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ABSTRACT

DERIVATIVE FREE ALGORITHMS FOR LARGE SCALE NON-SMOOTH OPTIMIZATION
AND THEIR APPLICATIONS

Tor, Ali Hakan
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Biilent Karasézen

Co-Supervisor : Assoc. Prof. Dr. Adil Bagirov

February 2013, 88 pages

In this thesis, various numerical methods are developed to solve nonsmooth and in particular, noncon-
vex optimization problems. More specifically, three numerical algorithms are developed for solving
nonsmooth convex optimization problems and one algorithm is proposed to solve nonsmooth noncon-
vex optimization problems.

In general, main differences between algorithms of smooth optimization are in the calculation of search
directions, line searches for finding step-sizes and stopping criteria. However, in nonsmooth optimiza-
tion there is one additional difference between algorithms. These algorithms may use different gener-
alizations of the gradient. In order to develop algorithms for solving nonsmooth convex optimization
problems we use the concept of codifferential. Although there exists the codifferential calculus, the
calculation of the whole codifferential is not an easy task. Therefore, in the first numerical method,
only a few elements of the codifferential are used to calculate search directions. In order to reduce the
number of codifferential evaluations, in the second method elements of the codifferential calculated in
previous iterations are used to calculate search directions.

In both the first and second methods the problem of calculation of search directions is reduced to the
solution of a certain quadratic programming problem. The size of this problem can increase signifi-
cantly as the number of variables increases. In order to avoid this problem in the third method, called
the aggregate codifferential method, the number of elements of the codifferential used to find search
directions is fixed. Such an approach allows one to significantly reduce the complexity of codifferential
methods and to make them applicable for solving large scale problems of nonsmooth optimization.

These methods are applied to some well-known nonsmooth optimization test problems, such as, min-



max and general type nonsmooth optimization problems. The obtained numerical results are visualized
using performance profiles. In addition, the validation of these methods is made by comparing them
with the subgradient and bundle methods using results of numerical experiments. The convergence of
methods is analyzed. Finally, the first method is extended to minimize nonsmooth convex functions
subject to linear inequalities using slack variables.

The notion of quasisecant is used to design an algorithm for solving nonsmooth nonconvex uncon-
strained optimization problems. In this method, to find descent direction the subgradient algorithm
is applied for the solution of a set of linear inequalities. The convergence of the proposed method is
analyzed, and the numerical experiments are carried out using general type nonsmooth optimization
test problems. To validate this method, the results are compared with those by the subgradient method.

Keywords: Nonsmooth optimization, convex optimization, nonconvex optimization, codifferential,

subdifferential.
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TUREVI KULLANMAYAN OPTIMIiZASYON YONTEMLERININ, COK BOYUTLU TUREVI
OLMAYAN OPTIMIiZASYON PROBLEMLERINE UYGULANMASI

Tor, Ali Hakan

Doktora, Matematik Boliimii
Tez Yoneticisi : Prof. Dr. Biilent Karastzen

Ortak Tez Yoneticisi : Dog. Dr. Adil Bagirov

Subat 2013, 88 sayfa

Bu tezin amaci tiirevi olmayan optimizasyon problemlerini ¢6zmek icin yontem gelistirmektir ve tiirevi
olmayan optimizasyon problemleri iki boliimde incelenmistir; digbiikey ve digbiikey olmayan opti-
mizasyon problemleri. Bu tezde bu iki tip problem i¢in yontemler gelistirilmistir.

[1k olarak tiirevi olmayan kisitsiz digbiikey optimizasyon problemler igin kodiferansiyel kavrami kulla-
narak {i¢ farkli yontem gelistirilmistir. Bilindigi gibi, ayn1 tip optimizasyon problemlerini ¢6zmek igin
geligtirilen algoritmalar, tiirev yerine kullanilan kavram, durma kriterleri ve azalma yonii hesaplarina
gore farklilagmaktadirlar. Bu tezde gelistirilen bu iic metotta ise tiirev yerine kodiferansiyel kullanil-
mistir. Kodiferansiyelin yapis1 geregi durma kriterleri bu ii¢ metotta da aynidir. Diger taraftan, azalma
yonii hesaplanmasina baktigimizda metotlar farkliliklar gostermektedir. Bu farkliliklar su sekilde
siralanmaktadir.  Yontemlerden birincisinde azalma yonii kodiferansiyelin sadece bazi elemanlarini
kullanarak hesaplanmaktadir. Ikincisinde ise, fonksiyon ve gradient hesaplamalarinin sayisini azalt-
mak icin bir 6nceki basamakta elde edilen kodiferansiyel degerleri kullanilmistir. Son metotta ise
azalma yonii her iterasyonda sabit ve belli sayida kodiferansiyelleri kullanarak hesaplanmaktadir.
Bunun yaninda, gelistirilen yontemlerin yakinsaklik analizleri yapilmigtir. Bu yontemler literatiirde
bilinen 6nemli test problemlerine uygulanmis ve elde edilen sayisal sonuclar performans grafikleri
ile gosterilmigtir. Bu grafikler, bilinen alt-gradient ve demet yontemleriyle de elde edilen performans
grafikleriyle karsilastirilmigtir ve gelistirmis oldugumuz metotlarin daha iyi sonug verdigi gézlemlen-
migtir. Bunlarin yaninda, yukarida bahsi gecen ilk metodun yapay degiskenler kullanarak uyarlanan
yeni hali, dogrusal kisith digbiikey optimizasyon problemlerine uygulanmigtir. Uygulama olarak ii¢
test problemi alinmig ve sayisal sonuglar tablolar kullanilarak gosterilmistir.

Son olarak, digbiikey olmayan optimizasyon problemleri i¢in yontem gelistirilmistir. “Quasisecant”
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kavrami kullanilarak gelistirilen bu yontemde, azalma yonii hesabr i¢in bir alt-gradient yontemi kul-
lanilarak dogrusal esitsizlik sistemi ¢oztilmiistiir. Geligtirilen bu yontemin yakinsakligt incelenmis,
bilinen baz1 6nemli test problemleri kullanilarak sayisal hesaplamalar yapilmis ve bu sonuglar bir alt-
gradient yontemiyle kiyaslanarak bir tabloda sunulmustur.

Anahtar Kelimeler: Tiirevi olmayan optimizasyon, digbiikey optimizasyon, digbiikey olmayan opti-

mizasyon, kodiferansiyel, alt-gradient.
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CHAPTER 1

INTRODUCTION

Optimization theory deals with the finding of local or global minimizers of a function on a given set.
The function, whose minimum is being sought, is called the objective function, and the function(s),
which describe the set where the local or global minimizer is being sought, are called constraints.
There is an advanced theory when the objective and constraint functions are continuously differen-
tiable. Powerful methods have been advanced to solve smooth optimization problems. If at least one
of those functions is not continuously differentiable then the optimization is said to be nonsmooth. Al-
gorithmic developments in nonsmooth optimization are far being mature. Unlike smooth optimization
the finding a descent direction and evaluation of optimality conditions are not easy task. Thus, re-
searchers are interested in designing efficient numerical methods for nonsmooth problems which have
been motivated by practical applications from different areas. To illustrate, in Economics, tax models
consist of several different structures which are not continuously differentiable at their intersections.
In steel industry, the material changes the phase discontinuously because of the nature of the mate-
rial. In optimal control problems, some extra technological constraints cause nonsmoothness. In data
mining, likewise, the clustering problems have nonsmoothness. In telecommunication, determining
constrained hierarchical trees for network evaluation and multicast routing cause nonsmoothness. In
engineering, nonsmoothness comes from complex situations which occur when joining several bodies
with corners. As for the so-called stiff problems, they are analytically smooth but numerically non-
smooth. This means that the behavior of the gradient changes unexpectedly so that these problems
pretend to be nonsmooth problems. For example, it may have a similar oscillatory behavior under
iterative algorithms.

1.1 Literature Review

The optimization theory, generally, can be illustrated in mathematical sense as follows,

minimize f(x) (1.1

subjectto  x € X, '
where f : R" — R and X are called the objective function and the feasible set respectively. If the
feasible set is X = R”, Problem (1.1) is referred to an unconstrained optimization problem. The
general form of constrained optimization problem can be given as follows;

minimize  f(x)

subjectto  hi(x) =0 (i€,
hix) <0 (jeJ),
x e R,

(1.2)



where I and J are the index set of equality and inequality constraints respectively and f, h;, h; : R* — R
(i € 1, j € J). If both objective functions and constrained functions are linear functions, the problem
(1.2) is called a linear optimization problem. Otherwise, it is named as a nonlinear optimization
problem. As mentioned above, if at least one of the functions f,4;,h; : R" — R (i € I, j € J) is not
continuously differentiable, Problem (1.2) is said to be nonsmooth.

Basically, it can be considered that the nonsmooth optimization problems consist of two types:convex
and nonconvex nonsmooth problems. For the convex problems, finding global solution is easier when
compared with the nonconvex problems, because every local solution is a global solution in the convex
problems. Various methods have been developed to solve nonsmooth convex optimization problems,
namely, the subgradient methods [1, 15, 17, 68, 71, 83, 84], different versions of the bundle methods
[33, 35, 36, 49, 55, 59, 67, 82, 86] and adaptive smoothing methods [16, 25, 70, 76]. However,
most of these methods do not always give efficient results for nonconvex nonsmooth problems. In
real life, many practical problems are nonconvex, for examples, the area which is mentioned in the
first paragraph of this chapter. The complexity of nonconvex problems arises from their nature of
having multiple local solutions. Generally, most of the algorithms are able to find one of the local
solutions whereas a global solution is needed. In literature, there are notable methods, namely bundle
methods [34, 39, 42, 47, 58, 64, 65], discrete gradient methods [4, 14, 2], gradient sampling methods
[20, 21, 23, 52], adaptive smoothing methods [75, 77, 88, 89, 90] and quasisecant methods [11, 10,
441, to solve nonconvex nonsmooth optimization problems for some special types such as locally
Lipschitz continuous, lower-C? (i.e, the objective function is lower semi-continuous and twice times
differentiable), minmax problems, etc..

Methods which have been developed for solving Problem (1.1) are usually iterative [43, 41, 83]. The
idea behind the iterative methods is to obtain a sequence {x*} € R” so that it can approach a local or
global minimum point of Problem (1.1) by using any initial point in R”. The iteration is constructed by
the formula X! = x* + a; g%, where a; and g are the step size and the search direction, respectively.
If f(x**1) < f(x*) (k € N), where x**! is given as the above formula, then the direction g is called a

descent direction. If the inequality holds for all &, the iterative method is called a descent method.

If the optimization problem is smooth, then -V f(x) # 0, is always the steepest descent direction. In
addition, if x* is a stationary point, Vf(x*) = 0 holds. Thus, the gradient of the objective function
V f(x) has an important role not only to find descent directions but also to determine stopping criteria.
However, in nonsmooth optimization problem, the gradients do not always exist at every points. Be-
cause of this fact, researchers need generalized gradients or other concepts such as quasidifferential,
codifferential, quasisecant, discrete gradient, etc., in order to find descent direction and determine stop-
ping criteria. Even if the gradients exist exactly at some points, they can not be useful for nonsmooth
problems. In other words, “The direct applications of the gradient-based methods generally lead to
failure in convergency” is emphasized in [54]. In this case, researchers use approximations via smooth
functions instead of direct use of gradients of nonsmooth function or they tend to derivative free meth-
ods, such as Powell’s Method [79], Nelder - Mead’s method [69] and aforementioned discrete gradient
methods [4, 14, 2]. Derivative free methods are untrustworthy, slow and inefficient for the large scale
problems [31].

In a convex nonsmooth optimization problem, both the objective function and the constraint set are
convex. Many problems possess this property both in theory and in practice. It is easy to solve these
type problems both theoretically and practically [72]. A problem which satisfies the following special
case of the general constrained optimization problem (1.2) is named as a convex problem:

e The objective function f(x) is convex.



e The constraint set is convex. In other words:

— the equality constraints /;(x) (i € I) are linear, and

— the inequality constraints functions /;(x) (j € J) are concave.

If at least one of the functions f,h;,h; : R* — R (i € 1, j € J) is nonsmooth, the above mentioned
problem is called a convex nonsmooth optimization problem. In the nonconvex nonsmooth optimiza-
tion problem, although the convex optimization theory supplies very helpful tools to nonconvex theory,
finding the optimal value of the nonconvex nonsmooth optimization problem can be extremely diffi-
cult and sometimes impossible. Due to this difficulty, numerical techniques are developed, especially,
including objective functions which are locally Lipschitz continuous, differences of convex functions
and max-min type functions, etc..

1.1.1 Subgradient Methods

Subgradient methods developed for smooth optimization theory in the first place. In smooth theory, the
most simple and understandable method is the steepest descent method, which uses the anti-gradient
as a search direction:

dr = =V f(x),

where Vf(x;) is the gradient of f at the current iteration. The advantages of the steepest descent
method are its low cost and easy implementation. However, its convergency is not robust because
of the well-known zigzag phenomena. In order to overcome this phenomena, the conjugate gradient
method have been developed in smooth theory. This method uses not only the gradient at current
iteration point but also the gradient at previous iteration point. Mathematically formulated,

gr = =V f(x) = 4V f(xi-1),
where A; is a real scalar.

The steepest descent method and conjugate gradient method are based on the first-order Taylor’s series
expansion of the objective function f(x). By using second order Taylor’s series expansion, Newton’s
method, the most well-known method, have been developed. The search direction is computed as the
following;

g ==V f(),

where V? f(xz) is the Hessian of the objective function f(x) at the current iteration. Newton’s method
is a powerful and very efficient and widely used method. On the other hand, there are two main
drawbacks. One of them is that Newton’s method can not sometimes converge to the solution if the
starting point is too far away from the solution. The second drawback is time consuming because
of the computation of inverse of Hessian at each iteration, especially, for large scale problems. As a
consequence, the quasi-Newton’s method is developed in order to decrease time consumption keeping
its convergence rate. In quasi-Newton’s method, the following search direction is used:

gk = —B'Vf(xp),

where By, is an approximation of the Hessian matrix, which preserves the properties of the Hessian,
such as positive definiteness and symmetry. In literature, the first quasi-Newton algorithm was pro-
posed by W.C. Davidon in 1959. Then, Fletcher and Powell explored its mathematical properties over
the next few years, and developed so called the Davidon-Fletcher-Powell formula (or DFP), which



is rarely used today. The most commonly used quasi-Newton algorithms are the Symmetric Rank 1
(SR1) method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, suggested independently
by Broyden, Fletcher, Goldfarb, and Shanno, in 1970. Quasi-Newton methods are a generalization
of the secant method. The difference among these updating formulas is that they maintain different
properties of the matrix. Thus, the choice of which method should be used depends on the requirement
of the problem. For example, SR1 method maintains the symmetry of the matrix but does not always
guarantee the positive definiteness.

In nonsmooth theory, since the objective function is not smooth, a subgradient &; € Jf(x;) is used
instead of the gradient V f(x;). According to the properties of the objective function, one of the defi-
nitions given in Subsection (2.1) is used. The main idea behind the subgradient method is very simple
and basically the generalization of the steepest descent method. However, the choice of any anti-
subgradient direction may not guarantee the descent direction. The search direction in the subgradient
method is as follows:

gr = —&x/llexll.

Besides the difficulty in choosing the descent direction, finding a stopping criterion can be seen as an-
other difficulty, although the condition O € df(x) is known as the necessary condition being a minimum
of the objective function. The difficulty originates from selecting an arbitrary subgradient, because a
single subgradient does not contain whole information about the set of subdifferential.

The iteration of subgradient algorithm with the given starting point xo € R” in the solution of Problem
(1.1) can be expressed as follows:
Xk+1 = Xk — lkEks (1.3)

where g, € df(x;) is any subgradient at the point x; and #; > 0 is the step-length. Obviously, the
subgradient method uses step lengths instead of line search as they are used in the gradient methods. A
choice of step size #; is very important to avoid the line searches and to determine the stopping criterion.
Although this iteration may be applied efficiently in some special cases, it has poor convergence. As a
result, there have been many attempts in order to generalize quasi-Newton’s methods into nonsmooth
theory, such as space dilation method [83] and variable metric method [18].

1.1.2 Bundle Methods

The bundle methods have been developed in order to improve the poor convergency of the aforemen-
tioned subgradient methods. They are the most efficient methods and have lots of varieties. The central
idea behind these methods is that the accumulated subgradient directions from past iterations form the
quadratic subproblem and, then, a trial direction is obtained by solving this quadratic subproblem.
Along the trial direction, a line search is performed to generate a serious step. Because of this pro-
cedure, they need a very large amount of memory to retain the information on the computer during
implementation. Hence, it is not possible to store all information in practice. For more information
and discussion, the studies [60] and [63] can be examined.

In literature, as a first bundle method, & -steepest decent method introduced by Lemaréchal can be
shown. This method is a combination of the cutting plane method [46] and conjugate subgradient
method [53]. The main difficulty of this method is to determine a tolerance &, which is the radius of
the ball in which good approximation is expected. Briefly, the difficulty for the large ¢ is that the bundle
does not approximate well and as for the small &, is that there is a small decrease in the function value,
which causes a bad convergency. Because of this difficulty, Lemaréchal developed the generalization
of the cutting plane method. After that, this method was improved by Kiwiel [47]. Although Kiwiel



gave two ideas, namely subgradient selection and aggregation and the restriction of the number of
stored subgradient in [47], Kiwiel’s method suffered from the scaling of the objective function and
the uncertain numbers of line searches. All late versions of bundle method are developed to eliminate
those drawbacks.

The most commonly used version of bundle methods are the proximal bundle method [49], which is
based on the proximal algorithm [80], and bundle trust region method [82], which is a combination
of bundle method and trust region idea. Although they are very similar, there is a difference between
them in implementations when updating the search direction. As another bundle methods, the fol-
lowing methods can be shown: the infeasible bundle method [81], the proximal bundle method with
approximate subgradient [50], the proximal-projective bundle method [51], the limited memory bundle
method [37, 38] and the limited memory interior point bundle method [45].

1.1.3 Gradient Sampling Methods

Gradient sampling idea was used in [30, 83] for the first time. Later, the gradient sampling method
was used to approximate the Clarke subdifferential for locally Lipschitz functions in [20] and it was
improved for nonsmooth nonconvex problems in [23]. Later, other versions of gradient sampling
methods for some special optimization problems was developed such as [22, 19, 52].

The locally Lipschitz functions are differentiable almost everywhere, which is proved by Rademacher’s
Theorem; in other words, they are not differentiable on a set of the measure zero, so the subgradient
at a randomly selected point is uniquely determined as the gradient at that point. Therefore, in the
gradient sampling methods, gradients are computed on a set of randomly generated nearby points at
current iteration. Consequently, by using gradient sampling, a local information of the function is
obtained and the quadratic subproblem is formed. The e-steepest descent direction is constructed by
solving this quadratic subproblem, where ¢ is the sample radius.

1.1.4 Discrete Gradient Method

The discrete gradient method uses the concept of the discrete gradient instead of the ordinary gradient
or subgradient. It tries to approximate subgradient at only the final step of its algorithm, so it is
different than subgradient methods. Thus, it is also known as a derivative free method. In [14, 13], the
search direction is selected by finding the opposite of the closest point to the origin in a set of discrete
gradients, which is a convex hull:

gk = —vi/lIvell,

where vy, is the closest point to the origin in the convex hull of a set of discrete gradient.

1.1.5 Codifferential Methods

The need for describing the notation of codifferentiability arises due to the lack of continuity of the
quasidifferential or other differential objects. Codifferentiability allows us to approximate a nonsmooth
function continuously. In other words, the codifferential mapping is Hausdorff continuous for most
practical classes in nonsmooth theory. The codifferential has also good differential properties, so the
class of codifferentiable functions is a linear space closed in terms of what the most essential operators
are. Moreover, one can explicitly give the set which consists of the elements of the codifferential



for some important classes of nonsmooth functions. For the construction of the whole codifferential,
some operations with polytopes are necessary; therefore, in numerical meaning, it is too complicated to
form the whole set. Thus, in this thesis, truncation of the whole codifferential is used. In the literature,
there are a few studies which use codifferential (see Subsection 2.3 and [26, 27, 91]) because it is
considered that either the entire codifferential or its subsets should be computed at any point; however,
these assumptions are too restrictive. Actually, their calculations are not possible for many class of
nonsmooth functions. The methods which use codifferential are generally designed by using few
elements of codifferential, such as [3, 6, 26].

1.1.6 Quasisecant Methods

The concept of secant is widely used in optimization theory, such as quasi-Newton methods. The
notion of secant for locally Lipschitz functions was given in [9]. The secant method is not better than
bundle methods for not only nonsmooth convex function but also nonconvex nonsmooth functions;
however, it gives better results than bundle methods for nonsmooth nonconvex nonregular functions.
The computation of secants is not always possible. For this reason, the notion of quasisecant was
introduced by replacing strict equality in the definition of secants by inequality in [10]. Because of
that, by definition it is obvious that any secant is also quasisecant but the contrary is not correct; in
other words, any quasisecant is not secant. Quasisecants can be easily computed for both convex
nonsmooth functions and nonconvex nonsmooth functions. The brief explanation of quasisecants will
be given in Subsection 2.2. Quasisecants overestimates the objective function in some neighborhood
of a given point and subgradients are used to obtain quasisecants. In literature, the quasisecant method
for nonconvex nonsmooth function was firstly introduced in [10] and modified in [11, 44], where
quasisecant are used to find descent direction and the idea behind it is similar to the bundle and gradient
sampling methods.

1.2 Outline of the Thesis

The organization of this thesis will be as the following. Firstly, Chapter 2 contains a brief summary
of theoretical background, which is about the Clarke subdifferential, quasidifferential functions, cod-
ifferentiable functions and quasisecants. The codifferentials and quasidifferentials of the special class
of the functions will be located in Chapter 2. Secondly, using codifferential concept, the truncated
codifferential method will be developed for convex nonsmooth unconstrained problems, which will be
explained in Chapter 3. The convergence of it will be proved. In the following Chapter 4, the TCM
will be advanced in order to reduce the number of gradient evaluations by using some codifferential
from previous iterations. After that, a codifferential method will be developed using limited number of
codifferential in Chapter 5. While we are finding the descent direction at each iteration, a fixed number
codifferentials will be used. One of them includes aggregate information about previous calculated
codifferential. When the number increases, this method will be more complex. If it is allowed that
number is free at each iterations, this method will became the TCM. Thus, this method for the small
fixed number is the simplest one among above mentioned methods. Numerical results will be obtained
for the number 2, 3, 4, 12, 50 and 100, which shows us how many codifferential are used to find
a descent direction in each iteration. The next Chapter 6 gives numerical results about the methods
mentioned in Chapters 3, 4 and 5 by using performance profile, which will be briefly explained in
Chapter 6. In that chapter, there is information about the test problems, which is used for comparison.
The following Chapter 7 is just adaptation of the TCM for linearly constrained optimization problem.
Using slack variables and making some calculation, linearly constrained problems will be converted



to unconstrained problems. It will be proved that all properties which are needed to apply the TCM
are preserved during this conversion. In the last Chapter 8, a generalized subgradient method with
piecewise linear subproblem will be developed via quasisecants for locally Lipschitz problem, which
is another important type of nonsmooth theory. We shall show that a set of linear inequalities must be
solved to find a descent direction sufficiently. The subgradient algorithm will be used when minimiz-
ing this piecewise linear functions. In order to compare the numerical results, subgradient method will
be used. The conclusion of this thesis will be given in the last part.






CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, some theoretical background will be given briefly. Firstly, we will provide the sub-
gradient for convex functions and the Clarke subdifferential for locally Lipschitz functions. Secondly,
in Section 2.2, quasidifferentiability will be explained. After that, in Section 2.3, we shall give the
definition of codifferentiable functions and some explanations for some classes of functions, which are
useful for computational point of view. Then we shall state some basic properties of codifferentiable
functions in codifferential calculus. Lastly, in Section 2.4, the concept of quasisecant will be explained,
and quasisecants will be presented for some important classes of functions.

2.1 Subdifferential

In this section, definition of the subdifferential will be given for both convex and Lipschitz continuous
functions as a generalization of differential. One can give all differentiable rules of subgradient as
generalizations of classical differentiable rules. For example, Mean-Value Theorem, Chain Rule and
Products Rule, etc., can be listed. However, inclusions have to be used instead of equalities for more
details see [64].

2.1.1 Subdifferential for Convex Functions

In implementation, we will used the following subdifferential definition. In the literature, there is also
e—subdifferential of the convex functions and its generalization for nonconvex functions. Since they
will not be used in this thesis, these definitions will not be placed.

Definition 2.1 A function f : R" — R is called convex if and only if the following condition holds:

fx;+ (A =0x) <tf(x))+(1 =) f(x2) Vx; and x; € R" and ¥t € [0, 1].

Definition 2.2 The subdifferential of a convex function f : R" — R at a point x is defined by

Af) ={ eR" fO) = f)+({y-x) ¥yeR"}).

Each vector of above mentioned set is called a subgradient of f at x. If the convex function f is
continuously differentiable, then df(x) = {Vf(x)} by definition.



2.1.2 The Clarke Subdifferential for Locally Lipschitz Functions

Definition 2.3 A function f : R" — R is said to be a locally Lipschitz function if there exists L > 0
such that Vx,y € R"

() = O < Llx = yll,
where || - || is the Euclidean norm.

Clarke introduced the generalization of subdifferential for locally Lipschitz functions [24]. Using
almost everywhere differentiability of locally Lipschitz functions, the Clarke subdifferential can be
given as follows.

Definition 2.4 Ler f : R” — R be a locally Lipschitz function. The Clarke subdifferential of f at the
point x is defined by

of(x) = co {v eR"

A(xke D(f) (k N), x¥ = x (k = +c0))
such that v = limy_ 4 V.f(x5) ’

where the set D(f) consists of the point at which f is differentiable, co denotes the convex hull of a set.

It is shown in [24] that “The mapping df(x) is upper semicontinuous and bounded on bounded sets.”
For locally Lipschitz functions, classical directional derivatives may not exist. Therefore, the general-
ized directional derivative is defined.

Definition 2.5 The generalized directional derivative of f : R" — R at x in the direction g is defined
as

2(x,) = limsup o '[f(y + @g) — fF)].

y—x,a—+0

In [2], it is reported that

“If a function f : R” — R is locally Lipschitz, then the generalized directional derivative exists and

1O(x,8) = max{(v,g) : v € f(x)}.

The function f : R* — R is called a Clarke regular function on R”, if it is differentiable with respect
to any direction g € R” and f"(x,g) = f°(x,g) for all x,g € R", where f'(x, g) is a derivative of the
function f at the point x in the direction g: f'(x, g) = limy_.0 @ '[f(x + ag) — f(x)].”

Let f be a locally Lipschitz function defined on R". The necessary optimality condition for the point x
is

0€df(x).

2.2 Quasidifferential

The concept of quasidifferential is a generalization of the idea of a gradient. In other words, it offers to
replace the concept of a gradient in the smooth case and the concept of a subdifferential in the convex
case. Quasidifferential preserves most operation of classical differential calculus (for more information
see [28]). In addition to these operation, the quasidifferential allows us to find maxima and minima
pointwisely.
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Definition 2.6 Ler assume the function f : R" — R is locally Lipschitz at the point x € R". The
function f is called semismooth at x, if the following limit exists:

lim 0<v, g YveIf(x+ag).

g —g.a—+

for every g e R".

An interesting and important nondifferentiable functions is generated by smooth compositions of
semismooth functions. Thus, it should be emphasized here that the class of semismooth functions
is commonly encountered in the literature. This class contains some important functions such as, con-
vex, concave, max-type and min-type [66]. If a function f is semismooth, the directional derivative of
it follows:

f(x,e9)= lim <(v,g), veif(x+ag).
g —g,a—+0

Definition 2.7 Assume a function f is locally Lipschitz and directionally differentiable at the point x.
The function f is called quasidifferentiable at the point x if there exist convex, compact sets df(x) and
0f(x) such that:

f(x,8) = max (u g)+ min (v, g).
veaf(x)

The sets df(x) and a f(x) are called a subdifferential and a superdifferential respectively. The palr of
these sets [0 f(x) F) f(x)] is a quasidifferential of the function f at a point x [27]. In case F] f(x) = {0}
(or df(x) = {0}), the function f is called subdifferentiable (or superdifferentiable). If a function is
subdlfferentlable, quasidifferential and subdifferential are coincident.

2.2.1 Quasidifferential of Smooth Functions

Assume f is continuously differentiable in some neighborhood of a point x € X c R”. Obviously, f is
quasidifferentiable at x and the following pairs are quasidifferentials of f:

{V/(x0)},{0}] and [{O}, {V f(x)}].

Thus, a smooth functions is both subdifferentiable and superdifferentiable.

2.2.2 Quasidifferential of Convex Functions

Suppose a function f is convex defined on an open set X c R". Because of the fact that directionally
differentiability of f, the quasidifferential of f can be given as follows:

[0f(x),{0}]

where df(x) = df(x) = {{I € R", f(y) = f(x) +({,y — x) Yy € R"} is the subdifferential of f at the
point x.
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2.2.3 Quasidifferential of Concave Functions

Under the assumption being concave on the function f, which is defined on an open set X c R",
analogously, the quasidifferential of f can be given as follows:

[{0}, df ()],

where 5f(x) =0df(x) ={I € R", f(y) = f(x)+{L,y — x) Yy € R"} is the subdifferential of f at the
point x.

2.3 Codifferential

The lack of continuity of the subdifferential and quasidifferential mappings causes difficulties in the
study of optimization theory. In [86], it was noted that the lack of this property was responsible for the
failure of nonsmooth steepest descent algorithms. On the other hand, the codifferential mapping for
the convex functions is Hausdorff continuous. Thus, for developing optimization methods in thesis, it
will be used mostly.

Definition 2.8 Let X be an open subset of R". Assume that co {x,x + A} C X. A function f : X - R is
called codifferentiable at the point x € X if there exists a pair Df(x) = [4 f(x),d f(x)] , where the sets

df(x) and df(x) are convex compact sets in R"', such that

f(x+A)=f(x)+ max [a+ ¥, A)]+ min [b+ (u, A)] + 0.(A), 2.1)
(a,v)edf(x) (bu)ed f(x)
where A
0l 6 usa L0 forall A e R 2.2)
and

abeR v,weR"

The pair Df(x) = [gf (x).d f (x)] is called a codifferential of the function f at the point x, the sets d f(x)

and df(x) are called hypodifferential and hyperdifferential, respectively. Elements of their are called
hypogradients and hypergradients respectively. Note that the codifferential is not unique [27].

If a function f is codifferentiable in some neighborhood of a point x, f is called codifferentiable and
the mapping Df is called codifferential.

A function f is called uniformly codifferentiable at a point x in directions, if (2.2) holds uniformly in
Si={AeR"| [Al=1}.

A function f is called continuously codifferentiable at a point x, if it is codifferentiable in some neigh-
borhood of the point x and the mapping Df is Hausdorff continuous at x.

If Ef(x) = {0p41} (or df(x) = {0,41}), the function f is called hypodifferentiable (or hyperdifferen-
tiable), where 0, denotes the zero element of the space R

With respect to computation, the class of the codifferentiable function whose hypodifferential and
hyperdifferential are polyhedral, i.e, convex hulls of a finite number of points, is useful [27]. The
following functions are in that class (for more functions class and explanations, see [27]).
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2.3.1 Codifferential of Smooth Functions

Let f be continuously differentiable in some neighborhood of a point x € X ¢ R”". Then

Jx+A) = f(x) +(Vf(x),A) + 0.(A), (2.3)

0:(A)
where Al

following sets:

— 0 as ||Al| = 0, Vf(x) is the gradient of the function f at the point x. Now, consider the

df(x) = {(0, VF(x))} c R™,
df(x) = (0,41} C R™,

By (2.3), we obtain

J(x+A) = f(x) + 0+ (Vf(x),A) + 0+(0,A) + 0,(A)

= f(x)+ max [a+ VA + min [b+ (u,A)] + 0.(A),
(av)edf(x) (bayedf(x)

where d f(x) and d f(x) are as introduced above.

Thus, f is codifferentiable with D f(x) = [{(0, f’(x))},{0,+1}] . In addition, f is continuously codiffer-
entiable in a neighbourhood of the point x uniformly in directions [27].

As a codifferential, the following pair can be also chosen

Df(x) = [{0ns+1},{(0, VL] .

As a result, the function f is both hypodifferentiable and hyperdifferentiable and even continuously
hypodifferentiable and hyperdifferentiable. In this example, it can be observed that the codifferential
is not unique.

2.3.2 Codifferential of Convex Functions

Let a function f be convex and finite on X € R", U C X be a closed bounded set and x € int U. From
the definition of the subgradient, we have the following inequality at the point x:

f) = f@+ (v, x=2),

where v, € df(z) , ¥z € U and
F) = max(f(2) + (v x = 2).

At apoint x + A € intU we have
S+ A) = f() + max{f(z) - () + (v, x + A= 2))

=f(x)+ max {a+ (v,A)},
(a,v)edf(x)

where the set d f(x) is the hypodifferential of the function f at the point x. The set is defined as follows
[27,91]:

df(x)=cl co{(a,v) e RxR":a=f(z) — f(x) +(v,x—2), veIf(z), Y z€ U}. (2.4)
Thus, the codifferential of a convex function is the pair D f(x) = [c_if (x),d f (x)] , where df(x) is as in

(2.4) and d f(x) = {0,+1}, so convex functions are continuously hypodifferentiable[27].
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2.3.3 Codifferential of Concave Functions

Let a function f be concave and finite on X C R", U C X be a closed bounded set and x € intU. Let f
be expressed as —g, where g is a convex function.

The definition of the supergradient of the function f at the point x implies that
8(x) 2 g(2) + (wz, x — 2),

where w, € dg(z) Vz € U.

By using the same idea in Subsection (2.3.2), the following results are obtained.

The codifferential of a concave function is the pair D f(x) = [gl f(x), d f (x)] , where

df(x) =1{0,41} and
Ef(x) =cl co{(b,u) e RxR"|b=—f()+ f(x) —(u,x—2) u€ df(z), ¥z U}.

Concave functions are continuously hypedifferential.

2.3.4 Codifferential of Difference of Two Convex Functions

Let f be a d.c. (i.e, difference of two convex functions) function and a closed bounded set U c R", a
point x € intU. f is expressed in the following form:

F(x) = p(x) — q(x),
where p, g : R" — R are convex.

For any z € U take subgradients v, € dp(x) and u, € dg(x). The subgradient of the function f at the
point x implies the following inequality:

px) = p2) + (v, x—2) VYzeU,
q(x) > q(2) +(u;,, x—z) VYzeU,

SO

f)

p(x) —gq(x) = r}le%x{p(z) + (v, x—2)} - rgeaux{q(z) + Uz, x = 2)}

max{p(z) + (v;, x — 2)} + min{—q(z) — (u, x — 2)}.
zeU zeU
At the point x + d € U we have

f(x+d)

= flx+d)-f(x)
= flx+d)-fx)

rgle%x{p(z) +(v,x+d -2} + Igilgl{—q(z) —uz, x +d - 2)}

nzrlez;]x{p(z) = pX) +{v,x+d -2} + rzréilgl{—q(z) +q(x) —ug, x +d - 2)}

max {a+ {(v,d)}+ min {b+ {(—u,d)},
(a,v)edf(x) (ba)ed f(x)

where df(x) is hypodifferential of f at the point x and df(x) is hyperdifferential of f at the point x and
they are given as the following

df(x) =cl cof(a,v) e RXR"a=p(z)—plx)+{v,x—2), vedp(z), Yz U}
c_lf(x) =cl co{(b,—u) e RxR"| b =—q(z) + q(x) — {u, x — 2), u € dq(z), ¥ z € U},

where co and cl denote convex hull and closure respectively.
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2.3.5 Properties of Codifferentiable Functions

In this section, it is assumed that f is defined on an open subset X of R” and co {x,x + A} C X. The
proofs of the all properties can be found in [27].

Lemma 2.9 Let f; (i = 1,2, ..., N) be codifferentiable (continuously codifferentiable) at a point x € X,

N

then the function f = Z c¢;ifi with real coefficients c; (i = 1,2,...,N) is also codifferentiable (continu-
i=1

ously codifferentiable) at x and its codifferential is the following set:

N

Df(x)= )" ciDfi(), (2.5)

i=1

where Dfi((x) = [Q'f,-(x), ;Zf,-(x)] is a codifferential of the function f; at x (i = 1,2, ..., N).
Remark 2.10 The above mentioned codifferential of the function f is only one of codifferentials of it.

Lemma 2.11 Let fi and f> be codifferentiable (continuously codifferentiable) at the point x € X. The
Sfunction f = fif> is also codifferentiable (continuously codifferentiable) at x and its codifferential is
the following set:

Df(x) = fi(x)Dfo(x) + fo(x)D i (x). (2.6)

In addition, if the functions f; and f, are codifferentiable uniformly in directions, then f is also codif-
ferential uniformly in directions [27].

Lemma 2.12 Let a function f; be codifferentiable (continuously codifferentiable) at a point x € X and
1

fi(x) # 0. The function f = ]T is codifferentiable (continuously codifferentiable) at the poit x and its
1

codifferential is the following

1
Df(x) = —%Dﬁ(x} 2.7)

Lemma 2.13 Let functions ¢; fori = 1,2, ..., N be codifferentiable (continuously codifferentiable) at

a point x € X. The functions fi(y) = max wi(y) and fo(y) = 1n%inNgoi(y) are also codifferentiable at
i=1, i=12,...,

x and their codifferentials are Dfi(x) = [Qfl (x),d fi (x)] and Df>(x) = [gl fz(x),g fz(x)], where

N
dfi(x) = co ddpi(x) = > dpi() + (@) = 1), 00} 1k = 1,2, N ¢, 2.8)
izk
_ N _ N
dfi0) = Y dei, i) =) dgi(), (2.9)
i=1 i=1
N
dfs(x) = co {di(x) = > dipi(x) + {(pu(x) = fo(x), 00} [k =1,2,..,N ¢. (2.10)
i#k

Hence, the class of codifferentiable (respectively continuously codifferentiable) functions is a linear
space closed with respect to all smooth operations and with respect to the operations of taking the
pointwise maximum and minimum over a finite number of points [27].
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fx+hg)—f(x)
5 Sh(v,g}

x x+hg

Figure 2.1: Quasisecants for a one variable function

2.4 Quasisecants

The concept of secants is commonly used in not only smooth optimization but also nonsmooth opti-
mization theory. For instance, secants have been used in quasi-Newton methods. In this section, the
definition of quasisecants for locally Lipschitz functions is given.

Let f : R" — R be a locally Lipschitz function and 4 > 0 be a given real number.

Definition 2.14 A quasisecant v of the function f at the point x is a vector in R". It depends on the
selection of the direction g € S| and the length h > 0. According to the direction and the length, the
quasisecant is defined as follows:

f(x+hg)— f(x) <Ky, g).

Figure 2.1 presents examples of quasisecants in univariate case.

The notation v(x, g, /) is used for any quasisecant at the point x in the direction g € S with the length
h > 0 corresponding function f.

The set of quasisecants of the function f at a point x is given as follows for fixed & > 0:
OSec(x,h) ={weR": A(geSy), w=v(xg, h)}.
When % | 0, the set consists of limit points of quasisecants can be given as follows:

OS L(x) = {w eR": Age S, {}): h >0, klim hy=0andw = klim v(x, g, hk)}.
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A mapping x — QSec(x, h) is called a subgradient-related (SR)-quasisecant mapping if the corre-
sponding set QS L(x) € df(x) for all x € R". In this case, elements of OSec(x,h) are called SR-
quasisecants. In Subsections 2.4.1-2.4.4 and in Chapter 8, SR-quasisecants are used. In the following
sections, SR-quasisecants are presented for some classes of functions.

2.4.1 Quasisecants of Smooth Functions

Assume that the function f is continuously differentiable. Then,
v(x,g,h) =Vf(x+hg)+ag(geS, h>0)

is a quasisecant at a point x with respect to the direction g € S. Here,

o = L+ 1e) = f(0) = IV fx + hg). g)
; .

Obviously, v(x, g,h) — Vf(x)as h | 0. As a conclusion, each v(x, g, h) is SR-quasisecant at the point
X.

2.4.2 Quasisecants of Convex Functions

Assume that the function f is proper convex, in other words takes any real value for any point x,
bounded below and convex. Since

Jx+hg) = f(x) < h(v,g) ¥v e df(x+hg),

any v € df(x + hg) is a quasisecant at the point x. Then we have

0S ec(x, h) = U Af(x + hg).

gES 1

Since the sundifferential map is the upper semicontinuous, the set QS L(x) is subset of the subdifferen-
tial df(x). This allows us to calculate a SR-quasisecant v at the point x as v € df(x + hg).

2.4.3 Quasisecants of Maximum Functions

Consider the following function, which is maximum of some locally Lipschitzian functions f; (i =
1,...,m):
f(x) = max fi(x).

i=1,....,m

Consider the following set for any g € §;:

R(x+hg)={ie{l,....m}| fi(x+hg) = f(x+hg)}.

The set QS ec(x, h) of quasisecants at a point x is defined as

OSec(x, h) = U {vi(x.g.h) |i € R(x + hg)}.

8€SH

where v € R" is a SR-quasisecant of the function f; at a point x. Since the subdifferential map is an
upper semicontinuous map, the set QS L(x) is a subset of the subdifferential df(x). SR-quasisecants of
the function f are defined as above.
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2.4.4 Quasisecants of D.C. Functions

In this subsection, the differences of two convex function is examined, mathematically it can be given
as follows:

J(x) = fi(x) = fo(x),
where functions f] and f, are convex functions.

1

A quasisecant of the function f at the point x can be computed as v = v! — v> where subgradients

v € dfi(x + hg), Vv? € dfp(x).

On the other hand, aforementioned quasisecants does not need to be SR-quasisecants. As reported in
[10]:

“Since d.c. functions are quasidifferentiable [27] and if additionally subdifferentials d fi(x) and 9 f>(x)
are polytopes, one can use an algorithm from [14, 13] to compute subgradients v' and v such that their
difference will converge to a subgradient of the function f at the point x.”

As a result, this algorithm can be used to compute SR-quasisecants of the function f at the point x.
Subdifferential and superdifferential of d.c. functions can be given as follows:

,,,,,

Fy(x) = max min f;(x).
=L..p

i=1,..m j=l,..,

Here, functions f;; are continuously differentiable and proper convex. SR-quasisecants satisfy the
following condition: for any € > 0 there exists ¢ > 0 such that

0Sec(y,h) € If(x) + Bo(0) @.11)

for all x € Bs(x) and & € (0, 6). This is always true for functions considered above.
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CHAPTER 3

TRUNCATED CODIFFERENTIAL METHOD

In this chapter, a new algorithm to minimize convex functions will be developed. This algorithm will
be based on the concept of codifferential. Since the computation of whole codifferential is not always
possible we shall propose an algorithm for computation of descent directions using only a few elements
from the codifferential. The convergence of the proposed minimization algorithm will be proved and
results of numerical experiments using a set of test problems with not only nonsmooth convex but also
nonsmooth nonconvex objective function will be reported in Chapter 6 by comparing the proposed
algorithm with some other algorithms.

3.1 Introduction

In this section we focus on solving the following problem:

minimize  f(x) 3.1)
subjectto  x € R”, '

where the objective function f is assumed to be proper convex. In the literature, there are several
numerical techniques in order to solve Problem (3.1). As important techniques, subgradient methods
[83], different versions of the bundle methods [33, 34, 35, 36, 39, 42, 47, 49, 55, 58, 59, 64, 65, 67, 86]
can be counted. In this chapter, we propose a method, namely the truncated codifferential method
for solving Problem (3.1). The notion of codifferential was firstly given in [27]. The codifferential
mapping for some important classes of functions encountered in nonsmooth theory is Hausdorff con-
tinuous. In the literature, there are only a few algorithms based on the codifferential (see [26, 27, 91]),
whereas the codifferential map has good diftferential properties. In these algorithms, it is assumed the
need of the whole set of codifferentials (or its subsets). Because of this assumption, researchers did
not reach the success to develop methods for many classes of nonsmooth optimization problems. In
this chapter, we will show that it is actually not necessary to use the whole set of codifferential.

In this chapter, a new codifferential method is proposed for solving Problem (3.1). At each iteration
of this method, just a few elements from the set of codifferentials are used to find search directions.
Therefore we call this method a truncated codifferential method. By using these search directions, a
sequence of the points is generated iteratively. It is proved that the accumulation point of this sequence
is a solution of Problem (3.1). Results of numerical experiments using a set of well-known nonsmooth
optimization academic test problems are reported. after that, these numerical results are used in the
comparison to the proposed algorithm with the bundle method.

This chapter is structured as follows: An algorithm for finding descent directions is presented in Sec-
tion 3.2. A truncated codifferential method is introduced and its convergence is examined in Section
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3.3. Results of numerical experiments are visualized by using performance profiles in Section 6.3.

3.2 Computation of a Descent Direction

For the computation of search directions, a subset of the hypodifferential will be defined. It will be
show that this subset is sufficient to find descent directions. For the given A € (0, 1) and consider the
following set:

dy € By(x),
H(x,A) =clco w=(a,v) e RxR" v eIf(y), . 3.2)
a=f - fx)—(v,y—x

It can be easily observed that a < 0 for all w = (a,v) € H(x, ). Since a = 0 at the point x, we can
conclude the following equality:

max 3.3)
w=(a,v)eH(x,1)

If B,(x) c intU for all A € (0, 1) where U c R" is a closed convex set, then from the definition of both
the hypodifferential and the set H(x, 1), the following inclusion holds:

H(x,A) Cdf(x) ¥ A€ (0,1).

The sets H(x, A) is called truncated codifferentials of the function f at the point x.

Proposition 3.1 Assume that 0,1 ¢ H(x, A) for a given A € (0, 1) and

WPl = min {|wll : w € H(x, 1)} > 0, with w° = (ap, W), (3.4)
where || - || denotes the Euclidean norm. Then, V' # 0,, and
fOr+28%) = f(x) < =l (3.5)
where g° = —|[wP||=1W0.

0

Proof: Since w" is a solution of 3.4,

W w—w’ >0 VYw=(a,v) € H(xA)
or
apa + (0, vy > w2 (3.6)

First, v* # 0, should be proved. Assume that W = 0,. Since w # 0,,; we get that ap < 0. Then, it
follows from (3.6) that ag(a — ag) > 0 or a < ag < 0. In other words, a < O forall w = (a,v) € H(x, 1),
which contradicts (3.3).

Now we will prove (3.5). Dividing both sides of (3.6) by —|IwY]l, we obtain

aopd
— =+ (1, 8%) <~ 3.7)
WOl

It is clear that |[w°||'ao € (~1,0) and, since A € (0, 1),

/1(1()
u=—-—2>e(0,1).
[wOll
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Therefore, combining a < 0 and (3.7), we get

Aa
a+ A, g% < upa+ A, g% = —ma + A, g% < =l (3.8)

Obviously, x + /lgo € B(x, ). As a result, from the definition of the set H(x, 1)
F+ 28" = f0) = a+ Av. g%,

where w = (a,v) € H(x,1) and a = f(x + /lgo) — f(x) = A, g%, v e df(x + Ag°). Then, the proof
follows from (3.8). A

According to Proposition 3.1, the truncated codifferential H(x, 1) can be used to find descent directions
of a function f. Moreover, for any A € (0, 1), the truncated codifferential can be used in the calculation
of descent directions. Unfortunately, it is generally not possible to find descent direction by using
Proposition 3.1 since the entire set H(x, A1) must be used. Actually, the usage of the entire set H(x, 1) is
not always possible. However, Proposition 3.1 helps us how an algorithm for finding descent directions
can be developed. In order to over come this difficulty, the following algorithm is developed using only
a few elements from H(x, 1) to compute descent directions.

Let the numbers 4, ¢ € (0, 1) and a small enough number 6 > 0 be given.

Algorithm 3.2 Computation of descent directions.

Step 1. Select any g' € S, and compute v! € df(x + Ag') and a; = f(x + Ag") — f(x) — A", g'). Set
Hi(x) = {w! = (a,v)} and k = 1.

Step 2. Compute the wk = (@, ) € R x R" as a solution of the following problem:

min [[w|> subjectto w € Hy(x). (3.9)
Step 3. If
W <, (3.10)
then stop. Otherwise, compute g* = —|[w¥||"'%* and go to Step 4.
Step 4. If

fx+ 28" = f(x) < —calwh]l, (3.11)

k+1

then stop. Otherwise, set g&*! = g€ and go to Step 5.

Step 5. Compute V! € af(x + Ag"") and a1 = f(x + Ag") — f(x) — A0, gh+1y. Construct the set
Hi (x) = co {Hp(x) W ! = (ags1, V¥ )}, set k « k + 1 and go to Step 2.

Some explanations on Algorithm 3.2 as follows. In Step 1, we compute the element of the truncated
codifferential using any direction g! € §,. The closest point to the origin in the set of all computed
codifferential is computed in Step 2. This problem is a quadratic optimization problem. In the literature
there are several algorithms [32, 48, 73, 74, 87] to solve this problem. In the implementation the
algorithm from [87] is used. If the norm of the closest point is less than a given tolerance ¢ > 0, then
the point x is a stationary point with tolerance 6 > 0 ; otherwise, a new search direction is computed
in Step 3. If this new search direction is a descent direction, then the algorithm terminates in Step 4.
Otherwise, a new codifferential in the current search direction is computed in Step 5.
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Algorithm 3.2 have some similarities with respect to calculation of search direction in the bundle-
type algorithms. Especially, Algorithm 3.2 is similar to the algorithm proposed in [86]. However, in
Algorithm 3.2, elements of the truncated codifferential are used instead of subgradients.

In the next proposition, It is proved that Algorithm 3.2 terminates after finite number of repetitions. A
standard technique is used to prove it.

Proposition 3.3 Assume that f is proper convex function, A € (0, 1) and there exists K € (0, ) such
that
max {|wll | w € df(x)} < K.

For the any value of ¢ € (0, 1) and 6 € (0, K), Algorithm 3.2 terminates after at most m steps such that

m < 2log,y(6/K)/log, Ky +2, Ki =1-[(1-c)2K) '6]%

Proof: Since at a point x for a given A € (0, 1)
Hi(x) € H(x, ) C df(x)
for any k € N, it follows that
max {[lwll | w € H(x)} < K Yk € N. (3.12)

First, we will show that if neither stopping criteria (3.10) and (3.11) are satisfied, then a new hypogra-
dient w**! computed in Step 5 does not belong to the set H;(x). Assume H;(x) belongs to w**!. Since
both stopping criteria are not satisfied, it follows that WK > & and

fOe+ 28N = (@) > —call|.
The definition of the hypogradient wk*! = (a1, v¥*!) implies that

Fe+ 285 = F(x) = age + A0KT g,

and we have
_k k1 k+l
=AW < ager + A, 8.

Putting g"*! = —||w¥||"1%* we get

_ [hzall _
PRy — W < w17 (3.13)

k

Since WK = argmin {||w|* : w € Hy(x)},

—k k|12
W wy = Wt

k1 e Hy(x), we obtain

for all w € Hy(x). By assumption w
Aprdy + (Y > | (3.14)

Notice that a;,; < 0 and @ > —||W*||. Then, we have @ a;,; < —|[#*||as,;. Combining this with (3.14),
we obtain
LY — 1M lager > I1W412.
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Finally, since 4 € (0, 1) we get

—k
el kg Il _ 2
VLY >_Tak+1 > w7,

which contradicts (3.13). Thus, if both stopping criteria (3.10) and (3.11) are not satisfied, then the
new hypogradient wf*! makes improvement in order to approximate to set H(x, A).

Obviously, [wF!]> < [ltwk*! + (1 — £)w¥||? for all ¢ € [0, 1], which means
||wk+1||2 < ”wkHZ + Zt(Wk, Wk+l _ wk> + t2||Wk+l _ wk”2'

Inequality (3.12) implies that

W ! — wh|l < 2K,
It follows from (3.13) that

— k k+1>

<W W k+l>

_ &
= @age + LV

—k
W

< il ||61k+1 + (@,
A
)

< =W

Then, we get
I < 1P = 21 = o)lwl* + 42 K>

Let 75 = (1 — ¢)2K)2||wk||2. It is clear that 7, € (0, 1) and, therefore,
IR < {1 = 1= ) @K) ™ A2 . (3.15)
Since ||| > d forall k = 1,...,m — 1, it follows from (3.15) that
P < {1 = 11 = en@K) ™ 6P,
Let Ky =1 —[(1 — ¢;)(2K)"'6]%. Then, K, € (0, 1) and we have
1> < K™ PP <. < KPP < KR

Thus, the inequality [[W]| < ¢ is satisfied if K""'K? < §*. This inequality must happen after at most m
steps, where

m < 2log,(6/K)/log, K| + 2.

Definition 3.4 A point x € R" is called a (A, 6)-stationary point of the function f if

min ||w]| < 4.
weH(x,1)

It can be easily observed that Algorithm 3.2 for a point x either finds a descent direction or determines
the point x as a (4, 6)-stationary point for the convex function f.
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3.3 A Truncated Codifferential Method

In this section, the truncated codifferential method to find the solution of problem (3.1) is introduced.
First of all, we should find stationary points with some tolerance. According to this purpose, the
following algorithm was designed to find (4, §)-stationary points for given numbers A € (0, 1), ¢; €
(0, 1), ¢, € (0, 1] and the tolerance ¢ > 0.

Algorithm 3.5 The truncated codifferential method for finding (A, §)-stationary points.

Step 1. Start with any point x° € R”" and set k = 0.

Step 2. Apply Algorithm 3.2 setting x = x*. This algorithm terminates after finite number of iterations.
Thus, we have the set H,,(x*) € H(x, 1) C df(x) and an element Wk = (a, ¥) such that

12 = min {Iwl® | w e H, ().

Moreover, either
Wi < 6 (3.16)

or
FOR+ 285 = fOF) < —cr A (3.17)

for the search direction g* = —||w¥||"'¥* holds.
Step 3. If |W¥|| < &, then stop. Otherwise, go to Step 4.

Step 4. Compute xX**! = x* + a;g*, where a; is defined as follows
— . k k k _ k
oy = argmax {a > 0: f(X +agh) - f(X) < —crall¥|}. (3.18)

Set k « k + 1 and go to Step 2.

The following theorem shows that Algorithm 3.5 stops after finite number of iterations and it gives an
upperbound for the number of iterations.

Theorem 3.6 Assume that the function f is bounded from below:
fe=inf{f(x)| x € R"} > —c0. (3.19)

Then, Algorithm 3.5 terminates after finite number M > 0 of iterations. As a result, this algorithm
generates a (A, 8)-stationary point xM, where

Proof: Assume the statement in the theorem is not correct. Then, we have infinite sequence {x*} and
non-(A, §)-stationary points x*. This means that

min{||w|| | we H(xk,/l)} >§ VkeN.
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Therefore, Algorithm 3.2 will find descent directions by satisfying the inequality (3.17). Since ¢, €
(0, ¢1], it follows from (3.17) that a; > A. Therefore, we have

FOEY = 5 < —eaanlw!]

< =AWl
Since |[wk|| > ¢ for all k > 0, we get
FOHN = () < —e2s,
which implies
FED < f() = (k+ Deaas

and, therefore, f(x") — —oo as k — +oo which contradicts (3.19). Obviously, in order to find the
(4, 6)-stationary point, the upper bound of iterations is M A

Remark 3.7 Because of the fact that ¢, < ¢; and @, > A, 1 > 0 is a lower bound for ay. This allows
us to estimate a; by using the following rule:
ay is defined as the largest 6, = 2/A4 (I € N), satisfying the inequality in Equation 3.18.

Now, an algorithm for solving Problem (3.1) will be described. The sequences {A;}, {0} must be
satisfied the conditions 4y — +0 and 6y — +0 (k — o). The tolerances &,,; > 0, 0,y > 0 must be
given.

Algorithm 3.8 The truncated codifferential method.
Step 1. Start with any point x° € R”, and set k = 0.
Step 2. If Ak < &,pr and O < 9,1, then terminates.

Step 3. Apply Algorithm 3.5 setting initial point as x* and the tolerances A = A; and 6 = &;. This

k+1

algorithm stops after a finitely many iterations. As a result, a (1, d)-stationary point x**" is generated.

Step 4. Set k < k + 1 and continue from Step 2.
Consider the set £(x°) = {x eR"| f(x) < f(xo)} for the point x° € R”.

Theorem 3.9 Assume that the function f is proper convex, the set L(x°) is bounded for starting point
xo. Then, every accumulation point of the sequence {x*} generated by Algorithm 3.8 belongs to the set
X0 ={xeR" |0, € df(x)).

Proof: Since the function f is proper convex and the set L(x%) is bounded, f. > —oo. Therefore,
conditions of Theorem 3.6 are satisfied, and Algorithm 3.5 generates a sequence of (A, dx)-stationary
points for all k > 0. More specifically, the point x**! is (1;, &;)-stationary, k > 0. Then, it follows from
Definition 3.4 that

min {||w|| |we H(xk“,/lk)} < 6¢. (3.20)

It is obvious that x¥ € £(x°) for all k > 0. The boundedness of the set £(x%) implies that the sequence
{x} has at least one accumulation point. Let x* be an accumulation point and x — x* as i — +oo.
The inequality in (3.20) implies that

min {Jlwil | w € H(, 1)} < 6.
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Then, there exists w € H(x", Ax;—1) such that [|W]| < 6,—;. Considering w = (a, ¥) where ¥ € df(y) for
some y € By, _,(x*), we have [[7]| < W] < 6,1. Therefore,

min {[vll | v € af(* + By, (¥} < 61,

where
O + By (M) = J{aFo) 1 y e By, ().

The upper semicontinuity of the subdifferential mapping df(x) implies that for any € > 0 there exists
n > 0 such that

9f() € If (") + Bo(0,) (321)
for all y € B,(x"). Since X xr Ok;» A, = +0 (i — +00), there exists iy > 0 such that J;, < & and
B, (') C By(x")
for all i > iy. Then, it follows from (3.21) that

min{|v|| | v € df(x")} < 2e.

Since € > 0 has been chosen arbitrarily, we have 0 € 9 f(x). A
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CHAPTER 4

TRUNCATED CODIFFERENTIAL METHOD WITH
MEMORY

In this chapter, a new method for solving unconstrained nonsmooth convex optimization problems will
be introduced. The main difference between this method and the truncated codifferential method in
Chapter 3 is that at each iteration of the algorithm proposed in this study one uses also codifferential
computed at previous iterations. Because of that, we shall call this method as Truncated codifferential
method with memory. Using codifferential from previous iterations will allow us to reduce the number
of function and subgradient evaluations respectably when compared with the truncated codifferential
method. The convergence of the proposed method will be proved. Results of numerical experiments
using a set of test problems with not only nonsmooth convex but also nonsmooth nonconvex objective
function will be reported in Chapter 6 by comparing the proposed algorithm with TCM and some other
algorithms.

4.1 Introduction

In this chapter, similarly Chapter 3, the solution of unconstrained convex optimization problem is
focused. The problem is as follows:

min.imize f(x) “4.1)
subjectto x € R”,

where the objective function f is assumed to be proper convex.

Several numerical techniques to find the solution of Problem (4.1) have been developed in the literature.
Subgradient method [83], different version of bundle methods [33, 34, 35, 36, 39, 42, 47, 49, 55, 59, 58,
64, 65, 67, 86] are among them. On the other hand, the number of the studies which use codifferential is
just a few, because it is considered that either the entire codifferential or its subsets should be computed
at any point. Whereas, these assumptions are too restrictive. Actually their calculations are not possible
for many class of nonsmooth functions.

In this chapter, we introduce a new method for solving unconstrained nonsmooth convex optimization
problems. The main difference between this method and the truncated codifferential method [12] is
that at each iteration of the algorithm proposed in this study one uses also codifferential computed
at previous iterations. Because of that, we call this method as truncated codifferential method with
memory. This approach reduces the number of function and subgradient evaluations when comparing
with Truncated codifferential method.
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This chapter is structured as follows; Section 4.2 presents an algorithm for finding descant directions.
In Section 4.3, the method will be proposed to find minimum of Problem (4.1). Numerical results are
reported in Section 6.3.

4.2 Computation of a Descent Direction

When computing search directions, we will use a subset of the hypodifferential which is given in the
following way. To find the descent direction these computed search directions are used and usability
of them will be proved. For any A € (0,1), ¢ > 1, we assume x fori=1,2,...k—1, are given and
define the following set:

A =cl co {H(x, 1) U H(x, D)}, (4.2)
where
dy € Ba(x),
H(x, ) = w=(a,v) e RxR" vedfly), “4.3)
a=fy-fx)—-vy-x
and

Ax,i=1,..,k-1

such that ”x - x’“ <cAd,

v € df(y), where y € By(x"),
a=fy-fx)-v,y-x

Obviously, a < 0 for all w = (a,v) € J(x, 1) because of definition of the subdifferential. Since y can

H(x, ) =4w=(a,v) eRxR" (4.4)

take the value x in the set (4.3), a attains the value 0, so

max a=0. 4.5)
w=(a,v)eF(x,d)

If Ber1)a(x) C intU for all 2 € (0,1) where U c R" is a closed convex set, then from the definition of
both the hypodifferential and the set 77 (x, 1), the following inclusion holds:

F(x, ) cdf(x) YAe(0,1).

We call the sets .7(x, A) as the truncated codifferential with memory of the function f at the point x.

Proposition 4.1 Let us assume that 0,4y ¢ F(x, ) for a given 1 € (0,1)andc > 1, (c+ 1)1 € (0,1)
and
(WOl = min {||w]| | we (x,)} >0, with w® = (ap,"). (4.6)

Then, V° # 0, and
fx+ 8% = f(x) < =AW, (4.7)
where g° = —|[wP||=1W0.

0

Proof: Since w" is a solution of 4.6,

WO wy = W % Yw = (a,v) € H(x, )

or
aga + (0, vy > w2 (4.8)

First, v* # 0, should be proved. Assume ' = 0,. Since w” # 0,,; we get that ay < O (i.e., a # 0).
Then, it follows from (4.8) that apa > aé ora < ap < 0. In other words, a < 0 forall w = (a,v) €
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J(x, 1) which contradicts (4.5). Now we will prove (4.7). Obviously x + /lgo € B,(x) and that implies
a= f(x+1g% - f(x)— A, g%, with v € df(x + 1g°) because of the definition of the set H(x, A). Thus,
= (a,v) € € (x, 1) with above given a and v. Replacing a with f(x + /lgo) — f(x) — A, go) in (4.8),

we get
ao(f(x +a8°) = F(0) = Av, g°) + (v, 0y = W), (4.9)

Dividing (4.9) by —||w0|| and multiplying (4.9) by A, we obtain the following inequality

| 0” S (fx+ 287 = f(0) = Av,g%) + A, °) < =AUl (4.10)

Obviously since A € (0, 1) and |[w°]|"'ay € (~1,0), —m €0, anda = f(x+18") - f(x)—Av, g% <
0, so (4.10) gives the following inequality

J+28%) = £(0) = v, 8% + v, g°) < =AW,

Fx+28%) = f(x) < —AWPll.

A

According to Proposition 4.1, the set 77 (x, 1) can be used to find descent directions of a function f.
Moreover, this can be done for any A € (0, 1). Unfortunately, it is generally not possible to find descent
direction by using Proposition 3.1 since the entire set .7#(x, 1) must be used. Actually, the usage of
the entire set .77°(x, A) is not always possible. However, Proposition 4.1 helps us how an algorithm
for finding descent directions can be developed. In order to over come this difficulty, the following
algorithm is developed using only a few elements from .77°(x, 1) to compute descent directions.

Assume that from previous iterations, we have some information about the point xfori=1,2,... k-1,
namely subgradients of the function f at the point xifori=1,2,...,k—1, and the points related that
subgradients. Also assume that the number of that subgradients is finite and it is denoted m; for i =

2, ...,k—1. Let the subgradients of xifori=1,2,....k—1, be denoted v; and related points be denoted
y’j for j=1,2,...,m;and i = 1,2,...,k — 1. Consider the following set

Ax,i=1,...k-1

such that ||x - x’“ <cd

v=vianda = f(}) = f(x) = (v, Y = %),
forj=1,2,...m

H(x)={w = (a,v) € RxR"

Now, we can give the algorithm which compute the descent direction. For the given numbers 4, ¢ €
(0, 1) and a small enough number ¢ > 0, the following algorithm can be used to find descent directions.

Algorithm 4.2 Computation of descent directions at x.

Step 1. 1f ﬁ(x) # 0, then set k = |ﬁ(x)|, Hi(x) = co{ﬁ(x)} and go to Step 2. Otherwise, select any
g' € Sy, and compute v' € df(x+Ag')and a; = f(x+Ag")—f(x)-A(!, g'). Set H (x) = {w' = (a;,v")}
and k = 1.

Step 2. Compute Wk = (@, ) € R x R" as a solution to the following problem:

min ||w||2 subject to w € Hy(x). “4.11)

Step 3. If
Il < 6, (4.12)
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then stop. Otherwise, compute g = —|[W¥||"'7* and go to Step 4.

Step 4. If
fx+ 285 = f(x) < —calldt]l, (4.13)

k+1

then stop. Otherwise, set g*! = g* and go to Step 5.

Step 5. Compute v¥*! € af(x + g1y and apyy = f(x + Ag5) = f(x) = AWK, K1), Construct the set
Hii 1 (x) = co {Hp(x) W ! = (ags1, V¥, set k « k + 1 and go to Step 2.

Some explanations on Algorithm 4.2 follow. In Step 1, if we have some hypogradients from known
information, we start to find descent direction by using them. Otherwise, we select any direction g! €
S'1 and compute the hypogradient in this direction and star to find descent direction by using it. The
closest point to the origin in the set of all computed codifferential is computed in Step 2. This problem
is a quadratic optimization problem. In the literature there are several algorithms [32, 48, 73, 74, 87]
to solve this problem. In the implementation the algorithm from [87] is used. If the norm of the
closest point is less than a given tolerance ¢ > 0, then the point x is an approximate stationary point;
otherwise, a new search direction is computed in Step 3. In Step 4, we check whether it is descent
direction satisfying the inequality (4.13) or not. If it is descent direction, then the algorithm stops.

Otherwise, we compute a new hypogradient in the direction g“*! in Step 5.

Proposition 4.3 Let us assume that f is proper convex function, given a number A € (0, 1) and there
exists a value K € (0, 00) such that
max {[lwll | w € df(x)} < K.

Ifc €(0,1)and 6 € (0, K), then Algorithm 4.2 terminates after at most m steps, where

m < 2log,(5/K)/log, Ki + 1, Ky =1-2[(1 = )2K)"'6]%

Proof: First, we will show that if both stopping criteria (4.12) and (4.13) are not satisfied, then a

new hypogradient w**! allows us to improve to the set H;(x). Let us assume the contrary, that is

wktl e Hi(x). Since both stopping criteria are not satisfied, we have
Il > 6
and
fOo+ 80 = f(x) > =]l (4.14)

The definition of the hypogradient wk*! = (a1, v€*!) implies that
fOe+ 285 = f(x) = apgr + A0 g, (4.15)

where g¢t! = g% = —||Ww||719*. Combining (4.14) and (4.15), we have

— 1 1
—cAH| < agey + 2K, g4,

&
Putting g**! = —||w¥||"'% and multiplying by w, we get

[zl o

O PRy — Ak < c|w (4.16)
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k

Since w"* = argmin {Iwll* : w € Hy(x)}, the necessary condition for a minimum implies that

— k — k12
W, wy > [

k+1

for all w € Hi(x). By the assumption, w*! € H;(x) holds. By replacing w with w**!, we get

@y + (V) > AP (4.17)

We notice that a;,; < 0 and @, > —|w*||. Then, we have @iar.; < —|[W¥|aks . Combining this with

(4.17), we obtain
Gy — I lagss > W4
Finally, taking into account that A € (0, 1), we have

-k
w
ooty - o s e,

which contradicts (4.16). Thus, if both stopping criteria are not satisfied, then the new hypogradient
wk*! does not belongs to the set Hy1(x). In light of this fact Ay, (x) approximates to the set H(x, A).

Since at a point x for a given A € (0, 1) it holds
Hi(x) € H(x, 2) € df(x)
forany k = 1,2,..., it follows that
max {wll | w € Hi(x)] < K Vk €N. (4.18)

Obviously, [WF+!1> < [ltwk*! + (1 — £)w¥||? for all 7 € [0, 1], which means

||wk+l||2 < ”wkHZ + 2t(ﬂ/k, Wk+l _ wk) + l2||Wk+l _ wknz.

Inequality (4.18) implies that
I — Wl < 2K.

It follows from (4.16) that

WY = arage + G
—k
w
< il ”ak+1 + v
1
— k2
< =Wl

Then, we have
I < 412 = 261 = o)Wk I + 42K,

Let 7 = (1 — ¢)(2K)2|w¥|]%. Tt is clear that 7 € (0, 1) and, therefore,
P < {1 =101 = )@K) WA 1P, (4.19)
Since ||| > 6 forall k = 1,...,m — 1, it follows from (4.19) that
WP < (1= 11 = en@K) ™ S,
Let K; = 1 —[(1 — ¢;)(2K)™'6]%. Then, K; € (0, 1) and we have
w717 < K™ P << KPP < KRR

Thus, the inequality ||[w™|| < ¢ is satisfied if K’1"‘1K2 < 62, This inequality must happen after at most
m steps where
m < 2log,(6/K)/log, K; + 1.
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Definition 4.4 A point x € R" is called a (4, 6)-stationary point of the function f if

min |[w|| <.
weA (x,1)

It can be easily observed that Algorithm 4.2 for a given point x either finds a descent direction or
determines the point x as a (4, 6)-stationary point for the convex function f.

4.3 A Codifferential Method

In this section, the truncated codifferential method to find the solution of problem (3.1) is introduced.
First of all, we should find stationary points with some tolerance. According to this purpose, the
following algorithm was designed to find (4, d)-stationary points for given numbers A € (0, 1), ¢; €
(0,1), ¢, € (0, cq] and the tolerance 6 > 0.

Algorithm 4.5 Finding (A, 6)-stationary points.

Step 1. Start with any point x° € R” and set k = 0.

Step 2. Apply Algorithm 4.2 setting x = x*. This algorithm terminates after finite number of iterations.
Thus, we have the set A,,(x*) c H(x, 1) C df(x) and an element Ww* = (@, 7*) such that

I = min {Iwl® | w e H, ().

Furthermore, either
W) < 6 (4.20)

or
FOF + g5 = fO5) < —cr AWl (4.21)

for the search direction g = —||w*||='#* holds Step 3. If [|W¥|| < 6, then stop. Otherwise, go to Step 4.

Step 4. Compute x**! = x* + ay g¥, where ay is defined as follows
oy = argmax {@ 2 0] f(* + agh) - f(*) < —caall?l}. (4.22)

Set k < k + 1 and go to Step 2.

Theorem 4.6 Let us assume that the function f is bounded below, i.e.
fo=inf{f(x)| x € R"} > —co. (4.23)

Then, Algorithm 4.5 terminates after a finite number M > 0 of iterations and generates a (A, 9)-
stationary point x™, where
0y —
M < M, = J&) - [
C2/15

+ 1.
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Proof: Assume the statement in the theorem is not correct. Then, we have infinite sequence {x*} and
non-(A, §)-stationary points x. This means that

4] = min {[lwl | w € 2(F, D} > 6 (k=1,2,..).

Therefore, Algorithm 4.2 will find descent directions by satisfying the inequality (4.21). Since ¢; €
(0, c1], it follows from (4.21) that a > A. Thus, we have

FEHY = O < —caanil

< el
Since ||WX|| > 6 for all k > 0, we get
) = f() < =226,
which implies
O < F(0) = (k+ Deas

and, therefore, f(xk) — —oo0 as k — +oco, which contradicts (4.23). Obviously, in order to find the
(4, 6)-stationary point, the upper bound of iterations is M A

In the calculation of «; the following idea is used. Because of the fact that ¢; < cj and @y > 4, 4 >0
is a lower bound for ;. This allows us to estimate a; by using the following rule:
ay is defined as the largest 6, = 2'A (I € N), satisfying the inequality in Equation 4.22.

Now, an algorithm for solving Problem (4.1) will be described. The sequences {A;}, {0} must be
satisfied the conditions 4y — +0 and 6y — +0 (k — o). The tolerances &,,; > 0, 0,y > 0 must be
given.

Algorithm 4.7 The truncated codifferential method.
Step 1. Start with any point x° € R”, and set k = 0.

Step 2. If Ay < &, and 6y < 6,1, then stop.

Step 3. Apply Algorithm 4.5 setting initial point as x* and the tolerances A = A; and § = &. This

k+1

algorithm stops after a finitely many iterations. As a result, a (1, 0x)-stationary point x*** is generated.

Step 4. Set k «— k + 1 and go to Step 2.
For the point x° € R", we consider the set £(x") = {x eR"| f(x) < f (xo)} )

Theorem 4.8 Assume that f is a proper convex function and the set L(x°) is bounded. Then, every
accumulation point of the sequence {x*} generated by Algorithm 4.7 belongs to the set X° = {x €
R" |0, € df(x)}.

Proof: Since the function f is proper convex and the set £(x°) is bounded, f, > —co. Therefore, the
conditions of Theorem 4.6 are satisfied, and Algorithm 4.5 generates a sequence of (A, d;)-stationary
points for all k > 0. More specifically, the point x**! is (A, 6;)-stationary, k > 0. Then, it follows from
Definition 4.4 that

min {[lwll | w € (X!, )} < 6. (4.24)
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It is obvious that x* € £(x°) for all k > 0. The boundedness of the set £(x) implies that the sequence
{x*} has at least one accumulation point. Let x* be an accumulation point and x% — x* as i — +oo.
The inequality in (4.24) implies that

min {|lwil | w € (5, A1)} < 641

Then, there exists a point w € 7 (xk, Ag,—1) such that [|W|| < 6;,—;. Considering w = (a, V) where v €
df(y) for some y € B(C+1)Aki71(xk") for ¢ > 1 given in definition of JZ(x, 1) , we have |[9|| < [[W]| < k,—1.
Therefore,

min {[Ivll | v € 8f (Besia, ,(¢))} < 6.

Here

Of Besiy () = | {0£0) 1y € Bean, (D},

The upper semicontinuity of the subdifferential mapping df(x) implies that for any £ > 0 there exists
a number 77 > 0 such that

df(y) C Of(x*) + B:(0,) (4.25)

for all y € B,(x"). Since X

i — x*, Ok, A, = +0as i — +oo, there exists an ip > 0 such that
o, <& and By, ,(x") C By(x") for all i > .

Then, it follows from (4.25) that

min{[v]| | v € 0f(x")} < 2e.

Since € > 0 has been chosen arbitrarily, we have 0 € 9 f(x¥). A
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CHAPTER 5

AGGREGATE CODIFFERENTIAL METHOD

In this chapter, another method for nonsmooth convex optimization problem will be developed via
codifferential concept. Similar to the truncated codifferential method (TCM) given in Chapter 3, we
shall use a few elements from the codifferential. The difference between the method which will be
mentioned in this chapter and TCM is that a fixed number elements of the codifferential will be used to
compute descent direction at each iteration. The convergence of the proposed minimization algorithm
will be proved. Results of numerical experiments using a set of test problems with not only nonsmooth
convex but also nonsmooth nonconvex objective function will be reported in Chapter 6 by comparing
the proposed method with TCM, the truncated codifferential method with memory (TCMWM) and
some other well known methods.

5.1 Introduction

In this chapter, we develop an algorithm for solving the following unconstrained nonsmooth optimiza-
tion problem
minimize  f(x)

5.1
subjectto x € R” -1

where the objective function f is assumed to be proper convex.

There are a number of methods in nonsmooth optimization for solving Problem (5.1). We mention a
few here such as the subgradient method [83], different versions of the bundle method [33, 36, 49, 55,
58, 64, 67, 86], the variable metric method [59] and the discrete gradient method [14].

The proposed method is based on the concept of codifferential, which was introduced in [27]. The
codifferential mapping for most of the important classes of nonsmooth functions is Hausdorff contin-
uous. Although it has good differential properties, only very few numerical methods were developed
based on the codifferential [26, 27, 91]. These algorithms [26, 27, 91] require either the computation
of whole codifferential or its subsets at any point. However, this assumption is too restrictive for many
nonsmooth optimization problems.

In order to overcome this, the truncated codifferential method (TCM) was developed in [12], where
only one element of the codifferential is computed at any point. Numerical experiments show that the
TCM is a robust and efficient method for solving Problem (5.1). However, the size of the bundle used
to find search directions is not fixed which may lead to a large scale quadratic programming problem
to be solved at each iteration. It is therefore desirable to develop a modification of the TCM, where the
size of this bundle is fixed. In this paper, we develop one such modification. The proposed algorithm
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uses aggregate codifferentials to preserve the efficiency and robustness of the TCM. We study the
convergence of the algorithm and demonstrate its efficiency on well-known nonsmooth optimization
test problems by comparing with the subgradient, the truncated codifferential and the proximal bundle
methods.

This chapter is structured as follows: how the codifferential is used in order to find descent direction
is explained in Subsection 5.2. The aggregate codifferential method is given and its convergency is
examined in Subsection 5.3. The results is presented in Subsection 6.3.

5.2 Computation of a Descent Direction

In the previous section we mentioned difficulty of computation of whole hypodifferential df(x). In
order to overcome this difficulty truncated codifferential of the function f at the point x is defined as a
subset of the hypodifferential in following definition;

Definition 5.1 Let A € (0, 1), then

dy € B(x, 1),
H(x,) =clcoy w=(a,v) eRXR": vedf(y), . (5.2)
a=f(y)—fx)—(v,y—x

is called truncated codifferential of the function f at the point x.

Clearly, H(x, 1) c df(x) ¥ A € (0, 1) for any convex function f because of the definition of both the
hypodifferential and the set H(x, 1). On the other hand, it can be easily observed that a < 0 for all
w = (a,v) € H(x,A) and a = 0 at the point x, so

a=0. (5.3)

max

w=(av)eH(x,1)
We have proved that H(x, 2) can be used to find a descent direction in Proposition 3.1. The following
algorithm gives the descent direction by using / codifferentials in each quadratic subproblem. When
compared with Algorithm 3.2, although the size of quadratic Subproblem 3.9 can freely increase in
Algorithm 3.2, the size of quadratic Subproblem 5.4 will be always less and equal [ in the following
algorithm.

Algorithm 5.2 Computation of descent directions for given number L.

Step 1. Choose any gles, compute wl = (a1, v asv! € df(x+AgY), a1 = f(x+AgH)—F(x)—A0t, gh)
and setk = 1.

Step 2. If k < 1, set Hy(x) = co{w', ..., wk}. Otherwise, set
Hi(x) = co (WKl whk=iv2 k=1 k),

Step 3. Compute w* = (@, ) € R x R" solving the quadratic subproblem:

min |jw|* subject to w € Hy(x). (5.4)

Step 4. If
W]l < 6, (5.5)
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k”—l—

then stop. Otherwise, compute g = —|[w¥||"'7* and go to Step 5.

Step 5. If
fx+ 285 = f(x) < —calldh]], (5.6)

k+1

then stop. Otherwise, set g&*! = g€ and go to Step 6.

Step 6. Compute w ! = (a1, V1), VM1 € af(x+ g™y and ag 1 = fx+AgM ) — fx)— AWKHT, gkt Ty,
Set k < k + 1 and go to Step 2.

In the following we give some explanation on Algorithm 5.2. In Step 1, we select any direction g' € §;
and compute the hypogradient in this direction. In Step 2, for a given number /, the subset of truncated
codifferential is computed. In Step 3, the quadratic programming subproblem (5.4) is solved. It is used
to find the closest point of the convex hull of H;(x) to the origin. If the smallest distance is less than a
tolerance 6 > 0, then the point x is an approximate stationary point; otherwise, a new search direction
is computed in Step 4. In Step 5, it is checked whether the search direction satisfies the inequality
(5.6). If yes, then the algorithm terminates. Otherwise, a new hypogradient is computed in Step 6 in
the direction g“*! to improve approximation of the truncated codifferential.

The following lemma proves H, is a subset of df(x) forall k = 1,2, ..., H, can be used to compute
descent directions.

Lemma 5.3 The set Hy, which is generated by Algorithm 5.2 is a subset of df (x) (k € N).

Proof: It is obvious that A, C df(x) for k < [, since w' € df(x) fori = 1,...,k. Let k = [ + 1. Thus,

_ -2 3 /S|
Hi o =co{w,w’,..,w,w}

Since w! is solution of Problem (5.4) for H; and H;, C df(x), w' € df(x), so that Hy;; C df(x).
Inductively, we can conclude Hy C df(x). A

In the following proposition we show that Algorithm 5.2 is finite convergent.

Proposition 5.4 Assume that f is proper convex function, given a number A € (0, 1) and there exists a
value K € (0, 00) such that
max {|lwll | w € df(x)} < K.

Ifc €(0,1)and 6 € (0, K), then Algorithm 5.2 terminates after at most m steps, where

m < 2log,(6/K)/log, K +2, Ky =1-[(1-c)2K) 6]

Proof: First, we will show that if neither of the stopping criteria (5.5) or (5.6) are satisfied, then a new

k+1 computed in Step 6 does not belong to the set H(x). Let us assume the contrary,

€ Hy(x). In this case, ||W¥|| > § and

hypogradient w

that is, w/*!

fOe+ g = f(x) > —calld].
The definition of the hypogradient w**! = (a1, v**!) implies that

f(x+/1gk+1) —f(x) = Qs +/l<Vk+1,gk+1>,
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and we have
Al < agar + AV, g,

Putting g*! = —||w¥||"'7%, we get

o A _
kY — Ak < el (5.7

On the other hand, since w* is the solution of Problem (5.4),
Wk w)y = P

k+1

for all w € Hi(x). Since, by assumption, w*™! € H;(x), we get

arags + (T > IwF (5.8)

We notice that a;,; < 0 and since ||W¥|| = —ax + |[V¥]|, we obtain @, > —||Ww*||. Then, we have ayai. <

—W* llagrs - Combining this with (5.8), we get

K+l ok k ki
G = I llage > 9117

Finally, for any A € (0, 1), we get
L IR _
OILH = == = WP,

which contradicts (5.7). Thus, if both (5.5) and (5.6) do not hold then the new hypogradient wk*!
allows one to improve an other subset of H(x, A).

Because of the definition of H; and computation of w**!, |[W< 1|2 < || + (1 — HwP||? for Vt € [0, 1]
and p = 1,..., k. That clearly implies [[w"*!||> < [[tw**! + (1 = £)wk||?> for all 7 € [0, 1], which means

k+1 k+1 — k2
+1 _ +_W||

IR < M2+ 20095, wht = k) + A2lw

By Lemma 5.3, we have
Wk — k|| < 2K.

It follows from (5.7) that

_k k+1 - =k _k+1
WwWY = @gage + V)
k
w
< It
1
— k112
< W

Then, we have
IR < 412 = 261 = o)llWH I + 42K,

Let 7y = (1 — ¢)(2K)2|[w¥|)>. Tt is clear that £, € (0, 1) and, therefore,
IR < {1 = 1= ) @K) ™ A2 2. (5.9)
Since ||| > 6 forall k = 1,...,m — 1, it follows from (5.9) that
P < {1 = [ = oK) P HI ) .
Let K; = 1 —[(1 = ¢)(2K)'56]%. Then, K; € (0, 1) and we have
717 < Kyl IP << KPP < KPR

Thus, the inequality |[w]| < & is satisfied if K{""K2 < 62. This inequality must take place after at most
m steps, where
m < 210g,(6/K)/ log, K, + 1.
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5.3 An Aggregate Codifferential Method

In this section, we will describe the algorithm for solving Problem (5.1) using the codifferential. First
of all, the algorithm for finding a (4, §)-stationary point, which is defined in Definition 3.4, are given.
Finally, an algorithm for solving problem (5.1) is described.

Obviously it can be observed that at a given point x after finitely many steps Algorithm 5.2 either finds
a direction of sufficient decrease or determines that the point x is a (4, §)-stationary point of the convex
function f. The following algorithm gives us a (4, §)-stationary point, when Algorithm 5.2 finds a
descent direction.

Algorithm 5.5 Computation of (1, 6)-stationary points.
Step 1. Start with any point x° € R”" and set k = 0.

Step 2. Apply Algorithm 5.2 to compute the descent direction at x = x* for given > O and ¢ = ¢| €
(0, 1). This algorithm terminates after finite many steps m; > 0. As a result, we get the set Hmk(xk) and
a codifferential w"”* such that w"* is the solution of subproblem 5.4.

Furthermore, either

W™ < 6 (5.10)
or
ST+ A8™) = f(XT) < —cr AW (5.11)
for the search direction g” = —||[w"||~!%"* holds Step 3. If ||W"|| < ¢, then stop. Otherwise, go to
Step 4.

k

Step 4. Compute x**! = x* + a;. g™, where a is defined as follows:

@ = argmax {a >0 f(5+ag™) - f(F) < —czallwmkll}.

Set k = k + 1 and go to Step 2.

Theorem 5.6 Let us assume that the function f is bounded from below
fe=inf{f(x): x e R"} > —o0. (5.12)

Then Algorithm 5.5 terminates after a finitely number M > 0 of iterations and generates a (A, 9)-
stationary point xM, where
0y _
M < My = M + 1.
62/15

Proof: Let us assume the contrary. Then, the sequence {x*} is infinite and points x* are not (4, 6)-
stationary points. This means that
W™ >6 (keN).

Therefore, Algorithm 5.2 always finds a descent direction at each point x;. In other words, the in-
equality (5.11) is satisfied. Since ¢, € (0,c;], it follows from (5.11) that @, > A. Therefore, we
have

JOEEH = O8N < —caalv™ ||

< —od|wml.
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Since |[w"™]| > ¢ for all k > 0, we get
SO = fO) < =246,

which implies
FOMY < £ = (k+ 1Deadd

and, therefore, f(x¥) — —oo (k — +00) which contradicts (5.12). It is obvious that the upper bound
for the number M of iterations necessary to find the (4, §)-stationary point is M. A

Since ¢; < ¢, we always have @; > A. Therefore 4 > 0 is a lower bound for @, which leads to the
following rule for the estimation of ;. We define a sequence:

9,=24, 1=1,2,...,

and «; is the largest 6; satisfying the inequality in Step 4 of Algorithm 5.5.

Next, we will describe the aggregated codifferential algorithm for solving Problem (5.1). Let {4}, {0}
be sequences such that A, | 0, & | 0 as k — oo and &,,; > 0, d,,; > 0 be tolerances.

Algorithm 5.7 A codifferential method.
Step 1. Choose any starting point x° € R”, and set k = 0.
Step 2. If Ak < &,pr and 6 < 0,py, then stop.

Step 3. Apply Algorithm 5.5 starting from the point x* for 1 = A; and 6 = 6. This algorithm terminates
after a finite number M > 0 of iterations, and as a result, it computes a (A, o )-stationary point Xkt

Step 4. Set k = k + 1 and go to Step 2.
For the point x° € R”, we consider the set £(x") = {x eR"| f(x) < f(xo)} .

Theorem 5.8 Let us assume that f is a proper convex function and the set L(x°) is bounded. Then,
every accumulation point of the sequence {x*} generated by Algorithm 5.7 belongs to the set X° = {x €
R" [0, € f(x)}.

Proof: Since the function f is proper convex and the set L(x%) is bounded, f. > —oo. Therefore,
conditions of Theorem 5.6 are satisfied, and Algorithm 5.5 generates a sequence of (A, dx)-stationary
points for k € Ny. More specifically, the point x**! is (1, 6;)-stationary, k € N. Then, it follows from
Definition 3.4 that

min {||w|| |we H(xk”,/lk)} < 6. (5.13)

It is obvious that x* € £(x°) for k € Ny. The boundedness of the set L(x°) implies that the sequence
{x} has at least one accumulation point. Let x* be an accumulation point and x — x* as i — +oo.
The inequality in (5.13) implies that

min {Jlwil | w € H(M, 1)} < 6.

Then, there exists w € H(x", Ak;—1) such that [|[w]| < ;. Considering w = (a, ¥), where ¥ € df(y) for
some y € By, , (x*), we have [[7l| < [l#]| < &,1. Therefore,

min (|l | v € 8f(By,_, ()} < 61

40



Here,

af(B’lki" (in)) = U {af(y) | ye€ B/Ik,ﬂ (xki)} .

The upper semicontinuity of the subdifferential mapping df(x) implies that for any & > 0 there exists
n > 0 such that

Of(y) C Of(x") + B=(0,) (5.14)

ki s %, Ok;» A, = +0 as i — +oo, there exists iy > 0 such that d;, < € and

for all y € B, (x"). Since x
By, (X) C By(x")
for all i > iy. Then, it follows from (5.14) that
min{|v]| | v € 0f(x")} < 2e.

Since € > 0 has been chosen arbitrarily, we have 0 € df(x"). A
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CHAPTER 6

NUMERICAL RESULTS

In this chapter, the methods mentioned in Chapters 3 - 5 ,and some other well-known methods will
be compared by applying them to some academic test problems with nonsmooth objective functions.
When testing new methods, the comparison is usually performed between similar kinds of methods.
In other words, if a new method is a subgradient (or bundle) method, it should be compared with
other subgradient (or bundle) methods. The methods developed in Chapters 3 - 5 are similar to bundle
methods, but they are not exactly bundle methods since they do not store the bundle of codifferentials
(or subgradient) in the memory of computer. Thus, we will use both bundle and subgradient methods
in comparison. The results are analyzed using the performance profiles introduced in [29]. A short
explanation for performance profile will be given in Section 6.2.

6.1 Test Problems

The well-known nonsmooth optimization academic test problems were used to test the efficiency of
proposed methods by applying them to some test problems from both Chapter 2 and Chapter 3 in [61].
In numerical experiments, we do not include all test problems in [61]. The causes of excluding some
problems are different. First of all, some problems, namely, CB2 and Rosen-Suzuki, are included in
both Chapter 2 and 3 of [61], so in order not to repeat, we do not use them twice. The second reason
is unboundedness of some problems, namely, Bard, Gamma, Colville 1 and HS78. After that, several
problems, namely, PBC3, Kowalik-Osborne, EXP, PBC1, EVD61 and Filter, have more than one local
solutions. After that, as the input data are not fully available for the problem TR48, we do not place
the problem TR48. Lastly, the problem Transformer is not used, because of its complex coeflicients.
Briefly, we use 36 test problems from both Chapter 2 and 3 in [61], whereas there are 50 test problems.
Although all test problems have nonsmooth objective functions, some of them are nonconvex (see
Tables 6.1 - 6.2). We give brief information about the test problems in Tables 6.1 - 6.2, where the
following notations are used:

e 1 : the number of variable of corresponding problem,
e 14 : number of functions whose maximum give objective function,
e f,p : the optimal values which are reported in [61].

The problems in Chapter 2 in [61] are called unconstrained minmax optimization problems, whose
form is as follows:

flo) = max fitx) (xeR"). (6.1)
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Table 6.1: The brief description of unconstrained minmax problems

Problem n | na Jopt Convexity
CB2 2 3 1.9522245 Convex
WF 2 3 0 Nonconvex

SPIRAL 2 3 0 Convex

EVDS52 3 6 3.5997193 Convex

Rosen-Suzuki | 4 4 -44 Convex
Polak6 4 4 -44 Convex
Davidon 2 4 120 115.70644 Convex
OETS5 4 | 21 | 0.26359735 x 1072 Convex
OET6 4 | 21 | 0.20160753 x 1072 | Nonconvex

Wong 1 715 680.63006 Convex

Wong 2 10| 9 24.306209 Convex

Wong 3 20 | 18 93.90525 Convex

Polak 2 10 | 2 54.598150 Convex

Polak 3 11 | 10 3.70348 Convex

Watson 20 | 31 | 0.14743027 x 1077 Convex

Osborne 2 11 | 65 | 0.48027401 x 10~ | Nonconvex

Table 6.2: The brief description of general unconstrained problems

The problems in Chapter 3 in [61] are called general unconstrained optimization problems.

Problem n Jopt Convexity Problem n Jopt Convexity
Rosenbrock | 2 0 Nonconvex El-Attar 6 | 0.5598131 | Nonconvex
Crescent 2 0 Nonconvex || Maxquad | 10 | -0.8414083 Convex
CB3 2 2 Convex Gill 10 | 9.7857721 | Nonconvex
DEM 2 -3 Convex Steiner 2 | 12 | 16.703838 | Nonconvex
QL 2 7.2 Convex Maxq 20 0 Convex
LQ 2 | -1.4142136 Convex Maxl 20 0 Convex
Mifflin 1 2 -1 Convex Goffin 50 0 Convex
Mifflin 2 2 -1 Nonconvex || MXHILB | 50 0 Convex
Wolfe 2 -8 Convex L1HILB 50 0 Convex
Shor 5 | 22.600162 Convex Shell Dual | 15 | 32.348679 | Nonconvex

We test our method on aforementioned problems using 20 randomly generated starting point for each
problem.

According to given tolerance € > 0, if the following inequality is satisfied, it is assumed the method
solves corresponding problem successfully:

f__ ﬁ7pt < 8(1 + |f0pt|)s

where f,,, is the minimum value of the objective function as reported in [61] and £ is t