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ABSTRACT

VARIABLE SHAPED DETECTOR: A NEGATIVE SELECTION ALGORITHM

Ataser, Zafer
Ph.D., Department of Computer Engineering
Supervisor : Prof. Dr. Ferda Nur Alpaslan

February 2013, 73 pages

Artificial Immune Systems (AIS) are class of computational intelligent methods developed based on
the principles and processes of the biological immune system. AIS methods are categorized mainly
into four types according to the inspired principles and processes of immune system. These categories
are clonal selection, negative selection, immune network and danger theory. The approach of negative
selection algorithm (NSA) is one of the major AIS models. NSA is a supervised learning algorithm
based on the imitation of the T cells maturation process in thymus. In this imitation, detectors are
used to mimic the cells, and the process of T cells maturation is simulated to generate detectors. Then,
NSA classifies the specified data either as normal (self) data or as anomalous (non-self) data. In this
classification task, NSA methods can make two kinds of classification errors: a self data is classified
as anomalous, and a non-self data is classified as normal data.

In this thesis, a novel negative selection method, variable shaped detector (V-shaped detector), is pro-
posed to increase the classification accuracy, or in other words decreasing classification errors. In
V-shaped detector, new approaches are introduced to define self and represent detectors. V-shaped
detector uses the combination of Local Outlier Factor (LOF) and kth nearest neighbor (k-NN) to
determine a different radius for each self sample, thus it becomes possible to model the self space
using self samples and their radii. Besides, the cubic b-spline is proposed to generate a variable shaped
detector. In detector representation, the application of cubic spline is meaningful, when the edge points
are used. Hence, Edge Detection (ED) algorithm is developed to find the edge points of the given self
samples. V-shaped detector was tested using different data sets and compared with the well-known
one-class classification method, SVM, and the similar popular negative selection method, NSA with
variable-sized detector termed V-detector. The experiments show that the proposed method generates
reasonable and comparable results.
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ÖZ

DEĞİŞKEN ŞEKİLLİ DETEKTÖR: BİR NEGATİF SEÇME ALGORİTMASI

Ataser, Zafer
Doktora, Bilgisayar Mühendisliği Bölümü
Tez Yöneticisi : Prof. Dr. Ferda Nur Alpaslan

Şubat 2013 , 73 sayfa

Yapay Bağışıklık Sistemleri (YBS), biyolojik bağışıklık sisteminin ilkeleri ve süreçleri temel alına-
rak geliştirilmiş hesaplama akıllı yöntemler sınıfıdır. YBS yöntemleri, bağışıklık sisteminin ilham
alınan ilke ve süreçlerine göre başlıca dört tür olarak kategorize edilir. Bu kategoriler klon seçme,
negatif seçme, bağışıklık ağ ve tehlike teorisidir. Negatif seçme algoritması (NSA) yaklaşımı önemli
YBS modellerden biridir. NSA, timusta T hücrelerinin olgunlaşma süreci taklidi üzerine kurulu bir
denetimli öğrenme algoritmasıdır. Bu taklitte, hücreleri taklit etmek için detektörler kullanılır ve T-
hücreleri olgunlaşma süreci detektörleri oluşturmak için simüle edilir. Sonra, NSA verilen veriyi ya
normal (kendinden) ya da anormal (kendinden olmayan) olarak sınıflandırır. Bu sınıflandırma göre-
vinde, NSA yöntemleri iki türlü sınıflandırma hatası yapabilir: normal veri anormal veya anormal veri
normal olarak sınıflandırılır.

Bu tezde, sınıflandırma hatalarını azaltırken sınıflandırma doğruluğunu artırmak için değişken şekilli
detektör (D-şekilli detektör) olarak adlandırılan yeni bir negatif seçme yöntemi önerilmiştir. D-şekilli
detektör yönteminde normali belirleme ve detektör gösterimi için yeni yaklaşımlar tanıtıldı. D-şekilli
detektör yöntemi, normal örneklerinin her biri için farklı bir yarıçap belirlemek amaçlı Yerel Aykırı
Faktör ve k en yakın komşu yöntemlerini birlikte kullanmaktadır. Böylece, normal veriler ve yarıçap-
ları kullanılarak normal uzayı modellenmek mümkün hale gelir. Ayrıca, değişken şekilli detektör oluş-
turmak için kübik spline yöntemi önerilmiştir. Detektör gösteriminde, kenar noktaları kullanıldığında
kübik spline uygulama anlamlıdır. Böylece, verilen normal örneklerden kenar noktaları bulmak için
kenar bulma algoritması geliştirilmiştir. D-şekilli detektör yöntemi test edilmiş ve iyi bilinen tek-sınıf
sınıflandırma yöntemi (SVM) ve benzeri bir başka negatif seçme yöntemi karşılaştırılmıştır. Deneyler
önerilen yöntemin makul ve karşılaştırılabilir sonuçlar ürettiğini göstermektedir.

Anahtar Kelimeler: Negatif seçme, kübik spline, yerel dış etmeni, detektör kapsama
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CHAPTER 1

INTRODUCTION

Artificial Immune Systems (AIS) are a category of computational intelligent models inspired by the
principles and processes of the biological immune systems. Various models of AIS were developed
using different biological immune principles and processes. These AIS models are categorized mainly
into four types: immune network model, clonal selection, negative selection and danger theory [6].

The important issue in AIS is the correct discrimination between self and non-self. To achieve this
discrimination, negative selection method was designed by modeling the generation of T-cells in thy-
mus. In the biological process, T-cells are generated in thymus and each one is checked whether it is
bounded self-cells or not. If it is bounded, then it is eliminated. This process is repeated until the T
cell is maturated, and then the maturated T cells are released to blood.

In negative selection method, units called detectors are used instead of T-cells to discriminate nor-
mal (self)1 data or not (non-self)2 data [2]. The main concern of a collection of detectors, in other
words detector set, is the maximization of the non-self space. Detection rate directly depends on the
proportion of the non-self space covered by the detector set.

In negative selection algorithm (NSA), there are two main phases, detector generation and detection.
In the generation step, candidate detectors are randomly generated and then eliminated in case of
matching self samples. The candidates that do not match self samples constitute the detector set. In
the detection step, the incoming instance is checked whether it matches any detector or not. If it
matches, then it is a non-self or anomaly.

NSA classifies an input data either as normal (self) data or anomalous (non-self) data in the detection
part. Hence, it can be easily said that NSA is proper for one-class classification problems such as
fault detection, and anomaly detection [7]. Although, there are many fields that use NSA, the pri-
mary application of NSA has been anomaly detection. The purpose of anomaly detection is also the
discrimination of normal and anomalous state of a system.

Positive and negative terms should be described before mentioning the classification accuracy of NSA.
A positive term states the detection of anomalous (non-self) data while a negative term defines the
detection of normal (self) data. The positive and negative terms are divided into two groups; a true
shows correct detection and a false shows incorrect detection.

In detection process of NSA, the algorithm can make two types of errors. A false positive defines
the detection of self-data as anomalous, and a false negative defines the detection of non-self data as

1 Normal and self are used interchangeably in this thesis.
2 Anomalous and non-self are used interchangeably.
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normal data. Detection accuracy directly depends on these two types of errors. Therefore minimizing
these errors increases detection correctness.

To minimize the false positive and the false negative errors, the self region determination and the non-
self space coverage by detectors are critical issues. Self region is defined by self samples and their
radius. Mostly, self samples’ radius is selected as constant and it is given as the parameter. On the
other hand, some NSAs find different radius for each self sample using different methods.

The detector representation and matching rule affects the non-self space coverage by detectors. Most
of the NSAs use binary encoding representation and r-contiguous bits as matching rule; two strings
match if they have r contiguous bits in common [3]. Instead of using binary encoding, some of the
negative selection variants use real-valued representation to characterize the self/non-self space and
generate a set of detectors that try to cover the (non-self) complementary subspace [8].

Real valued negative selection algorithms use a specific geometrical shape - rectangle, circle and so
on - or a mixture of geometrical shapes as a detector. Negative selection generates many detectors
to cover non-self space. Due to the specific shapes of detectors, these algorithms have a limitation to
cover non-self space.

This study is motivated from the study of intrusion detection that uses NSA, and is developed to en-
hance NSA’s classification accuracy. Although, the performance of existent NSA is reasonable, it is
possible to enhance NSA classification. Hence, this paper proposes a new real valued negative se-
lection algorithm in order to maximize classification accuracy while minimizing classification errors.
To that end, it is focused on two issues, self space determination and non-self coverage. In this new
NSA, local outlier factor (LOF) and kth nearest neighbor (k-NN) are used to determine self boundary.
Furthermore, generated detectors’ shapes are generally circles. However, some detectors’ shapes can
be changed when they touch the self-data. To make variable shaped detectors, cubic b-spline interpo-
lation method is used. The cubic b-spline finds function of the given self-data which is covered by the
detectors. In this way, these functions determine the boundaries of detectors.

The main contribution of this study was implemented with new negative selection algorithm, called
V-shaped detector. There are several important features of V-shaped detector that distinguish it from
others and handle some issues in negative selection algorithms.

• V-shaped detector adds some properties to detectors to obtain maximum non-self coverage.
Detectors are randomly generated as variable sized circles and the proposed algorithm allows
detectors to contain limited number of self samples. Shapes of detectors that contain self samples
are changed based on the covered self samples using cubic spline. Thus, the algorithm uses
variable sized and variable shaped detectors. This is the first research to use variable shaped
detectors to cover non-self space. This property gives opportunity to minimize holes between
self space and covered non-self space.

• Self space determination is the other core issue in negative selection algorithms, because it
directly affects accuracy of detector coverage. Self adaptability is proposed to determine more
accurate self space. In order to obtain self adaptability, local and global features are combined.
The local feature is extracted using Local Outlier Factor, a density based outlier method. The
global feature is extracted using the kth nearest neighbor method. V-shaped detector does not
need prior knowledge about input data with the use of Local Outlier Factor and kth nearest
neighbor. This is the first research to use the combination of Local Outlier Factor and kth nearest
neighbor for self adaptability.

2



• V-shaped detector algorithm was needed a method to find edge points of self samples, so it
can apply cubic spline to form variable shaped detectors. Hence, edge detection algorithm was
developed as a component of V-shaped detector. This new algorithm can be used in other disci-
plines, i.e. image processing, to extract a shape of input.

• Negative selection algorithms generally use iterative or evolutionary process to generate detec-
tors, but V-shaped detector uses modified Monte Carlo Integration method, a type of estimation
method, to generate detectors. In this modified Monte Carlo Integration method, randomly gen-
erated detectors are not discarded, if they do not satisfy the detector rules. Instead of detectors
discard, their attributes, against the rules, are changed to obey the detector rules. This method
speeds up detector generation process in V-shaped detector algorithm.

The proposed NSA was evaluated using two important data sets, 1999 DARPA Intrusion Detection
Evaluations data sets and Fisher Iris Data. The proposed NSA was developed as a new approach for
one-class classification, meaning a two-class classification that can be trained with samples from one
of the classes. Hence, each data set was divided into training and test data. The proposed NSA and the
known NSA, V-detector, were evaluated based on detection rate, false alarm rate, and the number of
detectors.

A part of these studies has been published in [9] and other part are ready to be published. Therefore, the
significant parts of the explanations in this and the following sections are taken from these publications.

The next chapters of this thesis are organized as follows. First, related work is introduced in Chapter
2. Background information about NSAs is presented in Chapter 3, and the proposed new NSA is
explained in Chapter 4. The experiments and results that are generated by the proposed NSA and
V-detector are evaluated in Chapter 5. The conclusion remarks are given in Chapter 6.
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CHAPTER 2

RELATED WORK

This chapter reviews the studies that are related to the background of the proposed method. These
studies are explained in the following two sections: Section 2.1 presents some major works about all
fields of AIS and Section 2.2 reviews negative selection algorithms in detail.

2.1 Major AIS Works

Artificial Immune System (AIS) attracted the attention of researchers after the first studies, and many
researches have been done on it. AIS emerged as a new branch of Artificial Intelligence (AI) as other
disiplines inspired from biological mechanisms. There are many studies on AIS, and some of them
focused on the categorization of the proposed AIS methods based on their porperties [6],[7]. This
section reviews the studies on existing models.

2.1.1 Introduction to AIS

The biological mechanisms have always been the main source for the development of new compu-
tational models to solve problems. The biological immune system is one of them, and researches
inspired by the biological immunity caused the emergence of a new area, Artificial Immune System
(AIS), for computational intelligence.

The biological immune system is still an active research area for the biology discipline, and as a result
of the researches, many theories have been proposed about the mechanism of the biological immune
system. Hence, various models of AIS were developed inspired by the different biological immune
theories. Garret [6] present these models as immune network, clonal selection, negative selection and
danger theory.

The immune system constitutes of two main mechanisms, innate immunity and adaptive (acquired)
immunity. The innate immunity is the first layer defense mechanism, and the second one is the adaptive
immunity. The innate immunity consists of basic elements the organism is born with such as skin and
physical barriers. The adaptive immunity provides the ability to adapt over time to recognize specific
pathogens, and it creates immunological memory after an initial response to a specific pathogen. The
clonal selection theory was developed to describe the principles of adaptive immunity. The main
features of the clonal selection theory are [10]:

• Clone activated mature cells and generates random changes on clone cells with high rates (so-
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matic mutation);

• Elimination of newly differentiated cells which match self cells;

• proliferation and differentiation on activation of cells by antigens.

The immune network theory was developed to explain the adaptive immune system mechanism, and
it had been introduced by Jerne [11]. The theory states that the immune system maintains an idiotypic
network of interconnected B cells for antigen recognition. These cells interact with each other, and
they interconnect with each other in definite rules to stabilize the network. Two interacting cells are
connected if their affinities exceed a certain threshold. The strength of the connection is directly
proportional to their affinity [7].

The biological negative selection describes T cells maturation process in thymus called T cell tolerance.
T cell’s gene segments are randomly rearranged together by somatic gene rearrangement, and bases
are inserted to create T cell against antigens. The generated cells are eliminated when they recognize
self cells as antigens. In the end of this elimination process, the remaining cells, mature cells, are
released from the thymus. In this manner, these mature cells increase the ability of the immune system
to detect unknown antigens. Inspired by the biological negative selection, the process of negative
selection generates a set of T-cell detectors that can detect any form of non-self in AIS [6].

The main idea of danger theory states that the immune system responds to danger instead of non-self
[12]. Danger theory fundamentally accepts the need for discrimination as other theories. On the other,
the difference between danger theory and others is the answer to what should be responded to. Danger
theory responds danger instead of foreignness, and danger is evaluated by damage to cells specified by
distress signals. These signals are sent out in case of an unnatural death of cells.

2.1.2 Immune Network Theory

Timmis et al. [13], [14] introduced Artificial Immune Network (AINE) method which uses artificial
recognition ball (ARB) to represent a number of identical B cells described in immune network. The
stimulated B cells are subjected to clone and somatic hypermutation ensures that these clones are
differentiated a relatively large proportion of the parent cell. The cells stimulated by particular antigen
are kept in the immunological memory for that antigen. Two B cells are connected based on the affinity
between them. The affinity is measured using the Euclidean distance between the two B cells. The
two B cells are connected when the affinity between them exceeds the network affinity threshold. The
connected B cells are called as ARB. Timmis et al. [14] were tested AINE using Fisher Iris dataset,
and AINE generates the disconnected clusters which provide the variety which allows the immune
system to generalize variations in the data encountered.

Castro and Zuben [15] proposed "Artificial Immune Network Model for Data Analysis" (aiNet) learn-
ing algorithm. This algorithm uses nodes simulating antibodies, while AINE uses nodes inspired by
B cells. Antibodies are receptor molecules that are secreted B cells with the primary role recognizing
and binding with an antigen. One of the important aims of this algorithm is to increase the gener-
alization of antibodies and the network. In order to do that, aiNet suppresses antibodies with low
antigenic and high affinities according to the suppression threshold. There are two suppressive steps in
this algorithm, clonal suppression and network suppression. Hence, the suppression threshold controls
the specificity level of the antibodies, the clustering accuracy and network plasticity. aiNet provides
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the reconstruction of the metric and topological relationships. Reproducing the topological relation-
ships causes that similar information are mapped onto closer antibodies, eventually the same one and
clustering of the input space.

Liu and Xu [16] introduced a cooperative artificial immune network called CoAIN to improve search
ability and search speed. The CoAIN uses cooperative strategy inspired by particle swarm behavior.
This means that each network cell has the ability to cooperate with other individuals, and this coop-
eration adjusts position according to its own experience and the experience of the best cell. In this
way, this cooperation ability finds the best position encountered by itself and its neighbor. In the other
feature of CoAIN, antibodies with fitness dominate clonal selection, and smaller step size of mutation
is used in clonal selection to find global optimization. Step size of mutation is decreased smoothly with
the increase of generation to fit for finer search. This paper shows that some basic immune principles
together with simple cooperation behavior makes possible to solve complex optimization tasks.

Coelho and Zuben [17] proposed Concentration-based Artificial Immune Network (cob-aiNet) to solve
single optimization problems, and they [18] introduce the extension of cob-aiNet to solve multi-
objective optimization problems. The cob-aiNet exploits the features of a concentration-based immune
model. Thus, it controls the dynamics of the population, and uses new mechanisms to stimulate and
maintain the diversity of the individuals in the population.

Zhong and Zhang [19] present a novel supervised algorithm based on the immune network theory,
the artificial antibody network ( ABNet). In this method, every antibody consists of two important
attributes, its center vector and recognizing radius. The antibody can recognize all antigens within the
range of its recognizing radius. ABNet was designed for classifications of multi-/hyperspectral remote
sensing images.

2.1.3 Clonal Selection

Castro and Zuben [20], [21] popularized the artificial form of clonal selection developing an algorithm
called clonal selection algorithm (CSA). They applied CSA to different problems and compared it with
the standard genetic algorithm (GA) [21]. Then, they [10] modified the algorithm and renamed it to
CLONALG, which is the most known clonal selection algorithm. Two forms of CLONALG were
introduced, one for optimization tasks and one for pattern matching. CLONALG takes into account
the following main immune features;

• maintenance of a specific memory set;

• selection and cloning of the most stimulated antibodies;

• death of nonstimulated antibodies;

• affinity maturation

• reselection of the clones according to their antigenic affinity, generation, and maintenance of
diversity.

Brownlee [22] introduced Clonal Selection Classification Algorithm (CSCA) which is mainly based
on CLONALG. Concern of CSCA increases classification accuracy. CSCA is considered as a function
optimization procedure that maximizes the number of correctly classified patterns and minimizes the
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number of misclassified patterns. CSCA is considered as a function optimization procedure that max-
imizes the number of correctly classified patterns and minimizes the number of misclassified patterns.
The algorithm is constituted of four main steps:

1. Initialization - Initialize the antibody population.

2. Training looping - Involve selection and pruning step, cloning and mutation step and the inser-
tion the generated clones.

3. Final Pruning - Prepare fitness scores and perform pruning

4. Classification - Classify using the antibody population.

Oliveira et al. [23] proposed Clonal Selection Classifier with Data Reduction (CSCDR) which is
mainly based on the CSCA. CSCA is modified to increase the performance and to decrease the number
of memory cells. The mutation process is changed to get better results in search space process, and a
control parameter is inserted to decrease the number of memory cells produced.

Li et al. [24] introduced Reconfigurable Space Clone Selection Algorithm (RSCSA), which is focuses
on the antibody population size and antibody search space. RSCSA reduces the search space and
antibody population size. Due to this reduction, the algorithm has strong robustness and fast convergent
speed.

2.1.4 Danger Theory

Aickelin and Cayzer [32] presented the one of the first major studies about the danger theory from
AIS perspective. This study explains Matzinger’s Danger Theory in the first part. Then, the danger
theory is evaluated from the perspective of AIS practitioners. In this evaluation, the danger concept
is discussed, and the danger theory is compared with the other AIS models, i.e. negative selection.
Beside this, they debate about how to implement the danger theory based on the AIS perspective. In
the last section, the AIS applications are evaluated based on the danger theory.

Greensmith et al. [33] described the danger theory and AIS applications. The current state of intru-
sion detection systems (IDS) was presented. They discussed the application of the danger theory on
IDS, and claimed that significant improvements will be provided. Kim et al.[34] and Roper [35] also
proposed that the danger theory is more suitable than other AIS models to apply on IDS.

Aickelin and Greensmith [36] introduced two algorithms, the Dendritic Cell Algorithm (DCA) and
the Toll-like Receptor algorithm (TLR), developed based on the danger theory. These algorithms were
developed inspired by different aspects of the danger theory. DCA and TLR proved that it is possible
to build feasible AIS algorithms based on the principles of the danger theory.

Zhu and Tan [37] proposed a danger theory based learning (DTL) model, which mimic the mecha-
nism of the danger theory. The algorithm was tested with spam filtering problem and compared with
classical machine learning approaches, Support Vector Machine (SVM) and Naive Bayes (NB). In
experiments, the DTL model outperformed SVM, NB.
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Table2.1: Application Areas of AIS [1].

Major Minor
Clustering/Classification Bio-informatics

Anomaly Detection Image Processing
Computer Security Control

Numeric Function Optimisation Robotics
Combinatoric Optimisation Virus Detection

Learning Web Mining

2.1.5 Applications

AIS have many application areas today after first proposal. Hart and Timmis [1] surveyed AIS studies
and classified application areas of AIS into 12 headings. These categories are presented in table, and
according to the number of researches on these categories, categories were divided into major and
minor. Based on these categorizations of application areas, Hart and Timmis summarized application
areas of AIS as (1) Learning (2) Anomaly Detection and (3) Optimisation. Application areas were
mapped to these groups: Learning contains clustering, classification and pattern recognition, robotic
and control applications; Anomaly Detection includes fault detection and computer and network secu-
rity applications; Optimisation consists of real-world problems which essentially include combinatoric
and also numeric function optimisation.

Garret [6] surveyed AIS models and gives the application areas for each of them. NSA application
areas are change detection, fault detection and diagnosis, network intrusion detection; Clonal selection
application areas are pattern recognition, automated scheduling, document classification, uni-modal,
combinatorial and multi-modal optimization; Immune network application areas are detecting gene
promoter sequences, diagnosis data mining and cluster analysis; Danger theory application area is
intrusion detection.

Freitas and Timmis [5] discussed the application of AIS for data mining. They evaluated all AIS mod-
els and found limitations in existing AIS for data mining. Limitations they discovered and suggestions
for future researches were mentioned in order to mitigate corresponding limitation.

2.2 Negative Selection Algorithm (NSA)

Artificial Immune System (AIS) covers many models inspired by the biological immune system. The
first model, negative selection algorithm (NSA), among AIS models was introduced by Forrest et al.
[2]. Many researches have been performed after the introduction of NSA. These researches proposed
various NSA, and they are differentiated in data representation, detector representation, self definition
and matching rule.

Forrest et al. [2] proposed NSA inspired by discrimination between self and non-self in immune sys-
tem. Therefore, NSA imitates the T cell maturation process, which gives the ability to T cells to make
discrimination between self and non-self. To implement NSA, there are some critical development
considerations; data representation, self definition, detector coverage, matching rule. This study con-
verts the given data to binary representation, so detectors are also represented in binary form. Self
was defined as the string to be protected, and other (non-self) to be any other string. The self string
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Figure 2.1: Generation of valid detector set [2].

is logically split into equal-size segments to generate valid detectors. This produces the collection S
of self substrings. In the second step, detectors are randomly generated, and generated strings match
strings in S are eliminated. Strings that do not match any string in S are added to the detector set. Two
strings match, if they match at least r contiguous locations. Figure 2.1 shows all these the detector
generation phase.

Freitas and Timmis [5] discussed the application of NSA for data mining, so features of NSA were
explored. The basic framework of the negative selection process to generate detectors were given in
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Figure 2.2: The lifecycle of a detector [3].

Algorithm 1.

Algorithm 1: Pseudocode of the Negative Selection Process to generate detectors [5]
Data: a set of normal (self) data instances (S )
Result: a set of mature detectors that do not match any instance in S
repeat

Randomly generate an immature detector
Measure the affinity (similarity) between this detector and each instance in S )
if the affinity between the detector and at least one instance in S is greater than a
user-defined threshold then

discard this detector
else

output this detector as a mature immune detector

until stopping criterion;

Hofmeyr and Forrest [30],[3] proposed the artificial immune system (ARTIS) method, and they ap-
plied it to intrusion detection. This method represents detectors as bit strings, and uses the r contigu-
ous matching rule. Beside these, the study defines the lifecycle of a detector, so it provides dynamic
detector populations and adaptation ability in a continuously changing environment. In this lifecycle,
a detector can be in one of the five states: immature, mature, activated, memory or death. Figure 2.1
presents the lifecycle of a detector. Randomly generated detector is considered as immature detectors,
and if it does not match self data during the tolerization period, it becomes a mature detector. A mature
detector becomes an activated, when it exceeds the activation threshold (match threshold). After that,
a human security officer’s confirmation (costimulation) is needed for an activated detector to make it a
memory detector. Immature, mature and activated detectors can die, but memory detectors go to acti-
vated state, when they match non-self. An immature detector dies, if it matches self. A mature detector
death is occurred, when it does not exceed activation threshold during lifetime (life expectancy). An
activated detector dies, if it does not receive confirmation in a time period (costimulation delay).

11



Gonzalez et al. [25] presented the effects of the low-level representation and its matching rules on the
performance of NSA in covering the non-self space. They explored and compared the different binary
matching rules: r-contiguous matching, r-chunk matching, Hamming distance matching, and Rogers
and Tanimoto matching. This study indicates that the matching rule for NSA needs to be chosen when
it represents data accurately in problem space.

Gonzalez et al. [26] proposed a Real-Valued Negative Selection (RNS) algorithm. RNS algorithm
uses real numbers to represent self/non-self space RNS algorithm and binary NSA were compared
for anomaly detection problem. Then, advantages and disadvantages of the real-valued representation
were presented based on the binary representation. Real-valued representation advantages are: closer
to original problem space, allowing the use of methods from computational geometry to speed-up the
algorithms, facilitating the use of other machine learning methods to find useful high level knowledge
i.e. [38]. Disadvantages of real-valued representation are: making analysis of the problem space
harder, not suitable for the representation of categorical attributes.

Dasgupta and Gonzalez [8] explored positive selection and negative selection, and they were compared
using real-valued representation. Detectors are represented as rectangle with real numbers. Based on
this comparison, advantages and disadvantages of these approaches were described. This comparison
showed that positive selection is more precise, but it needs more time and space resources. The negative
selection is less precise, but it needs fewer time and space resources.

Real-valued representation is used in many applications due to the nature of applications’ domains,
i.e. intrusion detection from network traffic. The non-self coverage gets difficult for the problems
with natural real-valued representation. This is because, the real-valued space is continuous and the
boundary of self and non-self is ambiguous in this space. Therefore, the non-self coverage is a major
issue for real-valued NSA (RNSA) [26], [27], [39], [40], [41], [42]. Detector representation and self
definition are the determinant for the non-self coverage. A part of research have been focused on the
detector representation and distribution in the non-self space in order to maximize the coverage[27],
[41],[39]. On the other hand, the recent research is focused on adaptive-self that implicates the variable
self radius [43], [40], [42] . The self radius is an important value to control the detection rate and false
alarm rate.

In real-valued NSAs, the detectors are usually represented as circles or rectangles for two dimensional
problems. Nevertheless, some NSAs use mixture of specific geometrical shapes to represent the de-
tectors. However, some of NSAs generate the detectors with different sizes. Based on the data and
detector representation, the matching rule is changed, and Euclidean distance matching is usually used
in real-valued representation.

Dasgupta and Gonzalez [8], [44] represent the detectors generated by genetic algorithm as rules. They
present the general form of detector rules (detectors) as follows:

Rj: If Condi then nonself, j = 1,...,x

Condi= x1 ∈ [lowi
1, highi

1] and ... and xn ∈ [lowi
n, highi

n]

where (x1,..., xn) is a feature vector, and [lowi
1,highi

1 ] specifies the lower and upper values in the
condition part. In this definition, m is the number of detector rules, and n is the number of feature
dimensions. The detectors correspond to hyper-rectangles in a multidimensional space. In this study,
self region is determined by the level of variability (v) parameter, which is interpreted as the radius of
self samples.
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Gonzalez et al. proposed [27] a Randomized Real-Valued Negative Selection Algorithm (RRNS). This
algorithm takes the detector radius and the self variability threshold (self sample radius) as parameters,
so each self sample and detector is represented as circles in two-dimensional problem space. These
circles have a fixed size specified by the relevant parameter. Based on the self radius parameter, the
algorithm uses Monte Carlo method to estimate the volume of self region.

Balachandran et al [41] present a work focused on developing a framework for generating multi-
shaped detectors in real-valued NSA. This new extended real-valued NSA uses multiple shape (sphere,
rectangle or ellipse) detectors for covering two dimensional non-self space. In this NSA, self space is
also specified by the constant self radius parameter.

Ji and Dasgupta [39],[45],[46],[47] proposed a new real-valued NSA, which generates variable size
detectors. In this NSA, the detectors are represented as circles in two dimensional space and the radii
of these circles are variable. On the other hand, the radius for all self samples is taken as the constant
parameter and used to check whether a new generated detector is in any self circle or not. If it is, then
discarded, otherwise the distance between the center of detector and the nearest self sample is assigned
to this detector radius. This is called boundary-aware method [46].

In the work by Bezerra et al [43], an adaptive radius immune algorithm (ARIA) was developed. This
is one of the first researches on variable self radius for each self sample. Although, ARIA is closer
to clonal selection algorithm, this adjusted self radius has crucial effect in AIS. ARIA considers the
density information to form its representation. ARIA takes an initial value of self radius and based on
the local density of samples, this initial value is adjusted for each sample.

Zeng et al [40] introduce a self-adaptive negative selection algorithm (ANSA). ANSA can adapt the
varieties of self/nonself space by adjusting self radii and detectors’ radii. Yuel et al [42] worked on
optimization of self set for real-valued NSA. In order to do that, self samples are processed in three
steps. In the first step, wrong samples are discarded according to "3 σ" criterion. In the next step,
the self radius is adjusted by the self’s probability density. In the last step, unnecessary self samples,
whose covered region is already overlapped by others, are discarded.

The major characteristics of a negative selection algorithm can be identified as follows:

1. Negative representation [48]: NSA identifies and represents the complementary space of the
given samples in training phase. Negative representation and positive representation algorithms
have been compared in many researches to extract the strength and applicability of negative
representation [49], [8], [50], [51].

2. Usage of detector set as the classification mechanism [48]: Detector set usage provides the
opportunity to NSA to distribute its processes, i.e. detectors generation.

3. One-class classification [48][5]: NSA was developed inspired by the self/non-self discrimination
mechanism of the biological mechanism. Therefore, NSA is trained with samples from the one
class (self) and then classifies the given instance into one of two classes (self/non-self). Although
some researches tried to extend NSA for multiclass classification problems[8, 44], large majority
of the researches have been applied to one-class classification problems.

4. Adaptation capability[30], [3] [52], [53],[54]: There are many researches to develop adaptive
NSAs inspired by the adaptation ability of biological immune system. These adaptive NSAs
use some mechanisms, i.e. memory, and processes, to obtain dynamic change of the detectors
population.
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Particularly, NSA was developed for intrusion detection research [2]. Negative selection algorithm
(NSA) can be used in many domains today, but the most natural application domain of NSA is intrusion
detection [8], [28], [29], [30], [31].
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CHAPTER 3

BACKGROUND

Negative selection algorithm (NSA), especially real-valued NSA, is the one of the most popular AIS
models interested by the researchers. There are a great many studies to increase NSA classification
accuracy, while some of other studies focus on the comparison NSA with other related machine learn-
ing methods such as one-class classification methods to present the advantages of NSA. In this study,
a new real-valued NSA is introduced, so the studies about real-valued NSA are in the scope of next
subsections. The studies about the increasing classification accuracy mainly focus on two concepts of
NSA, self definition and detector representation. Following subsection presents detailed information
about NSA according to self definition and detector representation aspects. The later subsections give
information about one-class classification, k nearest neighbor, Local Outlier Factor and cubic spline.
These concepts and methods are related with this study, so information about them is given in next
subsections.

3.1 Negative Selection Algorithms

Negative selection method models non-self space using self samples; whereas positive selection method
models self space using self samples. Both methods classify a given data either as normal data or
anomalous data and raise an alarm for an anomalous case.

In Dasgupta and Gonzalez [8], negative selection and positive selection were compared. This compar-
ison showed that positive selection is more precise, but it needs more time and space resources. The
negative selection is less precise, but it needs fewer time and space resources [8].

In order to mention the classification accuracy of NSA, positive and negative terms should be defined.
A positive term means the detection of anomalous (non-self) data while a negative term means the
detection of normal (self) data. Based on these definitions, classification results are categorized into
four groups:

• A true positive (TP) occurs when non-self data is detected as anomalous data.

• A false positive (FP) occurs when self data is detected as anomalous data.

• A true negative (TN) occurs when self data is detected as normal data.

• A false negative (FN) occurs when non-self data is detected as normal data.

The false positive and false negative represent the types of classification errors. NSA should min-
imize them to increase the classification accuracy. Figure 3.1 represents the general definitions for
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Figure 3.1: General definitions for classification and NSA

classification and NSA.

NSA is suitable for one class classification problems which means that each given data point belongs
to one of two classes. Support Vector Machine (SVM) is the well-known method for one class clas-
sification problems. In Ji [55], SVM and V-detector were compared. SVM needs extra knowledge to
choose the proper kernel function used to classify data. Besides this, it has some limitations for very
large training data and discrete data. On the other hand, NSA does not need prior knowledge about the
data and does not have any limitations for very large training dataset and discrete data [55].

3.1.1 Self Definition

The main factors that affect the classification accuracy of NSA are the self space determination and
the non-self space coverage. The self radius has crucial effect on the self space determination and the
self radius is given as a parameter almost in all NSA, i.e. [8], [45], [41]. Figure 3.2 illustrates the self
radius selection effect on the self space determination. Figure 3.2(a) shows the self samples with small
radius and Figure 3.2(b) shows the self samples with large radius.

In Figure 3.2(a), the self radius is too small and self samples cannot cover sufficient self space. In
this case, high false positive rate occurs. However, selecting it too large can also be problematic.
Figure 3.2(b) illustrates that the self radius is too large and part of the self samples covers the non self
space. This causes high false negative errors.

V-detector, a well-known NSA develops a boundary-aware method to specify the self space using self
samples [46]. This method takes self radius (rs) as a parameter and uses it in detector generation phase.
A generated detector is checked whether the distance between its center and a nearest self sample is
greater than rs. If not, then the generated detector is discarded. Otherwise, the distance is assigned to
the radius of the generated detector. This means that if a detector center is outside of the self circle
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Figure 3.2: (a) Small self radius. (b) Large self radius.

Figure 3.3: (a) Boundary-aware. (b) Variable self radius.

space, then it is valid detector and can cover a part of self circle space except self circle center namely
self sample. Figure 3.3(a) illustrates the detected self space and generated detectors by V-detector with
boundary-aware method. Nevertheless, this method does not take into account self features in the self
space determination.

The recently developed NSAs calculate each self sample’s radius using probabilistic techniques to
find more accurate self space for the given self samples [40],[42]. Thus, a radius of each self sample
is specified by the given samples’ features and this provides self adaptability to NSA. Figure 3.3(b)
presents the variable self radii which give opportunity to optimize the maximization of self space
coverage and the minimization of non-self space coverage.

3.1.2 Detector Representation

The detector representation affects the non-self space coverage. Many NSAs represent detector using
real-values [8], [27], [39], while others use binary encoding to represent detectors [2],[3]. Obviously
there are two reasons to use binary representation. Binary representation constitutes a finite space
that makes the analysis of the problem space easier. Besides this, binary representation is proper
to represent categorical attributes [47]. The original problem space is usually continuous and real
valued representation is more proper for these problems, i.e. intrusion detection [28]. Real valued
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Figure 3.4: Examples of detectors’ geometrical shapes.

representation provides to use computational geometry to speed-up the algorithms. Beside this, it also
gives opportunity to apply other machine learning techniques to find useful high level knowledge.

Some real-valued negative selection algorithms represent detectors as a specific geometrical shape,
i.e. circle [39], rectangle [8]for two dimensional problem space. On the other hand, some of them
use a mixture of geometrical shapes to represent detectors [41]. Figure 3.4 shows circle, rectangle
and a mixture of circle and rectangle detectors respectively. Due to specific shapes of detectors, these
algorithms have limitation to cover non-self space. Therefore, there are holes, uncovered non-self
space, between detectors and self space. These holes indicate classification errors.

In simplified detector generation process, NSA randomly generates a detector and checks whether it
matches self or not. If it does not match self, it is accepted as valid detector otherwise it is regenerated
and checked again. Figure 3.5 shows the simplified detector generation process. In some researches, a
detector which matches self is modified according to matching self instead of the detector regeneration
[46].

Matching rule is used in detector generation and detection processes. In detector generation, candidate
detector is checked to see whether it matches with any self-data using matching rule. If it matches,
then it is regenerated; otherwise, it is added to detector set. On the other hand, in detection processes,
test data is classified according to the matching rule as a self data or a non-self, anomalous data.

Matching rule directly depends on the detector representation. Although there are many matching
rule in real-valued representation, Euclidean distance based matching rule is usually used especially
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Figure 3.5: The simplified detector generation process.
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Figure 3.6: Illustration of one-class classification problem in two dimensional space.

detectors represented as circles in two dimensional space or hyper-spheres in n-dimensional space.
Using Euclidean distance based matching rule means if a given data is within boundaries of a detector,
then it satisfies the matching rule. The traditional definition of Euclidean distance in two dimensional
space is as follows:

DEuclidean(x, y) =

√
(x1 − y1)2 + (x2 − y2)2 (3.1)

3.2 One-Class Classification

In one-class classification, a specified set of data is modeled in the training phase, and a new given
instance is detected, if it resembles the training data. In the training phase, only one class samples are
available in one-class classification, and this is the difference from conventional classification. In Tax
study [56], the instances from the training class are called target instances, and the other remaining
instances are called outlier instances. Figure 3.6 illustrates one-class classification problem in two
dimensional space. In this figure, the black circles show the training instances, and solid line indicates
a possible one-class classifier that determines the boundary between target and outlier instances.

The proposed methods to solve the one-class classification problem can be categorized into several
goups.Tax [56] grouped them into three main approaches: the density estimation, the boundary meth-
ods and the reconstruction methods.

The density estimation methods estimate the density of the training data and set a threshold on this
density, thus they try to find a one-class classifier. Several distributions can be assumed, such as a
Gaussian or a Poisson distribution, and to test new instances, numerous tests, called discordancy tests,
are used [56].

Solving a more general problem is difficult, when a limited amount of training data is used. More
data might be required than the original problem to solve more general problems. This means that
estimating a complete data density might also be too difficult. Therefore, only a closed boundary
around the target data is optimized in the boundary methods [56]. Support Vector Machine (SVM) is
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Figure 3.7: Illustration of k-NN classification.

the well-known boundary method [57].

The reconstruction methods have been constructed to model the data. A model is selected and fitted
by using prior knowledge about the data and making assumptions about the generating process. A new
given instance is defined in terms of a state of the generating model. If more compact representation
of the target data is found, then the noise contribution is decreased. This compact representation
simplifies processing without harming the information [56].

3.3 k Nearest Neighbor

The k Nearest Neighbor (k-NN) algorithm is the most basic instance-based method. k-NN classifies
objects based on nearest training examples in the feature space [58]. The nearest neighbors of an
instance are found using Euclidean distance. An arbitrary instance is defined by feature vector, x=x1,
...,xn. Then the distance between two instances xi and xj is calculated as follows:

D(xi, x j) =

√√
n∑

r=1

(xi
r − yi

r)2 (3.2)

The given instance is classified by a majority vote of its neighbors. The number of neighbors is
specified by k value. The neighbors are calculated from a set of instances which their correct classes
are known. Figure 3.7 illustrates the k-NN classification of instances in two dimensional space. There
are two classes, positive and negative examples presented by "+" and "-" respectively. If k is selected
as 1, then the instance x is classified as positive examples. However, if kis chosen as 5 as in Figure 3.7,
then k-NN classifies the instance x as a negative example

3.4 Local Outlier Factor

In the literature, there are too many outlier detection methods. They can be categorized as distance-
based, density-based and clustering-based methods. The Local Outlier Factor (LOF), which is a
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density-based method, was selected to find variable self radius of each sample. LOF technique com-
putes local outlier factor (LOF) value for each point in the dataset, indicating their degree of outlier-
ness [59]. The LOF of a point is found based on the local density of one point’s neighborhood. The
point’s neighborhood is defined by the MinPts parameter, which is the number of nearest neighbors.
Points with a high LOF are treated as outliers. LOF uses the number of neighbors rather than a specific
distance or similarity. In this way, this approach is able to handle data sets with varying densities [60].

Algorithm 2 presents the pseudo code of LOF implementation.

Algorithm 2: Local Outlier Factor (LOF) algorithm
Data: MinPts : the number of nearest neighbors
Data: input points
Result: outliers degree, LOF values, of input points
for each MinPts increasing predefined step from lower bound to upper bound do

for each input point do
compute k-distance value of each point

end
for each input point do

calculate the local reachability density (lrd) for a point using its k nearest neighbors and
their lrd values;

end
for each input point do

compute the local outlier factor for a point using its lrd value and those of its k nearest
neighbors, for the current value of MinPts;

end
end
Sort local outlier factors of points in descending order.
Change LOF values of first points according to noise fraction, ε.

Euclidean distance is used to find the k-nearest neighbors of each point. Then, based on the k-nearest
neighbors, a local reachability density for each point is calculated given equation in Breunig et al [59].
In the next step, local outlier factor is computed using local reachability and k-nearest neighbors. All
points are sorted in descending order with respect to their LOF values. Finally, LOF values of the first
ε percentage points are changed to the biggest LOF value of the rest of the points. ε is a parameter and
it gives opportunity to minimize effect of noisy data on other points. The runtime complexity of LOF
algorithm is O(n2).

Varying density is not a problem for the LOF method, but there is an issue of how to select parameters,
such as MinPts. Therefore it was suggested that the LOF of each point should be calculated for a range
of values of MinPts [59]. Figure 3.8 illustrates LOF values of sample points in two-dimensional space.
LOF value of a point is increased when its local density is decreased.

3.5 B-Spline

A spline is a function consisting of polynomial pieces. These polynomial pieces are joined together
with certain smoothness conditions. A simple example is the polygonal function, B spline of degree 1,
and its pieces are linear polynomials joined together to achieve continuity as in Figure 3.9. The points
xi = (t1,t2,. . . , tn) where the function changes its character are named as knots in the theory of B splines
[61]. Thus the spline function shown in Figure 3.9 has eight knots.
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Figure 3.8: Illustration of LOF values of points.

Figure 3.9: First-degree spline function.
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Such a function is complicated to define in explicit terms, so it is defined as follows:

S (x) =



S1(x) x ∈ [t1, t2]

S2(x) x ∈ [t2, t3]

.

.

.

Sn−1(x) x ∈ [tn−1, tn]

(3.3)

If the function S defined by equation (3.3) is continuous, it is called a spline of degree 1. It is charac-
terized by the following three properties:

1. The domain of S is an interval [a, b].

2. S is continuous on [a, b].

3. There is a partitioning of the interval

a = t1 <t2 <... <tn = b

where S is a linear polynomial on each subinterval [t1, ti+1].

In general form of B splines, a function S(x) is a polynomial spline of degree n with knots . . . <xk <xk+1

<. . . if and only if it satisfies the following two properties:

• Piecewise polynomial: S(x) is a polynomial of degree n within each interval [xk, xk + 1);

• Higher-order continuity: S(x), S(1)(x), ... , S(n-1)(x) are continuous at the knots xk.

General formula can be given as follows:

S (x) =

∞∑
i=−∞

CiBk
i−k(x) (3.4)

where Ci presents coefficients and Bi−k shows basis functions (k is spline degree). If k is selected as
3, this is called cubic spline. The curve that is drawn using cubic spline can be seen in Figure 3.10.
Figure 3.10(a) shows the drawn curve using all points, while Figure 3.10(b) shows the drawn curve
using only edge points.
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Figure 3.10: (a) Curve drawn by cubic spline with all points. (b) Curve drawn by cubic spline with
edge points.
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CHAPTER 4

V-SHAPED DETECTOR: A NEGATIVE SELECTION
ALGORITHM

Variable self radius and detector representation has a considerable effect on the classification accuracy
as explained in the previous chapter. Hence, the main concern of this study is on the definition of self
space and the real-valued detector representation.

This chapter introduces the proposed NSA, variable shaped detector NSA (V-shaped detector). The
first section describes the problem domain of the new NSA. The second section presents the new "self
space" definition. In the third section, detector representation and generation process is explained in
detail, and the last one gives the proposed algorithm.

4.1 Anomaly Detection

The aim of anomaly detection is to classify a given state as normal or anomalous by forming a profile
of the normal state of a system. A set of features can be used to represent the state of a system based
on the work by Dasgupta and Gonzalez [8].

Definition 4.1.1 (System state space). A vector of features, xi = (xi
1,. . . , xi

n), represents a state of the
system and each feature is normalized to [0.0, 1.0]. The state space is represented by U ⊆ [0.0, 1.0]n

for n dimensional space, where n denotes the number of features. Elements of the set are the features
vectors which correspond to all possible states of the system.

Definition 4.1.2 (Normal subspace). A normal state of the system is represented by a set of feature
vectors, Self ⊆ U. A complement of this set gives anomalous states of the system, Non-Self = U - Self.
The Self (Non-Self) set can be defined by its characteristic function xsel f : [0.0, 1.0]n → {0 ,1}.

xsel f =

 1 if x ∈ Self

0 if x ∈ Non-Self
(4.1)

Definition 4.1.3 (Anomaly detection problem). The normal space characteristic function xsel f is built
using given a set of normal samples Self’ ⊆ Self. This function should classify a given state of the
system either as normal or anomalous.
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4.2 Self Space

Negative selection algorithms (NSA) generate detectors to cover the complementary space of self.
Hence, the self space should be determined before the detector generation process. The self space is
specified by the self set, S, but NSA can only use self samples, S ′ ⊆ S, to find the self space. Therefore,
NSA model the self set, S, as a set Ŝ , which is defined in terms of a set of self samples, S ′. There is an
assumption in this model; if an element is close enough to a self sample, then it is considered as self
[27]. The closeness is defined by a radius of a self sample, ri

sel f . Each self sample has its radius which
can be different from the others. The self radius, ri

sel f , specifies the maximum distance between an
element and the self sample, si. The problem space is represented by U ⊆ [0.0, 1.0]n for n dimensional
space. Based on these definitions, a set Ŝ can be given as follows:

Ŝ = {x ∈ U |∃si ∈ S ′, ‖si − x‖ ≤ ri
sel f } (4.2)

The crucial issue for a set Ŝ is determination of self samples’ radii. A self radius is calculated to
consider combination of global and local features. Thus, the drawbacks of globality and locality can
be minimized.

The global feature is extracted using a type of kth nearest neighbor (k-NN). First, k value is computed
using MaxCosine value described in the next subsection. Then the average distance of kth nearest
neighbor, µknn, and the standard deviation, σknn, are calculated. The sum of average k-NN distance and
the standard deviation is calculated as

ωknn = µknn + σknn (4.3)

In addition to the global feature, local outlier factor, a density based outlier method, is selected to add
a local feature to the self radii. In Local Outlier Factor (LOF) method, a local outlier value of each self
sample which indicates its degree of outlier-ness is calculated [45]. LOF algorithm ran for the range
of values of MinPts, from 20 to 50. The maximum of all the LOF values over this range was chosen
as its LOF for each point.

ri
sel f = ωknn × LOF i (4.4)

The self radii gain variability using LOF value and this provides opportunity to avoid the drawbacks
of the constant self radius usage explained in the previous chapter. Figure 4.1 presents the variable self
radii of setosa instances from Fisher’s Iris data set. In Figure 4.1(a), the self radii of setosa instances
explicitly shows the self space specified by the self model, which is defined in terms of a set of self
samples. The variability of self radii can be clearly seen in Figure 4.1(b).

4.3 Detector Representation

Negative selection algorithms (NSA) generate a set of detectors that covers non-self space after the
self space determination. The detectors set should be defined before the generation process. In the
proposed NSA, detectors are generated as circles in two dimensional space but they are able to contain
the self samples. Hence, detectors are represented generally as circles, but detectors which cover self
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(a) Self space for setosa from Fisher’s Iris data set.

(b) Self radii for some setosa from Fisher’s Iris data set.

Figure 4.1: Self space and variable self radii for setos instances from Fisher’s Iris data set.
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Figure 4.2: Variable shaped detectors.

samples are curved based on self samples. Thus, the area of holes between detectors and self data are
minimized. Figure 4.2 represents variable shaped detectors.

In the new NSA, all self samples have to be in the same half side of a detector, vertical or horizontal.
The main aim of this rule is decreasing the algorithm complexity. This representation is called variable
shaped (V-shaped detector) detector because the shape of the half side that contains the self samples
can be in any form. Figure 4.3 shows detectors that can cover self samples.

To make a curved detector, cubic b-spline interpolation method is applied. Cubic b-spline finds a
function of given points and this function tries to touch all the given points. In this case, the function
does not define the boundaries of the shape created by input points as described in next subsection.
Therefore, to find meaningful function, edge points, E ⊆ S’ , of the self samples should be found. In
order to find edge points, edge detection algorithm was developed. Edge detection algorithm and cubic
b-spline will be described in next subsections in detail.

The proposed NSA generates a detector randomly and this generated detector may cover edge points.
In this case, if the covered edge points are too far from each other, the function found by cubic b-spline
does not specify the real boundaries of self samples. Hence, the covered edge points should have
neighborhoods that create a path between all covered points. The neighborhood is defined by self radii
of the edge points. Each distance between two nearest neighbors should be less than or equal to sum of
these points’ self radii. In the end, cubic b-spline describes a function using the covered edge points.

The proposed NSA defines a detector, d j, as a point, (d j
1, d j

2), radius, (r j) and an array for edge points,
e j, in two-dimensional problem space. Each self sample, si, is described by a point, (si

1, si
2) and its self

radius, ri
sel f , on the basis of the explanations in previous subsection. In this detector representation, a

detector can cover edge points of self-samples and this coverage is defined as follows:

IN(d j) = {∀si ∈ E, ‖si − d j‖ ≤ (ri
sel f + r j)} (4.5)
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Figure 4.3: Illustration of detectors that contain the self samples.

The covered edge points are kept in the array, so the number of covered points is limited by a constant,
(c).

The second rule in the detector representation mentions that all covered edge self points should be in
the same half side of a detector. This rule is stated as follows:

HALF1k(d j) = {∀si ∈ IN(d j), si
k ≤ d j

k} (4.6)

HALF2k(d j) = {∀si ∈ IN(d j), si
k > d j

k} (4.7)

HALF(d j) = {HALF11(d j) ∨ HALF12(d j) ∨ HALF21(d j) ∨ HALF22(d j)} (4.8)

where k shows the dimension of the problem space. These equations present two halves of a detector,
but there are four halves, two vertical and two horizontal, in two-dimensional space (k=2).

The other rule defines a path between all covered edge points and in this definition; a distance between
the two nearest neighbors cannot be greater than the sum of these points’ self radii. The path is
described as follows:

PAT H(d j) = {∀si ∈ IN(d j)|∃sk ∈ IN(d j), si , sk ∧ ‖si − sk‖ ≤ (ri
sel f + rk

sel f )} (4.9)

Eventually, the detectors set, D, can be defined as follows:

D = {∀d j ∈ U, |IN(d j)| = 0 ∨ (|IN(d j)| < c ∧ HALF(d j) ∧ PAT H(d j))} (4.10)

Detection of the edge points are examined in the next subsections in detail.

4.4 Edge Points Detection

The edge points need to be found in order to apply B splines interpolation. Figure 4.4 represents this
fact. In the other case, B splines interpolation tries to form a function to touch all input points. The
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(a) Input points and probable corresponding curve.

(b) Edge points and corresponding curve.

Figure 4.4: Input and edge points and their corresponding curves.

new method, which is called Edge Detection (ED) in Algorithm 2, was developed to find the edge
points.

ED deals with each point of two-dimensional input one by one. The algorithm starts by finding the
neighbors of a point and then traverses the neighbors in counterclockwise direction. Figure 4.5 shows
the point, P1, the circle with radius, r and its neighbors. The point P1 and its neighbors P2 and P3
form a triangle. P2 is called current neighbor and P3 is called next neighbor. The cosine value of
the angle between the current neighbor (P2) and the next nearest point (P3) is computed based on the
cosine law as follows:

a2 = b2 + c2 − 2bccosA (4.11)

The triangle edges a, b, c are calculated by Euclidean distance and a, b and c are represented with (x1,
y1), (x2, y2) and (x3, y3) respectively.

a =

√
(x3 − x2)2 + (y3 − y2)2 (4.12)

b =

√
(x3 − x1)2 + (y3 − y1)2 (4.13)

c =

√
(x2 − x1)2 + (y2 − y1)2 (4.14)

Thus the cosine value of angle A is
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Figure 4.5: Traversing the neighbors of a point.

cosA =
b2 + c2 − a2

2bc
(4.15)

Afterwards the computed cosine value of the angle is compared with a predefined value, MaxCosine.
If it is greater than the MaxCosine, then this point is edge point. Otherwise, algorithm makes P3
as current neighbor and a nearest point of P3 in counterclockwise direction as next neighbor. Then,
MaxCosine is computed again for these points. Based on these explanations, the runtime complexity
of ED algorithm is O(k.n), where k shows the number of neighbors of a point and its maximum value
may be the number of points, n. Therefore, ED algorithm’s runtime complexity is O(n2) .

The other important point is the relation between the radius of the circle and the predefined an-
gle MaxCosine. In normal distribution, the inner point has at least six neighbors for 60 degree of
MaxCosine value and four neighbors for 90 degree of MaxCosine value. Starting from that, the algo-
rithm calculates the required neighbors for an inner point as follows:

k =
360

MaxCosine
+ 1 (4.16)

The input data sets have small real numbers, so that it is possible to make mistakes in the mentioned
cosine calculation. Therefore, the division, 360

MaxCosine , is increased by one in the equation (4.16) to
prevent these types of errors. Once the number of the required neighbors (k) is calculated, the average
distance of kth neighbors and the standard deviation from the average are computed. Finally the radius
is calculated by taking the addition of the average distance and the standard deviation. The effect of
the non-uniform distribution of the input data sets is minimized by adding the standard deviation to the
average distance.
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Based on the preceding explanations, ED algorithm is summarized as follows:

Algorithm 3: Edge points detection algorithm for two-dimensional input
Data: MaxCosine
Data: input points
Result: edge points
find the number of the required neighbors k = 360

MaxCosine + 1
calculate average distance between all points and their kth nearest neighbor
calculate standard deviation
assign sum of average distance and standard deviation to KNN weight
for each self point do

multiply the KNN weight by a point’s LOF and assign the result to the self radius of this
point

end
for each self point do

find all neighbors
while traverse neighbors of a point in counterclockwise direction do

calculate the cosine value of the angle between the current neighbor and the next
nearest point based on the cosine law
if the computed cosine value is greater than MaxCosine then

this point is edge point
end
else

if all neighbors are traversed then
the terminal point is compared with starting points till to find a point which is
not neighbor of it
In case of finding that point, this point is inner point, otherwise it is edge point
and it is kept in an edge array

end
else

continue by going to the next neighbor
end

end
end

end
return edge points

The first two weeks’ data sets of 1999 DARPA were used in the experiments. The first week’s data
set does not include any attack, so it is accepted as training data set and the second week is used as
test data set. The algorithm run for 60, 90 and 120 degrees of MaxCosine value for the first week
Monday of 1999 DARPA Intrusion Detection Evaluations data sets. The results of these executions
are presented in Figure 4.6. Monday training data set consists of 703 input points and ED algorithm
finds 467, 370 and 301 edge points for 60, 90 and 120 degrees of MaxCosine values respectively. The
results show that increasing MaxCosine values decrease the number of the edge points as expected.

4.5 V-Shaped Detector Algorithm

The proposed method (V-Shaped detector) focuses on decreasing classification errors of real valued
negative selection. Therefore, variable self samples’ radii and variable shaped detector representation
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Figure 4.6: The result of Edge Detection algorithm.

are the main concerns of this study. In the new method, to get variable self samples radii, LOF and
k-NN algorithms are used. In addition to that, variable sized detectors are generated as circles, and
they are able to contain self-samples. Nevertheless, self samples have to be in any half side of the
detector, vertical or horizontal. B-Spline interpolation method is used to find the functions of self-
samples. Figure 4.7 shows the general diagram of V-Shaped detector architecture. There are four
main processes in V-Shaped detector, self radii determination, detection of the edge points, detectors
generation and checking the given data (test data). In the first process, the self radii of the given
self samples (training data) are calculated using LOF and k-NN methods. Then, edge points of the
given self samples are determined using ED algorithm. In the third process, variable sized and shaped
detectors are generated considering self samples, their self radii and edge points to cover the non-
self space. This process continues until the detectors’ coverage reaches the given estimated detector
coverage. The last process checks the given test data and classifies each instance either as normal data
or as anomalous data.

The expectation from the method is to minimize classification errors, false positive and false negative.
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Figure 4.7: General diagram of V-Shaped detector architecture.

The implementation of the method is presented in Algorithm 4.

Algorithm 4: Negative Selection with B-Spline (V-shaped detector)
Data: training dataset (self samples)
Data: test dataset
Data: estimated of non-covered non-self space, enc

Result: anomalous data
Calculate the volume of the self set, Vs

assign subtraction Vs from 1 to the volume of the non-self set (Vns)
initialize population
calculate the volume of the covered non-self, Vcd

while Vcd is less than or equal to (Vns - enc) do
generate new detectors using Monte Carlo algorithm
calculate the fitness of each individual
eliminate detectors according to the mutation ratio
calculate the volume of the detectors, Vcd

end
generate result for test data

The proposed algorithm calculates self/non-self set volumes. To calculate them, some definitions about
self/non-self set volumes and Monte Carlo Integration method should be described. The self/non-self
space, U, is denoted by the unitary hypercube, [0, 1]n. Obviously, the sum of the self space volume
and the non-self space volume is equal to 1. Hence, the volume of the non-self space is defined as:

Vnon−sel f = 1 − Vsel f (4.17)

The entire self space is not known, so self set, S , is modeled as a set Ŝ , which is defined in terms of
a set of self samples. This model is described in the previous subsection. Therefore, the volume, VŜ ,
of the set Ŝ is used instead of the volume of the self space, Vsel f . The volume, VŜ , of the set Ŝ is
calculated as:
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VŜ =

∫
U

XŜ (x) dx (4.18)

where the function XŜ defines the element of the set Ŝ as follows:

XŜ =

 1 if x ∈ Ŝ

0 if x < Ŝ
(4.19)

Gonzalez et al. [27] calculate the estimate of VŜ using random sampling. In this idea, a sequence
{xi}i=1..m of random samples is generated and these random samples are uniformly distributed in U.
The expected value of XŜ (xi), E[XŜ (xi)], is equal to VŜ .

E[XŜ (xi)] =

∫
U

XŜ (x) dx (4.20)

Hence, an estimate of E[XŜ (xi)] is also an estimate of VŜ . In addition to that, a good estimate of the
mean of random variable (expected value) is the mean of a set of self samples. Therefore, the average
of {XŜ (xi)}i=1..m is used as an estimate V̂ Ŝ of the self volume:

VŜ ≈ V̂Ŝ =

∑m
i=1 XŜ (xi)

m
(4.21)

The estimation of the defined integral by averaging a set of random samples is known as Monte Carlo
integration [27]. In the end, the algorithm is written to calculate the volume of the self set and it can
be seen in Algorithm 5.

Algorithm 5: Monte Carlo algorithm to calculate the estimated self volume
Data: distance determines an element as self or not, selfDistance
Data: epsilonmax : maximum allowed error
Data: initial number of iterations, mmin

Data: self samples
Result: The estimated self volume, V̂ Ŝ

maxX = inputU pperX
maxY = inputU pperY
num_hits = 0
m = 0
repeat

m = m + 1
x = random number modulo maxX
y = random number modulo maxY
distance = Find the nearest neighbor of (x,y)
if distance ≤ nearest self neighbor’s radius then

num_hits = num_hits + 1
end
V̂ Ŝ = num_hits

m

epsilon = 3
√

V̂Ŝ−V̂2
Ŝ

m

until m ≥ mmin and epsilon ≤ epsilonmax;
return the estimated self volume, V̂ Ŝ
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In the Algorithm 5, Monte Carlo Integration method is used to estimate the self volume. The algorithm
randomly generates a data and it checks whether the generated data is close enough to self samples
or not. If it is, hit number is increased by one. This process is repeated until a sufficient estimation
precision is reached. The estimated self space is calculated by dividing the hit by the number of
iteration.

The V-shaped detector algorithm starts with the non-self space estimation. Then, the detector popula-
tion is initialized using Monte Carlo Integration. In Monte Carlo Integration algorithm, if randomly
generated point is in non-self space, it is accepted as center of a detector. The radius of this detector
is calculated to consider the distance of the nearest self sample. Afterwards, the generated detector
checked whether it is a valid individual or not on the basis of rules defined in the previous subsection.
The valid detector should have the following properties.

• The number of edge self samples in the generated detector is limited by 20.

• The positions of self-samples should be in the same half side, vertical or the horizontal, of the
detector.

• There should be a path between the all edge self samples in the generated detector.

In the next step of V-shaped detector algorithm, to calculate the volume of the non-self space covered
by detectors, the model proposed by Gonzalez et al. [27] is used again. The set should be defined
before using it in this model. The covered non-self set, Nc, is defined using the detectors set, D, as
follows:

Nc = {x ∈ U |∀si ∈ S ′|∃d j ∈ D, ‖si − x‖ > ri
sel f ∧ ‖d

j − x‖ ≤ r j} (4.22)

The volume of the covered non-self space is calculated by Monte Carlo Integration algorithm consid-
ering the covered non-self set.

In the new detector generation step, the same algorithm used in population initialization runs with
the existent detector population. Then, the fitness of each valid detector, d j ∈ D, is calculated by
considering the volume of non-self space covered by only this detector. Inspired from the volume
calculation of the covered non-self space, the fitness of a detector is computed as follows:

• The volume of the detector is calculated by the following formula:

volume(d j) = π × r j2 (4.23)

• The volume ratio of the covered non-self space by only the detector, nr
j, is defined as the fol-

lowing set definition:

nr
j = {x ∈ u|∀si ∈ S ′|∀dk ∈ D, dk , d j ∧ ‖si − x‖ > ri

sel f ∧ ‖d
k − x‖ > rk} (4.24)

where u corresponds to the detector, d j, space.
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The fitness is defined as:

f itness(d j) = volume(d j) × nr
j (4.25)

The volume ratio of non-self space coverage, nr
j, is calculated by Monte Carlo Integration method as

calculation of the self space volume.

Detectors elimination starts from the lowest fitness and continues till specified mutation ratio is reached.
The mutation ratio should be higher than the mutation ratio of Genetic Algorithm, due to the AIS char-
acteristic.

The new detector generation, fitness calculation and detectors’ elimination steps are repeated till the
volume of the covered non-self space has reached the specified coverage ratio.

The proposed algorithm consists of the three components; self radii determination, edge detection and
detector generation as mentioned in the beginning of this subsection. In the first component, LOF
and k-NN are used serially to find self radii, and the runtime complexities of LOF and k-NN are
the same, O(n2). Therefore, the runtime complexity of the first component is O(n2). ED algorithm
is used in the second component to find edge points, and its runtime complexity is O(n2). The last
component is the detector generation and Monte Carlo algorithm determines this component’s runtime
complexity. The runtime complexity of the Monte Carlo algorithm is O(n.p), where p can be greater
than the n. Hence, the runtime complexity of Monte Carlo algorithm can be considered as O(n2).
These three components run serially, so the higher runtime complexity specifies the proposed algorithm
complexity, and all components’ runtime complexity are O(n2). Therefore, the runtime complexity of
the proposed algorithm is O(n2).

39



40



CHAPTER 5

EXPERIMENTATION AND RESULTS

In order to find out the advantages and disadvantages of the proposed NSA, V-shaped detector, ex-
periments were performed with 1999 DARPA Intrusion Detection Evaluation [62], Fisher Iris [63]
and Biomedical [64] data sets. In the first part of experiments, properties of V-detector [65] were
explored. In the other part, the experimental results were compared with those of the most used
one-class method, Support Vector Machine (SVM), and the recent known NSA, V-detector. A well-
known implementation of SVM, LIBSVM [66], was used to compare V-shaped detector with SVM.
V-detector is a real-valued negative selection algorithm that specifies self space using boundary-aware
approach and represents detectors as variable size circles. Although V-detector has many parameters
(see Appendix A), one of the critical parameters is naive estimation option, a boolean parameter. Naive
estimation option is enabled in detectors generation process, so the algorithm tries to cover non-self
space with the minimum number of detector. In the SVM experiments, the parameters of LIBSVM
were optimized (see Appendix A) using the grid.py script. LIBSVM implements some kernel function;
linear, polynomial, radial basis function and sigmoid. Kernel function was selected as radial basis
function (RBF), because LIBSVM generates more correct results with it.

The first dataset, 1999 DARPA Intrusion Detection Evaluation consists of two weeks and data sets
are divided into training and test data sets according to the week. First week is attack free data set so
that it was accepted as training data set. On the other hand, second week includes many attacks and
it was selected as test set. Three week days (Monday, Wednesday and Friday) is selected as an input
from each week. These data sets (see Appendix B) were preprocessed to be used in the experiments.
Figure 5.1 represents the first and second week Monday’s data sets. Figure 5.1(a) shows the first week
Monday data set used in training phase because it does not include any attack. Figure 5.1(b) displays
the second week Monday data set. This data set was used to test NSA because it includes an attack
indicated as light grey in the Figure 5.1(b).

The other data set is Fisher Iris data set (see Appendix B), which is widely used as a benchmark of
various methods. This data set was processed to reduce to two dimensions, before it was used in the
experiments. Figure 5.2 shows the Fisher Iris data set after the preprocessing.

The last data set is the biomedical data set (see Appendix B), which is also used as a benchmark. This
data set consists of samples, which each one includes four features. Hence, it was also processed to
reduce to two dimensions, before it was used in the experiments. Figure 5.3 shows the biomedical data
set after the reduction to two dimensions.

The experiment results were evaluated based on the classification accuracy which is specified by de-
tection rate and the false alarm rate. Detection rate and false alarm rate are defined as
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(a) The first week Monday. (b) The second week Monday.

Figure 5.1: The first and second week Monday data sets.

Figure 5.2: Reduced Fisher Iris Data.

Figure 5.3: Reduced Biomedical Data.
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DR =
T P

(T P + FN)
(5.1)

FA =
FP

(FP + T N)
(5.2)

where TP, FN, FP, TN are the counts of true positive, false negative, false positive, and true negative
respectively. High detection rate and low false alarm rate is expected from a successful NSA.

Many experiments are needed in order to be able to make a comment on and an inference according to
the results. Therefore, the average results of ten consequent runs are calculated and represented in the
following figures and tables.

In the first experiments, the properties of V-shaped detector were explored and in these experiments,
the proper value of MaxCosine was investigated considering detection rate and low false alarm rate.
Figure 5.4 shows average self radii, number of edge points, detection rates and false alarm rates for
different MaxCosine values. In these experiments, halves of versicolor and virginica samples were
separately used as a training data, and all Fisher’s Iris data sets as a test data.

There is a relation between MaxCosine value and self radii, radii of self (training) samples, as men-
tioned in Sect. 4.5). There is direct correlation between self radii and the value of k as stated in equation
(4.4). In addition to that, k value is increased while MaxCosine value is decreased as given in equation
(4.16). The average value of self radii was noted for different MaxCosine values in the first experi-
ments. Figure 5.4(a) shows the experiments results in the graph which displays the relation between
MaxCosine and self radii explicitly. Self radii values are increased while MaxCosine is decreasing as
expected. Beside this relation, Figure 5.4(b)presents the other relation between the number of edge
points and MaxCosine value. MaxCosine value sepecifies the values of the self radii, and the self radii
values affect the number of determined edge points. The number of edge points is important to specify
the boundary of self space.

MaxCosine determines the self space directly through self radii. Moreover, it indirectly specifies the
number of edge points, and these points define the boundary of self space. The determined self space
is getting larger when MaxCosine is decreased. Hence, the determined self space may start to cover
non-self, and this causes high false negative errors and low true positive. Therefore, detection rate is
decreased. Figure 5.4(c) shows this case, namely this figure presents that the detection rate decreased
while MaxCosine was decreasing for both of data sets.

In addition to these relations, growth of the determined self space causes low false positive error. In
this case, the false alarm rate is decreased as in Figure 5.4(d). The tradeoff between detection rate and
false alarm rate for selecting MaxCosine value was inferred from Figure 5.4(c) and Figure 5.4(d). In
order to highlight this tradeoff between detection rate and false alarm rate, ROC (Receiver Operating
Characteristics) diagrams are used. To draw ROC diagrams, the detection and false alarm rates are
needed for different values of MaxCosine as in Figure 5.5.

Figure 5.5 shows the ROC diagrams for different training data sets. Figure 5.5(a) presents the ROC
diagram for selected 50% versicolor as training data, and Figure 5.5(b) shows the ROC diagram for
selected 50% virginica as training data. Both ROC diagrams depicts that 90 degree is appropriate value
for MaxCosine.

To expose strong and weak sides of V-shaped detector, experiments not only focused on the properties
of the new method, they also carried out to compare the results of V-shaped detector with the results
of the well-known one-class method, SVM, and another NSA, V-detector.
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(a) MaxCosine versus average self radius.

(b) MaxCosine versus number of edge points.

(c) MaxCosine versus detection rate.

(d) MaxCosine versus false alarm rate.

Figure 5.4: Relations between MaxCosine, average self radius, detection rate and false alarm rate.
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(a) ROC diagrams for 50% versicolor.

(b) ROC diagrams for 50% virginica.

Figure 5.5: ROC diagrams for Fisher’s Iris data set.
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5.1 Comparison with SVM

V-shaped detector and one-class SVM, LIBSVM, were tested using DARPA 1999 Intrusion Detection
Evaluation data sets and Fischer’s Iris data set. The default kernel function, Radial Basis Function
(RBF), was selected in SVM. Depending on the kernel function, the parameters of LIBSVM were
optimized (see Appendix A) in these experiments. On other side, V-shaped detector’s parameters,
MaxCosine and estimated of non-covered non-self space (enc) were set to 90-120 and 0.015 (1.5%)
respectively.

In the first experiments, 1999 DARPA Intrusion Detection Evaluation data sets were divided into train-
ing and test data. The first week days’ data was used to train both methods, and they tested using the
second week days’ data. Two test cases were generated using same training data set; 100% and 50%
of a training data set use to train these methods. Table 5.1 shows the experiments’ results based on
two criteria: detection and false alarm rates. All the results shown in Table 5.1 are average of ten
consequent runs.

Table 5.1 shows that V-shaped detector and SVM have almost the same detection rates for 100%, 50%
and 25% training data of Monday and Wednesday. The detection rate of SVM is slightly better than
V-shaped detector for Friday data set. The false alarm rates of two methods are almost the same for
25% training data of Wednesday. On the other hand, SVM has much higher false alarm rate than
V-shaped detector in all other test cases. Overall results in Table 5.1 presents that V-shaped detector
has higher classification accuracy than SVM for 1999 DARPA Intrusion Detection Evaluation data
sets.

In the later experiments, V-shaped detector and SVM were trained and tested using Fischer’s Iris data.
As explained in the beginning of this section, there are three types of iris, setosa, versicolor, virginica,
and one of them is considered as normal data, while the others are considered as anomalous data. The
normal data was used to train the systems and the whole data set was used to test them.

Table 5.2 shows the results of V-shaped detector and SVM using a Fisher’s Iris dataset. Although,
two methods have same detection rates for 100%, 50% and 25% of setosa data, SVM has slightly
higher detection rate than V-shaped detector for versicolor and virginica data sets. On the other hand,
V-shaped detector has much lower false alarm rates than SVM in all test cases. Table 5.2 presents that
V-shaped detector makes more correct classification than SVM for Fisher’s Iris dataset.

The biomedical data set is the last data set that was used to compare methods. In the biomedical
data set, the blood measurements of normal patients are considered as normal data, while the blood
measurements of carriers are considered as anomalous data. The systems were trained using the normal
data and all samples of the data set were used to test them.

Table 5.3 shows the results of V-shaped detector and SVM using the biomedical dataset. The detection
rates of V-shaped detector and V-detector are almost the same for 100% of training dataset. Detection
rates of V-shaped detector are much higher than SVM for 50% and 25% of normal data. Besides this,
false alarm rates of V-shaped detector are much lower than SVM for all test cases.

All tables show that the classification performance of V-shaped detector is better than SVM’s clas-
sification performance explicitly. Therefore, ROC diagrams were not drawn to show comparisons
between V-shaped detector and SVM.
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Table5.1: Comparison between V-shaped detector and ocSVM using 1999 DARPA Intrusion Detection
Evaluation data sets

Training data Algorithm Self radius / MaxCosine DR(%) FA(%)
Monday (100%) SVM RBF 100 57

V-shaped 120 100 0.1
90 100 0

Monday (50%) SVM RBF 100 67
V-shaped 120 100 0.09

90 100 0.03
Monday (25%) SVM RBF 100 62.9

V-shaped 120 100 0.8
90 100 0.7

Wednesday (100%) SVM RBF 100 64.8
V-shaped 120 100 0.5

90 100 0.4
Wednesday (50%) SVM RBF 100 53

V-shaped 120 100 2.4
90 100 1.5

Wednesday (25%) SVM RBF 100 3.2
V-shaped 120 100 5

90 100 5.2
Friday (100%) SVM RBF 100 41.2

V-shaped 120 100 0.07
90 86 0

Friday (50%) SVM RBF 100 44.5
V-shaped 120 98 1.4

90 98 1.6
Friday (25%) SVM RBF 100 83.3

V-shaped 120 100 0
90 86 0.1
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Table5.2: Comparison between V-shaped detector and ocSVM using Fisher’s Iris data set

Training data Algorithm Self radius / MaxCosine DR(%) FA(%)
Setosa (100%) SVM RBF 100 36

V-shaped 120 100 0
90 100 0

Setosa (50%) SVM RBF 100 56
V-shaped 120 100 23.6

90 100 21.2
Setosa (25%) SVM RBF 100 58

V-shaped 120 99.9 1.8
90 99.9 9.2

Versicolor (100%) SVM RBF 100 50
V-shaped 120 93 0.6

90 91.2 0.2
Versicolor (50%) SVM RBF 100 62

V-shaped 120 99.8 20.6
90 99.7 19.6

Versicolor (25%) SVM RBF 100 70
V-shaped 120 95.4 15.2

90 90.7 12.6
Virginica (100%) SVM RBF 100 50

V-shaped 120 97.1 0
90 96 2

Virginica (50%) SVM RBF 100 64
V-shaped 120 92 3.8

90 87.1 2.6
Virginica (25%) SVM RBF 100 72

V-shaped 120 97.9 3.2
90 98.8 10.8

Table5.3: Comparison between V-shaped detector and ocSVM using Biomedical data set

Training data Algorithm Self radius / MaxCosine DR(%) FA(%)
100% SVM RBF 50 88

V-shaped 120 50 29.9
90 46.8 29.6

50% SVM RBF 51.5 86.6
V-shaped 120 69.5 4.2

90 68.3 3.4
25% SVM RBF 41.8 88

V-shaped 120 81.1 16.8
90 78 14.1
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5.2 Comparison with V-detector

The results generated by V-shaped detector and V-detector using DARPA 1999 Intrusion Detection
Evaluation data sets and Fischer’s Iris data set were compared. In these experiments, the parameters
of V-detector, self radius (rs), estimated coverage (c0) and maximum number of detectors (Tmax), were
set to 0.1-0.05, 0.985 and 20 respectively. In other side, V-shaped detector’s parameters, MaxCosine
and estimated of non-covered non-self space (enc) were set to 90-120 and 0.015 (1.5%) respectively.

In the first experiments, V-shaped detector and V-detector run for 1999 DARPA Intrusion Detection
Evaluation data sets. Both methods were trained using the first week days’ data and tested using the
second week days’ data. Two test cases were generated using the same training data set; 100% and
50% of a training data set were used to train these methods. Table 5.4 represents the experiments
results based on three criteria: detection rate, false alarm rate and number of detectors. All the results
shown in Table 5.4 are average of ten consequent runs.

In Table 5.4, for 100% training data sets, V-shaped detector and V-detector have almost the same
detection rates and false alarm rates except Friday data set. The detection rate of V-shaped detector is
better than V-detector for Friday data set. Two NSA have the same detection rates for 50% Monday
training data, but V-shaped detector has better noticeable detection rate for 50% Wednesday and Friday
training data. The false alarm rates of two NSAs are almost the same for 50% Friday training data, on
the other hand, V-shaped detector has slightly better false alarm rate than V-detector. Both of NSAs
have the same detection rate for for 25% Monday and Friday, but V-shaped detector has better detection
rate for 25% Wednesday training data. The false alarm rates of V-shaped detector is slightly better. All
these inferences can be seen using ROC diagrams as in Figure 5.6. Figure 5.6 shows ROC diagrams
for 100%, 50% and 25% of training data. In these diagrams, self radius parameter of V-detector is 0.1
and MaxCosine parameter of V-shaped detector is 120 degree.

The other comparison criterion is the number of detectors, and V-detector needed lower number of
detectors than V-shaped detector for all test cases of 1999 DARPA Intrusion Detection Evaluation data
sets. Figure 5.7 shows this inference explicitly. In Figure 5.7, light grey bars (90 and 120 degrees)
display the numbers of generated detectors by V-shaped detector for different MaxCosine values. On
the other side, dark grey bars (0.1 and 0.05) show the numbers of generated detectors by V-detector
for different self radius.

In addition to the DARPA 1999 Intrusion Detection Evaluation data sets, the two methods were also
tested using Fischer’s Iris data. In Fischer’s Iris data set, one type of iris is considered as normal data,
while the others are considered as anomalous data. The normal data was used to train the systems and
the whole data set was used to test them.

Table 5.5 illustrates the results of V-shaped detector and V-detector using the Fisher’s Iris dataset. The
detection rates and the false alarm rates of V-shaped detector and V-detector are almost the same for
100% of training data sets. The two NSAs have the same detection rates for 50% of setosa. Although
V-shaped detector has slightly higher detection rate than V-detector for 50% of versicolor data set, the
detection rate of V-detector is better than V-shaped detector detection rate for 50% virginica data sets.
The two NSAs have the same false alarm rates for 50% of setosa data set, but V-shaped detector has
better false alarm rates than V-detector for versicolor and virginica data sets. The detection rates of two
NSAs are almost the same, but V-shaped detector has much lower false alarm rates than V-detector in
all 25% of training data. ROC diagrams can show these inferences. ROC diagram is not required 100%
of training data, because false alarm rates of the two methods are zero. Therefore, the methods can be
compared using only detection rates. Figure 5.8 shows ROC diagrams for 50% and 25% of training
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Table5.4: Comparison between V-shaped detector and V-detector using 1999 DARPA Intrusion De-
tection Evaluation data sets

Training data Algorithm Self radius / MaxCosine DR(%) FA(%) # of detectors
Monday (100%) V-detector 0.1 100 0.2 6.6

0.05 100 1.1 13.6
V-shaped 120 100 0.1 57.8

90 100 0 58.3
Monday (50%) V-detector 0.1 100 1 4.6

0.05 100 6.4 10.2
V-shaped 120 100 0.09 51

90 100 0.03 47.4
Monday (25%) V-detector 0.1 100 1.4 4.5

0.05 100 8.3 6.8
V-shaped 120 100 0.8 59.8

90 100 0.7 56.5
Wednesday (100%) V-detector 0.1 96.7 0.06 2.9

0.05 96.7 0.07 3.6
V-shaped 120 100 0.5 10.1

90 100 0.4 11
Wednesday (50%) V-detector 0.1 96.7 0.1 3.2

0.05 93.3 0.1 4.2
V-shaped 120 100 2.4 50

90 100 1.5 48.9
Wednesday (25%) V-detector 0.1 93.3 5.7 1.9

0.05 93.3 5.3 2.9
V-shaped 120 100 5 11.8

90 100 5.2 11.2
Friday (100%) V-detector 0.1 90 0.2 4.7

0.05 82 0.5 8.7
V-shaped 120 100 0.07 34

90 86 0 34
Friday (50%) V-detector 0.1 92 0.6 6.5

0.05 96 1 10
V-shaped 120 98 1.4 61.5

90 98 1.6 61.2
Friday (25%) V-detector 0.1 94 0.4 4.7

0.05 100 6.5 8.9
V-shaped 120 100 0 40.5

90 86 0.1 38.1

50



(a) ROC diagram for 100% of training data sets.

(b) ROC diagram for 50% of training data sets.

(c) ROC diagram for 25% of training data sets.

Figure 5.6: ROC diagrams for 100%, 50% and 25% of training data sets of 1999 DARPA Intrusion
Detection Evaluation data sets.
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Table5.5: Comparison between V-shaped detector and V-detector using Fisher’s Iris data set

Training data Algorithm Self radius / MaxCosine DR(%) FA(%) # of detectors
Setosa (100%) V-detector 0.1 98.5 0 4.6

0.05 98.5 0 5.9
V-shaped 120 100 0 13.7

90 100 0 13.2
Setosa (50%) V-detector 0.1 100 21.2 6.3

0.05 100 23.4 7.1
V-shaped 120 100 23.6 7.5

90 100 21.2 7
Setosa (25%) V-detector 0.1 100 26.8 4.5

0.05 100 28.4 4.7
V-shaped 120 99.9 1.8 5.9

90 99.9 9.2 5.1
Versicolor (100%) V-detector 0.1 93.3 0 6.6

0.05 93.6 0 8.1
V-shaped 120 93 0.6 10.1

90 91.2 0.2 11
Versicolor (50%) V-detector 0.1 97.1 21.4 6.5

0.05 96.2 20.2 7.4
V-shaped 120 99.8 20.6 12.7

90 99.7 19.6 13
Versicolor (25%) V-detector 0.1 98.6 30.6 3.4

0.05 98.9 32 5.2
V-shaped 120 95.4 15.2 6.7

90 90.7 12.6 6.7
Virginica (100%) V-detector 0.1 96.3 0 6.4

0.05 94.1 0 6.9
V-shaped 120 97.1 0 14.7

90 96 2 12.9
Virginica (50%) V-detector 0.1 98.7 17.4 7.5

0.05 98.3 20.4 9.9
V-shaped 120 92 3.8 13.1

90 87.1 2.6 10.5
Virginica (25%) V-detector 0.1 98.7 45.4 2.8

0.05 100 47 3.6
V-shaped 120 97.9 3.2 9.3

90 98.8 10.8 8.1
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Figure 5.7: Number of generated detectors for different self radius (0.1 and 0.05) parameter of
V-detector and different MaxCosine values of V-shaped detector using 1999 DARPA Intrusion De-
tection Evaluation data sets.

data. The self radius parameter of V-detector is 0.1 and MaxCosine parameter of V-shaped detector is
120 degree in these diagrams. In all test cases of Fisher’s Iris data set, V-detector generated detectors
less than V-shaped detector. Figure 5.9 also indicates this inference.

The last data set that was used to test methods is the biomedical data set. In the biomedical data set, the
blood measurements of normal patients are considered as normal data, while the blood measurements
of carriers are considered as anomalous data. The systems were trained using the normal data and all
samples of the data set were used to test them.

Table 5.6 shows the results of V-shaped detector and V-detector using the biomedical dataset. The
detection rates and the false alarm rates of V-shaped detector and V-detector are almost the same
for 100% of training dataset. Detection rates of V-detector are higher than V-shaped detector for
50% and 25% of normal data. On the other hand, false alarm rates of V-shaped detector are lower
than V-detector for 50% and 25% of normal data. The last column of the table shows the number
of generated detectors, and these results shows that V-shaped detector generates more detectors than
V-detector. This inference is explicitly shown in Figure 5.10

Detection rates and false alarm rates in Table 5.6 were used to draw ROC diagram to be able to make
comment on the comparisons between V-shaped detector and V-detector. Figure 5.11 shows this ROC
diagram. Although, detection rates of V-detector is higher than V-shaped detector, V-shaped detector
has much lower false alarm rate than V-detector.

The runtime complexity of V-detector’s detector generation part is O(m.n), where misthenumbero f detectorsandn
is the size of training set. On the other side, the runtime complexity of V-shaped detector’s detector
generation process is O(n2).
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(a) ROC diagram for 50% of training data sets.

(b) ROC diagram for 25% of training data sets.

Figure 5.8: ROC diagrams for 50% and 25% of training data sets of Fisher’s Iris data set.

Figure 5.9: Number of generated detectors for different self radius (0.1 and 0.05) parameter of
V-detector and different MaxCosine values of V-shaped detector using Fisher’s Iris data set.
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Table5.6: Comparison between V-shaped detector and V-detector using biomedical data set

Training data Algorithm Self radius /

MaxCosine
DR (%) FA (%) # of detectors

100% V-detector 0.1 45 0 1.9
0.05 49.2 0 5.9

V-shaped 120 50 0 29.9
90 46.8 0 29.6

50% V-detector 0.1 83.2 14.6 4
0.05 82.5 14.4 2.9

V-shaped 120 69.5 4.2 17.2
90 68.3 3.4 16.9

25% V-detector 0.1 98.1 60.4 3.7
0.05 98.4 60.1 4.3

V-shaped 120 81.1 16.8 18.2
90 78 14.1 18.4

Figure 5.10: Number of generated detectors for different self radius (0.1 and 0.05) parameter of
V-detector and different MaxCosine values of V-shaped detector using biomedical data set.

Figure 5.11: ROC diagrams for V-detector and V-shaped detector using biomedical data.
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5.3 Summary

The first experiments show that the selected MaxCosine value affects the self radii and the number of
edge points, and indirectly the determined self space through the self radii and the number of edge
points. Therefore, the selected MaxCosine value has an enormous effect on the classification accuracy
of V-shaped detector. To find the appropriate value of MaxCosine, the tradeoff between detection rate
and false alarm rate should be considered.

V-shaped detector classifies the given data into one of the two classes after the training phase, so it is
proper for one-class classification problem. Hence, V-shaped detector was compared with the well-
known one-class method, SVM. Evaluation of the experiments based on the detection and false alarm
rates denotes that V-shaped detector has higher classification accuracy than SVM. V-shaped detector
fives satisfactory solution for one-class classification problem.

V-shaped detector is a new NSA, so it was compared with other well-known NSA, V-detector. Al-
though experiment results of V-shaped detector and V-detector were very close to each other, V-shaped detector
is slightly better than V-detector, when a part of normal samples were used as training data. On the
other hand, V-detector generates fewer detectors than V-shaped detector, because it focuses on the
optimization of detectors distribution, while V-shaped detector does not take into account that opti-
mization.

Overall experiment cases show that V-shaped detector generates comparable results when training data
compose of all the normal samples. They also indicate that V-shaped detector generates better results
when training data include the normal samples partially.
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CHAPTER 6

CONCLUSION

In machine learning, there are many learning methods that are inspired by the biological mechanisms.
Genetic algorithm and neural network are the well-known biologically inspired computational models.
Genetic algorithm mimics the principles and processes of natural evaluation. On other hand, neural
network is inspired by the network or circuit of biological neurons and mimics the properties of biolog-
ical neurons. Biological immune system is the other biological system that has various computational
mechanisms: pattern recognition, memory, distributed processing, self organizing, etc. Inspired by
the principles and processes of the biological immune system, many computational intelligent models
were developed, and this type of models is called Artificial Immune Systems (AIS). These AIS models
are categorized mainly into immune network model, clonal selection, negative selection and danger
theory.

Negative selection algorithm is one of the earliest AIS methods. It is inspired by T-cells generation and
maturation process. This study aimed to the state-of-art techniques in negative selection algorithms
(NSA) and tried to define critical issues about them. The determined major issues are the self space
determination and detectors coverage from NSA classification perspective.

This thesis study introduces a novel negative selection algorithm called V-shaped detector. The pro-
posed NSA is real-valued NSA and this gives the opportunity to use other machine learning and math-
ematical methods. In this manner, the existent machine learning and mathematical methods are modi-
fied and used to obtain more correct self space determination and detectors’ coverage. In this way, this
approach facilitates the increasing classification accuracy of NSA.

V-shaped detector uses the k-nearest neighbor and local outlier factor to determine self space. These
two machine learning methods are combined to elicit different features of the given data, so it becomes
possible to find more correct self space. Beside this, V-shaped detector generates variable shaped
detectors using cubic spline to maximize non-self coverage. This numerical analysis method, cubic
spline, cannot be directly applied. If it is applied, the meaningful results cannot be obtained. Hence,
the given training data is processed to find edge points which reveal the shape of the self space. Then,
cubic spline is applied to the edge points within a detector region to obtain variable shaped detector.
Thus, these methods enhance NS algorithm as follows:

• The use of cubic spline makes it possible to form variable shaped detectors. Variable shaped
representation gives detectors more adaptation ability. Thus, it provides maximum coverage of
non-self space.

• Local Outlier Factor and k-NN make this method to adapt to self space. In this manner, it finds
more correct boundary for self space.
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V-shaped detector is compared with the well-known one class method, SVM, and NSA, V-detector.
All of them were tested using different data sets in the experiments. The overall classification accuracy
of V-shaped detector is much better than SVM. Significant decrement occurred in SVM classification
accuracy, when SVM was trained with the part of training data. On the other hand, V-shaped detector
classification accuracy decreased much less than SVM. This event shows that V-shaped detector is
more capable than SVM to adapt the given data.

In the other comparison, the overall classification accuracy of V-shaped detector is slightly better than
V-detector, when all of the self samples are used as training data. Besides, V-shaped detector has better
classification accuracy than V-detector, when the partial of self samples is used as training data. The
experimental results reveal that V-shaped detector is an appropriate method to form a normal profile
of a system and to solve anomaly detection problems.

In this work, optimization of the detectors’ distribution was not taken into account. On the other
hand, V-detector uses some statistical analysis method to optimize detectors distribution. Therefore,
V-shaped detector generates more detectors than V-detector to cover non-self space. This means that
it requires more space to keep the generated detectors. In the future work, studies will probably focus
on how to decrease the number of detectors with similar classification accuracy.
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APPENDIX A

TEST METHODS AND PARAMETERS

V-shaped detector classifies the given data either as normal or as anomalous, and this is the one-
class classification problem. Therefore, it was compared with the well-known one class classification
method, Support Vector Machine (SVM). In the experiments, well-known implementation of SVM,
LIBSVM [66], was used. V-shaped detector is a new NSA, so it was also compared with the well-
known other NSA, V-detector [65]. The next sections give information about methods and parameters’
values of their implementation.

A.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is probably the most used method for one-class classification prob-
lems. We briefly introduce the basic explanations about SVM, because there are significant studies
about the underlying theory behind SVM [67]. In this classification task, data is separated into training
and test data sets. In the training data set, each instance consists of a "target value" (class label) and
several attributes, i.e. features or observed variables. The aim of SVM models the training data and
specifies "the target value" of the given test data [68]. SVM has the advantage of clear connection to
the underlying statistical learning theory, but it does not generate reasonable results without experience
to choose proper control parameters. Kernel function selection for a problem domain is the biggest
limitation of SVM.

Training and test data must be normalized to range [0, 1] and formatted before using them in SVM
experiments. Hence, training and test data were reformatted for SVM as follows:

Target value (1 or -1) feature-id2: feature-value feature-id2: feature-value

Parameters of LIBSVM are given as follows:

• svm_type : set type of SVM (default 0)

0. C-SVC (multi-class classification)

1. nu-SVC (multi-class classification)

2. one-class SVM

3. epsilon-SVR (regression)

4. nu-SVR (regression)

• kernel_type : set type of kernel function (default 2)
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0. linear: u’*v

1. polynomial: (gamma ∗ u′ ∗ v + coe f 0)degree

2. radial basis function: exp(−gamma ∗ |u − v|2)

3. sigmoid: tanh(gamma*u’*v + coef0)

4. precomputed kernel (kernel values in training_set_file)

• degree : set degree in kernel function (default 3)

• gamma : set gamma in kernel function (default 1/num_features)

• coef0 : set coef0 in kernel function (default 0)

• cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

• nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

• epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

• cachesize : set cache memory size in MB (default 100)

• epsilon : set tolerance of termination criterion (default 0.001)

• shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)

• stimates, 0 or 1 (default 0)

• weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

• n-fold cross validation mode

• quiet mode (no outputs)

SVM was used for one-class classification problems in the experiments, so svm_type parameter was
chosen as one-class SVM. In the experiments, kernel functions were also explored, and radial basis
function was selected as kernel function based on the SVM classification accuracy. The other param-
eters ( C and gamma) fort the corresponding kernel function were optimized using grid.py script as
follows:

$ python grid.py -v 5 iris-100setosa_train.txt

...

0.03125 0.0078125 100.0

This output means that best C and gamma are equal to 0.03125 and 0.0078125 respectively with five-
fold 100% cross-validation rate.

Later, LIBSVM is trained with the optimized parameters as follows:

$ svm-train -s 2 -c 0.03125 -g 0.0078125 iris-100setosa_train.txt iris_model

*

optimization finished, #iter = 6
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obj = 312.473132, rho = 24.998428

nSV = 25, nBSV = 25

In the last, LIBSVM is tested using test dataset.

$ svm-predict iris-100setosa_test.txt iris_model iris.out

Accuracy = 88% (132/150) (classification)

A.2 Variable-Sized Detectors Negative Selection Algorithm (V-detector)

Ji and Dasgupta [47] proposed a real-valued negative selection algorithm with variable-sized detectors
(V-detector). The algorithm randomly generates a center of a detector (circle) which must not be
within the circle of a self sample. A predefined self radius is used for all self samples. The radius
of the generated detector is dynamically adjusted until the boundary of the detector region comes in
contact with the center of a self sample. This method is called as boundary-aware. The algorithm
is terminated, when the detector covers the predefined proportion of non-self space, or a predefined
number of detectors are generated.

V-detector [65] requires normalized data to run. Therefore, training and test data were normalized to
range [0, 1] before using them in the experiments. In the experiments, naive estimation option of V-
detector was enabled to get optimized detectors distribution. Beside this, we ran V-detector algorithm
using the following parameters.

• estimated non-self space coverage (c0): 98.5%

• self radius: coverage (rs): Two values were used (0.1 and 0.05)

• maximum number of fetectors (Tmax): 20
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APPENDIX B

TEST DATA SETS AND PREPROCESSING

B.1 1999 DARPA Intrusion Detection Evaluation Data Sets

The DARPA 1999 Intrusion Detection Evaluations consisted of comprehensive technical evaluations
of research intrusion detection systems.

Figure B.1 shows the isolated 1999 DARPA test bed network. In the test bed, background traffic which
was initiated by hundreds of users, sourced from tens of hosts and destined to thousands of hosts, was
simulated. The left hand side of Figure B.1 shows the inside of the fictional Eyrie Air Force base and
the right hand side shows the Internet. Inside victim machines (SunOS, Solaris, Linux, and Windows
NT) and the router were exposed to automated attacks. More than 200 instances of 58 different attacks
were implemented, and related data about attacks were collected. Machines labeled as "sniffer" in
Figure B.1, capture packets transmitted over the attached network segment using tcpdump[4].

Inspired by the similar methods, only outside tcpdump data was used as an input. This data contains
the contents of every packet transmitted between computers inside and outside of a simulated military
base. Outside tcpdump data was collected for a month by a tcpdump packet sniffer, but only first two
weeks’ data was examined. First week’s data, which is attack free, is selected as training data, and
second week’s data, which include some attacks, is used as test data.

Outside tcpdump data of second week was filtered for marx machine, so that marx machine is the
source or the destination of each network packet. Therefore, the network attacks which source or

Figure B.1: Block diagram of 1999 DARPA test bed [4].
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TableB.1: Second week attacks description.

Day Attack Name Attack Type Start Duration
Mon Back DOS 09:39:16 00:59
Wed Satan PROBE 12:02:13 02:29
Fri Neptune DOS 11:20:15 04:00

destination of them is marx machine are presented in Table B.1.

Outside tcpdump data was filtered for a specific computer (hostname marx - IP: 172.16.114.50) using
the following command. This command filters outside tcpdump data which was collected on Monday.

tcpdump -r Monday_outside.tcpdump -w Monday_filter.tcpdump host 172.16.114.50

After filtering the data, tcpstat tool was used to get traffic statistics. Three parameters, number of
bytes per second (bps), number of packets per second (pps) and number of ICMP packets per second
(ipps), were selected to detect attacks. These parameters were sampled each minute using tcpstat. The
following command gathers traffic statistics.

tcpstat -r Monday_filter.tcpdump -o "%B %p %C
n" 60 <Monday_tcpstat_60s_99.output

These three attributes are reduced to two dimensional inputs by taking number of bytes per second and
the sum of number of packets per second (pps) and number of ICMP packets per second. Figure B.2
represents the output of tcpstat for the first week’s outside tcpdump data. The graph was drawn after
the outputs of tcpstat was reduced to two dimensional data set and then, normalized to range [0, 1].

B.2 Fisher’s Iris Data Set

The other data set is Fisher Iris Data and this dataset consists of 50 samples from each of three species
of Iris flowers (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each
sample; they are the length and the width of sepal and petal. This data set is reduced to two dimensions
by taking sum of length and width of sepal and petal. Figure B.3 shows the reduced Fisher Iris Data
Set.

B.3 Biomedical Data Set

The third dataset, biomedical dataset, includes blood measurement which was used to screen a genetic
disorder. The blood measurements of 127 normal patients were selected as training data. All the blood
measurements of 127 normal patients and 75 carriers were used as test data. Each patient has four
types of blood measurement but in experiments, training and test data consists of the second type and
the sum of the third and the fourth types. Figure B.4 shows the reduced Biomedical Data Set
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(a) Output of tcpstat for Monday’s outside tcp-
dump.

(b) Output of tcpstat for Wednesday’s outside tcp-
dump.

(c) Output of tcpstat for Friday’s outside tcpdump.

Figure B.2: Output of tcpstat for the first week’s outside tcpdump.

Figure B.3: Reduced Fisher Iris Data
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Figure B.4: Reduced Biomedical Data
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2001-2004 Emek Bilişim Software Engineer
2004-2006 Girne American Uni. Senior Lecturer
2006-Present Kuzey Kıbrıs Turkcell Database and Management Systems Specialist

FOREIGN LANGUAGES

English

PUBLICATIONS

1. Z. Ataser and F.N. Alpaslan. "Self-Adaptive Negative Selection Using Local Outlier Factor".
Computer and Information Sciences III (27th International Symposium on Computer and Infor-
mation Sciences), 161-169, 2013.

73


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	INTRODUCTION
	RELATED WORK
	Major AIS Works
	Introduction to AIS
	Immune Network Theory
	Clonal Selection
	Danger Theory
	Applications

	Negative Selection Algorithm (NSA)

	BACKGROUND
	Negative Selection Algorithms
	Self Definition
	Detector Representation

	One-Class Classification
	k Nearest Neighbor
	Local Outlier Factor
	B-Spline

	V-SHAPED DETECTOR: A NEGATIVE SELECTION ALGORITHM
	Anomaly Detection
	Self Space
	Detector Representation
	Edge Points Detection
	V-Shaped Detector Algorithm

	EXPERIMENTATION AND RESULTS
	 Comparison with SVM 
	 Comparison with V-detector 
	Summary

	CONCLUSION
	REFERENCES
	APPENDICES
	TEST METHODS AND PARAMETERS
	Support Vector Machine (SVM)
	Variable-Sized Detectors Negative Selection Algorithm (V-detector)

	TEST DATA SETS AND PREPROCESSING
	1999 DARPA Intrusion Detection Evaluation Data Sets
	Fisher's Iris Data Set
	Biomedical Data Set

	CURRICULUM VITAE

