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ABSTRACT 

 

 

SALİH ZEKİ’S DARÜLFÜNUN KONFERANSLARI AND HIS TREATMENT OF THE 

DISCOVERY OF NON-EUCLIDEAN GEOMETRIES 

 

 

Kadıoğlu, Dilek 

M.A., Department of Philosophy 

Supervisor : Doç. Dr. Samet Bağçe 

 

 

February 2013, 86 pages 

 

 

 

This thesis examines Darülfünun Konferansları which consists of a series of lectures 

that were delivered by Salih Zeki in 1914 – 1915 in Ottoman State. These lectures 

were on geometry, its history and especially on the discovery of non-Euclidean 

geometries. And the purpose of this thesis is to propose the sufficiency and the 

legitimacy of these lectures as an account on the history of geometry. As a 

preliminary to analyzing Salih Zeki’s lectures, different views on geometry’s history 

and progress will be analyzed and compared. The results of this comparison will be 

the guide by means of which Darülfünun Konferansları will be examined. This thesis 

also serves as a source that makes Salih Zeki’s ideas accessible, by presenting an 

English summary of his lectures which were originally published in Ottoman Turkish. 

 

Keywords: Salih Zeki, Darülfünun Konferansları, History of Geometry, Discovery of 

non-Euclidean Geometries 
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ÖZ 

 

 

SALİH ZEKİ’NİN DARÜLFÜNUN KONFERANSLARI VE GAYRİ ÖKLİDYEN 

GEOMETRİLERİN KEŞFİNE BAKIŞI 

 

 

Kadıoğlu, Dilek 

Yüksek Lisans, Felsefe Bölümü 

Tez Yöneticisi: Doç. Dr. Samet Bağçe 

 

Şubat 2013, 86 sayfa 

 

Bu tez Salih Zeki’nin 1914 – 1915 yıllarında Osmanlı Devleti’nde vermiş olduğu bir 

grup dersten ibaret olan Darülfünun Konferansları’nı incelemektedir. Bu dersler 

geometri ve tarihi, özellikle de gayri Öklidyen geometrilerin keşfi üzerinedir. Tezin 

amacı bu derslerin geometri tarihini açıklamakta ne derece yeterli ve geçerli 

olduklarını ortaya koymaktır. Salih Zeki’nin derslerini incelemeye bir hazırlık olarak 

geometrinin tarihine ve gelişimine dair farklı görüşler değerlendirilecek ve 

karşılaştırılacaktır. Bu karşılaştırmanın sonuçları Darülfünun Konferansları’nın 

incelenmesinde bir rehber niteliği taşır. Ayrıca, bu tez aslen Osmanlı Türkçesi olarak 

yayınlanmış olan derslerin İngilizce bir özetini sunmak yoluyla, Salih Zeki’nin 

fikirlerini ulaşılabilir ve anlaşılabilir kılan bir kaynaktır. 

Anahtar Kelimeler: Salih Zeki, Darülfünun Konferansları, Geometri Tarihi, Gayri 

Öklidyen Geometrilerin Keşfi. 
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CHAPTER 1 

 

                                     INTRODUCTION 

 

This thesis examines different perspectives on the development of the non-

Euclidean Geometries, for the sake of determining the criteria that should be 

granted while constructing the history of geometry. I aim to propose a brief history of 

geometry and also to compare two different approaches on writing this history. The 

two different approaches to be compared may be titled as the “standard account” 

(Gray, 2003, p. 168) and the “historical account”. Among these two views I should 

support the historical account. The summary of the history of geometry which will be 

provided in the second chapter of my thesis aims to be in agreement with the 

historical account rather than the standard account. The example that is provided to 

be a standard account of geometry’s progress is Roberto Bonola’s 1912 work.1 And 

it will be criticized because of evaluating the history of geometry as a mere logical 

chain. When its history is regarded to be a logical chain, geometry turns out to be in 

a linear progress. All the theories in geometry’s history flow from one another, no 

matter how they differ in their evaluation of space or what branch of mathematics 

they got their clues for dealing with their subject matter. The opposing example to 

Bonola’s work is Jeremy Gray’s historical account.2 Gray’s views on the history of 

geometry are going to be supported because of their success in proposing 

meaningful explanations on geometry’s history, by means of leaving aside the 

logical or axiomatic treatment of its progress. 

This comparison of the views on the history of geometry is a basis for evaluating a 

20th century work on the discovery of non-Euclidean geometries. By determining the 

accurate view on the history of geometry, I aim to examine the 1914 –1915 (or 1330 

– 1331) work of Salih Zeki (1864 – 1921). Salih Zeki presented a series of lectures 

on geometry and mathematics in Darülfünun in Istanbul between the mentioned 

                                                           
1
 Non-Euclidean Geometry (reprinted in 1955). 

 
2
 Ideas of Space (2003). 
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years. Those lectures were published in two volumes and were entitled as 

“Darülfünun Konferansları”.3 Of these two volumes, this thesis is interested in the 

first one which deals with non-Euclidean geometries. The second volume of Salih 

Zeki’s lectures presents mathematical concepts such as imaginary numbers and 

complex numbers. The volume on geometry consists of fourteen lectures (The last 

lecture is not published completely). The first five of the lectures on geometry 

discuss the discovery of non-Euclidean geometries, that is, they are on the history of 

geometry, while the rest of the lectures concentrate on geometrical systems in a 

more detailed sense. In my thesis I am going to concentrate on the history lectures 

provided by Salih Zeki, that is, the first five lectures of Darülfünun Konferansları. 

With the justification of a legitimate account on geometry’s development and by 

proposing the pitfalls of the standard logical view, I will analyze whether Salih Zeki’s 

conferences were sufficient in proposing a proper examination of discovery of non-

Euclidean geometries. 

As I will point out in my summary of the history of geometry, a change in the 

mathematical methods that were applied in geometrical studies can be observed 

throughout geometry’s history. This is a significant fact in explaining the change and 

development in geometry opening the way through non-Euclidean or the new 

geometries. The sufficiency of Salih Zeki’s conferences in proposing the change in 

those mathematical methods is another point that will be taken into consideration in 

this thesis. 

In order to carry out the above mentioned inquiries, that is, for analyzing Salih Zeki’s 

views on the history of geometry and to figure out whether he emphasizes the 

change in mathematical methods, I will provide the study he carries out in his five 

lectures. The third chapter of my thesis consists of a summary of Salih Zeki’s 

account on the discovery of non-Euclidean geometries. In providing this summary, I 

tried to be careful not to miss out any important detail that may give an idea about 

the writer’s views on non-Euclidean geometries or his geometrical capacity. I think 

chapter three would make Salih Zeki’s lectures accessible for those who cannot deal 

with Ottoman Turkish. The third chapter is merely a summary without any further 

explanations on Salih Zeki’s ideas; I did not add any ideas that do not belong to 

                                                           
3
 Darülfünun Conferences. 
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Salih Zeki or correct any of his ideas. Also, in the second chapter of my thesis while 

presenting the significant studies that cannot be omitted in accounting for 

geometry’s progress, I will provide explanations on the works of all the geometers 

that took place in Salih Zeki’s lectures. 

As I have mentioned in the previous paragraph, the examination of Darülfünun 

conferences will also reveal the extent of Salih Zeki’s qualifications on the subject 

matter of his lectures. His capabilities may give us some clues about the 

mathematical capacity of the specific era he was dwelling in. This era was the 

beginning of the 20th century in Darülfünun, in my case it was the mathematical 

community of the late Ottoman State – considering that the audience of those 

lectures included “instructors of mathematics” as well as some amateur 

mathematicians as the cover of Darülfünun conferences informs us.4 In other words, 

if Salih Zeki was instructing an audience which consisted of mathematicians then he 

was the authority among those scientists and I assume that the capabilities of his 

students on this very specific topic would not surpass his knowledge. My 

assumption also rests upon the fact that in his preface Salih Zeki says that the 

conferences aimed to fulfill a request of the audience for hearing about the new 

geometries which again implies his superiority on the examined subject. 

Before I go through with the above mentioned promises, I should provide a short 

biography of Salih Zeki: 

Salih Zeki was a mathematician who also studied physics, discussed philosophical 

topics in various articles and whose interest and efforts on the history of geometry 

cannot be underestimated. His interest in mathematics persisted through his 

education, first in Ottoman State then in Paris. After studying in Paris, he returned to 

Ottoman State in which he spent the rest of his life. 

Salih Zeki was assigned to various governmental duties after his return from Paris, 

such as working in a ministry or the Observatory. He ended up as an instructor of 

mathematics and physics in several institutes among which was Darülfünun. During 

his years in Darülfünun he offered conferences on various subjects, five of which are 

examined in this thesis. 

                                                           
4
 “...riyaziyat muallim ve muhibblerine verilen konferanslar...” 
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Salih Zeki has written books on mathematics, geometry, algebra, astronomy, 

trigonometry and physics (Saraç, 2001, pp. 13-14). His translations of Poincaré’s 

major works are among his known and accessible works. Salih Zeki translated 

Science and Method, Science and Hypothesis, and The Value of Science in to 

Ottoman Turkish. Kamus-u Riyaziyat should also be mentioned among his works 

which was an encyclopedia of mathematics. 

One of his significant works, namely Asar-ı Bakiye implies that he spent quite a long 

time studying the works of oriental mathematicians of the middle ages. The preface 

of Asar-ı Bakiye tells us that an intention to analyze the works of the oriental 

scientists on geometry, astronomy, astrology and arithmetic led Salih Zeki to visit 

the libraries in Istanbul. After spending a short time on the available sources in those 

libraries he decided that in order to appreciate the works of the Eastern scientists he 

should study the Greek works on these sciences which preceded the Eastern 

contributions. Salih Zeki studied the Greek astronomy and geometry through the 

work of Paul Tannery, which Salih Zeki regards as a source to reach Ptolemy’s 

Almagest and Euclid’s geometry. Another step in Salih Zeki’s preparation to study 

the Eastern mathematics was to read the translations of some old mathematics 

books in Sanskrit language. Afterwards he returned back to studying the sources in 

Istanbul libraries and also analyzed some works of European scholars on his main 

interest – an attempt which he says to be spread to three years. 

In brief, Salih Zeki performed a study on mathematics and geometry which covers 

Ancient Greece and the Eastern World in the middle ages. Asar-ı Bakiye was 

published in 1913. Considering that he presented his conferences on non-Euclidean 

geometry between 1914 and 1915, this may be a glance on what he had studied 

preceding these conferences. 

Among Salih Zeki’s notes, a mathematician was especially mentioned for his 

interest on the non-Euclidean geometries and their history, and for sharing his 

knowledge with Salih Zeki, namely Vidinli Tevfik Paşa (1832 – 1901) (Saraç, 2001, 

p. 52). Vidinli Tevfik Paşa appears to be the reason why Salih Zeki got acquainted 

with the non-Euclidean geometries. On the other hand, not all of the actual sources 

that guided Darülfünun Konferansları are cited explicitly in Salih Zeki’s account. To 

illustrate, in his first lecture Salih Zeki provides the reader with a footnote in which 
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he states that he quoted Gauss’s letters from Gauss, les deux Bolyai which was 

translated into French by Laugel (S.Zeki, Darülfünun Konferansları, 1331, p. 9). And 

he writes down the original title of Cayley’s article that is followed in the fourth 

lecture, namely A Sixth Memoir upon Quantics (S.Zeki, Darülfünun Konferansları, 

1331, p. 47). However, when he gives an account of Riemann and Helmholtz’s 

contributions Salih Zeki does not provide the titles of these works in any of the 

languages they appeared in, but gives Ottoman Turkish translations of them.  

The fourth chapter of my thesis consists of an evaluation of Salih Zeki’s lectures on 

geometry, in which one of the concerns will be the sources that were followed by 

him throughout his lectures. The main concern of my fourth chapter is to evaluate 

Salih Zeki’s views on geometry and its history, to point out his mathematical 

knowledge and to figure out the erroneous parts of his lectures. 

To sum up, in the following chapter I will provide a summary of the discovery of non-

Euclidean geometries and also discuss how their history should be written by 

comparing the standard and historical accounts on geometry’s progress. In the third 

chapter I will provide Salih Zeki’s account on this discovery and the fourth chapter 

will consist of evaluating Salih Zeki’s lectures. 
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CHAPTER 2 

 

 THE DISCOVERY OF NON-EUCLIDEAN GEOMETRIES AND DIFFERENT 

PERSPECTIVES 

 

2.1 The Problem of Parallel Lines and the New Geometries 

 

The non-Euclidean geometries, like any other innovations in the course of science, 

did not merely pop up at a definite time back in history. The discovery of the new 

geometries, if the desire is not to distort actual history, should be examined as 

spread to centuries. This discovery or the road which led the geometers to discover 

the new geometries can be traced back to Ancient Greece when the legitimacy of 

the Fifth Postulate in the first book of Euclid’s Elements was doubted. 

The first book of Euclid’s Elements provides a “definition” of parallel lines: “Parallel 

straight lines are straight lines which, being in the same plane and being produced 

indefinitely in both directions, do not meet one another in either direction.” (Euclid, 

2002, p. 2). And the application of such lines in geometrical constructions was 

supported by a “postulate”. The Fifth Postulate proposes “[t]hat, if a straight line 

falling on two straight lines makes the interior angles on the same side less than two 

right angles, the two straight lines, if produced indefinitely, meet on that side on 

which are the angles less than the two right angles.” (Euclid, 2002, p. 2). 

Greeks regarded the Fifth Postulate to be problematic, since although it was titled to 

be a postulate, it required to be proven instead of being evident in the geometrical 

system of Euclid. The problem about the Fifth Postulate is that lines that approach 

but do not meet are conceivable (Proclus, 1970, p. 151). Actually, that is the case 

for asymptotic lines which were known by Greeks. If it is possible for some lines to 

approach without intersecting each other, this could be possible for straight lines 
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too. In this sense, the claim that straight lines necessarily meet if they converge 

each other has to be proved. Also, it can be observed that the parallel postulate in 

its very statement, determines the “indefinite” in terms of the “definite”. It determines 

which cannot be demonstrated geometrically and is more likely to be in agreement 

with the experience of the external world. 

One of its fundamental parts being dubious, Euclid’s geometry could be regarded to 

be in danger. However, geometers - just like any scientist would do about the theory 

she was used to understand the world with - did not stop relying on and working with 

this geometry for centuries. There has been quite an enormous effort in favor of the 

Fifth Postulate from the ancient times until the 19th century. And it is not the case 

that geometers after all their endeavors had to accept that the Fifth Postulate was 

not capable of having a proof and so left aside Euclid’s geometry and started to 

work with another one. On the contrary, all the attempts which aimed to support 

Euclid’s geometry were steps through the new geometries. 

At the 2nd century AD Ptolemy believed that he provided a proof for the Fifth 

Postulate, regarding it as a theorem (Proclus, 1970, p. 285). Ptolemy started from 

parallel lines and believed that he had demonstrated that the sum of the interior 

angles on one side when such two lines are cut by a third line can only be equal to 

two right angles. Proclus in his A Commentary on the First Book of Euclid’s 

Elements thought that he had proved that if an arbitrary line cuts a second line then 

it has to cut a third line which is parallel to the second line. In doing so Proclus 

assumed that parallel lines are “equidistant”. This idea of equidistance can be 

observed in later geometrical works in history and is a determining concept in 

several geometrical studies on the parallel postulate. 

Ptolemy and Proclus are examples of geometers which worked on the Fifth 

Postulate in the old times, none of which being successful to reach their goals. Their 

failure was mainly because of working with assumptions which were corresponding 

to what was desired to be proved. They were working within the limits of classical 

geometry. Long after their time, the geometers were able to come up with the idea 

that the solution to the problem of parallels would not come by means of the 

Euclidean practice. 
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Considering that I have limited my account to the Western contributions, I should 

continue my account with the 16th and 17th century investigations on the problem of 

parallels when it was being considered again in the Western world. It was about a 

millennium after Proclus’s time when the geometers were considering this crucial 

problem with Euclid’s geometry again. In the 16th and 17th centuries the studies on 

the problem of parallels got their clues from the idea of equidistance. The geometers 

that studied by means of the idea of equidistance of parallel lines are listed by 

Bonola to be Commandino (1509 – 1575), Clavio (1537 – 1612), Cataldi (… - 1626), 

Borelli (1608 – 1679) and Vitale (1633 – 1711). 

Among these geometers Cataldi had a new idea. He put forward a hypothesis which 

said that “…straight lines which are not equidistant converge in one direction and 

diverge in the other” (Gray, 2003, p. 57). And Vitale is special for the simplicity of his 

formulation. Vitale worked with a claim that the locus of the points with equal 

distance to a straight line is itself a straight line. This assumption ended with the 

requirement of proving the existence of a single point on this locus (Bonola, 1955, p. 

15). 

The abandonment of the idea of equidistance enters the scene with the studies of 

Wallis (1616 – 1703). Wallis’s constructions are on the idea of “similarity”. He 

accepts that “…to every figure there exists a similar figure of arbitrary magnitude.” 

(Bonola, 1955, p. 15). From its preliminary assumption Wallis’s work has a 

deficiency since form which is independent of size is not self-evident (Gray, 2003, p. 

58). When it is proposed that there is a similar figure of arbitrary magnitude to every 

figure, the parallel postulate is already assumed. 

When we come from Wallis to the contributions of Saccheri (1667 – 1733), the 

formulation of the problem enters a quite interesting way. The method applied by 

Saccheri is not concerned with a direct proof of the parallel postulate anymore. 

Instead, his approach is constructed by means of “reductio ad absurdum”. The way 

which was opened by Saccheri is an innovation that affected the studies of following 

geometers. The significance of Saccheri’s work is that while applying reductio ad 

absurdum he assumed that some triangles may have an angle sum which is 

different than two right angles, hoping to prove their impossibility. 
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Saccheri set up three hypotheses: the hypothesis of the right angle (HRA), the 

hypothesis of the acute angle (HAA) and the hypothesis of the obtuse angle (HOA). 

These hypotheses were respectively dealing with triangles with an angle sum of two 

right angles, triangles with an angle sum which is less than two right angles and 

lastly triangles with a sum greater than two right angles. At the end he was able to 

prove HRA and reject that triangles may have an angle sum greater than two right 

angles. However, he was unsuccessful in rejecting the possibility of triangles with an 

angle sum less than two right angles. 

Saccheri’s work may look like a failure, but it has a definite significance in the course 

of the progress of geometry. This geometer worked with triangles and carried the 

problem to the realm of trigonometric studies from classical geometry. His followers 

such as Lambert (1728 – 1777) and Legendre (1752 – 1833) were occupied with the 

three hypotheses that were set may Saccheri. 

Lambert and Legendre established some conclusions which may be characterized 

as non-Euclidean although any non-Euclidean geometry had not appeared in history 

yet. Lambert concluded that the difference of the angle sum of a polygon from the 

expected Euclidean sum and the area of this polygon would be proportional. And he 

was aware of “…the connection between spherical geometry and the geometry 

based on the HOA, and he also suggested that the AA’d [acute angled] geometry 

would be that on the imaginary sphere.” (Gray, 2003, p. 102).5 Legendre asserted 

as a theorem “…that the sum of the angles of any triangle is either less than 

[Hypothesis of the Acute Angle] or equal to [Hypothesis of the Right Angle] two right 

angles.” (Bonola, 1955, p. 55). 

Saccheri’s, Lambert’s and Legendre’s studies were the last efforts in favor of the 

parallel postulate. From the time of Proclus until the 18th century the studies on the 

problem evolved from searching a direct proof to an indirect way of investigation. 

The application of classical geometry started to leave the scene for dealing with the 

problem of parallels by means of triangles. The last geometers of the Euclidean 

tradition could not exhaust the possibility of a triangle with an angle sum which is 

less than two right angles. And this triangle found its place in the geometries of two 

                                                           
5
 An imaginary sphere is a sphere with a radius which is an imaginary number. (eg. √  ) 
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later coming geometers: Janos Bolyai (1802 – 1860) and Nikolai Lobachevski (1793 

– 1856). 

As the history of geometry progresses through the first non-Euclidean geometries, 

the roles of Wolfgang Bolyai (1775 – 1856), Wachter (1792 – 1817), Gauss (1777 – 

1855), Schweikart (1780 – 1859) and Taurinus (1794 – 1874) should also be 

mentioned. 

Wolfgang Bolyai’s contribution to the world of geometry is to propose that through 

three points not on a straight line, a circle can always be drawn (Bonola, 1955, p. 

61). His aim was to prove the Fifth Postulate departing from such an assertion. 

Wachter followed Wolfgang Bolyai and based his argument upon four points and a 

sphere passing through them. Wachter could not provide an appropriate definition of 

the surface he takes into consideration. However, in a letter to Gauss, Wachter 

wrote about a “…surface to which a sphere tends as its radius approaches infinity, a 

surface on the Euclidean hypothesis identical with a plane.” (Bonola, 1955, pp. 62-

63). 

Gauss, in his studies on parallel lines provides a definition of such lines. His 

definition is not a reformulation of the Euclidean one. On the contrary, it is a 

formulation of the negation of the Euclidean parallelism. Euclidean parallelism 

restricts the number of parallel lines to another line through a point which is not on 

this line to “one”. When it is negated, the result is a plurality of such parallel lines. 

Gauss believed in the possibility of a non-Euclidean geometry and put forward a 

notion of parallelism which is no longer determined by Euclidean concepts. This new 

notion is parallelism in one direction. 
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Figure 1 

 

 

In the figure PK and AB are said to be parallel to the right. There is a plurality of 

lines through P that do not cut AB. And if Euclid’s parallelism was considered they 

would all be parallel to AB. Gauss reduces the number of parallel lines through P to 

AB, by defining the first one to be the parallel line to AB (Bonola, 1955, p. 68). 

In a non-Euclidean geometry which agrees with the hypothesis of the acute angle, 

that is, in which the angle sum of a triangle is less than two right angles, there is a 

concept which is called a “horocycle”. “The horocycle is not a circle and indeed has 

the remarkable property that no three points on it can be joined by a circle…” (Gray, 

2003, p. 91). A horocycle passes through the corresponding points on a pencil of 

parallel lines. The corresponding points would be two points A and B on two parallel 

lines a and b, such that AB makes equal angles with a and b.6 

Gauss introduced a new way of treating parallels and he also put forward the notion 

of corresponding points. However, he did not work on the horocycle any further 

(Gray, 2003, p. 91). 

Schweikart was a contemporary of Gauss whose investigation was entitled as 

“Astral Geometry”. In Schweikart’s geometry the angle sum of a triangle was less 

                                                           
6
 In Euclidean geometry there are two types of pencil of lines: A pencil of lines through a point and a 

pencil of lines with a common perpendicular. The lines with a common perpendicular are parallel 
lines in Euclid’s geometry. However, for the non-Euclidean geometry in this case, a pencil of parallel 
lines is a third type. 

𝐵 

𝐾 
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than two right angles and he wrote that “…the sum becomes ever less, the greater 

the area of the triangle…” (Bonola, 1955, p. 76). Another point about Schweikart 

which should not be overlooked is that he proposed that the altitude of an isosceles 

right angled triangle cannot get larger than a certain length which he calls a 

“constant”. 

Taurinus, just like Lambert, recognized the relation between the hypothesis of the 

obtuse angle and the spherical trigonometry (Bonola, 1955, p. 82). He believed in 

the possibility of an inverse spherical geometry (Gray, 2003, p. 101). And his 

intention was to derive the formulae of a geometry which corresponds to the 

hypothesis of the acute angle from the formulae of spherical trigonometry. 

It can be concluded that with Saccheri’s approach a new era started in the realm of 

geometrical enterprise. The negations of the Euclidean postulate were studied. A 

new definition of parallelism was proposed. Geometers noticed the relation between 

spherical trigonometry and the hypothesis of the obtuse angle. Ideas about surfaces 

in which the hypothesis of the acute angle would be true were revealed. And some 

properties of a non-Euclidean geometry, such as a “constant” and the 

“corresponding points” came out. Still, no geometer was able to construct a non-

Euclidean geometry as a system. 

The 19th century finally brings the first non-Euclidean geometrical systems by means 

of the works of Nikolai Lobachevski and Janos Bolyai. Lobachevski thought that the 

difficulties faced by the geometers concerning the problem of parallels throughout 

history, were because the proof of the parallel postulate could not be in terms of the 

available data (Bonola, 1955, p. 92). In other words, the proof would not come from 

Euclid’s geometry itself. Lobachevski’s system agrees with one of the negations of 

the Fifth Postulate of Euclid; the hypothesis of the acute angle. Lobachevski did not 

start with Euclidean thinking, but constructed a brand new geometry in which 

triangles have an angle sum less than two right angles, the loci of the corresponding 

points of parallel lines are horocycles and length is absolute. Lobachevski’s 

geometry allowed more than one parallel line through a point to another line. And 

the title of this geometry was “Pangeometry”. 

Bolyai’s geometry has the same properties as Pangeometry. Bolyai named his 

geometry as “Absolute Geometry”, a name which implies his main intention in 
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constructing his geometry. Lobachevski set up a new universe in which Euclid’s 

parallels would not hold anymore. Though, Bolyai was not interested in negating the 

Fifth Postulate. He was looking for the absolute theorems in Euclid’s geometry 

which are the theorems that are true independently of the parallel postulate (Gray, 

2003, p. 108). And the theorems that are absolute in this sense are in agreement 

with the hypothesis of the acute angle. 

Lobachevski’s and Bolyai’s geometries were independent studies. Considering that 

while Lobachevski was studying with the negation of the parallel postulate, Bolyai 

was investigating the independent parts of the ordinary geometry from the parallel 

postulate, it can be concluded that Euclid’s geometry and Pangeometry have the 

Absolute Geometry in common (Bonola, 1955, p. 102). 

With the studies of Lobachevski and Bolyai, Euclid’s geometry was not the only 

geometry anymore and the Euclidean plane was not the only one to work with. 

However, those two geometries had not brought the all-embracing outlook required 

by geometry yet. When the problem of parallels was totally worked out, the 

Euclidean plane and the surfaces that Lobachevski’s and Bolyai’s geometries were 

true for, turned out to be examples of many possible spaces. It was the hypotheses 

of Riemann (1826 – 1866) which supplied geometry with the way of constructing 

Euclidean and non-Euclidean geometries from one point of view. 

Riemann, in his hypotheses7 did not use the name “non-Euclidean geometry”, but 

he opened the way to a more general geometrical thinking than Euclid’s (Gray, 

2003, p. 141). Riemann regards the problems that were faced by geometers to 

result from the fact that multiply extended magnitudes were not studied. In his work 

he constructs the n-fold magnitudes or the notion of the “manifolds”. A manifold may 

be of one, two, three or more folds and has an intrinsic curvature. The experienced 

space is an example of a three-fold manifold. And a three-fold manifold with zero 

curvature would be the Euclidean space; a two-fold one with the same curvature 

would be the Euclidean plane. Curvature has to be constant, not necessarily equal 

to zero, if figures are to move without being subject to any change. Zero curvature 

means that a manifold is flat. If curvature is different than zero, either positive or 

negative, a manifold would be curved. In this sense, a spherical surface can have its 

                                                           
7
 On the Hypotheses which lie at the Bases of Geometry (1854) 
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own geometry independent of any Euclidean concept. Curvature would determine 

the angle sum of a triangle and when it is constant this sum would be true for all 

triangles in a manifold. 

Riemann’s approach brought the subject to a general ground for geometry. His work 

did not present a particular type of geometry that was different from the long 

Euclidean tradition or the following non-Euclidean geometries. Riemann’s 

investigation was on “space”; the subject matter of geometry. 

The idea of treating all geometry from one point of view and regarding the traditional 

geometry not “the” but “a” geometry was not a simple change in the realm of 

geometrical practice. However, the studies of some following geometers 

strengthened its stance. Beltrami (1835 – 1899) constructed a model of non-

Euclidean geometry. Beltrami’s model mapped a Euclidean plane and a non-

Euclidean surface. He made “…a region of the Euclidean plane… exhibit the 

descriptive features of a new geometry…” (Gray, 2003, p. 150). This could be 

understood by imagining light passing through a gridded plane and projecting grids 

on to a sphere (Gray, 2003, p. 147). In this sense, distances and angles on the 

gridded plane would be altered on the sphere but the two different surfaces would 

be mapped. Geometers had always regarded Euclidean geometry as reliable 

grounds. And since non-Euclidean geometries could be mapped with the reliable 

geometry, it was shown that if Euclidean geometry was worth working with then so 

were the non-Euclidean geometries. Any non-Euclidean figure could be interpreted 

as a Euclidean one and “…every statement about it made in the course of any proof 

is likewise interpretable in strictly Euclidean terms” (Gray, 2003, p. 149). 

Helmholtz (1821 – 1894) was another scientist who independently came up with the 

similar formulations as Riemann. Helmholtz described a manifold of n dimensions, a 

more general notion than space for the possibility of the origin of the concept of 

space. He set forth the necessary grounds for the free mobility of figures in a 

manifold, so that geometrical constructions would be possible.  

Although Riemann and Helmholtz’s studies are concerned with the same concepts 

such as manifolds and the necessity of constant curvature for the possibility of free 

mobility, they differ in the paths they follow through the course of their declarations. 

Riemann starts form the notion of extended magnitudes and then considers the 
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measure-relations in a manifold of n-dimensions. Measurements in a manifold are 

possible on the condition that lengths are independent of their positions by means of 

which Riemann describes the linear element. For the application of his ideas to 

space Riemann considers the idea of flat manifolds which is a special case of 

manifolds with constant curvature that allow figures to move without being subject to 

any stretching or contraction. In this sense, free mobility is the end result of 

Riemann’s investigation. On the other hand, Helmholtz’s course of study starts from 

searching for the necessary grounds that supply figures in space with free mobility.  

Helmholtz’s interest in free mobility stems from his idea that “…primary 

measurement of space is entirely based upon the observation of congruence…” 

(Helmholtz, 1977, p. 41). And the determination of congruence requires the motion 

of bodies in space without changing their forms. As a result, Helmholtz describes the 

notion of an n-dimensional manifold with constant curvature. 

While Riemann was assuming the expression for the line element from the 

beginning, Helmholtz showed that this expression was the only possible one for 

surfaces of constant curvature, if free mobility of figures was assumed in the first 

place. Sophus Lie (1842 – 1899) generalized the difference between the 

approaches of the two geometers by means of his work on the continuous groups of 

transformations. Sophus Lie’s formulation of the views of Riemann and Helmholtz 

was “To determine all the continuous groups in space which, in a bounded region, 

have the property of displacements”. 

Another geometrical study that put forward a relation between Euclid’s geometry 

and non-Euclidean geometries is Felix Klein’s (1849 – 1925) work in terms of 

projective geometry. It was Cayley (1821 – 1895) who provided a projective 

definition of distance by means of a conic which he termed the “Absolute” but he did 

not consider the relation of his theory to non-Euclidean geometries (Bonola, 1955, p. 

148). Klein put forward that “Cayley’s theory of projective measurement leads… 

directly to the three possible cases of non-Euclidean geometry: hyperbolic, 

parabolic, and elliptic, according as the measure of curvature   is   ,   , or    

(Klein, 1894, pp. 85-86). 
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2.2 The Different Perspectives on the Discovery of non-Euclidean 

Geometries 

 

In the previous section I tried to propose a short history of geometry whose focus 

was the discovery of non-Euclidean geometries. The story that appeared in the 

previous section was limited to the studies in the western world. The reason for this 

limitation is to keep a parallel study with Salih Zeki’s account on the discovery of the 

new geometries. Salih Zeki’s account starts from the problem of parallelism and 

presents Legendre’s study to be the last one that was held in favor of Euclidean 

geometry. After mentioning Legendre, his account introduces the non-Euclidean 

geometries of Lobachevski, Bolyai and Riemann; and Salih Zeki continues his 

lectures with the interpretations on the new geometries in term of projective 

geometry. Apparently, Salih Zeki’s lectures were organized as an account of the 

major innovations in the west. 

An account on the progress of geometry may provide a story that lasts for centuries, 

or it may be limited to a specific era. Either way, it is possible to put forward various 

accounts on the progress of geometry that interpret the facts in terms of different 

perspectives. In the first section of this chapter I preferred to emphasize the 

intentions of geometers and the mathematical methods they applied. Also, I tried to 

point out the new notions that were introduced in geometrical studies and their 

innovative conclusions. 

The progress of geometry is treated from several points of view. As a result, the 

history of geometry is written in various manners. The treatment of geometry’s 

progress affects the descriptions of the aspects of its history. To illustrate, while one 

account describes Beltrami’s work to be the required grounds for the consistency of 

the new geometries, another account may propose that this work showed that it is 

possible to practice with non-Euclidean geometries. Saccheri’s study can be 

designated to give the idea that constructing a geometry in terms of the hypothesis 

of the acute angle is logically possible. On the other hand, the emphasis may be on 

Saccheri’s treatment of the subject in terms of triangles. Moreover, Lobachevski’s 

intention may be characterized as to construct a geometry on the negation of the 
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fifth postulate of Euclid’s geometry; while also it can be asserted that he worked with 

the idea that a non-Euclidean geometry is possible. 

Geometry’s progress can be regarded to be axiomatic or it can be examined as a 

historical process. When the emphasis is on the axiomatic structure of geometry’s 

progress, the result would be an account that is mostly interested in the logical 

properties and the logical relations of the innovations. Such an account would be 

what Jeremy Gray terms as the “standard account” of the history of geometry (Gray, 

2003, p. 168). 

Treating the progress of geometry was a result of the axiomatization of geometry at 

the beginning of the 20th century. A name that can be pointed out to have an 

important role in this fashion is David Hilbert (1862 – 1943), with his Foundations of 

Geometry (first appeared in 1899). “Hilbert believed that the proper way to develop 

any scientific subject rigorously required an axiomatic approach” (Zach, 2009). 

Hilbert put forward a treatment of Euclidean geometry by means of a set of twenty 

axioms. These twenty axioms were presented in five groups: 1. Axioms of 

connection, 2. Axioms of order, 3. Axiom of parallels, 4. Axioms of congruence, 5. 

Axiom of continuity (Hilbert, 1950, p. 2). The five groups of axioms are not 

contradictory to one another; in other words, “…it is not possible to deduce from 

these axioms, by any logical process of reasoning, a proposition which is 

contradictory to any of them (Hilbert, 1950, p. 17). The twenty axioms of Hilbert are 

also mutually independent, where no axiom is the logical result of the other. 

When Hilbert considers the third group of his axioms, that is, the parallel postulate of 

Euclid he restates the postulate into two assertions. The first assertion is that when 

a straight line is considered there is always another straight line that does not 

intersect it through a point that is not on the first straight line. The second assertion 

is on the uniqueness of the second straight line. “The first statement of the axiom of 

parallels can be demonstrated by aid of the axiom groups I, II, and IV” (Hilbert, 

1950, p. 19). However, the second assertion is independent of all the other axioms. 

In his book Hilbert provides a geometry where all the axioms of congruence hold 

except the sixth one. The sixth axiom of congruence is on triangles. It states that if in 

two triangles     and       , the side    is equal to     , and    is equal to      

and also the angles at   and    are equal then the angles at   and   would be equal 
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to    and   respectively. Hilbert proposes that this axiom is not always confirmed 

and that it is possible to find two triangles in which the sixth axiom of congruence is 

not valid. 

The fifth group of Hilbert’s axioms consists of the Postulate of Archimedes. 

Archimedes’ postulate is based on the infinite extendibility of the straight line and 

assumes a notion of continuity. Hilbert’s axiom of continuity is again an independent 

axiom which he proves by producing a geometry in which all axioms of his system 

are confirmed except the axiom of continuity. 

Hilbert based Euclid’s geometry on axiomatic foundations. The postulate of parallels 

and the Archimedean postulate were the independent parts of this formulation. In 

this respect, geometrical practice would still be possible if these axioms were 

excluded from a theory. Their independence suggested the logical possibility of non-

Archimedean and non-Euclidean geometries. 

The axiomatization of geometry influenced the philosophy of mathematics. When 

geometry is regarded to be an axiomatic discipline, the historian of geometry 

provides a history of axioms. As a result, the history of geometry is examining the 

equivalency of axioms, independence claims and the consistency of geometrical 

systems. 

The influence of the axiomatization of geometry in writing its history can be 

observed in Roberto Bonola’s Non-Euclidean Geometries (first English edition was 

published in 1912). Bonola’s work provides a significant analysis of the geometrical 

works in the western world including original works of some geometers. However, 

the effect of the axiomatic ideas on geometry persists throughout this work. As I 

have mentioned before Jeremy Gray terms Bonola’s account to be an example of 

the “standard account” on the progress of geometry. The standard account 

examines the axioms of geometrical systems, together with the demonstrations of 

geometers and the results of geometrical studies (Gray, 1998, p. 58). Bonola 

provides alternative proofs for the theorems of various geometers in order to 

exclude the assumption of the notion of continuity or the application of the 

Archimedean postulate in demonstrations. Non-Euclidean Geometries ends with a 

section on the impossibility of proving the parallel postulate (Bonola, 1955, p. 177). 

Bonola states that that the long lasting efforts to prove parallel postulate did not 
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bring out any success, suggests the impossibility of demonstrating this postulate. He 

regards the works of Gauss, Lobachevski and Bolyai to be the results of working 

without the parallel postulate, and to be systems that are free from any 

contradictions. Consequently, according to Bonola, the parallel postulate cannot be 

demonstrated since it is independent from the first principles of geometry. Therefore, 

geometrical systems can be constructed on the negation of the parallel postulate, 

while keeping the rest of Euclid’s postulates. 

If geometrical systems are axiomatic disciplines then the notion of consistency is a 

required aspect for them. In this sense, the idea of consistency of geometrical 

systems is constantly visited in Bonola’s account:  

Still, though it failed in its aim, Saccheri’s work is of great importance. …the 
fact that he did not succeed in discovering any contradictions among the 
consequences of the Hypothesis of the Acute Angle, could not help 
suggesting the question, whether a consistent logical geometrical system 
could not be built upon this hypothesis… (Bonola, 1955, p. 43). 

In terms of an axiomatic outlook their consistency should be provided for the 

possibility of the application of the new geometries. As a consequence, the 

significance of Beltrami’s work is characterized to show “…from the properties of 

surfaces of constant curvature, that the chain of deductions from the three 

hypotheses regarding the sum of the angles of a triangle must lead to logically 

consistent systems of geometry” (Bonola, 1955, p. 139). 

Since Bonola regards geometry as a logical chain, his account evolves around 

logical aspects. Bonola provides facts from the history of geometry without making 

sufficient interpretations on them. The standard account on the history of geometry 

does not seem to be interested in assigning any meaning to the works of geometers 

or provide them a reasonable place in geometry’s progress. Bonola’s work is more 

like a geometry book organized in a chronological order. The rare interpretations on 

geometrical studies appear by means of the desire to provide theories with 

consistency – which can be observed from my quotations from Bonola’s book, 

related to Saccheri and Beltrami. Once the progress of geometry is regarded to be 

axiomatic, the interpretations distort the meaning of geometrical studies or assign 

them meanings that were not present in the first place. Standard account’s 

interpretation of Beltrami’s work is in terms of the relative consistency of geometries. 
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An axiomatic history emphasizes that since Beltrami put forward a map between the 

old and the new geometries, his work yielded that Euclidean and non-Euclidean 

geometries are relatively consistent. Since whatever is done in Euclidean geometry 

can also be performed in non-Euclidean geometries by means of Beltrami’s model, 

the inconsistency of the new geometries would imply that Euclid’s geometry is also 

inconsistent. Therefore, Beltrami’s model supplies the new geometries with 

consistency which is required in axiomatic systems. 

Klein’s work is also important for a standard account of the history of geometry from 

the same point of view. The projective interpretation of non-Euclidean geometries 

owes its significance to the relations it sets forth between the hyperbolic, elliptic, 

parabolic and Euclidean geometries – which again implies their relative consistency. 

The required consistency of the new geometries for the axiomatic approach could 

not be ascertained with the exclusion of the parallel postulate, since the new 

geometries were still open to future contradictions. However, the notion of relative 

consistency was able to solve the problem. 

If geometry is an axiomatic discipline and its progress can be understood by 

examining axioms, then history of geometry is a linear continuum and it can be 

written as a bunch of results. If this is the case, then non-Euclidean geometries must 

have appeared as a mere step in this continuum. On the other hand, historical facts 

confirm that there are gaps between major geometrical works and they do not flow 

from one another in an axiomatic sense. An account on the progress of geometry 

should provide reasons for geometrical changes. A comprehensive account should 

leave aside examining axioms and concentrate on the different approaches of 

geometers. In other words, it is more likely to provide a meaningful account when 

the different intentions of geometers, the various types of stating problems and the 

application of different mathematical methods were taken into consideration. It was 

suggested by Gray to focus on “…the mathematical methods and intentions of the 

actors in the historical drama” (Gray, 2003, p. 170). 

Gray states that the history of geometry was not an investigation of axioms, since 

the application of the parallel postulate and the idea of extending straight lines 

indefinitely were not left aside because of their logical independence (Gray, 1998, p. 
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58). In this respect, treating the progress of geometry as if it was axiomatic is not 

supported by history itself. 

Although the standard account ignores the intentions and different reasoning of 

geometers, it does catch up with the various mathematical methods that appeared 

through the course of geometry. Bonola’s account divides the history of non-

Euclidean geometries into three periods. The first period is entitled as “The 

Forerunners of Non-Euclidean Geometry” and includes the geometrical works in the 

18th century, starting from explaining Saccheri’s contributions and bringing its 

subject until Gauss’ studies. The following chapter in Bonola’s account is “The 

Founders of Non-Euclidean Geometry” and it includes the studies of Gauss, 

Lobachevski and Bolyai. Finally, the third period includes Riemann, Helmholtz and 

the studies by means of projective geometry whose title is “The Later Development 

of Non-Euclidean Geometries”. Gray puts forward that such a classification is in 

agreement with both the evident chronological divisions and the changes in 

mathematical methods. Gray explains this fact by proposing that “…in the 

eighteenth century Saccheri and Lambert used classical geometry; in the early 

nineteenth century Bolyai and Lobachevskii used analysis; in the mid-nineteenth 

century Riemann and Beltrami turned to the techniques of differential geometry” 

(Gray, 2003, p. 168). However, being in agreement with the various mathematical 

methods that were applied in geometry is required yet not sufficient for providing 

meaningful explanations on the progress of geometry. 

The comparison of the expressions on the problem of parallels in Bonola’s and 

Gray’s accounts may give an idea about the role of “meaningful explanations” in 

understanding the progress of geometry. It is a popular fact that the discovery of 

non-Euclidean geometries is rooted in the ancient times when geometers were 

troubled with the parallel postulate. By means of Gray’s account we can learn why 

this problem was highly disturbing for the world of geometry: “Congruence” was a 

basic concept in Greek geometry and two figures are said to be congruent if they 

can coincide (Gray, 2003, p. 26). The demonstration of the congruence of two 

figures would be by moving one until it coincides the other. The motions that were 

performed in Greek geometry were translations, rotations and reflections which are 

possible by another basic concept of this tradition, that is, parallelism. By means of 

parallel lines angles could be transported and similarity could be obtained. In a 
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space, which is apparently assumed to be homogeneous, most of the geometrical 

constructions were relying on the idea of parallelism. Euclid’s geometry provided a 

safe basis for geometrical constructions by placing the idea of parallelism among the 

guides of construction of this geometry. It can be observed that, the problem of 

parallel lines was of great significance since it was the concern of not all but many of 

the performed constructions. And naturally, geometers were driven to save the basis 

for the application of the idea of parallelism. 

While Gray’s account is concerned with what was the actual problem about the 

parallel postulate, Bonola merely puts forward that the parallel postulate was not 

evident and needed a proof even for the earliest commentators on Euclid’s text 

(Bonola, 1955, p. 2). Afterwards, he directly introduces the various reformulations of 

the parallel postulate and the proofs that are based on them. Bonola does not need 

to bring forward any explanations of what was problematic about the mentioned 

postulate, since at the end he is going to point out the logical independency of it as 

causing problems. In this sense, in an axiomatic approach what is considered 

regarding the parallel postulate is that it is not capable of any logical proof; instead 

of its not being evident or necessarily true or whether it could be applied to the 

external world. 

The axiomatic account, by concentrating on the history of axioms, misses some 

useful aspects which can be examined for the sake of comprehensive explanations 

on geometry’s evolution. A proper account on the history of geometry should 

consider the mathematical methods together with why the path of a geometrical 

study is constructed as the way it is. In this sense, an account would successfully 

explain how geometry proceeded through the non-Euclidean geometries, without 

distorting the actual history. Gray’s endeavor to emphasize the mentioned aspects 

of the history of geometry can be illustrated by the following explanations: 

Saccheri and Lambert were studying in terms of classical geometry. The 

appearance of the first non-Euclidean geometries had to wait until the hyperbolic 

trigonometric functions were applied. Janos Bolyai and Lobachevski concluded that 

a geometry which is not Euclidean was possible for space, in terms of the 

trigonometric formulae. The two geometers were working directly with three 

dimensional non-Euclidean space and this was the end of embedding a non-
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Euclidean plane in a three dimensional Euclidean space. Gauss considered 

geometry intrinsic to a surface and there were studies on surfaces of constant 

curvature. However, these works were carried out by the hyperbolic formulae 

without making any connections to non-Euclidean geometries. It was Riemann who 

could appreciate the intrinsic nature of non-Euclidean geometries, by means of 

differential geometry. Riemann and Beltrami formulated geometry in local terms, and 

based the earlier studies to solid grounds (Gray, 2003, pp. 170-171). 

The previous paragraph is an example of how the history of geometry can be written 

instead of setting forth a sequence of axioms and results. The axiomatic account 

can be criticized from various respects, such as ignoring the requirement of 

providing reasons for some obvious problems in the history of geometry. In 

conclusion, the axiomatic progress of geometry is not in agreement with historical 

facts and is unable to assign proper meanings to the aspects of geometry’s 

progress, as well as proposing misleading accounts that fulfill its major concerns. 
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CHAPTER 3 

 

 DARÜLFÜNUN KONFERANSLARI 

 

The present chapter consists of a summary of Salih Zeki’s lectures on the discovery 

of non-Euclidean geometries. In the preface of Darülfünun Konferansları, Salih Zeki 

informs the reader that the mathematical developments in the nineteenth century 

can be evaluated not only by means of their mathematical value but also 

philosophically. The lectures in Darülfünun are constructed in accordance with such 

a view. Salih Zeki presents a significant amount of geometrical knowledge and also 

considers philosophical debates concerning geometry. In the first five lectures most 

of the effort is devoted to examine the geometries of Lobachevski and Riemann, 

Cayley’s studies in terms of projective geometry and Klein’s interpretation of the 

relation between Euclidean and Non-Euclidean geometries. As an overall 

description of these lectures, it can be said that Salih Zeki’s endeavor is to clarify 

two philosophical problems regarding the progress of geometry which are the 

problem of space and the problem of the principles of geometry. He provides the 

required grounds for the discussion of these two problems in his lectures and ends 

his account on the history of geometry by Poincaré’s (1854 – 1912) views on the two 

mentioned problems. 

I prefer to focus on Salih Zeki’s account in this chapter and leave the evaluation of 

his ideas on the history of geometry to the following chapter. 

 

3.1 Lecture 1 [27 November 1914] 

 

Salih Zeki starts his first lecture by mentioning the significance of Euclidean 

geometry and putting forward that it was applied to the external world for centuries 
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without any hesitation. However, this geometry was not as strong as it was regarded 

to be and had a weak point. The problematic point about Euclid’s geometry was the 

parallel postulate [muvazat mevzu’esi]. This postulate proclaimed that “…from a 

point on a plane only one straight line can be drawn that does not intersect another 

straight line on the same plane in both directions” (S.Zeki, Darülfünun Konferansları, 

1331, p. 4). Salih Zeki explains that such a postulate would mean that “…from a 

point on a plane only one straight line can be drawn parallel to another straight line 

on the same plane…” (S.Zeki, Darülfünun Konferansları, 1331, p. 4). The parallel 

postulate can be objected firstly because of not being related to the rest of the 

postulates, and secondly since the non-intersection of lines does not necessarily 

mean that they are parallel lines. The first four postulates of Euclid’s geometry were: 

1. A straight line can always be drawn between two given points. 

2. A straight line can be prolonged indefinitely8 in both directions. 

3. Two straight lines with two common points necessarily coincide between 

these two points. 

4. Given its origin and radius a circle can always be drawn (S.Zeki, Darülfünun 

Konferansları, 1331, p. 5). 

Salih Zeki characterizes the parallel postulate to be independent of these four 

postulates. In addition, it is possible to consider straight lines that converge but do 

not intersect each other when prolonged in both directions, which means that non-

intersection is not a distinguishing property of parallel straight lines. 

According to Salih Zeki, many geometers worked in favor of Euclid’s geometry, that 

is, their purpose was to strengthen the weakness that stems from the parallel 

postulate throughout history; yet none could achieve anything. Among these 

geometers Legendre is worth to be mentioned since Salih Zeki regards his work to 

be the last step before the non-Euclidean geometries were discovered. Legendre 

should be appreciated since he set off to prove a direct consequence of the parallel 

postulate without applying this postulate. Legendre wanted to prove that the sum of 

the interior angles of a rectilinear triangle was equal to two right angles. His attempt 

                                                           
8
 The word that is used by Salih Zeki is “ila-gayri’n-nihaye” and I prefer to translate it as “indefinite”. 

It can be observed from one of Salih Zeki’s articles which was titled as “Namütenahi” (Saraç, 2001, 
pp. 38-45) and throughout Darülfünun Konferansları that the Ottoman phrase he uses for “infinite” is 
“namütenahi”. 
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ended with proving that the angle sum of a triangle cannot exceed two right angles. 

However, he was not able to prove that this sum could not be less than two right 

angles. Legendre achieved to show that if this sum was equal to two right angles in 

one triangle then it would be so for all triangles. Still, he could not put forward a 

triangle with the angle sum of two right angles. 

Salih Zeki affirms that it was after Legendre’s failure that the world of geometry was 

convinced that the Euclidean postulate required to be proved. He regards the 

parallel postulate not to be a geometrical proposition at all. A geometrical 

proposition would be provable but the parallel postulate was rather approximately 

true and seems to be borrowed from experience. Salih Zeki asserts that the angles 

of any triangle can be measured to be equal to two right angles, whereas the 

geometrical proof of that would necessitate the application of Euclid’s parallel 

postulate. 

In Salih Zeki’s account, Legendre’s failure is set as a reason for the more ambitious 

attacks against Euclid’s geometry. And finally, Gauss was the geometer to defeat 

the Euclidean tradition. However, Lobachevski and Bolyai were the ones that 

appeared to be the first successful geometers in this field in the history and that was 

the time when the new geometries were brought out. 

The lecture in Darülfünun provides the following expression and the claim is that 

Gauss, Lobachevski and Bolyai stated it independently. 

If the Euclidean postulate can be logically derived from the other postulates 
and axioms, in a geometry that is constructed upon the negation of this 
postulate and the affirmation of the rest, it would be impossible not to face 
any contradictions. (S.Zeki, Darülfünun Konferansları, 1331, p. 6) 

These three geometers departed from this idea and constructed geometries on the 

negation of the parallel postulate and faced no contradictions. 

Lobachevski examined the theorems that are independent of the parallel postulate 

in Euclidean geometry and provided a definition of parallelism which stated that: 

Straight lines through a given point on a plane are of two groups due to a given 

straight line. While one group intersects the given straight line, the other group does 

not. The limiting line of the two groups is the parallel straight line through the given 

point to the given straight line (S.Zeki, Darülfünun Konferansları, 1331, p. 8). Later 
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on, Lobachevski put forward a system which was entitled as Pangéométrie 

[Hendese-i Cami’a] and which was a surface geometry. 

Salih Zeki provides the properties of Lobachevski’s geometry in order to illustrate 

how this new geometry differs from Euclid’s geometry. He informs the audience 

about the angle sum of a triangle in this new geometry and how it changes with the 

length of the sides. The notion of the equidistance of parallel lines does not exist in 

this geometry and it is not the case that a circle passes through every three points 

that are not on a straight line. Also, there is no concept of similarity in Lobachevski’s 

geometry unless two figures are congruent. 

In Darülfünun Konferansları, explaining the geometry of Janos Bolyai is regarded to 

be unnecessary since Salih Zeki considers this geometry to include nothing different 

than Lobachevski’s geometry. 

It is Gauss who put forward the fundamentals of a non-Euclidean geometry in1792, 

long before Lobachevski and Bolyai. The letters between Gauss and Schumacher 

(1780 – 1850) are taken to be the evidence for Gauss’ success. In a letter to 

Schumacher in 1821 Gauss introduced some non-Euclidean ideas. This letter is 

quoted by Salih Zeki, in which Gauss affirms that: Non-Euclidean geometry includes 

no contradictions. Its conclusions may seem weird at a first glance but this is only 

because Euclidean geometry has long been accepted to be absolute. Non-

Euclidean geometry requires equivalence for any similarity of figures. An angle of an 

equilateral triangle differs from 60 degrees and angles are dependent on the length 

of the sides of a triangle. While Euclidean geometry includes nothing absolute, this 

is a distinguishing property of non-Euclidean geometry. 

In his letters to Schumacher and Wolfgang Bolyai, Gauss declares that he agrees 

with Lobachevski’s and Janos Bolyai’s ideas. However, he regards the new 

geometries to include nothing new for him, since he has been thinking in the same 

grounds for a long time before the works of Lobachevski and Janos Bolyai were 

published. 

Salih Zeki’s conclusion on the first non-Euclidean geometries is that those 

geometries were constructions on the negation of the parallel postulate, and they 

emerged from the aim of proving that the parallel postulate is logically independent 
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from the other axioms and postulates of Euclid’s geometry. When Lobachevski and 

Bolyai were working with their geometries they checked out whether there were any 

contradictions among the consequences. There were no contradictive results but the 

possibility that contradictions may occur among the results of non-Euclidean 

geometries in the future persisted. Later on this possibility was going to be 

exhausted by Beltrami. 

Beltrami is introduced in Salih Zeki’s first lecture but he does not explain this 

geometer’s studies yet and pays attention to the contributions of Riemann. 

Riemann’s work is accounted for while a parallel evaluation of Helmholtz’s studies is 

provided. 

Riemann and Helmholtz had been occupied with the same subject independently. 

The aim of the two geometers was not only to deal with the parallel postulate but to 

analyze all geometrical postulates. They considered space as a manifold [zu-

kesirü’l-enva’] or as an aggregate of magnitudes [mecma’-i mekadir] with a 

curvature. Their common purpose was to show that measure relations were possible 

for manifolds and that the real space or the geometrical space was a simple form of 

a manifold. 

Following Klein’s categorization of the studies in the course of non-Euclidean 

geometries, Salih Zeki proposes that the era that started with Riemann differed from 

the previous non-Euclidean studies. Gauss, Lobachevski and Janos Bolyai 

constitute the first era of non-Euclidean geometries and the purpose which prevailed 

in this era was already explained by Salih Zeki. The second era that starts with 

Riemann was not dealing with the theory of parallels or the non-Euclidean 

geometries directly. Its subject matter was “space”. The studies of Riemann and 

Helmholtz are of philosophical significance as well as mathematical, which derives 

Salih Zeki to examine the studies of the two in detail. 

An examination of the hypotheses put forward by Riemann constitutes the rest of 

the first lecture in Darülfünun and it continues in the second lecture too. Salih Zeki 

quotes and explains Riemann’s expressions and tries to clarify the notion of 

curvature by means of Gauss’ studies. Riemann’s aim is described to provide a 

logical definition of what is generally called space and which is the subject matter of 

Euclid’s geometry. In this sense, Riemann was looking for a more general notion 
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than space. He regarded space to be a special case of an aggregate of magnitudes. 

And he handled the subject by assigning values to the elements and points of such 

an aggregate. The notion of magnitude was not limited to the capabilities of 

increasing and decreasing, but could be measured and determined in various ways. 

The whole of this quantitative determination constituted the aggregate of 

magnitudes which Riemann called a “manifold” (S.Zeki, Darülfünun Konferansları, 

1331, p. 14). Such a general notion or manifold was necessary for the 

comprehension of magnitudes. If it was possible to pass from one type of 

determination to the other continuously the manifold would be continuous; if not the 

manifold would be discrete. 

Salih Zeki’s presentation of the properties of a manifold continues with the notion of 

n-dimensional manifolds . Measure-relations in a manifold of n dimensions require 

that quantities or length of lines are independent of their positions. It is stated by 

Salih Zeki that the idea of quantities independent of their positions, brings the next 

notion which was specified by Riemann: curvature. 

Gauss applied curvature to surfaces. However, Riemann was applying it to 

manifolds of n dimensions. The curvature of a surface and the curvature of a 

manifold were different notions, and in the case of a manifold curvature should be 

regarded as its “constant”. Salih Zeki explains how the radius of a circle and its 

curvature are related: Curvature of a circle is proportional to the inverse of its radius. 

While the curvature of a circle is constant, it may vary on a curve from point to point. 

The determination of the curvature at one point of a curve would be by the same 

method for both curves on a plane and three dimensional curves. Curvature at this 

point would proportional to the radius of a circle passing through it and two 

infinitesimal points, namely osculating circle [daire-i mukterine] (S.Zeki, Darülfünun 

Konferansları, 1331, p. 16). 

When a surface is considered, in order to determine its curvature at point, a tangent 

plane through this point is required. The number of the circles through this point and 

its infinitesimal points would not be limited to one as in the case of a curve. In other 

words, there would be an infinite number of such circles since this point is on a 

surface. And each circle is on a planar section which is perpendicular to the tangent 

plane, namely a normal section [makta’-ı nazımi]. However, the radii of these circles 
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would be bounded by a minimum (  ) and a maximum (  ) value which are the 

principal radii of curvature [nısf-ı kutr-u inhina-i asli] (S.Zeki, Darülfünun 

Konferansları, 1331, p. 17). The two circles with the radii    and    would be on two 

normal sections that are perpendicular to each other. The Gaussian curvature at this 

point of the surface would be equal to 
 

  
 
 

  
 . Salih Zeki states that the product of 

the inverse of the principal radii would determine more than the curvature of the 

surface. If the two radii were equal the surface would be a sphere. If one of the two 

radii was infinite, curvature would be equal to zero which is the case for a cylinder or 

cone. As well as being positive or zero, curvature can also be negative. The rotation 

of a hyperbola around its directrix would generate a surface with a negative 

curvature. 

Gauss proved that for two surfaces to be applicable to each other they should have 

equal curvatures at corresponding points. In this sense, a section of one surface can 

be generated on the other without any stretching or contraction. 

Through the end of his first lecture Salih Zeki introduces the notion of free mobility of 

surfaces, sections of surfaces or figures which necessitates constant curvature. All 

the surfaces with constant positive curvature would be applicable to a sphere. If the 

curvature was negative and constant, the surface would be applicable to a pseudo-

sphere. And the surfaces with constant zero curvature are the developable surfaces, 

that is, applicable to a plane. 

Salih Zeki had presented the curvature of curves and surfaces and with these last 

remarks the first lecture at Darülfünun is finished. The promise for the next lecture is 

to examine the application of curvature to a manifold. 

 

3.2 Lecture 2 [11 December 1914] 

 

For the application of curvature to a manifold of n dimensions, Riemann regarded 

the normal section curves [makta’-ı nazımi münhanileri] that are generated for the 

determination of curvature at a point on a surface to be the properties of this surface 
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(S.Zeki, Darülfünun Konferansları, 1331, p. 20). A surface was taken to be a two 

dimensional space, independent of the third dimension of the ambient space. The 

infinitesimal curves on the normal sections were determined by means of two 

coordinate axes on this surface. The infinitesimal curve    on this surface with the 

coordinates   and   was described by Gauss as the following: 

  
    (  )

    (  )(  )    (  )
 
 

If the curvature of an infinitesimal [asgar-ı namütenahi] part of a geodesic [hatt-ı 

aksar] was determined by this formula then curvature would also be an intrinsic 

property of the surface. In this sense, the application of a third dimension would not 

be required. In a manifold of n dimensions each element or point was described by n 

continuous variables. And since the distance between two elements or points was a 

quantity, every distance could be measured by another length. Moreover, the 

infinitesimal distance    between two points was represented by the square root of a 

quadratic function of the coordinates of these points: 

   √∑(  )
  

This expression constitutes the line element formula [unsur-u hatti düsturu] and 

Riemann preferred it because of its simplicity, that is, he regarded this formula to be 

simplest form of a line element (S.Zeki, Darülfünun Konferansları, 1331, p. 21). After 

introducing the line element, the next step for Salih Zeki is to define the curvature of 

a manifold.  

If it was assumed that a geodesic is determined by a point on it and its direction at 

this point, or by two points on it with infinitesimal distance in between, then a 

manifold must have a curvature. Curvature can be directly determined by Gauss’ 

general formula or by Riemann’s line element formula. 

An intelligible description of the curvature at a point and a given surface-direction 

through this point would be by accepting the fact that: The geodesics proceeding 

from a point are determined if their initial direction is given. Therefore, if the given 

geodesics proceeding form a point are prolonged in all directions the result would be 
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a determinate surface whose curvature at this given point would also be the 

curvature of the n-dimensional manifold and of the surface element at this point.  

Now Salih Zeki can introduce the notion of flat manifoldness since the curvature of a 

manifold was described.  Flat manifoldness is a requirement for applying Riemann’s 

ideas to space. An n-dimensional manifold is flat, if its curvature is zero at every 

point and all directions. Actually, such a surface would be a special case of 

manifolds with constant curvature. The common characteristic among manifolds with 

constant curvature is that they allow the motion of objects and figures without any 

stretching. And free motion would not be possible if curvature was varying from a 

point to another. Also, since the measure-relations of a manifold at a point are 

determined by the curvature at this point, these relations must also be constant. In 

such a manifold a figure can be constructed from any initial point or may have any 

position. Riemann reformulated the line element formula for a flat manifold as the 

following, in which   represents the constant curvature: 

√∑(   )
  

  
 
 
∑  

 
 

In order to apply the provided ideas to space, it must be assumed that lines in space 

are independent of their position and line-elements are expressed by the given 

formula. These requirements can be fulfilled in several ways. One way is to assume 

curvature to be zero at every point and in all three dimensions of space. In this 

sense, if the angle sum of a triangle is everywhere equal to two right angles, the 

measure-relations of space can also be determined. Or it could be accepted that 

bodies as well as lines are independent of position in space, like Euclid did. This 

again would mean that curvature is constant and the sum of the interior angles of a 

triangle would be true for all triangles. Another option is to regard the length and 

direction of lines independent of position. All three assumptions would be true for a 

flat manifold. 

Riemann describes space to be of three dimensions and it is an unbounded but a 

finite [gayr-i mahdud fakat mütenahi] manifold (S.Zeki, Darülfünun Konferansları, 

1331, p. 23). Its being unbounded agrees with the external world and this is always 

confirmed by experience. However, the infinity of space does not flow from being 
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unbounded. On the contrary, if figures were independent of position by means of a 

positive curvature then space is necessarily finite. 

After this general account on Riemann’s work and considering the basic notions that 

were introduced by the geometer, Salih Zeki provides the properties of Riemann’s 

geometry shortly: Riemann constructed a surface geometry in which Euclid’s parallel 

postulate was not the only one to be rejected. His geometry also rejected that two 

straight lines with two common points necessarily coincide between these two 

points. In Riemannian geometry straight lines were unbounded but finite and they 

could not have the property of being parallel. The sum of the angles of a triangle 

was greater than two right angles. Riemann’s geometry was another non-Euclidean 

geometry and different than Lobachevski’s system. 

In this way Salih Zeki concludes his explanations about Riemann’s contributions to 

geometry and concentrates on Helmholtz’s work. Helmholtz was interested in the 

origin of space while he was working on the objects in the field of vision. His aim 

was to figure out which geometrical theorems were based on experience and which 

theorems were conventional [i’tibari] or consisted of definitions and consequences of 

definitions (S.Zeki, Darülfünun Konferansları, 1331, p. 24). Helmholtz entered a 

complex subject: Geometrical figures were not existing bodies and the objects of the 

external world could hardly represent those figures. Also, geometrical axioms and 

postulates were not sufficient to generate the notion of space. Helmholtz proposed 

that any relations other than the magnitude-relations that are possible in the external 

world could not be considered. Because of visual intuition empirical properties of the 

external world were regarded to be evident, even if they were not. As a 

consequence, Helmholtz appealed to analytic geometry which worked with the pure 

notion of quantity, considering that visual intuition cannot interfere in. And he 

searched for the analytic properties of space. 

Helmholtz constructed a manifold independently of Riemann. Each point of this 

manifold is determined by n quantities or coordinates which are required for 

providing properties of space such as continuity and being n-dimensional. These 

coordinates are continuous variables [suret-i gayr-i münkati’ede mütehavvil] and 

independent from each other. According to Helmholtz a manifold is of n dimensions 
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or extended in n directions. And if it is going to be regarded as space, then a line 

element in space in any direction should be comparable to any other line element. 

If  ,  ,   represent the coordinates of the initial point of a line element, then the 

coordinates of another point with infinitesimal distance to the first one would be 

    ,     ,     . The length of such a line element would be determined by a 

function of   ,   ,    or the General Pythagorean Theorem [Fisagorat Da’va-i 

‘Umumisi] (S.Zeki, Darülfünun Konferansları, 1331, p. 26). This theorem did not 

require any kind of measurement and constituted a distinguishing property of our 

space from other manifolds. 

Riemann regarded this theorem as the simplest form for a line element and added 

that objects were not subject to any change during their motions in space. For 

Helmholtz free mobility was a postulate and he concluded the General Pythagorean 

Theorem by means of analysis. 

Both Riemann and Helmholtz based the possibility of measurement on congruence 

[muvakafat] (S.Zeki, Darülfünun Konferansları, 1331, p. 26). This requirement, that 

is, congruence was provided by Helmholtz’s four postulates. The first postulate was 

on the continuity of manifolds, and as an instance the continuity of space. Continuity 

of manifolds was a definition in Riemann’s study. The other three postulates were on 

the existence of a rigid body in motion, freedom of motion and transition and the 

independence of rotation of a rigid body. These three postulates were not explained 

in detail in Riemann’s work, but they were generally accepted. Helmholtz’s ideas 

show that he assumed that the constituting points of rigid bodies are independent of 

position, just like Riemann’s expressions. 

Helmholtz compared space to a system of colors. The medium for measurement is 

mixture for colors and any quantity-relations cannot be determined unless mixture 

plays its role. This tool for measurement provides the possibility of comparing one 

relation with another. In a color system relations are possible between three colors, 

one of which is the mixture of the other two. Such a relation corresponds to the 

quantitative-relations in a set of three points on a straight line. In this sense, the 

color system is more complex than a manifold, since there is a quantitative relation 

between any two points in a geometric space. The color system and the geometric 

space are both continuous manifolds, whereas the complexity of the color system 
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makes it impossible to apply the General Pythagorean Theorem or Riemann’s 

general formula. 

At this point, Salih Zeki states that what he proposed was the ideas of Riemann and 

Helmholtz in general. Subsequently, he aims to answer the question of a possible 

future coming contradiction among Riemann’s theorems and his answer is in the 

negative sense. Riemann’s geometry was about figures on a surface of constant 

positive curvature and such a geometry would not differ from a spherical geometry. 

In Riemann’s geometry Euclid’s spherical surface was a plane. The shortest path 

between two points on a sphere was a section of a great circle, while the other lines 

between two points would be curves. By mapping Riemann’s and Euclid’s 

geometries, Salih Zeki proposes that the theorems and conclusions of Riemann’s 

geometry were not open to any contradictions unless it was accepted that Euclidean 

spherical geometry includes contradictions. 

In accordance with his aim of establishing the legitimacy of the new geometries 

Salih Zeki accounts for Lobachevski’s geometry too. The possibility of any 

contradictions in the future for Lobachevski’s geometry was exhausted when 

Riemann and Helmholtz put forward the necessity of curvature for surface 

geometries. By means of the studies of Riemann and Helmholtz, Beltrami 

interpreted Lobachevski’s geometry to be a case of Euclid’s geometry. Short after 

the publication of Riemann’s hypotheses it was clear that Lobachevski’s geometry 

belonged to the surfaces with constant negative curvature. Riemann’s and 

Lobachevski’s geometries were the application of Euclid’s geometry to surfaces with 

constant positive curvature and constant negative curvature respectively. In other 

words, Euclid’s plane geometry was a special case of both Riemann’s and 

Lobachevski’s geometries. If the radius of either the sphere or the pseudosphere 

was taken to be infinite, curvature would be zero and the surface would Euclid’s 

plane. 

The rest of the second lecture in Darülfünun is driven by Salih Zeki’s intention of 

considering the mathematical progress in the 19th century not only from a 

mathematical stance but also in terms of its philosophical implications. The new 

geometries were surface geometries and as a result they operated on two 

dimensional spaces which could be embedded in a three dimensional Euclidean 
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space. However, when three dimensional figures were considered in these 

geometries there appeared a problem. Three dimensional figures of non-Euclidean 

geometries indicated the application to the fourth dimension in Euclidean sense; yet 

the fourth dimension was not comprehensible.  

Salih Zeki states that the idea of a fourth dimension resulted in a philosophical 

debate. And by “philosophical debate” he refers to the empiricist-rationalist dispute 

concerning space. He provides the general ideas of the two groups on the nature of 

space rather than on the idea of a fourth dimension, such as objective reality of 

space according to the empiricists or the rationalist idea that whatever time is with 

respect to events, space is so with respect to objects. 

The empiricist and rationalist expressions are the last remarks in Salih Zeki’s 

second lecture. At the end of his presentation Salih Zeki mentions the lectures of 

Helmholtz in the 1870s and sets the plan of his third lecture in Darülfünun to be 

evaluating Helmholtz’s lectures for the sake of clarifying Riemann’s and Helmholtz’s 

ideas. 

 

3.3 Lecture 3 [25 December 1914] 

 

In the third lecture Salih Zeki directly starts to present the illustrations of Helmholtz 

in which the types of surface geometries are compared. The first example is about a 

plane [sath-ı müstevi] and two dimensional intelligent beings dwelling on it (S.Zeki, 

Darülfünun Konferansları, 1331, p. 32). If these creatures wanted to measure their 

space, the resulting geometry would be a two dimensional or a surface geometry. 

The creatures would be familiar with shortest distances or straight lines and curves. 

They would draw only one parallel line to another straight line through a point that is 

not on it. They would come up with many geometrical theorems. This geometry 

would include triangles, quadrilaterals, polygons and circles. Even ellipses, 

parabolas, hyperbolas and similarity of figures would be discovered by the two 

dimensional creatures. However, they would never come up with the idea of a solid 

body. The similarity of two triangles would be comprehensible for these creatures if 
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and only if the figures could be applied to each other by transition. The similarity of 

equal but symmetric figures would not be known since this would require picking up 

one of the figures and putting it on the other one which can only be by means of a 

third dimension. 

There could be other surfaces existing along with the world of the two dimensional 

creatures, some of them being parallel to the first one. These creatures would not be 

able to know anything about the parallel surfaces. Even though another surface was 

intersecting theirs, they would still be ignorant. Passing to another surface which 

intersects their surface would be impossible for them, since it necessitates the 

appeal to the third dimension. It would be beyond the comprehension of the planar 

creatures to think by means of three dimensions. 

The same example can be constructed about a spherical surface which would again 

be two dimensional according to its dwellers. The spherical creatures would 

compose a geometry of two dimensions, not planar but spherical. Shortest distances 

would be geodesics. The length of curves would be proportional to their radii and 

radii would be geodesics too. If two straight lines were prolonged enough they would 

intersect in both directions. There would be no room for the notion of parallelism in 

this geometry. The tools for measuring lengths and areas would be a geodesic and 

a spherical square respectively. Any similar figures could not exist on such a surface 

since the angle sum of triangle would be dependent on the length of its sides. The 

spherical creatures would not know anything about a third dimension and as a result 

they would not be aware of the radius of their surface. It would be natural to end up 

at the initial point of a path that is followed on a straight line, since it would be taught 

by experience. 

Apart from their inability to think of a third dimension, the spherical creatures would 

not know that their geometry is not absolute or understand a planar geometry. 

If a planar creature was somehow transported to another plane, it would not face 

any trouble and continue in its habits. On the other hand, when the same process 

was considered for a spherical creature, there would be two possibilities. If the new 

surface had the same curvature as the first one, nothing would be new for the 

spherical creature. However, if the radius of the second surface happened to be 
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different than the radius of the first surface the creature would face serious problems 

because of being in a surrounding with which its curvature does not agree.  

Each surface has a special property, that is, a constant. The creatures in a two 

dimensional space cannot determine how a quantity it is, but since we live in three 

dimensional space we that the constant for a sphere is its radius or its curvature. 

Salih Zeki continues explaining two dimensional geometries by comparing spheres 

of different radii. A straight line on a sphere may become a curve on another sphere 

with a greater radius. A curve on a sphere may be a straight line for another sphere 

with a smaller radius. However, the transition between spheres of different radii 

would destroy triangles, squares, and the rest of geometrical figures. Every space 

has its own figures in agreement with its distinguishing property, that is, curvature. 

One last remark before Salih Zeki considers the notion of a fourth dimension is to 

exemplify developable surfaces. When a piece of paper with a figure drawn on it is 

folded around a cylinder or cone, the figure would seem different. Though, neither 

the lengths of its sides nor its angles would be altered as a consequence of the 

constant zero curvature which is common to the plane, the cylinder and the cone. 

On the contrary, a planar figure cannot be transported upon an ellipsoid without any 

change. 

When Salih  Zeki considers the fourth dimension he sets an analogy between the 

reaction of a two dimensional creature to the idea of a third dimension, and the 

difficulty that a three dimensional creature would have in thinking of a fourth 

dimension. The fact that two dimensional creatures would not be able to think in 

terms of three dimensions may seem ridiculous to us, since we already live in three 

dimensions. In the same way, if there were creatures living in a four dimensional 

space, the difficulty in understanding Lobachevski’s and Riemann’s geometries 

would be absurd to them. 

An inductive way of reasoning is suggested by Salih Zeki for understanding the 

position of point in a four dimensional space. A point on a straight line or curve is 

determined by its distance to a fixed point on this line. The position of a point that 

moves on a surface is due to its distance to two fixed lines on this surface. And in 

our space the position of a point is given by means of three fixed lines. This 
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similarity suggests that the position of a point in a four dimensional space is 

determined by four three dimensional spaces. 

Salih Zeki names the four dimensional space as Hyperspace [mekan-ı zaidi] (S.Zeki, 

Darülfünun Konferansları, 1331, p. 39). Afterwards, he describes Euclid’s three 

dimensional space. 

In Euclid’s geometry a right triangle can be rotated in order to generate a cone. 

Furthermore, the generated cone can be cut by a plane and it is possible to perform 

geometrical measurements on the resulting surface section on this cone. Through 

this process it is assumed that the cone shows no resistance against our actions. 

The freedom of geometrical processes is by means of a property of Euclidean 

space; Euclid’s space is homogeneous [mütecanis] (S.Zeki, Darülfünun 

Konferansları, 1331, p. 40). In Euclidean space a solid can move in any direction 

without any resistance. And any two points can be joined by a straight line. Together 

with the notion of homogeneity which is required for free motion, Salih Zeki 

considers the effect of a change in curvature on motion. The Euclidean straight line 

is not the shortest path anymore if it was transported to a non-Euclidean space. The 

straight lines on non-Euclidean surfaces are determined by curvature and such 

surfaces would resist a Euclidean straight line. 

Straight lines in the spaces that were considered by Riemann and Helmholtz are 

geodesics on a sphere or pseudosphere. The planes in these spaces are spherical 

or pseudospherical surfaces. The variety of straight lines and planes is unbounded, 

and it is due to the variety of the spaces of constant curvature. The straight lines and 

planes in non-Euclidean geometries and for instance Riemann’s geometry are 

curves and surfaces in Euclid’s geometry. Salih Zeki provides some further 

illustrations to point out that there is a variety of straight lines and planes in 

geometry: 

If space was merely a straight line, the only possible constructions would generate 

line sections. As a result, it would be impossible to rotate a line section since 

rotation requires two dimensions. When a straight line is half rotated around its mid-

point, it coincides with its initial position. If the same procedure was applied on a 

curve the result would be a symmetrical curve through a tangent line to the initial 

curve at its mid-point. Still, there is a way for a curve to coincide its initial position 
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after a half rotation. Rotating a curve around its diameter would provide the desired 

conclusion but this can only be possible in three dimensions and not on a plane. 

However, if a curve was on a sphere provided that the curve and the sphere have 

the same radius, then such a rotation would be possible in two dimensions. A 

geodesic on a sphere would coincide with its initial position by half a rotation around 

its mid-point. The relation between a straight line and a plane does not differ from 

the relation between a geodesic and a spherical surface. 

The illustrations on different types of straight lines and planes are followed by Salih 

Zeki’s explanation on the necessity of the notion of curvature for space. The case on 

the rotation of straight lines and curves shows that a two dimensional spherical 

surface corresponds to Euclid’s three dimensional space. In other words, a two 

dimensional space with a curvature acts like three dimensional which is true for both 

the sphere and the pseudosphere. Salih Zeki considers rotation in three dimensions 

by means of a plane which is half rotated around a straight line on it. After the half 

rotation each half of the plane would be placed in the initial position of the other half. 

However, a figure on one of the halves would gain a symmetrical position due to its 

initial position. If the same procedure was to be held on a spherical surface in order 

to get symmetrical figures, the application to a fourth dimension would be required. If 

there were a fourth dimension a spherical surface could also be turned inside out 

like the plane. A figure on a spherical surface would gather a symmetrical position to 

its initial one if it could be half rotated around a straight line of this surface. Such a 

procedure is not comprehensible in the case of a closed sphere, since we live in a 

three dimensional space without a curvature. In the case of two cylinders which are 

symmetrical by means of a plane, it is possible to determine the equality of the two 

bodies, but they cannot be rotated to coincide. Salih Zeki states as a justification 

that Newcomb (1835 – 1909) affirmed that a fourth dimension would make it 

possible to turn a sphere inside out.  

If Euclid’s geometry has a unique surface, that is, a plane that can be rotated around 

a straight line on it, then the non-Euclidean geometries should have their unique 

surfaces with the same capability or their own planes. It is accepted that a plane can 

be rotated in the mentioned way and a plane is nothing but a surface with an infinite 

radius. 
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Salih Zeki concludes his third lecture by putting forward the distinguishing properties 

of the three geometries in terms of triangles. The angle sum of a spherical triangle is 

greater than two right angles, but when the radius of the surface is infinite this sum 

would be equal to two right angles and the curvature would be zero. For an angle on 

a pseudosphere this angle sum is less than two right angles and again in the case of 

an infinite radius or when curvature is zero, triangles behave like Euclidean ones. In 

this sense, there are three types of trigonometry: Spherical trigonometry, 

Pseudospherical trigonometry [müsellesat-ı küreviyye-ı kazibe] and plane 

trigonometry (S.Zeki, Darülfünun Konferansları, 1331, p. 45). The difference 

between them is in terms of their theorems for the angles of triangles: If  ,  ,   are 

the angles and   ,   ,    are the opposite sides, then 

    

  
 
    

  
 
    

  
 is true for a Euclidean triangle, 

    

     
 

    

     
 

    

     
 is the case for a triangle in Riemann’s geometry, and 

    

      
 

    

      
 

    

      
 is the theorem for a triangle in Lobachevski’s geometry. 

In a footnote Salih Zeki points out  that        means the hyperbolic sine of    or the 

hyperbolic sine of the curve    (S.Zeki, Darülfünun Konferansları, 1331, p. 46). 

Lastly, as the topic of the following lecture Salih Zeki promises to examine the 

situation of the non-Euclidean geometry back at the beginning of the 20th century. 

 

3.4 Lecture 4 [8 January 1915] 

 

In his fourth lecture Salih Zeki concentrates on the non-Euclidean geometries, 

mainly in terms of the contributions of Cayley (1821 – 1895) and Sophus Lie (1842 – 

1899). He examines Cayley’s “A Sixth Memoir upon Quantics” [Kemiyyata Da’ir Altı 

Muhtıra (S.Zeki, Darülfünun Konferansları, 1331, p. 47)] and Lie’s studies on the 

transformation groups [Zümre-i Mütemadiyeler Nazariyyesi (S.Zeki, Darülfünun 

Konferansları, 1331, p. 56)]. 
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Salih Zeki characterizes Cayley’s aim to base all considerations concerning space 

on purely projective principles. Cayley transformed geometrical terms such as 

distance and angle to projective grounds. Elementary geometry was dealing with 

magnitudes in terms of quantities and Cayley was looking for a more general 

system.  

Cayley’s geometry constituted the third era in Klein’s classification of the history of 

the new geometries, which was introduced in the first lecture by Salih Zeki. Cayley 

showed that a purely projective interpretation of distance can be provided by means 

of circular points or a straight line at infinity. Afterwards, he described the distance 

between two points by the inverse sine or the inverse cosine of a function of the 

quantities which he called “projective coordinates” [kemiyyat-ı vaz’iyye-i irtisamiye]. 

In this sense, he changed the measurable properties of figures into projective 

properties with respect to a conic [mahrutiyye] that he called the “absolute” (S.Zeki, 

Darülfünun Konferansları, 1331, p. 47). 

In analytic geometry, circular points at infinity constitute an imaginary conic. When 

Cayley generalized the notion of distance in terms of such a conic, he also proved 

that the two dimensional geometry which was obtained by projection based on this 

conic is a spherical geometry. The geometry provided by Cayley is nothing but 

Riemann’s geometry. If the conic was real, the result would be Lobachevski’s 

geometry. However, Salih Zeki thinks that, since Lobachevski’s name is never 

mentioned in his work, Cayley does not know the non-Euclidean geometries. 

It was Felix Klein who put forward the connection between the projective theory of 

distance and the non-Euclidean geometries. Klein classified types of geometry into 

four groups in terms of the possible properties of the absolute curve that was the 

basis for projection. If projection was based on a real conic, the result would be 

Lobachevski’s two dimensional geometry. Klein called such a geometry “hyperbolic 

geometry” [hendese-i za’idiye]. If the conic was imaginary, projection would 

generate a geometry similar to Riemann’s spherical geometry or Helmholtz’s 

geometry. The name provided for this second type of geometry was “elliptic 

geometry” [hendese-i nakısiye]. A third type of geometry was provided if the conic 

was reduced to a pair of imaginary points, which was “parabolic geometry” 
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[hendese-i mükafiye]. Lastly, if the imaginary points were circular points at infinity, 

projection would correspond to Euclid’s geometry. 

All these geometries were derived from figures on a Euclidean plane; the only 

modification was on the definition of distance between two points on this plane. 

Therefore, Klein was not dealing with space but with the definition of distance. Salih 

Zeki adds that the definition of distance between two points was conventional 

[i’tibari] and also the new geometries were conventional and qualitative [keyfi] 

(S.Zeki, Darülfünun Konferansları, 1331, p. 48). 

What Salih Zeki regards to be interesting about the connection between the various 

geometries is that when the non-Euclidean geometries were accepted to be 

conventional and qualitative in this way, Euclidean geometry was included among 

them too. Cayley’s way of projection was always applicable on Euclidean plane. In 

this sense, the distance between two points in either of the non-Euclidean 

geometries could be transformed to Euclidean space by means of Cayley’s 

interpretation. The distance between two points in non-Euclidean spaces was equal 

to a “hyperbolic metric” or a “spherical metric” in Euclidean space. 

Salih Zeki shortly introduced Beltrami’s contributions to geometry in his first and 

second lectures in Darülfünun. In the first lecture, Beltrami was mentioned to be the 

geometer who exhausted the possibility of any contradictions in the non-Euclidean 

geometries. In the second lecture Salih Zeki pointed out that Beltrami had 

interpreted Lobachevski’s geometry to be a case of Euclid’s geometry. The fourth 

lecture includes a short reference to Beltrami’s work too, which in a way explains the 

previous two references. What exhausted the possibility of any future contradictions 

among the theorems and consequences of non-Euclidean geometries is Beltrami’s 

interpretation on their connection with Euclidean geometry. Beltrami established that 

the plane in Euclidean geometry corresponds to surfaces of constant curvature – 

either positive or negative – in other spaces. In other words, the planes in these 

geometries are Euclidean planes when distance is considered with respect to 

hyperbolic or elliptic metrics. By means of Beltrami’s interpretation, it could be 

concluded that one and only one theorem in Euclid’s geometry corresponds to each 

theorem in non-Euclidean geometries. 
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The next concern in Salih Zeki’s lecture is to provide Klein’s interpretation on 

practicing geometry by projective means. Klein put forward that transforming 

quantitative geometry to projective geometry was with respect to a conic. However, 

Lobachevski’s geometry was the only geometry that could be derived if this conic 

was real. The derivation of spherical geometry or Euclid’s geometry required either 

an imaginary conic or circular points at infinity respectively. In this sense, imaginary 

numbers were included in Euclid’s geometry. The notion of imaginary numbers 

carries Salih Zeki’s lecture into a philosophical debate. 

Salih Zeki proposes that imaginary numbers are indispensable in analytic geometry 

and they are also important in physics. Without the imaginary numbers, a big deal of 

progress in science would not be possible such as Hamilton’s theory of quaternions 

or the Maxwell’s electromagnetic theory of light.  

In spite of their importance in various branches of science, some philosophers were 

against their application. Salih Zeki quotes some of Russell’s (1872 – 1970) ideas as 

an example for the philosophers that were not willing to accept the significance of 

the imaginary numbers.  

Russell claims that imaginary numbers do have a significant role in geometry, 

especially because Cayley transformed quantitative geometry into projective 

geometry with respect to circular imaginary points. However, it is not possible to 

discuss the philosophical significance of imaginary numbers, since there is no 

philosophical theory that corresponds to the application of imaginary numbers. 

Salih Zeki states that Russell was making such a claim although he had accepted 

the possibility of non-Euclidean geometries and non-Euclidean space. Afterwards he 

continues presenting Russell’s ideas: 

In a three dimensional Euclidean space a point can be determined in terms of 

Descartes’ three coordinate axes. These coordinates may vary between    and 

  , but each of them corresponds to one and only one real point in space. Space is 

a collection of variable three coordinates and it cannot correspond to an aggregate 

of imaginary quantities. Imaginary numbers may be advantageous, yet this 

advantage is dispensable. Even if they are applied in the positive sense in 

geometry, imaginary numbers are merely tools. They are included in geometry by 
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means of real numbers and the consequences of their applications are interpreted 

by means of real numbers too. Moreover, since their interpretations are made in 

algebraic terms, they cannot include the notion of space. Another point is that a 

circle is a closed curve and it cannot emerge from points at infinity. To prolong every 

bounded and closed figure to infinity just because circular points at infinity 

correspond to the equations of all circles is absurd. 

Salih Zeki, as a defense against Russell’s ideas, states that something quantitative 

does not need geometry. In terms of geometry every function would have a 

derivation [müştakk], since a function is represented by a curve and it is possible to 

draw a tangent to every curve (S.Zeki, Darülfünun Konferansları, 1331, p. 55). 

Therefore, relying merely on geometry may bring out some false conclusions. 

Once again, Salih Zeki emphasizes that geometrical concepts such as imaginary 

numbers or circular points at infinity are conventions for the convenience of speech. 

And being conventional is not limited to some particular notions; on the contrary 

Euclidean and non-Euclidean geometries are all conventional. However, that the 

notions of geometry were conventional was also objected just like the imaginary 

numbers. Salih Zeki asserts that this second objection was answered by Poincaré, 

but for the sake of following a chronological order he first evaluates the work of 

Sophus Lie. 

The title provided for Sophus Lie’s work is “Theory of Continuous Groups” [Zümre’-i 

Mütemadiyeler Nazariyyesi] (S.Zeki, Darülfünun Konferansları, 1331, p. 56). Salih 

Zeki explains what a continuous group is and then considers the application of 

Sophus Lie’s theory to geometry. A series of transformations [silsile-i tahvilat] can be 

constructed upon a finite number of free variables such as   ,   , …   by replacing 

these variables with other free variables (S.Zeki, Darülfünun Konferansları, 1331, p. 

56). A group is determined by a relation between two arbitrary transformations in 

this series: If the transition from one transformation to the other corresponds to only 

one transformation in the series of transformations, then this series is a group. And if 

infinitesimal transformations are possible in this series than it is a continuous group. 

When he explains the application of Sophus Lie’s theory to geometry Salih Zeki 

proposes that two successive motions of a figure can always be obtained by one 

motion in geometry. A motion is constituted by a series of infinitesimal motions and it 
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is a change in the coordinates of the constituting points of the figure with respect to 

the coordinate axes. Each transformation in the motion of this figure is a continuous 

group of transformation. In this sense, the equivalency of two figures – which 

constitutes the basis of quantitative geometry – is reduced to congruence of these 

two figures. In other words, the equivalency of them is determined by the application 

of one of them to the other, or by the theory of continuous groups which define the 

whole motion. 

Sophus Lie regarded space as a manifold just like Helmholtz, assigned three 

dimensions to it and determined a point in it by three coordinates. In this manner, 

the motion of a point was represented by the following transformation group: 

 

    (     ) 

    (     ) 

    (     ) 

 

Helmholtz’s four postulates were also accepted by Sophus Lie. He added that space 

is three dimensional and proposed that the possible geometries are the Euclidean 

and the non-Euclidean geometries. One more postulate was accepted by Sophus 

Lie in addition to Helmholtz’s postulates. He assigned six independent motions to 

bodies, the number of which decreased to three if the body was considered with 

respect to a fixed point. 

After presenting Sophus Lie’s postulates, Salih Zeki asserts that he cannot examine 

the arguments of this mathematician in his lecture and moves on to the conclusions 

of Sophus Lie without explaining his arguments in detail. In two dimensional 

geometries, if the postulate of free mobility was true for all space, the only existing 

groups would be corresponding to Euclidean and non-Euclidean geometries, in 

agreement with Helmholtz’s three postulates. Yet, if this postulate was only 

accepted locally then there is another group which corresponds to Helmholtz’s three 

postulates. In this group the path of a rotating point is not closed; it is a logarithmic 
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entity. Helmholtz’s fourth postulate must be accepted, in order to exclude this 

possibility.  

Furthermore, Sophus Lie’s conclusions indicate that if in three dimensional 

geometries free mobility was accepted locally, then the following two situations 

should be distinguished: Either motion would be free in this part of space or it would 

be restricted. If motion was free, then while one point of a body is fixed, the rest can 

move freely. In this sense, Helmholtz’s fourth postulate is not necessary. The first 

three postulates would correspond to Euclid’s geometry. On the other hand, when 

motion is restricted, points on a line are only allowed to move on this line, while one 

point of a body is fixed. In this case, the number of possible groups increases and 

Helmholtz’s fourth postulate is necessary. 

According to Salih Zeki, the theory of Sophus Lie can be regarded as the end of the 

problem concerning the principles of geometry [mebadi’-i hendese]. Salih Zeki 

considers geometry to be nothing but the application of the theory of groups. 

However, he adds that this theory was objected too; since according to some 

philosopher it was distorting the notion of homogeneity [mücaneset] that they 

assigned to all space (S.Zeki, Darülfünun Konferansları, 1331, p. 59).  

Salih Zeki ends his fourth lecture in Darülfünun by promising that he will clarify the 

problems concerning geometry and space in his last lecture on the history of the 

non-Euclidean geometries. 

 

3.5 Lecture 5 [22 January 1915] 

 

The fifth lecture in Darülfünun in which Salih Zeki brings his account on the history 

of geometry to an end, consists of paraphrasing Poincaré’s expressions on space 

and the principles of geometry. In the previous lectures Salih Zeki introduced the 

change in the considerations upon space and the objections against the new tools of 

geometry such as imaginary numbers. Another concern which was emphasized was 

the status of the postulates of geometry. This lecture is held to clarify the obscurities 
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about the basic notions of geometrical practice and in this sense consists of a 

presentation on the philosophy of science. 

According to Salih Zeki, Poincaré distinguished the problems of space and 

geometry. In this lecture, by following this philosopher’s ideas Salih Zeki will present 

the necessary grounds for the construction of a geometry and the status of the 

principles of this practice. 

Salih Zeki starts his lecture by providing a general introduction on the problems he 

aims to discuss: All geometries, either Euclidean or non-Euclidean are based on 

three-dimensional space. However, measurements and figures differ from one 

geometry to the other which results in different geometries. Space is shapeless 

unless it is measured and it is the type of measurement that will bring out either 

Euclidean or non-Euclidean geometry. If different geometries were compared, the 

question about their correctness cannot be asked since one geometry cannot be 

truer than the other; it can only be more convenient. Moreover, measurements on 

space or geometries cannot reveal anything about real space. Space cannot be 

treated as absolute and “absolute space” is a meaningless notion, 

With this introduction Salih Zeki turns to follow Poincaré’s views on the relativity of 

space. Poincaré sets up an analogy to explain that space is relative [izafi] (S.Zeki, 

Darülfünun Konferansları, 1331, p. 62). In this analogy, a person at a certain point in 

Paris, at Pantheon Square claims to visit the same point the following day. And if 

she was asked whether she will be at the same point of space, her answer would be 

affirmative. However, this would be a mistaken answer, since until the next day 

Earth will move and Pantheon will be moving with it. Not only Earth will move with 

respect to the Sun, but also the Sun will be moving with respect to the Milky Way. 

As a result, the total replacement of Pantheon in one day cannot be calculated. One 

can at most claim that she will see the dome and the front of Pantheon again. Also, 

without considering Pantheon all this reasoning would be meaningless; even space 

would not exist. We think of space in terms of external objects and it is the only way 

that we can think of it. 

Salih Zeki states that this analogy explains what “space is relative” means, and he 

provides another type of relativity. In this second example, all the distances in 

universe grow a thousand times in one night. The world would be similar to its initial 
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situation but a meter length would become a kilometer. It would be quite a big 

change that even our bodies and beds would not escape from it. However, we would 

feel nothing related to this growth. Even the most precise measuring tools cannot 

detect anything about this change, since they would also grow with the rest of the 

objects. 

If this is the case then we have no right to say that we know the distance between 

any two points. Instead of claiming that a person will be at the same distance to 

Pantheon in another day, Poincaré asserts that the distance between this person 

and Pantheon will be the same times bigger than a meter. 

This change does not have to be in Euclidean terms of similarity. Salih Zeki 

proposes that even if the universe changes in terms of more complex laws, nothing 

would be apparent to us as long as all bodies were subject to the same change. 

Furthermore, change in shape is not important if the relations between objects are 

kept. The permanency of the relations between objects can be explained by 

considering mirrors that deform appearances and reflect objects in different shapes 

than they have in the external world. In this case, it would be possible to recognize 

the change in the forms since the external world would be standing alongside the 

images in the mirror. Even if the external objects were not visible, we would still 

have our body for comparison. However, if our body was subject to a change too, 

there remains nothing to be observed. 

If two universes   and   were considered, and one of them was the image of the 

other, then an object    in universe   would correspond to each object   in universe 

 . The following formulation would be true if the coordinates of    were   ,   ,    and 

the coordinates of   were  ,  ,  : 

 

    (     ) 

    (     ) 

    (     ) 
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There must be a constant relation between   and   , and it is determined by the 

functions  ,  ,  . These functions can be chosen arbitrarily provided that they are 

chosen only for once. 

Such two universes are not distinguishable from each other. That is to say, whatever 

universe   is to its dwellers, the same is true about   to its dwellers. If we suppose 

that we were the inhabitants of universe  , since universe   is an image of our 

universe , the geometry in   would also be an image of our geometry. But if a 

window was opened from universe   to  , we would think that the geometry in   is 

only a rough copy of our geometry in which curves are twisted and circles are 

crooked. However, the inhabitants of   would think in the same way for our 

geometry. Yet, it is not possible to know whose claim is true. 

Salih Zeki proposes that the relativity of space is such a deep and broad notion as 

can be observed from the previous examples. Space is shapeless and it is the 

objects in space that provide it with a shape. We have no intuition [tahaddüs] of 

space or the distance between two points in space. In this sense, the medium that 

makes us think that an object has changed or kept its distance to another object is 

our tool for measurement [alet-i mesaha] (S.Zeki, Darülfünun Konferansları, 1331, p. 

65). The only thing we can know is the relation of lengths or magnitudes to our tool 

for measurement; and this tool for measurement is our body.  We assign positions to 

external objects with respect to our bodies. The possible representations for us on 

the external bodies are their magnitude relations [nisbet-i miktariyye] and 

extensional relations [nisbet-i hayyiziyye] (S.Zeki, Darülfünun Konferansları, 1331, p. 

66). Those are nothing but the relations of objects to our body. That is to say, our 

body serves as a coordinate system for external objects. 

In this system three types of coordinates can be determined for an object. These are 

provided by the visual sensations [ihsasat-ı basariyye], tactile sensations [ihsasat-ı 

lemsiyye] and sensations of motion [ihsasat-ı harekiyye] (S.Zeki, Darülfünun 

Konferansları, 1331, p. 66). 

Based on these three types of coordinates, Salih Zeki concludes that space can be 

represented in three ways which are visual space, tactile space and motor space. 

And he provides an interesting footnote in which he claims that he has told Poincaré 
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about this conclusion and the philosopher has affirmed it [Bu suret-i temsili 

müteveffa Poincaré’ye söylediğim zaman kendisinin pek ziyade hoşuna gitmişti.] 

(S.Zeki, Darülfünun Konferansları, 1331, p. 66). 

None of these three spaces can actually represent real space or be the subject 

matter of Euclid’s geometry. They can be named as representative space [mekan-ı 

temsili] and this notion be distinguished from geometrical space.  Geometrical space 

is continuous, infinite and it has three dimensions [mütemadi, namütenahi, üç 

bu’dlu]. Also, it is homogeneous and isotropic [mütecanis, mütesavi’l cihed]. Salih 

Zeki provides short descriptions for the last two notions in this list, that is, for 

homogeneity and isotropy. Homogeneity of space means that all its points are 

identical, and its being isotropic means that all straight lines through a point in it are 

identical. 

After he provides the properties of geometrical space, Salih Zeki considers 

representative space in order to put forward how the two are different. He first 

evaluates the visual space: The image of an external object on the retina is two 

dimensional and this is one of the differences of visual space from geometrical 

space. If visual space is examined in terms of its two dimensional images, what is in 

hand is pure visual space [mekan-ı basari-ı sırfi] (S.Zeki, Darülfünun Konferansları, 

1331, p. 67). Another difference is that the retina is a bounded area, that is, it is not 

infinite. Thirdly, visual space is not homogeneous since the sensitiveness of the 

retina differs from point to point. 

For the three dimensional images of external objects two more senses are added to 

the two dimensional image. These are the accommodation [itbak] and the 

convergence [tekarüb] of the two eyes and they are muscular sensations. When the 

two dimensional images become three dimensional, visual space is not pure 

anymore but it is the complete visual space [mekan-ı basari-i tamm] (S.Zeki, 

Darülfünun Konferansları, 1331, p. 67). The addition of the muscular senses does 

not change the fact that visual space is different than geometrical space. The 

complete visual space is not isotropic since it consists of two visual and two 

muscular senses. 

Salih Zeki also evaluates these expressions on visual space in mathematical terms. 

He regards the visual space to be determined by four variables, two of which are 
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purely visual and the other two muscular. The former two are independent but the 

latter two are dependent on each other. It is confirmed by experience that if two 

senses of accommodation are not distinguishable then neither are the following two 

senses of convergence. When we affirm that the complete visual space is three 

dimensional, it means that when three of these four bases are known, all four can be 

determined. In other words, visual space is a function of three independent 

variables. If the two muscular senses were not dependent on each other, we would 

have to assign four dimensions to the visual space. 

Tactile space is more complex than the visual space and it differs from geometrical 

space even more than the visual space does. Still, there are other senses than sight 

and touching which are more helpful than these two in the generation of the notion 

of space. These are muscular sense [ihsasat-ı adaliyye] and they provide us with 

the motor space (S.Zeki, Darülfünun Konferansları, 1331, p. 68). There is a variety 

of muscular sensations in accordance with the number of muscles we have. Salih 

Zeki proposes that the idea of a representative space that is generated merely by 

the muscular sensations could be objected by the claim that: Muscular sensations 

can only give the notion of space with the addition of a sense of direction that we 

possess. As an answer to such an objection, Salih Zeki states that the sensations of 

movements that are in the same directions are connected by some ideas. The 

sense of direction is merely the combination of these ideas. It is acquired, that is, 

like the other combinations of ideas it is the result of habits that are collections of 

experiences. If our senses were educated in a different environment, we would have 

different habits than we already have. As a result, our muscular sensations would be 

associated by different laws. 

Salih Zeki concludes his account on representative space by proposing that it is 

totally different than geometrical space; it is not homogeneous or isotropic, not even 

three dimensional. His next concern is the geometrical space. 

External objects cannot be represented in geometrical space, just like a painter 

cannot display an object with its three dimensions on a flat surface.  We cannot 

locate an object or point in geometrical space. Our only representations are on the 

movements required for the generation of this object or point. However, this does 

not mean that movements are actually projected in space and therefore space must 
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exist in the first place. The representations of the mentioned movements are actually 

the representations of the muscular sensations that correspond to these movements 

and therefore they are not geometrical. These representations by no means 

necessitate the existence of geometrical space. In this sense, geometrical space is 

not imposed on our minds and none of our sensations can give us this notion; but 

we do think of geometrical space. 

The notion of geometrical space is generated by examining the laws of the 

succession of sensations. This would be by arranging our impressions on the 

changes in the external world. External objects may change either their state or their 

position. The two types of change in the external world provide us with two types of 

impressions.  

If an object has only changed its position, we can regenerate the impressions we 

had of it. We can move in order to correct the change in our impressions, that is, we 

can make the relation between our body and the object become the same as it was 

before the object’s movement. This act would be totally conscious since it is 

voluntary and muscular. Still, that does not mean that we represent this motion in 

geometrical space. Change in position has a distinguishing property from other 

changes. It can be corrected by our movements. In this respect, there are two paths 

from one aggregate of impressions to the other. Either it is involuntary and without 

any muscular sensations, that consists of the cases in which our body is fixed and 

an object moves. Or it is voluntary and accompanied by muscular sensations, when 

an object is fixed and we move our body. Either of these changes in impressions 

corresponds to changes in positions. Therefore, the help of muscular sensations is 

needed for the generation of the notion of space. Also, this notion cannot be given 

by merely one muscular sensation but a variety of them is required. 

Moreover, if a person can by no means move, he cannot acquire the notion of the 

changes in position since he cannot arrange any such changes of the external 

objects. If a creature cannot move voluntarily, it cannot even generate the notion of 

space. For a motionless being there would be neither a geometrical space, nor 

geometry. 

These objects whose motions can be corrected by the movements of our body, keep 

their forms while they are moving. Moving without any change in form is a property 
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of solid bodies. On the other hand, if the change of position is accompanied with a 

change in form, we can no longer correct this change by moving our body. Change 

in position together with a change in form is a complex notion. We would not even 

know it if we did not have the notion of change in position without any change in 

form. It is the solid bodies that provide us with the notion of moving without a change 

in form. It can be concluded that if there were no solid bodies in nature, there would 

be neither form nor geometry. 

In some cases it can be asserted that two separate objects were subject to the 

same change in position. This stems from the fact that we correct both changes with 

the same movements of our body. 

The two types of changes in the impressions that were provided previously 

correspond to two types of phenomena. Involuntary changes that are not 

accompanied by muscular sensations constitute the external changes [tebdilat-ı 

hariciye]. And the voluntary changes that are accompanied by muscular sensations 

are the changes of our body, that is, internal changes [tebdilat-ı dahiliye] (S.Zeki, 

Darülfünun Konferansları, 1331, p. 73). 

Among the external changes, those which can be corrected by internal changes are 

the changes of positions, and their laws constitute the subject matter of geometry. 

The first of these laws is homogeneity. If by an external change    we pass from an 

aggregate of impressions   to another aggregate of impressions  , and then    was 

corrected by an internal change   , we end up with our initial aggregate of 

impressions  . If another external change   , alters our impression from   to  , 

experience confirms that    can be corrected by an internal change   . In this sense, 

   corresponds to the same muscular sensations as    and this is by means of the 

homogeneity and isotropy of space. Yet, homogeneity and isotropy are not sufficient 

for the possibility of geometry. The rest of the necessary laws can be generalized as 

“changes in positions must constitute a group [zümre]” (S.Zeki, Darülfünun 

Konferansları, 1331, p. 73). 

If geometrical space was assigned to each of the representations separately, we 

would not be able to represent any image without this notion. Thus, it would be 

impossible to change our geometry. On the contrary, nothing can stop us from 
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thinking representations that are similar to ours but subject to a different aggregate 

of laws than the laws we are accustomed to.  

Creatures that are educated in an environment with a different collection of laws 

than the ones we are used to, would bring out a different geometry than ours. This 

can be explained by considering a universe surrounded by a sphere. In this universe 

temperature is at its maximum at the center of the sphere and decreases as the 

periphery is approached. At the periphery the temperature is absolute zero. If the 

radius of the sphere is   and the distance of a point to the center is  , then at a point 

in this sphere temperature would be proportional to (     ). Moreover, all the 

objects in this universe have the same co-efficient of dilatation and lengths are 

proportional to temperature. And also, when a point moves from a point to another, it 

fits into the equilibrium of temperature of its surrounding. 

Consequently, in such a universe as a body moves through the periphery it must 

shrink. This universe would look infinite to its dwellers, since the farther they get 

from the center the colder and smaller they will become, and they will never be able 

to reach the surrounding periphery. 

If geometry is the laws of movements of solid bodies, then in the mentioned 

universe it would be: The examination of the laws of motion of solid bodies that 

change their form in accordance with temperature. 

Salih Zeki presents a further example on the effect of the environment to geometry. 

This time he considers a universe in which light travels through highly refractive 

mediums. At every point the refractive index is proportional with      . In such a 

universe, light rays cannot be straight, but they would be circular. If an object in this 

universe changed its position, this change would not be ordinary. It would more 

likely be similar to the changes in the previous example: subject to laws of 

temperature where motion was along with expansion or contraction. The ordinary 

change in position where there is no change in form can be called “Euclidean 

change in position”. And the more complex change is “non-Euclidean change in 

position”. If there was a sentient being somewhere near the moving object, its 

impressions about the object would be altered. However, this creature can move 

and regain its initial impressions about the object. In such a case, both the object 

and the intelligent creature would have accomplished a non-Euclidean change in 
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position. This kind of change would be possible for this creature, since its limbs are 

also subject to the same laws as the other bodies. 

When an object changes its form, it various parts do not possess the interrelations 

they had initially. Yet, even if the distances between these various parts would be 

different, the parts that were in contact would still be so after the change in form. 

This intelligent being will also recognize that the external changes are of two kinds 

and the changes in positions can be corrected by conscious movements. 

The geometry that is constructed by the inhabitants of such a universe would be 

different than ours, since the laws of motion that does not involve a change in form 

would not even be known to them. Their geometry would be constructed upon the 

laws of a non-Euclidean change in position, namely a non-Euclidean geometry. 

As a result, experience plays an important role in constructing geometries. However, 

geometry is not an empirical science. If it was even partially empirical, it would be 

approximate and temporary. 

Salih Zeki continues to follow Poincaré’s views on space and geometry by 

presenting the philosophers conclusions on this subject: Geometry is the 

examination of movements of solid bodies, but not the solid bodies in nature. The 

solid bodies in nature are not rigid, whereas the solid bodies that are considered in 

geometry are rigid and ideal. The concept of an ideal solid body is a result of 

reasoning, but its comprehension is possible with the help of experience. Geometry 

examines a particular group. The general idea of a particular group is, at least 

potentially, in our mind. It is not imposed on us as a form of sensitiveness, but as a 

form of understanding. Among all the possible groups we should choose the one 

that can corresponds to natural phenomena and this choice is guided by experience. 

Experience does not enforce us to choose one of these groups and does not point 

out the truest one, but suggests the simplest and most convenient among the 

possible groups. 

Through the end of the fifth lecture in Darülfünun Salih Zeki provides an overall of 

his ideas on geometry. He asserts that constructing geometries is accomplished by 

accepting axioms and postulates that are preferred because of their convenience. 

Some of these postulates are put forth clearly, but a big number of them is assumed 
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implicitly in geometrical proofs. The number of these assumptions should be 

reduced to a minimum which was achieved by Sophus Lie. 

Salih Zeki adds that he does not agree with Kant’s expression that these postulates 

are synthetic a priori judgements in our minds. If they were so, it would be 

impossible to understand their negations or to construct geometries on these 

negations. The principles of geometry are neither synthetic judgements nor 

empirical truths. They are conventions that are guided by experience. The only 

condition for choosing conventions is that they should not include any 

contradictions. 

The last concern in Salih Zeki’s lecture is to provide a theorem that was 

demonstrated by Sophus Lie, in order to prove that the number of different 

geometries does not increase with the number of postulates. Sophus Lie assumes 

that: 1. there is an   dimensional space, 2. it is possible for a rigid body to move in 

this space, and 3. the number of the conditions that are needed to locate a figure in 

this space is  . And he demonstrates that the number of geometries that can be 

constructed with these premises is limited. Furthermore, Poincaré claims that an 

upper limit can be assigned to  , if   was given; and since   is three a few number 

of geometries can be constructed based on Sophus Lie’s premises. 

With his fifth lecture Salih Zeki puts an end to his summary on the history of 

geometry. He asserts that this summary covered the major theories and geometers 

in history. Having introduced the general information on the history of geometry, 

Salih Zeki can examine the theories in detail in his following lectures. The first theory 

he aims to consider is the analytic theory of parallelism in Lobachevski’s geometry. 
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CHAPTER 4 

 

AN EVALUATİON OF DARÜLFÜNUN KONFERANSLARI 

 

4.1 Salih Zeki as a Mathematician 

 

Although the first five lectures of Darülfünun Konferansları would not precisely 

reveal the mathematical practice that was held by Salih Zeki, it is possible to figure 

out some of his mathematical skills. My focus in this section is Salih Zeki’s ideas on 

the original works of geometers that appear throughout his lectures. Yet, I do not 

claim that such works were accessible to him during these lectures, since there is 

still the possibility that he follows secondary sources on the ideas of geometers. 

Salih Zeki does not provide descriptions of all of the geometrical works that he 

lectures about. However, when he does provide such descriptions he is quite careful 

about the ideas of the geometers. One point that may be criticized about Salih Zeki’s 

evaluation of the original works is that he skips the general notions that are set forth 

by the geometers. Darülfünun Konferansları presents the particular illustrations of 

some geometers but does not introduce the general ideas which constitute the basis 

for examples. 

Firstly, I would like to point out how Salih Zeki carefully describes the works of 

several geometers: 

In his first lecture Salih Zeki introduces two works of Lobachevski: Geometrical 

Investigations on the Theory of Parallels and Pangeometry. Salih Zeki characterizes 

the first of these two works to state the geometrical theorems which can be proved 

without using the Euclidean postulate. Salih Zeki’s own words are the following: 
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Bu makalede Öklidis’in mevzu’esini isti’mal etmeksizin doğrudan doğruya 
diğer müte’arifat ve mevzu’at ile ispat olunabilen da’avi-i hendesiyeyi ira’e 
ettiği gibi…9 (S.Zeki, Darülfünun Konferansları, 1331, p. 7) 

Salih Zeki’s description of Geometrical Investigations on the Theory of Parallels is a 

fair one and is also confirmed by Lobachevski himself: 

I have published a complete theory of parallels under the title Geometrical 
Investigations on the Theory of Parallels… In this work I have stated first all 
the theorems which can be demonstrated without the aid of the theory of 
parallels. (Lobachevsky, 1929, p. 362). 

Salih Zeki continues his explanations on Lobachevski’s study on the theory of 

parallels and proposes that the geometer has also provided a definition of 

parallelism. Lobachevski’s definition of parallel lines in Darülfünun Konferansları is 

as the following: 

Bir müstevi üzerinde ka’in bir nokta-i ma’lumeden resm olunan hutut-ı 
müstakime ‘aynı müstevi üzerinde vakı’ bir hatt-ı müstakim-i ma’luma 
nazaran iki sınıfa tefrik olunurlar. Şöyle ki: Bir sınıf hutut-ı müstakime, hatt-ı 
müstakim-i ma’lumu kat’ ederler. Halbuki diğer sınıf hutut-ı müstakime kat’ 
edemezler. Bu iki sınıfın ga’ye-i müşterekesi olan hatt-ı müstakim, nokta-i 
ma’lumeden hatt-ı müstakim-i ma’luma muvazi resm olunan hatt-ı 
müstakimden ‘ibarettir.10 (S.Zeki, Darülfünun Konferansları, 1331, p. 8) 

The definition provided by Salih Zeki corresponds to a theorem in Lobachevski’s 

Theory of Parallels: 

All straight lines which in a plane go out from a point can, with reference to a 
given straight line in the same plane, be divided into two classes – into 
cutting and not-cutting. 

The boundary lines of the one and the other class of those lines will be called 
parallel to the given line. (Lobachevski, 1955, p. 13) 

Another example that confirms Salih Zeki’s accuracy of describing original works is 

his expressions on Riemann’s hypotheses. Salih Zeki begins his account on 

Riemann’s work with a quotation from the geometer’s work, and adds some extra 

                                                           
9
 Öklidis mevzu’esi: Euclidean postulate/ isti’mal: use, apply/ müte’arifat: axioms/ mevzu’at: 

postulates/ da’avi-i hendesiye: geometrical theorems/ ira’e: show 
 
10

 Müstevi: plane/ ka’in: that stands (e.g. on a plane)/ nokta-i ma’lume: a given point/ hutut-ı 
müstakime: straight lines/ hatt-ı müstakim-i ma’lum: a given straight line/ kat’: cut/ gaye-i 
müştereke: boundary, limiting/ muvazi: parallel 
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explanations which are in agreement with Riemann’s ideas. Salih Zeki asserts that 

the following is approximately what Riemann declares in his article: 

Hendese, mu’tayat ya’ni ma’lumat-ı evveliye olarak yalnız mekan 
mefhumunu değil bunun dahilinde hatt, satıh gibi teşkilat mefhum-ı esasilerini 
de vaz’ ve kabul eder.11 Ta’bir-i ahirle bir mekan ile bunun derununda eşkal-i 
hendesiyenin tersim-i mümkin olduğunu farz eyler.12 Bu mefhumları yalnız 
ta’rifat ile i’ta ve takdirat ve ta’yinat-ı kemiyyesini de müte’arifat ve mevzu’at 
suretinde edhal eder. 13  Ancak bu ma’lumat-ı evveliye ya’ni mu’tayat 
miyanındaki münasebet-i mütekabile gayr-i mer’i bir şekilde bulunur ve adeta 
bir sır gibi mestur olduğu görülür.14 Hatta bunların yekdiğerine merbut olup 
olmadıkları ve merbut iseler ne dereceye kadar merbut bulundukları ve 
nazari olarak merbut olabilip olamayacakları görülemez bir haldedir. 15 
(S.Zeki, Darülfünun Konferansları, 1331, p. 13) 

When Salih Zeki’s expressions are compared to Riemann’s own ideas, which are: 

It is a known fact that geometry assumes, as things given, both the notion of 
space and the first principles of constructions in space. She gives definitions 
of them which are merely nominal, while the true determinations appear in 
the form of axioms. The relation of these assumptions remains consequently 
in darkness; we neither perceive whether and how far their connection is 
necessary, nor a priori, whether it is possible. (Riemann, 1873) 

It can be observed that Riemann’s assertion that geometry assumes both the notion 

of space and the first principles of constructions as given, is further explained by 

Salih Zeki when he affirms that space and the possibility of constructing geometrical 

figures in it are assumed in geometry. Since Riemann constructs the basis of a 

space that can be measured and therefore allows geometrical constructions, it may 

be regarded as an appropriate explanation to mention the possibility of 

constructions. 

                                                           
11

 Mu’tayat: that are given/ ma’lumat: that are known/ hatt: line/ satıh: surface/ teşkilat mefhum-ı 
esasileri: basic notions of construction, principles of construction/ vaz’: put, take, consider 
 
12

 Derun: the inside of something/ eşkal-i hendesiye: geometrical figures/ tersim-i mümkin: that can 
be drawn, that can be projected 
 
13

 Ta’rifat: definitions/ i’ta: give/ takdirat ve ta’yinat-ı kemiyye: measurement and determination of 
quantities 
 
14

 Miyan: between/ münasebet-i mütekabile: mutual relations/ gayr-i mer’i: invisible/ mestur: 
hidden, dark 
 
15

 Merbut: connected/ nazari: theoretical 
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In his second lecture when Salih Zeki introduces Riemann’s expression for the line 

element    √∑(  )
 , he states that the reason why Riemann preferred this 

expression is its simplicity (S.Zeki, Darülfünun Konferansları, 1331, p. 21). Such an 

explanation can be taken to be correct since in his article Riemann concludes that 

“[s]pace is … included in this simplest case” when he provides the mentioned 

formula (Riemann, 1873).  

The comparison of Lobachevski’s and Riemann’s ideas with Salih Zeki’s account on 

the works of these two geometers points out the mathematical sufficiency of his 

lectures. On the contrary, when he examines the notion of flat manifoldness in 

Riemann’s work and Helmholtz’s illustrations on the intelligent creatures that inhabit 

two dimensional universes, Salih Zeki’s explanations are not as accurate as the 

previous examples. 

…Riemann’ın ta’rifine gore n bu’dlu bir zu-enva’ın her noktada ve kaffe-i 
istikamatta miktar-ı inhinası sıfır olur ise bu zu-enva’a bir “zu-enva’-ı müstevi” 
namı verilir… n bu’dlu bir zu-enva’-ı müstevi! Yoksa ‘alela’de bir müstevi 
değil!16 (S.Zeki, Darülfünun Konferansları, 1331, p. 22) 

The reason for the problem in this explanation may not actually be Salih Zeki’s own 

ideas, since “müstevi” means both “flat” and “plane” in Ottoman Turkish. However, a 

flat manifold is a general notion for whom the Euclidean space stands as an 

example, and in this sense “zu-enva’-ı müstevi” is not a clear notion. 

When Helmholtz constructs an example on how intelligent beings would come up 

with a geometry that would correspond to their experiences of the space 

surrounding them, he starts with a general notion of a two dimensional space. 

According to Helmholtz, intelligent beings in a two dimensional space would 

recognize the shortest path between two points but this would not necessarily be the 

straight line on a plane. “If moreover beings of this kind lived in an infinite plane, 

they would lay down precisely our planimetric geometry. They would maintain that 

only one straight line is possible between two points…” (Helmholtz, 1977, p. 6)  

Salih Zeki’s third lecture, which follows mainly Helmholtz’s illustrations, starts with 

considering a two dimensional space. He directly terms this two dimensional space 

                                                           
16

 Ta’rif: definition/ n bu’dlu: n dimensional/ zu-enva’: manifold/ kaffe-i istikamat: all directions/ 
inhina: curvature 
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as a “planar surface” [sath-ı müstevi] without providing a general idea on two 

dimensional spaces. It is possible to think of the problem to be merely caused by the 

ambiguous usage of the word “müstevi” again. However, when Salih Zeki asks the 

question of what a geometry constructed by two dimensional creatures would be 

like, his answer is that it would be our two dimensional plane geometry. 

Bu müstevi mühendislerin teşkil edecekleri hendese nasıl bir hendese 
olacaktır? Şüphesiz bizim iki bu’dlu dediğimiz hendese-i müsteviyenin 
‘aynı!17 (S.Zeki, Darülfünun Konferansları, 1331, p. 32) 

I have illustrated how Salih Zeki’s mathematical expressions are quite careful and 

accurate from some points, but also vague or inadequate in other respects. As a last 

remark in this section I would like to present the Ottoman term for the notion 

“manifold” which is a quite qualified translation. The Ottoman term probably gets its 

clue from the French word “variété”, since Salih Zeki provides the French term is 

brackets (S.Zeki, Darülfünun Konferansları, 1331, p. 14). The phrase that 

corresponds to “manifold” is “zu-kesirü’l-enva’” which also appears as “zu-enva’”. In 

this phrase “zu” means “that which has something”, “kesir” means “all” or “entire”, 

and “enva’” means “variety” or “kinds”. Consequently, “zu-kesirü’l-enva’” more or 

less means “that which allows many variations”. Although I think that this term was 

generated by Salih Zeki, I do not have any sufficient evidence to claim so. Still, it is a 

comprehensive translation of the word “manifold”. 

 

4.2 Salih Zeki’s Views on Geometry and Its History 

 

Salih Zeki’s account on the history of geometry and the discovery of the non-

Euclidean geometries has some distinctive aspects that constitute a certain 

approach concerning geometry’s progress. Especially the first two lectures in 

Darülfünun are organized in accordance with some definite ideas on the history of 

geometry which I will present through some examples of Salih Zeki’s declarations. 

The third lecture does not provide any clear conclusions about Salih Zeki’s 

philosophical perspective on geometry, except that he appreciates the new 

                                                           
17

 Mühendis: geometer/ hendese: geometry/ hendese-i müsteviye: plane geometry 
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geometries and accepts the possibility of working with the notion of a fourth 

dimension. However, in the last two lectures the focus is mainly some philosophical 

expressions on geometry and the status of geometrical axioms and postulates. 

The first lecture in Darülfünun starts by stating the long lasting application of 

Euclidean geometry in dealing with the external world and introduces the problem 

concerning the parallel lines, as would be expected in an account on the discovery 

of non-Euclidean geometries. Salih Zeki does not explain in detail what was 

problematic about the parallel postulate. The provided reasons about this problem 

are firstly that it is not related to the rest of Euclid’s postulates and secondly that two 

lines which do not intersect one another are not necessarily parallel since they may 

be asymptotic. 

Fi’l-hakika evvela bu kaziyyenin, hendesede Öklidis’in sırahaten zikr eylediği 
mevzu’at …ile bir münasebeti görülemiyor idi 18  (S.Zeki, Darülfünun 
Konferansları, 1331, p. 4) 

Saniyen muvazi iki hatt-ı müstakim demek, her iki cihetten temdid edildikleri 
halde asla yekdiğerini kat’ edemeyen hatt-ı müstakimler demek ise, böyle 
temdid edildikleri halde birbirine takarrüb eden, fakat asla yekdiğerini kat’ 
edemeyen hatt-ı müstakimler tasavvur etmek de mümkin idi. 19  (S.Zeki, 
Darülfünun Konferansları, 1331, p. 5) 

As an example to the studies in favor of the parallel postulate, Salih Zeki points out 

Legendre’s work. As I have asserted in the second chapter of my thesis, Legendre 

was among the geometers who worked with the negations of the parallel postulate; 

a way of reasoning which was set by Saccheri. Although working with the three 

hypotheses - the hypotheses of the right angle, the obtuse angle and the acute 

angle - is never mentioned in Salih Zeki’s lecture, he correctly presents the results of 

Legendre’s study: 

…Legendre muvazat mevzu’esinin doğrudan doğruya bir netice’-i lazımesi 
olan bir da’vayı ispata kalkıştı: Ta’bir-i ahirle bir müselles-i müstakimi’l ıdla’ın 
üç zaviyesi mecmu’unun iki ka’imeye müsavi olduğunu – mevzu’e-i muvazatı 
isti’mal etmeksizin – ispata çalıştı. Fakat bu teşebbüsüyle yalnız bir neticeye 
destres oldu ki o da bir müselles-i müstakimi’l ıdla’ın üç zaviyesi 

                                                           
18

 Kaziyye: proposition/ mevzu’at: postulates 
 
19

 Muvazi: parallel/ hatt-ı müstakim: staright line/ cihet: direction/ temdid: prolong/ kat’: cut/ 
takarrüb: converge 
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mecmu’unun iki ka’imeden büyük olamayacağıydı. 20  Eğer küçük 
olamayacağını da ispata muvaffak olsa idi, muvazat mevzu’esini ispat etmiş 
olacaktı. Ne fa’ide ki buna muvaffak olamadı. Buna bedel eğer yalnız bir 
müselles-i müstakimi’l ıdla’da üç zaviye mecmu’unun iki ka’imeye müsavi 
olduğunu ispat edecek olur ise bütün müselleslerde üç zaviye mecmu’unun 
iki ka’imeye müsavi olması lazım geleceğini ispat eyledi. (S.Zeki, Darülfünun 
Konferansları, 1331, pp. 5-6) 

Salih Zeki regards Legendre’s failure to be that last step in the Euclidean tradition 

and to be the reason why finally geometers could come up with a different geometry 

(S.Zeki, Darülfünun Konferansları, 1331, p. 6). In his lecture Salih Zeki does not 

deliver any ideas concerning the role of the application of hyperbolic functions or the 

conviction that the problem may be about the notions of Euclid’s geometry in 

general. On the other hand, Lobachevski explains why he is not working with 

Euclid’s notions which points out that his leading idea was not merely that the 

parallel postulate was not capable of a proof: 

…most of the definitions given ordinarily in the elements of geometry… not 
only do not indicate the generation of the magnitudes which they define, but 
they do not even show that these magnitudes can exist.  

Instead of commencing geometry with the plane and the straight line as we 
do ordinarily, I have preferred to commence it with the sphere and the circle , 
whose definitions are not subject to the reproach of being incomplete, since 
they contain the generation of the magnitudes which they define. 
(Lobachevsky, 1929, p. 361) 

It can be observed from Salih Zeki’s account on the problem of parallels that he 

does not provide an exhaustive explanation that includes the relation between this 

problem and the whole Euclidean tradition. Even though, he puts forward in his 

fourth lecture that metrical geometry was based on the equivalency of geometrical 

figures which can be determined by moving one of the figures onto the other, he 

does not evaluate the role of the parallel postulate in such processes. 

…iki şeklin müsavatı mes’elesi, ki bütün hendese-i mikyasiyenin esasını 
teşkil eder, bu iki şekilden birinin diğeri üzerine vaz’ ve tatbikine müsa’it bir 
hareketle hall olunabilir.21 (S.Zeki, Darülfünun Konferansları, 1331, p. 57) 

                                                           
20

 Muvazat mevzu’esi: parallel postulate/ netice-i lazıme: necessary result/ da’va: theorem/ 
müselles-i mütakimi’l ıdla’: rectilinear triangle/ zaviye: angle/ mecmu’: sum/ ka’ime: right angle/ 
isti’mal: use, apply/ destres: obtain 
21

 Müsavat: equivalency/ hendese-i mikyasiye: quantitative geometry/ vaz’: put/ tatbik: application, 
comparison/ istihrac: deduce/ redd: negation/ tenakuz: contradiction 
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Instead he prefers to put forward that the parallel postulate was problematic and the 

rejection of this postulate generated the non-Euclidean geometries. In Salih Zeki’s 

lectures the parallel postulate is presented in terms of its logical bearing to Euclid’s 

geometry. He does not examine the problem of parallels elaborately and points out 

the logical independency of the parallel postulate from the rest of Euclid’s axioms 

and postulates several times. According to Salih Zeki the first geometers to work in 

a non-Euclidean fashion thought that if the parallel postulate could be deduced from 

the rest of the axioms and postulates logically, then in a geometry which was 

constructed upon the negation of the parallel postulate contradictive results would 

be inevitable: 

Eğer mevzu’e-i Öklidis’in diğer mevzu’e ve müte’arifelerden mantık tarikiyle 
istihracı mümkin ise bu mevzu’enin reddi ve diğerlerinin kabulu halinde teşkil 
edilecek olan bir hendesede tenakuza tesadüf etmemek mümkin değildir.22 
(S.Zeki, Darülfünun Konferansları, 1331, p. 6) 

The above explanation is claimed to be made by Gauss, Lobachevski and Bolyai 

independently. Furthermore, Salih Zeki thinks that all three geometers rejected the 

parallel postulate and constructed geometries on the rest of Euclid’s postulates; and 

the results of these new geometries did not include any contradictions: 

…bu üç zat ayrı ayrı mevzu’e-i Öklidis’i inkar ile diğer müte’arifat ve mevzu’at 
üzerine birer hendese te’sis eylemişler ve bu hendeselerde hiçbir tenakuza 
tesadüf etmemişlerdir.23 (S.Zeki, Darülfünun Konferansları, 1331, p. 7) 

Salih Zeki’s emphasis on discovering geometries merely by rejecting the parallel 

postulate stems from his idea that the aim of the geometers was to prove that this 

postulate was logically independent from the rest of Euclid’s geometry. And its 

logical independence was the reason why the parallel postulate was rejected in the 

new geometries (S.Zeki, Darülfünun Konferansları, 1331, p. 11). 

With respect to Salih Zeki’s account, after the appearance of the non-Euclidean 

geometries the course of geometry continues with the question whether the new 

geometries would bring out any contradictive results. It was true that there were no 

contradictions among their conclusions, yet this fact would not exhaust the 

possibility of future contradictions. When Riemann’s geometry was considered the 
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 Mevzu’e-i Öklidis: Euclidean postulate/ mevzu’e: postulate/ müte’arife: axiom/ tarik: way, path 
  
23

 İnkar: deny 
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solution was easy, since Riemann’s geometry was nothing but Euclid’s spherical 

geometry. In this sense, any claim about the inconsistency of Riemann’s geometry 

would necessitate affirming that Euclid’s spherical geometry included contradictions 

too. However, there was no apparent relation between Lobachevski’s and Euclid’s 

geometries which would save the former geometer’s work from inconsistency. This 

problem about Lobachevski’s geometry had to wait until Beltrami provided a map 

between the two geometries. At the end, the consistency of Lobachevski’s geometry 

was also reduced to relative grounds and its inconsistency could not be affirmed 

unless the same was accepted for Euclid’s geometry (S.Zeki, Darülfünun 

Konferansları, 1331, pp. 27-28). 

When Salih Zeki’s considerations in his first two lectures are summarized we have 

the following story: The problem about the parallel postulate is related to its logical 

independence from the rest of Euclid’s principles, and this is the reason why it 

cannot be proved by means of Euclid’s geometry. However, the fact that the parallel 

postulate is not capable of any proof was the inspiration for some geometers who 

came up with the new geometries. The Euclidean tradition ended with the rejection 

of the parallel postulate owing to its logical independence. The geometers who 

practiced with the non-Euclidean geometries aimed to prove the logical 

independency of the mentioned postulate in the first place. This requirement was 

accomplished when they were able to construct geometries that did not result in any 

contradictions. Still, the world of geometry was worried about the possibility of the 

inconsistency of non-Euclidean geometries but this problem was solved by means of 

Beltrami’s studies. 

If Salih Zeki’s story is the case for the discovery of the new geometries, then the 

change from Euclidean to non-Euclidean geometries is merely a logical step, 

namely the rejection of a single postulate. The main concerns of Salih Zeki’s 

account on the progress of geometry are logical aspects – the independence of 

axioms and the consistency of theories. In this sense, the significance of Beltrami’s 

work in history is that it provided the various geometrical systems a relative 

consistency. 

Obviously, Salih Zeki’s account, with respect to his first and second lectures 

constitutes an example for how the axiomatization of geometry affected writing its 
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history. The logical independence of the parallel postulate and the consistency of 

geometrical systems are notions that came along with the attempts to axiomatize 

geometry. These notions were not present when Lobachevski, Bolyai or Beltrami 

were studying. Actually, Janos Bolyai was not even interested in negating the 

parallel postulate. Bolyai’s aim was to put forward the Euclidean theorems which he 

termed to be absolute, since they did not need the parallel postulate in their 

demonstrations. 

Although Salih Zeki puts forward an account on the discovery of non-Euclidean 

geometries which regards geometry’s progress to be axiomatic, he correctly points 

out a difference between the studies of Lobachevski-Bolyai and Riemann-Helmholtz. 

Salih Zeki’s description of the studies of Lobachevski and Bolyai is an example how 

the axiomatic approach distorts actual history. However, he is correct in affirming 

that Riemann and Helmholtz were not concerned with a specific non-Euclidean 

geometry but the notion of “space” in general. 

Riemann’ın… mütala’aname[si]nin münderecatı ne “muvazat nazariyesi” ne 
de doğrudan doğruya “hendese-i gayr-i Öklidisiye” mes’elesidir. Bu 
muhtıranın mevzu’u mevzu’at-ı hendesiyenin münasebat-ı mütekabilesi veya 
açıkçası “mekan” mes’elesidir.24 (S.Zeki, Darülfünun Konferansları, 1331, p. 
13) 

In this sense, contrary to the fact that he ascribes an inappropriate meaning to the 

non-Euclidean studies preceding Riemann and Helmholtz, Salih Zeki successfully 

points out the change in reasoning in geometrical studies that came along with the 

studies of these two geometers. Moreover, he provides a description of Helmholtz 

work, which is confirmed by Helmholtz’s own explanations. 

Saha-ı rü’yet dahilinde bir cismin mevzi’ini ta’yin için icra-i taharriyat ettiği 
sırada mekan tasavvurunun menşe’i hakkında da ba’zı tedkikatta 
bulunmuştur.25 Maksadı da’avi-i hendesiye miyanında hangilerinin hakayık-ı 
tecrübiyeyi ifade eylediklerini, ve hangilerinin hakayık-ı i’tibariyeden ya’ni 
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 Mütala’aname:  reading, remark (Salih Zeki uses this word synonymously with “muhtıra”)/ 
münderecat: content/ muvazat nazariyyesi: theory of parallels/ hendese-i gayr-i Öklidisiyye: non-
Eucilidean geometry/ münasebat-ı mütekabile: mutual relations 
 
25

 Saha-ı rü’yet: field of vision/ mevzi’: position/ ta’yin: determination/ taharriyat: investigation, 
research/ menşe’i: origin/ tedkikat: examination 
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ta’rifat ile bu ta’rifatın netaicinden ‘ibaret olduklarını bilmek idi. 26  (S.Zeki, 
Darülfünun Konferansları, 1331, p. 24) 

In his article On the Facts Underlying Geometry (1868), Helmholtz provides a similar 

explanation and says that his “…investigations on spatial intuitions in the field of 

vision” led to his interest in the origin of general intuitions of space. And as a result 

he wanted to answer the questions on “…how much of the propositions of geometry 

has an objectively valid sense?” and “how much is on the contrary only definition or 

the consequence of definitions, or depends on the form of description?” (Helmholtz, 

1977, p. 39) 

Apparently, Salih Zeki is careful about the content of Riemann’s and Helmholtz’s 

works. When he provides an overall description of Riemann’s geometry Salih Zeki 

states the following: 

Bu hendesede yalnız Öklidis’in mevzu’e-i muvazatı değil, diğer bir mevzu’esi 
daha redd edilmiş bulunuyor idi: İkişer noktası müşterek iki hatt-ı müstakimin 
bu iki nokta arasında mutlaka yekdiğerine muntabık olacağı inkar olunuyor 
idi.27 (S.Zeki, Darülfünun Konferansları, 1331, pp. 23-24) 

The above quotation affirms that Riemann’s geometry not only excluded Euclid’s 

parallel postulate, but also the straight lines in this geometry could have two 

common points without coinciding in between them. This is an appropriate 

statement about Riemann’s geometry since it did not include the notion of parallel 

lines. Also, the straight lines in Riemann’s geometry were great circles on a sphere 

and distinct great circles intersect at two antipodal points of the sphere. 

While he examines Riemann’s and Helmholtz’s works, Salih Zeki provides an 

interesting expression on the notions of “real space” and “geometrical space” which 

in a way contradicts his ideas in the following lectures. 

[Riemann ve Helmholtz] bir zu-enva’da muhtelif münasebet-i kemiyyenin 
mümkin olabildiğini göstermek ve mekan-ı hakiki ya’ni mekan-ı hendesiyi de 
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 Hakayık: truths, facts/ tecrübi: experiential/ i’tibari: conventional/ ta’rifat: definitions/ netaic: 
results 
 
27

 Muntabık: coinciding 
 



69 
 

bu zu-enva’ın  en basit bir sureti olmak üzere ira’e eylemek istiyorlar idi.28 
(S.Zeki, Darülfünun Konferansları, 1331, p. 12) 

In this explanation Salih Zeki identifies real space with geometrical space, while in 

his fifth lecture one of his concerns is to put forward the difference between these 

two notions in terms of Poincaré’s views on geometry. On the other hand, Salih 

Zeki’s aim may be to point out the empirical aspect that determines the appropriate 

geometry for the external world in Riemann’s and Helmholtz’s approaches. In his 

fourth and fifth lectures Salih Zeki terms the principles of geometry to be a matter of 

convenience in relation to the external world and he emphasizes that these 

principles are nothing but conventions. As a result, his appreciation of the empirical 

aspect on geometry may be the reason why he considers the real space and 

geometrical space from the same point of view. 

After the first non-Euclidean geometries and the approaches of Riemann and 

Helmholtz, Darülfünun Konferansları concentrates on projective geometry in terms 

of Cayley’s and Klein’s works. Salih Zeki asserts that the studies in terms of 

projective geometry can be described to have a different motive than constructing 

non-Euclidean geometries or investigating space in general. This can be observed 

when he characterizes Cayley’s study to have a new definition of “distance” as a 

starting point. 

Bu risalede mü’ellif bütün bu’da ait tasavvuratı sırf tersimi olan mebadi 
üzerine bina etmek istiyor idi.29 (S.Zeki, Darülfünun Konferansları, 1331, p. 
47) 

Also, Salih Zeki points out the general idea of Cayley’s study by stating that Cayley 

reformulated the definition of distance with respect to circular points or a straight line 

at infinity. 

…Cayley, evvel emirde namütenahide vakı’ nikat-ı da’ireviye ve 
namütenahide vakı’ hatt-ı müstakim vasıtasıyla bu’d mefhumuna sırf irtisami 
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 Zu-enva’: manifold/ münasebet-i kemiyye: quantitative relations/ mekan-ı hakiki: real space/ 
mekan-ı hendesi: geometrical space/ ira’e: show 
 
29

 Mü’ellif: writer/ bu’d: distance (also means “dimension”)/ sırf: pure/ tersimi: projective/ mebadi: 
principles 
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bir suret verileceğini ispat eyledi.30 (S.Zeki, Darülfünun Konferansları, 1331, 
p. 47) 

Salih Zeki states that Cayley’s studies were improved by Klein’s contributions, since 

it was the latter geometer who put forward a relation between projective geometry 

and non-Euclidean geometries. In doing so Salih Zeki is correct since it is a 

historical fact that Cayley did not provide such a relation but Klein did. However, 

Salih Zeki’s consideration of Klein’s study brings back the idea of consistency of 

non-Euclidean geometries into Darülfünun Konferansları. Firstly, Salih Zeki explains 

Klein’s interpretation of non-Euclidean geometries by means of projective geometry. 

…Klein evvela irtisama esas olan münhani-i mutlak, hakiki bir mahrutiye 
olduğuna göre Lobachevski’nin iki bu’dlu hendesesi istihsal edileceğini ispat 
eylemiş ve buna “hendese-i za’idiye” namını vermiştir. 31  Saniyen bu 
mahrutiye mevhum olduğuna göre gerek Riemann’ın hendese’-i küreviyesi, 
gerek Helmholtz’un bir hendesesine müşabih “hendese-i nakısiye” namını 
verdiği diğer bir hendese istihsal olunacağını ira’e eylemiştir. 32  Salisen 
mahrutiye bir çift nokta’-i mevhumeye müncerr olduğu halde “hendese’-i 
mükafiye” tesmiye eylediği bir hendese vücuda geleceğini izah etmiştir. 33 
Rabi’an bu çift nokta’-i mevhume namütenahide vakı’ nikat-ı da’ireviyeden 
‘ibaret olduğu halde de Öklidis’in hendese’-i ‘adiyesi istihsal edileceğini 
meydana koymuştur.34 (S.Zeki, Darülfünun Konferansları, 1331, p. 48) 

In the above quotation Salih Zeki explains that if projection was with respect to a 

real conic, the result would be Lobachevski’s geometry for which Klein provided the 

term “hyperbolic geometry”. If the conic was imaginary, projection would bring out 

Riemann’s spherical geometry or “elliptic geometry”. When the reference of 

projection was two imaginary points, one would obtain a “parabolic geometry”. And 

lastly, if the two imaginary points were circular, the projected geometry would be 

Euclid’s geometry. 
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 Namütenahi: infinity (also means “infinite”)/ nikat-ı da’ireviyye: circular points/ sırf irtisami: pure 
projective 
 
31

 İrtisam: projection/ münhani-i mutlak: absolute curve/ mahrutiye: conic/ hendese-i za’idiye: 
hyperbolic geometry 
 
32

 Mevhum: imaginary/ hendese-i küreviye: spherical geometry/ müşabih: similar/ hendese-i 
nakısiye: elliptic geometry 
 
33

 Bir çift nokta-i mevhume: a pair of imaginary points/ müncerr: reduce/ hendese-i mükafiye: 
parabolic geometry/ tesmiye: give a name 
 
34

 Hendese-i ‘adiye: elementary geometry 
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When he evaluates Klein’s interpretation, Salih Zeki proposes that one of the 

advantageous aspects of such a relation between various types of geometries is 

that it exhausts the possibility of any contradictions among the results of non-

Euclidean geometries:  

…bu tefsirin bir fa’idesi daha vardı ki o da hendese’-i gayr-i Öklidisiyelerin 
da’avi ve netaici miyanında tenakuz imkanını külliyen ref’ eylemesidir.35 Fi’l-
hakika bu hendeselerden birinin bir da’vasına, şu tefsir mucibince, mutlaka 
Öklidis hendesesinin bir, ve yalnız bir, da’vası tevafuk eder. 36  (S.Zeki, 
Darülfünun Konferansları, 1331, p. 49) 

It can be observed that Salih Zeki assigns the same meaning to Klein’s work as he 

did to Beltrami’s interpretation. Klein’s work finds its place in the history of geometry 

by means of the relative consistency it provides for the non-Euclidean geometries. 

Another argument in Darülfünun Konferansları asserts that since the projection of 

Euclid’s geometry was in terms of an imaginary conic, imaginary numbers had 

entered into the field of classical geometry. Salih Zeki thinks that any mathematical 

tool should be allowed into the realm of geometry if it leads to progress. In this 

sense, he criticizes Russell’s views on the philosophical irrelevance of imaginary 

numbers and provides Poincaré’s ideas as an answer to him. 

Russell, in his Essay on the Foundations of Geometry accepts the significance of 

imaginary numbers for Cayley’s studies in terms of projective geometry. At the same 

time, he proposes that he cannot assign a philosophical meaning to them (Russell, 

1897, p. 43). Russell puts forward that the geometrical interpretation of imaginary 

numbers is with respect to the rules of Algebra, and this is the reason why they do 

not lead to any contradictions. On the other hand, he claims that “…only a 

knowledge of space, not a knowledge of Algebra, can assure us that any given set 

of quantities will have a spatial correlate, and in the absence of such a correlate, 

operations with these quantities have no geometrical import” (Russell, 1897, p. 46). 

Consequently, the application of imaginary numbers in Cayley’s geometry is only a 

technical move from Russell’s point of view. 
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 Da’avi: theorems/ netaic: results/ miyan: among (also means “between”)/ tenakuz: contradictions/ 
ref’: remove 
 
36

 Mucibince: in accordance with/ tevafuk: correspond (also means “agreement” and “congruence”) 
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In Darülfünun Konferansları, Salih Zeki presents Russell’s views on imaginaries and 

claims that one cannot reject the philosophical significance of imaginary numbers 

while appreciating the non-Euclidean geometries. Salih Zeki puts forward that 

imaginary numbers are “conventions” that were preferred for the convenience of 

speech. 

Hülasa kemiyyat-ı mevhume, nikat-ı da’ireviye… gibi feylesofların ma’nadan 
hali buldukları ta’birat ihtisar-ı ifade için icad edilmiş i’tibarattan ‘ibarettirler.37 
(S.Zeki, Darülfünun Konferansları, 1331, p. 55) 

By supporting the application of imaginary numbers and putting forward that they 

are conventions like the rest of geometrical notions, Salih Zeki’s lectures evolve 

through philosophical considerations on geometry and its principles. The fifth lecture 

in Darülfünun consists of following Poincaré’s expressions on these subjects. In his 

last lecture Salih Zeki reveals his philosophical approach through geometry. As I 

have presented in the previous chapter he explains the origin of geometrical space 

and proposes that it is a result of the correlation of visual, tactile and motor 

sensations. He points out that motion is necessary for the origin of geometrical 

space in terms of which geometrical constructions are possible, in other words, the 

principles of these constructions are the rules of motion in geometrical space. The 

principles of geometry are neither empirical nor a priori, since the former destroys 

geometry’s certainty and the latter leaves no room for the idea of different types of 

geometries. Geometrical practice is in terms of a constructed space and the rules of 

this practice are nothing but conventions. 

In conclusion, throughout his lectures Salih Zeki presents an axiomatic interpretation 

of the history of geometry. He characterizes the change from Euclid’s geometry to 

the first non-Euclidean geometries to be merely a logical step, where the negation of 

Euclid’s parallel postulate brings out new systems of geometry. In Darülfünun 

Konferansları Beltrami’s model of non-Euclidean geometry, that is, his map between 

a region of the Euclidean plane and a non-Euclidean surface is regarded to show 

that if the non-Euclidean geometries were not consistent, neither could Euclid’s 

geometry be. Similarly, Klein’s consideration that Euclid’s geometry and non-

Euclidean geometries can all be generated in terms of projection and that each 
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 Kemiyyat-ı mevhume: imaginary numbers/ nikat-ı da’ireviye: circular points/ feylesof: philosopher/ 
ma’nadan hali: lacking any meaning/ ta’birat: terms/ ihtisar: speaking or writing briefly/ i’tibarat: 
conventions 
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Euclidean theorem corresponds to a non-Euclidean theorem, is evaluated in terms 

of the same logical concerns. According to Salih Zeki, Klein’s work ended the doubts 

about the consistency of the new geometries. Apparently, Salih Zeki is providing a 

history of axioms and his answer to the question on the nature of these axioms is 

that they are conventions.  

 

4.3 Conclusive Remarks 

 

In this section I will provide the works of geometers that were mentioned or 

examined in the first five lectures of Darülfünun Konferansları. Furthermore, I will 

point out the secondary sources that were probably followed by Salih Zeki during 

these lectures. I have to emphasize that he “probably” used the secondary sources 

that I will provide, since Darülfünun Konferansları does not include any citations of 

them. However, these secondary sources are highly confirmed by the expressions in 

Salih Zeki’s lectures and the organization of his account. 

Firstly, I would like to put forward the original works of geometers that were 

introduced in Salih Zeki’s lectures. He appears to have a special interest in 

Lobachevski’s works, considering that three out of the fourteen lectures in 

Darülfünun Konferansları concentrate on the Theory of Parallels. Salih Zeki’s sixth 

lecture is entitled as “Lobachevski Hendesesi / Muvazat Nazariye-i Tahlilesi” 38 

(S.Zeki, Darülfünun Konferansları, 1331, p. 79). The titles of the ninth and tenth 

lectures are “Lobachevski Hendesesi’nin Tefsiri / Kısm-ı Musattahat” 39  (S.Zeki, 

Darülfünun Konferansları, 1331, p. 130) and “Lobachevski Hendesesi’nin Tefsiri / 

Maba’d”40 (S.Zeki, Darülfünun Konferansları, 1331, p. 146) respectively. 

Salih Zeki does not provide the titles of all the works of Lobachevski in the 

languages they were published in, instead he gives the Ottoman translations of 
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 Lobachevski’s Geometry/ The Analytic Theory of Parallels 
 
39

 Interpretation of Lobachevski’s Geometry/ on Surfaces 
 
40

 Interpretation of Lobachevski’s Geometry/ Later on 
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them. Three works appear in their original form, one of which is “Géométrie 

Imaginaire” (S.Zeki, Darülfünun Konferansları, 1331, p. 7). Secondly, he submits the 

name “Pangéométrie” together with its Ottoman translation. Also, “Geometrische 

Untersuchungen zur Therie der Parallellinien”41 is given in a letter written by Gauss 

which is quoted by Salih Zeki (S.Zeki, Darülfünun Konferansları, 1331, p. 9).  

Lobachevski’s works that are mentioned by Salih Zeki are first the articles he 

published in Russian and he terms them as “Hendese’nin Mebadi-i Cedidesi ve 

Muvazat Nazariye-i Mükemmelesi”42. The next work is “Hendese-i Mevhume43 – 

Géométrie Imaginaire” which is described to be a long and analytic article published 

in1837. Salih Zeki states that Lobachevski’s 1840 work was on the theory of 

parallels and that it was published in German, but the title of this work is not 

included in the account on Lobachevski’s works. It later on appears in a letter written 

by Gauss, as I have mentioned in the previous paragraph. Finally, Salih Zeki 

proposes that Lobachevski altered “Hendese-i Mevhume” into “Hendese-i Cami’e - 

Pangeometry” in 1855 (S.Zeki, Darülfünun Konferansları, 1331, pp. 7-8). It can be 

observed that the titles and dates of Lobachevski’s works are correctly presented in 

Darülfünun Konferansları. 

Salih Zeki states that Janos Bolyai’s work was published as an appendix to his 

father’s Tentamen44 (S.Zeki, Darülfünun Konferansları, 1331, p. 8). However, he 

does not mention the title of Bolyai’s work which is “The Science of Absolute Space” 

(Bonola, 1955). Still, Salih Zeki’s statement is correct as a historical fact. 

Riemann’s study is also among the works that are not provided in their original titles. 

Salih Zeki calls Riemann’s habilitation dissertation ““…hendesenin esasını teşkil 
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 Geometrical Researches on the Theory of Parallels (1840) 
 
42

 This Ottoman phrase corresponds to “New foundations of Geometry with a Complete Theory of 
Parallels” (1835-37). 
 
43

 Imaginary Geometry 
 
44

 The complete title of Wolfgang Bolyai’s work is Tentamen Juventutem Studiosam in Elementa 
Mathesos (Essay on the Elements of Mathematics for Studios Youths). 
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eden faraziye”ye dair bir mütala’aname…” 45  (S.Zeki, Darülfünun Konferansları, 

1331, p. 12). According to Salih Zeki, Riemann read this article in Göttingen in 1854, 

which is correct, but he does not indicate that this was the lecture that Riemann 

delivered in order to complete his habilitation.46 

Salih Zeki asserts that Helmholtz published his first work related to non-Euclidean 

geometries after Riemann’s death. He does not point out a certain date and only 

states an Ottoman title which is “Hendesenin Mü’esses Bulunduğu Mebadiye da’ir 

Muhtıra”. 47  The second work of Helmholtz in Darülfünun Konferansları is 

“Hendeseye Esas Olan Hadisata da’ir Makale” 48  which was published in 1868 

(S.Zeki, Darülfünun Konferansları, 1331, p. 12). 

The last original work that is mentioned in Salih Zeki’s account is Cayley’s “A Sixth 

Memoir upon Quantics”. Salih Zeki provides this English title together with an 

Ottoman translation of it, that is, “Kemmiyyata da’ir Altı Muhtıra” (S.Zeki, Darülfünun 

Konferansları, 1331, p. 47). 

In his first five lectures Salih Zeki does not examine the content of Lobachevski’s 

work directly, but through a secondary source. Bolyai’s work is only introduced and 

not studied, since Salih Zeki thinks that it would only be a repetition of what he 

explains about Lobachevski’s geometry. It is not very clear whether Riemann’s 

original work is examined or the explanations are taken from a secondary source. 

Salih Zeki’s views regarding Riemann’s geometry are confirmed by the geometer’s 

own article, however this does not exhaust the possibility that Salih Zeki may have 

studied Riemann’s work through other sources. The same is true for Helmholtz. 

What can be asserted about Helmholtz’s works in Darülfünun Konferansları is that 

Salih Zeki studies “On the Facts Underlying Geometry” in comparison with 
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 The title given by Salih Zeki is the Ottoman phrase for “On the Hypothesis that Constitutes the 
Bases of Geometry”. 
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 The original title of Riemann’s habilitation dissertation is “Über die Hypothesen welche der 
Geometrie zu Grunde Liegen” and it is translated into English as “On the Hypotheses which Lie at the 
Bases of Geometry”. 
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 This title would correspond to “on the actual foundations of geometry”. The phrase that is 
mentioned by Salih Zeki actually stands for Helmholtz’s “Über die Tatsachlichen Grundlagen der 
Geometries”(1866). 
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 On the Facts Underlying Geometry (1868). 
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Riemann’s hypotheses. Secondly, Helmholtz’s 1870 lecture in Heidelberg, “On the 

Origin and Significance of Geometrical Axioms” constitutes the content of Salih 

Zeki’s third lecture. And this is not among the works of Helmholtz that were 

introduced in Salih Zeki’s account on the publications of the geometer.  

It can clearly be observed that Salih Zeki is following two major works of Poincaré in 

his fifth lecture and actually he presents these works nearly word by word. The fifth 

lecture starts with presenting Poincaré’s expressions in his Science and Method 

(1908). He mainly follows the section entitled as “The Relativity of Space”. 

Afterwards, the fifth lecture presents Poincaré’s “Space and Geometry” in his 

Science and Hypothesis (1901). 

I have pointed out that Salih Zeki criticizes Russell’s views on the philosophical 

bearing of imaginary numbers and also he thinks that geometrical axioms are 

conventions which Russell would not agree with. However, Salih Zeki’s ideas in his 

first four lectures, the logical concerns he presents and especially the organization 

of the content of his lectures suggest that the source he uses is Russell’s An Essay 

on the Foundations of Geometry (1897).  

I would like to propose my claim by comparing Russell’s and Salih Zeki’s 

expressions. The following ideas and quotations from Russell’s essay are 

paraphrased in Darülfünun Konferansları and sometimes they are exactly translated 

into Ottoman Turkish. 

Russell in a chapter entitled as “A Short History of Metageometry”, provides a story 

which starts by pointing out Legendre’s studies to be the last step before the 

rejection of the parallel postulate (Russell, 1897, p. 7). Similarly, Salih Zeki states 

that Legendre’s study should be accounted for since this geometer’s failure 

encouraged the following geometers to reject the mentioned postulate (S.Zeki, 

Darülfünun Konferansları, 1331, p. 6). 

Salih Zeki provides some explanations that he claims to be declared by Gauss, 

Lobachevski and Bolyai, which are exact translations of the following statements: 

If the axiom of parallels is logically deducible from the others, we shall, by 
denying it and maintaining the rest, be led to contradictions. (Russell, 1897, 
p. 8) (S.Zeki, Darülfünun Konferansları, 1331, p. 6) 
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These three mathematicians [Gauss, Bolyai and Lobachevski], accordingly, 
attacked the problem indirectly: they denied the axiom of parallels, and yet 
obtained a logically consistent Geometry. (Russell, 1897, p. 8) (S.Zeki, 
Darülfünun Konferansları, 1331, p. 7) 

Although Salih Zeki claims that he regards geometry’s progress to be of three 

periods in accordance with Klein’s classification (S.Zeki, Darülfünun Konferansları, 

1331, p. 12), what he provides in Darülfünun Konferansları differs than Klein’s 

classification and agrees with Russell’s consideration of the subject. Klein 

determines the first period of non-Euclidean geometry to be in terms of elementary 

geometry and to include the studies of Lobachevski and Bolyai (Klein, 1894, p. 85). 

The second period in Klein’s classification is described “from the point of view of 

projective geometry” (Klein, 1894, p. 85). And the studies of Riemann and Helmholtz 

constitute the last period in this classification. On the other hand, Salih Zeki gives 

these three periods in a different sequence than Klein, where Riemann and 

Helmholtz constitute the second era and Cayley’s studies find their place in the last 

period. And it is not Klein but Russell who regards Gauss’s studies to be a part of 

the first period. Also, the philosophical significance of the era which started with 

Riemann’s studies is emphasized in Russell’s account and not in Klein’s (Russell, 

1897, p. 8) (S.Zeki, Darülfünun Konferansları, 1331, p. 13). 

Both Russell and Salih Zeki consider Lobachevski’s and Bolyai’s studies to be 

indistinguishable except the difference in their postulates: 

Only the initial postulates, which are more explicit than Lobatschewsky’s 
demand a brief attention. (Russell, 1897, p. 12) 

Şu kadar ki Bolyai’nin kabul eylediği mevzu’at Lobachevski’nin mevzu’atına 
nisbetle daha vazihtirler.49 (S.Zeki, Darülfünun Konferansları, 1331, p. 9) 

When Salih Zeki concludes his ideas about the first period in non-Euclidean 

geometries he provides a translation of the following explanation: 

Buraya kadar verdiğim izahattan da tezahür ediyor ki gerek Lobachevski, 
gerek Bolyai’nin nazarları bir noktaya ma’tuf idi: Bu nokta da mevzu’e-i 
Öklidis’in mantıken diğer mevzu’e ve müte’arifelere gayr-i tabi’ bulunduğunu 
ispat etmekten ‘ibaret idi.50 (S.Zeki, Darülfünun Konferansları, 1331, p. 11) 

                                                           
49

 Vazih: clear 
 
50

 Tezahür: appear, manifest/ ma’tuf: directed/ gayr-i tabi’: independent 
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And similarly, if not exactly, Russell proposes the following claim: 

It is important to remember that, throughout the period we have just 
reviewed, the purpose of the hyperbolic Geometry is indirect: not the truth of 
the latter, but the logical independence of the axiom of parallels from the 
rest, is the guiding motive of the work. (Russell, 1897, pp. 12-13) 

Salih Zeki’s concern about the logical consistency of the new geometries can also 

be found Russell’s essay: 

Of course, it remained possible that, by further development, latent 
contradictions might have been revealed in these systems. This possibility, 
however, was removed by the more direct and constructive work of the 
second period… (Russell, 1897, p. 13) (S.Zeki, Darülfünun Konferansları, 
1331, p. 11) 

Moreover, Salih Zeki’s explanations on the notion of curvature correspond exactly to 

the statements of Russell: 

Tul fikri esasen hatt-ı müstakimden iktibas edildiği halde münhanileri gayet 
asgar kısımlara taksim etmek sayesinde bunlara da tatbik edilebilmiştir51… 
Bunun gibi inhina fikri de da’ireden iktibas edilmiş ve yine asgar-ı namütenahi 
kısımlara taksim etmek sayesinde diğer münhaniyata tatbik olunabilmiştir.52 
(S.Zeki, Darülfünun Konferansları, 1331, p. 15) 

Just as the notion of length was originally derived from the straight line, and 
extended to other curves by dividing them into infinitesimal straight lines, so 
the notion of curvature was derived from the circle, and extended to other 
curves by dividing them into infinitesimal circular ares. (Russell, 1897, p. 17) 

As a last example, I would like to show that Salih Zeki’s description of Cayley’s work 

is again an expression which appears in Russell’s essay. 

Bu risalede mü’ellif bütün bu’da ‘a’it tasavvuratı sırf tersimi olan mebadi 
üzerine bina etmek istiyor idi.53 Mesafe, zaviye ve ila-ahirihi mefhum-ı kemmi 
veya mikyasiyeleri suver-i irtisamiyyeye irca’ ediyor54, ve kendi zamanına 

                                                                                                                                                                     
 
51

 Tul: length/ hatt-ı müstakim: straight line/ iktibas: borrow/ münhani: curve/ asgar: small 
 
52

 İnhina: curvature/ asgar-ı namütenahi: infinitely small, infinitesimal/ münhaniyat: curves 
 
53

 Bu’d: distance/ sırf tersimi: purely projective/ mebadi: principles 
 
54

 Mesafe: length/ zaviye: angle/ ila-ahirihi: etc., et cetera/ mefhum-ı kemmi: quantitative notions/ 
mikyasi: quantitative, measurable/ suver-i irtisamiye: projective aspects, projective manners 
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kadar istihsalı müyesser olamayan bir sadelik, ‘adeta bir “vahdet-i usul” 
vücuda getiriyor idi.55 (S.Zeki, Darülfünun Konferansları, 1331, p. 47) 

It begins by reducing all so-called metrical notions - distance, angle, etc.- to 
projective forms, and obtains, from this reduction, a methodological unity and 
simplicity before impossible. (Russell, 1897, p. 28) 

In conclusion, Russell’s ideas in his An Essay on the Foundations of Geometry 

spread into the first four lectures in Darülfünun Konferansları. Russell’s book stands 

as the source in terms of which Salih Zeki defines the problem of parallels or 

considers the logical consistency of the non-Euclidean geometries. In other words, 

Russell’s essay is the source which shapes the story provided by Salih Zeki into an 

axiomatic history of geometry. Salih Zeki does not agree with Russell’s views on 

imaginary numbers and takes Poincaré’s side when the issue is the nature of 

geometry and its axioms. However, Russell’s essay constitutes one of the main 

sources of Salih Zeki’s lectures, together with Poincaré’s Science and Method and 

Science and Hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
55

 İstihsal: obtain/ müyesser: can be accomplished/ vahdet-i usul: unity of method 
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CHAPTER 5 

 

CONCLUSION 

 

This thesis was an attempt to evaluate Salih Zeki’s lectures on non-Euclidean 

geometries. Secondly, I aimed to make Darülfünun Konferansları accessible. In this 

sense, I provided an English summary of the mentioned lectures and tried not to 

leave out anything that would count as the subject matter of these lectures. The 

mathematical notions that took place in through the lectures were given together 

with Salih Zeki’s Ottoman terms for them in brackets. Furthermore, I provided quite 

a lot of quotations from Salih Zeki’s lectures with the English meaning of the 

obsolete words that may not be found in Turkish dictionaries in our day, so that the 

reader could have the chance to figure out how geometry was narrated in Ottoman 

Turkish. 

I devoted a chapter for a summary of the history of non-Euclidean geometries in the 

western world, in order to provide the required knowledge for following Salih Zeki’s 

lectures. This summary also stands as an illustration of an appropriate way of writing 

geometry’s history. In the same chapter, the evaluation of the “standard account” on 

the history of geometry showed that it is a result or regarding geometry to be 

axiomatic. I objected the standard account since its expressions do not constitute 

sufficient or even correct explanations on geometry’s progress. When this progress 

is regarded to be axiomatic, the history of geometry is already determined. Such an 

outlook would classify historical facts under logical notions imposed on geometry’s 

progress. If the history of geometry is merely a study of axioms, then logic should be 

able to answer all the questions that may be directed to this history. And indeed it 

answers some of them. One of the most obvious questions that are asked to 

geometry’s history is: Why was the parallel postulate problematic? Another decisive 

question would be: How did the first non-Euclidean geometries appear? An 

axiomatic approach would answer the former by stating that the parallel postulate is 
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logically independent from the rest of Euclid’s geometry which makes its 

demonstration impossible within this system. And the answer of the second question 

is the rejection of the parallel postulate. These questions can be answered in terms 

of an axiomatic account since it decides what kind of answer they should have from 

the beginning.  

Lobachevski’s and Bolyai’s intentions were different at their starting points; yet they 

ended up with the same type of geometry. If the historian leaves aside considering 

these works in terms of solely logical grounds, she would come up with fruitful 

explanations. A mathematician may not distinguish these works, since they would 

provide her with the same geometrical practice. However, for a historian this may be 

the very significant point about two different geometrical works. Lobachevski set 

forth a new definition of parallelism, in which the basic notions of Euclid’s parallelism 

were violated. He clearly rejected the Euclidean parallelism. On the other hand, 

Bolyai was only after the propositions that did not include the application of the 

parallel postulate, since he regarded them to be absolutely true. The different 

approaches of these two geometers should be considered as two different 

confirmations of the possibility of practicing geometry in a presupposed hyperbolic 

space. Also, since it is a historical fact that Lobachevski had an axiom of parallelism 

from the beginning but Bolyai did not, this should be convincing the historian that the 

practice or space in hand either agrees with Euclid’s parallel postulate or it may not. 

In other words, geometrical practice does not flow from a set of axioms, but has 

some presuppositions. In this sense, an axiomatic structure can only be assigned to 

a geometrical system and its progress subsequent to accepting it. And the progress 

of geometry is more complex than a clear logical path. That it can be presented in 

terms of axioms, does not necessarily mean that geometry is an axiomatic 

discipline, and neither its history is. 

The course of geometry should be regarded as a continuum, and not a very regular 

one. The history of geometry includes some gaps that cannot be explained by an 

axiomatic view and also some facts that would look contradictive from a logical point 

of view. The negations of the parallel postulate were already examined in the 18th 

century, and the possibility of triangles with an angle sum less than two right angles 

could not be rejected. However, a geometrical system that would agree with the 

hypothesis of the acute angle did not pop up immediately. It required a belief in 
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working with non-Euclidean terms some mathematical improvements. If the focus of 

an account on the history of geometry was the logical aspects of the practice, the 

existence of a spherical geometry together with the rejection of the hypothesis of the 

acute angle does not make sense (Gray, 2003). An axiomatic account cannot 

explain why the geometers were bothered with the hypothesis of the obtuse angle, 

while they already had a spherical geometry. Or why Euclid’s spherical geometry 

persisted even though the hypothesis of the obtuse angle was disproved. 

The account I provided in the second chapter of my thesis, presented the historical 

facts in a way that does not distort actual history. And the comparison of the two 

different perspectives reveals the criteria that should be granted in writing 

geometry’s history. I also pointed out that the axiomatization of geometry at the 

beginning of the 20th century was the reason why the history of geometry was 

provided in terms of standard-axiomatic accounts. Chapter two and the next chapter 

in which I summarized Salih Zeki’s lectures together constitute the required grounds 

for the evaluation of Darülfünun Konferansları; and this is the subject matter of the 

fourth chapter. 

When considered as a mathematician Salih Zeki’s explanations on the content of 

the original works are pretty qualified. And it would be unfair to underestimate his 

efforts to present non-Euclidean geometries, but his account is another example of 

writing geometry’s history with the presupposition that it is an axiomatic discipline. 

Salih Zeki can deal with the mathematical stuff concerning non-Euclidean 

geometries. However, he does not point out the change in the mathematical 

methods that served geometry’s progress. One cannot learn from Salih Zeki’s 

account that the early non-Euclidean studies, which did not mean to be so, were in 

terms of classical geometry, or that the hyperbolic functions blended into the 

geometrical practice in the 19th century. On the other hand, he is aware of the fact 

that Lobachevski and Bolyai directly put forward geometrical systems. He can 

explain that Riemann and Helmholtz investigated space in general as a preliminary 

to their geometries, and that Cayley’s work departed from by the definition of 

distance. 

The problem about the inquiry that was carried out in Darülfünun Konferansları is 

that whenever Salih Zeki describes a progressive step in history of geometry, his 
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account cannot escape from the effect of axiomatic ideas. His ideas regarding the 

origin of the new geometries and the geometrical developments that confirmed the 

possibility of practicing in terms of them are all logical explanations. In fact, 

according to Salih Zeki, Beltrami’s model or Klein’s interpretations in terms of 

projective geometry were merely affirming the consistency of the new systems. 

A more comprehensive account which is not stuck with axiomatic concerns would be 

able to point out the relations that were set up by Beltrami and Klein, to be 

confirming the possibility of applying the new geometries to the external world. 

Euclid’s geometry was a tool for classical physics, in other words, classical physics 

interpreted the external world by means of Euclid’s geometry. Salih Zeki’s account is 

not capable of concluding that Beltrami’s and Klein’s studies supplied the new 

geometries with the opportunity of entering into the field of physics. He points out 

that each theorem of Euclid’s geometry corresponds to a theorem of the non-

Euclidean geometries. However, his aim is to explain the consistency of the new 

geometries relatively to Euclid’s system. Salih Zeki concludes that if the new 

geometries included any contradiction, Euclid’s geometry had to include 

contradictions too because of the one-to-one correspondence between the 

theorems of the new and the old geometries. If Salih Zeki’s views were the case for 

geometry, then the appreciation of the new geometries stems from realizing that 

they are logically consistent. On the contrary, the logical consistency of a new theory 

cannot sweep away the faith in the customarily adapted system. In the same way, it 

cannot be the fact that non-Euclidean theories were accepted because of their 

logical consistency. It is more appropriate to put forward that they found a place in 

the scientific practice since it was demonstrated that whatever can be done in terms 

of Euclid’s geometry, could also be practiced in terms of non-Euclidean geometry. 

In conclusion, Darülfünun Konferansları is not a sufficient account on the history of 

geometry. Salih Zeki’s ideas on geometry’s progress are leaded by some prejudices 

on the geometrical discipline. It is not clear whether he constructs his account on 

axiomatic ideas on purpose or else the structure of his account only happens to be 

so by means of the secondary sources he makes use of. Either way, Salih Zeki’s 

lectures turn out to be under the effect of the axiomatization of geometry.  
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