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ABSTRACT 
 
 
 

THE TURKISH CATASTROPHE INSURANCE POOL CLAIMS:  
MODELING 2000-2008 DATA 

 
 
 

Sarıbekir, Gözde 
M.Sc., Department of Statistics 

Supervisor: Assist. Prof. Dr. Berna Burçak Başbuğ Erkan 
 
 

January 2013, 93 pages 
 
 
 

After the 1999 Marmara Earthquake, social, economic and engineering studies on 
earthquakes became more intensive. The Turkish Catastrophe Insurance Pool (TCIP) was 
established after the Marmara Earthquake to share the deficit in the budget of the 
Government. The TCIP has become a data source for researchers, consisting of variables 
such as number of claims, claim amount and magnitude. In this thesis, the TCIP earthquake 
claims, collected between 2000 and 2008, are studied. The number of claims and claim 
payments (aggregate claim amount) are modeled by using Generalized Linear Models 
(GLM). Observed sudden jumps in claim data are represented by using the exponential 
kernel function. Model parameters are estimated by using the Maximum Likelihood 
Estimation (MLE). The results can be used as recommendation in the computation of 
expected value of the aggregate claim amounts and the premiums of the TCIP.  
 
Keywords: Earthquake, Claims, Generalized Linear Models, Exponential Kernel Function 
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ÖZ 
 
 
 

2000-2008 YILLARI ARASINDAKİ DOĞAL AFET SİGORTALARI KURUMU  
TAZMİNAT VERİ MODELLEMESİ  

 
 
 

Sarıbekir, Gözde 
Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Berna Burçak Başbuğ Erkan 
 
 

Ocak 2013, 93 Sayfa 
 
 
 

1999'da yaşanan Marmara Depremi’nden sonra, depremler üzerine yapılan sosyal, 
ekonomik ve mühendislik çalışmaları daha da önem kazanmıştır. Doğal Afet Sigortaları 
Kurumu (DASK), Marmara Depremi’nden sonra devletin bütçe açığını paylaşmak için 
kurulmuştur. DASK, araştırmacılar için hasar sayısı, tazminat tutarı ve deprem büyüklüğü 
(magnitüd) gibi değişkenlerle bir veri kaynağı haline gelmiştir. Bu tezde, 2000 ve 2008 yılları 
arasında DASK’tan elde edilen deprem hasar verileri üzerinde çalışılmıştır. Genelleştirilmiş 
Doğrusal Modeller kullanılarak hasar sayıları ve tazminat ödemelerinin modellemesi 
yapılmıştır. Hasar verilerinde görülen ani sıçramaları temsil etmesi için üstel çekirdek 
fonksiyonu kullanılmıştır. Model parametreleri Maksimum Olabilirlik Tahmini kullanılarak 
tahmin edilmektedir. Sonuçların, DASK’ın hasar tazminatlarının beklenen değerini ve 
primlerini hesaplamada kullanılması önerilebilir.  
 
Anahtar Kelimeler: Deprem, Hasar, Genelleştirilmiş Doğrusal Modeller, Üstel Çekirdek 

Fonksiyonu 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
 
 

Natural disasters such as floods, landslides, rock falls, avalanches and earthquakes can 
cause significant damage to social, economical, environmental and cultural system in many 
countries with the impact of globalization. Over the past few decades, Turkey has suffered 
from natural disasters, mainly from earthquakes. Approximately 98% of Turkey’s population 
lives on earthquake risk areas (Pampal et al., 2009). Social scientists conducted research 
regarding the impact of an earthquake in the community. Construction areas on fault lines, 
choices of materials used in construction have become a more important research area for 
civil and geological engineers. From a statistical point of view, earthquakes are high severity 
and low frequency events.  

The Turkish Catastrophe Insurance Pool (TCIP) collects Compulsory Earthquake Insurance 
(CEI) claims data since 2000. This data can be modeled statistically and in terms of actuarial 
analysis. Research estimates will bring new perspectives to mitigate and to reduce the 
possible future losses caused by earthquakes. The aim of this thesis is to construct models 
for aggregate claim amount and number of claims. The data belongs to the period of 2000-
2008.  

Pampal et al. (2009) is a significant source to understand earthquake mechanism. The 
development of the TCIP System and probabilities are expressed by Akın (2008) in Chapter 
2 of this thesis. The TCIP premium calculations are studied by Yücemen (2005). He checks 
the validity of current CEI tariff rates. Yücemen et al. (2009) extend the previous study of 
Yücemen (2005) by concentrating on premium rates for reinforced concrete and masonry 
buildings. In both studies, they find higher premium rates than the ones, which are in use. 

The aggregate claim amount and the number of claims have a wide use in statistical and 
actuarial context. Başbuğ (2006 and 2007) had also studied the TCIP claims data modeling 
for the period 2000-2003 and given important aspects for premium calculations, reserving 
and disaster management in Turkey. Hekman et al. (1983) studied excess pure premiums 
and the aggregate claim distributions for collective risk models. In actuarial science, 
Generalized Linear Modeling (GLM) has a wide use for modeling claims data. In this study, 
the aggregate claim amount and the number of claims are also modeled by GLM. The 
Poisson regression is used to model the number of claims by using the log-link function and 
the aggregate claim amount, which is assumed to be Lognormal and modeled as Gaussian 
with identity link function. Jong et al. (2008) and Boland (2006) are great sources for GLM 
insurance data and other statistical methods. Diggle et al. (2002) also examined GLM and 
Poisson regression in Chapter 14. Boucher et al. (2008) studied on insurance time 
dependent claim counts data that is panel data and obtained a better fit with random effect 
models for premium calculations. Moreover, the claim number process and the accumulated 
claim process mentioned in Bülhmann (2005) (Chapter 2), Rotar (2007) (Chapter 4), 
Klugman et al. (2008) (Chapter 6) are sources to understand risk process. Bowers et al. 
(1997) in Chapter 12 and Daykin et al. (1995) in Chapters 2 and 3, study the distributions of 
the aggregate claims and the number of claims. Achieng (2010) discusses the distribution for 
claim amounts and tests the distributions such as Gamma, Weibull, Lognormal and 
Exponential by using Akaike’s Information Criterion (AIC) and the Quantile-Quantile Plot. 
Claim process is an important subject for an insurance company and reveals the risk of the 
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insurers. Mosley (2008) expressed the significance of the predictive modeling, which 
includes different variables such as loss, time and geography for claim process.  

The organization of this thesis is as follows: Chapter 2 provides a background of the study: 
earthquakes, hazard profile of Turkey and the TCIP is described in detail. In Chapter 3, 
statistical and actuarial methodologies including individual and collective risk models, the 
Poisson process, the aggregate claim amount process and the distribution of aggregate 
claim amount are provided. Chapter 4 explains the mathematics of the study: the GLM, 
likelihoods of observations, the use of the exponential kernel function and the likelihood of 
the exponential kernel function with computations of parameter estimations of the number of 
claims and the aggregate claim amount models.  Chapter 5 introduces explanatory data 
analysis and main models for the variables of interest: number of claims and aggregate claim 
amount. Finally, conclusion and suggestions take place in Chapter 6. 
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CHAPTER 2 
 
 
 
 

BACKGROUND OF THE STUDY 
 
 
 
 
 
 
2.1 Natural Disaster: “Earthquake” 
 
Since prehistoric times, heavy and unbearable consequences of natural events have turned 
into natural disasters due to urbanization on the fault lines, bad construction and lack of 
disaster awareness. As a consequence, many lives have been lost due to natural disasters 
within the past few decades. Natural disasters can occur in many forms such as 
earthquakes, landslides, storm, floods and avalanche. The frequency and severity of each 
event differ. Earthquakes are low frequency and high severity events.  
 
Throughout centuries, movable plates of Earth's crust caused accumulation of energy. This 
accumulated energy cleared and began to span from the weak areas at the breaking point of 
rocks, which is called “faults.” The movement as a result of the spread is called an 
“earthquake.” After large earthquakes (magnitude 5.0 and greater) smaller earthquakes 
occur and this it is called an “aftershock.” The number of aftershocks is large after a big 
earthquake and can continue for days, weeks, months or even years but in time the number 
declines. Smaller earthquakes in the same zone prior to main earthquake are called “pre-
shock.” Seismology is the science, which analyses the occurrence of earthquakes, 
measurement devices (seismograph) and methods and earthquake wave behaviors (Pampal 

et al., 2009). 

Intensity and magnitude are two main terms to explain an earthquake. The first intensity 
scale was prepared by Rossi- Forel that including 10 degrees in 1883 and has been modified 
since then. Today, one of the commonly used intensity scales, the Modified Mercalli (MM) 
Intensity Scale, is in use in The United States (see Table 2.1). It has 12 different degrees, 
which is represented by Roman numbers from I to XII and is used to measure the 
earthquake’s intensity. Also, the Medvedev-Sponheuer-Karnik (MSK) intensity scale is used 
in Europe. These scales are prepared according to many earthquake experiences 
throughout many years. The effects of an earthquake on people, goods and the environment 
are determined with these scales. The MSK scale is very similar to the MM scale. 

Magnitude is the measurement of “the size of the earthquake.” It was first defined by Charles 
F. Richter in 1935 and named after him; the Richter Scale. It is a logarithmic scale that is 
based on the amplitude of the seismic waves recorded on a seismograph. There are several 
types of magnitudes such as the surface-wave magnitude (Ms), the body-wave magnitude 
(Mb), the moment magnitude (Mw) and the local magnitude (ML) used to calculate the 
earthquake’s magnitude. According to logarithmic scale one unit of changes in a magnitude 
causes 10 times greater ground motion and also triggers 32 times stronger energy. For 
example, an earthquake with a magnitude 7.6 causes 63 times greater ground motion than 

an earthquake with a magnitude 5.8 (                                 . The magnitude 

7.6 causes a 63 times greater devastating effect than a magnitude 5.8. 
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Table 2.1 The Modified Mercalli Intensity Scale Degree and Definition [41] 

 

Modified Mercalli Intensity 
Scale Degree 

Definition 

I Not felt. 

II 
Rarely felt by fewer people who are resident on upper 
floors. 

III Felt indoors by people. 

IV Felt indoors by many people. 

V Severity felt by majority. 

VI 
Felt by all resulting in panic.  Also, heavy furniture 
movement. 

VII Causes breaks and breaches on rock walls. 

VIII Buildings partially collapse; e.g. columns, walls. 

IX 
Devastating damages occur and some buildings 
collapse. Animals start to run around randomly and make 
noises. 

X Rails bend, most of the buildings are destroyed. 

XI 
A few structures remain. Bridges, dams and rails are 
greatly damaged. 

XII 
An entire destruction has occurred. Objects are thrown 
into the air. 

 
Around the world, every day approximately 50 and in a year 20,000 earthquakes are 
detected. In fact, there are millions of earthquakes that are not located because of lack of 
seismographs (USGS, 2012). It is estimated that 1,300,000 earthquakes occur annually with 
a magnitude between 2-2.9 and a magnitude 8.0 (Table 2.2). 

Table 2.2 Number of Earthquakes According to Their Magnitudes [40]  

 

Magnitude Annual Average 

 8.0 1 

7-7.9 15 

6-6.9 134 

5-5.9 1,319 

4-4.9 13,000 (estimated) 

3-3.9 130,000 (estimated) 

2-2.9 1,300,000 (estimated) 
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On December 26, 2004, in Indonesia/Sumatra Island an earthquake with a magnitude of 9.3 
occurred. As a result, more than 240,000 people died. Later in 2009, an earthquake with a 
magnitude of 7.6 occurred in the same location and this time more than 1,100 people died. 
There are two other earthquakes that occurred with magnitudes of 8.2 and 8.6 off the west 
coast of Northern Sumatra on April 11, 2012. On May 22, 1960, in Chile the biggest 
earthquake in the twentieth-century occurred with a magnitude 9.5. In 2011, 332 natural 
disasters occurred with 336.1 billion USD economic loss that killed 30,773 people and 
caused 244.7 million victims (the total number of killed and affected people) (CRED, 2012). 
 
Faults are usually named according to aspects of movement. There are three kinds of faults. 
Normal Faults, where the block on fault plane moves down. The Reverse Fault, which is the 
opposite of a normal fault, where the block moves up. Third, in Strike-Slip Fault, where the 
blocks horizontally move in the opposite direction (Pampal et al., 2009) (Figure 2.1). On the 
other hand, some faults do not move and do not cause earthquakes for years and are 
considered as ‘inactive.’ However, there is no guarantee for a sudden release of 
accumulated energy; that is why earthquakes are unpredictable. 
 

 

Figure 2.1 Types of Faults [42] 

 

2.1.1 Earthquake Waves 

There are two different types of seismic waves: body waves and surface waves. 

Body waves: P-waves and S-waves are types of body waves.  P-Waves (Primary waves) are 
the initial and fastest waves recorded in a seismograph. The vibration motion has the same 
direction with the expansion direction of the wave. These waves have the ability to travel 
through gas, liquid and solid materials with a speed of 6-13 kilometers per second. The 
speed changes according to features of rigidity, intensity and elasticity of ground. S-waves 
(Secondary waves) are slower than P-waves and cannot move through liquid materials but 
only through solid objects. The vibration motion is vertical with the expansion direction of the 
wave (Pampal et al., 2009). 

Surface waves: There are two kinds of Surface Waves: The Rayleigh wave and the Love 
wave. Rayleigh waves travel as waves on the surface of water. Love waves are faster and 
have horizontal movement. Surface waves are slower than the body waves and travel the 
Earth’s surface with a speed of 1.5 kilometers per second. S-waves and surface waves 
cause destruction. Figure 2.2 shows the movements of the earthquake waves (Pampal et al., 
2009). 
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Figure 2.2 Types of Seismic Waves [13] 

 

2.1.2 Types of Earthquakes 

The types of earthquake depend on the geological area, where it happens. Tectonic 
earthquakes happen as a result of movements of tectonic plates, which compose the surface 
of the Earth and move against each other. Most of the earthquakes belong in this group. 
Volcanic earthquakes occur with volcanic activity. Collapse earthquakes are observed with 
the collapse of underground mines, caverns and that of melting of salty spaces of the ceiling 
blocks. Explosion earthquakes are the result of nuclear explosions (Figure 2.3). 

 

       Tectonic 

 

 

                               Volcanic                                                              Collapse  

 

       

  Explosion  

Figure 2.3 Types of Earthquakes 

 

 

EARTHQUAKE 



7 
 

2.1.3 Natural Disasters in Turkey 

Geological structure, tectonic formation and the meteorological features of Turkey take an 
important role in natural disasters. In addition to these, climate change caused by global 
warming prompt an increase of natural disasters. Thus, Turkey has suffered from various 
disasters throughout its history. Earthquakes, floods, landslides and erosion are the main 
natural disasters that have occurred in the twentieth century. When social and physical 
characteristics of a country are considered, the results become challenging. According to the 
Emergency Events Database (EM-DAT) between 1900, and 2012 a total of 155 events 
caused 26 billion USD in damage and 92,086 casualties in Turkey (Table 2.3). Table 2.4 
shows the damages of each disaster and it can be seen that earthquake cause the most 
harmful damage. Flooding is the second most common natural disaster, which causes 
economic losses. However, it is possible to control flooding to minimize losses. Possible 
flood areas should not be chosen for settlement. Higher elevations are appropriate to 
prevent flooding in settlements. On July, 2012 storms in Samsun (Salıpazarı and Ayvacık) 
resulted in flooding causing 12 deaths. Bridges collapsed and building floors filled with water, 
which were near the river. 

Table 2.3 Natural Disasters in Turkey from 1900-2012 [20] 

 

  
Number of 

Events 
Killed 

Total 
Affected 

Damage 
(000 USD) 

Earthquake 
(seismic activity) 

Earthquake  76 89,236 6,924,005 24,685,400 

Epidemic 

Bacterial Infectious 
Diseases 

1 11 150 NA 

Parasitic Infectious 
Diseases 

2 NA 100,000 
NA 

Viral Infectious 
Diseases 

5 602 104,705 
NA 

Extreme 
temperature 

Cold wave 3 69 NA 
NA 

Extreme winter 
conditions 

2 17 8,150 
NA 

Heat wave 2 14 300 1,000 

Flood 

Unspecified 11 897 372,617 65,000 

Flash flood 10 243 1,341,382 1,892,000 

General flood 17 189 64,521 238,500 

Mass movement 
dry 

Avalanche 1 261 1,069 NA 

Mass movement 
wet 

Avalanche 2 146 6 NA 

Landslide 9 286 13,481 26,000 

Storm 
Unspecified 4 49 3 NA 

Local storm 5 51 13,636 2,200 

Wildfire Forest fire 5 15 1,150 NA 

Total 155 92,086 8,945,175 26,910,100 
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Table 2.4 Damage of Buildings Caused by Natural Disasters [33] 

 

Type of Natural Disasters 
Number of Destroyed 

Buildings 
Percentage (%) 

Earthquake 495,000 76 

Landslide 63,000 10 

Flood 61,000 9 

Rock avalanche 26,500 4 

Avalanche 5,154 1 

Total 650,654 100 

 
 
Turkey is located on one of the most critical fault of the Alpine-Himalayan Seismic Belt, 
which lies between the Azure Island and Southeast Asia, where the African and Arabian 
plates and Eurasian plates meet. The North Anatolian Fault (NAF), The East Anatolian Fault, 
the Thrust belt of the Southeastern Anatolia and the Aegean Graben Systems are the plates 
that surround the Anatolian plate. Most of the earthquakes that occur are observed in these 
zones. Tectonic features are one of the main causes of devastating earthquakes in Turkey. 
These features caused earthquakes in the past that led to the collapse of civilizations. The 
archaeological ruins are the most important evidence of lost civilizations in West, Central 
West, North West Anatolia and the Eastern Mediterranean (Pampal et al., 2009). 

The most important factor of an earthquake turning into a disaster is the preferences of 
human beings. Houses built on alluvial plains that are on active faults, inadequate and 
inappropriate materials used in the construction of houses and deficiencies in the controls 
are influential factors that cause great loss of life and property. In Turkey, for instance, 
Erzincan is a province established on an active fault. 18 devastating earthquakes occurred in 
its 1000 years of history. In addition, Adapazarı, Izmit, Adana, Osmaniye, Hatay and many 
other cities are established on alluvial plains, which are on active faults (Pampal et al., 
2009). 

Approximately 96% of various regions in different degrees are located on earthquake belts 
and 98% of the country's population lives in these risk areas. Natural disasters also cause 
loss of life, as well as economic losses. Statistics show that every year natural disasters 
cause economic losses equivalent to 1% of Turkey’s Gross National Product (Pampal et al., 
2009).  

Table 2.5 Important Earthquakes in Turkey [33] 

 

Event Date Killed Affected Population 

Erzincan Earthquake 13/03/1992 653 250,000 

Dinar Earthquake 01/10/1995 94 120,000 

Çorum Earthquake 14/08/1996 0 17,000 

Adana-Ceyhan Earthquake 27/06/1998 145 1,500,000 

Gulf of İzmit Earthquake 17/08/1999 17,480 15,000,000 

Düzce Earthquake 12/11/1999 763 600,000 

Afyon-Sultandağı Earthquake 03/02/2002 42 222,000 

Bingöl Earthquake 01/05/2003 177 245,000 
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Table 2.5 illustrates significant earthquakes in Turkey since 1992. The August 17, 1999 
Marmara (Gulf of Izmit) earthquake is one of the biggest earthquakes in Turkey's recent 
history as well as in the world with a magnitude  of 7.4 and damages of 20 billion USD (see 
Table 2.6). Approximately 15 million people were affected from this catastrophe. Then, an 
earthquake on November 12, 1999 in Düzce with a magnitude 7.2 occurred. In addition, with 
earthquakes on July 2, 2004 in Ağrı/Doğubayazıt with a magnitude of 5.1, on January 25, 
2005 in Hakkari with a magnitude of 5.5 and on March 8, 2010 in Elazığ with a magnitude of 
6.0, most of the 51 people died because of poor quality of construction. In 2011 
Kütahya/Simav on May 19 with a magnitude of 5.9, on October 23, Van/ Erciş with a 
magnitude of 7.2 and on November 9, with a magnitude of 5.6 earthquakes occurred.  

Table 2.6 Top 10 Most Important Earthquake Disasters for the Period 1900 to 2012 [20] 

 

Country Date 
Damage 

(000 USD) 

Japan, Tsunami 11/03/2011 210,000,000 

 
Japan, Earthquake 

 
17/01/1995 100,000,000 

China P Rep, Earthquake 12/05/2008 85,000,000 

United States, Earthquake 17/01/1994 30,000,000 

Chile, Earthquake 
 

27/02/2010 30,000,000 

Japan, Earthquake 
 

23/10/2004 28,000,000 

Italy, Earthquake 
 

23/11/1980 20,000,000 

 
Turkey, Earthquake 

 
17/08/1999 20,000,000 

New Zealand, Earthquake 22/02/2011 15,000,000 

Taiwan (China), Earthquake 21/09/1999 14,100,000 
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Figure 2.4 The Earthquake Hazard Zone Map [39] 

 

Since 1945 The Earthquake Hazard Zone Map of Turkey (Figure 2.4) was updated six times 
(1945, 1947, 1948, 1963, 1972 and 1996). The latest map was prepared by the Earthquake 
Working Group of the Earthquake Research Department of the General Directorate of 
Disaster Affairs by changing the 1972 earthquake map and is used by the Ministry of Public 
Works and Settlement since 1996. Furthermore, the General Director of Mineral Research 
and Exploration (MTA) revised the Earthquake Hazard Zone Map (1996) in 2012. They 
worked on the new fault line map for 6 years. They detected new fault lines and changes the 
length of some faults. According to the latest map (1996), Turkey is divided into 5 zones. 
Expected accelerations that are more than 0.4g are in the first degree earthquake zone, 
between 0.3g - 0.4g in the second degree zone, between 0.2g - 0.3g in the third degree 
zone, between 0.2g - 0.1g in the fourth degree zone and less than 0.1g in the fifth degree 
earthquake zone (g: gravity (981 cm/s*s). The map shows the distribution by risk areas of 
Turkey. It can be seen that most of the land lies in the first and second degree earthquake 
zones. Constructions in high hazard zone areas should be earthquake resistant by using the 
classification in the map (Table 2.7).  

Table 2.7 Earthquake Hazard Zones due to Acceleration (g: gravity (981 cm/s*s)) 

Acceleration Earthquake Hazard Zone 

> 0.4 g 1
st
 degree 

0.3g - 0.4g 2
nd

 degree 

0.2g - 0.3g 3
rd

 degree 

0.2g - 0.1g 4
th
 degree 

< 0.1g 5
th
  degree 
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2.2 The Turkish Catastrophe Insurance Pool (TCIP) 
 

The most devastating earthquake in Turkey occurred on August 17, 1999. The Marmara 
earthquake (Kocaeli/Izmit Earthquake) claimed many lives and resulted in significant socio-
economic damage. The earthquake affected the whole country, since the Marmara region is 
the most developed industrial region in Turkey. The current  
Earthquake Hazard Zone Map of Turkey (Figure 2.4) shows that 98% of the territories of the 
country are under risk in different degrees. Also, 96% of the population lives in these critical 
areas (Özmen, 1999). In order to minimize earthquake losses many measures have been 
incorporated by government. One of the most important of these measures is the CEI 
arrangement. As a result of the disaster, there was a large amount of spending accounted by 
the government. Disasters like earthquakes that cause great economic damages need a 
large amount of guarantee with a great resource. In this situation, insurance is an important 
financial system to cope with this problem. Turkey received assistance from the World Bank 
with the Marmara Earthquake Emergency Reconstruction Project (MEER). It assisted in 
creating an insurance system to manage with its own catastrophic risks of Turkey and 
reconstruct destroyed residential buildings. The project received approval on November 16, 
1999 and cost 737.1 million USD. The General Directorate of Insurance received technical 
and financial help to establish the TCIP. 

The TCIP was established with Decree Law No. 587 for the CEI as an ”insurance pool” and 
is non-profitable. It is the first public-private insurance system in the world. It began to offer 
guarantees to houses, which are under its coverage on September 27, 2000. Since the 
establishment of the TCIP, it guaranteed 75 million USD for 19,270 number of claims as of 
August 17, 2012. The Compulsory Insurance was revised with the Disaster Insurance Law 
No. 6305 on May 5, 2012 and Decree Law No. 587 annulled. It became effective as of 
August 18, 2012. During services of water and electricity for homeowners, the CEI is 
compulsory. With this application, the penetration rate of the TCIP is expected to increase. 
CEI policies are valid for 1 year. It aims to compensate losses in one month.  

The CEI was taken as a model application and system from the New Zealand Earthquake 
Insurance Commission (NZEQC) and the California Earthquake Authority (CEA) and 
implemented according to Turkey’s requirements. NZEQC with its new name the Earthquake 
Commission (EQC) started as a fund in 1941 and then in 1993 as a public institution, began 
to cover natural disasters such as earthquakes only for houses. The EQC provides 
mandatory earthquake coverage protection up to a certain limit like in our country. In 1996, 
the CEA was also formed after the 1994 Northridge Earthquake as a guarantee for its 
members. As a public institution, the CEA is financed by special funds except taxes. 

There were many aims to contrive the TCIP, for instance, ensuring buildings, which are 
under coverage with a premium, spreading risk over international reinsurance companies 
and capital markets and decreasing the financial obligation on the government while building 
constructions. Moreover, the formation of insurance awareness in the community is 
prompted. 

Technical tasks of the TCIP are operated by an insurance or reinsurance company 
determined by The Undersecretary of Treasury for five years. Fund of the TCIP is managed 
by an operational manager, who complies with the decisions of board of directors. The TCIP 
is exempted from tax deductions. Annual accounting, operations and tasks of the TCIP are 
controlled by the Undersecretary of Treasury. 

The TCIP is directed by a board of directors, which consists of seven delegates, four of them 
are public officials from various areas (the Treasury, the Prime Ministry, the Ministry of 
Environment and Urban Planning and the Capital Markets Board of Turkey), two private 
sector delegates (Association of the Insurance and Reinsurance Companies of Turkey and 
an insurance company leader) and one representative from academia. 

Earthquake claims vary due to the features and risks of the disaster profile of regions. Table 
2.8 supports this information with realized claims. It can be observed that until 2013, the 
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largest amount of claims belongs to the Eastern Anatolia Region with 70,055,853 USD and 
10,118 number of claims.  The East Anatolian and the North Anatolian Faults are in this 
region and as a result of Erzincan, Bingöl and Van earthquakes have affected the total 
claims. The lowest payments are made in Black Sea Region with 17,225 USD and 32 claims 
(Table 2.8). 

Table 2.8 Claims According to Regions (04/03/2013) [18] 

Region 
Number of 

Earthquakes 
Number of 

Claims 
Claim Amount (TL) 

Claim Amount 
(USD) 

Other 52 582 3,254,001 1,828,090 

Mediterranean 35 419 242,395 136,177 

Eastern Anatolia 130 10,118 124,699,418 70,055,853 

Aegean 97 8,666 23,584,342 13,249,630 

Southeast 
Anatolia 

9 47 149,712 84,108 

Central Anatolia 38 242 630,824 354,396 

Black Sea 11 32 30,661 17,225 

Marmara 35 320 394,329 221,533 

Total 407 20,426 152,985,683 85,947,013 

 
According to the TCIP statistics in Table 2.9, during the past 13 years the highest claim 
amount was in 2011 (67,427,785 USD). The October 23, 2011 Van/ Erciş earthquake with a 
magnitude of 7.2 contributed to an important increase in claims and a total of 61,356,576 
USD in claim amounts was paid to the policyholders. The second largest claim amount was 
observed in 2005 due to the October 21, 2005 Izmir/Seferihisar earthquake with a magnitude 
of 5.9 and 1,836,600 USD in claims. 

 
Table 2.9 Claims According to the Year (until 04/03/2013) [18] 

Year 
Number of 

Earthquakes 
Number of 

Claims 
Claim Amount 

(TL) 
Claim Amount 

(USD) 

2000 1 6 23.022 19,185 

2001 17 336 126.052 87,173 

2002 21 1,558 2.284.835 1,394,042 

2003 20 2,504 5.203.990 3,735,815 

2004 31 587 768.927 575,415 

2005 41 3,488 8.119.871 6,051,476 

2006 23 500 1.303.673 927,485 

2007 42 995 1.381.599 1,191,753 

2008 45 481 558.849 367,229 

2009 37 267 498.852 335,407 

2010 36 454 715.418 465,282 

2011 40 7,671 127,364,344 67,427,785 

2012 51 1,569 4,624,976 2,556,368 

2013 2 10 11,276 6,280 

Total 407 20,426 152,985,683 85,140,696 
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The Coverage of the Compulsory Earthquake Insurance (CEI) 

The CEI covers damages and losses caused by the earthquake. Losses of fires, explosions, 
tsunamis and landslides caused as a result of earthquake are also covered. The CEI is only 
provided for residential buildings within municipality borders. These buildings are private 
properties with land registry, independent areas within the context of Law No. 634 
Condominium Ownership and trading firms, offices in the independent areas of these 
buildings. Constructions that are built by government or credit use are also within the 
insurance coverage (TOKI and mortgage). 

Constructions that are not under coverage of the CEI (TCIP, 2012):  

 Buildings of public corporations and establishments 

 Buildings in rural areas 

 Trading and industrial firms within or outside the context of Law No. 634 Condominium 
Ownership such as business centers, trading centers and administrative service buildings 

 Uncompleted buildings 

 Unlicensed constructions on the areas belonging to the Turkish Treasury 

 Neglected and ruined buildings, which are not suitable for residence 

 Buildings  that are built after December 27, 1999 without a building permit  
 
The CEI does not include all the damages and loss of the earthquake.  Some exclusions are 
listed below (TCIP, 2012): 
 

 Debris removal  

 Loss of profit 

 Loss of rent revenue 

 Movable properties and look alike 

 Alternative expenses of business and residence 

 Moral claim amount requests 

 Death and injuries 

 Financial responsibilities 

 Damages to constructions that occurred in time because of their own defects  
 
The sum insured is determined according to the structure type of the construction by 
multiplying the gross square area of the dwelling with the square meter price (see Table 
2.10). The gross square area of the dwelling is determined annually by the Turkish Statistical 
Institute (TurkStat). In an earthquake event without considering the construction structure, 
the maximum sum insured amount granted by the TCIP is 84,270 USD (150,000 TL). If a 
property is worth more than this, the property owner can obtain private insurance. A 2% 
deductible amount of the total insured value is applied for each loss. The amount above the 
2% deductible amount of the total insured is paid to the insurer. 

Structure types of the building and their explanations are as follows:  
 
a. Steel, Reinforced Concrete and Frame Structures: Where the buildings have steel and 
reinforced concrete frames. 
 
b. Masonry Stone Structures: Where the buildings have bearing walls made up of rubble 
stone, cut stone, brick or concrete blocks with spaces and without spaces, stairs and ceilings 
with concrete or reinforced concrete structures. 
 
c. Other Structures, which are made up of adobe and wood. 
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Table 2.10 Square Meter Prices for Sum Insured Including Structure Types [18] 

 

Structure Type 
Square meter price for sum 

insured  

Steel, Reinforced Concrete Frame 359.55 USD (640 TL) 

Masonry Stone Structures 258.43 USD (460 TL) 

Other Structures 134.83 USD (240 TL) 

 
Also, the premium of the CEI is determined according to sum insured amount, risk zone and 
type of building structure. Base premium is obtained by multiplying sum insured amount with 
tariff rate. For risks in Istanbul a 8.43 USD (15 TL) and for other cities a 5.62 USD (10 TL) 
fixed premium is added to base premium to find total policy premium. Minimum premium 
price is 14.04 USD (25 TL) for any type of building and risk zone. There are 15 tariffs 
consisting of 5 risk zones and 3 types of structures. Table 2.11 provides the tariff rates. 
 
Table 2.11 Tariff Rates [18] 

 

Region Based Rates According to 
Construction Type 

Zone I Zone II Zone III 
Zone 

IV 
Zone 

V 

A-Steel, Reinforced Concrete Frame 
Structures 

2.20 1.55 0.83 0.55 0.44 

B-Masonry Stone Structures 3.85 2.75 1.43 0.60 0.50 

C-Other Structures 5.50 3.53 1.76 0.78 0.58 

 
As observed in Table 2.12 in Turkey, Bolu province has the highest CEI participation rate 
with 44.48%. 95% of the city is located on 1

st 
degree earthquake zone.  

Table 2.12 Total House Number and Participation Rates for Years between 2001 and 2007  

Year City 
Total Number 

of Houses 
Participation 

Rate % 

2001 ANKARA 902,900 40.02 

2002 YALOVA 64,227 36.47 

2003 YALOVA 64,227 33.96 

2004 BOLU 38,918 40.68 

2005 BOLU 38,918 42.80 

2006 BOLU 38,918 44.48 

2007 BOLU 38,918 42.79 
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Figure 2.5 2001 CEI Participation Rates               Figure 2.6 2002 CEI Participation Rates 

 

Figure 2.7 2003 CEI Participation Rates               Figure 2.8 2004 CEI Participation Rates 

 

Figure 2.9 2005 CEI Participation Rates               Figure 2.10 2006 CEI Participation Rates 
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Figure 2.11 2007 CEI Participation Rates  

 

By using the data of the thesis; Figures 2.5, 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11 are generated to 
show the TCIP participation rates of the provinces between the years 2001 and 2007. As 
observed, Ankara in 2001, Yalova in 2002 and 2003 and Bolu in 2004, 2005, 2006 and 2007 
had the highest rates with 40.02%, 36.47%, 33.96%, 40.68%, 42.80%, 44.48% and 42.79%, 
respectively. The 1999 Marmara earthquake’s significant damages and the potential of future 
earthquakes have caused people to be more aware of the insurance. This can be observed 
from the data.  
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CHAPTER 3 
 
 
 
 

METHODOLOGY 
 
 
 
 
 
 

3.1 Risk Models 

In actuarial analysis, two different risk models are used to build aggregate claim amount: 
individual and collective. These are usually used for premium calculation, reserving and 
reinsurance practices (Klugman, 2008 and Bowers et al., 1997). In these models, it is 
assumed that   is a random variable that refers to the aggregate claim amount for a portfolio. 
Moreover,   is the total of policy’s claim amount paid by each policyholder in a time period 
       

Individual Risk Models 

In individual risk models each policy is considered one by one and aggregate claim amount 
S is calculated by the summation of these individual claim amounts (Bowers et al., 1997 and 
Kaas et al., 2001 ), 

                                                                                      

where n, number of the policies, is fixed and known during the insurance time period (Kaas 
et al., 2001 ).     (         ) defines the claim amount of i

th
 policy and   ’s in (3.1) are 

assumed to be independent. History of the    is not needed and it is easier to calculate the 

aggregate claim amount,    under these assumptions.  

Collective Risk Models 

In collective risk models, the aggregate claim amount is also derived with summation of each 
claim amount (3.2). It is assumed to be a random process and also used in this thesis for 

modeling the aggregate claim amount  . Then (Kaas et al., 2001 and Bülhmann, 2005), 

                                                

 

   

                                                                            

where    is the number of claims in a time period and a random variable.              is 

the claim amount paid by the insurer for the i
th
 claim.  If      then     .  

Assumptions of the collective risk models are: 

1.            are independently and identically distributed, 

2.   and            are mutually independent. 
 
Since the claim amounts are independent from each other and identically distributed, also do 
not have an effect on the claim numbers, both the claim amount and the number of claims 
are assumed to have their own distribution functions. 
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3.2 The Poisson Process 

The claim number process    (         which is a Poisson counting process, where 

interarrival times are independent and identically distributed exponentially with parameter   

in a given time interval      . It is a discrete random variable and depends on changes in 
time. Interarrival times are memoryless and also independent of history of the process.  This 
process has a wide use in insurance and actuarial applications (Klugman et al., 2008, Rolski 
et al., 2000, Kaas et al., 2001, Bülhmann, 2005 and Rotar, 2007).  

There are three properties of the process   : 

1.      , 

2.    has independent increments; for                 , the random variables 

   
    

     
    

      
      

 are independent. Also, it has stationary increments; the 

distribution of       for     depends only on the length of the time interval    ; for same 
length time intervals increments are identically distributed, 

3. The number of claims is Poisson distributed with the mean      in time interval     . 

That is, for all       it has, 

                       

                               
             

   
                                                                                

 

In Poisson process,    is a renewal counting process with     since it is memoryless, which 

restarts from any time point in time.      is formed by the sum of    s, which are independent 
and identically distributed.  

                        where        . 

Also,                 is the differences of time intervals that is called interarrival time. 

Since the times of the events are independent and exponentially distributed, probability of an 
event can be written as, 

                                                                          

                                                                            . 

Consequently, the probability is derived as independent from the past. 

In general, the    rate of the Poisson process    is taken as a constant that is independent of 

time  . This process is known as the homogeneous Poisson process with stationary and 
independent increments. However, in many applications, it is appropriate to take the    as 

time varying (        .When   depends on both   and           in the time interval, the 

process is called the nonhomogeneous Poisson process with mean              
 

 

          (Klugman et al., 2008, Bülhmann, 2005 and Rolski, 2000).  
 
In the nonhomogeneous Poisson process                   and the expected value and 

the variance is equal to rate     . 
 

                                                                                                                         

Since the times               are the nonhomogeneous Poisson process, with the condition 

of      the distribution function of the next event                is (see Başbuğ, 2007), 
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                        where              
    

  
  

and when derivative of cumulative distribution function is taken, the probability density 
function is 

              
                                                                           

In this thesis, the nonhomogeneous Poisson process is used to model the time varying 
claims. Since we organized data in terms of weeks, the mean of the number of claims 
changes in time interval and it becomes more relevant to use the nonhomogeneous Poisson 
process to use in the analysis.  
 
3.3 The Aggregate Claim Amount Process    

In actuarial studies the aggregate claim amount process,     has a wide use and is obtained 

by the summation of the each policies’ claim amount   ’s in a given time period. As a 
collective risk model (Section 3.1) the calculation of    depends on both the number of claims 

   arrived by time   and claim amount    (Bowers et al., 1997 and Rotar, 2007). It is 

assumed that     and    ’s are independent and also   ’s are identically distributed.   

       

  

   

            
                                                                

where       if     . 

In most studies, researches prefer to use the claim number process    as Binomial, Negative 

Binomial or Poisson. When the claim number process    is preferred as a nonhomogeneous 

Poisson process with mean     , the aggregate claim amount process   , (        is called 
Compound Poisson Process. In other cases, if the claim number process    is Binomially or 

Negative Binomially distributed,    has Compound Binomial or Compound Negative Binomial 
distributions (Boland, 2006 and Rotar, 2007). The distribution function of aggregate claim 
amount process (    is a main case in actuarial studies and it can be denoted by the 
convolution formula by using the summation of the independent claim amounts,   s instead 

of    (Rolski et al., 2000, Kaas, 2001 and Rotar, 2007): 

   
                     

  

   

  

            
                

 

   

                                                          

For simple notation      
          is used. Therefore, 

 

                                           

 

   

 

   

                                

where these expressions are called convolution formula and        is k
th
 convolution of  

    . 

If the claim number process    is Poisson with rate      the probability is, 
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and hence  

                                                                            
          

  
                                                            

 

   

 

 

In actuarial applications, the expected value of the aggregate claim       is used as net 
premium when expenses, interest rates and inflation etc. are excluded in net premium 
calculation. It is calculated as in the following form, 

                    

when we substitute (3.6) into the equation, 

                
      

 

   

         

with respect to the assumption of      , the index of the summation starts from 1,  
 

                
      

 

   

         

 
    are identically and independently distributed. Under the assumption of 

                                and                   , 

(         and            ) 

       

 

   

          

 

   

          

            

 

   

 

                     

                 

                                                                                                                                                    

Also the variance is, 
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If           
   is calculated, 

          
              

       

 

   

         

Use the assumption of      again, 

   

 

   

             
     

               

           

 

   

        

      

 

   

                                                                                                                                     

Then, 

                                                                   
 
                       

Also, 

                                                 

 

   

        

                  
                     

          , 

Since               
     ,              

       , 

                                                                                                                                                

Finally, when we put (3.12), (3.13) and (3.14) in (3.11), 

                                                                                                                              

If we rewrite the equation, 

                                                                                                                

 

3.4 The Distribution of Aggregate Claim Amount 

In probability theory, the distribution of the aggregate claim amount, in a given time period is 
connected with the distribution of the number of claims     and individual claim amount (  ). 
Let N,        …,   be independent and also        …,    be identically distributed. In 

actuarial sciences, the total of the random variable   is called compound and identifies the 
aggregate claim amount model in collective risk model. The compound aggregate claim 
amount as a collective risk model can be obtained by developing the distribution of the 
individual claim amount and the number of claims separately. There are various methods to 
approximate the distribution of the aggregate claim amount since it is not easy to determine 
the exact distribution (Rotar, 2007). Two of these calculation methods are the convolution 
and moment generating function to model (3.2) and these methods are described in the 
following sections. 
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The convolution method: 
 

Distribution function of   can be obtained by using the summation of the independent claim 
amounts,    , (convolution). As it has been stated before the aggregate claim amount is 

defined in the following form (Section 3.1), 

                 

 

   

 

Let the distribution function of   be       and                . When we obtain the 

conditional distribution function given      (Rotar, 2007 and Kaas, 2001), 

                                      

 

   

  

                                 

 

   

                                                                                                        

where               and     . For    , 

                             

So, 

                                           

 

   

 

   

                                                                  

where             , n
th
 convolution of    and     is the n

th
 convolution of density  . 

 
The moment generating function (mgf) method: 
 
The moment generating function (mgf) is one of the most useful methods to derive the 

moments of a distribution. The definition of the moment generating function of   is,  

                         
 

  

                                                                         

The mgf of the aggregate claim amount         
  
    can be represented with the moment 

generating functions of   and     to determine the distribution of the aggregate claim 

amount. Let     be independently and identically distributed and denote      moment of    as 
(Bowers, 1997), 

                                
 
                                                                                                  

also,  the mgf of the number of claim   is 

                                                            
                                                                                                      

and the mgf of the aggregate claim amount can be denoted by 

                                                                                                                                                                 

The total of the variability of the expected value of the number of claims and the expected 
value of the individual claim amount compose the variance of the aggregate claim amount 
(Bowers et al., 1997).  
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The mgf of   can also be denoted with the conditional expected value: 

                                           

                                                       
 

   

 

                                                  

 

   

 

                                       
 

 

   

       

                                           
 
  

                                                                                                                                                              

 

The expected value and the variance of the distributions can be derived by the mgf. The first 
derivative of the mgf with respect to  , when     gives the first moment, the expected value 
of the distribution. In addition, the second derivative of the mgf helps to calculate the 
variance. 

The mgf of the Compound Poisson aggregate claim amount, when    is Poisson with 

parameter      by (3.22), where                 , 

                                                                                                        

where   can have any distribution. 

If the expected value   and the variance of Compound Poisson    are derived by using 

(3.23): 

                    

   
                           

         
   

    =       

and the second derivative  is: 

   
                                                   , 

   
          

               

therefore the variance is obtained as: 

                    
     

 
                        

The higher moments can be computed by using the moment generating method. 

Also, if                 ) then the mgf of the aggregate claim    is 

                
 

 
       



24 
 

The first derivative of the mgf with respect to the   gives the expected value 

   
                           

 

 
                             

 

 
     

 

                          
 

 
                  

If     is substituted in    
      

   
                 

The variance is obtained by following the second derivative  

   
               

 

 
                               

 

 
            

and if     is substituted in    
     

   
          

                     

                   
     

 
       

 
                                                            

 
3.5 Insurance  

Insurance is a useful risk transfer system of uncertain losses. Risk is reduced and losses are 

indemnified by using insurance. The features of the insurance are (Rejda, 2005): 

1. Pooling of Loss: It is the sharing/spreading of the losses by the few to the entire group. 

2. Payment of causeless losses: A payment of unexpected loss that occurs by chance. 

3. Risk transfer: It is the transfer of risk from insured to insurer. 

4. Indemnification: After a loss, insured restores his/her financial position to initial position. 

If there is a high risk, insurer/insurance company will usually want to share that risk with 
another insurer or insurers. This operation is called reinsurance. The insurer, who shares its 
risk is called cedant. The TCIP reinsures its premium risks as well. For instance, if an 
earthquake occurs with a big magnitude, the number of claims will increase and the financial 
burden of the TCIP will be challenging. It may not be able to afford all claims. In less time, it 
might be difficult to overcome a large amount of risk. By reinsuring, the TCIP minimizes this 
risk. In addition, premium arrangements could increase the claim payment capacity. 

Premium 

Premium is an adequate price to overcome the risks. Calculation of the premium is important 
since it should be reasonable for both insurer and insured parts.  If the premium is too high, 
insurance company cannot compete with other insurance companies. Also, if the premium is 
too low, it will not be easy to face losses (Rolski et al., 1999). The premium is defined with  
     notation, where   is a random variable that refers to a kind of risk. Some essential 

properties of premium for risks    and   are (Rolski et al., 1999): 

1. No unjustified safety loading if, for all constants     ,         

2. Proportionality if, for all constants      ,              

3. Additivity if                 (risks are independent), 

4. Subadditivity if                   
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5. Consistency if, for all constants      ,                

6. Preservation of stochastic order if       implies            

If the distribution of the risk   is known, it will be easier to calculate the premium. The 

simplest premium principle is the ‘net (pure) premium principle’           and      
     gives the safety loading, which should be positive for the insurance company’s 
reserves (Rolski et al., 1999).  

Company takes the whole risk of the portfolio so the premiums should be appropriate and 
reasonable for company’s safety. The basic principles of the premiums are (Rolski et al., 
1999) 

1. Expected value principle: Is the most commonly used principle. 

               where     and        

when     it becomes the net premium principle. The expected value principle has some 

risks since it does not consider the variability of the risk  . But other principles include safety 

loading           so they can get over from this risk. For    , 

2. Variance principle:                 , 

3. Standard deviation principle:                  , 

4. Exponential principle:                   

In classical risk model, the surplus process is (Dickson, 2005)  

                   

where u is the initial surplus,         (total premium), c is the loaded premium rate and the 

aggregate claim amount process       
  
    . 

In insurance, the expected value of the aggregate claim is an important calculation to ensure 
the risk. It gives an idea about the cost of a disaster to the insurer. For example in this study 
the net premium is calculated by using the 2000-2008 thesis data,  

     
                      

                      
 

          

       
                                                

which gives the expectation of claim amount payment for the TCIP. 

Then the expected payment of the TCIP according to the claims until January 7, 2012 from 
the beginning of the Pool; 
 

     
                      

                      
 

           

       
                                                                   

A big difference is observed between expected aggregate claims of the thesis data and 
current claims data of the TCIP. This is a result of the claim arrivals from the October 23, 
2011 Van/ Erciş earthquake of a magnitude 7.2.  
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CHAPTER 4 
 
 
 
 

MATHEMATICS OF THE STUDY 
 
 
 
 
 
 

The theoretical and mathematical work of the thesis is combined to lead to the computational 
analysis of the data. The basic ideas used are likelihood of the aggregate claim amount and 
number of claims, the nonhomogeneous Poisson process and the GLM. 

4.1 Generalized Linear Models (GLM) 

Modeling the relationships between the variables is one of the main interests in statistical 
methodology. The aim of the modeling is to find the best model, where the one variable is 
explained by one or more other variables. The explained variable is called ‘response’ and 
others are ‘explanatory’ variables. GLM generalizes the classical linear models by allowing 
the response variable to be non-normal via link function. In actuarial analysis, the GLM has a 
wide use to model premium, mortality and reserving (Boland, 2006). It was first introduced by 
Nelder and Wedderburn in 1972. In GLM, parameter estimations are obtained by maximum 
likelihood estimation followed by least-square algorithm iterations. If the response variable is 
continuous, the probability distribution might be Normal or if the response is countable, its 
distribution might be Poisson, also distribution might be Binomial when the response is 
binary (e.g. occurred or not occurred).  

The GLM have two important features (Jong et al., 2008): 

1. Distribution of the response variable is selected from the exponential family (e.g. 
Binomial, Poisson and Normal). 

2. Response variable’s mean is transformed and linked with explanatory variables. Some 
commonly used ‘link functions’ are; identity for Normal, log for Poisson and logit for 
Binomial. 

The classical linear regression model is the most preferable and first comes to mind to fit a 
model. The connection between the response and explanatory variables can be shown as,  

                   
                             , 

where   ’s are unknown parameters,      ‘s are defined explanatory variables and    is the 

error term. The expected value of the error term         and the variance      is constant. 
There is a linear relationship between response variable and explanatory variables including 
the error term. The expected value of y,         and explanatory variables also has a 
linear relation. But in some cases, the linear connection may not be appropriate with non-
linear unknown parameters so non-linear regression models are chosen. Transformations 
can be used to change a non-linear model into a linear model like log-transformation.  The 
log-transformation is usually used in insurance for claim numbers and claim amount (Boland, 
2006). 

In insurance, normal assumption is not practical for claim numbers, claim amount and claim 
occurrences. So, the GLM is preferred for modeling since it is the combination of linear and 
non-linear models. In the GLM, the response     must be from an exponential family and the 
linear relation between the expected value of the response variable, which is called link and 
the explanatory variables is generalized as 
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Observations of the response variables      and the explanatory variables      are assumed 
to be independent. The choice of link is offered by the form of the relationship between the 
response variable and the explanatory variables. If the response variable is a counting 
variable, generally the Poisson distribution is used. It is a well-known distribution for which 
the expected value and the variance are equal. In GLM for count response, Poisson 
regression is suitable via an appropriate link function. Ideal link functions are identity link 
      and log-link                 (Boland, 2006). In this thesis, we model the number 

of claims   , which is a counting process under the assumption that it has a Poisson process 
and is distributed with rate      that is changing over time   and is dependent on its history. 
The Poisson regression is preferred with the log-link function since it is generally suggested 
for insurance claim number modeling. If we consider a simple Poisson regression model, 
then 

               

and the expected value of    is                 . 

The probability density function of the Poisson distribution can be written as 

     
     

  
          

If the probability density function is rewritten we obtain, 

     
         

  
 

        

  
                                         

In Poisson regression models, parameters are estimated by the maximum likelihood 
estimation method. In likelihood since we model counting data    in the Poisson process, 

where the rate   is replaced with       , 

         
           

   

 

   

 
    

              

      
 
   

   

where    represents the number of claims    in the study. 

The log-likelihood function of the Poisson distribution is 

                                                    

 

   

                    

 

   

   

 

   

 

   

                

 

   

                                                            

 

In the following sections of the study, the estimations of the parameters    and   of the 

exponential kernel function are calculated. In some parts, the study becomes challenging. 
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4.2 Likelihoods of Observations 

The likelihood function has an important role in estimating methods for the parameters. If we 
assume n random variables (observations)           , which are independent and 
identically distributed (iid) with the probability density function of unknown parameter vector  

       and the likelihood function         of the joint probability density function of random 

variables is 

                         

 

   

          

In this thesis, we want to find a good estimator for each parameter of the data and use it in 
modeling. The likelihood of the aggregate claim amount     and the time likelihood of Poisson 
counts are obtained under the assumption of the number of claims    and individual claim 

amounts   are independent, where the number of claims      is conditionally given as 

follows (Başbuğ, 2007) 

                     

 

   

                                                       

where   refers to the all distribution parameters. 

In chapter 3 (3.2), it is stated that the probability density function of interarrival time is 

      
       , where              

    

  
               . Thus, the time likelihood function 

of nonhomogeneous Poisson process is (Başbuğ, 2007), 

 

                                               
 
               , 

                       
             

                                                   

                                                                               
   . 

 

Since      is fixed, the likelihood function takes the form of     
                  

 
        . 

 

4.3 The Use of the Exponential Kernel Function 

As mentioned before in Chapter 2 after large earthquakes, many aftershocks can be 
observed. Observed sudden jumps in claim numbers with the aftershock show a big increase 
in records. In the study, sudden changes are observed after big earthquakes. This 
aftershock occurrence is related with two main formulas. One of them is Omori’s Law and 
other is Gutenberg-Richter. The aftershock rate , which is the number of earthquakes 

measured in certain time    follows Omori's Law. It is an empirical relation for the temporal 

decay of aftershock rates 

  
 

   
  

where   is the time offset parameter and   is the size of  earthquake waves. These two 
parameters are constant.  Omori’s Law shows that the aftershock rate decreases as time 
goes on (Utkucu et al., 2005). 
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In 1961, Utsu suggested the Modified Omori’s Law, used now, and add   constant to 

equation (Utkucu et al., 2005) 

  
 

      
   

where the range of    is between 0.7 and 1.5. When      the Modified Omori’s Law 
becomes Omori’s Law.  

The Gutenberg-Richter Formula gives the relation of the claim numbers and magnitude. As 
the magnitude of the aftershock increases the claim number decreases (Utkucu et al., 2005 
and Gutenberg -Richter, 1944), 

            
 
where M is the magnitude, N is the claim number bigger than M and a, b are constants. 
 
In the analysis, the nonhomogeneous Poisson process with the parameter    for          
that is a member of log-linear family is used, where each claim arrival is considered in the 
given time period. The log-linear Poisson process is used to estimate parameters. Sudden 
changes after big earthquakes are represented by the exponential kernel function. The 
exponential kernel function that is used in the claim numbers and the aggregate claim 
amount are in the following forms respectively when calculating the likelihoods and in 
modeling sections of the thesis (Başbuğ, 2007): 

 

           
             

     
and               

           
  

                                  

          
            

                           

 

   

 

 

where   ,           is the kernel knots, where the earthquake takes place with   , effect    is 

empirical kernel knots and    is the corresponding kernel knots time, which are chosen to see 

the jump effect. In notation            , (+) part determines that the difference is always 

positive.   is an explanatory parameter for the GLM. Moreover, the different features of the 

each earthquake region of different years are represented by a non-linear   parameter. 
Additionally,    parameter represents the sudden jumps after big earthquakes and    gives 

ordinary claim arrivals, which occur due to small tremors. Figure 4.1 gives the structure of 
the exponential kernel function. Jumps in the plot reveal the idea that the kernel function is 
used in analysis. Also, Figure 4.2 indicates that the exponential kernel function picks the big 
earthquakes. 
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Figure 4.1 The Plot of the Exponential Kernel Function 

 
 

Figure 4.2 The Exponential Kernel Function, which picks the Big Earthquakes in Weeks 

 
 
4.3.1 Likelihoods of the Exponential Kernel Function  

As mentioned before, the exponential kernel functions are used instead of the number of 
claims. In this section, maximum likelihood estimation of the exponential kernel function is 

calculated. In the case of                   the rate has the following form,  

      

 
 

 
       

         

 

   

            

                                                   

   

where            
          

     
 with          knots, each i

th
  time     is connected with 

empirical knots   s at which the kernels are replaced. 
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By using (4.2), initial steps of estimation of the non-linear   parameter, which represents the 

different features of the regions is obtained by the following steps (Başbuğ, 2007), 

                           
             

           

 

   

                                              

where                  is the vector of unknown parameters. Log-likelihood function is 

                                   
             

          

 

   

  

                                                  
             

                                   

 

   

 

                                                     
           

 

 

   

       

 

   

  

where              
 

 
  The derivative of log-likelihood function of (4.6)  regarding non-

linear parameter   in the next step, 

     

  
 

 

  
         

            

 

   

       

 

   

 

                
 

  
        

           
 

 

   

                                                                                           

 

   

 

                      
           

 

 

   

            
 

  
       

 

   

 

when we find the derivative of      , 

              
  

 

         
             

     
  

 

 

      

  
          

             
       

           
 

 

   

             
  

 

                                                   

                           
             

               
 
             

  

 

 

   

 

 

Then, if (4.8) is replaced in (4.7), the following (4.9) is obtained. By numerical solutions the 

maximum likelihood estimation of non-linear parameter   can be derived.  
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4.4 Estimation of the Model Parameters for the Number of Claims Model 

Estimation of   parameter 

In the Poisson regression, log-rate is used to model the number of claims   .The estimation 

of the non-linear parameter   of the exponential kernel function is obtained in the following 
form. The log-rate is,  

             
           

 

 

   

                                                                           

so the rate of the process is            
             

     
. 

Log-likelihood function of Poisson is given as  

                        
           

 

 

   

          
             

      

 

   

           

 

   

         

Differentiation of the log-likelihood regarding to non-linear parameter  , 

     

  
 

 

  
             

 

   

 
 

  
          

 

   

 

the Fisher’s score function      is obtained as 

     

  
      

          
           

 
           

 

   

 

   

          
             

          
           

 

 

   

                

 

If the score function,       is differentiated regarding to   again, the Hessian, which gives the 

second derivative of log-likelihood function is obtained as  
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If we rewrite (4.12), 
 

      

   
 

     

  
  

 

  
 

       
            

 

   

             
 

 

   

 

 

 
 

        
             

          
           

 

 

   

            

 

         
             

          
            

 

   

             
 

  

 

  
 

  

 
 
The variance estimate of the non-linear parameter   can be obtained by the observed 

information matrix                , by using the expectation of Hessian matrix  
 

 

                                   . 

 
 

Since, sometimes it is hard to calculate the expectation of Hessian matrix, where –   is the 

observed information matrix  , we can use                                 .  The 
inverse of negative of the Hessian matrix is used to get the confidence interval of the    and 

   parameters. 
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The inverse of negative of the Hessian         or observed information matrix gives the 
variance-covariance of the parameters, which are used for the confidence interval of the 
parameter   that gives the different features of each earthquake region of different years. 
 

                                     
 

Estimation of α Parameter 
 
The linear parameter              , which represents the big earthquakes is estimated with 

the same method used in the non-linear parameter   in log-linear Poisson modeling. The 
log-likelihood in (4.11) changes in 
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The first derivative of the log-likelihood function (4.13) by   , 

 
 

     

   

                  
 

 

   

         
             

                  
 

 

   

 

 

   

                                          

 
 
The second derivation (Hessian) of the log-likelihood (4.14) is 
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Since             , the Fisher Information matrix, which includes 
      

      
 is 

 

                
             

                   
 

 

   

 

 

 

 

   

                                                                        

Second partial derivative for            ( 
      

      
 

      

      
    is 

 
      

       

             
             

                 
 
 

       
  

    
 

 

   

                                                                       

 
Also, the first derivative, the Fisher’s Score Function, of (4.13) by    is 
 

     

   

              
             

                                                                        

 

   

 

 
So, the Hessian (4.16) (second derivative of     is 
 

      

   
 

            
             

                                                                         

 

   

 

 
The Hessian with the parameters    and    by (4.16) can be obtained as 

 
      

      

            
             

                  
 

 

   

                                                                                        

 

   

 

 
The confidence interval of    parameters can be calculated by using inverse of negative of 

the Hessian matrix of      ‘s for variance estimates of   ’s: 

 

                                       

 
The Hessian matrix also contains the entry for    ,  which is symmetric with     in the 

following form by using (4.13) 
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The second derivative of (4.17) by   is 

 
      

     
 

                  
  

         
   

                  
             

                  
  

       
           

  
               

    
           

  
                      

             
        .                                                 (4.18) 

 
If we take the derivative of log-likelihood respectively by     then    

 

     

    

           
           

 

 

   

                     
             

         
           

 

 

   

 

 

   

  

 
Then, 
 
      

     
  

 

        
             

                         
             

         
           

  
         

   

           
           

  
         

             
                        

             
            (4.19)              

 
We obtain the same result with (4.18) because of the symmetry. 
 

By using (4.13) the Fisher Score Function and the Hessian for  
      

     
  we obtain, 

 

      

     

            
             

          
           

 

 

   

             

 

   

 

                             
             

          
           

 

 

   

             

 

   

  

 

the result will be  same with 
      

     
 because of the symmetry. 

 
The score function  , the first derivative of log-likelihood function, according to   and                

            is described as in matrix form: 
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and the Hessian matrix is obtained by using the corresponding second partial derivatives of 
log-likelihood function; 

 

              

 
 
 
 
 
 
 
 
 
 
                 

      

    
                 

      

  
                 

      

  
                 

     
 
 
 

                 

      

    
                 

      

    
                 

      

  
                 

      

                 

     

    
                 

     

   
                 

     

  
                 

     
 
 
 
 
 
 
 
 
 

  

 
 

The variance-covariance matrix can be obtained by the inverse of negative of the Hessian 
matrix. Then, by using the diagonals, which correspond to variances of the parameters   and 

  s, confidence intervals can be computed. 

 

4.5 Estimation of the Model Parameters for the Aggregate Claim Amount Model 

The aggregate claim amounts are assumed to be approximately Normal, which is the 
member of exponential family. So, the aggregate claim amounts can be modeled with the 

GLM like the number of claims. As stated earlier, if                (      
  
   ) then 

              is used in the calculations by taking the natural logarithm of the aggregate 
claim amounts. The probability density of Normal Distribution is  

 

           
 

    
 

 
 

         
,           

 
where the parameters mean    and standard deviation  .  
 
The probability density of Normal distribution can be written in an exponential family form, 
 

           
  

   
  

    
  

    
 

 
                       

The likelihood function of this density is in the following form, 

            
   

  
 

  
 

   
 

  

   
 

 

 
           

 

   

 

where    is the claim amount in this study. The log-likelihood function can be written as, 
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In parameter estimations, the exponential kernel function is used instead of the mean   
parameter for the claim amount, which is assumed to be approximately Normal. 
 

         
           

 
                                                                     

 

   

 

 
If we located (4.21) in (4.20), the log-likelihood is 
 
         

    
  

 

   
 

          
           

 
  

   

  
 

        
           

  
     

   

 

   

 
 

 
                                                                                                                                                                 

 
Estimation of β Parameter 
 
The first derivative of log-likelihood function (4.22) by   is, 
 

     

  
   

 

   

 
        

    
   

      
 

        
    

   

      
 

        
    

   

       
 

 

 
        

    
   

       
 

       
    

     

          
 

     
    

           
    

    

          
                            

 
and second partial derivative of  (4.23) by   is 
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Estimation of α Parameter 
 

The linear parameter                 which represents the big earthquakes is obtained 

from the log-likelihood in (4.22) by taking the first derivative (score function) and second 
derivative (Hessian) for the exponential kernel function. 
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and the Hessian, second derivative, is, 

                     
      

   
 

     
       

     

         
 

 

   

                                                                     

When we take derivative of (4.24) in respect to     

                  
      

     

     
      

   

      
 

 

   

                                                     

The first derivative, score function, of    can be derived from (4.22) 

     

   

   
   

  
    

  

  
 

      
   

      
 

 

   

                                          

and the Hessian function is,  

                      
      

   
 

  
 

  
                                                                                          

 Second partial derivative for              
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The Hessian can be completed by taking derivates according to       and   parameters. If 

we differentiate (4.23) with    

      

     

    
          

   

      
 

 

   

      
    

   

      
 

          
   

       
 

 
      

    
   

       
 

        
    

           
    

          
 

              
     

   
 
   

          
                      

 
     

         
     

   
 
   

          
   

      

     
  is same with 

      

     
 because of the symmetry. 

If (4.23) is differentiated by    , the Hessian is obtained as 

      

     

   
      

    
   

       
 

      
    

   

       
 

 

   

                                          

 
      

     
  is also same with 

      

     
 because of the symmetry. 

Confidence intervals of the parameters   and   s can be computed by using the diagonals of 

inverse of negative of the Hessian matrix.  
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CHAPTER 5 
 
 
 
 

ANALYSES AND MODELING 
 
 
 
 
 
 

5.1 Explanatory Data Analysis 
 
The data used in this thesis, which is collected in the TCIP between 2000 and 2008. The 
starting date is December 15, 2000 and continues until July 20, 2008.  The study contains 
earthquake insurance claims, raw data earthquake realization dates, hours, paid claim 
amounts for each claim, the provinces and towns, earthquake size (magnitude) and also the 
risk zones. As the variables of the data; the claim amount, the number of claims and 
magnitude are organized in terms of weeks by R 2.15.1 software and used for analysis. In 
total, 12,075 number of claims data are used and 396 weeks from the beginning until the 
date of the last earthquake including 4 risk zones (risk zone 1, 2, 3 and 4), which are the 
degree of risk for the earthquake regions. The number of claims and the aggregate claim 
amount are the two main variables of the analysis. The number of claims variable (     is the 

total number of arrived earthquake claims in terms of week. Aggregate claim amount (  ) 
corresponding to the number of claims that is paid to the insured is used as the sum of the 
individual claim amounts for each week.  Many sudden changes (rise and fall) are observed 
in claims data. For example, while no earthquake is observed in some weeks, maximum 
2,913 earthquake claims are reported in one week. In addition, the magnitude, which is the 
measure of earthquakes, is used by its modes for each week. Also, the highest observed 
magnitude is 6.5 in 9 years. 

Structure of the data: 

 

                                                                                                                
 

   1                                                      
                              

   2                                                      
                              

   .           .        .                      .            . 
   .                      .                                                     .                                         .            . 
   .                      .                                                     .                                         .            . 
396                                                      

                          

 
 

The week of the first occurred event, December 15, 2000 is chosen as the first week and the 
last event July 20, 2008 is chosen as the last week of the analysis. The 51

st
 week in 2000 at 

Afyonkarahisar/Bolvadin with a magnitude of 5.8 in risk zone 1 is the first claim data and the 
last claim data occurred in the 29

th
 week of 2008 in Izmir/Karaburun with magnitude 4.0 in 

risk zone 1. In the data, the highest magnitude is observed on January 27, 2003 in Tunceli/ 
Pülümür (takes place in risk zone 1) with magnitude 6.5 (see table 5.1). This region is on the 
area of the active North Anatolian and East Anatolian faults. Since many residential buildings 
are close to the fault lines, magnitude earthquakes whether large or small can be observed 
and arrived total losses to insurance companies can be still be high. In the following Table 
5.1, the claim numbers that are greater than 100 and magnitudes, which are greater than 5.0 
are selected and listed. 
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Table 5.1 The Significant Earthquake Claims Data from the TCIP 

 

Date 
Corresponding 

weeks in R 
Place Magnitude 

Risk 
Zone 

Number of 
Claims 

25/06/2001 28 Osmaniye/Merkez 5.5 1 128 

31/10/2001 46 Osmaniye/Merkez 5.2 1 139 

03/02/2002 59 
Afyonkarahisar/ 
Sultandağı 

6.0 1 1,471 

27/01/2003 111 Tunceli/Pülümür 6.5 1 168 

10/04/2003 121 İzmir/Urla 5.6 1 1,731 

01/05/2003 124 Bingöl/Merkez 6.4 1 470 

28/03/2004 171 Erzurum/Aşkale 5.3 2 269 

06/06/2005 235 Bingöl/Karlıova 5.7 1 105 

21/10/2005 254 İzmir/Seferihisar 5.9 1 2,913 

21/02/2007 323 Elazığ/Sivrice 5.9 1 169 

 
The Izmir/Seferihisar Earthquake on October 21, 2005 with the highest claim number 
reaches to the TCIP according to the data. Since the earthquake happened at night and also 
people felt it strongly in and around Izmir, it caused panic and fear. Therefore, many citizens 
were injured but fortunately, nobody died. The reported claim number is an indicator and 
shows the awareness of the citizens who have the CEI. It is vital to take precautions in Izmir 
since it is placed in risk zone 1.  
 
The main variables of the analysis are the number of claims    (           ) (section 3.2) 

and the aggregate claim amount     (              
) (section 3.1). In many insurance 

applications, the aggregate claim amount is assumed to be distributed as Lognormal, 
Gamma, Log-gamma or Negative Binomial. In this thesis, the aggregate claim amount    is 
assumed to be Lognormal therefore, logarithm transformed,       is assumed to be Normal. 

After transformation of     , Figure 5.1 shows that       is roughly symmetric and represents 
approximately Normal distribution and Figure 5.2 Q-Q plot also supports the normality 
assumption. In Figure 5.2, small changes are seen at the tails but most of the points lie on 
the line. Since the earthquake insurance claims data are extreme values, these leaving 
points can be observed. Extreme values will be another study subject.  A close form of this 
figure is also derived in the study of Achieng (2000) for fitting distribution who accepts the 
assumption as well. Moreover, normality assumption tests are done in EasyFit distribution 
fitting program, which is usually used in engineering, actuarial science, medicine etc. and R 
2.15.1 software. The test results are illustrated in Table 5.2, where the null hypothesis equals 
the data follow the specified distribution (Normal distribution). While Shapiro-Wilk normality 
test rejects the null hypothesis, the Anderson Darling and Kolmogrov-Smirnov and Pearson 
Chi-square tests do not reject the normality. Since, Shapiro-Wilk is a powerful test and the 
number of the data is high, it rejects normality even as a small change is observed between 
fitting and actual values. Therefore, the normality assumption does not rejected and then the 
logarithm transformed of aggregate claim amount is used in the analysis. Also, the number 
of claims has a nonhomogeneous Poisson process since the time variation of rate   (see 
section 3.2). In modeling of the aggregate claim amount and the claim number the 
exponential kernel function is preferred to represent the sudden jumps after big earthquakes.  

Ho: Data follow Normal distribution 
H1: Data do not follow Normal distribution 
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  Table 5.2 The Test Results of the Normality Assumption 

 

Test Reject Ho Not Reject Ho 

Shapiro-Wilk √  

Anderson Darling  √ 

Kolmogrov-Smirnov  √ 

Pearson Chi-square  √ 

 
 
 

  
Figure 5.1 The Histogram of                                    Figure 5.2 The Q-Q Plot of                                                                       

the log of the Aggregate Claim Amount                   the log of the Aggregate Claim Amount 

 
 
The relations between the magnitudes, the number of claims and the aggregate claim 
amount (after transformation) in all risk zones in terms of weeks can be seen by graphical 
analysis in Figures 5.3, 5.4, 5.5 and 5.6. These figures show different properties of the data. 
The main interest of this thesis is to represent the sudden jumps when big earthquakes 
occur in the country that affect both the number of claims and the aggregate claim amount. 
As it was mentioned in Section 4.3, the special mathematical function, the exponential kernel 
function, is used in modeling section and for parameter estimation (  ) in the empirical 

selection of the knots with sudden jumps occurring at big earthquakes are used. These 
sudden changes of claims can be easily seen in Figure 5.3. Three top points are observed at 
weeks 59 (Afyonkarahisar/ Sultandağı with 1,471 claims), 121(İzmir/Urla with 1,731 claims) 
and 254 (İzmir/Seferihisar with 2,913 claims), respectively.  
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Figure 5.3 The Plot of Claim Number and Time (in weeks) 

 
 

In both Figures 5.4 and 5.5, the magnitude and the aggregate claim amount demonstrate a 
homogeneous scatter in time. The magnitude varies mostly between 3.5 and 5.5. The 
highest claim payment is observed in week 254, the Izmir /Seferihisar earthquake with a 
magnitude of 5.9 and 2,913 number of claims. 

  

Figure 5.4 The Plot of Magnitude                    Figure 5.5 The Plot of the log of the Aggregate               

and Time (in weeks)                                                 Claim Amount and Time (in weeks) 

 

There is a 93% correlation between the claim amount and the number of claims. This means 
that, as the number of claims increases, the total payment of the TCIP increases. Also, the 
correlation of the magnitude with the aggregate claim amount and the number of claims are 
23% and 24%, respectively, as expected.  

0 100 200 300 400

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

6
.5

Time(in weeks)

M
a

g
n

it
u

d
e

0 100 200 300 400

-1
0

-5
0

5
1

0
1

5

Time (in weeks)

lo
g

 o
f 
a

g
g

re
g

a
te

 c
la

im
 a

m
o

u
n

t



45 
 

 
  

Figure 5.6 The Plot of Magnitude and the log of Aggregate Claim Amount 

 
 
The plot of the magnitude and the log of the aggregate claim amount give a more scattered 
pattern than a shaper linear relation (Figure 5.6). However, even if the magnitude is large, 
such as 5.0, high aggregate claim amounts are not expected because of the resistance of 
construction or awareness of the people to the insurance in the region. It can be observed 
that the magnitude increases exponentially and faster up to 5.0 then becomes almost linear 
after 5.0. Also, the frequency of claims is higher until magnitude 5.0 and payments are 
moderate. High payments are observed at high magnitudes.                          

 

Figure 5.7 The Plot of Magnitude and Claim Number 
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Mostly, when the magnitude is low, the number of claims is low, too. However, there are 
some exceptions. For instance, the Izmir /Seferihisar earthquake had 2,913 claims with a 
magnitude 5.9 but the Tunceli/Pülümür earthquake has 168 claims with a 6.5 magnitude. 

In the following sections, the relationships between the number of claims, the aggregate 
claim amount and the magnitude are presented separately in two parts: risk zone 1 and risk 
zone 2, 3 and 4. Since most of the thesis data is observed in risk zone 1, other risk zones (2, 
3 and 4) are considered together. The graphical analyses illustrate the differences among 
the risk zones. For example, the higher the number of claims the higher the corresponding 
claim amounts is generally observed in risk zone 1, which has the highest earthquake risk.  
 
 
Graphical Analysis of Risk Zone 1 Claims Data 
 
The relationships among the aggregate claim amount, the number of claims, the magnitude 
and time in terms of weeks are given in Figures 5.8, 5.9 and 5.10. Since weeks 28, 46, 
59,111, 121, 124, 235, 254 and 323 with high claims are gathered in risk zone 1; significant 
changes are observed in this area. The magnitudes of these claims generally exist between 
5.0 and 6.5. These observations are evidence for decreasing risks in constructions, taking 
precautions by municipalities and having CEI. In addition, sudden jumps after big 
earthquakes are shown in Figure 5.9. 
 

 
Figure 5.8 The Scatter Plot Matrices of Risk Zone 1 Claims Data 
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Figure 5.9 The Plot of Claim Number & Time   Figure 5.10 The Plot of Magnitude & Time                  

  (in weeks) Risk Zone 1                                          (in weeks) in Risk Zone 1 

 
 
Graphical Analysis of Risk Zones 2, 3 and 4 Claims Data  
 
In risk zones 3 and 4, there are minor claims, where magnitudes are less than 5.0 and the 
claim numbers are less than 5 that arrive to the TCIP. Therefore, in graphical analysis, they 
are considered with risk zone 2. The relations among the aggregate claim amount, the 
number of claims, the magnitude and time in terms of weeks in the earthquake risk zones 2, 
3, and 4 are represented in Figures 5.11, 5.12 and 5.13.  

  
Figure 5.11 The Scatter Plot Matrices of Risk Zones 2, 3, 4 Claims Data 
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         Figure 5.12 The Plot of Claim Number                 Figure 5.13 The Plot of Magnitude                          

& Time (in weeks) in Risk Zones 2, 3, 4                & Time (in weeks) in Risk Zones 2, 3, 4 

 

Figure 5.12 denotes the jumps in claim numbers again, which are observed by risk zones 2, 
3 and 4 claims data.  At weeks 171, 191 and 228 more than 100 claims are observed. The 
highest magnitude 5.7 is observed at week 366 in risk zone 2. Magnitude also gathers 
between 4.0 and 5.0 and shows a homogeneous scatter in weeks in Figure 5.13. 

 
5.2 Modeling  

 
In this section, the main variables of this study, the claim number    and the aggregate claim 
amount   are modeled by the GLM. The TCIP claims data between 15/12/2000 and 
20/07/2008 are studied. As mentioned before, sudden changes in the number of claims 
when a big earthquake strikes in Turkey are represented by the exponential kernel function. 
For this study, significant claim numbers      are empirically chosen in weeks including all 
risk zones. There are 41 weeks that are empirically chosen for the analysis. These claims 
can be seen in Appendices A. Same chosen weeks and their corresponding kernel knots are 
used for both modeling the claim number and the aggregate claim. In some weeks significant 
increases are observed after or before ordinary weeks. The Poisson regression is used to 
model the claim number                         by using log-link function and the aggregate 
claim amount     which is assumed to be Lognormal (            ), is modeled as 
Gaussian by the GLM with identity link function. It is observed that these big earthquakes are 
picked by their     coefficients of the exponential kernel function during the modeling. Models 

include all risk zones (risk zone 1, 2, 3 and 4) and magnitude is used as a covariate in 
models.  

Before modeling, the data, which have 12,075 claims, are organized in terms of weeks. In 
total, there are 396 weeks. However, 236 weeks (more than 50% of the weeks) of the data 
do not have any claims. Therefore, data include zero values for the claim number and the 
corresponding aggregate claim amount as well as magnitude. None of the earthquake data 
are excluded in order not to break the time chain of the data. In cases, where zero values 
are more than expected for Poisson distribution, there are alternative models to model claim 
numbers. (Ridout et al., 1998) discuss some alternative models and compare the Mixed 
Poisson distribution, Zero-Modified distributions (Zero-Inflated Poisson (ZIP) and Zero-
Inflated Negative Binomial (ZINB) distributions in their study. However, in our case we prefer 
to use the Poisson distribution for the claim number     . However, mentioned models are 
alternatives for counting data with zero values and it can be analyzed in further studies. 
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In modeling, the aim is to obtain estimates of   and     parameters, where the   parameter 

represents the features of the each region and     parameters pick the sudden jumps of the 

big earthquakes. Additionally, the nuisance parameter     refers to ordinary claim arrivals, 
which occur due to small tremors, is the constant during the modeling. The use of these 
parameter estimates helps us to calculate net premium (           ) and aggregate claim 
amount (    that have an important use in actuarial work. The following steps are taken 
during the modeling of the number of claims and the aggregate claim in R 2.15.1: 
 

Algorithm  

1. Choose empirical weeks with large claim numbers (    ) and corresponding kernel 

knots, 

2. Use the exponential kernel function to model the claim number    with rate    

        
             

        the aggregate claim amount with            
           

  
    for   

        and          

3. Use GLM, 

4. Randomly select a   value, which represents the features of regions, 

5. Model the claim number with Poisson regression with log-link function 
                   and model the aggregate claim amount as Gaussian with identity link 

function by empirically chosen kernel knots, 

6. Add magnitude as a linear explanatory variable if it gives better results,  

7. Choose the   value, which gives the smaller Residual deviance and Akaike’s 

Information Criterion (AIC) in the model and use maximum likelihood estimation of   as 
check, 

8. Run the model with the chosen  , 

9. Obtain     parameters’ estimates from model, which pick the significant earthquakes, 

10. Obtain Hessian matrix, which consists of the second partial derivatives of log-likelihood 
(derived in Chapter 4) with estimations of    and     , 

11. By using inverse of negative of the Hessian matrix (var-cov matrix), Observed 
Information Matrix, construct the confidence interval of   parameter, (if it is 

interested    ’s confidence interval can also be derived), 

By following this algorithm, the claim number and the aggregate claim amount models are 
studied. 
 
 
Modeling the Claim Number (  ) 
 
In this section, as a counting data the number of claims    , is modeled with Poisson 
regression with log-link function by using the exponential kernel function (see Section 4.3). 
The result of the suggested model is given in terms of weeks. We do not separate the data 
into risk zones (1, 2, 3 or 4), all risk zones are considered in models, while most of the claims 
are arrived from risk zone 1. While modeling                          former algorithm is 
followed. Good results were obtained as expected by using the exponential kernel function 
with empirically chosen time (in weeks) and corresponding kernel knots.    (       ) 

parameters successfully represent the sudden jumps when big earthquakes occur. Also, the 
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   the parameter represents the ordinary claims in weeks due to small tremors and the non-

linear parameter    represents the different characteristics of the earthquake regions.  
 
In modeling, many other covariates can be added to the model. However, in this thesis only 
magnitude     is used as a linear explanatory variable and added to Model 1 in the following 
form: 
 

                    

where log-linear Poisson count rate              
           

  
       for the exponential 

kernel function with         and        . 
 
The suggested model results are illustrated in Table 5.3. The suggested model is chosen 
according to smaller residual deviance and AIC among the other models. In the following 
table, the non-linear parameter  estimation, AIC and residual deviance, which are the main 

criterions for the GLM analysis for reasonability of the model, and a 95% confidence interval 

of    are given. The main idea of the modeling is approved by    parameters, which pick the 

big earthquakes effects while several    coefficients are given in Table 5.4. Even small 

significant jumps are picked by the exponential kernel function in modeling.  
 
Table 5.3 Results of Model 1 

 

   
Residual 
Deviance 

Akaike’s Information 
Criterion (AIC) 

Confidence Interval for  

   (95%) 

10.77 890.89 1,638.1 (10.51597; 11.02403) 

 
Table 5.4 Coefficients of Model 1 

 

Week Number of Claims     Coefficients of Model 1 

59 1,471 4.08469 

121 1,731 4.60574 

185 33 1.18331 

254 2,913 4.85751 

286 448 3.97070 

 
Figures 5.14 and 5.15 verify the validity of the fitted model. As can be seen, actual claim 
numbers and fitted values of the model show close variability in weeks. 
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Figure 5.14 The Plot of the Claim Number              Figure 5.15 The Plot of Fitted Values of                  

in Terms of Weeks                                                Model 1 in Terms of Weeks 
 

 

 

Figure 5.16 The Plot of Residuals of Model 1 

 
Figures 5.16 supports the suggested Model 1 by using the exponential kernel function in 
terms of weeks. Residuals give the differences between the actual values and the fitted 
values. It is an alternative way to interpret a good model selection. It also supports the 
suggested Model 1, which uses the exponential kernel function to fit the model. 
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Modeling the Aggregate Claim Amount (  ) 
 

The aggregate claim amount     (       
  
               

   which is assumed to be 

Lognormal (                 
  ), is modeled by the GLM with identity link function. The 

assumption of     ‘s are independently and identically distributed is used while modeling. The 
individual claim amounts are totaled for each week and log transformation is applied for the 
aggregate claim amounts for the assumption of normality. The exponential kernel function is 
used in modeling the aggregate claim amounts with the same idea for the claim numbers. It 
picks the sudden increases when a big earthquake strikes the country as in the number of 
claim modeling. 

Model 2 with linear explanatory variable Magnitude     can be written as 
 

                 
  , 

 

where           
           

 
   

 
     for         and         is for the use of the 

exponential kernel function. 

The same algorithm is followed for the aggregate claim amount with the modeling of the 
claim numbers   . AIC and residual deviance are used again in model selection. The model 
with minimum AIC and residual deviance is chosen. The results of Model 2 are given in 
Table 5.5. The aggregate claim amount    infers the aim of the modeling as well.     

coefficients of the exponential kernel function represent the big earthquakes like in Model 1.  
In Table 5.6, estimations of    parameters that correspond to the significant claim arrivals are 

given that are computed by    modeling.  
 
Table 5.5 Results of Model 2 

 

   
Residual 
Deviance 

Akaike’s Information 
Criterion (AIC) 

Confidence Interval for  

   (95%) 

0.99 698.12 1,436.3  (0.9899025; 0.9900975) 

 
Table 5.6 Coefficients of Model 2 

 

Week Number of Claims     Coefficients of Model 2 

185 33 0.50876 

256 129 2.36839 

287 74 2.19065 

334 581 5.22886 

387 58 0.98665 
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Figure 5.17 The Plot of the log Aggregate                     Figure 5.18 The Plot of the Fitted                                  

Claim Amount in Terms of Weeks                             Values of Model 2 in Terms of Weeks 
 

The plot of the fitted values in terms of weeks (Figures 5.18) indicates close scatter with the 
actual observation values (Figure 5.17).  In Figure 5.19, the residuals plot also supports the 
validity of Model 2. 

 

 
Figure 5.19 The Plot of the Residuals of Model 2 

 
 
In modeling, the better models that represent the main interest of the study are given. Model 
1 and Model 2 with magnitude covariate verify the sudden jumps affects. The    coefficients 

of the exponential kernel function represent sudden jumps when a big earthquake strikes the 
country. 
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A Sample Study 

In this section, the first 200 weeks of the TCIP data are studied to verify the main idea of the 
study. That is, the exponential kernel function picks the sudden jumps after big earthquakes. 
By using the same algorithm, the number of claims      and the aggregate claim amount      
are modeled. The Poisson regression is used to model the number of claims,     which has a 
Poisson distribution with    via log-link function and the aggregate claim amount     is 

assumed to be Lognormal (            ) and modeled as Gaussian by GLM with identity 
link function. The weeks corresponding to the number of claims, which are greater or equal 
to 30 are empirically chosen.    (       ) parameters of the exponential kernel function 

represent the sudden jump effects.     and the non-linear parameter    respectively 
represent the ordinary claim arrivals due to small tremors and the different features of the 
each earthquake region. 

In sample study modeling, the magnitude     is used as a linear explanatory variable and 
added to the Sample Model and the suggested model is 
 

                    

where log-linear Poisson count rate              
           

  
       for the exponential 

kernel function with         and        . 
 
The GLM results of the number of claims    are denoted in Table 5.7. Smaller non-linear    
parameter estimation, residual deviance and AIC are obtained against Model 1. The model 
with minimum residual deviance and AIC are chosen among other models. 
 
Table 5.7 Results of Sample Model N 

 

   
Residual 
Deviance 

Akaike’s Information 
Criterion (AIC) 

Confidence Interval for  

   (95%) 

8 353.43 652.59 (6.562558; 9.437442) 

 
Table 5.8 Coefficients of Sample Model N 

 

Week Number of Claims 
    Coefficients of Sample 

Model N 

44 39 1.69165 

59 1,471 4.30955 

121 1,731 4.83980 

171 269 3.25398 

 
Table 5.8 gives various    (       ) coefficients of the exponential kernel function, which 

successfully represents the sudden jumps after a big earthquake. Moreover, the following 
Figure 5.20 and 5.21 illustrate close changing with the first 200 week claims and the fitted 
values of Sample Model N. Figure 5.22 also supports the validity of Sample Model N. 



55 
 

  

Figure 5.20 The Plot of the First 200 Week Claims               Figure 5.21 The Plot of the Fitted Values                                                                                                

        of Sample Model N 

 

Figure 5.22 The Plot of Residuals of Sample Model N 

 

By using the same argument to use the exponential kernel function for the aggregate claim 

amount           
  
               

  of the first 200 week claims, the suggested 

model is  

                 
  , 

where           
            

   
 
     for           and        . The GLM with 

identity link function is used and the magnitude     is used again as a linear explanatory 

variable. Table 5.9 expresses the results of the chosen model for    by using the exponential 

kernel function. The confidence interval of the non-linear parameter   estimates is very 
narrow because of very low variance. Lower residual deviance and AIC are obtained for 
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Sample Model S than Model 2.   s coefficients represents the jumps after big earthquakes  

strike like the other models and estimates given Table 5.10. 

Table 5.9 Results of Sample Model S 

 

   
Residual 
Deviance 

Akaike’s Information 
Criterion (AIC) 

Confidence Interval for  

   (95%) 

0.7 266.89 657.28 (0.6999025; 0.7000975) 

 
Table 5.10 Coefficients of Sample Model S 

 

Week Number of Claims 
    Coefficients of Sample 

Model S 

44 39 0.16536 

59 1,471 0.77896 

121 1,731 1.67089 

171 269 0.18185 

 

Figure 5.23 The Plot of the log of Aggregate       Figure 5.24 The Plot of the Fitted Values             

Claim Amount (first 200 week claims)                                                                 of Sample Model S 
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Figure 5.25 The Plot of Residuals of Sample Model S 

 

Figures 5.23, 5.24 and 5.25 are plots that show the usage of the Sample Model S in the 
behavior of the aggregate claim amount when the exponential kernel function is used. 

All models (Model 1, Model 2, Sample Model N and Sample Model S) successfully represent 
the aim of the study by using the exponential kernel function.    s can easily pick the sudden 

jumps in each model. Results and diagnostic plots support the reasonability of the suggested 
models. 
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CHAPTER 6 
 
 
 
 

CONCLUSION AND SUGGESTIONS 
 
 
 
 
 
 

It is not possible to predict the exact place, time and magnitude of earthquakes anywhere in 
the world. A future big earthquake that occurs in Turkey might cause significant losses to the 
TCIP reserves. However, economic losses due to an earthquake might be reduced by 
certain precautions and policy procedures to the CEI premium. Therefore, in this study some 
suggestions on the expected aggregate claim amount are made for the TCIP. 
 
The calculation of aggregate claim amount (  ) and the expected aggregate claim amount 

        have a wide use in actuarial context. The number of claims (  ) and individual claims 
(  ) are important elements for these calculations. The estimates of the rates    and    are 

needed in the computation of       (           ). In net premium calculations, interest 
rate, inflation and expenses are excluded. Net premium equals to the expected value of the 
aggregate claim amount (           ). The required    and    rate are estimated by using 
the maximum likelihood estimates of the    and   parameters of suggested GLM. The 

exponential kernel function that is used in models for the number of claims and the 
aggregate claim amount are respectively, 

 

           
             

     
and               

           
  

                                    

          
           

 
                           

 

   

  

 

where   ,           is the empirical kernel knots that the earthquake takes place with    

effect and    is the corresponding kernel knots time, which are chosen to observe the jump 
effect. The different features of each earthquake region of different years as an explanatory 
parameter for the GLM is represented by the non-linear parameter  . Also,    parameter 

represents the sudden jumps after big earthquakes and    gives ordinary claim arrivals due 
to small tremors. Daily small tremors and earthquakes, which are less than five can cause 
damage to constructions. The parameter estimations of    and   will be used for the net 

premium and the aggregate claim amount of the TCIP. The parameter estimations (   and  ) 

are important to express the idea of the modeling.  According to the results, the TCIP can 
check its reserves for unexpected high claims by considering the aggregate claim amount 
(expected claim payments).  

In Chapter 2, some technical information on earthquakes is explained. Moreover, some basic 
definitions on natural disasters especially on earthquakes are given. Some statistics are 
given about the natural disaster profile of Turkey and the history of earthquakes is also 
discussed. The TCIP is explained in detail and some important existing facts of the claims 
are given. Then, the methodology used in the analysis of the aggregate claim amount and 
the number of claims are given in Chapter 3. As the main interest of the thesis, the 
exponential kernel function, the GLM and log-likelihood estimations of the parameters of the 
functions’ computations are derived in Chapter 4. Explanatory data analysis, graphical 
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analysis, suggested models for the number of claims and the aggregate claim amount and 
their results are discussed in Chapter 5.  In addition, a sample study is done for the first 200 
week claims and we verify the idea of picking sudden jumps with exponential kernel function 
by using the GLM. 

The exponential kernel function that is used in modeling, the aggregate claim amount, and 
the claim number, successfully represent the sudden jumps after big earthquakes as 
expected with    parameter. For further studies, different kernel functions can be chosen and 

studied, and better results can be obtained. The power kernel function was used as an 
alternative to the exponential kernel function in Başbuğ (2007) for the TCIP claims data that 
are obtained between years 2000 and 2003. It successfully represented the jump effects of 
the big earthquakes as well. A further study will be done by using the same power kernel 
function again with recent claims data. The power kernel function was in the following form, 

           
 
              

     
                               . 

 In addition, the power exponential kernel function (Bozdoğan et al., 2003) 

            
 

     
 

  
  

  
 

  

     
 

 
 
   

 
 
  

 , 

where   ,           and     are, respectively location and scale parameters and 
         is located on the Kurtosis parameter can be chosen for modeling the aggregate 

claim amount and the number of claims. 

In this thesis, magnitude of an earthquake is used as a covariate in models but for further 
studies, alternative covariates can be added to the models. Additional features of the 
regions, population numbers, age of the buildings and structure types of buildings can be 
added to the models as well. In addition, if the total number of the data is large enough, 
models can be studied for each risk zone (risk zone 1, 2, 3, 4 and 5). Better models can be 
obtained with large claims data of the TCIP. 

In summary, this thesis suggests the following models for variables of interest, which are 
number of claims and aggregate claim amount, respectively: 

                    

where log-linear Poisson count rate              
           

  
       for the exponential 

kernel function with        , and        . 

 

                 
  , 

 

where           
           

 
   

 
     for         and         is for the use of the 

exponential kernel function. 

As a further study, the studies of Yücemen (2005) and Yücemen et al. (2009) on insurance 
premium rates for reinforced concrete and masonry buildings can be combined with thesis 
premium calculations. Hence, new model suggestions can be given. 

In the sample study, the first 200 weeks of the TCIP claim data are studied to verify the 
aggregate claim amount and the number of claims models. The October 23, 2011 Van/ Erciş 
earthquake with a magnitude 7.2 caused a peak in the TCIP claims with its magnitude, claim 
numbers and total payment.  

For a further study, the Zero-Inflated Poisson or the Zero-Inflated Negative Binomial 
distributions can be used instead of the Poisson distribution to model claim numbers. 
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The TCIP should not limit its coverage to only residential buildings. It should also include 
business premises and state buildings. A destructive earthquake might cause significant 
losses in Istanbul, which is the center of the industry and financial sector of Turkey. 
Therefore, displacement of the financial sector such as the general management of banks is 
considerable. 

Earthquakes cause losses in social, economic and cultural areas. In an emerging economy 
like Turkey, these losses become much more significant. Mitigation plans should be 
prepared to reduce impacts of disasters. Insurance is one of these mitigation mechanisms to 
recover the economy and return it back to the pre-disaster conditions. 

The TCIP has become a significant example for other countries by being a private-public 
partnership in a developing economy for thirteen years. The CEI was revised with Disaster 
Insurance Law No. 6305 of May 5, 2012 and Decree Law No. 587 was annulled. During the 
services of water and electricity for homeowners, the CEI becomes a must. With this 
application, the penetration rate of the TCIP will increase.  

The TCIP experienced the October 23, 2011 Van/ Erciş earthquake with a magnitude 7.2. 
The TCIP paid 15 million USD between 2000 and 2008 for claims, where it paid 56 million 
USD for the Van/ Erciş earthquake alone. With this example, the TCIP proved that its 
financial system works. Therefore, if new arrangements are made according to the age of 
the residential buildings, location, the magnitude of the earthquakes, claim numbers and 
aggregate claims, losses of the TCIP can be reduced. Different statistical models will support 
these arrangements by analyzing the available data. However, it should not be forgotten that 
there can always be better models for the system. 
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APPENDIX A 
 
 
 

THE FREQUENCIES OF THE NUMBER OF CLAIMS IN WEEKS 
 
 
 

Table A.1 The Frequencies of the Number of Claims in Weeks 

 

Week Frequency Week Frequency Week Frequency Week Frequency 

1 6 134 1 224 67 323 169 

5 1 136 29 225 14 324 22 

24 2 137 3 228 155 325 19 

27 2 146 10 229 1 328 5 

28 128 153 2 231 18 330 4 

30 8 154 7 234 191 331 18 

33 1 157 5 235 105 333 1 

34 4 158 1 237 1 334 581 

36 2 160 5 241 1 339 6 

39 1 162 1 242 14 345 3 

44 39 164 3 243 18 346 2 

46 139 167 6 244 27 348 2 

50 7 168 2 254 2913 349 15 

52 1 171 269 256 129 351 8 

53 1 172 49 259 14 353 365 

58 5 174 11 261 24 354 13 

59 1471 178 15 262 1 358 10 

63 28 182 2 263 1 359 1 

65 1 183 7 266 1 360 35 

68 3 185 33 270 34 363 1 

72 4 187 2 276 3 365 3 

73 16 188 4 279 20 366 56 

75 3 189 23 280 1 367 18 

79 4 190 19 284 27 368 42 

80 15 191 130 285 1 369 6 

85 1 192 4 286 448 370 2 

86 4 193 1 287 74 372 349 

87 2 195 3 288 36 377 6 

93 4 198 30 290 17 378 43 

101 1 199 1 300 3 380 1 

111 168 207 11 306 26 383 1 

114 18 209 1 307 80 384 3 

115 3 210 36 308 9 385 34 

117 8 211 2 309 3 387 58 

121 1731 214 7 315 1 389 1 

122 39 215 11 316 2 390 30 

124 470 216 214 318 75 392 3 

127 2 217 11 319 2 393 17 

130 1 221 64 321 87 395 3 

133 13 223 66 322 3 396 14 

* The weeks, where the claim numbers are equal or greater than 30 (    ) (signed with 
bold) are illustrated. The weeks without any claims are excluded in the table. 
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APPENDIX B 
 
 
 

AN EXAMPLE OF COMPULSORY EARTHQUAKE INSURANCE POLICY 
 
 
 

 

Figure B.1 The Compulsory Earthquake Insurance Policy [19] 
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APPENDIX C 
 
 
 

R CODES OF ORGANIZATION OF THE DATA IN TERMS OF WEEKS 
 
 
 

# ‘tarih.txt’ includes date, day, month, year, week and event hour 
# ‘yer.txt’ includes city and township 
# ‘mag.txt’ includes claim, magnitude and risk zone 
 
date<-read.table("D:/Profil/gozde.saribekir/tarih.txt",as.is = TRUE, header = TRUE)  
place<-read.table("D:/Profil/gozde.saribekir/yer.txt",as.is = TRUE, header = TRUE) 
mag<-read.table("D:/Profil/gozde.saribekir/mag.txt",as.is = TRUE, header = TRUE) 
data<-cbind(date,place,mag) 
data<-data.frame(date,place,mag)   
data[,12]<-c(rep(1,12075)) # number of claim equals to 1 for each event 
names(data)<-c ( 'Date', 'Day', 'Month', 'Year', 'Week', 'EventHour', 'City', 'Township', 
'Claim','Magnitude','Risk Zone','Number of Claim') 
 
# Year 2000 
 
co2000<-c();   # the vector that includes week, claim amount, magnitude, risk zone and  
number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2000") # the year that is studied 
co2000<-c(co2000,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))}  
t.2000<-table(co2000); 
dt2000<-matrix(c(co2000),ncol=6); 
t.dt2000<-t(dt2000); 
data_2000<-c(51,6,sum(t.dt2000[,3]),5.8,1); 
names(data_2000)<- c('week','N','S','M','R.Z') 
 
d2000=diag(0,52,5)             
m=1:52                                
d2000[,1]=t(m) 
colnames(d2000)<- c('week','N','S','M','R.Z') 
for(i in 1:length(data_2000)) 
for(j in 1:dim(d2000)[1]) 
if (data_2000==d2000[j,1]) 
d2000[j,]=data_2000 
 
 
# Year 2001 
 
comb2001<-c(); 
co2001<-c();  # the vector that includes week, claim amount, magnitude, risk zone and  
number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2001")  # the year that is studied 
co2001<-(c(co2001,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2001),nrow=5); 
a<-t(k);           
data_2001<-c(); 
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week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);  # the vector that includes all week numbers 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));            #number of claims for each week 
data_2001<-c(week.nr,n.nr); 
data_2001<-matrix(c(as.matrix(data_2001)),ncol=2); 
 
m<-c(a[1,4]);        # the vector of magnitude 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
 } 
 
} 
 
if(m[1]==m[2]) 
m<-m[-1]; 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[4]=5.5 
m[12]=4.5 
dim(as.matrix(m)) 
 
r<-c(a[1,5]);         # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
r<-c(r,a[dim(a)[1],5]); 
dim(as.matrix(r)) 
r[14]=1 
 
x.nr<-c();            # aggregate claim amount of each week 
for(j in 1:dim(data_2001)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2001[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
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} 
 
data_2001<-c(data_2001,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2001<-matrix(c(data_2001),ncol=5); 
colnames(data_2001)<- c('week','N','S','M','R.Z') 
 
d2001=diag(0,52,5)                
m=1:52              
d2001[,1]=t(m) 
colnames(d2001)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2001)[1]) 
 for(j in 1:dim(d2001)[1]) 
if (data_2001[i,1]==d2001[j,1]) 
d2001[j,]=data_2001[i,] 
 
# Year 2002 
 
comb2002<-c(); 
co2002<-c();    # the vector that includes week, claim amount, magnitude, risk zone and  
number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2002")  #  the year that is studied 
co2002<-(c(co2002,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
} 
k<- matrix(c(co2002),nrow=5); 
a<-t(k);           
data_2002<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);      # the vector that includes all week numbers 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));                # number of claims for each week 
data_2002<-c(week.nr,n.nr); 
data_2002<-matrix(c(as.matrix(data_2002)),ncol=2); 
 
m<-c();                         # the vector of magnitude 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[1]=4.7 
m[3]=4.8 
m[8]=4.6 
dim(as.matrix(m)) 
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r<-c(a[1,5]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]);    # the vector of risk zones 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
dim(as.matrix(r)) 
r[1]=1 
r[12]=2 
r[13]=2 
r[14]=3 
r[15]=1 
 
x.nr<-c();    # aggregate claim amount of each week 
for(j in 1:dim(data_2002)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2002[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2002<-c(data_2002,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2002<-matrix(c(data_2002),ncol=5); 
colnames(data_2002)<- c('week','N','S','M','R.Z') 
 
d2002=diag(0,52,5)                
m=1:52              
d2002[,1]=t(m) 
colnames(d2002)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2002)[1]) 
 for(j in 1:dim(d2002)[1]) 
if (data_2002[i,1]==d2002[j,1]) 
d2002[j,]=data_2002[i,] 
 
# Year 2003 
 
comb2003<-c(); 
co2003<-c();   # the vector that includes week, claim amount, magnitude, risk zone and  
number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2003")  # the year that is studied 
co2003<-(c(co2003,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2003),nrow=5); 
a<-t(k);           
data_2003<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
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{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);                # the vector that includes all week numbers 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));                         # number of claims for each week 
data_2003<-c(week.nr,n.nr); 
data_2003<-matrix(c(as.matrix(data_2003)),ncol=2); 
m<-c(a[1,4]);     # the vector of magnitudes 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
if(m[1]==m[2]) 
m<-m[-1]; 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[7]=6.4 
dim(as.matrix(m)) 
 
r<-c(a[1,5]);   # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
 
r<-c(r,a[dim(a)[1],5]); 
dim(as.matrix(r)) 
 
x.nr<-c();                                  # aggregate claim amount for each week 
for(j in 1:dim(data_2003)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2003[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2003<-c(data_2003,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2003<-matrix(c(data_2003),ncol=5); 
colnames(data_2003)<- c('week','N','S','M','R.Z') 
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d2003=diag(0,52,5)                
m=1:52             
d2003[,1]=t(m) 
colnames(d2003)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2003)[1]) 
 for(j in 1:dim(d2003)[1]) 
if (data_2003[i,1]==d2003[j,1]) 
d2003[j,]=data_2003[i,] 
 
# Year 2004 
 
comb2004<-c(); 
co2004<-c();                  # the vector that includes week, claim amount, magnitude, risk zone    
and  number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2004")                          # the year that is studied 
co2004<-(c(co2004,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2004),nrow=5); 
a<-t(k);           
data_2004<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);#the vector that includes all week numbers 
n.nr<-c();  
n.nr<- as.vector(table(a[,1]));   # number of claims for each week 
data_2004<-c(week.nr,n.nr); 
data_2004<-matrix(c(as.matrix(data_2004)),ncol=2); 
m<-c(a[1,4]); 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
if(m[1]==m[2]) 
m<-m[-1]; 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
 
m<-c(m,a[dim(a)[1],4]); 
dim(as.matrix(m)) 
m[12]=5 
m[17]=4 
 
r<-c(a[1,5]);   # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
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} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
 
r<-c(r,a[dim(a)[1],5]); 
dim(as.matrix(r)) 
r[12]=2 
r[17]=2 
 
x.nr<-c();    # aggregate claim amount of each week 
for(j in 1:dim(data_2004)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2004[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2004<-c(data_2004,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2004<-matrix(c(data_2004),ncol=5); 
colnames(data_2004)<- c('week','N','S','M','R.Z') 
 
d2004=diag(0,53,5)                
m=1:53              
d2004[,1]=t(m) 
colnames(d2004)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2004)[1]) 
 for(j in 1:dim(d2004)[1]) 
if (data_2004[i,1]==d2004[j,1]) 
d2004[j,]=data_2004[i,] 
 
# Year 2005 
 
comb2005<-c(); 
co2005<-c();                       # the vector that includes week, claim amount, magnitude, risk 
zone and  number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2005")            # the year that is studied 
co2005<-(c(co2005,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2005),nrow=5); 
a<-t(k);           
data_2005<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
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if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);                    #  the vector that includes all week numbers 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));                             # number of claims for each week 
data_2005<-c(week.nr,n.nr); 
data_2005<-matrix(c(as.matrix(data_2005)),ncol=2); 
 
m<-c(a[1,4]);                                      # the vector of magnitudes 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
if(m[1]==m[2]) 
m<-m[-1]; 
for (i in 2:dim(as.matrix(m))-1) 
m[i]=m[i+1] 
m[1]=5.1 
m[2]=4.1 
m[3]=4.4 
m[11]=4.9 
m[17]=4.1 
m[18]=4.2 
m[20]=4.8 
dim(as.matrix(m)) 
 
r<-c(a[1,5]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
 
r<-c(r,a[dim(a)[1],5]); 
r[2]=2 
r[17]=1 
r[18]=1 
r[20]=1 
r[24]=2 
dim(as.matrix(r)) 
 
x.nr<-c();                              # aggregate claim amount of each week 
for(j in 1:dim(data_2005)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2005[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
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x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2005<-c(data_2005,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2005<-matrix(c(data_2005),ncol=5); 
colnames(data_2005)<- c('week','N','S','M','R.Z') 
 
d2005=diag(0,52,5)                
m=1:52              
d2005[,1]=t(m) 
colnames(d2005)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2005)[1]) 
 for(j in 1:dim(d2005)[1]) 
if (data_2005[i,1]==d2005[j,1]) 
d2005[j,]=data_2005[i,] 
d2005[52,1]=52 
d2005[52,2]=1 
d2005[52,3]=1875 
d2005[52,4]=4.2 
d2005[52,5]=2 
 
# Year 2006 
 
comb2006<-c(); 
co2006<-c();                                # the vector that includes week, claim amount, magnitude, 
risk zone and  number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2006")     # the year that is studied 
co2006<-(c(co2006,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2006),nrow=5); 
a<-t(k);           
data_2006<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);    # the vector that includes all week numbers 
 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));#number of claims for each week 
data_2006<-c(week.nr,n.nr); 
data_2006<-matrix(c(as.matrix(data_2006)),ncol=2); 
 
m<-c(a[1,4]);   # the vector of magnitudes 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
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} 
if(m[1]==m[2]) 
m<-m[-1]; 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[3]=4 
m[6]=3.8 
m[9]=4.3 
m[15]=3.9 
dim(as.matrix(m)) 
 
r<-c(a[1,5]);            # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
r<-c(r,a[dim(a)[1],5]); 
dim(as.matrix(r)) 
 
x.nr<-c(); 
for(j in 1:dim(data_2006)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2006[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2006<-c(data_2006,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2006<-matrix(c(data_2006),ncol=5); 
colnames(data_2006)<- c('week','N','S','M','R.Z') 
 
d2006=diag(0,52,5)                
m=1:52              
d2006[,1]=t(m) 
colnames(d2006)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2006)[1]) 
 for(j in 1:dim(d2006)[1]) 
if (data_2006[i,1]==d2006[j,1]) 
d2006[j,]=data_2006[i,] 
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# Year 2007 
 
comb2007<-c(); 
co2007<-c();                    # the vector that includes week, claim amount, magnitude, risk 
zone and  number of claim 
for(i in 1:dim(data)[1])  
{ 
if (as.matrix(data[i,4])=="2007")           # the year that is studied 
co2007<-(c(co2007,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2007),nrow=5); 
a<-t(k);           
data_2007<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);      # the vector that includes all week numbers 
n.nr<-c(); 
n.nr<- as.vector(table(a[,1]));                # number of claims for each week 
data_2007<-c(week.nr,n.nr); 
data_2007<-matrix(c(as.matrix(data_2007)),ncol=2); 
 
m<-c(a[1,4]);              # the vector of magnitudes 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
if(m[1]==m[2]) 
m<-m[-1]; 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[8]=3.9 
m[9]=4.1 
m[11]=3.9 
m[20]=4.3 
m[24]=4.2 
m[26]=4.9 
m[28]=5.5 
dim(as.matrix(m)) 
 
r<-c(a[1,5]);                     # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if(r[1]==r[2]) 
r<-r[-1]; 
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if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
r<-c(r,a[dim(a)[1],5]); 
r[26]=4 
r[28]=2 
dim(as.matrix(r)) 
 
x.nr<-c();                         # aggregate claim amount 
for(j in 1:dim(data_2007)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2007[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2007<-c(data_2007,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2007<-matrix(c(data_2007),ncol=5); 
colnames(data_2007)<- c('week','N','S','M','R.Z') 
 
d2007=diag(0,52,5)                
m=1:52              
d2007[,1]=t(m) 
colnames(d2007)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2007)[1]) 
 for(j in 1:dim(d2007)[1]) 
if (data_2007[i,1]==d2007[j,1]) 
d2007[j,]=data_2007[i,] 
 
# Year 2008 
 
comb2008<-c(); 
co2008<-c();                        # the vector that includes week, claim amount, magnitude, risk 
zone and  number of claim 
for(i in 1:dim(data)[1]) 
{ 
if (as.matrix(data[i,4])=="2008")        # the year that is studied 
co2008<-(c(co2008,c(data[i,5],data[i,12],data[i,9],data[i,10],data[i,11]))) 
}  
k<- matrix(c(co2008),nrow=5); 
a<-t(k);           
data_2008<-c(); 
week.nr<-c(a[1,1]); 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
week.nr<-c(week.nr,a[i,1]); 
} 
} 
if(week.nr[1]==week.nr[2]) 
week.nr<-week.nr[-1]; 
if( ((a[dim(a)[1],1]) !=(week.nr[length(as.matrix(week.nr))]))) 
week.nr<-c(week.nr,a[dim(a)[1],1]);         # the vector that includes all week numbers 
n.nr<-c(); 
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n.nr<- as.vector(table(a[,1]));                # number of claims for each week 
data_2008<-c(week.nr,n.nr); 
data_2008<-matrix(c(as.matrix(data_2008)),ncol=2); 
m<-c();                                                 # the vector of magnitudes 
for (i in 2:dim(a)[1]-1) 
{ 
 if (a[i,1]!= a[i+1,1]){ 
 m<-c(m,a[i,4]); 
} 
} 
if( ((a[dim(a)[1],4]) !=(m[length(as.matrix(m))]))) 
m<-c(m,a[dim(a)[1],4]); 
m[4]=3.7 
m[6]=4.8 
m[15]=4.2 
m[17]=4 
dim(as.matrix(m)) 
 
r<-c();               # the vector of risk zones 
for (i in 2:dim(a)[1]-1) 
{ 
if (a[i,1]!= a[i+1,1]){ 
r<-c(r,a[i,5]); 
} 
} 
if( ((a[dim(a)[1],5]) !=(r[length(as.matrix(r))]))) 
r<-c(r,a[dim(a)[1],5]); 
r[4]=1 
r[6]=1 
r[15]=1 
r[17]=1 
dim(as.matrix(r)) 
 
x.nr<-c();     # aggregate claim amount 
for(j in 1:dim(data_2008)[1]) 
{ 
sum=0; 
 
for(i in 1: dim(a)[1]) 
{ 
if (data_2008[j,1]==a[i,1]) 
sum=sum+a[i,3]; 
} 
x.nr<-c(x.nr,sum); 
} 
dim(as.matrix(x.nr)) 
 
data_2008<-c(data_2008,as.matrix(x.nr),as.matrix(m),as.matrix(r)) 
data_2008<-matrix(c(data_2008),ncol=5); 
colnames(data_2008)<- c('week','N','S','M','R.Z') 
  
d2008=diag(0,52,5)                
m=1:52              
d2008[,1]=t(m) 
colnames(d2008)<- c('week','N','S','M','R.Z') 
for(i in 1:dim(data_2008)[1]) 
 for(j in 1:dim(d2008)[1]) 
if (data_2008[i,1]==d2008[j,1]) 
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d2008[j,]=data_2008[i,] 
 
 
# Combination of all years as ‘all_data’ 
 
all_data<-data.frame(rbind(d2000,d2001,d2002,d2003,d2004,d2005,d2006,d2007,d2008)) 
all_data[,1]=1:469 
all_data=all_data[51:446]  
all_data[,1]=1:396  
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APPENDIX D 
 
 
 

R CODES OF THE NUMBER OF CLAIMS AND THE AGGREGATE CLAIM AMOUNT 
MODELING 

 
 
 

# The Number of Claims Modeling  
 
time<-c(1:396) 
beta<- 10.77   # derived β estimator by Maximum Likelihood Estimation 
 
# exponential kernel functions: 
 

kernel28<-(exp((-beta)*abs(time-28)))     
kernel44<-(exp((-beta)*abs(time-44))) 
kernel46<-(exp((-beta)*abs(time-46))) 
kernel59<-(exp((-beta)*abs(time-59))) 
kernel111<-(exp((-beta)*abs(time-111))) 
kernel121<-(exp((-beta)*abs(time-121))) 
kernel122<-(exp((-beta)*abs(time-122))) 
kernel124<-(exp((-beta)*abs(time-124))) 
kernel171<-(exp((-beta)*abs(time-171))) 
kernel172<-(exp((-beta)*abs(time-172))) 
kernel185<-(exp((-beta)*abs(time-185))) 
kernel191<-(exp((-beta)*abs(time-191))) 
kernel198<-(exp((-beta)*abs(time-198))) 
kernel210<-(exp((-beta)*abs(time-210))) 
kernel216<-(exp((-beta)*abs(time-216))) 
kernel221<-(exp((-beta)*abs(time-221))) 
kernel223<-(exp((-beta)*abs(time-223))) 
kernel224<-(exp((-beta)*abs(time-224))) 
kernel228<-(exp((-beta)*abs(time-228))) 
kernel234<-(exp((-beta)*abs(time-234))) 
kernel235<-(exp((-beta)*abs(time-235))) 
kernel254<-(exp((-beta)*abs(time-254))) 
kernel256<-(exp((-beta)*abs(time-256))) 
kernel270<-(exp((-beta)*abs(time-270))) 
kernel286<-(exp((-beta)*abs(time-286))) 
kernel287<-(exp((-beta)*abs(time-287))) 
kernel288<-(exp((-beta)*abs(time-288))) 
kernel307<-(exp((-beta)*abs(time-307))) 
kernel318<-(exp((-beta)*abs(time-318))) 
kernel321<-(exp((-beta)*abs(time-321))) 
kernel323<-(exp((-beta)*abs(time-323))) 
kernel334<-(exp((-beta)*abs(time-334))) 
kernel353<-(exp((-beta)*abs(time-353))) 
kernel360<-(exp((-beta)*abs(time-360))) 
kernel366<-(exp((-beta)*abs(time-366))) 
kernel368<-(exp((-beta)*abs(time-368))) 
kernel372<-(exp((-beta)*abs(time-372))) 
kernel378<-(exp((-beta)*abs(time-378))) 
kernel385<-(exp((-beta)*abs(time-385))) 
kernel387<-(exp((-beta)*abs(time-387))) 
kernel390<-(exp((-beta)*abs(time-390))) 
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modelN396<-glm (all_data[,2]~kernel28+ kernel44+ kernel46+ kernel59+ kernel111+ 
kernel121+ kernel122+ kernel124+ kernel171+ kernel172+ kernel185+ kernel191+ 
kernel198+ kernel210+ kernel216+ kernel221+ kernel223+ kernel224+ kernel228+ 
kernel234+  kernel235+ kernel254+ kernel256+ kernel270+ kernel286+ kernel287+ 
kernel288+ kernel307+ kernel318+ kernel321+ kernel323+ kernel334+ kernel353+ 
kernel360+ kernel366+ kernel368+ kernel372+ kernel378+ kernel385+ kernel387+ 
kernel390+ all_data[,4], family=poisson (link="log"),data=all_data) 
 
summary(modelN396)    

 
# Maximum Likelihood Estimation of the Number of Claims 
 
library("maxLik") 
loglikFun<-function(param) 
{ 
t<-c(1:396) 
s<-c (28, 44, 46, 59, 111, 121, 122, 124, 171, 172, 185, 191, 198, 210, 216, 221, 223, 224, 
228, 234, 235, 254, 256, 270, 286, 287, 288, 307, 318, 321, 323, 334, 353, 360, 366, 368, 
372,378,385,387,390)  # s is the emprically selected kernel knots vector (the week with claim 
number N>=30) 
 
alfa0=param[1] 
alfa=param[2:42] 
b=param[43] 
Lsum=0 
x<-all_data[,2]  # claim number column of the all_data 
 
for(i in 1:396){ 
 
top=alfa0+sum(alfa+exp(-b*abs(t[i]-s))) 
Lsum=Lsum+x[i]*top-exp(top) 
} 
Lsum 
} 
param=c(1,alfa,b) 
 
ml<-maxLik(loglikFun,start=param,method="nm") 

 
 

# The Aggregate Claim Amount Modeling  
 
time<-c(1:396) 
beta<-0.99      # derived β estimator by Maximum Likelihood Estimation 
 
# exponential kernel functions: 
  
kernel28<-(exp((-beta)*abs(time-28))) 
kernel44<-(exp((-beta)*abs(time-44))) 
kernel46<-(exp((-beta)*abs(time-46))) 
kernel59<-(exp((-beta)*abs(time-59))) 
kernel111<-(exp((-beta)*abs(time-111))) 
kernel121<-(exp((-beta)*abs(time-121))) 
kernel122<-(exp((-beta)*abs(time-122))) 
kernel124<-(exp((-beta)*abs(time-124))) 
kernel171<-(exp((-beta)*abs(time-171))) 
kernel172<-(exp((-beta)*abs(time-172))) 
kernel185<-(exp((-beta)*abs(time-185))) 
kernel191<-(exp((-beta)*abs(time-191))) 
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kernel198<-(exp((-beta)*abs(time-198))) 
kernel210<-(exp((-beta)*abs(time-210))) 
kernel216<-(exp((-beta)*abs(time-216))) 
kernel221<-(exp((-beta)*abs(time-221))) 
kernel223<-(exp((-beta)*abs(time-223))) 
kernel224<-(exp((-beta)*abs(time-224))) 
kernel228<-(exp((-beta)*abs(time-228))) 
kernel234<-(exp((-beta)*abs(time-234))) 
kernel235<-(exp((-beta)*abs(time-235))) 
kernel254<-(exp((-beta)*abs(time-254))) 
kernel256<-(exp((-beta)*abs(time-256))) 
kernel270<-(exp((-beta)*abs(time-270))) 
kernel286<-(exp((-beta)*abs(time-286))) 
kernel287<-(exp((-beta)*abs(time-287))) 
kernel288<-(exp((-beta)*abs(time-288))) 
kernel307<-(exp((-beta)*abs(time-307))) 
kernel318<-(exp((-beta)*abs(time-318))) 
kernel321<-(exp((-beta)*abs(time-321))) 
kernel323<-(exp((-beta)*abs(time-323))) 
kernel334<-(exp((-beta)*abs(time-334))) 
kernel353<-(exp((-beta)*abs(time-353))) 
kernel360<-(exp((-beta)*abs(time-360))) 
kernel366<-(exp((-beta)*abs(time-366))) 
kernel368<-(exp((-beta)*abs(time-368))) 
kernel372<-(exp((-beta)*abs(time-372))) 
kernel378<-(exp((-beta)*abs(time-378))) 
kernel385<-(exp((-beta)*abs(time-385))) 
kernel387<-(exp((-beta)*abs(time-387))) 
kernel390<-(exp((-beta)*abs(time-390))) 
 
 
all_data[all_data[,3]==0,3]=0.0001   # put 0.0001 instead of 0 values of aggregate claim 
amount to take logarithm  
all_data[,3]=log(all_data[,3]) 
x=all_data[,3]   # aggregate claim amount column of the all_data 
 
modelS<-glm (all_data[,3]~ kernel28+ kernel44+ kernel46+ kernel59+ kernel111+ 
kernel121+ kernel122+ kernel124+ kernel171+ kernel172+ kernel185+ kernel191+ 
kernel198+kernel210+kernel216+ kernel221+ kernel223+ kernel224+ kernel228+ 
kernel234+ kernel235+ kernel254+ kernel256+ kernel270+ kernel286+ kernel287+ 
kernel288+ kernel307+ kernel318+ kernel321+ kernel323+ kernel334+ 
kernel353+kernel360+ kernel366+kernel368+ kernel372+kernel378+ kernel385+kernel387+ 
kernel390 + all_data[,4],family=gaussian(link = "identity"),data=all_data) 
 
summary(modelS) 
 

 
# Maximum Likelihood Estimation of the Aggregate Claim Amount 
 
library("maxLik") 
loglike<-function(param) 
{ 
t<-c(1:396) 
s<-c (28, 44, 46, 59, 111, 121, 122, 124, 171, 172, 185, 191, 198, 210, 216, 221, 223, 224, 
228, 234, 235, 254, 256, 270, 286, 287, 288, 307, 318, 321, 323, 334, 353, 360, 366, 368, 
372,378,385,387,390) # s is the emprically selected kernel knots vector (the week with claim 
number N>=30) 
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alfa0=param[1]    
alf=param[2:42] 
b=param[43] 
top=0 
x<-all_data[,3] 
 
for(i in 1:396){ 
 
top1=(x[i])^2/(2*sigma^2) 
top2=x[i]*(alfa0+sum(alf*exp(-b*abs(t[i]-s))))/sigma^2 
top3=(alfa0+sum(alf*exp(-b*abs(t[i]-s))))^2/(2*sigma^2) 
top=top-top1+top2-top3 
} 
top 
} 
param=c(1,alf,b) 
 
mls<-maxLik(loglike,start=param,method="nm") 
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APPENDIX E 
 
 
 

R CODES OF THE HESSIAN MATRICES FOR THE NUMBER OF CLAIMS AND THE LOG 
OF THE AGGREGATE CLAIM AMOUNT 

 
 
 

# Derivatives of log-likelihood of the number of claims  

modelN=summary(modelN)    # glm model result 
alfa<-modelN$coeff[2:42,1]     # alfa (j) coefficients 
t<-c(1:396)               # t is number of weeks 
s<-
(28,44,46,59,111,121,122,124,171,172,185,191,198,210,216,221,223,224,228,234,235,254,
256,270,286,287,288,307,318,321,323,334,353,360,366,368,372,378,385,387,390)  
# s is the emprically selected kernel knots vector (the week with claim number N>=30) 
b=beta                      # selected beta parameter 
alfa0=1                     # α0 parameter 
x<-all_data[,2]          # claim number column of the data 
 
#  2nd derivative of alfa(zero)   # 
 
c=0 
for (i in 1:396) 
{ 
  sumk=sum(alfa*(exp(-b*abs(t[i]-s)))) 
  c = c - exp(alfa0+sumk) 
} 
 
# derivative of alfa(zero) and alfa[j]  # 
 
d=0 
for(i in 1:396) 
{ 
  sumk1=sum(alfa*(exp(-b*abs(t[i]-s)))) 
  sumk2=sum(exp(-b*abs(t[i]-s))) 
  d = d - exp(alfa0+sumk1)*sumk2 
} 
 
# derivative of beta and alfa(zero)  # 
 
e=0 
for(i in 1:396) 
{ 
  sumk1=sum(alfa*(exp(-b*abs(t[i]-s)))) 
  sumk2=sum(alfa*exp(-b*abs(t[i]-s))*abs(-t[i]+s)) 
  e = e - sumk1*sumk2 
} 
 
# derivative of beta and alfa[j]  # 
 
f=0 
for(i in 1:396) 
{ 
  sumk1=-x[i]*sum(exp(-b*abs(t[i]-s))*abs(-t[i]+s)) 
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sumk2=-exp(alfa0+sum(alfa*(exp(-b*abs(t[i]-s)))))*sum(exp(-b*abs(t[i]-s)))*sum(alfa*exp(-  
b*abs(t[i]-s))*abs(-t[i]+s)) 
  sumk3=-sum(alfa*exp(-b*abs(t[i]-s))*abs(-t[i]+s)*exp(alfa0+sum(alfa*exp(-b*abs(t[i]-s))))) 
  f=f+sumk1+sumk2+sumk3 
  } 
 
# 2nd derivative of beta # 
 
g=0 
for(i in 1:396) 
{ 
   sumk1=-x[i]*sum(alfa*exp(-b*abs(t[i]-s))*(abs(-t[i]+s))^2) 
   sumk2=-exp(alfa0+sum(alfa*(exp(-b*abs(t[i]-s)))))*(sum(alfa*exp(-b*abs(t[i]-s))*abs(-
t[i]+s)))^2    
   sumk3=-exp(alfa0+sum(alfa*(exp(-b*abs(t[i]-s)))))*(sum(alfa*exp(-b*abs(t[i]-s))*(abs(-
t[i]+s))^2)) 
   g=g+sumk1+sumk2+sumk3 
} 
 
# 2nd derivative of alfa[j] # 
 
h=0 
for(i in 1:396){ 
sumk=-exp(alfa0+sum(alfa*(exp(-b*abs(t[i]-s)))))*(sum(exp(-b*abs(t[i]-s))))^2 
h=h+sumk 
} 
 
#  derivative of alfa[j]and alfa[j']   # 
 
m=0 
for(i in 1:396){ 
  for(j in 1:41){   
   for(n in 1:41){ 
    if (j!=n){ 
    sumk1=alfa0+sum(alfa*(exp(-b*abs(t[i]-s[j])))) 
    sumk2=exp(-b*abs(t[i]-s[j])) 
    sumk3=exp(-b*abs(t[i]-s[n])) 
    m=m-exp(sumk1)*sumk2*sumk3 
} 
} 
} 
} 
 
# Hessian matrix (43X 43) 
 
hesN=matrix(1,nrow=43,ncol=43) 
myhesN=hesN*m 
diag(myhesN)=h 
myhesN[1,1]=c 
myhesN[1,2:42]=d 
myhesN[2:42,1]=d 
myhesN[1,43]=e 
myhesN[43,1]=e 
myhesN[43,2:42]=f 
myhesN[2:42,43]=f 
myhesN[43,43]=g 
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# Confidence Interval 
 
varcovn=solve(-myhesN) 
lowerlimn<- b-(1.96)* sqrt(varcovn[43,43]) # varcovs[43,43] variance of β parameter 
upperlimn<- b+(1.96)*sqrt(varcovn[43,43]) 
 
# Derivatives of the log-likelihood of log of the aggregate claim amount  
 
t<-c(1:396)      # t is number of weeks 
s<-
c(28,44,46,59,111,121,122,124,171,172,185,191,198,210,216,221,223,224,228,234,235,25
4,256,270,286,287,288,307,318,321,323,334,353,360,366,368,372,378,385,387,390)  
# s is the emprically selected kernel knots vector (the week with claim number N>=30) 
b=beta           # selected beta parameter 
alfa0=1          # α0 parameter 
models=summary(modelS) 
alf<-models$coefficients[2:42,1]      # alfa (j) coefficients 
sigma<-sqrt(var(x)) 
 
# 2nd derivative of beta # 
 
y=0 
for (i in 1:396){                                 # i is number of week 
for (j in 1:41) {                                 # j is the number of kernel knots 
denom=sigma^2*exp(b*t[i]) 
denom2=(sigma^2)*(exp(b*t[i]))^2 
sum1=x[i]*t[i]^2*sum(alf*exp(b*s[j]))/denom 
sum2=-(x[i]*t[i]*sum(alf*s*exp(b*s[j])))/(denom) 
sum3=(x[i]*sum(alf*s[j]^2*exp(b*s[j])))/(2*denom) 
sum4=-(alfa0*t[i]^2*sum(alf*exp(b*s[j])))/(2*denom) 
sum5=(alfa0*t[i]*(sum(alf*s*exp(b*s[j]))))/denom 
sum6=-(alfa0*sum(alf*s[j]^2*exp(b*s[j])))/denom 
sum7=-(t[i]^2*(sum(alf*exp(b*s[j])))^2)/denom2 
sum8=(2*t[i]*sum(alf*exp(b*s[j]))*sum(alf*s[j]*exp(b*s[j])))/denom2 
sum9=-((sum(alf*s[j]*exp(b*s[j])))^2)/(2*denom2) 
sum10=-(sum(alf*exp(b*s[j]))*sum(alf*s[j]^2*exp(b*s[j])))/(2*denom2) 
y=y+sum1+sum2+sum3+sum4+sum5+sum6+sum7+sum8+sum9+sum10 
} 
} 
 
# derivative of beta and alfa[j] # 
 
p=0 
for (i in 1:396){ 
for (j in 1:41) { 
sum1=(x[i]*t[i]*sum (exp(b*s[j])))/denom 
sum2=(x[i]*sum(s[j]*exp(b*s[j])))/denom 
sum3=(alfa0*t[i]*sum(exp(b*s[j])))/(2*denom) 
sum4=(alfa0*sum(s[j]*exp(b*s[j])))/(2*denom) 
sum5=(2*t[i]*(sum(alf*exp(b*s[j])))*(sum(exp(b*s[j]))))/(2*denom2) 
sum6=((sum(exp(b*s[j])))*(sum(alf*s[j]*exp(b*s[j]))))/(2*denom2) 
sum7=((sum(alf*exp(b*s[j])))*(sum(s[j]*exp(b*s[j]))))/(2*denom2) 
p=p-sum1+sum2-sum3+sum4-sum5+sum6+sum7 
}} 
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# derivative of beta and alfa0 # 
 
r=0 
for(i in 1:396){ 
  for (j in 1:41) { 
 sum1=-(sum(s[j]*alf*exp(b*s[j]))/(2*sigma^2*exp(b*t[i]))) 
sum2=t[i]*sum(exp(b*s[j]))/(2*sigma^2*exp(b*t[i])) 
r=r+sum1+sum2 
}} 
# 2nd derivative of alfa[j] # 
z=0 
for(i in 1:396){ 
for (j in 1:41) { 
  sum1=(sum(exp(b*s[j])))^2 
  sum2=sigma^2*(exp(b*t[i]))^2 
  z=z-(sum1/sum2) 
}} 
 
#  derivative of alfa[j] and alfa0 # 
 
v=0 
for(i in 1:396){ 
for (j in 1:41) { 
   sum1=sum(exp(b*s[j])) 
   sum2=sigma^2*(exp(b*t[i])) 
v=v-(sum1/sum2) 
} 
} 
 
# derivative of alfa0 and alfa0 # 
 
n=396 
w=-n/sigma^2 
 
# derivative of alfa[j]and alfa[j'] # 
 
k=0 
for(i in 1:396){ 
  for (j in 1:41) { 
  for (n in 1:41) { 
    if (j!=n){ 
        sum1=exp(-b*abs(t[i]-s[j])) 
        sum2=exp(-b*abs(t[i]-s[n])) 
        k=k+sum(sum1*sum2) 
}}}} 
k=-k/(sigma^2) 
 
 # Hessian Matrix (43X43) 
 
hes=matrix(1,nrow=43,ncol=43) 
hes=hes*k 
diag(hes)=z 
hes[1,1]=w 
hes[1,2:42]=v 
hes[2:42,1]=v 
hes[43,1]=r 
hes[1,43]=r 
hes[43,2:42]=p 
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hes[2:42,43]=p 
hes[43,43]=y 
 
# Confidence Interval 
 
varcovs=solve(-hes) 
 
lowerlims<-b-(1.96)*sqrt (varcovs[43,43])   # varcovs[43,43] variance of β parameter 
upperlims<-b+(1.96)*sqrt(varcovs[43,43]) 

 
 
 
 
 


