
COMPUTING CRYPTOGRAPHIC PROPERTIES OF BOOLEAN FUNCTIONS FROM
THE ALGEBRAIC NORMAL FORM REPRESENTATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞDAŞ ÇALIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

FEBRUARY 2013

Approval of the thesis:

COMPUTING CRYPTOGRAPHIC PROPERTIES OF BOOLEAN FUNCTIONS
FROM THE ALGEBRAIC NORMAL FORM REPRESENTATION

submitted by ÇAĞDAŞ ÇALIK in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Ali Doğanaksoy
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Prof. Dr. Ferruh Özbudak
Department of Mathematics, METU

Asst. Prof. Dr. Ali Aydın Selçuk
Department of Computer Engineering, Bilkent University

Dr. Orhun Kara
TÜBİTAK BİLGEM

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ÇAĞDAŞ ÇALIK

Signature :

v

vi

ABSTRACT

COMPUTING CRYPTOGRAPHIC PROPERTIES OF BOOLEAN FUNCTIONS FROM
THE ALGEBRAIC NORMAL FORM REPRESENTATION

Çalık, Çağdaş

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Ali Doğanaksoy

February 2013, 54 pages

Boolean functions play an important role in the design and analysis of symmetric-key cryp-
tosystems, as well as having applications in other fields such as coding theory. Boolean func-
tions acting on large number of inputs introduces the problem of computing the cryptographic
properties. Traditional methods of computing these properties involve transformations which
require computation and memory resources exponential in the number of input variables. When
the number of inputs is large, Boolean functions are usually defined by the algebraic normal
form (ANF) representation. In this thesis, methods for computing the weight and nonlinearity
of Boolean functions from the ANF representation are investigated. The relation between the
ANF coefficients and the weight of a Boolean function was introduced by Carlet and Guillot.
This expression allows the weight to be computed in O(2p) operations for a Boolean function
containing p monomials in its ANF. In this work, a more efficient algorithm for computing the
weight is proposed, which eliminates the unnecessary calculations in the weight expression. By
generalizing the weight expression, a formulation of the distances to the set of linear functions
is obtained. Using this formulation, the problem of computing the nonlinearity of a Boolean
function from its ANF is reduced to an associated binary integer programming problem. This
approach allows the computation of nonlinearity for Boolean functions with high number of
input variables and consisting of small number of monomials in a reasonable time.

Keywords : Boolean functions, algebraic normal form, weight, nonlinearity

vii

viii

ÖZ

BOOLE FONKSİYONLARININ KRİPTOGRAFİK ÖZELLİKLERİNİN CEBİRSEL
NORMAL BİÇİM GÖSTERİMİNDEN HESAPLANMASI

Çalık, Çağdaş

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Ali Doğanaksoy

Şubat 2013, 54 sayfa

Boole fonksiyonları simetrik anahtarlı kriptosistemlerin tasarım ve analizinde önemli rol oy-
namanın yanı sıra kodlama teorisi gibi alanlarda uygulamaları olan bir araştırma alanıdır.
Girdi sayısı fazla olan Boole fonksiyonları, kriptografik özelliklerin hesaplanması problemini
beraberinde getirir. Bu özellikleri hesaplamanın geleneksel yolu, hesaplama ve hafıza kay-
nakları girdi sayısına üstel olarak bağlı olan dönüşümler gerektirir. Yüksek girdi sayılı Boole
fonksiyonları genellikle cebirsel normal biçim (ANF) gösterimi ile ifade edilir. Bu tezde,
ANF gösterimi verilen bir Boole fonksiyonunun ağırlığını ve doğrusallıktan sapma miktarını
hesaplayan yöntemler araştırılmıştır. Bir Boole fonksiyonunun ANF katsayıları ve ağırlığı
arasındaki ilişki Carlet ve Guillot tarafından gösterilmiştir. Bu ifade, ANF gösteriminde p
adet terim olan bir Boole fonksiyonunun ağırlığının O(2p) işlemde hesaplanabilmesine olanak
sağlamıştır. Bu çalışmada, ağırlık ifadesindeki gereksiz işlemlerden kaçınan daha verimli bir
algoritma önerilmiştir. Ağırlık ifadesi genelleştirilerek, doğrusal fonksiyonlara uzaklığın bir
formülü elde edilmiştir. Bu formül sayesinde bir Boole fonksiyonunun doğrusallıktan sapma
miktarını ANF gösteriminden bulma problemi, ilgili bir ikili tamsayı programlama problemine
indirgenmiştir. Bu yaklaşımla, yüksek girdi sayılı ve az sayıda terim içeren Boole fonksiyon-
larının doğrusallıktan sapma miktarı makul sürelerde hesaplanabilmektedir.

Anahtar Kelimeler : Boole fonksiyonları, cebirsel normal biçim, ağırlık, doğrusallıktan sapma
miktarı

ix

x

ACKNOWLEDGMENTS

I want to thank my supervisor Assoc. Prof. Dr. Ali Doğanaksoy for his guidance during the
preparation of this thesis. I also want to express my gratitude to the thesis committee, academic
and administrative staff of the Institute of Applied Mathematics, and all the friends.

I am grateful to my wife and my family for their support.

The work in this thesis is partially supported by TÜBİTAK under project no. 109T672.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xv

LIST OF FIGURES . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BOOLEAN FUNCTIONS . 5

2.1 Introduction . 5

2.2 Preliminaries . 5

2.3 Truth Table and Algebraic Normal Form 6

2.4 Walsh Spectrum . 9

2.5 Numerical Normal Form . 13

3 COMPUTING WEIGHT FROM ALGEBRAIC NORMAL FORM 15

3.1 Introduction . 15

3.2 The Relation Between ANF and Weight 15

3.3 The Algorithm . 18

3.3.1 An Extension Making Use of the Isolated Monomials 20

xiii

3.4 Implementation Results and Comparison of the Complexities 22

3.5 Conclusion . 24

4 COMPUTING NONLINEARITY FROM ALGEBRAIC NORMAL FORM . . 27

4.1 Introduction . 27

4.2 Distance to Linear Functions . 28

4.2.1 The Linear Distance Matrix 30

4.2.2 Combining Coefficients . 35

4.3 Computing Nonlinearity . 37

4.3.1 Branch and Bound Method 42

4.3.2 Recovering the Nearest Affine Function 43

4.3.3 Complexity of the Algorithm and Experimental Results . . . 44

4.4 Conclusion . 45

5 CONCLUSION . 47

REFERENCES . 49

CURRICULUM VITAE . 53

xiv

LIST OF TABLES

Table 2.1 Common operators in F2. 5

Table 2.2 Truth tables of two 3-variable Boolean functions and their sum and product. . 7

Table 3.1 Weight coefficients of f (x1, x2, x3) = x1 ⊕ x1x2 ⊕ x2x3. 17

Table 3.2 Execution of the algorithm for f (x1, x2, x3, x4) = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x4 ⊕

x1x2x3 ⊕ x2x3x4 ⊕ x1x2x3x4. 20

Table 3.3 Timings for random functions. 23

Table 3.4 Expected value of log2(S 1) for random functions. 23

Table 3.5 Timings for 64-variable homogeneous functions and the corresponding ex-
pected values of log2(S 1). 25

Table 4.1 Truth Table in terms of ANF Coefficients. 30

Table 4.2 Linear Distance Matrix for n = 3. 32

Table 4.3 H3: Sylvester-Hadamard Matrix of order three. 33

Table 4.4 Distance tree data of F(b1, · · · , b8) = 8b1+8b2+4b3+4b4−8b5−4b6−4b7+3b8. 40

Table 4.5 Distance coefficients and related portion of the LDM for f (x1, · · · , x5) =

x1x5 ⊕ x4x5 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x2x3x4x5. 41

Table 4.6 Timings for n = 60. 44

xv

xvi

LIST OF FIGURES

Figure 2.1 Fast Möbius transform on 3-variable Boolean functions. 9

Figure 2.2 Fast Walsh transform on 3-variable Boolean functions. 11

Figure 2.3 Transformation of truth table to NNF coefficients. 13

Figure 4.1 Distance tree of F(b1, · · · , b8) = 8b1 + 8b2 + 4b3 + 4b4 − 8b5 − 4b6 − 4b7 + 3b8. 39

xvii

xviii

CHAPTER 1

INTRODUCTION

Theory of Boolean functions is an important research area having applications in various fields
such as cryptology, coding theory, digital circuit theory, to name a few. As noted in [10],
”‘..., Boolean functions are the simplest interesting multivariate functions.”’, a consequence of
the fact that they assign 0 or 1 to each input. Despite the conceptual simplicity, what makes
Boolean functions research challenging is how quickly the number of functions grow as the
number of inputs increase, rendering it impossible to make an exhaustive search on the entire
space. With today’s computation power, it is not possible to conduct an exhaustive search on
Boolean functions of 6 variables or more . This limitation forces the researchers to devise in-
telligent methods with as little computation resources as possible. A great amount of research
in Boolean functions has been devoted to proving the existence/non-existence of Boolean func-
tions with specified properties, and to construct or enumerate Boolean functions satisfying de-
sired criteria. The existing generic algorithms can be used efficiently for an arbitrary Boolean
function with a small number of inputs, but they become infeasible as the number of inputs
increase, due to the exponential computational complexity required by these algorithms. A
relatively less studied aspect is computing the cryptographic properties of Boolean functions
acting on large number of input variables (say n > 40).

A function that maps n-bits of input to m-bits of output can be considered as a collection
of m Boolean functions. These n × m mappings are called vectorial Boolean functions. A
symmetric-key cryptosystem can be thought of as a vectorial Boolean function which involves
a large number of variables ranging from 64-bits to 512-bits. Such functions are supposed to
attain certain desired properties of confusion and diffusion stated by Shannon [35], but when
the number of input variables is high, it is not even possible to express them in the form of
available representations. Instead, the research is focused on the primitive structures that are
fundamental building blocks of these systems. The aim in analyzing these building blocks is
to evaluate the cryptographic strength of the system and in turn try to come up with a claimed
security bound, which determines a particular cryptanalytic attack’s complexity to break the
system.

Most common type of building blocks used in cryptosystems are S-boxes (substitution boxes).
These components provide the nonlinearity that is needed for Shannon’s confusion principle,
i.e., to guarantee a complex relation between the input and output bits of the system. S-boxes
are a major component of most of the block ciphers and hash functions, c.f. the S-box of
the block cipher standard AES [13]. Because of its relatively high hardware cost, S-boxes
were not a preferred component for stream ciphers in the past. However, with the advances

1

in technology, there are now several stream ciphers incorporating S-boxes in their designs
[1, 7, 21, 24]. Stream ciphers also utilize Boolean functions as feedback functions of feedback
shift registers, or filtering and combining functions to generate output from these systems.

Whatever type the building block is, there are various criteria with which a Boolean function’s
strength is assessed. First and foremost, in order not to be statistically distinguishable, most
of the Boolean functions used in cryptosystems must be balanced, i.e., the function’s output
contains an equal number of zeros and ones. In order to resist against algebraic attacks, a
Boolean function should have a high algebraic degree and high algebraic immunity [4, 9, 29].
High orders of correlation immunity and propagation characteristics are also desired properties
[36, 33, 32]. A must have property is high nonlinearity [30], the quantity of being far away
from the set of affine functions. Lack of high nonlinearity allows linear approximations of the
system, and this has led to one of the earliest and powerful type of cryptanalysis on modern
block ciphers [27]. Because of its importance, construction of Boolean functions having high
nonlinearity and at the same time having other desired properties is a widely studied topic.
While the highest achievable nonlinearity for Boolean functions with odd number of inputs
is not known in general, for even number of variables the functions reaching this limit are
known; they are introduced by Rothaus and called bent functions [34]. Several methods for
constructing bent functions exist [28, 14, 16], yet an explicit enumeration is not known. The
number of bent functions are currently known up to 8 variables [31, 17, 25]. A drawback of
bent functions is their unbalancedness. On the other hand, they are good candidates to be used
as a starting point to construct highly nonlinear balanced Boolean functions.

There is no ideal Boolean function possessing all the previously mentioned properties. It is
shown that some of these properties are in conflict with each other, and one has to make a
trade-off when choosing Boolean functions for practical use, such as correlation immunity and
the algebraic degree of a function. Another example is nonlinearity and balancedness.

In coding theory, Boolean functions have strong connections with Reed-Muller codes. These
codes correspond to the set of Boolean functions with algebraic degrees less than or equal to a
value that is a parameter of the code. Decoding problem in rth order Reed-Muller codes corre-
sponds finding the rth order nonlinearity of Boolean functions. The concept of nonlinearity is
also related to the covering radius of codes.

Boolean functions can be represented in various forms; truth table, algebraic normal form
(ANF), numerical normal form, Walsh spectrum and trace representations are the common
ones. Truth table is a complete listing of the function’s outputs. Algebraic normal form is a
multivariate polynomial of input variables, that is, the function output is expressed as the sum
of terms, which are products of input variables. One advantage of ANF over the truth table
representation in some cases is that it allows to specify the function in a more compact way,
requiring less amount of memory. Some construction methods may produce functions based
on the ANF. Numerical normal form is obtained by converting the field arithmetic in the ANF
to integer arithmetic, hence, an expression of the Boolean functions over the ring of integers
is considered [5]. This representation has led to the characterization of functions with high
nonlinearity and resiliency [19, 6, 3]. Walsh spectrum is a list of coefficients, which specify
the correlation of the function with all linear functions. Most of the cryptographic properties of
Boolean functions can be calculated directly from the Walsh spectrum, e.g., weight, nonlinear-
ity, correlation immunity. Therefore, a natural approach to construct Boolean functions with

2

desired properties is by specifying their Walsh spectrum. However, an arbitrarily generated
sequence of 2n integers need not be the Walsh spectrum of a Boolean function.

In this thesis, Boolean functions are treated as cryptographical objects. Efficient methods for
computing the weight and nonlinearity of Boolean functions from their ANF representation
are investigated. What is meant by being efficient is that the computation of the properties in
consideration for a special set of Boolean functions that would otherwise be infeasible with
the traditional methods of computing these quantities. More explicitly, these are the functions
acting on high number of input variables and having low number of monomials in their ANF
representation. The main contributions of this study are two algorithms, one for computing the
weight, and the other for computing the nonlinearity of a Boolean function from its ANF, with-
out constructing its truth table or Walsh spectrum. These algorithms may be useful especially
when the number of input variables is so large that the best known algorithms for computing
these quantities (Fast Möbius transform and Fast Walsh transform) become impractical, due
to their exponential computational complexity of O(n2n) operations. An example cryptosys-
tem utilizing these types of Boolean functions is stream cipher Grain and its updated version
Grain-128, making use of nonlinear feedback functions of length 80- and 128-bits, respectively
[22, 23].

The outline of the thesis is as follows: In Chapter 2, formal definitions and necessary notation
regarding Boolean functions are given. Chapter 3 is devoted to the algorithm that computes
the weight of a Boolean function from its ANF. In Chapter 4, the idea used in Chapter 3 is
generalized to express the distance of a Boolean function to a linear function in terms of its
ANF coefficients, and it is explained how this might be used to construct an algorithm for
computing the nonlinearity. Chapter 5 gives the conclusion.

3

4

CHAPTER 2

BOOLEAN FUNCTIONS

2.1 Introduction

This chapther is a brief summary of Boolean functions restricted to the scope of the thesis.
Necessary definitions will be given and the notation that will be used throught the thesis is
going to be settled. Representation methods such as truth table, algebraic normal form, Walsh
spectrum and numerical normal form will be explained. Properties of Boolean functions related
to cryptography such as balancedness, nonlinearity, correlation immunity, etc. will be defined.
A detailed discussion on these topics and more can be found in [2, 11, 26].

2.2 Preliminaries

Let F2 = {0, 1} be the finite field with two elements and Fn
2 be the n-dimensional vector space

over F2. Addition and multiplication operators in F2 are denoted by ’⊕’ and ’.’, corresponding
to usual addition and multiplication modulo 2. When there is no ambiguity, ’.’ symbol for
multiplication may be omitted and the operation is shown by juxtaposition. Among the set of
16 possible binary operators that can be defined, Table 2.1 lists the common ones that will be
used. Field addition and multiplication are also referred to as binary xor and and operators,
respectively. and operator is also denoted by ∧. Another binary operator that is worth men-
tioning is or operator denoted by ∨, outputs 1 when at least one of its inputs is 1. The unary
operator not stands for the complement of a bit and is shown by ¬. Table 2.1 lists the outputs
of these operators. These operators also apply to the elements of the vector space Fn

2 where the
operations are carried out componentwise.

Table 2.1: Common operators in F2.

x y x ⊕ y x ∧ y x ∨ y ¬x
0 0 0 0 0 1
0 1 1 0 1 1
1 0 1 0 1 0
1 1 0 1 1 0

Inner product of vectors is a mapping Fn
2×F

n
2 → F2 defined as 〈x, y〉 = x1y1⊕· · ·⊕xnyn. Support

of a vector x = (x1, . . . , xn) ∈ Fn
2 is supp(x) = {i | xi , 0}, which is the index set of non-zero

5

components. Indices may start from 0 or 1, which will be clear from the context. Hamming
weight wt(x) of a vector is the size of its support, i.e., wt(x) = |supp(x)|.

Vectors in Fn
2 can be identified with integers modulo 2n by associating x = (x1, . . . , xn) ∈ Fn

2

with the integer x =
n∑

i=1
xi2n−i. This mapping between integers and vectors both helps us to

define an ordering on Fn
2 called the lexicographic ordering, and provides a simpler notation by

using the corresponding integers for vectors, such as 0 denoting the vector consisting of all
zeros.

Another ordering defined on vectors is partial ordering. For x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Fn

2, x � y if xi ≤ yi for 1 ≤ i ≤ n, and in this case x is said to be a sub-vector of y. In this
case, y is called a super-vector of x (or y covers x), denoted by y � x. In other words, x � y
if and only if supp(x) ⊆ supp(y). The set of all sub-vectors of a vector x ∈ Fn

2 is called the
sub-space of x, denoted by S (x), and the set of all super-vectors of a vector x ∈ Fn

2 is called the
super-space of x, denoted by S (x).

S (x) = {y ∈ Fn
2 | y � x} (2.1)

S (x) = {y ∈ Fn
2 | x � y} (2.2)

Definition of a sub-vector implies that all sub-vectors of a vector x = (x1, . . . , xn) have the value
of 0 at indices where xi = 0, and can take on any value at the remaining positions. Similarly,
all super-vectors of x have the value of 1 where xi = 1, and the remaing positions can be set
freely. These observations lead us to the following results about the cardinality of these sets:

|S (x)| = 2wt(x) (2.3)

|S (x)| = 2n−wt(x) (2.4)

The following two relations can be obtained from the definitions of super-vectors and sub-
vectors:

S (x) ∩ S (x) = {x} (2.5)

S (0) = S (1) = Fn
2 (2.6)

2.3 Truth Table and Algebraic Normal Form

An n-variable Boolean function f : Fn
2 → F2 specifies a mapping from the n-dimensional

vector space to F2. Bn will denote the set of n-variable Boolean functions. Since there are
two output choices for each n-bit input vector, total number of n-variable Boolean functions
is |Bn| = 22n

. A common way of representing a Boolean function is by supplying a list of
output values for each n-bit input vector, called the truth table of the function. Formally, this is
shown by T f = (f (0), f (1), . . . , f (2n − 1)). The support (resp. weight) of f ∈ Bn is the support
(resp. weight) of its truth table, that is, the weight of the function is wt(f) = |supp(f)| =

|{x ∈ Fn
2 | f (x) = 1}|. f is called balanced if its truth table contains an equal number of zeros

6

and ones, and called unbalanced otherwise. Namely, if f is a balanced Boolean function then
wt(f) = 2n−1. Note that the representation of an n-variable Boolean function by its truth table
requires O(2n) units of memory, which may be inefficient for some applications, or may not be
feasible at all. Addition (resp. product) of two Boolean functions is defined as the sum (resp.
product) of their truth tables. Table 2.2 shows an example of addition and product of two 3-
variable Boolean functions. The Hamming distance between two Boolean functions is defined
as the number of truth table entries they differ by, that is, d(f , g) = |{x ∈ Fn

2 | f (x) , g(x)}|. The
result of a binary addition operation indicates whether the input operands are the same or not,
hence the distance between two functions corresponds to d(f , g) = wt(f ⊕g). This quantity also
specifies the number of changes that needs to be done to convert the truth table of a function to
the other’s.

Table 2.2: Truth tables of two 3-variable Boolean functions and their sum and product.

x1 x2 x3 T f Tg T f⊕g T f ·g

0 0 0 0 0 0 0
0 0 1 1 0 1 0
0 1 0 1 1 0 1
0 1 1 0 1 1 0
1 0 0 0 0 0 0
1 0 1 1 1 0 0
1 1 0 0 1 1 1
1 1 1 1 0 1 0

A Boolean function can also be represented as a multivariate polynomial called the algebraic
normal form (ANF) such that

f (x1, . . . , xn) =
⊕
u∈Fn

2

auxu (2.7)

where xu = xu1
1 xu2

2 . . . xun
n is a monomial composed of the variables for which ui = 1 and au ∈ F2

is called the ANF coefficient of xu. Degree of the monomial xu is deg(xu) = wt(u), correspond-
ing to the number of variables appearing in the product. The highest degree monomial with the
non-zero ANF coefficient is defined to be the degree of the function. The ANF coefficient au

for u ∈ Fn
2 will sometimes be used with an integer subscript ai with i ∈ {0, · · · , 2n − 1} where

i = u. For example, all Boolean functions on 3-variables can be represented in the following
form:

f (x1, x2, x3) = a0 ⊕ a4x1 ⊕ a2x2 ⊕ a1x3 ⊕ a6x1x2 ⊕ a5x1x3 ⊕ a3x2x3 ⊕ a7x1x2x3,

with ai ∈ F2 being the ANF coefficients. Note that the numbering of input variables in this
representation is from left to right, which means that x1 is associated with the most significant
bit of a vector. For a general dimension n, the ANF coefficient of x1 will be a2n−1 and the ANF
coefficient of xn will be a1.

Considering the vectors T f and A f of length 2n for truth table and ANF representations, each
vector specifies a unique Boolean function. Since there are both 2n truth table entries and
ANF coefficients, there is a 1 − 1 mapping between these two representations. Otherwise,

7

there should be more than one ANF representation for some of the Boolean functions and no
corresponding ANF representation for some of the Boolean functions, which is not the case.

Another ANF representation by specifying the variables involved in a monomial with the set
notation is as follows:

f (x) =
⊕

I∈{1,··· ,n}

aI xI (2.8)

Here, aI ∈ F2 are the ANF coefficients and xI =
∏
i∈I

xi are the corresponding monomials. The

set notation has useful features when relations between the monomials are considered. The
following definitions regarding the set notation of monomials will be necessary for the next
chapters.

Definition 2.3.1 The product of two monomials is defined as xI ∪ xJ = xI∪J , which is a mono-
mial composed of input variables appearing in either xI or xJ or both.

Definition 2.3.2 The difference of a monomial with respect to another monomial is defined as
xI \ xJ = xI\J , which is a monomial composed of input variables appearing only in xI .

Example 2.3.3 Let I = {1, 2} and J = {2, 3} and the corresponding monomials are xI = x1x2
and xJ = x2x3. The product of these monomials is xI ∪ xJ = x1x2x3. The difference of there
monomials with respect to each other are xI \ xJ = x1 and xJ \ xI = x3.

Definition 2.3.4 A monomial xI covers xJ if J ⊆ I, i.e., all variables appearing in xJ also
appear in xI . In this case, xJ is called a sub-monomial of xI , denoted by xJ ⊆ xI .

Proposition 2.3.5 For two monomials xI and xJ , the following are always satisfied.

xI ∪ xJ = (xI \ xJ) ∪ xJ , (2.9)

xI ∪ xJ = xI , if xI covers xJ . (2.10)

Proof. Combining Definitions 2.3.1, 2.3.2 and 2.3.4, the results follow from basic set opera-
tions. �

Regardless of which of the above ANF notations is used, ANF representation tells us that a
Boolean function can be represented as a sum of monomials which are products of its input
variables. Although there are 2n ANF coefficients and a Boolean function can be specified with
a vector A f = (a0, · · · , a2n−1) that lists all of its ANF coefficients, it is more efficient merely to
specify the monomials with non-zero ANF coefficients when supp(A f) is relatively small. This
is also necessary when n is so large that a complete list of the ANF coefficients is impossible
to define.

The value of f ∈ Bn at a particular point x ∈ Fn
2 can be obtained from the ANF coefficients as

follows:
f (x) =

⊕
u�x

au. (2.11)

8

x2x1 x3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

ANF

a0

a1

a2

a3

a4

a5

a6

a7

a0

a0 ⊕ a1

a2

a2 ⊕ a3

a4

a4 ⊕ a5

a6

a6 ⊕ a7

Step 1

⊕

⊕

⊕

⊕

a0

a0 ⊕ a1

a0 ⊕ a2

a0 ⊕ a1 ⊕ a2 ⊕ a3

a4

a4 ⊕ a5

a4 ⊕ a6

a4 ⊕ a5 ⊕ a6 ⊕ a7

Step 2

⊕
⊕

⊕
⊕

a0

a0 ⊕ a1

a0 ⊕ a2

a0 ⊕ a1 ⊕ a2 ⊕ a3

a0 ⊕ a4

a0 ⊕ a1 ⊕ a4 ⊕ a5

a0 ⊕ a2 ⊕ a4 ⊕ a6

a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7

Step 3 (Truth Table)

⊕
⊕
⊕
⊕

Figure 2.1: Fast Möbius transform on 3-variable Boolean functions.

That is to say, only the monomials with coefficients au satisfying u � x contribute to the value
of f at point x, because for y = (y1, . . . yn) ∈ Fn

2, the product xy = xy1 . . . xyn will attain the value
zero for the input x when supp(y) \ supp(x) , ∅.

One way to construct the truth table of a Boolean function from its ANF representation would
be to use Equation 2.11 and calculate each truth table entry one by one. However, there is a
more efficient method called the Fast Möbius transform which transforms the table of ANF
coefficients to the truth table. For an n-variable Boolean function, the algorithm consists of
n steps and at the ith step, the table of length 2n is considered as 2n−i consecutive blocks of
length 2i. Each block is processed in the following manner: first (upper) half of the bits in
each block are copied as is to the next step and the second (lower) half of the bits are added
to the first half of the block, producing the second (lower) half for the next iteration. After
the processing of all blocks are completed, the block length is doubled and the same operation
is repeated where the last block processed will be the single block of length 2n. Since there
are n steps and at each step all 2n elements are processed, this algorithm has a computational
complexity of O(n2n) operations. Figure 2.1 shows how Fast Möbius transform works for 3-
variable Boolean functions. At the end of the nth step, the table at hand is the truth table of
the Boolean function. This transformation is an involution, meaning that, if one starts with the
truth table of the function, the output will be the list of ANF coefficients.

2.4 Walsh Spectrum

Boolean functions of the form lw,c = 〈w, x〉 ⊕ c, where w ∈ Fn
2 and c ∈ F2 are called affine

functions. The set of all affine functions are denoted by An. The subset of affine functions
when c = 0 are called linear functions. The set of all linear functions are denoted by Ln. All
affine functions are balanced except for f (x) = 0 and f (x) = 1.

Discrete Fourier transform of a Boolean function is defined as follows:

F f (w) =
∑
x∈Fn

2

f (x)(−1)〈w,x〉. (2.12)

When considering the distances between Boolean functions, it is more convenient to work
on truth table values which are converted from (0, 1) to (1,−1). The sign function f̂ of a
Boolean function f ∈ Bn is defined as f̂ (x) = (−1) f (x) = 1 − 2 f (x). The truth table T f̂ =

9

(f̂ (0), · · · , f̂ (2n − 1)) consisting of the values (1,−1) is called the polarity truth table of f . An
important tool for measuring the distance of a Boolean function to the set of affine functions is
the Walsh-Hadamard transform, which is the Discrete Fourier transform of the sign function:

W f (w) =
∑
x∈Fn

2

(−1) f (x)⊕〈w,x〉. (2.13)

W f (w) is caleed the Walsh coefficient of f at point w. The value of W f (w) indicates how much
the truth table of f is correlated with the linear function lw. W f (w) always takes on even values
in the range [−2n, 2n]. The maximum value of W f (w) = 2n is attained when the truth table
of f is in full agreement with the linear function lw and a value of −2n is attained when f is
the complement of the linear function lw. The evenness of Walsh coefficients can be easily
deduced from the fact that if two values are added from the set {−1, 1}, the sum will be in the
set {−2, 0, 2}. So, an odd number can never be produced when the summation in Equation 2.13
is formed.

The ordered list of all Walsh coefficients W f = (W f (0), . . . ,W f (2n − 1) is called the Walsh
spectrum of f . Each Walsh coefficient is related to the distance between f and the linear
function lw in the following way:

W f (w) = 2n − 2d(f , g) (2.14)

d(f , g) = 2n−1 −
W f (w)

2
(2.15)

Since wt(f) = d(f , g), the Walsh coefficient at w = (0, . . . , 0) is related to the weight of the

function. More specifically, wt(f) = 2n−1 −
W f (0)

2 . Hence, whether a Boolean function is
balanced or not can be determined by looking at the value of W f (0), which should be zero in
the case of balancedness.

Polarity truth tables of linear functions can be formed by the so called Sylvester-Hadamard
matrices. Sylvester-Hadamard matrix of order n is an 2n × 2n matrix defined by the following
formula:

H0 = [1] (2.16)

Hi =

[
1 1
1 −1

]
⊗ Hi−1 for i ≥ 1 (2.17)

where ⊗ refers to the Kronecker product of matrices. These matrices satisfy

HnHn = 2nI2n

where I2n is the identity matrix of size 2n × 2n.

Each row (or column) of Hn corresponds to the polarity truth table of a linear function. There-
fore, the Walsh spectrum of a Boolean function f can be obtained by multiplying the polarity
truth table of f with the Sylvester-Hadamard matrix:

W f = T f̂ Hn (2.18)

10

Below is the Sylvester-Hadamard matrix of order 3:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

A more efficient technique for computing the Walsh spectrum of a Boolean function is Fast
Walsh transform. Fast Walsh transform is an n step algorithm that works similar to the Fast
Möbius transform, except that the binary addition operation is replaced with integer addition
and subtraction. At the ith step, the table of entries are considered as blocks of length 2i and
for each block, the upper half of the block elements are added to the lower half of the block
elements, producing the new upper half. The new lower half of blocks is obtained by subtract-
ing the lower half of elements from the upper half elements. This process is applied until the
single block of length 2n is processed. The resulting table constitutes the Walsh spectrum of
the Boolean function. This algorithm has a computational complexity of O(n2n) operations.
Figure 2.2 shows the Fast Walsh transformation for 3-variable Boolean functions.

x2x1 x3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Tf

t0

t1

t2

t3

t4

t5

t6

t7

t0 + t1

t0 − t1

t2 + t3

t2 − t3

t4 + t5

t4 − t5

t6 + t7

t6 − t7

Step 1

−
t0 + t1 + t2 + t3

t0 − t1 + t2 − t3

t0 + t1 − t2 − t3

t0 − t1 − t2 + t3

t4 + t5 + t6 + t7

t4 − t5 + t6 − t7

t4 + t5 − t6 − t7

t4 − t5 − t6 + t7

Step 2

t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7

t0 − t1 + t2 − t3 + t4 − t5 + t6 − t7

t0 + t1 − t2 − t3 + t4 + t5 − t6 − t7

t0 − t1 − t2 + t3 + t4 − t5 − t6 + t7

t0 + t1 + t2 + t3 − t4 − t5 − t6 − t7

t0 − t1 + t2 − t3 − t4 + t5 − t6 + t7

t0 + t1 − t2 − t3 − t4 − t5 + t6 + t7

t0 − t1 − t2 + t3 − t4 + t5 + t6 − t7

Step 3 (Walsh spectrum)

+

−
+

−
+

−
+

+

+

−
−

+

+

−
−

+

+

+

+

−
−

−
−

Figure 2.2: Fast Walsh transform on 3-variable Boolean functions.

Given the Walsh spectrum of a Boolean function, truth table can be obtained with the inverse
Walsh transform:

f̂ (x) =
1
2n

∑
w∈Fn

2

W f (w)(−1)〈w,x〉. (2.19)

The inverse Walsh transform states that the value of a Boolean function at x = (0, . . . , 0)
determines the sum of its Walsh coefficients:

2n f̂ (0) =
∑
w∈Fn

2

W f (w) (2.20)

In other words, the value of f (0) being 0 or 1 results in the sum of Walsh coefficients being 2n

or −2n, respectively.

11

Nonlinearity of a Boolean function f is the minimum distance between f and the set of affine
functions:

N f = min
g∈An

d(f , g) (2.21)

Since each Walsh coefficient specifies the distance of a Boolean function to a particular linear
function, nonlinearity can be calculated as a function of the Walsh spectrum:

N f = 2n−1 −
1
2

max
w∈Fn

2

|W f (w)| (2.22)

Remark 2.4.1 Nonlinearity of Boolean functions is invariant under the transformation g(x) =

f (Ax ⊕ b) ⊕ lw ⊕ c, where A is an n × n invertible binary matrix, b,w ∈ Fn
2 and c ∈ F2 [11].

Walsh spectrum satisfies the following relation called the Parseval’s identity:∑
x∈Fn

2

W f (w)2 = 22n (2.23)

Using Parseval’s identity, one obtains that the maximum absolute value of Walsh coefficients
can be minimized when all coefficients have the same magnitude, i.e.,∑

w∈Fn
2

W f (w)2 = 22n (2.24)

2nW f (w)2 = 22n (2.25)

|W f (w)| = ±2n/2 (2.26)

The set of Boolean functions with this property are called bent functions. Bent functions
achieve highest possible nonlinearity and only exist for even n.

A Boolean function is called correlation immune of order m if W f (w) = 0 for all w with
1 ≤ wt(w) ≤ m, and called called m-resillient if it is also balanced.

Walsh spectrum characterizes many cryptographic properties of Boolean functions. Therefore,
an approach in constructing Boolean functions satisfying certain cryptographic properties is
to construct a Walsh spectrum satisfying these properties. However, not every sequence of
arbitrarily assigned Walsh coefficients correspond to a Walsh spectrum of a Boolean function.
One way of testing whether a given Walsh spectrum is valid is to check whether the sum of
the squares of its entries is equal to 22n. Also, the sum of the Walsh coefficients must be ±2n.
These two conditions are necessary but not sufficient, so if one wants to be certain, he/she must
compute the value of the Boolean function by the inverse Walsh transform and see that this
transformation yields 0 or 1 at all the points. There is another method appearing in [15], which
states that ∑

w∈Fn
2

W f (w)W f (w ⊕ a) = 22nδ(a),∀a ∈ Fn
2

must be satisfied where δ(a) = 1 when a = 0 and 0 otherwise.

12

2.5 Numerical Normal Form

The last representation method for Boolean functions that will be discussed in this chapter is the
numerical normal form (NNF), introduced in [5]. This representation is obtained by carrying
the arithmetic of ANF representation on F2 to the arithmetic over the integers. This allows us
to represent a Boolean function in the following form:

f (x) =
∑
u∈Fn

2

λuxu (2.27)

where xu =
∏

xui
i is a monomial and λu ∈ Z is the NNF coefficient of the corresponding mono-

mial. When NNF coefficients are taken modulo 2, they correspond to the ANF coefficients,
that is:

au = λu (mod 2).

Transformation from ANF to NNF can be accomplished by making use of the following con-
version between binary and integer arithmetic:

a ⊕ b = a + b − 2ab.

Example 2.5.1 Let the ANF of a Boolean function be given as f (x1, x2, x3) = x1 ⊕ x3 ⊕ x2x3.
The NNF of this function can be computed as:

f (x1, x2, x3) = (x1 + x3 − 2x1x3) ⊕ x2x3

= x1 + x3 − 2x1x3 − x2x3 + 2x1x2x3

Note in the example that the odd NNF coefficients are also the ANF coefficients of the function.
In [5], an algorithm to compute the NNF coefficients from the truth table of a function is given.
This algorithm is quite similar to the Fast Möbius transform. The only difference is that there
is a subtraction operation instead of the binary addition operation. Figure 2.3 shows how the
NNF coefficients are obtained from the truth table.

x2x1 x3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Tf

t0

t1

t2

t3

t4

t5

t6

t7

t0

t1 − t0

t2

t3 − t2

t4

t5 − t4

t6

t7 − t6

Step 1

−

−

−

−

t0

t1 − t0

t2 − t0

t3 − t2 − t1 + t0

t4

t5 − t4

t6 − t4

t7 − t6 − t5 + t4

Step 2

−
−

−
−

t0

t1 − t0

t2 − t0

t3 − t2 − t1 + t0

t4 − t0

t5 − t4 − t1 + t0

t6 − t4 − t2 + t0

t7 − t6 − t5 + t4 − t3 + t2 + t1 − t0

Step 3 (NNF)

−
−
−
−

Figure 2.3: Transformation of truth table to NNF coefficients.

13

14

CHAPTER 3

COMPUTING WEIGHT FROM ALGEBRAIC NORMAL FORM

3.1 Introduction

This chapter is based on the published work [12] in which an algorithm that computes the
weight of a Boolean function from its ANF is proposed. For functions acting on large number
of variables (n > 30) and having low number of monomials in their ANF, the algorithm is
advantageous over the standard method of computing weight by constructing the truth table
from ANF with Fast Möbius Transform which requires O(n2n) operations for an n-variable
function [2]. Boolean functions having special structure allowing their weight to be calculated
more efficiently exist, e.g. majority functions [18].

The relation between the ANF of a Boolean function and its weight is introduced in [5]. How-
ever, a direct evaluation of this expression requires a computational complexity of O(2p) op-
erations if the ANF contains p monomials, which become quickly infeasible as p gets larger.
This limitation induced by the monomial count can be coped to some extent by exploring the
expression in detail and avoiding unnecessary computations, which forms the main contribu-
tion of this study. In a relevant work based on [5], Gupta and Sarkar proposed an algorithm
to compute the Walsh coefficients of a Boolean function from its ANF [20]. The drawback of
the algorithm proposed in [20] is that it requires the function to be composed of high degree
monomials in order to be efficiently computable. The algorithm proposed here can also be an
alternative and more efficient way of computing the Walsh coefficients of a Boolean function
since the Walsh coefficient of a function f at point w can be deduced from the distance of f to
the linear function lw = 〈w, x〉 which is equivalent to the weight of f ⊕ lw.

3.2 The Relation Between ANF and Weight

The expression of the weight of a Boolean function in terms of its ANF coefficients is given
in [5, Section 3.3 (Remark)]. Here, this formula called the weight function is restated. Let
ai ∈ F2 for 0 ≤ i ≤ 2n − 1 be the ANF coefficients of a Boolean function. For instance, a0 is the
coefficient of 1, a1 is the coefficient of xn, a2n−1 is the coefficient of x1 . . . xn, and so on. For
a set K = {i1, . . . , ik} ⊆ {0, . . . , 2n − 1}, aK = ai1 . . . aik is a product of ANF coefficients. The
weight function is

15

F(a0, . . . , a2n−1) =
∑

I⊆{0,...,2n−1}

λIaI (3.1)

where
λI = (−2)|I|−12n−wt(vi1∨···∨vik) (3.2)

is called the weight coefficient of aI . A Boolean function containing no monomials having
weight zero imposes λI = 0 if I = ∅. |I| is called the order part and wt(vi1 ∨ · · · ∨ vik) is called
the product weight part of the weight coefficient. In the product weight part, vi j is an n-bit
vector corresponding to the binary expansion of integer i j and specifies which variables appear
for the ANF coefficient ai j .

Example 3.2.1 For a 2-variable Boolean function

f (x1, x2) = a0 ⊕ a2x1 ⊕ a1x2 ⊕ a3x1x2,

the weight function is as follows:

F(a0, a1, a2, a3) = 4a0 + 2a1 + 2a2 + a3

−4a0a1 − 4a0a2 − 2a0a3 − 2a1a2 − 2a1a3 − 2a2a3

+4a0a1a2 + 4a0a1a3 + 4a0a2a3 + 4a1a2a3

−8a0a1a2a3.

The weight function consists of 22n
− 1 terms and for a Boolean function having p monomials

in its ANF, exactly 2p − 1 of the these terms will contribute to the sum, since in (3.1), if any of
the monomials in the set I is not present in the ANF, aI becomes zero and the term vanishes.
Hence, an equivalent formulation of the weight function involving only non-zero terms can be
obtained. If f (x1, . . . , xn) = xI1 ⊕ · · · ⊕ xIp , then the weight of f is

wt(f) =
∑

J⊆{1,...,p}\∅

(−2)|J|−12n−|I j1∪···∪I j|J| |. (3.3)

Here, J selects all non-empty monomial combinations and the value of each term in the sum is
determined by the number of monomials in J and the number of distinct variables appearing in
the monomials selected by J.

Example 3.2.2 Let f (x1, x2, x3) = x1⊕ x1x2⊕ x2x3. The weight function will be evaluated with
the following input:

F(a0, a1, a2, a3, a4, a5, a6, a7) = F(0, 0, 0, 1, 1, 0, 1, 0)

and the non-zero weight coefficients (aI , 0) is given in Table 3.1. The weight of the function
will be the sum of the weight coefficients, which is

wt(f) = 2 + 4 + 2 − 2 − 2 − 4 + 4 = 4.

The following proposition provides a quick computation of weight coefficients if both a mono-
mial and its sub-monomials exist in the ANF of a Boolean function.

16

Table 3.1: Weight coefficients of f (x1, x2, x3) = x1 ⊕ x1x2 ⊕ x2x3.

I Order Union Weight λI

{3} 1 2 (−2)1−123−2 = 2
{4} 1 1 (−2)1−123−1 = 4
{6} 1 2 (−2)1−123−2 = 2
{3, 4} 2 3 (−2)2−123−3 = −2
{3, 6} 2 3 (−2)2−123−3 = −2
{4, 6} 2 2 (−2)2−123−2 = −4
{3, 4, 6} 3 3 (−2)3−123−3 = 4

Proposition 3.2.3 Let f (x) = xI ⊕ xJ1 ⊕ · · · ⊕ xJt and the monomial xI of degree d covers all
the remaining t monomials. Then the sum of the weight coefficients involving xI is

K(n, t, d) =
∑

M=I∪J,J⊆{J1,...,Jt}\∅

λMaM =

0 if t is even;
−2n−d+1 if t is odd.

(3.4)

Proof. Considering the weight coefficients of the covering monomial xI and its sub-monomials,
the product weight part of any monomial combination containing xI will have d variables. So,
the sum S in the weight function involving these monomials becomes;

S =

t∑
i=1

(
t
i

)
(−2)i2n−d

= 2n−d[(−2 + 1)t − 1]

which is equal to (3.4). Notice that in S , the weight coefficients consisting of i sub-monomials
have the order part as (−2)i instead of (−2)i−1 because of the inclusion of the covering mono-
mial xI . �

Definition 3.2.4 Let f (x1, . . . , xn) = xi1 . . . xid ⊕ g(x j1 , . . . , x jk) such that
{i1, . . . , id} ∩ { j1, . . . , jk} = ∅. Then the monomial xi1 . . . xid is called an isolated monomial,
meaning that the variables it depends on does not appear in any other monomial in g.

Now, two well known properties where Prop. 3.2.6 is a special case of Prop. 3.2.5 appearing
in [26] as the randomization lemma is stated.

Proposition 3.2.5 If f (x) = xI ⊕ g(x) and xI is an isolated monomial of degree d then

wt(f) = 2n−d + wt(g) − 21−dwt(g).

17

Proof. The result follows from the fact that if a function is written as the sum of two functions
f (x) = g(x) ⊕ h(x) then wt(f) = wt(g) + wt(h) − 2wt(gh). Since xI and g(x) have no common
variables, wt(xIg) = 2−dwt(g). The weight of the function consisting of a single monomial of
degree d being 2n−d completes the proof. �

Proposition 3.2.6 A Boolean function containing an isolated monomial of degree 1 is bal-
anced.

Proof. Substituting d = 1 in Prop. 3.2.5, one gets

wt(f) = 2n−1 + wt(g) − 21−1wt(g),

= 2n−1.

�

The most important benefit of determining the isolated monomials in a function is a conse-
quence of Prop. 3.2.6, finding the weight by checking a balancedness condition and aborting
the weight computation if the condition is met. Apart from this, it is possible that there are more
than one isolated monomials all having degrees greater than 1 in a function, in which case the
weight of the function can be computed by first putting the isolated monomials aside, then
computing the weight of the function composed of the remaining monomials and combining
these together according to Prop. 3.2.5 one by one.

3.3 The Algorithm

Suppose the ANF and weight of a Boolean function composed of k monomials is given. An
investigation of how the weight of the function changes if one more monomial is added to the
function will be the basis of an iterative method to compute the weight of a function.

Let f (x) = xI1 ⊕ · · · ⊕ xIk︸ ︷︷ ︸
g(x)

⊕xIk+1 and weight of g(x) be given. Considering the weight function

(3.1) or (3.3), in order to find the weight of f (x), the new weight coefficients introduced by
the addition of the (k + 1)st monomial should be calculated. There are 2k such coefficients; the
coefficient of the (k + 1)st monomial itself plus all possible non-empty 2k − 1 combinations of
the first k monomials together with the (k + 1)st monomial.

For the calculation of these new coefficients, two monomial sets S 1 and S 2 are formed from the
monomials of g(x) such that S 1 consists of the monomials which are sub-monomials of xIk+1

and S 2 consists of the differences of the remaining monomials with respect to xIk+1 .

S 1 = {xIi | Ii ⊂ Ik+1, i ∈ {1, . . . , k}}, (3.5)

S 2 = {xIi \ xIk+1 | i ∈ {1, . . . , k}}. (3.6)

Note that in S 2, it is possible that a monomial appears more than once. For example, x1x3 \

x1x2 = x3 and x2x3 \ x1x2 = x3. In this case, the monomials appearing an even number of times
will be discarded and only one instance of monomials appearing an odd number of times will
be stored, which is explained by the following proposition.

18

Proposition 3.3.1 If xI and xJ are two monomials whose differences with respect to a mono-
mial xK are equal, then the sum of weight coefficients involving these three monomials is zero.

Proof. Let f (x) = xI ⊕ xJ ⊕ xK ⊕ g(x). Since xI \ xK = xJ \ xK , the product weight part of
the monomials xI ∪ xK and xJ ∪ xK will be the same. Let T denote the sum of the weight
coefficients involving xI , xK and the monomials in g. The sum of the coefficients involving
xJ , xK and the monomials in g will also be equal to T from the equality of the product weight
stated before. Finally, considering the coefficients involving both xI and xJ and the rest of the
monomials, the sum will be −2T , canceling the previous sums, because the order part of the
weight coefficients will increase by one while the product weight part remains the same. �

The new weight coefficients introduced by the addition of monomial xIk+1 can be grouped into
three sums T1, T2 and T3; the coefficients formed by the monomials in S 1 and xIk+1 , S 2 and
xIk+1 , S 1 and S 2 and xIk+1 , respectively. T1 can be computed according to (3.4). T2 can be
computed by finding the weight of the monomials in S 2 and then combining this with the
monomial xIk+1 according to Prop. 3.2.5. This is a recursive weight computation call, but to
a function that is simpler and contains probably less monomials because the monomials in S 2
consist of the variables not appearing in xIk+1 . The value of T3 depends on the parity of |S 1|.
If S 1 contains an even number of monomials then according to Prop. 3.3.1 these will be zero
because the monomials in S 1 are sub-monomials of xIk+1 and they will contribute to the order
part of the weight coefficient but not to the product weight part. If there is an odd number of
monomials in S 1 then the sum of the even parts will be zero and the contribution will be −2T2
because of the order part increasing by 1 and product weight part not changing. To sum up, the
new weight coefficients will be as follows:

T1 = K(n, |S 1|, d), (by Prop. (3.2.3))

T2 = −21−dwt(S 2), (by Prop. (3.2.5))

T3 = −2T2(|S 1| (mod 2)). (by Prop. (3.2.3))

Apart from these, there is one more weight coefficient to be considered, the weight coefficient
of the newly added monomial itself, which is 2n−d if the degree of the monomial is d.

Combining these observations, Algorithm 3.3.1, can be used to compute the weight of a Boolean
function by processing the monomials of the function. The algorithm takes as input the mono-
mials of a Boolean function denoted by f unc, whose weight is to be computed. f unc consists
of a list of monomials and these are processed one by one in the given order. The monomi-
als are assumed to be sorted with respect to their degrees in ascending order, to improve the
performance. Global variable n defines the number of input variables. W stores the weight of
the function processed up to that point and S holds the weight contribution of the processed
monomial to the function, which can be negative. Insertion and removal of monomials from
monomial lists will be denoted by + and − respectively. The monomial processed currently,
denoted by xI in the algorithm will be referred to as the processed monomial. There are three
monomial lists other than the function itself; ProcessedList is initially empty and contains
the previously processed monomials as the algorithm proceeds. S ubMonList and Dis jointList
are constructed for each processed monomial from scratch. S ubMonList is a list of mono-
mials covered by the processed monomial. Dis jointList is the difference of each monomial
in ProcessedList with respect to the processed monomial. Notice that the even instances of

19

monomials in Dis jointList will be removed as explained in Prop. 3.3.1. Hence, if a monomial
appears k times in Dis jointList then k (mod 2) instances of it will remain. The weight of the
monomials in Dis jointList also have to be computed (with a recursive call) and combined with
the processed monomial to be added to S . The last term added to S is the weight coefficient of
the processed monomial. At the end of processing of a monomial, W + S will be the updated
weight of the partial function composed of the processed monomials.

An example illustrating how the algorithm runs for the 4-variable Boolean function

f (x1, x2, x3, x4) = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x4 ⊕ x1x2x3 ⊕ x2x3x4 ⊕ x1x2x3x4

is given in Table 3.2. If the processed monomial xI has no common input variables with the
variable VarS et specified by the Isolated column of the table, it means that xI is an isolated
monomial (considering only the monomials up to that point) and the weight contribution S
is directly calculated according to Prop. 3.2.5, not requiring the calculation of S ubMonList
and Dis jointList. At the end of each step, VarS et will be updated to include the processed
monomial’s input variable indices in order to determine whether the upcoming monomials are
isolated or not. Next three columns denote the three monomial lists used in the algorithm, with
Dis jointList being simplified after the cancellation of even number of monomials. Column S
denotes the contribution of the processed monomial to the function’s weight and column W
shows the weight of the function composed of the processed monomials so far.

Table 3.2: Execution of the algorithm for f (x1, x2, x3, x4) = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x4 ⊕ x1x2x3 ⊕

x2x3x4 ⊕ x1x2x3x4.

Step xI VarSet Isolated ProcessedList SubMonList DisjointList S W
1 x1 ∅ Yes ∅ - - 8 8
2 x3 {1} Yes {x1} - - 0 8
3 x1 x3 {1, 3} No {x1, x3} {x1, x3} ∅ 4 12
4 x2 x4 {1, 3} Yes {x1, x3, x1 x3} - - -2 10
5 x1 x2 x3 {1, 2, 3, 4} No {x1, x3, x1 x3, x2 x4} {x1, x3, x1 x3} {x4} 0 10
6 x2 x3 x4 {1, 2, 3, 4} No {x1, x3, x1 x3, x2 x4, {x3, x2 x4} {x1} 0 10

x1 x2 x3}

7 x1 x2 x3 x4 {1, 2, 3, 4} No {x1, x3, x1 x3, x2 x4, {x1, x3, x1 x3, x2 x4, ∅ 1 11
x1 x2 x3, x2 x3 x4} x1 x2 x3, x2 x3 x4}

3.3.1 An Extension Making Use of the Isolated Monomials

Algorithm 3.3.1 can be improved by making use of Prop. 3.2.5. To accomplish this, the isolated
monomials should be found and removed from the function, in order to be processed after
the weight of the function composed of the remaining monomials is computed. Algorithm
3.3.2 returns the list of isolated monomials in a function and also removes these monomials
from the function. The variable VarS et stores the variable indices appearing in the processed
monomials. If a monomial xI does not contain variables previously appeared, i.e., VarS et∩ I =

∅, this monomial is added to the IsolatedList. Otherwise, the monomials in IsolatedList are
checked for a common variable with xI and removed from the IsolatedList if found any. At
the end of this process, IsolatedList contains the isolated monomials of the function. In the
last step, the isolated monomials are removed from the original function and IsolatedList is
returned as the output of the algorithm.

20

The extended weight computation algorithm incorporating Algorithm 3.3.2 is given as Algo-
rithm 3.3.3. The first step of Algorithm 3.3.3 is to move the isolated monomials of f unc to
IsolatedList. Then, IsolatedList is checked for a monomial of degree 1, indicating the bal-
ancedness of the function. With isolated monomials being separated, weight of f unc is com-
puted with Algorithm 3.3.1 However, a small change in this algorithm is needed. As Algorithm
3.3.1 is a recursive algorithm calling itself, the improvement provided by Algorithm 3.3.2 can
be continuously made effective if the recursive call to Algorithm 3.3.1 is replaced with Algo-
rithm 3.3.3. This way, each attempt at computing the weight of a function starts by separating
the isolated monomials.

Algorithm 3.3.1: ComputeWeight(f unc)

global n : Number of input variables
local VarS et : A set storing appeared input variable indices
local S ubMonList,Dis jointList, ProcessedList : Monomial lists
local d : Degree of a monomial
local S : Partial sum coming from the processed monomial
local W : Weight of the function consisting of processed monomials

W ← 0
VarS et ← ∅
ProcessedList ← ∅

for each monomial xI ∈ f unc

S ← 0
d ← deg(xI)
if VarS et ∩ I = ∅

then S ← −21−dW

else

S ubMonList ← {Term ∈ ProcessedList : Term ⊆ xI}

Dis jointList ← {Term \ xI : Term ∈ ProcessedList}

if Dis jointList , ∅
then S ← −21−dComputeWeight(Dis jointList)

if |S ubMonList| ≡ 1 (mod 2)
then S ← −S − 2n−d+1

S ← S + 2n−d

W ← W + S
VarS et ← VarS et ∪ I
ProcessedList ← ProcessedList + xI

return (W)

21

Algorithm 3.3.2: SplitIsolatedMonomials(f unc)

local VarS et : A set storing appeared input variable indices
local IsolatedList : List of isolated monomials

VarS et ← ∅
IsolatedList ← ∅

for each monomial xI ∈ f unc

if VarS et ∩ I = ∅

then IsolatedList ← IsolatedList + xI

else

for each monomial xJ ∈ IsolatedList
if J ∩ I , ∅

then IsolatedList ← IsolatedList − xJ

VarS et ← VarS et ∪ I

comment: Remove isolated monomials from func

for each monomial xI ∈ IsolatedList
f unc← f unc − xI

return (IsolatedList)

Algorithm 3.3.3: ComputeWeight2(f unc)

local IsolatedList : List of isolated monomials
local W : Weight

IsolatedList ← SplitIsolatedMonomials(f unc)

if ∃ xI ∈ IsolatedList such that deg(xI) = 1
then return (2n−1)

W ← ComputeWeight(f unc)

for each xI ∈ IsolatedList
W ← W + 2n−deg(xI) − 21−deg(xI)W

return (W)

3.4 Implementation Results and Comparison of the Complexities

Throughout the section n and p will denote the number of input variables and the number of
monomials appearing in the ANF of a Boolean function, respectively. The proposed weight

22

computation algorithm tries to improve upon the exhaustive calculation of 2p weight coef-
ficients, with the worst case complexity being 2p. Therefore, the algorithm is clearly more
efficient than the traditional method using Fast Möbius Transform for p ≤ n. For p > n it can
still perform better as the experiments indicate. However, a precise computation of the running
time complexity of the algorithm should regard not only n and p, but also the possible structural
relations of the monomials. That is, two functions having the same number of input variables
and the same number of monomials may have quite different time complexities. Due to this,
the comparison of the time complexity with Gupta-Sarkar’s algorithm has been given for par-
ticular classes of Boolean functions, namely randomly generated functions and homogeneous
functions.

The algorithm has been implemented in C language and timings have been collected from a
PC having Intel Core-i5 processor running at 3.2GHz. Memory requirement for each setting is
negligible. Table 3.3 lists the average running times of the algorithm for randomly generated
Boolean functions.

Table 3.3: Timings for random functions.

n / p 32 64 128 192 256
32 <1s <1s <1s 2s 6s
64 <1s <1s 15s 1m 40s 5m 56s

128 <1s 7s 6m 19s 1h 3m 4h 52m

The time complexity of Gupta-Sarkar’s algorithm is given in [20] as nS 1 log2(S 2) where the
dominant factor S 1 is defined as the number of monomial combinations whose product contains
less than n input variables. The value of S 1 is related to the degree distribution of the monomials
of the function and can be as high as 2p. The expected value of S 1 can be calculated with the
following formula with q being the probability of an input variable appearing in a monomial,
which is equal to 1

2 for random functions.

p∑
k=1

(1 − (1 − (1 − q)k)n)
(
n
k

)
(3.7)

By the help of the above formula, corresponding expected values of log2(S 1) for random
Boolean functions are given in Table 3.4.

Table 3.4: Expected value of log2(S 1) for random functions.

n / p 32 64 128 192 256
32 23.66 42.43 79.84 113.05 137.35
64 24.62 43.43 80.84 114.05 138.35

128 25.55 44.43 81.84 115.05 139.35

A second experiment is conducted for homogeneous Boolean functions, that is, the functions
consisting of the monomials of the same degree. The number of input variables is chosen to
be n = 64 and two different monomials counts, namely, p = 64 and p = 80 is used. The

23

monomials are randomly chosen from the set of possible monomials for each degree. Table
3.5 lists the timings for degrees 1 up to 32. Degrees greater than 32 are omitted because of the
execution times being negligible. The timings listed in the table reflect the average execution
time of five Boolean functions for the specified degree and monomial count. The column next
to the execution times in the table gives the expected values of log2(S 1) for Gupta-Sarkar’s
algorithm. Expected value of S 1 for homogeneous functions can be computed from (3.7) by
substituting the appropriate value of q for each degree. Based on the values of S 1 in Table
3.4 and Table 3.5, one can conclude that for the specified classes of Boolean functions, the
proposed weight computation algorithm is able to compute the weights of the functions for
which the complexity of Gupta-Sarkar’s algorithm is impractical.

3.5 Conclusion

In this chapter, an algorithm for computing the weight of a Boolean function from its ANF
representation is proposed, which can be used for functions having large number of input vari-
ables where constructing the truth table by applying the Fast Möbius transform is infeasible.
The algorithm improves upon the known method of computing weight due to Carlet and Guillot
which required O(2p) operations for functions containing p monomials. The proposed algo-
rithm achieves a better performance by eliminating unnecessary calculations and this fact is
supported by the empirical results. The experiments also indicate that the algorithm succeeds
in computing the weights for certain function classes where the expected running times of a
comparable algorithm proposed by Gupta and Sarkar is infeasible.

24

Table 3.5: Timings for 64-variable homogeneous functions and the corresponding expected
values of log2(S 1).

p = 64 p = 80
Degree Time (sec.) log2(S 1) Time (sec.) log2(S 1)

1 0 64.00 0 80.00
2 15 64.00 1605 80.00
3 614 63.99 40511 79.99
4 4613 63.99 93730 79.98
5 5540 63.97 190725 79.84
6 8625 63.87 211452 79.50
7 9551 63.63 192942 78.93
8 5903 63.25 120866 78.21
9 4840 62.74 73298 77.38
10 4109 62.14 51803 76.49
11 2902 61.47 29039 75.56
12 1863 60.75 16500 74.59
13 1395 60.00 10780 73.61
14 852 59.23 6624 72.61
15 595 58.44 4262 71.60
16 404 57.63 2483 70.58
17 251 56.82 1512 69.55
18 155 55.99 899 68.50
19 107 55.15 525 67.45
20 66 54.30 340 66.39
21 42 53.44 210 65.31
22 28 52.58 128 64.23
23 19 51.70 82 63.13
24 13 50.82 53 62.03
25 8 49.93 35 60.91
26 6 49.03 23 59.79
27 4 48.12 16 58.65
28 3 47.20 10 57.50
29 2 46.27 7 56.34
30 1 45.34 4 55.17
31 1 44.39 3 53.99
32 0 43.43 2 52.79

25

26

CHAPTER 4

COMPUTING NONLINEARITY FROM ALGEBRAIC
NORMAL FORM

4.1 Introduction

In this chapter, an algorithm for computing the nonlinearity of a Boolean function from its
algebraic normal form (ANF) is proposed. Among the properties associated with a Boolean
function, nonlinearity is an important criterion regarding the security point of view. Nonlin-
earity is defined as the minimum distance of a Boolean function to the set of affine functions
and the functions used in secrecy systems are expected to have high nonlinearity in order to
be resistant against certain cryptanalytic attacks. This makes the nonlinearity computation a
necessary task in order to prove that the claimed level of security is achieved.

Computing nonlinearity from the truth table can be done via Fast Walsh transform (FWT),
which constructs the Walsh spectrum of the function and the entry with the maximum absolute
value in the spectrum determines the nonlinearity. As the truth table of an n-variable Boolean
function consists of 2n entries, the cost of storing the truth table increases exponentially in n.
ANF is a preferred representation either when it is impractical to store the truth table, or it is
more efficient and/or secure to calculate the output of the Boolean function from an expression
of the input variables.

Unless the ANF of a Boolean function belongs to a class that reveals its nonlinearity (e.g.
affine functions, bent functions), the task of computing the nonlinearity from the ANF can
be performed by constructing the truth table from the ANF by Fast Möbius transform and
then applying FWT on it. This process has a computational complexity of O(n2n) both to
transform the ANF to the truth table and to apply FWT. Clearly, when n gets larger, say n > 40,
considering the computational and memory resources of current computers, performing these
transformations becomes infeasible.

Expression of the weight of a Boolean function in terms of its ANF coefficients is introduced by
Carlet and Guillot [5], which allows one to compute the weight from the ANF with a complex-
ity of O(2p) operations, if the Boolean function consists of p monomials. Two related works
utilizing this expression propose more efficient methods for Walsh coefficient computation and
weight computation from the ANF [20, 12], with the latter one being the subject of Chapter 3.

In this chapter, by investigating the distance of a Boolean function to the set of affine functions

27

in terms of ANF coefficients, an algorithm to compute the nonlinearity for Boolean functions
with large number of inputs is devised.

4.2 Distance to Linear Functions

Any integer valued function G : Fm
2 → Z defined on binary m-tuples can be represented by

G(x1, . . . , xm) =
∑

I⊆{1,··· ,m}

λI xI (4.1)

where xi ∈ F2 for 1 ≤ i ≤ m and λI ∈ Z is the coefficient of the product xI = xi1 . . . xid for I =

{i1, · · · , id}. Here, xi ∈ F2 implies x2
i = xi, therefore all the terms xI are distinct products of

input variables and the function has 2m terms. For the functions of interest to this study, G
maps the ANF coefficients of an n-variable Boolean function to the distance to a particular
linear function, hence the number of input variables is m = 2n. When m is large, it is not
possible to list all of the ANF coefficients of a Boolean function. Instead, the support of the
ANF is supplied, which is assumed to be relatively small sized. For an input x = (x1, . . . , xm)
and supp(x) = {i1, · · · , ip}, the output of the function will be the sum

G(x) =
∑

I⊆{i1,··· ,ip}

λI

consisting of 2p coefficients λI , associated with all nonzero products xI . Using this approach,
the function G can be evaluated in O(2p) operations if the complexity of computing each λI

is negligible. In the following part of this section, it will be shown that the coefficients of
the functions mapping the ANF coefficients to the weight and to the distance to a particular
linear function can be computed in a very simple way. On the contrary, this is not the case for
nonlinearity. This will lead to constructing a method to compute the nonlinearity without trying
to compute the coefficients of the function, but by exploiting the properties of the previously
mentioned functions’ coefficients that could be easily computable.

The function mapping the ANF coefficients to the weight of a Boolean function was introduced
in [5], which will be called the weight function. In order to render the remaining of the text
more comprehensible, how the coefficients of this function are derived is going to be explained.

The output of a Boolean function can be calculated in terms of its ANF coefficients as follows:

f (x) =
⊕
u�x

au. (4.2)

Table 4.1 shows the truth table entries of 3-variable Boolean functions in terms of ANF coeffi-
cients. When an ANF coefficient ai contributes to the output of a Boolean function at a point,
it is said that ai appears in that truth table entry. The sum of the truth table entries gives the
weight of the function. Weight can be expressed as a function over the integers by replacing the
addition operation in F2 in each truth table entry with integer addition operation. F2 addition
can be converted to addition over the integers by a well known formula, generalizing the fact
that a ⊕ b = a + b − 2ab:

28

m⊕
i=1

ai =

m∑
k=1

(−2)k−1
∑

1≤i1<···<ik≤m

ai1 · · · aik . (4.3)

This formula states that the expression of addition over the integers consists of all combinations
of products of terms, with a leading coefficient related to the number of terms in the product,
such as all degree two terms having the coefficient −2 and all degree three terms having the
coefficient 4, etc.

Proposition 4.2.1 For an n-variable Boolean function, ANF coefficient au contributes to the
output in 2n−wt(u) points.

Proof. From (4.2), au contributes to the output of the function at a point x if u � x. This means
that au contributes to the function output at points S (u), whose size is equivalent to 2n−wt(u) by
(2.2). �

Proposition 4.2.2 For each set A = {au1 , · · · , auk } of ANF coefficients, there exists a coefficient
av with the property supp(v) =

⋃
1≤i≤k

supp(ui), such that the truth table entries av appears are

exactly the same as the truth table entries all the coefficients in A appear together. Such a
coefficient av will be called the representative coefficient of

∏
1≤i≤k

aui .

Proof. From (4.2), each aui appears in truth table entries S (ui). If y is a truth table entry such
that all aui’s appear together then

⋃
1≤i≤k

supp(ui) ⊆ supp(y). Call the minimum weight vector

satisfying this property v, the case where the set equality occurs. Then, by definition of a super-
vector, the set S (v) also has the same property of covering the supports of ui’s, and these are the
points the ANF coefficient av appears in the truth table. Therefore, if vector v is chosen such
that supp(v) =

⋃
1≤i≤k

supp(ui), av appears at exactly the same truth table entries as {au1 , · · · , auk }

appear together. �

Combining Proposition 4.2.1 and (4.3), one obtains the weight function of an n-variable Boolean
function as follows:

F(a0, . . . , a2n−1) =
∑

I⊆{0,...,2n−1}

λIaI (4.4)

where λI ∈ Z is called the weight coefficient of the product aI =
∏
i∈I

ai. If I = ∅, the value of λI

is found to be zero. For a non-empty set I = {i1, · · · , ik}, the value of λI is determined by two
factors:

λI = dInI , (4.5)

dI = (−2)k−1, (4.6)

nI = 2n−wt(i1∨···∨ik). (4.7)

29

Table 4.1: Truth Table in terms of ANF Coefficients.

x1 x2 x3 ANF Truth table

0 0 0 a0 a0

0 0 1 a1 a0 ⊕ a1

0 1 0 a2 a0 ⊕ a2

0 1 1 a3 a0 ⊕ a1 ⊕ a2 ⊕ a3

1 0 0 a4 a0 ⊕ a4

1 0 1 a5 a0 ⊕ a1 ⊕ a4 ⊕ a5

1 1 0 a6 a0 ⊕ a2 ⊕ a4 ⊕ a6

1 1 1 a7 a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7

The value of dI comes from (4.3) and nI is the number of times the product aI occurs in the
truth table entries expressed in integer addition, which is related to the number of distinct input
variables appearing in the monomials of contributing ANF coefficients.

Example 4.2.3 Let n = 3 and consider the weight coefficient of a1a2 in the weight function.
After the conversion of binary addition to integer addition, a1a2 appears in a truth table entry
if and only if both of a1 and a2 are present at that entry. According to Proposition 4.2.2, a3
appears as many times as a1a2 appears in the truth table since 1 ∨ 2 = 3, and the entries they
appear are exactly the same, which are the fourth and the last rows of Table 4.1. Hence, by
Proposition 4.2.1, a1a2 appears 23−wt(3) = 2 times and since a1a2 consists of two terms, each
one of these terms will have the constant (−2)2−1 = −2 arising from the conversion of addition
(4.3). As a result, the coefficient of a1a2 becomes (−2).2 = −4.

4.2.1 The Linear Distance Matrix

Now, the method of obtaining the coefficients of the function which outputs the distance of
a Boolean function to a linear function, in terms of ANF coefficients will be described. Es-
sentially, the distance between a Boolean function f and a linear function lw is equivalent to
wt(f ⊕ lw). So, an investigation of how the coefficients in the weight function change when the
truth table of f is merged with a linear function is necessary. The weight function when com-
puted with new coefficients will be called the distance function, producing the output d(f , lw).
This is a generalization of the weight function defined as

Fw(a0, . . . , a2n−1) =
∑

I⊆{0,...,2n−1}

λw
I aI (4.8)

where w ∈ Fn
2 specifies which linear function the distance is measured, λw

I ∈ Z is the distance
coefficient of the product aI . When w = 0, (4.8) is equivalent to (4.4) and outputs the weight.
The following proposition states how the coefficients λw

I are obtained.

30

Proposition 4.2.4 Let λI be the weight coefficient of aI in the weight function of an n-variable
Boolean function f and let av be the representative ANF coefficient of aI . The distance coeffi-
cient λw

I of aI in the distance function Fw for a nonzero w ∈ Fn
2 is

λw
I =

2n−1, if I = ∅,

λI , if I , ∅ and w � v and wt(w) is even,
−λI , if I , ∅ and w � v and wt(w) is odd,

0, otherwise.

Proof. Adding a nonzero linear function lw to f complements the truth table of f at 2n−1 points.
At these points, the new value of the function becomes 1⊕ f (x), which is equivalent to 1− f (x)
in integer arithmetic. Considering the integer valued expression of the truth table entries in
terms of ANF coefficients, this corresponds to negating the terms and producing a constant
value of 1 that is independent of the ANF coefficients. This proves λw

I = 2n−1 for I = ∅.

In order to find out the values of other coefficients, at how many points supp(lw) coincides with
the truth table entries the product aI appears must be calculated. If all (resp. half, none) of the
points where aI appears in the truth table coincide with supp(lw), then λw

I will be −λI (resp. 0,
λI).

Linear function lw identified by the vector w ∈ Fn
2 has supp(w) terms and takes on the value 1

whenever an odd sized combination of its terms are added. Namely,

supp(lw) = {x ∈ Fn
2 | #{supp(x) ∩ supp(w)} is odd.}. (4.9)

This also means that, if x ∈ supp(lw) then supp(x) = I ∪ J such that I ⊆ supp(w) with |I| ≡ 1
(mod 2) and J ⊆ {1, . . . , n} \ supp(w), i.e., the components which are not in the support of w
can be chosen freely since they do not contribute to the output of lw. On the other hand, if av is
the representative ANF coefficient of the product aI , the truth table entries where aI appears is
S (v) by (4.2).

• Assume w � v. For a vector x ∈ Fn
2 to be both in supp(lw) and S (v), supp(w) ⊆ supp(x)

is necessary. Otherwise, if any component j ∈ supp(w) of x is taken to be zero, x will
not be in S (v), because j ∈ supp(w) and w � v implies j ∈ supp(v), which means the
jth component will always be 1 in S (v). Hence, intersection occurs at the points S (w),
i.e., all the terms in lw must be chosen. If wt(w) is even, the linear function lw gets the
value zero at these points and the intersection becomes the empty set, proving λw

I = λI .
Following the same argument, if wt(w) is odd and all the terms in lw are chosen, lw attains
the value 1 at the points S (w). Since w � v implies S (v) ⊆ S (w), all the points the term
av appears in the truth table coincide with supp(lw) and the terms at these points will be
negated due to complementation, leading to λw

I = −λI .

• Assume w � v. This implies A = supp(w) \ supp(v) , ∅. Let supp(x) = supp(w) ∩
supp(v) for an x ∈ Fn

2. Then it is easy to show that half of the vectors in S (x) have even
weight and half of them have odd weight. Because for any y1 ∈ S (x) with |supp(y1) ∩
A| ≡ 1 (mod 2) a corresponding vector y2 such that |supp(y2) ∩ A| ≡ 0 (mod 2) can be
found. A consequence of this is the output of the linear function lw at points y1 and y2
are complements of each other. This means that half of the vectors in S (v) are also in

31

Table 4.2: Linear Distance Matrix for n = 3.

a0 a1 a2 a3 a4 a5 a6 a7

l0 8 4 4 2 4 2 2 1

l1 0 -4 0 -2 0 -2 0 -1

l2 0 0 -4 -2 0 0 -2 -1

l3 0 0 0 2 0 0 0 1

l4 0 0 0 0 -4 -2 -2 -1

l5 0 0 0 0 0 2 0 1

l6 0 0 0 0 0 0 2 1

l7 0 0 0 0 0 0 0 -1

supp(lw) and half of them are not. Therefore, in the summation of truth table entries at
positions S (v), terms cancel each other making λw

I = 0.

�

Now consider all 2n functions Fw which map the ANF coefficients of a Boolean function f to
the distance d(f , lw), with the attention being on the distance coefficients of aI with |I| = 1, i.e.,
the distance coefficients of ai for i ∈ {0, · · · , 2n − 1}. According to (4.2.2), for any product aI

with |I| > 1, a representative coefficient from this set can be used. The 2n × 2n matrix whose ith

row consists of such coefficients λi
I will be called the Linear Distance Matrix (LDM) of order

n, denoted by Mn. In view of Proposition 4.2.4, each entry of LDM can be defined as follows:

Mn
i, j =

{
(−1)wt(i)2n−wt(j), if i � j,
0, otherwise.

(4.10)

Table 4.2 shows the LDM of order 3. The entries of nth order LDM are closely related to the
Sylvester-Hadamard matrix Hn, which is defined as

H0 = [1] , (4.11)

Hn =

[
1 1
1 −1

]
⊗ Hn−1, for n ≥ 1, (4.12)

where ⊗ refers to the Kronecker product of matrices. Each row (or column) of Hn represents
the truth table of a linear function, whose entries are transformed from (0, 1) to (1,−1). Table
4.3 shows H3 where only the signs of the entries are shown. ’+’ and ’-’ denote the points the
function takes on the values 0 and 1 respectively.

Proposition 4.2.5 Mn
i, j can be obtained by adding the entries of the ith row of Hn at columns

S (j):

Proof. Since the ith row of Hn represents the truth table of li, the distance coefficient of av in
the distance function can be calculated by adding the ’+’ and ’-’ values of Hn in the ith row at

32

Table 4.3: H3: Sylvester-Hadamard Matrix of order three.

a0 a1 a2 a3 a4 a5 a6 a7

l0 + + + + + + + +

l1 + - + - + - + -

l2 + + - - + + - -

l3 + - - + + - - +

l4 + + + + - - - -

l5 + - + - - + - +

l6 + + - - - - + +

l7 + - - + - + + -

columns S (v). This gives how many times the sign of av will be positive and negative in the
integer valued expression of truth table entries when the linear function li is added to a Boolean
function. This sum corresponds to the distance coefficient of av. �

LDM can also be expressed with the following recursive structure:

Mn,0 = [1] , (4.13)

Mn,i =

[
2 1
0 −1

]
⊗ Mn,i−1, for 1 ≤ i ≤ n, (4.14)

Mn,n = Mn. (4.15)

This recursive structure can be explained with Sylvester-Hadamard matrices. As stated in
Proposition 4.2.5, the entries of Mn correspond to the sum of particular entries of Hn. When
the dimension is extended from n to n + 1, Hn grows according to (4.11). As a result of the way
Hn is duplicated to produce Hn+1, the values of Mn are doubled for ANF coefficients that do
not contain the newly introduced variable, which corresponds to the upper left quarter of Mn+1.
The upper right quarter of Mn+1 will be equal to Mn as this part of Hn+1 is equal to Hn. The
lower right quarter will be −Mn since the entries of Hn+1 at this part have opposite signs with
Hn, and the lower left quarter will be the matrix consisting of all zeros because for each S (v),
half of the entries will be positive and the other half will be negative.

The first row of the LDM contains the distance coefficients for calculating the distance to the
linear function l0 = 0, which also corresponds to the weight. The coefficients in this row are
also equivalent to the weight coefficients of the weight function. The second and third rows
contain the distance coefficients for calculating the distances to the linear functions l1 = xn and
l2 = xn−1 respectively, and so on. The first row of the LDM will often be an exceptional case for
the rest of the discussions in this chapter because once the weight of the function is calculated
in the first step of the nonlinearity computation algorithm which is going to be explained in
the next section, this row will no longer be needed. Some properties of the LDM derived from
(4.10) are as follows:

Remark 4.2.6 Entries in the jth column take on the values from the set {0,±2k}, where k =

n − wt(j).

33

Except the first and the last columns of the LDM, all three values mentioned in Remark 4.2.6
appear in a column. In the first column, there is only one nonzero entry which is positive and
all the other entries are zero. In the last column, there is no entry with a zero value.

Remark 4.2.7 Nonzero entries of the jth column are at positions x where x = S (j).

Remark 4.2.8 Nonzero entries of the ith row are at positions x where x = S (i).

Remark 4.2.9 Nonzero entries of the ith row are positive if wt(i) is even, and negative if wt(i)
is odd.

Remark 4.2.10 Let j1 and j2 be two column indices in the LDM. Then the following holds:

• If j1 � j2 then Mi, j1 , 0 implies Mi, j2 , 0.

• If supp(j1) ∩ supp(j2) = ∅ then at least one of Mi, j1 and Mi, j2 is zero, except for i = 0.

Remark 4.2.11 Zero entries of the jth column are at positions x where supp(x)∩ ({1, · · · , n} \
supp(j)) , ∅.

Proposition 4.2.12 If the ith row of the LDM is used to measure the distance to the linear
function li, negating each entry of the ith row is used to measure the distance to the affine
function l

′

i
.

Proof. Let the distance of a Boolean function to a nonzero linear function be expressed as

d(f , li) = 2n−1 + α

where α is the sum of the distance coefficients except the constant coefficient. The value of α
also corresponds to the sum of certain entries of the ith row of the LDM, with each entry being
multiplied with a constant depending on the Boolean function f , which will be explained in
the next subsection. Regardless of this multiplication, if the distance coefficients in the ith row
of the LDM are negated, the new sum becomes 2n−1 − α, and this is equivalent to d(f , li ⊕ 1),
since d(f , li ⊕ 1) = 2n − d(f , li).

�

In view of Proposition 4.2.12, all entries of the LDM can be considered as absolute values.
This results in computing the distance to the linear function lw if wt(w) is even and to the affine
function l

′

w if wt(w) is odd.

34

4.2.2 Combining Coefficients

A Boolean function consisting of p monomials has 2p distance coefficients associated with the
nonzero products of ANF coefficients, which can be computed according to (4.5). Computing
the weight of the function requires all these coefficients to be added whereas the distance to
a particular linear function can be obtained by adding a subset of these coefficients plus a
constant value of 2n−1. Computing the distance coefficients by processing all combinations of
p monomials requires a computational complexity of O(2p) operations, and this can be done
at most for p < 40 in practice. Now, a new method will be introduced which combines the
related distance coefficients, with the aim of reducing the number coefficients and avoiding the
processing of all 2p monomial combinations.

Let aI and aJ be two terms in the distance function such that
⋃
i∈I

supp(i) =
⋃
j∈J

supp(j), that is,

the input variables appearing in ANF coefficients of aI are the same as input variables appearing
in ANF coefficients of aJ . This not only makes nI = nJ according to (4.7), but also specifies that
these terms appear in exactly the same truth table entries according to Proposition 4.2.2. Hence,
in the distance function (4.8), for all values of w, the distance coefficients of aI and aJ will
behave the same with respect to Proposition 4.2.4. The distance coefficients of these terms can
be collected under the distance coefficient of the term aK = ak such that ak is the representative
ANF coefficient of both aI and aJ . Since nI = nJ = nK , it is |I| and |J| that distinguishes
the distance coefficients λI and λJ from λK . From (4.6), it follows that λI = (−2)|I|−1λK and
λJ = (−2)|J|−1λK . The distance coefficients of the terms which have the same representative
ANF coefficients can be collected under a single distance coefficient, called the representative
distance coefficient, that is, the distance coefficient of the term belonging to the representative
ANF coefficient. When this is done, the number of times a representative distance coefficient
should be added will be called the combined coefficient, and when multiplied with the value
of the representative distance coefficient, will be called the combined distance coefficient. The
combined coefficients of the distance function can be computed from the ANF coefficients of
a Boolean function as follows:

Cu =
∑

u=u1∨···∨uk

(−2)k−1
∏

1≤i≤k

aui . (4.16)

Example 4.2.13 Let the support of the ANF coefficients for a Boolean function be {a1, a2, a3}.
Then the distance coefficients corresponding to the nonzero products

{1, a1, a2, a3, a1a2, a1a3, a2a3, a1a2a3}

are
{λ, λ1, λ2, λ3, λ1,2, λ1,3, λ2,3, λ1,2,3}

where λ is the constant term, λ1 is the distance coefficient of a1, λ1,2 is the distance coefficient
of a1a2, and so on. Since λ1,2 = λ1,3 = λ2,3 = −2λ3 and λ1,2,3 = 4λ3 from (4.6) and (4.7), these
distance coefficients can be combined under the representative distance coefficient λ3, pro-
ducing the combined distance coefficients {λ, λ1, λ2,−λ3}. Here, the corresponding combined
coefficients are {1, 1, 1,−1}.

Algorithm 4.2.1 calculates the combined coefficients from the ANF by processing each mono-
mial one by one. The input to the algorithm is a list of monomials of the Boolean function

35

called MonList. The monomials are represented by xI =
∏
i∈I

xi where I ⊆ {1, · · · , n}. The out-

put of the algorithm is a list of combined coefficients called CoefList consisting of elements
of the form CixI where Ci ∈ Z is the combined coefficient of the monomial xI . When a new
monomial xI is added to the function, the product of each existing combined coefficients and
the new monomial is processed and the newly produced coefficients are added to a temporary
list named NewList. For an existing coefficient C jxJ , if it is the case that I ⊆ J, then the prod-
uct of these two coefficients will be −2C jxJ , when added will negate the original coefficient.
The products of terms whose nI part as specified in (4.7) will reside in the new monomial xI

are collected under the variable S. These terms will be added to the combined coefficients at
the end of processing that monomial. The last case is the general case where the coefficient of
the term produced by the product of two monomials are added to the NewList. At the end of
processing the combined coefficients of the previous step, all the newly produced coefficients
are added to CoefList. Addition of items to lists is denoted by + operator. When an entry CixI

is to be added to a coefficient list, if there already exists an element C jxI , then the coefficient
CixI is updated as (Ci + C j)xI .

Algorithm 4.2.1: CalculateCombinedCoefficients(MonList)

Coe f List ← ∅
for each xI ∈ MonList

NewList ← ∅
S ← 1
for each C jxJ ∈ Coe f List

if I ⊆ J
then C j ← −C j

else if J ⊂ I
then S ← S − 2C j

else NewList ← NewList + (−2C jxI∪J)

for each CkxK ∈ NewList
Coe f List ← Coe f List + CkxK

Coe f List ← Coe f List + S xI

return (Coe f List)

The sum of all combined distance coefficients will give the weight of the function. In order to
compute the distance to a nonzero linear function lw, only a subset of these coefficients need to
be added, which is determined according to whether the vector associated with the combined
distance coefficient is contained in S (w). Also, since λw

I = 2n−1 for w , 0 and I = ∅, a constant
value of 2n−1 should be added.

Since the distance to a linear functions is related to the Walsh coefficients of a Boolean function,
the sum of the combined distance coefficients can be expressed in terms of Walsh coefficients.

36

For w , 0, i.e., for a nonzero linear function lw,

W f (w) = 2n − 2d(f , lw), (4.17)

W f (w) = 2n − 2(2n−1 + αw), (4.18)

αw = −
W f (w)

2
(4.19)

where αw is the sum of the distance coefficients, excluding the constant coefficient 2n−1. From
(4.19) it can be seen that if the constant term 2n−1 is not added, the distance function (4.8)
outputs −W f (w)

2 . Because the nonlinearity of a Boolean function depends on the maximum
absolute value of the Walsh spectrum (2.22), being able to compute the maximum absolute
value of the sum of the distance coefficients without adding the constant term is also sufficient
to find out the nonlinearity.

4.3 Computing Nonlinearity

The nonlinearity computation algorithm consists of two phases. In the first phase, combined
distance coefficients are calculated according to Algorithm 4.2.1 from the given ANF coeffi-
cients. Once this phase is completed, the distance to any linear function can be obtained by
adding a subset of these coefficients, i.e., by adding the coefficients corresponding to columns
S (w) in the wth row if the distance to the linear function lw is to be calculated. The nonlinearity
computation on the other hand, requires all the distances to the linear functions to be calculated
and the one with the minimum value being identified, which cannot be done in practice if n is
too high. After the combined distance coefficients for a Boolean function are calculated, the
distance to any linear function can be represented of the form

F(b1, · · · , bk) =
∑

1≤i≤k

βibi (4.20)

where bi ∈ F2 and βi ∈ Z is the combined distance coefficient associated with bi. Each bi in
this function determines whether a zero or a nonzero entry is chosen from the corresponding
column of the LDM. Although there are 2k possible inputs to this function, only some of the
k-bit inputs actually correspond to a distance to a linear function. By enumerating all such
k-bit inputs, one obtains the set of all distinct distances. The task of computing the nonlinearity
then corresponds to finding the minimum of these values. Note, however, as explained in the
previous section, omitting the addition of the constant coefficient when calculating the distance
to the nonzero linear functions, one gets the negative half value of the Walsh coefficient, and
this constant coefficient is assumed to be excluded in (4.20). With this slight modification,
it becomes the maximum absolute value of (4.20) to be found, instead of the minimum and
maximum values, had the constant coefficient been added.

In the second phase of the nonlinearity computation algorithm, the maximum absolute value
of the distance function (4.20) is searched, which determines the nonlinearity. This problem
also corresponds to a binary integer programming problem. The set of 2k possible k-bit input
vectors will be classified as feasible or infeasible according to whether they represent a distance
to a linear function or not. The feasibility checking of inputs can be performed with Algorithm
4.3.1 and Algorithm 4.3.2 which determine whether a particular zero/nonzero choice of values

37

in certain columns is possible in any of the rows of the LDM. By enumerating all possible
distances to the set of linear functions, the minimum of these can be taken as the nonlinearity
of the Boolean function.

A common approach in solving integer programming problems is to utilize the tree structure.
The set of feasible inputs to the function (4.20) can be shown in a tree with the input variables
bi being the nodes. This tree will be called the distance tree. Starting with b1 as the root node,
each left (resp. right) child node of a node bi represents the case where bi = 1 (resp. bi = 0).
In order to enumerate feasible inputs, it is sufficient to check whether a node bi can take on the
value 0 or 1 depending on the values of the parent nodes (values of the preceding variables).
This can be done efficiently by using the facts mentioned in Remarks (4.2.10), (4.2.7) and
(4.2.11). Row indices r in the LDM containing a nonzero entry in the ith column satisfy r � i.
Similarly, if a row has a zero value in the jth column then supp(r) ∩ ({1, · · · , n} \ supp(j)) , ∅
must be satisfied since a zero value in the jth column appears only in the row indices where at
least one bit is set that is not in supp(j). Given two lists of columns C0 and C1, and another
column identified by the index u, Algorithm 4.3.1 determines whether there exists a row in the
LDM containing a nonzero value in column u, with the condition that the values in columns
C0 are zero and the values in columns C1 are nonzero. Algorithm 4.3.2 performs the same
task by checking whether there is a row having a zero value in column u, under the same
conditions. These two algorithms allow one to enumerate all feasible inputs to (4.20) by using
the associated column indices for each input variable bi.

Algorithm 4.3.1: Branch1(C0,C1, u)

IncludeMask ←
∧

a∈C1

a

if (u ∧ IncludeMask) = 0
then return (f alse)
else for i ∈ C0{
if (¬i ∧ u ∧ IncludeMask) = 0

then return (f alse)

return (true)

Algorithm 4.3.2: Branch0(C0,C1, u)

IncludeMask ←
∧

a∈C1

a

if (¬u ∧ IncludeMask) = 0
then return (f alse)
else for i ∈ C0{
if (¬i ∧ IncludeMask) = 0

then return (f alse)

return (true)

38

b8

b7

b6

b5

b4

b3

b2

b1

b8

b7

b6

b5

b4

b3

b8

b7

b6

b5

b4

b8

b7

b6

b5

b4

b3

b2

b8

b7

b6

b5

b4

b8

b7

b6

b5

b4

b3

b8

b7

b6

b5

b8

b7

b6

b8

b7

b6

b5

b4

b8

b7

b6

b5

b8

b7

b6

b8

b7

b8

7 3 3 3 −1 3 −5 3 −1 −5 −1 −1 3

Figure 4.1: Distance tree of F(b1, · · · , b8) = 8b1 + 8b2 + 4b3 + 4b4 − 8b5 − 4b6 − 4b7 + 3b8.

Example. Let f (x1, · · · , x5) = x1x5 ⊕ x4x5 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x2x3x4x5. Using Algorithm
4.2.1, the following set of combined distance coefficients are obtained:

{λ3, λ17, λ26, λ28,−2λ19,−2λ29,−2λ30, 3λ31}.

The associated distance function formed by these coefficients is

F(b1, · · · , b8) = 8b1 + 8b2 + 4b3 + 4b4 − 8b5 − 4b6 − 4b7 + 3b8.

Note that in the LDM of order 5, b1 is associated with column a3, b2 is associated with column
a17, and so on. Among the 28 = 256 possible inputs to F, only 13 of them are found to be
feasible as shown in the distance tree in Figure 4.1. In the figure, the values in the leaf nodes
shown in boxes below denote the output of F when that particular combination of bi’s are
chosen. Each leaf node also corresponds to a feasible input of F and is called a path, denoted
with sequence of input bits. The value of a path is the output of F for that input. A path in
the tree identifies the linear functions whose distances to the Boolean function in consideration
are obtained by adding the same combined distance coefficients, also specifying the distance
to these functions. As there can be more than one linear function covered by a path, different
paths can have the same value. For example, there are six paths with value 3, four paths with
value -1 and two paths with value -5 in the distance tree of the example function. Table 4.4
gives a more detailed information about this distance tree. The first column of the table denotes
the leaf node (or path) number, the second column lists the path string, the third column gives
the output of the distance function F for the corresponding path and the last column denotes
which linear functions that path is associated with.

Table 4.5 shows a portion of the LDM of order 5, where only the eight columns related to
the distance function of the example are shown. The distance tree constructed using Algo-
rithm 4.3.1 and Algorithm 4.3.2 actually enumerates the distinct sums that can occur when the
combined distance coefficients are added for each row of the LDM. In Table 4.5, the top most
row denotes the combined coefficients Ci of the example function and the row below denotes

39

Table 4.4: Distance tree data of F(b1, · · · , b8) = 8b1 + 8b2 + 4b3 + 4b4 − 8b5 − 4b6 − 4b7 + 3b8.

N Path F Associated lw

1 11001101 7 x5

2 10101011 3 x4

3 10001001 3 x4 ⊕ x5

4 01111111 3 x1

5 01001101 -1 x1 ⊕ x5

6 00110111 3 x2

x1 ⊕ x2

7 00101011 -5 x1 ⊕ x4

8 00100011 3 x2 ⊕ x4

x1 ⊕ x2 ⊕ x4

9 00010111 -1 x3

x1 ⊕ x3

x2 ⊕ x3

x1 ⊕ x2 ⊕ x3

10 00001001 -5 x1 ⊕ x4 ⊕ x5

11 00000101 -1 x2 ⊕ x5

x1 ⊕ x2 ⊕ x5

x3 ⊕ x5

x1 ⊕ x3 ⊕ x5

x2 ⊕ x3 ⊕ x5

x1 ⊕ x2 ⊕ x3 ⊕ x5

12 00000011 -1 x3 ⊕ x4

x1 ⊕ x3 ⊕ x4

x2 ⊕ x3 ⊕ x4

x1 ⊕ x2 ⊕ x3 ⊕ x4

13 00000001 3 x2 ⊕ x4 ⊕ x5

x1 ⊕ x2 ⊕ x4 ⊕ x5

x3 ⊕ x4 ⊕ x5

x1 ⊕ x3 ⊕ x4 ⊕ x5

x2 ⊕ x3 ⊕ x4 ⊕ x5

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

40

Table 4.5: Distance coefficients and related portion of the LDM for f (x1, · · · , x5) = x1x5 ⊕

x4x5 ⊕ x1x2x3 ⊕ x1x2x4 ⊕ x1x2x3x4x5.

Ci 1 1 1 1 -2 -2 -2 3 F W N

βi 8 8 4 4 -8 -4 -4 3
a3 a17 a26 a28 a19 a29 a30 a31

l0 8 8 4 4 4 2 2 1 11 10 -

l1 -8 -8 0 0 -4 -2 0 -1 7 14 1

l2 -8 0 -4 0 -4 0 -2 -1 3 6 2

l3 8 0 0 0 4 0 0 1 3 -6 3

l4 0 0 0 -4 0 -2 -2 -1 -1 -2 9

l5 0 0 0 0 0 2 0 1 -1 2 11

l6 0 0 0 0 0 0 2 1 -1 2 12

l7 0 0 0 0 0 0 0 -1 3 6 13

l8 0 0 -4 -4 0 -2 -2 -1 3 6 6

l9 0 0 0 0 0 2 0 1 -1 2 11

l10 0 0 4 0 0 0 2 1 3 -6 8

l11 0 0 0 0 0 0 0 -1 3 6 13

l12 0 0 0 4 0 2 2 1 -1 2 9

l13 0 0 0 0 0 -2 0 -1 -1 -2 11

l14 0 0 0 0 0 0 -2 -1 -1 -2 12

l15 0 0 0 0 0 0 0 1 3 -6 13

l16 0 -8 -4 -4 -4 -2 -2 -1 3 6 4

l17 0 8 0 0 4 2 0 1 -1 2 5

l18 0 0 4 0 4 0 2 1 -5 10 7

l19 0 0 0 0 -4 0 0 -1 -5 -10 10

l20 0 0 0 4 0 2 2 1 -1 2 9

l21 0 0 0 0 0 -2 0 -1 -1 -2 11

l22 0 0 0 0 0 0 -2 -1 -1 -2 12

l23 0 0 0 0 0 0 0 1 3 -6 13

l24 0 0 4 4 0 2 2 1 3 -6 6

l25 0 0 0 0 0 -2 0 -1 -1 -2 11

l26 0 0 -4 0 0 0 -2 -1 3 6 8

l27 0 0 0 0 0 0 0 1 3 -6 13

l28 0 0 0 -4 0 -2 -2 -1 -1 -2 9

l29 0 0 0 0 0 2 0 1 -1 2 11

l30 0 0 0 0 0 0 2 1 -1 2 12

l31 0 0 0 0 0 0 0 -1 3 6 13

41

the combined distance coefficients βi, obtained by multiplying the Ci’s with the representative
distance coefficients (the positive value appearing in the associated column). The values in
this row constitute the coefficients of the function F whose absolute maximum value is to be
searched. The right most three columns of the table list the output values of the distance func-
tion F, the Walsh coefficients of f and which leaf node in the distance tree this row belongs,
among the nodes listed in Table 4.4. Note that in Table 4.5, for the rows li with wt(i) being
odd, that is, the rows corresponding to the linear functions with odd number of terms, the value
of F outputs the negative of what must actually be computed. This is because all values in
the LDM are taken to be positive as a consequence of Proposition 4.2.12. The values listed in

column F of Table 4.5 correspond to −W f (i)
2 for rows li if wt(i) is even, and W f (i)

2 if wt(i) is odd.
This means that the absolute maximum value of the values produced in the distance tree can
be used to find out the nonlinearity. The maximum value appearing in the distance tree is 7
which appears in the left most leaf node. Therefore, the nonlinearity is 2n−1 − 1

2 max
w∈Fn

2

|W f (w)|,

which is 16 − 7 = 9. It must also be noted that the first row of the LDM which is used to
compute the weight is not taken into account here. Since the weight of the Boolean function
can obtained by adding the combined distance coefficients produced in the first phase of the
nonlinearity computation algorithm, it is sufficient to check whether this value is smaller than
the nonlinearity value obtained in the second phase or not. The weight of the example function
is F(1, · · · , 1) = 11, which is larger than 9, so the nonlinearity is found to be 9. A better use of
the weight computed in the first phase is to set it as the best solution and make use of the op-
timization techniques in the second phase for solving the integer programming problem more
efficiently.

4.3.1 Branch and Bound Method

Branch and bound method is a way of efficiently solving integer programming problems by
early terminating the processing of nodes if the best solution that can be obtained from a node
will not attain the maximum/minimum value whatever the subsequent variable choices be [8].
This idea could be realized in this specific problem by computing one maximum and one mini-
mum value for each variable in the optimization problem. Since the variables are processed one
by one, this allows one to determine what the maximum and minimum change in the function
could be, regardless of whether the input is feasible or not. The algorithm then can choose not
to branch a node if it is guaranteed that neither of the solutions obtained from that node will
be better than the best feasible solution already obtained. For the distance function described
in (4.20) having k input bits, the maximum amount of change (both positive and negative) for
each node can be computed as follows:

maxi =
∑

i≤x≤k, βx>0

βx (4.21)

mini =
∑

i≤x≤k, βx<0

βx. (4.22)

Values maxi and mini specify how much the function can increase and decrease at most, once
the first i − 1 variables are fixed. For instance, the function can increase the most if all of the
subsequent coefficients with βx > 0 are added and βx < 0 are omitted. Hence, at a particular
node while constructing the distance tree, by using the maxi and mini values, it can be checked

42

whether the processed node can yield a larger absolute value than the best one at hand. If not,
the processing of that branch of the tree is terminated at that point. If the node promises to
attain a better solution, the branching continues. However, this does not guarantee that a better
solution will be obtained since an increase (resp. decrease) of maxi (resp. mini) might not be
possible if these inputs are not feasible.

4.3.2 Recovering the Nearest Affine Function

Besides computing the nonlinearity, it could be as much important to identify which affine
function(s) a Boolean function is closest to. This can be accomplished by using the path string
of the nonlinearity algorithm described above. The path string identifies the rows in a LDM
by specifying certain columns containing either zero or nonzero entries. This problem can be
rephrased as follows:

Given n and two sets of indices I = {i1, . . . , ik}, E = {e1, . . . , el} where the indices are from the
set {0, . . . , 2n − 1}. Identify the rows r in Mn satisfying Mn

r, j , 0 for j ∈ I and Mn
r, j = 0 for

j ∈ E.

Algorithm 4.3.3 outputs a list of linear functions identified by the vector x ∈ Fn
2, given the

column index sets I and E. The algorithm makes use of Remark 4.2.7 and 4.2.11 to list the rows
of the LDM satisfying the given conditions. This algorithm can be executed for each leaf node
of the distance tree to find out the linear functions at a specified distance to the Boolean function
in question. Linear functions listed in the last column of Table 4.4 are found by executing
Algorithm 4.3.3 with the column index sets I and E constructed from the corresponding path
strings. For example, in the first row of the table, the path string is 11001101, which makes
I = {3, 17, 19, 29, 31} and E = {26, 28, 30}. There is only one row in the LDM whose column
indices specified in I are nonzero and column indices specified in E are zero, and that row
corresponds to the linear function l1 = x5. The decision of whether the Boolean function
is closer to a linear function or its complement can be made based on the sign of the Walsh
coefficient.

Algorithm 4.3.3: PathToLinearFunction(n, I, E)

IncludeMask ←
∧
i∈I

i

for each x ∈ S (IncludeMask)

valid ← true
for each y ∈ E
if (¬y ∧ x) = 0

then
{

valid ← false
break

if valid = true
then print x

43

4.3.3 Complexity of the Algorithm and Experimental Results

The nonlinearity computation algorithm consists of two phases each having different complex-
ities. In the first phase, from a given set of ANF coefficients, the combined coefficients are
calculated. The number of combined coefficients is equal to the number of distinct products of
input monomials. Although this value can be as high as 2p (p being the number of monomi-
als) where each monomial combination is distinct, the actual value will vary depending on the
structural relations between monomials. The expected value of this quantity is given in (3.7) in
terms of n and p as

p∑
k=1

(1 − (1 − (1 − q)k)n)
(
n
k

)
where q denotes the probability of a variable appearing in a monomial. For randomly generated
Boolean functions q is 1

2 .

For the second phase of the algorithm where the binary integer programming problem is solved,
it is harder to give an explicit expression of the complexity. The difficulty of estimating the
complexity is a result of the fact that it depends on the distribution of the values in the Walsh
spectrum of the Boolean function.

The proposed nonlinearity computation algorithm is implemented in C language and execution
times are measured for different parameters on a PC having an Intel Core2 Duo processor run-
ning at 3.0GHz. Table 4.6 gives the average running times for 60-variable Boolean functions
with branch and bound method being employed. In the table, p denotes the number of mono-
mials, k is the average number of combined distance coefficients, i.e., the number of variables
of the associated integer programming problem. Next two columns denote the average running
times of the first phase (calculating combined coefficients) and the total running time of the
algorithm. For each number of monomials in the experiments, average timings were calculated
over 10 randomly generated Boolean functions. Timings in Table 4.6 indicate that for this
type of Boolean functions, the complexity of the first and second phases of the nonlinearity
computation algorithm are close.

Table 4.6: Timings for n = 60.

p k Phase 1 (sec.) Total (sec.)

30 20815 1 2

40 54842 11 16

50 123015 60 90

60 246970 373 768

70 369198 1080 2325

80 555714 2876 6341

90 909078 8392 18708

100 1189792 15615 34092

44

4.4 Conclusion

In this chapter, an algorithm for computing the nonlinearity of a Boolean function from its
ANF coefficients is proposed. The algorithm makes use of the formulation of the distance of
a Boolean function to the set of linear functions. It is shown that the problem of computing
the nonlinearity corresponds to a binary integer programming problem where techniques for
efficiently solving these problems such as branch and bound method can be applied to improve
the performance. The algorithm allows the computation of nonlinearity for Boolean functions
acting on large number of inputs where applying the Fast Walsh transform is impractical.

45

46

CHAPTER 5

CONCLUSION

Boolean functions defined on large number of inputs introduces the problem of computing
the cryptographic properties of them. Computational complexities of traditional algorithms
for computing these properties are so high that they become impractical. Algebraic normal
form (ANF) provides a compact representation for Boolean functions if the number of input
variables is high. In this thesis, methods of computing the weight and nonlinearity of Boolean
functions from the ANF representation have been studied.

The expression of the weight of a Boolean function in terms of its ANF coefficients was intro-
duced by Carlet and Guillot, which allowed one to compute the weight of a Boolean function
consisting of p monomials in O(2p) operations. By eliminating the unnecessary calculations
in this expression, a more efficient algorithm that is explained in Chapter 3 of this thesis is
obtained.

In Chapter 4, computation of the nonlinearity of a Boolean function in terms of its ANF coeffi-
cients is investigated. Generalizing the weight expression described in Chapter 3, a formulation
of the distances between a Boolean function and the set of linear functions is obtained. The
Linear Distance Matrix consisting of the coefficients which are used to calculate these distances
is defined. By exploiting the special structure of this matrix, the task of computing nonlinearity
is reduced to solving an associated binary integer programming problem. The efficiency of
solving this problem can be improved with the branch and bound method. The proposed non-
linearity computation algorithm can be used in cases where applying the Fast Walsh transform
is impractical, typically when the number of input variables exceeds 40. On the other hand,
the computational complexity of the algorithm enforces the number of monomials in the ANF
representation being relatively small.

The extension of the nonlinearity computation algorithm to compute the higher order nonlinear-
ities is an open problem. The most promising approach would be to extend the Linear Distance
Matrix to include the distance coefficients for the quadratic functions and then solve the result-
ing integer programming problem. However, it is evident that the complexity of this extended
version of the algorithm will be much higher than the original one because of the variety of
elements in the matrix. The integer programming problem this time will not only involve bi-
nary coefficients, but also the coefficients that can take on three or more values. Nevertheless,
there might be classes of Boolean functions where computing the second order nonlinearity
becomes feasible if such an extension of the algorithm could be realized, that would otherwise
be infeasible.

47

48

REFERENCES

[1] Biryukov, A., A New 128-bit Key Stream Cipher LEX, eSTREAM, ECRYPT Stream Ci-
pher Project, Report 2005/012, 2005. http://www.ecrypt.eu.org/stream/lexp2.html

[2] Carlet, C., Boolean Functions for Cryptography and Error Correcting Codes, In Yves
Crama and Peter L. Hammer (eds.) Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering, pages 257–397, Cambridge University Press, 2010.

[3] Carlet, C., On The Coset Weight Divisibility and Nonlinearity of Resilient and
Correlation-immune Functions, In T. Helleseth, P.V. Kumar, and K. Yang, editors, Se-
quences and their Applications, Discrete Mathematics and Theoretical Computer Science,
pages 131-144. Springer London, 2002.

[4] Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S., Algebraic Immunity for Cryptograph-
ically Significant Boolean functions: Analysis and construction, Information Theory,
IEEE Transactions on, 52(7):3105-3121, july 2006.

[5] Carlet, C., Guillot, P., A New Representation of Boolean Functions, In Marc Fossorier,
Hideki Imai, Shu Lin, and Alain Poli, editors, Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, volume 1719 of Lecture Notes in Computer Science, pages
94-103. Springer Berlin Heidelberg, 1999.

[6] Carlet, C., Guillot, P., Bent, Resilient Functions and The Numerical Normal Form, DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 56,
American Mathematical Society, Providence, RI, pages 87-96, 2001.

[7] Chen, K., Henricksen, M., Millan, W., Fuller, J., Simpson, L., Dawson, E., Lee, H.,
Moon, S., Dragon: A Fast Word Based Stream Cipher, eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/006, 2005. http://www.ecrypt.eu.org/stream/dragonp3.html

[8] Chinneck, C.W., Practical Optimization: A Gentle Introduction, online textbook,
http://www.sce.carleton.ca/faculty/chinneck/po.html.

[9] Courtois, N.T., Meier, W., Algebraic Attacks on Stream Ciphers with Linear Feed-
back, In Proceedings of the 22nd international conference on Theory and applications of
cryptographic techniques, EUROCRYPT’03, pages 345-359, Berlin, Heidelberg, 2003.
Springer-Verlag.

[10] Crama, Y., Hammer, P.L., Boolean Functions, Theory, Algorithms, and Applications,
Cambridge University Press, 2010.

[11] Cusick, T.W., Stănică, P., Cryptographic Boolean Functions and Applications, Academic
Press, San Diego, 2009.

49

http://www.ecrypt.eu.org/stream/lexp2.html
http://www.ecrypt.eu.org/stream/dragonp3.html
http://www.sce.carleton.ca/faculty/chinneck/po.html

[12] Çalık, Ç., Doğanaksoy, A., Computing the Weight of a Boolean Function from its Alge-
braic Normal Form, In Tor Helleseth and Jonathan Jedwab, editors, Sequences and Their
Applications SETA 2012, volume 7280 of Lecture Notes in Computer Science, pages
89-100. Springer Berlin Heidelberg, 2012.

[13] Daemen, J., Rijmen, V., The Design of Rijndael: AES - The Advanced Encryption Stan-
dard, Springer, 2002.

[14] Dillon, J.F., Elementary Hadamard Difference Sets, Proceedings of the Sixth South-
Eastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton,
Florida, Congressus Numerantium No. XIV, Utilitas Math., Winnipeg, Manitoba, 1975,
pages 237-249.

[15] Ding, C., Xiao, G., Shan, W., The Stability Theory of Stream Ciphers, In Lectures in
Computer Science, volume 561, Springer-Verlag, Berlin, 1991.

[16] Dobbertin, H., Construction of Bent Functions and Balanced Boolean Functions with
High Nonlinearity, In Bart Preneel, editor, Fast Software Encryption, volume 1008 of
Lecture Notes in Computer Science, pages 61-74. Springer Berlin Heidelberg, 1995.

[17] Dobbertin, H., Leander, G., Cryptographer’s Toolkit for Construction of 8-bit Bent Func-
tions, IACR Cryptology ePrint Archive, 2005:89, 2005. http://eprint.iacr.org/2005/089.

[18] Filiol, E., Designs, Intersecting Families, and Weight of Boolean Functions, In Michael
Walker, editor, Cryptography and Coding, volume 1746 of Lecture Notes in Computer
Science, pages 70-80. Springer Berlin Heidelberg, 1999.

[19] Göloğlu. F., Divisibility Results on Boolean Functions Using the Numerical Normal
Form, M.Sc. Thesis, Institute of Applied Mathematics, Middle East Technical Univer-
sity, 2004.

[20] Gupta, K.C., Sarkar, P., Computing Partial Walsh Transform From the Algebraic Normal
Form of a Boolean Function, Information Theory, IEEE Transactions on, 55(3):1354-
1359, march 2009.

[21] Hawkes, P., Paddon, M., Rose, G.G., de Vries, M.W., Primitive Specification
for NLSv2, eSTREAM, ECRYPT Stream Cipher Project, Report 2006/036, 2006.
http://www.ecrypt.eu.org/stream/nlsp3.html

[22] Hell, M., Johansson, T., Meier, W., Grain - A Stream Cipher for Constrained En-
vironments, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010, 2005.
http://www.ecrypt.eu.org/stream/grainp3.html

[23] Hell, M., Johansson, T., Maximov, A., Meier, W., A Stream Cipher Proposal: Grain-128,
In Information Theory, 2006 IEEE International Symposium on, pages 1614-1618, july
2006.

[24] Jansen, C.J.A., Helleseth, T., Kholosha, A., Cascade Jump Controlled Sequence Genera-
tor and Pomaranch Stream Cipher, eSTREAM, ECRYPT Stream Cipher Project, Report
2005/022, 2005. http://www.ecrypt.eu.org/stream/pomaranchp3.html

50

http://eprint.iacr.org/2005/089
http://www.ecrypt.eu.org/stream/nlsp3.html
http://www.ecrypt.eu.org/stream/grainp3.html
http://www.ecrypt.eu.org/stream/pomaranchp3.html

[25] Langevin, P., Leander, G., Rabizzoni, P., Véron, P., Zanotti, J-P., The Number of Bent
Functions with 8 Variables, In Jean-Francis Michon, Pierre Valarcher, Jean-Baptiste
Yunès, editors, Proceedings of First International Workshop BFCA ’05, Boolean Func-
tions: Cryptography and Applications, pages 125-135, 2006.

[26] MacWilliams, F.J., Sloane, N.J.A., The Theory of Error Correcting Codes, North-
Holland, 1977.

[27] Matsui, M., Linear Cryptanalysis Method for DES Cipher, In Tor Helleseth, editor, Ad-
vances in Cryptology EUROCRYPT 93, volume 765 of Lecture Notes in Computer Sci-
ence, pages 386-397. Springer Berlin Heidelberg, 1994.

[28] McFarland, R.L., A Family of Difference Sets in Non-cyclic Groups, Journal of Combina-
torial Theory, Series A, 15(1):1-10, 1973.

[29] Meier, W., Pasalic, E., Carlet, C. Algebraic Attacks and Decomposition of Boolean Func-
tions, In Christian Cachin and Jan L. Camenisch, editors, Advances in Cryptology - EU-
ROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 474-491.
Springer Berlin Heidelberg, 2004.

[30] Meier, W., Staffelbach, O., Nonlinearity Criteria for Cryptographic Functions, In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology EUROCRYPT
89, volume 434 of Lecture Notes in Computer Science, pages 549-562. Springer Berlin
Heidelberg, 1990.

[31] Preneel B., Analysis and Design of Cryptographic Hash Functions Ph.D. thesis.
Katholieke Universiteit Leuven, Belgium, 1993.

[32] Preneel, B., Govaerts, R., Vandewalle, J., Boolean Functions Satisfying Higher Order
Propagation Criteria, In Proceedings of the 10th annual international conference on
Theory and application of cryptographic techniques, EUROCRYPT ’91, pages 141-152,
Berlin, Heidelberg, 1991. Springer-Verlag.

[33] Preneel, B., Leekwijck, W.V., Linden, L.V., Govaerts, R., Vandewalle, J., Propagation
Characteristics of Boolean Functions, In Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptology, EUROCRYPT ’90,
pages 161-173, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[34] Rothaus, O.S., On Bent functions, Journal of Combinatorial Theory, Series A, 20(3):300-
305, 1976.

[35] Shannon, C.E., Communication Theory of Secrecy Systems, Bell System Technical Jour-
nal, Vol. 28, No. 4. (1949), pages 656-715.

[36] Siegenthaler, T., Correlation Immunity of Nonlinear Combining Functions for Crypto-
graphic Applications, Information Theory, IEEE Transactions on, 30(5):776-780, sep.
1984.

51

52

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Çalık, Çağdaş
Nationality: Turkish
Date and Place of Birth: 1978, Bursa
e-mail: ccalik@metu.edu.tr
Phone: +90 312 2107767
fax: +90 312 2102985

EDUCATION

Degree Institution Year of Graduation
M.S. Department of Cryptography, METU 2007
B.S. Department of Mathematics, METU 2004

PROFESSIONAL EXPERIENCE

Year Place Enrollment
Jan 2008- Institute of Applied Mathematics, METU Research Assistant

PUBLICATIONS

Ç. Çalık, A. Doğanaksoy, Computing the Weight of a Boolean Function from its Algebraic
Normal Form, In Tor Helleseth and Jonathan Jedwab, editors, Sequences and Their Applica-
tions SETA 2012, volume 7280 of Lecture Notes in Computer Science, pages 89-100. Springer
Berlin Heidelberg, 2012.

Ç. Çalık, An Efficient Software Implementation of Fugue, Second SHA-3 Candidate Confer-
ence, Santa Barbara, California, USA, 23-24 August 2010.

Ç. Çalık, M. S. Turan, Message Recovery and Pseudo-Preimage Attacks on the Compression
Function of Hamsi-256, In Michel Abdalla and Paulo S.L.M. Barreto, editors, Progress in
Cryptology LATINCRYPT 2010, volume 6212 of Lecture Notes in Computer Science, pages
205-221. Springer Berlin Heidelberg, 2010.

Ç. Çalık, M. S. Turan, F. Özbudak, On Feedback Functions of Maximum Length Nonlinear

53

mailto:ccalik@metu.edu.tr

Feedback Shift Registers, IEICE Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences Vol. E93-A, No.6, ages 1226-1231, Jun. 2010.

J-P. Aumasson, Ç. Çalık, W. Meier, O. Özen, R. C.-W. Phan, K. Varıcı, Improved Cryptanalysis
of Skein, In Mitsuru Matsui, editor, Advances in Cryptology ASIACRYPT 2009, volume 5912
of Lecture Notes in Computer Science, pages 542-559. Springer Berlin Heidelberg, 2009.

M. S. Turan, Ç. Çalık, N.B. Saran, A. Doğanaksoy, New Distinguishers Based on Random
Mappings Against Stream Ciphers, In Solomon W. Golomb, Matthew G. Parker, Alexander
Pott, and Arne Winterhof, editors, SETA, volume 5203 of Lecture Notes in Computer Science,
pages 30-41. Springer, 2008.

A. Doğanaksoy, Ç. Çalık, F. Sulak, Observations on Hellmans Cryptanalytic Time-Memory
Trade-off, 2. Ulusal Kriptoloji Sempozyumu, Ankara, 2006.

M. S. Turan, A. Doğanaksoy, Ç. Çalık, Detailed Statistical Analysis of Synchronous Stream
Ciphers, 2. Ulusal Kriptoloji Sempozyumu, Ankara, 2006.

A. Doğanaksoy, Ç. Çalık, F. Sulak, M.S. Turan, New Randomness Tests Using Random Walk,
2. Ulusal Kriptoloji Sempozyumu, Ankara, 2006.

A. Doğanaksoy, Ç. Çalık, F. Sulak, M. Sönmez Turan, Rassal Gezinti Testi, IGS06 İstatistik
Gunleri Sempozyumu, Antalya, 2006.

M. S. Turan, A. Doğanaksoy, Ç. Çalık, Statistical Analysis of Synchronous Stream Ciphers,
SASC ’06, The State of the Art of Stream Ciphers, 2006, Leuven, Belgium.

54

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTERS
	INTRODUCTION
	BOOLEAN FUNCTIONS
	Introduction
	Preliminaries
	Truth Table and Algebraic Normal Form
	Walsh Spectrum
	Numerical Normal Form

	COMPUTING WEIGHT FROM ALGEBRAIC NORMAL FORM
	Introduction
	The Relation Between ANF and Weight
	The Algorithm
	An Extension Making Use of the Isolated Monomials

	Implementation Results and Comparison of the Complexities
	Conclusion

	COMPUTING NONLINEARITY FROM ALGEBRAIC NORMAL FORM
	Introduction
	Distance to Linear Functions
	The Linear Distance Matrix
	Combining Coefficients

	Computing Nonlinearity
	Branch and Bound Method
	Recovering the Nearest Affine Function
	Complexity of the Algorithm and Experimental Results

	Conclusion

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

