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ABSTRACT

DERIVATIVE FREE ALGORITHMS FOR LARGE SCALE NON-SMOOTH OPTIMIZATION

AND THEIR APPLICATIONS

Tor, Ali Hakan

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Assoc. Prof. Dr. Adil Bagirov

February 2013, 88 pages

In this thesis, various numerical methods are developed to solve nonsmooth and in particular, noncon-

vex optimization problems. More specifically, three numerical algorithms are developed for solving

nonsmooth convex optimization problems and one algorithm is proposed to solve nonsmooth noncon-

vex optimization problems.

In general, main differences between algorithms of smooth optimization are in the calculation of search

directions, line searches for finding step-sizes and stopping criteria. However, in nonsmooth optimiza-

tion there is one additional difference between algorithms. These algorithms may use different gener-

alizations of the gradient. In order to develop algorithms for solving nonsmooth convex optimization

problems we use the concept of codifferential. Although there exists the codifferential calculus, the

calculation of the whole codifferential is not an easy task. Therefore, in the first numerical method,

only a few elements of the codifferential are used to calculate search directions. In order to reduce the

number of codifferential evaluations, in the second method elements of the codifferential calculated in

previous iterations are used to calculate search directions.

In both the first and second methods the problem of calculation of search directions is reduced to the

solution of a certain quadratic programming problem. The size of this problem can increase signifi-

cantly as the number of variables increases. In order to avoid this problem in the third method, called

the aggregate codifferential method, the number of elements of the codifferential used to find search

directions is fixed. Such an approach allows one to significantly reduce the complexity of codifferential

methods and to make them applicable for solving large scale problems of nonsmooth optimization.

These methods are applied to some well-known nonsmooth optimization test problems, such as, min-
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max and general type nonsmooth optimization problems. The obtained numerical results are visualized

using performance profiles. In addition, the validation of these methods is made by comparing them

with the subgradient and bundle methods using results of numerical experiments. The convergence of

methods is analyzed. Finally, the first method is extended to minimize nonsmooth convex functions

subject to linear inequalities using slack variables.

The notion of quasisecant is used to design an algorithm for solving nonsmooth nonconvex uncon-

strained optimization problems. In this method, to find descent direction the subgradient algorithm

is applied for the solution of a set of linear inequalities. The convergence of the proposed method is

analyzed, and the numerical experiments are carried out using general type nonsmooth optimization

test problems. To validate this method, the results are compared with those by the subgradient method.

Keywords: Nonsmooth optimization, convex optimization, nonconvex optimization, codifferential,

subdifferential.
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ÖZ

TÜREVİ KULLANMAYAN OPTİMİZASYON YÖNTEMLERİNİN, ÇOK BOYUTLU TÜREVİ

OLMAYAN OPTİMİZASYON PROBLEMLERİNE UYGULANMASI

Tor, Ali Hakan

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Doç. Dr. Adil Bagirov

Şubat 2013, 88 sayfa

Bu tezin amacı türevi olmayan optimizasyon problemlerini çözmek için yöntem geliştirmektir ve türevi

olmayan optimizasyon problemleri iki bölümde incelenmiştir; dışbükey ve dışbükey olmayan opti-

mizasyon problemleri. Bu tezde bu iki tip problem için yöntemler geliştirilmiştir.

İlk olarak türevi olmayan kısıtsız dışbükey optimizasyon problemler için kodiferansiyel kavramı kulla-

narak üç farklı yöntem geliştirilmiştir. Bilindiği gibi, aynı tip optimizasyon problemlerini çözmek için

geliştirilen algoritmalar, türev yerine kullanılan kavram, durma kriterleri ve azalma yönü hesaplarına

göre farklılaşmaktadırlar. Bu tezde geliştirilen bu üç metotta ise türev yerine kodiferansiyel kullanıl-

mıştır. Kodiferansiyelin yapısı gereği durma kriterleri bu üç metotta da aynıdır. Diğer taraftan, azalma

yönü hesaplanmasına baktığımızda metotlar farklılıklar göstermektedir. Bu farklılıklar şu şekilde

sıralanmaktadır. Yöntemlerden birincisinde azalma yönü kodiferansiyelin sadece bazı elemanlarını

kullanarak hesaplanmaktadır. İkincisinde ise, fonksiyon ve gradient hesaplamalarının sayısını azalt-

mak için bir önceki basamakta elde edilen kodiferansiyel değerleri kullanılmıştır. Son metotta ise

azalma yönü her iterasyonda sabit ve belli sayıda kodiferansiyelleri kullanarak hesaplanmaktadır.

Bunun yanında, geliştirilen yöntemlerin yakınsaklık analizleri yapılmıştır. Bu yöntemler literatürde

bilinen önemli test problemlerine uygulanmış ve elde edilen sayısal sonuçlar performans grafikleri

ile gösterilmiştir. Bu grafikler, bilinen alt-gradient ve demet yöntemleriyle de elde edilen performans

grafikleriyle karşılaştırılmıştır ve geliştirmiş olduğumuz metotların daha iyi sonuç verdiği gözlemlen-

miştir. Bunların yanında, yukarıda bahsi geçen ilk metodun yapay değişkenler kullanarak uyarlanan

yeni hali, doğrusal kısıtlı dışbükey optimizasyon problemlerine uygulanmıştır. Uygulama olarak üç

test problemi alınmış ve sayısal sonuçlar tablolar kullanılarak gösterilmiştir.

Son olarak, dışbükey olmayan optimizasyon problemleri için yöntem geliştirilmiştir. “Quasisecant”

vii



kavramı kullanılarak geliştirilen bu yöntemde, azalma yönü hesabı için bir alt-gradient yöntemi kul-

lanılarak doğrusal eşitsizlik sistemi çözülmüştür. Geliştirilen bu yöntemin yakınsaklığı incelenmiş,

bilinen bazı önemli test problemleri kullanılarak sayısal hesaplamalar yapılmış ve bu sonuçlar bir alt-

gradient yöntemiyle kıyaslanarak bir tabloda sunulmuştur.

Anahtar Kelimeler: Türevi olmayan optimizasyon, dışbükey optimizasyon, dışbükey olmayan opti-

mizasyon, kodiferansiyel, alt-gradient.

viii



To my daughter Tılsım
my wife Dürdane
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R
n : n-dimensional Euclidean space

S 1 = {x ∈ Rn : ‖x‖ = 1} : the unit sphere

Bε(x) = {y ∈ Rn : ‖y − x‖ < ε} : open ball centered at x with the radius ε > 0

B̄ε(x) = cl Bε(x) : closed ball centered at x with the radius ε > 0

Rank · : rank of a matrix

AT : transpose of a matrix A
argmin· : the argument of the minumum, that is to say, the set of points

of the given argument for which the given function attains its

maximum value

argmax· : the argument of the maximum, that is to say, the set of points

of the given argument for which the given function attains its

maximum value
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CHAPTER 1

INTRODUCTION

Optimization theory deals with the finding of local or global minimizers of a function on a given set.

The function, whose minimum is being sought, is called the objective function, and the function(s),

which describe the set where the local or global minimizer is being sought, are called constraints.

There is an advanced theory when the objective and constraint functions are continuously differen-

tiable. Powerful methods have been advanced to solve smooth optimization problems. If at least one

of those functions is not continuously differentiable then the optimization is said to be nonsmooth. Al-

gorithmic developments in nonsmooth optimization are far being mature. Unlike smooth optimization

the finding a descent direction and evaluation of optimality conditions are not easy task. Thus, re-

searchers are interested in designing efficient numerical methods for nonsmooth problems which have

been motivated by practical applications from different areas. To illustrate, in Economics, tax models

consist of several different structures which are not continuously differentiable at their intersections.

In steel industry, the material changes the phase discontinuously because of the nature of the mate-

rial. In optimal control problems, some extra technological constraints cause nonsmoothness. In data

mining, likewise, the clustering problems have nonsmoothness. In telecommunication, determining

constrained hierarchical trees for network evaluation and multicast routing cause nonsmoothness. In

engineering, nonsmoothness comes from complex situations which occur when joining several bodies

with corners. As for the so-called stiff problems, they are analytically smooth but numerically non-

smooth. This means that the behavior of the gradient changes unexpectedly so that these problems

pretend to be nonsmooth problems. For example, it may have a similar oscillatory behavior under

iterative algorithms.

1.1 Literature Review

The optimization theory, generally, can be illustrated in mathematical sense as follows,

minimize f (x)

subject to x ∈ X,
(1.1)

where f : R
n → R and X are called the objective function and the feasible set respectively. If the

feasible set is X = R
n, Problem (1.1) is referred to an unconstrained optimization problem. The

general form of constrained optimization problem can be given as follows;

minimize f (x)

subject to hi(x) = 0 (i ∈ I),

h j(x) ≤ 0 ( j ∈ J),

x ∈ Rn,

(1.2)

1



where I and J are the index set of equality and inequality constraints respectively and f , hi, h j : Rn → R

(i ∈ I, j ∈ J). If both objective functions and constrained functions are linear functions, the problem

(1.2) is called a linear optimization problem. Otherwise, it is named as a nonlinear optimization

problem. As mentioned above, if at least one of the functions f , hi, h j : Rn → R (i ∈ I, j ∈ J) is not

continuously differentiable, Problem (1.2) is said to be nonsmooth.

Basically, it can be considered that the nonsmooth optimization problems consist of two types:convex

and nonconvex nonsmooth problems. For the convex problems, finding global solution is easier when

compared with the nonconvex problems, because every local solution is a global solution in the convex

problems. Various methods have been developed to solve nonsmooth convex optimization problems,

namely, the subgradient methods [1, 15, 17, 68, 71, 83, 84], different versions of the bundle methods

[33, 35, 36, 49, 55, 59, 67, 82, 86] and adaptive smoothing methods [16, 25, 70, 76]. However,

most of these methods do not always give efficient results for nonconvex nonsmooth problems. In

real life, many practical problems are nonconvex, for examples, the area which is mentioned in the

first paragraph of this chapter. The complexity of nonconvex problems arises from their nature of

having multiple local solutions. Generally, most of the algorithms are able to find one of the local

solutions whereas a global solution is needed. In literature, there are notable methods, namely bundle

methods [34, 39, 42, 47, 58, 64, 65], discrete gradient methods [4, 14, 2], gradient sampling methods

[20, 21, 23, 52], adaptive smoothing methods [75, 77, 88, 89, 90] and quasisecant methods [11, 10,

44], to solve nonconvex nonsmooth optimization problems for some special types such as locally

Lipschitz continuous, lower-C2 (i.e, the objective function is lower semi-continuous and twice times

differentiable), minmax problems, etc..

Methods which have been developed for solving Problem (1.1) are usually iterative [43, 41, 83]. The

idea behind the iterative methods is to obtain a sequence {xk} ∈ R
n so that it can approach a local or

global minimum point of Problem (1.1) by using any initial point in R
n. The iteration is constructed by

the formula xk+1 = xk + αkgk, where αk and gk are the step size and the search direction, respectively.

If f (xk+1) < f (xk) (k ∈ N), where xk+1 is given as the above formula, then the direction gk is called a

descent direction. If the inequality holds for all k, the iterative method is called a descent method.

If the optimization problem is smooth, then −∇ f (x) � 0n is always the steepest descent direction. In

addition, if x∗ is a stationary point, ∇ f (x∗) = 0 holds. Thus, the gradient of the objective function

∇ f (x) has an important role not only to find descent directions but also to determine stopping criteria.

However, in nonsmooth optimization problem, the gradients do not always exist at every points. Be-

cause of this fact, researchers need generalized gradients or other concepts such as quasidifferential,

codifferential, quasisecant, discrete gradient, etc., in order to find descent direction and determine stop-

ping criteria. Even if the gradients exist exactly at some points, they can not be useful for nonsmooth

problems. In other words, ”The direct applications of the gradient-based methods generally lead to

failure in convergency” is emphasized in [54]. In this case, researchers use approximations via smooth

functions instead of direct use of gradients of nonsmooth function or they tend to derivative free meth-

ods, such as Powell’s Method [79], Nelder - Mead’s method [69] and aforementioned discrete gradient

methods [4, 14, 2]. Derivative free methods are untrustworthy, slow and inefficient for the large scale

problems [31].

In a convex nonsmooth optimization problem, both the objective function and the constraint set are

convex. Many problems possess this property both in theory and in practice. It is easy to solve these

type problems both theoretically and practically [72]. A problem which satisfies the following special

case of the general constrained optimization problem (1.2) is named as a convex problem:

• The objective function f (x) is convex.
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• The constraint set is convex. In other words:

– the equality constraints hi(x) (i ∈ I) are linear, and

– the inequality constraints functions h j(x) ( j ∈ J) are concave.

If at least one of the functions f , hi, h j : Rn → R (i ∈ I, j ∈ J) is nonsmooth, the above mentioned

problem is called a convex nonsmooth optimization problem. In the nonconvex nonsmooth optimiza-

tion problem, although the convex optimization theory supplies very helpful tools to nonconvex theory,

finding the optimal value of the nonconvex nonsmooth optimization problem can be extremely diffi-

cult and sometimes impossible. Due to this difficulty, numerical techniques are developed, especially,

including objective functions which are locally Lipschitz continuous, differences of convex functions

and max-min type functions, etc..

1.1.1 Subgradient Methods

Subgradient methods developed for smooth optimization theory in the first place. In smooth theory, the

most simple and understandable method is the steepest descent method, which uses the anti-gradient

as a search direction:

dk = −∇ f (xk),

where ∇ f (xk) is the gradient of f at the current iteration. The advantages of the steepest descent

method are its low cost and easy implementation. However, its convergency is not robust because

of the well-known zigzag phenomena. In order to overcome this phenomena, the conjugate gradient

method have been developed in smooth theory. This method uses not only the gradient at current

iteration point but also the gradient at previous iteration point. Mathematically formulated,

gk = −∇ f (xk) − λk∇ f (xk−1),

where λk is a real scalar.

The steepest descent method and conjugate gradient method are based on the first-order Taylor’s series

expansion of the objective function f (x). By using second order Taylor’s series expansion, Newton’s

method, the most well-known method, have been developed. The search direction is computed as the

following;

gk = −∇2 f (xk)−1,

where ∇2 f (xk) is the Hessian of the objective function f (x) at the current iteration. Newton’s method

is a powerful and very efficient and widely used method. On the other hand, there are two main

drawbacks. One of them is that Newton’s method can not sometimes converge to the solution if the

starting point is too far away from the solution. The second drawback is time consuming because

of the computation of inverse of Hessian at each iteration, especially, for large scale problems. As a

consequence, the quasi-Newton’s method is developed in order to decrease time consumption keeping

its convergence rate. In quasi-Newton’s method, the following search direction is used:

gk = −B−1
k ∇ f (xk),

where Bk is an approximation of the Hessian matrix, which preserves the properties of the Hessian,

such as positive definiteness and symmetry. In literature, the first quasi-Newton algorithm was pro-

posed by W.C. Davidon in 1959. Then, Fletcher and Powell explored its mathematical properties over

the next few years, and developed so called the Davidon-Fletcher-Powell formula (or DFP), which
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is rarely used today. The most commonly used quasi-Newton algorithms are the Symmetric Rank 1

(SR1) method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, suggested independently

by Broyden, Fletcher, Goldfarb, and Shanno, in 1970. Quasi-Newton methods are a generalization

of the secant method. The difference among these updating formulas is that they maintain different

properties of the matrix. Thus, the choice of which method should be used depends on the requirement

of the problem. For example, SR1 method maintains the symmetry of the matrix but does not always

guarantee the positive definiteness.

In nonsmooth theory, since the objective function is not smooth, a subgradient εk ∈ ∂ f (xk) is used

instead of the gradient ∇ f (xk). According to the properties of the objective function, one of the defi-

nitions given in Subsection (2.1) is used. The main idea behind the subgradient method is very simple

and basically the generalization of the steepest descent method. However, the choice of any anti-

subgradient direction may not guarantee the descent direction. The search direction in the subgradient

method is as follows:

gk = −εk/‖εk‖.
Besides the difficulty in choosing the descent direction, finding a stopping criterion can be seen as an-

other difficulty, although the condition 0 ∈ ∂ f (x) is known as the necessary condition being a minimum

of the objective function. The difficulty originates from selecting an arbitrary subgradient, because a

single subgradient does not contain whole information about the set of subdifferential.

The iteration of subgradient algorithm with the given starting point x0 ∈ Rn in the solution of Problem

(1.1) can be expressed as follows:

xk+1 = xk − tkεk, (1.3)

where εk ∈ ∂ f (xk) is any subgradient at the point xk and tk > 0 is the step-length. Obviously, the

subgradient method uses step lengths instead of line search as they are used in the gradient methods. A

choice of step size tk is very important to avoid the line searches and to determine the stopping criterion.

Although this iteration may be applied efficiently in some special cases, it has poor convergence. As a

result, there have been many attempts in order to generalize quasi-Newton’s methods into nonsmooth

theory, such as space dilation method [83] and variable metric method [18].

1.1.2 Bundle Methods

The bundle methods have been developed in order to improve the poor convergency of the aforemen-

tioned subgradient methods. They are the most efficient methods and have lots of varieties. The central

idea behind these methods is that the accumulated subgradient directions from past iterations form the

quadratic subproblem and, then, a trial direction is obtained by solving this quadratic subproblem.

Along the trial direction, a line search is performed to generate a serious step. Because of this pro-

cedure, they need a very large amount of memory to retain the information on the computer during

implementation. Hence, it is not possible to store all information in practice. For more information

and discussion, the studies [60] and [63] can be examined.

In literature, as a first bundle method, ε -steepest decent method introduced by Lemaréchal can be

shown. This method is a combination of the cutting plane method [46] and conjugate subgradient

method [53]. The main difficulty of this method is to determine a tolerance ε, which is the radius of

the ball in which good approximation is expected. Briefly, the difficulty for the large ε is that the bundle

does not approximate well and as for the small ε, is that there is a small decrease in the function value,

which causes a bad convergency. Because of this difficulty, Lemaréchal developed the generalization

of the cutting plane method. After that, this method was improved by Kiwiel [47]. Although Kiwiel

4



gave two ideas, namely subgradient selection and aggregation and the restriction of the number of

stored subgradient in [47], Kiwiel’s method suffered from the scaling of the objective function and

the uncertain numbers of line searches. All late versions of bundle method are developed to eliminate

those drawbacks.

The most commonly used version of bundle methods are the proximal bundle method [49], which is

based on the proximal algorithm [80], and bundle trust region method [82], which is a combination

of bundle method and trust region idea. Although they are very similar, there is a difference between

them in implementations when updating the search direction. As another bundle methods, the fol-

lowing methods can be shown: the infeasible bundle method [81], the proximal bundle method with

approximate subgradient [50], the proximal-projective bundle method [51], the limited memory bundle

method [37, 38] and the limited memory interior point bundle method [45].

1.1.3 Gradient Sampling Methods

Gradient sampling idea was used in [30, 83] for the first time. Later, the gradient sampling method

was used to approximate the Clarke subdifferential for locally Lipschitz functions in [20] and it was

improved for nonsmooth nonconvex problems in [23]. Later, other versions of gradient sampling

methods for some special optimization problems was developed such as [22, 19, 52].

The locally Lipschitz functions are differentiable almost everywhere, which is proved by Rademacher’s

Theorem; in other words, they are not differentiable on a set of the measure zero, so the subgradient

at a randomly selected point is uniquely determined as the gradient at that point. Therefore, in the

gradient sampling methods, gradients are computed on a set of randomly generated nearby points at

current iteration. Consequently, by using gradient sampling, a local information of the function is

obtained and the quadratic subproblem is formed. The ε-steepest descent direction is constructed by

solving this quadratic subproblem, where ε is the sample radius.

1.1.4 Discrete Gradient Method

The discrete gradient method uses the concept of the discrete gradient instead of the ordinary gradient

or subgradient. It tries to approximate subgradient at only the final step of its algorithm, so it is

different than subgradient methods. Thus, it is also known as a derivative free method. In [14, 13], the

search direction is selected by finding the opposite of the closest point to the origin in a set of discrete

gradients, which is a convex hull:

gk = −vk/‖vk‖,
where vk is the closest point to the origin in the convex hull of a set of discrete gradient.

1.1.5 Codifferential Methods

The need for describing the notation of codifferentiability arises due to the lack of continuity of the

quasidifferential or other differential objects. Codifferentiability allows us to approximate a nonsmooth

function continuously. In other words, the codifferential mapping is Hausdorff continuous for most

practical classes in nonsmooth theory. The codifferential has also good differential properties, so the

class of codifferentiable functions is a linear space closed in terms of what the most essential operators

are. Moreover, one can explicitly give the set which consists of the elements of the codifferential
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for some important classes of nonsmooth functions. For the construction of the whole codifferential,

some operations with polytopes are necessary; therefore, in numerical meaning, it is too complicated to

form the whole set. Thus, in this thesis, truncation of the whole codifferential is used. In the literature,

there are a few studies which use codifferential (see Subsection 2.3 and [26, 27, 91]) because it is

considered that either the entire codifferential or its subsets should be computed at any point; however,

these assumptions are too restrictive. Actually, their calculations are not possible for many class of

nonsmooth functions. The methods which use codifferential are generally designed by using few

elements of codifferential, such as [3, 6, 26].

1.1.6 Quasisecant Methods

The concept of secant is widely used in optimization theory, such as quasi-Newton methods. The

notion of secant for locally Lipschitz functions was given in [9]. The secant method is not better than

bundle methods for not only nonsmooth convex function but also nonconvex nonsmooth functions;

however, it gives better results than bundle methods for nonsmooth nonconvex nonregular functions.

The computation of secants is not always possible. For this reason, the notion of quasisecant was

introduced by replacing strict equality in the definition of secants by inequality in [10]. Because of

that, by definition it is obvious that any secant is also quasisecant but the contrary is not correct; in

other words, any quasisecant is not secant. Quasisecants can be easily computed for both convex

nonsmooth functions and nonconvex nonsmooth functions. The brief explanation of quasisecants will

be given in Subsection 2.2. Quasisecants overestimates the objective function in some neighborhood

of a given point and subgradients are used to obtain quasisecants. In literature, the quasisecant method

for nonconvex nonsmooth function was firstly introduced in [10] and modified in [11, 44], where

quasisecant are used to find descent direction and the idea behind it is similar to the bundle and gradient

sampling methods.

1.2 Outline of the Thesis

The organization of this thesis will be as the following. Firstly, Chapter 2 contains a brief summary

of theoretical background, which is about the Clarke subdifferential, quasidifferential functions, cod-

ifferentiable functions and quasisecants. The codifferentials and quasidifferentials of the special class

of the functions will be located in Chapter 2. Secondly, using codifferential concept, the truncated

codifferential method will be developed for convex nonsmooth unconstrained problems, which will be

explained in Chapter 3. The convergence of it will be proved. In the following Chapter 4, the TCM

will be advanced in order to reduce the number of gradient evaluations by using some codifferential

from previous iterations. After that, a codifferential method will be developed using limited number of

codifferential in Chapter 5. While we are finding the descent direction at each iteration, a fixed number

codifferentials will be used. One of them includes aggregate information about previous calculated

codifferential. When the number increases, this method will be more complex. If it is allowed that

number is free at each iterations, this method will became the TCM. Thus, this method for the small

fixed number is the simplest one among above mentioned methods. Numerical results will be obtained

for the number 2, 3, 4, 12, 50 and 100, which shows us how many codifferential are used to find

a descent direction in each iteration. The next Chapter 6 gives numerical results about the methods

mentioned in Chapters 3, 4 and 5 by using performance profile, which will be briefly explained in

Chapter 6. In that chapter, there is information about the test problems, which is used for comparison.

The following Chapter 7 is just adaptation of the TCM for linearly constrained optimization problem.

Using slack variables and making some calculation, linearly constrained problems will be converted
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to unconstrained problems. It will be proved that all properties which are needed to apply the TCM

are preserved during this conversion. In the last Chapter 8, a generalized subgradient method with

piecewise linear subproblem will be developed via quasisecants for locally Lipschitz problem, which

is another important type of nonsmooth theory. We shall show that a set of linear inequalities must be

solved to find a descent direction sufficiently. The subgradient algorithm will be used when minimiz-

ing this piecewise linear functions. In order to compare the numerical results, subgradient method will

be used. The conclusion of this thesis will be given in the last part.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, some theoretical background will be given briefly. Firstly, we will provide the sub-

gradient for convex functions and the Clarke subdifferential for locally Lipschitz functions. Secondly,

in Section 2.2, quasidifferentiability will be explained. After that, in Section 2.3, we shall give the

definition of codifferentiable functions and some explanations for some classes of functions, which are

useful for computational point of view. Then we shall state some basic properties of codifferentiable

functions in codifferential calculus. Lastly, in Section 2.4, the concept of quasisecant will be explained,

and quasisecants will be presented for some important classes of functions.

2.1 Subdifferential

In this section, definition of the subdifferential will be given for both convex and Lipschitz continuous

functions as a generalization of differential. One can give all differentiable rules of subgradient as

generalizations of classical differentiable rules. For example, Mean-Value Theorem, Chain Rule and

Products Rule, etc., can be listed. However, inclusions have to be used instead of equalities for more

details see [64].

2.1.1 Subdifferential for Convex Functions

In implementation, we will used the following subdifferential definition. In the literature, there is also

ε−subdifferential of the convex functions and its generalization for nonconvex functions. Since they

will not be used in this thesis, these definitions will not be placed.

Definition 2.1 A function f : Rn → R is called convex if and only if the following condition holds:

f (tx1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2) ∀x1 and x2 ∈ Rn and ∀t ∈ [0, 1].

Definition 2.2 The subdifferential of a convex function f : Rn → R at a point x is defined by

∂ f (x) = {ζ ∈ Rn| f (y) ≥ f (x) + 〈ζ, y − x〉 ∀y ∈ Rn}.

Each vector of above mentioned set is called a subgradient of f at x. If the convex function f is

continuously differentiable, then ∂ f (x) = {∇ f (x)} by definition.
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2.1.2 The Clarke Subdifferential for Locally Lipschitz Functions

Definition 2.3 A function f : Rn → R is said to be a locally Lipschitz function if there exists L > 0

such that ∀x, y ∈ Rn

| f (x) − f (y)| ≤ L‖x − y‖,

where ‖ · ‖ is the Euclidean norm.

Clarke introduced the generalization of subdifferential for locally Lipschitz functions [24]. Using

almost everywhere differentiability of locally Lipschitz functions, the Clarke subdifferential can be

given as follows.

Definition 2.4 Let f : Rn → R be a locally Lipschitz function. The Clarke subdifferential of f at the
point x is defined by

∂ f (x) = co
⎧⎪⎨⎪⎩v ∈ Rn

∣∣∣∣∣∣ ∃ ( xk ∈ D( f ) (k ∈ N), xk → x (k → +∞))

such that v = limk→+∞ ∇ f (xk)

⎫⎪⎬⎪⎭ ,
where the set D( f ) consists of the point at which f is differentiable, co denotes the convex hull of a set.

It is shown in [24] that “The mapping ∂ f (x) is upper semicontinuous and bounded on bounded sets.”

For locally Lipschitz functions, classical directional derivatives may not exist. Therefore, the general-

ized directional derivative is defined.

Definition 2.5 The generalized directional derivative of f : Rn → R at x in the direction g is defined
as

f 0(x, g) = lim sup
y→x,α→+0

α−1[ f (y + αg) − f (y)].

In [2], it is reported that

“If a function f : Rn → R is locally Lipschitz, then the generalized directional derivative exists and

f 0(x, g) = max{〈v, g〉 : v ∈ ∂ f (x)}.

The function f : Rn → R is called a Clarke regular function on R
n, if it is differentiable with respect

to any direction g ∈ R
n and f ′(x, g) = f 0(x, g) for all x, g ∈ R

n, where f ′(x, g) is a derivative of the

function f at the point x in the direction g: f ′(x, g) = limα→+0 α
−1[ f (x + αg) − f (x)].”

Let f be a locally Lipschitz function defined on R
n. The necessary optimality condition for the point x

is

0 ∈ ∂ f (x).

2.2 Quasidifferential

The concept of quasidifferential is a generalization of the idea of a gradient. In other words, it offers to

replace the concept of a gradient in the smooth case and the concept of a subdifferential in the convex

case. Quasidifferential preserves most operation of classical differential calculus (for more information

see [28]). In addition to these operation, the quasidifferential allows us to find maxima and minima

pointwisely.
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Definition 2.6 Let assume the function f : R
n → R is locally Lipschitz at the point x ∈ R

n. The
function f is called semismooth at x, if the following limit exists:

lim
g′→g,α→+0

〈v, g〉 ∀v ∈ ∂ f (x + αg′).

for every g ∈ Rn.

An interesting and important nondifferentiable functions is generated by smooth compositions of

semismooth functions. Thus, it should be emphasized here that the class of semismooth functions

is commonly encountered in the literature. This class contains some important functions such as, con-

vex, concave, max-type and min-type [66]. If a function f is semismooth, the directional derivative of

it follows:

f ′(x, g) = lim
g′→g,α→+0

〈v, g〉, v ∈ ∂ f (x + αg′).

Definition 2.7 Assume a function f is locally Lipschitz and directionally differentiable at the point x.
The function f is called quasidifferentiable at the point x if there exist convex, compact sets ∂ f (x) and
∂ f (x) such that:

f ′(x, g) = max
u∈∂ f (x)

〈u, g〉 + min
v∈∂ f (x)

〈v, g〉.

The sets ∂ f (x) and ∂ f (x) are called a subdifferential and a superdifferential respectively. The pair of

these sets [∂ f (x), ∂ f (x)] is a quasidifferential of the function f at a point x [27]. In case ∂ f (x) = {0}
(or ∂ f (x) = {0}), the function f is called subdifferentiable (or superdifferentiable). If a function is

subdifferentiable, quasidifferential and subdifferential are coincident.

2.2.1 Quasidifferential of Smooth Functions

Assume f is continuously differentiable in some neighborhood of a point x ∈ X ⊂ R
n. Obviously, f is

quasidifferentiable at x and the following pairs are quasidifferentials of f :

[{∇ f (x)}, {0}] and [{0}, {∇ f (x)}].

Thus, a smooth functions is both subdifferentiable and superdifferentiable.

2.2.2 Quasidifferential of Convex Functions

Suppose a function f is convex defined on an open set X ⊂ R
n. Because of the fact that directionally

differentiability of f , the quasidifferential of f can be given as follows:

[∂ f (x), {0}],

where ∂ f (x) = ∂ f (x) = {ζ |ζ ∈ Rn, f (y) ≥ f (x) + 〈ζ, y − x〉 ∀y ∈ Rn} is the subdifferential of f at the

point x.
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2.2.3 Quasidifferential of Concave Functions

Under the assumption being concave on the function f , which is defined on an open set X ⊂ R
n,

analogously, the quasidifferential of f can be given as follows:

[{0}, ∂ f (x)],

where ∂ f (x) = ∂ f (x) = {ζ |ζ ∈ Rn, f (y) ≥ f (x) + 〈ζ, y − x〉 ∀y ∈ Rn} is the subdifferential of f at the

point x.

2.3 Codifferential

The lack of continuity of the subdifferential and quasidifferential mappings causes difficulties in the

study of optimization theory. In [86], it was noted that the lack of this property was responsible for the

failure of nonsmooth steepest descent algorithms. On the other hand, the codifferential mapping for

the convex functions is Hausdorff continuous. Thus, for developing optimization methods in thesis, it

will be used mostly.

Definition 2.8 Let X be an open subset of Rn. Assume that co {x, x + Δ} ⊂ X. A function f : X → R is
called codifferentiable at the point x ∈ X if there exists a pair D f (x) =

[
d f (x), d f (x)

]
, where the sets

d f (x) and d f (x) are convex compact sets in R
n+1, such that

f (x + Δ) = f (x) + max
(a,v)∈d f (x)

[a + 〈v,Δ〉] + min
(b,u)∈d f (x)

[b + 〈u,Δ〉] + ox(Δ), (2.1)

where
ox(αΔ)

α
→ 0 as α ↓ 0 for all Δ ∈ Rn (2.2)

and
a, b ∈ R v,w ∈ Rn.

The pair D f (x) =
[
d f (x), d f (x)

]
is called a codifferential of the function f at the point x, the sets d f (x)

and d f (x) are called hypodifferential and hyperdifferential, respectively. Elements of their are called

hypogradients and hypergradients respectively. Note that the codifferential is not unique [27].

If a function f is codifferentiable in some neighborhood of a point x, f is called codifferentiable and

the mapping D f is called codifferential.

A function f is called uniformly codifferentiable at a point x in directions, if (2.2) holds uniformly in

S 1 = {Δ ∈ Rn | ‖Δ‖ = 1 } .

A function f is called continuously codifferentiable at a point x, if it is codifferentiable in some neigh-

borhood of the point x and the mapping D f is Hausdorff continuous at x.

If d f (x) = {0n+1} (or d f (x) = {0n+1}), the function f is called hypodifferentiable (or hyperdifferen-
tiable), where 0n+1 denotes the zero element of the space R

n+1.

With respect to computation, the class of the codifferentiable function whose hypodifferential and

hyperdifferential are polyhedral, i.e, convex hulls of a finite number of points, is useful [27]. The

following functions are in that class (for more functions class and explanations, see [27]).
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2.3.1 Codifferential of Smooth Functions

Let f be continuously differentiable in some neighborhood of a point x ∈ X ⊂ R
n. Then

f (x + Δ) = f (x) + 〈∇ f (x),Δ〉 + ox(Δ), (2.3)

where ox(Δ)
‖Δ‖ → 0 as ‖Δ‖ → 0, ∇ f (x) is the gradient of the function f at the point x. Now, consider the

following sets:

d f (x) = {(0,∇ f (x))} ⊂ R
n+1,

d f (x) = {0n+1} ⊂ R
n+1.

By (2.3), we obtain

f (x + Δ) = f (x) + 0 + 〈∇ f (x),Δ〉 + 0 + 〈0,Δ〉 + ox(Δ)

= f (x) + max
(a,v)∈d f (x)

[a + 〈v,Δ〉] + min
(b,u)∈d f (x)

[b + 〈u,Δ〉] + ox(Δ),

where d f (x) and d f (x) are as introduced above.

Thus, f is codifferentiable with D f (x) =
[{(0, f ′(x))} , {0n+1}] . In addition, f is continuously codiffer-

entiable in a neighbourhood of the point x uniformly in directions [27].

As a codifferential, the following pair can be also chosen

D f (x) =
[{0n+1} , {(0,∇ f (x))}] .

As a result, the function f is both hypodifferentiable and hyperdifferentiable and even continuously

hypodifferentiable and hyperdifferentiable. In this example, it can be observed that the codifferential

is not unique.

2.3.2 Codifferential of Convex Functions

Let a function f be convex and finite on X ⊂ R
n, U ⊂ X be a closed bounded set and x ∈ int U. From

the definition of the subgradient, we have the following inequality at the point x:

f (x) ≥ f (z) + 〈vz, x − z〉,
where vz ∈ ∂ f (z) , ∀z ∈ U and

f (x) = max
z∈U
{ f (z) + 〈vz, x − z〉}.

At a point x + Δ ∈ intU we have

f (x + Δ) = f (x) +max
z∈U
{ f (z) − f (x) + 〈vz, x + Δ − z〉}

= f (x) + max
(a,v)∈d f (x)

{a + 〈v,Δ〉},

where the set d f (x) is the hypodifferential of the function f at the point x. The set is defined as follows

[27, 91]:

d f (x) = cl co {(a, v) ∈ R × Rn : a = f (z) − f (x) + 〈v, x − z〉, v ∈ ∂ f (z), ∀ z ∈ U} . (2.4)

Thus, the codifferential of a convex function is the pair D f (x) =
[
d f (x), d f (x)

]
, where d f (x) is as in

(2.4) and d f (x) = {0n+1} , so convex functions are continuously hypodifferentiable[27].
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2.3.3 Codifferential of Concave Functions

Let a function f be concave and finite on X ⊂ R
n, U ⊂ X be a closed bounded set and x ∈ intU. Let f

be expressed as −g, where g is a convex function.

The definition of the supergradient of the function f at the point x implies that

g(x) ≥ g(z) + 〈wz, x − z〉,

where wz ∈ ∂g(z) ∀z ∈ U.

By using the same idea in Subsection (2.3.2), the following results are obtained.

The codifferential of a concave function is the pair D f (x) =
[
d f (x), d f (x)

]
, where

d f (x) = {0n+1} and

d f (x) = cl co {(b, u) ∈ R × Rn | b = − f (z) + f (x) − 〈u, x − z〉 u ∈ ∂ f (z), ∀ z ∈ U}.

Concave functions are continuously hypedifferential.

2.3.4 Codifferential of Difference of Two Convex Functions

Let f be a d.c. (i.e, difference of two convex functions) function and a closed bounded set U ⊂ R
n, a

point x ∈ intU. f is expressed in the following form:

f (x) = p(x) − q(x),

where p, q : Rn → R are convex.

For any z ∈ U take subgradients vz ∈ ∂p(x) and uz ∈ ∂q(x). The subgradient of the function f at the

point x implies the following inequality:

p(x) ≥ p(z) + 〈vz, x − z〉 ∀z ∈ U,
q(x) ≥ q(z) + 〈uz, x − z〉 ∀z ∈ U;

so
f (x) = p(x) − q(x) = max

z∈U
{p(z) + 〈vz, x − z〉} −max

z∈U
{q(z) + 〈uz, x − z〉}

= max
z∈U
{p(z) + 〈vz, x − z〉} +min

z∈U {−q(z) − 〈uz, x − z〉}.
At the point x + d ∈ U we have

f (x + d) = max
z∈U
{p(z) + 〈vz, x + d − z〉} +min

z∈U {−q(z) − 〈uz, x + d − z〉}
⇒ f (x + d) − f (x) = max

z∈U
{p(z) − p(x) + 〈vz, x + d − z〉} +min

z∈U {−q(z) + q(x) − 〈uz, x + d − z〉}
⇒ f (x + d) − f (x) = max

(a,v)∈d f (x)
{a + 〈v, d〉} + min

(b,u)∈d f (x)

{b + 〈−u, d〉},

where d f (x) is hypodifferential of f at the point x and d f (x) is hyperdifferential of f at the point x and

they are given as the following

d f (x) = cl co {(a, v) ∈ R × Rn| a = p(z) − p(x) + 〈v, x − z〉, v ∈ ∂p(z), ∀ z ∈ U}
d f (x) = cl co {(b,−u) ∈ R × Rn| b = −q(z) + q(x) − 〈u, x − z〉, u ∈ ∂q(z), ∀ z ∈ U},

where co and cl denote convex hull and closure respectively.
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2.3.5 Properties of Codifferentiable Functions

In this section, it is assumed that f is defined on an open subset X of Rn and co {x, x + Δ} ⊂ X. The

proofs of the all properties can be found in [27].

Lemma 2.9 Let fi (i = 1, 2, ...,N) be codifferentiable (continuously codifferentiable) at a point x ∈ X,

then the function f =
N∑

i=1

ci fi with real coefficients ci (i = 1, 2, ...,N) is also codifferentiable (continu-

ously codifferentiable) at x and its codifferential is the following set:

D f (x) =

N∑
i=1

ciD fi(x), (2.5)

where D fi((x) =
[
d fi(x), d fi(x)

]
is a codifferential of the function fi at x (i = 1, 2, ...,N).

Remark 2.10 The above mentioned codifferential of the function f is only one of codifferentials of it.

Lemma 2.11 Let f1 and f2 be codifferentiable (continuously codifferentiable) at the point x ∈ X. The
function f = f1 f2 is also codifferentiable (continuously codifferentiable) at x and its codifferential is
the following set:

D f (x) = f1(x)D f2(x) + f2(x)D f1(x). (2.6)

In addition, if the functions f1 and f2 are codifferentiable uniformly in directions, then f is also codif-

ferential uniformly in directions [27].

Lemma 2.12 Let a function f1 be codifferentiable (continuously codifferentiable) at a point x ∈ X and

f1(x) � 0. The function f =
1

f1
is codifferentiable (continuously codifferentiable) at the poit x and its

codifferential is the following

D f (x) = − 1

f 2
1

(x)
D f1(x). (2.7)

Lemma 2.13 Let functions ϕi for i = 1, 2, ...,N be codifferentiable (continuously codifferentiable) at
a point x ∈ X. The functions f1(y) = max

i=1,2,...,N
ϕi(y) and f2(y) = min

i=1,2,...,N
ϕi(y) are also codifferentiable at

x and their codifferentials are D f1(x) =
[
d f1(x), d f1(x)

]
and D f2(x) =

[
d f2(x), d f2(x)

]
, where

d f1(x) = co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩dϕk(x) −
N∑
i=1

i�k

dϕi(x) + {(ϕk(x) − f1(x), 0n)} | k = 1, 2, ...,N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (2.8)

d f1(x) =

N∑
i=1

dϕi(x), d f1(x) =

N∑
i=1

dϕi(x), (2.9)

d f2(x) = co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩dϕk(x) −
N∑
i=1

i�k

dϕi(x) + {(ϕk(x) − f2(x), 0n)} | k = 1, 2, ...,N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (2.10)

Hence, the class of codifferentiable (respectively continuously codifferentiable) functions is a linear

space closed with respect to all smooth operations and with respect to the operations of taking the

pointwise maximum and minimum over a finite number of points [27].
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Figure 2.1: Quasisecants for a one variable function

2.4 Quasisecants

The concept of secants is commonly used in not only smooth optimization but also nonsmooth opti-

mization theory. For instance, secants have been used in quasi-Newton methods. In this section, the

definition of quasisecants for locally Lipschitz functions is given.

Let f : Rn → R be a locally Lipschitz function and h > 0 be a given real number.

Definition 2.14 A quasisecant v of the function f at the point x is a vector in R
n. It depends on the

selection of the direction g ∈ S 1 and the length h > 0. According to the direction and the length, the
quasisecant is defined as follows:

f (x + hg) − f (x) ≤ h〈v, g〉.

Figure 2.1 presents examples of quasisecants in univariate case.

The notation v(x, g, h) is used for any quasisecant at the point x in the direction g ∈ S 1 with the length

h > 0 corresponding function f .

The set of quasisecants of the function f at a point x is given as follows for fixed h > 0:

QS ec(x, h) = {w ∈ Rn : ∃(g ∈ S 1), w = v(x, g, h)} .
When h ↓ 0, the set consists of limit points of quasisecants can be given as follows:

QS L(x) =
{
w ∈ Rn : ∃(g ∈ S 1, {hk}) : hk > 0, lim

k→∞
hk = 0 and w = lim

k→∞
v(x, g, hk)

}
.
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A mapping x �→ QS ec(x, h) is called a subgradient-related (SR)-quasisecant mapping if the corre-

sponding set QS L(x) ⊆ ∂ f (x) for all x ∈ R
n. In this case, elements of QS ec(x, h) are called SR-

quasisecants. In Subsections 2.4.1-2.4.4 and in Chapter 8, SR-quasisecants are used. In the following

sections, SR-quasisecants are presented for some classes of functions.

2.4.1 Quasisecants of Smooth Functions

Assume that the function f is continuously differentiable. Then,

v(x, g, h) = ∇ f (x + hg) + αg (g ∈ S 1, h > 0)

is a quasisecant at a point x with respect to the direction g ∈ S 1. Here,

α =
f (x + hg) − f (x) − h〈∇ f (x + hg), g〉

h
.

Obviously, v(x, g, h) → ∇ f (x) as h ↓ 0. As a conclusion, each v(x, g, h) is SR-quasisecant at the point

x.

2.4.2 Quasisecants of Convex Functions

Assume that the function f is proper convex, in other words takes any real value for any point x,

bounded below and convex. Since

f (x + hg) − f (x) ≤ h〈v, g〉 ∀v ∈ ∂ f (x + hg),

any v ∈ ∂ f (x + hg) is a quasisecant at the point x. Then we have

QS ec(x, h) =
⋃
g∈S 1

∂ f (x + hg).

Since the sundifferential map is the upper semicontinuous, the set QS L(x) is subset of the subdifferen-

tial ∂ f (x). This allows us to calculate a SR-quasisecant v at the point x as v ∈ ∂ f (x + hg).

2.4.3 Quasisecants of Maximum Functions

Consider the following function, which is maximum of some locally Lipschitzian functions fi (i =
1, . . . ,m):

f (x) = max
i=1,...,m

fi(x).

Consider the following set for any g ∈ S 1:

R(x + hg) = {i ∈ {1, . . . ,m} | fi(x + hg) = f (x + hg)}.

The set QS ec(x, h) of quasisecants at a point x is defined as

QS ec(x, h) =
⋃
g∈S 1

{
vi(x, g, h) | i ∈ R(x + hg)

}
.

where vi ∈ R
n is a SR-quasisecant of the function fi at a point x. Since the subdifferential map is an

upper semicontinuous map, the set QS L(x) is a subset of the subdifferential ∂ f (x). SR-quasisecants of

the function f are defined as above.
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2.4.4 Quasisecants of D.C. Functions

In this subsection, the differences of two convex function is examined, mathematically it can be given

as follows:

f (x) = f1(x) − f2(x),

where functions f1 and f2 are convex functions.

A quasisecant of the function f at the point x can be computed as v = v1 − v2 where subgradients

v1 ∈ ∂ f1(x + hg), v2 ∈ ∂ f2(x).

On the other hand, aforementioned quasisecants does not need to be SR-quasisecants. As reported in

[10]:

“Since d.c. functions are quasidifferentiable [27] and if additionally subdifferentials ∂ f1(x) and ∂ f2(x)

are polytopes, one can use an algorithm from [14, 13] to compute subgradients v1 and v2 such that their

difference will converge to a subgradient of the function f at the point x.”

As a result, this algorithm can be used to compute SR-quasisecants of the function f at the point x.

Subdifferential and superdifferential of d.c. functions can be given as follows:

F1(x) =

m∑
i=1

min
j=1,...,p

fi j(x),

F2(x) = max
i=1,...,m

min
j=1,...,p

fi j(x).

Here, functions fi j are continuously differentiable and proper convex. SR-quasisecants satisfy the

following condition: for any ε > 0 there exists δ > 0 such that

QS ec(y, h) ⊂ ∂ f (x) + Bε(0) (2.11)

for all x ∈ Bδ(x) and h ∈ (0, δ). This is always true for functions considered above.
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CHAPTER 3

TRUNCATED CODIFFERENTIAL METHOD

In this chapter, a new algorithm to minimize convex functions will be developed. This algorithm will

be based on the concept of codifferential. Since the computation of whole codifferential is not always

possible we shall propose an algorithm for computation of descent directions using only a few elements

from the codifferential. The convergence of the proposed minimization algorithm will be proved and

results of numerical experiments using a set of test problems with not only nonsmooth convex but also

nonsmooth nonconvex objective function will be reported in Chapter 6 by comparing the proposed

algorithm with some other algorithms.

3.1 Introduction

In this section we focus on solving the following problem:

minimize f (x)

subject to x ∈ Rn,
(3.1)

where the objective function f is assumed to be proper convex. In the literature, there are several

numerical techniques in order to solve Problem (3.1). As important techniques, subgradient methods

[83], different versions of the bundle methods [33, 34, 35, 36, 39, 42, 47, 49, 55, 58, 59, 64, 65, 67, 86]

can be counted. In this chapter, we propose a method, namely the truncated codifferential method

for solving Problem (3.1). The notion of codifferential was firstly given in [27]. The codifferential

mapping for some important classes of functions encountered in nonsmooth theory is Hausdorff con-

tinuous. In the literature, there are only a few algorithms based on the codifferential (see [26, 27, 91]),

whereas the codifferential map has good differential properties. In these algorithms, it is assumed the

need of the whole set of codifferentials (or its subsets). Because of this assumption, researchers did

not reach the success to develop methods for many classes of nonsmooth optimization problems. In

this chapter, we will show that it is actually not necessary to use the whole set of codifferential.

In this chapter, a new codifferential method is proposed for solving Problem (3.1). At each iteration

of this method, just a few elements from the set of codifferentials are used to find search directions.

Therefore we call this method a truncated codifferential method. By using these search directions, a

sequence of the points is generated iteratively. It is proved that the accumulation point of this sequence

is a solution of Problem (3.1). Results of numerical experiments using a set of well-known nonsmooth

optimization academic test problems are reported. after that, these numerical results are used in the

comparison to the proposed algorithm with the bundle method.

This chapter is structured as follows: An algorithm for finding descent directions is presented in Sec-

tion 3.2. A truncated codifferential method is introduced and its convergence is examined in Section
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3.3. Results of numerical experiments are visualized by using performance profiles in Section 6.3.

3.2 Computation of a Descent Direction

For the computation of search directions, a subset of the hypodifferential will be defined. It will be

show that this subset is sufficient to find descent directions. For the given λ ∈ (0, 1) and consider the

following set:

H(x, λ) = cl co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ w = (a, v) ∈ R × Rn

∣∣∣∣∣∣∣∣∣
∃ y ∈ Bλ(x),

v ∈ ∂ f (y),

a = f (y) − f (x) − 〈v, y − x〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (3.2)

It can be easily observed that a ≤ 0 for all w = (a, v) ∈ H(x, λ). Since a = 0 at the point x, we can

conclude the following equality:

max
w=(a,v)∈H(x,λ)

a = 0. (3.3)

If B̄λ(x) ⊂ intU for all λ ∈ (0, 1) where U ⊂ R
n is a closed convex set, then from the definition of both

the hypodifferential and the set H(x, λ), the following inclusion holds:

H(x, λ) ⊂ d f (x) ∀ λ ∈ (0, 1).

The sets H(x, λ) is called truncated codifferentials of the function f at the point x.

Proposition 3.1 Assume that 0n+1 � H(x, λ) for a given λ ∈ (0, 1) and

‖w0‖ = min {‖w‖ : w ∈ H(x, λ)} > 0, with w0 = (a0, v0), (3.4)

where ‖ · ‖ denotes the Euclidean norm. Then, v0 � 0n and

f (x + λg0) − f (x) ≤ −λ‖v0‖, (3.5)

where g0 = −‖w0‖−1v0.

Proof: Since w0 is a solution of 3.4,

〈w0,w − w0〉 ≥ 0 ∀w = (a, v) ∈ H(x, λ)

or

a0a + 〈v0, v〉 ≥ ‖w0‖2. (3.6)

First, v0 � 0n should be proved. Assume that v0 = 0n. Since w � 0n+1 we get that a0 < 0. Then, it

follows from (3.6) that a0(a − a0) ≥ 0 or a ≤ a0 < 0. In other words, a < 0 for all w = (a, v) ∈ H(x, λ),

which contradicts (3.3).

Now we will prove (3.5). Dividing both sides of (3.6) by −‖w0‖, we obtain

− a0a
‖w0‖ + 〈v, g

0〉 ≤ −‖w0‖. (3.7)

It is clear that ‖w0‖−1a0 ∈ (−1, 0) and, since λ ∈ (0, 1),

μ = − λa0

‖w0‖ ∈ (0, 1).
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Therefore, combining a ≤ 0 and (3.7), we get

a + λ〈v, g0〉 ≤ μa + λ〈v, g0〉 = − λa0

‖w0‖a + λ〈v, g
0〉 ≤ −λ‖w0‖. (3.8)

Obviously, x + λg0 ∈ B(x, λ). As a result, from the definition of the set H(x, λ)

f (x + λg0) − f (x) = a + λ〈v, g0〉,

where w = (a, v) ∈ H(x, λ) and a = f (x + λg0) − f (x) − λ〈v, g0〉, v ∈ ∂ f (x + λg0). Then, the proof

follows from (3.8). �

According to Proposition 3.1, the truncated codifferential H(x, λ) can be used to find descent directions

of a function f . Moreover, for any λ ∈ (0, 1), the truncated codifferential can be used in the calculation

of descent directions. Unfortunately, it is generally not possible to find descent direction by using

Proposition 3.1 since the entire set H(x, λ) must be used. Actually, the usage of the entire set H(x, λ) is

not always possible. However, Proposition 3.1 helps us how an algorithm for finding descent directions

can be developed. In order to over come this difficulty, the following algorithm is developed using only

a few elements from H(x, λ) to compute descent directions.

Let the numbers λ, c ∈ (0, 1) and a small enough number δ > 0 be given.

Algorithm 3.2 Computation of descent directions.

Step 1. Select any g1 ∈ S 1, and compute v1 ∈ ∂ f (x + λg1) and a1 = f (x + λg1) − f (x) − λ〈v1, g1〉. Set

H̄1(x) = {w1 = (a1, v1)} and k = 1.

Step 2. Compute the w̄k = (āk, v̄k) ∈ R × Rn as a solution of the following problem:

min ‖w‖2 subject to w ∈ H̄k(x). (3.9)

Step 3. If

‖w̄k‖ ≤ δ, (3.10)

then stop. Otherwise, compute ḡk = −‖w̄k‖−1v̄k and go to Step 4.

Step 4. If

f (x + λḡk) − f (x) ≤ −cλ‖w̄k‖, (3.11)

then stop. Otherwise, set gk+1 = ḡk and go to Step 5.

Step 5. Compute vk+1 ∈ ∂ f (x+ λgk+1) and ak+1 = f (x+ λgk+1)− f (x)− λ〈vk+1, gk+1〉. Construct the set

H̄k+1(x) = co {H̄k(x)
⋃{wk+1 = (ak+1, vk+1)}}, set k ← k + 1 and go to Step 2.

Some explanations on Algorithm 3.2 as follows. In Step 1, we compute the element of the truncated

codifferential using any direction g1 ∈ S 1. The closest point to the origin in the set of all computed

codifferential is computed in Step 2. This problem is a quadratic optimization problem. In the literature

there are several algorithms [32, 48, 73, 74, 87] to solve this problem. In the implementation the

algorithm from [87] is used. If the norm of the closest point is less than a given tolerance δ > 0, then

the point x is a stationary point with tolerance δ > 0 ; otherwise, a new search direction is computed

in Step 3. If this new search direction is a descent direction, then the algorithm terminates in Step 4.

Otherwise, a new codifferential in the current search direction is computed in Step 5.
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Algorithm 3.2 have some similarities with respect to calculation of search direction in the bundle-

type algorithms. Especially, Algorithm 3.2 is similar to the algorithm proposed in [86]. However, in

Algorithm 3.2, elements of the truncated codifferential are used instead of subgradients.

In the next proposition, It is proved that Algorithm 3.2 terminates after finite number of repetitions. A

standard technique is used to prove it.

Proposition 3.3 Assume that f is proper convex function, λ ∈ (0, 1) and there exists K ∈ (0,∞) such
that

max
{
‖w‖ | w ∈ d f (x)

}
≤ K.

For the any value of c ∈ (0, 1) and δ ∈ (0,K), Algorithm 3.2 terminates after at most m steps such that

m ≤ 2 log2(δ/K)/ log2 K1 + 2, K1 = 1 − [(1 − c)(2K)−1δ]2.

Proof: Since at a point x for a given λ ∈ (0, 1)

H̄k(x) ⊂ H(x, λ) ⊂ d f (x)

for any k ∈ N, it follows that

max
{
‖w‖ | w ∈ H̄k(x)

}
≤ K ∀k ∈ N. (3.12)

First, we will show that if neither stopping criteria (3.10) and (3.11) are satisfied, then a new hypogra-

dient wk+1 computed in Step 5 does not belong to the set H̄k(x). Assume H̄k(x) belongs to wk+1. Since

both stopping criteria are not satisfied, it follows that ‖w̄k‖ > δ and

f (x + λgk+1) − f (x) > −cλ‖w̄k‖.

The definition of the hypogradient wk+1 = (ak+1, vk+1) implies that

f (x + λgk+1) − f (x) = ak+1 + λ〈vk+1, gk+1〉,

and we have

−cλ‖w̄k‖ < ak+1 + λ〈vk+1, gk+1〉.
Putting gk+1 = −‖w̄k‖−1v̄k we get

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 < c‖w̄k‖2. (3.13)

Since w̄k = argmin {‖w‖2 : w ∈ H̄k(x)},

〈w̄k,w〉 ≥ ‖w̄k‖2

for all w ∈ H̄k(x). By assumption wk+1 ∈ H̄k(x), we obtain

ak+1āk + 〈v̄k, vk+1〉 ≥ ‖w̄k‖2. (3.14)

Notice that ak+1 ≤ 0 and āk ≥ −‖w̄k‖. Then, we have ākak+1 ≤ −‖w̄k‖ak+1. Combining this with (3.14),

we obtain

〈vk+1, v̄k〉 − ‖w̄k‖ak+1 ≥ ‖w̄k‖2.
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Finally, since λ ∈ (0, 1) we get

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 ≥ ‖w̄k‖2,

which contradicts (3.13). Thus, if both stopping criteria (3.10) and (3.11) are not satisfied, then the

new hypogradient wk+1 makes improvement in order to approximate to set H(x, λ).

Obviously, ‖w̄k+1‖2 ≤ ‖twk+1 + (1 − t)w̄k‖2 for all t ∈ [0, 1], which means

‖w̄k+1‖2 ≤ ‖w̄k‖2 + 2t〈w̄k,wk+1 − w̄k〉 + t2‖wk+1 − w̄k‖2.

Inequality (3.12) implies that

‖wk+1 − w̄k‖ ≤ 2K.

It follows from (3.13) that

〈w̄k,wk+1〉 = ākak+1 + 〈v̄k, vk+1〉
≤ −‖w̄

k‖
λ

ak+1 + 〈v̄k, vk+1〉
≤ −c‖w̄k‖2.

Then, we get

‖w̄k+1‖2 ≤ ‖w̄k‖2 − 2t(1 − c)‖w̄‖2 + 4t2K2.

Let t0 = (1 − c)(2K)−2‖w̄k‖2. It is clear that t0 ∈ (0, 1) and, therefore,

‖w̄k+1‖2 ≤
{
1 − [(1 − c)(2K)−1‖w̄k‖]2

}
‖w̄k‖2. (3.15)

Since ‖w̄k‖ > δ for all k = 1, . . . ,m − 1, it follows from (3.15) that

‖w̄k+1‖2 ≤ {1 − [(1 − c1)(2K)−1δ]2}‖w̄k‖2.

Let K1 = 1 − [(1 − c1)(2K)−1δ]2. Then, K1 ∈ (0, 1) and we have

‖w̄m‖2 ≤ K1‖w̄m−1‖2 ≤ . . . ≤ Km−1
1 ‖w̄1‖2 ≤ Km−1

1 K2.

Thus, the inequality ‖w‖ ≤ δ is satisfied if Km−1
1

K2 ≤ δ2. This inequality must happen after at most m
steps, where

m ≤ 2 log2(δ/K)/ log2 K1 + 2.

�

Definition 3.4 A point x ∈ Rn is called a (λ, δ)-stationary point of the function f if

min
w∈H(x,λ)

‖w‖ ≤ δ.

It can be easily observed that Algorithm 3.2 for a point x either finds a descent direction or determines

the point x as a (λ, δ)-stationary point for the convex function f .
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3.3 A Truncated Codifferential Method

In this section, the truncated codifferential method to find the solution of problem (3.1) is introduced.

First of all, we should find stationary points with some tolerance. According to this purpose, the

following algorithm was designed to find (λ, δ)-stationary points for given numbers λ ∈ (0, 1), c1 ∈
(0, 1), c2 ∈ (0, c1] and the tolerance δ > 0.

Algorithm 3.5 The truncated codifferential method for finding (λ, δ)-stationary points.

Step 1. Start with any point x0 ∈ Rn and set k = 0.

Step 2. Apply Algorithm 3.2 setting x = xk. This algorithm terminates after finite number of iterations.

Thus, we have the set H̄m(xk) ⊂ H(x, λ) ⊂ d f (x) and an element w̄k = (āk, v̄k) such that

‖w̄k‖2 = min
{
‖w‖2 | w ∈ H̄m(xk)

}
.

Moreover, either

‖w̄k‖ ≤ δ (3.16)

or

f (xk + λgk) − f (xk) ≤ −c1λ‖w̄k‖ (3.17)

for the search direction gk = −‖w̄k‖−1v̄k holds.

Step 3. If ‖w̄k‖ ≤ δ, then stop. Otherwise, go to Step 4.

Step 4. Compute xk+1 = xk + αkgk, where αk is defined as follows

αk = argmax
{
α ≥ 0 : f (xk + αgk) − f (xk) ≤ −c2α‖w̄k‖

}
. (3.18)

Set k ← k + 1 and go to Step 2.

The following theorem shows that Algorithm 3.5 stops after finite number of iterations and it gives an

upperbound for the number of iterations.

Theorem 3.6 Assume that the function f is bounded from below:

f∗ = inf { f (x) | x ∈ Rn} > −∞. (3.19)

Then, Algorithm 3.5 terminates after finite number M > 0 of iterations. As a result, this algorithm
generates a (λ, δ)-stationary point xM, where

M ≤ M0 ≡
⌊

f (x0) − f∗
c2λδ

⌋
+ 1.

Proof: Assume the statement in the theorem is not correct. Then, we have infinite sequence {xk} and

non-(λ, δ)-stationary points xk. This means that

min
{
‖w‖ | w ∈ H(xk, λ)

}
> δ ∀k ∈ N.
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Therefore, Algorithm 3.2 will find descent directions by satisfying the inequality (3.17). Since c2 ∈
(0, c1], it follows from (3.17) that αk ≥ λ. Therefore, we have

f (xk+1) − f (xk) < −c2αk‖wk‖
≤ −c2λ‖wk‖.

Since ‖wk‖ > δ for all k ≥ 0, we get

f (xk+1) − f (xk) ≤ −c2λδ,

which implies

f (xk+1) ≤ f (x0) − (k + 1)c2λδ

and, therefore, f (xk) → −∞ as k → +∞ which contradicts (3.19). Obviously, in order to find the

(λ, δ)-stationary point, the upper bound of iterations is M0 �

Remark 3.7 Because of the fact that c2 ≤ c1 and αk ≥ λ, λ > 0 is a lower bound for αk. This allows

us to estimate αk by using the following rule:

αk is defined as the largest θl = 2lλ (l ∈ N), satisfying the inequality in Equation 3.18.

Now, an algorithm for solving Problem (3.1) will be described. The sequences {λk}, {δk} must be

satisfied the conditions λk → +0 and δk → +0 (k → ∞). The tolerances εopt > 0, δopt > 0 must be

given.

Algorithm 3.8 The truncated codifferential method.

Step 1. Start with any point x0 ∈ Rn, and set k = 0.

Step 2. If λk ≤ εopt and δk ≤ δopt, then terminates.

Step 3. Apply Algorithm 3.5 setting initial point as xk and the tolerances λ = λk and δ = δk. This

algorithm stops after a finitely many iterations. As a result, a (λk, δk)-stationary point xk+1 is generated.

Step 4. Set k ← k + 1 and continue from Step 2.

Consider the set L(x0) =
{
x ∈ Rn | f (x) ≤ f (x0)

}
for the point x0 ∈ Rn.

Theorem 3.9 Assume that the function f is proper convex, the set L(x0) is bounded for starting point
x0. Then, every accumulation point of the sequence {xk} generated by Algorithm 3.8 belongs to the set
X0 = {x ∈ Rn | 0n ∈ ∂ f (x)}.

Proof: Since the function f is proper convex and the set L(x0) is bounded, f∗ > −∞. Therefore,

conditions of Theorem 3.6 are satisfied, and Algorithm 3.5 generates a sequence of (λk, δk)-stationary

points for all k ≥ 0. More specifically, the point xk+1 is (λk, δk)-stationary, k > 0. Then, it follows from

Definition 3.4 that

min
{
‖w‖ | w ∈ H(xk+1, λk)

}
≤ δk. (3.20)

It is obvious that xk ∈ L(x0) for all k ≥ 0. The boundedness of the set L(x0) implies that the sequence

{xk} has at least one accumulation point. Let x∗ be an accumulation point and xki → x∗ as i → +∞.

The inequality in (3.20) implies that

min
{
‖w‖ | w ∈ H(xki , λki−1)

}
≤ δki−1.
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Then, there exists w̄ ∈ H(xki , λki−1) such that ‖w̄‖ ≤ δki−1. Considering w̄ = (ā, v̄) where v̄ ∈ ∂ f (y) for

some y ∈ Bλki−1
(xki ), we have ‖v̄‖ ≤ ‖w̄‖ ≤ δki−1. Therefore,

min
{
‖v‖ | v ∈ ∂ f (xki + Bλki−1

(xki ))
}
≤ δki−1,

where

∂ f (xki + Bλki−1
(xki )) =

⋃{
∂ f (y) | y ∈ Bλki−1

(xki )
}
.

The upper semicontinuity of the subdifferential mapping ∂ f (x) implies that for any ε > 0 there exists

η > 0 such that

∂ f (y) ⊂ ∂ f (x∗) + Bε(0n) (3.21)

for all y ∈ Bη(x∗). Since xki → x∗, δki , λki → +0 (i→ +∞), there exists i0 > 0 such that δki < ε and

Bλki−1
(xki ) ⊂ Bη(x∗)

for all i ≥ i0. Then, it follows from (3.21) that

min{‖v‖ | v ∈ ∂ f (x∗)} ≤ 2ε.

Since ε > 0 has been chosen arbitrarily, we have 0 ∈ ∂ f (x∗). �
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CHAPTER 4

TRUNCATED CODIFFERENTIAL METHOD WITH
MEMORY

In this chapter, a new method for solving unconstrained nonsmooth convex optimization problems will

be introduced. The main difference between this method and the truncated codifferential method in

Chapter 3 is that at each iteration of the algorithm proposed in this study one uses also codifferential

computed at previous iterations. Because of that, we shall call this method as Truncated codifferential
method with memory. Using codifferential from previous iterations will allow us to reduce the number

of function and subgradient evaluations respectably when compared with the truncated codifferential

method. The convergence of the proposed method will be proved. Results of numerical experiments

using a set of test problems with not only nonsmooth convex but also nonsmooth nonconvex objective

function will be reported in Chapter 6 by comparing the proposed algorithm with TCM and some other

algorithms.

4.1 Introduction

In this chapter, similarly Chapter 3, the solution of unconstrained convex optimization problem is

focused. The problem is as follows:

minimize f (x)

subject to x ∈ Rn,
(4.1)

where the objective function f is assumed to be proper convex.

Several numerical techniques to find the solution of Problem (4.1) have been developed in the literature.

Subgradient method [83], different version of bundle methods [33, 34, 35, 36, 39, 42, 47, 49, 55, 59, 58,

64, 65, 67, 86] are among them. On the other hand, the number of the studies which use codifferential is

just a few, because it is considered that either the entire codifferential or its subsets should be computed

at any point. Whereas, these assumptions are too restrictive. Actually their calculations are not possible

for many class of nonsmooth functions.

In this chapter, we introduce a new method for solving unconstrained nonsmooth convex optimization

problems. The main difference between this method and the truncated codifferential method [12] is

that at each iteration of the algorithm proposed in this study one uses also codifferential computed

at previous iterations. Because of that, we call this method as truncated codifferential method with
memory. This approach reduces the number of function and subgradient evaluations when comparing

with Truncated codifferential method.
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This chapter is structured as follows; Section 4.2 presents an algorithm for finding descant directions.

In Section 4.3, the method will be proposed to find minimum of Problem (4.1). Numerical results are

reported in Section 6.3.

4.2 Computation of a Descent Direction

When computing search directions, we will use a subset of the hypodifferential which is given in the

following way. To find the descent direction these computed search directions are used and usability

of them will be proved. For any λ ∈ (0, 1), c > 1, we assume xi for i = 1, 2, ..., k − 1, are given and

define the following set:

H = cl co
{
H(x, λ) ∪ H̃(x, λ)

}
, (4.2)

where

H(x, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ w = (a, v) ∈ R × Rn

∣∣∣∣∣∣∣∣∣
∃y ∈ Bλ(x),

v ∈ ∂ f (y),

a = f (y) − f (x) − 〈v, y − x〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.3)

and

H̃(x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
w = (a, v) ∈ R × Rn

∣∣∣∣∣∣∣∣∣∣∣∣
∃ xi, i = 1, ..., k − 1

such that
∥∥∥x − xi

∥∥∥ ≤ cλ,
v ∈ ∂ f (y), where y ∈ Bλ(xi),

a = f (y) − f (x) − 〈v, y − x〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (4.4)

Obviously, a ≤ 0 for all w = (a, v) ∈ H (x, λ) because of definition of the subdifferential. Since y can

take the value x in the set (4.3), a attains the value 0, so

max
w=(a,v)∈H (x,λ)

a = 0. (4.5)

If B̄(c+1)λ(x) ⊂ intU for all λ ∈ (0, 1) where U ⊂ R
n is a closed convex set, then from the definition of

both the hypodifferential and the set H (x, λ), the following inclusion holds:

H (x, λ) ⊂ d f (x) ∀ λ ∈ (0, 1).

We call the sets H (x, λ) as the truncated codifferential with memory of the function f at the point x.

Proposition 4.1 Let us assume that 0n+1 �H (x, λ) for a given λ ∈ (0, 1) and c ≥ 1, (c + 1)λ ∈ (0, 1)

and
‖w0‖ = min {‖w‖ | w ∈H (x, λ)} > 0, with w0 = (a0, v0). (4.6)

Then, v0 � 0n and
f (x + λg0) − f (x) ≤ −λ‖w0‖, (4.7)

where g0 = −‖w0‖−1v0.

Proof: Since w0 is a solution of 4.6,

〈w0,w〉 ≥ 〈w0,w0〉 ∀w = (a, v) ∈H (x, λ)

or

a0a + 〈v0, v〉 ≥ ‖w0‖2. (4.8)

First, v0 � 0n should be proved. Assume v0 = 0n. Since w0 � 0n+1 we get that a0 < 0 (i.e., a � 0).

Then, it follows from (4.8) that a0a ≥ a2
0 or a ≤ a0 < 0. In other words, a < 0 for all w = (a, v) ∈
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H (x, λ) which contradicts (4.5). Now we will prove (4.7). Obviously x+λg0 ∈ Bλ(x) and that implies

a = f (x+λg0)− f (x)−λ〈v, g0〉, with v ∈ ∂ f (x+λg0) because of the definition of the set H(x, λ). Thus,

w = (a, v) ∈H (x, λ) with above given a and v. Replacing a with f (x + λg0) − f (x) − λ〈v, g0〉 in (4.8),

we get

a0( f (x + λg0) − f (x) − λ〈v, g0〉) + 〈v, v0〉 ≥ ‖w0‖2. (4.9)

Dividing (4.9) by −‖w0‖ and multiplying (4.9) by λ, we obtain the following inequality

− λa0

‖w0‖ ( f (x + λg0) − f (x) − λ〈v, g0〉) + λ〈v, g0〉 ≤ −λ‖w0‖. (4.10)

Obviously since λ ∈ (0, 1) and ‖w0‖−1a0 ∈ (−1, 0), − λa0

‖w0‖ ∈ (0, 1) and a = f (x+λg0)− f (x)−λ〈v, g0〉 ≤
0, so (4.10) gives the following inequality

f (x + λg0) − f (x) − λ〈v, g0〉 + λ〈v, g0〉 ≤ −λ‖w0‖,
f (x + λg0) − f (x) ≤ −λ‖w0‖.

�

According to Proposition 4.1, the set H (x, λ) can be used to find descent directions of a function f .
Moreover, this can be done for any λ ∈ (0, 1). Unfortunately, it is generally not possible to find descent

direction by using Proposition 3.1 since the entire set H (x, λ) must be used. Actually, the usage of

the entire set H (x, λ) is not always possible. However, Proposition 4.1 helps us how an algorithm

for finding descent directions can be developed. In order to over come this difficulty, the following

algorithm is developed using only a few elements from H (x, λ) to compute descent directions.

Assume that from previous iterations, we have some information about the point xi for i = 1, 2, ..., k−1,

namely subgradients of the function f at the point xi for i = 1, 2, ..., k − 1, and the points related that

subgradients. Also assume that the number of that subgradients is finite and it is denoted mi for i =
1, 2, ..., k−1. Let the subgradients of xi for i = 1, 2, ..., k−1, be denoted vi

j and related points be denoted

yi
j for j = 1, 2, ...,mi and i = 1, 2, ..., k − 1. Consider the following set

H̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
w = (a, v) ∈ R × Rn

∣∣∣∣∣∣∣∣∣∣∣∣

∃ xi, i = 1, ..., k − 1

such that
∥∥∥x − xi

∥∥∥ ≤ cλ
v = vi

j and a = f (yi
j) − f (x) − 〈vi

j, y
i
j − x〉,

for j = 1, 2, ...,mi

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Now, we can give the algorithm which compute the descent direction. For the given numbers λ, c ∈
(0, 1) and a small enough number δ > 0, the following algorithm can be used to find descent directions.

Algorithm 4.2 Computation of descent directions at x.

Step 1. If H̃(x) � ∅, then set k =
∣∣∣H̃(x)

∣∣∣ , H̄k(x) = co {H̃(x)} and go to Step 2. Otherwise, select any

g1 ∈ S 1, and compute v1 ∈ ∂ f (x+λg1) and a1 = f (x+λg1)− f (x)−λ〈v1, g1〉. Set H̄1(x) = {w1 = (a1, v1)}
and k = 1.

Step 2. Compute w̄k = (āk, v̄k) ∈ R × Rn as a solution to the following problem:

min ‖w‖2 subject to w ∈ H̄k(x). (4.11)

Step 3. If

‖w̄k‖ ≤ δ, (4.12)
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then stop. Otherwise, compute ḡk = −‖w̄k‖−1v̄k and go to Step 4.

Step 4. If

f (x + λḡk) − f (x) ≤ −cλ‖w̄k‖, (4.13)

then stop. Otherwise, set gk+1 = ḡk and go to Step 5.

Step 5. Compute vk+1 ∈ ∂ f (x+ λgk+1) and ak+1 = f (x+ λgk+1)− f (x)− λ〈vk+1, gk+1〉. Construct the set

H̄k+1(x) = co {H̄k(x)
⋃{wk+1 = (ak+1, vk+1)}}, set k ← k + 1 and go to Step 2.

Some explanations on Algorithm 4.2 follow. In Step 1, if we have some hypogradients from known

information, we start to find descent direction by using them. Otherwise, we select any direction g1 ∈
S 1 and compute the hypogradient in this direction and star to find descent direction by using it. The

closest point to the origin in the set of all computed codifferential is computed in Step 2. This problem

is a quadratic optimization problem. In the literature there are several algorithms [32, 48, 73, 74, 87]

to solve this problem. In the implementation the algorithm from [87] is used. If the norm of the

closest point is less than a given tolerance δ > 0, then the point x is an approximate stationary point;

otherwise, a new search direction is computed in Step 3. In Step 4, we check whether it is descent

direction satisfying the inequality (4.13) or not. If it is descent direction, then the algorithm stops.

Otherwise, we compute a new hypogradient in the direction gk+1 in Step 5.

Proposition 4.3 Let us assume that f is proper convex function, given a number λ ∈ (0, 1) and there
exists a value K ∈ (0,∞) such that

max
{
‖w‖ | w ∈ d f (x)

}
≤ K.

If c ∈ (0, 1) and δ ∈ (0,K), then Algorithm 4.2 terminates after at most m steps, where

m ≤ 2 log2(δ/K)/ log2 K1 + 1, K1 = 1 − 2[(1 − c)(2K)−1δ]2.

Proof: First, we will show that if both stopping criteria (4.12) and (4.13) are not satisfied, then a

new hypogradient wk+1 allows us to improve to the set H̄k(x). Let us assume the contrary, that is

wk+1 ∈ H̄k(x). Since both stopping criteria are not satisfied, we have

‖w̄k‖ > δ

and

f (x + λgk+1) − f (x) > −cλ‖w̄k‖. (4.14)

The definition of the hypogradient wk+1 = (ak+1, vk+1) implies that

f (x + λgk+1) − f (x) = ak+1 + λ〈vk+1, gk+1〉, (4.15)

where gk+1 = ḡk = −‖w̄k‖−1v̄k. Combining (4.14) and (4.15), we have

−cλ‖w̄k‖ < ak+1 + λ〈vk+1, gk+1〉.

Putting gk+1 = −‖w̄k‖−1v̄k and multiplying by
‖w̄k‖
λ

, we get

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 < c‖w̄k‖2. (4.16)
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Since w̄k = argmin {‖w‖2 : w ∈ H̄k(x)}, the necessary condition for a minimum implies that

〈w̄k,w〉 ≥ ‖w̄k‖2

for all w ∈ H̄k(x). By the assumption, wk+1 ∈ H̄k(x) holds. By replacing w with wk+1, we get

ak+1āk + 〈v̄k, vk+1〉 ≥ ‖w̄k‖2. (4.17)

We notice that ak+1 ≤ 0 and āk ≥ −‖w̄k‖. Then, we have ākak+1 ≤ −‖w̄k‖ak+1. Combining this with

(4.17), we obtain

〈vk+1, v̄k〉 − ‖w̄k‖ak+1 ≥ ‖w̄k‖2.
Finally, taking into account that λ ∈ (0, 1), we have

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 ≥ ‖w̄k‖2,
which contradicts (4.16). Thus, if both stopping criteria are not satisfied, then the new hypogradient

wk+1 does not belongs to the set H̄k+1(x). In light of this fact H̄k+1(x) approximates to the set H(x, λ).

Since at a point x for a given λ ∈ (0, 1) it holds

H̄k(x) ⊂ H̃(x, λ) ⊂ d f (x)

for any k = 1, 2, . . ., it follows that

max
{
‖w‖ | w ∈ H̄k(x)

}
≤ K ∀k ∈ N. (4.18)

Obviously, ‖w̄k+1‖2 ≤ ‖twk+1 + (1 − t)w̄k‖2 for all t ∈ [0, 1], which means

‖w̄k+1‖2 ≤ ‖w̄k‖2 + 2t〈w̄k,wk+1 − w̄k〉 + t2‖wk+1 − w̄k‖2.
Inequality (4.18) implies that

‖wk+1 − w̄k‖ ≤ 2K.

It follows from (4.16) that

〈w̄k,wk+1〉 = ākak+1 + 〈v̄k, vk+1〉
≤ −‖w̄

k‖
λ

ak+1 + 〈v̄k, vk+1〉
≤ −c‖w̄k‖2.

Then, we have

‖w̄k+1‖2 ≤ ‖w̄k‖2 − 2t(1 − c)‖w̄k‖2 + 4t2K2.

Let t = (1 − c)(2K)−2‖w̄k‖2. It is clear that t ∈ (0, 1) and, therefore,

‖w̄k+1‖2 ≤
{
1 − [(1 − c)(2K)−1‖w̄k‖]2

}
‖w̄k‖2. (4.19)

Since ‖w̄k‖ > δ for all k = 1, . . . ,m − 1, it follows from (4.19) that

‖w̄k+1‖2 ≤ {1 − [(1 − c1)(2K)−1δ]2}‖w̄k‖2.
Let K1 = 1 − [(1 − c1)(2K)−1δ]2. Then, K1 ∈ (0, 1) and we have

‖w̄m‖2 ≤ K1‖w̄m−1‖2 ≤ . . . ≤ Km−1
1 ‖w̄1‖2 ≤ Km−1

1 K2.

Thus, the inequality ‖w̄m‖ ≤ δ is satisfied if Km−1
1

K2 ≤ δ2. This inequality must happen after at most

m steps where

m ≤ 2 log2(δ/K)/ log2 K1 + 1.

�
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Definition 4.4 A point x ∈ Rn is called a (λ, δ)-stationary point of the function f if

min
w∈H (x,λ)

‖w‖ ≤ δ.

It can be easily observed that Algorithm 4.2 for a given point x either finds a descent direction or

determines the point x as a (λ, δ)-stationary point for the convex function f .

4.3 A Codifferential Method

In this section, the truncated codifferential method to find the solution of problem (3.1) is introduced.

First of all, we should find stationary points with some tolerance. According to this purpose, the

following algorithm was designed to find (λ, δ)-stationary points for given numbers λ ∈ (0, 1), c1 ∈
(0, 1), c2 ∈ (0, c1] and the tolerance δ > 0.

Algorithm 4.5 Finding (λ, δ)-stationary points.

Step 1. Start with any point x0 ∈ Rn and set k = 0.

Step 2. Apply Algorithm 4.2 setting x = xk. This algorithm terminates after finite number of iterations.

Thus, we have the set H̄m(xk) ⊂ H̃(x, λ) ⊂ d f (x) and an element w̄k = (āk, v̄k) such that

‖w̄k‖2 = min
{
‖w‖2 | w ∈ H̄m(xk)

}
.

Furthermore, either

‖w̄k‖ ≤ δ (4.20)

or

f (xk + λgk) − f (xk) ≤ −c1λ‖w̄k‖. (4.21)

for the search direction gk = −‖w̄k‖−1v̄k holds Step 3. If ‖w̄k‖ ≤ δ, then stop. Otherwise, go to Step 4.

Step 4. Compute xk+1 = xk + αkgk, where αk is defined as follows

αk = argmax
{
α ≥ 0 | f (xk + αgk) − f (xk) ≤ −c2α‖w̄k‖

}
. (4.22)

Set k ← k + 1 and go to Step 2.

Theorem 4.6 Let us assume that the function f is bounded below, i.e.

f∗ = inf { f (x) | x ∈ Rn} > −∞. (4.23)

Then, Algorithm 4.5 terminates after a finite number M > 0 of iterations and generates a (λ, δ)-
stationary point xM, where

M ≤ M0 ≡
⌊

f (x0) − f∗
c2λδ

⌋
+ 1.
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Proof: Assume the statement in the theorem is not correct. Then, we have infinite sequence {xk} and

non-(λ, δ)-stationary points xk. This means that

‖w̄k‖ = min
{
‖w‖ | w ∈H (xk, λ)

}
> δ (k = 1, 2, . . .).

Therefore, Algorithm 4.2 will find descent directions by satisfying the inequality (4.21). Since c2 ∈
(0, c1], it follows from (4.21) that αk ≥ λ. Thus, we have

f (xk+1) − f (xk) < −c2αk‖w̄k‖
≤ −c2λ‖w̄k‖.

Since ‖w̄k‖ > δ for all k ≥ 0, we get

f (xk+1) − f (xk) ≤ −c2λδ,

which implies

f (xk+1) ≤ f (x0) − (k + 1)c2λδ

and, therefore, f (xk) → −∞ as k → +∞, which contradicts (4.23). Obviously, in order to find the

(λ, δ)-stationary point, the upper bound of iterations is M0 �

In the calculation of αk the following idea is used. Because of the fact that c2 ≤ c1 and αk ≥ λ, λ > 0

is a lower bound for αk. This allows us to estimate αk by using the following rule:

αk is defined as the largest θl = 2lλ (l ∈ N), satisfying the inequality in Equation 4.22.

Now, an algorithm for solving Problem (4.1) will be described. The sequences {λk}, {δk} must be

satisfied the conditions λk → +0 and δk → +0 (k → ∞). The tolerances εopt > 0, δopt > 0 must be

given.

Algorithm 4.7 The truncated codifferential method.

Step 1. Start with any point x0 ∈ Rn, and set k = 0.

Step 2. If λk ≤ εopt and δk ≤ δopt, then stop.

Step 3. Apply Algorithm 4.5 setting initial point as xk and the tolerances λ = λk and δ = δk. This

algorithm stops after a finitely many iterations. As a result, a (λk, δk)-stationary point xk+1 is generated.

Step 4. Set k ← k + 1 and go to Step 2.

For the point x0 ∈ Rn, we consider the set L(x0) =
{
x ∈ Rn | f (x) ≤ f (x0)

}
.

Theorem 4.8 Assume that f is a proper convex function and the set L(x0) is bounded. Then, every
accumulation point of the sequence {xk} generated by Algorithm 4.7 belongs to the set X0 = {x ∈
R

n | 0n ∈ ∂ f (x)}.

Proof: Since the function f is proper convex and the set L(x0) is bounded, f∗ > −∞. Therefore, the

conditions of Theorem 4.6 are satisfied, and Algorithm 4.5 generates a sequence of (λk, δk)-stationary

points for all k ≥ 0. More specifically, the point xk+1 is (λk, δk)-stationary, k > 0. Then, it follows from

Definition 4.4 that

min
{
‖w‖ | w ∈H (xk+1, λk)

}
≤ δk. (4.24)
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It is obvious that xk ∈ L(x0) for all k ≥ 0. The boundedness of the set L(x0) implies that the sequence

{xk} has at least one accumulation point. Let x∗ be an accumulation point and xki → x∗ as i → +∞.

The inequality in (4.24) implies that

min
{
‖w‖ | w ∈H (xki , λki−1)

}
≤ δki−1.

Then, there exists a point w̄ ∈ H (xki , λki−1) such that ‖w̄‖ ≤ δki−1. Considering w̄ = (ā, v̄) where v̄ ∈
∂ f (y) for some y ∈ B(c+1)λki−1

(xki ) for c ≥ 1 given in definition of H (x, λ) , we have ‖v̄‖ ≤ ‖w̄‖ ≤ δki−1.

Therefore,

min
{
‖v‖ | v ∈ ∂ f (B(c+1)λki−1

(xki ))
}
≤ δki−1.

Here

∂ f (B(c+1)λki−1
(xki )) =

⋃{
∂ f (y) | y ∈ B(c+1)λki−1

(xki )
}
.

The upper semicontinuity of the subdifferential mapping ∂ f (x) implies that for any ε > 0 there exists

a number η > 0 such that

∂ f (y) ⊂ ∂ f (x∗) + Bε(0n) (4.25)

for all y ∈ Bη(x∗). Since xki → x∗, δki , λki → +0 as i→ +∞, there exists an i0 > 0 such that

δki < ε and B(c+1)λki−1
(xki ) ⊂ Bη(x∗) for all i ≥ i0.

Then, it follows from (4.25) that

min{‖v‖ | v ∈ ∂ f (x∗)} ≤ 2ε.

Since ε > 0 has been chosen arbitrarily, we have 0 ∈ ∂ f (x∗). �
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CHAPTER 5

AGGREGATE CODIFFERENTIAL METHOD

In this chapter, another method for nonsmooth convex optimization problem will be developed via

codifferential concept. Similar to the truncated codifferential method (TCM) given in Chapter 3, we

shall use a few elements from the codifferential. The difference between the method which will be

mentioned in this chapter and TCM is that a fixed number elements of the codifferential will be used to

compute descent direction at each iteration. The convergence of the proposed minimization algorithm

will be proved. Results of numerical experiments using a set of test problems with not only nonsmooth

convex but also nonsmooth nonconvex objective function will be reported in Chapter 6 by comparing

the proposed method with TCM, the truncated codifferential method with memory (TCMWM) and

some other well known methods.

5.1 Introduction

In this chapter, we develop an algorithm for solving the following unconstrained nonsmooth optimiza-

tion problem

minimize f (x)

subject to x ∈ Rn (5.1)

where the objective function f is assumed to be proper convex.

There are a number of methods in nonsmooth optimization for solving Problem (5.1). We mention a

few here such as the subgradient method [83], different versions of the bundle method [33, 36, 49, 55,

58, 64, 67, 86], the variable metric method [59] and the discrete gradient method [14].

The proposed method is based on the concept of codifferential, which was introduced in [27]. The

codifferential mapping for most of the important classes of nonsmooth functions is Hausdorff contin-

uous. Although it has good differential properties, only very few numerical methods were developed

based on the codifferential [26, 27, 91]. These algorithms [26, 27, 91] require either the computation

of whole codifferential or its subsets at any point. However, this assumption is too restrictive for many

nonsmooth optimization problems.

In order to overcome this, the truncated codifferential method (TCM) was developed in [12], where

only one element of the codifferential is computed at any point. Numerical experiments show that the

TCM is a robust and efficient method for solving Problem (5.1). However, the size of the bundle used

to find search directions is not fixed which may lead to a large scale quadratic programming problem

to be solved at each iteration. It is therefore desirable to develop a modification of the TCM, where the

size of this bundle is fixed. In this paper, we develop one such modification. The proposed algorithm
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uses aggregate codifferentials to preserve the efficiency and robustness of the TCM. We study the

convergence of the algorithm and demonstrate its efficiency on well-known nonsmooth optimization

test problems by comparing with the subgradient, the truncated codifferential and the proximal bundle

methods.

This chapter is structured as follows: how the codifferential is used in order to find descent direction

is explained in Subsection 5.2. The aggregate codifferential method is given and its convergency is

examined in Subsection 5.3. The results is presented in Subsection 6.3.

5.2 Computation of a Descent Direction

In the previous section we mentioned difficulty of computation of whole hypodifferential d f (x). In

order to overcome this difficulty truncated codifferential of the function f at the point x is defined as a

subset of the hypodifferential in following definition;

Definition 5.1 Let λ ∈ (0, 1), then

H(x, λ) = cl co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∃y ∈ B(x, λ),

w = (a, v) ∈ R × Rn : v ∈ ∂ f (y),

a = f (y) − f (x) − 〈v, y − x〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (5.2)

is called truncated codifferential of the function f at the point x.

Clearly, H(x, λ) ⊂ d f (x) ∀ λ ∈ (0, 1) for any convex function f because of the definition of both the

hypodifferential and the set H(x, λ). On the other hand, it can be easily observed that a ≤ 0 for all

w = (a, v) ∈ H(x, λ) and a = 0 at the point x, so

max
w=(a,v)∈H(x,λ)

a = 0. (5.3)

We have proved that H(x, λ) can be used to find a descent direction in Proposition 3.1. The following

algorithm gives the descent direction by using l codifferentials in each quadratic subproblem. When

compared with Algorithm 3.2, although the size of quadratic Subproblem 3.9 can freely increase in

Algorithm 3.2, the size of quadratic Subproblem 5.4 will be always less and equal l in the following

algorithm.

Algorithm 5.2 Computation of descent directions for given number l.

Step 1. Choose any g1 ∈ S 1, compute w1 = (a1, v1) as v1 ∈ ∂ f (x+λg1), a1 = f (x+λg1)− f (x)−λ〈v1, g1〉
and set k = 1.

Step 2. If k ≤ l , set H̄k(x) = co {w1, ...,wk}. Otherwise, set

H̄k(x) = co {w̄k−l+1,wk−l+2, ...,wk−1,wk}.

Step 3. Compute w̄k = (āk, v̄k) ∈ R × Rn solving the quadratic subproblem:

min ‖w‖2 subject to w ∈ H̄k(x). (5.4)

Step 4. If

‖w̄k‖ ≤ δ, (5.5)

36



then stop. Otherwise, compute ḡk = −‖w̄k‖−1v̄k and go to Step 5.

Step 5. If

f (x + λḡk) − f (x) ≤ −cλ‖w̄k‖, (5.6)

then stop. Otherwise, set gk+1 = ḡk and go to Step 6.

Step 6. Compute wk+1 = (ak+1, vk+1), vk+1 ∈ ∂ f (x+λgk+1) and ak+1 = f (x+λgk+1)− f (x)−λ〈vk+1, gk+1〉.
Set k ← k + 1 and go to Step 2.

In the following we give some explanation on Algorithm 5.2. In Step 1, we select any direction g1 ∈ S 1

and compute the hypogradient in this direction. In Step 2, for a given number l, the subset of truncated

codifferential is computed. In Step 3, the quadratic programming subproblem (5.4) is solved. It is used

to find the closest point of the convex hull of H̄k(x) to the origin. If the smallest distance is less than a

tolerance δ > 0, then the point x is an approximate stationary point; otherwise, a new search direction

is computed in Step 4. In Step 5, it is checked whether the search direction satisfies the inequality

(5.6). If yes, then the algorithm terminates. Otherwise, a new hypogradient is computed in Step 6 in

the direction gk+1 to improve approximation of the truncated codifferential.

The following lemma proves H̄k is a subset of d f (x) for all k = 1, 2, ..., H̄k can be used to compute

descent directions.

Lemma 5.3 The set H̄k, which is generated by Algorithm 5.2 is a subset of d f (x) (k ∈ N).

Proof: It is obvious that H̄k ⊂ d f (x) for k ≤ l, since wi ∈ d f (x) for i = 1, ..., k. Let k = l + 1. Thus,

Hl+1 = co {w̄2,w3, ...,wl,wl+1}.

Since w̄1 is solution of Problem (5.4) for Hl and Hl ⊂ d f (x), w̄1 ∈ d f (x), so that Hl+1 ⊂ d f (x).

Inductively, we can conclude H̄k ⊂ d f (x). �

In the following proposition we show that Algorithm 5.2 is finite convergent.

Proposition 5.4 Assume that f is proper convex function, given a number λ ∈ (0, 1) and there exists a
value K ∈ (0,∞) such that

max
{
‖w‖ | w ∈ d f (x)

}
≤ K.

If c ∈ (0, 1) and δ ∈ (0,K), then Algorithm 5.2 terminates after at most m steps, where

m ≤ 2 log2(δ/K)/ log2 K1 + 2, K1 = 1 − [(1 − c)(2K)−1δ]2.

Proof: First, we will show that if neither of the stopping criteria (5.5) or (5.6) are satisfied, then a new

hypogradient wk+1 computed in Step 6 does not belong to the set H̄k(x). Let us assume the contrary,

that is, wk+1 ∈ H̄k(x). In this case, ‖w̄k‖ > δ and

f (x + λgk+1) − f (x) > −cλ‖w̄k‖.

The definition of the hypogradient wk+1 = (ak+1, vk+1) implies that

f (x + λgk+1) − f (x) = ak+1 + λ〈vk+1, gk+1〉,
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and we have

−cλ‖w̄k‖ < ak+1 + λ〈vk+1, gk+1〉.
Putting gk+1 = −‖w̄k‖−1v̄k, we get

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 < c‖w̄k‖2. (5.7)

On the other hand, since w̄k is the solution of Problem (5.4),

〈w̄k,w〉 ≥ ‖w̄k‖2

for all w ∈ H̄k(x). Since, by assumption, wk+1 ∈ H̄k(x), we get

ākak+1 + 〈v̄k, vk+1〉 ≥ ‖w̄k‖2. (5.8)

We notice that ak+1 ≤ 0 and since ‖w̄k‖ = −ak + ‖vk‖, we obtain āk ≥ −‖w̄k‖. Then, we have ākak+1 ≤
−‖w̄k‖ak+1. Combining this with (5.8), we get

〈vk+1, v̄k〉 − ‖w̄k‖ak+1 ≥ ‖w̄k‖2.
Finally, for any λ ∈ (0, 1), we get

〈vk+1, v̄k〉 − ‖w̄
k‖
λ

ak+1 ≥ ‖w̄k‖2,

which contradicts (5.7). Thus, if both (5.5) and (5.6) do not hold then the new hypogradient wk+1

allows one to improve an other subset of H(x, λ).

Because of the definition of H̄k and computation of w̄k+1, ‖w̄k+1‖2 ≤ ‖twk+1 + (1− t)wp‖2 for ∀t ∈ [0, 1]

and p = 1, ..., k. That clearly implies ‖w̄k+1‖2 ≤ ‖twk+1 + (1 − t)w̄k‖2 for all t ∈ [0, 1], which means

‖w̄k+1‖2 ≤ ‖w̄k‖2 + 2t〈w̄k,wk+1 − w̄k〉 + t2‖wk+1 − w̄k‖2.
By Lemma 5.3, we have

‖wk+1 − w̄k‖ ≤ 2K.

It follows from (5.7) that

〈w̄k,wk+1〉 = ākak+1 + 〈v̄k, vk+1〉
≤ −‖w̄

k‖
λ

ak+1 + 〈v̄k, vk+1〉
< c‖w̄k‖2.

Then, we have

‖w̄k+1‖2 < ‖w̄k‖2 − 2t(1 − c)‖w̄k‖2 + 4t2K2.

Let t0 = (1 − c)(2K)−2‖w̄k‖2. It is clear that t0 ∈ (0, 1) and, therefore,

‖w̄k+1‖2 <
{
1 − [(1 − c)(2K)−1‖w̄k‖]2

}
‖w̄k‖2. (5.9)

Since ‖w̄k‖ > δ for all k = 1, . . . ,m − 1, it follows from (5.9) that

‖w̄k+1‖2 < {1 − [(1 − c)(2K)−1δ]2}‖w̄k‖2.
Let K1 = 1 − [(1 − c)(2K)−1δ]2. Then, K1 ∈ (0, 1) and we have

‖w̄m‖2 < K1‖w̄m−1‖2 < . . . < Km−1
1 ‖w̄1‖2 < Km−1

1 K2.

Thus, the inequality ‖w‖ ≤ δ is satisfied if Km−1
1

K2 ≤ δ2. This inequality must take place after at most

m steps, where

m ≤ 2 log2(δ/K)/ log2 K1 + 1.

�
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5.3 An Aggregate Codifferential Method

In this section, we will describe the algorithm for solving Problem (5.1) using the codifferential. First

of all, the algorithm for finding a (λ, δ)-stationary point, which is defined in Definition 3.4, are given.

Finally, an algorithm for solving problem (5.1) is described.

Obviously it can be observed that at a given point x after finitely many steps Algorithm 5.2 either finds

a direction of sufficient decrease or determines that the point x is a (λ, δ)-stationary point of the convex

function f . The following algorithm gives us a (λ, δ)-stationary point, when Algorithm 5.2 finds a

descent direction.

Algorithm 5.5 Computation of (λ, δ)-stationary points.

Step 1. Start with any point x0 ∈ Rn and set k = 0.

Step 2. Apply Algorithm 5.2 to compute the descent direction at x = xk for given δ > 0 and c = c1 ∈
(0, 1). This algorithm terminates after finite many steps mk > 0. As a result, we get the set H̄mk (xk) and

a codifferential w̄mk such that w̄mk is the solution of subproblem 5.4.

Furthermore, either

‖w̄mk‖ ≤ δ (5.10)

or

f (xmk + λgmk ) − f (xmk ) ≤ −c1λ‖w̄mk‖. (5.11)

for the search direction gmk = −‖w̄mk‖−1v̄mk holds Step 3. If ‖w̄mk‖ ≤ δ, then stop. Otherwise, go to

Step 4.

Step 4. Compute xk+1 = xk + αkgmk , where αk is defined as follows:

αk = argmax
{
α ≥ 0 | f (xk + αgmk ) − f (xk) ≤ −c2α‖w̄mk‖

}
.

Set k = k + 1 and go to Step 2.

Theorem 5.6 Let us assume that the function f is bounded from below

f∗ = inf { f (x) : x ∈ Rn} > −∞. (5.12)

Then Algorithm 5.5 terminates after a finitely number M > 0 of iterations and generates a (λ, δ)-
stationary point xM, where

M ≤ M0 ≡
⌊

f (x0) − f∗
c2λδ

⌋
+ 1.

Proof: Let us assume the contrary. Then, the sequence {xk} is infinite and points xk are not (λ, δ)-

stationary points. This means that

‖w̄mk‖ > δ (k ∈ N).

Therefore, Algorithm 5.2 always finds a descent direction at each point xk. In other words, the in-

equality (5.11) is satisfied. Since c2 ∈ (0, c1], it follows from (5.11) that αk ≥ λ. Therefore, we

have
f (xk+1) − f (xk) < −c2αk‖w̄mk‖

≤ −c2λ‖w̄mk‖.
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Since ‖w̄mk‖ > δ for all k ≥ 0, we get

f (xk+1) − f (xk) ≤ −c2λδ,

which implies

f (xk+1) ≤ f (x0) − (k + 1)c2λδ

and, therefore, f (xk) → −∞ (k → +∞) which contradicts (5.12). It is obvious that the upper bound

for the number M of iterations necessary to find the (λ, δ)-stationary point is M0. �

Since c2 ≤ c1, we always have αk ≥ λ. Therefore λ > 0 is a lower bound for αk, which leads to the

following rule for the estimation of αk. We define a sequence:

θl = 2lλ, l = 1, 2, . . . ,

and αk is the largest θl satisfying the inequality in Step 4 of Algorithm 5.5.

Next, we will describe the aggregated codifferential algorithm for solving Problem (5.1). Let {λk}, {δk}
be sequences such that λk ↓ 0, δk ↓ 0 as k → ∞ and εopt > 0, δopt > 0 be tolerances.

Algorithm 5.7 A codifferential method.

Step 1. Choose any starting point x0 ∈ Rn, and set k = 0.

Step 2. If λk ≤ εopt and δk ≤ δopt, then stop.

Step 3. Apply Algorithm 5.5 starting from the point xk for λ = λk and δ = δk. This algorithm terminates

after a finite number M > 0 of iterations, and as a result, it computes a (λk, δk)-stationary point xk+1.

Step 4. Set k = k + 1 and go to Step 2.

For the point x0 ∈ Rn, we consider the set L(x0) =
{
x ∈ Rn | f (x) ≤ f (x0)

}
.

Theorem 5.8 Let us assume that f is a proper convex function and the set L(x0) is bounded. Then,
every accumulation point of the sequence {xk} generated by Algorithm 5.7 belongs to the set X0 = {x ∈
R

n | 0n ∈ ∂ f (x)}.

Proof: Since the function f is proper convex and the set L(x0) is bounded, f∗ > −∞. Therefore,

conditions of Theorem 5.6 are satisfied, and Algorithm 5.5 generates a sequence of (λk, δk)-stationary

points for k ∈ N0. More specifically, the point xk+1 is (λk, δk)-stationary, k ∈ N. Then, it follows from

Definition 3.4 that

min
{
‖w‖ | w ∈ H(xk+1, λk)

}
≤ δk. (5.13)

It is obvious that xk ∈ L(x0) for k ∈ N0. The boundedness of the set L(x0) implies that the sequence

{xk} has at least one accumulation point. Let x∗ be an accumulation point and xki → x∗ as i → +∞.

The inequality in (5.13) implies that

min
{
‖w‖ | w ∈ H(xki , λki−1)

}
≤ δki−1.

Then, there exists w̄ ∈ H(xki , λki−1) such that ‖w̄‖ ≤ δki−1. Considering w̄ = (ā, v̄), where v̄ ∈ ∂ f (y) for

some y ∈ Bλki−1
(xki ), we have ‖v̄‖ ≤ ‖w̄‖ ≤ δki−1. Therefore,

min
{
‖v‖ | v ∈ ∂ f (Bλki−1

(xki ))
}
≤ δki−1.
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Here,

∂ f (Bλki−1
(xki )) =

⋃{
∂ f (y) | y ∈ Bλki−1

(xki )
}
.

The upper semicontinuity of the subdifferential mapping ∂ f (x) implies that for any ε > 0 there exists

η > 0 such that

∂ f (y) ⊂ ∂ f (x∗) + Bε(0n) (5.14)

for all y ∈ Bη(x∗). Since xki → x∗, δki , λki → +0 as i→ +∞, there exists i0 > 0 such that δki < ε and

Bλki−1
(xki ) ⊂ Bη(x∗)

for all i ≥ i0. Then, it follows from (5.14) that

min{‖v‖ | v ∈ ∂ f (x∗)} ≤ 2ε.

Since ε > 0 has been chosen arbitrarily, we have 0 ∈ ∂ f (x∗). �
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CHAPTER 6

NUMERICAL RESULTS

In this chapter, the methods mentioned in Chapters 3 - 5 ,and some other well-known methods will

be compared by applying them to some academic test problems with nonsmooth objective functions.

When testing new methods, the comparison is usually performed between similar kinds of methods.

In other words, if a new method is a subgradient (or bundle) method, it should be compared with

other subgradient (or bundle) methods. The methods developed in Chapters 3 - 5 are similar to bundle

methods, but they are not exactly bundle methods since they do not store the bundle of codifferentials

(or subgradient) in the memory of computer. Thus, we will use both bundle and subgradient methods

in comparison. The results are analyzed using the performance profiles introduced in [29]. A short

explanation for performance profile will be given in Section 6.2.

6.1 Test Problems

The well-known nonsmooth optimization academic test problems were used to test the efficiency of

proposed methods by applying them to some test problems from both Chapter 2 and Chapter 3 in [61].

In numerical experiments, we do not include all test problems in [61]. The causes of excluding some

problems are different. First of all, some problems, namely, CB2 and Rosen-Suzuki, are included in

both Chapter 2 and 3 of [61], so in order not to repeat, we do not use them twice. The second reason

is unboundedness of some problems, namely, Bard, Gamma, Colville 1 and HS78. After that, several

problems, namely, PBC3, Kowalik-Osborne, EXP, PBC1, EVD61 and Filter, have more than one local

solutions. After that, as the input data are not fully available for the problem TR48, we do not place

the problem TR48. Lastly, the problem Transformer is not used, because of its complex coefficients.

Briefly, we use 36 test problems from both Chapter 2 and 3 in [61], whereas there are 50 test problems.

Although all test problems have nonsmooth objective functions, some of them are nonconvex (see

Tables 6.1 - 6.2). We give brief information about the test problems in Tables 6.1 - 6.2, where the

following notations are used:

• n : the number of variable of corresponding problem,

• nA : number of functions whose maximum give objective function,

• fopt : the optimal values which are reported in [61].

The problems in Chapter 2 in [61] are called unconstrained minmax optimization problems, whose

form is as follows:

f (x) = max
1≤k≤nA

fk(x) (x ∈ Rn). (6.1)
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Table 6.1: The brief description of unconstrained minmax problems

Problem n nA fopt Convexity

CB2 2 3 1.9522245 Convex

WF 2 3 0 Nonconvex

SPIRAL 2 3 0 Convex

EVD52 3 6 3.5997193 Convex

Rosen-Suzuki 4 4 -44 Convex

Polak6 4 4 -44 Convex

Davidon 2 4 20 115.70644 Convex

OET5 4 21 0.26359735 × 10−2 Convex

OET6 4 21 0.20160753 × 10−2 Nonconvex

Wong 1 7 5 680.63006 Convex

Wong 2 10 9 24.306209 Convex

Wong 3 20 18 93.90525 Convex

Polak 2 10 2 54.598150 Convex

Polak 3 11 10 3.70348 Convex

Watson 20 31 0.14743027 × 10−7 Convex

Osborne 2 11 65 0.48027401 × 10−1 Nonconvex

The problems in Chapter 3 in [61] are called general unconstrained optimization problems.

Table 6.2: The brief description of general unconstrained problems

Problem n fopt Convexity Problem n fopt Convexity

Rosenbrock 2 0 Nonconvex El-Attar 6 0.5598131 Nonconvex

Crescent 2 0 Nonconvex Maxquad 10 -0.8414083 Convex

CB3 2 2 Convex Gill 10 9.7857721 Nonconvex

DEM 2 -3 Convex Steiner 2 12 16.703838 Nonconvex

QL 2 7.2 Convex Maxq 20 0 Convex

LQ 2 -1.4142136 Convex Maxl 20 0 Convex

Mifflin 1 2 -1 Convex Goffin 50 0 Convex

Mifflin 2 2 -1 Nonconvex MXHILB 50 0 Convex

Wolfe 2 -8 Convex L1HILB 50 0 Convex

Shor 5 22.600162 Convex Shell Dual 15 32.348679 Nonconvex

We test our method on aforementioned problems using 20 randomly generated starting point for each

problem.

According to given tolerance ε > 0, if the following inequality is satisfied, it is assumed the method

solves corresponding problem successfully:

f̄ − fopt ≤ ε(1 + | fopt |),

where fopt is the minimum value of the objective function as reported in [61] and f̄ is the best value of

the objective function found by an algorithm. In our experiments ε = 10−4.
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In our experiments, we use two subgradient methods (SUB1 and SUB2), subgradient method for non-

smooth nonconvex optimization (SUNNOPT) and three bundle methods (PBUN, PVAR and PNEW).

This comparison will allow us to place the proposed methods among some other nonsmooth optimiza-

tion methods. Subgradient methods SUB1 and SUB2 are the subgradient method with convergent step

size and the subgradient method with the constant step size, respectively, for more detail see [83].

SUNNOPT is a version of the subgradient method for general nonsmooth nonconvex optimization

problems (see [44]). Subroutine PBUN is based on the proximal bundle method [55, 64, 65, 62].

PVAR is the variable metric method in [59, 57, 85]. The last bundle method, PNEW, is the bundle-

Newton method in [58].

In the implementation, we needed to set parameters in Algorithms 3.8, 4.7 and 5.7. They were chosen

as follows: c1 = 0.2, c2 = 0.05, δk ≡ δopt = 10−7, λ1 = 1 and εopt = 10−10 in all algorithms. In

Algorithms 3.8 and 4.7, we used λk+1 = 0.1λk (k ≥ 1). In Algorithm 5.7, we referred to λk+1 =

0.5λk (k ≥ 1). The parameters for the methods SUB1 and SUB2 were chosen as the following rule:

xk+1 = xk − tkξk (k ∈ N0

SUB1: We used the step-length tk = 1/k for first 25000 iteration, and after that we update it as the

following rule in order to improve the convergence of the algorithm. Let pk be the largest integer

such that pk ≤ k
25000

. We put

tk =
1

k − pk
.

SUB2: We used tk = 0.0005 for the first 10000 iterations, and tk = 0.0001 for all other iterations.

The parameters for the SUNNOPT were c1 = 0.2, c2 = 0.05, h j+1 = 0.8h j( j ∈ N), h1 = 1, δ j ≡
10−7( j ∈ N0). Although convergence of the subgradient methods was proved only for convex functions

in [83], we applied them also to nonconvex problems in this thesis. The subgradient methods do not

have any stopping criterion. Therefore, in our experiments, the algorithm terminates when the number

of function evaluations reaches 106 or if it cannot decrease the value of the objective function with

respect to tolerance 10−4 in 5000 successive iterations.

6.2 Performance Profiles

In this section, the idea behind performance profiles will be given briefly (for more detail, see [29]). np

denote the number of problems. As a performance measure, computing time, the number of function

evaluations (or subgradient evaluations) and the number of iterations, etc., can be used. Since the com-

putational times of methods are very small, we will be interested in the number of function evaluations

and subgradient evaluations. The following idea can be applied to other measures. For each problem

p and solver s, we need the data np,s which is the number of function (or subgradient) evaluations

required to solve problem p by solver s.

On fixed problem p, we aim to compare the performance of solver s with the best performance of any

solver. In other words, we use the following performance ratio in comparison

rp,s = ln
np,s

min{np,s : s ∈ S } ,

where S is the set of all solvers. Here, the performance ratio rp,s is in logarithmic (or ln) scale. We

define a parameter rM ≥ rp,s for all problems p and solvers s. The equality holds if and only if solver s
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does not solve problem p. “The choice of rM does not affect the performance evaluation.” was shown

in [29]. We interest in the performance of solver s on all problems, so the probability ρs(τ) is defined

as follows:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ},

where “size= {p ∈ P : rp,s ≤ τ}” denotes the number of problems such that rp,s ≤ τ. Obviously, ρs is

the cumulative distribution function for the performance ratio.

The performance profile ρs : R → [0, 1] for a solver is a nondecreasing, piecewise constant function

and continuous from the right. The initial value of ρs(τ) (i.e., ρs(0)) shows the percentage of test

problems for which the corresponding method uses least evaluations. The value of ρs(τ) at the end of

abscissa gives the percentage of the test problems solved successfully by the corresponding method,

i.e., the reliability of the solver (this does not depend on the measured performance). In addition, the

relative efficiency of each solver can be directly observed from the performance profiles by distance in

hight term between curves. This measure shows us how much better the corresponding solver.

6.3 Results

In this section, first of all, we give some numerical results for Aggregate Codifferential Method (ACM)
with the number l = 2, 3, 4, 12, 50, 100. These results are analyzed using the performance profile idea.

After that, numerical results for our other two methods and ACM with l = 12 are compared with some

subgradient and bundle methods. The reasons for why subgradient and bundle methods are chosen for

comparisons are different. First, the reason of choosing subgradient methods is the similarity between

the proposed methods and subgradient methods with respect to construction of methods. Secondly,

using bundle methods for comparisons is based on completely different reason. Bundle methods are

the best methods in literature and according to specialists, they are assumed to be more complex and

advanced than subgradient methods, so they are chosen for comparison in order to replace proposed

methods in literature.

6.3.1 Results of ACM With the Number l = 2, 3, 4, 12, 50 and 100

The following performance profiles in Figures 6.1 - 6.2 demonstrate the differences among ACM with

l = 2, 3, 4, 12, 50 and 100. We can observe that our proposed method ACM solves problems more

successfully when the number l became bigger. In Figure 6.1(b), it can be understood that the number

of function evaluation decreases while the number l is increasing; however, in Figure 6.1(a), we can not

observe the same situation. This means the relation between the number l and the number of function

evaluations depends on the types of problems.
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Optimization Problems

Figure 6.1: Performance Profile Graphs with respect to the Number of Function Evaluation, Given the

Tolerance ε = 10−4
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Optimization Problems

Figure 6.2: Performance Profile Graphs with respect to the Number of Gradient Evaluation, Given the

Tolerance ε = 10−4
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In order to observe better, Figure 6.3 is put. In Figure 6.3, the first two columns shows the percentage of

test problems for which the corresponding method uses the smallest function and gradient evaluations,

respectively. The last columns show the percentage of the test problems solved successfully by the

corresponding method.

(a) Unconstrained Minmax Optimization Problems

(b) General Unconstrained Optimization Problems

Figure 6.3: Column Charts for ACM with l = 2, 3, 4, 12, 50 and 100

In Figure 6.3(a), we can easily observe that the proposed methods have a similar accuracy when l ≥
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12, and the percentages of successfully solved problems are bigger than 95%. On the other hand,

the numbers of function and gradient evaluation are directly proportional with the number l when

l ≥ 12. In Figure 6.3(b), the percentages of the proposed methods with l = 50 and l = 100 are

100%. The numbers of function and gradient evaluation are in an inverse proportion for the general

unconstrained nonsmooth problems; this situation can be also observed from Figures 6.1(b) and 6.2(b).

As a conclusion, we can say that the proposed methods became more efficient when the number l
increases for all type problems, and the number of function and gradient evaluations change by a

different variety, in other words, they do not directly depend on the number l.

6.3.2 Comparisons for Proposed Methods

In this section, it can be found eight different performance profile graphs and four column charts. The

first four performance profile graphs are to compare our proposed methods and subgradient methods

with respect to function and subgradient evaluation for unconstrained minmax and general nonsmooth

problems. After this comparison with subgradient methods, the same kind of comparison is done

with bundle methods in the next four performance profile graphs. Former comparisons show us the

differences between our proposed methods and other subgradient methods with respect to the number

of function and subgradient evaluations. One can observe that our proposed methods use less function

and subgradient evaluations than subgradient methods. About the reliability of our proposed methods,

there is a big difference between the proposed methods and subgradient methods, so it is needed to

compare them with bundle methods, which are known as the best methods in literature. Thus, the

latter comparison has been done to determine accuracy of the proposed methods. Column charts,

which are provided for both comparisons, can be considered as a brief explanations, together with

statistic values.
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Nonsmooth Optimization Problems

Figure 6.4: Comparison of the Proposed Methods with Subgradient Methods with respect to the Num-

ber of Function Evaluation, Given the Tolerance ε = 10−4
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Nonsmooth Optimization Problems

Figure 6.5: Comparison of the Proposed Methods with Subgradient Methods with respect to the Num-

ber of Subgradient Evaluation, Given the Tolerance ε = 10−4
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From Figures 6.4 - 6.5, it can be observed that the proposed methods have a higher accuracy than

subgradient methods, for both unconstrained minmax and general nonsmooth problems. Actually,

TCM and TCMWM solve all general nonsmooth unconstrained problems without depending on start-

ing points, in other words, they solved 100% of that problems for all the given starting points. Here,

it should also be highlighted that the percentage of successfully solved problems of ACM for general

nonsmooth problems is very close to those of TCM and TCMWM, respectively. For unconstrained

minmax problems the results of TCM, TCMWM and ACM demonstrate that the successes of these

methods are almost equivalent. This situation can be observed from Figures 6.4(b) and 6.5(b) where

the percentage of successfully solved problems is almost a hundred.

From Figure 6.5, we can easily learn that TCMWM uses the least number of gradient evaluation when

comparing not only with subgradient methods but also with our other methods. Thus, we can say that

our aim to improve from TCM to TCMWM is achieved.

The following column charts (Figure 6.6) are just put to observe easily differences among the percent-

ages of the least function and gradient evaluations (blue and red bars respectively), and the percentage

of successfully solved problems (green bar). From Figure 6.6, it is obvious that the proposed methods

reach accurately optimum values by using less function and gradient evaluations.
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(a) Unconstrained Minmax Optimization Problems

(b) General Unconstrained Nonsmooth Optimization Problems

Figure 6.6: Column Charts for the Proposed Methods in order to Compare with Subgradient Methods

The following four performance profile graphs are prepared for a comparison between the proposed

methods and bundle methods. As known, bundle methods use very few function and subgradient

evaluations, so the gap between the proposed methods and the bundle methods in Figures 6.7 - 6.8 at

the beginning of that graphs is acceptable. Towards the end of the graphs, the proposed methods catch

up bundle methods, it means after some value of the ratio of function (or subgradient) evaluations,

proposed methods solve more problems. Consequently, it is important that the proposed methods have

became better than the other methods towards the end of the graphs in Figures 6.7 - 6.8, since bundle

methods have the highest accuracy in the literature. In other words, our proposed methods are more

accurate than bundle methods.
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Nonsmooth Optimization Problems

Figure 6.7: Comparison of the Proposed Methods with Bundle Methods with respect to the Number

of Function Evaluation,Given the Tolerance ε = 10−4
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(a) For Unconstrained Minmax Optimization Problems

(b) For General Unconstrained Nonsmooth Optimization Problems

Figure 6.8: Comparison of the Proposed Methods with Bundle Methods with respect to the Number

of Subgradient Evaluation, Given the Tolerance ε = 10−4
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(a) Unconstrained Minmax Optimization Problems

(b) General Unconstrained Nonsmooth Optimization Problems

Figure 6.9: Column Chart for the Proposed Methods in order to Compare with Bundle Methods

Consequently, all performance profile graphs and column charts in this chapter display that our pro-

posed methods are more robust than both subgradient methods and bundle methods, so they can be

considered as an alternative methods for nonsmooth convex optimization problems. In this chapter,

we also test our methods for nonsmooth nonconvex problems, although they were not developed for

the nonconvex case. The results for nonconvex case show us that these methods can be used for them.

Maybe, the generalization of these methods can be considered as an open problem.
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CHAPTER 7

TRUNCATED CODIFFERENTIAL METHOD FOR LINEARLY
CONSTRAINED NONSMOOTH OPTIMIZATION PROBLEMS

In this chapter, a new algorithm is developed to minimize linearly constrained non-smooth optimiza-

tion problem for convex objective functions. The algorithm is based on the concept of the codiffer-

ential. The convergence of the proposed minimization algorithm is proved and results of numerical

experiments are reported using a set of test problems with nonsmooth convex objective functions.

7.1 Introduction

In this chapter, We focus on the solution of the following linearly constrained nonsmooth optimization

problem:

minimize f (x)

subject to x ∈ X,
(7.1)

where X =
{
x ∈ Rn

∣∣∣A1x = b1, A2x ≤ b2
}

such that A1 is an p1 × n, A2 is a p2 × n matrix, b1 ∈ R
p1 ,

b2 ∈ R
p2 and it is assumed that the objective function f is convex. There are many methods to solve

the unconstrained minimization problem (p1 = 0 and p2 = 0), namely, subgradient methods [83] and

different versions of the bundle methods [33, 35, 36, 43, 47, 49, 55]. By using the concept of the

codifferential, the truncated codifferential method [12] has been developed for unconstrained problem.

In order to solve the problem (7.1), some methods have also been developed [13, 56].

7.2 Linearly Constrained Nonsmooth Optimization Problems

The problem (7.1) can be reduced to a linearly equality constrained optimization problem by introduc-

ing a slack variable:

minimize f (x)

subject to x ∈ X,
(7.2)

where X = {x ∈ Rn |Ax = b } such that A is an m× n matrix, b ∈ Rm and it is assumed that the objective

function is convex. Without loss of generality we assume that the rank of matrix A is equal to m < n.

We can split variables x1, ..., xn into two parts: xT = (xT
B, x

T
N) where xB ∈ R

n−m is called a vector of

basic (or independent) variables and xN ∈ Rm is a vector of non-basic (or dependent) variables. Then

the matrix A can be partitioned as follows:

A = (AB, AN) ,
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where AB is an m × (n − m) matrix consisting of columns related with xB of the matrix A and AN is an

m × m matrix consisting of columns related with xN of the matrix A. Here, AN is an invertible matrix.

The equality constraint system can be rewritten as follows:

ABxB + AN xN = b.

This system of linear equations can be solved with respect to non-basic variable xN :

xN = A−1
N (b − ABxB) .

Thus, we can represent the non-basic variables xN as follows:

xN = BxB + c where B = −A−1
N AB and c = A−1

N b.

Then, the objective function f can be rearranged with respect to basic variables xB and non-basic

variables xN as

f (x) = f ((xT
B, x

T
N)T ) = f ((xT

B, (BxB + c)T )T ).

According to the above rearrangement, we can define the following function

h(y) = f ((yT , (By + c)T )T ) (y ∈ Rn−m).

Proposition 7.1 Assume that the function f is a convex function on R
n. Then the function h(y) =

f
(
(yT , (By + c)T )T

)
is convex, where B = −A−1

N AB and c = A−1
N b.

Proof: One can evaluate as follows:

h (λy1 + (1 − λ)y2) = f
((
λy1 + (1 − λ) y2)T , (B

[
λy1 + (1 − λ) y2

]
+ c)T

)T )
= f
((
λyT

1 + (1 − λ) yT
2 , λ (By1 + c)T + (1 − λ) (By2 + c)T

)T )
= f
((
λyT

1 , λ (By1 + c)T
)T
+
(
(1 − λ) yT

2 , (1 − λ) (By2 + c)T
)T )

= f
(
λ
(
yT

1 , (By1 + c)T
)T
+ (1 − λ)

(
yT

2 , (By2 + c)T
)T )

= f (λx1 + (1 − λ) x2) , where x1 =
(
yT

1 , (By1 + c)T
)T

and x2 =
(
yT

2 , (By2 + c)T
)T

≤ λ f (x1) + (1 − λ) f (x2), since f is convex

= λ f
((

yT
1 , (By1 + c)T

)T )
+ (1 − λ) f

((
yT

2 , (By2 + c)T
)T )

= λh(y1) + (1 − λ)h(y2)

⇒ h is convex.

�

Now, we can consider the following unconstrained optimization problem,

minimize h(y)

subject to y ∈ Rn−m (7.3)

Proposition 7.2 Let y∗ ∈ Rn−m be a solution of the problem (7.3). Then, x∗ =
(
(y∗)T , (By∗ + c)T

)T
is a

solution of the problem (7.2), where B = −A−1
N AB and c = A−1

N b.
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Proof: Let y∗ ∈ R
n−m be a stationary point of the problem (7.3). First, let us show that x∗ =(

(y∗)T , (By∗ + c)T
)T ∈ X = {x ∈ R |Ax = b }. Using partitioned matrix and vector, we get the follows:

Ax∗ = (AB, AN)
(
(y∗)T , (By∗ + c)T

)T
= ABy∗ + AN(By∗ + c) = ABy∗ + AN By∗ + ANc)

= ABy∗ + AN(−(AN)−1AB)y∗ + AN((AN)−1b) ,since B = −A−1
N AB and c = A−1

N b
= ABy∗ − ABy∗ + b = b

⇒ x∗ ∈ X.

Now we prove that x∗ is a solution of the problem (7.2),

min
y∈Rn−m

{h(y)} = h(y∗)

⇒ min
y∈Rn−m

{
f
((

yT , (By + c)T
)T )}
= f
((

(y∗)T , (By∗ + c)
)T )

⇒ min
x∈X
{ f (x)} = f

((
(y∗)T , (By∗ + c)T

)T )
, since X =

{
x ∈ Rn

∣∣∣∣xT =
(
yT , (By + c)T

)
∀y ∈ Rn−m

}
.

�

Proposition 7.3 Let x∗ ∈ X be a solution of the problem (7.2). Then, there exists y∗ ∈ Rn−m such that
x∗ =

(
(y∗)T , (By∗ + c)T

)T
and y∗ is a solution of problem (7.3), where B = −A−1

N AB and c = A−1
N b.

Proof: The existence of the y∗: Consider x∗ ∈ X, as mentioned before we can divide variable x∗1, ...x
∗
n

into two parts: (x∗)T = ((x∗B)T , (x∗N)T ) as a vector of basic variables and nonbasic variables. Clearly

x∗ =
(
(x∗B)T , (x∗N)T

)T
=
(
(y∗)T , (By∗ + c)T

)T
so y∗ = x∗B. Now, we prove that y∗ is a solution of Problem

(7.3):

min
x∈X
{ f (x)} = f (x∗)

⇒ min
xB∈Rn−m

{
f
((

xT
B, x

T
N

)T )}
= f
((

(x∗B)T , (x∗N)T
)T )

, where xN = BxB + c

⇒ min
xB∈Rn−m

{h(xB)} = h(x∗B)

⇒ min
yB∈Rn−m

{h(yB)} = h(y∗), since y∗ = x∗B

�

As the result of Proposition (7.2) and (7.3), Problem (7.2) can be reduced to the unconstrained mini-

mization Problem (7.3).

7.3 Computation of a Descent Direction

In this section, our aim is to compute descent direction of Problem (7.2). To reach this aim, first, we

compute a descent direction of Problem (7.3). The following subset of the hypodifferential is sufficient

to find such directions. For any given λ ∈ (0, 1), let

H(y, λ) := cl co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ w = (a, v) ∈ R × Rn−m

∣∣∣∣∣∣∣∣∣
∃ ȳ ∈ Bλ(y),

v ∈ ∂h(ȳ),

a = h(ȳ) − h(y) − 〈v, ȳ − y〉

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (7.4)

It is clear that a ≤ 0 for all w = (a, v) ∈ H(y, λ). Since a = 0 at the point y,

max
w=(a,v)∈H(y,λ)

a = 0. (7.5)
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If B̄λ(x) ⊂ intU for all λ ∈ (0, 1) where U ⊂ R
n is a closed convex set, then from the definition of both

the hypodifferential and the set H(x, λ), the following inclusion holds:

H(y, λ) ⊂ dh(y) ∀ λ ∈ (0, 1).

The sets H(y, λ) is called truncated codifferentials of the function h at the point y.

Proposition 7.4 Let us assume that 0n−m+1 � H(y, λ) for a given λ ∈ (0, 1) and

‖w0‖ = min {‖w‖ | w ∈ H(y, λ)} > 0.

w0 = (a0, v0). Then, v0 � 0n and

h(y + λg0) − h(y) ≤ −λ‖v0‖, (7.6)

where g0 = −‖w0‖−1v0.

The proof of Proposition 7.4 can be done as the proof of Proposition 3.1. Proposition 7.4 implies that

the set H(y, λ) can be used to find descent directions of the the function h. Because of the difficulty

of computation H(y, λ), the following algorithm is developed to find descent direction by using a few

elements of H(y, λ) as Algorithm 7.5.

Algorithm 7.5 Computation of descent directions.

Step 0. Let the numbers λ ∈ (0, 1) , c ∈ (0, 1) and a sufficiently small number δ > 0 be given.

Step 1. Chose any g1 ∈ S 1, and compute v1 ∈ ∂h(y + λg1) and a1 = h(y + λg1) − h(y) − λ〈v1, g1〉. Set

H̄1(y) = {w1 = (a1, v1)} and k = 1.

Step 2. Compute the w̄k = (āk, v̄k) ∈ R × Rn−m solving the quadratic subproblem:

min ‖w‖2 such that w ∈ H̄k(y). (7.7)

Step 3. If

‖w̄k‖ ≤ δ, (7.8)

then stop. Otherwise, compute ḡk = −‖w̄k‖−1v̄k and go to Step 4.

Step 4. If

h(y + λḡk) − h(y) ≤ −cλ‖w̄k‖, (7.9)

then stop. Otherwise, set gk+1 = ḡk and go to Step 5.

Step 5. Compute vk+1 ∈ ∂h(y + λgk+1) and ak+1 = h(y + λgk+1) − h(y) − λ〈vk+1, gk+1〉. Construct the set

H̄k+1(y) = co {H̄k(y)
⋃{wk+1 = (ak+1, vk+1)}}, set k ← k + 1 and go to Step 2.

Stated briefly, the above mentioned algorithm works as follows; in Step 1 a direction g1 is selected

and the element of the truncated codifferential in this direction is computed. In Step 2, the smallest

length of the truncated codifferential from the convex hull is found. This is a quadratic problem and

to solve it, there are several methods [32, 87]. In Step 3, we check whether this smallest length is less

than give tolerance δ > 0, or not. If it holds, we reach the approximate stationery point. Otherwise,

we compute an other search direction. In Step 4, if the currently computed search direction satisfies

(7.9), then the algorithm stops. In Step 5, a new element of the truncated codifferential in the direction

gk+1 is computed. This algorithm terminates after finitely many steps by Proposition 3.3, because h is

a proper convex function.
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7.4 A Truncated Codifferential Method

In this section, we describe the truncated codifferential method for solving problem (7.3). We are able

to compute the solution of problem (7.2) according to Proposition 7.2.

Definition 7.6 A point y ∈ Rn−m is called a (λ, δ)-stationary point of the function h if

min
w∈H(y,λ)

‖w‖ ≤ δ.

The (λ, δ)-stationary point of the function h will be computed by Algorithm 7.7.

Algorithm 7.7 The truncated codifferential method for finding (λ, δ)-stationary points.

Step 0. Let λ ∈ (0, 1), δ > 0, c1 ∈ (0, 1), c2 ∈ (0, c1] be given numbers.

Step 1. Start with any point y0 ∈ Rn−m and set k = 0.

Let λ ∈ (0, 1), δ > 0, c1 ∈ (0, 1) and c2 ∈ (0, c1] be given numbers.

Step 2. Apply Algorithm 7.5 setting y = yk. This algorithm terminates after finite number of iterations.

Thus, we have the set H̄m(yk) and an element w̄k such that

‖w̄k‖2 = min
{
‖w‖2 | w ∈ H̄m(yk)

}
.

Furthermore, either

‖w̄k‖ ≤ δ (7.10)

or

h(yk + λgk) − h(yk) ≤ −c1λ‖w̄k‖. (7.11)

for the search direction gk = −‖w̄k‖−1v̄k holds.

Step 3. If ‖w̄k‖ ≤ δ, then stop. Otherwise, go to Step 4.

Step 4. Compute yk+1 = yk + αkgk, where αk is defined as follows:

αk = argmax
{
α ≥ 0 | h(yk + αgk) − h(yk) ≤ −c2α‖w̄k‖

}
.

Set k ← k + 1 and go to Step 2.

Without loss of generality, we can assume the function h is bounded from below, so that Algorithm 7.7

terminates after finitely many step because of Theorem 3.6. We will describe Algorithm 7.8 in order

to solve Problem (7.3).

Algorithm 7.8 The truncated codifferential method.

Step 0. Let λk, δk be sequance such that λk → 0 and δk → 0 as k → 0.

Step 1. Choose any starting point y0 ∈ Rn−m, and set k = 0.
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Step 2. If 0n−m ∈ ∂h(xk), then stop.

Step 3. Apply Algorithm 7.7 starting from the point yk for λ = λk and δ = δk. This algorithm terminates

after a finite number of iterations M > 0, and as a result, it computes a (λk, δk)-stationary point yk+1.

Step 4. Set k ← k + 1 and go to Step 2.

Every accumulation point of the sequence yk generated by Algorithm 7.8 is the solution of Problem

(7.3) according to Theorem 3.9, because the function h is convex. Let y∗ be a solution of Problem (7.3)

which is obtained from Algorithm 7.8. According to Proposition 7.2, the solution of problem (7.2) x∗

is as follows:

(x∗)T = ((y∗)T , (By∗ + c)T ), where B = −A−1
N AB and c = A−1

N b.

7.5 Examples

In order to check the efficiency of the method, we use three test problems. In all examples, each slack

variable is assigned as a basic variable.

Example 7.9 (Problem 1 in [13])

minimize f (x)

subject to 2x1 − x2 + x3 − x4 = 1
(7.12)

where f (x) = |x1−1|+100|x2−|x1||+90|x4−|x3||+|x3−1|+10.1(|x2−1|+|x4−1|)+4.95(|x2+x4−2|−|x2−x4|).

We divide the variables x1, x2, x3 and x4 into two parts as xT = ((xB)T , xN) = (x1, x2, x3, x4). The

relationship between basic and nonbasic variables is given as xN = (2 − 1 1)xB − 1. Thus the solution

of problem 7.12 is the solution of the following minimization problem

minimize h(y) = f
((

yT , (2y1 − y2 + y3 − 1)T
)T )

subject to y ∈ R3.

Example 7.10 (Mad 1 in [61])

minimize f (x) = maxi≤i≤3 fi(x)

subject to x1 + x2 − 0.5 ≤ 0

where f1(x) = x2
1 + x2

2 + x1x2 − 1, f2(x) = sin(x1), f3(x) = − cos(x2) and x ∈ R2.

We used a slack variable s into constraint, so that the constraint becomes x1 + x2 − 0.5 − s = 0, where

s ≤ 0. Now we have, three variables, namely, x1, x2 and s, we divide the variables as ((xB)T , xN) =

(x2, s, x1). After some arrangement, we have the following unconstrained problem:

minimize h(y) = maxi≤i≤3 fi
((

(0.5 − y1 + y2
2)T , (y1)T

)T )
subject to y ∈ R2.
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Example 7.11 (Mad 2 in [61])

minimize f (x) = maxi≤i≤3 fi(x)

subject to −3x1 − x2 − 2.5 ≤ 0

where f1(x) = x2
1 + x2

2 + x1x2 − 1, f2(x) = sin(x1), f3(x) = − cos(x2) and x ∈ R2.

After some arrangment of the variables, we obtain the unconstrained problem

minimize h(y) = maxi≤i≤3 fi
((

(−2.5 − y1 − y2
2)T , yT

1

)T )
subject to y ∈ R2.

The numerical results were obtained by applying all algorithms starting from 20 randomly generated

points for each problem. Those results are given in Table 7.1, where the following notation is used:

• fob: the value of objective function f ,

• n f : number of objective function f evaluates,

• nsub: number of subgradient evaluations respectively.

Table 7.1: Results of numerical experiments

Starting Problem 1 Mad 1 Mad 2

Points fob n f nsub fob n f nsub fob n f nsub

1 0 139 86 -.38965952 267 109 -.33028514 127 80

2 0 152 89 -.38965952 195 122 -.33028514 123 75

3 0 132 76 -.38965952 276 115 -.33028514 140 85

4 0.1E-07 192 104 -.38965952 270 115 -.33028514 99 65

5 0.2E-07 187 94 -.38965952 243 106 -.33028514 112 72

6 0 156 98 -.38965952 280 120 -.33028514 120 76

7 0 121 73 -.38965952 373 136 -.33028514 107 66

8 0.1E-07 182 102 -.38965952 279 120 -.33028514 116 70

9 0.5E-07 187 88 -.38965952 250 102 -.33028514 110 69

10 0 117 80 -.38965952 347 133 -.33028514 116 74

11 0 149 88 -.38965952 231 108 -.33028514 125 71

12 0.4E-07 426 192 -.38965952 252 120 -.33028514 128 83

13 0 152 94 -.38965952 324 133 -.33028514 93 63

14 0.1E-07 147 90 -.38965952 249 113 -.33028514 121 74

15 0 152 94 -.38965952 345 141 -.33028514 120 73

16 0.1E-07 169 92 -.38965952 223 107 -.33028514 107 69

17 0.2E-07 101 100 -.38965952 242 115 -.33028514 127 80

18 0 101 68 -.38965952 243 110 -.33028514 131 81

19 0.1E-07 109 68 -.38965952 235 114 -.33028514 119 72

20 0.2E-07 211 104 -.38965952 292 135 -.33028514 130 80

The computational results show that the proposed method is not sensitive to the choice of the starting

points. The numerical results are compared with those results in [13, 61]. The result of Example 7.12
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in [13] is 0. The results in [61] for Example 7.10 is −.3896592 and for Example 7.11 is −.33035714.

Example 7.12 and 7.10 are computed with high accuracy, in Example 7.11 the average error is 0.82E−
05. In Example 7.10, the proposed method used more function and subgradient evaluations than in the

other examples.
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CHAPTER 8

A GENERALIZED SUBGRADIENT METHOD WITH
PIECEWISE LINEAR SUBPROBLEM

In this chapter, a new version of the quasisecant method for nonsmooth nonconvex optimization prob-

lem is developed. Quasisecants are overestimates to the objective function in some neighborhood

of a given point. Subgradients are used to obtain quasisecants. We describe classes of nonsmooth

functions, where quasisecants can be computed explicitly. It is shown that a descent direction with

sufficient decrease must satisfy a set of linear inequalities. In the proposed algorithm, this set of linear

inequalities is solved by applying the subgradient algorithm to minimize a piecewise linear function.

We compare numerical results generated by the proposed algorithm and a subgradient method.

8.1 Introduction

Consider the following unconstrained minimization problem:

minimize f (x)

subject to x ∈ Rn,
(8.1)

where the objective function f is locally Lipschitz. Over the last four decades, subgradient [83], bundle

[33, 36, 42, 47, 64, 65, 86], and the discrete gradient methods [5, 8, 14, 7, 13] have been proposed for

solving this problem.

Among these methods, the subgradient method is the simplest one, although its convergence is proved

only under convexity assumption on the function f ([17, 78, 83] for details). Better convergence

results were obtained when the minimum value f ∗ of the objective function f is known. The aim of

this chapter is to develop a method, which has simple and easy implementation and is applicable to

wide range of nonsmooth optimization problems. We show that descent directions are the solutions

of a system of linear inequalities. In the proposed algorithm, the solution of this system is reduced to

convex problem taking a value of f ∗ = 0, when all inequalities are satisfied. We apply the subgradient

method with known f ∗ to solve this problem. The convergence of the proposed algorithm is studied

and results of numerical experiments are reported.

The structure of this chapter is as follows. We present an algorithm in order to find descent directions

in Section 8.2. A description of the minimization algorithm is given in Section 8.3. We present the

results of numerical experiments in Section 8.4. Section 8.5 concludes this chapter.
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8.2 Computation of a Descent Direction

From now on, It is assumed that for any bounded subset X ⊂ R
n and any h0 > 0, there exists a number

K > 0 such that

‖v‖ ≤ K

for all v ∈ QS ec(x, h), x ∈ X and h ∈ (0, h0]. Obviously, this assumption holds for all SR-quasisecants.

Consider the following set for given x ∈ Rn and h > 0,:

W(x, h) = cl co QS ec(x, h).

where cl co is the closed convex hull of a set. The set W(x, h) is clearly compact and convex. It is

shown in [10] that this set can be used to order to find descent directions of the objective function f in

problem (8.1). However, the computation of the entire set W(x, h) is not always possible. We propose

an algorithm for computation of descent directions, and this algorithm uses only a few elements from

W(x, h). It is similar to that of proposed in [2], but the main step now consists in solving a linear

system, much simpler than the system in the algorithm from [2]. Next, we describe an algorithm for

finding search directions. Let numbers c ∈ (0, 1) and δ > 0 be given.

Algorithm 8.1 Computation of the descent direction.

Step 1. Chose any g1 ∈ S 1, compute a quasisecant v1 = v(x, g1, h). Set V1(x) = {v1} and k = 1.

Step 2. We solve the following linear system of inequalities:

〈vi, g〉 + δ ≤ 0; i = 1, . . . , k; g ∈ S 1. (8.2)

Step 3. If the system (8.2) is not solvable, then terminates. Otherwise, compute a solution ḡ of this

system and set gk+1 = ḡ.

Step 4. If

f (x + hgk+1) − f (x) ≤ −chδ, (8.3)

then stop.

Step 5. Compute a quasisecant vk+1 = v(x, gk+1, h) in the computed direction gk+1, construct the set

Vk+1(x) = co
{
Vk(x)

⋃{vk+1}
}
, set k ← k + 1 and go to Step 2.

One can see that Algorithm 8.1 computes quasisecants step by step (in Steps 1 and 5) until one of the

conditions satisfies: either system (8.2) is not solvable or inequality (8.3) is true. Condition (8.3) means

that the descent direction has been found. The situation when system (8.2) is not solvable is considered

in Proposition 8.2 below. An algorithm for solving the system (8.2) is proposed in Subsection 8.2.1.

Proposition 8.2 If system (8.2) is not solvable, then

min
v∈Vk(x)

‖v‖∞ < δ. (8.4)
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Proof: Let ṽ denote a solution of the following problem:

min
1

2
‖v‖22 subject to v ∈ Vk(x).

If ṽ = 0, then the proof is straightforward. Thus, we assume that ṽ � 0. It follows from the necessary

condition for a minimum that

〈ṽ, v − ṽ〉 ≥ 0, ∀v ∈ Vk(x),

i.e.,

‖ṽ‖22 ≤ 〈ṽ, v〉, ∀v ∈ Vk(x).

Then,

‖ṽ‖2∞ ≤ 〈ṽ, v〉, ∀v ∈ Vk(x). (8.5)

Since the system (8.2) is not solvable

max
i=1,...,k

〈vi, g〉 > −δ, ∀g ∈ S 1.

Then, for g∞ = −‖ṽ‖−1∞ ṽ there exists vi (i ∈ {1, . . . , k}) such that

〈vi, ṽ〉 < δ‖ṽ‖∞.

Then, using (8.5), we complete the proof. �

Remark 8.3 It follows from Proposition 8.2 that if system (8.2) is not solvable, then the point x ∈ Rn

can be considered as an approximate solution.

Proposition 8.4 Assume that a function f is locally Lipschitz defined on R
n. The Algorithm 8.1 termi-

nates after finite number of iterations.

Proof: If both stoping criteria of the Algorithm 8.1 are not held, then the computed quasisecant vk+1 �
Vk(x), in other words the set Vk(x) can be improved by adding the computed quasisecant vk+1. Indeed,

in this case

f (x + hgk+1) − f (x) > −chδ.

It follows from the definition of the quasisecants that

f (x + hgk+1) − f (x) ≤ h〈vk+1, gk+1〉,

which means that

〈vk+1, gk+1〉 > −cδ. (8.6)

We assume that vk+1 ∈ Vk(x). Since gk+1 ∈ S 1 is a solution of system (8.2), we get

〈vi, gk+1〉 + δ ≤ 0 (i = 1, . . . , k)

we have

〈vk+1, gk+1〉 ≤ −δ,
which contradicts (8.6). Therefore, vk+1 � Vk(x).

Now, we will show that Algorithm 8.1 terminates. Assume that Algorithm 8.1 generates an infinite

sequence {gk} of directions gk ∈ S 1. It follows from (8.6) that

〈vk, gk〉 > −cδ, ∀ k = 2, 3, . . . . (8.7)
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This implies that for any k ∈ {2, 3, . . .} the direction gk does not satisfy the following system:

〈vt, g〉 + δ ≤ 0, t = 1, . . . , i, i ≥ k.

Since the set W(x, h) is compact, there exists a number C > 0 such that ‖v‖2 ≤ C for all v ∈ Vk(x). The

direction gk+1 is a solution of the system

〈vi, g〉 + δ ≤ 0 i (1, . . . , k).

However, directions g j, j = 2, . . . , k are not solutions of this system. Then,

‖gk+1 − g j‖∞ > (1 − c)δ

C
√

n
, ∀ j = 2, . . . , k. (8.8)

Indeed, if there exists j ∈ {2, . . . , k} such that

‖gk+1 − g j‖∞ ≤ (1 − c)δ

C
√

n
,

then we have

‖gk+1 − g j‖2 ≤ (1 − c)δ

C
and ∣∣∣〈v j, gk+1〉 − 〈v j, g j〉∣∣∣ ≤ (1 − c)δ.

Hence,

〈v j, g j〉 ≤ 〈v j, gk+1〉 + (1 − c)δ ≤ −cδ,

which contradicts (8.7). Inequality (8.8) can be rewritten as follows:

min
j=2,...,k

‖gk+1 − g j‖∞ > (1 − c)δ

C
√

n
.

Thus Algorithm 8.1 generates a sequence {gk} of directions gk ∈ S 1 such that the distance between gk

and the set of all previous directions is bounded below. Since the set S 1 is bounded the number of such

directions is finite. �

Definition 8.5 A point x ∈ Rn is called an (h, δ)-stationary point if

min
v∈W(x,h)

‖v‖∞ ≤ δ.

One can see that after finitely many iterations, Algorithm 8.1 either finds that the point x is the (h, δ)-
stationary or it finds the direction of sufficient decrease at this point satisfying the inequality (8.3).

8.2.1 Solving System (8.2)

The problem of finding of descent directions in Algorithm 8.1 is reduced to the solution of a system of

linear inequalities (8.2). Different algorithms for solving the system linear inequalities can be found,

for example, in [40]. Here we apply the subgradient method to solve such systems.

Letting

ϕ(g) = max
{
0, 〈vi, g〉 + δ, i = 1, . . . ,m

}
,
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one can show that finding a solution of this system can be reduced to the following minimization

problem:

minimize ϕ(g)

subject to g ∈ B1.
(8.9)

Here B1 = {g ∈ Rn | ‖g‖∞ ≤ 1}. The function ϕ is convex piecewise linear and it is Lipschitzian. Let

ḡ ∈ B1 be a solution of problem (8.9). If ϕ(ḡ) = 0, then ḡ is a solution to the system (8.2). If ϕ(ḡ) > 0,

then the system (8.2) is not solvable. In order to solve problem (8.9), we reduce it to a unconstrained

minimization of a convex piecewise linear function.

The Lipschitz constant K2 of the function ϕ in Euclidean norm L2 is

K2 = max
i=1,...,m

‖vi‖2

and its Lipschitz constant K∞ in L∞ norm is

K∞ = K2

√
n.

For a given point y ∈ Rn and a given set G ⊂ R
n, the L∞-distance between y and G is defined as follows

dG
∞(y) := inf {‖y − x‖∞ | x ∈ G} .

If G = B1, then

dB1∞ (y) = max {0, yi − 1,−yi − 1 (i = 1, . . . , n)} .
The following lemma can be found, for example, in [64]. Let dG be a distance function based on a

given norm.

Lemma 8.6 Let f be a Lipschitz continuous function with constant K > 0 on a set S ⊂ R
n. Let

x ∈ G ⊂ S and suppose that f attains a minimum over G at x. Then, for any K̂ ≥ K the function
ψ(y) := f (y) + K̂dG(y) attains a minimum over S at x. If K̂ > K and G is closed, then every minimizer
of ψ over S lies in G.

Let

Φ(g) := ϕ(g) + K∞dG
∞(g).

It follows from Lemma 8.6 that problem (8.9) can be reduced to the following unconstrained mini-

mization problem:

minimize Φ(g)

subject to g ∈ Rn.
(8.10)

The function Φ is convex piecewise linear.

Thus the problem of finding g ∈ R
n satisfying the system (8.2) is reduced to solving problem (8.10).

This approach has one clear advantage. Since one repeatedly solves the system (8.2) adding one

inequality, every time until we find a descent direction, we can reuse the solution to the previous

system each time. This solution violates only the new inequality which shows that it is close to the set

of solutions of the new system.

We suggest to apply the subgradient method with known minimum objective value to solve problem

(8.10). Let g0 ∈ Rn be a starting point. Then, the subgradient method proceeds as follows (see [78]):

gk+1 = gk − αΦ(gk) − Φ̄
‖wk‖2

2

wk (k = 0, 1, . . .),
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where α ∈ (0, 2), wk ∈ ∂Φ(gk) is a subgradient and Φ̄ is an underestimate for minimum value. Here,

Φ̄ = 0. Although this algorithm provides only an approximate solution, it is very simple and requires

only one subgradient at each iteration.

Remark 8.7 The choice of δ in Algorithm 8.1 is very important. Large values of δ may lead to

the system of inequalities (8.2) which is not solvable although the directions of significant decrease

may exist. For small values of δ, the algorithm may generate directions of an insignificant decrease,

although the directions of much better decrease may exist. We propose the following approach to avoid

this problem. Let be given Δ > 1; let also η > 0 be a tolerance (say η = 10−8). Then, we solve problem

(8.10) for δ = Δ. Let ḡ ∈ B1 be its solution and δ̄ = Φ(ḡ). If δ̄ ≥ Δ, then we accept that system (8.2) is

not solvable for any δ > 0. Otherwise, we define δ0 := Δ − δ̄. If δ0 ≤ η, then the system (8.2) is not

solvable for any δ > η and the point x is (h, η)-stationary point. If δ0 > η, then the system (8.2) has a

solution for δ = δ0. We take α := 1/Δ in the subgradient method.

8.3 A Minimization Algorithm

In this section, we describe minimization algorithms for solving problem (8.1). First we will describe

an algorithm for finding (h, δ)-stationary points of the objective function f .

Let h > 0, δ > 0, c1 ∈ (0, 1), c2 ∈ (0, c1] be given numbers.

Algorithm 8.8 The quasisecant method for finding a (h, δ)-stationary points.

Step 1. Start with any point x0 ∈ Rn and set k = 0.

Step 2. Apply Algorithm 8.1 setting x = xk. This algorithm terminates after finite number l > 0 of

iterations. s a result we get the system:

〈vi, g〉 + δ ≤ 0 (i = 1, . . . , l), g ∈ S 1. (8.11)

Step 3. If this system is not solvable then stop, xk is the (h, δ)-stationary point. Otherwise, we get the

direction gk ∈ S 1 which is a solution to this system and

f (xk + hgk) − f (xk) ≤ −c1hδ. (8.12)

Step 4. Compute xk+1 = xk + σkgk, where σk is defined as follows:

σk = argmax
{
σ ≥ 0 | f (xk + σgk) − f (xk) ≤ −c2σδ

}
. (8.13)

Set k ← k + 1 and go to Step 2.

Theorem 8.9 Let us assume that the function f is bounded from below:

f∗ = inf { f (x) | x ∈ Rn} > −∞. (8.14)

Then, Algorithm 8.8 terminates after finitely many iterations M > 0 and produces a (h, δ)-stationary
point xM, where

M ≤ M0 ≡
⌊

f (x0) − f∗
c2hδ

⌋
+ 1.

Here, �u� shows the integer part of the number u > 0.
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Proof: We assume the contrary. Then, the sequence {xk} is infinite and points xk are not (h, δ)-
stationary points. This means that

min{‖v‖∞ | v ∈ W(xk, h)} > δ, ∀k = 1, 2, . . . .

Therefore, Algorithm 8.1 will find descent directions and the inequality (8.11) will be satisfied at each

iteration k. Since c2 ∈ (0, c1], it follows from (8.12) that σk ≥ h. Therefore, we have

f (xk+1) − f (xk) < −c2σk‖vk‖∞
≤ −c2h‖vk‖∞.

Since ‖vk‖∞ > δ for all k ≥ 0, we get

f (xk+1) − f (xk) ≤ −c2hδ,

which implies

f (xk+1) ≤ f (x0) − (k + 1)c2hδ

and, therefore, f (xk) → −∞ as k → +∞, which contradicts condition (8.14). It is obvious that the

upper bound for the number of iterations M necessary to find the (h, δ)-stationary point is M0. �

Remark 8.10 Because of the fact that c2 ≤ c1 and σk ≥ h, h > 0 is a lower bound for σk. This allows

us to estimate σk by using the following rule:

σk is defined as the largest θl = 2lh (l ∈ N), satisfying the inequality in Equation 8.13.

Algorithm 8.8 can be applied to compute stationary points of the function f . Let {hk} be a sequence

such that hk+1 = γhk, γ ∈ (0, 1), h0 > 0 and ε, η > 0 be given tolerances.

Algorithm 8.11 The quasisecant method with piecewise linear subproblem.

Step 1. Choose any starting point x0 ∈ Rn, and set k = 0.

Step 2. If hk < ε, then stop.

Step 3. Apply Algorithm 8.8 starting from the point xk for h = hk and δ = η. This algorithm terminates

after finitely many iterations M > 0, and as a result, it computes an (hk, η)-stationary point xk+1.

Step 4. Set k ← k + 1 and go to Step 2.

Remark 8.12 Following Remark 8.7 one can apply Algorithm 8.8 in Step 3 as follows. We take a

sufficiently large Δ > 0 and apply Algorithm 8.1 in Step 2 of Algorithm 8.8 with δ = Δ and then

compute δ0 = Δ − δ̄ (see Remark 8.7). If δ0 < η then (hk, η)-stationary point has been computed. Such

an approach will accelerate the convergence of Algorithm 8.11.

For the point x0 ∈ Rn, consider the set

L(x0) =
{
x ∈ Rn | f (x) ≤ f (x0)

}
.

Theorem 8.13 We assume that the function f is locally Lipschitz continuous, the set W(x, h) is con-
structed using SR-quasisecants, condition (2.11) is satisfied and the set L(x0) is bounded for starting
points x0 ∈ R

n. Then, every accumulation point of the sequence {xk} belongs to the set X0 = {x ∈
R

n | 0 ∈ ∂ f (x)}.
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Proof: Since the function f is locally Lipschitz and the set L(x0) is bounded, f∗ > −∞. Therefore,

conditions of Theorem 8.9 are satisfied, and Algorithm 8.8 generates a sequence of (hk, η)-stationary

points (k ≥ 0) after the finite number of steps. Since for any k > 0, the point xk+1 is an (hk, η)-stationary,

it follows from the definition of the (hk, η)-stationary points that

min
{
‖v‖∞ | v ∈ W(xk+1, hk)

}
≤ η. (8.15)

It is obvious that xk ∈ L(x0) for all k ≥ 0. The boundedness of the set L(x0) implies that the sequence

{xk} has at least one accumulation point. Let x∗ be an accumulation point and xki → x∗ as i → +∞.

The inequality in (8.15) implies that

min
{
‖v‖∞ | v ∈ W(xki , hki−1)

}
≤ η. (8.16)

The mapping QS ec(·, ·) satisfies the condition (2.11), therefore, at the point x∗ for any μ > 0 there

exists a number ν > 0 such that

W(y, h) ⊂ ∂ f (x∗) + Bμ (8.17)

for all y ∈ Bν(x∗) and h ∈ (0, ν). Since the sequence {xki } converges to x∗, there exists i0 > 0 such that

xki ∈ Bν(x∗) for all i ≥ i0. On the other hand, since δk, hk → +0 as k → +∞, there exists k0 > 0 such

that hk < ν for all k > k0. Then there exists i1 ≥ i0 such that ki ≥ k0 + 1 for all i ≥ i1. Thus, it follows

from (8.16) and (8.17) that

min{‖v‖ | v ∈ ∂ f (x∗)} ≤ μ + ν.
Since μ > 0 and ν > 0 are chosen arbitrarily and the mapping x �→ ∂ f (x) is upper semicontinuous,

0 ∈ ∂ f (x∗). �

8.4 Numerical Experiments

Numerical results was obtained by applying the proposed method to some academic test problems

with nonsmooth objective functions. These numerical results were used to verify the efficiency of the

proposed method by comparing the numerical results of a subgradient method. The test problems are

taken from [61]. Brief description of test problems can be found in table 8.1, where the following

notation is used:

• n: number of variables,

• fopt: optimal value.

In Algorithm 8.11, parameters and tolerances were chosen as follows: Δ = 104, c1 = 0.2, c2 =

0.05, γ = 0.5, η = 10−8, ε = 10−10. We use the following stopping criteria in the subgradient method

for solving problem (8.10). The algorithm stops if:

1. the number of function evaluations is more than 10000, or

2. it cannot decrease the value objective function Φ(g) in 1000 successive iterations.

We compare the proposed algorithm with the subgradient method (see [83]). Let x0 ∈ Rn be a starting

point. Then the subgradient method proceeds as follows.

xk+1 = xk − αkvk, (8.18)
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Table 8.1: The brief description of test problems

Problem n fopt Problem n fopt

Crescent 2 0 Shor 5 22.600162

CB2 2 1.9522245 El-Attar 6 0.5598131

CB3 2 2 Gill 10 9.7857721

DEM 2 -3 Steiner 2 12 16.703838

QL 2 7.2 Maxq 20 0

LQ 2 -1.4142136 Maxl 20 0

Mifflin 1 2 -1 Goffin 50 0

Mifflin 2 2 -1 MXHILB 50 0

Wolfe 2 -8 L1HILB 50 0

Rosen-Suzuki 4 -44 Shell Dual 15 32.348679

where vk ∈ ∂ f (xk) is any subgradient and αk > 0 is a step-length. Convergence of the subgradient

method was proved only for convex functions [83]. However, we apply this algorithm also to noncon-

vex problems. We use the following update for the step-length αk. We take αk = 1/k, however, after

each 25000 iterations we update it. Let pk is the largest integer, smaller than or equal to k/25000. Then

αk =
1

k − 25000pk
.

Without this update of αk, the convergence of the subgradient method is extremely poor, especially,

for nonconvex functions. We use the following two stopping criteria in the subgradient method. First,

the number of function evaluations is restricted by 2 × 105. Second, the algorithm stops if it cannot

decrease the value objective function in 1000 successive iterations.

Numerical experiments were carried out by using a computer, whose configuration is Intel Pentium

4 processor (1.83 GHz) and 1GB of RAM. For the calculation of both methods, the same 20 random

generated starting points for each problem are used.

When comparing the performance of the methods, two indicators are used, namely

• nb: the number of successful solved problems according to the following relative error consid-

ering the best known solution reported in [61],

• ns: the number of successful solved problems according to the following relative error consider-

ing the best found solution by these two algorithms.

We assume that fopt and f̄ are the values of the objective function at the best-known solution in [61]

and at the best found solution by these two algorithms, respectively. Then, If the following inequality

holds, then an algorithm solves successfully the problem with respect to a tolerance ε > 0:

f∗ − f0
1 + | f∗| ≤ ε,

where f∗ is equal either to fopt (for nb) or to f̄ (for ns) and f0 is the optimal value of the objective

function found by an algorithm. In numerical calculation, we use the tolerance ε = 10−4.
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Results of numerical experiments are presented in Tables 8.2 - 8.3. In Table 8.2, we report the relative

error (E) for the average objective function value ( fav) over 20 runs of the algorithms as well as the

numbers nb and ns for each problem. We compute the relative error E as follows:

E =
fav − fopt

1 + | fopt | .

If E < 10−5, then in the table we put E = 0.

Table 8.2: Results of numerical experiments: obtained solutions

The proposed algorithm Subgradient method

Problem E nb ns E nb ns

Crescent 0 20 20 0 20 20

CB2 0 20 20 0 20 20

CB3 0 20 20 0 20 20

DEM 0 20 20 0 20 20

QL 0 20 20 0 20 20

LQ 0.00003 18 20 0 20 20

Mifflin 1 0 20 20 0 20 20

Mifflin 2 0 20 20 0 20 20

Wolfe 0 20 20 0 20 20

Rosen-Suzuki 0.00001 20 20 0 20 20

Shor 0.00005 20 20 0.00002 20 20

El-Attar 0.38987 13 19 2.26980 1 2

Gill 0.00006 17 20 0.01117 0 1

Steiner 2 0 20 20 0.01366 0 0

MAXQ 0 20 20 107.87845 0 0

MAXL 0 20 20 10.33056 0 0

Goffin 0 20 20 826.90962 0 0

MXHILB 0.02376 0 17 0.10274 0 3

L1HILB 0.03189 0 20 0.32035 0 0

Shell Dual 161.88049 0 5 81.62459 0 15

The results presented in Table 8.2 show that the proposed algorithm outperforms the subgradient

method. The difference between these two algorithms becomes larger as the number of variables

increases. Results for the relative error (E) and also for nb and ns for the El-Attar, Gill, Steiner 2,

MAXQ, MAXL, Goffin, MXHILB and L1HILB the test problem confirm this claim. The results

for the El-Attar, Gill, Steiner 2 the test problems show that the proposed algorithm is more efficient

than the subgradient method for solving nonconvex nonsmooth problems. The subgradient method

produces better result for only Dual Shell problem.

Table 8.3 presents the average number of iterations (ni), the objective function and subgradient evalu-

ations (n f and nsub, respectively) and the average CPU time over 20 runs of algorithms. Since for the

subgradient method the number of iterations, the objective function and subgradient evaluations are

the same we present only one of them.

One can see from results presented in Table 8.3 that the proposed algorithm requires significantly less

number of the objective function and subgradient evaluations. This means that if the objective function
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Table 8.3: Results for the number of function and subgradient evaluations, CPU time

The proposed method Subgradient method

Problem ni n f nsub CPU ni(n f , nsub) CPU

Crescent 60 200 113 0.01 31748 0.01

CB2 97 316 206 0.02 26387 0.01

CB3 88 298 239 0.03 16123 0.01

DEM 92 312 244 0.03 33507 0.01

QL 93 291 187 0.02 69682 0.01

LQ 81 202 159 0.01 19021 0.00

Mifflin 1 90 285 180 0.02 33933 0.01

Mifflin 2 91 267 179 0.02 21744 0.00

Wolfe 85 231 174 0.02 16631 0.00

Rosen-Suzuki 108 433 292 0.04 60989 0.01

Shor 108 517 387 0.07 44675 0.01

El-Attar 202 1261 867 0.27 162517 7.81

Gill 135 654 388 0.19 142834 33.28

Steiner 2 225 2064 1707 0.82 175265 0.41

MAXQ 269 2575 389 0.12 200000 0.11

MAXL 129 1003 832 0.63 200000 0.10

Goffin 258 8666 8118 29.36 200000 0.29

MXHILB 161 815 361 0.34 191376 8.53

L1HILB 385 2331 955 0.91 189336 15.83

Shell Dual 221 1628 329 0.06 200000 0.24

is complex enough, then the proposed algorithm uses significantly less CPU time than the subgradient

method. Results for the El-Attar, Gill, MXHILB, L1HILB and Shell Dual the test problems confirm

this claim.

8.5 Conclusion

In this chapter, we have proposed a generalized subgradient algorithm. In this algorithm, a descent

direction is found solving the system of linear inequalities. In order to solve this system we apply the

subgradient method with known minimum value of the objective function. The proposed algorithm is

easy to implement. Results of numerical experiments show that the proposed algorithm outperforms

the subgradient method for the most of the test problems used in this chapter. The new algorithm

requires significantly less function and subgradient evaluations than the subgradient method. The pro-

posed algorithm allows one to significantly reduce CPU time by the subgradient method on problems

with complex objective functions.
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CONCLUSION AND OUTLOOK

The aim of this thesis is to develop methods for nonsmooth optimization problems. The nonsmooth

optimization theory can be split into two parts as convex problems and nonconvex problems and we

aimed to develop the methods for both types of optimization problems. In this thesis, for the convex

problems, we proposed three methods, while for nonconvex problem just one method was developed

in order to seek the minimum of objective functions, which are locally Lipschitzian functions. Addi-

tionally, an adaptation of one of these three method for convex problems was presented.

For convex functions, three methods have been developed, namely Truncated Codifferential Meth-

ods (TCM), Truncated Codifferential Method with Memory (TCMWM) and Aggregate Codifferential

Method (ACM). In TCM, only a few elements of the codifferential are used to calculate search direc-

tions. In order to reduce the number of codifferential evaluations, TCMWM has been developed using

the codifferential calculated in previous iterations to calculate search directions. In both the methods

TCM and TCMWM, search directions are computed solving a quadratic subproblem. The size of this

problem can increase significantly as the number of variables increases. In order to overcome this

problem, ACM has been developed. In ACM, the number of elements of the codifferential used to find

search directions is restricted, which allows us to apply ACM to large scale optimization porblems.

The theoretical proofs of convergence for all proposed methods were given and their validation were

tested on a wide range of well-known test problems. After that, TCM was adapted for linearly con-

strained nonsmooth convex optimization problems. It can be an example of how our methods (TCM,

TCMWM and ACM) can be used for constrained problems. In the following part of the thesis, a gen-

eralization of subgradient method (GSM) was given for locally Lipschitz continues functions. To find

search direction, a linear inequality system has been solved, which is an important part of GSM. The

convergency of GSM was proved and it was tested on general nonsmooth unconstrained optimization

problems.

Aforementioned three methods for convex problems can be briefly described as follows. The first

method, TCM, is important in terms of using the codifferential concept, due to rare usage of codiffer-

ential in the literature. Actually, a codifferential has good differential properties in order to develop

optimization methods. Thus, TCM can be refined for the use on the other types of nonsmooth opti-

mization problems. Regarding the description of the methods, in TCM, at each iteration, only a few

elements from the hypodifferential of the objective function were used to compute descent directions.

It was proved that the proposed method converged to minimizers of a convex function. For the second

method, the aim was to reduce the number of function evaluations, and, especially the gradient evalua-

tions. Thus, we used some calculated hypodifferential from previous iteration, however, it was difficult

to decide which hypodifferentials were usable and how we could choose them. How these decisions

were made clearly explained, and it was proved that this selection allowed us to find descent direc-

tions. The last method, ACM for nonsmooth convex unconstrained problems, was developed to reduce

the size of the aforementioned quadratic subproblem. According to this purpose, we used aggregate

information via the fixed number hypodifferentials, where the number arranges the simplicity of ACM.

Such an approach allows one to significantly reduce the complexity of codifferential methods.

The proposed method for linearly constrained optimization problems is just the converted version of
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TCM for convex unconstrained optimization problems. In this thesis, it was explained how we convert

linearly constrained optimization problems to unconstrained problems, and that convexity assumption

is preserved.

A new version of the quasisecant method for nonsmooth nonconvex optimization problem was de-

veloped. Descent directions were computed by solving a subproblem, which is the system of linear

inequalities. For the proposed method, implementation was easy. The numerical experiments demon-

strated that a generalized subgradient method significantly reduced the cpu time compared to the sub-

gradient method on general nonsmooth optimization problems.

Future Works

For further investigations, we can suggest several possible projects. First, codifferential methods can

be generalized to nonsmooth nonconvex optimization problems, such as locally Lipschitz functions,

minmax problems, differences of two convex functions (DC) and differences of two polyhedral func-

tions (DP). Generalizability of codifferential methods can be reached due to codifferential has good

differential properties and it can be explicitly given for the set which consists of the codifferential for

that class of functions. As the Second suggestion, codifferential methods and the subgradient method

can be improved for nonsmooth constrained optimization problems by using exact penalty functions

or slack variables, as shown in Section 7. Finally, as the third suggestion, the subgradient method can

be improved in order to make the proposed algorithm more efficient, and to provide better algorithms

for solving subproblems. This as well as the comparison of the proposed algorithm with the bundle

method will be a topic for future research.
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[41] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. II, vol-

ume 306 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences]. Springer-Verlag, Berlin, 1993. Advanced theory and bundle methods.

[42] J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms, volume

1 and 2. Springer-Verlag, Heidelberg, 1993.
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[68] A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. J. Optim. Theory
Appl., 142(1):205–228, 2009.

84



[69] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal,
7(4):308–313, 1965.

[70] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1, Ser.

A):127–152, 2005.

[71] Y. Nesterov. Primal-dual subgradient methods for convex problems. Math. Program., 120(1, Ser.

B):221–259, 2009.

[72] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research

and Financial Engineering. Springer, New York, second edition, 2006.

[73] E. A. Nurminskiı̆. On the convergence of the method of suitable affine subspaces for solving the

problem of the shortest distance to a simplex. Zh. Vychisl. Mat. Mat. Fiz., 45(11):1991–1999,

2005.

[74] E. A. Nurminskiı̆. Projections onto externally specified polyhedra. Zh. Vychisl. Mat. Mat. Fiz.,
48(3):387–396, 2008.

[75] E. Polak and J. O. Royset. Algorithms for finite and semi-infinite min-max-min problems using

adaptive smoothing techniques. J. Optim. Theory Appl., 119(3):421–457, 2003.

[76] E. Polak, J. O. Royset, and R. S. Womersley. Algorithms with adaptive smoothing for finite

minimax problems. Journal of Optimization Theory and Applications, 119:459–484, 2003.

10.1023/B:JOTA.0000006685.60019.3e.

[77] E. Polak, J. O. Royset, and R. S. Womersley. Algorithms with adaptive smoothing for finite

minimax problems. J. Optim. Theory Appl., 119(3):459–484, 2003.

[78] B. T. Polyak. Introduction to optimization. Translations Series in Mathematics and Engineering.

Optimization Software Inc. Publications Division, New York, 1987. Translated from the Russian,

With a foreword by Dimitri P. Bertsekas.

[79] M. J. D. Powell. An efficient method for finding the minimum of a function of several variables

without calculating derivatives. Comput. J., 7:155–162, 1964.

[80] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optimization, 14(5):877–898, 1976.
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[84] N. Z. Shor. Nondifferentiable optimization and polynomial problems, volume 24 of Nonconvex
Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1998.
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