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ABSTRACT 

 

 

A METHODOLOGY FOR LINING DESIGN OF CIRCULAR MINE SHAFTS IN 

DIFFERENT ROCK MASSES 

 

 

 

Güler, Erdoğan 

M.Sc., Department of Mining Engineering 

Supervisor: Asst. Prof. Dr. Hasan Öztürk 

January 2013, 72 pages 

 

The objective of this thesis is to predict lining thickness inside circular mine shafts. A numerical study 

with different rock mass strengths and different in-situ non-hydrostatic stresses are carried out in 2D 

shaft section models to predict pressures that develop on lining support. An iterative process of applying 

support pressure until observing no failure zone around shaft is used to simulate lining support pressure 

for each individual model. Later, regression and fuzzy logic analyses are carried out to find a pressure 

equation for all of the models. Finally, the pressure equation derived is used in elastic “thick-walled 

cylinder” equation to calculate the lining thickness required to prevent the development of a failure zone 

around shafts. At the end of this research, a computer program “Shaft 2D” is developed to simplify the 

lining thickness calculation process. 

 

 

 

Keywords: Lining Thickness, Shaft Support, Shaft, Non-Hydrostatic Stresses 
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ÖZ 

 

 

FARKLI KAYA KÜTLELERİNDEKİ DAİREDEL MADEN KUYULARININ TAHKİMAT 

TASARIMI İÇİN BİR YÖNTEM 

 

 

 

Güler, Erdoğan 

Yüksek Lisans, Maden Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Hasan Öztürk 

Ocak 2013, 72 sayfa 

 

Bu tezin amacı dairesel kesitli maden kuyularının duraylı kalabilmesi için gerekli tahkimat kalınlığını 

tahmin etmektir. Tahkimat desteğinin üzerinde gelişen basınçları tahmin etmek için, 2B kuyu kesiti 

örneklerinde, farklı kaya kütlesi dayanımları ve farklı arazi yüklemeleri için tasarlanmış bir sayısal 

çalışma yapılmıştır. Her bir farklı durumun tahkimat basıncını modellemek için, kuyunun etrafında 

kırılmış bölge kalmayana kadar destek basıncı uygulamanın döngüsel bir süreci kullanılmştır. Daha 

sonra, destek basıncına uygun bir eşitlik bulmak için regresyon ve bulanık mantık çözümlemeleri 

yapılmştır. Son olarak, kuyuların çevresinde kırılmış bir bölgenin oluşumunu önlemek için, bulunan 

basınç eşitliği "kalın duvarlı silindir" eşitliğinde kullanıldı. Bu çalışmanın sonucunda, tahkimat kalınlığı 

hesaplama surecini kolaylaştırmak için bir bilgisayar yazılımı olan “Shaft 2D” geliştirilmiştir. 

 

 

 

Anahtar Kelimeler: Tahkimat kalınlığı, Kuyu Tahkimatı, Kuyu, Hidrostatik Olmayan Gerilmeler 
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LIST OF SYMBOLS 

 

 

 

The main symbols used in this study are listed below, together with their descriptions. Besides, symbols 

introduced for any equation are also defined 'locally' after those equations. 

 

Symbol Description Unit 

   

a Hoek-Brown Constant  

d Diameter of Shaft m 

D Disturbance Factor  

Ec Modulus of Concrete or Shotcrete MPa 
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fc Compressive Strength of Concrete or Shotcrete MPa 

ϕ Internal Friction Angle  

G Shear Modulus GPa 

GSI Geological Strength Index  

J Cost Function  

k Horizontal Stress to Vertical Stress  

k1 1st Horizontal Stress to Vertical Stress  

k2 2nd Horizontal Stress to Vertical Stress  

mi Hoek-Brown Constant  
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σ1 Major Effective Principal Stress MPa 

σ3 Minor Effective Principal Stress MPa 

σh Horizontal Stress MPa 

σh1 1st Horizontal Stress MPa 

σh2 2nd Horizontal Stress MPa 

σrr Radial Stress MPa 

σθθ Tangential Stress MPa 

τrθ Shear Stress MPa 

σz Vertical Stress MPa 

σci Compressive Strength of Intact Rock MPa 

pi Support Pressure MPa 

po Outer Pressure MPa 

r Radius of Shaft m 

ro Outer Radius of Lined Shaft m 

R Questioned Distance m 

RMSE Root Mean Square Error  

s Hoek-Brown Constant  

tc Thickness of Lining m 

ur Radial Displacement mm 

uθ Tangential Displacement mm 

γ Unit Weight of Rock MN/m3 

ν Poisson’s Radio  

z Depth of Shaft Section m 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1. General Remark 

 

The purpose of the engineered structures influences their design. For example, stabilization measures 

required for an excavation will depend on whether it is to be a permanent structure for a civil engineering 

project or a temporary structure for a mine. For civil, mining and petroleum engineering, there are 

different constraints on tolerable disturbance caused by excavation, on rock displacements, on type of 

instability which can be allowed to occur, on type of support that may be installed, etc. An engineer has 

to consider what types of instability might be expected. Is it the instability of rock blocks defined by 

pre-existing fractures, stress-induced failure of intact rock, or a combination of them? The consequences 

of interaction between high stresses and rock mass structure may result in a considerable amount of 

displacement of the individual rock blocks and the significant distortion of installed support (Harrison 

& FREng, 2000). 

 

Lining of shafts works for two purposes: support for shaft equipment and support for walls of 

excavations. Although, in shafts having short life span sunk in competent rock, a rectangular shape with 

timber support is still commonly used, in modern and large shafts, concrete lining is used almost 

completely. Circular shape reduces airflow resistance, facilitates the sinking process and permits taking 

full advantage of the structural features of concrete. Concrete lining with its numerous advantages may 

be used over formerly popular materials such as brick and concrete blocks. Its placement is mechanized, 

resulting in high sinking rates as well as lower cost. Moreover, concrete strength may be adjusted 

according to need (for instance, 20 to 50 MPa) and water tightness of the lining can be achieved within 

aquifers with moderate head (Unrug, 1992).  

 

1.2. Problem Statement 

 

The term support generally means procedures and materials used to improve stability and preserve load-

carrying capability of rocks near the boundaries of underground excavations. The main objective of 

support application is to mobilize and protect the inherent strength of rock masses so that they become 

self-supporting. To sum up, support is applied as a reactive force against surface of an excavation and 

includes practices like timber, fill, shotcrete, mesh, steel, concrete sets, reinforced concrete and liners. 

 

The determination of lining thickness around shafts may be done by using one of the three ways: 

numerical, empirical or analytical methods. Analytical methods are assume that rock and liner material 

behave elastically and the pressure acting on the liner is hydrostatic. In reality, rock mass and liner 

material behaves elasto-plastic, which means that the material will behave plastically if it is over 

stressed. This kind of behavior can only be modeled with numerical modeling. It should also be noted 

that hydrostatic stress around the shaft perimeter is not always the case and also shaft is sunk through 

different rock mass layers with different material behaviors. 

 

1.3. Objectives 

 

The ultimate objective of this study is to compute lining thickness needed to support circular mine shafts 

in jointed weak to hard rock mass. For this reason, a numerical study including different rock mass 

strengths and different in-situ non-hydrostatic stress states is carried out in 2D shaft section models.  

 

In the numerical modeling work, support pressure applied to the opening walls simulates lining support 

for circular mine shafts. In order to simulate support pressure for each shaft section model, an iterative 

process of applying support pressure is utilized until no failure region around the shaft section detected. 

Therefore, deriving an accurate for shaft support pressure in different rock masses and in different in-

situ stress cases is another objective of this study. 
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Regression and fuzzy logic analyses are carried out to find the most proper support pressure equation 

for all of the models. At the end of the study, a lining thickness equation is generated by integrating the 

pressure equation obtained from the numerical study to the elastic “thick-walled cylinder” solution. In 

addition, a user friendly computer software package with graphical interface based on the lining 

thickness equation is developed to make the tedious lining thickness computation process easier for 

users. 

 

1.4. Outline of the Thesis 

 

Introduction of the thesis gives some main point about the thesis. Then, literature survey chapter 

presents commonly used analytical, empirical and numerical studies of support pressures and lining 

thickness calculations for mine shafts. In numerical modeling chapter, the numerical analysis method 

used to calculate support pressure is explained in detail. In this section, also the results of the parametric 

studies are given. In regression analysis chapter, the results of the parametric studies are used to obtain 

a regression equation for support pressure with minimum error. In evaluation of the regression result 

with fuzzy logic chapter, regression equations found for support pressure are compared in terms of their 

consistency. In lining support design chapter, lining thickness is given and it is integrated to the 

computer program “Shaft 2D”. Also, a number of examples are presented. Finally, in the last chapter, 

conclusions and recommendations are presented. 
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

In this chapter, some procedures for shaft design, analytical studies in elastic theory, numerical and 

empirical methods for shaft lining design are explained. 

 

2.1. Shaft Design 

 

2.1.1. Shaft Radius 

 

The radius of the shaft may be determined by considering the followings (Unrug, 1992): 

 

 Lateral dimensions of hoisting conveyances, other installations like a ladder way and adequate 

distances between each and lining, 

 Designed amount of airflow to satisfy ventilation necessities. 

 

2.1.2. Shaft Collar 

 

The shaft collar is the upper part of the shaft extending to the first footing and must be anchored in 

competent rock. The dimensions of a collar, for example, its depth, cross section and thickness depend 

on shaft functions, character of over-burden rocks, hydrologic conditions, resulting water, ground 

pressures, sinking method and additional loading conditions when appropriate. Sinking and construction 

shaft collar depend on geo-mechanical and hydrologic conditions. A collar is required for a shaft or 

raise entry used by an underground mine. In addition to providing a mine entrance, a shaft collar of a 

production shaft implements the followings (Unrug, 1992): 

 

 Keeping shaft watertight, 

 Providing a top anchor for shaft sets and plumb lines necessary for shaft surveying, 

 Providing space for shaft sinker to install equipment before main excavation initiates, 

 Supporting a portion of headframe.  

 

Also, collars are essential for ventilation shafts, service shafts and all raises reaching surface. 

Constructing collars in a rock outcrop or shallow overburden is comparatively straightforward. 

However, constructing collars may be a major task for deep and particularly water bearing soil 

overburdens. The same is true of a portal, but, for deep and water bearing overburdens, construction 

may be harder or even impractical. Shaft and raise collars are usually lined by concrete (Unrug, 1992). 

 

The collar of a production shaft generally has 24 inches concrete lining in overburden and 18 inches 

concrete lining in weathered bedrock. The collar of a ventilation shaft generally has 18 inches concrete 

lining in overburden and 12 inches concrete lining in weathered bedrock. A concrete shaft collar has 

minimum 92 feet depth. If a long round jumbo is used to sink, it is 120 feet (Vergne, 2003). 

 

2.1.3. Shaft Lining 

 

The type of lining mostly depends on the followings (Unrug, 1992): 

 

 Hydrogeological conditions, 

 Function of shaft, 

 Intended lifespan of shaft, 

 Shape and depth of shaft , 

 Obtainability of building materials and 

 Cost of construction. 
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Geotechnical properties and hydrologic conditions may significantly affect deciding shaft lining. On the 

other hand, the chemical activity like corrosiveness of the water can also be an important factor. Since 

modern shafts often have automatically operating hoisting gear sensitive to moisture, they should be 

dry. Main shafts are usually planned for the entire mine lifespan, so they are constructed according to 

minimum repairs and maintenance times. There are two kind of support for shaft (Unrug, 1992): 

 

 Temporary support and 

 Permanent support. 

 

Temporary supports protect crew and equipment from falling rocks of the exposed shaft wall and they 

are used while the face is advancing. When the work at the face is postponed, temporary supports are 

dismantled and a concrete form is located. If the removal of the temporary lining produces safety 

problems, concrete can be poured over temporary support. One of the most popular types of temporary 

lining are steel rings (Unrug, 1992). 

 

There are several different permanent lining systems along with shaft design and environmental settings 

like rock formations. While shotcrete is generally sufficient in strong rocks, a combination of rock bolts 

with mesh and shotcrete can be applied in fractured zones. Permanent lining for water bearing weak 

strata can be made of reinforced concrete or steel, as a single (with stiffening rings) or double cylinder 

with concrete fill between the outer and inner segments. Permanent linings can be listed as follows 

(Unrug, 1992): 

 

 Timber, 

 Brick or concrete blocks, 

 Concrete monolithic, 

 Reinforced concrete, 

 Tubbing (cast iron and precast elements), 

 Shotcrete, various systems (e.g., with mesh) and 

 Anchor bolts. 

 

Linings of shafts generally consist of a combination of the lining types above. In modern shafts, timber 

lining is very rarely used. They are only applied in auxiliary shafts with a short lifespan like inter-level 

blind shafts. Brick lining was popular before the mechanized shaft sinking. Some typical features of 

brick lining are simplicity and ease of construction, ability to carry load instantly, ease of repairs and 

resistance to corrosive waters. The latter can be beneficial in certain conditions. The disadvantages of 

brick lining can be listed as follows (Unrug, 1992): 

 

 Time and labor consuming erection, 

 Low strength, 

 High cost if employment is expensive and 

 Substantial permeability. 

 

Concrete block lining is a type of improved brick lining with a reduced number of seams and a higher 

strength of a concrete shaft wall. This lining is less labor intensive when compared to brick lining. 

Monolithic concrete lining is the most popular shaft lining. It has many advantages when compared to 

other lining types (Unrug, 1992): 

 

 Possibility of complete mechanization of construction with slip or switch forms and by 

transporting concrete through slicklines, 

 Good bond between lining and shaft wall leading to no shaft foundations, 

 Reduced labor intensity (3 to 6 times) and costs (30 to 40 %) when compared to brick lining, 

 High strength causing less excavation. 

 

The disadvantages of monolithic concrete lining are as follows (Unrug, 1992): 

 

 Less resistance to corrosive waters 

 Sensitivity to movement of rock masses 

 Inability to immediately take load after settlement and 

 Difficulty to repair. 
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There are several technologies to construct monolithic concrete lining. After sinking in series, short 

segments of shaft, 4 to 5 m in length, are lined with a collapsible steel form, which is relocated after 

concrete sets. This type of lining is not a monolith but consists of segments with seams. When the shaft 

is sunk in long lifts, a sliding concrete form can be applied. Then, longer sections of monolithic lining 

are obtained (Unrug, 1992) 

 

Other than standard monolithic concrete liner, there are liners joining a steel plate into their design 

(Vergne, 2003): 

 

 Steel plate and concrete composite (“sandwich liner”), 

 Perforated steel liner (“leaky liner”) and 

 Steel hydrostatic liner (water-tight). 

 

The sandwich liner benefits from strength of steel and inertia of concrete. For the composite to act 

together, there should be a near equality of the ratios of strength to stiffness for each of the components. 

Shear connectors help ensure composite action. These liners are seldom come across but still applied to 

shafts in hard rock (Vergne, 2003). 

 

Leaky liners have occasional use where wall rock of shaft or raise must be kept from unraveling. Upon 

installation, annulus between liner and rock is filled, usually with pea gravel. Perforations ensure that 

no pressure builds up because of ground water. Design of leaky liners only concern the minimum 

necessary thickness for handling. Handling is not as severe a problem as it is for the hydrostatic liner. A 

plate thickness equal to the radius/144 is generally suitable (Vergne, 2003).  

 

Steel hydrostatic liners have numerous uses in hard rock mine shafts having severe groundwater 

circumstances. Usual hydrostatic liners are made of a cylindrical steel shell reinforced with stiffening 

rings. A shell is intended for compressive strength and rings deliver extra resistance to buckling. Mild 

steel is suggested because it is least affected by residual stresses. (Vergne, 2003). 

 

Shotcrete lining can used as regular shotcrete, shotcrete with rock bolts, reinforced concrete and 

reinforced concrete with bolts. Shotcrete is mostly applicable in dry shafts in rocks having good 

strength. Particularly, shotcrete is very suitable for blind shafts of smaller diameter where use of 

concrete methods is restricted. Shotcrete has several very pretty features like very good binding with 

rock, tightness and high strength because of low water to cement ratio. However, shotcrete is mostly 

used in combination with rock bolts and mesh. These are usually installed as a temporary support, before 

or after the first shotcreting. Lastly, shotcrete covers mesh pinned to shaft wall with bolts and makes a 

strong but thin shell of lining (Unrug, 1992). 

 

Rock bolt lining is used mainly in salt mine shafts. Salt has creep features and exert too much pressure 

on a rigid shaft lining by flowing toward opening. Two main systems may be used in such situations. If 

salt rock has good shape, no lining is required for ground control. If there are laminations and a general 

trend to weathering creating worse conditions, rock bolts and mesh made from synthetic materials such 

as plastic (not corroding) are used (Unrug, 1992). 

 

2.2. Elastic Theory 

 

Stress concentration around excavations in rock can be explained by determining the distribution of 

stresses in a thick-walled cylinder subject to uniformly distributed radial pressures inside and outside. 

As the outer radius of the cylinder goes to infinity, the problem reduces to the determination of stress 

about a circular opening in a medium of indefinite extent. 

 

Stresses around a thick-walled cylinder subjected to support pressure pi and outer pressure po, as shown 

in Figure 2.1 are given in terms of polar coordinates.  

 



6 

 

Figure 2.1 A thick-walled cylinder in elastic condition. 

 

The radial stress around the opening given by Brady and Brown (2005) in Figure 2.1 is 

 

 σrr =
r2ro

2(pi − po)

R2(ro
2 − r2)

+
poro

2 − pir
2

(ro
2 − r2)

 (1) 

 

The tangential stress for the opening is 

 

 σθθ = −
r2ro

2(pi − po)

R2(ro
2 − r2)

+
poro

2 − pir
2

(ro
2 − r2)

 (2) 

 

The shear stress acting on the tangential-radial plane is 

 

 τrθ = 0 (3) 

 

where r is inner radius of the opening; ro is outer radius of the opening; pi is pressure at inner surface; 

po is pressure at outer surface; and R is the questioned distance where the stresses above take place. 

 

The complete solutions for distribution of stresses and displacements around a circular opening in an 

elastic opening are given by Kirsch. Figure 2.2 shows the circular cross section of a long excavation in 

a medium subject to biaxial stress: pyy = po and pxx = k*po where k is the stress ratio. 

y 

x 

σθθ 

σrr 

τrθ 

po 
ro 

r 

pi 

R 
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Figure 2.2 Stresses around a circular opening (Brady & Brown, 2005). 

 

The following Kirsch equations give the stress distribution around a circular opening (Brady & Brown, 

2005). 

 

 σrr =
po(k + 1)

2
(1 −

r2

R2
) +

po(k − 1)

2
(1 − 4

r2

R2
+ 3

r4

R4
) cos 2θ + pi

r2

R2
 (4) 

 

 σθθ =
po(k + 1)

2
(1 +

r2

R2
) −

po(k − 1)

2
(1 + 3

r4

R4
) cos 2θ − pi

r2

R2
 (5) 

 

 τrθ = −
po(k − 1)

2
(1 + 2

r2

R2
− 3

r4

R4
) sin 2θ (6) 

 

where σrr, σθθ and τrθ are total stresses after generation of the opening; and R is a questioned distance 

from the center of the opening. Assuming that the opening is unsupported, pi is taken as zero. 

 

The displacements induced by the opening are given by the following equations (Brady & Brown, 

2005). 

 

 ur = −
por2

4GR
[(1 + k) − (1 − k) (4(1 − ν) −

r2

R2
) cos 2θ] (7) 

 

 uθ = −
por2

4GR
[(1 − k) (2(1 − 2ν) +

r2

R2
) sin 2θ] (8) 

 

where ur and uθ are displacements in polar coordinates; G is shear modulus; and ν is Poisson’s ratio. 

 

By putting R = r in Equations (4), (5) and (6), the stresses on the excavation boundary are given as 

 

 σrr = 0 (9) 

 

 σθθ = po(k + 1) − 2po(k − 1) cos 2θ (10) 

 

 τrθ = 0 (11) 

 

Equations (9), (10) and (11) define the condition of stress on the boundary of a circular excavation in 

terms of the coordinate angle θ. Among these equations, only non-zero stress component is the 

circumferential component σθθ. 

 

y 

x 

σθθ 

σrr 

τrθ 

uθ 

ur po 

(σθθ)B 

B 

θ 
k*po 

r 

A 

(σθθ)A 

pi 
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For θ = 0 and infinitely large r 

 

 σrr = kpo (12) 

 

 σθθ = po (13) 

 

 τrθ = 0 (14) 

 

Boundary stresses in the side wall (θ = 0) and roof (θ = π / 2) of the excavation according to Figure 2.2 

are defined by the following: 

 

 θ = 0 at A → (σθθ)A = po(3 − k) (15) 

 

 θ =
π

2
 at B → (σθθ)B = po(3k − 1) (16) 

 

When k = 0, the boundary stresses are 

 

 σA = 3po (17) 

 

 σB = −po (18) 

 

These values define upper and lower limits for stress concentration at the boundary. For k > 0, the 

sidewall stress is less than 3po and the roof stress is greater than –po. 

 

For a hydrostatic stress field (k = 1), Equation (60) becomes 

 

 σθθ = 2po (19) 

 

The boundary stress takes the value 2po, independent of the coordinate angle θ. Equations (4), (5) and 

(6) are simplified for a hydrostatic stress field: 

 

 σrr = po (1 −
r2

R2
) (20) 

 

 σθθ = po (1 +
r2

R2
) (21) 

 

 τrθ = 0 (22) 

 

For the analysis of circular shafts, cylindrical coordinates are preferred as shown in Figure 2.3. The 

opening is considered long enough and variations with z are negligible, so that derivatives with respect 

to z are zero. In particular, the z direction strains are zero and the analysis is plane strain (Pariseau, 

1992). 
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Figure 2.3 A circular shaft with coordinates (Pariseau, 1992). 

 

The stresses around the shaft in Figure 2.3 after excavation are given by 

 

 σrr = σh [1 −
r2

R2
] (23) 

 

 σθθ = σh [1 +
r2

R2
] (24) 

 

 σz = γz (25) 

 

 σh = kσz (26) 

 

where σrr and σθθ are post-excavation stresses in the radial and circumferential (tangential) directions, 

respectively. σh and σz are pre-excavation horizontal and vertical stresses related by the constant k 

(horizontal to vertical stress ratio); z is depth; γ is specific weight of rock; r is the shaft radius; and R is 

a questioned distance from the center of the opening. 

 

Concrete and shotcrete are among the existing support liners for circular excavations as shown in Figure 

2.4. A concrete cylinder subjected to a uniform pressure (radial) around its outer circumference will 

develop an internal compressive stress tangential to its circumference. If the pressure is applied 

suddenly, the concrete will react elastically and the stress near the interior wall of the lining will be 

greatest and gradually reduce towards the outer wall (Vergne, 2003). For this case, Lamé’s thick wall 

formula gives the maximum support pressure of concrete or shotcrete (Brady & Brown, 2005):  
 

 psc max =
fc

2
[1 −

r2

(r + tc)2
] (27) 

 

where fc is uniaxial compressive strength of concrete or shotcrete in MPa; r is radius of opening in meter 

and tc is lining thickness in meter. 

 

 

Surface 
z y 

θ 

x 
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Figure 2.4 Concrete or shotcrete lining for a circular excavation. 

 

From Equation (27), the thickness of concrete or shotcrete is estimated as 

 

 tc = r (√
fc

fc − 2psc max
− 1) (28) 

 

If the pressure is great and applied slowly, the concrete may react plastically and the stresses will tend 

to redistribute themselves evenly across the thickness of the concrete wall. Among a number of formulae 

developed to account for this plastic or visco-elastic property of concrete or shotcrete, the best one is 

Huber’s formula (Vergne, 2003): 

 

 psc max =
fc

√3
[1 −

r2

(r + tc)2
] (29) 

 

Then, the thickness of concrete or shotcrete is 

 

 tc = r (√
fc

fc − √3psc max

− 1) (30) 

 

And support stiffness of concrete or shotcrete is given by 

 

 kc =
Ec[(r + tc)2 − r2]

(1 + νc)[(1 − 2𝜈c)(r + tc)2 + r2]
 (31) 

 

where Ec is Young’s modulus of concrete or shotcrete; νc is Poisson’s ratio for concrete or shotcrete. 

 

2.3. Empirical Studies 

 

There are a number of studies calculating lining thickness and pressure on lining. For instance, the 

thickness of the shaft lining tc in meter may be found from the following relation (Unrug, 1992): 

 

 tc = r (√
fc

fc − √3npo

− 1) (32) 

 

where ri is radius of shaft in meter, fc is allowable compressive stress of the concrete in MPa, n is 

coefficient of lining work conditions; and po is calculated outside pressure acting on the lining in MPa. 

From this equation, Figure 2.5 can be built to determine the concrete thickness. Unrug (1992) provides 

details about the parameters in Equation (32). 

 

r 

tc 
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Figure 2.5 Diagram of Equation (32) for the thickness of concrete. 

 

Arıoğlu (1982) suggested the following formula to calculate the lining thickness inside circular shafts. 

 

 tc = r(e2.04po fc⁄ − 1) (33) 

 

where tc is concrete lining thickness (m); r is radius of shaft (m); po is radial pressure (MPa) and fc is 

uniaxial compressive strength of concrete (MPa). 

 

Poland’s Branch Standard (Kopex Corporation, 1998) gives pressure on lining for different depths h, in 

meter as 

 

 po = 0.013 ∗ z MPa for saturated sand (34) 

 

 po = 0.017 ∗ z MPa for clays (35) 

 

Protodjakonow’s pressure theory (Arıoğlu, 1970) gives the radial pressure (MPa) on lining as 

 

 po = γz tan2
90 − ϕ

2
 (36) 

 

where γ is average unit weight of rocks around shaft (MN/m3); z is depth of shaft (m) and ϕ is internal 

friction angle of rocks passing through. ϕ is calculated as arc tan (faverage) where f is hardness coefficient. 

 

Heise’s equation (Arıoğlu, 1970) gives the thickness of lining in m as 

 

 tc =
por

fc
 (37) 

 

where po is radial pressure on lining in MPa; r is radius of shaft (m); fc is compressive strength of lining 

material MPa. 
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Also, Haynes (Vergne, 2003) gives the ultimate strength (maximum support pressure) psc max of the 

concrete as 

 

 psc max = fc (2.17
tc

d
− 0.04) (38) 

 

where d is diameter of shaft (m). 

 

2.4. Rules of Thumb 

 

Lastly, the following rule of thumbs give useful suggestions for designing concrete lining in shafts: 

 

 The minimum and the maximum lining thickness for poured concrete are 200 mm and 800 mm, 

respectively (Unrug, 1992). 

 The minimum and the maximum lining thickness for shotcrete are 25 mm and 150 mm for 

various rock masses, respectively (Hoek, 2012). 

 The circular concrete lining is generally designed for the minimum practical thickness (Vergne, 

2003). 

 A concrete lining may not be satisfactory in the long run for outer pressures exceeding 3.5 MPa 

(Vergne, 2003). 

 Concrete lining in circular shafts develops greater strength than that of standard concrete 

cylinder tests as it is laterally constrained. Tri-axial tests specify that increase up to 20% 

(Vergne, 2003). 

 Substituting 25 to 35% fly ash for cement in high strength concrete may cut permeability by 

more than half and extends the life of concrete (Vergne, 2003). 

 Although, compressive strength of concrete lining may be increased by addition of reinforcing 

steel, this technique is inefficient. It is usually easier and less expensive to merely employ 

concrete with higher strength (Vergne, 2003). 

 Concrete strength is generally 20 to 25 MPa in underground applications and for most purposes 

rarely exceeds 50 MPa (Kendorski & Hambley, 1992). 

 

2.5. Numerical Studies 

 

2D or 3D numerical software packages can be used to model shaft sections or three dimensional shafts. 

Also 2D axisymmetric models can be used to simulate shafts in 3D but axisymmetric models would not 

work for non-hydrostatic stress case. Therefore the only way of modeling shafts in 3D for non-

hydrostatic stresses is possible with 3D software packages. 

 

Öztürk (2000) numerically modeled broken zone radius and lining thickness around circular shafts. In 

this approach, numerical and empirical, rock-load height, methods were also integrated. 

 

In literature, Emir and Önce (2002) numerically modeled the 540 m deep shaft with 3.25 m radius in 

GLI deep coal zone in Phases (an older version of Phase2 by Rocscience Inc.) to predict the lining 

thickness and gave 30 cm lining thickness for the interval 36 to 390 m. 
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CHAPTER 3 

 

 

3. NUMERICAL MODELING 

 

 

 

In this chapter, the numerical study carried on different horizontal shaft sections are explained. The idea 

behind this study is to model shaft sections in different rock masses subjected to Hoek-Brown failure 

criterion and non-hydrostatic stress state. Circular shaft sections are firstly modeled without any support 

pressure and then if any failure zone develops around the shaft, iterative support pressure (simulating 

lining support) is applied to the shaft wall until the plastic zone around the shaft disappears. The 

numerical study carried out in Phase2 6.0 (Rocscience Inc., 2005) are explained below. 

 

3.1. Geometry of Models 

 

It is very important to well define the geometry of the models because this thesis is based on this 

geometry. Figure 3.1 shows a 3D graphic of a shaft opened in a rock mass. In Figure 3.1, there are three 

in-situ field stresses represented by σz, σh1 and σh2 around the shaft section which is much below the 

surface. σz denotes the vertical stress on z direction; σh1 denotes the first horizontal stress on x direction; 

and σh2 denotes the second horizontal stress on y direction. 

 

 

Figure 3.1 The position of the field stresses around a shaft. 

σh1 

z 
y 

x 

σz 

θ 

σh2 

Rock mass 
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3.2. Phase2 Models 

 

Phase2 shaft sections models in 2D with applied in-situ stress state is presented in Figure 3.2. 

 

 

Figure 3.2 Direction of field stresses for shaft sections modeled in Phase2. σz is normal to x-y plane. 

 

It should be noted that σh1 is always greater or equal to σh2 in Phase2. After discretizing, meshing the 

models and restricting the external boundaries, the geometry of the model like in Figure 3.3. 

 

 

Figure 3.3 Shaft section model after mesh setup and restricting external boundaries in Phase2. 

 

 

 

σθθ 

σrr 

τrθ 
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A close-up view of a fine triangulated Phase2 shaft excavation is seen in Figure 3.4. 

 

 

Figure 3.4 The close-up view of a shaft boundary in Phase2. 

 

Discretization around the boundary is very important. Therefore fine meshing is made on the external 

boundary and it is increased gradually to the shaft boundary to get more accurate results in the numerical 

modeling. 

 

The shaft circle and the surrounding area in Figure 3.3 have the following properties in Table 3.1. It 

should be noted that the shaft is opened in the 2nd stage. 

 

Table 3.1 Properties of the shaft circle and surrounding area in Phase2. 

Radius of shaft circle 2 m 

Number of segments on the shaft circle 100 

External Boundary 40 m x 40 m 

Number of elements on stage 1 3604 

Number of nodes on stage 1 1861 

Number of elements on stage 2 3048 

Number of nodes on stage 2 1632 

 

The mesh is contiguous in all the models. Moreover, all the mesh elements in the models are of good 

quality. In a finite element mesh, generally it is wanted to avoid elements of high aspect ratio (i.e. long 

"thin" elements that may cause numerical problems). 

 

The general setup for the shaft models utilizing the properties in Table 3.1 is shown in Figure 3.5. 
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Figure 3.5 The general geometry of the shaft sections in Phase2. 

 

3.3. Generalized Hoek-Brown Failure Criterion 

 

Since the rock mass is assumed to behave as elastic-perfectly plastic and Hoek-Brown medium, the 

generalized Hoek-Brown failure criterion is used. 

 

Generalized Hoek-Brown failure criterion (Hoek, Carranza-Torres, & Corkum, 2002) is given by 

 

 σ1 = σ3 + σci (mb

σ3

σci
+ s)

a

 (39) 

 

where σ1 and σ3 are major and minor effective principal stresses at failure; σci is uniaxial compressive 

strength of intact rock material; mb is a reduced value of material constant mi; s and a are constants for 

rock mass. 

 

The following equations give mb, s and a. 

 

 mb = mi ∗ exp (
GSI − 100

28 − 14D
) (40) 

 

where D is a disturbance factor caused by blast damage and stress relaxation. It starts from 0 for 

undisturbed rock masses and finishes at 1 for very disturbed rock masses. 

 

 mi =
1

σci

[
∑ xy − ∑ x ∑ y /n

∑ x2 − (∑ x)2/n
] (41) 

 

where x is σ3 and y is (σ1 – σ3)
2. 

 

 s = exp (
GSI − 100

9 − 3D
) (42) 

 

 a =
1

2
+

1

6
(e−GSI 15⁄ + e−20 3⁄ ) (43) 

 

In the equations above, GSI denotes geological strength index and provides a number used for 

approximating the decrease in rock mass strength for different geological conditions. This index can be 

used for blocky, heterogeneous, molassic rocks and ophiolites (Hoek, 2012). 

 

3.4. Parameters of the Numerical Study 

 

The numerical study is carried out in Phase2 with the help of Rocklab 1.0 (Rocscience Inc., 2007) by 

changing the independent variables once at a time and observing the change in the plastic zone 

developing around the shaft. The dependent variable support pressure is changed iteratively until the 

plastic zone around the shaft disappears totally. The independent variables of the models are as follows: 
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 Uniaxial compressive strength of intact rock, σci (MPa) 

 Geologic strength index, GSI 

 σh1 to σz ratio, k1 

 σh2 to σz ratio, k2 

 Depth of shaft section, z (m) 

 

The independent variables and their input values for the models are given in Table 3.2. 

 

Table 3.2 Assumed values of the independent variables. 

σci (MPa) 25 50 100 200 

GSI 20 40 60 80 

k1 1 1 1 1 

k2 0.5 1 1.5 2 

z (m) 100 300 600  

 

According to Hoek (2012), the variables that are dependent on σci are these:  

 

 Intact modulus, Ei 

 Material constant, mi 

 

Hoek (2012) provides a table for uniaxial compressive strength of intact rocks that gives fairly accurate 

intervals for the strength of rock types. Rock types with their approximate strength group are shown in 

Table A.9 in Appendix A. Since Ei and mi are dependent on σci, Table A.9 is utilized to approximate Ei 

and mi. Therefore, a number of calculations based on σci (25 MPa, 50 MPa, 100 MPa and 200 MPa) 

were made to estimate Ei and mi, and their estimated values were rounded off to the following values in 

Table 3.3 to increase the interval. The calculations are explained in Appendix A. 

 

Table 3.3 Values of dependent variables on σci. 

Ei (MPa) 12500 25000 50000 100000 

mi 7 14 21 28 

 

Poisson’s ratio is taken as 0.2; and unit weight is taken as 0.027 MN/m3. Then, the vertical stress, σz is 

calculated by  

 

 σz = 0.027 ∗ z (44) 

 

Equation (44) is used for shaft sections at different depths and the vertical stress is calculated as shown 

in Table 3.4. 

 

Table 3.4 Vertical stresses around the shaft section models. 

Depth of shaft 

section, z 
100 m 300 m 600 m 

σz 2.7 MPa 8.1 MPa 16.2 MPa 
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Table 3.5 Parameters and their values used to model shafts in Phase2. 

 
 

It should be noted that when k2 is greater than 1, σh2 gets larger than σh1. Therefore, in Phase2, σh2 is 

defined as σh1 when k2 is greater than 1. 

 

As a result, the 48 zipped models in Table 3.5 show the combinations of the parameters of the numerical 

study. Since, each of 48 models include four k2 (σh2 / σz) values, there will be four σh2 values. This leads 

to 48 * 4 = 192 models for Phase2 in total. 

 

In order to find the support pressure (pi) which balances the outer pressure, uniform pressure in terms 

of MPa is distributed inside the shaft as shown in Figure 3.6. If there is no support pressure inside the 

shaft, there will be yielded zones (elements) around the shaft when the rock is not strong enough. 

Therefore, to prevent yielding, enough support pressure must be exerted on the inside walls of the shaft. 

Zipped 

Models  
σci (MPa) Ei (MPa) mi GSI r (m) ν z (m) σz (MPa) σh1 (MPa)

σh2 (MPa) 

k2 = 0.5

σh2 (MPa) 

k2 = 1

σh2 (MPa) 

k2 = 1.5

σh2 (MPa) 

k2 = 2

1 25 12500 7 20 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

2 25 12500 7 20 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

3 25 12500 7 20 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

4 25 12500 7 40 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

5 25 12500 7 40 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

6 25 12500 7 40 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

7 25 12500 7 60 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

8 25 12500 7 60 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

9 25 12500 7 60 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

10 25 12500 7 80 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

11 25 12500 7 80 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

12 25 12500 7 80 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

13 50 25000 14 20 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

14 50 25000 14 20 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

15 50 25000 14 20 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

16 50 25000 14 40 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

17 50 25000 14 40 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

18 50 25000 14 40 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

19 50 25000 14 60 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

20 50 25000 14 60 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

21 50 25000 14 60 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

22 50 25000 14 80 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

23 50 25000 14 80 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

24 50 25000 14 80 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

25 100 50000 21 20 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

26 100 50000 21 20 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

27 100 50000 21 20 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

28 100 50000 21 40 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

29 100 50000 21 40 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

30 100 50000 21 40 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

31 100 50000 21 60 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

32 100 50000 21 60 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

33 100 50000 21 60 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

34 100 50000 21 80 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

35 100 50000 21 80 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

36 100 50000 21 80 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

37 200 100000 28 20 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

38 200 100000 28 20 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

39 200 100000 28 20 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

40 200 100000 28 40 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

41 200 100000 28 40 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

42 200 100000 28 40 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

43 200 100000 28 60 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

44 200 100000 28 60 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

45 200 100000 28 60 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4

46 200 100000 28 80 2 0.2 100 2.7 2.7 1.35 2.7 4.05 5.4

47 200 100000 28 80 2 0.2 300 8.1 8.1 4.05 8.1 12.15 16.2

48 200 100000 28 80 2 0.2 600 16.2 16.2 8.1 16.2 24.3 32.4
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Figure 3.6 Support pressure pi (shown as black arrows) is exerted on the inside walls of the shaft. 

 

3.5. Comparison of Numerical Modeling to Kirsch’s Solution 

 

In order to check the validity of the Phase2 models, closed form Kirsch solutions (Equations (4) and 

(5)) for hydrostatic stress state were compared to Phase2 solutions. It is essential to recall that θ is 

described in x-y plane in Figure 3.2. 

 

When σh1 is 8.1 MPa; σh2 is 8.1 MPa; σz is 0 MPa; r is 2 m; and θ is 0°, the comparison of the elastic 

solutions by Kirsch and Phase2 are given in Figure 3.7. 

 

 

Figure 3.7 Comparison of Kirsch’s and Phase2’s solution for elastic condition. 

 

As can be seen in Figure 3.7, Kirsch’s and Phase2’s solutions give almost the same stress distribution 

around the shaft. Besides, variation of σz does not change the results of Phase2 for elastic conditions if 

all mesh elements are of good quality. However, in plastic condition, the effect of σz on the solutions of 

Phase2 is shown in Figure 3.8 when σh1 is 8.1 MPa; σh2 is 8.1 MPa; σz is 0 and 8.1 MPa; r is 2 m; and θ 

is 0°. 
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Figure 3.8 Comparison of Phase2’s results with and without σz. 

 

Although the results seem nearly same in Figure 3.8, number of yielded elements shows a great 

difference when σz is applied in plastic condition with generalized Hoek-Brown failure criterion. 

 

 

Figure 3.9 σz = 0 MPa; σh1 = 8.1 MPa; σh2 = 8.1 MPa; r = 2 m There are 796 yielded elements. 

 

 

Figure 3.10 σz = 8.1 MPa; σh1 = 8.1 MPa; σh2 = 8.1 MPa; r = 2 m. There are 70 yielded elements. 
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As Figure 3.9 and Figure 3.10 show, inserting vertical stress to the shaft models decreases yielded 

elements significantly. Thus, even in higher field stresses, it will be possible to model shafts in Phase2. 

 

3.6. Numerical Modeling Results 

 

After each Phase2 modeling, yielded elements are recorded and support pressure is applied until all the 

yielded elements are eliminated in the second stage of the models. Although, the support pressure is 

applied in an attempt to eliminate all the yielded elements, there are some unwanted cases where it is 

impossible to eliminate all the yielded elements. However, in these cases, the support pressure still 

minimizes the yielded elements. Table 3.6 shows a part of the run results. The outcomes of the numerical 

modeling are given in Appendix B. 

 

Table 3.6 A part from the modelling results with the change of pi. Gray numbers show unwanted cases. 

 
 

If Table 3.6 is interpreted, the following results can be obtained: 

 

 If uniaxial compressive strength of intact rock, σci increases, pi decreases. 

 If geological strength index, GSI increases, pi decreases. 

 If depth, z increases, pi increases. 

 If horizontal to vertical stress ratio, k2 increases, pi behaves like a curve. 

 

The model for the relations above may include linear, quadratic, cubic or convex functions. In Table 3.6, 

the range of the support pressure is minimum when k2 = 1 (hydrostatic case). The range increases when 

k2 increases. However, when k2 is 0.5, it is less spread than k2 = 1.5 and k2 = 2. 

 

When the practical limits for outer pressures are taken into account, pi obtained by the numerical 

modeling may be limited to the interval (0-4) MPa since a concrete based lining may not be satisfactory 

in the long run for outer pressures exceeding 3.5 MPa (Vergne, 2003). The restricted results of the 

numerical modeling are tabulated according to row number and can be seen in Appendix C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z (m)

k2 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

σci (MPa) GSI

25 40 1.02 0.75 1.71 2.8 4.44 3.75 7.7 13.29 10.35 9.3 18.24 18.9

50 40 0.4 0.28 0.75 1.35 2.61 1.91 4.44 7.44 7.44 5.56 12.07 17.58

100 40 0.13 0.08 0.28 0.57 1.22 0.87 2.24 4.05 4.05 2.93 7.06 12.13

200 40 0 0 0.06 0.19 0.49 0.34 0.99 1.93 1.93 1.37 3.61 6.63

25 60 0.55 0.36 1.05 1.9 3.57 2.64 5.89 9.62 8.4 7.28 15.12 19.98

50 60 0.07 0.01 0.31 0.66 1.48 1.03 2.75 4.95 4.95 3.58 8.54 14.47

100 60 0 0 0 0.1 0.46 0.27 1.06 2.18 2.18 1.5 4.14 7.66

200 60 0 0 0 0 0 0 0.19 0.7 0.7 0.43 1.64 3.44

pi (MPa)

100 300 600



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



23 

 

 
CHAPTER 4 

 

 

4. REGRESSION ANALYSES 

 

 

 

Deriving a formula for the support pressure pi is the most challenging part of this thesis since there is 

not a single way to do that. Therefore, limited number of methods were used to obtain the most 

appropriate formula for pi. These methods can be summarized as linear and non-linear methods. Also, 

k-means clustering algorithm was utilized to simplify the formula derivation process for pi. 

 

4.1. Linear Response of pi 

 

A regression analysis was made by Minitab 16 (Minitab Inc., 2010) assuming that the response of pi is 

linear. To get a dimensionally balanced equation, pi, σci, σz and σh2 were divided by σci and the following 

equation with a regression coefficient of 74.6 % was generated in Minitab 16. 

 

 
pi

σci
= 0.0161 − 0.000718 ∗ GSI + 0.241 ∗

σz

σci
+ 0.162 ∗

σh2

σci
 (45) 

 

where pi, σci, σz, σh2 are in MPa; and GSI is dimensionless. The statistical results of this regression are 

given in Appendix D. 

 

The comparison of the outputs of Equation (45) to the outputs of Phase2 is seen in the following graph. 

 

 

Figure 4.1 Comparison of Equation (45) to Phase2 in terms of pi/σci. 

 

Figure 4.1 shows that Equation (45) produces values similar to those of Phase2 to some extent. The 

differences of the two method are shown in the range, sign and distribution of data in Figure 4.1. Firstly, 

while Phase2 gives data with a greater range, Equation (45) provides a smaller range. Secondly, Phase2 

does not produce minus values whereas Equation (45) produces minus values. Thirdly, while Phase2 
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offers randomly distributed data, Equation (45) offers less randomly distributed or more patterned data. 

If the points (dots and pluses) in Figure 4.1 are plotted against each other, the following graph of 

linearity is obtained. 

 

 

Figure 4.2 pi/σci by Equation (45) vs. pi/σci by Phase2. 

 

The linearity in Figure 4.2 indicates that Equation (45) is not completely capable of producing the values 

of Phase2 but delivers outputs which are valid to some degree. If a line is drawn staring from (0, 0) 

point having 45° slope, it is seen that most of the data in Figure 4.2 will be close to the line.  

 

Recall that the second horizontal stress is expressed as  

 

 σh2 = k2 ∗ σz (46) 

 

And inserting Equation (44) into Equation (46) gives 

 

 σh2 = 0.027 ∗ k2 ∗ z (47) 

 

Then, Equation (45) is modified to the following equation: 

 

 
pi

σci
= 0.0161 − 0.000718 ∗ GSI + 0.241 ∗

0.027 ∗ z

σci
+ 0.162 ∗

0.027 ∗ k2 ∗ z

σci
 (48) 

 

Behavior of Equation (48) as surfaces for three different depth is shown in Figure 4.3, Figure 4.4 and 

Figure 4.5. 
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Figure 4.3 Behavior of Equation (48) for z = 100 m. 

 

 

Figure 4.4 Behavior of Equation (48) for z = 300 m. 
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Figure 4.5 Behavior of Equation (48) for z = 600 m. 

 

As can be seen from Figure 4.3, Figure 4.4 and Figure 4.5, pi decreases as σci and GSI increases; and pi 

increases as z and k increases. As expected, the response of pi is linear while the parameters are changing.  

 

4.2. Non-linear Response of pi 

 

Here, it is assumed that pi has a non-linear response. As the variables (σci, GSI and field stresses) are 

independent, their effect on pi can be observed. However, because the range of each variable is large, it 

is difficult to observe precisely the effect of any variable on pi, the error increases. Therefore, one of 

ways to overcome this situation is to cluster the data and then observe the effect of each variable on pi.  

 

Clustering may be done with any clustering algorithm but k-means algorithm seems more advantageous. 

Firstly, it is an unsupervised method. Secondly, it is a fast iterative algorithm because in practice it 

requires only a few iterations to converge and iterations require uncomplicated computations. 

 

4.2.1. Clustering 

 

K-means is the most widely known clustering algorithm and its basis is very simple. In this algorithm, 

there are parameter vectors θj (also called cluster representatives or means) corresponding to points in 

d-dimensional space, where the vectors of data set (X) are present. It is assumed that the number of 

clusters, m in X, is already known. The aim is to move the points θj, j = 1,..., m, into regions that are 

dense in terms of data vectors. K-means algorithm has an iterative nature. It starts with a number of 

initial estimates: θ1(0),..., θm(0) for the parameter vectors θ1,..., θm. At each iteration (t), the vectors xi 

that lie close to each θj(t−1) are identified and then the new (updated) value of θj, θj(t) is computed as 

the mean of the data vectors that lie closer to θj(t−1). The algorithm terminates when no changes occur 

in θj’s, between two successive iterations (Theodoridis & Koutroumbas, 2009). 

 

The algorithm takes the followings as input: 

 

 X is a d*N matrix whose columns contain the data vectors. 

 θ_i is a d*m matrix whose columns are the initial estimates of θj (the number of clusters, m, is 

defined by the size of θ_i). 
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And the algorithm gives the value of the cost function, J for the resulting clustering. K-means algorithm 

minimizes the cost function: 

 

 J(θ, U) = ∑ ∑ uij‖xi − θj‖
2

m

j=1

N

i=1

 (49) 

 

where θ = [θ1
T, … , θm

T ]T and ‖. ‖ is Euclidean distance. uij =1 if xi lies closest to θj; 0, otherwise. To sum 

up, k-means minimizes the sum of squared Euclidean distances of each data vector from its closest 

parameter vector. When the data vectors of X form m compact clusters (with no significant difference 

in size), it is expected that J is minimized and each θj is placed (approximately) in the center of each 

cluster, only if m (number of classes) is known. As a result, the algorithm terminates when the values 

of the cluster representatives remain unaltered between two successive iterations. 

 

The algorithm takes pi, σci, GSI, σz, σh1 and σh2 as d by N matrix, each column of which corresponds to 

a d-dimensional data vector. Number of classes may change according to initial estimation of the cluster 

representatives (arbitrary means). Number of classes should be as many as possible to minimize 

similarity of variable means in each class. The algorithm finds maximum 5 classes. For the classification, 

all the data obtained by the numerical modeling in Appendix B was used since the algorithm needs 

many data. 

 

 

Figure 4.6 The classified data by k-means algorithm. 

 

After classification, mean of each variable in each class is seen in the following table. 

 

Table 4.1 Mean of each variable according to classes. 

 1st Class 2nd Class 3rd Class 4th Class 5th Class 

pi (MPa) 2.4929 4.1448 14.5581 1.2627 3.4716 

σci (MPa) 100 37.5 32.8125 200 39.8438 

GSI 50 70 28.75 50 30.625 

σz (MPa) 9 9 14.6813 9 6.1594 

σh1 (MPa) 9 9 14.6813 9 6.1594 

σh2 (MPa) 11.25 11.25 21.0094 11.25 6.3703 
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4.2.2. Checking the Clustered Data 

 

Since the number of data is limited and no real data from fields are present, the result of the clustering 

should be somehow validated to increase reliability. LOO (leave-one-out or cross validation) is 

particularly useful in cases where only a limited data set is available. Given N training points, N−1 

points are used for training the classifier and the remaining point for testing. The procedure is repeated 

N times, each time by leaving out a different sample. Finally, the number of errors committed by the N 

different test points is averaged out. This method is computationally expensive because the classifier 

has to be trained N times; the same data set is utilized for training, testing; and at the same time, the 

testing is carried out on points that have not been used in the training (Theodoridis & Koutroumbas, 

2009). 

 

To compute error, the class of the training data must be known. As there is no training data collected 

from the field and the same data is used for both training and testing, the class of data must be assumed. 

For the cross validation, the classes produced by k-means algorithm were used. The data classified by 

the cross validation differs from k-means only on five points; that is only five points (their model 

numbers are 8, 15, 23, 54 and 69) were classified differently by cross validation. Those points were 

classified as 5th class instead of 3rd. The error rate is 0.026. Consequently, the result of k-means algorithm 

can be used to model a non-linear response for pi since the clustered data are validated with a very small 

error (0.026 or 2.61 %). 

 

4.2.3. Non-linear Response of pi 

 

If the change in the mean of a variable in Table 4.1 is compared to the change in pi, the effect of that 

variable on pi can be seen. However, initially, the 3rd class is removed to restrict pi to the interval (0 – 

4) MPa; σh2 is also removed since it is equal to σz and the results are divided by σci to get a dimensionally 

balanced equation.  

 

Table 4.2 Scaled values for estimating the non-linear response of pi. 

 1st Class 2nd Class 4th Class 5th Class 

pi (MPa) / σci (MPa) 0.0249 0.1105 0.0063 0.0871 

GSI 50 70 50 30.625 

σz (MPa) / σci (MPa) 0.09 0.24 0.045 0.1546 

σh2 (MPa) / σci (MPa) 0.1125 0.3 0.0563 0.1599 

 

Then pi/σci vs. GSI, pi/σci vs. σz/σci and pi/σci vs. σh2/σci graphs are plotted by Minitab, giving the results 

shown from Figure 4.7 to Figure 4.9, respectively. Statistical results can be seen in Appendix D. 
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Figure 4.7 pi (MPa) / σci (MPa) vs. GSI. 

 

 

Figure 4.8 pi (MPa)/σci (MPa) vs. σz (MPa)/σci (MPa). 

 

pi/σci = 7.516 – 9.077*log10(GSI) + 2.745*(log10(GSI))2 

R2 = 97.6 % 

pi/σci = 0.2033 + 0.1528*log10(σz/σci) 

R2 = 93.4 % 
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Figure 4.9 pi (MPa)/σci (MPa) vs. σh2 (MPa)/ σci (MPa). 

 

Then, the equations above are multiplied to estimate the non-linear response of pi. Thus, the following 

formula is obtained: 

 

 

pi

σci
= N ∗ (7.516 − 9.077 ∗ log10 GSI + 2.745 ∗ (log10 GSI)2)

∗ (0.2033 + 0.1528 ∗ log10(σz σci⁄ ))
∗ (0.2225 + 0.2272 ∗ log10(σh2 σci⁄ ) + 0.0410
∗ (log10(σh2 σci⁄ ))2) 

(50) 

 

where, while pi, σci and σh2 are in MPa, GSI is dimensionless. N is a scaling factor to increase the range 

of the results and may be taken between 25 and 50.  

 

Rearranging Equation (50) gives 

 

 

pi

σci
= N ∗ (7.516 − 9.077 ∗ log10 GSI + 2.745 ∗ (log10 GSI)2)

∗ (0.2033 + 0.1528 ∗ log10(0.027 ∗ z σci⁄ ))
∗ (0.2225 + 0.2272 ∗ log10(0.027 ∗ k2 ∗ z σci⁄ ) + 0.0410
∗ (log10(0.027 ∗ z ∗ k2 σci⁄ ))2) 

(51) 

 

The outputs of Equation (50) are compared to the outputs of Phase2 in the following graph.  

 

pi/σci = 0.2225 + 0.2272*log10(σh2/σci) + 0.0410*(log10(σh2/σci))
2 

R2 = 89.5 % 
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Figure 4.10 Comparison of Equation (50) to Phase2 in terms of pi/σci. N is 40. 

 

Although Equation (50) tries to produce values similar to that of Phase2, it is not as successful as 

Equation (48) because there is a weak matching in Figure 4.10. If the pluses are plotted against the dots, 

the following graph of linearity is obtained. 

 

 

Figure 4.11 pi/σci by Equation (50) vs. pi/σci by Phase2. 

 

As it is seen clearly, there is not a convinced linearity in Figure 4.11. Therefore, Equation (50) does not 
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well represent the data obtained by Phase2. 

 

4.3. Results 

 

Figure 4.2 gives the most linear match when it is compared to Figure 4.11. Since the linearity is greater 

in the former, the prediction error of Equation (45) is smaller with respect to Equation (50). Therefore, 

Equation (45) is better in terms of predicting pi/σci. To summarize, neither Figure 4.2 nor Figure 4.11 

give the exact linearity, but the regression equations reproduce the properties of the original Phase2 data. 

 

If a sensitivity analysis of Equation (45) is carried out when σci is 50 MPa, GSI is 40, σh2 is 8.1 MPa 

and σz is 8.1 MPa, Figure 4.12 is obtained. 

 

 

Figure 4.12 Sensitivity of support pressure to the parameters to σz, σh2, σci and GSI. 

 

Sensitivity analysis of Equation (45) shows that pi is more sensitive to σz and GSI while less sensitive 

to σci and σh2. This may stem from that Equation (45) involves the scaling by σci. While σci and GSI 

have negative effects, σz and σh2 have positive effects on Equation (45). 
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CHAPTER 5 

 

 

5. EVALUATION OF THE REGRESSION RESULTS WITH FUZZY LOGIC 

 

 

 

The results of regressions are evaluated by a system named adaptive neuro-fuzzy inference system 

(anfis). Anfis constructs a fuzzy inference system by using an input-output data set and the results are 

used to validate that data set and predict its error. In order to understand how anfis works, fuzzy logic 

should be understood. 

 

Fuzzy logic has mainly those meanings: Firstly, fuzzy logic is a logical system, which is an extension 

of multivalued logic. Secondly, fuzzy logic is almost identical to the theory of fuzzy sets, a theory which 

relates to classes of objects with non-sharp boundaries in which membership is a matter of degree. 

Another basic concept, which plays a central role in most of fuzzy logic applications, is fuzzy if-then 

rule or fuzzy rule. Fuzzy logic depends on the relative importance of precision: it trades off between 

significance and precision (The MathWorks, Inc., 2012). The following section provides an introduction 

to theory and practice of fuzzy logic from Fuzzy Logic Toolbox User’s Guide (2012) provided by The 

MathWorks, Inc. 

 

5.1. Fuzzy Logic 

 

Fuzzy logic maps an input space to an output space, mostly with a list of if-then statements or rules. All 

rules are evaluated in parallel and their order is unimportant. The rules are useful because they refer to 

variables and adjectives describing these variables. Before a system that interpreters rules is built, all 

the terms to be used and the adjectives describe the terms must be defined. For example, to say that the 

water is hot, a range of temperature must be defined so that the temperature of the water varies at that 

range. Table 5.1 shows the general description of a fuzzy system on the left and a specific example on 

the right. 

 

Table 5.1 A general fuzzy system with a specific example (The MathWorks, Inc., 2012). 

A General Example A Specific Example 

Input → Output Service → Tip 

 ↓   ↓  

 Rules   

If service 

poor, tip 

cheap 

If service 

good, tip 

average 

If service 

excellent, tip 

generous 

 

/  \ /  \ 

Input terms  Output terms 
Service is 

interpreted as 
 

Tip is 

assigned as  

(Interpret)  (Assign) 
poor, good, 

excellent 
 

cheap, average, 
generous 

 

Consequently, fuzzy inference is a method interpreting the values in an input vector and assigning 

different values as output vector, with the help of some set of rules. 

 

5.1.1. Fuzzy Sets 

 

Fuzzy logic starts with a fuzzy set. A fuzzy set is a set without a crisp and clearly defined boundary. It 

can contain elements with only a partial degree of membership. A fuzzy set is more easily understood 
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by considering a classical set. A classical set is a container that wholly includes or excludes any given 

element. For instance, the set of days in a week includes Monday, Thursday and Saturday and 

unquestionably excludes everything else. This type of set is called a classical set. According to this logic, 

opposites (two classes: such as Day and not-Day) should contain the entire universe. Everything falls 

into either one group or the other. There is not anything that is both a day of the week and not a day of 

the week. 

 

When it comes to the set of days forming the weekend, most people would agree that Saturday and 

Sunday belong to weekend. However, there would be doubts about Friday. It is like a part of the 

weekend, but it should be technically excluded according to classical logic. Thus Friday tries its best by 

belonging both to workdays and weekend but classical sets do not tolerate such a classification. When 

individual perceptions are taken into account to define the weekend, yes-no (Boolean) logic with sharp 

edges does not answer. Then, fuzzy reasoning becomes valuable: the truth of any statement becomes a 

matter of degree. Any statement can be fuzzy. The major advantage of fuzzy reasoning is its ability to 

reply to a yes-no question with a not-quite-yes-or-no answer. 

 

Reasoning in fuzzy logic is just a matter of generalizing the familiar yes-no logic. Even if numerical 

value of 1 is true and numerical value of 0 is false, fuzzy logic permits in-between values like 0.2 and 

0.7453. Fuzzy logic leads to multivalued logic that stands in direct contrast to the more familiar concept 

of two-valued (or bivalent yes-no) logic. Then, a continuous scale time plot of weekend-ness may be 

designed via multivalued logic as shown in Figure 5.1. 

 

 

Figure 5.1 Bivalent and multivalued logic for weekend-ness (The MathWorks, Inc., 2012). 

 

By making the plot continuous, it is possible to measure the weekend-ness of any given instant rather 

than an entire day. In the plot on the left, at midnight on Friday, when the second hand sweeps past 12, 

the weekend-ness truth value jumps discontinuously from 0 to 1.  

 

The plot on the right shows a smoothly varying curve. There, all of Friday and to a small degree, parts 

of Thursday, share of the quality of weekend-ness and thus warrant partial membership in the fuzzy set 

of weekend moments. The curve that defines the weekend-ness of an instant in time is a function that 

maps the input space (time of the week) to the output space (weekend-ness). Specifically it is known as 

a membership function (The MathWorks, Inc., 2012). 

 

5.1.2. Membership Functions 

 

A membership function (MF) is a curve that describes how each point in an input space is mapped to a 

membership value (or degree of membership) between 0 and 1. 

 

For instance, in the set of tall people, the input space is all potential heights (e.g. 3 to 6 feet) and the 

word tall would correspond to a curve that defines the degree where any person is tall. If the set of tall 

people is described with a well-defined (crisp) boundary of a classical set, it can be said that any person 

taller than a certain feet is considered tall. However, such a distinction is clearly ridiculous because 

everything is relatively defined in real world. 

 

Figure 5.2 shows a smoothly varying curve that defines the transition from not tall to tall. The output 

axis is the membership value between 0 and 1. The curve is a membership function (µ). While both 

people in the figure below are tall to some degree, one is clearly less tall than the other. 
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Figure 5.2 Two membership functions (The MathWorks, Inc., 2012). 

 

Subjective interpretations and appropriate units are built into fuzzy sets. Similarly, units are included in 

the curve. A membership function really satisfies if it varies between 0 and 1. The function can be an 

arbitrary curve and its shape can be defined according to simplicity, convenience, speed and efficiency. 

 

A classical set might be expressed as 

 

 A = {x|x > N} (52) 

 

where N is an arbitrary number. 

 

A fuzzy set is an extension of a classical set. If X is an input space and its elements are denoted by x, 

then a fuzzy set A in X is defined as a set of ordered pairs. 

 

 A = {x, μA(x)|x X} (53) 

 

Above, µA(x) is the membership function of x in A. The membership function assigns each element of 

X to a membership value between 0 and 1. Membership functions may be built from several basic 

functions: piece-wise linear functions, Gaussian distribution function, sigmoid curve and quadratic or 

cubic polynomial curves. 

 

The simplest membership functions are formed using straight lines. The simplest one is the triangular 

membership function. The trapezoidal membership function has a flat top, indeed it is just a truncated 

triangle curve. These straight line membership functions have the advantage of simplicity. 

 

 

Figure 5.3 Triangular and trapezoid functions (The MathWorks, Inc., 2012). 
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Also, there are membership functions that are built on the Gaussian distribution curve, a simple 

Gaussian curve and a two-sided composite of two different Gaussian curves. 

 

The generalized bell membership function is specified by three parameters. The bell membership 

function has one more parameter than the Gaussian membership function, so it can approach a non-

fuzzy set if the free parameter is tuned. Because of their smoothness and concise notation, Gaussian and 

bell membership functions are popular methods for specifying fuzzy sets. Both of these curves have the 

advantage of being smooth and nonzero at all points. 

 

 

Figure 5.4 Gaussian, another Gaussian and Gaussian bell function (The MathWorks, Inc., 2012). 

 

Although the Gaussian membership functions and bell membership functions achieve smoothness, they 

cannot specify asymmetric membership functions, which are important in certain applications. 

Therefore, the sigmoidal membership function is defined, which is either open left or right. Asymmetric 

and closed (i.e. not open to the left or right) membership functions can be synthesized using two 

sigmoidal functions: the difference and the product of two sigmoidal functions. 

 

 

Figure 5.5 Sigmoidal, closed and asymmetric sigmoidal functions (The MathWorks, Inc., 2012). 

 

Polynomial curves account for several of membership functions. Three related membership functions 

are Z, S, and Pi curves (because of their shape). Z is the asymmetrical polynomial curve open to the left, 

whereas S is open to the right. Pi is zero on both extremes with a rise in the middle. 

 

 

Figure 5.6 Z, Pi and S curves (The MathWorks, Inc., 2012). 

 

The followings summarize fuzzy sets and membership functions: 

 

 Fuzzy sets define uncertain concepts like tall people, hot water or weekend days. 

 A fuzzy set utilizes possibility of partial membership. For instance, Friday is sort of a weekend 

day or the water is rather hot. 

 The degree an object belongs to a fuzzy set is denoted by a membership value between 0 and 

1. For example, Friday is a weekend day to the degree 0.8. 

 A membership function linked to a given fuzzy set assigns an input value to its proper 

membership value. 

 

5.1.3. Logical Process 

 

Fuzzy logical reasoning is a superset of standard Boolean logic. That is, if fuzzy values are kept at their 

extremes, 1 (absolutely true) and 0 (absolutely false), standard logical processes are used, Table 5.2 

shows an example of the standard truth table for AND, OR and NOT. 
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Table 5.2 An example for AND, OR and NOT (The MathWorks, Inc., 2012). 

A B A AND B A OR B NOT A 

0 0 0 0 1 

0 1 0 1 1 

1 0 0 1 0 

1 1 1 1 0 

 

The inputs and outputs in Table 5.2 may also be represented by some operators. Moreover, input values 

can be real numbers between 0 and 1 according to fuzzy logic. The operation min preserves both the 

results of AND process and extends inputs to all real numbers between 0 and 1. The statement A AND 

B (they are either 0 or 1) is resolved by using min (A, B). Likewise, OR process may be replaced with 

the operation max, so that A OR B becomes equivalent to max (A, B). Finally, NOT A process becomes 

equal to the operation 1−A. Thus, the truth table remains unaltered. 

 

Table 5.3 Standard truth table with min and max functions (The MathWorks, Inc., 2012). 

A B min (A, B) max (A, B) 1 – A 

0 0 0 0 1 

0 1 0 1 1 

1 0 0 1 0 

1 1 1 1 0 

 

Moreover, as there is a function behind the truth table, values other than 1 and 0 are also included. In 

Figure 5.7, the truth table is converted to a plot of two fuzzy sets applied together to create one fuzzy 

set. The upper part of the figure shows plots matching the preceding two-valued truth tables. The lower 

part of the figure simulates how the operations work over a continuously varying range of truth values 

A and B according to the fuzzy operations defined. 

 

 

Figure 5.7 Plotted standard truth table (The MathWorks, Inc., 2012). 

 

In addition to the classical operators, customized operators such as fuzzy intersection, fuzzy union and 

fuzzy complement can be used. 

 

5.1.4. If – Then Rules 

 

If-then rules are used to express the conditional statements containing fuzzy logic. A single fuzzy if-

then rule has the form below: 

 

 If x is A, then y is B (54) 
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Above, A and B are linguistic values defined by fuzzy sets on input spaces X and Y, respectively. The 

if-part of the rule “x is A” is called the antecedent or premise, while the then-part of the rule “y is B” is 

called the consequent or conclusion. An example of such a rule might be 

 

If service is good, then tip is average. 

 

In general, the input to an if-then rule is the current value for the input variable (in this case, service) 

and the output is an entire fuzzy set (in this case, average). Interpreting an if-then rule involves firstly 

evaluating the antecedent (which involves fuzzifying the input and applying any necessary fuzzy 

operators) and secondly applying that result to the consequent (known as implication). In the case of 

two-valued or binary logic if the premise is true, then the conclusion is also true. If the antecedent is 

true to some degree of membership, then the consequent is also true to that same degree: 

 

In binary logic, premise and consequent are together either true or false. However, in fuzzy logic, partial 

antecedent provides partial implication. The antecedent of a rule can have multiple parts: 

 

If sky is dark and storm is robust and barometer is falling, then... 

 

In the case above, all parts of the antecedent are calculated simultaneously and resolved to a single 

number by using logical operators. The consequent of a rule can also have multiple parts: 

 

If temperature is cold, then warm water is opened and cold water is closed. 

 

In this case all consequents are affected equally by the result of the antecedent. The consequent is 

affected by the antecedent in this way: the consequent specifies a fuzzy set to be assigned to the output. 

The implication function then modifies that fuzzy set to the degree specified by the antecedent. An 

example with truncation is shown in Figure 5.8. 

 

 

Figure 5.8 An example of if-then rule (The MathWorks, Inc., 2012). 
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To sum up, if-then rule is a three-part process (The MathWorks, Inc., 2012): 

 

 Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of membership 

between 0 and 1. If the antecedent consists of only one part, then the degree of support for 

the rule is degree of membership. 

 Apply fuzzy operator to multiple part antecedents: If the antecedent consists of multiple 

parts, apply fuzzy logic operators and resolve the antecedent to a single number between 0 

and 1. Then, this number is the degree of support. 

 Apply implication method: Use the degree of support for the entire rule to figure the output 

fuzzy set. An entire fuzzy set is assigned to the output by the consequent of a fuzzy rule. This 

fuzzy set is described by a membership function specifying the qualities of the consequent. If 

the antecedent is only partially true (i.e., it is assigned to a value less than 1), then the output 

fuzzy set is trimmed according to the implication method. 

 

The output of each rule is a fuzzy set and these sets are then aggregated into a single output fuzzy set. 

Finally the resulting set is defuzzified or resolved to a single number. As a result, membership functions, 

logical operations and if-then rules constitute the process of fuzzy inference. 

 

5.1.5. Sugeno Type Fuzzy Inference 

 

The Sugeno output membership functions are either linear or constant. A typical rule in a Sugeno fuzzy 

model has the form 

 

 If Input 1 = x and Input 2 = y, then Output is z = ax + by + c (55) 

 

For a zero-order Sugeno model, the output level z is a constant (a = b = 0). The output level zi of each 

rule is weighted by the firing strength wi of the rule. For instance, for an AND rule with Input 1 = x and 

Input 2 = y, the firing strength is 

 

 wi = AndMethod (F1(x), F2(y)) (56) 

 

where F1,2 (.) are the membership functions for Inputs 1 and 2. 

 

The final output of the system is the weighted average of all rule outputs, computed as 

 

 Final Output =
∑ wizi

N
i=1

∑ wi
N
i=1

 (57) 

 

where N is the number of rules. A Sugeno rule operates as shown in Figure 5.9. 

 

 

Figure 5.9 Sugeno rule process (The MathWorks, Inc., 2012). 
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5.1.6. Anfis 

 

The acronym anfis derives its name from adaptive neuro-fuzzy inference system. Anfis applies fuzzy 

inference techniques to data modeling. Fuzzy inference can be applied to a system where input/output 

data for modeling were collected. 

 

The neuro-adaptive learning method works similarly to that of neural networks. Neuro-adaptive 

learning techniques provide a method for the fuzzy modeling procedure to learn information about a 

data set. Anfis computes the membership function parameters that best allow the associated fuzzy 

inference system to track the given input/output data. 

 

Using a given input/output data set, anfis constructs a fuzzy inference system (FIS) whose membership 

function parameters are tuned (adjusted) using either a back propagation algorithm alone or in 

combination with a least squares type of method. This adjustment allows the defined fuzzy systems to 

learn from the data they are modeling. 

 

In this study, anfis function of MATLAB R2010b (The MathWorks, Inc., 2010) was used with the 

following properties: 

 

 A single-output Sugeno-type fuzzy inference system using a grid partition on the data used as 

initial conditions (initialization of the membership function parameters) for anfis training. 

 The number of membership functions is 6; the input membership function type is ‘Gaussian 

bell’; and the output membership function type is ‘linear’. 

 Since a large number of rules (more than 250) in the FIS is created when the membership 

functions are greater than 6, MATLAB may run out of memory.  

 

5.2. Model Validation 

 

Model validation is the process by which the input vectors from input/output data sets on which the FIS 

was not trained, are presented to the trained FIS model, to see how well the FIS model predicts the 

corresponding data set output values. When the results are evaluated by anfis, the following error rates 

in Table 5.4 are obtained: 

 

Table 5.4 Root means square errors (RMSE) of the derived equations. 

 Training Error Checking Error 

Equation (45) 2.7767*10-5 0.016389 

Equation (50) 1.6746*10-4 0.034070 

 

When a data matrix composed of input and output columns is given anfis, anfis generates its own output 

column based on the training by the data matrix and the process described in this chapter. Then, anfis 

compares its output column to the original output column by using RMSE. RMSE may be defined like 

that: 

 

 RMSE = √
1

N
∗ ∑(tk − ak)2

N

k=1

 (58) 

 

where tk is the output of the training data; ak is the output generated by anfis; and N is the number of the 

output data. 

 

Training error shows RMSE between the output of the regression equation and the output generated by 

anfis. Similarly, checking error shows RMSE between the output of Phase2 and the output generated by 

anfis. Since Equation (45) produces less checking error, it is the most truthful equation in this study. 
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CHAPTER 6 

 

 

6. LINING SUPPORT DESIGN 

 

 

 

6.1. Lining Thickness Calculation 

 

Assuming that pi is equal to psc max in Equation (28) in Elastic Theory and inserting Equation (48) into 

Equation (28), tc becomes 

 

 tc = r (√
fc

fc − 2pi
− 1) (59) 

 

Inserting Equation (48) into Equation (59) gives 

 

 tc = r (√
fc

fc − 0.0322 ∗ σci + 0.001436 ∗ σci ∗ GSI − z ∗ (0.013014 − 0.008748 ∗ k2)
− 1) (60) 

 

In the following section, a software program utilizing Equation (60) is explained. 

 

6.2. Lining Thickness Estimator “Shaft 2D” 

 

A user friendly object-oriented software package was developed by the author of this study in MATLAB 

R2010b (The MathWorks, Inc., 2010) to overcome the tiresome shaft lining thickness calculations. The 

package allows users to enter and change inputs any time at input window and see the design of liner 

along shaft depth. This software is a Windows Standalone Application using Equation (59). It has the 

interface shown in Figure 6.1. 

 

 

Figure 6.1 Interface of lining thickness calculator “Shaft 2D”. 
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This program takes the following inputs: 

 

 Depth takes an interval in meters. Along this interval, properties of the rock are fixed. For 

instance, if an interval from 60 m to 85 m is asked, it must be entered as 60:85. 

 UCS of Rock indicates uniaxial compressive strength of intact rock in MPa for the asked 

interval. It must be entered as a single number, for instance, 25. 

 GSI indicates geologic strength index for the asked interval. It must be entered as a single 

number, for instance, 30. 

 k is ratio of horizontal stresses or horizontal and vertical stresses for the asked interval. It must 

be entered as a single number, for instance, 2. 

 Radius takes radius of the shaft in meter. It must be entered as a single number, for instance, 3. 

 UCS of Liner indicates uniaxial compressive strength of lining in MPa for the asked interval. 

It must be entered as a single number, for instance, 35. 

 The results can be saved to an Excel (Microsoft Corporation) file if a name is written. The file 

is found in the same folder where the program exists. 

 The software is capable of taking different interval properties along a shaft depth. Multiple 

inputs must be separated by a comma, for example, 60:85,85:110 or 25,30. 

 

 

Figure 6.2 Example inputs for the software. 

 

Table 6.1 The saved results of the query in Figure 6.2. 

Interval (m) UCS of Liner (MPa) Top Thickness (cm) Bottom Thickness (cm) 

60-85 35 7 10 

 

In the example above, the shaft interval starts at 60 m and ends at 85 m. Thickness of the lining is 7 cm 

at 60 m and 10 cm at 85 m. Since it is not practical to change lining thickness so often for short intervals, 

the software is designed to change the lining thickness at every 25 m interval, giving the maximum 

thickness at that interval as the lining thickness. Additionally, the practical thicknesses defined in Rules 

of Thumb are taken into account. When the following inputs were added to the previous inputs, lining 

thickness is shown in Figure 6.3. 

 

 Depth: 85 m to 110 m  k: 2 

 UCS of Rock: 30 MPa  Radius: 3 m 

 GSI: 25  UCS of Liner: 35 MPa 
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Figure 6.3 An example for multiple intervals. 

 

Table 6.2 Results for multiple inputs in Figure 6.3. 

Interval (m) UCS of Liner (MPa) Thicknesss (cm) Lining Type 

60-85 35 10 Shotcrete 

85-110 35 15 Shotcrete 

 

 

Figure 6.4 Graph of the lining for the previous example. Not scaled. 
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6.3. Flowchart of the Program 

 

The flowchart of the program shows the rough procedure of the software Shaft 2D. Firstly, the software 

needs the parameters to estimate pi; secondly, pi is compared to fc; and thirdly, tc is estimated. The 

interval where tc takes place determines the lining type of the shaft. 

 

 

Figure 6.5 Flowchart of the developed program. 
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6.4. Manual Calculation 

 

This section gives a hand calculation of lining thickness. The first example has the following inputs: 

 

z = 60 to 75 m, σci = 30 MPa, GSI = 30, k = 2, r = 3 m, fc = 25 MPa. 

 

Putting the inputs for 60 and 75 m into Equation (45) gives 

 

pi = 30 ∗ (0.0161 − 0.000718 ∗ 30 + 0.241 ∗
0.027 ∗ 60

30
+ 0.162 ∗

2 ∗ 0.027 ∗ 60

30
) ≈ 0.75 MPa 

 

pi = 30 ∗ (0.0161 − 0.000718 ∗ 30 + 0.241 ∗
0.027 ∗ 75

30
+ 0.162 ∗

2 ∗ 0.027 ∗ 75

30
) ≈ 0.98 MPa 

 

Then putting pi’s into Equation (59) yields 

 

tc = 3 ∗ (√
25

25 − 2 ∗ 0.75
− 1) ≈ 9.5 cm 

 

tc = 3 ∗ (√
25

25 − 2 ∗ 0.98
− 1) ≈ 12.5 cm 

 

Because of practical reasons, the lining thickness is chosen as 12.5 cm for 60 – 75 m interval. 

 

6.5. Case Study Comparisons 

 

Comparison of the results to the case studies may provide verification for this study. Although a survey 

on the literature provides real data from the field, there may be some deficiencies in these data. Since 

all the inputs for the software do not exist in the case below, some values were assumed and compared 

afterwards. The following values are given by Emir and Önce (2002) for a 3.25 m shaft radius in the 

GLI deep coal zone. 

 

Table 6.3 Data from the borehole measurements of GLI deep coal zone. 

Rock Claystone Marn Marn 

z (m) 36 to 62 124 to 250 250 to 390 

σci (MPa) 12.6 11.2 11.2 

γ (MN/m3)  0.021 0.021 0.021 

ϕ (°) 40 (Assumed) 38 38 

s (Hoek-Brown cons.) 0.0013 0.0031 0.0054 

GSI (Equation (42)) 40 48 53 

 

Table 6.4 Stress ratio around the shaft and strength of the concrete. 

k (Assumed) 1 1 1 

fc (MPa) 30 30 30 

 

Table 6.5 Pressure on the lining for the intervals in Table 6.3. 

Rock Claystone Marn Marn 

Shaft 2D (MPa) 0.233 to 0.516 1.144 to 2.515 2.474 to 3.998 

Kopex (MPa) 0.610 to 1.054 1.612 to 3.250 3.250 to 5.070 

Protodjakonow (MPa) 0.164 to 0.283 0.619 to 1.249 1.249 to 1.948 
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Table 6.6 Comparison of lining thicknesses. 

Rock Claystone Marn Marn 

z (m) 36 to 62 124 to 250 250 to 390 

Shaft 2D (cm) 3 to 6 13 to 31 31 to 54 

Heise (cm) 3 to 6 12 to 27 27 to 43 

Arıoğlu (cm) 5 to 12 26 to 61 60 to 102 

Haynes (cm) 14 to 17 23 to 37 37 to 52 

Emir and Önce (cm) 30 30 30 

 

Above, all the methods uses the outer pressure interval provided by Shaft 2D in Table 6.5. In Table 6.6, 

the minimum and the maximum thicknesses and the lining type are not taken into account to make an 

accurate evaluation. It is seen that Shaft 2D provides the minimum lining thicknesses when compared 

to the others. However, in each method, the thicknesses are mostly affected by the depth. The 

thicknesses spread out from each other as the depth increases. 

 

 

Figure 6.6 Comparison of the thicknesses in Table 6.6. Not scaled. 

 

Figure 6.6 shows that “Shaft 2D” or Equation (48) locates between other methods. Increase in depth 

makes all the methods to give greater thicknesses but each method has a different reaction to the depth. 

While Haynes’ and Heise’s methods have steeper angles, “Shaft 2D”s and Arıoğlu’s methods have less 

slope.  
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CHAPTER 7 

 

 

7. CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

Although numerical studies done by using a software let users define so many parameter of shaft and 

surrounding rock mass, the estimation of support pressure is a challenging problem since it depends on 

many parameters. Therefore, the parameters chosen to estimate a support pressure equation should be 

closely related to support pressure and well represent shaft geometry and surrounding rock mass. 

However, there will be always bias and overdesign in the estimated equation. Moreover, when these 

parameters or their values change, support pressure equation will also change. Therefore, verifications 

and limits of numerical studies must be taken into account. It can be concluded that the support pressure 

equation derived in this study is valid for rock masses with the following properties: 

 

Compressive strength: 25 to 200 MPa 

Geological strength index: 20 to 80 

Stress ratio for horizontal stresses: 0.5 to 2 

Depth: 25 to 600 m 

 

The numerical modeling by means of Phase2 used in this study aims at giving suitable lining thickness 

for circular shafts in different rock masses. For that reason, 2D shaft sections with different variables in 

Hoek-Brown medium were modeled. Results of the models lead to the followings: 

 

 Increase in uniaxial compressive strength of intact rock causes support pressure to decrease. 

 Increase in geological strength index causes support pressure to decrease. 

 Increase in depth causes support pressure to increase. 

 Increase in horizontal to vertical stress ratio causes support pressure to behave like a curve. 

 

A number of regression analyses were made to get a proper function of support pressure. Firstly, a linear 

equation was obtained with regression constant of 74.6. Secondly, a non-linear equation was obtained. 

 

In this study, the following lining thickness formula by Lamé is used to determine the thickness of the 

liner with varying strength where pi comes from Equation (48).  

 

tc = r (√
fc

fc − 2pi
− 1) 

 

where tc is thickness of liner; r is radius of shaft; fc is uniaxial compressive strength of liner; and pi is 

defined as 

 

pi = σci ∗ (0.0161 − 0.000718 ∗ GSI) + z ∗ (0.006507 + 0.004374 ∗ k2) 
 

Table 7.1 gives approximate support properties of shotcrete and concrete for circular openings under 

hydrostatic loading for perfect symmetry. The supports are assumed to act over the entire surface of the 

opening walls (Hoek, Kaiser, & Bawden, 1995). The equations above can be better used with the 

properties below: 

 

Table 7.1 Support characteristics of shotcrete and concrete for circular openings. 

 28 Day Old Shotcrete 28 Day Old Concrete 

Excavation Diameter (m) 4 6 8 10 12 4 6 8 10 12 

Max. Support Pressure (MPa) 0.86 0.58 0.43 0.35 0.29 4.86 3.33 2.53 2.04 1.71 

Thickness (mm) 50 300 

Strength (MPa) 35 35 

Stiffness (MPa) 21000 21000 
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The sensitivity analysis of Equation (48) shows that pi is most sensitive to σz because it has the greatest 

coefficient in the linear equation. However, since σci is multiplied by GSI, their total effect is greater 

than that of σz. This result can be observed in Figure 4.3, Figure 4.4 and Figure 4.5.  

 

When the outputs of Equation (45) and Equation (50) evaluated by the fuzzy logic system anfis, it is 

seen that the former has a less error. However, these error rates may always be updated by changing the 

parameters of anfis, if desired. Nonetheless, it seems that Equation (45) will always have a less error 

rate than Equation (50) because the latter is a weak match for the outputs of Phase2. 

 

The developed software “Shaft 2D” is the easy way to calculate the lining thickness given by Equation 

(60). It takes inputs through its interface and gives the results by saving and visualizing. It can be used 

as a Windows Standalone Application. Although the software uses Equation (60) to calculate lining 

thickness, it includes some assumptions such as a range for parameters, types of lining thicknesses, as 

25 m depth interval or accepting k2 as k. 

 

The followings are recommended after this study: 

 

 Analytical solution of support pressure inside circular shafts for non-hydrostatic stress state 

with Hoek-Brown failure criterion was not given so far. Therefore, to overcome this, numerical 

studies are carried out but closed form solutions may be developed in the future. 

 Software capable of simulations provide an excessive help to make numerical studies. 

However, these studies need to be supported with data from fields. 

 The lining design carried out in this study does not take into account the shaft collar design, 

ground water loading conditions, loading from heavy geological conditions (faults, shear zones 

etc.), form of topography, structures and other openings around shafts. Considerations of these 

factors will improve the quality of shaft lining design. 

 The dependency of software using numerical methods such as finite difference, finite element, 

boundary element or distinct element methods on the number and position of nodes, elements 

and meshes affects the results notably. Therefore, models with higher number of nodes and 

meshes in an infinite field will produce more realistic results. 

 Other lining methods such as timbers, steels, rock bolts, meshes should also be considered in 

the future studies. 

 The effect of the varying shaft radius with the displacement boundary control for the 

boundaries of the shaft section should also be thought. 

 More detailed studies on non-linear responses of support pressure may cause better models. 
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APPENDIX A 

 

 

A: ESTIMATION OF MATERIAL CONSTANTS 

 

 

 

This section shows the estimation of Ei and mi. Hoek (2012) recommends the following equation 

when no direct value of Ei is available. 

 

 Ei = MR × σci (61) 

 

To estimate Ei and mi, from the following rock groups were benefited (Hoek, 2012). 

 

Table A.1 Ei when σci is 25 MPa. Ei was rounded off to 12500. 

 
 

 

 

σci (MPa) Rock MR

5 – 25 Chalk 1000

5 – 25 Rocksalt (Halite – NaCl) ?

5 – 25 Potash (Slyvite – KCl) ?

5 – 25 Gypsum 350

5 – 25 Anhydrite 350

25 – 50 Claystone 250 ± 50

25 – 50 Coal ?

25 – 50 Concrete ?

25 – 50 Schist 675 ± 425

25 – 50 Shale 200 ± 50

25 – 50 Siltstone 375 ± 25

Average of 5 – 25 1700 / 3 = 567

Average of 25 – 50 1500 / 4 = 375

Average of 5 – 50 3200 / 7 = 457

Ei (MPa) 457 * 25 = 11425

Weighted Average (1700*3 + 1500*4)/(3*3+4*4) = 444

Ei (MPa) 444 * 25 = 11100
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Table A.2 Ei when σci is 50 MPa. Ei was rounded off to 25000. 

 
 

Table A.3 Ei when σci is 100 MPa. Ei was rounded off to 50000. 

 

σci (MPa) Rock MR

25 – 50 Claystone 250 ± 50

25 – 50 Coal ?

25 – 50 Concrete ?

25 – 50 Schist 675 ± 425

25 – 50 Shale 200 ± 50

25 – 50 Siltstone 375 ± 25

50 – 100 Limestone 700 ± 100

50 – 100 Marble 850 ± 150

50 – 100 Phyllite 550 ± 250

50 – 100 Sandstone 275 ± 75

50 – 100 Schist 675 ± 425

50 – 100 Shale 200 ± 50

Average of 25 – 50 1500 / 4 = 375

Average of 50 – 100 3250 / 6 = 542

Average of 25 – 100 4750 / 10 = 475

Ei (MPa) 50 * 475 = 23750

Weighted Average (1500*4 + 3250*6)/(4*4+6*6) = 490

Ei (MPa) 50 * 490 = 24500

σci (MPa) Rock MR

50 – 100 Limestone 700 ± 100

50 – 100 Marble 850 ± 150

50 – 100 Phyllite 550 ± 250

50 – 100 Sandstone 275 ± 75

50 – 100 Schist 675 ± 425

50 – 100 Shale 200 ± 50

100 – 250 Amphibolite 450 ±50

100 – 250 Sandstone 275 ± 75

100 – 250 Basalt 350 ± 100

100 – 250 Gabbro 450 ± 50

100 – 250 Gneiss 525 ± 225

100 – 250 Granodiorite 425 ± 25

100 – 250 Limestone 700 ± 100

100 – 250 Marble 850 ± 150

100 – 250 Rhyolite 400 ± 100

100 – 250 Tuff 300 ± 100

Average of 50 – 100 3250 / 6 = 542

Average of 100 – 250 4725 / 10 = 473

Average of 50 – 250 7975 / 16 = 498

Ei (MPa) 100 * 498 = 49800

Weighted Average (3250*6 + 4725*10)/(6*6+10*10) = 491

Ei (MPa) 100 * 491 = 49100
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Table A.4 Ei when σci is 200 MPa. Ei was rounded off to 100000. 

 
 

Table A.5 mi when σci is 25 MPa. mi was rounded off to 7. 

 
 

σci (MPa) Rock MR

100 – 250 Amphibolite 450 ±50

100 – 250 Sandstone 275 ± 75

100 – 250 Basalt 350 ± 100

100 – 250 Gabbro 450 ± 50

100 – 250 Gneiss 525 ± 225

100 – 250 Granodiorite 425 ± 25

100 – 250 Limestone 700 ± 100

100 – 250 Marble 850 ± 150

100 – 250 Rhyolite 400 ± 100

100 – 250 Tuff 300 ± 100

Average of 100 – 250 4725 / 10 = 473

Ei (MPa) 200 * 473 = 94600

σci (MPa) Rock mi

5 – 25 Chalk 7 ± 2

5 – 25 Rocksalt (Halite – NaCl) ?

5 – 25 Potash (Slyvite – KCl) ?

5 – 25 Gypsum 8 ± 2

5 – 25 Anhydrite 12 ± 2

25 – 50 Claystone 4 ± 2

25 – 50 Coal ?

25 – 50 Concrete ?

25 – 50 Schist 10 ± 3

25 – 50 Shale 6 ± 2

25 – 50 Siltstone 7 ± 2

Average of 5 – 25 27 / 3 = 9

Average of 25 – 50 27 / 4 = 6.75

Average of 5 – 50 54 / 7 = 7.71

Weighted Average (27*3 + 27*4)/(3*3+4*4) = 7.56
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Table A.6 mi when σci is 50 MPa. mi was rounded off to 14. 

 
 

Table A.7 mi when σci is 100 MPa. mi was rounded off to 21. 

 
 

σci (MPa) Rock mi

25 – 50 Claystone 4 ± 2

25 – 50 Coal ?

25 – 50 Concrete ?

25 – 50 Schist 10 ± 3

25 – 50 Shale 6 ± 2

25 – 50 Siltstone 7 ± 2

50 – 100 Limestone 10 ± 3

50 – 100 Marble 9 ± 3

50 – 100 Phyllite 7 ± 3

50 – 100 Sandstone 17 ± 4

50 – 100 Schist 10 ± 3

50 – 100 Shale 6 ± 2

Average of 25 – 50 27 / 4 = 6.75

Average of 50 – 100 59 / 6 = 9.83

Average of 25 – 100 86 / 10 = 8.6

Weighted Average (27*4 + 59*6)/(4*4+6*6) = 8.88

σci (MPa) Rock mi

50 – 100 Limestone 10 ± 3

50 – 100 Marble 9 ± 3

50 – 100 Phyllite 7 ± 3

50 – 100 Sandstone 17 ± 4

50 – 100 Schist 10 ± 3

50 – 100 Shale 6 ± 2

100 – 250 Amphibolite 26 ± 6

100 – 250 Sandstone 17 ± 4

100 – 250 Basalt 25 ± 5

100 – 250 Gabbro 27 ± 3

100 – 250 Gneiss 28 ± 5

100 – 250 Granodiorite 29 ± 3

100 – 250 Limestone 10 ± 3

100 – 250 Marble 9 ± 3

100 – 250 Rhyolite 25 ± 5

100 – 250 Tuff 13 ± 5

Average of 50 – 100 59 / 6 = 9.83

Average of 100 – 250 209 / 10 = 20.9

Average of 50 – 250 268 / 16 = 16.75

Weighted Average (59*6 + 209*10)/(6*6+10*10) = 17.97
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Table A.8 mi when σci is 200 MPa. mi was rounded off to 28. 

 
 

The following estimates of rock strength are helpful to approximate Ei and mi of intact rock (Hoek, 

Rock Mass Properties, 2012). 

 

Table A.9 Field estimate of strength of rock types. 

Strength Rock Explanation of Strength 

> 250 MPa 
Fresh basalt, Chert, Diabase, 

Gneiss, Granite, Quartzite 

Specimen can only be chipped 

with a geological hammer. 

100 – 250 MPa 

Amphibolite, Sandstone, 

Basalt, Gabbro, Gneiss, 

Granodiorite, Limestone, 

Marble, Rhyolite, Tuff 

Specimen requires many blows 

of a geological hammer to 

fracture it. 

50 – 100 MPa 
Limestone, Marble, Phyllite, 

Sandstone, Schist, Shale 

Specimen requires more than 

one blow of a geological 

hammer to fracture it. 

25 – 50 MPa 
Claystone, Coal, Concrete, 

Schist, Shale, Siltstone 

Cannot be scraped or peeled 

with a pocket knife, specimen 

can be fractured with a single 

blow from a geological 

hammer. 

5 – 25 MPa Chalk, Rocksalt, Potash 

Can be peeled with a pocket 

knife with difficulty, shallow 

indentation made by firm blow 

with point of a geological 

hammer. 

1 – 5 MPa 
Highly weathered or altered 

rock 

Crumbles under firm blows 

with point of a geological 

hammer, can be peeled by a 

pocket knife. 

0.25 – 1 MPa Stiff fault gouge Indented by thumbnail. 

 

 

 

 

 

  

σci (MPa) Rock mi

100 – 250 Amphibolite 26 ± 6

100 – 250 Sandstone 17 ± 4

100 – 250 Basalt 25 ± 5

100 – 250 Gabbro 27 ± 3

100 – 250 Gneiss 28 ± 5

100 – 250 Granodiorite 29 ± 3

100 – 250 Limestone 10 ± 3

100 – 250 Marble 9 ± 3

100 – 250 Rhyolite 25 ± 5

100 – 250 Tuff 13 ± 5

Average of 100 – 250 209 / 10 = 20.9



56 

 

 
APPENDIX B 

 

 

B: RESULTS OF NUMERICAL MODELING 

 

 

 

Table B.1 First quarter of the results. 

 

Model σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

1 25 20 2.7 2.7 1.35 1 0.5 1.42

2 25 20 8.1 8.1 4.05 1 0.5 5.73

3 25 20 16.2 16.2 8.1 1 0.5 13.96

4 25 20 2.7 2.7 2.7 1 1 1.22

5 25 20 8.1 8.1 8.1 1 1 4.92

6 25 20 16.2 16.2 16.2 1 1 11.23

7 25 20 2.7 2.7 4.05 1 1.5 2.47

8 25 20 8.1 8.1 12.15 1 1.5 8.94

9 25 20 16.2 16.2 24.3 1 1.5 18.93

10 25 20 2.7 2.7 5.4 1 2 3.31

11 25 20 8.1 8.1 16.2 1 2 15.49

12 25 20 16.2 16.2 32.4 1 2 NA

13 25 40 2.7 2.7 1.35 1 0.5 1.02

14 25 40 8.1 8.1 4.05 1 0.5 4.44

15 25 40 16.2 16.2 8.1 1 0.5 10.35

16 25 40 2.7 2.7 2.7 1 1 0.75

17 25 40 8.1 8.1 8.1 1 1 3.75

18 25 40 16.2 16.2 16.2 1 1 9.3

19 25 40 2.7 2.7 4.05 1 1.5 1.71

20 25 40 8.1 8.1 12.15 1 1.5 7.7

21 25 40 16.2 16.2 24.3 1 1.5 18.24

22 25 40 2.7 2.7 5.4 1 2 2.8

23 25 40 8.1 8.1 16.2 1 2 13.29

24 25 40 16.2 16.2 32.4 1 2 18.9

25 25 60 2.7 2.7 1.35 1 0.5 0.55

26 25 60 8.1 8.1 4.05 1 0.5 3.57

27 25 60 16.2 16.2 8.1 1 0.5 8.4

28 25 60 2.7 2.7 2.7 1 1 0.36

29 25 60 8.1 8.1 8.1 1 1 2.64

30 25 60 16.2 16.2 16.2 1 1 7.28

31 25 60 2.7 2.7 4.05 1 1.5 1.05

32 25 60 8.1 8.1 12.15 1 1.5 5.89

33 25 60 16.2 16.2 24.3 1 1.5 15.12

34 25 60 2.7 2.7 5.4 1 2 1.9

35 25 60 8.1 8.1 16.2 1 2 9.62

36 25 60 16.2 16.2 32.4 1 2 19.98

37 25 80 2.7 2.7 1.35 1 0.5 0

38 25 80 8.1 8.1 4.05 1 0.5 2.03

39 25 80 16.2 16.2 8.1 1 0.5 6.83

40 25 80 2.7 2.7 2.7 1 1 0

41 25 80 8.1 8.1 8.1 1 1 1.32

42 25 80 16.2 16.2 16.2 1 1 4.97

43 25 80 2.7 2.7 4.05 1 1.5 0.14

44 25 80 8.1 8.1 12.15 1 1.5 3.85

45 25 80 16.2 16.2 24.3 1 1.5 11.46

46 25 80 2.7 2.7 5.4 1 2 0.76

47 25 80 8.1 8.1 16.2 1 2 6.83

48 25 80 16.2 16.2 32.4 1 2 18.9
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Table B.2 Second quarter of the results. 

 
 

 

Model σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

49 50 20 2.7 2.7 1.35 1 0.5 0.85

50 50 20 8.1 8.1 4.05 1 0.5 4.12

51 50 20 16.2 16.2 8.1 1 0.5 9.3

52 50 20 2.7 2.7 2.7 1 1 0.63

53 50 20 8.1 8.1 8.1 1 1 3.13

54 50 20 16.2 16.2 16.2 1 1 7.95

55 50 20 2.7 2.7 4.05 1 1.5 1.41

56 50 20 8.1 8.1 12.15 1 1.5 6.52

57 50 20 16.2 16.2 24.3 1 1.5 15.9

58 50 20 2.7 2.7 5.4 1 2 2.34

59 50 20 8.1 8.1 16.2 1 2 9.37

60 50 20 16.2 16.2 32.4 1 2 19.8

61 50 40 2.7 2.7 1.35 1 0.5 0.4

62 50 40 8.1 8.1 4.05 1 0.5 2.61

63 50 40 16.2 16.2 8.1 1 0.5 7.44

64 50 40 2.7 2.7 2.7 1 1 0.28

65 50 40 8.1 8.1 8.1 1 1 1.91

66 50 40 16.2 16.2 16.2 1 1 5.56

67 50 40 2.7 2.7 4.05 1 1.5 0.75

68 50 40 8.1 8.1 12.15 1 1.5 4.44

69 50 40 16.2 16.2 24.3 1 1.5 12.07

70 50 40 2.7 2.7 5.4 1 2 1.35

71 50 40 8.1 8.1 16.2 1 2 7.44

72 50 40 16.2 16.2 32.4 1 2 17.58

73 50 60 2.7 2.7 1.35 1 0.5 0.07

74 50 60 8.1 8.1 4.05 1 0.5 1.48

75 50 60 16.2 16.2 8.1 1 0.5 4.95

76 50 60 2.7 2.7 2.7 1 1 0.01

77 50 60 8.1 8.1 8.1 1 1 1.03

78 50 60 16.2 16.2 16.2 1 1 3.58

79 50 60 2.7 2.7 4.05 1 1.5 0.31

80 50 60 8.1 8.1 12.15 1 1.5 2.75

81 50 60 16.2 16.2 24.3 1 1.5 8.54

82 50 60 2.7 2.7 5.4 1 2 0.66

83 50 60 8.1 8.1 16.2 1 2 4.95

84 50 60 16.2 16.2 32.4 1 2 14.47

85 50 80 2.7 2.7 1.35 1 0.5 0

86 50 80 8.1 8.1 4.05 1 0.5 0.26

87 50 80 16.2 16.2 8.1 1 0.5 2.57

88 50 80 2.7 2.7 2.7 1 1 0

89 50 80 8.1 8.1 8.1 1 1 0

90 50 80 16.2 16.2 16.2 1 1 1.65

91 50 80 2.7 2.7 4.05 1 1.5 0

92 50 80 8.1 8.1 12.15 1 1.5 1.08

93 50 80 16.2 16.2 24.3 1 1.5 5.1

94 50 80 2.7 2.7 5.4 1 2 0

95 50 80 8.1 8.1 16.2 1 2 2.57

96 50 80 16.2 16.2 32.4 1 2 9.47
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Table B.3 Third quarter of the results. 

 
 

 

Model σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

97 100 20 2.7 2.7 1.35 1 0.5 0.42

98 100 20 8.1 8.1 4.05 1 0.5 2.44

99 100 20 16.2 16.2 8.1 1 0.5 6.78

100 100 20 2.7 2.7 2.7 1 1 0.31

101 100 20 8.1 8.1 8.1 1 1 1.8

102 100 20 16.2 16.2 16.2 1 1 5.1

103 100 20 2.7 2.7 4.05 1 1.5 0.74

104 100 20 8.1 8.1 12.15 1 1.5 4.08

105 100 20 16.2 16.2 24.3 1 1.5 10.99

106 100 20 2.7 2.7 5.4 1 2 1.3

107 100 20 8.1 8.1 16.2 1 2 6.78

108 100 20 16.2 16.2 32.4 1 2 17.76

109 100 40 2.7 2.7 1.35 1 0.5 0.13

110 100 40 8.1 8.1 4.05 1 0.5 1.22

111 100 40 16.2 16.2 8.1 1 0.5 4.05

112 100 40 2.7 2.7 2.7 1 1 0.08

113 100 40 8.1 8.1 8.1 1 1 0.87

114 100 40 16.2 16.2 16.2 1 1 2.93

115 100 40 2.7 2.7 4.05 1 1.5 0.28

116 100 40 8.1 8.1 12.15 1 1.5 2.24

117 100 40 16.2 16.2 24.3 1 1.5 7.06

118 100 40 2.7 2.7 5.4 1 2 0.57

119 100 40 8.1 8.1 16.2 1 2 4.05

120 100 40 16.2 16.2 32.4 1 2 12.13

121 100 60 2.7 2.7 1.35 1 0.5 0

122 100 60 8.1 8.1 4.05 1 0.5 0.46

123 100 60 16.2 16.2 8.1 1 0.5 2.18

124 100 60 2.7 2.7 2.7 1 1 0

125 100 60 8.1 8.1 8.1 1 1 0.27

126 100 60 16.2 16.2 16.2 1 1 1.5

127 100 60 2.7 2.7 4.05 1 1.5 0

128 100 60 8.1 8.1 12.15 1 1.5 1.06

129 100 60 16.2 16.2 24.3 1 1.5 4.14

130 100 60 2.7 2.7 5.4 1 2 0.1

131 100 60 8.1 8.1 16.2 1 2 2.18

132 100 60 16.2 16.2 32.4 1 2 7.66

133 100 80 2.7 2.7 1.35 1 0.5 0

134 100 80 8.1 8.1 4.05 1 0.5 0

135 100 80 16.2 16.2 8.1 1 0.5 0.35

136 100 80 2.7 2.7 2.7 1 1 0

137 100 80 8.1 8.1 8.1 1 1 0

138 100 80 16.2 16.2 16.2 1 1 0

139 100 80 2.7 2.7 4.05 1 1.5 0

140 100 80 8.1 8.1 12.15 1 1.5 0

141 100 80 16.2 16.2 24.3 1 1.5 1.54

142 100 80 2.7 2.7 5.4 1 2 0

143 100 80 8.1 8.1 16.2 1 2 0.35

144 100 80 16.2 16.2 32.4 1 2 3.76
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Table B.4 Fourth quarter of the results. 

 
 

 

 

 

 

 

 

 

 

Model σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

145 200 20 2.7 2.7 1.35 1 0.5 0.19

146 200 20 8.1 8.1 4.05 1 0.5 1.31

147 200 20 16.2 16.2 8.1 1 0.5 4.03

148 200 20 2.7 2.7 2.7 1 1 0.14

149 200 20 8.1 8.1 8.1 1 1 0.96

150 200 20 16.2 16.2 16.2 1 1 2.97

151 200 20 2.7 2.7 4.05 1 1.5 0.36

152 200 20 8.1 8.1 12.15 1 1.5 2.31

153 200 20 16.2 16.2 24.3 1 1.5 6.87

154 200 20 2.7 2.7 5.4 1 2 0.66

155 200 20 8.1 8.1 16.2 1 2 4.03

156 200 20 16.2 16.2 32.4 1 2 11.61

157 200 40 2.7 2.7 1.35 1 0.5 0

158 200 40 8.1 8.1 4.05 1 0.5 0.49

159 200 40 16.2 16.2 8.1 1 0.5 1.93

160 200 40 2.7 2.7 2.7 1 1 0

161 200 40 8.1 8.1 8.1 1 1 0.34

162 200 40 16.2 16.2 16.2 1 1 1.37

163 200 40 2.7 2.7 4.05 1 1.5 0.06

164 200 40 8.1 8.1 12.15 1 1.5 0.99

165 200 40 16.2 16.2 24.3 1 1.5 3.61

166 200 40 2.7 2.7 5.4 1 2 0.19

167 200 40 8.1 8.1 16.2 1 2 1.93

168 200 40 16.2 16.2 32.4 1 2 6.63

169 200 60 2.7 2.7 1.35 1 0.5 0

170 200 60 8.1 8.1 4.05 1 0.5 0

171 200 60 16.2 16.2 8.1 1 0.5 0.7

172 200 60 2.7 2.7 2.7 1 1 0

173 200 60 8.1 8.1 8.1 1 1 0

174 200 60 16.2 16.2 16.2 1 1 0.43

175 200 60 2.7 2.7 4.05 1 1.5 0

176 200 60 8.1 8.1 12.15 1 1.5 0.19

177 200 60 16.2 16.2 24.3 1 1.5 1.64

178 200 60 2.7 2.7 5.4 1 2 0

179 200 60 8.1 8.1 16.2 1 2 0.7

180 200 60 16.2 16.2 32.4 1 2 3.44

181 200 80 2.7 2.7 1.35 1 0.5 0

182 200 80 8.1 8.1 4.05 1 0.5 0

183 200 80 16.2 16.2 8.1 1 0.5 0

184 200 80 2.7 2.7 2.7 1 1 0

185 200 80 8.1 8.1 8.1 1 1 0

186 200 80 16.2 16.2 16.2 1 1 0

187 200 80 2.7 2.7 4.05 1 1.5 0

188 200 80 8.1 8.1 12.15 1 1.5 0

189 200 80 16.2 16.2 24.3 1 1.5 0

190 200 80 2.7 2.7 5.4 1 2 0

191 200 80 8.1 8.1 16.2 1 2 0

192 200 80 16.2 16.2 32.4 1 2 0.53
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APPENDIX C 

 

 

C: RESTRICTED SUPPORT PRESSURES 

 

 

 

Table C.1 First half of pi restricted to (0-4) MPa. 

 
 

 

 

Row σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

1 25 20 2.7 2.7 2.7 1 1 1.22

2 25 20 2.7 2.7 4.05 1 1.5 2.47

3 25 40 2.7 2.7 1.35 1 0.5 1.02

4 25 40 2.7 2.7 2.7 1 1 0.75

5 25 40 8.1 8.1 8.1 1 1 3.75

6 25 40 2.7 2.7 4.05 1 1.5 1.71

7 25 60 2.7 2.7 1.35 1 0.5 0.55

8 25 60 8.1 8.1 4.05 1 0.5 3.57

9 25 60 2.7 2.7 2.7 1 1 0.36

10 25 60 8.1 8.1 8.1 1 1 2.64

11 25 60 2.7 2.7 4.05 1 1.5 1.05

12 25 60 2.7 2.7 5.4 1 2 1.9

13 25 80 8.1 8.1 4.05 1 0.5 2.03

14 25 80 8.1 8.1 8.1 1 1 1.32

15 25 80 2.7 2.7 4.05 1 1.5 0.14

16 25 80 8.1 8.1 12.15 1 1.5 3.85

17 25 80 2.7 2.7 5.4 1 2 0.76

18 50 20 2.7 2.7 1.35 1 0.5 0.85

19 50 20 2.7 2.7 2.7 1 1 0.63

20 50 20 8.1 8.1 8.1 1 1 3.13

21 50 20 2.7 2.7 4.05 1 1.5 1.41

22 50 20 2.7 2.7 5.4 1 2 2.34

23 50 40 2.7 2.7 1.35 1 0.5 0.4

24 50 40 8.1 8.1 4.05 1 0.5 2.61

25 50 40 2.7 2.7 2.7 1 1 0.28

26 50 40 8.1 8.1 8.1 1 1 1.91

27 50 40 2.7 2.7 4.05 1 1.5 0.75

28 50 40 2.7 2.7 5.4 1 2 1.35

29 50 60 2.7 2.7 1.35 1 0.5 0.07

30 50 60 8.1 8.1 4.05 1 0.5 1.48

31 50 60 2.7 2.7 2.7 1 1 0.01

32 50 60 8.1 8.1 8.1 1 1 1.03

33 50 60 16.2 16.2 16.2 1 1 3.58

34 50 60 2.7 2.7 4.05 1 1.5 0.31

35 50 60 8.1 8.1 12.15 1 1.5 2.75

36 50 60 2.7 2.7 5.4 1 2 0.66

37 50 80 8.1 8.1 4.05 1 0.5 0.26

38 50 80 16.2 16.2 8.1 1 0.5 2.57

39 50 80 16.2 16.2 16.2 1 1 1.65

40 50 80 8.1 8.1 12.15 1 1.5 1.08

41 50 80 8.1 8.1 16.2 1 2 2.57

42 100 20 2.7 2.7 1.35 1 0.5 0.42

43 100 20 8.1 8.1 4.05 1 0.5 2.44

44 100 20 2.7 2.7 2.7 1 1 0.31

45 100 20 8.1 8.1 8.1 1 1 1.8
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Table C.2 Second half of pi restricted to (0-4) MPa. 

 
 

 

  

Row σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) k1 k2 pi (MPa)

46 100 20 2.7 2.7 4.05 1 1.5 0.74

47 100 20 2.7 2.7 5.4 1 2 1.3

48 100 40 2.7 2.7 1.35 1 0.5 0.13

49 100 40 8.1 8.1 4.05 1 0.5 1.22

50 100 40 2.7 2.7 2.7 1 1 0.08

51 100 40 8.1 8.1 8.1 1 1 0.87

52 100 40 16.2 16.2 16.2 1 1 2.93

53 100 40 2.7 2.7 4.05 1 1.5 0.28

54 100 40 8.1 8.1 12.15 1 1.5 2.24

55 100 40 2.7 2.7 5.4 1 2 0.57

56 100 60 8.1 8.1 4.05 1 0.5 0.46

57 100 60 16.2 16.2 8.1 1 0.5 2.18

58 100 60 8.1 8.1 8.1 1 1 0.27

59 100 60 16.2 16.2 16.2 1 1 1.5

60 100 60 8.1 8.1 12.15 1 1.5 1.06

61 100 60 2.7 2.7 5.4 1 2 0.1

62 100 60 8.1 8.1 16.2 1 2 2.18

63 100 80 16.2 16.2 8.1 1 0.5 0.35

64 100 80 16.2 16.2 24.3 1 1.5 1.54

65 100 80 8.1 8.1 16.2 1 2 0.35

66 100 80 16.2 16.2 32.4 1 2 3.76

67 200 20 2.7 2.7 1.35 1 0.5 0.19

68 200 20 8.1 8.1 4.05 1 0.5 1.31

69 200 20 2.7 2.7 2.7 1 1 0.14

70 200 20 8.1 8.1 8.1 1 1 0.96

71 200 20 16.2 16.2 16.2 1 1 2.97

72 200 20 2.7 2.7 4.05 1 1.5 0.36

73 200 20 8.1 8.1 12.15 1 1.5 2.31

74 200 20 2.7 2.7 5.4 1 2 0.66

75 200 40 8.1 8.1 4.05 1 0.5 0.49

76 200 40 16.2 16.2 8.1 1 0.5 1.93

77 200 40 8.1 8.1 8.1 1 1 0.34

78 200 40 16.2 16.2 16.2 1 1 1.37

79 200 40 2.7 2.7 4.05 1 1.5 0.06

80 200 40 8.1 8.1 12.15 1 1.5 0.99

81 200 40 16.2 16.2 24.3 1 1.5 3.61

82 200 40 2.7 2.7 5.4 1 2 0.19

83 200 40 8.1 8.1 16.2 1 2 1.93

84 200 60 16.2 16.2 8.1 1 0.5 0.7

85 200 60 16.2 16.2 16.2 1 1 0.43

86 200 60 8.1 8.1 12.15 1 1.5 0.19

87 200 60 16.2 16.2 24.3 1 1.5 1.64

88 200 60 8.1 8.1 16.2 1 2 0.7

89 200 60 16.2 16.2 32.4 1 2 3.44

90 200 80 16.2 16.2 32.4 1 2 0.53
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APPENDIX D 

 

 

D: REGRESSION ANALYSIS DETAILS 

 

 

 

The following explanations ease to understand the statistical results of the regressions by Minitab 16. 

 

 Predictor lists variables in a regression equation. For instance, constant, σci, GSI etc. 

 Coef gives coefficients of predictors. It is 1 for the constant. 

 SE Coef gives the standard deviation of the estimate of a regression coefficient. It measures 

how precisely the data can estimate the coefficient’s unknown value. Its value is always 

positive and smaller values indicate a more precise estimate. 

 T is calculated by dividing the coefficient (Coef) by its standard error (SE Coef). 

 P is used to determine whether a factor is significant; it is typically compared against an alpha 

value of 0.05. If the p-value is lower than 0.05, then the factor is significant. 

 S is standard deviation of the data. 

 R-Sq means percentage of response variable variation that is explained by its relationship with 

one or more predictor variables. In general, the higher the R2, the better the model fits your 

data. R2 is always between 0 and 100 %. It is also known as the coefficient of determination or 

a multiple determination (in a multiple regression).  

 R-Sq (adj) is percentage of response variable variation that is explained by its relationship with 

one or more predictor variables, adjusted for the number of predictors in the model. This 

adjustment is important because the R2 for any model will always increase when a new term 

is added. A model with more terms may appear to have a better fit simply because it has more 

terms. However, some increases in R2 may be due to chance alone. 

 

Analysis of Variance Table: 

 

The main output from an analysis of variance study is arranged in a table and it lists the sources of 

variation, their degrees of freedom, the total sum of squares, and the mean squares. The analysis of 

variance table also includes the F-statistics and p-values. These are used to determine whether the 

predictors or factors are significantly related to the response. 

 

 Source indicates the source of variation, either from the factor, the interaction, or the error. The 

total is a sum of all the sources. 

 DF indicates degrees of freedom from each source. If a factor has three levels, the degree of freedom 

is 2 (n-1). If you have a total of 30 observations, the degrees of freedom total is 29 (n – 1).  

 SS indicates sum of squares between groups (factor) and the sum of squares within groups (error). 

 MS (mean squares) are found by dividing the sum of squares by the degrees of freedom. 

 F is calculated by dividing the factor MS by the error MS; this ratio can be compared against a 

critical F found in a table. 

 P is used to determine whether a factor is significant; typically compared against an alpha value of 

0.05. If the p-value is lower than 0.05, then the factor is significant. P-value for each coefficient 

tests the null hypothesis that the coefficient is equal to zero (no effect). Therefore, low p-values 

suggest the predictor is a meaningful addition to the model. 

 Unusual observations (outliers) list observations that have a disproportionate impact on a 

regression. Influential observations, also known as unusual observations, are important to identify 

because they can produce misleading results. For example, a significant coefficient may appear to 

be non-significant. 

 Standardized residuals are helpful in detecting outliers. The standardized residual equals the value 

of a residual, divided by an estimate of its standard deviation. Standardized residuals greater than 

2 and less than -2 are usually considered large and Minitab labels these observations with an ‘R’ in 

the table of unusual observations and the table of fits and residuals. 
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The statistical results of the linear regression are given below: 

 

Regression Analysis: pi/σci versus GSI; σz/σci; σh2/σci  

 

The regression equation is 

pi/σci = 0.0161 − 0.000718×GSI + 0.241×σz/σci + 0.162×σh2/σci 

 

Predictor Coef SE Coef T P 

Constant 0.016080 0.004532 3.55 0.001 

GSI −0.0007183 0.0001074 −6.69 0.000 

σz/σci 0.24082 0.03415 7.05 0.000 

σh2/σci 0.16173 0.03234 5.00 0.000 

 

S = 0.0167660   R-Sq = 74.6%   R-Sq(adj) = 73.7% 

 

Analysis of Variance: 

Source DF SS MS F P 

Regression 3 0.070865 0.023622 84.03 0.000 

Residual Error 86 0.024174 0.000281   

Total 89 0.095039    

 

Source DF Seq SS 

GSI 1 0.002427 

σz/σci 1 0.061410 

σh2/σci 1 0.007028 

 

Unusual Observations: 

Obs GSI pi/σci Fit SE Fit Residual St Resid 

2 20.0 0.09880 0.05392 0.00415 0.04488 2.76R 

5 40.0 0.15000 0.11777 0.00636 0.03223 2.08RX 

8 60.0 0.14280 0.07721 0.00653 0.06559 4.25RX 

12 60.0 0.07600 0.03393 0.00356 0.04207 2.57R 

13 80.0 0.08120 0.06284 0.00675 0.01836 1.20 X 

14 80.0 0.05280 0.08904 0.00489 −0.03624 2.26R 

16 80.0 0.15400 0.11524 0.00756 0.03876 2.59RX 

38 80.0 0.05140 0.06284 0.00675 −0.01144 −0.75 X 

39 80.0 0.03300 0.08904 0.00489 −0.05604 −3.49R 

 

R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 
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The statistical results of the non-linear regressions are given below: 

 

Polynomial Regression Analysis: pi/σci versus GSI  

 

The regression equation is 

pi/σci = 7.516 − 9.077×log10(GSI) + 2.745×(log10(GSI))2 

 

S = 0.0131632   R-Sq = 97.6%   R-Sq(adj) = 92.9% 

 

Analysis of Variance: 

Source DF SS MS F P 

Regression 2 0.0071972 0.0035986 20.77 0.153 

Error 1 0.0001733 0.0001733   

Total 3 0.0073705    

 

Sequential Analysis of Variance: 

Source DF SS F P 

Linear 1 0.0000309 0.01 0.935 

Quadratic 1 0.0071663 41.36 0.098 

 

Regression Analysis: pi/σci versus σz/σci  

 

The regression equation is 

pi/σci = 0.2033 + 0.1528×log10(σz/σci) 

 

S = 0.0155892   R-Sq = 93.4%   R-Sq(adj) = 90.1% 

 

Analysis of Variance: 

Source DF SS MS F P 
Regression 1 0.0068844 0.0068844 28.33 0.034 

Error 2 0.0004860 0.0002430   

Total 3 0.0073705    

 

Polynomial Regression Analysis: pi/σci versus σh2/σci  

 

The regression equation is 

pi/σci = 0.2225 + 0.2272×log10(σh2/σci) + 0.0410×(log10(σh2/σci))
2 

 

S = 0.0277883   R-Sq = 89.5%   R-Sq(adj) = 68.6% 

 

Analysis of Variance: 

Source DF SS MS F P 
Regression 2 0.0065983 0.0032991 4.27 0.324 

Error 1 0.0007722 0.0007722   

Total 3 0.0073705    

 

Sequential Analysis of Variance: 

Source DF SS F P 

Linear 1 0.0065715 16.45 0.056 
Quadratic 1 0.0000268 0.03 0.883 
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APPENDIX E 

 

 

E: RESULTS OF CLASSIFICATION 

 

 

 

Table E.1 The data of the 1st class. 

 

Model pi (MPa) σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) Class

97 0.42 100 20 2.7 2.7 1.35 1

98 2.44 100 20 8.1 8.1 4.05 1

99 6.78 100 20 16.2 16.2 8.1 1

100 0.31 100 20 2.7 2.7 2.7 1

101 1.8 100 20 8.1 8.1 8.1 1

102 5.1 100 20 16.2 16.2 16.2 1

103 0.74 100 20 2.7 2.7 4.05 1

104 4.08 100 20 8.1 8.1 12.15 1

105 10.99 100 20 16.2 16.2 24.3 1

106 1.3 100 20 2.7 2.7 5.4 1

107 6.78 100 20 8.1 8.1 16.2 1

108 17.76 100 20 16.2 16.2 32.4 1

109 0.13 100 40 2.7 2.7 1.35 1

110 1.22 100 40 8.1 8.1 4.05 1

111 4.05 100 40 16.2 16.2 8.1 1

112 0.08 100 40 2.7 2.7 2.7 1

113 0.87 100 40 8.1 8.1 8.1 1

114 2.93 100 40 16.2 16.2 16.2 1

115 0.28 100 40 2.7 2.7 4.05 1

116 2.24 100 40 8.1 8.1 12.15 1

117 7.06 100 40 16.2 16.2 24.3 1

118 0.57 100 40 2.7 2.7 5.4 1

119 4.05 100 40 8.1 8.1 16.2 1

120 12.13 100 40 16.2 16.2 32.4 1

121 0 100 60 2.7 2.7 1.35 1

122 0.46 100 60 8.1 8.1 4.05 1

123 2.18 100 60 16.2 16.2 8.1 1

124 0 100 60 2.7 2.7 2.7 1

125 0.27 100 60 8.1 8.1 8.1 1

126 1.5 100 60 16.2 16.2 16.2 1

127 0 100 60 2.7 2.7 4.05 1

128 1.06 100 60 8.1 8.1 12.15 1

129 4.14 100 60 16.2 16.2 24.3 1

130 0.1 100 60 2.7 2.7 5.4 1

131 2.18 100 60 8.1 8.1 16.2 1

132 7.66 100 60 16.2 16.2 32.4 1

133 0 100 80 2.7 2.7 1.35 1

134 0 100 80 8.1 8.1 4.05 1

135 0.35 100 80 16.2 16.2 8.1 1

136 0 100 80 2.7 2.7 2.7 1

137 0 100 80 8.1 8.1 8.1 1

138 0 100 80 16.2 16.2 16.2 1

139 0 100 80 2.7 2.7 4.05 1

140 0 100 80 8.1 8.1 12.15 1

141 1.54 100 80 16.2 16.2 24.3 1

142 0 100 80 2.7 2.7 5.4 1

143 0.35 100 80 8.1 8.1 16.2 1

144 3.76 100 80 16.2 16.2 32.4 1
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Table E.2 The data of the 2nd class. 

 
 

Model pi (MPa) σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) Class

25 0.55 25 60 2.7 2.7 1.35 2

26 3.57 25 60 8.1 8.1 4.05 2

27 8.4 25 60 16.2 16.2 8.1 2

28 0.36 25 60 2.7 2.7 2.7 2

29 2.64 25 60 8.1 8.1 8.1 2

30 7.28 25 60 16.2 16.2 16.2 2

31 1.05 25 60 2.7 2.7 4.05 2

32 5.89 25 60 8.1 8.1 12.15 2

33 15.12 25 60 16.2 16.2 24.3 2

34 1.9 25 60 2.7 2.7 5.4 2

35 9.62 25 60 8.1 8.1 16.2 2

36 19.98 25 60 16.2 16.2 32.4 2

37 0 25 80 2.7 2.7 1.35 2

38 2.03 25 80 8.1 8.1 4.05 2

39 6.83 25 80 16.2 16.2 8.1 2

40 0 25 80 2.7 2.7 2.7 2

41 1.32 25 80 8.1 8.1 8.1 2

42 4.97 25 80 16.2 16.2 16.2 2

43 0.14 25 80 2.7 2.7 4.05 2

44 3.85 25 80 8.1 8.1 12.15 2

45 11.46 25 80 16.2 16.2 24.3 2

46 0.76 25 80 2.7 2.7 5.4 2

47 6.83 25 80 8.1 8.1 16.2 2

48 18.9 25 80 16.2 16.2 32.4 2

73 0.07 50 60 2.7 2.7 1.35 2

74 1.48 50 60 8.1 8.1 4.05 2

75 4.95 50 60 16.2 16.2 8.1 2

76 0.01 50 60 2.7 2.7 2.7 2

77 1.03 50 60 8.1 8.1 8.1 2

78 3.58 50 60 16.2 16.2 16.2 2

79 0.31 50 60 2.7 2.7 4.05 2

80 2.75 50 60 8.1 8.1 12.15 2

81 8.54 50 60 16.2 16.2 24.3 2

82 0.66 50 60 2.7 2.7 5.4 2

83 4.95 50 60 8.1 8.1 16.2 2

84 14.47 50 60 16.2 16.2 32.4 2

85 0 50 80 2.7 2.7 1.35 2

86 0.26 50 80 8.1 8.1 4.05 2

87 2.57 50 80 16.2 16.2 8.1 2

88 0 50 80 2.7 2.7 2.7 2

89 0 50 80 8.1 8.1 8.1 2

90 1.65 50 80 16.2 16.2 16.2 2

91 0 50 80 2.7 2.7 4.05 2

92 1.08 50 80 8.1 8.1 12.15 2

93 5.1 50 80 16.2 16.2 24.3 2

94 0 50 80 2.7 2.7 5.4 2

95 2.57 50 80 8.1 8.1 16.2 2

96 9.47 50 80 16.2 16.2 32.4 2
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Table E.3 The data of the 3rd class. For classification, pi of the 12th model was taken as 21. 

 
 

Model pi (MPa) σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) Class

3 13.96 25 20 16.2 16.2 8.1 3

6 11.23 25 20 16.2 16.2 16.2 3

8 8.94 25 20 8.1 8.1 12.15 3

9 18.93 25 20 16.2 16.2 24.3 3

11 15.49 25 20 8.1 8.1 16.2 3

12 21 25 20 16.2 16.2 32.4 3

15 10.35 25 40 16.2 16.2 8.1 3

18 9.3 25 40 16.2 16.2 16.2 3

21 18.24 25 40 16.2 16.2 24.3 3

23 13.29 25 40 8.1 8.1 16.2 3

24 18.9 25 40 16.2 16.2 32.4 3

54 7.95 50 20 16.2 16.2 16.2 3

57 15.9 50 20 16.2 16.2 24.3 3

60 19.8 50 20 16.2 16.2 32.4 3

69 12.07 50 40 16.2 16.2 24.3 3

72 17.58 50 40 16.2 16.2 32.4 3
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Table E.4 The data of the 4th class. 

 
 

Model pi (MPa) σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) Class

145 0.19 200 20 2.7 2.7 1.35 4

146 1.31 200 20 8.1 8.1 4.05 4

147 4.03 200 20 16.2 16.2 8.1 4

148 0.14 200 20 2.7 2.7 2.7 4

149 0.96 200 20 8.1 8.1 8.1 4

150 2.97 200 20 16.2 16.2 16.2 4

151 0.36 200 20 2.7 2.7 4.05 4

152 2.31 200 20 8.1 8.1 12.15 4

153 6.87 200 20 16.2 16.2 24.3 4

154 0.66 200 20 2.7 2.7 5.4 4

155 4.03 200 20 8.1 8.1 16.2 4

156 11.61 200 20 16.2 16.2 32.4 4

157 0 200 40 2.7 2.7 1.35 4

158 0.49 200 40 8.1 8.1 4.05 4

159 1.93 200 40 16.2 16.2 8.1 4

160 0 200 40 2.7 2.7 2.7 4

161 0.34 200 40 8.1 8.1 8.1 4

162 1.37 200 40 16.2 16.2 16.2 4

163 0.06 200 40 2.7 2.7 4.05 4

164 0.99 200 40 8.1 8.1 12.15 4

165 3.61 200 40 16.2 16.2 24.3 4

166 0.19 200 40 2.7 2.7 5.4 4

167 1.93 200 40 8.1 8.1 16.2 4

168 6.63 200 40 16.2 16.2 32.4 4

169 0 200 60 2.7 2.7 1.35 4

170 0 200 60 8.1 8.1 4.05 4

171 0.7 200 60 16.2 16.2 8.1 4

172 0 200 60 2.7 2.7 2.7 4

173 0 200 60 8.1 8.1 8.1 4

174 0.43 200 60 16.2 16.2 16.2 4

175 0 200 60 2.7 2.7 4.05 4

176 0.19 200 60 8.1 8.1 12.15 4

177 1.64 200 60 16.2 16.2 24.3 4

178 0 200 60 2.7 2.7 5.4 4

179 0.7 200 60 8.1 8.1 16.2 4

180 3.44 200 60 16.2 16.2 32.4 4

181 0 200 80 2.7 2.7 1.35 4

182 0 200 80 8.1 8.1 4.05 4

183 0 200 80 16.2 16.2 8.1 4

184 0 200 80 2.7 2.7 2.7 4

185 0 200 80 8.1 8.1 8.1 4

186 0 200 80 16.2 16.2 16.2 4

187 0 200 80 2.7 2.7 4.05 4

188 0 200 80 8.1 8.1 12.15 4

189 0 200 80 16.2 16.2 24.3 4

190 0 200 80 2.7 2.7 5.4 4

191 0 200 80 8.1 8.1 16.2 4

192 0.53 200 80 16.2 16.2 32.4 4
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Table E.5 The data of the 5th class. 

 
 

 

 

 

 

 

 

 

 

  

Model pi (MPa) σci (MPa) GSI σz (MPa) σh1 (MPa) σh2 (MPa) Class

1 1.42 25 20 2.7 2.7 1.35 5

2 5.73 25 20 8.1 8.1 4.05 5

4 1.22 25 20 2.7 2.7 2.7 5

5 4.92 25 20 8.1 8.1 8.1 5

7 2.47 25 20 2.7 2.7 4.05 5

10 3.31 25 20 2.7 2.7 5.4 5

13 1.02 25 40 2.7 2.7 1.35 5

14 4.44 25 40 8.1 8.1 4.05 5

16 0.75 25 40 2.7 2.7 2.7 5

17 3.75 25 40 8.1 8.1 8.1 5

19 1.71 25 40 2.7 2.7 4.05 5

20 7.7 25 40 8.1 8.1 12.15 5

22 2.8 25 40 2.7 2.7 5.4 5

49 0.85 50 20 2.7 2.7 1.35 5

50 4.12 50 20 8.1 8.1 4.05 5

51 9.3 50 20 16.2 16.2 8.1 5

52 0.63 50 20 2.7 2.7 2.7 5

53 3.13 50 20 8.1 8.1 8.1 5

55 1.41 50 20 2.7 2.7 4.05 5

56 6.52 50 20 8.1 8.1 12.15 5

58 2.34 50 20 2.7 2.7 5.4 5

59 9.37 50 20 8.1 8.1 16.2 5

61 0.4 50 40 2.7 2.7 1.35 5

62 2.61 50 40 8.1 8.1 4.05 5

63 7.44 50 40 16.2 16.2 8.1 5

64 0.28 50 40 2.7 2.7 2.7 5

65 1.91 50 40 8.1 8.1 8.1 5

66 5.56 50 40 16.2 16.2 16.2 5

67 0.75 50 40 2.7 2.7 4.05 5

68 4.44 50 40 8.1 8.1 12.15 5

70 1.35 50 40 2.7 2.7 5.4 5

71 7.44 50 40 8.1 8.1 16.2 5
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APPENDIX F 

 

 

F: COMPARISON OF REGRESSION EQUATIONS 

 

 

 

Table F.1 Comparison of pi/σci by Phase2 to that of the regression equations. 

 
 

  

Row pi/σci by Phase2 pi/σci by Eq. 45 pi/σci by Eq. 50 Row pi/σci by Phase2 pi/σci by Eq. 45 pi/σci by Eq. 50

1 0.049 0.045 0.032 46 0.007 0.015 0.007

2 0.099 0.054 0.054 47 0.013 0.017 0.000

3 0.041 0.022 0.000 48 0.001 -0.004 0.002

4 0.030 0.031 0.002 49 0.012 0.013 0.000

5 0.150 0.118 0.012 50 0.001 -0.002 0.001

6 0.068 0.040 0.003 51 0.009 0.020 0.001

7 0.022 0.008 0.000 52 0.029 0.053 0.004

8 0.143 0.077 0.019 53 0.003 0.000 0.000

9 0.014 0.017 0.005 54 0.022 0.027 0.001

10 0.106 0.104 0.034 55 0.006 0.003 0.000

11 0.042 0.025 0.008 56 0.005 -0.001 -0.001

12 0.076 0.034 0.011 57 0.022 0.025 0.004

13 0.081 0.063 0.065 58 0.003 0.006 0.002

14 0.053 0.089 0.114 59 0.015 0.038 0.012

15 0.006 0.011 0.028 60 0.011 0.012 0.004

16 0.154 0.115 0.146 61 0.001 -0.012 0.000

17 0.030 0.020 0.036 62 0.022 0.019 0.005

18 0.017 0.019 -0.004 63 0.004 0.011 0.014

19 0.013 0.024 0.000 64 0.015 0.037 0.060

20 0.063 0.067 0.080 65 0.004 0.004 0.018

21 0.028 0.028 0.003 66 0.038 0.050 0.073

22 0.047 0.032 0.006 67 0.001 0.006 0.090

23 0.008 0.005 0.000 68 0.007 0.015 0.006

24 0.052 0.040 0.001 69 0.001 0.007 0.069

25 0.006 0.009 0.000 70 0.005 0.018 0.002

26 0.038 0.053 0.004 71 0.015 0.034 0.012

27 0.015 0.014 0.000 72 0.002 0.008 0.052

28 0.027 0.018 0.000 73 0.012 0.021 -0.001

29 0.001 -0.010 -0.001 74 0.003 0.009 0.038

30 0.030 0.025 0.004 75 0.002 0.000 0.000

31 0.000 -0.005 0.000 76 0.010 0.013 0.000

32 0.021 0.038 0.012 77 0.002 0.004 0.000

33 0.072 0.104 0.034 78 0.007 0.020 0.001

34 0.006 -0.001 0.000 79 0.000 -0.006 0.003

35 0.055 0.051 0.018 80 0.005 0.007 0.000

36 0.013 0.004 0.001 81 0.018 0.027 0.001

37 0.005 0.011 0.014 82 0.001 -0.005 0.002

38 0.051 0.063 0.065 83 0.010 0.010 0.000

39 0.033 0.089 0.114 84 0.004 -0.001 -0.001

40 0.022 0.037 0.060 85 0.002 0.006 0.002

41 0.051 0.050 0.073 86 0.001 -0.007 0.000

42 0.004 0.010 0.030 87 0.008 0.012 0.004

43 0.024 0.028 -0.007 88 0.004 -0.004 0.000

44 0.003 0.013 0.017 89 0.017 0.019 0.005

45 0.018 0.034 0.012 90 0.003 0.004 0.018
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APPENDIX G 

 

 

G: SOME PHASE2 MODELS 

 

 

 

 

Figure G.1 The result (yielded elements) of model 25 without pi. 

 

 

Figure G.2 The result (yielded elements) of model 25 with pi of 0.55 MPa. 

 

 

Figure G.3 The result (yielded elements) of model 72 without pi. 
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Figure G.4 The result (yielded elements) of model 72 with pi of 17.58 MPa. 

 

 

Figure G.5 The result (yielded elements) of model 138 without pi. 

 


