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In the world of information, internet becomes the most important information source. 

However, internet contains vast amount of information and this information is not 

filtered. In such an environment, the people who seek for an information is 

overwhelmed in the alternatives that s/he can reach via the web. Recommender 

systems have their real importance in this kind of situations. To overcome said 

overwhelming problems, recommender systems are developed to determine the 

people needs and to recommend suitable alternatives to them.  
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The current recommendation methods are classified under three main categories: 

collaborative filtering, content-based and hybrid approaches. Classical content-based 

recommendation approaches include the content information of the items. In this 

thesis work, we propose a user preference boosted content-based recommendation 

methodology. In addition to the items content information, we aimed to define a 

novel approach to the problem of including user’s preference information to the 

information filtering process. The novel solution that we explained in this thesis 

work uses the users past like and dislike rate information related to the specific items 

to predict recommendation scores related to the unseen items.  

The results which we obtained by implementing the proposed user preference 

boosted content based recommendation approach indicates that; by including the 

users' preference information to the items content information more accurate 

recommendations can be done and more reliable results can be gathered. We present 

the implementation details and comparative evaluation results of the proposed novel 

approach in this thesis. 

 

Keywords: Recommender Systems, Content-Based Recommendation, User 

Preference Extraction 
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ÖZ 

 

 

KULLANICI TERCİHİ DESTEKLİ  

İÇERİK TABANLI TAVSİYE SİSTEMİ 

 

 

 

Özberk Yener, Tuğçe 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Sevgi Özkan 

 

 

 

Mayıs 2013, 100 sayfa 

 

 

 

Günümüz bilgi dünyasında, internet en önemli bilgi kaynağı haline gelmiştir. Ancak, 

internetteki bilgi miktarı çok büyük boyutlara ulaşmıştır ve bu bilgi filtrelenmemiştir. 

Böyle bir çevrede, bilgiye ulaşmak isteyen insanlar WWW aracılığıyla ulaştıkları 

fazla bilgi karşısında çaresiz duruma düşmektedirler. Bu tür durumlar karşısında 

tavsiye sistemlerinin esas önemi ortaya çıkmaktadır. Bahsedilen bilgi kirliliği 

karşısındaki çaresizlik problemlerinin üstesinden gelmek için, insanların ihtiyaçlarını 

ayırt etmek ve uygun alternatifleri kullanıcılara sunmak üzere tavsiye sistemleri 

geliştirilmiştir.  
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Mevcut tavsiye sistemi metotları üç ana kategori altında gruplanmıştır: işbirliği ile 

filtreleme, içerik-tabanlı ve melez yaklaşımlar. Klasik içerik tabanlı tavsiye 

sistemleri, tavsiye edilecek nesnelerin içerik bilgilerini kullanmaktadırlar. Bu tez 

çalışmasında, kullanıcı tercih bilgisi destekli içerik tabanlı bir tavsiye sistemi 

metodolojisi önerilmektedir. Nesnelerin içerik bilgilerine ek olarak, bilgi filtreleme 

sürecine kullanıcıların tercih bilgilerinin de katılacağı yeni bir yaklaşım tanımlamak 

hedeflenmiştir. Bu tez çalışmasında açıklanan yeni çözüm yöntemi, kullanıcının 

görmemiş olduğu nesnelere ait tahmin edilecek tavsiye skorlarını hesaplamak için 

kullanıcıların belirli nesneler ile ilgili geçmiş hoşlanma ve hoşlanmama oranı 

bilgilerini kullanmaktadır.  

Önerilen kullanıcı tercih bilgisi destekli içerik tabanlı tavsiye yönteminin 

uygulanması ile elde edilen sonuçlar göstermektedir ki; kullanıcının tercih bilgisinin 

nesnelerin içerik bilgilerine eklenmesi yolu ile elde edilen sonuçlar, kullanıcının 

tercih bilgilerinin dahil edilmediği yönteme göre daha kesin tavsiyeler 

üretebilmektedir ve daha güvenilir sonuçlar elde edilebilmektedir. Bu tez çalışması 

ile önerilen yeni yaklaşımın uygulama detayları ve karşılaştırmalı değerlendirme 

sonuçları sunulmuştur. 

 

 

Anahtar sözcükler: Tavsiye Sistemleri, İçerik Tabanlı Tavsiye, Kullanıcı Tercih 

Bilgisi Çıkarma 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The world became an information world via the broad access of the internet. People 

use internet from everywhere by wireless networks via their laptops, smart phones 

and even with their smart TVs to access any kind of information; such as watching 

videos, downloading songs, finding relevant books or finding movies to watch. This 

much of popularity, accessibility and the broad usage of internet carry the 

information overload problem with it. Everyday more and more information is 

uploaded to the internet and it's getting harder to find the most relevant items in the 

internet. People need help to find the reliable information and to extract the 

information which s/he is really interested in. Finding information which meet 

people's requirements in a timely manner becomes a challenging task in the world of 

growing information overload problems. Recommender systems emerged to cope 

with these kinds of problems by extracting the relevant information for users over the 

huge amount of alternatives. Some recommender system definitions from literature 

are given below: 

 Recommender systems are software tools and techniques that are used to 

recommend items to users. Item is the general term which is used to define 

the things (movie, music, restaurant, news etc.) which are recommended to 

users by recommenders [65]. 

 Recommender systems are tools which are developed to help people for 

finding suitable content, product or services (such as; books, digital products, 
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movies, music, TV programs, web sites) which suit to their personal 

preference [55]. 

 Recommender systems are accepted as powerful tools which helps users in a 

personalized way to find relevant items through the huge amount of possible 

options [12]. 

 Recommender systems are the tools which help people to find relevant items 

from enormous number of alternatives by extracting user preferences from 

the information that user provides either explicitly or implicitly [4]. 

The roots of the recommender systems can be accepted as cognitive science [66], 

approximation theory [62] and information retrieval [69] fields. However, the very 

first papers which are specifically related to recommender systems appear in the mid-

1990s [30, 64, 74] and this research area have considered as an important research 

area afterwards [1]. Usefulness, interestingness and personalization are the keywords 

which separate recommender systems from information retrieval systems [12]. 

Some popular web-based systems have used recommendation approaches to 

recommend related items to users. MovieLens [49] and Netflix [54] for 

recommending movies, Amazon.com [39] for recommending books - CDs and other 

products, VERSIFI Technologies [7] for recommending news, Last.fm [38] and 

Grooveshark [25] for recommending music, YouTube [80] for recommending 

videos,  can be considered as examples of the developed applications of 

recommender systems. Even ScienceDirect [73] recommends articles related to the 

current read one to its users. 

Because of the fact that people need personalized recommendations to deal with the 

information overload problems; there are a lot of approaches which are developed to 

serve as novel applications for recommending items to users [1]. There are three 

main recommendation approaches in the literature [31]. First one is collaborative 

filtering approach, second one is content-based recommendation approach and the 

third one is knowledge-based recommendation approach. Hybrid recommenders can 

be accepted as the fourth approach which combines several different techniques to 

generate recommendations. 
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In this thesis work we propose a novel content-based recommendation approach 

which generates recommendations related to movies. In the literature, content-based 

recommenders rely on to the content information of items and the user's past rating 

history. The content information of the items are represented via attributes. Such as; 

actor, director, genre and release year information for movies can construct an 

attribute set for each movie. Each attribute in the existing content-based systems has 

a weight value which reflects the attribute's importance level over the item space. In 

other words, the weight values of the item attributes reflect the attribute's 

distinctiveness over the existing item space. We believe that, in order to generate 

more personalized recommendations; in addition to the attribute weight values, the 

attribute's distinctiveness in the eyes of the user should also be considered in the 

recommendation process. The main contribution of this thesis work is adding the 

user's opinion related to the attribute's distinctiveness with a novel algorithm by 

mining the users past rating history and increasing the recommendation accuracy 

according to the classical content-based recommendation approaches. 

This thesis consists of 5 chapters. The remaining 4 chapter is organized as follows. 

In Chapter 2, the literature review related to recommender systems are presented. 

First, the formalization of recommendation problem is given. After, the input data 

types, application domains and user modeling approaches of recommenders are 

classified. Finally, main recommendation approaches and the algorithms that are 

used in these different approaches with their advantages and disadvantages are 

explained. 

In Chapter 3, the proposed novel content-based recommendation approach is 

explained in a detailed manner. First, the motivation of the proposed approach and 

the overview of the proposed system is given. After that, the system architecture and 

the implementation details which rely on the proposed novel algorithm are described. 

Implementation details which are explained in this section include item and user 

profile generation processes and calculation of the predicted rating scores according 

to the proposed novel approach. 
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In Chapter 4, the evaluation of the proposed approach and the results of the 

experiments are given. First of all, the data characteristics which are used to evaluate 

the proposed approach is given. After that, the evaluation metrics are explained. 

Finally, the experiment results are presented and discussions related to the obtained 

results are given. 

In Chapter 5, the conclusion of the thesis work is given and possible future work 

related to the proposed approach is mentioned. 
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CHAPTER 2 

 

 

RECOMMENDER SYSTEMS 

 

 

 

This chapter describes the main issues related to the recommender systems. First, the 

formal definition of recommendation problem is given. After that, the input data 

types, application domains and user modeling approaches of recommenders are 

classified. Finally, recommendation techniques and the algorithms that are used in 

these techniques are given with their advantages and disadvantages. 

2.1 Formal Definition of Recommendation Problem 

 

The recommendation problem can be degraded to the problem of predicting the 

possible rating score related to an item which user has not seen yet [1]. After 

predicting the rating scores of the unseen items, the recommender system 

recommends items which have the highest rating scores to the user [1]. 

The formal definition of the recommendation problem is [1]: Let U be the set of all 

users and let I be the all possible items that can be recommended to users. Let f be 

the satisfaction function which measures the usefulness of item i to user u: 

𝑓 ∶ 𝑈 × 𝐼 → 𝑅     (2.1) 

where R is an ordered set which can be non-negative integers or real numbers. Then 

for each user u  U, the recommender system aims to find item i' I which 

maximizes the user's satisfaction [1]: 
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∀ 𝑢 ∈  U, i ∈  I, 𝑖′
u = arg max f (u, i)    (2.2) 

The users and the items in the recommendation systems can be represented with 

profiles. The profile which represents the users can include user characteristics such 

as age, gender, income, location and marital status [1]. The profile which represents 

the items can include item characteristics related to the item's domain [1]. For 

instance; if the items are movies; the profile of a movie can include the title, genre, 

actor, director and release year attributes of movies. 

The satisfaction of the users for the items is generally represented by rating scores in 

recommender systems. Initially, only the rating scores which are already defined by 

users related to items is known by recommender systems. The recommender system 

should predict the unseen items' rating scores by using the previous rating scores of 

the already seen items. An example user-item rating matrix for movie domain is 

given in Table 2.1. The ratings are on the scale of 1-10 and the "-" character 

represents the rating related to the movie is not given by the user yet. Thus, the 

recommender system's task is predicting the unknown user-movie pairs' rating scores 

in this table. 

 

Table 2.1: An Example Movie - User Rating Matrix 

 

Movie/User User1 User2 User3 User4 User5 User6 

Movie1 6 - 7 - 6 7 

Movie2 7 8 - 9 7 - 

Movie3 - 7 6 - - 8 

Movie4 8 5 8 6 8 6 

Movie5 4 - - - 5 - 

Movie6 - 7 - - 7 - 

 

After predicting the rating scores which are labeled with "-" character in the given 

table, the recommender system will be able to recommend items to users according 

to the predicted rating scores. An example user-item rating matrix after predicting the 

unknown rating scores is given in Table 2.2. 
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Table 2.2: An Example Movie - User Rating Matrix After Rating Prediction 

Movie/User User1 User2 User3 User4 User5 User6 

Movie1 6 6.8 7 8.3 6 7 

Movie2 7 8 7.3 9 7 6.6 

Movie3 7.2 7 6 7.1 6.5 8 

Movie4 8 5 8 6 8 6 

Movie5 4 6.4 5.6 4.2 5 7.4 

Movie6 5.4 7 6.2 5.6 7 6.8 

 

After generating the Table 2.2, the recommender can propose items to users by using 

two different techniques. One of them is recommending the items which has the 

highest predicted rating scores [2]. Suppose that the active user (the user who the 

recommendations are generated for) in our system is User4 and the threshold 

predicted rating score is defined as 5.0. This means that the items which have 

predicted rating scores more than 5.0 will be recommended to the user by the 

recommender. Then, the system recommends Movie1, Movie3 and Movie6 to User4. 

The second approach that can be used to generate recommendation list is called top-

N recommendation algorithm [35, 4]. In this approach, the N represents the number 

of items that are going to be recommended to user which have the highest predicted 

rating scores. Suppose that in our example the number N is defined as 2, then the 

recommender represents a recommendation list which consists of Movie1 and 

Movie3 to User4. In this thesis work, we mainly focus on developing a novel 

approach to generate predicted rating scores related to unseen items rather than 

preparing the recommendation lists which are going to be shown to the users. 

2.2 Input Data Types of Recommender Systems 

 

The recommender systems use three types of input data to generate recommendations 

in any type of recommender system [65]. The output of a recommender system can 

be in the form of a recommendation list or a prediction score [10]. The input data 

types of recommender systems are described in the subsections of this section. 
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2.2.1. Item 

Items are objects which are recommended to users by recommender systems. Items 

that are used in recommender systems can be divided into two categories [65]. 

 Items with low complexity and cost 

 Items with high complexity and cost 

The cost which is mentioned here can also be the time period to search the item or it 

can be the monetary cost to buy that item. Movies, books, CDs and news are the 

examples of items which have low complexity and cost. Digital cameras, mobile 

phones, PCs, financial investments and travels are the examples of items which have 

high complexity and cost [51]. 

2.2.2. User 

The person who gets recommendations from system is called as the user of the 

system. Since the recommender systems are personalized systems, user information 

is one of the most important information that recommenders use. User information 

may include the user's preference information related to items and it may also 

include the relation information between users such as; trust levels of users [65]. 

2.2.3. Transactions 

Transactions can be defined as the interactions between the users and the 

recommender system such as; the rating information related to an item given by user 

[65]. There are four types of transactions that are used in recommender systems [72]: 

 Numerical Ratings (Such as; 1-5 stars and 1-10 scale) 

 Ordinal Ratings (Such as; "strongly agree, agree, neutral, disagree, strongly 

disagree") 

 Binary Ratings (Such as; "good, bad" and "like, dislike") 

 Unary Ratings (Defines if the user has observed/purchased the item or not) 
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2.3 Application Domains of Recommender Systems 

The application domains which are used in recommender systems are mainly 

grouped under four main categories [65, 51, 55] : 

 Entertainment (Such as; movies, TV programs and music) 

 Content (Such as; newspapers, documents and web pages) 

 E-commerce (Such as; books, cameras and PCs) 

 Service (Such as; traveling, consultation and house rental) 

2.4 User Modeling In Recommender Systems 

Recommender systems serve personalized recommendations to its users. To do this, 

they need to know the user preferences [65]. To gather user preferences and generate 

user models, recommenders can use two different techniques: implicit user modeling 

or explicit user modeling [66, 65, 27, 31, 41]. 

In explicit user modeling technique, the user needs to form his/her model 

himself/herself. There are three main approaches to get explicit preferences from 

users [41]: 

 Like / Dislike 

 Ratings 

 Text comments 

Because of the need for user effort, explicit user modeling is less preferable by users 

[66]. But users are more willing to express their opinions after the Web 2.0 

technologies widely acceptance and this type of user modeling is more accurate than 

the implicit one [31]. [9] uses this type of user modeling in their content-based music 

recommender system. 

In implicit user modeling technique, the user model is constructed by the system 

implicitly by interpreting the user behaviors [66, 65, 31]. Such as; if the user looks at 

a product's web page more than 5 seconds this means that the user is interested in this 

product and this information can be added to the user's preference data set [65] or if 
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user buys a product, this behavior can be accepted as a positive rating for that item 

[31]. In Grundy system [66], implicit user modeling technique is used. 

2.5 Recommendation Techniques 

Recommender systems are classified according to the approach which they use while 

estimating the unknown ratings [1]. There are three main recommendation 

approaches [31]. These are collaborative filtering, content-based recommendation 

and knowledge-based recommendation. In addition to them, some hybrid approaches 

are also used which combines these techniques. In this section the details of 

recommendation techniques are presented. 

2.5.1. Collaborative Filtering Recommenders 

In everyday life, people take daily decisions according to the recommendations that 

are received from others [42, 46]. For example; before watching a movie people 

generally read comments related to that movie and before reading a book people 

generally ask their friends' comments related to that book. The first recommender 

systems are the automated versions of this "ask to friend" behavior [65]. This is 

called as collaborative filtering recommendation and this technique relies on that the 

people who share the same opinions in the past will share the same opinions in the 

future [65]. 

In collaborative filtering recommender systems, the satisfaction of a user related to 

an unseen item is predicted by using the rating history of this item which is generated 

by other users. More formally; the satisfaction function f(u, i) of item i for user u is 

predicted by using the satisfaction results of f(uj, i) of users who also belong to the 

user set U and "similar" to user u [1]. The similar users are found in the user set U by 

comparing the rating history related to users. In collaborative filtering, the users who 

rated same items similarly are accepted as similar users, in other words neighbors. 

After finding the neighbors of the user, the items which are rated highly by neighbors 

and haven't seen by the user yet are found by the system and recommended to the 

user [1].  
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The term "collaborative filtering" is first used to describe Tapestry system [21] 

which is an electronic document filtering system. In Tapestry system the user needs 

to write complex queries to get recommendations. After Tapestry system, the first 

automatic recommender system is accepted as GroupLens [64] which recommends 

articles to users [4]. Other well-known collaborative filtering recommender systems 

can be counted as Ringo system [74] to recommend music albums/artists, Video 

Recommender [30] to recommend videos, Amazon.com [39] to recommend books 

and Jester system [22] to recommend jokes. 

In collaborative filtering recommender systems the recommendations are done solely 

by the rating information of other users. No content information related to items are 

used in pure collaborative filtering systems [5]. So, the application domain is not 

important for this type of recommenders. Collaborative filtering recommenders can 

recommend any kind of item to its users including music and video [61]. The 

algorithms that are used in collaborative filtering recommenders are grouped under 

two main categories [11, 31]: 

 Heuristic-Based (Memory-Based) Algorithms 

 Model-Based Algorithms 

The main difference between the heuristic-based approaches and model-based 

approaches is; model-based approaches use models that are learned by using 

statistical and machine learning algorithms but heuristic-based approaches use 

heuristic rules to calculate satisfaction scores of items according to users [1]. 

2.5.1.1. Heuristic-Based (Memory-Based) Algorithms 

Heuristic-based algorithms are also known as memory-based algorithms and they use 

all of the previously rated items to predict rating scores [11, 17, 64, 74]. In other 

words, the whole user-item rating matrix is included to the recommendation process 

to generate recommendations [31]. Heuristic-based approaches are also divided into 

two sub categories [10]: user-based [11, 29, 33] and item-based [18, 39, 70] 

approaches.  
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a. User-Based Approach 

In user-based approach, the system first finds the similar users related to a user which 

shares the same opinions with the target user in the past according to the user-item 

rating matrix. After finding the similar users, the estimated rating score is calculated 

via the rating scores of the similar users. This type of recommendation has made two 

assumptions: users who agree in the past will agree in the future and user preferences 

don't change over time [31]. 

The recommendation process of a user-based approach consists of three steps [18]: 

 Create user profiles and find neighbor users 

o User profile creation can either be done by gathering implicit or 

explicit information related to users.  

o To find the neighbor users, k-Nearest neighbor algorithm is the most 

widely used approach [10, 18]. The number k indicates the number of 

users which are chosen as neighbor users according to their similarity 

scores with the target user. The analysis which are done on 

MovieLens dataset shows that; the neighbor set size between 20-50 is 

acceptable for real-world applications [28]. The number below this 

causes a limited prediction and decreases the accuracy. The number 

above this causes too much noise in the neighbor user set [31].  

o Threshold approach can also be used to find the neighbor users [10]. 

In threshold approach a similarity threshold value is determined and 

used to decide whether a user is a neighbor or not. The users who 

have a similarity score more than the threshold value are considered 

as neighbors. 

 Combine the items that neighbor users have selected and calculate the 

predicted rating scores of those items according to the neighbor user set's 

rating scores. 

 Recommend items to the target user whose predicted rating scores are found 

higher than the others and have not seen by the target user yet. 
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b. Item-Based Approach 

In item-based approach the similarities between items are taken into account to 

generate recommendations instead of user similarities and indirectly the user profiles 

are constructed based on these item similarities [4, 10, 31]. When the number of 

users and items are huge, than item-based approach is preferred to user-based 

approach because of the computational complexity problem of user-based approach 

when the user/item count is large [31]. 

Item-Based approaches are generated to solve the sparsity and scalability problems 

of user-based algorithms [4]. The recommendation process of an item-based 

approach consists of two steps [4]: 

 Calculate the similarity between items according to the users past preference 

history. 

 Select most similar items with the particular item that the user needs a 

recommendation. 

Item-based collaborative filtering recommendation approach's most popular 

implementation is Amazon.com [39] recommender system. This system first matches 

the items which are already purchased by the user to the similar items in the store. 

Then the system recommends items from those similar item set according to the 

generated similarity measurement [39]. 

c. Similarity Calculation Algorithms 

In both of the user-based and item-based collaborative filtering recommender 

systems, the similarities between users and the similarities between items are 

calculated by some well-known similarity calculation algorithms. In this section, the 

similarity calculation algorithms which are widely used are explained. 

The similarities for numerical values can be calculated by using Euclidean (Equation 

2.3) and Manhattan (Equation 2.4) distance functions [4]. 

𝑑(𝑖, 𝑗) = √(𝑥𝑖1 −  𝑥𝑗1)2 +  … +  (𝑥𝑖𝑛 −  𝑥𝑗𝑛)2                  (2.3) 
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𝑑(𝑖, 𝑗) = |𝑥𝑖1 − 𝑥𝑗1| +  … + |𝑥𝑖𝑛 −  𝑥𝑗𝑛|        (2.4) 

In these distance functions the differences between attribute values are considered to 

find similarities. However, for the attributes whose values are not numerical such as 

categorical like colors, these functions cannot be used for calculating similarities [4]. 

To calculate similarities between items whose attributes are not numerical, the most 

popular approaches that are used in collaborative recommenders are Pearson 

correlation (Equation 2.5) and cosine-based (Equation 2.6) similarity calculations [1, 

31]. 

𝑠𝑖𝑚(𝑥, 𝑦) =
∑ (rx,s− r̅x)(ry,s− r̅y)s∈Sxy

√∑ (rx,s− r̅x)2 ∑ (ry,s− r̅y)2
s∈Sxys∈Sxy

    (2.5) 

𝑠𝑖𝑚(𝑥, 𝑦) = cos(�⃗�, �⃗�) =  
�⃗�.�⃗⃗�

||�⃗�||2×||�⃗⃗�||2
=  

∑ rx,sry,ss∈Sxy

√∑ rx,s
2

s∈Sxy √∑ ry,s
2

s∈Sxy

   (2.6) 

where Sxy represents the commonly rated item set by users x and y. rx,s represents the 

rating score given to item s by user x. r̅x represents the average rating score given by 

user x to all rated items. 

The result of the Pearson correlation coefficient is in the range of [-1,1], where 1 

means a strong positive correlation and -1 means a strong negative correlation [31]. 

In Pearson correlation, the user rating scale interpretation is taken into account. Some 

users give relatively low ratings than some other users who give relatively high 

ratings. By using the user's average rating score in the equation, this interpretation 

difference between users is also considered while calculating the similarities [31]. 

It is seen from the analysis that the Pearson correlation coefficient generates better 

results than other techniques for user-based collaborative filtering recommender 

systems [29]. Some popular recommenders such as GroupLens [64] and Video 

Recommender [30] use Pearson correlation coefficient to calculate similarities. 

In cosine-based similarity calculation approach [11, 70], the users x and y is 

considered as vectors. These vectors' dimension count equals to the number of items  
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which are rated by both of the users. After describing the vectors, the cosine of the 

angle between these two vectors are used to calculate the similarity between users 

(Equation 2.6). 

The result of cosine-based approach is between [0,1] and 1 means strong similarity 

[31]. To take the user's rating scale interpretation into account like in the Pearson 

correlation, adjusted cosine similarity measurement (Equation 2.7) technique can be 

used [31]. 

𝑠𝑖𝑚(𝑥, 𝑦) =  
∑ (rx,s− r̅x)(ry,s− r̅y)s∈Sxy

√∑ (rx,s− r̅x)2
s∈Sxy √∑ (ry,s− r̅y)2

s∈Sxy

    (2.7) 

The results of adjusted cosine similarity measurement is between [-1,1] like in the 

Pearson correlation coefficient measurement [31]. 

In item-based recommender systems the best approach to calculate item similarities 

is cosine similarity measurement technique to generate most accurate 

recommendation results [31]. 

2.5.1.2. Model-Based Algorithms 

To recommend items, model-based algorithms learn a predictive model by using 

user-item rating matrix [10, 1]. To learn the model, some offline preprocessing is 

done in this type of recommenders. After learning the model, this model is used to 

generate recommendation scores [31]. Model-based algorithms can be divided into 

three main categories [31]: 

 Matrix Factorization/Latent Factor Models 

In this type of approach, hidden (latent) factors are extracted from rating patterns of 

users. Both items and users are represented as factor vectors and the similarities 

between users and items are calculated according to the similarities of these vectors 

[37]. 

To extract hidden factors, Singular Value Decomposition (SVD) method can be used 

[16]. SVD is a matrix factorization method which is used to calculate the user-item 
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rating matrix's best lower rank approximation values [71]. In SVD method, the 

highly correlated and co-occurring terms are combined together into a single factor 

to generate smaller vectors for items. Thus the related terms are considered as a 

single term and more accurate recommendations can be generated. 

 Association Rule Mining 

In this type of recommendation technique, the relationship patterns are determined to 

recommend items [31]. A group of items which are generally purchased together can 

be considered as a rule. Such as; "the people who buy a shampoo generally buy a 

shower-gel in the same shopping" can be found as a rule. After determining the rules, 

the recommendations are done by applying the rules. The results of the rules are 

combined and the recommendation is done from this union according to the rules' 

confidence level [31]. 

 Probabilistic Recommendation Approaches 

In this type of recommendation technique, the prediction problem is considered as a 

classification problem and the recommendation task is considered as learning the 

classification model from historical information and using the constructed model to 

generate recommendations [31].  

The probabilities related to all rating scores is calculated for an unseen item 

according to the user's past rating history. Then, the rating score which has the 

highest probability is accepted as the predicted rating score for that unseen item. The 

rating scores can be reduced to the binary scale such as; like / dislike according to a 

threshold rating score. One of the most known technique which is used in 

probabilistic recommendation approach is naive Bayes classifiers [31]. In naive 

Bayes classifiers the item attributes are considered as independent from each other. 

In addition to this, Bayesian networks and k-means clustering algorithm can also be 

used in probabilistic recommendation approach [31]. 

In clustering algorithm, the users who share the same opinions are clustered to a 

number of classes [11]. The class number is learned from the data itself. In this 
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approach, the ratings of the users in the same clusters are considered as independent 

like in naive Bayesian model.  

In Bayesian network, each node in the network has a decision tree and the edges of 

each tree represents a user information [79]. This approach learns a model by using a 

training data [79]. Also each node has a state which indicates the estimated rating 

score related to node [11]. The used data determines the structure of the network. 

The most important limitation of this approach is a user can be assigned to only one 

cluster [11]. This restriction limits the capability of benefiting from different clusters 

for users. For example; a user may belong to a class according to the preferred books 

for work and belongs to another class for personnel readings [11]. 

2.5.1.3. Limitations Of Collaborative Filtering Recommenders 

The main limitations of collaborative filtering recommenders are new user, new item, 

sparsity and black sheep problems [5, 1]. 

New User Problem 

If a user doesn't rate enough number of items, the preferences of that user cannot be 

extracted by the recommender system and relevant items won't be recommended to 

this user by the recommender system [1]. To solve the problem of recommending 

suitable items to new users, some strategies are used to determine the items which 

are more discriminative to a recommender system while learning a user's preference 

and new users are encouraged to rate those discriminative items [63, 81]. These 

strategies are based on item popularity, item entropy and user personalization [63, 

81]. 

Ringo [74] is a web-based collaborative filtering recommender system which 

recommends music albums and artists to its users by using social information 

filtering. To overcome the new user problem; Ringo system asks its new users to rate 

the most descriptive 125 artists by sending this selected artist to new users. 

Descriptive artist list is prepared in two parts: most often rated artists and random 

selection of artists from database [74]. 
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New Item Problem  

In collaborative filtering recommender systems, the item's content attributes are not 

considered while making recommendations. Because of this, a new item won't be 

recommended to any user by the recommender system before enough number of 

users rate this item. To solve this problem, hybrid recommender systems are used 

which combines the content-based and collaborative filtering recommendation 

techniques [1]. 

Sparsity Problem  

In recommender systems, the user-item rating matrix consists of predicted rating 

scores and user defined rating scores. In general, when we compare the user defined 

rating score number with the predicted rating score number, the predicted rating 

score number is considerably more than the number of user defined rating scores [1]. 

This is called sparse user-item rating matrix problem [5, 1].  

Black Sheep Problem  

The users whose tastes are unusual according to the users in the system, then this 

user cannot get useful recommendations from the collaborative recommender system 

[5]. Because there is no neighbor for this user who is near enough to gather accurate 

recommendations. 

2.5.2. Content-Based Recommenders 

In content-based recommendation, the recommendation scores for unseen items are 

predicted according to the "similar" items which are already rated by the user [1]. 

The items whose characteristics most suit to the user profile are chosen to 

recommend in content-based recommenders [31]. For example; in a movie 

recommender system; the recommender should find the commonalities such as 

common genres between the movies which are rated positively by the user and 

recommend movies which has high similarity with the movies that suit to the user 

preferences [1]. 
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The roots of the content-based recommendation methodology reach to information 

retrieval [69] and information filtering areas [5]. Content-based recommendation 

systems generally focus on items which contain textual information. The primary 

reason behind this is the importance of the several text-based applications in the 

information retrieval and filtering communities [1]. The usage of the user profiles 

which keep the user needs in recommender systems can be considered as the main 

improvement over the traditional information retrieval approaches [1]. 

Grundy system [66] is accepted as the first recommender system in literature [1]. 

This system builds user models by using stereotypes with a small amount of 

information related to users for recommending books. [66] proposes that stereotypes 

are useful mechanisms to build user models when the information related to users are 

comparatively small. Stereotype means a cluster of characteristics. Because the 

stereotypes are cognitive information, this ancestor recommender system is 

considered as a content-based recommender system [66].  

[43] proposes an automated message filtering system named Information Lens in a 

community to solve the information sharing problem. In this system, messages are 

characterized by their contents and then according to this content information 

messages are matched to its receivers. This approach can be considered as one of the 

ancestors of content-based recommender systems [43]. 

Some current recommender systems include semantic representations to their 

content-based recommender systems. [9] includes semantic representations of audio 

contents to overcome the difficulty of representing audio items with content 

information. By the usage of content-based approach they solve the cold-start 

problem of collaborative filtering approach which is the generally used approach 

when the domain is related to audio items. [53] also include semantics to the 

recommendation approach to improve the quality of predictions. 

The basic process which content-based recommender systems perform is matching 

the attributes which are stored in user profiles to represent the user preferences with 

the attributes of the items which user has not seen yet to recommend new items to 

users [41]. 
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In content-based recommenders, recommendation is done via three interacting 

modules: content analyzer, profile learner and rating predictor modules [41, 10]. 

(Figure 2.1) represents a basic content-based recommender system module diagram. 

 

 

Figure 2.1: Content-Based Recommender Module Diagram 

 

2.5.2.1. Content Analysis In Content-Based Recommenders 

Content analysis step in content-based recommenders includes item representations. 

In content-based recommender systems, items have profiles [41]. In those item 

profiles, attributes related to items are kept. Items in content-based recommenders 

are generally stored in a database table [58]. (Table 2.3) shows an example item 

profile. The columns in that database table represents the item attributes. The rows 

represent the items. This database table is an example of structured data [58]. This 

means that each item in the database is represented with the same set of attributes 

and there is a known set of values which the attributes can hold [58]. 

Table 2.3 : Example Item Profile 

ID Name Genre Author 

1001 Star Wars: Episode IV - A New 

Hope 

Adventure George Lucas 

1002 Apocalypse Now Drama Joseph Conrad 

1003 Armageddon Action Robert Roy Pool 

 

Items can be in an unstructured data form such as news articles. A common approach 

to deal with unstructured data is converting unstructured data to structured data [58]. 

When a new item is going to be added to the content-based recommender system, the 
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content information related to that item is analyzed by feature extraction techniques 

to generate the item's profile [41]. By extracting item attributes, items are converted 

to a suitable form which can then be used in recommendation process. In other 

words, items are formed into a recommender system readable form. 

a. Vector Space Model 

In content-based recommenders, generally the item representations are done through 

keyword-based Vector Space Model [41, 31]. Let items that are recommended in a 

recommender system be documents. In vector space model, each document is 

represented as a vector in a n-dimensional space [41, 31]. Each dimension in that 

space represents a term which belongs to the term set which consists of all terms of 

the document collection in the recommender system [41]. The dimensions of each 

vector represents the term's weight value for the document which the vector 

represents [41]. A weight value for a term-document pair represents the relationship 

between term and document. Let D = {d1, d2, ... , dN} shows the set of documents in 

the system, T = {t1, t2, ... , tn} represents all terms in all documents [41]. The set T is 

generated by using natural language processing operations such as tokenization, stop-

words removal and stemming [41]. The document representation as a vector in a n-

dimensional space then represented as; dj = {w1j, w2j, .... , wnj}, where wkj shows the 

weight value of term tk for document dj [41]. 

In vector space model, to calculate the term weight values, the most well-known 

measurement technique in Information Retrieval is the Term Frequency - Inverse 

Document Frequency (TF-IDF) weighting technique [69, 41]. This technique is 

based on some assumptions [41]; 

• If the term occurs too frequently in a document, this shows that the term is 

closely related to that document. (TF assumption)  

• If a term occurs in most of the documents, this means that the term is not 

a descriptive term for any document. (IDF assumption) 

• The length of a document is not counted as a preference criteria. In other 

words, if a document is longer than the other one, this situation should not 
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affect the comparison result for these documents. (Normalization 

assumption) 

Term frequency value is calculated by only considering the current document. This 

value is defined as the ratio of the term's frequency in the document to the maximum 

frequency value of all terms inside the document [1, 31]. More formally; 

𝑇𝐹𝑡𝑘,𝑑𝑗
=

fk,j

maxzfz,j
     (2.8) 

, where fk,j  is the number of times that term tk appears in document dj and maxzfz,j 

value is found over all term frequencies of document dj.  

Inverse document frequency value represents the term's occurrence frequency over 

all documents. Inverse document frequency value is added to the term frequency 

measurement to reduce the importance level of a term which appears in most of the 

documents [31]. This means that if a term tk appears at fewer number of documents, 

this means that term tk is more distinguishing than a term which appears at most of 

the documents [1]. More formally; 

𝐼𝐷𝐹𝑡𝑘
=

log N

nk
       (2.9) 

, where N represents the number of documents in the system and nk shows the 

number of documents which includes the term tk. So, the TF-IDF weight of a term tk 

in document dj is defined as follows: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗) =  𝑤𝑡𝑘,𝑑𝑗
= 𝑇𝐹𝑡𝑘,𝑑𝑗

 ×  𝐼𝐷𝐹𝑡𝑘
   (2.10) 

Finally, the content of the document dj, in other words; the profile of the document is 

represented as [1]; 

𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑑𝑗) = (𝑤𝑡1,𝑑𝑗
, … , 𝑤𝑡𝑛,𝑑𝑗

)   (2.11) 

To improve the vector space model some techniques are used in literature [31]: 

• Stop words: In this technique, the so-called terms are removed from the 

term list to reduce vector dimensions. Such as; "a", "the", "on". 
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• Stemming: In this technique, only the roots of the terms are used as 

dimensions. For example the root "compute" is used for "computer", 

"computing" and "computation" terms and only one dimension is used for 

all these terms. The main goal of stemming is to find the root of the terms 

and count each similar term in the same term's category [58]. 

• Size cutoffs: In this technique, only the n most descriptive terms of a 

document is used to represent the document. For instance; Fab system [5] 

which recommends web pages to users uses 100 most descriptive words 

related to the web pages in their profiles. In Syskill & Webert system [56] 

the most important 128 words related to documents generates the item 

profiles. 

• Phrases: In this technique, phrases such as "United Nations" are 

considered as single term and accepted as a single dimension. To detect 

phrases in a document, manuals can be used or statistical analysis 

techniques can be applied to documents. 

Item profiles are the inputs of both the user profile learner and rating predictor 

modules [41]. 

2.5.2.2. User Profile Learning In Content-Based Recommenders 

In content-based recommender systems both the users and the items have their own 

profiles [1]. The user profiles are constructed with the same attribute set with the 

item representations which the user has rated in the past and represents the user's past 

preference information [50, 41, 31]. The user profiles are generated by mining the 

user's past rating history related to the already seen items [1]. In other words, the 

item profiles and the user feedbacks (such as; ratings) are used to learn the user 

models [41, 10]. 

User profiles can be thought as a vector of weights (w1,w2,....,wn) and each weight 

value indicates the user's preference information related to the content attribute 

which items in the recommendation process consist of [1]. Such as; title, genre and 

director are content attributes for movies in movie domain. There are various 
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different techniques from information retrieval which are used to calculate the 

content attributes' weight values for generating user profiles [1]: 

a. Relevance Feedback and Rocchio's Algorithm [5]  

Relevance feedback method is a method which is inside the area of Information 

Retrieval field [41]. Roccio's relevance feedback method is developed for the 

information retrieval system named SMART [67] in which the users define queries 

for retrieving information. The queries are improved according to the user's feedback 

related to query results. The user gives feedback related to the documents which the 

query returns about the accordance of the documents with his/her preferences [41]. 

The Roccio's algorithm [67] is used commonly in content-based recommender 

systems. Users give ratings to the documents that the recommender system 

recommends and according to those ratings the user profiles are refined by the 

system. In Roccio's algorithm the documents are represented as vectors and each 

dimension of that vector represents a term in the document. The value of a dimension 

in the vector represents the weight of the term and calculated generally by TF-IDF 

term weighting scheme [5]. To assign a class to a document the similarity between 

the document's vector and the class's vector is found. The class's vector is generated 

by combining the document vectors which belong to that class. To calculate the 

similarity between the document vector and the class vector cosine similarity can be 

used [5]. After calculating the similarities, the document is assigned to a class whose 

vector similarity is found higher than the others. 

The main disadvantage of this method is it needs user interaction during the retrieval 

process [31]. This approach is considered as a heuristic-based technique in content-

based recommendation [1], and the PRES system [48] uses this method to 

recommend small articles related to home improvements. 

b. Winnow algorithm [40] 

This algorithm is preferred for domains which have too many possible content 

attributes [57]. This approach is considered as a heuristic based technique in content-

based recommendation [1]. 
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c. Machine Learning Techniques [1] 

If the recommendation task is considered as a classification task, then standard 

machine learning techniques can be used instead of vector space model [31]. 

Machine learning algorithms are able to learn a model to generate user profiles. To 

solve the user profile generation problem; each item should be classified into the one 

of the two classes: Like Class and Dislike Class [41]. 

Machine learning algorithms can be used to learn user profiles when the items are 

represented as structured data [58, 41]. Structured data means that; the items in the 

system can be represented with the same set of attributes and the values of these 

attributes are from a known set [58]. 

 Naive Bayes [41] 

In collaborative filtering approach, naive Bayes kind of probabilistic methods are 

used to determine the user's cluster. But in content-based recommenders the 

probabilistic methods are used for directly deciding whether an item will be liked or 

not liked by the user [31]. 

With this approach the probability of an item belonging to a class is generated by 

users' past rating information [41]. There are two commonly used naive Bayes 

classifiers in the literature [44] : multivariate Bernoulli event model and multinomial 

event model. In both of the classifiers the word order of the documents is lost and 

documents are represented as vectors of words. The values in these vectors represent 

whether the word exists in the document or not. In multinomial event model, the 

existence count of the word is also taken into account. As a result, multinomial Naive 

Bayes classifier performs better than the multivariate Bernoulli event model [44]. 

Syskill & Webert system [56] classifies unrated Web pages by using naive Bayesian 

classifier. In this system, user rates Web pages as "relevant" or "irrelevant". This 

means that the system uses two classes named "Relevant" and "Irrelevant" [56]. 

Some other machine learning techniques that are used in content-based 

recommenders are [1, 31]: 
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 Decision Trees 

 Rule Induction 

 Clustering 

 Artificial Neural Networks 

 

d. Linear Classifiers 

Some linear classifiers are also used in content-based recommender systems' user 

profile learning process. These classifiers are [31]: 

 Widrow-Hoff Algorithm 

 Support Vector Machines 

2.5.2.3. Rating Prediction In Content-Based Recommenders 

To recommend items to a user, the user profile is compared with the item profiles 

which are not seen by the user yet [41]. The items whose profiles are most similar to 

the user's profile, in other words, the items which are similar to items that user liked 

in the past are recommended to users by content-based recommenders [56]. 

In content-based recommender systems the satisfaction function which is defined in 

the recommendation problem's formal definition generally defined as [1]; 

𝑓(𝑢, 𝑖) = 𝑠𝑐𝑜𝑟𝑒(𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝐵𝑎𝑠𝑒𝑑𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑢), 𝐶𝑜𝑛𝑡𝑒𝑛𝑡(𝑖))  (2.12) 

To calculate the satisfaction function by using the TF-IDF vectors of user and item 

profiles, cosine similarity measurement [69] from information retrieval literature is 

the most widely used metric in the literature [41]. Such as; PRES system [48] uses 

this metric to calculate similarities. 

𝑓(𝑢, 𝑖) = 𝑐𝑜𝑠 (𝑤𝑢⃗⃗⃗⃗⃗⃗ , 𝑤𝑖⃗⃗⃗⃗⃗ ) =  
𝑤𝑢⃗⃗ ⃗⃗ ⃗⃗⃗.𝑤𝑖⃗⃗ ⃗⃗ ⃗

||𝑤𝑢⃗⃗ ⃗⃗ ⃗⃗⃗||2×||𝑤𝑖⃗⃗ ⃗⃗ ⃗||2
 =  

∑ wn,uwn,i
𝐾
𝑛=1

√∑ wn,u
2𝐾

𝑛=1 √∑ wn,i
2𝐾

𝑛=1

  (2.13) 

,where 𝑤𝑢⃗⃗⃗⃗⃗⃗  represents the user TF-IDF vector and 𝑤𝑖⃗⃗⃗⃗⃗  represents the TF-IDF vector of 

item and K represents the total number of terms in the system [41]. 
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If user u reads more articles which are related to the geographic information systems 

(GIS) field, then the content-based recommender which uses a similarity 

measurement algorithm such as cosine similarity measurement algorithm will 

calculate higher utility scores to articles which include more GIS-related keywords 

like; "coordinate system", "raster" and "map" [1]. Correspondingly, calculate lower 

utility scores to articles which don't include those keywords. This is because the 

user's profile defined by 𝑤𝑢⃗⃗⃗⃗⃗⃗   has higher weight values for GIS-related keywords and 

lesser weight values for others [1]. So, the item profiles which include the GIS-

related keywords are calculated as more similar to user's profile and have a high 

satisfaction score. 

Cosine similarity measurement technique is also considered as a heuristic based 

technique in content-based recommendation [1]. Cosine-based similarity is used in 

both content-based recommenders and collaborative filtering recommenders. In 

content-based recommenders cosine-based similarity is used to find the similarities 

between the user and the items and applied to the TF-IDF weight vectors. In 

collaborative filtering recommenders cosine-based similarity is used to find the 

similarities between users and applied to the vectors which are defined by the actual 

rating scores of the users [1]. In content-based recommenders the k-Nearest neighbor 

algorithm which is explained in collaborative filtering recommenders section can 

also be used to generate recommendation lists to users [31]. 

In methods which uses TF-IDF vectors of user and item profiles (Roccio's Relevance 

Feedback algorithm and Winnow algorithm) the satisfaction of users are calculated 

according to a defined formula such as cosine similarity measurement [1]. However, 

in other approaches (machine learning techniques and linear classifiers); the 

satisfactions are predicted by using models. Models are learned with statistical 

learning and machine learning techniques by using the data provided via the 

recommender system [1]. 

Other similarity metrics that are used in content-based recommenders are [79]: 

 Adjusted Cosine Similarity: Adjusted cosine similarity measurement 

(Equation 2.7) that we mentioned in (Section 2.5.1) is also used in content-



28 
 

based recommendation. In adjusted cosine similarity measurement technique 

the aim is to consider the different rating scales of users. Such as; the average 

score in a 10 point scale may be 5 points for a user and 6 points for another 

user. 

 Correlation-based similarity: Pearson correlation (Equation 2.5) that we 

mentioned in (Section 2.5.1) is also used in content-based recommendation. 

[79] uses this similarity measurement technique in their hybrid 

recommender's content-based part and [9] also uses this technique to 

calculate the distance between profiles. [60] uses word-correlation factors to 

calculate movie content similarities for recommending movies to its users. 

2.5.2.4. Limitations Of Content-Based Recommenders 

The main limitations of content-based recommenders are limited-content analysis, 

overspecialization and new user problems [5, 1]. 

Limited Content Analysis 

In content-based recommender systems, items that are going to be recommended 

should be defined by content attributes. Even these attributes can be extracted in text 

documents effectively by information retrieval techniques, for some other items such 

as multimedia data (graphical image, video stream etc.), the content attributes are 

harder to extract automatically by computer systems [74]. For these kinds of items, 

the content attributes can be assigned manually, but this is not practical due to the 

limited resources [74]. Another important problem related to the limited content 

analysis in content-based recommender systems is the problem of distinguishing 

items which are represented with the same set of content attributes. If two different 

items have the same set of content attributes, then the recommender system won't be 

able to distinguish these items from each other [74]. 

Overspecialization 

In content-based recommenders only the items which are similar to the items that a 

user rated before can be recommended to users. This situation causes that if the user 

who didn't rate an item which is similar to an item that s/he supposes to like won't be 
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recommended to that user by a content-based recommender. The user is limited to 

what s/he rated before. This problem is tried to be solved by [75] with including 

some randomness to the recommendation system via using genetic algorithms in 

information filtering process. In addition to this case, in some domains such as news 

domain, the items which are too similar to items which suits to user's preference are 

also shouldn't be recommended to users. If a news recommender system doesn't 

handle this situation, than the same news from different sources will be 

recommended to the same user. To solve this problem; Daily-Learner [8], eliminates 

not only the items which are not similar to items that the user rated but also 

eliminates the items which are too similar to items that the user already seen. 

New User Problem 

In content-based recommender systems, the recommendations are done according to 

the user's past rating history. If the user don't have sufficient number of ratings, then 

the system won't be able to define a profile to that user which indicates the user's 

preferences correctly. So, the user cannot get accurate recommendations from this 

recommender system. For instance; because of this limitation MovieLens 100k data 

set [52] which is generally used by recommender systems such as [23], [78] and [3] 

include users who have at least 20 ratings related to movies to generate 

recommendations. 

2.5.2.5. Advantages Of Content-Based Recommenders 

In content-based recommenders each user is independent from other users. In 

collaborative filtering recommenders, the users are strictly bind to each other. To 

recommend items in collaborative filtering recommenders, the neighbors of the user 

whose tastes match with the user should be found. In contrast, users have their own 

profiles in content-based recommenders and recommendations are done by these 

profiles without the inclusion of other users [41]. 

Content-based recommender systems have the ability to explain why it recommends 

an item according to the item attributes which match with the user's profile. This 

provides transparency to the recommendation process. Adversely, collaborative 
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filtering recommender systems are black boxes, because they cannot explain why 

they recommend the item to the user [41]. 

The new item problem which exists for collaborative filtering recommender systems 

is not applicable for content-based recommender systems. Because the items are 

represented with their attributes and recommended according to these attributes, 

content-based recommenders doesn't need sufficient number of users to rate the new 

item before it can recommend the item to its users [41]. 

2.5.3. Knowledge-Based Recommenders 

In knowledge-based recommender systems, in addition to the content information 

domain knowledge is used to recommend items to users [1, 65]. Knowledge-based 

recommenders are developed to fulfill the suggestion needs related to more complex 

and costly items [31]. Such as a recommendation for a car or a house which people 

purchase rarely. Collaborative filtering or content-based approaches are not suitable 

for those kinds of item recommendations [31]. Rating information related to these 

items are not too many and even rating information exists, people's interests change 

over time according to the change in life styles, income amounts or marital statuses 

[31]. Also, the content information related to these items are not enough to represent 

user preferences [31]. People need to describe more detailed preferences related to 

these kinds of items such as; "A house whose cost is less than $150000 and which 

has minimum 3 rooms."  

Knowledge-based recommenders use similarities between user requirements and 

items or use explicit rules of recommendation instead of using rating information 

[31]. Users interact with the system while the recommendations are generating [31]. 

Knowledge-based recommenders are divided into sub categories [31, 65]: case-based 

[13] and constrained-based [82]. In both of the approaches users define their 

preferences explicitly and the recommender tries to find items which meets those 

preferences and the system also has an explanation related to why the presented item 

is recommended to a user [31]. In case-based systems; how much the user needs 

match with the recommendations is calculated via a similarity function [65]. In 
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constrained-based systems; predefined knowledge bases which consist of explicit 

rules are used to relate user needs with item attributes [65]. 

Semantic recommender systems are an extension of knowledge-based recommender 

systems [59]. Semantic recommenders are also based on a knowledge-base. That 

knowledge base is represented via a taxonomy or an ontology and uses Semantic 

Web technologies [59]. Semantic recommender systems are categorized into three 

different subtypes [59]: 

• Ontology Based Systems 

• Trust Network Based Systems 

• Context Adaptable Systems 

The main disadvantage of knowledge-based recommenders is acquiring knowledge 

[1]. Knowledge-based recommender systems can be used in domains where the 

domain knowledge is in a machine-readable form such as an ontology [1]. 

2.5.4. Hybrid Recommenders 

Hybrid recommender systems are the combination of two or more recommendation 

approaches which aim to improve the recommendation accuracy and to cope with the 

pure approaches' disadvantages [12, 10]. There are seven different hybridization 

methods which are used in recommender systems [12]: 

 Weighted 

In this method, the predicted rating score is calculated by combining all of the 

recommendation techniques that are used. In the simplest case, a linear combination 

can be used to merge the results of different techniques. 

 Switching 

The hybrid recommender switches between the used techniques according to some 

criterion and uses the most suitable technique to generate recommendation scores. A 
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switching criteria may be using content-based recommendation approach and if it 

cannot generate an accurate result then using collaborative filtering approach. 

 Mixed 

Recommendations from used techniques are combined into one single technique and 

recommendations are generated via this combined technique. 

 Feature Combination 

In this type of hybridization method, the collaborative information is accepted as 

another content information and collaborative information is also added to the 

content-based recommendation process as additional information. 

 Cascade 

In this method, one of the recommendation techniques which generate the hybrid 

recommender applies first, then the second approach refines the results of the first 

approach to produce final recommendations. 

 Feature Augmentation 

The result of one technique is included in the second technique's recommendation 

process. First technique's result can either be a rating score or a classification result. 

 Meta-level 

In this method, the model generated by one of the techniques is used in the second 

technique's recommendation process as input. This type of hybridization differs from 

feature augmentation by using the whole generated model as an input in the second 

approach. In feature augmentation, the results which are obtained by applying the 

learned model are used as inputs to the second recommendation approach. 

The Fab system [5] is one of the well-known hybrid recommender system. It 

combines both content-based and collaborative recommendation approaches and 

generates a hybrid recommender system to recommend web pages to its users [5]. [6] 

recommends movies, [77] recommends news Web pages and [68] recommends 

materials by combining collaborative filtering with content-based recommendation 
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technique, too. Both the rating information and content information is used in these 

systems' recommendation processes. 

Content-boosted collaborative filtering system [47] uses a hybrid approach which 

includes content-based characteristics to increase user data and to generate 

personalized movie recommendations via collaborative filtering. 

The EntreeC system [12] combines knowledge-based and collaborative filtering 

recommendation approaches to generate a hybrid recommender system.  
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CHAPTER 3 

 

 

USER PREFERENCE BOOSTED CONTENT-BASED RECOMMENDATION 

 

 

 

This chapter presents the proposed user preference boosted content-based 

recommendation system approach. This proposed approach includes two different 

methodologies related to the generation process of the user preference profiles. The 

proposed methodologies are described by using movie domain characteristics. First, 

the motivation behind the proposed approach and methodologies is given. After that, 

the system overview is presented with flow diagrams to clarify how the system 

works. Finally, the implementation details of the proposed content-based 

methodology is explained by describing how the movie and user profiles are 

generated by said methodologies and how the recommendation scores are calculated. 

3.1. Motivation 

In content-based recommender systems, user profiles are generated according to the 

item content information and the user's past rating history. The user profiles and the 

item profiles have the same attribute set to define user preference information and to 

define items, respectively. These profiles are generated by various techniques such 

as; TF-IDF (Term Frequency-Inverse Document Frequency) [69, 41, 77], Winnow 

algorithm [40] or Rocchio algorithm [67, 5]. Also the most commonly accepted and 

used technique is TF-IDF measurement technique [41]. 
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We believe that; in order to generate more user oriented profiles, in addition to the 

item attribute characteristics, the user preference information should also be 

considered in user profile generation process. By combining both user preference 

information with the item attribute characteristics, more descriptive user profiles can 

be generated. As a result, more accurate recommendations can be gathered.  

In the proposed approach, the item attribute characteristics are calculated by using 

TF-IDF measurement technique. In addition to this measurement, to generate user 

oriented profiles; we have used the users' past preference information and the movie 

attributes to calculate the user's preference ratios. We have proposed two different 

user preference ratio calculation techniques. The first one is calculated by 

considering user's preference information in the item attribute level. The second 

approach is a one level abstraction of the former approach. This second proposed 

preference ratio is calculated by considering user's preference information in the item 

attribute category level.  

3.2. System Overview 

In order to generate more user oriented profiles and obtain more accurate 

recommendation scores; we have developed a user preference boosted content-based 

recommendation system. To calculate user preference ratios, the movies in the 

system are represented as a list of attributes and attributes are grouped under 

categories. After that, users' preference ratios related to the attributes and categories 

can be calculated by examining user's past rating history. We have calculated the 

user's preference ratios for both attributes and categories. 

The flow diagram of our approach related to users' preference ratio which is 

calculated for the attributes is shown in (Figure 3.1). Section numbers in this thesis 

work which refers to the steps of the proposed approach is also given in Figure 3.1. 

The flow diagram of our second approach whose user preference ratios are calculated 

for the categories is shown in (Figure 3.2). Section numbers in this thesis work which 

refers to the second proposed approach is also given in Figure 3.2. 
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Novel issues of the proposed approach are;  

1. User-attribute pair's preference ratio calculation technique, 

2. User-category pair's preference ratio calculation technique, 

3. The generation of the user profiles by using both the attributes' TF-IDF weight 

values with the effect of the user's preference ratio information related to the 

attributes and categories which are derived from the user's past rating history, 

4. The approach which is used in the generation of the predicted rating scores. 
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Figure 3.1: Flow Diagram Of User - Attribute Preference Ratio Approach 
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Figure 3.2: Flow Diagram Of User - Category Preference Ratio Approach 
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Our system, first generates movie profile by using the content information of movies 

in the used movie database [15]. After generating movie profiles; the proposed 

system, first creates the user preference profiles by using both the movie profile and 

the active user's past rating history. Afterwards, the user's like-dislike profiles are 

generated by using active user's rating history, movie profile and the generated user 

preference profiles. Finally, the proposed system calculates the recommendation 

scores via the rating predictor module by using the user's like - dislike profile with 

the movie profiles of the unrated movies. 

The system architecture and the details of the processes will be explained in the 

following subsections of this chapter. 

3.3. System Architecture and Implementation Details 

The proposed system is a user preference boosted content-based recommender 

system. The system uses the content information of the movies and the past rating 

history of the users to generate recommendation scores. As the system is a content 

based recommender; there are user and movie profiles which are generated by using 

the database of a web site named "cineworm.com" [15]. The called web site is a 

system which stores the movie information, user information and rating history of the 

users related to movies.  

In recommendation problem the general aim is to find the relevant items which 

satisfy the user mostly. To find the movie which satisfies the user mostly, the system 

uses movie and user profiles. Said satisfaction function which indicates the 

satisfaction that user u gets from a movie m is defined as follows; 

𝑠 ∶ 𝑈 × 𝑀 → 𝑅     (3.1) 

where U is the set of users, M is the set of movies and R is the rating score which is 

[0,10]. 

As a result, the recommendation problem's solution can be formulated as; 

∀ 𝑢 ∈  U, m ∈  M, 𝑚′
u = arg max s (u, m)   (3.2) 
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where U is the set of users and M is the set of movies. 

The proposed user preference boosted content-based recommendation approach 

consists of four main phases to find the movies which maximizes the satisfaction of 

the users; 

1. Movie Profile Generation 

2. User Preference Profile Generation 

3. User Like-Dislike Profile Generation 

4. Recommendation Score Calculation For Unrated Movies 

The details of the given phases will be explained in the following subsections. 

3.3.1. Movie Profile Generation  

In proposed system, each movie has its own profile and has several attributes that 

refer to different categories which are derived from the used movie database [15]. 

Before generating the movie profiles the attributes are categorized according to the 

content knowledge of the movies which are extracted from the database [15]. For 

instance; "Genre" is a category in the system and "Animation" is an attribute which 

belongs to the category "Genre". "Actor" is another category and "Johnny Depp" is 

an attribute of "Actor" category. Each attribute belongs to only one category and 

each movie has at least one attribute which belongs to the defined categories in the 

system. 

In the proposed system, the movie profiles are stored in four different database 

tables. The combination of those tables generates the profiles of the movies. The 

tables are "Movies", "AttributeCategory", "Attributes" and "MovieAttributePairs". 

The details of the tables are given below; 

"Movies" table stores the general information related to movies. (Figure 3.3) shows 

the "Movies" table. 
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Figure 3.3: Movies Table 

 

In "Movies" table "mid" column stores the unique id of the movies. "titles" column 

stores the name of the movie. "imdbid" column stores the IMDB id of the movies. 

This column is not used in the proposed system's movie profile generation process, 

because the content information of the movies are already stored in this database. 

Also we didn't need to merge the results of the IMDB database and the 

"cineworm.com" web sites database. "info" column stores all the content details of 

the movies in the database and this column stores the content information of the 

movies in JavaScript Object Notation (JSON) format. JSON format is a text format 

which is independent from the used programming language and it is a flexible data-

interchange language [34]. "info" column stores the genre, actor, director, duration, 

release year and author information of the movies and we extracted all of the 

attributes related to the movies by using this column.  

"AttributeCategory" table stores the categories of the attributes which are used in the 

proposed system. (Figure 3.4) shows the "AttributeCategory" table. 

 

 

Figure 3.4 : AttributeCategory Table 

 

In "AttributeCategory" table "id" column stores the unique id of the attribute 

categories. "categoryName" column stores the name of the attribute category. 

"Attributes" table stores the attributes of all movies in the system. Each attribute is 

inserted to this table only once, even more than one movie has the attribute.  
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(Figure 3.5) shows the "Attributes" table. 

 

 

Figure 3.5 : Attributes Table 

 

In "Attributes" table "id" column stores the unique id of the attributes. 

"attributeValue" column stores the value of the attribute. "categoryId" column is a 

foreign key to the "AttributeCategory" table which the attribute belongs to. 

"attributeWeight" column stores the attribute's score which is calculated by using TF-

IDF measurement technique [69, 41]. This column shows the attribute's 

descriptiveness characteristic.  

Like all other domains; in movie domain, some attributes are more descriptive than 

the others to distinguish a movie. We propose that, an attribute ai is more descriptive 

if less number of movies in the system have the property ai. In addition to this; we 

also propose that, if the category Cj has more attributes which belongs to it, it shows 

that this category is more descriptive while distinguishing movies. To use those 

assumptions, we used the TF-IDF measurement [69, 41] to calculate the 

"attributeWeight" column of the attributes. The TF-IDF of an attribute ai is defined as 

follows; 

𝐴𝑆∗(𝑎𝑖) = log (𝑀
𝑚𝑎,𝑖

⁄ ) × log(#𝐶𝑗)   (3.3) 

*AS = Attribute Score 

where M is the total movie number in the system, 𝑚𝑎,𝑖 is the number of movies 

which has the attribute ai. #𝐶𝑗  is the number of attributes under category Cj which 

attribute ai belongs to. 

The "attributeWeight" column is calculated after extracting the categories and 

theattributes of the movies which are defined in the movie database [15]. The 
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proposed system is also capable of recalculating this attributeWeight scores of the 

attributes in the system if a new movie is added to the system in the future. 

"MovieAttributePairs" table stores the movie - attribute pairs in the system. For each 

attribute which belongs to a movie, a new row is inserted to this table. (Figure 3.6) 

shows the "MovieAttributePairs" table. 

 

 

Figure 3.6 : MovieAttributePairs Table 

 

In "MovieAttributePairs" table "id" column stores the unique id of the table. "mid" 

column is a foreign key to the "Movies" table. "attributeId" column is a foreign key 

to the "Attributes" table. Each movie has multiple rows in this table whose count 

equals to the number of attributes which belongs to the movie. Also each attribute is 

repeated number of times which equals to the number of movies which has the 

attribute. Each movie and attribute is repeated more than once in this table. This 

means that the "mid" and "attributeId" columns together forms a unique key for this 

table. 

Before generating the attribute's TF-IDF score, the movies in the database [15] are 

divided into its attributes and the results are stored in the "MovieAttributePairs" 

table. Actually, "MovieAttributePairs" table keeps the Movie-Attribute vector in the 

system and each movie is represented as a vector of attributes by the usage of this 

table.  

3.3.2. User Profile Generation 

In proposed system, each user has two preference profiles. One of them contains the 

user's preference ratios related to each attribute that the movies in the system consists 

of. Also the second preference profile of the users contains the preference ratios 

related to each category that the attributes belong to. After generating user preference 
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profiles, user's like-dislike profile is generated by using the user's preference profiles. 

User like-dislike profile consists of user-attribute pairs whose like and dislike 

weights are calculated by user preference ratios. By generating such user like-dislike 

profile, user's recommendation scores are estimated by using the attributes that the 

unrated movie and the user like-dislike profile have in common. 

Before generating user-attribute pairs of user like-dislike profile, user's preference 

ratios related to the attributes and categories which are defined in the system are 

calculated. To calculate those preference ratios; novel approaches are used which use 

the user's past rating scores and rated movies' attributes and categories. Creation of 

the novel user preference profiles and using these profile information while 

generating the user’s like-dislike profile is the main contribution of this thesis work. 

In general, content-based recommender systems use user profiles which are 

generated by the user's past rating history and the attributes that the rated movies 

have. The innovative part of this proposed content-based recommender system is the 

generation process of the user profiles. Before generating the user's like - dislike 

profile, user's preference ratios related to attributes and categories are calculated. 

These preference ratios indicate the attribute's and category's importance level in the 

eyes of the user. In other words, those ratios show the attribute's and the category's 

affection ratio while the user is giving a rating score to a movie.  

To calculate the user's attribute preference ratio; suppose that; user u has rated 4 

movies and all of these movies has the attribute "Comedy" in common. For instance, 

if the user has a rating history which is like in the (Table 3.1); this result indicates 

that the attribute "Comedy" has no effect on the user's preference while rating a 

movie. Because the user rated 2 of the movies as positive and 2 of the movies as 

negative. In other words, the attribute preference ratio value of the pair [u - 

"Comedy"] equals to 0. 
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Table 3.1: Example User Rating History 1 

Movie Number Rating Of User u 

#1 Positive 

#2 Negative 

#3 Negative 

#4 Positive 

 

If the user has a rating history which is like in the (Table 3.2) or (Table 3.3); this 

result indicates that the attribute "Comedy" is an important criteria while giving the 

rating score related to a movie for that specific user. Because in (Table 3.2) user 

rated all of the movies as positive and in (Table 3.3) user rated all of the movies as 

negative. This result also shows that the user gives recommendation scores which are 

reliable according to this "Comedy" attribute.  So, the attribute preference ratio value 

of the pair [u - "Comedy"] equals to 1. The calculation details of the user preference 

ratios related to attributes are given in the next section. 

 

Table 3.2 : Example User Rating History 2 

Movie Number Rating Of User u 

#1 Positive 

#2 Positive 

#3 Positive 

#4 Positive 

 

 

Table 3.3 : Example User Rating History 3 

Movie Number Rating Of User u 

#1 Negative 

#2 Negative 

#3 Negative 

#4 Negative 

 

To calculate the user's category preference ratio; the proposed system calculates the 

average sum of the user's attribute preference ratios whose attribute values belong to 

the category under consideration. Suppose that; the attributes which are defined 
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under the category "Genre" are "Drama", "Action" and "Comedy" in the system. 

Then suppose that; a user u has attribute preference ratios related to those attributes 

as 0.8, 0.6, and 0.4, respectively. Then the user preference ratio related to the 

category "Genre" is calculated as the average sum of those user attribute preference 

ratios and the [ u - "Genre"] pair's category ratio value equals to 0.6. 

In the proposed system, the user profiles are stored in five different database tables. 

The combination of those tables generates the profiles of the users. The tables are 

"Users", "Rating", "UserAttributePreference", "UserAttributeCategoryPreference" 

and "UserAttributePairs". The details of the "Users" and "Rating" tables are given 

below, the details of the "UserAttributePreference" table is given in the (Section 

3.3.2.1.1), the details of the "UserAttributeCategoryPreference" table is given in the 

(Section 3.3.2.1.2) and the "UserAttributePairs" table's details are given in the 

(Section 3.3.2.2). 

"Users" table stores the general information related to users. (Figure 3.7) shows the 

"Users" table. 

 

 

Figure 3.7 : Users Table 

 

In “Users" table "uid" column stores the unique id of the table. "username" column 

stores the username of the user. "fullname" column stores the fullname of the user. 

"gender" column stores the gender of the user. "birth" column stores the birthdate of 

the user. "locale" column stores the locale of the user and finally the 

"current_location" column stores the user's current location. The columns except that 

the "uid" column, didn't used in the proposed system. Only the "uid" column which 

distinguishes users from each other is used as a foreign key at other generated user 

profile tables. 
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In addition to the user's general information, the database that we use [15] includes 

information about the users' social network in a different database table named 

"Relationships" which keeps who is related to whom. This information can be 

gathered, because people sign in to the used web page by using their Facebook [20] 

or Twitter [76] accounts. At first glance, the information related to the user's social 

network can be seen as an important information source to generate the users' nearest 

neighbors by using this social network. But there is no rule related to the tastes of the 

people in the same social network according to the movies should match. Assuming 

that the people in the same social network like the same movies, not seems like a 

meaningful assumption to us. So, we don't use that social network information while 

generating the recommendation scores. 

"Rating" table stores the rating history of the users related to the movies stored in the 

system. (Figure 3.8) shows the "Rating" table. 

 

 

Figure 3.8: Rating Table 

 

In "Rating" table "id" column stores the unique id of the table and auto incremented 

by the system. "uid" column is a foreign key to the "Users" table and keeps the user 

id related to the rating. "mid" column is also a foreign key to the "Movies" table and 

keeps the movie id related to the rating. "rating" column stores the rating score 

related to the movie which is referred by "mid" given by the user which is referred by 

"uid". "rating" column's nullable information seems like it can hold null values but 

before running the proposed methodology in this data set, the empty rating results are 

removed from this table. The "rating" column stores the rating scores in the range of 

[0-10]. "comment" column stores the user's comment while giving the rating score 

and this column is not used in the proposed system. "date" column stores the 
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information about when the user gives this rating and "last_update" column stores 

the information about when the user last updates this rating information and these 

last two columns are not used in the proposed system, either. 

3.3.2.1 User Preference Profile Generation 

Each user in the system has two different preference profiles. One of them is related 

to the user's preference profile related to the attributes and the second one is related 

to the user's preference profile related to the categories. These user preference 

profiles are the pre-profiles which are generated by the proposed system before 

generating the user's like-dislike profile which contains the user's like and dislike 

weight information related to the attributes and categories that are defined in the 

system. Those preference profiles consists of the user, related attribute or related 

category and the calculated user preference ratio value. The implementation details 

of how those user preference profiles are created are given under this section. 

3.3.2.1.1 User Attribute Preference Ratio Calculation 

The "UserAttributePreference" table stores the user attribute preference profile which 

is derived from the user's past rating history.  

The rating scale in the proposed system is [0,10], as we said before. Also the user can 

give rating scores which are not integer such as; "6.8". The rating precision in the 

system is defined as "0.1". This means that the user has 10*10 = 100 different rating 

scores to give a movie. In the proposed system, the ratings below 6.0 is considered as 

negative ratings and the ratings equal or greater than 6.0 is considered as positive 

ratings. Because the midpoint of the [0-10] scale is 5.0, if the user gives 5.0 to a 

movie, this means that this movie is an average movie for this user. So, we assume 

that the ratings higher than or equal to 6.0 can be considered as positive ratings. 

As we said before, the user attribute preference profile of users are stored in the 

"UserAttributePreference" table. (Figure 3.9) shows the "UserAttributePreference" 

table. 
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Figure 3.9: UserAttributePreference Table 

 

In "UserAttributePreference" table "id" column stores the unique id of the table and 

auto incremented by the system. "uid" column is a foreign key to the "Users" table 

and keeps the user id related to the user-attribute pair. "attributeId" column is a 

foreign key to the "Attributes" table and keeps the attribute id related to the user-

attribute pair. "preferenceRatio" column stores the user's calculated preference ratio 

related to the attribute.  

We propose that, the attribute's preference ratio according to a user can be calculated 

by dividing the user's past rating history into two disjoint sets: "Like Set" and 

"Dislike Set". After dividing the user's past rating history into these sets, the movies 

under each set are grouped by their attributes. We propose that, the positively rated 

movie count which has a specific attribute and the negatively rated movie count 

which has the specific attribute shows the user's preference information related to the 

specific attribute. If the user relies on this attribute while giving the rating scores to 

movies, then the difference between the positive movie count and the negative movie 

count should be close -in ideal case equal- to the sum of the positive movie count and 

the negative movie count. The attribute preference ratio's maximum value is 1, which 

means that the user gives all movies which has the specific attribute in the same way, 

either positively or negatively. If the user doesn't consider this attribute while giving 

the recommendation scores, this means that the positive movie count and the 

negative movie count values are close to each other. Than this attribute is considered 

as non-distinctive, and the preference ratio of the user related to this attribute 

converges to 0. The preference ratio of an attribute ai for a user uj is defined as 

follows; 
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UAPR∗(ai, uj) =
|likedMovieCountai,uj

 − dislikedMovieCountai,uj
|

likedMovieCountai,uj
 + dislikedMovieCountai,uj

        (3.4) 

*UAPR = User Attribute Preference Ratio 

 

where likedMovieCountai,uj
 is the total movie number which are rated positively by 

the specified user uj and have the attribute ai. dislikedMovieCountai,uj
 is the total 

movie number which are rated negatively by the specified user uj and have the 

attribute ai. 

(Figure 3.10) shows the pseudo code of how to calculate the user attribute preference 

ratios for all user-attribute pairs. 

 

 

Figure 3.10 : Calculate Attribute Preference Ratio Of User Algorithm 

 

3.3.2.1.2 User Category Preference Ratio Calculation 

The "UserAttributeCategoryPreference" table stores the user category preference 

profile which is derived from the user's past rating history.  

As we said before, this approach is a one level abstraction of the user attribute 

preference ratio calculation approach. User category preference ratio is considered as 

the user's importance level related to the categories while giving the rating scores to 

movies. 
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The user category preference profile of users are stored in the 

"UserAttributeCategoryPreference" table. (Figure 3.11) shows the 

"UserAttributeCategoryPreference" table. 

 

 

Figure 3.11: UserAttributeCategoryPreference Table 

 

In "UserAttributeCategoryPreference" table "id" column stores the unique id of the 

table and auto incremented by the system. "uid" column is a foreign key to the 

"Users" table and keeps the user id related to the user - category pair. "categoryId" 

column is a foreign key to the "AttributeCategory" table and keeps the category id 

related to the user - category pair. "preferenceRatio" column stores the user's 

calculated preference ratio related to the category. 

We propose that, the category's preference ratio according to a user equals to the 

average sum of the user's attribute preference ratio values whose attributes are 

defined under the said category. The preference ratio of a category ci for a user uj is 

defined as follows; 

 

UCPR∗(ci, uj) =
∑ UAPR∗(am,uj )

#Attributesci
m=0

#Attributesci

               (3.5) 

*UCPR : User Category Preference Ratio 

*UAPR : User Attribute Preference Ratio 

 

where #Attributesci
 is the total attribute number which are defined under the 

category ci. UAPR(am,uj) is the user uj's attribute preference ratio related to the 

attribute am which is defined under category ci. 
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(Figure 3.12) shows the pseudo code of how to calculate the user category preference 

ratios for all user-attribute pairs. 

 

 

Figure 3.12 : Calculate Category Preference Ratio Of User Algorithm 

 

3.3.2.2 User Like-Dislike Profile Generation 

The user like-dislike profile is the profile which is generated by the proposed system 

after calculating all attributes' TF-IDF scores and user preference ratios related to 

attributes and categories. This profile is the last profile of the user which is used to 

calculate the estimated rating scores for unrated movies.  

This user profile contains the user's like and dislike weight values. In this profile, 

there are three different like-dislike weight pairs. One of them is calculated according 

to the attribute weight values of attributes which we called as TF-IDF scores. The 

second like-dislike weight pair is calculated by adding the effect of user attribute 

preference ratio to the TF-IDF scores of the attributes. Finally, the third one is 

calculated by appending the impact of user category preference ratio to the attribute 

weight value which is calculated by using TF-IDF measurement technique.  
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Because the main contribution of this thesis work is to show the positive impact of 

including user preference ratios to the user profile generation process in addition to 

the classical TF-IDF measurement technique; users' like and dislike weights are 

calculated three times with three different mentioned techniques to compare them 

after calculating the estimated rating scores.  

The user's final profile, in other words user's like-dislike profile, is stored in the 

database table named "UserAttributePairs" in the proposed system. (Figure 3.13) 

shows the "UserAttributePairs" table. 

 

 

Figure 3.13 : UserAttributePairs Table 

 

In "UserAttributePairs" table "id" column stores the unique id of the table and auto 

incremented by the system. "uid" column is a foreign key to the "Users" table and 

keeps the user id related to the user-attribute pair. "attributeId" column is a foreign 

key to the "Attributes" table and keeps the attribute id related to the user-attribute 

pair. "tfIdfBasedLikeWeight" column stores the like weight of the user related to the 

attribute, which is calculated by using the TF-IDF score and past rating history of the 

user. "tfIdfBasedDislikeWeight" column stores the dislike weight of the user related 

to the attribute, which is also calculated by using the TF-IDF score and past rating 

history of the user. "attrPrefRatioBasedLikeWeight" column stores the like weight of 

the user related to the attribute, which is calculated by the combination of the TF-IDF 

score and the user attribute preference ratio. "attrPrefRatioBasedDislikeWeight" 

column stores the dislike weight of the user related to the attribute, which is also 

calculated by the combination of the TF-IDF score and the user attribute preference 

ratio. "attrCategoryPrefRatioBasedLikeWeight" column stores the like weight of the 



54 
 

user related to the attribute, which is calculated by the combination of the TF-IDF 

score and the user category preference ratio. 

"attrCategoryPrefRatioBasedDislikeWeight" column stores the dislike weight of the 

user related to the attribute category, which is also calculated by the combination of 

the TF-IDF score and the user category preference ratio. The details of how to 

calculate the like and dislike weights of the user-attribute pairs according to the said 

three techniques are given in the next sections. 

3.3.2.2.1 TF-IDF Score Based Like-Dislike Weight Calculation 

The proposed user like-dislike profile's "tfIdfBasedLikeWeight" value and the 

"tfIdfBasedDislikeWeight" value are calculated by using the TF-IDF measurement 

technique. TF-IDF measurement technique is a common and mature measurement 

technique in recommender systems domain. But in this thesis work, while generating 

the user profiles, user's like and dislike weight values are calculated in a different 

manner. As we explained before, the recommendation scores which are greater than 

or equal to 6.0 is considered as positive ratings. "tfIdfBasedLikeWeight" value is 

calculated by generating weighted mean of positively rated movies' rating scores 

according to the attribute's calculated TF-IDF score. In the same way, 

"tfIdfBasedDislikeWeight" value is calculated by generating weighted mean of 

negatively rated movies' rating scores according to the attribute's calculated TF-IDF 

score. 

The "tfIdfBasedLikeWeight" of an attribute ai for a user uj is defined as follows; 

TFIDFLW∗(ai, uj) =
∑ positiveRatingScore ∗ attributeWeightai

# likedMovieCountai,uj
 

 (3.6) 

*TFIDFLW : TF-IDF Based Like Weight 

where # likedMovieCountai,uj
 is the total movie number which are rated positively 

by the given user uj and which has the attribute ai. positiveRatingScore is the rating 

score which is given by the user uj to the positively rated movie. attributeWeightai is 

the attribute weight value of the attribute ai which is the TF-IDF score of the said 

attribute ai. 
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By using given formula (3.6), the like weights related to the attributes for all users 

are calculated by using attribute weight values which are calculated by TF-IDF 

measurement technique. (Figure 3.14) shows the pseudo code of how to calculate the 

"tfIdfBasedLikeWeight" values for all user-attribute pairs. 

 

 

Figure 3.14 : Calculate TF-IDF Based Like Weight Algorithm 

 

The "tfIdfBasedDislikeWeight" of an attribute ai for a user uj is defined as follows; 

TFIDFDW∗(ai, uj) =
∑ negativeRatingScore ∗ attributeWeightai

# dislikedMovieCountai,uj
 

 (3.7) 

 

*TFIDFDW : TF-IDF Based Dislike Weight 

 

where # dislikedMovieCountai,uj
 is the total movie number which are rated 

negatively by the given user uj and which has the attribute ai. negativeRatingScore is  
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the rating score which is given by the user uj to the negatively rated movie. 

attributeWeightai is the TF-IDF score of the attribute ai. 

By using given formula (3.7), the dislike weights related to the attributes for all users 

are calculated by using TF-IDF scores of the attributes. (Figure 3.15) shows the 

pseudo code of how to calculate the "tfIdfBasedDislikeWeight" values for all user-

attribute pairs. 

 

 

Figure 3.15 : Calculate TF-IDF Based Dislike Weight Algorithm 

 

3.3.2.2.2 User Attribute Preference Based Like-Dislike Weight Calculation 

The proposed user like-dislike profile's "attrPrefRatioBasedLikeWeight" and the 

"attrPrefRatioBasedDislikeWeight" values are calculated by using the combination 

of both proposed user attribute preference ratios and the TF-IDF scores. We propose 

that, by using this like and dislike weights, more accurate recommendation scores 

can be gathered because of the user attribute preference ratio's positive effect on 

generating the user profiles. "attrPrefRatioBasedLikeWeight" value is calculated by 

generating weighted mean of positively rated movies' rating scores according to both  



57 
 

the attribute's TF-IDF score and the user's attribute preference ratio which is related 

to the attribute under consideration. Likewise, "attrPrefRatioBasedDislikeWeight" 

value is calculated by generating weighted mean of negatively rated movies' rating 

scores according to both the attribute's TF-IDF score and the user's attribute 

preference ratio related to the said attribute. 

The "attrPrefRatioBasedLikeWeight" of an attribute ai for a user uj is defined as 

follows; 

APRBLW∗(ai, uj) =
∑ positiveRating ∗(attributeWeightai

∗ attrPrefRatiouj,ai
)

# likedMovieCountai,uj
 

   (3.8) 

*APRBLW : Attribute Preference Ratio Based Like Weight 

where # likedMovieCountai,uj
 is the total movie number which are rated positively 

by the given user uj and which has the attribute ai. positiveRating is the rating score 

which is given by the user uj to the positively rated movie. attributeWeightai
 is the 

TF-IDF score of the attribute ai. attrPrefRatiouj,ai
 is the attribute preference ratio 

that is calculated for user uj for attribute ai. 

By using given formula (3.8) the like weights related to the attributes for all users are 

calculated according to the user's attribute preference ratios. (Figure 3.16) shows the 

pseudo code of how to calculate the "attrPrefRatioBasedLikeWeight" values for all 

user-attribute pairs. 

 

Figure 3.16 : Calculate Attribute Preference Based Like Weight Algorithm 
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The "attrPrefRatioBasedDislikeWeight" of an attribute ai for a user uj is defined as 

follows; 

 

APRBDW∗(ai, uj) =
∑ negativeRating ∗(attributeWeightai

∗ attrPrefRatiouj,ai
)

# dislikedMovieCountai,uj
 

 (3.9) 

*APRBDW : Attribute Preference Ratio Based Dislike Weight 

 

where # dislikedMovieCountai,uj
 is the total movie number which are rated 

negatively by the given user uj and which has the attribute ai. negativeRating is the 

rating score which is given by the user uj to the negatively rated movie. 

attributeWeightai
 is the TF-IDF score of the attribute ai. attrPrefRatiouj,ai

 is the 

attribute preference ratio that is calculated for user uj for attribute ai. 

By using given formula (3.9) the dislike weights related to the attributes for all users 

are calculated by combining the TF-IDF scores of the attributes with the user 

attribute preference ratios. (Figure 3.17) shows the pseudo code of how to calculate 

the "attrPrefRatioBasedDislikeWeight" values for all user-attribute pairs. 

 

Figure 3.17 : Calculate Attribute Preference Based Dislike Weight Algorithm 
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3.3.2.2.3 User Category Preference Based Like-Dislike Weight Calculation 

The proposed user like-dislike profile's "attrCategoryPrefRatioBasedLikeWeight" 

and the "attrCategoryPrefRatioBasedDislikeWeight" values are calculated by using 

the combination of both proposed user category preference ratios and the TF-IDF 

scores.  

We propose that, by using this like and dislike weights, estimated recommendation 

scores should be more accurate than the pure TF-IDF measurement technique. But, 

we also expected that the estimated recommendation scores by using user's category 

preference ratios should be less accurate than the estimated recommendation scores 

by using the user's attribute preference ratios. The reason behind this expectation is 

that, user's category preference ratios are more abstract than the user's attribute 

preference ratios. This means that the user's attribute preference ratios describe the 

user preferences better than the category preference ratios. Because the category 

preference ratios are calculated according to the average sum of the attribute 

preference ratios of the user. Category preference ratios of users shows the average 

preference of the user related to the category and less descriptive than the user's 

attribute preference ratios.  

"attrCategoryPrefRatioBasedLikeWeight" value is calculated by generating weighted 

mean of positively rated movies' rating scores according to both the attribute's TF-

IDF score and the user's category preference ratio which is related to the attribute's 

category. Likewise, "attrCategoryPrefRatioBasedDislikeWeight" value is calculated 

by generating weighted mean of negatively rated movies' rating scores according to 

both the attribute's TF-IDF score and the user's category preference ratio which is 

related to the attribute's category. 

The "attrCategoryPrefRatioBasedLikeWeight" of an attribute ai for a user uj is 

defined as follows; 

CPRBLW∗(ai, uj) =
∑ positiveRating ∗(attrWeightai

∗ attrCategoryPrefRatiouj,ai
)

# likedMovieCountai,uj
 

  (3.10) 

*CPRBLW : Category Preference Ratio Based Like Weight 
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where # likedMovieCountai,uj
 is the total movie number which are rated positively 

by the given user uj and which has the attribute ai. positiveRating is the rating score 

which is given by the user uj to the positively rated movie. attrWeightai
 is the TF-

IDF score of the attribute ai. attrCategoryPrefRatiouj,ai
 is the category preference 

ratio that is calculated for user uj for attribute ai's category. 

By using given formula (3.10) the like weights of all users are calculated according 

to the user's category preference ratios. (Figure 3.18) shows the pseudo code of how 

to calculate the "attrCategoryPrefRatioBasedLikeWeight" values for all user-attribute 

pairs. 

 

Figure 3.18: Calculate Category Preference Based Like Weight Algorithm 

 

The "attrCategoryPrefRatioBasedDislikeWeight" of an attribute ai for a user uj is 

defined as follows; 

CPRBDW∗(ai, uj) =
∑ negativeRating ∗(attrWeightai

∗ attrCategoryPrefRatiouj,ai
)

# dislikedMovieCountai,uj
 

 (3.11) 

*CPRBDW: Category Preference Ratio Based Dislike Weight 

 

where # dislikedMovieCountai,uj
 is the total movie number which are rated 

negatively by the given user uj and which has the attribute ai. negativeRating is the 
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rating score which is given by the user uj to the negatively rated movie. attrWeightai
 

is the TF-IDF score of the attribute ai. attrCategoryPrefRatiouj,ai
 is the category 

preference ratio that is calculated for user uj for attribute ai's attribute category. 

By using given formula (3.11) the dislike weights of all users are calculated by 

combining the TF-IDF scores with the user category preference ratios. (Figure 3.19) 

shows the pseudo code of how to calculate the 

"attrCategoryPrefRatioBasedDislikeWeight" values for all user-attribute pairs. 

 

Figure 3.19: Calculate Category Preference Based Dislike Weight Algorithm 

 

3.3.3. Recommendation Score Calculation 

The proposed system presents a novel approach to predict the estimated rating scores 

for unseen movies. In [19], the user profile's like-dislike weights are calculated by 

using only the count of positive and negative movies, respectively. In spite of that; in 

our proposed system, the like-dislike weights are calculated by the weighted sum of 

given rating scores with the effects of attribute preference ratios. So, the formula 

which calculates the estimated score that we used is a novel approach, too. The 

estimated scores are calculated three times for three like-dislike pairs to show the 

positive influence of user preference ratios on the pure TF-IDF measurement 

technique and to compare the two user preference ratios positive affection degrees. 
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The implementation details of how to calculate estimated rating scores according to 

said three techniques are given in the following subsections. 

The estimated ratings for unseen movies are stored in the database table named 

"EstimatedRating" in the proposed system. (Figure 3.20) shows the 

"EstimatedRating" table. 

 

Figure 3.20 : EstimatedRating Table 

 

In "EstimatedRating" table "id" column stores the unique id of the table and auto 

incremented by the system. "mid" column is a foreign key to the "Movies" table and 

keeps the movie which is related to the estimated rating score. "uid" column is a 

foreign key to the "Users" table and keeps the user id related to the estimated rating 

score. "tfIdfBasedEstimatedScore" column stores the estimated rating value which is 

calculated by using "tfIdfBasedlLikeWeight" and "tfIdfBasedDislikeWeight" values 

from user like-dislike profile and relies on the pure TF-IDF measurement technique. 

"attrPrefBasedEstimatedScore" column stores the estimated rating value which is 

calculated by using "attrPrefRatioBasedLikeWeight" and 

"attrPrefRatioBasedDislikeWeight" values from user like-dislike profile and relies on 

the user's attribute preference ratio values. "attrCategoryPrefBasedEstimatedScore" 

column stores the estimated rating value which is calculated by using 

"attrCategoryPrefRatioBasedLikeWeight" and 

"attrCategoryPrefRatioBasedDislikeWeight" values of the user like-dislike profile 

and relies on the user's category preference ratio values. 

3.3.3.1 Recommendation Score Calculation by Using TF-IDF Based Like-Dislike 

Weight Scores 

The estimated rating score for an unseen movie mm, for user uj by using the TF-IDF 

based like-dislike pairs is defined as follows; 
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ES∗
TF−IDF(uj, mm) =

∑ tfIdfBasedLikeWeightujai
− tfIdfBasedDislikeWeightujai

commonAttr
i=1

∑ attributeWeightai
commonAttr
i=1  

 (3.12) 

*ESTF-IDF : Estimated Score Calculated By TF-IDF Based Like-Dislike Weights 

where commonAttr represents the common attributes between movie profile of 

movie mm and user like-dislike profile of user uj. tfIdfBasedLikeWeightujai
 is the TF-

IDF based like weight of user uj related to attribute ai. tfIdfBasedDislikeWeightujai
 is 

the TF-IDF based dislike weight of user uj related to attribute ai and 

attributeWeightai
 is the attribute weight of attribute ai which is calculated by TF-IDF 

measurement technique. 

The estimated scores related to TF-IDF measurement technique are calculated by 

using given formula (3.12). The results are then stored in the database. (Figure 3.21) 

shows the pseudo code of how to calculate the TF-IDF based estimated scores for 

unseen movie-user pairs. 

 

 

Figure 3.21: Calculate Estimated Score By TF-IDF Based Like Dislike Weights 

Algorithm 

 

After calculating each estimated score for movie-user pair, a new row is inserted to 

the "EstimatedRating" table and the row's "tfIdfBasedEstimatedScore" column is 

filled with the predicted rating score. 
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3.3.3.2 Rating Prediction by Using User Attribute Preference Ratio Boosted 

Like-Dislike Weight Scores 

The estimated rating score for an unseen movie mm, for user uj by using the proposed 

user attribute preference ratio measurement technique based like-dislike pairs is 

defined as follows; 

ES∗
attrPref(uj, mm) =

∑ attrPrefRatioBasedLWujai
− attrPrefRatioBasedDWujai

commonAtt
i=1

∑  (attributeWeightai
commonAttributes
i=1 ∗ attrPreferenceRatioujai

)
  (3.13) 

*ESattrPref : Estimated Score Calculated By Attribute Preference Ratio Based Like-Dislike Weights 

where commonAtt represents the common attributes between movie profile of 

movie mm and user profile of user uj. attrPrefRatioBasedLWujai
 is the attribute 

preference ratio based like weight of user uj related to attribute ai. 

attrPrefRatioBasedDWujai
 is the attribute preference ratio based dislike weight of 

user uj related to attribute ai. attributeWeightai
 is the attribute weight of attribute ai 

which is calculated by TF-IDF measurement technique and attrPreferenceRatioujai
 

is the attribute preference ratio of user uj for attribute ai. 

The estimated scores related to attribute preference ratio measurement technique are 

calculated by using given formula (3.13). The results are then stored in the database. 

(Figure 3.22) shows the pseudo code of how to calculate the user attribute preference 

ratio boosted estimated scores for unseen movie-user pairs. 

 

Figure 3.22: Calculate Estimated Score By Attribute Preference Boosted Like-

Dislike Weights Algorithm 
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After calculating each estimated score for movie-user pair, the row related to the 

user-movie pair from "EstimatedRating" table is found from the database and the 

row's "attrPrefBasedEstimatedScore" column is filled with the predicted rating score.  

3.3.3.3 Rating Prediction by Using User Category Preference Ratio Boosted 

Like-Dislike Weight Scores 

The estimated rating score for an unseen movie mm, for user uj by using the proposed 

user category preference ratio measurement technique based like-dislike pairs is 

defined as follows; 

ES∗
categoryPref(uj, mm) =

∑ attrCategPrefRatioBasedLWujai
− attrCategPrefRatioBasedDWujai

cmmAttr
i=1

∑  (attributeWeightai
cmmAttr
i=1 ∗ attrCategoryPrefRatioujai

)
      (3.14) 

*EScategoryPref : Estimated Score Calculated By Category Preference Ratio Based Like-Dislike Weights 

 

where cmmAttr represents the common attributes between movie profile of movie 

mm and user profile of user uj. attrCategPrefRatioBasedLWujai
 is the category 

preference ratio based like weight of user uj related to attribute ai's category. 

attrCategPrefRatioBasedDWujai
 is the category preference ratio based dislike 

weight of user uj related to attribute ai's category. attributeWeightai
 is the attribute 

weight of attribute ai which is calculated by TF-IDF measurement technique and 

attrCategoryPrefRatioujai
 is the category preference ratio of user uj for attribute ai. 

The estimated scores related to category preference ratio measurement technique are 

calculated by using given formula (3.14). The results are then stored in the database 

at the category preference ratio related estimated column field. (Figure 3.23) shows 

the pseudo code of how to calculate the user category preference ratio boosted 

estimated scores for unseen movie-user pairs. 
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Figure 3.23: Calculate Estimated Score By Category Preference Boosted Like-

Dislike Weights Algorithm 

 

After calculating each estimated score for movie-user pair, the row related to the 

user-movie pair from "EstimatedRating" table is found from the database and the 

row's "attrCategoryPrefBasedEstimatedScore" column is filled with the predicted 

rating score. 

At the end of the rating prediction process, for all user-unseen movie pairs, the rating 

scores are estimated by three different techniques. 
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CHAPTER 4 

 

 

EVALUATION & RESULTS 

 

 

 

This chapter presents the evaluation phase of the proposed user preference boosted 

content-based recommendation system approach and shows the results which are 

obtained from the testing phase of the system. First of all, the data characteristics 

which are used to evaluate the proposed system are explained in the first subsection. 

After that, the evaluation metrics that are used to appraise the proposed system are 

given in the next subsection. Then, the experiments with the given data set are given 

in the third subsection. In the experiments phase, the same data set is used with both 

TF-IDF measurement technique and the proposed approaches to consider the results 

in an objective manner and see the user preference ratio metrics' impact on results. 

Finally, the comparison between the proposed approaches and the TF-IDF 

measurement technique, the comparison between two proposed approaches and the 

comparison between the proposed approaches and some other known techniques 

from the literature are given in the last subsection. 

4.1 Data Set 

In the evaluation phase of the proposed user preference boosted content-based 

recommendation system, the dataset which belongs to a web page named 

cineworm.com [15] is used. People can sign in to this web page by using their 

Facebook [20] or Twitter [76] accounts, can rate and add comment to movies that 

they were already watched, can keep a will watch list, can share the movies that they 

watch with their friends and can see their friends' movie selections and ratings. 
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This web page is chosen to evaluate this proposed system because, the recommender 

systems in the literature generally uses the same data sets such as MovieLens [52], 

EachMovie (not available any more) or JesterJoke [32]. We wanted to use a new and 

a real dataset to get reliable results for recommendation process and for these reasons 

we contact with the developers of the cineworm.com [15]. After telling our intent 

related to their dataset, they were agreed to share their dataset with us. 

In the dataset that we have used; initially 1428 users, 102491 movies and 26270 

ratings exist. After removing the users which has no rating, removing the movies 

which are not related to any rating and removing the ratings which has no rating 

score from the database; the user count decrease to 473, the movie count decrease to 

2226 and the rating count decreases to 17505.  

The sparsity of a dataset is computed with the formula given below [31]: 

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 − (
|𝑅|

|𝐼|×|𝑈|
)     (4.1) 

 

where R is the total rating count, I is the total item count and U is the total user 

count. 

The popular datasets which are used in movie domain related recommender systems 

and their sparsity values are given in (Table 4.1): 

 

Table 4.1 : Popular Datasets Sparsity Values 

Dataset Sparsity 

EachMovie 0.9763 

MovieLens 100K 0.978 

MovieLens 1M 0.9575 

MovieLens 10M 0.9869 
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The sparsity of cineworm.com dataset which we have used equals to 0.9548 (1 - 

15781 / 2226 x 157) which is nearly as sparse as the known and used popular 

datasets. 

The movie count related to rating count shows that a number of movies are rated by 

more than one users. (Figure 4.1) shows the movie statistics according to the given 

rating count. 

 

 

Figure 4.1: Movie-Rating Count Statistic 

 

Because the proposed recommender system is a content-based recommender system 

and in content-based recommender systems, the users' past rating history plays the 

most important role in the creation of the user profiles, we analyze the user's in the 

dataset according to their rating counts. (Figure 4.2) shows the user statistics 

according to the rating counts. 
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Figure 4.2: User-Rating Count Statistic 

 

The above figure shows us that some users in the database don't have enough rating 

information to create reliable user profiles for them to recommend movies. In content 

based recommendation systems, to generate user profiles which reflects the user 

preferences, user should rate a number of items. For instance; in MovieLens [52] and 

EachMovie (not available any more) datasets; users have at least 20 ratings related to 

movies. These datasets are the most commonly used datasets in literature [79, 83, 60, 

47]. So, we also removed the users who have less than 20 ratings from the database. 

As a result; after cleaning the database, 157 users with 15781 ratings exists in our 

database. The rating count decreases from 17505 to 15781. This means that 

approximately 10% of the all rating information in the database is removed from the 

database. This result indicates that the users which has less than 20 ratings don't have 

significant number of ratings. 
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The attribute categories related to movies in the cineworm.com data set are given in 

(Table 4.2). The attributes related to the "Genre", "Duration", "Actor", "Director" 

and "Release Year" categories are extracted from the cineworm.com data set. But the 

"Author" category's value exists for only 349 of the 2226 movies in the database. 

This means that only approximately 15% of the movies has the author information in 

the database. So; we discard the "Author" category from the attribute category list 

that we used in our proposed recommender system. 

 

Table 4.2: Attribute Categories 

Attribute Category Number Attribute Category Name 

1 Genre 

2 Duration 

3 Actor 

4 Director 

5 Release Year 

6 Author 

 

To extract the attributes related to the categories; we have developed a data 

extraction program in Java Programming Language and the information which is 

kept in JSON format in cineworm.com database is transferred to our database. While 

transferring the attributes to our database; a grouping is done related to the attributes 

which belong to "Duration" and "Release Year" categories. This grouping is done 

because of the fact that, a movie with 120 minutes duration should be considered in 

the same group with the movie with 115 minutes duration. The duration amounts are 

divided into the groups with 30 minute intervals, because 30 minute is the least 

meaningful time interval for movie domain according to us. In the same way, a 

movie whose release year is 2002 should be considered in the same group with a 

movie whose release year is 2003. The grouping related to the release year category 

is done by 10 year intervals up to 2000s. Because in movie domain, the movies are 

called as "A movie which belongs to 70s" or "A movie which belongs to 80s". After 

2000, we grouped the release year category by 5 years intervals because of the fact 

that a movie which belongs to a year which is greater than 2000 is a movie which is 

recorded in near past and more people are possible to watch that movies. So, using 5 
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year intervals instead of 10 year intervals is more suitable to distinguish movies 

which belong to near past.  

The grouping which is done related to "Duration" attribute category is given in 

(Table 4.3) and the grouping which is done related to "Release Year" attribute 

category is given in (Table 4.4). 

 

Table 4.3: Duration Attribute Values 

Duration Attribute Value 

Less Than 30 

30-59 

60-89 

90-119 

120-149 

More Than 149 

 

 

Table 4.4: Release Year Attribute Values 

Release Year Attribute Value 

Before 1960 

1960-1969 

1970-1979 

1980-1989 

1990-1994 

1995-1999 

2000-2004 

2005-2009 

After 2009 

 

The genres that movies in the cineworm.com dataset can have are listed in (Table 

4.5) and the movies in the database can have more than one genres. In addition to 

this, movies can have multiple directors and actors. The genres, actors and directors 

are not grouped and each distinct attribute is added to our database related to these 

categories. 
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Table 4.5: Genre Attribute Values 

Genre Attribute Value Genre Attribute Value Genre Attribute Value 

Action Eastern Indie 

Adventure Erotic Music 

Animation Family Musical 

Comedy Fantasy Mystery 

Crime Foreign Neo-noir 

Disaster History Noir 

Documentary Holiday Road 

Drama Horror Romance 

Science Fiction Sports TV 

Short Suspense War 

Sport Thriller Western 

 

4.2 Evaluation Metrics 

In the proposed recommender system; the database includes the movies, the users 

and the ratings that users give to movies in the system. To evaluate the proposed 

system, the rating table in the database needs to be divided into 2 parts. One part is 

needed for training phase of the proposed approach, the second part is needed for the 

testing phase of the proposed approach. So, we divided the rating table in our 

database into the test and train table pairs 3 times with the 10% and 90% of the rating 

information, respectively. As a result, we have 3 randomly divided test-train rating 

table pairs. With the train part of the rating table, the proposed system is trained and 

with the test part of the rating table the proposed system is evaluated. This training 

and testing phases are repeated for 3 times for 3 randomly divided train-test rating 

table pairs. 

To evaluate the proposed recommender system, we used the decision support 

metrics: precision, recall, F-measure and accuracy metrics [31]. We choose those 
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metrics in evaluation phase because most of the recommender systems in the 

literature [6, 1, 77, 68] use those evaluation metrics in their evaluation process.  

To evaluate recommender systems, ROC curves can also be used. This curve 

represents the precision and recall metric results combination. The F-Measure metric 

is another metric which summarizes the precision and recall of ROC curve and can 

be used in place of ROC curve [26]. We prefer to use F-Measure instead of ROC 

curve. 

Mean Absolute Error (MAE) metric is another approach which can be used to test 

the prediction accuracy and this metric calculates the average deviation between 

predicted rating score and the actual rating score [31]. According to [45] and [14]; 

mean absolute error metric cannot reflect the real user experience. Because user's in 

the real world are interested in whether an item is recommended or not. But, mean 

absolute error metric measures the accuracy by only relying to the rating scores. The 

evaluated rating score related to that item is not as important as the predicted 

classification of the item: liked / not liked. Because of these reasons; we rely on the 

precision, recall, F-measure and accuracy metrics to evaluate the proposed 

recommendation approach. 

To use those metrics; the predicted rating scores and the actual rating scores should 

be converted to the binary scale: like and dislike. As we mentioned before; the rating 

scores less than 6.0 is considered as negative ratings and the rating scores equal to or 

more than 6.0 is considered as positive ratings. We categorize the recommendation 

results as shown in the (Table 4.6) to calculate the evaluation metrics. 

Table 4.6: Categorization of recommendation results 

 Actual Like Actual Dislike 

Predicted as Like TP FP 

Predicted as Dislike FN TN 

 

The movies whose ratings were marked as liked (actual like) and recommended to 

the users by the proposed system (predicted as like) are considered as true positives 
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(TP). The movies whose ratings were marked as liked (actual like) but not 

recommended to the users by the proposed system (predicted as dislike) are 

considered as false negatives (FN). The movies whose ratings were marked as 

disliked (actual dislike) but recommended to the users by the proposed system 

(predicted as like) are considered as false positives (FP). The movies whose ratings 

were marked as disliked (actual dislike) and not recommended to the users by the 

proposed system (predicted as dislike) are considered as true negatives (TN). 

After categorizing the recommendation results; then we calculated the precision, 

recall, F-measure and accuracy metrics for each train-test rating table pairs with the 

experiments that are done for the proposed recommender system by using the 

formulas (Equation 4.2), (Equation 4.3), (Equation 4.4) and (Equation 4.5), 

respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (4.2) 

Precision can be defined as the ratio of number of predicted as liked and defined as 

liked movies -in other words predicted as liked correctly- to the number of movies 

that are predicted as liked. This ratio shows the probability of a recommended movie 

is really liked by the user. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (4.3) 

Recall can be defined as the ratio of the number of predicted as liked and defined as 

liked movies to the number of movies which are defined as liked in the system. This 

ratio shows the probability of a liked movie is really recommended by the system to 

the user. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(𝛽2 + 1) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (4.4) 

F-measure is a combination of precision and recall metrics. The F-measure's result is 

balanced when β = 1. If β is defined as β > 1, then it gives more importance to 
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precision metric; and recall metric otherwise. In our experiments, we define β as 1, 

because there is no reliable reason to give more importance to one of the metrics. So 

we use the balanced F-measure score. 

Accuracy =
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (4.5) 

Accuracy can be defined as the ratio of the sum of predicted as liked and defined as 

liked movies and predicted as disliked and defined as disliked movies, in other words 

the number of movies which are recommended correctly, to the total possible 

recommendations.  

4.3 Experiments 

In this section, the experiments done through this thesis work will be described. To 

evaluate the proposed recommender system, we divided the rating table into 3 

randomly selected test and train rating table pairs as we said before and did 

experiments 3 times for those pairs. In each experiment; we generated 3 different 

recommendation scores for each movie in the test part. One of them is generated 

according to the TF-IDF measurement technique which is a mature content based 

recommendation technique. The second recommendation score is generated 

according to the proposed user category preference boosted content based 

recommendation approach. Finally, the last recommendation score is generated 

according to the proposed user attribute preference boosted content based 

recommendation approach. The recommendation score related to TF-IDF 

measurement technique is calculated to compare the proposed approaches with this 

mature technique with the same data set and gather reliable comparison results. 

The experiments were done at a personal computer which has 8 GB RAM and 1.7 

GHz CPU with i5 processor. The database management operations were done via 

PHP-MyAdmin and SQLDeveloper tools. MySQL was used as a database while 

doing experiments. The proposed recommender system's application part was 

developed at JAVA programming language and developed program was run at 

Eclipse Juno tool.  
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4.3.1. Experiments for the First Train-Test Rating Pair 

The experiment results related to the first train-test rating table pair according to the 

proposed approaches are given under this subsection. The proposed recommender 

system was trained with the first train-test rating table pair's train part and the 

experiment results related to the test part are given below: 

(Table 4.7) shows the experiment results for the TF-IDF measurement technique for 

the first test rating table. 

Table 4.7: Experiment Results for TF-IDF Measurement with First Train-Test 

Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.73 

F-Measure 0.82 

Accuracy 0.71 

 

(Table 4.8) shows the experiment results for the proposed user category preference 

boosted content based recommendation system approach for the first test rating table. 

Table 4.8: Experiment Results for User Category Preference Boosted Content 

Based RS with First Train-Test Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.75 

F-Measure 0.83 

Accuracy 0.73 

 

(Table 4.9) shows the experiment results for the proposed user attribute preference 

boosted content based recommendation system approach for the first test rating table. 
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Table 4.9: Experiment Results for User Attribute Preference Boosted Content 

Based RS with First Train-Test Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.78 

F-Measure 0.85 

Accuracy 0.75 

 

4.3.2. Experiments for the Second Train-Test Rating Pair 

The experiment results related to the second train-test rating table pair according to 

the proposed approaches are given under this subsection. The proposed recommender 

system was trained with the second train-test rating table pair's train part and the 

experiment results related to the test part are given below: 

(Table 4.10) shows the experiment results for the TF-IDF measurement technique for 

the second test rating table. 

Table 4.10: Experiment Results for TF-IDF Measurement with Second Train-

Test Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.75 

F-Measure 0.83 

Accuracy 0.73 

 

(Table 4.11) shows the experiment results for the proposed user category preference 

boosted content based recommendation system approach for the second test rating 

table. 
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Table 4.11: Experiment Results for User Category Preference Boosted Content 

Based RS with Second Train-Test Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.77 

F-Measure 0.85 

Accuracy 0.74 

 

(Table 4.12) shows the experiment results for the proposed user attribute preference 

boosted content based recommendation system approach for the second test rating 

table. 

Table 4.12: Experiment Results for User Attribute Preference Boosted Content 

Based RS with Second Train-Test Pair 

Evaluation Metric Value 

Precision 0.94 

Recall 0.80 

F-Measure 0.86 

Accuracy 0.77 

 

4.3.3. Experiments for The Third Train-Test Rating Pair 

The experiment results related to the third train-test rating table pair according to the 

proposed approaches are given under this subsection. The proposed recommender 

system was trained with the third train-test rating table pair's train part and the 

experiment results related to the test part are given below: 

(Table 4.13) shows the experiment results for the TF-IDF measurement technique for 

the third test rating table. 
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Table 4.13: Experiment Results for TF-IDF Measurement with Third Train-

Test Pair 

 

Evaluation Metric Value 

Precision 0.94 

Recall 0.75 

F-Measure 0.83 

Accuracy 0.73 

 

(Table 4.14) shows the experiment results for the proposed user category preference 

boosted content based recommendation system approach for the third test rating 

table. 

 

Table 4.14: Experiment Results for User Category Preference Boosted Content 

Based RS with Third Train-Test Pair 

 

Evaluation Metric Value 

Precision 0.95 

Recall 0.76 

F-Measure 0.85 

Accuracy 0.74 

 

(Table 4.15) shows the experiment results for the proposed user attribute preference 

boosted content based recommendation system approach for the third test rating 

table. 
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Table 4.15: Experiment Results for User Attribute Preference Boosted Content 

Based RS with Third Train-Test Pair 

Evaluation Metric Value 

Precision 0.95 

Recall 0.79 

F-Measure 0.86 

Accuracy 0.77 

 

After implementing all the experiments, then the categories' importance levels are 

calculated according to the attributes' attribute weights under each category. The 

category weights which are calculated by dividing the sum of attribute weights to the 

number of attributes are as follows: 

 Actor Category Weight   = 11,30 

 Director Category Weight   = 9,95 

 Genre Category Weight   = 4,50 

 Release Year Category Weight = 1,07 

 Duration Category Weight  = 0,91 

This category weights indicates that while calculating the predicted rating scores the 

actor category affects the results more than all other categories. So, the category 

importance order can be given like that: actor, director, genre, release year and 

duration. 

4.4 Comparison 

In this section, experiment results of the proposed approaches are compared with the 

results of the TF-IDF measurement technique. In addition to this comparison; the 

proposed approaches' experiment results are compared with each other. Finally, the 

experiment results are compared with some other known techniques from the 

literature. 
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4.4.1. Comparison of Proposed Approaches with TF-IDF Measurement 

Technique 

(Table 4.16) shows the average precision, recall, F-measure and accuracy metric 

results for both proposed approaches and TF-IDF measurement technique. 

Table 4.16: Comparison of the Proposed Approaches with the TF-IDF Based 

Recommendation Approach 

Approach Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Accuracy 

(%) 

TF-IDF Based 

Recommendation 

94 74.3 82.6 72.3 

Proposed User Category 

Preference Boosted Content 

Based Recommendation 

94.3 76 84.3 73.6 

Proposed User Attribute 

Preference Boosted Content 

Based Recommendation 

94.3 79 85.6 76.3 

 

The comparison between the proposed user preference boosted content based 

recommendation approaches with the TF-IDF based recommendation approach 

related to evaluation metrics is illustrated as Figure 4.3. 
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Figure 4.3: Evaluation Metrics Related Comparison 

 

It is seen from the (Table 4.16) and (Figure 4.3); both of the two proposed 

approaches results are better than the classical TF-IDF measurement technique based 

recommendation approach, for all evaluation metrics. This is because of the fact that; 

the proposed approaches consider the users' preference information in addition to the 

attributes' TF-IDF measurement score. We expected to get more accurate 

recommendation scores by adding the users' preference information to the movies' 

attribute characteristics which TF-IDF scores reflect. The results which are seen from 

(Table 4.16) and (Figure 4.3) indicate that; by adding users' preference information, 

more reliable recommendation results can be gathered.  

The comparison between the proposed user preference boosted content based 

recommendation approaches with the TF-IDF measurement technique based 

recommendation approach related to precision, recall, F-Measure and accuracy 

evaluation metrics are illustrated as (Figure 4.4), (Figure 4.5), (Figure 4.6) and 

(Figure 4.7), respectively. 
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Figure 4.4: Precision Evaluation Metric Related Comparison 

 

 

 

Figure 4.5: Recall Evaluation Metric Related Comparison 
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Figure 4.6: F-Measure Evaluation Metric Related Comparison 

 

 

Figure 4.7: Accuracy Evaluation Metric Related Comparison 
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measurement approach is at the recall metric's results as seen from (Table 4.16) and 

(Figure 4.5). This evaluation metric shows the ratio of the number of correctly 

recommended movies to the number of marked as liked movies by the users. So, the 

proposed approaches generate better results for recommending the liked movies to 

the users. This means that, the proposed approaches recommend liked movies more 

correct than the TF-IDF measurement approach. In addition to this, the 

recommended approaches generate better results for both F-Measure and accuracy 

evaluation metrics as seen from (Table 4.16), (Figure 4.6) and (Figure 4.7). The F-

Measure metric is a combination of precision and recall metrics and to calculate this 

metric; as we said before, we give equal weights to precision and recall metrics. 

Even if the three approaches have similar results for precision metric, by getting 

better results from F-Measure evaluation metric, it can be said that the proposed 

approaches generate more reliable recommendation scores than the TF-IDF 

measurement approach. Accuracy metric shows the number of movies which are 

recommended correctly to the total possible recommendations, as we said before. By 

getting better results from this evaluation metric, it can be said that the proposed 

approaches generate more accurate recommendations than the TF-IDF measurement 

technique approach. 

4.4.2. Comparison of Proposed Approaches with Each Other 

It is also seen from the (Table 4.16) and (Figure 4.3); for each evaluation metric, the 

proposed user attribute preference boosted content based recommendation approach's 

results are better than the proposed user category preference boosted content based 

recommendation approach's results. The reason behind this result is the user's 

attribute preference information includes more detailed information related to user 

preferences than the user's category preference information. Because; in user's 

category preference related approach, the user's preferences related to the attributes 

under a specific category is summarized and a final category preference ratio is 

calculated. So, this generalization causes getting less accurate results than the user's 

attribute preference approach. As we said before, user's category preference ratio is a 

one level abstraction of the user's attribute preference ratio. Correspondingly, the 

recommendation scores which are calculated according to user category preference 
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approach are generated with less detailed information. As a result, user category 

preference based approach's results are less accurate than the user attribute 

preference based approach's results. 

4.4.3. Comparison of Proposed Approaches with Approaches from Literature 

(Table 4.17) shows the precision, recall and F-measure metric results for both 

proposed approaches and some known approaches from literature. 

Table 4.17: Comparison of the Proposed Approaches with Other Approaches 

Approach Precision 

(%) 

Recall  

(%) 

F-Measure 

(%) 

HybridMovieRecommender 83 34 - 

MovieMagician Feature-Based 61 75 67.3 

MovieMagician Clique-Based 74 73 73.5 

MovieMagician Hybrid 73 56 63.4 

MovieLens 66 74 69.8 

OPENMORE 62 91.7 74.1 

AttributeBasedRecommender 

Collaborative Filtering 

67.4 34.2 45.4 

AttributeBasedRecommender 

Content-Based 

69.8 35.7 47.2 

TF-IDF Based Recommendation 94 74.3 82.6 

Proposed User Category 

Preference Boosted Content 

Based Recommendation 

94.3 76 84.3 

Proposed User Attribute 

Preference Boosted Content 

Based Recommendation 

94.3 79 85.6 

 

HybridMovieRecommender [6] is a movie recommender system which combines 

collaborative filtering with content-based recommendation and uses a dataset which 
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is obtained from 260 users and includes 45,000 movie ratings. MovieMagician [24] 

is a recommender system which uses hybrid recommendation approach and uses two 

different datasets to evaluate the system: a locally collected dataset at University of 

Saskatchewan and a movie dataset which is reachable from DEC Research Systems 

Center. In this recommender system; kinds, directors and actors are defined as 

features of a movie. MovieLens [49] uses collaborative filtering approach and 

OPENMORE [36] uses content-based recommendation approach to recommend 

movies by using MovieLens dataset [52]. AttributeBasedRecommender [68] is a 

material recommender system which uses an attribute-based multidimensional 

approach for recommendation by using a real-world dataset which is obtained from 

the usage data of a course management system named Moodle. In addition to them, 

TF-IDF approach is implemented by using our data set to make a fair comparison.   

It can be seen from the (Table 4.17) that, proposed approaches outperform these 

approaches according to precision and F-measure metrics. Only OPENMORE [36] 

approach outperforms the proposed approaches at recall metric. But, the F-measure 

metric is the combination of precision and recall metrics. So, by using the F-measure 

metric as the base metric, we can say that the proposed approaches generate better 

results than the said approaches at (Table 4.17). 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

This thesis presents a novel content-based recommendation approach which uses the 

user preference information that is extracted via a new approach. The item attributes' 

and the item attribute categories' importance levels in the eyes of users are calculated 

by a statistical point of view. Then, this importance levels are used while the user 

profiles are generating. User's past preferences are divided into two sets according to 

the given rating scores to calculate the importance levels: Like Set and Dislike Set. 

Each attribute's importance level are then calculated by mining the like set and 

dislike set. 

The main contribution of our approach is that by including the item attribute's and 

item attribute category's importance levels according to each user while creating the 

user profiles will increase the accuracy of the user profiles and consequently increase 

the accuracy of predicted rating scores. 

Our first hypothesis was, if an item attribute is discriminative for a user, then the user 

will rate each item which has this specific attribute in the same way, either positively 

or negatively. By looking at the rating scores in this point of view, we extract the 

hidden item attributes which effect the user while user gives a rating score to an item. 

We propose that; by extracting the item attribute's distinctiveness according to each 

user, more user oriented profiles can be generated. Generating more user oriented 

profiles is one of the main goals of recommender systems. Because, the main aim of 

recommender systems is to generate more personalized recommendations. Also to 
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generate more personalized recommendations, user preferences should be well 

understood by the system and user profiles should reflect the user preferences 

correctly. 

Our second hypothesis was, including more discriminative item attributes' weight 

values to the rating prediction process more than less discriminative one's weights in 

proportion to the distinctiveness scores will increase the accuracy of predicted rating 

scores. After calculating the distinctiveness of each item attribute and item attribute 

category, we include the discriminative item attributes and item attribute categories 

weights to the rating prediction process more than less discriminative one's weights 

by a novel rating score prediction algorithm.  

To the best of our knowledge, in the literature there is not any similar work which 

distinguishes the item attributes' and item attribute categories' importance levels 

according to each user by a statistical approach which is similar to the proposed 

approach. Because of this reason; to evaluate the proposed approach in a fair way, 

we also implement the traditional content-based recommendation approach which 

uses TF-IDF measurement with our data set to compare the results. 

In the evaluation phase of our proposed approach, we have used a new and a real 

dataset which is obtained from the website named "cineworm.com" [15]. We choose 

to use this dataset, because we wanted to use a real dataset which is extracted from a 

real world application to test our approach. To use this dataset, we clean the original 

dataset and convert the website's database tables into a different form which is 

suitable for our proposed approach. Then, we divided our dataset three times to the 

two randomly divided parts: train part and test part. We apply our recommendation 

approach to these train-test parts three times. We used the most common evaluation 

metrics like precision, recall, f-measure and accuracy to evaluate the proposed 

approaches. 

We evaluate our proposed two approaches separately. Our first approach uses item 

attribute's importance levels while generating user profiles and calculating predicted 

scores. Our second approach is a one level abstraction of the former one. In the 

second approach, item attribute categories' importance levels are used instead of item 
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attribute importance levels. When we compare our two proposed approaches, the first 

approach which considers item attribute importance levels outperforms the second 

approach in all metrics. Because, with the first approach more detailed user profiles 

are generated. In the second approach user profiles are less detailed because of 

theusage of the item attribute categories instead of item attributes themselves which 

are more detailed than categories. 

In the experiments, proposed approaches generate better scores for all metrics than 

the traditional content-based recommendation approaches which uses TF-IDF scores 

of item attributes. In addition to traditional content-based recommendation approach, 

our approaches outperform the some known approaches from literature in f-measure 

metric which is the combination of both precision and recall metrics. As a future 

work; to make more fair comparisons with the approaches from the literature, same 

datasets that are used in their approaches can be used to implement the proposed 

approaches; such as the MovieLens dataset [52]. 

As a future work; to validate the proposed approaches in a different way, we could 

also compare the automatically generated preference weights with those that could be 

collected from the users directly. A set of users could be asked to give weights to the 

categories and attributes. After collecting the answers, a comparison could be done 

between the generated results and the collected ones. 

In the implementation phase of our proposed approach, we used a database which 

consists of movies as items. But, the proposed approach is a domain independent 

approach. Any item which can be represented via attributes and attribute categories 

can be used with our proposed approach. As a future work, the proposed approach 

can be applied to any other domain which is related to books, news or products. For 

instance; if the proposed approach is implemented for the book domain, the 

categories that the proposed approaches will use may be: author, genre, publication 

year, title, subject and publisher. 

Because the proposed approach is a content-based approach, it suffers from the 

overspecialization problem. To include some randomness to the proposed approach, 

a new hybrid recommendation approach which combines collaborative filtering 
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approach with our proposed approach can be developed to recommend items to 

users. In addition to this, users' demographic information such as age, gender and 

nationality information can be used to categorize the users and a different hybrid 

recommendation approach which combines demographic recommendation approach 

with the content-based approach could be developed to gather more accurate 

recommendations. 

In the experiments phase, we accepted the ratings below 6 as negative ratings and the 

ratings above 6 as positive ratings. As a future work; instead of this assumption, a 

normalization of user ratings to equalize the results between users who are slow to 

like or quick to like could be done while implementing the proposed approaches. 

Interaction design for recommenders is another topic in recommender systems 

domain. As a future work, an interface which users can interact with the proposed 

system effectively by considering the small mobile device screens can be integrated 

to the proposed system.  
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 TEZİN ADI (İngilizce) : USER PREFERENCE BOOSTED CONTENT- 
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