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ABSTRACT 

 
 

A GENETIC ALGORITHM FOR THE RESOURCE CONSTRAINED PROJECT 
SCHEDULING PROBLEM HAVING A SINGLE MACHINE WITH SEQUENCE 

DEPENDENT SETUP TIMES 
 
 
 

Kaya, Süleyman 
M.S., Department of Industrial Engineering 

                                                      Supervisor: Assoc. Prof. Dr. Sedef Meral 
 

February 2013, 65 Pages 
 
The scheduling problem considered in this study is the integration of two different problems in the 
scheduling area. One of the problems is the resource constrained project scheduling problem with 
renewable resources, while the other one is the single machine scheduling problem with sequence 
dependent setup times. In real life, project scheduling problems are usually complicated and include 
various scheduling problems characteristics. The objective of the problem addressed is the 
minimization of the completion time of the project. A genetic algorithm and a MIP model are 
developed for the problem. The results of the genetic algorithm for small problem instances are 
compared with the results of the MIP model coded using the library of IBM ILOG CPLEX. The MIP 
model developed is the integration of the MIP model of the resource constrained project scheduling 
problem and the MIP model of the single machine scheduling with sequence dependent setup times. 
For big problem instances, results are compared with the results of hill-climbing-like search 
algorithm. Computer programs for the genetic algorithm, MIP model and the hill-climbing-like search 
algorithm are coded by Microsoft Visual C#  .Net platform. The results obtained by the proposed 
genetic algorithm are always superior to the hill-climbing-like search algorithm’s results. 
 
 
Keywords: Single machine scheduling with sequence dependent setup times, Resource constrained 
project scheduling, Genetic algorithms,  Search algorithms 
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ÖZ 

 
 
 
SIRA BAĞIMLI KURULUM ZAMANLI TEK BİR MAKİNEYE SAHİP KAYNAK KISITLI 

PROJE ÇİZELGELEME PROBLEMİ İÇİN BİR GENETİK ALGORİTMA 
 

 
 
 

Kaya, Süleyman 
Yüksek Lisans, Endüstri Mühendisliği Bölümü 

                                                   Tez Yöneticisi: Doç. Dr. Sedef Meral 
 

Şubat 2013, 65 Sayfa 
  
Bu çalışmada ele alınan çizelgeleme problemi çizelgeleme alanındaki iki farklı tipteki çizelgeleme 
probleminin birleşiminden oluşmaktadır. Bu problemlerden biri kaynak (yenilenebilir) kısıtlı proje 
çizelgeleme problemi, diğeri ise sıra bağımlı kurulum zamanlarına sahip tek makineli çizelgeleme 
problemidir. Gerçek hayatta proje çizelgeleme problemleri genellikle karmaşıktır ve çeşitli 
çizelgeleme problem karakteristiklerini içermektedir. Ele alınan problemdeki amaç projenin bitiş 
zamanını en aza indirmektir. Bu problem için bir genetik algoritma ve karışık tamsayılı doğrusal 
programlama modeli geliştirilmiştir. Küçük boyutlu problem örneklerinde genetik algoritmanın 
sonuçları IBM ILOG CPLEX kütüphanesi kullanılarak kodlanan karışık tamsayılı doğrusal 
programlama modelinin sonuçlarıyla karşılaştırılmıştır. Geliştirilen karışık tamsayılı programlama 
modeli, kaynak kısıtlı proje çizelgeleme probleminin karışık tamsayılı programlama modeli ile sıra 
bağımlı kurulum zamanlarına sahip tek makineli çizelgeleme probleminin karışık tamsayılı 
programlama modelinin birleşiminden oluşmaktadır. Büyük boyutlu problem örnekleri için genetik 
algoritmanın sonuçları, bir tepe-tırmanma benzeri arama algoritmasının sonuçlarıyla 
karşılaştırılmıştır. Genetik algoritma, karışık tamsayılı programlama modeli ve bir tepe-tırmanma 
benzeri arama algoritmasının bilgisayar programları Microsoft Visual C# .Net platform kullanılarak 
kodlanmıştır. Önerilen genetik algoritmanın verdiği sonuçların tepe-tırmanma benzeri algoritmanın 
verdiği sonuçlardan daima daha iyi olduğu gözlemlenir. 
 
 
Anahtar Kelimeler: Sıra bağımlı kurulum zamanlarına sahip tek makineli çizelgeleme,  Kaynak kısıtlı 
proje çizelgeleme, Genetik algoritmalar, Arama algoritmaları 
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CHAPTER 1 

 
INTRODUCTION 

 
 

The integrated problem addressed in this study is a resource constrained project scheduling problem 
with a special type of resource. The problem is adapted from a real life scheduling problem in a 
building construction project which is carried out in a construction area consisting of a number of 
sites. Similiar activities (tasks) are carried out at different sites, and the special resource, a crane, is 
used for some of the activities in this project. The crane can be used without a need for transport 
within the boundaries of a site. However, if an activity from a different site needs the crane, the crane 
should be taken to the site. Transportation of the crane requires a certain amount of time. When the 
problem is defined as such, it turns out to be an integrated problem which is a resource constrained 
project scheduling problem combined with the single machine scheduling problem having sequence 
dependent setup times.  
   
In resource constrained project scheduling problems (RCPSP), there is a set of tasks with a 
precedence relationship among tasks. Each task has a processing time and needs resources to be 
completed. There are a number of different types of resources with certain availabilities.   
 
The project can have renewable resources or non-renewable resources. The same amount of each 
resource type is available in each unit time period of the project in renewable resources case. If a task 
consumes a certain amount of a resource type in some time period of the project, the available amount 
of this resource type is decreased by the consumption amount of the task for the rest of the time 
periods of the project in non-renewable resources case. The project in this study is assumed to have 
renewable resources.  
    
The project can be in single-mode or multi-mode. In multi-mode, tasks of the project have different 
processing times and need different amount of resources depending on the task mode. Tasks of the 
projects have more than one mode and mode of a task to be selected in the project is also determined 
to find the optimum schedule in the multi-mode case. The project type in this study is a single-mode 
resource constrained project scheduling problem so all tasks in the project have only one mode. 
 
The aim of the RCPSP is to find a schedule that represents the start time of each task in the project so 
as to minimize the project completion time. The RCPSP is an NP hard problem (Blazewicz et al., 
1983). 
 
Single machine scheduling problem with sequence dependent setup times can be thought as the 
special case of the sequence dependent setup time flowshop problem (SDST flowshop) so we give the 
SDST flowshop problem definition. In SDST flowshop scheduling problem, there is a number of 
tasks that have to be processed sequentially on the machines. The objective is to find the ordering of 
the tasks on the machines that minimizes the completion time of all tasks. Processing order of the 
tasks can be different on each machine. In sequence dependent setup time flowshop problem, setup 
time of the machine for a task depends on the task previously processed on the machine. There is also 
a setup time for the task which is first processed on the machine. Sequence dependent setup time 
flowshop scheduling problem is among the difficult problems in scheduling theory. The single 
machine scheduling problem with sequence dependent setup times is NP hard as  it is shown to be 
equivalent to the travelling-salesman problem (Pinedo M., 1995). 
 
The integrated problem in this study, is a RCPSP, but there is additionally one special machine that 
some tasks need. Processing ordering of the tasks on this machine affects the setup time of the 
machine for a task that needs this machine. Tasks that need this special machine also need other 
resources. There is a precedence relationship among all tasks in the project as in the RCPSP problem. 
All tasks in the project need some resources to be completed as in the RCPSP and all resource types 
in the project are renewable. 
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In Chapter 2, we give a more detailed definition of the integrated problem, MIP model of the resource 
constrained project scheduling problem, MIP model of the single machine scheduling problem with 
sequence dependent setup times and MIP model of the integrated problem. In Chapter 3, literature 
review on the MIP modelling of the flowshop scheduling problem having sequence dependent setup 
times and metaheuristic methods to solve resource constrained project scheduling problem are 
discussed. In Chapter 4, a genetic algorithm for the integrated problem is developed and the 
parameter adjusting of the genetic algorithm is explained. In Chapter 5, the results of the genetic 
algorithm are compared with a hill-climbing-like search algorithm for the big problem instances. For 
the small problem instances, results of the genetic algorithms are compared with the MIP model 
results. We conclude in Chapter 6 that the genetic algorithm developed for the integrated problem is 
better than the hill-climbing-like search method and for the integrated problem, other metaheuristic 
solution methods can be developed. 
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CHAPTER 2 

 
PROBLEM DEFINITION AND MODELLING 

 
 

In this chapter, first, definition of the integrated problem is given. Next, the MIP model for the 
RCPSP and then single machine scheduling with sequence dependent setup times problem are 
provided. Last,  MIP model for the integrated problem is developed. 
 
 
2.1 Definition of the Integrated Problem 
 
There is a set T of tasks such that T = T1 U T2, where T1 is the set of tasks that need the machine and 
T2 is the set of tasks that do not need the machine. Precedence relationships among tasks are the same 
as the precedence relationships in the RCPSP, and precedence relationships exists among all tasks in 
the project. 
 
Setup time for a task j that needs the machine is denoted by Sij that is setup time of the machine for 
task j which is immediately processed after task i on the machine. There is also a setup time for the 
task which is first processed on the machine. Setup of tasks are known and external, that is machine 
setup for a task is completed before the task becomes available to be proceessed on the machine, since 
the machine operator knows which task will be processed on the machine after a task is processed on 
the machine before the project starts and thus the machine operator can set up the machine 
immediately for the next task after a task is processed on the machine. Provided that the necessary 
resources are available, processing of a task that does not need the machine starts after all immediate 
predecessor tasks are completed. Provided that the necessary resources are available, processing of a 
task that needs the machine can start after the setup of the machine and all its immediate predecessors 
are completed. 
 
Processing time of a task is denoted by Pi. Processing time of a task that needs the machine does not 
include the setup time. There are k types of resources and Rk denotes the available amount of resource 
k at every time period of the project timeline. Amount of resource k that task i needs is Qik.   
 
Resource constraint is the same as the resource contraint in the RCPSP and all tasks need some 
resources. A task that needs the machine to be completed also needs some other resources. Similarly, 
a task that does not need the machine to be completed need some resources. A task that needs the 
machine to be completed use resources during the processing time only, but not during the setup time. 
The objective is the minimization of the completion time of the project. 
 
If we think that there is no setup time for the machine in this problem, in other words, setup time is 
equal to zero, then the problem will be equivalent to the RCPSP. In this special case of the problem, 
the machine can be seen as a type of resource. We conclude that this special case of our problem is a 
RCPSP, therefore our integrated problem is NP hard. To explain some properties of the integrated 
problem, we use the example network diagram in Figure 1 below. 
 
 
                                                                                                                  Task that needs the machine 
                                                                                                                                
                                                                                                                  Task that does not the machine             
 
 

 
 
 
 

                                            Figure 1 A sample network diagram
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Task 0 and task 7 are dummy tasks. Completion time of task i is denoted by iC . Start time of a task 
that needs the machine is after the setup of the machine is completed. Start time of task i is denoted 
by iB .  
 
Using the sample network diagram in Figure 1, 1T = {1, 2, 4, 5} and 2T = {3, 6}. 
 
In any feasible solution, task 1 and task 2 have no predecessors and there is no precedence relation 
between task 1 and task 2 but task 1 or task 2 must be processed first on the machine and naturally the 
ordering of task 1 and task 2 occurs in any solution of the problem. 
 
Suppose that in a feasible solution, processing order of tasks on the machine is 1-2-5-4. Task 1 is 
processed first on the machine. 
 
 
In this feasible solution,  
 

1C  ≥  1P  + 01S  

2B  ≥  1C  + 12S  

4B  ≥  1C  

4B  ≥  2C  

4B  ≥  5C  + 54S  

5B  ≥  1C , 5B  ≥  2C , 5B  ≥  3C  

5B  ≥  2C  + 25S  

6B  ≥  2C  

6B  ≥  3C  
 
Based on this solution before the project starts, the machine operator knows that after task 2 is 
processed on the machine, task 5 is processed on the machine, so the machine operator starts to set up 
the machine immediately after task 2 is processed on the machine. The machine operator does not 
wait for the completion of task 3 to set up the machine for task 5. 
 
 
2.2 MIP Model for the RCPSP 
 
Definition for the RCPSP is given in Chapter 1, so we give the MIP model according to this 
definition. 
There are n-1 tasks in the project. 
 
T is the set of tasks. T = {0, 1 . . . , n-1, n }.  0 and n are the dummy tasks. Task 0 represents the start 
task of the project and task n represents the end task of the project. 
 
There are s types of resources. S = {0, 1 . . . , s-1, s }.   
 
TP is the set of the unit time periods of the project. TP = {1 . . . , m-1, m }. Completion time of a 
heuristic method can be taken as a value for m. The result of the problem with the genetic algorithm is 
used to adjust the maximum completion time of the project in MIP modelling. 
 
In Figure 2, an example of a project timeline is given. The project is completed at time 5 and starts at 
time 0. The numbers in the boxes are the numbers of time periods. Time period 3 means that (starting 
time point, ending time point) is (2, 3). 
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 0      1       2      3      4      5 
 

Figure 2 A project timeline 
 
 
 

Parameters : 
 

iA : Set of immediate predecessors of task i 

iP : Processing time of task i. 0P  = 0 and nP  = 0 

kR : Available amount of resource k in each unit time period of the project 

i kQ : Amount of resource k that task i needs during a period of its processing time. 0kQ = 0 and  

n kQ = 0 
If task j is the immediate predecessor of task i, ijIP  = 1 else ijIP = 0. 

ijIP = 1 if
0 otherwise

i    j  A
   

 ∈
 
 

   

ECi  : Earliest completion time of task i 
LCi  : Latest completion time of task i  

Earliest completion time and latest completion times are calculated as in the critical path method. 
 
Decision variables: 
 

iC  : Completion time of task i, 

itY = 
 if task    is completed at the end of time period  1   

0   otherwis
,

e
i t 

 
 

 

itY is defined in the interval [ , ]i i iEC P LC −  
 
The RCPSP model is explained below.        
     
The objective is to minimize the completion time of dummy task n. 
 
 
The RCPSP model: 
 
min nC                                                                                                                              (1) 
 
s.to. 
 

1
i

i

LC

it
t EC

Y
=

=∑                                                ∀ i ∈  T \ {0, n}                                             (2) 

 
1

0
i

i i

EC

it
t EC P

Y
−

= −
=∑                                            ∀ i ∈  T \ {0, n}                                             (3) 

 
i

i

LC

it i
t EC

Y t C
=

 =∑                                             ∀ i ∈  T \ {0, n}                                            (4) 

 

i jC  C≥ + iP                                            ∀ i ∈  T , ∀ j ∈  T,  ijIP = 1                         (5) 

1 2 3 4 5 
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[ 1, ]

i

i i i

t Pn

ik iq k
i q t

t EC P LC

 Q  Y   R
            

  

+ −−

= =
∈ − +

≤∑ ∑            ∀ k ∈  S , ∀ t ∈  TP                                           (6) 

 

itY   ∈ {0, 1}                                         ∀ i ∈  T \ {0, n}, ∀ [ , ]i i it  EC P LC ∈ −             (7) 
 

iC  0≥                                                    ∀ i ∈  T                                                             (8) 
 
We explain the constraints below. 
Constraint (2) guarantees that each task is completed at the end of a time period. 
 
Constraint (3) guarantees that task i can not be completed at the end of a time period in the interval 
[ECi - Pi, ECi -1]. 
 
Constraint (4) specifies the completion time of each task using the assigned time period of the task in 
(2). 
 
Constraint (5) ensures that if task j is the immediate predecessor of task i, completion time of task i is 
greater than or equal to the completion time of task j. 
 
Constraint (6) ensures that at each time period and for each resource type, resource usage of all active 
tasks is less than or equal to the available resource amount. We say that a task is active at a time 
period if processing of the task is continuing at this time period. In constraint  (6), to determine if a 
task is active in a time period t, the time periods {t, t+1, . . . , t + Pi- 1} are checked. If this set 
includes the time period, at the end of which the task is completed, the task is active at this time 
period.  
 
Constraints (7) and (8) are the type and sign restrictions on the variables. 
 
 
2.3 MIP Model for the Single Machine Scheduling Problem with Sequence Dependent Setup 
Times   
 
This MIP model is the single machine case of the MIP model of the m-machine flowshop with 
sequence dependent setup times in the paper of Rios-Mercado and Bard (1997). 
 
There are n-1 tasks in the problem.  
 

0T is the set of tasks, 0T  = {0, 1 . . . , n-1}. Task 0 is a dummy task which denotes the start and end 
task in the processing sequence of tasks. 
 

1T  is the set of tasks except the dummy task, 1T  = {1 . . . , n-1}. 
 
Parameters:  
 

iP  : Processing time of task i.  0P  = 0  

i jS  : Setup time of the machine when task j is immediately processed after task i for i, j∈  0T  
There is also a setup time for the task which is first processed on the machine, in other words,  

0 jS ≠ 0. The value of j 0S  is equal to zero and does not affect the completion time of the project, but 

to construct the MIP model,  we suppose that the value of j 0S  is not equal to zero. The case of j 0S = 

0 gives the same result with the case of j 0S ≠  0 because j 0S
 
is not used in any time related 

constraint in the MIP model. 
 If i is equal to j, i jS  =  0    
M  is a big number.  
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Decision variables: 
iC   :  Completion time of task i 

ijX  = 
 if task    is  processed immediately after  task  on the mac1   

0   otherwise
hine,j i 

 
 

 

0iX  =  1 means that task i is the first task processed on the machine 

i0X  =  1 means that task i is the last task processed on the machine 

maxC :  Completion time of the project 
 
The objective is to minimize the completion time of the project. Then the model is : 
 
min maxC                                                                                                                    (9) 
                                                                                                                     
s.to 

0

0

1ij
j T
S   i  j

X =  
∈

≠

∑                                              ∀ i ∈  0T                                             (10) 

0

0

1ij
i T
S    i  j

X =  
∈

≠

∑                                              ∀ j ∈  0T                                            (11) 

 
(1 ) i j ij j ijC  + P  S   C  + M   - X+ ≤

          
∀ i∈ 1T , ∀ j ∈ 1T                             (12) 

 
 i maxC  C  ≤
                                                

∀ i∈ 1T                                              (13) 
 

0 0(1 ) i i i iP  S   C  + M   - X+ ≤
                  

∀ i∈ 1T                                             (14) 
 

ijX   ∈ {0, 1}                                               ∀ i ∈  0T , ∀ j ∈  0T , i  jS 0≠           (15)     
 

 iC  0 ≥
                                                       

∀ i∈ 1T                                             (16) 
                                              
 
Constraint (10) assigns an immediate successor to each task.  
 
Constraint (11) assigns an immediate predecessor to each task.  
 
Every task must have only one immediate successor and one immediate successor. 
 
After assignment of immediate successor and predecessor by (10) and (11), there can be loops in the 
sequence.  
 
We give examples for loops in Figure 3 and Figure 4 below. 
Suppose that the project has 6 tasks.  Task 0 is a dummy task. 
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Example 1 of loops is seen in Figure 3 below. 
 
 
 

 
 
 

                                                                             
                                                                                       
                                                                             loop 1                           loop 2 

 
Figure 3 First example of loops 

 
 
 
 

If task 0 (dummy task) is removed from the sequence, task 4 and task 6 are the successor and 
predecessor of each other in loop 1, and tasks 1 and 2 are the successor and predecessor of each other 
in loop 2. 
This assignment of tasks  is not a valid sequence. 
 
In the second example for loops in Figure 4, if task 0 (dummy task) is removed from the sequence, all 
tasks except task 6 are the successor and predecessor of each other. This assignment of tasks is not a 
valid sequence. 
 
 
 
 
 
 
 
                                                                                            
     
                                                                                                                loop 1 

 
Figure 4 Second example of loops 

 
 
 
 
 
A valid sequence of tasks is given in Figure 5 below. 
 
 
 
 
 
  
 
 

 
 

Figure 5 An illustration of a valid sequence 
 
 
 
 
 

If task 0 (dummy task) is removed from the sequence, the sequence 3- 6- 2- 4- 5- 1 is left.  
This assignment is a valid sequence. Task 3 is the first task which is processed on the machine. 

5 3

 

0

 

4

 

6

 

1

 

2

 

4

 

5

 

1

 

0

 

3

 

6

 

2

 

0

 

6

 

1

 

4

 

3

 

2

 

5

 

8 
 



Constraint (12) eliminates all the invalid sequences using the completion time of tasks except dummy 
task. Removing the dummy task is made possible in this constraint by using the set T1 which does not 
contain the dummy task. If a task is in a loop, a completion time can not be assigned to this task by 
(12) because a contradiction occurs. When we look at example 1 of loops, we see that constraints { 6C
≥ 4C  + 6P  + 46S , 4C ≥ 6C  + 4P + 64S } are produced by (12). There is no feasible completion time 
for task 4 and task 6, so this invalid sequence is eliminated by (12).    
Constraint (13)  takes the maximum of the completion times of tasks. 
 
Constraint (14) ensures that if a task is the first task which is processed on the machine, lower bound 
for the completion time of this task is the processing time of this task plus initial setup time of 
machine for this task.  
 
Constraints (15) and (16) define the decision variables. 
 
 
2.4 MIP Model for the Integrated Problem 
 
This model is the integration of the two models described in 2.2 and 2.3. 
 
There are n-1 tasks in the project.  
 
T is the set of tasks: T = {0, 1, . . . ,n-1, n}, where 0 and n are dummy tasks.  

1T is the set of tasks that need the machine and 1T ⊂   T  \ {0, n}. 

0T is the set of tasks that is the union of  1T and {n+1}.  n+1 is a dummy task which is used to 
determine the start and the end of the processing sequence of tasks on the machine. 
 

i jS  : Setup time of the machine when task j is immediately processed  
after task i for i, j ∈  0T . There is also a setup time for the task which is processed first on the 
machine, in other words, ( ) n+1 jS ≠ 0. We suppose that in the MIP model, (j n+1 )S ≠ 0. 

The meaning of i jX
 
is the same as i jX

 
in section 2.3. 

There is a precedence relationship between all tasks and
 
by looking the precedence relationship 

graph, we can reduce the number of decision variables i jX
 
where j ∈  1T  and i ∈ 1T .  

If  i  is equal to  j,  we don’t define variable i jX  and i jS = 0. 
Now we give the definiton of a path. 
A path in a graph is a sequence of nodes such that from each node there is an edge to the next node in 
the sequence. Path(i, j) is the set of all tasks in any path starting from i and ending at j. 
If there is a task that is the member of 1T and Path(i, j) \ {i, j}, we do not define the decision variable 

i jX  and ijS = 0. 

If task i is the successor of task  j, we do not define the decision variable i jX  and i jS = 0. 
 
In the calculation of the earliest and latest completion time of task j that needs the machine, setup 
time for the task j is taken zero. 
 
We do not explain other parameters and variables, because they are the same as those in section 2.2 
and 2.3. Therefore MIP model of the integrated problem is given below. 
 
The objective is to minimize the completion time of dummy task n, nC . 
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The Integrated Model:   
 
min nC                                                                                                                                     (17) 
 
s.to. 

0

0

1ij
j   T
S     ij

X  
∈

≠

=∑                                                    ∀ i ∈  0T                                                       (18) 

 

0

0

1ij
i   T
S    ij

X
∈

≠

=∑                                                    ∀ j ∈  0T                                                       (19) 

   
  
 

(1 ) i j ij j ijC + P S C + M   - X+ ≤
                         

∀ i ∈ 1T , ∀ j∈ 1T , i  jS 0≠                           (20) 
 

( 1) ( 1)(1 ) i n  i i n  iP  S   C + M   - X+ ++ ≤
            

∀ i∈ 1T                                                         (21) 
 

1
i

i

LC

it
t EC

Y  
=

=∑                                                          ∀ i ∈  T  \ {0, n}                                         (22) 

 
i

i

LC

it i
t EC

Y t C 
=

 =∑                                                      ∀ i ∈  T  \ {0, n}                                          (23) 

 
1

0
i

i i

EC

it
t EC P

Y
−

= −
=∑                                                     ∀ i ∈  T \ {0, n}                                           (24) 

 

i j iC  C P ≥ +                                                      ∀ i ∈  T , ∀ j ∈  T,  ijIP = 1                        (25) 
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[ 1, ]

i

i i i

t Pn

ik iq k
i q t

t EC P LC

 Q  Y   R
            

  

+ −−

= =
∈ − +

≤∑ ∑                         ∀ k ∈  S , ∀ t ∈  TP                                     (26) 

 

itY   ∈ {0, 1}                                                     ∀ i ∈  T , ∀ [ , ]i i it  EC P LC ∈ −                    (27) 
 

iC  0≥                                                                ∀ i ∈  T                                                        (28) 
 

ijX  ∈ {0, 1}                                                         ∀ i ∈ 0T , ∀ j∈ 0T  , i  jS 0≠                         (29) 
 
 
Constraints (18) and (19) construct a processing sequence on the machine for tasks that need 
machine. 
 
The constraint (20) eliminates loops by using the completion time of tasks that need the machine. 
Loops can be formed by constraints (18) and (19)  
 
Constraints (21), (22), (23), (24), (25), (26) have the same meaning as those in section 2.2 and in 
section 2.3. 
 
Constraints (27), (28), (29) define the decision variables. 
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CHAPTER 3 

 
LITERATURE REVIEW 

 
 

In this chapter, first, we review the papers related to the flowshop scheduling problems with sequence 
dependent setup times for the MIP modelling of the integrated problem, because single machine 
scheduling problem is the special case of the flowshop scheduling and different MIP models in SDST 
flowshop scheduling literature can be found to model the single machine scheduling with sequence 
dependent setup times. Next, papers related to the project scheduling with sequence dependent setup 
times are reviewed. Last, papers related to metaheuristic solution methods for resource constrained 
project scheduling problems are reviewed. 
 
 
3.1 Flowshop Scheduling Problems with Sequence Dependent Setup Times 
 
Rios-Mercado and Bard (1997) provide a MIP model for m-machine flowshop scheduling problem 
with sequence dependent setup times. This model is the traditional TSP-based formulation. The 
model, which is given in section 2.3 of this thesis, is the single machine case of this model. The 
validity of the model does not depend on whether the sequence dependent setup times satisfy or do 
not satisfy the triangular inequality. Main decision variable in this model is based on the idea of 
immediate predecesor and immediate successor of a task in processing sequence of tasks.  
 
Srikar and Ghosh (1986) propose a MIP model. Main decision variable in this model is based on the 
idea that a task is scheduled any time before another task. This model uses a less number of binary 
variables and constraints than the traditional TSP-based formulation. As long as the setup times 
satisfy the triangular inequality, this model is valid. 
 
Stafford and Tseng (2001) provide two MIP models for the problem. One of the two models is based 
on the Srikar and Ghosh (1986) model and the other model uses a decision variable which determines 
the position of a task in the processig sequence of tasks. Each task can be assigned to only one 
position in the sequence. 
 
There is also a different version of the flowshop problem. This flowshop problem is called hybrid or 
flexible flowshop problem with sequence dependent times. In hybrid flowshop problem (HFP), there 
is a sequence of stages and in each stage, there are parallel machines. Some stages can have one 
machine, but in HFP, there is at least one stage having more than one machine. Each task is processed 
by at most one machine in a stage. Some tasks can skip some stages, in other words, some tasks need 
not to be processed in all of the stages. Modelling of the hybrid flowshop problem has similar 
properties with the classical flowshop problem, so we give some literature for the modeling of HFP 
 
Zandieh et al. (2005) propose two MIP models for the HFP: the first model is based on the TSP like 
model of Rios-Mercado and F. Bard (1997) and the second model is based on the position assignment 
of tasks in processing sequence on the machine like Stafford’s model. First, a task is assigned to one 
of the parallel machines in stages then processing sequence of tasks on the machine is determined in 
these models. 
 
Ruiz et al. (2008) propose a MIP model for a more realistic case of HFP. In this realistic case, there is 
also a precedence relationship among tasks. Anticipatory and non-anticipatory setup times are 
considered. In non-anticipatory setup time, the task should be available on the machine for the setup 
of the machine. In anticipatory setup time,  if we know the next task to be processed on the machine, 
we can start the setup of the machine as the processing of the current task is completed. A TSP based 
formulation is proposed by them. 
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Ruiz and Maroto (2006) propose a genetic algorithm for the hybrid flowshops with sequence 
dependent setup times. Encoding of the solution representation in these problems is generally 
permutation of tasks in an array representation. 
 
 
Many papers related with sequence dependent setup times are about single machine and parallel 
machine scheduling as well as flowshop and job shop problems. Sequence dependent setup times in 
project scheduling are mentioned in only a few papers.  
 
Now we review the studies related to resource constrained project scheduling with sequence 
dependent setup times. 
 
 
3.2 Project Scheduling with Sequence Dependent Setup Times 
 
Mika et al. (2006) give some properties of setup time in project scheduling such as how setup time is 
related to precedence constraints in the project. Three cases of setup times are mentioned. In the first 
case, setups depend on the precedence constraints; in the second case, setups do not depend on the 
precedence constraints, and in the last case, setups are partially dependent on the precedence 
constraints. If setups are dependent on the precedence constraints, no activity’s setup can be done 
before completion of all immediate predecessor of the activity. If setups do not depend on the 
precedence constraints, setups can be done in any time after the resource is released by the previous 
task executed. Setups can be done before completion of the predecessors of the activity. In this thesis, 
setup does not depend on the precedence constraints. Setup is done after the resource is released by 
the previous task which can not be in the predecessor set of the current task. In the last case, setups 
partially depend on the precedence constraints. For example, resource is necessary for a task that can 
depend on the output of the preceding task, in other words the output of the preceding task is 
transported to a place where the setup of the resource is done with this output. 
 
Hartman and Briskorn (2010) give a survey of variants and extensions of resource constrained project 
scheduling problems. They provide a brief information about papers with setup time related resource 
constrained project scheduling problems.  
 
Drexl et al. (2000) is the first paper that mentions on changeover time in RCPSP. In this paper, some 
tasks in the project have changeover times (sequence dependent setup times). Setup time related 
constraint is added to the MIP model of the RCPSP in a clever way. If there is a setup time Sij 
between task i and task j, there must be at least Sij plus (processing time of task j) time units between 
the completion time of task i and completion time of task j. In other words, at most one of tasks i and 
j must be scheduled in the time window [t, t + Sij]. This idea is used in the modelling of the problem. 
For the validity of this MIP model, setup times must provide the property like triangular inequality. 
To produce the sequence 1-2-3 by this model, S12 plus processing time of task 2 plus S23 must be 
greater than or equal to S13. This problem is similar to the problem in this thesis, but modelling in this 
thesis uses TSP based approach and is developed with the help of single machine scheduling 
modelling. For the validity of the MIP model in this thesis, any relation between setup times is not 
necessary. 
 
Schwindt and Trautmann (2000) provide a mathematical model for the RCPSP which consists of 
tasks having sequence dependent setup times. There are processing units (resources) and a task needs 
at most one of these processing units. All tasks need a processing unit. Setup of the processing unit 
depends on the sequence of activities which are scheduled on this processing unit. In this problem, 
output of a task’s processing is the input for the immediate successor. A task needs some amount of 
the output of the predecessor. Naturally, precedence relation exists among tasks that have output-
input dependency. They handle this precedence relation by the constraints on the minimum 
inventories of inputs instead of writing a direct precedence constraint in the model. They provide a 
mathematical model for this problem in which tasks are sequentially assigned to processing units. For 
example, there are two processing units and five tasks. On the one processing unit,  tasks sequence is  
(3 - 5 - 4) and on the other processing unit, task sequence is (2-1). TSP based formulation is used to 
produce these sequences of tasks and for simplicity, setup time for the first task which is processed on 
a processing unit is assumed to be zero. They do not define any binary variable to handle other 
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resources (resource different from processing units) constraints, because they want to solve the 
problem by relaxing resource constraints. 
 
There is no MIP model which is the same as the MIP model in this thesis to the best of our 
knowledge. 
 
The main part of the problem is a RCPSP, so we investigate metaheuristic solution methods for the 
RCPSP to develop a genetic algorithm. Now, we review the literature for metaheuristic solution 
methods for the RCPSP. 
 
 
3.3 Metaheuristic Methods for the RCPSP 
 
In metaheuristic approaches, solution representation of the problem is very important. The solution 
representation is called as encoding of the solution. The solution representation must be transformed 
to a real schedule which has the time information of activities. This schedule generation process is 
called as decoding of the representation.  
 
In the first phase of a metaheuristic method, initial solution(s) which is(are) encoded by a solution 
representation is(are) produced by a heuristic method or randomly. The main building blocks of a 
metaheuristic approach are solution representation types, solution decoding methods and initial 
solution(s) producing methods.  
 
Sprecher et al.(1995) give the definitions for semi-active, active and non-delay schedules for the 
RCPSP.  
Definition 1: A left shift of activity j is the one-period left shift if the difference between new start 
time of the activity j and old start time of the activity j is one. 
Definition 2: A local left shift of activity j is a left shift of activity j which is obtainable by one or 
more successively applied one-period left shifts of activity j. 
Definition 3: A local left shift of activity j is a left shift of activity j which is obtainable by one or 
more successively applied one-period left shifts of activity j. 
In local shift of an activity, each intermediate derived schedules has to be resource and precedence 
feasible. 
Definition 4: A global left shift of activity j is a left shift of activity j which is not obtainable by a 
local left shift. 
Definition 5: A semi-active schedule is a feasible schedule where none of the activities can be locally 
left shifted. 
Definition 6: An active schedule is a feasible schedule where none of the activities can be locally or 
globally left shifted. 
The set of non-delay schedules is the subset of the set of active schedules, and the set of active 
schedules is the subset of semi-active schedules. 
 
Hartmann and Kolisch (2000) give the definitions for the serial and parallel schedule generation 
scheme. They also give heuristic methods for RCPSP. Now, we mention these schedule generation 
schemes and heuristic methods. 
 
Serial schedule generation scheme (SGS) consists of successive n steps; in each step an activity is 
selected from the eligible set and scheduled at the earliest precedence and resource feasible time. 
Eligible set is the set of unscheduled activities all predecessor activities of which have been scheduled 
in previous steps. The serial SGS produces active schedules. In scheduling problems with a regular 
performance measure such as makespan minimization, the optimal solution is the active schedule, 
therefore schedules produced by serial SGS contains the optimal solution. 
 
In each step of the parallel SGS, activities in the eligible set are scheduled at the fixed time t until the 
eligible set is empty in the step. When the eligible set is empty, next step starts at t_now which is 
equal to the minimum completion time of scheduled activities that are completed after t_previous 
which is the time in the previous step. Eligible set is the set of unscheduled activities which have the 
property that if any one of them starts at time t of the step, the partial schedule preserves resource and 
precedence feasibility. Initial time which is the time in the first step is zero. The parallel SGS 
produces non-delay schedules. Optimal solution for a RCPSP with regular performance measure can 
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have the schedule which is not a non-delay schedule therefore, optimal solution can be the 
nonmember of the set of schedules produced by parallel SGS. 
 
X-pass methods are construction type heuristics methods for the RCPSP problem and employ one or 
both of the SGS producing one or more schedules. In X-pass methods, selection of which activity in 
the eligible set depends on a priority rule or both priority rule and a selection probability. If a X-pass 
method produces one schedule, it is called as one-pass method. If it produces more than one schedule, 
it is called as multi-pass method.  
 
In single pass methods, activities are selected according to a priority value which is assigned 
according to a priority rule in each iteration of a SGS. There are many researches on priority rules for 
RCPSP. Latest finish time is a well known priority rule.  
 
Multi-pass methods are multi-priority methods, forward-backward scheduling methods and sampling 
methods. In multi-priority rule methods, different priority rules are applied on a SGS. Using convex 
combination of different priority rules, virtually unlimited number of priority rules can be generated. 
Priority value of activity i in the eligible set is obtained by the convex combination of priority values 
of different priority rules. 
 
In sampling methods one priority rule and one SGS are used. Different schedules are produced by 
different selection probabilities assigned to activities in the eligible set. Sampling methods are 
categorized into three types (random, biased random, regret based biased random sampling). 
 
In regret based biased sampling methods, different selection probabilities for an activity are produced 
by using different regret values. In computation of a selection probability, a regret value and priority 
value based computations are used. This is a biased method because by setting a proper value for the 
regret value in advance, an activity with the largest priority value in the eligible set can be selected.  
 
In forward- backward methods, an SGS is used; and at each iteration, one of the forward SGS and 
backward SGS is applied alternatively. Forward SGS is the application of the SGS starting from start 
activity and backward SGS is the application of SGS starting from finish activity. Priority value for 
an activity is usully taken from start or the lastly produced schedule depending on which 
SGS(forward or backward) is applied. For example, start time of activities in the schedule which is 
produced by backward SGS in the previous iteration are taken as priority value for activities in 
forward SGS and activities in eligible set are selected in the same order with increasing order of 
priority values. 
 
Klein (2000) gives priority rule based heuristics for resource constrained project problems. Serial 
forward /backward, parallel forward/backward schedule generation are explained. Bidirectional 
planning (construct schedule in forward and backward direction simultaneously) is given. Priority 
rules which are used for the selection of activity to be scheduled are given. Shortest processing time 
(SPT), Earliest Starting Time (EST), Greatest Resource Demand (GRD), Most Immediate Successors 
(MIS), Most Total Successors (MTS) are among the priority rules. Comparisons for different 
combinations of an SGS with a prioirity rule are given. 
 
Kolisch and Hartmann (1999) give five solution representations  (encodings) for the RCPSP. 
These are activity list, random key, priority rule, shift vector and schedule scheme representations. An 
activity list is a sequence of activities where successor of activity i comes after activity i. An activity 
list can be decoded by a serial SGS which schedules the activities in the order of activity list. A 
random key representation is an array of random values which are assigned to activites. These 
random values are used to determine which activity is selected from the eligible set in an SGS. 
Priority rule representation is a one dimensional array of priority rules such as latest finish time, latest 
start time and shortest processing time. The size of this array is equal to the number of activities. In an 
SGS, i-th activity is selected for scheduling according to i-th priority rule in the array. When the i-th 
activity is scheduled, priority value of activities in the eligible set are calculated according to i-th 
priority rule and then one of the activities in the eligible set is selected according to these priority 
values. Shift vector representation is a one dimensional array of shift values which are used for time 
shifting of activities. In the decoding process, the i-th activity is started at time t which is the 
maximum completion time of the immediate predecessors of i-th activity plus shift value in the i-th 
position of the array. Resource constraint is not considered in the decoding process. This situation is 
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handled by adding penalty value to the objective function for the resource violations. Schedule 
scheme representation is a set of four relation sets which are conjuction, disjunction, parallelity and 
flexibility. If (i, j) is in the conjuction set, activity j can start when activity j is completed. A schedule 
that satisfies these relations may not be feasible. In the decoding phase, a heuristic method is used to 
construct a feasible schedule.  
 
Mori and Tseng (1997) use a direct representation for their genetic algorithm, so decoding procedure 
is not necessary. In this direct representation, schedule order (a number) of activities and [start time, 
finish time] of activities are used. Schedule order determines the order activities are scheduled. [start 
time, finish time] of an activity is the start and the finish time of the activity in the feasible schedule. 
 
Now we give metaheuristic methods that are used in solving the RCPSP to develop a genetic 
algorithm. Although the aim of this thesis is to develop a genetic algorithm, other metaheuristic 
approaches as well are investigated to obtain information for encoding, decoding and neighbour 
generation. First, genetic algorithms for the RCPSP are given, then other metaheuristic methods such 
as tabu search, scatter search and variable neighbourhood search are given. 
 
 
3.3.1 Genetic Algorithms for the RCPSP 
 
Hartmann (2002) uses activity list in his genetic algorithm and extra gene is added to the solution 
representation. This extra gene determines whether parallel or serial SGS is used for decoding. Initial 
population is constructed by a priority rule based sampling heuristic. Two-point crossover is used and 
by the mutation operator, an activity is right shifted to a perecedence feasible solution. 
 
Hindi et al. (2002) use activity list and serial SGS in their genetic algorithm. Initial population is 
produced randomly. One-point, two-point and multi-point crossover operators are used. Randomly 
selected task is exchanged with a task. When the mutation operator is applied, the resulting activity 
list is precedence feasible.  
 
Toklu (2002) uses direct representation in his genetic algorithm. Infeasible schedules can be 
generated. Penalty function is used for these infeasible schedules. Two different crossover operators 
are used. Randomly selected genes of father and mother are interchanged in crossover operator 1. 
Genes between randomly selected two positions are exchanged in crossover operator 2. By the 
mutation operator randomly selected gene is changed. 
 
Alcaraz and Maroto (2002) develop a genetic algorithm for the multi-mode RCPSP. Activitiy list 
representation is used and additonally, forward(f) or backward(b) gene is used. Activitiy list with 
forward/backward gene is decoded by serial forward/backward SGS. In serial forward/backward (f/b) 
SGS, activities are scheduled starting fom the beginning/ending activity in the activity list. Initial 
population is generated by priority sampling method. Activity lists of the initial population are 
constructed according to which f/b gene is used. Activity list is filled from end/start to start/end when 
b/f gene is used. Two-point f/b crossover is used. First, two random points k1 and k2 (k1<k2) are 
selected. Then, first k1 activities are taken from the mother’s activity list when forward gene is used 
for mother and if backward gene is used for mother, activities starting from the positon k3 which is 
greater than k2 are taken from mother. Next activities between k1+1 and k2 are taken from father. Last, 
if forward gene is used for mother, activities starting from the positon k3 which is greater than k2 are 
taken from mother, and first k1 activities are taken from the mother’s activity list when backward gene 
is used for mother. In the mutation process, each activity is moved to a feasible position which is 
determined randomly. 
 
Kochetov and Stolyar (2003) develop a genetic algorithm for the RCPSP. Solution representation is 
activity list. Path relinking is used for the crossover operator. Two solutions from the population are 
selected, and a path of solutions which connect these two solutions is constructed. One of the solution 
from the path is selected and tabu search is applied to it. The solution which is produced by the tabu 
search is added to the pool, then the worst solution in the pool is removed. After the new solutions of 
the pool are constructed, diversification is applied to the new pool. The neighbourhood structure 
which is used in tabu search is explained. To obtain a neighbour solution, the activity list is divided 
into three parts considering parallel activities. For the first part, serial SGS; for the second part, 
parallel SGS; and for the third part, serial SGS is used.  
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Gonçalves and Mendes (2003) use random key representation and parallel SGS with some 
modifications employed. In this modifed parallel SGS, a delay time for the activity’s start time is 
considered. These delay times for activities are added to the random key representation. 
 
Coelho and Tavares (2003) use activity list and serial SGS. A new crossover operator called late join 
function crossover is used for activity lists. 
Tseng and Chen (2006) develop a hybrid metaheuristic method. Ant colony optimization, local 
search, genetic algorithm are used together. Precedence feasible activity list is used for decoding. The 
ants construct new activity list by looking for pheromones values. Pheromone value is the value of 
activity i which is assigned to position j in the list. If genetic algorithm search phase finds the best 
solution so far, pheromone values corresponding to this schedule are updated globally. In local search 
phase, first, forward schedule of activity list is generated. Second, backward schedule of activity list 
is generated. Third, forward schedule of the activity list of the backward schedule is generated. Last, 
best schedule of these schedules is selected. The best schedule is transformed to an activity list and 
kept. Global update and local update of the pheromone values are executed. Local updates of the 
pheromone values are applied when an ant constructs a new activity list. Gobal update is applied 
when all ants construct their activity list and the best activity is selected. When the genetic process 
stops, ant colony starts and then genetic process starts. Local search is applied to all activity list. In 
mutation operator, activities on the critical path of the schedule are determined and some of these 
activities are removed, then removed activities are inserted again to some positions in the activity list 
with precedence feasibility satisfied. Two mutation operators are applied. 
 
Kim et al. (2006) develop an adaptive genetic algorithm for the RCPSP. In this genetic algorithm 
priority based encoding for activity priority is used. Activity having the high priority is first 
scheduled. Iterative hill-climbing method is used for local search. This procedure is implemented in 
each generation. Rate of the crossover and mutation operator are calculated at each generation. In 
calculation of the rates, average fitness values of parents and offspring at generation are used as the 
main factor. Adaptively regulated rates of crossover and mutation operator are used in the next 
generation production. 
 
Valls et al. (2008) develop a hybrid genetic algorithm for the RCPSP. Activity list representation is 
used for encoding. Serial SGS is used for decoding. Initial population is generated by regret based 
biased sampling method with LFT priority rule. Double justification (first right justification, then left 
justfication) is applied to all members of the initial population. Right justification is the process of 
moving the activities to the right as much as possible in decreasing order of finish time of activities. 
Left justification is the process of moving the activities to the left as much as possible in increasing 
order of finish time of activities. Activity lists of the double justified schedules are produced. In 
parent selection first parent is the fittest individual and the second parent is randomly selected from 
the rest of the population. Peak cross-over operator used is based on the resource utilization in time 
periods. Activities that are scheduled in some part of the time period are taken into account. By the 
mutation operator, activitivies at succcesive positions in the activitiy list are exchanged if precedence 
feasibility is retained. Next step starts after neigbour solutions from the best solutions in the pool are 
produced. Next generation is the pool of neighbour solutions. Neigbour solutions are constructed by 
the selection of the activity in the list order or the selection of the activity according to a biased 
random sampling in each iteration of SGS. Selection rule used depends on its probability. 
 
Wuliang and Chengen (2009)  develop a genetic algorithm in which priority-based encoding is used. 
Serial SGS is used for decoding. Position based crossover is used. By the mutation operator, two 
random positions are generated within the range [1,n], and if they are not equal to each other, then 
their priority values are exchanged. 
 
Mendes et al. (2009) develop a genetic algorithm. Random key based representation is used in this 
genetic algorithm. Parameterized active schedule method is used to generate schedules. This schedule 
generation method produces parameterized active schedules that are the subset of active schedules. 
Non-delay schedules are the subset of the parameterized active schedules. By adjusting the parameter, 
the size of the set of parameterized active schedules can be reduced or increased. Chromosome 
representation consists of priority values and delay times. One parent for the crossover is selected 
from the fittest part of the population and the other parent is selected from the whole population. 
Randomly generated individuals are added to population instead of using a mutation operator. 
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Peteghem and Vanhoucke (2010) develop a bi-population genetic algorithm. Random key 
representation is used with topological ordering notation. Population 1 consists of left justified 
schedules and population 2 consists of right justified schedules. Backward procedure is applied on 
population 1 to build right justified schedules which are stored in population 2 and forward procedure 
is applied on population 2 to build left justified schedules which are stored in population1. Evoulation 
of the populations are done separately. 
Montoya-Torres et al. (2010) develop a genetic algorithm in which activity list representation is used 
and serial SGS is used for decoding. Two crossover operators are used: one-point crossover and two 
point crossover operator. In mutation operator, subsequent positions are changed with each other with 
a certain probabilty. 
 
When we look at the genetic algorithms, different encoding methods are used in genetic algorithms 
and some modifications of schedule generation schemes such as delay time addition to tasks’ start 
time are applied. Local search methods such as iterative hill climbing and left (right) justification are 
applied to the population members. Hybrid genetic algorithms which are the use of genetic algorithms 
together with other metaheuristic algorithms such as ant colony optimization are developed. 
Adaptation of the crossover and mutation rates by using the information from the previous generation 
is done in some genetic algorithms. 
 
 
3.3.2 Other Solution Methods for the RCPSP 
 
Palpant et al. (2004) develop a local search method. First, forward-backward scheduling is applied to 
the schedule then some part of the schedule is improved considering parallel or sucessive activities. 
These steps are repeated. 
 
Valls et al. (2003) develop a local search method. First, two types of moves are applied considering 
critical activities. Then random sampling is applied at time period which is determined from the 
schedule. Last, from the best solutions obtained from the previous step, neighbour solutions are 
produced. Neigborhood is constructed by the selection of the activity in the list order or the selection 
of the activity according to a biased random sampling in each iteration of SGS. Selection rule used 
depends on a probability. 
 
Bouleimen and Lecocq (2003) develop a simulated annealing algorithm for the RCPSP and for multi-
mode version. Activity list is used for encoding. A modificaiton of serial SGS is used for decoding. In 
this serial SGS, an activity i starts at fixed time t if precedence and resource feasibilty is attained. If 
any feasibility is not satisfied, the fixed time t is increased to a minimum value. When activity i starts 
at this new fixed value, resource and precedence feasibilty is satisfied in the partial schedule. If the 
activity is scheduled at fixed time t, the fixed time t is not changed. This serial SGS makes time 
increment when the activity can not start at time t of the step. Scheduling order of activities is the 
activity list order. Initial fixed time t is zero. Neighbour generation process is such that first an 
activity is selected randomly from the activity list. Then, the selected activity is moved to a position i 
which is within the [position j of the latest predecessor of selected activity, position k of the earliest 
successor of the selected activity]. Cyclical shifting of activities is applied. 
 
Valls et al. (2005) use forward-backward improvement with the simulated annealing algorithm. 
Neigborhood is constructed by the selection of the activity in the list order or the selection of the 
activity according to a biased random sampling in each iteration of SGS. Selection rule used depends 
on a probability. 
 
Thomas and Salhi (1998) use direct representation for the encoding of the solution in their tabu search 
algorithm. Infeasible schedules can be generated and these infeasible schedules are turned into a 
feasible schedule by a repair procedure. 
 
Klein (2000) use activity list and serial SGS in a tabu search algorithm. For the neighborhood, two 
activities are exchanged if feasibility is satisfied. 
 
Artigues et al. (2003) apply their insertion technique in a tabu search algorithm. Iteratively, an 
activity is selected and reinserted into a position with a network-flow based insertion algorithm in this 
insertion technique. 
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Nonobe and Ibaraki (2002)  use activity list and serial SGS in their tabu search algorithm. Shifting 
activities and a neighborhood reduction are used. 
 
Merkle et al.(2002) develop an ant colony optimization algorithm. An ant coressponds to how the 
serial SGS is applied when selecting an activity from the eligible set. An activity from the eligible set 
is selected by a decision which is given by using the combined information of latest start time priority 
rule and pheromone value. Pheromone value is the favorability of putting activity i immediately after 
activity j in the list. Forward or backward scheduling is also determined by additional ants. At the end 
of one step, local search is also applied. 
 
Fleszar and Hindi (2004) develop a variable neigborhood search for the RCPSP. Solution 
representation is activity list representation and ten neighbourhood structures are used. 
Neighbourhood k is moving of randomly selected k activities to feasible points in the activity list. 
Maximum value of k is ten. They develop a moving strategy to move an activity to a new position. 
Initial solution is produced by priority rule sampling method and restricted neighbour search is 
applied to initial solution to get local optimum. The restricted neighbour search is also applied to 
intermediate solutions. 
 
Muller (2009) develops an adaptive large neighborhood algorithm. Activity list is used as the 
encoding of the solution and serial SGS is used for decoding. Destroy(D) and repair(R) 
neighborhoods are defined. There are ten destroy and eleven repair neighborhoods. (D) removes some 
activities which are determined by a destroying rule. (R) inserts the removed activities by a repair 
rule. For example, (D) removes the activities in the high resource utilization time period. (R) inserts 
the activities according to a priority rule. Selection of which destroy or repair neighborhood is used in 
each iteration is done by using the past information about perfomance of the neighborhoods. 
 
Chen (2011) develops a partical swarm optimization. Serial SGS on activity list representation is used 
and justification is used. Forward and backward scheduling is used. Each solution represents the 
position of a particle. Every particle goes to a new position in each step of the algorithm. The velocity 
of the particle determines the position. Velocity is determined by the best solution of all particles and 
local solution of each particle. 
 
Debels et al. (2006) develop a scatter search for the RCPSP. Solution representation is topological 
order (TO) representation. TO representation is a sequence of numbers which are assigned to 
activities in the schedule. If start time of activity i in the schedule is less than start time of activity j, 
the value in the position i of the TO sequence is less than the value in the position j of the TO. 
 
Paraskevopoulos et al. (2012) develop a scatter search based algorithm. A new solution representation 
scheme is used. This representation is called event list based representation.  In this event based 
representaion, there are sets of tasks having the same start or finish time in the schedule. Adaptive 
iterated local search is used for improvement.  
 
Kolisch and Hartmann (2006) give brief explanations of the papers about metaheuristic methods for 
the RCPSP.  
 
There are some other papers about the new applications of some metaheuristic approaches such as 
immune algorithm, neurogenetic algorithm and some mixed applications of metaheuristic methods for 
the RCPSP (Paraskevopoulos et al., 2012).  
 
We have included the other metaheuristic algorithms for the RCPSP, because the solution encoding 
and neighbourhood structures in these algorithms can be used in a genetic algorithm. In our study, we 
develop a genetic algorithm for the RCPSP having a single machine with sequence dependent setup 
times using an elitist parent selection method and activity list representation which is more suitable 
for handling sequence-dependent setup times. Sequence of tasks on the machine in our integrated 
problem corresponds to the sequence of tasks in the activiy list. We use the neighbourhood structure 
in the simulated annealing algorithm of Bouleimen and Lecocq (2003) as a mutation operator in our 
genetic algorithm. This mutation operator is suitable for changing the sequence of tasks on the 
machine to a sequence having less total setup time. Details of the genetic algorithm for the integrated 
problem is given in the next chapter. 
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CHAPTER 4 

THE PROPOSED APPROACH: A GENETIC ALGORITHM 

In this chapter, a genetic algorithm is proposed for the RCPSP including a single machine with 
sequence-dependent setup times.  Some parameters of the algorithm are adjusted using small-sized 
problem instances. 

4.1 The Genetic Algorithm 

Genetic algorithms are the evolutionary algorithms that are inspired by the natural evolution. A 
genetic algorithm usually consists of initial population, selection, crossover, mutation and inheritance 
parts. Now, we give the detailed explanations for these parts of the genetic algorithm which is 
developed for the problem addressed. 

4.1.1 Solution Representation (Encoding) 

As a solution representation, one activity list which consists of all tasks in the problem is used. 
Activity list is a precedence-feasible list. If task i is a successor of task j, task i comes after task j in 
the activity list. Precedence graph of a problem can have many different activity list representations. 
An example network and one possible activity list representation are given below. 

Figure 6 Example network and an activity list representation 

4.1.2 Decoding of the Solution Representation  

Solution representation is decoded into a schedule by a modified serial schedule generation scheme 
(serial SGS) procedure.  

0 2 1 4 3 6 5 7  A possible activity list representation 
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The modified serial SGS is explained below. 

Tasks to be scheduled by the serial SGS are selected in the same order as the order in the activity list.  
If task i is in the k-th position in the activity list, then task i will be the k-th scheduled task by the 
serial SGS.        

Let 
Ci:  completion time of task i in the schedule. 
J(i):  task i's immediate activity list predecessor that needs the machine. 

Ii: set of immediate precedence graph predecessors of task i. 
Si j:  setup time of the machine if task j is processed after task i. 

If task i does not need the machine, it is started at time t where {t ≥ Cj for all j∈  Ii and resource 
feasibility satisfied}. 

If task i needs the machine, it is started at time t where  {t ≥ Cj for all j∈  Ii and t ≥ CJ(i) +SJ(i) i and 
resource feasibility satisfied} 

4.1.3 Initial Population Generation 

Initial population is generated by serial SGS which selects the activities from the eligible set 
randomly. In the serial SGS, we do not compute any time information for the task. We only put the 
tasks in the activity list. 

4.1.4 Fitness function 

Fitness of a solution is the completion time of the schedule. When the fitnesses of two solutions are 
equal, the solution having the higher total setup time can be better, because by decreasing the total 
setup time of the solution having the higher total setup time, there is a chance to decrease the 
completion time of the project. 

4.1.5 Parent Selection 

For the parent selection, the population is first sorted in increasing order of fitness value and then 
sorted in decreasing order of the total setup time of the solution.  One parent is selected from the 
fittest part of the population randomly and the other parent is selected from the whole population 
randomly. The fittest part of the population, which is x percent of the population, has the fittest 
members. The value of x is adjusted to obtain better results. Mendes et al. (2009) use this parent 
selection procedure in the genetic algorithm. 

4.1.6 Crossover Operation 

For the crossover operation, one-point and two-point crossovers are used for the RCPSP in genetic 
algorithms based on activity list representation in some of the studies. We also test three-point 
crossover for this integrated problem. Based on the preliminary results, one-point crossover is 
selected, because it gives relatively better results for the test problems. One-point crossover is better 
to convey the good properties of the parents to the children for our integrated problem.  

Test results for each crossover operator is given in Appendix B. 

After selecting the one-point crossover, the genetic algorithm is further developed on the base of one-
point crossover. These further developments include setup improvement and fitness improvement 
procedures. While determining the crossover operator type, the algorithm does not have the 
functionality of setup improvement and fitness improvement. 
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Setup improvement and fitness improvement procedures are explained after the one-point crossover 
explanation which is given below. 
 
In one-point crossover, the random number R1 is selected randomly in the range of [1, task count]. In 
child 1, first R1-1 tasks are the mother’s first R1 tasks. These R1-1 tasks are in the same order as the 
order in the mother’s activity list. Tasks in the range [position R1, task count] are taken from the 
father in such a way that a task which has the initial position in the activity list of the father among 
the tasks that are not in the child 1 is taken in each step. In child 2, mother is replaced with father and 
the same procedure is applied.  
 
After applying one-point crossover, activity lists of children are precedence-feasible, because task 
order in the activity list of parents is preserved in the activity list of the child by the order preservation 
property of the one-point crossover. 
 
An illustration of one-point crossover is given below in Figure 7. 
 
 
 
 
                                                                   R1( randomly selected point) 
 
 
 
     
  
 
    
  
 
 

    
  Figure 7 An illustration of one-point crossover 

 
 

 
 
In child 1, tasks 0, 2 and 1 are directly taken from the mother and the remaining tasks are taken from 
the father in the same order as the activity list of the father. 
     
In child 2, tasks 0, 1 and 4 are directly taken from the father and the remaining tasks are taken from 
the mother in the same order as the activity list of the mother. 
 
After applying one-point crossover operation, setup improvement and fitness improvement 
procedures are also applied to the children. Now we explain setup improvement and fitness 
improvement procedures.  
 
In setup improvement procedure, tasks that need the machine are considered to decrease the total 
setup time of child 1 when the total setup time of child 1 is greater than the mother’s setup time.  The 
idea behind the setup improvement is to take the good properties of the better solution if these 
properties make the receiver solution better. This idea can be used in other metaheuristic methods as a 
future study. 
 
 
 
 
 
 
 
 
 

0 2 1 4 3 6 5 7 Mother 

0 1 4 3 2 5 6 7 Father 

0 2 1 4 3 5 6 7 Child 1 

0 1 4 2 3 6 5 7 Child 2 

21 
 



An illustration of the setup improvement procedure is given below in Figure 8. 
 
 
 
 
                                                                                R1( randomly selected point) 
 
 
           
  
 
 

    
   Figure 8 An illustration of the setup improvement procedure 

 
 

 
 
Suppose that the total setup time of child 1 is greater than the mother’s setup time. The setup time of 
child 1 is tried to be improved by making the order of the tasks similar to the order in the mother. 
Tasks which are tried to be made similar to the mother are the tasks that need the machine and are on 
the right side of the randomly selected point R1. Left side of the randomly selected point R1 in child 1 
is the same as the mother. 
 
Suppose that tasks 6, 5 and 7 are the tasks that need the machine on the right side of the randomly 
selected point R1. In child 1, task 6 is tried to be put on the left of task 5, or task 5 is tried to be put on 
the right of task 6 if precedence feasibility allows, and the total setup time of the child is improved. 
There will be no task that needs the machine and that is between task 6 and task 5 after this procedure 
is applied. Then task 5 is tried to be put on the left of task 7 or task 7 is tried to be put on the right of 
task 5 if precedence feasibility allows and the total setup time of the child is improved. There will be 
no task that needs the machine and that is between task 5 and task 7. This procedure is applied until 
the end of the activity list of the mother is reached. For child 2, the mother is replaced with the father 
and the same procedure is applied to child 2. When we apply this setup improvement procedure, we 
see that the results of the genetic algorithm are improved. After the setup improvement procedure, 
fitness improvement procedure is applied to child 1 if the fitness of child 1 is greater than the fitness 
of the mother after the application of the setup improvement procedure to child 1. 
 
In fitness improvement procedure, a randomly selected task that is at the position in the range [R1, 
task count] is put in a precedence-feasible position if the fitness of child 1 is improved. If the fitness 
of the solution is not improved, randomly selected task is also put in a precedence-feasible position 
with a probability of 0.05. This procedure is applied until a number of tasks (randomly selected 
between 3 and 5) is put in a precedence-feasible position. 
 
Children that are formed by one-point crossover operator, improved by setup and fitness 
improvement procedures and mutated, are conveyed to the next generation. 
 
 
4.1.7 Mutation Operation 
 
Mutation procedure consists of two steps. In the first step, a task that needs the machine is removed 
from the activity list and reinserted in the most setup improving and precedence-feasible position in 
the list. If there is no setup improvement when we put the task in any feasible position in the activity 
list, the task is also put in the least setup deteriorating and precedence-feasible position with a 
probability of 0.05. 
 
In the second step, a task which needs the machine or does not need the machine is removed from the 
list and reinserted in a feasible position in the list, if there is a fitness improvement. If there is no 
fitness improvement when we put the task at the randomly selected feasible position in the activity 
list, the task is also put in this position with a probability of 0.05. In the second step, if we increase 

0 2 1 4 3 6 5 7 Mother 

0 2 1 4 3 5 6 7 Child 1 
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the probability of putting the task at the randomly selected feasible position when there is no fitness 
improvement, the convergence of the population will be in later generations.  
 
First step and second step are applied sequentially until a number of tasks (randomly selected between 
3 and 5) are removed and tried to be inserted in each of the first and the second steps. 
 
The insertion procedure can be defined as follows: task i is inserted randomly in a position which is in 
the range [R1+1, R2-1] and is different from the position of task i. R1 is the position of the first list 
predecessor of task i. R2 is the position of the first list successor of task i. Insertion is done by cyclical 
shifting of tasks.  
 
An example of the application of the insertion procedure is given below in Figure 9. 
 
 
 
 
 
 
 

 
Figure 9 An activity list representation 

 
 
 

 
Suppose that task 4 is removed and reinserted, task 7 and task 8 are the successors of task4, and task 0 
and task 9 are the predecessors of task 4. 
 
To find the first list predecessor of task 4, starting from task 4, the list is scanned from the right to the 
left until a predecessor is found. The first list predecessor of task 4 is task 9. 
 
To find the first list successor of task 4, starting from task 4, list is scanned from the left to the right 
until a successor is found. The first list successor of task 4 is task 7.  
 
Suppose that the position of task 5 is selected to insert task 4 (Figure 10). 
 
 
 
 
 
 
        

 
 

Figure 10 First example of cyclical shift 
 
 
 

 
In the cyclical shift, task 3, task 6 and task 5 are shifted to the left. Task 4 is put in the previous 
position of task 5. 
 
 
 
 
 
 
 
 
 

0 9 2 1 4 3 6 5 7 8               A sample activity list 

0 9 2 1 4 3 6 5 7 8 
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Suppose that the position of task 2 is selected to insert the task (Figure 11). 
 
 
 
 
 
 
 

 
 

Figure 11 Second example of cyclical shift 
 
 
 
 

In the cyclical shift, task 2 and task 1 are shifted to the right. Task 4 is put in the previous position of 
task 2. 
 
Bouleimen and Lecocq (2003) use this move for the neighborhood in their simulated annealing 
algorithm. 
 
At the end of the cyclical shift procedure, the precedence feasibility of the list is retained. 
 
This insertion procedure is also applied when we apply setup improvement and fitness improvement 
to the children which are formed by one-point crossover operator. 
 
 
4.1.8 Formation of the Next Generation 
 
P1 is the current population and P2 is the next population which is used in the next iteration of the 
genetic algorithm.  
 
To explain the next generation formation, P1 and P2 are divided into two sets. 
 
P11 contains the fittest members of population P1 and is equal to the fittest parents which are used in 
crossover operation: 
 
P1 = P11 U P12  
P2 = P21 U P22 and P21= P11,  P22 = Mutated children, 
 
P22 is the set of mutated children which are produced by applying mutation on children which are 
formed after applying one-point crossover, setup and fitness improvement procedures.  
 
 
4.2 Parameters of the Genetic Algorithm 
 
Parameters of the genetic algorithm are adjusted to a better value by testing some values for the 
parameters. 
 
 
4.2.1 Population Size  (parameter 1) 
 
Population size depends on the number of tasks in the problem. 
Population size is C ×  (number of tasks in the problem). C is a constant number. Tested values for C 
are 1, 3 and 5. C = 5 is taken in the genetic algorithm according to test results. 
 
 
 
 
 

0 9 2 1 4 3 6 5 7 8 
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4.2.2 Percentage Value for the Fittest Part (parameter 2) 
              
One parent is always selected from the fittest part of the population. This fittest part is X percent of 
the population. Tested values for X are 10, 20 and 30. 
 
 
4.2.3 Generation Number (parameter 3) 
 
Generation number determines when the genetic algorithm stops. Values tested for the generation 
number are 50, 100, 150, 200, 250. Maximum number of tasks in the problems tested is 120.  
 
 
4.2.4 Number of Tasks Selected for Mutation (parameter 4) 
 
Two children are produced by the crossover operation. These children are improved, mutated and 
then are conveyed to the P22 of next population. The number of tasks selected for the mutation in a 
child is randomly determined in the range [3, 5] in each of the first and second step of the mutation 
procedure. 
 
Fleszar and Hindi (2004) develop a variable neighborhood search algorithm and maximum number of 
tasks that are removed and inserted is adjusted to 10. The intervals for the number of tasks selected 
for mutation are determined from this experience. 
 
 
4.3 Adjusting the Parameters Using the Test Values 
 
To adjust the parameters, two problem sets are created.  Problems are taken from the PSPLIB website 
( http://webserver.wi.tum.de/psplib/  ). 
One problem set contains two problems having 30 tasks and the other problem set contains two 
problems having 60 tasks. Also, some tasks that need the machine are selected in a problem. These 
tasks use the machine for processing. A problem has the property that 70 % of tasks use the machine. 
Setup time Sij 

is taken randomly in the range  [1, processing time of task j-1].  
 
Problems are grouped according to their network complexity and resource complexity. 
 

Network complexity (NC) is   number of  arcs in the network
number of  nodes in the network

. 

 

Resource complexity (RC) is   

amount of  available resource 
total resource   need of  tasks 
number of  resource types

i

i
i ∑

. 

 
The higher value of network complexity means that there are more precedence relationships among 
tasks in the project and sequencing alternatives of the tasks that need the machine are less because of 
obeying of the sequence of tasks to the precedence relationships. If the value of the resource 
complexity of a project is smaller, there will be a higher competition among tasks for the resources.  
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Problem code and problem properties are given in the Table 1 below. 
 
 
 
 
 

Table 1 Problems used in parameters adjusting 
 

Problem Number of tasks NC RC X% of tasks that use the machine 
j3010_4 30 1.5 0.17 70 
j3045_4 30 2.12 0.10 70 
j6010_4 60 1.5 0.11 70 
j6045_4 60 2.11 0.05 70 

 
 
 
 
 

The problem j3010_4 has less value for the resource complexity than the problem j3045_4, so in the 
scheduling of the tasks of the problem j3010_4, there will be more resource usage conflicts among 
tasks. When the number of tasks that need the machine increases,  alternatives for the sequences of 
tasks increase and selection of the best sequencing of tasks becomes more difficult. 
 
 
4.3.1 Adjusting of Parameter 1 (Coefficient C in Population Size Calculation) 
 
When we fix the value of parameter 2 (percentage value for the fittest part in parent selection) and 
parameter 3 (generation number) at some tested values which are mentioned in sections 4.2.2 and 
4.2.3, the value of 5 for parameter 1 gives better results than other values tested for parameter 1. 
 
Ten replications for each problem and parameters combination are done. Average results of these ten 
replications for each problem with some parameters combination are given in average result column 
of the tables below (Tables 2 thru 9).  

 
 
 
 
 

Table 2 Average results for problem j3010_4 
 

Parameter 1 Parameter 2 Parameter 3 Average result 
1 10 100 177 
3 10 100 175.7 
5 10 100 175.1 
1 20 150 176.3 
3 20 150 175.2 
5 20 150 175 
1 30 200 176.1 
3 30 200 175.4 
5 30 200 175.2 
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When we examine the first three rows of the table above, we see that the value for (parameter 2, 
parameter 3) is fixed at the value (10, 100). The value 5 for the parameter 1 gives average result 
175.1, which is the average of the ten replications and is better than the average results of the other 
tested values, 1and 3, for the parameter 1. 
 
The remaining rows of the table can be interpreted similarly. The similar interpretation can be done 
for the other problems (Tables 3, 4 and 5). 

 
 
 
 
 

Table 3 Average results for problem j3045_4 
 

Parameter 1 Parameter2 Parameter 3 Average result 
1 10 100 148.7 
3 10 100 148.2 
5 10 100 148 
1 20 150 148.5 
3 20 150 148.1 
5 20 150 148 
1 30 200 148.4 
3 30 200 148.1 
5 30 200 148.1 

 
 
 
 
 

Table 4 Average results for problem j6010_4 
 

Parameter1 Parameter 2 Parameter 3 Average result 
1 10 100 290.4 
3 10 100 286 
5 10 100 284.3 
1 20 150 289.2 
3 20 150 284.9 
5 20 150 283.8 
1 30 200 287.1 
3 30 200 285 
5 30 200 283 
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Table 5 Average results for problem j6045_4 
 

Parameter 1 Parameter 2 Parameter 3 Average result 
1 10 100 241.2 
3 10 100 239.6 
5 10 100 239.3 
1 20 150 240 
3 20 150 239.2 
5 20 150 239 
1 30 200 240.3 
3 30 200 239.4 
5 30 200 238.9 

 
 
 

When we look at all tables, we see that value of 5 for parameter 1 is better than the values, 1 and 3, 
when parameter 2 and parameter 3 are fixed at some value. 
 
 
4.3.2 Adjusting of Parameter 2 (Percentage Value for the Fittest Part in Parent Selection) 
 
After selecting value ‘5’ for parameter 1,  we determine which tested value for parameter 2 gives a 
better result. 
 
When we fix values of parameter 3 (generation number) at some tested values which are mentioned in 
section 4.2.3, value of ‘20’ for parameter 2 gives better results than other tested values for parameter 
2. Ten replications are done for each test problem. 
 
In the first three rows of the Table 6 below,  parameter 3 is fixed at the value 150. The value ‘5’ for 
the parameter 1 is selected  in the all rows of the table because the value ‘5’ for the parameter 1 gives 
better results in adjusting of the parameter 1 in the previous part. In the last three rows of the table, 
parameter 3 is fixed at the value ‘200’. 
 
When we look at the first and last three rows of the table, the value ‘20’ for parameter 2 gives better 
results than the values ‘10’ and ‘30’ for parameter 2. In all tables (Tables 7, 8 and 9), the value 20 for 
the parameter 2 gives better results when the parameter 3 is fixed at some value which is given in the 
tables. Therefore, the value 20 for the parameter 2 is selected in the implementation of the genetic 
algorithm. 

 
 
 

Table 6 Average results for problem j3010_4 
 

Parameter 1 Parameter 2 Parameter 3 Average result 
5 10 150 175 
5 20 150 175 
5 30 150 177 
5 10 200 175.2 
5 20 200 175 
5 30 200 175.2 
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Table 7 Average results for problem j3045_4 
 

Parameter 1 Parameter 2 Parameter 3 Average result 
5 10 150 148.1 
5 20 150 148 
5 30 150 148.1 
5 10 200 148.1 
5 20 200 148 
5 30 200 148.1 

 
 
 
 
 

Table 8 Average results for problem j6010_4 
 

Parameter 1 Parameter 2 Parameter 3 Average result 
5 10 150 285.1 
5 20 150 283.8 
5 30 150 284.1 
5 10 250 284.1 
5 20 250 283.2 
5 30 250 283.9 

 
 
 
 
 

Table 9 Average results for problem j6045_4 

Parameter 1 Parameter 2 Parameter 3 Average result 
5 10 150 239.7 
5 20 150 239 
5 30 150 239.2 
5 10 250 239.6 
5 20 250 238.7 
5 30 250 239 

 
 
 
 
 

4.3.3 Adjusting of Parameter 3 (Generation Number) 
 
After selecting value ‘5’ for parameter 1 and value ‘20’ for parameter 2, we determine which tested 
value for parameter 3 gives a better result. Ten replications are done for each problem set. Average 
results of these ten replications are given for each parameter setting (Tables 10, 11, 12 and 13).  Best 
of the population is the fittest completion time among the completion times of population schedules. 
Average of the population is the average of the completion time of the schedules in the population.  
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Table 10 Average results for problem j3010_4 
 

Parameter 1 Parameter 2 Parameter 3 
Average result of 

the best of the 
population 

Average result 
of the average of 
the population 

5 20 1 199 217.4 
5 20 10 178 187 
5 20 20 176 186 
5 20 30 175.5 184 
5 20 40 175.3 181 
5 20 50 175.2 178 
5 20 100 175.1 177.6 
5 20 150 175 176.8 
5 20 200 175 176 
5 20 250 175 176 

 
 
 
 
 

Table 11 Average results for problem j3045_4 
 

Parameter 1 Parameter 2 Parameter 3 
Average result of 

the best of the 
population 

Average result of 
the average of 
the population 

5 20 1 164 178 
5 20 10 149 155 
5 20 20 148.6 152 
5 20 30 148.5 151 
5 20 40 148.4 150 
5 20 50 148.2 149.5 
5 20 100 148.1 149 
5 20 150 148 149 
5 20 200 148 149 
5 20 250 148 149 

 
 
 
 
 

For the problems j3010_4 and j3045_4, average result of the best of the population and average result 
of the population do not change after 150 generations. We can take 150 as a generation number for 
the small problem instances. 
 
For the problems j6010_4 and j6045_4, average result of the best of the population and average result 
of the population decrease when the generation number increases up to the value of 250. The 
generation number 250 can be taken when the problem size grows. The value ‘250’ for the generation 
number is taken in the implementation of the genetic algorithm, because the value ‘250’ gives better 
results for all problem instances sized from smallest to largest. Maximum number of tasks in the 
problems is 120. 
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Table 12 Average results for problem j6010_4 
 

Parameter 1 Parameter 2 Parameter 3 
Average result of 

the best of the 
population 

Average result of 
the average of 
the population 

5 20 1 329 353 
5 20 10 291 304 
5 20 20 288 294 
5 20 30 285 291 
5 20 40 284.5 291 
5 20 50 284.3 290 
5 20 100 284.1 286 
5 20 150 283.8 285.6 
5 20 200 283.6 285.4 
5 20 250 283.2 285.2 

 
 
 
 
 

Table 13 Average results for problem j6045_4 
 

Parameter 1 Parameter 2 Parameter 3 
Average result of 

the best of the 
population 

Average result of 
the average of 
the population 

5 20 1 275 295 
5 20 10 242 250 
5 20 20 241 242 
5 20 30 240 242 
5 20 40 239.8 241 
5 20 50 239.7 240.8 
5 20 100 239.3 240.6 
5 20 150 239 240.2 
5 20 200 238.9 240.1 
5 20 250 238.7 240 

 
 
 
 
 

4.4 Robustness of the Genetic Algorithm 

Robustness measures the independency between the inital population and quality of the result of the 
genetic algorithm. If there is a high independency between them, the algorithm is said to be robust. 

To test the robustness of the algorithm, all problems are solved for 10 times with the selected 
parameter values and the minimum, maximum, average and standart deviation of the results of ten 
runs are given for each problem. Through examining these values, robustness of the algorithm can be 
evaluated. 

The comparison for the performance of the algorithm can be possible with one run result of the 
algorithm if the algorithm is robust enough. 
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All problems and their properties are given in Table 14 below.  

 
 
 
 
 

Table 14 All problems and their properties 
 

Problem Number of tasks NC RC X %  of tasks that use the machine 
j1510_4 15 1.29 0.32 70 
j1510_8 15 1.41 0.32 30 
j1545_4 15 1.58 0.18 70 
j1545_8 15 1.76 0.18 30 
j3010_4 30 1.5 0.17 70 
j3010_8 30 1.5 0.17 30 
j3045_4 30 2.12 0.10 70 
j3045_8 30 2.12 0.08 30 
j6010_4 60 1.5 0.11 70 
j6010_8 60 1.5 0.11 30 
j6045_4 60 2.11 0.05 70 
j6045_8 60 2.11 0.05 30 
j9010_4 90 1.5 0.13 70 
j9010_8 90 1.5 0.09 30 
j9045_4 90 2.10 0.04 70 
j9045_8 90 2.10 0.04 30 

j12010_4 120 1.5 0.09 70 
j12010_8 120 1.5 0.08 30 
j12045_4 120 2.1 0.1 70 
j12045_8 120 2.1 0.12 30 

 
 
 
 
 

Minimum, maximum, average and standart deviation of the results of 10 runs are given in Table 15. 
The reader can refer to Appendix C for all results. 
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Table 15 All problems and their 10 runs’ results 

Problem Minimum Maximum Average Standart deviation 
j1510_4 103 103 103 0 
j1510_8 33 33 33 0 
j1545_4 70 70 70 0 
j1545_8 59 59 59 0 
j3010_4 175 175 175 0 
j3010_8 89 89 89 0 
j3045_4 148 148 148 0 
j3045_8 95 99 97 1.76 
j6010_4 282 286 284.2 1.39 
j6010_8 137 137 137 0 
j6045_4 237 240 239 1.05 
j6045_8 161 164 162.6 0.84 
j9010_4 480 485 481.9 1.79 
j9010_8 206 208 207 1.05 
j9045_4 391 393 392.1 0.87 
j9045_8 240 244 241.6 1.71 

j12010_4 579 585 581.5 2.06 
j12010_8 289 292 290.8 1.03 
j12045_4 479 481 480 0.47 
j12045_8 285 291 286.5 1.95 

 
 
 
 
 

The algorithm gives results which are near the average value and the standart deviation is small with 
respect to the average value in all problems. When the initial solutions, which are produced randomly, 
changes from one replication to another replication, the results of the genetic algorithm are near to 
each other. Therefore, it can be said that the algorithm is robust.  

 

4.5 Changes in Total Setup Time 

To look at how the total setup time of the tasks that need the machine changes from one result of the 
genetic algorithm to the other result of the genetic algorithm, the problem j3045_8 is selected. Total 
setup time of a solution is the sum of the sequence dependent setup times in the solution sequence of 
the tasks that need the machine. For the problem j3045_8, we can compare the total setup time of the 
solution having fitness value of 95 with the total setup time of the solution having fitness value of 99.   

Ten replication results of the genetic algorithm indicate that total setup time of the solutions having 
fitness value of 95 is 21 and total setup time of the solution having fitness value of 99 is 21or 22. 

Total setup time of the solutions having fitness value of 99 are different according to the ten 
replication results of the the problem j3045_8.  

Small difference between total setup time of the solution may or may not affect the fitness of the 
solution. In some cases, it may affect the fitness of the solution, because changing the order of a task 
in the sequence can affect the schedule of the other tasks because of resource constraints. Different 
solutions can have the same total setup times but different fitness values, because different sequence 
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of tasks can produce the same total setup time but these different sequences of tasks can affect the 
fitness of the solutions in a different way because of resource constraints. 
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CHAPTER 5 
 

COMPARISON OF RESULTS   
 

The results of the genetic algorithm is compared with MIP model results for small-sized problems and 
compared with a hill-climbing-like search algorithm for large-sized problems. The pseudo code for 
the genetic algorithm is given in Appendix A. 

In each step of the hill-climbing-like search algorithm, one neighbour of the current solution is 
replaced with the current solution if the neighbour solution is better than the current solution. If the 
neighbour solution is worse than the current solution, the neighbour solution is replaced with the 
current solution with a probability of 0.5.  

The neighbour in the hill-climbing-like search algorithm is the removal of a randomly selected task 
from the activity list and inserting it in a precedence-feasible position in the activity list. In 
calculation of the result of the hill-climbing-like search algorithm, 10 replications are done for each 
problem and the average of 10 replications is taken. CPU time for the each replication in the hill-
climbing-like search algorithm is the CPU time of the genetic algorithm for each problem.  

All program codes are written in Microsoft Visual C# .NET. Problems are the same as the problems 
in section 4.4. 

 

5.1 Comparison with MIP Model 

The number of problems which are used to compare the results are five, because MIP model needs 
very long runtime for the large-sized problems. One run is executed for the genetic algorithm, 
because the genetic algorithm is robust. The generation number of the genetic algorithm is taken as 
100 for the problems having 15 tasks and as 250 for the problems having 30 tasks. 

The problems and results for the genetic algorithm and MIP model are given in Table 16 below. 

 

 

Table 16 Problems solved via MIP model and Genetic Algorithm and comparison  

Problem 
CPU Time of 

Genetic Algorithm 
(sec.) 

Genetic Algorithm 
Result 

CPU Time of 
MIP Model 

(sec.) 

MIP Model 
Result 

j1510_4 8 103 220 103 
j1510_8 7 33 1.5 33 
j1545_4 8 70 1335 70 
j1545_8 7 59 24 59 
j3010_8 87 89 2313 89 

 

 

 

All results are the same as the MIP Model. This shows that the genetic algorithm gives correct results 
and performs well in solving small-sized problems. 70% of tasks of the problem j1510_4 need the 
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machine to be completed and 30% of tasks of the problem j1510_8 need the machine to be 
completed. The MIP model solves the problem j1510_4 in more time than the problem j1510_8. 
When the number of tasks that need the machine increases, the problem is difficult to be solved by the 
MIP model and the MIP model solves in long CPU time.  

 

5.2 Comparison with a Hill-climbing-like Search Algorithm 

The problems, and the results of both the genetic algorithm and the hill-climbing-like search 
algorithm are given in Table 17 below. In the genetic algorithm result column and a hill-climbing-like 
search algorithm result column of the table, average of results of 10 replications is givenCPU time for 
each replication of the hill-climbing-like search algorithm is the CPU time for the genetic algorithm 
and is given in the CPU Time (sec.) column of the table. The reader can refer to Appendix D for all 
results of the hill-climbing-like search algorithm. 

 

 

Table 17 Problems for the hill-climbing-like search algorithm comparison and results of them 

Problem CPU Time (sec.) Genetic Algorithm 
Result 

A Hill-climbing-like Search 
Algorithm Result 

j1510_4 25 103 110.1 
j1510_8 19.5 33 34.7 
j1545_4 22 70 72 
j1545_8 20 59 62.1 
j3010_4 84 175 181.1 
j3010_8 87 89 94.2 
j3045_4 80 148 153.9 
j3045_8 77 97 104.2 
j6010_4 337 284.2 298.8 
j6010_8 308 137 144.7 
j6045_4 304 239 248.2 
j6045_8 393 162.6 174 
j9010_4 871 481.9 501.8 
j9010_8 763 207 221.3 
j9045_4 785 392.1 412 
j9045_8 850 241.6 257.1 

j12010_4 1708 581.5 611.9 
j12010_8 1529 290.8 310.7 
j12045_4 1422 480 500.8 
j12045_8 1476 286.5 308.5 

 

 

 

When we look at the table above, genetic algorithm is better than the hill-climbing-like search 
algorithm for all problems. The maximum difference between the results of these algorithms is for the 
problem j12010_4. This difference, which is 30.4, is a big value when compared with the genetic 
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algorithm result. The difference between the result of the genetic algorithm and the hill-climbing-like 
search algorithm generally increases when the number of tasks in the problem increases.  

 

5.3 Results for the Problem Set without the Machine   

The problems, and the results for the genetic algorithm and best known values for the problem sets 
when no machine (crane) is needed for the task completion are given in Table 18 below. There is no 
task that needs the machine in the problem sets, so the genetic algorithm does not use any 
functionality related to setups. The problems to be solved are solely resource constrained project 
scheduling problems. Best known values for the problem sets are taken from the PSPLIB web site.  

The best result of the 10 replications of the genetic algorithm is given under the column of best result 
of the 10 replications of the genetic algorithm column. 

 

 

Table 18 Problems and results for the no-machine case 

Problem Best Result of the 10 Replications of the 
Genetic Algorithm 

Best Known Value From the 
PSPLIB Web Site 

j3010_4 58 58 
j3010_8 54 54 
j3045_4 84 84 
j3045_8 94 94 
j6010_4 80 80 
j6010_8 65 65 
j6045_4 109 108 
j6045_8 132 129 
j9010_4 94 94 
j9010_8 81 81 
j9045_4 140 135 
j9045_8 164 160 

j12010_4 95 95 
j12010_8 114 114 
j12045_4 103 103 
j12045_8 103 103 

 

 

 

When the problems have no tasks that need the machine, the result of the genetic algorithm is usually 
equal to the best known results for the problem sets. For the problem set j6045_4, j6045_8, j9045_4 
and j9045_8, genetic algorithm result is not equal to the best known values. According to the PSPLIB 
web site, there is no known optimum solution for these problem set (j6045_4, j6045_8, j9045_4 and 
j9045_8). For the other problems in the table, best known values are equal to the optimum solution 
values. 
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CHAPTER 6 
 

CONCLUSION 
 

Sequence dependent setup times are usually considered in single machine scheduling, parallel 
machine scheduling, job shop scheduling and flowshop scheduling problems in literature. There are 
few studies about project scheduling with sequence dependent setup times. In a project, some 
resources can have setup times which depends on the sequence of activities that use this resource. 

In this study, the single resource (machine) with sequence dependent setup times in resource 
constrained project scheduling problem is considered, mathematically modelled and solved with a 
genetic algorithm which is developed by using different ideas from literature. The MIP model of the 
problem is developed by the help of the single machine case of the MIP model of sequence dependent 
setup time flowshop scheduling problem and the help of MIP model of the resource constrained 
project scheduling problem.  As far as we know, there is no genetic algorithm for the problem studied 
in this thesis. In the developed genetic algorithm, total setup time and fitness of the solutions are tried 
to be improved at the same time. The idea, which is used in the setup improvement phase of the 
genetic algorithm, is to take some good properties of the better solution if these properties make the 
receiver solution better. This idea can be used in other metaheuristic approaches to obtain better 
solution. The results of the genetic algorithm are compared against the solutions obtained by a hill-
climbing-like search algorithm for the large-sized problems and by a developed MIP model for the 
small-sized problems. The results show that the genetic algorithm is always better than the hill-
climbing-like search algorithm for all problems.  

Future work may be on developing a metaheuristics method for project scheduling having parallel 
machines or flowshop structures with sequence dependent setup times. Moreover, different MIP 
modelling of these problems can be investigated or other metaheuristics like ant colony optimization, 
tabu search, simulated annealing methods can be developed for this problem and results can be 
compared with this study. Our genetic algorithm can be improved by producing initial population by 
a heuristic method rather than a random method. Different solution representations like random key 
representation can be used in a genetic algorithm for this problem. 
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APPENDIX A 

 

PSEUDO CODE FOR THE GENETIC ALGORITM 

Input: 

Size N = 5 ×  (number of tasks)  of population, 

Number G=250 of generations, 

Initialization: 

Generate N precedence feasible activity lists by selecting tasks randomly from the eligible set in 
serial SGS and save them in the population 𝑃𝑃op 

For 𝑖𝑖=1 to G  do      

             Calculate makespan of each activity list in Pop by serial SGS and calculate the total  

             setup time of each activity list 

             First, sort the activity lists in Pop in ascending order of makespan and then sort the  

             activity lists in Pop in descending order of total setup time 

             Create empty Pop1. Size of the Pop1 is equal to the size of Pop 

             Put the top 20 % of Pop into Pop1 

             For j=1 to ( 40 % of the size of the Pop1 )  do 

                          Select one parent from the top 20 % of Pop randomly and save it to P1                          

                          Select one parent from Pop randomly and save it to P2 

                          Perform one point crossover of P1 and P2 

                                       Perform setup improvement procedure to the children   

                                       For the child 1, if the fitness of the mother is less than the child 1, the order 

                                       of the tasks that need the machine is tried to be made similiar to the order 

                                       in the mother’s activity list as explained in the 4.1.6. For the child 2, same   

                                       procedure is applied but mother is replaced with father. 

                                       Perform fitness improvement procedure to the children 

                                       For the child 1 and child 2, try to improve the fitness by removing  

                                            and inserting some task in the activity list as explained in the 4.1.6
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                          Perform mutation on two children of one-point crossover: 

                                       For k=1 to a randomly selected number between [3, 5]  do  

                                            Select a task that needs the machine 

                                            Put this task into a most setup improvement and precedence  

                                            feasible position in the activity list. 

                                            If there is no setup improvement, put this task into a least setup  

                                            deteriorated and a precedence feasible position in the activity list  

                                            with a probability of 0.05 

                                            Select a task that needs the machine or do not need the machine 

                                            Put this task into randomly selected precedence feasible position if  

                                            there is a fitness improvement when this task is putted in this  

                                            randomly selected position 

                                            If there is no fitness improvement, put this task into a randomly  

                                            selected precedence feasible position in the activity list with a  

                                            probability of 0.05 

                                       End for  

                          Put these children into Pop1        

             End for 

 

Replace Pop with Pop1 

End for 

Select the fittest member from Pop 
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APPENDIX B 

 

AVERAGE OF REPLICATIONS FOR PROBLEMS WITH CROSSOVER TYPES 

 

 

 

Table 19 Average result of ten replications for problem j3010_4 with each crossover type 

Problem Crossover Type Average of ten replications 
j3010_4 One-point 176.8 
j3010_4 Two-point 177.4 
j3010_4 Three-point 177.6 

 

 

Table 20 Average result of ten replications for problem j3045_4 with each crossover type 

Problem Crossover Type Average of ten replications 
j3045_4 One-point 148 
j3045_4 Two-point 148.5 
j3045_4 Three-point 148.4 

 

 

Table 21 Average result of ten replications for problem j6010_4 with each crossover type 

Problem Crossover Type Average of ten replications 
j6010_4 One-point 291.9 
j6010_4 Two-point 293.9 
J6010_4 Three-point 294.6 

 

 

Table 22 Average result of ten replications for problem j6045_4 with each crossover type 

Problem Crossover Type Average of ten replications 
j6045_4 One-point 240.7 
j6045_4 Two-point 241.5 
j6045_4 Three-point 241.4 
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APPENDIX C 

 

GENETIC ALGORITHM’S RESULTS AND CPU TIMES OF THE TEN REPLICATIONS 
FOR EACH PROBLEM. 

 

 

 

Table 23 Results of the genetic algorithm for ten replications of problem j1510_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 103 25.01 
2 103 25.28 
3 103 24.94 
4 103 25.15 
5 103 25.32 
6 103 24.83 
7 103 25.18 
8 103 24.71 
9 103 24.77 

10 103 24.57 
 

 

 

 

Table 24 Results of the genetic algorithm for ten replications of problem j1510_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 33 19.88 
2 33 19.90 
3 33 19.45 
4 33 19.58 
5 33 20.13 
6 33 20.25 
7 33 20.29 
8 33 19.72 
9 33 19.25 

10 33 19.16 
 

 

46 
 



Table 25 Results of the genetic algorithm for ten replications of problem j1545_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 70 22.00 
2 70 23.28 
3 70 23.50 
4 70 22.94 
5 70 23.01 
6 70 22.80 
7 70 22.54 
8 70 22.09 
9 70 22.34 

10 70 22.36 
 

 

 

 

Table 26 Results of the genetic algorithm for ten replications of problem j1545_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 59 20.21 
2 59 20.28 
3 59 20.53 
4 59 20.44 
5 59 20.75 
6 59 20.50 
7 59 20.12 
8 59 20.18 
9 59 20.55 

10 59 20.79 
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Table 27 Results of the genetic algorithm for ten replications of problem j3010_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 175 88.92 
2 175 84.19 
3 175 84.25 
4 175 84.11 
5 175 84.39 
6 175 83.39 
7 175 84.98 
8 175 89.13 
9 175 83.75 

10 175 83.52 
 

 

 

 

Table 28 Results of the genetic algorithm for ten replications of problem j3010_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 89 87.56 
2 89 87.68 
3 89 88.25 
4 89 92.05 
5 89 87.99 
6 89 88.04 
7 89 86.85 
8 89 89.66 
9 89 86.31 

10 89 90.32 
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Table 29 Results of the genetic algorithm for ten replications of problem j3045_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 148 80.55 
2 148 81.38 
3 148 80.68 
4 148 81.00 
5 148 82.27 
6 148 80.62 
7 148 82.36 
8 148 80.48 
9 148 81.33 

10 148 81.47 
 

 

 

 

Table 30 Results of the genetic algorithm for ten replications of problem j3045_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 98 76.91 
2 95 78.74 
3 95 76.91 
4 95 77.14 
5 98 77.92 
6 98 77.60 
7 99 77.91 
8 98 77.67 
9 99 79.37 

10 95 77.34 
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Table 31 Results of the genetic algorithm for ten replications of problem j6010_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 286 337.58 
2 284 338.78 
3 282 344.08 
4 284 368.40 
5 283 337.24 
6 284 344.92 
7 284 340.40 
8 283 333.90 
9 286 333.50 

10 286 329.34 
 

 

 

 

Table 32 Results of the genetic algorithm for ten replications of problem j6010_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 137 307.05 
2 137 310.56 
3 137 308.95 
4 137 312.04 
5 137 309.90 
6 137 309.83 
7 137 309.21 
8 137 312.84 
9 137 314.35 

10 137 310.84 
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Table 33 Results of the genetic algorithm for ten replications of problem j6045_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 240 300.16 
2 238 314.96 
3 239 303.83 
4 238 304.19 
5 240 304.94 
6 237 301.40 
7 239 294.26 
8 240 315.24 
9 240 311 

10 239 295.95 
 

 

 

 

Table 34 Results of the genetic algorithm for ten replications of problem j6045_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 162 395.84 
2 163 393.87 
3 163 397.21 
4 163 395.42 
5 161 402.72 
6 162 396.80 
7 164 387.70 
8 162 401.73 
9 163 381.31 

10 163 389.03 
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Table 35 Results of the genetic algorithm for ten replications of problem j9010_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 485 890.50 
2 481 858.48 
3 480 893.04 
4 483 875.54 
5 484 890.67 
6 483 901.34 
7 480 871.95 
8 482 919.09 
9 481 887.15 

10 480 885.07 
 

 

 

 

Table 36 Results of the genetic algorithm for ten replications of problem j9010_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 208 869.63 
2 208 754.93 
3 206 768.88 
4 206 750.60 
5 206 748.26 
6 206 755.79 
7 206 741.06 
8 208 744.13 
9 208 755.95 

10 208 763.21 
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Table 37 Results of the genetic algorithm for ten replications of problem j9045_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 392 755.58 
2 391 778.45 
3 393 799.55 
4 393 752.42 
5 391 762.22 
6 393 835.86 
7 391 785.03 
8 393 765.14 
9 392 816.01 

10 392 749.37 
 

 

 

 

Table 38 Results of the genetic algorithm for ten replications of problem j9045_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 244 865.66 
2 240 864.73 
3 241 850.07 
4 244 859.90 
5 241 875.32 
6 240 848.36 
7 244 887.67 
8 240 831.93 
9 241 896.99 

10 241 869.66 
 

 

 

 

 

 

 

 

 

 

53 
 



Table 39 Results of the genetic algorithm for ten replications of problem j12010_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 581 1672.20 
2 581 1708.84 
3 579 1643.67 
4 580 1791.13 
5 585 1728.96 
6 580 1704.80 
7 582 1696.03 
8 585 1671.28 
9 580 1703.83 

10 582 1723.03 
 

 

 

 

Table 40 Results of the genetic algorithm for ten replications of problem j12010_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 292 1623.20 
2 289 1553.12 
3 289 1625.70 
4 291 1616.01 
5 291 1558.11 
6 291 1590.81 
7 292 1537.14 
8 291 1578.79 
9 291 1622.89 

10 291 1671.41 
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Table 41 Results of the genetic algorithm for ten replications of problem j12045_4 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 480 1406.13 
2 481 1435.82 
3 480 1463.38 
4 480 1408.41 
5 480 1436.19 
6 480 1491.55 
7 480 1422.82 
8 480 1529.16 
9 479 1423.72 

10 480 1459.65 
 

 

 

 

Table 42 Results of the genetic algorithm for ten replications of problem j12045_8 

Replication No Result of the genetic algorithm Cpu Time(sec.) 
1 288 1598.73 
2 285 1502.64 
3 286 1460.45 
4 285 1569.19 
5 285 1557.49 
6 288 1529.42 
7 285 1512.40 
8 291 1506.43 
9 286 1476.11 

10 286 1519.38 
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APPENDIX D 

 

A HILL-CLIMBING-LIKE SEARCH ALGORITHM RESULTS AND CPU TIMES OF THE 
TEN REPLICATIONS FOR EACH PROBLEM 

 

 

 

Table 43 Results of the hill-climbing-like search algorithm for ten replications of problem j1510_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 112 25 
2 107 25 
3 107 25 
4 112 25 
5 112 25 
6 112 25 
7 108 25 
8 110 25 
9 109 25 

10 112 25 
 

 

 

 

Table 44 Results of the hill-climbing-like search algorithm for ten replications of problem j1510_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 34 19 
2 34 19 
3 35 19 
4 36 19 
5 34 19 
6 35 19 
7 34 19 
8 36 19 
9 34 19 

10 35 19 
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Table 45 Results of the hill-climbing-like search algorithm for ten replications of problem j1545_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 70 22 
2 74 22 
3 70 22 
4 70 22 
5 70 22 
6 72 22 
7 70 22 
8 74 22 
9 78 22 

10 72 22 
 

 

 

 

Table 46 Results of the hill-climbing-like search algorithm for ten replications of problem j1545_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 61 20 
2 61 20 
3 61 20 
4 62 20 
5 65 20 
6 62 20 
7 61 20 
8 62 20 
9 61 20 

10 65 20 
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Table 47 Results of the hill-climbing-like search algorithm for ten replications of problem j3010_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 180 84 
2 182 84 
3 183 84 
4 182 84 
5 181 84 
6 181 84 
7 178 84 
8 179 84 
9 186 84 

10 179 84 
 

 

 

 

Table 48 Results of the hill-climbing-like search algorithm for ten replications of problem j3010_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 93 87 
2 97 87 
3 94 87 
4 90 87 
5 100 87 
6 98 87 
7 90 87 
8 95 87 
9 91 87 

10 94 87 
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Table 49 Results of the hill-climbing-like search algorithm for ten replications of problem j3045_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 148 80 
2 159 80 
3 155 80 
4 158 80 
5 155 80 
6 150 80 
7 157 80 
8 156 80 
9 152 80 

10 149 80 
 

 

 

 

Table 50 Results of the hill-climbing-like search algorithm for ten replications of problem j3045_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 105 77 
2 103 77 
3 104 77 
4 105 77 
5 108 77 
6 99 77 
7 108 77 
8 105 77 
9 100 77 

10 105 77 
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Table 51 Results of the hill-climbing-like search algorithm for ten replications of problem j6010_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 302 337 
2 297 337 
3 298 337 
4 293 337 
5 300 337 
6 303 337 
7 295 337 
8 301 337 
9 302 337 

10 297 337 
 

 

 

 

Table 52 Results of the hill-climbing-like search algorithm for ten replications of problem j6010_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 146 308 
2 143 308 
3 142 308 
4 145 308 
5 142 308 
6 147 308 
7 149 308 
8 147 308 
9 140 308 

10 146 308 
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Table 53 Results of the hill-climbing-like search algorithm for ten replications of problem j6045_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 250 304 
2 252 304 
3 258 304 
4 249 304 
5 248 304 
6 244 304 
7 247 304 
8 245 304 
9 246 304 

10 243 304 
 

 

 

 

Table 54 Results of the hill-climbing-like search algorithm for ten replications of problem j6045_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 175 393 
2 175 393 
3 170 393 
4 175 393 
5 170 393 
6 178 393 
7 173 393 
8 173 393 
9 178 393 

10 173 393 
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Table 55 Results of the hill-climbing-like search algorithm for ten replications of problem j9010_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 502 871 
2 496 871 
3 506 871 
4 499 871 
5 498 871 
6 495 871 
7 505 871 
8 505 871 
9 515 871 

10 497 871 
 

 

 

 

Table 56 Results of the hill-climbing-like search algorithm for ten replications of problem j9010_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 222 763 
2 220 763 
3 224 763 
4 220 763 
5 222 763 
6 217 763 
7 221 763 
8 227 763 
9 222 763 

10 218 763 
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Table 57 Results of the hill-climbing-like search algorithm for ten replications of problem j9045_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 409 785 
2 414 785 
3 416 785 
4 414 785 
5 416 785 
6 406 785 
7 413 785 
8 413 785 
9 412 785 

10 407 785 
 

 

 

 

Table 58 Results of the hill-climbing-like search algorithm for ten replications of problem j9045_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 261 850 
2 256 850 
3 256 850 
4 263 850 
5 260 850 
6 250 850 
7 263 850 
8 250 850 
9 258 850 

10 254 850 
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Table 59 Results of the hill-climbing-like search algorithm for ten replications of problem j12010_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 605 1708 
2 615 1708 
3 608 1708 
4 608 1708 
5 613 1708 
6 613 1708 
7 609 1708 
8 620 1708 
9 611 1708 

10 617 1708 
 

 

 

 

Table 60 Results of the hill-climbing-like search algorithm for ten replications of problem j12010_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 319 1529 
2 324 1529 
3 303 1529 
4 312 1529 
5 307 1529 
6 298 1529 
7 310 1529 
8 310 1529 
9 310 1529 

10 314 1529 
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Table 61 Results of the hill-climbing-like search algorithm for ten replications of problem j12045_4 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 503 1422 
2 502 1422 
3 504 1422 
4 502 1422 
5 499 1422 
6 502 1422 
7 499 1422 
8 496 1422 
9 503 1422 

10 498 1422 
 

 

 

 

Table 62 Results of the hill-climbing-like search algorithm for ten replications of problem j12045_8 

Replication No Result of the search algorithm Cpu Time(sec.) 
1 306 1476 
2 303 1476 
3 311 1476 
4 308 1476 
5 306 1476 
6 311 1476 
7 307 1476 
8 314 1476 
9 311 1476 

10 308 1476 
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