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ABSTRACT

TRACKING OF MULTIPLE GROUND TARGETS IN CLUTTER WITH INTERACTING
MULTIPLE MODEL ESTIMATOR

Korkmaz, Yusuf

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Buyurman Baykal

February 2013, 63 pages

In this thesis study, single target tracking algorithms including IMM-PDA and IMM-IPDA algorithms;
Optimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA al-
gorithms and an example of Linear Multi-target approaches in multitarget tracking including IMM-
LMIPDA algorithm have been studied and implemented in MATLAB for comparison. Simulations
were carried out in various realistic test scenarios including single target tracking, tracking of multiple
targets moving in convoy fashion, two targets merging in a junction, two targets merging-departing in
junctions and multitarget tracking under isolated tracks situations. RMSE performance, track loss and
computational load evaluations were done for these algorithms under the test scenarios dealing with
these situations. Benchmarkings are presented relying on these outcomes.

Keywords: Target Tracking, Multitarget, Interacting Multiple Model, Data Association, Linear Multi-
Target
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ÖZ

ÇOKLU YER HEDEFLERİNİN YANKILI ORTAMDA ETKİLEŞİMLİ ÇOKLU MODEL
KESTİRİCİSİYLE TAKİBİ

Korkmaz, Yusuf

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Buyurman Baykal

Şubat 2013 , 63 sayfa

Bu tez çalışmasında, EÇM-OVİ (IMM-PDA) ve EÇM-EOVİ (IMM-IPDA) algoritmalarını içeren tek
hedef takibi algoritmaları; EÇM-BOVİ (IMM-JPDA), EÇM-EBOVİ (IMM-IJPDA) ve EÇM-BEOVİ
(IMM-JIPDA) algoritmalarını içeren çoklu hedef takibinde Optimal yöntemler ve EÇM-DÇEOVİ
(IMM-LMIPDA) algoritmasını içeren çoklu hedef takibinde Doğrusal Çoklu-Hedef yöntemlerinden
bir örnek çalışılmakta ve MATLAB’ta karşılaştırma için gerçeklenmektedir. Tek hedef takibi, çoklu
hedeflerin konvoy hareketi halindeki takibi, iki hedefin bir kavşakta karşılaşması, iki hedefin kavşak-
larda karşılaşması-ayrılması ve izole izler altında çoklu hedef takibi durumlarını içeren çeşitli gerçekçi
test senaryolarında simülasyonlar yürütülmüştür. KOKH (RMSE) performans, iz kaybı ve hesaplama
yükü değerlendirmeleri yapılmıştır. Bu sonuçlara dayanılarak karşılaştırmalar sunulmaktadır.

Anahtar Kelimeler: Hedef Takibi , Çoklu Hedef, Etkileşimli Çoklu Model, Veri İlişkilendirme, Doğrusal

Çoklu-Hedef
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CHAPTER 1

INTRODUCTION

Since the Gulf War in 1991, Ground Moving Target Indicator (GMTI) radar has become an extremely
useful sensor for military surveillance[20, 15] as well as civillian applications[4]. Tracking of multiple
ground targets with airborne GMTI sensor measurements often suffers from high clutter density and
low visibility of targets under track. Tracking of multiple ground targets is more challenging problem
than tracking of underwater or aerial targets where heavy and dense false alarms and high target den-
sity problems are ineviatbly encountered in the surveillance scenes. Target originated measurements
may be present in each scan with a certain probability of detection. Major difficulties of tracking
of ground target(s) results from the target motion origin uncertainty[1] and the measurement origin
uncertainty[1].
The target motion origin uncertainty appears in the situations where target(s) may undergo a known or
unknown maneuver during an unknown time period[1]. In a fact, a nonmaneuver and different maneu-
vers can be described only with different dynamic motion models[3]. The use of an incorrect model at
a specific time interval often causes unacceptable errors. When tracking maneuvering targets, it is very
important to make a decision accurately on time the right model to use. So, instead of using a single
model based filter, a bank of filters based on a set of multiple models should be considered which
represent possible maneuvers under consideration[1]. Recommended approach[1] in target tracking
under target motion origin uncertainty existence is to use Interacting Multiple Model (IMM) Estima-
tor. The IMM is a recursive cost-effective and practical filter that shows elegant performance when
targets being tracked undergo frequent maneuvers during unknown time periods[1].
The measurement origin uncertainty appears due to unreliable measurement(s) obtained by the sensor
system. Unreliable measurements may have arosen from an irrelevant source, including clutter, false
alarms, and neighboring targets, as well as the target under track. Target tracking under this kind of
situation takes all measurements into account for track update in each scan. Validation of measure-
ments is crucial in this situation in order to reduce further computation. A track quality measure should
be employed to discriminate the target track(s) has been followed whether either of them true or false
track(s). Under measurement origin uncertainty existence, to select the right measurement(s) to initiate
true track(s) recommended approach in the literature[1] is to use Data Association.
An outstanding property of almost all target tracking algorithms is in the way of the data association
probabilities are computed. Single Target Tracking algorithms assume that validated measurements
are either target originated or formed by an interfering source, often termed clutter. In Multitarget
tracking situation, in addition to Single target tracking situation false alarm measurements may have
also originated from neighboring targets. In this situation, assignment of target measurements to right
target tracks has a great importance. So, formation of all feasible measurement-to-track joint events
and assignment of right joint event via calculation of a posteriori probabilities of each feasible joint
event in each scan are required. Hence, optimal approaches in Multitarget tracking require too much
computational load as the numbers of target track(s) and measurements grow linearly while the du-
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ration of overall process rises exponentially. Consequently, using optimal approaches instead, more
practical suboptimal approaches, as an example Linear Multi-Target approach is considered due to
linear number of operations in the number of target tracks and measurements sense with a negligible
performance loss compared to optimal approaches.
The most practical method for Multitarget tracking is basically to run a bank of Single Target Tracking
algorithms, based on different dynamic motion models per track, where in the case of Linear Multi-
Target approaches, i.e. IMM-LMIPDA. This method has rarely been proven satisfactory in practice[19]
because almost all subpotimal algorithms in the literature[19, 27, 1] suffer from deficiencies in perfor-
mance. Particularly, these algorithms have been shown in [43] to be more susceptible to “track loss"
where heavy and dense false alarms are often encountered and targets are closely spaced[19] and the
numbers of targets and measurements are considerably high[43].
In this study, simulations are carried out in various realistic test scenarios, where actual ground tar-
get(s)’s movement taken into consideration, dealing with single target tracking, tracking of multiple
targets moving in convoy fashion, two targets merging in a junction, two targets merging-departing
in junctions and multitarget tracking under isolated tracks situations in order to compare single target
tracking algorithms including IMM-PDA and IMM-IPDA algorithms; Optimal approaches in multitar-
get tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA algorithms and an example of Lin-
ear Multi-target approaches in multitarget tracking including IMM-LMIPDA algorithm. Comparison
of these target tracking algorithms are done under RMSE performance, track loss and computational
load perspective relying on evaluation results over related test scenarios.
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The outline of the thesis is organized as follows:

In Chapter 2, target motion origin uncertainty problem is defined and the development of approaches
for kinematic state estimation is step-by-step presented. Fundamental parts of the approaches are
explained and kinematic state estimation mechanism via these approaches are demonstrated. IMM
approach is mentioned in detail. Next, measurement origin uncertainty problem is defined and the
development of approaches for data association is presented. General methodology for tracking in
measurement origin uncertainty is briefly demonstrated. Approaches proposed to be used under this
methodology and considered to be used in the study for tracking in the case of measurement origin
uncertainty problem are presented. Fundamental parts of the approaches are explained in detail. As
the following, tracking of single ground target in clutter problem is defined as the combination of the
problems defined in previous chapters and the major solution to single target tracking in clutter prob-
lem is presented as the fusion of methodology and approaches given in previous chapters, respectively.
IMM-PDA process is given as an example of solutions adressing to single target tracking in clutter
problem. At the end of this chapter, problems encountered in tracking of multiple ground targets in
clutter have been investigated. Detailed literature survey and the development of approaches for mul-
titarget data association algorithms is step-by-step mentioned.
In Chapter 3, all target tracking algorithms used in comparison throughout the simulations are given in
detail, which are: Single target tracking algorithms including IMM-PDA and IMM-IPDA algorithms;
Optimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA al-
gorithms and an example of Linear Multi-target approaches in multitarget tracking including IMM-
LMIPDA algorithm.
In Chapter 4, simulation studies are presented to demonstrate RMSE performance comparisons and
computational load evaluations of the target tracking algorithms mentioned in the previous chapter.
Simulations have been carried out under the problem of tracking of single/multiple ground target(s)
in a dense clutter environment in various realistic test scenarios including tracking of single maneu-
vering target in clutter, tracking of multiple targets moving in convoy fashion, two targets merging in
a junction, two targets merging-departing in junctions and multitarget tracking under isolated tracks
situations. At the end of this chapter, relying on the RMSE performance, track loss and computational
load evaluation results, benchmarkings of these algorithms under the test scenarios dealing with these
situations have been presented.
In Chapter 5, all the results obtained throughout this study are concluded with remarks.
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CHAPTER 2

BACKGROUND

2.1 Target Motion Origin Uncertainty and Kinematic State Estimation

Target tracking is defined in [2, 4] as a hybrid estimation problem which involves both continuous
and discrete uncertainties. Challenging problem in tracking of maneuvering target(s) results from the
target motion origin uncertainty[4]. The target motion origin uncertainty [1] appears in the situations
where target(s) may undergo a known or unknown maneuver during an unknown time period. In a
fact, a nonmaneuver motion and different maneuvers can only be described with different dynamic
motion models[3]. In target tracking, for Kinematic State (e.g. position, velocity, acceleration) Es-
timation of target(s) under track, the mathematical modeling of all possible target motion dynamics
/ kinematics is essential[1, 3]. The use of incorrect models or insufficient number of models often
causes undesired consequences[1]. Generally, a continous-valued process noise is considered to cover
the unknown modeling errors or deviations of the mathematical model from the exact behavior of the
system. However, while tracking a maneuvering target, deciding accurately on time the right model to
use constitutes vital importance. In order to handle this situation, all the models according to possi-
ble target motion dynamics should be formed and considered, the right model which fits to true target
kinematics at that time should be selected. Hence, the major approach naturally is to consider a method
where more than one model - multiple models are taken into account.
Major approach in target tracking under target motion origin uncerainty existence is to use Multiple
Model (MM) method which is one of the most consented approaches to solve hybrid estimation[2, 4]
problem. MM method recommends using a bank of filters based on a set of multiple models that repre-
sent/cover possible system behavior patterns (e.g. maneuvers) for the problem under consideration[1].
These system behavior patterns are discrete in nature and refered to as system modes. The system
mode at specific instant has stair-case type trajectory which may stay unchanged or jump. For such a
system the transition between system modes, shortly modal state is generally modelled with Markov
Chain due to its nature and consistency in theory[4].
The early results of Static (“Non-interacting") Multiple Model (SMM) estimation were valid for tar-
gets with a time-invariant unknown or uncertain system mode while they are ineffective in frequent
system mode transitions[5]. By the development of the highly cost-effective Interacting Multiple
Model (IMM) estimator[9], the MM approach has become not only capable of handling frequent mode
transitions (e.g. maneuvers) but also practical for maneuvering target tracking applications where in
[1, 4, 5, 7, 10, 12] has been proven.
For target(s) under track, many different maneuver models are possible where all of them may not be
represented sufficiently by a small set of models. To accomplish better performance, use of large filter
banks based on different motion models may be necessary. Use of more model based filters in IMM
estimator has been shown in [3, 13] that does not guarentee enhancement in performance. Because,
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use of more models increases the computational complexity very considerably. In fact, increment in
the number of model based filters in the IMM Estimator deteriorates estimator’s performance signifi-
ciantly due to the fact that model likelihood difference between the models decreases[3]. Thus, using
less and sufficient number of models in the IMM Estimator has been shown theoretically in [13, 14]
yields better performance with less computation complexity which has also been discussed in [3, 1].
In our all tracking in clutter simulations, we attach more attention on this result, hence, instead of using
more models in the IMM Estimator, for sake of better performance with less computation complexity,
we consider to use 2 models which is sufficient and also recommended to use at [3]: CV with Low Pro-
cess Noise for nonmaneuvering motion and CV with High Process Noise for any maneuvers including
coordinated turns and acceleration modes.

2.1.1 Multiple Model (MM) Estimation

The basic idea of the Multiple Model Estimation approach is to assume a set of models which can
be denoted as M for the hybrid system; form a bank of filters based on each unique model in M
correspondingly; make them run cooperatively; combine the estimates from these filters and form the
overall estimation with a certain combination of the estimates.
For a Markovian jump linear system[4],

xk+1 = F(i)
k xk +G(i)

k w(i)
k (2.1)

zk = H(i)
k xk + v(i)

k (2.2)

respectively, where superscript (i) denotes the quantities belong to model mi and the jumps of the
system mode are assumed to have the following transition probabilities

P{m( j)
k+1|m

(i)
k } , P{sk+1 = m j|sk = mi} = πi j = constant, ∀mi,m j, k (2.3)

where m(i)
k denotes the event model mi matches the system mode at time k:

m(i)
k , {sk = mi} (2.4)

Frequently used terms mode and model may sometimes be confused even in the literature. In order
to make it clear, mode is refered to exact behavior pattern of a system and model is refered to a
mathematical representation or description of the system behavior at a certain accuracy level.
Briefly, the recursive MM estimator[1, 4] involves the following:

2.1.1.1 Model-set determination

The performance of an MM estimator mostly depends on the set of models used. The major task in
the application of MM estimation lies in the design of the set M of multiple models [3]. Once the set
M is determined, the MM estimator implicitly assumes that each system modes in the set S can be
represented/covered “exactly" by the members of M [4].

2.1.1.2 Filter selection

For sake of attaining the optimal solution to problem at hand, filter type may be choosen as Kalman
Filter (KF) for a jump-linear system; Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF)
or Particle Filter (PF) for nonlinear problems[15].
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2.1.1.3 Filter reinitialization

Except in the first generation (static) MM estimators[4], the recursive filters do not operate indepen-
dently. The input for a recursive cycle of such a filter depends on the other filters as well as the output
of the same filter from the previous cycle. This is referred to as reinitialization. It is a natural and
important way of “interaction" – using the information obtained by other filters.

2.1.1.4 Estimate Fusion

The overall estimate is obtained from all filter-obtained estimates x̂(i)
k|k; that is, no hard decision is

made concerning the use of the filter estimates. If the conditional mean of the base state is used as
the estimate, such as under the Minimum Mean Square Error (MMSE) criterion [4], then the overall
estimate is the probabilistically weighted sum of all filter estimates:

x̂k|k = E[xk |zk] =
∑

i

x̂(i)
k|kP{m(i)

k |z
k} (2.5)

and the overall covariance is determined accordingly.
The operation of most (single-scan) recursive MM estimators of M models is illusrated in Figure 2.1,
where x̂(i)

k|k is the estimate of xk obtained from the filter based on model i at time k given the measure-

ment sequence through time k; X̄(i)
k−1 is the reinitialized estimate at time k − 1 as the input to filter i for

kth time cycle; x̂k|k is the overall estimate.
In the first generation (Static) MM algorithm[4], individual model based recursive filters operate inde-
pendently without any interaction with one another because it is assumed that the mode does not jump,
formally time-invariant.
To achieve target tracking under frequent mode jumps reliably on time Interacting Multiple Model
(IMM) algorithm has been developed[9, 4].

Figure 2.1: Structure of a Recursive MM Estimator (Figure is adapted from [4])
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2.1.2 Interacting Multiple Model (IMM) Estimator

To decrease the complexity, many MM estimators utilize the mode-history-specific information about
the state which is refered to as filter reinitialization.
In the Static Multiple Model (SMM) algorithm[4], the system mode is assumed time-invariant, there-
fore, there is no filter reinitialization. The Interacting Multiple Model (IMM) estimator uses the fol-
lowing smart reinitialization:

X̄(i)
k−1 = E[xk−1|zk−1,m(i)

k ] =
∑

j

x̂( j)
k−1|k−1P{m j

k−1|z
k−1,m(i)

k } , x̄(i)
k−1|k−1 (2.6)

and the covariance is determined accordingly (as illustrated in Figure 2.2).
Each filter i at scan k has its own input x̄(i)

k−1|k−1 and P̄(i)
k−1|k−1, which form the best possible quasi-

sufficient statistic[1] of all old information and the knowledge or assumption that model mi matches
the true mode at k. This has been shown in Figure 2.2, where the reinitialized estimate as input to
each model based recursive filter is a weighted sum of the most recent estimates from all model based
recursive filters. The IMM Estimator also runs each model based recursive filter only once per cycle
(as in Table 2.1).
The structure of the IMM Estimator is illustrated in Figure 2.2 for three models case. A complete
cycle of the IMM Estimator with Kalman Filters as its model based recursive filters is summarized on
Table 2.1 for the Markovian jump linear system described by (2.1) and (2.2), with MMSE optimality
criteria [4] and the priori fundamental assumption that w(i)

k and v(i)
k are White Gaussian process and

measurement noises, with means w̄(i)
k , E[w(i)

k ], v̄(i)
k , E[v(i)

k ] and covariances Q(i)
k , COV[w(i)

k ],
R(i)

k , COV[v(i)
k ], respectively.

Figure 2.2: Structure of the IMM Estimator (with three models) (Figure is adapted from [4])
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Table2.1: One Cycle of IMM Algorithm [4]

1. Model-conditioned reinitialization (for i = 1, 2, ..., M):

Predicted model probability: µ(i)
k|k−1 , P{m(i)

k |zk−1} = ∑ j π jiµ
( j)
k−1

Mixing weight: µ j|i
k−1 , P{m( j)

k−1|m
(i)
k , z

k−1} = π jiµ
( j)
k−1/µ

(i)
k|k−1

Mixing estimate: x̄(i)
k−1|k−1 , E[xk−1|m(i)

k , z
k−1] =

∑
j x̂( j)

k−1|k−1µ
j|i
k−1

Mixing covariance: P̄(i)
k−1|k−1 =

∑
j[P

( j)
k−1|k−1 + (x̄(i)

k−1|k−1 − x̂( j)
k−1|k−1)(x̄(i)

k−1|k−1 − x̂( j)
k−1|k−1)′]µ j|i

k−1

2. Model-conditioned filtering (for i = 1, 2, ..., M):

Predicted state: x̂(i)
k|k−1 = F(i)

k−1 x̄(i)
k−1|k−1 +G(i)

k−1w̄(i)
k−1

Predicted covariance: P(i)
k|k−1 = F(i)

k−1P̄(i)
k−1|k−1(F(i)

k−1)′ +G(i)
k−1Q(i)

k−1(G(i)
k−1)′

Measurement residual: z̃(i)
k , zk − H(i)

k x̂(i)
k|k−1 − v̄(i)

k

Residual covariance: S (i)
k = H(i)

k P(i)
k|k−1(H(i)

k )′ + R(i)
k

Filter gain: K(i)
k = P(i)

k|k−1(H(i)
k )′(S (i)

k )−1

Updated state: x̂(i)
k|k = x̂(i)

k|k−1 + K(i)
k z̃(i)

k

Updated covariance: P(i)
k|k = P(i)

k|k−1 − K(i)
k S (i)

k (K(i)
k )′

3. Model probability update (for i = 1, 2, ..., M):

Model likelihood: L(i)
k , p[z̃(i)

k |m
(i)
k , z

k−1] = exp[−(1/2)(z̃(i)
k )′(S (i)

k )−1 z̃(i)
k ]

|2πS (i)
k |1/2

Model probability: µ(i)
k , P{m(i)

k |zk} = µ(i)
k|k−1L(i)

k∑
j µ

( j)
k|k−1L( j)

k

4. Estimate fusion:

Overall estimate: x̂k|k , E[xk |zk] =
∑

i x̂(i)
k|kµ

(i)
k

Overall covariance: Pk|k =
∑

i[P
(i)
k|k + (x̂k|k − x̂(i)

k|k)(x̂k|k − x̂(i)
k|k)′]µ(i)

k
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2.2 Measurement Origin Uncertainty and Data Association

The measurement origin uncertainty arises from unreliable measurement(s) obtained by the sensor
system. Unreliable measurement(s) may have arosen from an interfering source, including clutter,
false alarms, and neighboring targets, as well as the target under track. This situation constitutes the
“greatest" challenge for ground target tracking applications. Tracking targets in a measurement origin
uncertainty with frequently high density makes the problem much more difficult to solve.
Data Association algorithms[10, 7, 16, 1, 17, 18, 19] are required in situations where target tracking is
being attempted with unreliable measurements where measurements of uncertain origin situation (as il-
lustrated in Figure 2.3) appears. Moreover, the target measurements are unreliable and are only present
at each scan time with a certain “Probability of Detection (PD)". Reliable initiation, confirmation and
deletion of tracks under such conditions will be greatly assisted if data association probabilities is
computed.

Figure 2.3: Measurements of uncertain origin

2.2.1 Track Management

A fundamental objective of any tracking system is to have one track number associated with each tar-
get under track. To achieve this goal, a tracking system must employ a track management process to
perform a number of tasks related to managing the track database. The track management process and
associated functionality can be viewed in numerous ways[1]. For the purposes of this discussion, track
management is separated into two basic functions.
The first is concerned with the initiation of tracks (i.e. Forming the initial track state and associated
covariance matrix). This process also determines the maturity of a track for reporting it to the other
elements of the tracking system.
The second track management process relates to track number management and deals with the as-
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signment and maintenance of track numbers as track enter and evolve in the database. This process
involves a number of subtasks that must be performed to accommodate a wide variety of situations.
These processes tend to be a rule based such as a track score function[21, 10] rather than algorithmic
in nature. The first subtask is to assign new track numbers to tracks that have just been introduced
to the system; it then follows sometimes naturally that the last subtask must be to delete the number
upon loss of a track. Between initiation and deletion of track numbers, there are a multitude of number
management activities that must be addressed. These include choosing one track number to use when
two or more tracks are determined to represent the same target, detecting and resolving track number
conflicts in the system; and regulating the recycling of previously used track numbers till confirmation
as track(s).

2.2.1.1 Track Score Function

Following the approach first developed by Sittler[21], a likelihood ratio is defined for a given combi-
nation of data (including a-priori probability data) into a track to be

LR =
p(D|H1)P0(H1)
p(D|H0)P0(H0)

, PT

PF
(2.7)

Hypotheses H1 and H0 are the true and false alarm hypotheses with probabilities PT and PF , respec-
tively and D is the data, so that p(D|Hi) is the probability density function (pdf) evaluated with the
received data under the assumption that Hi is correct and P0(Hi) a-priori probability of Hi.
It is convenient to use the Log Likelihood Ratio (LLR) [10] such that

LLR = ln
[PT

PF

]
(2.8)

Assuming that the accuracy of the measurement process is independent of the target kinematics, the
likelihood ratio LR (in Equation 2.7) can be partitioned into a product of two terms, LRK and LRS ,
which represent kinematic and signal-related contributions, respectively. Also, given K scans of data
and assuming scan-to-scan independence of the measurement error, LR can be partitioned into a prod-
uct of terms, LR(k), for each of the K scans. Thus, defining L0 = P0(H1)/P0(H0)

LR(K) = L0

K∏
k=1

LRK(k)LRS (k) (2.9)

and the Log Likelihood Ratio (LLR), or score, for a given track is the sum of K kinematic and K
signal-related terms. The track score (L) is thus defined to be

L(K) , ln[LR(K)] = L0

K∑
k=1

[LLRK(k) + LLRS (k)] + ln[L0] (2.10)

If the data received on scan k is considered to have two components which are kinematic as denoted
[DK(k)] such as position measurement and signal related data denoted as [DS (k)] such as measured
target SNR.
Considering the kinematic term, which is assumed to be Gaussian distribution for true target returns
and a Uniform distribution over the measurement volume (VC) for false alarm returns. Then,

LRK =
p(DK |H1)
p(DK |H0)

=
exp{−d2/2}/[(2π)M/2 √|S |]

1/VC
=

exp{−d2/2}VC

[(2π)M/2
√
|S |]

(2.11)

where time index has been dropped due to recursion of these operation in each scan, M is the measure-
ment dimension, VC is the measurement volume element, S is the measurement residual covariance,
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can be recalled on Table 2.1 in the previous section, d2 is the normalized distance for the measurement
can be recalled on Table 2.1 in the previous section which has been defined as d2 , (z̃(i)

k )′(S (i)
k )−1z̃(i)

k in
model likelihood L(i)

k for model (i) at time instant k.
By considering Equation 2.10, the recursive form of computation of the track score is defined[10] as

L(k) = L(k − 1) + △L(k) (2.12)

where

△L(k) =

ln[1 − PD]; no track update on scan k

△LU(k), no track update on scan k
(2.13)

The increment △LU , occurs upon update in each scans, is the sum of kinematic and signal-related terms

△LU = △LK + △LS (2.14)

In our case where the only kinematic information related term survives due to that a detection or a
miss occured, so, signal related term become identically zero in Equation 2.14. Finally, the track score
increment upon track update becomes

△LU = ln
[ PDVC

PF
√
|S |

]
− [M ln[2π] + d2]

2
(2.15)

where PD, PF are the probability of detection and false alarm respectively.
Defining false target density as βFT , PF/VC and placed into Equation 2.15, △LU becomes

△LU = ln
[ PD

(2π)M/2βFT
√
|S |

]
− d2

2
(2.16)

2.2.1.2 Track Initiation, Confirmation and Deletion

The initial track score is entirely based on the first observation in the track volume[10, 29, 28]. By
considering the Equations 2.12, 2.13, 2.14 and 2.16 as k = 1, the initial track score becomes

L(1) = ln
[PDβNT

βFT

]
(2.17)

where βNT is the new target density which may in general be a function of position in the measurement
space. Use of track score for confirmation and deletion is an application of the classical Sequential
Probability Ratio Test (SPRT)[21] where the LLR required for the SPRT is the track score. Using
SPRT, the LLR (or score L) is tested (as illustrated in Figure 2.4) versus upper and lower thresholds T2

and T1 respectively. The alternatives to confirm the track, delete track, or continue test are defined to be

L ≥ T2; declare track confirmation

T1 < L < T2; continue test

L ≤ T1; delete track
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Following the standard SPRT formulation[21], the thresholds are defined as

T2 = ln
[1 − β
α

]
, T1 = ln

[
β

1 − α

]
where the specified false decision probabilities are defined as false track confirmation probability de-
noted with α and true track deletion probability denoted with β.
The allowable false track confirmation probability, α, can be defined from the system requirements on
false track initiation. As an example in [10], by assuming that the system produces NFA false alarms
per second and that there are NFC false track confirmations allowed per hour. Then, α, can be defined
as

α =
NFC

3600NFA
(2.18)

Because β has less effect on the track confirmation threshold[10, 21], its choice is less important but a
small value such as β ≤ 0.1 can be used for computation of T2. Then, the deletion rule for low-score
tracks is best determined based on system track maintenance capability.
The threshold values are chosen on the assumption that the initial track score is zero. Thus, if an
initial score value other than zero, such as given by Equation 2.17, should be considered to add to
confirmation threshold (T2).

Figure 2.4: Score-Based Track Confirmation and Deletion (Figure is adapted from [10])

In our simulations, in order to compute T1 and T2, we have considered NFC parameter as 3 which is
given as an example in [10] and NFA parameter as the maximum number of measurements observed
per second which is set to 11 for consistenty with our simulations. Generally, these parameters(NFC ,
NFA) effecting decision threshold settings naturally depend on the true track deletion and false track
confirmation statistics and sensor receiver operating characteristics of the real system (i.e. radar, sonar,
IRST[10]) under concern. If there is no practical information or real data about the system behavior
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under concern is available, series of Monte Carlo simulations can be carried out for the choice of these
parameters to achieve optimal threshold settings which is also recommended in [10].

2.2.2 Validation of Measurements (Gating)

Gating is a technique for eliminating unlikely measurement-to-track pairings. A gate is formed about
the predicted measurement and all observations that fall within the gate are considered for track up-
date. Gate is often called with a name validation region in literature and gating is the validation of
measurements falling inside the gate which are used for track update. The manner in which the obser-
vations are actually chosen to update the track depends on the data association technique which will
be discussed later. However, most data association methods utilize gating in order to reduce further
computation.
If it is recalled from Table 2.1, at k − th time instant, the measurement residual, for simplicity let us
ommit superscript (i)’s and denote as z̃k, is the difference between the actual measurement vector zk

and the expected measurement vector ẑk where

ẑk = Hk x̂k|k−1 − v̄k (2.19)

v̄k is assumed Zero-mean White Gaussian measurement noise with covariance matrix Rk. The residual
covariance matrix is defined in Table 2.1 as

S k = HkPk|k−1(Hk)′ + Rk (2.20)

where Pk|k−1 is the one-step prediction covariance matrix.
If the dimension of measurement is assumed to be M and the normalized distance for the measurement
is defined as d2 , (z̃k)′(S k)−1z̃k, model likelihood Lk can be rewritten as

Lk =
exp{−d2/2}

[(2π)M/2
√
|S k |]

(2.21)

where |S k | is the determinant of S k.
Gate is defined such that association is allowed if the following relationship is satisfied by the norm(d2)
of the residual vector

d2 = (z̃k)′(S k)−1z̃k ≤ G (2.22)

where G is defined as Gating Threshold for ensuring that the target-originated measurement falls in
the validation region with a probability PG, Gating Probability.
d2 is typically assumed[10] to have the chi-square (χ2

M) distribution for M degrees of freedom. The
threshold G is often refered to as the number of sigmas or standard deviations for the gate and G is
determined from a χ2

M table[7, 10].
The Volume within the gate is given in [10] as

VG(M) = CM

√
|S k |GM/2 (2.23)

where M is the dimension of a valid observation satisfying the threshold G and

CM =


πM/2

( M
2 )!
, M even

2M+1( M+1
2 )!π

M−1
2

(M+1)! , M odd
(2.24)

In our simulations, we consider elliptical validation gate[1, 10] for a two-dimensional measurement.
So, 2.23 turns into

VG(2) = π
√
|S k |G (2.25)
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G can be computed correspondingly via χ2
M table[7, 10] in terms of PG as

G = −2 ln(1 − PG) (2.26)

For other gating types (i.e. Rectangular[1, 10], Maneuvering[49, 10],...etc.) and detailed information
about gating is given in [49, 10].

2.2.3 Optimal Assignment Algorithms

The assignment problem was originally considered for problems in economic theory such as assign-
ing a personnel to jobs and delivery trucks to locations. The objective in these problems is to min-
imize the cost using the available resources[10]. This is done as a constrained optimization where
in our case in target tracking the cost of associating the measurements to target tracks is minimized
subject to certain feasibility constraints. This optimization problem can be solved using number of
algorithms[1] (i.e. Auction Algorithm[11, 1, 10], Jonker-Volgenant-Castanon Algorithm(JVC)[1], N-
Best Solutions[10],...etc.). In our simulations, we consider to use Auction Algorithm[11, 1, 10] due
to its superiority to rest of the algorithms where the detailed information is given in [11], analysis and
simulation results are given in [1].
The elements in the measurement-to-track assingment matrix are best chosen to be the score gains
associated with the allowed assignment (validated measurements fall inside the gate). Alternatively,
the elements can be chosen to be the gate value(G) minus the normalized distance(d2) [10].
Outline of the steps involved in the Auction Algorithm is given in [10] where the detailed analysis is
avaliable at [11].
For Multitarget tracking, Modified Auction Algorithm[11, 1] is required to solve the generalized as-
signment problem. Modified Auction Algorithm is nothing more than a generalization of the classical
Auction Algorithm mentioned above. In a Multitarget tracking situation, “each" track wants to be
assigned to a measurement that minimizes its cost individually.

2.2.4 Data Association

Since the pioneering work of Sittler[21], who provided the term data association to literature, a num-
ber of algorithms have been developed[10, 16, 7, 1, 17, 18, 19] over the past three decades to solve
the measurement origin uncertainity problem. Two simple solutions been proposed were the Strongest
Neighbor Filter (SNF) and the Nearest Neighbor Filter (NNF). In the SNF, the signal with the highest
intensity among the validated measurements (in a gate) is used for track update and the others are
discarded. In the NNF, the measurement closest to the predicted one is used to update the target states.
While these simple data association techniques work reasonably well with benign targets in sparse
scenarios[1], they begin to fail as the false alarm rate increases or with low probability of detection, or
with low or partial observability (e.g. passive sensors that measure only lines of sight). Instead of using
only one measurement among the received ones and discarding the others, an alternative approach is
proposed which is known as Probabilistic Data Association (PDA). PDA uses all the latest validated
measurements with different weights[7, 22]. The standard PDA and its numerous improved versions
have been shown in [7] to be effective in tracking a single target in clutter.
PDA is a widely used recommended[7] method for data association when tracking a single target in
clutter, however, it is derived under the assumption that a track exist in the validation region(gate) at
each scan with a certain gating probability PG which is very close to 1 and consequently is unable to
provide the probability of track existence information for unreliable target measurements. In [28, 29],
PDA algorithm is rederived without an initial assumption of track existence and the resulting algorithm
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is named Integrated Probabilistic Data Association (IPDA) which simultaneously and recursively pro-
vides expressions for both probability of track existence and data association.
Data association becomes more difficult with multiple targets where the targets compete for measure-
ments. Hence, in addition to a track validating multiple measurements as in the single target tracking
case, a measurement itself can be validated by multiple tracks (i.e. one faces contention among tracks
for measurements). Many algorithms[1, 10, 18, 19] exist in the literature to handle this contention. To
prevent excessive information, this topic will be fully covered and discussed in detail in Section 2.4.

2.3 Tracking Single Target in Clutter

In a target tracking problem, if more than one measurements are observed from the surveillance envi-
ronment under concern at a current scan, which of the measurements should be used to update each
track is a crucial problem. This problem appears especially when tracking target(s) with probability of
detection less than unity and in the presence of false alarms.
Primary common approach was the nearest neighbor (NN) method using only one measurement (the
nearest) among all observation and discard all the rest[10, 1]. Unfortunately, this simple solution re-
sults in undesired estimation errors[7]. Because of the fact that the target tracking system does not
know a priori which is the correct measurement among all observation. Validation region(gating)
approach[10], which reduces less likely hypotheses, is applied to use sufficient number of measure-
ments instead of all observation per scan. As a solution to the measurement origin uncertainty problem,
Probabilistic Data Association(PDA)[1, 16, 22], has been proposed.
The Interacting Multiple Model (IMM) Estimator is recommended as a powerful method[1, 4] to
encounter target motion origin uncertainty. IMM is capable of dealing with target maneuvers by in-
troducing a set of different state space models to describe the possible target behaviors via Markov
switching between the models and reinitialization of estimates from recursive model based filters.
So far, the problems have been faced in both kinematic state estimation and data association for track-
ing a single ground target in a cluttered environment have been investigated separately. Although,
the problems and proposed solutions to problems are seemed to be discrete naturally, in order to find
a complete solution to tracking of a single ground target in a cluttered environment problem, the
solutions should be logically fused to make them incorporate to achieve a complete solution. The
most common known method has been proposed by Bar-Shalom et.al to achieve a complete solu-
tion to tracking a single target in clutter problem is given as a combination of IMM with PDA is
called IMMPDAF[7], that extends PDA to include a measure of track quality. Track quality measure
is used for false track discrimination. It is shown[7] that IMMPDAF and its variants solve tracking
problems such as presence of a clutter and maneuvering nature of the target with disappearances and
reappearances successfully. For convenience with other sections and chapters, IMMPDAF will be
denoted as IMM-PDA where IMM is the approach considered for kinematic state estimation as the
solution for target motion origin uncertainity and PDA is the approach considered to achieve the right
measurement-to-track assingment as the solution of measurement origin uncertainty problem.

2.3.1 Combining IMM with a Probabilistic Data Association Algorithm

One important feature of the PDA[22] approach or any Probabilistic Data Association based algorithms
such as IPDA[28], JPDA[23], LIMPDA[19],...etc. is the relatively straightforward manner in which
either of them can be combined with IMM filtering (as described in Section 2.1). These methods are
discussed in more detail in [7, 18, 35], however, this Section only summarizes the pioneer method
IMMPDAF[7], denoted as IMM-PDA (illustrated on flowchart on Figure 2.5), as an example and for
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the rest, in fact, the same process is in effect with Probabilistic Data Association algorithm differs only.
If we assume that a track has been formed at (k−1)th scan and there are M IMM Filter models (on Table
2.1). Given the data received through scan k − 1, each IMM filter will have its model probability µ(i)

k−1,
state prediction x̂(i)

k|k−1 and Kalman Filter Covariance marix P(i)
k|k−1 for use with the next data set (scan

k). Then, the next step is to define a validation region (gate) in order to determine which observations
are to be considered for track update.
Given the new data (at scan k), the IMM-PDA process is defined by following steps (also illustrated
on flowchart on Figure 2.5):

Figure 2.5: IMM-PDA Flowchart
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1. Compute a likelihood function L(i)
k for each IMM model i according to an extension on Table

2.1 that includes the N data association hypotheses corresponding to each observation (m =
1, 2, ...,N) in the gate and the hypothesis that none of the observations is valid:

L(i)
k = (1 − PDPG)λ +

N∑
m=1

PD exp[−d2
im/2]

2π
√
|S (i)

k |
(2.27)

where λ is the spatial density of the clutter(assumed known), PD is the probability of detection
and PG is the gating probability defined in Section 2.2.2 as the probability of the target-originated
measurement falling inside the validation region (gate).

2. Given the prior probabilities µ(i)
k−1 and the likelihood functions L(i)

k from (2.27), compute the
updated model probabilities µ(i)

k on Table 2.1.

3. Update the state estimates and covariances matrices for each IMM filter model according to the
PDA relationships given in [1], also will be given in Section 3.1.1.

4. Given the state estimates x̂(i)
k|k and the Kalman Filter covariance matrices P(i)

k|k, for each model i,
the composite state and covariance matrix can be computed using the standard IMM relation-
ships given on Table 2.1.

The method outlined above is for parametric case which requires a priori knowledge of λ, the spatial
density of the clutter. If the spatial density of the clutter is not known a priori, where in non-parameric
case, λ can be computed as λ = N/VG where VG is the gate volume defined in Section 2.2.2 and N is
the number of observations in the validation region.

2.3.2 Track Initiation and Deletion

The original PDA[22] method did not include explicit provisions for track initiation and deletion. It
was implicitly assumed that tracks had been established and the main issue was track maintenance.
Since then, IMM-PDA[7] method is modified to handle this issue via using “target" and “no target"[7]
models and Integrated PDA (IPDA) is derived in [29, 28] under “track exists" and “track does not ex-
ist" possibilities taken into account via probability of track existence parameter computed recursively
as an extra state.
[29, 28, 18] has shown that in IPDA-based algorithms[18], probability of track existence parameter is
also considered in track initiation and deletion operations in where employed as a track score. How-
ever, in our simulations, we consider this parameter for track maintenance purpose in order to update
data association probabilities recursively. Instead of using probability of track existence parameter as
in the references [29, 28, 18], for track initiation, confirmation and deletion operations, LLR testing
under SPRT procedure[21](also discussed previously in Section 2.1.1.1) is preferred in our simulation
studies.
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2.4 Multitarget Tracking in Clutter

2.4.1 Multitarget Background

Multitarget tracking is used in surveillance systems to provide both a unified and comprehensive pic-
ture of the environment using data reported by sensors. The goal of an Multitarget tracking system is
to form and maintain tracks on targets of interest from scans of measurements provided by the sensors.
The Multitarget tracking problem is made more difficult by maneuvering targets and by the presence
of clutter. An estimator such as a Kalman Filter is often used to generate the state estimates contained
in the track files. However, if precautions are not taken, the accuracy can degrade during maneuvers
to the point where the state estimates are less accurate than the unfiltered measurements. Before the
state estimator can be used to update the tracks, some form of data association is needed to assign the
measurements to the tracks, or to declare certain measurements as being false (i.e. clutter detections).
There is the potential for assigning clutter detections to target tracks, and for closely-spaced targets,
there is the potential for assigning a target’s measurement to another target’s track. Merged (i.e. un-
resolved) measuremens can also occur for closely-spaced targets. Assigning wrong measurements to
tracks often results in lost tracks and track breaks. Moreover, clutter can produce false tracks, and if the
cluter density is sufficiently large, especially in ground target tracking, the resulting number of false
tracks can overwhelm the available computational resources of the Multitarget tracking system, as well
as degrade the overall performance of the system. For these reasons, techniques dealing with maneu-
vering targets and techniques dealing with data association have received much attention in Multitarget
tracking research where the recent publications refered[1, 10, 18, 19] are the obvious evidence.

2.4.2 Kinematic State Estimation Background

The Kalman Filter has some ability to adapt to maneuvers by tuning the Kalman Filter to the most
stressing maneuver expected[1]. However, for targets that are not maneuvering or maneuvering at a
level less than the most stressing maneuver, this approach results in less noise reduction than could
be achieved with a Kalman Filter tuned to a less stressing maneuver. In many Multitarget tracking
systems, the Kalman Filter is augmented with a maneuver detector[1, 4]. The Kalman Filter is designed
for a relatively benign maneuver to give adequate noise reduction when targets are not maneuvering,
and the maneuver detector is used to adapt the filter to maneuvers and provide improved tracking
performance through maneuvers. A problem encountered in practice with this approach is effective
and reliable maneuver detection. There is a time lag between the acual onset and the detection of the
maneuver, and a time lag between the detection and the actual end of maneuver. These lags typically
last for several scans and large state errors can arise during these lags. In addition, random noise can
trigger the maneuver detector and there is a time lag before switching back to the nonmaneuver model.
During this lag, the noise reduction will be less than could have been obtained with the filter used for
the target’s nonmaneuver mode. Also, the combination of maneuver detection with data association
requires heuristics and results in lack of robustness[1, 4].
In the Interacting Multiple Model (IMM) Estimator, a probabilistic (Markov) switching between these
models is assumed[1, 4]. During one sampling period, one of the models may describe concerned
target’s motion, but over another sampling period, a different model may describe the more appropriate
one. Therefore, during maneuvers, the IMM Estimator typically produces smaller state errors and lags
of smaller duration than Kalman Filter with maneuver detectors.
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2.4.3 Multitarget Data Association Algorithms - Survey

Another and the most important part of the Multitarget tracking problem where a great deal of effort is
required, the inherent problem of measurements of uncertain origin. In Multitarget tracking systems,
besides tracking of single target in undesired measurements (i.e. clutter), the problem of infering
from which target, if any, a particular measurement originates is of most interest. In order to solve
this problem, many different algorithms are available[1, 10, 18, 19] for Multitarget tracking systems,
starting from the simpler nearest-neighbor approaching to the very complex Multi Hypothesis Tracker
(MHT)[10]. The simpler techniques are commonly used in Multitarget tracking systems, but their
performance degrades in clutter significantly[1, 10]. MHT[10] provides improved performance, but
it is difficult to implement and in clutter environments a large number of hypotheses may have to
be maintained, which requires extensive computational resources[1]. Because of these difficulties,
recursive algorithms having smaller computational requirements has been developed[1, 18, 19]. These
techniques are based on Probabilistic Data Association (PDA), which uses a weighted average of all
the measurements falling inside a track’s validation region (gate) at the current time to update the track
state.

2.4.3.1 Optimal Multitarget Data Association Algorithms

Probabilistic Data Associaiton Filter (PDAF) has been developed[22] as the first PDA algorithm to
track a single target in clutter. PDAF is derived under the assumption of a single target (single track).
In multiple target situations, each measurement can be either clutter or a measurement of the target
being followed. However, in real-life situations with multiple targets with crossing trajectories and/or
closely-spaced movements, this assumption holds no longer true. It has been shown in [23, 24] that
PDAF can get “confused" under these circumstances and start following a different target, or it can
diverge altogether and stop following any target. To compansate this situation, the Joint Probabilistic
Data Association (JPDA) algorithm has been developed[23, 24]. Then, the PDAF has been extended
to multitarget case, resulting in Joint Probabilistic Data Association Filter (JPDAF)[1]. It generates
all possible joint measurement to track assignments, which are called joint events, and calculates the
a-posteriori probability of each joint event. From these probabilities, the data associaition probabilities
of each track are calculated and then used to update the state estimates.
Although the JPDAF shows much better performance than the simpler data association techniques and
requires less computational resources than the MHT, the JPDAF can be difficult to implement and
still requires extensive computational resources in environments with more than two closely-spaced
targets. In addition to this, a number of problems (e.g. track biases and coalescence) with JPDAF have
been documented[25].
To circumvent some of the complexity and problems associated with the JPDAF, various approxima-
tions to the JPDAF has been developed. To reduce the computation requirements of the JPDAF, the
Cheap JPDA has been developed[6], which approximates the association probability computations in
the JPDAF. More accurate approximations for the association probability computations has then been
presented in [26] as Suboptimal JPDA. To avoid some of the problems with the JPDAF, such as track
coalescence, the Nearest-Neighbor JPDA (NNJPDA) has been developed[6]. The NNJPDA abandons
the updating of a track with a weighted average of all measurements in its validation region (gate);
in favor of one-to-one assignment of measurements to tracks. It is only the association probabilities
that are used in making the one-to-one assignments of measurements to tracks. This approach greatly
simplified the logic and improved the performance of the JPDAF[1, 6]. Results in [1] show that using
the association probabilities rather than the likelihoods (or, equivalently, the normalized distances) to
make the assignments dramatically improves the association performance provided that an appropriate
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approximation to JPDAF such as the Suboptimal JPDA is used to compute the probabilities.
While the Nearest-Neighbor (NN) and JPDA methods use different criteria to assign an “optimal"
measurement to track association in a single scan, as mentioned in [27], most operating radar systems
are still using the independent NN methods[10] such as SNN, GNN,...etc. due to some concerns. The
main concern is the practicality of these methods since most of them are based on mathematical anal-
ysis and computer simulations under some idealistic assumptions. They are developed under various
assumptions about statistical models of process and measurement noise, and clutter. They are often
evaluated using simulated data generated under the same assumptions their development are based on.
According to study at [27], using actual radar data in stressful conditions such as heavy clutter, closely
spaced targets, targets crossings, maneuvers, missed target detection,...etc., their usefulness in real
stressful radar tracking environments has proven to be questionable since their underlying theoretical
assumptions are not always valid. Although the weighted sum approach of JPDA methods which has
been shown in [1, 6] theoretically effective, results in [27] shows that in real stressful radar tracking
environments they show poor performance in tracking closely spaced maneuvering targets. They are
also observed susceptible to deviations from the assumed clutter model. In addition to these, it has
been shown that JPDAF could not be implemented in a modern radar tracking system with current
computing power. It has been concluded in [27] that, using one of the independent NN methods[10]
such as SNN, GNN,...etc. with an optimal assignment technique such as Munkres algorithm[10] could
be more robust to inaccuracies in clutter model than JPDA methods.
In addition to these deficiencies, all the JPDA methods are based on pre-assumption that the target(s)
exist(s) in each scan like PDA. Tracks are not differentiated according to the probability of target exis-
tence and track maintenance is difficult without the probability of target existence information. JPDAF
is also rather complex as mentioned in [27] because it creates a joint event for each possible combina-
tion of measurement to track assignments [1]. The number of joint events can grow exponentially in
a dense clutter situation. Another problem is that the area of each cluster is assumed to be encompass
the whole surveillance region. To improve upon JPDAF, the Integrated JPDAF (IJPDAF) algorithm
has been proposed[38]. It builds upon IPDA algorithm proposed in [39] and also uses the probability
of target perceivability to develop recursive expressions for the a-posteriori probability of target per-
ceivability and data association for each track. In IJPDAF, the number of joint events is much higher
than in case of JPDAF[38].
The Joint IPDA (JIPDA) algorithm[30, 34] (dealing with “joint" IPDA tracks) is developed in a si-
miliar fashion to the IPDA algorithm given in[28, 29]. It uses the probability of target existence and
results in recursive expressions for the probability of target existence and data association probabilities.
The number of joint events is the same as in the case of JPDAF. However, JIPDA still has the same
complexity as JPDAF, which may preclude it from being used on all tracks in a dense clutter situation.

2.4.3.2 Linear Multitarget Data Association Algorithms

Optimal approaches, methods, or algorithms, has been mentioned so far[23, 24, 38, 30, 34], generate
and evaluate all possible hypotheses of measurement origin in the current scan whereas the number
of these hypotheses grows exponentially with the number of tracks and the number of measurements
involved. As the number of such hypotheses grows exponentially with the number of scans, these ap-
proaches are not used in practice [27], especially in cases where a large number of targets are close to
each other, or in a dense clutter situation with a large number of false tracks. Instead, various subopti-
mal data association algorithms such as in [6, 26] have been proposed with an inevitable performance
penalty.
A notable exception to these algorithms, which has been proposed in [31], is the Linear Joint Inte-
grated Probabilistic Data Association (LJIPDA) algorithm, which is basically a multitarget version of
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IPDA[29, 28] with only a “linear" number of operations within the number of tracks and the number
of measurements in present. LJIPDA uses a-priori probabilities of measurement origin to calculate
(for each track and for each measurement) the probability that the measurement belongs to some other
track. The a-priori probabilities of measurement origin are the major conduit for inter-track infor-
mation transfer. These probabilities are then used to calculate the probability of track existence and
data association probabilities. In this manner, multitarget tracking is achieved without exhaustive
measurement-to-track hypothesis processing. Rather than forming joint events by creating all possible
combinations of measurement-to-track assignments, only a single track is processed at a time. There-
fore, the number of operations is linear in the number of tracks and the number of measurements. This
important property permits target tracking in much denser clutter or closely-spaced target situations by
using less computational resources than optimal approaches such as JPDA, IJPDA, or JIPDA.
By the following of this pioneering approach, a generic procedure has been proposed in [33], namely
Multi-target Linear Converter (MLC), which converts any single target data association algorithm be-
longing to a certain class, into an equivalent multitarget data association algorithm using a number of
operations which is linear in the number of tracks and the number of measurements as in LJIPDA.
MLC uses a similar approach to LJIPDA by using the probabilities of measurement origin as a conduit
for information exchange between tracks. The difference is that MLC uses “a-posteriori" probabilities
of measurement origin calculated by the single target data association algorithm considered as a core.
It corrects these probabilities to allow for multitarget existence and uses them directly to calculate the
probability of track existence and data association probabilities for each track. Thus, MLC simply
converts single target data association algorithms into multitarget data association algorithms. The
only requirement for MLC on the single target data association algorithm is that it must provide the
a-posteriori probabilities of measurement origin information. Single target data association algorithms
such as IPDA[29, 28], IMMPDAF[22, 7], IPDA[39] can be considered.
Both MLC and LJIPDA algorithms achieves multitarget data association capability by splitting the
measurements according to the a-posteriori or a-priori probabilities of measurement origin. In situa-
tions when a measurement is allocated to multiple tracks, it is “split", and each track uses a “fragment"
of the measurement[35]. The algorithm presented in [35, 32, 18, 19] is also a multitarget data as-
sociation algorithm with a linear number of operations in the number of tracks and the number of
measurements, with apparently negligible performance penalty compared to optimal approaches such
as JIPDA[32]. However, the difference between both MLC and LJIPDA, it is derived by modifying the
clutter density with the foreign target measurement density. The resulting new approach is called Lin-
ear Multi-Target (LM) procedure[35, 32, 18, 19]. It is a general procedure for converting certain class
of single target data association algorithms into multitarget data association algorithms. In effect, the
LM approach is to run a bank of “coupled" single target data association filters, where the coupling is
achieved through modifying the clutter density for each tracking filter. The clutter density at each mea-
surement point is modified by the pdf of measurements originating from neighboring tracks. Briefly,
other tracks are treated as additional clutter sources[35]. This coupling eliminates most of the prob-
lems experienced when running single target data association filters in a multitarget tracking situation
with very little additional computational cost. Use of the LM method means “each measurement" in
the current scan may potentially be used to update more than one track which has been shown[32, 19]
to be better performance than previously proposed algorithms, LJIPDA and MLC, using a “fragment"
of the measurements in track coalescence situations. The differences in implementation complexity
between a single target tracking data associaiton algorithm and its LM equivalent are also very small.
In LM method, single target tracking algorithms which can be converted are those which provide an
a-priori probability that the target detection is selected such as IPDA[28]. When this method is ap-
plied to a single target data association algorithm, the resulting multitarget data association algorithm
is recognized by the prefix “LM", which stands for Linear Multi-Target such as LMIPDA[35, 18].
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CHAPTER 3

ALGORITHMS IN COMPARISON

Even without data association problems, estimation of the kinematic state of the target(s) under track
accurately is a crucial problem because target(s) can maneuver at unknown times. The Interacting
Multiple Model (IMM) method is an efficient algorithm which deals with this difficulty.
Six single-scan algorithms are considered in comparison in our thesis study for automatic tracking of
maneuvering ground target(s) in clutter situations under various test scenarios. They are termed: IMM-
PDA, IMM-IPDA, IMM-JPDA, IMM-IJPDA, IMM-JIPDA and IMM-LMIPDA. All of them use the
IMM method to estimate the kinematic state of target(s) under track. Target kinematic state estimation
in a cluttered environment is achieved by combining IMM with a specified Probabilistic Data Associa-
tion Algorithm incorporate which has been outlined briefly in Section 2.3.1 previously. By considering
IMM-PDA process as an example in Section 2.3.1 (process is illustrated with a flowchart on Figure
2.5), the overall process is identical in all algorithms. The algorithms differ only in the calculation of
the data association probabilities.
So, to prevent excessive information and mathematical equations burden, in this Chapter, it is sufficient
to present only Data Association Algorithm part of algorithms(IMM-PDA, IMM-IPDA, IMM-JPDA,
IMM-IJPDA, IMM-JIPDA and IMM-LMIPDA) considered which are basically: PDA, IPDA, JPDA,
IJPDA, JIPDA and LMIPDA algorithms, respectively. For each data association algorithm, the update
of related IMM parameters are also given at the end of each sections, respectively.

3.1 Single Target Data Association Algorithms

3.1.1 Probabilistic Data Association (PDA) Algorithm

The Probabilistic Data Association (PDA) is a Bayesian approach that computes the probability that
each measurement in a track’s validation region (gate) is correct measurement (or, target originated)
and the probability that none of the validated measurements is target originated. These probabilities
and all of the validated measurements are then used in a kinematic state estimator (i.e. Kalman Filter,
Particle Filter, IMM,...etc.) to update the target state.
PDA assumes that a single target is present and a track related to that target exists for the target (track
has been initialized), that at most one of the validated measurements is target originated and that rest
of the validated measurements are clutter detections.
The clutter detections are modeled as independent, identically and uniformly distributed random in-
terference in space, whereas, target originated measurement is assumed to have Gaussian distribution.
By an inference, the discrimination capability of PDA arises from the statistical difference between the
Gaussian and uniform distributions[7].
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There are two versions of the PDA algortithm depending on the stochastic model used for the number
of clutter detections in each scan. The parametric PDA assumes that the number of clutter detections in
each scan is modeled with Poisson distribution, whereas, nonparametric PDA assumes that the number
of clutter detections in each scan is modeled with diffuse disribution[5], which means that any number
of clutter detections is equally likely. The parametric version of PDA requires prior knowledge of the
spatial density of the clutter, which we denote with λ, whereas the nonparametric version does not.
Although the number of clutter detections in each scan can be modeled differently with either of two
stochastic models, it does not affect the fundamental assumption that the spatial distribuiton of the
clutter is assumed to be uniform.
In our simulations, we consider using the parametric version of PDA because we model the number
of clutter detections in each scan with a Poisson distribution with a rate λ = 10 where the clutter de-
tections, themselves, are uniformly distributed with that rate in space(on two-dimensional survelliance
region).
PDA algorithm from[16, 22, 7, 1] is briefly outlined below:
For mk measurements falling inside the validation region (gate) at scan k, the probability that the jth

validated measurement zk, j is target originated, denoted with βk, j, is

βk, j =
ek, j

bk +
∑mk

l=1 ek,l
( j = 1, ...,mk) (3.1)

whereas the probability that none of the measurements is target originated, denoted with βk,0, is

βk,0 =
bk

bk +
∑mk

l=1 ek,l
(3.2)

The term ek, j in both (3.1) and (3.2) is given in [16] as

ek, j = exp
{
− 1

2
νT

k, j(S k)−1νk, j

}
( j = 1, ...,mk) (3.3)

where νk, j is the residual for the jth validated measurement and S k is the residual covariance (on Table
2.1, let us ommit (i)’s for simplicity) for the measurements. All measurement residuals are assumed to
have the same covariance.
The term bk in both (3.1) and (3.2), which accounts for the possibility that none of the validated
measurements is target originated and that the target originated measurement was not detected (or fell
outside of the gate), is given in [1] as

bk = λ
√
|2πS k |

1 − PDPG

PD
(3.4)

where |2πS k | is the determinant of 2πS k, λ is the spatial density of the clutter (assumed known), PD is
the probability of detection, PG is the gating probability defined in Section 2.2.2 as the probability of
the target-originated measurement falling inside the validation region (gate).
In PDA, the kinematic state of the target is updated using all of the validated measurements. The
update is given by

x̂k|k = x̂k|k−1 + Kkνk (3.5)

instead of x̂k|k = x̂k|k−1 + Kk z̃k line on Table 2.1, where x̂k|k is the updated state, x̂k|k−1 is the predicted
state Kk is the Kalman gain and νk is the combined residual, which is given by

νk =

mk∑
j=1

βk, jνk, j (3.6)

where νk, j is the residual for the jth validated measurement

νk, j = zk, j − Hk x̂k|k−1 (3.7)
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The updated covariance is given by

Pk|k = βk,0Pk|k−1 + (1 − βk,0)Pc
k + P̃k (3.8)

where

Pc
k = Pk|k−1 − KkS kKT

k (3.9)

and

P̃k = Kk

[ mk∑
j=1

βk, jνk, jν
T
k, j − νkν

T
k

]
KT

k (3.10)

3.1.2 Integrated Probabilistic Data Association (IPDA) Algorithm

PDA assumes that a target track exists in each scan, so it cannot be used for track quality measure
concept. Because, in reality, target may become unobservable or target track may not exist depending
on terrain conditions and obtained measurements in each scan.
Musicki et al.[29, 28] rederived the PDA algorithm but without the assumption that a target track exist
and introduced a track quality measure, the Probability of Track Existence, integrated with PDA, which
resulted in the Integrated Probabilistic Data Association (IPDA) algorithm. IPDA assumes that track
exisence is an event with a corresponding probability, the Probability of Track Existence, whereas PDA
assumes track existence is certain which effective removes the target existence information.
IMM implementations with the IPDA, have first appeared in [41, 42], resulting in IMM-IPDAF algo-
rithms, where the IPDAs in the IMM structure were based on different motion models for the target.
A different approach was proposed by the authors in [39, 40] where it is assumed that a target ex-
ists “behind" each track and the Probability of Perceivability of the Target is recursively calculated
instead of the Probability of Track Existence as the track quality measure. Recently, Musicki et al.
have proposed another IMM implementation with the IPDA, resulting in IMM-IPDA algorithm [36],
differently from [41, 42], in which there is a single IPDA for all models in the IMM structure, as
in the IMM-PDA structure discussed in the Section 2.3.1. In spite of the differences between these
algorithms[41, 42, 39, 40, 36], all the authors “just to defy" have elected to use the same name for their
algorithms. To differentiate between the algorithms we have tried giving references properly which
algorithm belong to which author, which algorithm is used or considered in simulations, results and
comparison throughout the study.
In [36], IMM-PDA[6], IMM-IPDAF[41] and IMM-IPDA[36] algorithms are compared and the results
in [36] indicates that IMM-IPDA[36] outperforms both IMM-PDA[6] and IMM-IPDAF[41] both in
terms of estimation accuracy and true/false track statistics.
By considering the result presented in [36], in our study, we have implemented IMM-IPDA algorithm[36],
in which there is a single IPDA for all models in the IMM structure, as in the IMM-PDA structure dis-
cussed in the Section 2.3.1. IPDA algorithm used in [36] and also in our study is the version given in
[29, 28] which is given below:
To differentiate between the true and false tracks, a track quality measure is defined in the IPDA[29, 28]
structure which is named as Probability of Track Existence, denoted with ψk|k. This parameter is com-
puted as an output of the IPDA algorithm recursively as an extra state in each scan k for track update.
The propagation model of track existence is assumed in [29, 28] as a Markov Process with two possible
cases:
The first model, which is defined as Markov Chain One model in [28], models the probability that the
track exists at scan k − 1 with ψk−1|k−1 and the probability that the track does not exist at scan k − 1
with 1 − ψk−1|k−1. The propagated values, which is defined as a priori probabilities of track exisence,
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are obtained at scan k from a posteriori probabilities of track exisence from scan k − 1 as

ψk|k−1 = Π11ψk−1|k−1 + Π21(1 − ψk−1|k−1) (3.11)

1 − ψk|k−1 = Π12ψk−1|k−1 + Π22(1 − ψk−1|k−1) (3.12)

where track existence is assumed to evolve and recursively updated over time as a Markov Chain with
a specified transition probability matrix Π with entries are defined as

Π11 = P{Track exists at scan k|Track exists at scan k − 1} (3.13)

Π12 = P{Track does not at scan k|Track exists at scan k − 1} (3.14)

Π21 = P{Track exists at scan k|Track does not exist at scan k − 1} (3.15)

Π12 = P{Track does not at scan k|Track does not exist at scan k − 1} (3.16)

The second model, which is defined as Markov Chain Two model in [28], which distinguishes three
possibilities, models the probability that the track exists and observable at scan k − 1 with ψ0

k−1|k−1, the
probability that the track exists and unobservable at scan k−1 with ψn

k−1|k−1 and the probability that the
track does not exist at scan k− 1 with 1−ψk−1|k−1 where ψk−1|k−1 = ψ

0
k−1|k−1 +ψ

n
k−1|k−1. It is sufficient to

just mention about this model due to limited space, for further information about this model is given
in [28].
In our study, in implementation of all IPDA-based algorithms(IMM-IPDA, IMM-IJPDA, IMM-JIPDA
and IMM-LMIPDA) we considered using Markov Chain One model as a propagation model of track
existence parameter which is sufficient to use because we do not consider unobservability situations in
our simulations (because PD , 0) and so Markov Chain Two model is out of our scope throughout the
simulation studies.
As in PDA, both parametric and nonparametric versions are available also for IPDA algorithm. In our
simulations, we consider using the parametric version of IPDA because we model the number of clutter
detections in each scan with a Poisson distribution with a rate λ = 10 where the clutter detections,
themselves, are uniformly distributed with that rate in space(on two-dimensional survelliance region).
Data association probabilities and a posteriori probability of track exisence for scan k is computed
briefly as given below:
For mk measurements falling inside the validation region (gate) at scan k, the probability that the jth

validated measurement zk, j is target originated, denoted with βk, j, is

βk, j =
PDPG pk, j

(1 − δk)ρk, j
( j = 1, ...,mk) (3.17)

whereas the probability that none of the measurements is target originated, denoted with βk,0, is

βk,0 =
1 − PDPG

1 − δk
(3.18)

a posteriori probability of track exisence is computed as

ψk|k =
(1 − δk)ψk|k−1

1 − δkψk|k−1
(3.19)

where

δk = PDPG

(
1 −

mk∑
j=1

pk, j

ρk, j

)
(3.20)

and
pk, j =

1
PG

ek, j ( j = 1, ...,mk) (3.21)

26



where denotes the a priori measurement pdf of each selected measurement j at scan k, and ek, j is given
at (3.3), and

ρk, j =
λ

mk
( j = 1, ...,mk) (3.22)

which denotes the a priori clutter measurement density for each measurement zk, j at scan k where
j = 1, ...,mk.
Equations from (3.5) to (3.10) are identical with PDA.
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3.2 Multitarget Data Association Algorithms

3.2.1 Joint Probabilistic Data Association (JPDA) Algorithm

IPDA and PDA are derived under the assumption of a single target (single track). Each measurement
can be either clutter or a measurement target being followed. In tracking multiple targets with cross-
ing trajectories, this assumption is incomplete. It has been shown in [23, 24] that PDA is incapable
of tracking of multiple targets with crossing trajectories. To remedy this situation Joint Probabilistic
Data Association (JPDA) algorithm has been proposed[23].
JPDA is the extension of PDA to multitarget case. The multitarget case must not only consider random
interference caused by clutter but also must consider persistent interference caused by the measure-
ments from neighboring targets consistently fall in the individual validation regions.
JPDA is the same as PDA except for the computation of the data association probabilities. The
measurement-to-track association probabilities are computed jointly across all targets and all mea-
surements.
JPDA assumes that there is a “known" number of targets with existing tracks (all of the tracks have
been initialized). In addition to this, JPDA assumes that a target can generate at most one measure-
ment per scan and a measurement could have originated from at most one target (i.e. no unresolved
measurements). Non-target originated measurements are modeled as in the PDA. Similar to PDA and
IPDA, there are parametric and nonparametric versions of JPDA available. However, we will present
the parametric version of JPDA which we have used in our study for consistency in comparison with
the rest of algorithms.
Brief description of JPDA algorithm from [23, 24, 16, 7] is given below:
JPDA first enumerates all feasible joint association events θk in the current scan k. A feasible joint
association event is a set of nonconflicting validated measurement-to-track pairings in which a mea-
surement can originate from only one source, and at most one measurement can originate from a target.
Any number of measurements can originate from clutter.
For formation of feasible joint association events, the same basic examples are given in [1, 38] with
different ideas for three measurements competing for two target tracks in a conflicting validation re-
gion scenario. In our simulations, we have formed and checked our feasible joint association events
considered for all optimal algorithms, throughout the study, by considering the example given in [38]
because it is more clear to understand and easy to implement.
To automatically form all feasible joint events by considering the validation matrix(as in the example
given in [38]) for T targets and mk measurements for current scan k, the θt

k, j’s are denoted as the single
events making up a joint event θk. Each θt

k, j denotes the single event that measurement j ( j = 1, ...,mk)
originated from target t (t = 0, 1, ..., T ), where mk is the total number of measurements in the current
scan k and t = 0 denotes that the measurement is a clutter detection.
The binary target detection indicator denoted with σk,t for target t (t = 0, 1, ..., T ) has a value of one if
a measurement assigned to target t in θk and it is zero otherwise at current scan k. The binary measure-
ment association indicator denoted with τk, j for measurement j ( j = 1, ...,mk) has a value of one if the
measurement j is assigned to a target t (t = 0, 1, ..., T ) in θk and it is zero otherwise at current scan k.
The quantity ϕk is the number of measurements originating from clutter at current scan k in θk.
The joint association event probabilities, denoted with P{θk |Zk}, are given by

P{θk |Zk} = γ(θk)
Ck

(3.23)

where the normalization constant Ck is

Ck =
∑
θk

γ(θk) (3.24)
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and

γ(θk) = λϕk

mk∏
j=1

(Λk,t j, j)
τk, j

T∏
t=1

[(PD)σk,t (1 − PD)1−σk,t ] (3.25)

where Zk denotes the set of all measurements from the initial time to current scan k (all the measure-
ments in all scans), λ is the spatial density of the clutter. The Gaussian likelihood Λk,t j, j of associating
measurement j with the track t j to which it is assigned in the joint event θk at current scan k is given
by

Λk,t j, j =
1√

|2πS k,t j, j|
exp
{
− 1

2
νT

k,t j, j(S k,t j, j)
−1νk,t j, j

}
(3.26)

where |2πS k,t j, j| is the determinant of 2πS k,t j, j, νk,t j, j is the residual for track t j and measurement j and
S k,t j, j is the residual covariance (on Table 2.1).
The marginal data association probability of each target t (t = 0, 1, ..., T ) originating the measurement
j at current scan k, denoted by βt

k, j, where ( j = 1, ...,mk), is obtained by summing over all feasible joint
events θk in which the single event θt

k, j occurs. It is given by

βt
k, j = P{θt

k, j|Zk} =
∑

θk :θt
k, jϵθk

P{θk |Zk} (3.27)

the probability that none of the measurements is target originated, denoted with βt
k,0, is computed easily

by

βt
k,0 = 1 −

mk∑
j=1

βt
k, j (3.28)

Once the marginal data association probabilities are computed they are used for each track t separately
to update their kinematic state estimates individually. So, for each track t the rest of computation from
(3.5) to (3.10) are identical with PDA.

3.2.2 Integrated Joint Probabilistic Data Association (IJPDA) Algorithm

JPDA has the same problem as PDA, because it assumes that the target(s) exist. Tracks are not dif-
ferentiated according to a track quality measure and track maintenance is the difficult without a track
quality measure. Integrated Joint Probabilistic Data Association (IJPDA) algorithm provides a mea-
sure of track quality and handles multiple target measurement origin possibility by creaing all possible
joint events. The measure of track quality is calculated in a manner similar to IPDA[39, 40] with
another point of view differently from [29, 28]. It is assumed in [39, 40] that a target exist “behind"
each track and the Probability of Perceivability of the Target is recursively calculated as the track qual-
ity measure. The propagation model for the perceivability is equivalent to Markov Chain One model
for track existence propagation of IPDA which has been discussed widely on Section 3.1.2 where the
equations from (3.11) to (3.16) is identical for individual tracks in IJPDA also.
IJPDA is similar to JPDA, however the difference comes from the perceivability of targets being in-
volved in the data association process. To take into account the perceivability and unperceivability of
each target, feasible joint association events formed previously for JPDA must be modified to gather
probability of target perceivability information from all feasible joint association events. This has been
done in [38] by adding an extra row vector to all feasible event matrices created for JPDA previously
with indice j = 0 corresponding to a dummy measurement which will describe the perceivability state
of each target t.
Brief description of parametric IJPDA algorithm from [38] is iven below:
IJPDA also enumerates all feasible joint association events θk in the current scan k. A feasible joint
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association event is a set of nonconflicting validated measurement-to-track pairings in which a mea-
surement can originate from only one source, and at most one measurement can originate from a target
as in the JPDA. Any number of measurements can originate from clutter.
In IJPDA, we have formed and checked our feasible joint association events considered for all optimal
algorithms, by considering the example given in [38] because it is more clear to understand and easy
to implement.
To automatically form all feasible joint events by considering the validation matrix(as in the example
given in [38]) for T targets and mk measurements for current scan k, the θt

k, j’s are denoted as the single
events making up a joint event θk. Each θt

k, j denotes the single event that measurement j ( j = 1, ...,mk)
originated from target t (t = 0, 1, ..., T ), where mk is the total number of measurements in the current
scan k and t = 0 denotes that the measurement is a clutter detection.
The binary target detection indicator denoted with σk,t for target t (t = 0, 1, ..., T ) and the binary mea-
surement association indicator denoted with τk, j for measurement j ( j = 1, ...,mk) and the quantity
ϕk have been previously defined for JPDA, also they are considered to be used as in the same way in
IJPDA also.
As a difference from JPDA, for IJPDA, the binary target perceivability indicator, denoted with πk,t, is
defined for target t (t = 0, 1, ..., T ), has a value of one if the target is perceivable and it is zero if it is
unperceivable.
The joint association event probabilities, denoted with P{θk |Zk}, are given by

P{θk |Zk} = γ(θk)
Ck

(3.29)

where the normalization constant Ck is

Ck =
∑
θk

γ(θk) (3.30)

and

γ(θk) = λϕk

mk∏
j=1

(Λk,t j, j)
τk, j

T∏
t=1

[(PD)σk,t (1 − PD)1−σk,t ][(POt
k|k−1)πk,t (1 − POt

k|k−1)1−πk,t ] (3.31)

where Zk denotes the set of all measurements from the initial time to current scan k (all the measure-
ments in all scans), λ is the spatial density of the clutter. The Gaussian likelihood Λk,t j, j of associating
measurement j with the track t j to which it is assigned in the joint event θk at current scan k is given
by

Λk,t j, j =
1√

|2πS k,t j, j|
exp
{
− 1

2
νT

k,t j, j(S k,t j, j)
−1νk,t j, j

}
(3.32)

where |2πS k,t j, j| is the determinant of 2πS k,t j, j, νk,t j, j is the residual for track t j and measurement j and
S k,t j, j is the residual covariance (on Table 2.1).
If (3.31) is compared with (3.25), there is an extra term POt

k|k−1 denotes a priori probability of perceiv-
ability of target t at current scan k. This is a propagated term of POt

k−1|k−1, a posteriori probability of
perceivability of target t, coming from previous scan k − 1 which is computed by following the same
process (for each aarget t this process is independent) as shown in equations from (3.11) to (3.16).
By considering an important remark in [38], integrated joint event probability evaluaions has shown to
form a huge number of integrated event matrices with an example in each scan k compared to JPDA
due to target perceivability event integrated with feasible event matrices formed for JPDA. By follow-
ing this[38] remark, it has been shown that IJPDA can be simplified in track maintenance applications.
Because for track maintenace, it is stated in [38] that marginal data association probabilities are re-
quired which they do not depend on target perceivability parameter.
By following this result[38], the marginal data association probability of each target t (t = 0, 1, ..., T )
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originating the measurement j denoted with βt
k, j where ( j = 1, ...,mk), the probability that none of the

measurements is target originated, denoted with βt
k,0 and the probability that target t is unperceivable,

denoted with βt
k,0̄

, at current scan k, are reduced in a form

βt
k, j =

∑
θk :θt

k, jϵθk

P{θk |Zk}POt
k|k−1

∏
j,t

(PO j

k|k−1)σk, j (3.33)

βt
k,0 =

∑
θk :θt

k, jϵθk

P{θk |Zk}POt
k|k−1

∏
j,t

(PO j

k|k−1)σk, j (1 − σk,t) (3.34)

βt
k,0̄ =

∑
θk :θt

k, jϵθk

P{θk |Zk}[1 − POt
k|k−1]

∏
j,t

(PO j

k|k−1)σk, j (1 − σk,t) (3.35)

As in the JPDA, marginal data association probabilities are used for each track t separately to update
their kinematic state estimates individually. So, by inclusion of (3.35) as an extra data association
probability for each track t the rest of computation from (3.5) to (3.10) are identical with PDA.
Hence the computation cost involved in IJPDA has become almost the same (as the results at Chapter
4 indicates) compared to JPDA. Only the cost of compuation of (3.35) is added to cost of compuation
of (3.35) JPDA.
There is also a fundamental remark which can be proved by setting the probability of target perceiv-
ability as POt

k|k−1 = 1 in equations (3.33), (3.34) and (3.35) where we get (3.27), (3.28) and βt
k,0̄
= 0

consistently.

3.2.3 Joint Integrated Probabilistic Data Association (JIPDA) Algorithm

As in the IJPDA algorithm, Joint Integrated Probabilistic Data Association (JIPDA) algorithm also
adds a track quality measure to JPDA, which is the concept of track existence. The main difference
between JIPDA and IJPDA alorithms is that JIPDA[34] calculates the track state estimate pdf “con-
ditioned" on target existence, whereas, in IJPDA, track state estimate “depends" on the probability of
target perceivability. Due to nonperceivable target possibility, the number of feasible joint events is
much larger than both JIPDA and JPDA. JIPDA enumarates the same feasible joint events as JPDA.
JIPDA is developed as a multitarget generalization of IPDA algorithm derived b the authors[28]. It
uses the Probability of Track Existence and computes data association probabilities and the probability
of track existence as an extra state for track update. It is stated in [34] that JIPDA becomes identical
to IPDA when tracking single target in clutter situations.
The propagation model for track existence can be selected as either of Markov Chain One or Markov
Chain Two models where we have discussed about these models and for consistency in implementa-
tion for overall IPDA-based algorithms, in JIPDA, Markov Chain One model is considered and will be
presented as the propagation model for track existence.
As in the IPDA both parametric and nonparametric versions of JIPDA is available. However, we con-
sider using parametric version in our simulations. So, brief description of parametric version of JIPDA
from [34, 18] is presented below:
JIPDA enumerates all feasible joint association events θk in the current scan k as in the JPDA. Feasible
joint association events are formed which is a set of nonconflicting validated measurement-to-track
pairings in which a measurement can originate from only one source, and at most one measurement
can originate from a target. Any number of measurements can originate from clutter.
For formation of feasible joint association events, the same process as in JPDA is accomplished.
To automatically form all feasible joint events by considering the validation matrix(as in the example
given in [38]) for T targets and mk measurements for current scan k, in [34, 18], χi is given as the joint
event i, and X is given as the number of joint events in the cluster. T0 and T1 are defined as the set of
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tracks allocated no measurements and the set of tracks allocated one measurement respectively in the
joint event. The a posteriori probability of χi is given

P{χi|Zk} = 1
Ck

∏
tϵT0

(1 − PDPGψ
t
k|k−1)

∏
tϵT1

(
PDPGψ

t
k|k−1

pt
i

ρt
i

)
(3.36)

where Ck is the normalization constant, rest of the parameters are nothing more than multitarget ex-
tensions of related parameters given in IPDA.
The joint events must form a complete set where the constant Ck is calculated by using

X∑
i=1

P{χi|Zk} = 1 (3.37)

The a posteriori probabilities of individual track events are obtained by summing the a posteriori
probabilities of all joint events containing the event.
Ξ(t, j) is denoted as the set of joint events in which track t has been allocated measurement j, with
measurement 0 denoting no measurement. Set Ξ(t, j) may be empty.
The a posteriori probability of no measurement originating from the track t is

P{χt
0|Zk} =

∑
χeϵΞ(t,0)

P{χe|Zk} (3.38)

and a posteriori probability that track t exists and that measurement j originated from the track t is

P{χtχt
j|Zk} =

∑
χeϵΞ(t, j)

P{χe|Zk} (3.39)

The a posteriori probability that track t exists and that no measurements have originated from track t is

P{χtχt
0|Zk} =

(1 − PDPG)ψt
k|k−1

1 − PDPGψ
t
k|k−1

P{χt
0|Zk} (3.40)

The a posteriori probability of track existence of track t can be computed as

ψt
k|k = P{χtχt

0|Zk} +
∑

jϵ{µ(t, j)>0}
P{χtχt

j|Zk} (3.41)

where {µ(t, j) > 0} denotes the set of measurements falling in the validation region of track t.
The marginal data association probability of each target t (t = 0, 1, ..., T ) originating the measurement
j denoted with βt

k, j where ( j = 1, ...,mk), the probability that none of the measurements is target
originated, denoted with βt

k,0 are computed as

βt
k, j =

P{χtχt
j|Zk}

ψt
k|k

(3.42)

βt
k,0 =

P{χtχt
0|Zk}

ψt
k|k

jϵ{µ(t, j) > 0} (3.43)

As in the JPDA, marginal data association probabilities are used for each track t separately to update
their kinematic state estimates individually. The rest of computation from (3.5) to (3.10) are identical
with PDA.
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3.2.4 Linear Multitarget Integrated Probabilistic Data Association (LMIPDA) Algorithm

Optimal approaches, mentioned so far, in multitarget tracking in clutter considers all feasible measurement-
to-track allocations to achieve optimal data association performance. JIPDA is the multitarget general-
ization of IPDA[28], in which the number of operations grow exponentially with the number of tracks
and measurements. Linear Multitarget Integrated Probabilistic Data Association (LMIPDA) algorithm
has the number of operations which is linear in the number of tracks and the number of measurements,
with apperently negligable performance penalty compared to JIPDA[32, 19].
LMIPDA is an IPDA filter to which Linear Multitarget (LM) procedure has been applied. LM reduces
the computational complexity of multitarget tracking in clutter by eliminating the measurement-to-
track assignment step entirely[32, 19]. Instead, the clutter density at each measurement point is mod-
ified by the pdf of measurements originating from the neighboring tracks. Other tracks are treated as
additional clutter sources and LM achieves multitarget tracking capabilities using single target tracking
compuational resources.
In IPDA, ρt

k, j(Equation (3.22)) is defined as the clutter density in validation region of track t for mea-
surement zk, j at current scan k, then the a priori probability that jth measurement is the true measure-
ment for track t given single track t is

Pt
k, j = PDPGψ

t
k|k−1

pt
k, j

ρt
k, j∑mt

k
j=1

pt
k, j

ρt
k, j

(3.44)

where pt
k, j has been defined in Equation (3.21).

The modified clutter density for track t at the point zk, j at current scan k is

Ωt
k, j = ρ

t
k, j +
∑
s=1
s,t

ps
k, j

Ps
k, j

1 − Ps
k, j

(3.45)

where T is the number of tracks.
Ωt

k, j is used for each track t separately and individually instead of clutter density ρt
k, j (via substitution

to Equations from (3.17) to (3.22) where the equations are given without upscriprt t) when calculating
the data association probabilities for track t.
The marginal data association probabilities are computed individually from IPDA parts of the algo-
rithm as in the classical IPDA fashion, however, in LMIPDA, T IPDA is used to compute the marginal
data association probability related to each target t where t = 0, 1, ..., T . So,the marginal data associa-
tion probability of each target t (t = 0, 1, ..., T ) originating the measurement j denoted with βt

k, j where
( j = 1, ...,mk), the probability that none of the measurements is target originated, denoted with βt

k,0 are
computed as

βt
k, j =

PDPG pt
k, j

(1 − δt
k)Ωt

k, j
( j = 1, ...,mk) (t = 1, ..., T ) (3.46)

βt
k,0 =

1 − PDPG

1 − δt
k

( j = 1, ...,mk) (t = 1, ..., T ) (3.47)

a posteriori probability of track exisence is computed for each track t as

ψt
k|k =

(1 − δt
k)ψt

k|k−1

1 − δt
kψ

t
k|k−1

(t = 1, ..., T ) (3.48)

where

δt
k = PDPG

(
1 −

mk∑
j=1

pt
k, j

Ωt
k, j

)
(t = 1, ..., T ) (3.49)
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As in the JPDA, once the marginal data association probabilities are computed they are used for each
track t separately to update their kinematic state estimates individually. The rest of computation from
(3.5) to (3.10) are identical with PDA.
An important remark is made in [32, 19], if the tracks are far apart, their validation regions do not
intersect, Ωt

k, j = ρ
t
k, j for all j and t at scan k where LMIPDA reverts to IPDA.
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CHAPTER 4

SIMULATIONS

Tracking estimation accuracy of each target tracking algorithm under concern has been compared
via RMSE performance evaluations. In our simulations, RMSE performance of each algorithm is
computed by considering simulation runs, where the same number of confirmed true tracks has been
established at each run for all target tracking algorithms, are taken into account.
Let us consider that K is achieved as the number of successful runs out of total L runs, so, K runs
are taken into account for RMSE performance computation. Among L runs, if N total successful
confirmed true tracks out of M overall total tracks in M scans over all runs have been established by
the target tracking algorithm under concern, has M − N track losses. These L − K run periods are
not taken into account for RMSE performance computation. However, these run periods are taken
into account for the computation of the percentage of track loss which has been defined in [48]. To
compare the reliability[48] of the target tracking algorithm under concern, the percentage of track loss
is computed by averaging M−N over total M scans in L runs. Then, overall formula for the percentage
of track loss of the target tracking algorithm becomes

the percentage o f track loss =
M − N

M
x100% (4.1)

In our simulations, for fair comparison of RMSE performances, the number of successful runs, K, is
fixed as 100 which means the number of total runs, L, (L ≥ 100) may vary for each target tracking
algorithm to achieve K succesful runs, (K = 100).
Some of the parameters of the algorithms can be tuned to optimal values to achieve optimal overall
system performance. These parameters are often selected by a priori information about the system
under concern. However, by regarding no a priori information about the system, these parameters can
also be set optimally via detailed Monte Carlo simulations which has been recommended in [10]. The
List of Tunable Parameters of algorithms is given in Appendix A.
We have carried out simulations in five consecutive test scenarios to compare the RMSE performance
of Single Target Tracking algorithms including IMM-PDA, IMM-IPDA and Optimal approaches in
multitarget tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA with an example of Linear
Multi-target approaches in multitarget tracking including IMM-LMIPDA algorithm. At the end of
each section, we present the computation time of each algorithm has been used in these test scenarios
to achieve the computational load evaluations.
We conduct the simulations in MATLAB 2008 platform in a CPU with specifications:
Intel R⃝CoreTMi3 - 2100 CPU with 3.10 GHz with 4 GB RAM
in order to get the following RMSE Performance plots and the tables showing the percentage of track
loss and execution time of the target tracking algorithms.
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4.1 Single Target Tracking Scenario

A two-dimensional surveillance scenario is formed where a single point target is present which can
move either on-road or off-road. It may accelerate or decelerate at some time instants, generally on-
road in the course of straight movement. It may turn either some direction at junction points. It may
break to off-road or enter the road at some points. The simulation scenario (as illustrated in Figure
4.1) is formed where a real ground target’s movement taken into consideration. Hence, its movements
in the simulation scenario is thought to be benign in a constraint fashion. The true target trajectories,
measurement observed from the target is labeled and false alarm measurements considered as clutter
and the resulting state estimates are all depicted in Figure 4.1. As illustrated in Figure 4.1, heavy and
dense clutter measurements are always present as in actual ground target tracking case. Measurement
noise is added inherently to the true state (position) of the target under track with a variance 30 m to
simulate the target observations obtained from the system. Clutter measurements are generated per
scan where the distribution of number of clutter measurements is Poisson with a rate λ = 10 at each
scan where they are distributed uniformly on the surveillance region.

Figure 4.1: Tracking of single target in clutter

In the simulations, the track is initiated from a single measurement in a scan. New measurements will
become the predicted positions of the new tracks in the next scan. In the next scan, around the pre-
dicted position an elliptical validation region (gate) is formed for the track and a new track is formed
from each measurement that fall into the validation gate. Track is formed, maintained and deleted per
scan independently.
For IMM-IPDA, the initial probability of track existence is considered as 0.2, in our simulations,
where the references[29, 28] recommend that value due to sensitivity of the algorithms to this param-
eter. Markov Chain One model uses transition matrix Π with entries:

Π11 = 0.98; Π21 = 0;
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Π11 = 0.02; Π21 = 1;

where also the references[29, 28] uses the same transition matrix, we used this matrix also for con-
vinience.
For the kinematic state estimator, an IMM estimator with two model-based Kalman Filters is consid-
ered which are CV with Low Process Noise for nonmaneuvering motion and CV with High Process
Noise for any maneuvers including coordinated turns and acceleration modes, with process noise val-
ues are considered as with standard deviations 2.5 m, 30 m respectively. As discussed at [3] and
following the result presented in [3] that, it is sufficient to use because our targets move in a constraint
fashion, not any evasive, high or different maneuvers are expected. The target and observation models
used in Kalman Filters are taken from the references [3] and [1], respectively.
Simulation experiments consist of K = 100 runs. In each simulation run, target retraces the trajectory,
however, the measurements obtained from the target as well as clutter measurements number and po-
sition are generated independently in each run and scan.
The resulting RMSE Performance plot is presented in Figure 4.2. The execution time comparison of
these algorithms considered, shown with “STT" in paranthesis, are presented on Table 4.2, in Section
4.2.

Figure 4.2: RMSE Performance Comparison of IMM-PDA with IMM-IPDA in Single Target Tracking
Scenario

The result shown in Figure 4.2 demonstrates that, IMM-IPDA shows slightly better performance than
IMM-PDA due to the probability of track existence parameter updated as an additional state. Perfor-
mance improvements are observed over observation time period when the target undergoes maneuver
where it may fall out of the validation region easily.
The result shown in Figure 4.2 is an important outcome which will supply us a “ground truth" to
compare the multitarget tracking algorithms presented in consecutive sections.
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4.2 Convoy Scenario

A two-dimensional surveillance scenario is formed where two point targets are present which can move
either on-road or off-road. They move at the same time, may accelerate or decelerate independently at
some time instants, generally on-road in the course of straight movement. So, their trajectories may
intersect at some points. They may turn either some direction at junction points. They may break to off-
road or enter the road at some points. The simulation scenarios are formed where real ground targets’
movement taken into consideration. Hence, their movements are thought to be benign in a constraint
fashion. The true target trajectories, measurements observed from targets are labeled individually and
false alarm measurements considered as clutter and the resulting state estimates are all depicted in
Figure 4.3. As illustrated in Figure 4.3, heavy and dense clutter measurements are always present as
in real ground target tracking case. Measurement noise is added inherently to actual states (positions)
of the targets under track with a variance 30 m to simulate the target observations obtained from the
system. Clutter measurements are generated per scan for each target where the distribution of the
number of clutter measurements is Poisson with a rate λ = 10 at each scan where they are distributed
uniformly on the surveillance region.

Figure 4.3: Tracking of two targets in clutter moving in a convoy fashion

As illustrated in Figure 4.3, two targets move in a convoy fashion. As mentioned above, they move
independently, may accelerate or decelerate at some time instants independently. This results in the
possibility that their trajectories may intersect at some points.
In all simulations, each track is initiated from a single measurement in a scan. New measurements
will become the predicted positions of the new tracks in the next scan. In the next scan, around the
predicted positions elliptical validation regions (gates) are formed individually and independently for
each track and new tracks are formed from each measurement that fall into each validation gate in-
dividually. Each track is formed, maintained or deleted independently as in the single target tracking
case. To control the number of tracks formed in each scan, measurements are divided into sets. All sets
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consists of the measurements used to update an individual existing track. Each track has an indepedent
validation gate which means that some measurements from the other validation gate may be used to
update more than one track.
For all probability of track existence based target tracking algorithms (IMM-IPDA, IMM-IJPDA,
IMM-JIPDA and IMM-LMIPDA), the initial probabilities of track existence are considered as 0.2
individually, in our simulations, where the references[29, 28] recommend that due to sensitivity of the
algorithms to this parameter. Markov Chain One model uses transition matrix Π with entries:

Π11 = 0.98; Π21 = 0;

Π11 = 0.02; Π21 = 1;

where also the references[29, 28] uses the same transition matrix, we used this matrix also for con-
vinience.
Prunning is considered in this scenario before the application of optimal approaches in multitarget data
association algorithms including JPDA, IJPDA and JIPDA in IMM-JPDA, IMM-IJPDA and IMM-
JIPDA, respectively, where the measurements at the intersection region of the gates are taken into
consideration to reduce the computation requirements to a feasible level. In [30, 34], JIPDA and
IJPDA are applied only on confirmed tracks, for unconfirmed tracks IPDA[29, 28] and IPDA[39] is
applied respectively. In our simulations, JPDA, IJPDA and JIPDA are applied on all tracks and the
measurements at the intersection region of the gates.
During tracking, tracks are confirmed or deleted as in the single target tracking case, but herein, in
multitarget tracking case, all the operations are done individually and independently for each track. In
the application of multitarget data association algorithms only data association operation is carried out
jointly but at the end marginal data association probabilities are exracted from joint data association
probabilities to update individual tracks under concern.
For the kinematic state estimator, an IMM estimator with two model-based Kalman Filters is consid-
ered consisting of CV(Constant Velocity) with Low Process Noise for nonmaneuvering motion and
CV with High Process Noise for any maneuvers including coordinated turns and acceleration modes,
with process noise values are considered with standard deviations 2.5 m, 30 m respectively, as in the
single target tracking case. As discussed at [3] and following the result presented in [3] that, it is suffi-
cient to use two model-based filters because our targets move in a constraint fashion, not any evasive,
high or different maneuvers are expected. The target and observation models used in Kalman Filters
are taken from the references [3] and [1], respectively.
The RMSE performance of single target tracking algorithms including IMM-PDA, IMM-IPDA and
optimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA with
an example of Linear Multi-target Approaches in multitarget tracking including IMM-LMIPDA algo-
rithm has been compared.
Each simulation experiment consists of K = 100 runs. In each simulation run, targets retrace the tra-
jectory, however, for the measurements obtained from the targets as well as clutter measurements, the
numbers and positions of all measurements are generated independently from a pre-specified distribu-
tions per each run and scan.
The resulting RMSE Performance plots for Target 1 and Target 2 are obtained individually and pre-
sented in Figures 4.4, 4.6, 4.8 and 4.5, 4.7, 4.9 respectively. The percentage of track loss and the
computation time of algorithms in comparison are presented on Tables 4.1 and 4.2, respectively, in
where IMM-PDA and IMM-IPDA considered in multitarget tracking scenarios, shown with “MTT" in
paranthesis, in single target tracking scenario (in previous section), shown with “STT" in paranthesis.
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Figure 4.4: RMSE Performance Comparison of all present Target Tracking Algorithms in Convoy
Scenario for Target 1

Before starting comparison of performances of target tracking algorithms, an important result is ex-
posed via comparison of the Figure 4.2 with Figures 4.4, 4.6 and 4.5, 4.7, where the performance of
single target tracking algorithms deteriorates significantly in multitarget tracking situations in conve-
nience where also been shown in [23, 24].
The results in Figures 4.4, 4.6 and 4.5, 4.7 demonstrate that, IMM-IPDA shows slightly better perfor-
mance, also in multitarget tracking situations, than IMM-PDA due to the probability of track existence
parameter updated as an additional state and used for track update. However, in multitarget tracking

Figure 4.5: RMSE Performance Comparison of all present Target Tracking Algorithms in Convoy
Scenario for Target 2
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Figure 4.6: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Convoy Scenario for Target 1

situations, IMM-IPDA still consists a single target data associaition algorithm, which is basically IPDA
for each target track. Hence, much performance improvement than achieved is not expected than any
multitarget tracking algorithms as shown also in [35, 32, 18, 19].
A notable performance improvement has been accomplished with IMM-LMIPDA than both IMM-
PDA and IMM-IPDA as shown in Figures 4.4, 4.6 and 4.5, 4.7 where it is expected due to multiarget
tracking capability by modifying clutter density with a priori probability of measurement origin param-

Figure 4.7: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Convoy Scenario for Target 2
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Figure 4.8: RMSE Performance Comparison of IMM-LMIPDA with Optimal Multitarget Tracking
Algorithms in Convoy Scenario for Target 1

eter (recalled from Eq. (3.44)) interchanged between tracks which is also convenient with the results
presented in [35, 32, 18, 19].
In the comparison of optimal approaches in multitarget tracking, the results shown in Figures 4.4, 4.8
and 4.5, 4.9 proves the theoretical enhancement of IJPDA algorithm[38] that IMM-IJPDA shows dra-
matically better performance than IMM-JPDA due to the probability of track perceivability parameter
computed recursively to calculate track state estimates. IMM-JIPDA shows the “best" performance
among all multitarget tracking algorithms due to the probability of track existence parameter updated

Figure 4.9: RMSE Performance Comparison of IMM-LMIPDA with Optimal Multitarget Tracking
Algorithms in Convoy Scenario for Target 2
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Table4.1: Track Loss Statistics in Convoy Scenario

Target Tracking Algorithm The percentage of Track Loss (%)
IMM-PDA (STT) 0.243
IMM-IPDA (STT) 0.171
IMM-PDA (MTT) 0.545
IMM-IPDA (MTT) 0.371
IMM-LMIPDA 35.2517
IMM-JPDA 0.3886
IMM-IJPDA 0.57796
IMM-JIPDA 0.12931

Table4.2: Computation time Comparison in Convoy Scenario

Target Tracking Algorithm Computation time (in seconds)
IMM-PDA (STT) 185.489790
IMM-IPDA (STT) 188.984625
IMM-PDA (MTT) 355.237801
IMM-IPDA (MTT) 359.318903
IMM-LMIPDA 391.983213
IMM-JPDA 14278.511871
IMM-IJPDA 14381.274496
IMM-JIPDA 14339.510438

as an additional state used for both track update and track state estimate calculations which is also
convenient with the idea and results presented in [30, 34].
An important result can also be inferred from Figures 4.8 and 4.9 that IMM-LMIPDA follows the
RMSE performance of optimal approaches closely with apparently negligible performance deteoria-
tion which is also convenient with the results presented in [35, 32, 18, 19].
Table 4.2 indicates that, IMM-LMIPDA takes negligibly small increment in execution time more than
both IMM-PDA (MTT) and IMM-IPDA (MTT); where the increment is linear when compared with
the execution time of both IMM-PDA (STT) and IMM-IPDA (STT) in the number of target tracks
sense. Whereas all optimal multitarget tracking algorithms (IMM-JPDA, IMM-IJPDA and IMM-
JIPDA) require bursts of computation time compared to IMM-LMIPDA and single target tracking
algorithms IMM-PDA (MTT) and IMM-IPDA (MTT) due to regarding of all feasible joint events for
measurement-to-track assignments and computation of probabilities and likelihoods of all joint events.
Even prunning of distant gate measurements are applied before data association, the computation time
requirement of optimal multitarget tracking algorithms (IMM-JPDA, IMM-IJPDA and IMM-JIPDA)
remain more than 30 times of computation time requirement of IMM-LMIPDA and single target track-
ing algorithms IMM-PDA (MTT) and IMM-IPDA (MTT). This result proves also the information dis-
cussed in [35, 32, 18, 19] and detailed analysis given in [19] in convenience.
Although IMM-LMIPDA shows close RMSE performance with less computation time when compared
with optimal approaches (IMM-JPDA, IMM-IJPDA and IMM-JIPDA), Table 4.1 indicates that IMM-
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LMIPDA suffers from track loss inevitably which is one of common problems of general suboptimal
approaches[43, 19, 44, 45]. The results are convinient with the results presented in [48, 47, 46], where
in [48, 47, 46] results are computed for each target individually, whereas on Table 4.1, the averaged
values are presented.
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4.3 Merging in a junction Scenario

A two-dimensional surveillance scenario is formed where two point targets are present which can move
either on-road or off-road. They move at the same time, may accelerate or decelerate independently at
some time instants, generally on-road in the course of straight movement. So, their trajectories may
intersect at some points. They may turn either some direction at junction points. They may break to off-
road or enter the road at some points. The simulation scenarios are formed where real ground targets’
movement taken into consideration. Hence, their movements are thought to be benign in a constraint
fashion. The true target trajectories, measurements observed from targets are labeled individually and
false alarm measurements considered as clutter and the resulting state estimates are all depicted in
Figure 4.10. As illustrated in Figure 4.10, heavy and dense clutter measurements are always present as
in real ground target tracking case. Measurement noise is added inherently to actual states (positions)
of the targets under track with a variance 30 m to simulate the target observations obtained from the
system. Clutter measurements are generated per scan for each target where the distribution of number
of clutter measurements is Poisson with a rate λ = 10 at each scan where they are distributed uniformly
on the surveillance region.

Figure 4.10: Tracking of two targets in clutter merging in a junction

In this scenario, in addition to previous scenario(as illustrated in Figure 4.3), they start movement at
distant points and join in a junction point and continue moving in a convoy fashion. Like in the second
scenario, they move independently, may accelerate or decelerate at some time instants independently
which conveys the possibility that their trajectories may intersect or at some points or depart com-
pletely from eachother after the time instant they merge together.
In all simulations, each track is initiated from a single measurement in a scan. New measurements
will become the predicted positions of the new tracks in the next scan. In the next scan, around the
predicted positions elliptical validation regions (gates) are formed individually and independently for
each track and new tracks are formed from each measurement that fall into each validation gate in-
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dividually. Each track is formed, maintained or deleted independently as in the single target tracking
case. To control the number of tracks formed in each scan, measurements are divided into sets. All sets
consists of the measurements used to update an individual existing track. Each track has an indepedent
validation gate which means that some measurements from the other validation gate may be used to
update more than one track.
For all probability of track existence based target tracking algorithms (IMM-IPDA and IMM-LMIPDA),
the initial probabilities of track existence are considered as 0.2 individually, in our simulations, where
the references[29, 28] recommend that due to sensitivity of the algorithms to this parameter. Markov
Chain One model uses transition matrix Π with entries:

Π11 = 0.98; Π21 = 0;

Π11 = 0.02; Π21 = 1;

where also the references[29, 28] uses the same transition matrix, we used this matrix also for con-
vinience.
During tracking, tracks are confirmed or deleted as in the single target tracking case, but herein, in
multitarget tracking case, all the operations are done individually and independently for each track. In
the application of multitarget data association algorithms only data association operation is carried out
jointly but at the end marginal data association probabilities are exracted from joint data association
probabilities to update individual tracks under concern.
For the kinematic state estimator, an IMM estimator with two model-based Kalman Filters is consid-
ered consisting of CV(Constant Velocity) with Low Process Noise for nonmaneuvering motion and
CV with High Process Noise for any maneuvers including coordinated turns and acceleration modes,
with process noise values are considered with standard deviations 2.5 m, 30 m respectively, as in the
single target tracking case. As discussed at [3] and following the result presented in [3] that, it is suffi-
cient to use two model-based filters because our targets move in a constraint fashion, not any evasive,
high or different maneuvers are expected. The target and observation models used in Kalman Filters
are taken from the reference [3] and [1] respectively.
Each simulation experiment consists of K = 100 runs. In each simulation run, targets retrace the tra-
jectory, however, for the measurements obtained from the targets as well as clutter measurements, the
numbers and positions of all measurements are generated independently from a pre-specified distribu-
tions per each run and scan.
The RMSE performance of single target tracking algorithms including IMM-PDA, IMM-IPDA with an
example of Linear Multi-target Approaches in multitarget tracking including IMM-LMIPDA algorithm
has been compared. Opimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA
and IMM-JIPDA are not considered in comparison because prunning of distant gate measurements
has been applied before data association, only the measurements at the intersection region of the gates
are taken into consideration to reduce the computation requirements of algorithms to a feasible level.
Hence, comparison of these algorithms under this situation becomes idle. In addition to this, using
single target data association algorithms or Linear Multi-target Approaches in data association where
data association is applied to all tracks and measurements, has also been shown[32, 37, 19] much more
practical than optimal approaches in this situation.
The resulting RMSE Performance plots for Target 1 and Target 2 are obtained individually and pre-
sented in Figures 4.11 and 4.12, respectively. The percentage of track loss and the computation time
of algorithms in comparison are presented on Tables 4.3 and 4.4, respectively, where single target
tracking algorithms considered in multitarget tracking scenarios, shown with “MTT" in paranthesis.
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Figure 4.11: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Merging in a junction Scenario for Target 1

An important result can be inferred from Figures 4.11 and 4.12 that IMM-LMIPDA shows close per-
formance with IMM-IPDA in isolated tracks situation where tracks are sufficiently far apart where
their validation regions (gates) do not intersect. The enhancement in the RMSE performance of IMM-
LMIPDA which is clearly observed after the first 50 seconds in Figures 4.11 and 4.12 where the gates
of tracks do not intersect (as illustrated in Figure 4.10). This result proves the theoretical foundation
and results given in [35, 32, 18, 19] in convenience. Table 4.4 shows again and proves that, IMM-
LMIPDA takes negligibly small increment in computation time more than IMM-PDA (MTT) and

Figure 4.12: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Merging in a junction Scenario for Target 2

47



Table4.3: Track Loss Statistics in Merging in a junction Scenario

Target Tracking Algorithm The percentage of Track Loss (%)
IMM-PDA (MTT) 0.733
IMM-IPDA (MTT) 0.446
IMM-LMIPDA 33.093

Table4.4: Computation time Comparison in Merging in a junction Scenario

Target Tracking Algorithm Computation time (in seconds)
IMM-PDA (MTT) 463.995819
IMM-IPDA (MTT) 468.006861
IMM-LMIPDA 479.113278

IMM-IPDA (MTT) as inferred from Table 4.2 also.
Although IMM-LMIPDA shows better RMSE performance with when compared with Single tar-
get tracking algorithms IMM-PDA (MTT) and IMM-IPDA (MTT), Table 4.3 indicates that IMM-
LMIPDA is more susceptible to track loss which is one of common problems of general suboptimal
approaches[43, 19, 44, 45]. The results are convinient with the results presented in [48, 47, 46, 44],
where in [48, 47, 46, 44] results are computed for each target individually, whereas on Table 4.3, the
averaged values are presented.
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4.4 Merging-Departing in junctions Scenario

A two-dimensional surveillance scenario is formed where two point targets are present which can move
either on-road or off-road. They move at the same time, may accelerate or decelerate independently at
some time instants, generally on-road in the course of straight movement. So, their trajectories may
intersect at some points. They may turn either some direction at junction points. They may break to off-
road or enter the road at some points. The simulation scenarios are formed where real ground targets’
movement taken into consideration. Hence, their movements are thought to be benign in a constraint
fashion. The true target trajectories, measurements observed from targets are labeled individually and
false alarm measurements considered as clutter and the resulting state estimates are all depicted in
Figure 4.13. As illustrated in Figure 4.13, heavy and dense clutter measurements are always present as
in real ground target tracking case. Measurement noise is added inherently to actual states (positions)
of the targets under track with a variance 30 m to simulate the target observations obtained from the
system. Clutter measurements are generated per scan for each target where the distribution of number
of clutter measurements is Poisson with a rate λ = 10 at each scan where they are distributed uniformly
on the surveillance region.

Figure 4.13: Tracking of two targets in clutter merging-departing in junctions

In this scenario, in addition to previous scenario(as illustrated in Figure 4.10), after 130 seconds later
they start movement to distant directions in a junction point and depart completely. Like in the third
scenario, they move independently, may accelerate or decelerate at some time instants independently
which conveys the possibility that their trajectories may intersect or at some points or depart com-
pletely from eachother after the time instant they merge together.
In all simulations, each track is initiated from a single measurement in a scan. New measurements
will become the predicted positions of the new tracks in the next scan. In the next scan, around the
predicted positions elliptical validation regions (gates) are formed individually and independently for
each track and new tracks are formed from each measurement that fall into each validation gate in-
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dividually. Each track is formed, maintained or deleted independently as in the single target tracking
case. To control the number of tracks formed in each scan, measurements are divided into sets. All sets
consists of the measurements used to update an individual existing track. Each track has an indepedent
validation gate which means that some measurements from the other validation gate may be used to
update more than one track.
For all probability of track existence based target tracking algorithms (IMM-IPDA and IMM-LMIPDA),
the initial probabilities of track existence are considered as 0.2 individually, in our simulations, where
the references[29, 28] recommend that due to sensitivity of the algorithms to this parameter. Markov
Chain One model uses transition matrix Π with entries:

Π11 = 0.98; Π21 = 0;

Π11 = 0.02; Π21 = 1;

where also the references[29, 28] uses the same transition matrix, we used this matrix also for con-
vinience.
During tracking, tracks are confirmed or deleted as in the single target tracking case, but herein, in
multitarget tracking case, all the operations are done individually and independently for each track. In
the application of multitarget data association algorithms only data association operation is carried out
jointly but at the end marginal data association probabilities are exracted from joint data association
probabilities to update individual tracks under concern.
For the kinematic state estimator, an IMM estimator with two model-based Kalman Filters is consid-
ered consisting of CV(Constant Velocity) with Low Process Noise for nonmaneuvering motion and
CV with High Process Noise for any maneuvers including coordinated turns and acceleration modes,
with process noise values are considered with standard deviations 2.5 m, 30 m respectively, as in the
single target tracking case. As discussed at [3] and following the result presented in [3] that, it is suffi-
cient to use two model-based filters because our targets move in a constraint fashion, not any evasive,
high or different maneuvers are expected. The target and observation models used in Kalman Filters
are taken from the reference [3] and [1] respectively.
Each simulation experiment consists of K = 100 runs. In each simulation run, targets retrace the tra-
jectory, however, for the measurements obtained from the targets as well as clutter measurements, the
numbers and positions of all measurements are generated independently from a pre-specified distribu-
tions per each run and scan.
The RMSE performance of single target tracking algorithms including IMM-PDA, IMM-IPDA with an
example of Linear Multi-target Approaches in multitarget tracking including IMM-LMIPDA algorithm
has been compared. Opimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA
and IMM-JIPDA are not considered in comparison because prunning of distant gate measurements
has been applied before data association, only the measurements at the intersection region of the gates
are taken into consideration to reduce the computation requirements of algorithms to a feasible level.
Hence, comparison of these algorithms under this situation becomes idle. In addition to this, using
single target data association algorithms or Linear Multi-target Approaches in data association where
data association is applied to all tracks and measurements, has also been shown[32, 37, 19] much more
practical than optimal approaches in this situation.
The resulting RMSE Performance plots for Target 1 and Target 2 are obtained individually and pre-
sented in Figures 4.14 and 4.15, respectively. The percentage of track loss and the computation time
of algorithms in comparison are presented on Tables 4.5 and 4.6, respectively, where single target
tracking algorithms considered in multitarget tracking scenarios, shown with “MTT" in paranthesis.
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Figure 4.14: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Merging-Departing in junctions Scenario for Target 1

An important result can be inferred from Figures 4.14 and 4.15 that IMM-LMIPDA shows close per-
formance with IMM-IPDA in isolated tracks situation where tracks are sufficiently far apart where
their validation regions (gates) do not intersect. The enhancement in the RMSE performance of IMM-
LMIPDA which is clearly observed after the first 50 and last 30 seconds in Figures 4.14 and 4.15
where the gates of tracks do not intersect (as illustrated in Figure 4.13). This result proves the the-
oretical foundation and results given in [35, 32, 18, 19] in convenience. Table 4.6 shows again and

Figure 4.15: RMSE Performance Comparison of IMM-LMIPDA with Single Target Tracking Algo-
rithms in Merging-Departing in junctions Scenario for Target 2
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Table4.5: Track Loss Statistics in Merging-Departing in junctions Scenario

Target Tracking Algorithm The percentage of Track Loss (%)
IMM-PDA (MTT) 0.843
IMM-IPDA (MTT) 0.719
IMM-LMIPDA 34.892

Table4.6: Computation time Comparison in Merging-Departing in junctions Scenario

Target Tracking Algorithm Computation time (in seconds)
IMM-PDA (MTT) 491.3286
IMM-IPDA (MTT) 492.90469
IMM-LMIPDA 497.360067

proves that, IMM-LMIPDA takes negligibly small increment in computation time more than IMM-
PDA (MTT) and IMM-IPDA (MTT) as inferred from Table 4.2 also.
Although IMM-LMIPDA shows better RMSE performance with when compared with Single tar-
get tracking algorithms IMM-PDA (MTT) and IMM-IPDA (MTT), Table 4.5 indicates that IMM-
LMIPDA is more susceptible to track loss which is one of common problems of general suboptimal
approaches[43, 19, 44, 45]. The results are convinient with the results presented in [48, 47, 46, 44],
where in [48, 47, 46, 44] results are computed for each target individually, whereas on Table 4.5, the
averaged values are presented.
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4.5 Single Target Tracking (Isolated Tracks) Scenario with Multitarget Tracking Algorithms

A two-dimensional surveillance scenario is formed where two point targets are present which can move
either on-road or off-road. They move at the same time, may accelerate or decelerate independently at
some time instants, generally on-road in the course of straight movement. So, their trajectories may
intersect at some points. They may turn either some direction at junction points. They may break to off-
road or enter the road at some points. The simulation scenarios are formed where real ground targets’
movement taken into consideration. Hence, their movements are thought to be benign in a constraint
fashion. The true target trajectories, measurements observed from targets are labeled individually and
false alarm measurements considered as clutter and the resulting state estimates are all depicted in
Figure 4.16. As illustrated in Figure 4.16, heavy and dense clutter measurements are always present as
in real ground target tracking case. Measurement noise is added inherently to actual states (positions)
of the targets under track with a variance 30 m to simulate the target observations obtained from the
system. Clutter measurements are generated per scan for each target where the distribution of number
of clutter measurements is Poisson with a rate λ = 10 at each scan where they are distributed uniformly
on the surveillance region.

Figure 4.16: Tracking of two targets in clutter where one of the targets stops at initial point

In this scenario, in addition to second scenario (as illustrated in Figure 4.3), they start movement at
the same point but one of the targets stops and continues not moving in a convoy fashion as in Figure
4.3. Like in the first scenario, as in Figure 4.1, moving target may accelerate or decelerate at some
time instants independently. After they start movement at the same point at initial time, they depart
completely from eachother at each time instant.
In all simulations, each track is initiated from a single measurement in a scan. New measurements
will become the predicted positions of the new tracks in the next scan. In the next scan, around the
predicted positions elliptical validation regions (gates) are formed individually and independently for
each track and new tracks are formed from each measurement that fall into each validation gate in-
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dividually. Each track is formed, maintained or deleted independently as in the single target tracking
case. To control the number of tracks formed in each scan, measurements are divided into sets. All sets
consists of the measurements used to update an individual existing track. Each track has an indepedent
validation gate which means that some measurements from the other validation gate may be used to
update more than one track.
For all probability of track existence based target tracking algorithms (IMM-IJPDA, IMM-JIPDA and
IMM-LMIPDA), the initial probabilities of track existence are considered as 0.2 individually, in our
simulations, where the references[29, 28] recommend that due to sensitivity of the algorithms to this
parameter. Markov Chain One model uses transition matrix Π with entries:

Π11 = 0.98; Π21 = 0;

Π11 = 0.02; Π21 = 1;

where also the references[29, 28] uses the same transition matrix, we used this matrix also for con-
vinience.
Prunning is not considered in this scenario (which has been considered in the second scenario) be-
fore the application of optimal multitarget data association algorithms including JPDA, IJPDA and
JIPDA in implementation of optimal multitarget tracking algorithms IMM-JPDA, IMM-IJPDA and
IMM-JIPDA, respectively.
During tracking, tracks are confirmed or deleted as in the single target tracking case, but herein, in
multitarget tracking case, all the operations are done individually and independently for each track. In
the application of multitarget data association algorithms only data association operation is carried out
jointly but at the end marginal data association probabilities are exracted from joint data association
probabilities to update individual tracks under concern.
For the kinematic state estimator, an IMM estimator with two model-based Kalman Filters is consid-
ered consisting of CV(Constant Velocity) with Low Process Noise for nonmaneuvering motion and
CV with High Process Noise for any maneuvers including coordinated turns and acceleration modes,
with process noise values are considered with standard deviations 2.5 m, 30 m respectively, as in the
single target tracking case. As discussed at [3] and following the result presented in [3] that, it is suffi-
cient to use two model-based filters because our targets move in a constraint fashion, not any evasive,
high or different maneuvers are expected. The target and observation models used in Kalman Filters
are taken from the reference [3] and [1], respectively.
Each simulation experiment consists of 100 runs. In each simulation run, targets retrace the trajectory,
however, for the measurements obtained from the targets as well as clutter measurements, the numbers
and positions of all measurements are generated independently from a pre-specified distributions per
each run and scan.
The RMSE performance of optimal approaches in multitarget tracking including IMM-JPDA, IMM-
IJPDA and IMM-JIPDA with an example of Linear Multi-target Approaches in multitarget tracking
including IMM-LMIPDA algorithm has been compared. For the optimal approaches in multitarget
tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA, prunning of distant gate measurements
is not considered before data association in this situation because in this scenario after the targets start
movement at the same point at initial time, they depart completely from eachother at each time instant.
Hence, prunning of distant gate measurements under this situation becomes idle. So, all data associa-
tion algorithms are applied to all tracks and measurements in this situation for comparison.
The resulting RMSE Performance plot for Moving Target is obtained individually and presented in
Figure 4.17. The percentage of track loss and the computation time of algorithms in comparison are
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Figure 4.17: RMSE Performance Comparison of Multitarget Tracking Algorithms in Single Target
(Isolated Targets) Tracking Scenario for Moving Target

presented on Tables 4.7 and 4.8, respectively.

Table4.7: Track Loss Statistics in Single Target (Isolated Targets) Tracking Scenario

Target Tracking Algorithm The percentage of Track Loss (%)
IMM-LMIPDA 14.928
IMM-JPDA 0.1515
IMM-IJPDA 0.3085
IMM-JIPDA 0.24878

An important result can be inferred via comparison of Figure 4.17 with Figure 4.2 that all multi-
target tracking algorithms can also achieve single target tracking via suitable measurement-to-track
assignments in isolated tracks situtation. In the literature[1, 38, 30, 34, 32, 19] all multitarget tracking
algorithms are mentioned to be derived as “the generalization of single target tracking algorithms to
track multiple targets". Our results proves this information. IMM-JPDA which is the multitarget gen-
eralization of IMM-PDA obviously achieves the close performance with IMM-PDA shown in Figure
4.2. IMM-IJPDA which is the multitarget generalization of IMM-IPDA where IPDA[39] considered,
achieves also good performance with negligable performance degradation compared with IMM-IPDA
shown in Figure 4.2, although in Figure 4.2 IPDA[29, 28] is considered to be used. IMM-JIPDA
which is the multitarget generalization of IMM-IPDA where IPDA[29, 28] is considered to be used,
“integrates seamlessly"(as mentioned with these words in [30]) with IMM-IPDA shown in Figure 4.2.
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Table4.8: Computation time Comparison in Single Target (Isolated Targets) Tracking Scenario

Target Tracking Algorithm Computation time (in seconds)
IMM-LMIPDA 471.106861
IMM-JPDA 17978.511871
IMM-IJPDA 18281.274496
IMM-JIPDA 18339.510438

Obviously IMM-LMIPDA shows also a close performance, like IMM-JIPDA, with IMM-IPDA in
Figure 4.2 in isolated tracks situation where tracks are sufficiently far apart where their validation re-
gions (gates) do not intersect. This result also proves the theoretical information and results given in
[35, 32, 18, 19] in convenience. Table 4.8 shows again and proves that, IMM-LMIPDA takes small in-
crement in execution time whereas for optimal multitarget tracking algorithms execution time become
more than 60 times of nominal values as inferred from Table 4.2.
Although IMM-LMIPDA shows close RMSE performance with significantly less computation time
when compared with optimal approaches (IMM-JPDA, IMM-IJPDA and IMM-JIPDA), Table 4.7 in-
dicates that IMM-LMIPDA still suffers from high track loss even in isolated tracks situation when
compared with optimal approaches.
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CHAPTER 5

CONCLUSION

In this thesis study, literature survey for various algorithms was done, RMSE performance, track loss
and computational load evaluations of target tracking algorithms in interest have been carried out in
various test scenarios, benchmarkings are presented.
Problems encountered in tracking of multiple ground targets in clutter have been investigated which
are defined basically as the target motion origin uncertainty and the measurement origin uncertainty.
General methodology and recommended approaches to these problems are studied and simulations are
conducted.
The results show that use of the probability of track existence parameter has been proved to improve
the performance modestly. Use of multitarget data association algorithms has been shown to improve
the performance significantly in multitarget tracking situations. It has been shown that single target
tracking can also be achieved by the use of any multitarget data association algorithms due to the fact
that multitarget data association algorithms are nothing more than generalizations of single target data
association algorithms under concern.
The use of optimal approaches in multitarget tracking proved the fact that they still offer a good solu-
tion in multitarget tracking situations, only in small numbers of measurements and target tracks cases.
However, in a ground target tracking application, where heavy and dense measurements and target
tracks are present optimal approaches require huge computation load.
Instead of optimal approaches, use of Linear Multi-Target (LM) approaches has been shown to be very
efficient method to achieve multitarget tracking, with apparently negligible RMSE performance error
compared to optimal approaches, in a dense clutter environment with linear number of operations in
the number of tracks and the number of measurements which is comparable with single target tracking
algorithms and much less than optimal approaches which require too much excessive computational
resources.
Although LM approaches has been shown modestly better in RMSE performance with significantly
less computation time than optimal approaches, these methods have rarely proved satisfactory in prac-
tice. It has been shown that, they are highly susceptible to track loss when the targets are closely
spaced and the number of targets and measurements are considerably high.
Hence, use of LM approaches, i.e. IMM-LMIPDA, in ground target tracking applications, can be
a very efficient method to achieve multitarget tracking in a heavy and dense clutter environment on
condition that high track loss problem is taken into consideration.
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APPENDIX A

LIST OF TUNABLE PARAMETERS

A.1 Common Parameters

1. T : Sampling (scanning) period for each Kalman Filter model

2. π: Model probability transition matrix (on Table 2.1)

3. NFC: Number of false track confirmations allowed per hour (Eq. (2.24))

4. NFA: Maximum number of false alarms system produces per second (Eq. (2.24))

5. α: False track confirmation probability (Eq. (2.24))

6. β: True track deletion probability (Section 2.2.1.2)

7. PD: Probability of detection

8. PG: Gating probability (Section 2.2.2)

9. σCV,LPN : Standard deviation value for Constant Velocity (CV) model with Low Process Noise

10. σCV,HPN : Standard deviation value for Constant Velocity (CV) model with High Process Noise

11. σ2: Measurement noise variance

A.2 Parameters specific only to IMM-IPDA-Based Algorithms

1. Π: Markov Chain One model transition matrix (Eq. (3.13)-(3.16))

2. ψt
0|0: Initial probability of track existence for target track t (Section 3.1.2)

3. POt
0|0: Initial probability of track perceivability for target track t (Section 3.2.2)
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