2 =

= −

n∑
i=1

m∑
j=1

β j
bi( j)

σ2 + p
n∑

i=1

m∑
j=1

β j
S i

σ2 2
n∑

i=1

m∑
j=1

β j
µH

σ2

=

n∑
i=1

m∑
j=1

β j
(ai( j) + bi( j))

σ2 − (p + 1)
n∑

i=1

m∑
j=1

β j
S i

σ2 .

As a result, µ̂H is found by:

µ̂H =

∑n
i=1

∑m
j=1 β j

(ai( j)+bi( j))
σ2 − (p + 1)

∑n
i=1

∑m
j=1 β j

S i
σ2

2
∑n

i=1
∑m

j=1
β j

σ2

. (B.6)

On the other hand, from Equation (B.4):

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)) = 0

0 =
2v
k

1
σi

 m∑
j=1

(g(zai( j)) + pg(zbi( j)))


0 =

2v
kσi

m∑
j=1

((α j + β jzai( j)) +
2v
kσi

m∑
j=1

((α j + β jzbi( j))

0 =
1
σ2

i

m∑
j=1

β j(ai( j) − S i − µH) +
p
σ2

i

m∑
j=1

β j(bi( j) − pS i − µH)

0 =

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µH

m∑
j=1

β j + p
m∑

j=1

β jbi( j)

− p2
m∑

j=1

β jS i − pµH

m∑
j=1

β j

= (p2 + 1)S i

m∑
j=1

β j =

m∑
j=1

β jai( j) + p
m∑

j=1

β jbi( j) − (p + 1)µH

m∑
j=1

β j.
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Hence, we get the estimate of the true signal for each gene i via:

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j) − (p + 1)µH

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j
. (B.7)

But by substituting B.7 into B.6, we can also define µ̂H as follows:

µ̂H =

∑n
i=1

∑m
j=1 β j

(ai( j)+bi( j))
σ2

2
∑n

i=1
∑m

j=1
β j

σ2

−

(p + 1)
∑n

i=1
∑m

j=1
β j

σ2
i

∑m
j=1 β jai( j)+p

∑m
j=1 β jbi( j)−(p+1)µH

∑m
j=1 β j

(p2+1)
∑m

j=1 β j

2
∑n

i=1
∑m

j=1
β j

σ2

.

So,

µ̂H =

p
∑n

i=1
∑m

j=1
β j

σ2
i
a(i j) −

∑n
i=1

∑m
j=1

β j

σ2
i
b(i j)

(p2 + 1)
∑m

j=1 β j
. (B.8)

Similarly, by substituting Equation B.8 into Equation B.7, an alternative form of Ŝ i can be
written as:

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j)

(p2 + 1)
∑m

j=1 β j
−

(p + 1)

 p
∑n

i=1
∑m

j=1
β j
σ2

i
a(i j)−

∑n
i=1

∑m
j=1

β j
σ2

i
b(i j)

(p2+1)
∑m

j=1 β j

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j

=
1

(p2 + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

p
(p2 + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j

−
p(p + 1)

(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
a(i j)∑n

i=1
∑m

j=1
β j

σ2
i

+
(p + 1)

(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
b(i j)∑n

i=1
∑m

j=1
β j

σ2
i

Accordingly,

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j)

(p2 + 1)
∑m

j=1 β j
−

p(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
ai( j)−

(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
bi( j)∑n

i=1
1
σ2

i

(p2 + 1)
∑m

j=1 β j
. (B.9)

On the other side, from Equation (B.3), we can get the estimate of common fraction p as
below:
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∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) = 0

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) = 0

n∑
i=1

m∑
j=1

S i

σi
α j +

m∑
j=1

β j
(bi( j) − pS i − µH)

σi

S i

σi
= 0

n∑
i=1

m∑
j=1

β jS i

σ2
i

bi( j) − p
n∑

i=1

m∑
j=1

β jS 2
i

σ2
i

−

n∑
i=1

m∑
j=1

µH
β jS i

σ2
i

. = 0

Hereby,

p̂ =

∑n
i=1

∑m
j=1

β jS i

σ2
i

bi( j) −
∑n

i=1
∑m

j=1 µH
β jS i

σ2
i∑n

i=1
∑m

j=1
β jS 2

i
σ2

i

.

We can write the above equation as follows, too:

n∑
i=1

m∑
j=1

β jS i

σ2
i

bi( j) − p̂
n∑

i=1

m∑
j=1

β jS 2
i

σ2
i

− µH

n∑
i=1

m∑
j=1

β jS i

σ2
i

= 0. (B.10)

Then, by substituting Equations (B.8) and (B.9) into Equation (B.10):
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
∑m

j=1 β jai( j) + p
∑m

j=1 β jbi( j) −

p(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
ai( j)−

(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
bi( j)∑n

i=1
1
σ2

i

(p2 + 1)
∑m

j=1 β j


×

n∑
i=1

m∑
j=1

β j

σ2
i

bi( j)

−


∑m

j=1 β jai( j) + p
∑m

j=1 β jbi( j) −

p(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
ai( j)−

(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
bi( j)∑n

i=1
1
σ2

i

(p2 + 1)
∑m

j=1 β j



2

× p
n∑

i=1

m∑
j=1

β j

σ2
i

−


p
∑n

i=1
∑m

j=1
β j

σ2
i
a(i j) −

∑n
i=1

∑m
j=1

β j

σ2
i
b(i j)

(p2 + 1)
∑m

j=1 β j



×


∑m

j=1 β jai( j) + p
∑m

j=1 β jbi( j) −

p(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
ai( j)−

(p+1)
(p−1)

∑n
i=1

∑m
j=1

β j
σ2

i
bi( j)∑n

i=1
1
σ2

i

(p2 + 1)
∑m

j=1 β j


×

n∑
i=1

m∑
j=1

β j

σ2
i

= 0.

Finally, from Equation (B.5), we can obtain MLE of σ for each gene i by setting this expres-
sion to zero via:

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j))

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j))) = 0
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Also,

2m
σi

=
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

σi =
v

km

m∑
j=1

(g(zai( j)) + g(zbi( j)))

kmσi

v
=

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(
α j + β j

ai( j) − S i − µH

σi
+ α j + β j

bi( j) − pS i − µH

σi

)
kmσ2

i

v
=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i −

m∑
j=1

β jµH +

m∑
j=1

β jbi( j) −

m∑
j=1

β j pS i −

m∑
j=1

β jµH

=

m∑
j=1

β j(ai( j) + bi( j)) − (p + 1)S i

m∑
j=1

β j − 2µH

m∑
j=1

β j.

Hence,

σ̂i
2 =

km
v

 m∑
j=1

β j(ai( j) + bi( j)) − (p + 1)S i

m∑
j=1

β j − 2µH

m∑
j=1

β j

 .

Finally, by substituting Equations (B.8) and (B.9) into the above equation, we get the most
simple form of σi, which is the non-linear functions of p, resulting in no explicit expressions
for the model parameter of Equation (B.1):
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σ̂i
2 =

km
v

 m∑
j=1

β j(ai( j) + bi( j))


−

km(p + 1)
v

 1
(p2 + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

p
(p2 + 1)

∑m
j=1 β jai( j)∑m

j=1 β j


−

km(p + 1)
v

 p(p + 1)
(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
ai( j)∑n

i=1
∑m

j=1
β j

σ2
i

+
(p + 1)

(p − 1)(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
bi( j)∑n

i=1
∑m

j=1
β j

σ2
i


−

2km
v

m∑
j=1

β j

 p
(p − 1)

∑n
i=1

∑m
j=1

β j

σ2
i
ai( j)∑n

i=1
∑m

j=1
β j

σ2
i

+
1

(p − 1)

∑n
i=1

∑m
j=1

β j

σ2
i
bi( j)∑n

i=1
∑m

j=1
β j

σ2
i


σ̂i

2 =
km
v

 p(p − 1)
(p2 + 1)

m∑
j=1

β jai( j) −
(p − 1)
(p2 + 1)

m∑
j=1

β jbi( j)

−
p(p − 1)
(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
ai( j)∑n

i=1
1
σ2

i

 +
km
v

 (p − 1)
(p2 + 1)

∑n
i=1

∑m
j=1

β j

σ2
i
bi( j)∑n

i=1
1
σ2

i

 .
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APPENDIX C

DERIVATION of ESTIMATORS of ALTERNATIVE MODEL 2

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, the following distributional assumption under the long-tailed symmetric(LTS) density is
considered on the log-scale:

PMi j = ai j ∼ LTS(S i + µH , σ
2
i )

and

MMi j = bi j ∼ LTS(piS i + µH , σ
2
i ),

where S i and µH are the gene specific true signal and background intensity, respectively, and
σi denotes the standard deviation for gene i as used in previous alternative models. On the
other hand, pi presents the fraction of the true signal in MM for each gene i.

Thereby, the corresponding likelihood is found via:

L(S i, µH , pi | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µH )2

2σ2
i

1√
2πσ2

i

e
−

(bi j−piS i−µH )2

2σ2
i ,

which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

)(1 +
z2

ai j

k
)−v

n∏
i=1

m∏
j=1

(
1
σi

)(1 +
z2

bi j

k
)−v,

where the shape parameter v ≥ 2, k = 2v − 3, degree of freedom d = 2v − 1, and finally a and
b refer to nm-dimensional vectors a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm),
in order.

zai j =
(ai j − S i − µH)

σi
,

zbi j =
(bi j − piS i − µH)

σi
.
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Then, the logarithm of L is found as:

ln L =

n∑
i=1

m∑
j=1

ln

( 1
σi

) 1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

ln


(

1
σi

) 1 +
z2

bi j

k


−v

=

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

ai j

k

−v
+

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

bi j

k


−v

= −

n∑
i=1

m∑
j=1

(lnσi) + vln

1 +
z2

ai j

k


−

n∑
i=1

m∑
j=1

(lnσi) + vln

1 +
z2

bi j

k


 .

To obtain the MLE of model parameters, we take the first derivatives of ln L with respect to
each parameter as below:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

+
2v
k

n∑
i=1

m∑
j=1

(bi j − piS i − µH)

σ2
i

(bi j−pS i−µH)2

kσ2
i

∂ ln L
∂pi

=
2v
k

m∑
j=1

S i(bi j − piS i − µH)

σ2
i

(bi j−piS i−µH)2

kσ2
i

∂ ln L
∂S i

=
2v
k

m∑
j=1

(ai j − S i − µH)

σ2
i

(ai j−S i−µH)2

kσ2
i

+
2v
k

m∑
j=1

−pi(bi j − piS i − µH)

σ2
i

(bi j−piS i−µH)2

kσ2
i

∂ ln L
∂σi

= −

n∑
i=1

m∑
j=1

− 1
σi

+
(ai j − S i − µH)

σ3
i (1 +

(ai j−S i−µH)2

kσ2
i

)

2v
k


+

n∑
i=1

m∑
j=1

− 1
σi

+
(bi j − piS i − µH)

σ3
i (1 +

(bi j−piS i−µH)2

kσ2
i

)

2v
k

 ,

where

zai j =
(ai j − S i − µH)

σi

and

zbi j =
(bi j − piS i − µH)

σi
.

Then, we approximate the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM as:
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g(zai j) =

(ai j−S i−µH)
σi

1 +
(ai j−S i−µH)2

kσ2
i

and g(zbi j) =

(bi j−pS i−µH)
σi

1 +
(bi j−piS i−µH)2

kσ2
i

,

respectively, by the first order Taylor expansions via:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

where

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

for the standardized and ordered PM and MM intensities (in increasing magnitude), in order,
with respect to the probes in each gene i. Moreover, here t( j) refers to the ordered associate
student-t quantile for each probe j ( j = 1, . . . ,m).

Then, the partial derivatives of MLE can be shown as follows:

∂ ln L
∂µH

=
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zai( j)) +
2v
k

n∑
i=1

m∑
j=1

1
σi

g(zbi( j)) (C.1)

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) (C.2)

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2v
k

m∑
j=1

pi

σi
g(zbi( j)) (C.3)

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)). (C.4)

Finally, in order to get the estimates of parameters, we set Equations (C.1) - (C.4) to zero.
Thereby, from Equation (C.1) we derive:
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∂ ln L
∂µH

=

n∑
i=1

m∑
j=1

1
σi

g(zai( j)) +

n∑
i=1

m∑
j=1

1
σi

g(zbi( j)) = 0

n∑
i=1

m∑
j=1

1
σi

(g(zai( j)) + g(zbi( j))) = 0

n∑
i=1

m∑
j=1

1
σi

(α j + β jzai( j) + α j + β jzbi( j)) = 0

n∑
i=1

m∑
j=1

α j

σi
+

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

m∑
j=1

α j

σi
+

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0

n∑
i=1

1
σi

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

1
σi

m∑
j=1

α j +

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0,

by taking
∑m

j=1 α j = 0 due to the symmetry. Then,

∂ ln L
∂µH

=

n∑
i=1

m∑
j=1

β jzai( j)

σi
+

n∑
i=1

m∑
j=1

β jzbi( j)

σi
= 0

n∑
i=1

m∑
j=1

β j
(ai( j) − S i − µH)

σ2
i

+

n∑
i=1

m∑
j=1

β j
(bi( j) − piS i − µH)

σ2
i

= 0

Accordingly,

n∑
i=1

m∑
j=1

β j
ai( j)

σ2 −

n∑
i=1

m∑
j=1

β j
S i

σ2 − 2
n∑

i=1

m∑
j=1

β j
µH

σ2 =

= −

n∑
i=1

m∑
j=1

β j
bi( j)

σ2 + p
n∑

i=1

m∑
j=1

β j
S i

σ2 .

So,

2
n∑

i=1

m∑
j=1

β j
µH

σ2 =

n∑
i=1

m∑
j=1

β j
(ai( j) + bi( j))

σ2 −

n∑
i=1

m∑
j=1

β j
S i

σ2 (pi + 1).

Finally, µ̂H can be derived as:

µ̂H =

∑n
i=1

∑m
j=1 β j

(ai( j)+bi( j))
σ2 −

∑n
i=1

∑m
j=1 β j

S i
σ2 (pi + 1)

2
∑n

i=1
∑m

j=1
β j

σ2

. (C.5)

On the other side, by setting Equation (C.3) to zero
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∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)).

Thereby,

2v
k

1
σi

 m∑
j=1

(g(zai( j)) + pg(zbi( j)))

 = 0

2v
kσi

m∑
j=1

((α j + β jzai( j)) +
2vpi

kσi

m∑
j=1

((α j + β jzbi( j)) = 0

1
σ2

i

m∑
j=1

β j(ai( j) − S i − µH) +
pi

σ2
i

m∑
j=1

β j(bi( j) − piS i − µH) = 0

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µH

m∑
j=1

β j + pi

m∑
j=1

β jbi( j) − p2
i

m∑
j=1

β jS i − piµH

m∑
j=1

β j = 0.

So,

(p2 + 1)S i

m∑
j=1

β j =

m∑
j=1

β jai( j) + pi

m∑
j=1

β jbi( j) − (pi + 1)µH

m∑
j=1

β j,

we get the estimate of the true signal for each gene i via:

Ŝ i =

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j) − (pi + 1)µH

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

. (C.6)

However, by substituting (C.6) into (C.5), we can also define µ̂H in a different way as below:

µ̂H =

∑n
i=1

∑m
j=1 β j

(ai( j)+bi( j))
σi

2
∑n

i=1
∑m

j=1
β j
σi

−

∑n
i=1

∑m
j=1

β j
σi

(pi + 1)
∑m

j=1 β jai( j)+pi
∑m

j=1 β jbi( j)−(pi+1)µH
∑m

j=1 β j

(p2
i +1)

∑m
j=1 β j

2
∑n

i=1
∑m

j=1
β j
σi

(C.7)

µ̂H =

∑n
i=1

∑m
j=1

β j
σi

(ai( j)+bi( j))∑n
i=1 β j

−
∑n

i=1
∑m

j=1
(pi+1)
(p2

i +1)
β j
σi

∑n
i=1 β jai( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

−

∑n
i=1

∑m
j=1

(pi+1)pi

(p2
i +1)

β j
σi

∑n
i=1 β jbi( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

. (C.8)
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Likewise, by substituting (C.7) into (C.6), another form of Ŝ i can be written via:

Ŝ i =

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j) − (pi + 1)µH

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

=

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j)

(p2
i + 1)

∑m
j=1 β j

−

(pi + 1)


∑n

i=1
∑m

j=1
β j
σi

(ai( j)+bi( j))∑n
i=1 β j

−
∑n

i=1
∑m

j=1
(pi+1)

(p2
i +1)

β j
σi

∑n
i=1 β jai( j)

2
∑n

i=1
1
σi
−
∑n

i=1
∑m

j=1
(pi+1)2

(p2
i +1)σi

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

+

(pi + 1)


∑n

i=1
∑m

j=1
(pi+1)pi
(p2

i +1)

β j
σi

∑n
i=1 β jbi( j)

2
∑n

i=1
1
σi
−
∑n

i=1
∑m

j=1
(pi+1)2

(p2
i +1)σi

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

.

Hereby,

Ŝ i =
1

(p2
i + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

pi

(p2
i + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j

−
pi + 1

(p2
i + 1)

∑n
i=1

∑m
j=1

β j
σi

(ai( j) + bi( j))(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)∑m
j=1 β j

−
pi + 1

(p2
i + 1)

∑n
i=1

∑m
j=1

pi+1
(p2

i +1)
β j
σi

ai( j)(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)

−
pi + 1

(p2
i + 1)

∑n
i=1

∑m
j=1

pi(pi+1)
(p2

i +1)
β j
σi

bi( j)(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

) . (C.9)

On the other side, from Equation (C.2), the estimator of the common fraction p for each gene
i, can be derives as follows:

∂ ln L
∂pi

=
2v
k

m∑
j=1

S i

σi
g(zbi( j)) =

S i

σi

m∑
j=1

g(zbi( j)).
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As a result,
m∑

j=1

g(zbi( j)) =

m∑
j=1

α j +

m∑
j=1

β j
(bi( j) − piS i − µH)

σi
= 0

m∑
j=1

β j
(bi( j) − piS i − µH)

σi
=

m∑
j=1

β j(bi( j) − piS i − µH) = 0

m∑
j=1

β jbi( j) −

m∑
j=1

β j piS i −

m∑
j=1

β jµH) = 0.

Thereby,

p̂ =

∑m
j=1 bi( j) − µH

∑m
j=1 β j

S i
∑m

j=1 β j
.

We can write the above equation as follows, too:

p̂S i

m∑
j=1

β j −

m∑
j=1

bi( j) + µH

m∑
j=1

β j = 0

p̂S i −

∑m
j=1 bi( j)∑m
j=1 β j

+ µH = 0. (C.10)

(C.11)

Then, by substituting Equations (C.7) and (C.9) into Equation (C.10):

p̂i

 1
(p2

i + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

pi

(p2
i + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j


− p̂i

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

β j
σi

(ai( j) + bi( j))

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)
∑m

j=1 β j


− p̂i

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

pi+1
(p2

i +1)
β j
σi

ai( j)

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)


− p̂i

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

pi(pi+1)
(p2

i +1)
β j
σi

bi( j)

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)

 −
∑m

j=1 bi( j)∑m
j=1 β j

+

∑n
i=1

∑m
j=1

β j
σi

(ai( j)+bi( j))∑n
i=1 β j

−
∑n

i=1
∑m

j=1
(pi+1)
(p2

i +1)
β j
σi

∑n
i=1 β jai( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

−

∑n
i=1

∑m
j=1

(pi+1)pi

(p2
i +1)

β j
σi

∑n
i=1 β jbi( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

= 0.
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By solving the above equation we get

pi

∑m
j=1 β jai( j)∑m

j=1 β j
−

m∑
j=1

β jbi( j) − (pi − 1)

∑n
i=1

∑m
j=1

β j
σi

(ai( j) + bi( j))(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)∑m
j=1 β j

− (2p2
i + pi + 1)

∑n
i=1

∑m
j=1

pi+1
(p2

i +1)
β j
σi

ai( j)(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)

− (2p2
i + pi + 1)

∑n
i=1

∑m
j=1

pi(pi+1)
(p2

i +1)
β j
σi

bi( j)(
2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

) = 0.

Finally, from Equation (C.4), we can obtain MLE of σ for each gene i by setting this expres-
sion to zero via:

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)) = 0

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

2m
σi

=
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

σi =
v

km

m∑
j=1

(g(zai( j)) + g(zbi( j)))

kmσi

v
=

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(
α j + β j

ai( j) − S i − µH

σi
+ α j + β j

bi( j) − piS i − µH

σi

)
kmσ2

i

v
=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i −

m∑
j=1

β jµH +

m∑
j=1

β jbi( j) −

m∑
j=1

β j piS i −

m∑
j=1

β jµH

=

m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)S i

m∑
j=1

β j − 2µH

m∑
j=1

β j.

Hence,

σ̂i
2 =

km
v

m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)S i

m∑
j=1

β j − 2µH

m∑
j=1

β j.

Finally, by substituting Equations (C.7) and (C.9) into the above equation, we get the most
simple form of σi, which is the non-linear functions of pi, leading to no explicit solutions for
the model parameter of Equation (C.1):
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σ̂i
2 =

km
v

m∑
j=1

β j(ai( j) + bi( j))

−
(pi + 1)v

km

 1
(p2

i + 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

pi

(p2
i + 1)

∑m
j=1 β jbi( j)∑m

j=1 β j


+

(pi + 1)v
km

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

β j
σi

(ai( j) + bi( j))

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)
∑m

j=1 β j


+

(pi + 1)v
km

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

pi+1
(p2

i +1)
β j
σi

ai( j)

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)


+

(pi + 1)v
km

 pi + 1
(p2

i + 1)

∑n
i=1

∑m
j=1

pi(pi+1)
(p2

i +1)
β j
σi

bi( j)

(2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

)


− 2

m∑
j=1

β j


∑n

i=1
∑m

j=1
β j
σi

(ai( j)+bi( j))∑n
i=1 β j

−
∑n

i=1
∑m

j=1
(pi+1)
(p2

i +1)
β j
σi

∑n
i=1 β jai( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi


+ 2

m∑
j=1

β j


∑n

i=1
∑m

j=1
(pi+1)pi

(p2
i +1)

β j
σi

∑n
i=1 β jbi( j)

2
∑n

i=1
1
σi
−

∑n
i=1

∑m
j=1

(pi+1)2

(p2
i +1)σi

 = 0.

From this final expression, it is seen that similar to the first alternative model, Model 2 also
has none explicit expression for the model estimators.
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APPENDIX D

DERIVATION of ESTIMATORS of ALTERNATIVE MODEL 3

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we consider the following distributional assumption under the long tailed symmetric (LTS)
on the log-scale:

PMi j = ai j ∼ LTS(S i + µHi, σ
2
i )

MMi j = bi j ∼ LTS(pS i + µHi, σ
2
i ), (D.1)

in which S i, p and µH describe the true signal in gene i, constant fraction of true signal in MM,
and gene-specific background intensities, respectively, as described beforehand. Finally, σ2

i
is the gene-specific variance component.

Hereby, the associated likelihood is found via:

L(S i, µHi, p | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µHi)
2

2σ2
i

1√
2πσ2

i

e
−

(bi j−pS i−µHi)
2

2σ2
i ,

for a = (a11, . . . , ai j, . . . , anm), and b = (b11, . . . , bi j, . . . , bnm), which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

) 1 +
z2

ai j

k

−v n∏
i=1

m∏
j=1

(
1
σi

) 1 +
z2

bi j

k


−v

and under the shape parameter v ≥ 2 and k = 2v − 3, as well as:

zai j =
(ai j − S i − µHi)

σi
and zbi j =

(bi j − pS i − µHi)
σi

.
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Then, the logarithm of L is derived as:

ln L =

n∑
i=1

m∑
j=1

ln

( 1
σi

) 1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

ln


(

1
σi

) 1 +
z2

bi j

k


−v

=

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

bi j

k


−v

= −

n∑
i=1

m∑
j=1

(lnσi) + v ln

1 +
z2

ai j

k

 − n∑
i=1

m∑
j=1

(lnσi) + v ln

1 +
z2

bi j

k


 .

In order to get the MLE of model parameters, we take the first derivatives of ln L with respect
to each parameter as follows:

∂ ln L
∂µHi

=
2v
k

m∑
j=1

(ai j − S i − µHi)

σ2
i

(ai j−S i−µHi)2

kσ2
i

+
2v
k

m∑
j=1

(bi j − pS i − µHi)

σ2
i

(bi j−pS i−µHi)2

kσ2
i

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i(bi j − pS i − µHi)

σ2
i

(bi j−pS i−µHi)2

kσ2
i

∂ ln L
∂S i

=
2v
k

m∑
j=1

(ai j − S i − µHi)

σ2
i

(ai j−S i−µHi)2

kσ2
i

+
2v
k

m∑
j=1

−p(bi j − pS i − µHi)

σ2
i

(bi j−pS i−µHi)2

kσ2
i

∂ ln L
∂σi

=

m∑
j=1

− 1
σi

+
(ai j − S i − µHi)

σ3
i (1 +

(ai j−S i−µHi)2

kσ2
i

)

2v
k


+

m∑
j=1

− 1
σi

+
(bi j − pS i − µHi)

σ3
i (1 +

(bi j−pS i−µHi)2

kσ2
i

)

2v
k

 ,
where

zai j =
(ai j − S i − µHi)

σi

zbi j =
(bi j − pS i − µHi)

σi
.

Then, by approximating the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM via:

g(zai j) =

(ai j−S i−µHi)
σi

1 +
(ai j−S i−µHi)2

kσ2
i

and

g(zbi j) =

(bi j−pS i−µHi)
σi

1 +
(bi j−pS i−µHi)2

kσ2
i

,
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by the first order Taylor expansions we get

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,

where

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

under the probe based ordered values of zi j for each gene i. Here t(i) indicates the quantile of
the student-t density for the jth probe, as used other alternative models. We can express the
partial derivatives of MMLE as below:

∂ ln L
∂µHi

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2v
k

m∑
j=1

1
σi

g(zbi( j)) (D.2)

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) (D.3)

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)) (D.4)

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)). (D.5)

Finally, to obtain the estimates of parameters, we set Equations (D.2 - D.5) to zero. Thereby,
from Equation (D.2) we get

∂ ln L
∂µHi

=

m∑
j=1

1
σi

g(zai( j)) +

m∑
j=1

1
σi

g(zbi( j)) = 0

m∑
j=1

1
σi

(g(zai( j)) + g(zbi( j))) = 0

m∑
j=1

1
σi

(α j + β jzai( j) + α j + β jzbi( j)) = 0

m∑
j=1

α j

σi
+

m∑
j=1

β jzai( j)

σi
+

m∑
j=1

α j

σi
+

m∑
j=1

β jzbi( j)

σi
= 0

1
σi

m∑
j=1

α j +

m∑
j=1

β jzai( j)

σi
+

1
σi

m∑
j=1

α j +

m∑
j=1

β jzbi( j)

σi
= 0,

by taking
∑m

j=1 α j = 0 because of the symmetry. Then,
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∂ ln L
∂µHi

=

m∑
j=1

β jzai( j)

σi
+

m∑
j=1

β jzbi( j)

σi
= 0

=

m∑
j=1

β j
(ai( j) − S i − µHi)

σ2
i

+

m∑
j=1

β j
(bi( j) − pS i − µHi)

σ2
i

.

Accordingly,

m∑
j=1

β j
ai( j)

σ2 −

m∑
j=1

β j
S i

σ2 −

m∑
j=1

β j
µHi

σ2 = −

m∑
j=1

β j
bi( j)

σ2 + p
m∑

j=1

β j
S i

σ2 +

m∑
j=1

β j
µHi

σ2

2
m∑

j=1

β j
µHi

σ2 =

m∑
j=1

β j
(ai( j) + bi( j))

σ2 − (p + 1)
m∑

j=1

β j
S i

σ2 .

Finally, µ̂Hi is found as:

µ̂Hi =

∑m
j=1 β j(ai( j) + bi( j)) − (p + 1)S i

∑m
j=1 β j

2
∑m

j=1 β j
. (D.6)

On the other hand, from Equation (D.4):

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vp

k

m∑
j=1

1
σi

g(zbi( j)) = 0

=
2v
k

1
σi

 m∑
j=1

(g(zai( j)) + pg(zbi( j)))


=

2v
kσi

m∑
j=1

((α j + β jzai( j)) +
2v
kσi

m∑
j=1

((α j + β jzbi( j))

=
1
σ2

i

m∑
j=1

β j(ai( j) − S i − µHi) +
p
σ2

i

m∑
j=1

β j(bi( j) − pS i − µHi)

=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µHi

m∑
j=1

β j + p
m∑

j=1

β jbi( j)

− p2
m∑

j=1

β jS i − pµHi

m∑
j=1

β j.

So,

(p2 + 1)S i

m∑
j=1

β j =

m∑
j=1

β jai( j) + p
m∑

j=1

β jbi( j) − (p + 1)µHi

m∑
j=1

β j.

Then, the estimate of the true signal for each gene i is derived as below:
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Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j) − (p + 1)µHi

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j
. (D.7)

But by substituting D.7 into D.6, we can also define µ̂H as follows:

µ̂Hi =

∑m
j=1 β j(ai( j) + bi( j))

2
∑m

j=1 β j
−

(p + 1)
[∑m

j=1 β jai( j)+p
∑m

j=1 β jbi( j)−(p+1)µHi
∑m

j=1 β j

(p2+1)
∑m

j=1 β j

]∑m
j=1 β j

2
∑m

j=1 β j

Therefore,

µ̂Hi =
p
∑m

j=1 β ja(i j) −
∑m

j=1 β jb(i j)

(p2 + 1)
∑m

j=1 β j
. (D.8)

Similarly, by substituting Equation D.8 into Equation D.7, an alternative form of Ŝ i can be
written as:

Ŝ i =

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j) − (p + 1)µHi

∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j

=

∑m
j=1 β jai( j) + p

∑m
j=1 β jbi( j)

(p2 + 1)
∑m

j=1 β j

−

(p + 1)
[

p
∑m

j=1 β j(a(i j)−
∑m

j=1 β j(b(i j))

(p2+1)
∑m

j=1 β j

]∑m
j=1 β j

(p2 + 1)
∑m

j=1 β j

= −
1

(p − 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

p
(p − 1)

∑m
j=1 β jbi( j)∑m

j=1 β j
.

Then,

Ŝ i =

∑m
j=1 β jbi( j) −

∑m
j=1 β jai( j)

(p − 1)
∑m

j=1 β j
. (D.9)

On the other side, from Equation (D.3), we can get the estimate of the common fraction p as
the following way:

∂ ln L
∂p

=
2v
k

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j)) = 0

=

n∑
i=1

m∑
j=1

S i

σi
g(zbi( j))

=

n∑
i=1

m∑
j=1

S i

σi
α j +

m∑
j=1

β j
(bi( j) − pS i − µHi)

σi

S i

σi

=

n∑
i=1

m∑
j=1

β jS i

σ2
i

bi( j) − p
n∑

i=1

m∑
j=1

β jS 2
i

σ2
i

−

n∑
i=1

m∑
j=1

µHi
β jS i

σ2
i

.
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Thereby,

p̂ =

∑n
i=1

∑m
j=1

β jS i

σ2
i

bi( j) −
∑n

i=1
∑m

j=1 µHi
β jS i

σ2
i∑n

i=1
∑m

j=1
β jS 2

i
σ2

i

.

We can also write the above equation as below:

p̂
n∑

i=1

m∑
j=1

β jS 2
i

σ2
i

−

n∑
i=1

m∑
j=1

β jS i

σ2
i

bi( j) +

n∑
i=1

m∑
j=1

µHi
β jS i

σ2
i

= 0

n∑
i=1

m∑
j=1

β jS i

σ2
i

bi( j) − p̂
n∑

i=1

m∑
j=1

β jS 2
i

σ2
i

−

n∑
i=1

m∑
j=1

µHi
β jS i

σ2
i

= 0. (D.10)

Then, by substituting Equations (D.8) and (D.9) into Equation (D.10):

n∑
i=1

m∑
j=1

β j

σ2
i

bi( j)

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(p − 1)
∑m

j=1 β j

 − p
n∑

i=1

m∑
j=1

β j

σ2
i

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(p − 1)
∑m

j=1 β j

2

−

n∑
i=1

m∑
j=1

β j

σ2
i

 p
∑m

j=1 β j(a(i j) −
∑m

j=1 β j(b(i j))

(p2 + 1)
∑m

j=1 β j


×

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(p − 1)
∑m

j=1 β j

 = 0,

and by solving this expression, we find zero equalities in both sides.

Finally, from Equation (D.5), we can obtain MLE of σ for each gene i by setting this expres-
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sion to zero via:

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)) = 0

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

2m
σi

=
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

σi =
v

km

m∑
j=1

(g(zai( j)) + g(zbi( j)))

kmσi

v
=

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(
α j + β j

ai( j) − S i − µHi

σi
+ α j + β j

bi( j) − pS i − µHi

σi

)
kmσ2

i

v
=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i −

m∑
j=1

β jµHi +

m∑
j=1

β jbi( j)

−

m∑
j=1

β j pS i −

m∑
j=1

β jµHi

=

m∑
j=1

β j(ai( j) + bi( j)) − (p + 1)S i

m∑
j=1

β j − 2µHi

m∑
j=1

β j.

Hence,

σ̂i
2 =

∑m
j=1 β j(ai( j) + bi( j)) − (p + 1)S i

∑m
j=1 β j − 2µHi

∑m
j=1 β j

km
v

.
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By substituting Equations (D.8) and (D.9) into the above equation, we can derive:

kmσ̂i
2

v
=

m∑
j=1

β j(ai( j) + bi( j)) − (p + 1)

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(p − 1)
∑m

j=1 β j


− 2

m∑
j=1

β j

 p
∑m

j=1 β j(a(i j) −
∑m

j=1 β j(b(i j))

(p2 + 1)
∑m

j=1 β j


=

m∑
j=1

β jai( j) +

m∑
j=1

β jbi( j)

−
p + 1
p − 1

m∑
j=1

β jbi( j) +
p + 1
p − 1

m∑
j=1

β jai( j) −
2p

p − 1

m∑
j=1

β jai( j)

+
p + 1
p − 1

m∑
j=1

β jai( j) −
p

p − 1

m∑
j=1

β jai( j)

=

[
1 +

p + 1
p − 1

−
2p

p − 1

] m∑
j=1

β jai( j) +

[
1 −

p + 1
p − 1

+
2

p − 1

] m∑
j=1

β jbi( j),

since

1 +
p + 1
p − 1

−
2p

p − 1
= 0 and 1 −

p + 1
p − 1

+
2

p − 1
= 0.

Then, we get the estimate of σ̂i as below:

kmσ̂i
2

v
= 0.

Hereby,

σ̂i = 0,

which implies an infeasible estimate for σi.
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APPENDIX E

DERIVATION of ESTIMATORS of ALTERNATIVE MODEL 4

In modelling perfect matches PM and mismatches MM intensities for each probe j and gene
i, we assume the following relation under long-tailed symmetric (LTS) distribution on the
log-scale:

PMi j = ai j ∼ LTS(S i + µHi, σ
2
i )

MMi j = bi j ∼ LTS(piS i + µHi, σ
2
i ), (E.1)

for gene specific true signal S i, background intensity µHi, and variance σ2
i .

Thereby, the associated likelihood can be written as follows:

L(S i, µHi, pi | a, b) =

n∏
i=1

m∏
j=1

f (ai j) f (bi j)

L =

n∏
i=1

m∏
j=1

1√
2πσ2

i

e
−

(ai j−S i−µHi)
2

2σ2
i

1√
2πσ2

i

e
−

(bi j−piS i−µHi)
2

2σ2
i

under a = (a11, . . . , ai j, . . . , anm) and b = (b11, . . . , bi j, . . . , bnm), which is proportional to

L ∝
n∏

i=1

m∏
j=1

(
1
σi

)(1 +
z2

ai j

k
)−v

n∏
i=1

m∏
j=1

(
1
σi

)(1 +
z2

bi j

k
)−v,

for the shape parameter v ≥ 2 and k = 2v − 3. Moreover,

zai j =
(ai j − S i − µHi)

σi
and zbi j =

(bi j − piS i − µHi)
σi

.
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Then, the logarithm of L can be derived as:

ln L =

n∑
i=1

m∑
j=1

ln

( 1
σi

) 1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

ln


(

1
σi

) 1 +
z2

bi j

k


−v

=

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

ai j

k

−v +

n∑
i=1

m∑
j=1

(− lnσi) + ln

1 +
z2

bi j

k


−v

= −

n∑
i=1

m∑
j=1

(lnσi) + v ln

1 +
z2

ai j

k

 − n∑
i=1

m∑
j=1

(lnσi) + v ln

1 +
z2

bi j

k


 .

In order to get the MLE of model parameters, we take the first derivatives of ln L with respect
to each parameter as below:

∂ ln L
∂µHi

=
2v
k

m∑
j=1

(ai j − S i − µHi)

σ2
i

(ai j−S i−µHi)2

kσ2
i

+
2v
k

m∑
j=1

(bi j − piS i − µHi)

σ2
i

(bi j−piS i−µHi)2

kσ2
i

∂ ln L
∂pi

=
2v
k

m∑
j=1

S i(bi j − piS i − µHi)

σ2
i

(bi j−piS i−µHi)2

kσ2
i

∂ ln L
∂S i

=
2v
k

m∑
j=1

(ai j − S i − µHi)

σ2
i

(ai j−S i−µHi)2

kσ2
i

+
2v
k

m∑
j=1

−pi(bi j − piS i − µHi)

σ2
i

(bi j−piS i−µHi)2

kσ2
i

∂ ln L
∂σi

=

n∑
i=1

m∑
j=1

− 1
σi

+
(ai j − S i − µHi)

σ3
i (1 +

(ai j−S i−µHi)2

kσ2
i

)

2v
k


+

n∑
i=1

m∑
j=1

− 1
σi

+
(bi j − piS i − µHi)

σ3
i (1 +

(bi j−piS i−µHi)2

kσ2
i

)

2v
k

 ,
where

zai j =
(ai j − S i − µHi)

σi

zbi j =
(bi j − piS i − µHi)

σi
.

Then, by approximating the common nonlinear functions g(z) = z
1+ z2

k

for PM and MM via:

g(zai j) =

(ai j−S i−µHi)
σi

1 +
(ai j−S i−µHi)2

kσ2
i

and g(zbi j) =

(bi j−piS i−µHi)
σi

1 +
(bi j−piS i−µHi)2

kσ2
i

,

respectively, under the first order Taylor expansions as:

g(zai( j)) = α j + β jzai( j) and g(zbi( j)) = α j + β jzbi( j) ,
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as well as

α j =

2t3j
k

(1 +
t2j
k )

and β j =
(1 −

t2j
k )

(1 +
t2j
k )2

,

we can present the partial derivatives of MLE as follows:

∂ ln L
∂µHi

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2v
k

m∑
j=1

1
σi

g(zbi( j)) (E.2)

∂ ln L
∂pi

=
2v
k

m∑
j=1

S i

σi
g(zbi( j)) (E.3)

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vpi

k

m∑
j=1

1
σi

g(zbi( j)) (E.4)

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j)), (E.5)

for the probe based ordered and standardized PM and MM (denoted by zai( j) and zbi( j) , respec-
tively) values and the jth quantile of the student-t distribution(denoted by t( j)).

Finally, to obtain the estimates of parameters, we set Equations (E.2) - (E.5) to zero. Thereby,
from Equation (E.2):

∂ ln L
∂µHi

=

m∑
j=1

1
σi

g(zai( j)) +

m∑
j=1

1
σi

g(zbi( j)) = 0

=

m∑
j=1

1
σi

(g(zai( j)) + g(zbi( j)))

=
1
σi

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(α j + β jzai( j) + α j + β jzbi( j))

=

m∑
j=1

α j +

m∑
j=1

β jzai( j)σi +

m∑
j=1

α j +

m∑
j=1

β jzbi( j)

=

m∑
j=1

α j +

m∑
j=1

β jzai( j) +

m∑
j=1

α j +

m∑
j=1

β jzbi( j) ,
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by taking
∑m

j=1 α j = 0 due to the symmetry. Then,

∂ ln L
∂µHi

=

m∑
j=1

β jzai( j) +

m∑
j=1

β jzbi( j) = 0

=

m∑
j=1

β j
(ai( j) − S i − µHi)

σi
+

m∑
j=1

β j
(ai( j) − piS i − µHi)

σi

=

m∑
j=1

β j(ai( j) − S i − µHi) +

m∑
j=1

β j(ai( j) − piS i − µHi).

From the above equations we get the following expression:

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µHi

m∑
j=1

β j = −

m∑
j=1

β jbi( j) + pi

m∑
j=1

β jS i + µHi

m∑
j=1

β j

2µHi

m∑
j=1

β j =

m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)S i

m∑
j=1

β j.

As a result, µ̂H is found as:

µ̂Hi =

∑m
j=1 β j(ai( j) + bi( j)) − (pi + 1)S i

∑m
j=1 β j

2
∑m

j=1 β j
. (E.6)

On the other hand, from Equation (E.4):

∂ ln L
∂S i

=
2v
k

m∑
j=1

1
σi

g(zai( j)) +
2vpi

k

m∑
j=1

1
σi

g(zbi( j)) = 0

=
2v
k

1
σi

 m∑
j=1

(g(zai( j)) + pig(zbi( j)))


=

2v
kσi

m∑
j=1

((α j + β jzai( j)) +
2v
kσi

m∑
j=1

((α j + β jzbi( j))

=
1
σ2

i

m∑
j=1

β j(ai( j) − S i − µHi) +
pi

σ2
i

m∑
j=1

β j(bi( j) − piS i − µHi)

=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i − µHi

m∑
j=1

β j + pi

m∑
j=1

β jbi( j)

− p2
i

m∑
j=1

β jS i − piµHi

m∑
j=1

β j.

So,

(p2
i + 1)S i

m∑
j=1

β j =

m∑
j=1

β jai( j) + pi

m∑
j=1

β jbi( j) − (pi + 1)µHi

m∑
j=1

β j,
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the estimate of the true signal can be found by:

Ŝ i =

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j) − (pi + 1)µHi

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

. (E.7)

But by substituting Equation E.7 into Equation E.6, we can also write µ̂H as the following
form:

µ̂Hi =

∑m
j=1 β j(ai( j) + bi( j))

2
∑m

j=1 β j

−

(pi + 1)
[∑m

j=1 β jai( j)+pi
∑m

j=1 β jbi( j)−(pi+1)µHi
∑m

j=1 β j

(p2
i +1)

∑m
j=1 β j

]∑m
j=1 β j

2
∑m

j=1 β j
.

Accordingly,

µ̂Hi =
pi

∑m
j=1 β ja(i j) −

∑m
j=1 β jb(i j)

(p2
i + 1)

∑m
j=1 β j

. (E.8)

Similarly, by substituting Equation E.8 into Equation E.7, an alternative form of Ŝ i can be
found as:

Ŝ i =

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j) − (pi + 1)µHi

∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

=

∑m
j=1 β jai( j) + pi

∑m
j=1 β jbi( j)

(p2
i + 1)

∑m
j=1 β j

−

(pi + 1)
[

pi
∑m

j=1 β ja(i j)−
∑m

j=1 β jb(i j)

(p2
i +1)

∑m
j=1 β j

]∑m
j=1 β j

(p2
i + 1)

∑m
j=1 β j

= −
1

(pi − 1)

∑m
j=1 β jai( j)∑m

j=1 β j
+

pi

(pi − 1)

∑m
j=1 β jbi( j)∑m

j=1 β j
.

Thus,

Ŝ i =

∑m
j=1 β jbi( j) −

∑m
j=1 β jai( j)

(pi − 1)
∑m

j=1 β j
. (E.9)

On the other side, from Equation (E.3), we can get the estimate of the common fraction pi as
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below:

∂ ln L
∂pi

=
2v
k

m∑
j=1

S i

σi
g(zbi( j)) = 0

=

m∑
j=1

S i

σi
g(zbi( j))

=
S i

σi

m∑
j=1

g(zbi( j))

=

m∑
j=1

g(zbi( j))

=

m∑
j=1

α j +

m∑
j=1

β j
(bi( j) − piS i − µHi)

σi

=

m∑
j=1

β j
(bi( j) − piS i − µHi)

σi

=

m∑
j=1

β j(bi( j) − piS i − µHi)

=

m∑
j=1

β jbi( j) −

m∑
j=1

β j piS i −

m∑
j=1

β jµHi).

Hence,

p̂ =

∑m
j=1 bi( j) − µHi

∑m
j=1 β j

S i
∑m

j=1 β j
.

We can write the above equation as follows, too:

p̂S i

m∑
j=1

β j −

m∑
j=1

bi( j) + µHi

m∑
j=1

β j = 0. (E.10)

Then, by substituting Equations (E.8) and (E.9) into Equation (E.10):

0 = p̂i

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(pi − 1)
∑m

j=1 β j

 m∑
j=1

β j −

m∑
j=1

bi( j)

+

 pi
∑m

j=1 β ja(i j) −
∑m

j=1 β jb(i j)

(p2
i + 1)

∑m
j=1 β j

 m∑
j=1

β j

and by solving the above equation, we get:[
pi

pi − 1
− 1 −

1
pi − 1

] m∑
j=1

β jb(i j) = 0,
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while

[
pi

pi − 1
− 1 −

1
pi − 1

]
= 0.

Above equation gives us no solution, which implies an infeasible estimate for pi.

Finally, from Equation (E.5), we can obtain MLE of σ for each gene i by setting this expres-
sion to zero via:

∂ ln L
∂σi

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

g(zai( j)) +
2v

kσ2
i

m∑
j=1

g(zbi( j))

= −
2m
σi

+
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j))) = 0

2m
σi

=
2v

kσ2
i

m∑
j=1

(g(zai( j)) + g(zbi( j)))

σi =
v

km

m∑
j=1

(g(zai( j)) + g(zbi( j)))

kmσi

v
=

m∑
j=1

(g(zai( j)) + g(zbi( j)))

=

m∑
j=1

(
α j + β j

ai( j) − S i − µHi

σi
+ α j + β j

bi( j) − piS i − µHi

σi

)
kmσ2

i

v
=

m∑
j=1

β jai( j) −

m∑
j=1

β jS i −

m∑
j=1

β jµHi +

m∑
j=1

β jbi( j)

−

m∑
j=1

β j piS i −

m∑
j=1

β jµHi

=

m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)S i

m∑
j=1

β j − 2µHi

m∑
j=1

β j.

Thereby,

σ̂i
2 =

km
v

 m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)S i

m∑
j=1

β j − 2µHi

m∑
j=1

β j

 .

In the end, by substituting Equations (E.8) and (E.9) into the above equation, we get the most
simple form ofσi, which are the non-linear functions of pi, resulting in no explicit expressions
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for the model parameter of Equation (E.1):

kmσ̂i
2

v
=

m∑
j=1

β j(ai( j) + bi( j)) − (pi + 1)

−
∑m

j=1 β jai( j) +
∑m

j=1 β jbi( j)

(pi − 1)
∑m

j=1 β j


− 2

m∑
j=1

β j

 pi
∑m

j=1 β j(a(i j) −
∑m

j=1 β j(b(i j))

(p2
i + 1)

∑m
j=1 β j


=

m∑
j=1

β jai( j) +

m∑
j=1

β jbi( j) −
pi + 1
pi − 1

m∑
j=1

β jbi( j) +
pi + 1
pi − 1

m∑
j=1

β jai( j)

−
2pi

pi − 1

m∑
j=1

β jai( j) +
pi + 1
pi − 1

m∑
j=1

β jai( j) −
pi

pi − 1

m∑
j=1

β jai( j)

=

[
1 +

pi + 1
pi − 1

−
2pi

pi − 1

] m∑
j=1

β jai( j) +

[
1 −

pi + 1
pi − 1

+
2

pi − 1

] m∑
j=1

β jbi( j),

since

1 +
pi + 1
pi − 1

−
2pi

pi − 1
= 0 and 1 −

pi + 1
pi − 1

+
2

pi − 1
= 0.

Then we obtain 0 as the estimate of the variance term σi as below:

kmσ̂i
2

v
= 0

σ̂i = 0,

which implies infeasible estimator for the standard deviation.
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APPENDIX F

R CODES of the multi-RGX FUNCTION

Inputs values for the multi-RGX function :

PMs: Perfect matches values on the log-scale

MMs: Mismatches values on the log-scale

n.genes: Number of genes used in the analysis

n.probes: Number of probes for each gene

shape.par: Shape parameter of the long-tailed symmetric distribution

maximum-shape.par: Maximum number of shape parameters, which can be tested during
the grid search of the optimal shape parameters. The default is NULL.

———————————————–

multi.rgx

<-function(PMs,MMs,n.genes,n.probes,shape.par,maximum_shape.par=NULL){

if(is.null(maximum-shape.par)){

max-shape.par <- 40

}else{

max-shape.par<- maximum-shape.par

}

L.all <- NULL

muH.all<-NULL

sigma.all<-NULL

p.all<-NULL

Si.all<-NULL

PM.mat<-NULL

MM.mat<-NULL

alln.genes<-n.genes

alln.probes<-n.probes

Si<-rep(0,n.genes)

shape.par.vector <- seq(2, max_shape.par, by = 0.5)

for(i46 in 1:alln.genes){

new.gene<-c((alln.probes*(i46-1)+1):(alln.probes*i46))
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PM.mat<-rbind(PM.mat,PMs[new.gene,])

MM.mat<-rbind(MM.mat,MMs[new.gene,])

}

for (i6 in 1:length(shape.par.vector)){

v <- shape.par.vector[i6]

shape.par <- v

k <- 2*v-3

dof <- 2*v-1

comp.weight<-alpha.beta(alln.probes,k,dof)

myalphas<-comp.weight$comp.alphas

mybetas<-comp.weight$comp.betas

tmybetas<-t(mybetas)

PMorder<-matrix(0,nrow=alln.genes,ncol=alln.probes)

MMorder<-matrix(0,nrow=alln.genes,ncol=alln.probes)

sum.21<-rep(0,length=alln.genes)

sum.22<-rep(0,length=alln.genes)

in.SSA<-rep(0,length=alln.genes)

in.SSB<-rep(0,length=alln.genes)

in.SSAB<-rep(0,length=alln.genes)

B<-rep(0,length=alln.genes)

C<-rep(0,length=alln.genes)

sum21<-rep(0,length=alln.genes)

sum22<-rep(0,length=alln.genes)

-------------------------------------------------------------------

Ordering perfect matches and mismatches for each gene, according to

their probes.

-------------------------------------------------------------------

for (i3 in 1:alln.genes){

PMorder[i3,] <- sort(PM.mat[i3,])

MMorder[i3,] <- sort(MM.mat[i3,])

}

for(i4 in 1:alln.genes){

sum21[i4] <- sum(mybetas*PMorder[i4,])

sum22[i4] <- sum(mybetas*MMorder[i4,])

in.SSA[i4] <- sum(mybetas)*(sum21[i4]

-(colMeans(PMorder)%*%mybetas))ˆ2

in.SSB[i4] <- sum(mybetas)*(sum22[i4]

-(colMeans(MMorder)%*%mybetas))ˆ2

in.SSAB[i4] <- sum(mybetas)*

(sum21[i4]-sum(colMeans(PMorder)%*%mybetas))%*%

(sum22[i4]-sum(colMeans(MMorder)%*%mybetas))

}

SSA<-sum(in.SSA)

SSB<-sum(in.SSB)

SSAB<-sum(in.SSAB)

------------------------------------------
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Estimation of fraction, background signal, and true signal values,

respectively.

------------------------------------------

p.est <- ((SSB-SSA)+sqrt((SSA-SSB)ˆ2+4*SSABˆ2))/(2*SSAB)

mu.H <- (p.est*sum(sum21)-sum(sum22))

/(alln.genes*(p.est-1)*sum(mybetas))

Si <- (sum21+p.est*sum22-(1+p.est)*mu.H*sum(mybetas))/

((1+p.estˆ2)*sum(mybetas))

----------------------------------------------------

for(i10 in 1:alln.genes){

B[i10] <- sum(myalphas*(PMorder[i10,]-MMorder[i10,]))

C[i10] <- sum(mybetas*(PMorder[i10,]-Si[i10]-mu.H)ˆ2)+

sum(mybetas*(MMorder[i10,]-p.est*Si[i10]-mu.H)ˆ2)

}

all.B<-sum(B)*v/k

all.C<-sum(C)*v/k

--------------------------------

Estimation of standard deviation

--------------------------------

sigma <- (all.B+sqrt(all.Bˆ2+4*alln.genes*alln.probes*all.C))/

(2*alln.genes*alln.probes-2)

---------------------------------------------------

Finding optimal shape parameters among alternatives

---------------------------------------------------

in.L-A <- rep(0, length=alln.genes)

in.L-B <- rep(0, length=alln.genes)

L-constant<-(sqrt(k)*gamma(1/2)*gamma(v-1/2))/gamma(v)

L-constant<-1/L-constant

for (i5 in 1:alln.genes){

in.L_A[i5] <- sum(log((1 + ((PM.mat[i5]-Si-mu.H)ˆ2)/

(k*sigmaˆ2)))ˆ(-v))

in.L_B[i5] <- sum(log((1 + ((MM.mat[i5]-p.est*Si-mu.H)ˆ2)/

(k*sigmaˆ2)))ˆ(-v))

}

L-A <- sum(in.L-A)

L-B <- sum(in.L-B)

L.all <- c(L.all, (log(L_constant)-2*length(alln.genes)*

length(alln.probes)*log(sigma) + L-A + L-B))

}

max.L<-max(L.all)

for(i11 in 1:length(shape.par.vector)){

if(max.L==L.all[i11]){our.cell<-i11}

}
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----------------------------------------------------------

Taking the final estimates for the optimal shape parameter

----------------------------------------------------------

p.est<-p.all[our.cell]

sigma<-sigma.all[our.cell]

mu.H<-muH.all[our.cell]

Si<-Si.all[our.cell,]

L<-L.all[our.cell]

our.shape-par<-shape.par.vector[our.cell]

return

}

-------------------------------------------------

Calculation of weight functions in MML estimators

-------------------------------------------------

alpha.beta <- function(ourn.probes=alln.probes,ourk=k,ourdof=dof){

order.probe <- c(1:ourn.probes)

quan.probe <- order.probe/(ourn.probes+1)

tvalue.probe <- rep(0,length=ourn.probes)

for(i34 in 1:ourn.probes){

tvalue.probe[i34] <- qt(quan.probe[i34],ourdof)

*sqrt(ourk/ourdof)

}

beta1.probe <- (1-tvalue.probe[1]ˆ2/ourk)/

(1+tvalue.probe[1]ˆ2/ourk)ˆ2

if(beta1.probe<0){

alphas.probe <- (1/ourk*tvalue.probeˆ3)/

(1+tvalue.probeˆ2/ourk)ˆ2

betas.probe <- 1/(1+tvalue.probeˆ2/ourk)ˆ2

}else{

alphas.probe <- (2*tvalue.probeˆ3/ourk)/

(1+tvalue.probeˆ2/ourk)ˆ2

betas.probe <- (1-tvalue.probeˆ2/ourk)/

(1+tvalue.probeˆ2/ourk)ˆ2

}

output <-list(comp.alphas=alphas.probe,comp.betas=betas.probe,

tvalue.probe=tvalue.probe)

output

}
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