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ABSTRACT 

 

 

IDENTIFICATION OF LOCALIZED NONLINEARITY FOR DYNAMIC ANALYSIS 

OF STRUCTURES 

 

 

 

AYKAN, Murat 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat ÖZGÜVEN 

 

January 2013, 172 pages 

 

 

Most engineering structures include nonlinearity to some degree. Depending on the dynamic 

conditions and level of external forcing, sometimes a linear structure assumption may be 

justified. However, design requirements of sophisticated structures such as satellites, stabilized 

weapon systems and radars may require nonlinear behavior to be considered for better 

performance. Therefore, it is very important to successfully detect, localize and parametrically 

identify nonlinearity in such cases. In engineering applications, the location of nonlinearity and 

its type may not be always known in advance. Furthermore, as the structure will be excited 

from only a few coordinates, the frequency response function matrices will not be complete. In 

order to parametrically identify more than one type of nonlinearity which may co-exist at the 

same location with the above mentioned limitations, a method is proposed where restoring 

force surface plots are used which are evaluated by describing function inversion. Then, by 

reformulating this method, a second method is proposed which can directly evaluate the total 

describing function of more than one type of nonlinearity which may co-exist at the same 

location without using any linear frequency response function matrix. It is also aimed in this 

study to use the nonlinearity localization formulations for damage localization purposes. The 

validation of the methods developed in this study is demonstrated with case studies based on 

simulated experiments, as well as real experiments with nonlinear structures and it is 

concluded that the methods are very promising to be used in engineering structures. 

 

Keywords: Nonlinear Structural Dynamics, Parametric Nonlinearity Identification, Nonlinear 

Restoring Force, Experimental Verification, Damage Detection, Damage Localization 
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ÖZ 

 

 

MEKANİK YAPILARIN DİNAMİK ANALİZLERİ İÇİN YEREL VE DOĞRUSAL 

OLMAYAN ÖZELLİKLERİN BELİRLENMESİ 

 

 

 

AYKAN, Murat 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat ÖZGÜVEN 

 

Ocak 2013, 172 sayfa 

 

 

Mekanik yapıların birçoğunda belirli seviyelerde doğrusal olmayan özellikler bulunmaktadır. 

Dinamik koşullar ve yükleme seviyeleri bazen yapının doğrusal olarak varsayılmasını mümkün 

kılsa da uydu, stabilize silah sistemleri ve radar gibi karmaşık tasarımların gerekleri, daha iyi 

performans elde edilebilmesi için doğrusal olmayan özelliklerin düşünülmesini gerektirebilir. 

Dolayısıyla, doğrusal olmayan elemanların doğru bir şekilde belirlenmesi, bulunması ve 

parametrik olarak tanımlanması büyük önem taşımaktadır. Mühendislik uygulamalarında 

doğrusal olmayan elemanların yeri ve çeşidinin önceden bilinmesi bazı durumlarda mümkün 

olmamaktadır. Ayrıca, çoğu yapısal dinamik uygulamalarında deneysel ölçümlerde yapı sadece 

birkaç koordinatından tahrik edileceği için doğrusal Frekans Tepki Fonksiyonu (FTF) 

matrisleri eksiksiz olmayacaktır. Aynı bölgede bulunabilecek birden fazla doğrusal olmayan 

elemanın parametrik olarak belirlenebilmesi için doğrusal olmayan eleman tanımlama 

fonksiyonlarının tersi alınarak doğrusal olmayan kuvvet grafiklerinin elde edilebileceği bir 

yöntem önerilmektedir. Ayrıca bu yöntemin yeniden formüle edilmesiyle doğrusal FTF 

bilgisine ihtiyaç duymayan ve aynı bölgede bulunabilecek birden fazla doğrusal olmayan 

elemanın doğrusal olmayan eleman tanımlama fonksiyonlarını doğrudan elde edebilen bir 

yöntem geliştirilmiştir. Çalışmanın diğer bir amacı ise, doğrusal eleman konumu belirleme 

denklemlerinin hasar konumu belirleme amacı için kullanımıdır. Yöntemlerin doğrulamaları 

sayısal ve deneysel çalışmalarla yapılmış ve yöntemlerin mühendislik uygulamalarında 

kullanımlarının başarıyla kullanılabilecekleri gösterilmiştir.  

 

Anahtar Kelimeler: Doğrusal Olmayan Yapı Dinamiği, Parametrik Doğrusal Olmayan Eleman 

Tanımlama, Doğrusal Olmayan Kuvvet, Deneysel Doğrulama, Hasar Tespiti, Hasar Konum 

Tespiti 
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CHAPTER 1 

 

 

1.                                               INTRODUCTION 

 

 

 

This introductory chapter aims at presenting the need of understanding nonlinear system 

identification and modeling from a structural dynamics point of view, in conjunction with the 

requirements of the national defense industry. 

 

1.1. Structural System Identification 

 

Structural system identification consists of finding transfer function of the system which is 

established by finding the modal parameters of the structure such as, natural frequencies, 

damping, modal vectors and residues. This task is very difficult even for linear systems, yet 

sometimes it is not possible to neglect the nonlinearities in the structure. 

 

Theoretically, every structure is nonlinear. Extend of the nonlinearity determines whether we 

should be worried about it. Usually, the modeling and testing errors of the linear system are so 

dominant that most of the effort is spend to correct them. The importance of nonlinear 

elements is highlighted when we cannot predict a correct response from the mathematical 

model even though the structure is correctly modeled in the linear sense. 

 

Physically, there are three main sources of nonlinearities: 

 

Geometric nonlinearities: When a structure experiences large deformations, its changing 

geometric configuration can cause nonlinear behavior. A good example for this is thin sheets of 

metal. When such a sheet has small deformations the response will be linear. However, when 

the deformation is high then the sheet will react with higher stiffness at high displacements and 

with lower stiffness at smaller displacements. 

   

Material nonlinearities: A nonlinear stress-strain relationship, such as metal plasticity, rubber 

elasticity etc. is another source of nonlinearity. 

 

Contact: Contact is a type of “changing status” nonlinearity, where an abrupt change in 

stiffness or damping (i.e. friction) occurs between two bodies.  

 

Nonlinearity in a system is usually observed by having different FRF plots to different load 

levels. Nevertheless, the main indicators of nonlinearity in a structure can be summarized as: 

 

 Superposition principle does not hold, 

 Homogeneity is lost, 

 Harmonic distortions due to higher harmonics occur on the response  

 Reciprocity may not be established. 

 

Structural assemblies, especially when there are moving bodies’ give rise to nonlinearities. In 

industrial designs, usually the mechanical assemblies contain localized nonlinear elements, 

such as bearings, gears and other types of joints. Thus, most of the nonlinearity identification 

and modeling methods in the literature try to identify nonlinear elements which are localized. 

Furthermore, extend of detail in modeling the nonlinear element can vary. Although detailed 

nonlinear models exist in the literature, most of the time it suffices to use simple models such 

as those given in Figure 1-1. The RFs and corresponding DFs for nonlinear elements usually 

encountered in practice are given in appendix A. 
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A final comment on nonlinearities in structural assemblies is that most of the time the 

nonlinear locations contain more than a single nonlinearity. An example might be a simple 

revolute joint. The joint will have definitely friction and some amount of backlash yielding two 

nonlinear elements. 

 

 

 

 
 

Figure 1-1. Idealized forms of various types of nonlinearities [1] 

 

 

 

1.2. Motivation 

 

ASELSAN Inc. is one of the leading military defense system designers, manufacturers and 

integrators in Turkey. In order to increase the performance and life of products, designed 

systems are thoroughly analyzed. One of the main research topics is the control of turret type 

weapon systems and integration based effects of these systems on platforms like helicopters 

and aircrafts (Figure 1-2).  

 

Systems such as the ones shown in Figure 1-2 have moving parts which are controlled for 

various purposes. In order to correctly control such systems or integrate them without any 

interference to the platform, it is necessary to understand the dynamics of the system and the 

platform.  

 

In order to show the nonlinear responses that are commonly encountered in structural 

assemblies that have moving bodies’, some preliminary step sine tests were performed on a 

AB-204.B helicopter horizontal stabilizer (Figure 1-3-Figure 1-5).  
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a) 

 
b) 

 
c) 

 

Figure 1-2. Different platforms where vibration is important, a) Weapon turret, b) Attack 

helicopter, and c) Aircraft control surface 

 

 

 

For linear (low forcing, 0.5N amplitude sine) and nonlinear testing, a shaker (Dataphysics) was 

connected to one end of the stabilizer via a push-rod with a PCB 208C03 force transducer. The 

vibration responses were measured using six PCB 356A16 accelerometers. The frequency 

resolution was 0.02 Hz at frequencies close to the resonance and 0.1Hz for the rest. The closed 

loop control was achieved by the Dataphysics Abaqus data acquisition system. Tests were 

performed for four different load levels (0.5N, 1.5N, 3N, 4.5N) and the resulting driving point 

FRF’s are given in Figure 1-6. 
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Figure 1-3. Representation of the modal tests performed on the helicopter horizontal stabilizer 

 

 

 

 
 

Figure 1-4. Modal tests performed on the horizontal stabilizer 

 

 

 

Two interesting results can be observed from Figure 1-6. The first shift seems to be of 

softening stiffness type whereas the second shift is more complicated. Most probably, this 

phenomenon is due to the existence of more than one type of nonlinearity present in the 

system. 

 

The boundary condition, i.e. the attachment location, of the horizontal stabilizer is further 

investigated. Horizontal stabilizer is connected to the tail by a rod which is fitted into a bearing 

as shown in Figure 1-7. 
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Figure 1-5. Modal tests performed on the horizontal stabilizer with testing equipment 

 

 

 

 
 

Figure 1-6. Constant force driving point FRF curves 

 

 

 

The inner side of the helicopter revealed the simple mechanism which controls the horizontal 

stabilizer. A push rod controls the angle of the horizontal stabilizer by converting longitudinal 

motion into angular motion as shown in Figure 1-8. 

1 2 
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Figure 1-7. Attachment details of the horizontal stabilizer 

 

 

 

 
 

Figure 1-8. Control mechanism of the horizontal stabilizer 

 

 

 

This configuration might be causing friction and backlash. Such engineering problems are the 

motivation behind this study.  

 

1.3. Scope of Thesis 

 

The common interest of nonlinear system identification is to identify the nonlinearity locations, 

types and parameters. Currently, there are several nonlinearity identification tools that provide 

this information up to different degrees of confidence. 

 

The research presented in this thesis is mainly concerned with the nonlinear system 

identification from experimental measurements. The overall objective of the research presented 

in this thesis is to improve the performance of nonlinear system identification technique, 

Nonlinearity Identification by Describing Functions (DF method), developed by Özer et al. [2] 

for real structures, industrial systems and particularly to the problems associated with 

nonlinearity identification of experimental models. The specific objectives relevant to this 

work are: 

 

 to extend the DF method to incomplete experimental models 

 to develop a method for type and parameter identification of multiple nonlinearities 

 to develop a new more efficient method for direct identification of the nonlinearity 

from nonlinear FRF measurements  

 to apply the DF method to damage localization problems 
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The outline of each chapter is given below.   

 

1.4. Outline of Thesis 

 

Chapter 2 presents a comprehensive literature review of several sub topics concerning 

nonlinear identification. 

 

Chapter 3 reviews the DF method. Nonlinearity localization and parameter identification are 

discussed in this chapter with some remarks on the advantages and drawbacks of using of this 

method. However, although the problems faced by the method are pointed out, no attempt is 

made to try to solve them yet. Since the work also presents calculated nonlinear responses for 

the verification of the proposed identification method, single harmonic and multi-harmonic 

describing function (DF) formulations, and the procedure for nonlinear system response 

calculation is given. As the multi-harmonic DFs require a defined number of harmonics in the 

calculation, adaptive multi-harmonic solution method is proposed which adds higher 

harmonics into the calculations until a defined error criterion is met. Finally, spatial 

incompleteness in testing is introduced and a well known method is proposed to overcome this 

problem. Case studies are given with simulated experiments. 

 

Chapter 4 presents a new method, DFI method, which gives a solution to one of the 

drawbacks of the DF method. The DF method uses DF plots to determine the type and 

parameters of nonlinear element. In order to reduce the effort and avoid the limitations in using 

DF plots for identification of nonlinearity, DF inversion is used. Thus, it is made possible to 

identify the restoring force of more than one type of nonlinearity without any prior knowledge 

of the nonlinearities which may co-exist at the same location. If nonlinearities are required to 

be determined separately, then various possible nonlinear functions and their combinations 

should be tried to be fitted to the RF function obtained. Some engineering judgment will 

reduce the effort in trying different combinations. However, if nonlinearities are not required to 

be determined separately, then simply by curve fitting the RF plot, the coefficients of the total 

restoring force can be evaluated. Case studies are given with simulated experiments. 

 

Chapter 5 gives a new more efficient method, DDF, which can perform the nonlinear 

identification directly from a series of measured nonlinear FRFs without using linear FRFs 

which was required for the improved DF method. In general applications, the linear model of 

the system can be obtained by using FEM, and only for the identification of nonlinearity 

experiments can be made. Alternatively,  the  FRF  of  the  underlying  linear  system  can  be  

obtained from FRF measurements in the system at very low forcing levels, where the nonlinear 

internal forces will be negligible. However, if the system has multiple nonlinearities including 

friction type of nonlinearity, it may be difficult to measure the FRFs of the underlying linear 

system experimentally, and using finite element model of the system seems to be the only 

alternative to obtain linear FRFs of the linear counterpart. The method eliminates the 

requirement of using linear FRFs, and therefore, it works in the presence of friction type 

nonlinearities by using only the experimental measurements, which is not possible with the 

improved DF method. Another outcome of this method is that, the true linear FRFs can be 

calculated using experimentally measured nonlinear FRFs. Case studies are given with 

simulated experiments. 

 

Chapter 6 presents validations of the formulations proposed on the previous chapters using 

experimental case studies. SDOF and MDOF experimental case studies are used with simple 

beams. The nonlinear elements of a real engineering product are also identified with the 

proposed methods and presented in this chapter. The accuracy of the identified nonlinear 

parameters is shown by regenerating the nonlinear responses.  

 

Chapter 7 discusses the applicability of the improved DF method for detecting and locating 

crack type structural damage. The verification of the method is demonstrated with 

experimental case studies using beams with different levels of cracks and a real engineering 

product. 
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Chapter 8 presents the main conclusions derived in the previous chapters emphasizing the 

contributions and improvements made.  

 

Chapter 9 gives the suggestions for future work in order to improve the methods developed in 

this study. 
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CHAPTER 2 

 

 

2.          LITERATURE REVIEW AND SUMMARY OF THE THESIS 

 

 

 

This chapter aims at reviewing the studies in the literature for nonlinear system identification 

and modeling. The advantages and disadvantages of the methods are discussed and the 

proposed methods are summarized. Furthermore, damage detection and localization methods 

are reviewed from a nonlinearity localization point of view. 

 

2.1. Nonlinear System Identification 

 

System identification in structural dynamics has been thoroughly investigated over 30 years 

[3]. However, most of the studies were limited to the linear identification theories. This 

literature review does not cover linear identification theories which are well documented [4-5].  

 

In the last decade, with the increasing need to understand nonlinear characteristics of 

complicated structures, there were several studies published on nonlinear system identification 

[1,2,6-15]. Nonlinearities can be localized at joints or boundaries or else the structure itself can 

be nonlinear. There are various types of nonlinearities, such as hardening stiffness, clearance, 

coulomb friction etc. [1]. 

 

Nonlinear system identification methods can be divided into two groups as time and frequency 

domain methods [2], and time domain methods can be further divided as discrete and 

continuous time methods [6]. Frequency domain techniques are either in the modal or the state 

space domain. Furthermore, the frequency domain techniques can include multi-harmonic 

terms in the response [16-20]. Some authors claim that the effect of such harmonics might be 

neglected in practice [7] and some add these harmonics to their solution [14,21-23]. The effect 

of harmonics in the response depends on the investigated frequency. If it is close to harmonics 

of resonances, then the harmonic terms may become important. However, it should be noted 

that the fundamental harmonic has the highest weight in the response and the weight of higher 

harmonics decrease drastically.  

 

The common point of all of the methods is that, they try to detect, locate and identify the 

nonlinearity. The level of nonlinearity determines the applicability of the methods. The term 

weak (or light) or strong (or heavy) nonlinearity appears frequently in literature but a 

standardized terminology is not yet founded. Siller tried in his study [7] to derive the 

boundaries for weak, moderate and strong nonlinearities. Although the method proposed in his 

work sounds logical, the limits defined for the boundaries cannot be explained by the author. 

Therefore, it is difficult to determine the order of the nonlinearity and whether a certain method 

will work for every case.   

 

The following discussions on the related literature are categorized in groups that will make it 

easier to visualize the differences between methods and their applicability to real world 

problems.  

 

The first discussion topic is the excitation types that can be applied to nonlinear modal testing. 

Many researchers investigated the simplest excitation type, the sine wave. The application of 

this excitation has many advantages such as high signal to noise ratio and simplicity of control 

and application. However, the necessity to scan a frequency range with a specified frequency 

resolution (step sine testing) results in a long testing time which is the main disadvantage of 

this excitation type. Some methods found in the literature which rely on this type of excitation 

are presented in [1,2,7,8,11-15,24].  
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The requirement of long testing time of step sine testing does not usually satisfy the industrial 

needs. Thus, there are also many studies published [25-32] on random and sine sweep type 

excitations. The main handicap for random vibration testing is its uncontrolled (random) 

nature. All random tests performed by the authors resulted in not being able to successfully 

excite nonlinearity which is also addressed in the literature [6,27]. The reason for this 

phenomenon can be explained by the fact that the random signal has random levels of load 

which may not be enough to excite the nonlinearity for the investigated frequency range. The 

only random profile that can excite nonlinearities in a system may be white noise profile. 

 

The sine sweep testing has also been used in the nonlinear system identification process. The 

main idea of this method is to combine the speed of sweep test and the controlled nature of sine 

test [25]. Although it is better than random excitation, sine sweep testing has its own 

disadvantages. Studies showed that the sweep rate influenced the identified nonlinearity level 

[26]. As the sweep rate is increased, the identified natural frequency is increased. Therefore, 

the sweep rate should be kept small in order to avoid this problem. But if the sweep rate is kept 

small then the main advantage, which is high speed, is lost.  

 

The final type of excitation, transient excitation, has similar disadvantages as the random 

excitation [4,6]. Therefore, it is not usually preferred in nonlinear system identification. 

 

Besides the type of excitation, an important feature of a nonlinear identification method is the 

amount of required foreknown data. 

 

Most of the methods available require some foreknown data for the system. Some methods 

require all or part of mass, stiffness and damping values [8-10] whereas some methods [2,11-

14] require the linear frequency response function (FRF) of the analyzed structure. In these 

methods nonlinearity type is usually foreknown or determined by inspecting the describing 

function footprints (DFF) visually. However, although the user interpretation may be possible 

for a single type of nonlinearity, it may not be so easy when there is more than one type of 

nonlinearity present [1].  

 

The Restoring Force Surface (RFS) method, proposed by Masri et al. [10], constitutes one of 

the first attempts to identify nonlinear structures. A variant of this method was later 

independently developed by Crawley et al. [33,34] and was named as force-state mapping 

method. Masri et al. [35] extended the RFS method to MDOF systems in 1982.  

 

The RFS method requires the time histories of the displacement and the applied force to be 

measured; however the derivatives of the displacement can also be calculated. Furthermore, 

sometimes the mass and damping matrices are required. In theory, the RFS method is 

applicable to MDOF systems. However, a number of practical considerations diminish this 

capability and its scope is, in fact, bound to systems with a few degrees of freedom only [36].  

 

The RFS method has been studied experimentally for several systems with few degrees of 

freedom. Kerschen et al. [37] demonstrated experimental identification of impacting cantilever 

beams with symmetrical or asymmetrical piecewise linear stiffness using the RFS method. 

Another experimental application of the RFS method studied by Kerschen et al. [38] was the 

VTT Technical Research Center of Finland benchmark, which consists of wire rope isolators 

mounted between a load mass and a base mass. The RFS method was also used in vehicle 

suspension system characterization [39]. Recently, Noel et al. [36] demonstrated the 

application of RFS method for an elastomeric connection on a real life spacecraft structure.  

There are studies in the literature obtaining nonlinear RFS [40-41] using variants of RFS 

method or other similar approaches like neural networks and optimization [6,42]. Application 

of optimization methods in nonlinear system identification is rather a new and promising 

approach. The major disadvantage of these methods is generally long computational time 

requirements.  
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Nonlinearity identification methods presented in this study consist of four main stages. Firstly, 

existence of nonlinearity in the system is detected by performing step sine tests with different 

loads. Secondly, the location of the nonlinearity is determined by using incomplete FRF data. 

The next step is the determination of the type of nonlinearity which is achieved by 

investigating the restoring force function. Finally, in the parametric identification stage, the 

coefficients of the nonlinear elements are obtained by curve fitting techniques. The methods 

proposed in this study are mainly improved versions of the DF method. The improvements 

include using incomplete FRF data which makes the method applicable to large systems 

(Improved Nonlinearity Identification by DFs, improved DF method), and employing DF 

inversion (Nonlinearity Identification by DF Inversion, DFI) in order to reduce the effort in 

identification of nonlinearity. Furthermore, using DF inversion rather than DF graphs makes it 

possible to identify the total restoring force of more than one type of nonlinearity that might 

co-exist at the same location. 

 

Another additional improvement is to perform the nonlinear identification directly from a 

series of measured nonlinear FRFs (Direct Nonlinearity Identification by DFs, DDF). The new 

method eliminates the requirement of linear FRFs and works in the presence of friction type 

nonlinearities in combination with other type of nonlinearity.  

 

2.2. Damage Detection and Localization 

 

Structural damage is defined as a permanent change in the mechanical state of a structural 

material that may affect their performance [43]. Common sources of damage in materials and 

structural components include micro-structural defects (dislocations, voids, inclusions), 

corrosion (loss of material), residual stress, cracking (fatigue, matrix, ply), fastening fault 

(weld crack, bold preload, broken rivet), adhesive fault (de-bonding, delamination, separation), 

and instability (thermo-mechanical buckling) [43].  

 

Successful damage detection and localization in structures is essential for health monitoring 

and maintenance. Non-destructive testing methods which can identify damage can be used for 

this purpose. However, most of the non-destructive methods, such as ultrasonic methods 

require a suspected location for the damage, and furthermore, that location must be accessible. 

The methods which use vibration responses usually do not suffer from these limitations.  

 

The basis of vibration response methods is that damage changes the dynamic behavior of the 

structure. Salawu [44] presented a review on damage detection methods which use the shift in 

natural frequencies. The measurement of natural frequency changes is very simple but less 

informative compared to the mode shapes and can lead to wrong crack locations. Thus, 

methods which use mode shapes and their derivatives for damage detection were developed 

[45-48]. Recently, Yan et al. [49] presented a review for the advances in vibration based 

damage detection methods. More recent vibration based methods use the basic dynamic 

information of structures such as FRFs [50] and modal parameters [51-55]. Some of the 

vibration methods use wavelet analysis [56-58] and some use neural network analysis [59-60]. 

These methods are based on linear models.  

 

Damage can also add nonlinearity in structural systems which have otherwise linear responses 

[61]. The most common type of damage which introduces nonlinearity is breathing cracks 

which behave as bilinear stiffness elements. Many researchers have investigated different 

aspects of nonlinear damage identification using different approaches. These approaches 

include, for example, using nonlinear FRFs [62] NARMAX modeling [63], using nonlinear 

characteristics of forced response of structures [64], and bifurcation boundary analysis [65]. 

 

Damage detection method presented in this study consists of two main stages. Firstly, existence 

of damage in the system is detected by performing step sine tests with different loads. 

Secondly, the location of the damage is determined by using incomplete FRF data. The work 

presented in this study is mainly an experimental application of the method suggested by 

Aydoğan [66] which was verified in his work only by simulated data. The approach is based on 

the improved DF method.   
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CHAPTER 3 

 

 

3. IDENTIFICATION OF NONLINEARITY AND NONLINEAR RESPONSE 

CALCULATION BY USING DESCRIBING FUNCTIONS 

 

 

 

This chapter discusses identification of nonlinearity and nonlinear response calculation by DF 

approach starting from the DF representation of nonlinearity. The renowned Harmonic Balance 

Method (HBM) which is widely used for approximate linearization of nonlinearities is also 

discussed in the second section. The last two sections highlight multi harmonic effects on the 

nonlinear response calculations and spatial incompleteness problem. 

 

3.1. DF Representation of Nonlinearity 

 

DF representation of nonlinear elements [67-70] for linearization of nonlinear differential 

equations is the core of the methods proposed in this study. As these representations are used 

throughout this study, a brief introduction to DFs is given in this section. 

 

The equation of motion for a nonlinear MDOF system under harmonic excitation can be 

written as 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { ( , )} { }M x C x K x i H x N x x f                                                         (3.1) 

 

where [M], [C], [K] and [H] stand for the mass, viscous damping, stiffness and structural 

damping matrices of the system, respectively. The term N(x(t),ẋ(t)) contains all the nonlinear 

restoring forces which are dependent on response displacement and velocity, and {f} represents 

the harmonic forcing vector. 

 

The nonlinear elements can be between a coordinate and ground and/or between two 

coordinates. Then, the elements of the nonlinear internal force vector, {N}, for an “n” degrees 

of freedom system can be written as 

 

1

                1,2,3...
n

r rj

j

N n r n


                                                                                            (3.2) 

 

where nrj represents the nonlinear force element between coordinates r and j for j ≠ r, and 

between the r
th

 coordinate and the ground for j = r. Equation (3.2) considers all possible 

connection for the nonlinear elements. However, practically, most elements will be zero due 

having localized nonlinearities. Consequently, nrj is a function of the displacement xr – xj or xr 

and/or velocity ẋr – ẋj or ẋr, according to the location of the nonlinear element. For the sake of 

simplicity assume that nrj is a function of displacement only. 

 

For non-grounded coordinates the response will be as 

 

rj r jx x x j r                                                                                                             (3.3) 

 

Whereas for grounded coordinates the response is given as 

 

rj rx x j r                                                                                                            (3.4) 

 

When the nonlinearity is excited by a harmonic input, then the nonlinear force vector can be 

expanded via Fourier series. If the responses of the non-grounded coordinates are used, the 

nonlinear force vector for “p” harmonic terms can be represented as 
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 
0

( ( ))
p

im t

rj rj rj rj m

m

n x n x e 



                                  (3.5) 

   

where  
2

0 0

0

1
( ) ( )

2
rj m rj rj mn n x d






                           (3.6) 

2

0

0

( ) ( ) im

rj m rj rj m

i
n n x e d


 





                                       (3.7) 

t               (3.8) 

 

Furthermore, if the nonlinear element is assumed to be odd, then the dc term (equation (3.6)) 

diminishes, and if single harmonic response is assumed then equation (3.7) becomes 

 
2

0

( ) ( ) i i t

rj rj rj rj

i
n x n x e d e


 




 

  
 
                                                   (3.9) 

 

The nonlinear internal force can also be expressed as [71] 

 

 ( ) i t

rj rj rj rj
n x X X e                                                                                                        (3.10) 

 

where  

ν     : DF of the nonlinearity 

Xrj    : Complex amplitude of the nonlinear response 

 

Thus, from equation (3.9) and (3.10), the DF of the nonlinearity, ν(Xrj), is obtained as 

 

 
2

0

( ) i

rj rjrj

rj

i
X n x e d

X



 



                                     (3.11) 

 

Then, using equation (3.11) and (3.10), the nonlinear internal force elements of equation (3.2) 

can be calculated. 

 

3.2. Harmonic Balance Method 

 

HBM is a popular and simple method which is widely used for approximate linearization of 

nonlinearities. In order to observe the consequences of nonlinear elements when a system is 

harmonically excited, HBM is an effective method.  

 

Consider the equation of motion for a SDOF nonlinear system as 

 

( ) ( ) ( ) ( ( ), ( )) ( )mx t cx t kx t N x t x t f t   
                                               (3.12) 

 

The nonlinear internal force can be represented by equation (3.5) where the response is 

assumed to consist of only the first fundamental harmonic as 

 

  1

0

( ( )) ( )
p

im t i t

m

m

n x n x e n x e 



 
        

(3.13)
 

 

1

0 0

im t i t

m m

m m

x x X e X e 
 

 

   
        

(3.14)
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where m is the m
th

 harmonic and Xm is the m
th

 displacement response amplitude. Note that X is 

complex in order to accommodate phase information. 

 

Furthermore, assuming a harmonic forcing such as f(t) = Fe
iwt

,  yields 

 

 2

1 1( )i t i t i tk m i c X e Fe n x e      
                    

(3.15)
 

 

If the complex response, X1, forcing, F, and internal nonlinear force, n(x)1, are written in open 

form, then the fundamental equation of HBM is obtained as 

 

    2

1 1

2 2

0 0

sin( ) cos( ) sin( ) cos( )

( ) sin( ) ( ) cos( )i i

rj rj rj rj

k m i c X t iX t F t iF t

i i
n x e d t i n x e d t

 

 

     

   
 

 

     

    
     

    
 

    (3.16) 

 

The solution of the response, X1, is obtained by equating the coefficients of the fundamental 

harmonics. An application of HBM will be presented with symmetric Duffing’s equation for 

the sake of clarity. 

 

From the symmetric Duffing’s equation, the nonlinear restoring force can be defined as 

 
3

2( ( ), ( )) ( )N x t x t k x t                                                  (3.17) 

 

where k2 is the nonlinear stiffness value. If equation (3.17) is substituted into equation (3.12), 

equation (3.18) is obtained as 

 
3

2( ) ( ) ( ) ( ) ( )mx t cx t kx t k x t f t                                                        (3.18) 

 

The application of harmonic balance is based on the assumption that a harmonic excitation will 

result in a harmonic response. Thus, let the excitation be 

 

( ) sin( )f t F t                                           (3.19) 

 

and then the corresponding response can be assumed to be in the form of 

 

( ) sin( )x t X t                                                              (3.20) 

 

The substitution of excitation and response expressions to equation (3.18) yields 

 
2 3 3

2sin( ) cos( ) sin( ) sin ( )

sin( )

m X t c X t kX t k X t

F t

     

 

   

 
                                             (3.21) 

 

Using the trigonometric equivalent for sin
3
(ωt) term we obtain 

 
2

3

2

sin( ) cos( ) sin( ) ...

3 1
( sin( ) sin(3 )) sin( )cos( ) cos( )sin( )
4 4

m X t c X t kX t

k X t t F t F t

    

     

   

  
                                     (3.22) 

 

By equating the coefficients of the fundamental harmonics (sin(ωt) and cos(ωt)) equation 

(3.22) becomes 

 

2 3

2

3
( ) cos( )

4
m X kX k X F                                      (3.23) 
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sin( )c X F                                       (3.24) 

 

If equation (3.23) and (3.24) are squared and summed, the following equation is obtained. 

 

2 2 2 2 2 2 2

2

3
( )

4
F X m k k X c 

 
     

 
                                   (3.25) 

 

Further manipulations give 

 

1/2

2 2 2 2 2

2

1

3
( )

4

X

F
m k k X c 


 
    

 

                                   (3.26) 

1

2 2

2

tan
3

4

c

m k k X






 


  

                                      (3.27) 

 

From equation (3.26) and (3.27) it is evident that the receptance can be written as 

 

2 2

2

1
( )

3

4
m k k X ic

 

 



   

                                   (3.28) 

 

Hence, it can be concluded that the equivalent stiffness for the Duffing’s equation is given as 

 

2

2

3

4
eqk k k X                                      (3.29) 

 

where the second terms is also the first order DF for the cubic stiffness nonlinearity. 

 

In the above calculations the higher harmonics have been equated to zero. This is the main 

assumption of this method. However, the effect of higher harmonics can be included by 

assuming a response with higher order harmonics [6]. 

 

3.3. Calculation of Harmonic Response of Nonlinear Systems by Using DFs 

 

Representation of nonlinear forces in matrix multiplication form using DFs has been developed 

and employed in response calculation of MDOF systems with structural nonlinearities by 

Tanrıkulu et al. [71] and Ciğeroğlu et. al. [72]. In this section the method will be briefly 

reviewed for the sake of completeness. 

 

Let the equation of motion for a nonlinear MDOF system under harmonic excitation to be 

given as equation (3.1). When there is a harmonic excitation on the system in the form of 

 

    i tf F e                                                                                                                         (3.30) 

 

The nonlinear internal force can be expressed as [71] 

 

      , , i t
X XN x x X e                                                                                                 (3.31) 

 

where [Δ(|X|,|Ẋ|)] is the response dependent “nonlinearity matrix” and its elements are given in 

terms of DFs, v, as follows: 
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1

         1,2,...,
n

rr rr rj

j
r j

v v r n



                                                                                        (3.32) 

1,2,...,rj rjv r j r n                                                                                   (3.33) 

 

At this point, it should be noted that linearization via DF is equivalent to linearization using 

first order harmonic balance method [1], [3-6]. From the above equations it is possible to write 

the receptance matrix for the nonlinear system, [α
NL

], as  

 

          
1

2NL M i C i H K  


                                                                           (3.34) 

 

Thus, the nonlinear response of the system can be expressed as 

 

   NLX F                                       (3.35) 

 

Therefore, the nonlinear response of a system for a harmonic excitation can be calculated by 

using equation (3.35). It should be noted that [α
NL

] is a function of displacement and/or 

velocity. Thus, solving equation (3.35) has to be iterative. The initial guess can start with the 

linear response and the nonlinear response can be calculated with the [Δ] matrix constructed 

from linear response. Then, the new responses can be used for the calculation of [Δ] matrix and 

a new nonlinear response can be calculated. This goes on until a specified error criterion is 

converged for the nonlinear response. 

 

3.4. Identification of Nonlinearity Using DFs  

 

Harmonic response calculation method of nonlinear systems presented in the previous section 

is also used for detection, localization and parametrically identification of nonlinearity in 

structures. As the basic theory of the DF method is given in detail in reference [2], here it is 

briefly reviewed. 

 

The receptance matrix of the linear counterpart of the nonlinear system discussed in previous 

section can be written as 

 

          
1

2 M i C i H K  


                                                                                    (3.36) 

 

From equations (3.34) and (3.36), the nonlinearity matrix can be obtained as 

 

   
1 1NL 
 

                                                                                                                 (3.37) 

 

Post multiplying both sides of equation (3.37) by [α
NL

] gives 

 

     NL NLI Z                                                                                                           (3.38) 

 

where [Z] is the dynamic stiffness matrix of the linear part: 

 

            
1 2Z M i C i H K  


                                                                            (3.39) 

 

In order to localize nonlinearity in a system, a parameter called “nonlinearity index” is used. 

The nonlinearity index (NLI) for a p
th

 coordinate is defined by taking any i
th

 column of [α
NL

]
 and the p

th
 row of [Δ] from equation (3.38) as follows: 

 

         1 2 21
NL NL

p p p i pn ni
NL
i

NLI
                    

                                                      (3.40) 
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Here, theoretically, “i” can be any coordinate; however, in practical applications it should be 

chosen as an appropriate coordinate at which measurement can be made and also be close to 

suspected nonlinear element. Equation (3.40) shows that any nonlinear element connected to 

the p
th

 coordinate will yield a nonzero NLIp. On the other hand, NLIp can be experimentally 

obtained by using the right hand side of equation (3.38), which requires the measurement of the 

receptances of the system at high and low forcing levels, presuming that low level forcing will 

yield FRFs of the linear part:  

 

          1 1 2 2
NL NL NL

p ip p i p i pn niNLI Z Z Z
                                                  (3.41) 

 

As equation (3.41) is frequency dependent, NLI will also be frequency dependent, and 

therefore NLI for a coordinate will have different numerical values at every frequency. Yet, any 

nonlinearity at a coordinate p will depict itself as a nonzero NLIp value at any frequency. 

However, it is found the best to use the sum of NLIp values calculated at each frequency in the 

frequency range of interest, rather than using a single value determined at an arbitrary 

frequency. Throughout this study, NLI values given in plots for a coordinate are the sum of NLI 

values for that coordinate at each frequency in the frequency range of interest. 

 

It can easily be seen from equation (3.41) that to calculate NLI for a coordinate, we need one 

column of dynamic stiffness matrix of the linear part of the system corresponding to 

measurement DOFs, and one  row of the nonlinear receptance matrix corresponding to the 

same DOFs. If dynamic stiffness matrix is to be determined from the inversion of 

experimentally measured linear FRFs, then whole linear FRF matrix is required. On the other 

hand, as discussed in [2] in detail, in practical applications, dynamic stiffness matrices are 

sparse with several zero elements. Since NLI is a weighted summation of nonlinear receptances 

(weights being the elements of dynamic stiffness matrix), the nonlinear receptances that are 

multiplied with zero or small dynamic stiffness matrix elements do not need to be measured. 

Moreover, the NLI should be calculated only for coordinates around potential nonlinearities. 

As nonlinearities are usually due to joints, ground connections, etc., the number of coordinates 

at which nonlinear FRF measurements are required will be considerably small compared to 

total DOF of the system. 

 

In order to identify nonlinearities from measured data, equation (3.38) has to be solved for the 

nonlinearity matrix, [Δ], using linear and nonlinear FRF’s.  

 

Assuming that nonlinearities exist between r
th

 and j
th

 coordinates, the nonlinearity matrix [Δ] 

can be written as 

 

 

0

0 0

0

 

 

 
 
 
 
 

  
      

 
 
 
  

                        (3.42) 

 

Furthermore, the nonlinearity matrix, [Δ], can be written as multiplication of two matrices as 

 

  1 2{ }{ }T                                       (3.43) 

 

where; 
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1

0

{ }

0






 
 
 
 

  
 
 
 
  

,  
2

0

1
{ }

1

0



 
 
 
 

  
 
 
 
  

                        (3.44),(3.45) 

 

The nonlinear response of the system can be expressed as 

 

   NLX F                                       (3.46) 

 

Furthermore, if equation (3.34) is substituted into equation (3.46) 

 

 
1

1 2{ } { }{ } { }TX Z F 


                         (3.47) 

 

The Sherman-Morrison matrix inversion formula [2] is given as 

   
   

 

1 1
1 1

1

{ }{ }
{ }{ }

1 { } { }

T

T

T

A u v A
A u v A

v A u

 
 


    


                   (3.48) 

 

where [A] is an N x N matrix with full rank and {u} and {v} are N x 1 vectors. Rewriting 

equation (3.47) using equation (3.48) 
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                    (3.49) 

 

Performing the matrix multiplication the response of every coordinate can be obtained as 
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                                  (3.50) 

 

When the nonlinearity is located between the r
th

 and j
th

 coordinates, the response of the k
th

 

coordinate can be written from equation (3.50) as; 
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k
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rr rj jj

X X
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  
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                                 (3.51) 

 

and if the DF representation of the nonlinearity “ν” is solved from equation (3.51) 

 

( )( 2 ) ( )( )

k

k r j

lin k

k lin rr rj jj kr kj lin lin
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X X X X

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

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                               (3.52) 

 

The DF representation of the nonlinearity “ν” versus response amplitude graph gives a means 

to interpret the type of nonlinearity and to identify it by curve fitting.  
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3.5. Calculation of Multi-harmonic Response of Nonlinear Systems by Using DFs 

 

The method given in section 3.3. considers the system response to be composed of the first 

harmonic term only. However, theoretically, the response has infinite harmonic terms in the 

response due to the nonlinear element. The effect of the higher harmonics in the response 

varies with the type of nonlinearity and its value. It is important to note that, the higher 

harmonic terms will not contribute to the response as much as the first harmonic term for weak 

nonlinear systems. 

 

The response having higher harmonic terms such as sin(2ωt), sin(3ωt), etc. also has the 

multiplications of these terms such as sin(ωt)sin(2ωt), sin(ωt)sin(3ωt), sin(2ωt)sin(3ωt), etc. If 

the formulations do not include the multiplications, then this type of modeling is called higher 

harmonic solution. Whereas, when the formulations include these multiplications, this type of 

modeling is called multi-harmonic modeling [23,73].  

 

The DF modeling which was introduced in section 3.1 used single harmonic DFs. Multi-

harmonic response formulations require the DF to be also multi-harmonic. Therefore, the 

Fourier series expansion of the DF definition is used. The details of the formulations will be 

given in the next section which is based on the studies given in [23,73]. 

 

Finally, the classic multi-harmonic modeling procedure requires the number of harmonics that 

will be used in the solution to be predefined. An adaptive multi-harmonic solution method is 

proposed which adds harmonic terms to the response automatically until a predefined error 

criterion is satisfied. This control works for continuous type of nonlinearities (e.g. cubic 

stiffness) very well but for discrete type of nonlinearities such as free-play a further 

modification may be necessary. 

 

3.5.1. Multi-harmonic System Modeling Theory 

 

The differential equation of motion of a MDOF system with nonlinear elements which is 

harmonically excited is defined as in equation (3.1). Then, up to equation (3.8) the 

formulations included higher harmonics. Thus, the following derivations will continue from 

equation (3.8) without removing the higher harmonic terms. 

 

Considering the harmonic forcing, {f}, to be of sinusoidal form, it can be written as 

 

   Im( )i tf F e                        (3.53)          

 

where, {F} is the amplitude vector of the forcing. The response to this harmonic force will not 

be a single sine as it was assumed in the single harmonic solution. But the response will still be 

periodic. Thus, the response for the grounded coordinates can be represented as a Fourier series 

by summing the harmonic terms as 

 

   
0 0

im t

r r rm m
m m

x x X e 
 

 

                                                   (3.54) 

 

where m is the m
th

 harmonic and {Xr}m is the m
th

 displacement response amplitude. Note that 

{Xr} is complex in order to accommodate phase information. 

 

Thus, the grounded coordinate responses can be approximated to have “p” harmonic terms 

(P={1,2,3,…,p}) as 

 

 
0

Im( )
p

im t

r r m
m

x X e 



                                                          (3.55) 

 

The non-grounded responses (r-j coordinates) can be obtained in a similar way as 
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   
0 0

im t

rj r j rj rjm m
m m

x x x x X e 
 

 

                                      (3.56) 

 

The same approximation of restricting the number of harmonics to a set of “P” can be applied 

and by taking the imaginary part of the response the following representation can be obtained. 

 

 
0

Im( )
p

im t

rj rj m
m

x X e 



                                     (3.57) 

 

where {Xrj}m is the m
th

 displacement response amplitude.  

 

Furthermore, nonlinear forces can be represented as harmonic functions of response at the 

same frequency.  

 

                   rj rj r jn v x x j r                                                                                          (3.58) 

                 rj rj rn v x j r                                                                                          (3.59) 

 

where, ν is the DF of the nonlinearity in the system such that it provides the best average of the 

true restoring force between coordinates r and j or between the coordinate r and the ground. 

Then, using equation (3.58) for multi-harmonic terms with the non-grounded coordinates 

yields 

 

1

( ) ( ) ( )            
m

rj m rj ml rj l

l

n v X j r


                                   (3.60) 

 

Equation (3.60) can be expanded in matrix form as 
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                                (3.61) 

 

which can be further expanded by using the response coordinate x as 
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Equation (3.62) can be written in compact form as 
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where 
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                                                (3.64) 

 

In order to obtain the DF values, (νrj)ml, equation (3.63) can be solved as 
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m mrj rj l rj rj l
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Note that this solution method requires the knowledge of the nonlinearity type and parameters 

present in the system. 

 

3.5.2. Multi-harmonic Nonlinear Response Calculation 

 

The single harmonic nonlinear response calculation was discussed in section 3.3. If we extend 

the single harmonic response formulations to include multi harmonic DFs and the 

representation of nonlinear forces, we obtain 
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where 
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If m harmonics are used in the solution then equation (3.66) can be written as  
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                                     (3.68) 

 

The nonlinear response can be obtained by taking the inverse of nonlinear receptance matrix as 
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(3.69) 



23 

 

Equation (3.69) is the extended version of equation (3.35) in terms of multi-harmonic 

components. Accordingly, the iterative solution procedure is similar to the one given in section 

3.3. 

 

3.5.3. Adaptive Multi-harmonic Solution Method 

 

The multi-harmonic calculations require the number of multi-harmonic terms that will be 

included in the solution. As the multi-harmonic terms are usually significant at frequencies 

close to the harmonics of resonances and insignificant for the other frequencies, an error 

criterion based adaptive control has been proposed. A predefined error value is set and the 

solution starts with single harmonic solution. When the error increases then the code 

automatically adds a higher harmonic to the solution. This method reduces the calculation time 

as higher harmonics are added only at the frequencies close to the harmonics of resonances. 

The error criterion is based on the nonlinear force vector {Ň(xrj,ẋrj)}. The percent error for the 

multi-harmonic solution can be defined as; 
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


                                 (3.70) 

 

where  

n: the degree of freedom, 

m: number of harmonics. 

 

3.6. Case Study: Nonlinearity Identification and Multi-harmonic Response Calculation  

 

The model used for demonstration of the DF method and multi-harmonic response calculation 

(Figure 3-1) is taken from [74]. The model parameters of the system are as follows 

 

1 1 2 3

2 1 2 3

' ' 3
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1            k =k =k =500 N/m
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m kg

m kg

F N

k k







 
 

 

The nonlinear elements at coordinate 1 - ground and coordinate 2 - ground are cubic stiffness 

type elements. 

 

 

 

 
 

Figure 3-1. 2 DOF nonlinear system with two cubic stiffness nonlinear elements 
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The harmonic time response of the system is calculated with MATLAB by using the ordinary 

differential equation solver ODE45. The simulation was run for 32 seconds at each frequency 

to ensure that transients die out. The frequency range used during the simulations is between 0 

and 10 Hz with frequency increments of 0.02 Hz. The above procedure is applied to obtain 

both linear and nonlinear responses. The linear FRFs are obtained by applying a very low 

sinusoidal forcing (0.1N) from the first coordinate as presented in Figure 3-1. The nonlinear 

FRFs are obtained by applying high sinusoidal forcing (50N) to the system from the first 

coordinate as shown in Figure 3-1. 

 

The system investigated has two nonlinear elements at two separate coordinates which make 

the Sherman-Morrison solution method given in section 3.4. not applicable. Therefore, 

equations (3.40) and (3.41), have to be solved simultaneously for the DF, ν, values.  

 

The DF representation of the nonlinearity “ν” can be graphically shown as a function of 

response amplitude, which makes it possible to identify the type of nonlinearity and to make 

parametric identification by using curve fitting. Then the DF is plotted as a function of 

displacement amplitude (Figure 3-2).  

 

As expected, the curve fitted to the experimental data describes cubic stiffness nonlinearity. 

The nonlinear stiffness value is obtained from the fitted curve (Figure 3-2) as 80000 N/m
3
. 

After identifying the coefficient of the nonlinearity in the system, the multi-harmonic response 

of the nonlinear system as well as the nonlinear FRFs can be calculated by using the iterative 

solution method given in section 3.3. 

 

 

 

 
 

Figure 3-2. Simulated DF values and the fitted curve 

 

 

 

The method discussed in section 3.5 is applied with 3 harmonics to show the effect of multi-

harmonic terms on the system response. The response consists of the harmonics of sin(ωt), 

sin(3ωt) and sin(5ωt). Figure 3-3 shows the comparison of FRFs obtained by single and multi-

harmonic solution with the time integration results. The FRFs for time integration are obtained 

by dividing the FFT of the time response by the FFT of the forcing. 

 

The single harmonic solution is not so accurate especially around natural frequencies (around 

2.7 Hz and 6.6 Hz) and the sub-harmonic frequency (around 0.7 Hz). Figure 3-4 shows the 

sub-harmonic frequency region where the single harmonic solution fails to match the time 

integration solution.   
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Figure 3-3. Nonlinear FRFs at 50N, blue: Time integration FRF, green: Single harmonic FRF, 

red: multi-harmonic 1
st
 harmonic FRF (of 3 harmonics) 

 

 

 

 
 

Figure 3-4. Nonlinear FRFs at 50N, one third of the first natural frequency, blue: Time 

integration FRF, green: Single harmonic FRF, red: multi-harmonic 1
th

 harmonic FRF (of 3 

harmonics) 

 

 

 

The phase plot (Figure 3-5) shows also that there is a better correlation between multi-

harmonic solution and time integration than the single harmonic solution. 
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Figure 3-5. Nonlinear phases at 50N, blue: Time integration phase, green: Single harmonic 

phase, red: multi-harmonic 1
th

 harmonic phase (of 3 harmonics) 

 

 

 

Finally, a specific frequency of 2 Hz is chosen which is close to the first resonance (around 2.7 

Hz at 50N forcing level) to compare the time responses of all the methods. Figure 3-6 shows 

the time integration, single and multi-harmonic responses. It is evident that as higher harmonic 

terms are included to the response, the solution will converge to response obtained by time 

integration. Considering these plots, it can be concluded that the response may not be 

accurately represented by the single harmonic component when the frequencies of interest are 

close to the resonances and/or harmonics of resonances. 

 

 

 

 
 

Figure 3-6. Nonlinear time responses at 2 Hz, blue: Time integration response, green: Single 

harmonic response, red: multi-harmonic total response (of 3 harmonics) 
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3.7. Spatial Incompleteness and FRF Synthesis with an Application 

 

In modal testing of complicated structures usually a shaker is attached to a specific location on 

the test structure and measurements are made at several locations. These measurement 

locations must be chosen such that they are not on the nodal points of the mode shapes under 

interest. Figure 3-7 shows first two mode shapes of a beam and a nodal point. The beam 

example will be used to discuss the spatial incompleteness definition. 

 

Usually test engineer excites the structure from 1 or 2 locations and measures responses from 

many points using accelerometers. This yields 1 or 2 columns of the FRF matrix. For example, 

for the beam example given in Figure 3-7, the receptance matrix, considering 3 measurement 

points, will be 
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                         (3.71) 

 

 

 

 
 

Figure 3-7. Nodal point representation 

 

 

 

The number of unknown receptances can be reduced if reciprocity is used, which is one of the 

main assumptions of linearity. Then, 
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where from reciprocity, 
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However, there will be still unknown terms in the FRF matrix, especially the ones related with 

rotational degrees of freedom may be missing. Although there are various methods to obtain 

FRFs at rotational degrees of freedom [75], measuring FRFs for rotational degrees of freedom 

is usually found very difficult and it is avoided. 

 

Having missing FRFs due to not exciting the structure from all coordinates is called as Spatial 

Incompleteness. The traditional way of dealing with spatial incompleteness is either to assume 

that those elements are insignificant or to create a numerical or analytical model of the test 

structure and update it using the spatially incomplete data. Then this updated model is used to 

obtain the full FRF matrix. This method is very difficult due to the trials needed to update the 

numerical model correctly.  

 

Incomplete FRF matrix is indeed very troublesome to handle. Rotational degrees of freedom 

elimination is not as bad as not exciting the structure from all coordinates. The reason is that, 

when rotational degrees of freedoms are eliminated, the resulting FRF matrix is still square and 

mathematically usable. However, when the structure is not excited from all coordinates, the 

resulting FRF matrix is not square. 

 

In order to obtain the missing elements of the experimentally obtained receptance matrix, the 

application of a well known method is proposed. Theoretically, if the modal parameters 

(natural frequency, damping ratio, modal constant, lower and upper residues) of a structure are 

obtained by linear modal identification, then missing elements of the receptance matrix can be 

synthesized.  

 

Synthesis of the unmeasured elements of the FRF matrix can be summarized in the flow chart 

given in Figure 3-8. 

 

 

 

 
 

Figure 3-8. Synthesis process of the unmeasured coordinates 

 

 

 

In this study the linear modal identification is performed in the LMS Test Lab software. LMS 

Test Lab software utilizes a further evolution of the least-squares complex frequency domain 

estimation method [76] which is called PolyMAX. The details of this method can be found in 

the manual of the software [77]. 
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During this identification process natural frequencies, damping ratios and scaled modal 

constants are identified. Furthermore, during the identification a frequency band is selected so 

that lower and upper residues are also calculated. In order to synthesize the unmeasured FRFs, 

the scaled modal constants must be separated to modal constants and the scaling factor. The 

derivation of this process is given below. 

 

LMS Test Lab uses the Laplace domain transfer function representation [4]. Therefore, 

derivation of the FRF of a SDOF system from Laplace transfer yields  

 
*

( )
( ) ( )d n d n

A A

i i
 

     
 

   
                                 (3.74) 

 

where 

 

ωn : Undamped natural frequency  

ωd = ωn√(1-ζ
2
) : Damped natural frequency                          (3.75) 

ζ   : Damping ratio  

 

The complex conjugates A, A
*
 are defined as the scaled modal constants of the FRF and can be 

obtained as 
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2 d

A
i m

                        (3.76) 

 

For a MDOF system the scaled modal constant Aij
k
, between i

th
 and j

th
 location of mode k, can 

be written as the product of a scaling factor ak (independent of the location) and the modal 

vector components in both locations.  

 
k k k
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where, 
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a
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                        (3.78) 

ωd
k
 = ωn

k
√(1-(ζ

k
)

2
) : Damped natural frequency of mode k                                             (3.79) 

m
k
: Modal mass of mode k 

ωn
k
: Undamped natural frequency of mode k 

ζ
k
: Damping ratio of mode k 

 

The damping type defines whether the modal vector will be real or complex. If the damping is 

proportional then the modal vectors will be real, thus the modal constants will be imaginary. 

Therefore the scaling factor will also be imaginary. If the damping is not proportional then 

modal vectors, modal constants and the scaling factor will be complex. 

 

The most common scaling that is applied is the unit modal mass scaling (i.e. mass 

normalization).  

 

1km                                       (3.80) 

 

Thus the scaling factor (equation (3.78)) becomes; 
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If this scaling factor is used; 
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                       (3.82) 

 

where, 

Ø: Modal Vector 

 

Further manipulations yield modal constants as 

 

2k k k k
i j ij dA i                                         (3.83) 

 

If the driving point scaled modal constant is used (i.e. i = j) 

 
2( ) 2k k k

i ii dA i                        (3.84) 

 

Then, mass normalized complex eigenvector for the driving point can be found. The other 

eigenvectors can be simply found from equation (3.83) with the knowledge of the mass 

normalized complex eigenvector for the driving point.  

 

The FRF formulation with the scaled modal constants for viscously damped systems can be 

defined as; 
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                       (3.85) 

 

where, 

 

N: Number of modes considered 

 

If we substitute equation (3.79) and (3.82) into equation (3.85), unmeasured receptance αij(ω) 

can be calculated as 
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                       (3.86) 

 

Furthermore, if the upper and lower residuals are included into equation (3.86) we obtain the 

final form as 
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                                (3.87) 

 

This formulation is the basis for the synthesis of the receptances for the unexcited coordinates. 

Once the modal parameters (natural frequency, ωn
k
, damping ratio, ζ

k
, scaled modal constant, 

Aij
k
, lower/upper residues) are obtained from linear identification tools, equation (3.87) is used 

to obtain the unmeasured elements of the FRF matrix. 
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In order to show that FRF synthesis method is practical and applicable, a simulated “test” will 

be considered. The FRF synthesis method is performed on a four degree of freedom system, 

shown in Figure 3-9. 

 

 

 

 
 

Figure 3-9. Four-DOF example model for FRF synthesis of a noise free system   

 

 

 

where,  

1 2 3 4 5

1 2 3 4 5

1 2 3 4

500 N/m
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k k k k k

c c c c c

m m m m

    

    

   
 

 

The simulated “test” FRF values are obtained by matrix inversion. Only the first column of the 

FRF matrix is used in the modal identification process (i.e. α11, α21, α31, α41). The driving point 

FRF (α11) is shown in Figure 3-10. In practical applications most of the time a specific 

frequency range is under consideration. The analysis frequency range should be chosen by 

considering the out-of-band effects. The out-of-band effects are caused by modes below and 

above the analysis band. The unmeasured modes can be compensated by upper and lower 

residuals. However such compensation cannot be made for the unmeasured FRFs. Thus, the 

frequency band should be wide enough so that the out-of-band effects are not disturbing the 

analysis. As it can be clearly seen from Figure 3-10, the modes are very close to each other. 

Therefore, the whole frequency band is chosen for modal identification. Otherwise, small 

errors that may seem insignificant in FRF plots may easily be magnified when FRF matrix is 

inverted to obtain the dynamic stiffness matrix. This may lead to errors in localization and 

identification of nonlinearity. 

 

 

 

  
 

Figure 3-10. Driving point linear FRF 



32 

 

The modal parameters (natural frequency, damping ratio, and scaled modal constants) and 

lower/upper residuals were identified using receptances α11, α21, α31 and α41 by LMS Test Lab 

PolyMAX identification method as given below: 
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These values are used in equation (3.87) to obtain α11 as 
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                                      (3.88) 

 

Substituting the corresponding values yields regenerated α11, which is compared with the 

original α11 as shown in Figure 3-11. 

 

Furthermore, the point receptance α44 for the unexcited coordinate (α44) is also synthesized by 

using equation (3.87). Original and synthesized α44 curves are compared in Figure 3-12. 

 

3.8. Nonlinearity Localization from Spatially Incomplete FRF Data 

 

The main disadvantage of the DF method presented in section 3.4. is that in order to calculate 

the NLI the complete linear FRF matrix may be required (if instead of theoretically calculated 

dynamic stiffness matrix, inverse of experimentally measured receptance matrix is used). 

When this is the case, it may not be feasible to apply the method. In this study, it is proposed to 

use theoretically predicted values for unmeasured receptances calculated from the measured 

ones (improved DF method), and it is shown with case studies that this approach yields 

acceptable results. 
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Figure 3-11. Driving point “test” and synthesized FRF 

 

 

 

 
 

Figure 3-12. α44 “Test” and synthesized FRF 

 

 

 

Nonlinearity localization by using the right hand side of equation (3.41) requires either the 

system matrices (that can be obtained from the FE model) or the complete receptance matrix of 

the linear part so that it can be inverted to find the dynamic stiffness matrix, [Z]. The flowchart 

of the FRF synthesis and its application for nonlinearity localization is given in Figure 3-13.  
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Figure 3-13. FRF synthesis and nonlinearity localization flow 

 

 

 

3.8.1. Case Study 1: Nonlinearity Localization from Spatially Incomplete Noise Free 

FRFs 

 

In order to demonstrate the application of the improved DF method, the numerical model given 

in Figure 3-9 with a nonlinear cubic hardening spring (k4' = 10
6 

N/m
3
) between coordinates 3 

and 4 is considered (Figure 3-14). 

 

 

 

 
 

Figure 3-14. Four-DOF example model with nonlinear element for nonlinearity localization 

from spatially incomplete noise free FRFs 
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First, the time response of the system is calculated with MATLAB by using the ordinary 

differential equation solver ODE45. The simulation is run for 32 seconds at each frequency to 

ensure that transients die out. The frequency range used during the simulations is from 0 to 20 

Hz with frequency increments of 0.0625 Hz. The above procedure is applied to obtain both 

linear and nonlinear responses. The linear FRFs are obtained by applying a very low sinusoidal 

forcing (0.1N) and nonlinear FRFs are obtained by applying high sinusoidal forcing (10N) to 

the system from the first coordinate as presented in Figure 3-14. A sample comparison for the 

linear and nonlinear FRFs of α11 is given in Figure 3-15. 

 

 

 

 
 

Figure 3-15. Nonlinear and linear FRF (α11) comparison 

 

 

 

The improved DF method is applied and the NLI for each coordinate is calculated and summed 

over the frequency interval 0 to 20 Hz where the linear FRF is synthesized by equation (3.87) 

using only the first column of linear FRFs. The sum of NLI for each coordinate is given in 

Figure 3-16. 

 

The results show that there is a nonlinear element between coordinates 3 and 4 or there are two 

nonlinear elements at coordinates 3 and 4 respectively. This problem can be solved by 

physically checking the structure under consideration whether or not there is a connection 

between coordinate 3 and 4, etc. If there is a connection between two coordinates it may be a 

nonlinear element in between, otherwise it indicates nonlinear elements between 3 and ground, 

and between 4 and ground, etc. When this is not obvious, another approach would be to 

regenerate the nonlinear FRF with the identified nonlinearity and compare it with the 

measurement. A match will be obtained only for correct localization and identification. In 

order to compare the FRF synthesis method with the exact values, all of the linear FRFs are 

obtained by matrix inversion and NLI values are calculated. Then, the NLI values obtained 

from FRF synthesis method are compared with the NLI values obtained from the exact linear 

FRFs (Figure 3-17). 
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Figure 3-16. Sum of nonlinearity indexes for measurement coordinates 

 

 

 

 
 

Figure 3-17. Comparison of the nonlinearity indexes obtained by using synthesized and exact 

FRF values. (Black: Using synthesized FRFs; Gray: Using exact FRFs) 

 

 

 

3.8.2. Case Study 2: Nonlinearity Localization from Spatially Incomplete FRF Data with 

Noise #1 

 

The improved DF method is also tested in the presence of random noise by using the 

“normrnd” function of MATLAB with zero mean, normal distribution and standard deviation 

of 0.0025 m which corresponds to 5% of the maximum response amplitude. The noise is added 

on the time responses before the FRF value is calculated. The corresponding linear and 

nonlinear FRF curves for α11 are given in Figure 3-18. 
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Figure 3-18. Comparison of nonlinear and linear FRFs (α11) in the presence of noise #1 

 

 

 

Then using the improved DF method again, the NLI for each coordinate is calculated and 

summed over the same frequency range, where again the linear FRFs are synthesized using 

equation (3.87). The sum of NLI for each coordinate is given in Figure 3-19. 

 

 

 

 
 

Figure 3-19. Nonlinearity indexes obtained with simulated noise #1  
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3.8.3. Case Study 3: Nonlinearity Localization from Spatially Incomplete FRF Data with 

Noise #2 

 

Furthermore, another type of noise is added to the FRFs by multiplying a normal distribution 

noise, with unity mean and 0.025 standard deviation, with the linear and nonlinear FRFs. The 

driving point noisy FRF curves are given in Figure 3-20 and the sum of NLI for each 

coordinate is given in Figure 3-21. Thus, even with such high noise levels, the nonlinear 

element is successfully localized as being attached to coordinate 3 and 4. 

 

 

 

 
 

Figure 3-20. Comparison of nonlinear and linear FRFs (α11) in the presence of noise #2 

 

 

 

 
 

Figure 3-21. Nonlinearity indexes obtained with simulated noise #2  
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It is interesting to note that, the location of the nonlinearity changes the system FRFs 

considerably. A study where the nonlinearity is placed at different locations (0 “ground” 

coordinate-1
st
 coordinate, 1

st
-2

nd
 coordinate, 2

nd
-3

rd
 coordinate, 3

rd
-4

th
 coordinate, 4

th
- 0 

“ground” coordinate) is performed, and the driving point FRFs are obtained as shown in Figure 

3-22. However, the improved DF method works successfully for all cases. 

 

 

 

 
 

Figure 3-22. Linear and nonlinear FRFs for different nonlinear element locations; black: 

Linear, blue:  0 “ground” coordinate-1
st
 coordinate, red: 1

st
-2

nd
 coordinate, green: 2

nd
-3

rd
 

coordinate, purple: 3
rd

-4
th

 coordinate, orange: 4
th

- 0 “ground” coordinate 

 

 

 

3.8.4. Case Study 4: Nonlinearity Localization from Spatially Incomplete FRF Data with 

Missing Coordinates 

 

Another practical consideration that must be discussed is the unmeasured coordinates. In other 

words, consider the system given in Figure 3-14 and assume that the measurements are taken 

from coordinates 1, 2 and 4. The modal identification process will still identify 4 modes and 

corresponding modal parameters. The improved DF method is presented by using the noise-

free FRF data. The sum of NLI for each coordinate is given in Figure 3-23. This time the 

nonlinear element seems to be located between coordinates 2 and 4. 
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Figure 3-23. Nonlinearity indexes obtained with missing coordinates 

 

 

 

The case studies given above show that, the improved DF method can successfully localize the 

nonlinear elements even with high noise levels.  
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CHAPTER 4 

 

 

4.             NONLINEARITY IDENTIFICATION BY RESTORING FORCE APPROACH 

 

 

 

This chapter discusses the proposed nonlinearity identification method by restoring force 

approach using DF inversion.  

 

4.1. Introduction to Nonlinearity Identification Process Using DFs 

 

The nonlinearity identification process consists of a series of processes. Kerschen et al. [3] 

describes the nonlinearity identification process as detection, characterization and parameter 

estimation. A simple flow chart is given in Figure 4-1. 

 

 

 

 
 

Figure 4-1. Nonlinearity identification process 

 

 

 

The detection of the nonlinearity can be considered much easier compared to the other stages 

of the identification process. When a structure is excited at two different force levels the 

response should increase linearly resulting in an unchanged FRF. However if the system is not 

linear, then the FRF curve for different forcing levels will be different (Figure 4-2). This is the 

easiest way to detect whether or not nonlinearity is present in the structure.  

 

In the second step, the locations of nonlinear elements in a structural system can be evaluated 

from nonzero NLI values. The next step, which is nonlinearity characterization, is more 

challenging.  

 

First of all, equation (3.37) is used to evaluate the numerical values of DFs for each nonlinear 

element at various response levels. However, it should be noted that the method proposed 

requires measurement of nonlinear FRFs only at one high excitation level. The value of the DF, 

when there is single nonlinearity present in the system can be obtained from experimental data 

at different response amplitudes by using Sherman-Morrison formulation to avoid inversion 

(see section 3.4. for details).  

 



42 

 

 
 

Figure 4-2. Driving point FRF curves of a nonlinear system for different constant forcing levels 

 

 

 

However, when there are multiple nonlinearities present in the system, Sherman-Morrison 

formulation cannot be employed. Yet, simultaneous solution of all DF values is possible as 

long as the number of nonlinear elements do not exceed the total number of measurement 

coordinates, which would be rather unusual in practical applications.  

 

Then, the value of each DF can be plotted at different response amplitudes for obtaining DFFs 

which can be used for determining the type of nonlinearity, as well as for parametric 

identification of nonlinear element(s).  

 

Another common approach used for the same purpose is to obtain Restoring Force (RF) plots. 

Figure 4-3 presents RF and DFF plots for some common nonlinear elements. It is clear that RF 

plots contain more physical information compared to DFF plots.  

 

 

 

 
 

Figure 4-3. RFs and corresponding DFF plots 
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4.2. Nonlinearity Identification by DF Inversion (DFI Method) 

 

In this study, DF calculated as discussed in the previous section is inverted to obtain RF 

function, which is graphically investigated to evaluate the type of nonlinearity. The DF 

inversion method works on the total DF and gives a RF for the total nonlinearity. The 

functional representation of nonlinear elements by RF is much simpler compared to the DF 

approach. However, if nonlinearities are required to be determined separately, then various 

possible nonlinear functions and their combinations should be tried to be fitted to the RF 

function obtained. Some engineering judgment will reduce the effort in trying different 

combinations. A flow chart of the nonlinear dynamic analysis process including the DFI 

method is given in Figure 4-4. 

 

 

 

 
 

Figure 4-4. Nonlinear dynamic analysis process by DF inversion 

 

 

 

4.2.1. Nonlinearity Characterization 

 

Nonlinearities in a structural system are usually due to nonlinear stiffness (piecewise stiffness, 

hardening cubic stiffness, etc.) and/or nonlinear damping (coulomb friction, quadratic 

damping, etc.). DF formulation makes it possible to handle stiffness and damping 

nonlinearities separately [78]. The real part of the DF corresponds to stiffness nonlinearities 

whereas the imaginary part corresponds to damping nonlinearities. Therefore, a kind of 

indication about the type of the nonlinearity is available once DF is available. The case studies 

in the following sections will give a better insight on the indicator concept discussed. 

 

If the nonlinearity is frequency dependent it is very difficult to distinguish the type of the 

nonlinearity. In order to determine the frequency dependency of the nonlinearity from 

experimental data, the method given in [78] can be used. According to the method, if the 

displacement is kept constant for the nonlinear element, this will give a linear system for the 
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given displacement and the real and imaginary parts of the nonlinearity matrix will remain 

constant throughout the frequency band. However, if the nonlinearity is frequency dependent 

then these terms will still change with frequency which will be the indicator that the 

nonlinearity is frequency dependent. 

 

The DFI method requires inversion of the DF which has to be performed using different 

approaches for stiffness and damping nonlinearities when using experimental data with no 

knowledge on the type of the nonlinearity. Gibson [80] derived inverses for real, imaginary and 

mean parts of a DF. However, in this formulation the inversion of the real part and the mean of 

the DF require the information about the type of nonlinearity, but the inversion for the 

imaginary part works for any DF and it does not require information about the type of 

nonlinearity. The only limitation for the imaginary part is that the damping nonlinearity, which 

yields the imaginary part of DF, should not be frequency dependent. The derivation for the 

inverse of the imaginary part of the DF is given as follows [80]: 

 

Let the nonlinearity in a system defined as 

 

( ) ( )N x f x              (4.1) 

 

where f(x) can be double valued but not frequency dependent. If f(x) is double valued, it can be 

separated into two single valued functions as 
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where δx is an increment of the independent variable. 

 

If x from equation (4.1) is replaced by Xcosα, where X is the amplitude of x, N(α) will become 

periodic with period 2π. If N(α) satisfies the Drichlet conditions (N(α) must be absolutely 

integrable over a period, N(α) must have a finite number of extrema in any given interval, N(α) 

must have a finite number of discontinuities in any given interval and N(α) must be bounded), 

its Fourier expansion is given as 
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where M(X), g1(X), and b1(X) are the Fourier coefficients and are given as 
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Over the integral 0 to π, δx is negative, and it is positive over the integral π to 2 π. Therefore, 

using equations (4.2), equation (4.4) can be rewritten as 
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Moreover, all single valued functions can be replaced by the sum of an even and an odd 

function. Therefore, f1(x) and f2(x) can be written as 
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If equations (4.6) and (4.7) are substituted into equation (4.5) 
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Then if the following change of variable in all the integrals that are integrated over the interval 

π to 2 π is performed: 

 

               (4.9) 

 

Then equation (4.8) becomes 
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If these substitutions are made in equation (4.10), the result becomes 
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(4.12)

  

                                             

 

where  

1 2
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 

 

 

                                    (4.13) 

 

p1(x) and p2(x) are even functions and q1(x) and q2(x) are odd functions, then P(x) and Pʹ(x) are 

also even functions and Q(x) and Qʹ(x) are odd functions. 

 

Furthermore if the interval is separated into two parts in equations (4.12), such as the first 

integral to be integrated from 0 to π/2 and the second integral to be integrated from π/2 to π, 

and the change of variables α = π – β is performed for the integrals that are integrated from π/2 

to π, then equation (4.12) becomes 
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where 

cos( ) cos

sin( ) sin
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Therefore, equations (4.14) are reduced to 
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Returning back to the original variable x in equation (4.16): 

 

cos( )X x                          (4.17) 

 

The final result becomes 
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(4.18)

 

                     

 

The next step is to solve equations (4.18). The solution for b(X) is clear, and the remaining two 

equations are special cases of Volterra’s integral equation of the first kind. The solutions of 

equations (4.18) are given as 
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(4.19)

 

 

 

Here Q(x) gives the inverse of the real part of the DF, Pʹ(x) gives the inverse of the mean part 

of the DF, and P(x) in equation (4.19) gives the inverse of the imaginary part of the DF which 

can be calculated without any knowledge of the nonlinearity function. 

 

Now let us consider the inversion of the real part of the DF. In order to obtain the DF inversion 

for the real part, the approximate inversion equations suggested by Gelb and Vander Velde 

[78] are used. The derivation for the inverse of the real part of the DF is given as follows: 

 

The DF representation for general dynamic nonlinearity can be defined as 
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, , ii
v X X N x x e d

X
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where the response is assumed to be of the form; 

 

    ( )x t Xsin wt Xsin                                      (4.21) 

 

wt                            (4.22) 

 

Equation (4.20) can be rewritten in real and imaginary terms as 

 

   
2

0

1
, ,rv X X N x x sin d

X



 


                                     (4.23) 

   
2

0

1
, ,iv X X N x x cos d

X



 


                       (4.24) 

 

Further simplifications to equation (4.20) are possible if the nonlinearity is independent of 

velocity (frequency independence) and no memory (real DFs) assumptions are made; 
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2
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
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Gelb and Vander Velde [78] derived approximate analytic solution to the DF integral. The 

derivation starts with equation (4.25). 

 

Using the transformations 

 

u sin                         (4.26) 

du cos d                         (4.27) 

 

Equation (4.25) can be written as 
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The approximate evaluation of a similar integral form is as follows; 
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From equation (4.28) and (4.29); 
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For odd nonlinear restoring function, (N(-X) = -N(X)), equation (4.30) becomes, 
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Furthermore, evaluating the DF values at 2
n
 multiples of X (n=0,1,2,3…) yields 
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                                   (4.32) 

 

Solving the above equations for N(X) gives 
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Similarly, the DF could be evaluated at 2
-n

 multiples of X (n=1,2,3…) which would give 
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Solving the above equations for N(X) gives 
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The major drawback of these formulations is that when the DF is inversely proportional to X, 

for instance due to Coulomb friction, the summation gives alternating series and a correct 

result cannot be obtained. However for damping the imaginary part of the DF is to be inverted 

and this is achieved analytically as explained above.  

 

Consequently, in this study it is proposed to use equation (4.33) or (4.35) for the real part of 

DF, which is due to stiffness type of nonlinearity, and P(x) of equation (4.19) for the imaginary 

part of DF, which is due to damping type of nonlinearity. In order to overcome the problems 

encountered due to obtaining noisy DFs because of experimental noise, a common smoothing 

function is applied to DF before inversion.  

 

4.2.2. Nonlinearity Coefficient Identification 

 

There are numerous ways to calculate parametric values for DF and RF functions. 

Optimization and black box methods such as neural networks provide promising results if they 

are well guided. More direct approaches like graphical methods require the engineer to be 

experienced.  

 

In this study the parametric values of the nonlinearity are obtained from RF plots by curve 

fitting. It is also possible to obtain the coefficients from DF when the type of nonlinearity is 

known. However, for most of the nonlinearity types, DF representation is far more complicated 

than the corresponding RF function. It should be noted that when the RF representation of 

nonlinearity is already obtained, most of the time it is of little importance what the coefficients 

of RF function are. All the required information about nonlinear element is stored in the RF 

function itself which can be further employed in dynamic analysis for different inputs. 

Determining RF function, rather than DF may be more important when there is more than one 

type of nonlinearity at the same location, in which case it will be very difficult if not 

impossible to make parametric identification for each nonlinearity by using DF. 

 

4.3. Accuracy of Approximate DF Inversion 

 

In order to demonstrate the accuracy of the approximate DF inversion method for some well-

known structural nonlinearities, the following three numerical cases are given. 

 

4.3.1. Cubic Stiffness 

 

DF of the cubic stiffness expressed as Fkʹ=80000x
3
 N is plotted in Figure 4-5a. The restoring 

force obtained with approximate inversion for this case is compared with the exact force-

deflection curve in Figure 4-5b. It can be seen from the comparison of two curves in Figure 

4-5b that a very close match is obtained. This is an expected result because the DFI method is 

based on continuous and polynomial type DFs. 

 

4.3.2. Coulomb Friction 

 

DF of the coulomb friction expressed as Fcʹ=100sgn(ẋ) N is given in Figure 4-6a. The restoring 

force obtained with approximate inversion for this case is compared with the exact force-

deflection curve in Figure 4-6b. It can be seen from the comparison of two curves in Figure 

4-6b that a very close match is obtained. 

 

4.3.3. Piecewise Stiffness 

 

DF of the piecewise stiffness expressed as Fkʹ=3x x<0.05 N and Fkʹ=7x-0.2 x≥0.05 N is plotted 

in Figure 4-7a. The restoring force obtained with approximate inversion for this case is 

compared with the exact force-deflection curve in Figure 4-7b. It can be seen from the 

comparison of two curves in Figure 4-7b that the match is not as good as the previous 

nonlinearities due to the fact that piecewise stiffness is not continuous. 
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a)                                                                           b) 

 

Figure 4-5. Cubic Stiffness, a)DF, b)RF plots 

 

 

 

 
a)                                                                            b) 

 

Figure 4-6. Coulomb Friction, a)DF, b)RF plots 

 

 

 

 
a)                                                                   b) 

 

Figure 4-7. Piecewise Stiffness, a)DF, b)RF plots 
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4.3.4. Backlash 

 

DF of the backlash expressed as Fbʹ=0 x<0.05 N and Fbʹ=2x-0.1 x≥0.05 N is plotted in Figure 

4-8a. The restoring force obtained with approximate inversion for this case is compared with 

the exact force-deflection curve in Figure 4-8b. It can be seen from the comparison of two 

curves in Figure 4-8b that the match is not as good as the first two nonlinearities, again due to 

the fact that backlash is not continuous. 

 

 

 

 
a)                                                                            b) 

 

Figure 4-8. Backlash, a)DF, b)RF plots 

 

 

 

4.4. Case Studies 

 

4.4.1. Case Study 1: Nonlinear Elements at Different Locations 

 

The DFI method proposed in this study is applied to a 4 DOF discrete system. In this first case 

study a nonlinear elastic element represented by k1ʹ (a linear stiffness of 100 N/m with a 

backlash of 0.005 m) between ground and coordinate 1, and a nonlinear hardening cubic 

stiffness represented by k4ʹ (= 10
6 

x
2 

N/m) between coordinates 3 and 4, as shown in Figure 

4-9, are considered. The numerical values of the linear system elements are given as follows:   

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4

500 N/m

5 Ns/m

1 ,  2 ,  3 ,  5 

k k k k k

c c c c c

m kg m kg m kg m kg

    

    

   
 

 

 

 

 
 

Figure 4-9. Four DOFs discrete system with two nonlinear elements at different locations 
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The time response of the system to sinusoidal forcing is calculated with MATLAB by using the 

ordinary differential equation solver ODE45. The simulation was run for 32 seconds at each 

frequency to ensure that transients die out. The frequency range of the harmonic excitation that 

is used during the simulations is from 0.0625 to 16 Hz with frequency increments of 0.0625 

Hz. The linear FRFs are obtained by applying a very low sinusoidal forcing (0.1N) from first 

coordinate. The nonlinear FRFs are obtained by applying high sinusoidal forcing (10N) to the 

system from the first coordinate. Before using the calculated FRFs as simulated experimental 

data, they are polluted by using the “normrnd” function of MATLAB with zero mean, normal 

distribution and standard deviation of 5% of the maximum amplitude of the FRF value. A 

sample comparison for the nonlinear and linear FRFs (α11) is given in Figure 4-10. 

 

 

 

 
 

Figure 4-10. Driving point linear (for F=0.1N) and nonlinear (for F=10N) FRF plots 

 

 

 

It is assumed in this case study that only the first columns of the linear and nonlinear 

receptance matrices are measured. Then, firstly the missing elements of the linear FRF matrix 

are calculated by using FRF synthesis, and the NLI values are calculated and shown in Figure 

4-11a. From Figure 4-11a it can easily be concluded that there are nonlinear elements between 

ground and coordinate 1, and between coordinates 3 and 4. Furthermore, since the nonlinearity 

can be stiffness and/or damping type, it is possible to make this distinction at this stage by 

investigating the real and imaginary parts of the DF. The real and imaginary parts of the DFs 

can be summed over the frequency range and compared with each other. Figure 4-11b reveals 

that system has stiffness type of nonlinearity since DFs has much higher real parts compared to 

imaginary parts. 

 

Using the improved DF method, the DFs representing these nonlinear elements are calculated 

and are plotted in Figure 4-12a as functions of response amplitudes. From the general pattern 

of the curves it may be possible to identify the types of nonlinearity. Fitting a curve to the 

calculated values makes the parametric identification easier. Although identification of 

backlash may not be so easy from DFF, it is quite straightforward to identify the type of cubic 

stiffness from Figure 4-12b.  
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a)                                                                         b) 

 

Figure 4-11. a) Nonlinearity index chart, b) Sums of real and imaginary parts of DF values at 

high forcing excitation 

 

 

 

 
a)                                                                         b) 

 

Figure 4-12. Calculated, fitted and exact DFs. a) For nonlinear element between coordinate 1 

and ground, b) For nonlinear element between coordinates 3 and 4 

 

 

 

Alternatively, the types of nonlinear elements can be identified more easily if the DFI method 

is used. The inversion of DFs are obtained for this case study by using the formulation given in 

section 4.2.1., and RF plots obtained are presented in Figure 4-13. Figure 4-13a gives the RF 

plot for the nonlinearity between the first coordinate and ground, whereas Figure 4-13b shows 

the RF plot for the nonlinearity between coordinates 3 and 4. By first fitting curves to the 

calculated RF plots, parametric identification can easily be made.  
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a)                                                                      b) 

 

Figure 4-13. Calculated, exact and fitted RF plots. a) For nonlinear element between coordinate 

1 and ground, b) For nonlinear element between coordinates 3 and 4 

 

 

 

The parametric identification results with the DFI and improved DF methods for the nonlinear 

elements are tabulated in Table 4-1. As it can be seen from the table, the identified values do 

not deviate from the actual values more than 4% for the DFI method and %5 for improved DF 

method. However, it should be noted that the improved DF method cannot identify the 

backlash value as the fitted DF is not defined for displacement values smaller than 0.005 m. 

Furthermore, the DF forms must be known to perform improved DF method for parametric 

identification. The nonlinear FRFs are regenerated by using the method given in section 3.3. 

with the identified nonlinearities from the DFI and improved DF methods (Figure 4-14). As the 

errors in parametric identification are very small for all methods, a good match is obtained. 

 

 

 

Table 4-1. Parametric identification results for the nonlinear elements 

 

 Actual Identified by DFI method Identified by improved DF 

method 

 Value Error % Value Error % 

Backlash (m) 0.0050 0.0052 4 - - 

k1ʹ (Linear stiffness 

part) N/m 
100 99 -1 99 -1 

k4ʹ (cubic stiffness 

constant) N/m
3
 

10
6
 1.03 10

6
 3 1.05 10

6
 5 

 

 

 

Although the DFI method is based on polynomial type DFs, it is shown in this case study that 

they work, at an acceptable level, for discontinuous DFs such as backlash as well. Furthermore, 

with this case study it is illustrated that accurate identification can be made even if only the 

first harmonic of the nonlinear internal forces are used. 
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Figure 4-14. Nonlinear driving point FRFs, (blue: exact values; green: calculated by the DFI 

method; dashed red: calculated by improved DF method) 

 

 

 

4.4.2. Case Study 2: Two Different Nonlinear Elements at the Same Location 

 

In the second case study, the nonlinear elastic element represented by k1ʹ (a linear stiffness of 

100 N/m with a backlash of 0.005 m) is again taken between the ground and coordinate 1, and 

also a nonlinear hardening cubic stiffness represented by k1ʺ (= 10
6
x

2 
N/m) is added between 

ground and coordinate 1, as shown in Figure 4-15, are considered. 

 

 

 

 
 

Figure 4-15. Four DOFs discrete system with two nonlinear elements at the same coordinate 

 

 

 

The numerical values of the linear system elements and the FRF calculation procedure are the 

same as in case study 1. A sample comparison for the linear and nonlinear FRFs (α11) is given 

in Figure 4-16. Linear and nonlinear FRFs are found for harmonic forcing with amplitudes of 

0.1N and 10N, respectively. 

 

 

 



57 

 

 
 

Figure 4-16. Driving point linear (for F=0.1N) and nonlinear (for F=10N) FRF plots 

 

 

 

The calculated NLI values are shown in Figure 4-17a. From Figure 4-17a it can easily be 

concluded that there are nonlinear elements between ground and coordinate 1. Furthermore, 

Figure 4-17b reveals that system has stiffness type of nonlinearity since DF has much higher 

real part compared to its imaginary part. 

 

 

 

 
a)                                                                      b) 

 

Figure 4-17. a) Nonlinearity index chart, b) Sums of real and imaginary parts of DF values at 

high forcing excitation 

 

 

 

The DFs representing these nonlinear elements are calculated at different response amplitudes 

and are plotted in Figure 4-18. This time it is not possible to identify the types of nonlinearity 
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from the general pattern of the curve. Thus, improved DF method is not applicable to this case 

study. 

 

The inversion of DFs are obtained for this case study by using the DFI method, and RF plots 

obtained are presented in Figure 4-19. By first fitting a curve to the calculated RF plot, 

parametric identification can easily be made.  

 

As there are two stiffness type nonlinearities at the same location, parametric identification is 

not straightforward. The RF plot again reveals the backlash value as 0.0052 m. Then, the RF 

curve is curve fitted to polynomial functions where a linear and cubic function gives the best 

fit. The parametric identification results for the nonlinear elements are tabulated in Table 4-2. 

As can be seen from the table, the identified values do not deviate from the actual values more 

than 5%.  

 

 

 

Table 4-2.  Parametric identification results for the nonlinear elements 

 

 Actual Identified by the 

DFI method 

Error % 

Backlash (m) 0.0050 0.0052 4 

k1ʹ (Linear stiffness part) 

N/m 
100 95 -5 

k1ʺ (cubic stiffness 

constant) N/m
3
 

10
6
 0.99 10

6
 -1 

 

 

 

 
 

Figure 4-18. Calculated and exact DFs for nonlinear element between coordinate 1 and ground 
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Figure 4-19. Calculated, exact and fitted RF plots for nonlinear element between coordinate 1 

and ground 

 

 

 

The nonlinear FRFs are regenerated by using the method given in section 3.3. with the 

identified nonlinearities from the DFI method (Figure 4-20). As the errors in parametric 

identification are very small for the DFI method, a good match is obtained. The power of this 

method can be seen in this case study where two or more nonlinear elements can be 

successfully identified. 

 

 

 

 
 

Figure 4-20. Nonlinear driving point FRFs, (blue: exact values; green: calculated by the DFI 

method) 
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4.4.3. Case Study 3: Two Different Nonlinear Elements at the Same Location-Finite 

Element Model  

 

In the third case study, a cantilever beam with two nonlinear elements is considered. In order to 

demonstrate the application of the DFI method to systems with several DOFs, the beam is 

modeled by using finite element formulation and the nonlinear responses calculated at 8 

coordinates are used in this simulated experimental case study. The beam elements are chosen 

as BEAM188 [81] with 6 DOF at each node (x, y, z directions and rotations around these 

axes). The beam has a square cross section (8mm x 8mm) and a length of 0.42 m. The beam is 

produced from steel where the material properties are taken as 210 GPa for the Modulus of 

Elasticity and 7800 kg/m
3
 for the density. The harmonic forcing is applied from the tip of the 

beam in the y direction. Two nonlinear elements are assumed at the free end of the beam in y 

direction. The first element is a linear stiffness of 1000 N/m with a backlash of 0.00025 m, 

(k1ʹ). The second element is a nonlinear hardening cubic stiffness represented by k1ʺ (= 6 10
7
x

2 

N/m) (Figure 4-21). 

 

 

 

 
 

Figure 4-21. 360 DOFs discrete system with two nonlinear elements at the same coordinate 

 

 

 

The stiffness and mass matrices are taken from the 360 DOF finite element model. The 

damping matrix is generated by assuming Rayleigh damping model [81] with negligible mass 

damping. The coefficients required to calculate the Rayleigh damping matrix are not generally 

known directly, but are calculated from modal damping ratio which is taken 0.03 for this case 

study. The nonlinear responses at each DOF are calculated by using the nonlinear analysis 

method given in section 3.3. The responses at 8 points are calculated in y direction. The 

locations of these points are shown in Figure 4-22. Then these calculated responses are 

polluted and used as measured nonlinear responses. The noise is added to the FRFs by 

multiplying a normal distribution noise, with unity mean and 0.01 standard deviation, with the 

linear and nonlinear FRFs. A sample comparison for the linear and nonlinear FRFs is given in 

Figure 4-23 for α11. Linear and nonlinear FRFs are found for harmonic forcing with amplitudes 

of 0.01N and 1N, respectively. 

 

It is assumed in this case study that only the first columns of the linear and nonlinear 

receptance matrices are measured. Then, firstly the missing elements of the linear FRF matrix 

are calculated by using FRF synthesis method. The calculated NLI values are shown in Figure 

4-24a. From Figure 4-24a it can easily be concluded that there is a nonlinear element between 

ground and coordinate 1. Furthermore, Figure 4-24b reveals that system has stiffness type of 

nonlinearity since DF has much higher real part compared to its imaginary part. 

 

k1ʹ 
k1ʹʹ 
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Figure 4-22. 8 equidistant measurement nodes 

 

 

 

 
 

Figure 4-23. Driving point linear (for F=0.01N) and nonlinear (for F=1N) FRF plots 

 

 

 

 
a)                                                                      b) 

 

Figure 4-24. a) Nonlinearity index chart, b) Sums of real and imaginary parts of DF values at 

high forcing excitation 
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The DF representing these nonlinear elements is calculated at different response amplitudes 

and is plotted in Figure 4-25. This time it is not possible to identify the type of nonlinearity 

from the general pattern of the curve. The reason is not having a single nonlinear element but 

two nonlinear elements with completely different behavior. Obviously, improved DF method 

will not be helpful in identifying the type of the nonlinearity. 

 

The inversion of DF is obtained for this case study by using the DFI method, and RF plot 

obtained is presented in Figure 4-26. By first fitting a curve to the calculated RF plot, 

parametric identification can easily be made. In order to show the accuracy of the method in 

predicting nonlinear RF, the exact RF curve is also shown in the same figure.  

 

As there are two stiffness type nonlinearities at the same location, parametric identification is 

not straightforward. The RF plot reveals the backlash value as 0.0002511 m. Then, the RF 

values are curve fitted to polynomial functions in order to obtain the coefficients of the 

nonlinear elements. The least error is obtained for a linear and cubic function. The parametric 

identification results for the nonlinear elements are tabulated in Table 4-3. As can be seen from 

the table, the identification is very successful and the identified values do not deviate from the 

actual values more than 1.7%.  

 

 

 

Table 4-3.  Parametric identification results for the nonlinear elements 

 

 Actual Identified by the 

DFI method 

Error % 

Backlash (m) 0.00025 0.0002511 0.4 

k1ʹ (Linear stiffness part) 

N/m 
1000 990 -1 

k1ʺ (cubic stiffness 

constant) N/m
3
 

6 10
7
 6.1 10

7
 1.7 

 

 

 

 
 

Figure 4-25. Calculated and exact DFs for nonlinear element between coordinate 1 and ground 
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Figure 4-26. Calculated, exact and fitted RF plots for nonlinear element between coordinate 1 

and ground 

 

 

 

The nonlinear FRFs are regenerated by using the method given in section 3.3. with the 

identified nonlinearities from the DFI method (Figure 4-27) for a forcing level of 1N. As the 

errors in parametric identification are very small for the DFI method, a good match is obtained. 

The power of this method can be seen in this case study where two or more nonlinear elements 

can be successfully identified. 

 

 

 

 
 

Figure 4-27. Nonlinear driving point FRFs at 1N forcing level, (blue: exact values; green: 

calculated by the DFI method) 
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4.4.4. Case Study 4: Stiffness and Friction Nonlinear Elements at Different Locations 

 

In the last case study, a nonlinear coulomb friction element represented by c2ʹ (= 0.001 N/ms) 

is taken between the coordinate 1 and coordinate 2, and a nonlinear hardening cubic stiffness 

represented by k4ʹ (= 0.8 10
6 
x

2 
N/m) is added between coordinate 3 and coordinate 4, as shown 

in Figure 4-28, are considered. 

 

 

 

 
 

Figure 4-28. Four DOFs discrete system with two nonlinear elements at different coordinates 

 

 

 

The numerical values of the linear system elements and the FRF calculation procedure are the 

same as in case study 1. Since the system has both coulomb friction and nonlinear hardening 

spring elements, the linear FRFs cannot be obtained by applying low forcing. The coulomb 

friction element is dominant at low forcing and the nonlinear hardening spring dominates at 

high forcing. Therefore the linear FRFs cannot be obtained by applying low forcing to the 

system. Thus, the first column of the linear FRF matrix is obtained by matrix inversion. A 

sample comparison for the linear and nonlinear FRFs (α11) is given in Figure 4-29. Nonlinear 

FRFs are found for harmonic forcing with amplitudes of 0.1N (low forcing) and 50N (high 

forcing), respectively. 

 

 

 

 
 

Figure 4-29. Driving point linear, low forcing (for F=0.1N) and high forcing (for F=50N) FRF 

plots 
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The calculated NLI values are shown in Figure 4-30a. From Figure 4-30a it can easily be 

concluded that there are nonlinear elements between coordinate 1 - coordinate 2 and coordinate 

3 - coordinate 4. Furthermore, Figure 4-30b reveals that the nonlinear element between 

coordinate 3 - coordinate 4 is stiffness type of nonlinearity since DF has much higher real part 

compared to its imaginary part and the nonlinear element between coordinate 1 - coordinate 2 

is damping type of nonlinearity since DF has higher imaginary part compared to its real part. 

 

Using the improved DF method, the DFs representing these nonlinear elements are calculated 

and are plotted in Figure 4-31a as functions of response amplitudes. From the general pattern 

of the curves it may be possible to identify the types of nonlinearity. Fitting a curve to the 

calculated values makes the parametric identification easier.  

 

 

 

 
a) b) 

 

Figure 4-30. a) Nonlinearity index chart, b) Sums of real and imaginary parts of DF values  

 

 

 

 
a) b) 

 

Figure 4-31. Calculated, fitted and exact DFs. a) For nonlinear element between coordinate 3 

and coordinate 4, b) For nonlinear element between coordinates 1 and 2 

 

 

 

Alternatively, the types of nonlinear elements can be identified more easily if the DFI method 

is used. The inversion of DFs is obtained in this case study by using the DFI method, and RF 

plots obtained are presented in Figure 4-32. Figure 4-32a gives the RF plot for the nonlinearity 

between the third coordinate and fourth coordinate, whereas Figure 4-32b shows the RF plot 
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for the nonlinearity between coordinates 1 and 2. By first fitting curves to the calculated RF 

plots, parametric identification can easily be made.  

 

 

 

 
a)                                                                           b) 

 

Figure 4-32. Calculated, exact and fitted RF plots. a) For nonlinear element between coordinate 

3 and 4, b) For nonlinear element between coordinates 1 and 2 

 

 

 

The parametric identification results with the DFI and improved DF methods for the nonlinear 

elements are tabulated in Table 4-4. As it can be seen from the table, the identified values do 

not deviate from the actual values more than 6% in the DFI and improved DF methods. 

However, the DF forms must be known to perform improved DF method for parametric 

identification. The nonlinear FRFs are regenerated for high forcing level by using the method 

given in section 3.3. with the identified nonlinearities from the DFI and improved DF methods 

(Figure 4-33). As the errors in parametric identification are very small for all methods, a good 

match is obtained. 

 

 

 

Table 4-4. Parametric identification results for the nonlinear elements 

 

 Actual Identified by the DFI 

method 

Identified by the 

improved DF method 

 Value Error % Value Error % 

c2ʹ (coulomb 

friction constant) 

Ns/m 

0.00100 0.00098 -2 0.00098 -2 

k4ʹ (cubic stiffness 

constant) N/m
3
 

0.8 10
6
 0.85 10

6
 6 0.85 10

6
 6 

 

 

 

The last case study was presented to show the weak point of the improved DF method. The 

method relies on the assumption that somehow the linear FRFs can be obtained. If this is not 

possible, as it is in this case study due to coulomb friction, then the dynamic stiffness matrix 

for the linear part of the system has to be theoretically calculated to find the linear FRFs. 
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Figure 4-33. Nonlinear driving point FRFs for high forcing level, (blue: exact values; green: 

calculated by the DFI method; dashed red: calculated by the improved DF method) 
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CHAPTER 5 

 

 

5. IDENTIFICATION OF RESTORING FORCE SURFACES IN NONLINEAR MDOF 

SYSTEMS FROM FRF DATA USING NONLINEARITY MATRIX 

 

 

 

The approach proposed in this chapter aims to perform the nonlinear identification directly 

from a series of measured nonlinear FRFs. The proposed method uses only the nonlinear FRFs, 

thus, it also works when friction is present in the structure. It is shown that Restoring Force 

Surfaces (RFS) can be identified more accurately by employing this approach. 

 

5.1. Nonlinearity Matrix Evaluation 

 

In general applications, the linear model of the system can be obtained by using FEM, and only 

for the identification of nonlinearity experiments can be made.  Alternatively,  the  FRF  of  the  

underlying  linear  system  can  be  obtained from FRF measurements in the system at very low 

forcing levels, where the nonlinear internal forces will be negligible. However, when there is 

only friction type of nonlinearity, FRFs measured at low amplitude of vibration will not 

represent FRFs of the underlying system; on the contrary, the FRFs measured at high response 

levels will represent FRFs of the linear counterpart. Comparison of FRFs measured at different 

response levels will reveal whether there is only friction type  of  nonlinearity,  so  that  FRFs  

measured  at  high  response  level  can  be  taken  as  the  FRFs  for  the  underlying linear 

system. Yet, if the system has multiple nonlinearities including friction type of nonlinearity, it 

may be difficult to measure the FRFs of the underlying linear system experimentally, and using 

finite element model of the system seems to be the only alternative to obtain linear FRFs of the 

linear counterpart. 

 

In an attempt to obtain the nonlinearity matrix from experimental measurements, the following 

methodology is proposed; 

 

Let [Δ] represent the nonlinearity matrix at forcing F1.Then 

 

 
1 1

1 1
NL 

        
                                                                                                           (5.1) 

 

Changing the forcing to another level F2, equation (5.1) becomes; 

 

 
1 1

2 2
NL 

        
                                                                                                           (5.2) 

 

Subtracting equation (5.2) from equation (5.1) yields 

 
1 1

2 12 1
NL NL 

 

                                                                                                              (5.3) 

 

Equation (5.3) is now independent of the linear FRF matrix. The nonlinearity matrices will be 

functions of the displacement only if a displacement dependent nonlinearity is assumed. 

Furthermore, the nonlinearity matrix for first level of forcing and second level of forcing will 

be of the same functional form. The only difference will be the displacement values used. 

Therefore, if a polynomial form is assumed for elements of the nonlinearity matrix and two 

nonlinear FRF matrices are measured from experiments, the coefficients for the function that 

describes the nonlinearity can be achieved. 

( )
1

iX c Xi
i








                                                                                                                      

(5.4)
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Equation (5.3) requires the complete nonlinear FRF matrix. However, as the nonlinear 

elements are usually at connections, measurement is required only at before and after the 

connection which yields a 2x2 matrix for each DOF. If a coordinate has more DOFs, then 

every DOF at that coordinate will have a 2x2 matrix. The only difficulty in application of this 

method to MDOF systems is that when exciting the coordinates before and after the 

connection, the displacement of the nonlinear element has to be same. Thus, the forcing levels 

have to be chosen appropriately. In the next chapter, the application of the proposed Direct 

Nonlinearity by Describing Functions (DDF) method will be presented. 

 

5.2. Application of the DDF Method 

 

The first step to be performed is to test the nonlinear structure at two excitation levels. 

Equation (5.3) requires having the inverses of the nonlinear FRF matrices which is sensitive to 

noise. In order to minimize this effect, the excitation levels can be chosen high enough or 

averaging can be performed. However, if the forcing levels are high then friction type 

nonlinearities lose their effect. In order to identify this effect, a low forcing test is also 

performed. Moreover, [Δ2] - [Δ1] from equation (5.3) will have complex elements, whose real 

part represents the stiffness nonlinearity and the imaginary part represents the damping 

nonlinearity.  

 

The application of DDF will be presented on a SDOF system for the sake of clarity. Extension 

of this application to MDOF systems is straightforward.  

 

For a SDOF system, equation (5.3) reduces to; 

 
1 1

2 1
2 1
NL NL 

                                                                                                                  (5.5) 

 

In order to solve equation (5.5) we need as many equations as the order of the polynomial. 

These equations can be generated from the nonlinear FRF values, which have distinct 

displacement values for each frequency. In other words, if we assume a polynomial up to the 

third order for the nonlinearity, we will need at least three equations.  

 
2 3 2 3

1 2 2 2 3 2 1 1 2 1 3 1

1 1

2 1

( ) ( )
NL NL

c X c X c X c X c X c X
 

     

                                                  (5.6) 

 

1

2 2 3 3

2 1 2 1 2 1 2

3

1 1

2 1
NL NL

c

X X X X X X c

c
 



 
        
                                                                  (5.7) 

 
2 2 3 3

2 1 1 1 2 1 1 1 2 1 1 1 1

2 2 3 3

2 2 1 2 2 2 1 2 2 2 1 2 2

2 2 3 3

2 3 1 3 2 3 1 3 2 3 1 3 3

1 1

( ) ( )1 12 1

1 1

( ) ( )2 22 1

1

2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

NL NL

NL NL

NL

X X X X X X c

X X X X X X c

X X X X X X c
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

     

     

     





     
   

      
        

1

( ) ( )3 31
NL  

 
 
 
 
 
 
 
 
 

 
 
 

                                  (5.8) 

 

The FRF values at each frequency give us one equation. Most of the time we will have more 

FRF values than that is required to solve the coefficients. We will use this property for our 

benefit to have a better fit of coefficients for the whole frequency bandwidth. Thus if we have 

“n” frequencies equation (5.8) can be expanded as; 
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2 2 3 3
2 1 1 1 2 1 1 1 2 1 1 1

2 2 3 3
2 2 1 2 12 2 1 2 2 2 1 2

2 2 3 3
2 3 1 3 22 3 1 3 2 3 1 3

3

2 2 3 3
2 1 2 1 2 1

( ) ( ) ( ) ( ) ( ) ( )
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

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 
 

                                 (5.9) 

 

Equation (5.9) can be solved by pseudo inversion which will give us a least square fit for the 

polynomial coefficients for the whole frequency bandwidth. After successful identification of 

high forcing effective nonlinearities we can evaluate the linear FRF from equation (5.1). After 

evaluating the linear FRF, equation (5.1) is solved with the low forcing nonlinear FRF by 

which the nonlinearity DF values for low forcing nonlinearities such as friction can be 

obtained. 

 

In the previous chapter the DFI method was introduced. The DFI method can be easily applied 

after the DDF method. The following case studies and experimental studies will show the 

effectiveness of this method. 

 

5.3. Case Studies 

 

5.3.1. Case Study 1: Backlash and Coulomb Friction Nonlinear Elements at the Same 

Location 

 

The DDF is applied to a SDOF discrete system with a nonlinear elastic element represented by 

k1ʹ (a linear stiffness of 1000 N/m with a backlash of 0.005 m) and a coulomb friction element 

c1ʹ (= 0.001 sgn(ẋ) N), as shown in Figure 5-1. The numerical values of the linear system 

elements are given as follows:   

 

1

1

1

500 N/m

5 Ns/m

1 kg

k

c

m







                                                     

 

 

 

 
 

Figure 5-1. SDOF discrete system with two nonlinear elements 
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The time response of the system to sinusoidal forcing is calculated with MATLAB by using the 

ordinary differential equation solver ODE45. The simulation was run for 32 seconds at each 

frequency to ensure that transients die out. The frequency range of the harmonic excitation that 

is used during the simulations is from 0.0625 to 16 Hz with frequency increments of 0.0625 

Hz. Three forcing levels (0.01N, 3N, 20N) are used, in turn, in the simulations.  Before using 

the calculated FRFs as simulated experimental data, they are polluted by using the “normrnd” 

function of MATLAB with zero mean, normal distribution and standard deviation of 5% of the 

maximum amplitude of the FRF value. A sample comparison for the nonlinear and linear FRFs 

(α11) is given in Figure 5-2. 

 

 

 

 
 

Figure 5-2. Driving point FRFs; blue: 0.01N, green: 3N, red: 20N 

 

 

 

Using the DDF method, the DFs representing these nonlinear elements are calculated from 

simulated experimental results and are plotted in Figure 5-3. Figure 5-3a is plotted using the 

real part of the DF and Figure 5-3b is plotted using the imaginary part of the DF. 

 

 

  

 
a)                                                                 b)  

 

Figure 5-3. Calculated, fitted and exact DFs, a) stiffness type (backlash) nonlinear element, b) 

damping type (friction) nonlinear element 
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Alternatively, the types of nonlinear elements can be identified more easily if the DFI method 

proposed in the previous chapter is used. The calculated RF plots are presented in Figure 5-4. 

By first fitting curves to the calculated RF plots, parametric identification can easily be made.  

 

 

 

 
a)                                                                b) 

 

Figure 5-4. Calculated, exact and fitted RFs, a) stiffness type (backlash) nonlinear element, b) 

damping type (friction) nonlinear element 

 

 

 

The parametric identification results with the DFI method and using DF fitted curves as 

suggested in the DF method for the nonlinear elements are tabulated in Table 5-1. As it can be 

seen from the table, the identified values do not deviate from the actual values more than 8% 

for the DFI method and %10 for the DF method. However, the DF forms must be known to 

perform the DF method for parametric identification. The nonlinear FRFs are regenerated for 

20N forcing level by using the method given in section 3.3. with the identified nonlinearities 

from the DFI and DF methods (Figure 5-5). As the DFI method is slightly better in 

identification, the match of the DFI method is better than DF method. 

 

 

 

Table 5-1. Parametric identification results for the nonlinear elements 

 

 Actual Identified by the DFI 

method 

Identified by the DF 

method 

 Value Error % Value Error % 

Backlash (m) 0.0050 0.0050 0 - - 

k1ʹ (Linear stiffness 

part) N/m 
1000 960 -4 940 -6 

c1ʹ (coulomb 

friction constant) 

Ns/m 

0.0010 0.00092 -8 0.0009 -10 
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Figure 5-5. Nonlinear driving point FRFs for high forcing level, (blue: exact values; green: 

calculated using the nonlinear parameters from the DFI method; dashed red: calculated using 

the nonlinear parameters from the DF method) 

 

 

 

5.3.2. Case Study 2: Cubic Stiffness and Coulomb Friction Nonlinear Elements at the 

Same Location 

 

The DDF method is again applied to the same SDOF discrete system with a nonlinear elastic 

element represented by k1ʹ (a nonlinear hardening cubic spring = 10
6
 x

2 
N/m) and a coulomb 

friction element c1ʹ (= 0.001 sgn(ẋ) N), as shown in Figure 5-1. The nonlinear FRFs (α11) are 

given in Figure 5-6 for three different forcing levels. Following the DDF method we obtain the 

DFs representing these nonlinear elements as given in Figure 5-7.  

 

 

 

 
 

Figure 5-6. Driving point FRFs; blue: 0.01N, green: 3N, red: 20N 
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a)                                                                 b) 

 

Figure 5-7. Calculated, fitted and exact DFs, a) stiffness type (cubic stiffness) nonlinear 

element, b) damping type (friction) nonlinear element 

 

 

 

Similarly, the types of nonlinear elements can be identified more easily if the DFI method is 

used. These plots are given in Figure 5-8.  

 

 

 

 
a)                                                           b) 

 

Figure 5-8. Calculated, exact and fitted RF, a) stiffness type (cubic stiffness) nonlinear 

element, b) damping type (friction) nonlinear element 

 

 

 

The parametric identification results with the DFI and using DF fitted curves as suggested in 

the DF method for the nonlinear elements are tabulated in Table 5-2. As it can be seen from the 

table, the identified values do not deviate from the actual values more than 6% for the DFI and 

DF methods. The nonlinear FRFs are regenerated for 3N forcing level by using the method 

given in section 3.3. with the identified nonlinearities from the DFI and DF methods (Figure 

5-9). As the errors in parametric identification are very small for all methods, a good match is 

obtained for both methods. 
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Table 5-2. Parametric identification results for the nonlinear elements 

 

 Actual Identified by the DFI 

method 

Identified by the DF 

method 

 Value Error % Value Error % 

k1ʹ (cubic stiffness 

constant) N/ m
3
 

10
6
 1.06 10

6
 -6 1.06 10

6
 -6 

c1ʹ (coulomb 

friction constant) 

Ns/m 

0.0010 0.00098 -2 0.001 0 

 

 

 

 
 

Figure 5-9. Nonlinear driving point FRFs for high forcing level, (blue: exact values; green: 

using the nonlinear parameters from the DFI method; dashed red: using the nonlinear 

parameters from the DF method) 

 

 

 

5.3.3. Case Study3: Cubic Stiffness and Backlash Nonlinear Elements at the Same 

Location 

 

The DDF method is applied to a 4 DOF discrete system with a nonlinear elastic element 

represented by k4ʹ (a linear stiffness of 100 N/m with a backlash of 0.005 m) and a nonlinear 

hardening cubic spring k4ʹʹ (= 10
6
 x

2 
N/m) between coordinates 3 and 4, as shown in Figure 

5-10. 

 

 

 

 
 

Figure 5-10. Four DOFs discrete system with two nonlinear elements at the same location 
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The numerical values of the linear system elements are given as follows:   

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4

500 N/m

5 Ns/m

0.5 ,  1 ,  1.5 ,  3 

k k k k k

c c c c c

m kg m kg m kg m kg

    

    

   

  

               
A sample comparison for the nonlinear and linear FRFs (α33) is given in Figure 5-11. 

 

In this case study, first the low (10N) and high forcing (20N) levels are applied from 3
rd

 

coordinate, and then from 4
th

 coordinate. Employing the DDF method and by using FRFs of 

the 3
rd

 and 4
th

 coordinates only (α33, α43, α44, α34), the DFs representing these nonlinear 

elements are obtained as given in Figure 5-12. This time it is not possible to identify the types 

of nonlinearity from the general pattern of the curve. Thus, the DF method is not applicable to 

this case study. As it is the case in the previous examples, the total restoring force of nonlinear 

elements can be identified more easily when the DFI method is used. 

 

As there are two stiffness type nonlinearities at the same location, parametric identification is 

not straightforward. The RF plot reveals the backlash value as 0.005m. The remaining RF 

curve is simply curve fitted to polynomials and a linear and cubic function gives the best fit. 

The parametric identification results for the nonlinear elements are tabulated in Table 5-3. As it 

can be seen from the table, the identified values do not deviate from the actual values more 

than 10%.  

 

The nonlinear FRFs are regenerated by using the method given in section 3.3. with the 

identified nonlinearities from the DFI method (Figure 5-13). As the errors in parametric 

identification are small for the DFI method, a good match is obtained. The power of this 

method can be seen in this case study where two or more nonlinear elements can be 

successfully identified. 

 

 

 

 
 

Figure 5-11. Nonlinear FRFs; blue: 10N, green: 20N 

 

 

 



78 

 

 
a)                                                            b) 

 

Figure 5-12. a) Calculated and exact DFs, b) calculated, exact and fitted RFs 

 

 

 

Table 5-3.  Parametric identification results for the nonlinear elements 

 

 Actual Identified by the 

DFI method 

Error % 

Backlash (m) 0.005 0.005 0 

k1ʹ (Linear stiffness part) 

N/m 
100 110 10 

k1ʺ (cubic stiffness 

constant) N/m
3
 

10
6
 0.96x10

6
 -4 

 

 

 

 
 

Figure 5-13. Nonlinear driving point (α33) FRFs, (blue: exact values; green: calculated by the 

DFI method) 
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The last case study was presented to show the weak point of the DDF method. The method 

requires the nonlinear FRF matrix for MDOF systems which is very difficult and time 

consuming. The nonlinear elements are usually at connections, thus, measurement is required 

only for before and after the connection which yields a 2x2 matrix. Still this may be difficult to 

achieve. Therefore, if there is negligible amount of friction in the system, the improved DF and 

the DFI methods should be used. 
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CHAPTER 6 

 

 

6. EXPERIMENTAL WORK AND VERIFICATION OF THE NONLINEAR 

IDENTIFICATION METHODS 

 

 

 

6.1. Experimental Study 1: Application of the DF and the DFI Methods on a SDOF 

System 

 

For the implementation and validation of the DF and the DFI methods, linear and nonlinear 

modal tests were performed on a nonlinear structure. The test rig similar to the one first used 

by Ferreira [82], and then also by Siller [7] is used in this study (Figure 6-1). Dimensions and 

technical details of the rig manufactured for this study are given in Figure 6-2.  

 

 

 

 
 

Figure 6-1. Test rig used in experimental study 1 

 

 

 

This test rig is preferred for its simplicity in modeling the dynamic system since the structural 

configuration causes hardening stiffness nonlinearity only. The test rig consists of a linear 

cantilever beam with its free end held between two thin identical beams which generate cubic 

spring effect. The cantilever beam and the thin nonlinear beams were manufactured from St37 

steel. The modal test setup configuration with its elements is shown in Figure 6-3.  

 

For linear and nonlinear testing, a shaker (TIRA) was connected to the free end of the 

cantilever beam via a push-rod with a PCB 208C03 force transducer. The vibration responses 

were measured using three miniature PCB 352A24 accelerometers. The frequency resolution 

was 0.25 Hz due to the limitation of the software used with data acquisition system. Cubic 

nonlinearity in the system causes jump in the frequency response around resonance 

frequencies. Ability to observe this phenomenon is closely related to the frequency resolution 

employed in the harmonic vibration tests. Even though it was possible in the experimental 

study to capture the jump in the frequency response, it is believed that better results could have 

been obtained with a higher frequency resolution. The closed loop control was achieved by the 

Dataphysics Vector-1 shaker controller.  
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Figure 6-2. Dimensions of the test rig used in experimental study 1 

 

 

 

 
 

Figure 6-3. Experimental test setup used in experimental study 1 

 

 

 

The linear and nonlinear modal tests are performed according to the work of Arslan et al. [79]. 

In [79], the application of the DF method and a new identification method which used constant 

displacement modal tests was presented. Furthermore, the application of the DF method used 

the smallest constant displacement modal test result as the linear FRF of the structure. 

Therefore for this case study, the modal tests are divided into two groups: constant force 

testing and constant displacement testing. Only the driving point FRFs are measured in these 

tests, which are sufficient to verify the identification methods.  

Computer 

Amplifier Signal Generator 

Data Acquisition 

System 

Force Gauge and 

Accelerometer 
Closed Loop 

Force/Displacement 

Controller 

Input 

Shaker 

420 mm 

12 mm 

8 mm 

13 mm 

1.5 mm 
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The FRF results obtained for the constant force and constant displacement tests are shown in 

Figure 6-4 and Figure 6-5, respectively. 

 

 

 

 
 

Figure 6-4. Constant force driving point FRF curves - experimental results 

 

 

 

 
 

Figure 6-5. Constant displacement driving point FRF curves - experimental results 
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The FRF curve obtained by using constant displacement control with 0.25 mm of vibration 

amplitude is taken as the reference linear FRF since the nonlinear part of the elastic force is 

negligible compared to the linear part for this value of displacement. This is also the minimum 

displacement limit of the setup with the hardware used. 

 

For a single degree of freedom system the nonlinearity matrix reduces to the DF defining the 

nonlinearity,  

 

Δ
NL

NL

α α
ν

α α


                                      (6.1) 

 

The nonlinear coefficient for the hardening cubic stiffness is obtained by a static test. In the 

static test a load cell is used to measure force, and a linear variable differential transformer is 

used to measure displacement for stepped loadings with 5 N increments. The force is applied at 

the point where the cantilever beam is attached to thin beams. The deflection is also measured 

at the same point. The results of this test are presented as a force versus deflection curve in 

Figure 6-6.   

 

 

 

 
 

Figure 6-6. Static force-deflection curve for the cubic stiffness. 

 

 

 

Furthermore, the DF representation of the nonlinearity (ν) can be graphically shown as a 

function of response amplitude, which makes it possible to identify the type of nonlinearity and 

to make parametric identification by using curve fitting. It is important to note that equation 

(6.1) requires the linear FRF. In general applications, the linear model of the system can be 

obtained by using FEM and only for the identification of nonlinearity experiments can be used, 

or alternatively the linear model can also be obtained from modal analysis of the system at very 

low forcing levels, where the nonlinear internal forces will be negligible unless there is 

frictional nonlinearity. In this case study, the linear FRF of the system obtained by using 

constant displacement control with 0.25 mm of vibration amplitude is taken as the linear FRF 

of the system, since the nonlinear part of the elastic force is negligible compared to the linear 

part at this value of displacement.  

 

Then, by using the DF and the DFI methods for nonlinear identification, both DF and RF plots 

are obtained for the nonlinear element between the tip point of the cantilever beam and the 

ground (Figure 6-7and Figure 6-8). The cubic stiffness constants identified by using the DF 

and the DFI methods are 2.667 10
8
 N/m

3
 and 2.656 10

8
 N/m

3
, respectively. The cubic stiffness 
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constant obtained from static test, on the other hand is 2.437 10
8
 N/m

3
. For visual comparison, 

force deflection curves obtained from static test and the DFI methods are compared with the 

force deflection characteristics obtained from the DF method in Figure 6-8. As can be seen, the 

DF and the DFI methods yield very close results. The difference between the identified 

nonlinear stiffness property and the one obtained using static deflection test may be partly due 

to using single harmonic assumption in formulations. 

 

 

 

 
 

Figure 6-7. Measured DF values and the fitted curve  

 

 

 

 
 

Figure 6-8. RF plots of nonlinearity for experimental study 1; blue: calculated by the DFI 

method, green: calculated by the DF method, red: static test result 
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Thus, it can be concluded that the accuracy in parametric identification of nonlinearity by the 

DFI method is comparable to that of the DF method. However, the main advantage of the DFI 

method is that it gives better insight into the type of the nonlinearity. Furthermore, when the 

RF function is obtained by the DFI method, it may be directly used in nonlinear model of the 

system when time domain analysis is to be used. Then, it will be possible to identify the 

restoring force of more than one type of nonlinearity which may co-exist at the same location. 

After identifying nonlinearity in the system, the harmonic response of the nonlinear system as 

well as the nonlinear FRFs can be calculated by using the method given in section 3.3. 

 

The nonlinear FRFs calculated using the nonlinear coefficients from the DF and the DFI 

methods at forcing levels of 0.1 N, 0.5 N and 1 N are compared with experimentally measured 

values in Figure 6-9-Figure 6-11, respectively. As can be seen from the figures, very good 

agreements are obtained between experimental and predicted responses. 

 

 

  

 
 

Figure 6-9. Calculated and measured FRF values at 0.1 N 

 

 

 

 

 

Figure 6-10. Calculated and measured FRF values at 0.5 N 
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Figure 6-11. Calculated and measured FRF values at 1 N 

 

 

 

6.2. Experimental Study 2: Application of the DFI method on a MDOF System 

 

For the implementation and validation of the DFI method on a MDOF system, linear and 

nonlinear modal tests were performed on a nonlinear structure. The test rig manufactured for 

this study, dimensions and technical details are given in Figure 6-12 and Figure 6-13, 

respectively. This test rig is preferred for its simplicity in modeling the dynamic system since 

the structural configuration causes hardening stiffness nonlinearity only. The test rig consists of 

a two linear cantilever beams with their free ends held between two thin identical beams which 

cause cubic stiffness. The cantilever beams and the thin nonlinear beams were manufactured 

from St37 steel. The modal test setup configuration with its elements is shown in Figure 6-14. 

For linear and nonlinear testing, a shaker (PCB) was connected to the free end of the cantilever 

beam via a push-rod with a PCB 208C01 force transducer. The vibration responses were 

measured using three miniature PCB 352C65 accelerometers. The frequency resolution was 0.1 

Hz. Cubic nonlinearity in the system causes jumps in the frequency response around resonance 

frequencies. Ability to observe this phenomenon is closely related to the frequency resolution 

employed in the harmonic vibration tests. The force closed loop control was achieved by the 

SCADAS-III data acquisition system. 

 

 

 

 
 

Figure 6-12. Setup used in the experimental study 2 
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Figure 6-13. Dimensions of experimental study 2 

 

 

 

 
 

Figure 6-14. Test setup of experimental study 2 

 

 

 

The modal tests are performed using harmonic forcing with amplitudes of 0.01N and 0.4N. The 

FRFs obtained for the constant amplitude force tests are shown in Figure 6-15. The FRFs 

obtained with 0.01N amplitude harmonic forcing are taken as linear FRFs of the system. 

 

In this experimental study, only the first columns of the linear (0.01N forcing) and nonlinear 

receptance (0.4N forcing) matrices are measured. Then, firstly the missing elements of the 

linear FRF matrix are calculated by using FRF synthesis method, and the NLI values are 

calculated for each coordinate. The calculated NLI values are shown in Figure 6-16a. From 

Figure 6-16a it can easily be concluded that there are nonlinear elements between coordinate 2 

and 3. Furthermore, Figure 6-16b reveals that system has stiffness type of nonlinearity since 

DF is almost real with a negligible imaginary part. 
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Figure 6-15. Measured constant force driving point FRF curves; green: 0.01N, blue: 0.4N 

 

 

 

 
a)                                                                            b) 

 

Figure 6-16. a) Nonlinearity index chart, b) Sums of real and imaginary parts of DF values at 

high forcing excitation 

 

 

 

Firstly, by using the measured FRFs, the DF representing the nonlinear element is calculated 

by improved DF method at different response amplitudes and is plotted in Figure 6-17a. From 

the general pattern of the curve it may be possible to identify the type of nonlinearity. Fitting a 

curve to the calculated values makes the parametric identification easier. However, when there 

are more than single nonlinearity at the same coordinate this may not be possible. Therefore, 

the inverse of the DF is calculated using the DFI method. The RF plot obtained is presented in 

Figure 6-17b. By first fitting a curve to the calculated RF plot, parametric identification can 

easily be made.  
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a)                                                                            b) 

 

Figure 6-17. a) Calculated DF by improved DF method, b) Calculated RF by the DFI method 

for nonlinear element between coordinate 2 and 3 

 

 

 

The correct assembly of beam setup is very important. Slight misalignments can cause 

unsymmetrical bending which leads to addition of second order (x
2
) nonlinear terms to overall 

stiffness. This has also been observed by Josefsson et al. [27]. In the restoring force plot, firstly 

a pure cubic function is fitted as seen in Figure 6-18 and a cubic coefficient of 7 10
8
 N/m

3
 is 

obtained. 

 

 

 

 
 

Figure 6-18. Fitted cubic curve and RF for nonlinear element between coordinate 2 and 3 

 

 

 

Then a quadratic and cubic function is fitted as shown in Figure 6-19 and a cubic coefficient of 

10 10
8
 N/m

3
 and -2.925 10

5
 N/m

2
 is obtained. 
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Figure 6-19. Fitted quadratic and cubic curve and RF for nonlinear element between coordinate 

2 and 3 

 

 

 

After identifying nonlinearity in the system, the harmonic response of the nonlinear system can 

be calculated by using the iterative solution method given in section 3.3. The driving point 

FRFs calculated at forcing level of 0.4 N are compared with experimentally measured values in 

Figure 6-20. As expected, the combined nonlinear element gives slightly better results. 

 

 

 

 
 

Figure 6-20. Calculated and measured FRF values at 0.4 N 
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6.3. Experimental Study 3: Application of the DDF Method on a SDOF System  

 

The DDF method is also tested on the experimental setup used in experimental study 1. The 

tests carried out in previous study were repeated with better frequency resolution (0.1 Hz) and 

force control. The experimental setup and FRF plots obtained with constant amplitude 

harmonic forces are given in Figure 6-21and Figure 6-22, respectively. 

 

 

 

 
 

Figure 6-21. Setup used in the experimental study 3 

 

 

 

 
 

Figure 6-22. Measured driving point FRFs; blue: 0.1N, green: 0.5N, red: 1N 

 

 

 

As discussed in section 3.4., the method requires the linear FRFs. Thus, we may assume that 

the lowest force level that we can achieve gives the linear FRF. However, the DDF method 
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shows that the linear FRF may not always be obtained accurately by low forcing even though 

there is no friction type of nonlinearity (Figure 6-23). 

 

 

 

 
 

Figure 6-23. Linear FRF curves; blue: Calculated by the DDF method, green: measured at 

0.01N 

 

 

 

If we cannot apply sufficiently low forcing level or if there is friction type of nonlinearity in 

the system then the approach proposed becomes more valuable. The DF representation of the 

nonlinearity (ν) can be graphically shown as a function of response amplitude, which makes it 

possible to identify the type of nonlinearity and to make parametric identification by using 

curve fitting (Figure 6-24a). Figure 6-24a shows the DF curves calculated by the DDF and the 

DF methods. The restoring force plot is also given in Figure 6-24b. From Figure 6-24b the 

nonlinearity coefficient is found by curve fitting as 6.18 10
8
 N/m

3
. 

 

 

 

 
a)                                                        b) 

 

Figure 6-24. a) DF curves calculated by the DDF and the DF methods, b) RF curve calculated 

by the DFI using the DF calculated by the DDF and fitted curve 
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The nonlinear FRFs are regenerated using the method discussed in section 3.3. using the 

identified nonlinearity coefficient at forcing levels of 0.5 N and 1 N and are compared with 

experimentally measured values in Figure 6-25. As can be seen from the figure, better 

agreements are obtained between experimental and predicted responses with the DDF method. 

 

 

 

 
a)                                                          b) 

 

Figure 6-25. Calculated and measured nonlinear FRF curves at forcing level of a) 0.5N, b) 1N 

 

 

 

6.4. Experimental Study 4: Application of the DDF Method on a Stabilized Optic 

Platform  

 

The DDF method is also tested on a stabilized optic platform (SOP). The mission of the SOP is 

to guide weapon systems to the target. It has stabilization in the elevation and the yaw axis. 

The SOP used in this study and FRF plots obtained with constant amplitude harmonic forces 

are given in Figure 6-26 and Figure 6-27, respectively. The SOP has two direct drive motors 

guided with double bearings. For linear and nonlinear testing, a shaker (PCB) was connected to 

point 9 via a push-rod with a PCB 208C01 force transducer. The vibration responses were 

measured using 20 triaxial PCB 356A16 accelerometers. The frequency resolution was 0.1 Hz. 

The force closed loop control was achieved by the SCADAS-III data acquisition system. 

 

 

 

 
 

Figure 6-26. Modal tests on the SOP 

9 
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Figure 6-27. Driving point FRFs; blue: 0.4N, green: 8N, red: 16N 

 

 

 

In order to visualize the behavior of the system at this resonance linear modal identification is 

performed by using LMS Test Lab software. The mode shape of the SOP at this resonance is 

given in Figure 6-28. 

 

 

 

 
a)                                                                        b) 

 

Figure 6-28. Mode shapes of the SOP for the first resonance, a) isometric view, b) front view 

 

 

 

Thus, as the SOP rigidly oscillates in the y axis around its yaw axis connection, the nonlinear 

element must be at this location. Nevertheless, the DDF method is applied simplifying the 

system as a SDOF system and using the driving point FRF just to identify the nonlinear 

element. Figure 6-29a shows the real part of DF curves calculated by the DDF method and 

Figure 6-29b shows the imaginary part of the DF curve calculated by the DDF method. Then, 

by using the DFI method the restoring force values for stiffness and friction nonlinearity are 

calculated and are given in Figure 6-30a and Figure 6-30b, respectively. From Figure 6-30a 

and Figure 6-30b the nonlinearity coefficients are found by curve fitting using polynomials up 

to the third order. The coefficients of the restoring force curves are given in Table 6-1. 
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Table 6-1.  Parametric identification results for the nonlinear elements 

 

 Linear  Quadratic  Cubic  

Real Part of RF  -1.8362 10
4
 – 5.4134 10

9
 1.3373 10

13
 

Imaginary Part of RF 3.5901 10
4
 2.1355 10

8
 1.15324 10

12
 

 

 

 

 
a)                                                                        b) 

 

Figure 6-29. Calculated DFs by the DDF method, a) stiffness DF, b) friction DF 

 

 

 

 
a)                                                                        b) 

 

Figure 6-30. Calculated RFs by the DFI method, a) stiffness RF, b) friction RF 

 

 

 

The nonlinear FRFs are regenerated using the method discussed in section 3.3. using the 

identified nonlinearity coefficient at forcing levels of 8 N and 16 N and are compared with 

experimentally measured values in Figure 6-31 and Figure 6-32, respectively. Note that, during 

the identification process the type and functional form of the nonlinearity was not known. The 

coefficients of the nonlinearities are obtained simply by curve fitting the RF values. Then, 

while regenerating the nonlinear FRFs, the describing function representations of polynomial 

functions are used. 
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Figure 6-31. Calculated and measured nonlinear FRF curves at forcing level of 8N 

 

 

 

 
 

Figure 6-32. Calculated and measured nonlinear FRF curves at forcing level of 16N 

 

 

 

As can be seen from the figure, a good match is obtained between experimental and predicted 

responses with the DDF method.  
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CHAPTER 7 

 

 

7. APPLICATION OF NONLINEAR IDENTIFICATION APPROACH TO 

CRACK DETECTION PROBLEMS 

 

 

 

Structural damages usually introduce nonlinearity to the system. The nonlinearity localization 

part of improved DF method is employed to detect crack type structural damage. The method 

requires the measurement of FRFs at various points in order to locate the damage. The method 

makes it also possible to determine the extent of damage by identifying the level of 

nonlinearity.  

 

Damage detection method presented in this study consists of two main stages. Firstly, existence 

of damage in the system is detected by performing step sine tests with different loads. 

Secondly, the location of the damage is determined by using incomplete FRF data. The work 

presented in this study is mainly an experimental application of the method suggested by 

Aydoğan [66] which was verified only by simulated data. 

 

7.1. Damage Localization by Improved DF Method 

 

In this chapter, the damage locations are determined from NLI values calculated from vibration 

tests. In order to calculate the NLI values, improved DF method is used which is thoroughly 

discussed in chapter 3. Before going into the experimental studies, some important points about 

interpreting the NLI values for damage localization are discussed below. 

 

Theoretically, if a nonlinear element is between a coordinate and ground, we would expect to 

have high NLI value for that coordinate only, and if a nonlinear element is between two 

coordinates, we would expect to have high NLI values at these two coordinates. In the 

simulated cantilever beam case studies given in [66], it is concluded that, in order to observe 

such characteristics we need to measure the rotational coordinates which are affected the most 

from crack type nonlinearities. If translational coordinates are measured, then this method 

gives us an indication of the crack location by yielding a high peak only at the coordinate right 

after the crack closer to the fixed boundary. When this is the case, further investigations should 

be carried out by NDT methods around the coordinate with high NLI to pinpoint the crack. 

 

7.2. Experimental Studies 

 

7.2.1. Experimental Study 1: Localization of Damage in a 7 DOF Beam by Shaker Testing 

 

For the implementation and validation of the method given above, step sine tests with different 

load levels are performed with four hallow square beams which are all manufactured from 

aluminum. The beams have 2.5 mm, 5.5 mm and 7.5 mm cracks, respectively. In order to see 

the effect of measurement noise on NLI values calculated from experimental measurements, a 

fourth beam with no crack is also tested. The cracks are produced by creating an indentation of 

1mm first with a saw and then bending the beam several times until the desired crack is 

obtained. The test rig manufactured for this study, dimensions and technical details are given in 

Figure 7-1 and Figure 7-2, respectively. This test rig is preferred for its simplicity. The test rig 

consists of a cantilever beam with a crack between 4th and 5th coordinates. The modal test 

setup configuration with its elements is shown in Figure 7-3. For step sine testing, a shaker 

(PCB) is connected to the free end (point 1) of the cantilever beam via a push-rod with a PCB 

208C01 force transducer. The vibration responses are measured using six miniature PCB 

352C65 and one PCB 352A24 accelerometers. The frequency resolution is 0.1 Hz. The crack 

in the system causes changes in the frequency response around resonance frequencies. Ability 

to observe this phenomenon is closely related to the frequency resolution employed in the 
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harmonic vibration tests. The force closed loop control is achieved by the SCADAS-III data 

acquisition system. 

 

 

 

  
 

Figure 7-1. Setup used in the experimental study 1 

 

 

 

 
 

Figure 7-2. Dimensions of experimental study 1 

 

 

 

The modal tests are performed using harmonic forcing with amplitudes of 0.01N and 0.05N at 

point 1 and measuring responses from 7 points. The FRFs obtained for the constant amplitude 

force tests with an undamaged beam and with three different crack lengths (h=2.5 mm, 5.5 mm 

and 7.5 mm) are shown in Figure 7-4-Figure 7-7. The FRFs obtained with 0.01N amplitude 

harmonic forcing are taken as linear FRFs of the system. 

 

 



101 

 

 
 

Figure 7-3. Test setup of experimental study 1 

 

 

 

 
 

Figure 7-4. Linear and nonlinear direct point FRFs at point 1 (undamaged) 
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Figure 7-5. Linear and nonlinear direct point FRFs at point 1 (h= 2.5 mm) 

 

 

 

 
 

Figure 7-6. Linear and nonlinear direct point FRFs at point 1 (h= 5.5 mm) 
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Figure 7-7. Linear and nonlinear direct point FRFs at point 1 (h= 7.5 mm) 

 

 

 

In this experimental study, only the first columns of the linear (0.01N forcing) and nonlinear 

receptance (0.05N forcing) matrices are measured. Then, firstly the missing elements of the 

linear FRF matrix are calculated by FRF synthsis method, and the NLI values are calculated for 

each coordinate. Note that here only translational DOFs are used. The calculated NLI values 

are shown in Figure 7-8 to Figure 7-11.  

 

 

 

 
 

Figure 7-8. Undamaged Nonlinearity Index Chart 

 

 

 



104 

 

 
 

Figure 7-9. 2.5 mm Nonlinearity Index Chart 

 
 
 

 
 

Figure 7-10. 5.5 mm Nonlinearity Index Chart 
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Figure 7-11. 7.5 mm Nonlinearity Index Chart 

 

 

 

The coordinates which are affected from nonlinearity can be determined from the NLI values 

obtained for each coordinate. The crack is located between the 4
th

 and 5
th

 coordinates so one 

expects to find two high peaks at these coordinates. In the simulated case studies given in [66], 

it is stated that, in order to observe such a chart we have to measure FRFs at the rotational 

coordinates which are affected the most from the nonlinearity. If translational coordinates are 

measured, then this method gives us an indication about the crack location by giving a high 

peak only at the coordinate right after the crack closer to the fixed boundary. The results 

obtained verify this expectation: We have high peaks at 5
th

 coordinate. However, the NLI 

values obtained for the other coordinates are not much smaller than that of coordinate 5, unless 

the crack gets deeper (when we have deeper cracks the NLI value of 5
th

 coordinate increases 

considerably, compared to other NLI values).  

 

7.2.2. Experimental Study 2: Localization of Damage in a 7 DOF Composite Beam by 

Impact Testing 

 

In the first experimental study step sine testing with a shaker was preferred for the validation of 

the improved DF method for damage localization. With this case study it is intended to 

demonstrate that this method can also be used with impact testing. However, it must be noted 

that the change in the FRFs with different impact levels will not be as much as that observed in 

closed loop shaker testing since it is more difficult to apply considerably higher force levels in 

impact testing. In this experimental study, the test specimen is changed to E-Glass reinforced 

plastic (E-GFRP). The damage is located between the same coordinates but this time the extent 

of damage is not known since the damage is created by simply bending the sheet. The test rig 

manufactured for this study, dimensions and technical details are given in Figure 7-12 and 

Figure 7-13, respectively. For impact testing, an impact hammer (PCB 086C01) is used and the 

structure is hit at the 7
th

 coordinate. The vibration responses are measured using six miniature 

PCB 352C65 and one PCB 352A24 accelerometers. The frequency resolution is 0.3125 Hz. 

The crack in the system causes changes in the frequency response around resonance 

frequencies. Ability to observe this phenomenon is closely related to the frequency resolution 

employed in the harmonic vibration tests.  
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Figure 7-12. Setup used in the experimental study 2 

 

 

 

 
 

Figure 7-13. Dimensions of experimental study 2 

 

 

 

The modal tests are performed by hitting the structure with low and high impact forces. The 

FRFs obtained for two load levels are shown in Figure 7-14. The FRFs obtained with low 

amplitude forcing are taken as linear FRFs of the system. 

 

 

 

 
 

Figure 7-14. E-GFRP impact tests, tip point FRF curves 
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In this experimental study, only the first columns of the linear (low forcing) and nonlinear 

receptance (high forcing) matrices are measured. Then, firstly the missing elements of the 

linear FRF matrix are calculated by using FRF synthesis method, and the NLI values are 

calculated. The calculated NLI values are shown in Figure 7-15. The NLI chart shows the 

coordinates which are affected from nonlinearity. High NLI values at 4th and 5th coordinates 

indicate the damage between these coordinates. Relatively high value obtained for NLI at 6th 

coordinate may be due to the damage that might be extended to that coordinate. However, we 

observe from the experimental results that the method proposed may yield nonzero NLI values 

at some other coordinates as well, although they are not adjacent to damaged region. This is 

most probably due to using only translational FRFs and not including those related with 

rotational DOF in the computation of NLI values. Fortunately, these nonzero NLI values are 

not as high as the ones obtained at damaged locations. 

 

 

 

 
 

Figure 7-15. E-GFRP Nonlinearity Index Chart 

 

 

 

7.2.3. Experimental Study 3: Localization of Damage in a 4 DOF Waveguide by Impact 

Testing 

 

In this experimental study, the localization of the defects of a brazing process on a waveguide 

is presented. A waveguide is an engineering structure which guides waves (electromagnetic or 

sound waves). There are different types of waveguides for each type of wave. In this case 

study, it is intended to demonstrate that this method can also be used on real engineering 

structures with impact testing. However, it must be noted that the change in the FRFs with 

different impact levels will not be as much as that observed in closed loop shaker testing since 

it is more difficult to apply considerably higher force levels in impact testing. The waveguide 

and measurement locations are given in Figure 7-16 and Figure 7-17, respectively. For impact 

testing, an impact hammer (PCB 086C01) is used and the structure is hit at the 1
th

 coordinate. 

The vibration responses are measured using four miniature PCB 352C65 accelerometers. The 

frequency resolution is 0.3125 Hz. The crack in the system causes changes in the frequency 

response around resonance frequencies. Ability to observe this phenomenon is closely related 

to the frequency resolution employed in the harmonic vibration tests.  
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Figure 7-16. Setup used in the experimental study 3 

 

 

 

 
 

Figure 7-17. Measurement locations 

 

 

 

The modal tests are performed by hitting the structure with low and high impact forces. The 

FRFs obtained for two load levels are shown in Figure 7-18. The FRFs obtained with low 

amplitude forcing are taken as linear FRFs of the system. 

 

1 

2 

3 

4 
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Figure 7-18. Waveguide impact tests, tip point FRF curves 

 

 

 

In this experimental study, only the first columns of the linear (low forcing) and nonlinear 

receptance (high forcing) matrices are measured. Then, firstly the missing elements of the 

linear FRF matrix are calculated by using FRF synthesis method, and the NLI values are 

calculated. The calculated NLI values are shown in Figure 7-19. The NLI chart shows the 

coordinates which are affected from nonlinearity. High NLI values at 1
th

 and 2
nd

 coordinates 

indicate the damage between these coordinates.  

 

 

 

 
 

Figure 7-19. Waveguide Nonlinearity Index Chart 
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Although the parts seem that they are brazed correctly from quality control perspective, the 

performance of the waveguide is not as predicted. Thus, vibration tests show that the two 

branches are not identical as they should be. A closer inspection to the waveguide reveals a 

thin line between the brazed parts which is successfully localized by the improved DF method. 

The damage in this part is along the brazing line consisting of several micro cracks. 

 

 

 

 
 

Figure 7-20. Waveguide damaged region 
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CHAPTER 8 

 

 

8. DISCUSSION AND CONCLUSIONS 

 

 

 

It was recently shown [78] with an experimental case study that the DF method developed by 

Özer et al. [2] for detecting, localizing and parametrically identifying nonlinearity in MDOF 

systems is a promising method that can be used in industrial applications. In this study, 

improvements to the DF method (improved DF method) and two new methods, the DFI and 

the DDF methods are given which eliminate the practical limitations of the DF method. The 

improvements made along with numerical and experimental studies for verification can be 

summarized as follows: 

 

The DF method requires dynamic stiffness matrix of the linear part of the system which can be 

obtained by constructing a numerical model for the system and updating it using experimental 

measurements or else measuring the complete receptance matrix at low level of forcing to 

obtain the receptance matrix of the linear part of the system. In this study, however, it is 

proposed to make linear modal identification by using one column of the receptance matrix of 

the system which is experimentally measured at low forcing level, and then to calculate the 

missing elements of the complete FRF matrix so that the dynamic stiffness matrix required for 

the identification can be obtained (improved DF method). Note that low forcing testing will not 

give the linear receptances if nonlinearity is due to dry friction, since its effect will be 

dominant at low level vibrations. For this type of nonlinearity, experiments with high level 

forcing will yield approximate values for the linear receptances. Having frictional nonlinearity 

with other types of nonlinearities makes it difficult to determine linear FRFs experimentally. 

Therefore, when frictional nonlinearity exists with other types of nonlinearities, the approach 

proposed can be applied only if linear FRFs are theoretically obtained. The improved DF 

method suggested is applied to lumped parameter systems, SDOF and MDOF experiments 

including the cases where the nonlinear element is also between two coordinates, and it is 

shown that detection, localization and identification of nonlinear elements can successfully be 

achieved.  

 

Secondly, it is proposed in this study to use RF plots that can be obtained from DF inversion 

for parametric identification, instead of using DF plots, in order to avoid the limitations in 

using footprint graphs (the DFI method). It is found easier to determine the type of nonlinearity 

by using RF plots rather than DF plots, especially for discontinuous nonlinear functions such as 

backlash. The application of the DFI method proposed is also demonstrated on three real 

structural test systems, and it is concluded that the accuracy in parametric determination of 

nonlinearity by DF inversion is comparable to that of improved DF method, and since RF plots 

give better insight into the type of nonlinearity, this approach may be preferred in several 

applications to identify the type of nonlinearity. Furthermore, once the RF function is obtained, 

it may be directly used in nonlinear model of the system if time domain analysis is to be made. 

Using DF inversion rather than footprint graphs makes it possible to identify total restoring 

force of more than one type of nonlinearity that may co-exist at the same location. Thus, DF 

inversion yields an equivalent RF function that can be used in further calculations without any 

need to identify each nonlinearity separately.  

 

Furthermore, obtaining the nonlinearity matrix directly from nonlinear FRFs is presented 

which eliminates the need for obtaining linear FRFs (the DDF method). The DF method 

requires dynamic stiffness matrix of the linear part which can be obtained by low forcing 

measurements. However, low forcing testing may not always give the linear FRFs accurately 

when nonlinearity is high, and furthermore, if nonlinearity is due to dry friction, low forcing 

level testing will not give linear FRFs at all, since its effect will be dominant at low level 

vibrations. In order to overcome such problems, in the DDF method developed, it is proposed 

to test the structure at two forcing levels and calculate the nonlinearity matrix directly from 



112 

 

these measurements. The DFI method can be easily applied after obtaining the DFs by the 

DDF method. The suggested DDF method is first applied to lumped parameter systems and it 

is shown that identification of nonlinear elements can successfully be achieved even when 

there is more than one nonlinear element with different characters at the same coordinate. The 

application of the proposed DDF method is also demonstrated on two real structural test 

systems, and it is concluded that the accuracy in parametric determination of nonlinearity by 

the DDF method gives better results than the DF method where low forcing tests are used to 

obtain linear FRFs. It is concluded in this study that the proposed DDF method is very 

promising to be used in practical systems, especially when there are multiple nonlinear 

elements at the same location. 

 

Finally, it is shown that the improved DF method for detecting, localizing and parametrically 

identifying nonlinearity in MDOF systems can also be used for damage detection and 

localization for the type of damages which introduce nonlinearity to the structure. The 

suggested improved DF method is first applied to an aluminum beam with a breathing crack 

and it is shown that detection and localization of damage can be achieved by exciting the 

system from only one point and measuring the responses at all other coordinates (or only at the 

coordinates around which there might be a crack). Furthermore, it is shown in this study that 

the improved DF method can also be employed to localize damage by using impact testing, 

which is more practical. The tests are conducted on a composite sheet and it is concluded that 

the accuracy in damage localization with impact testing is comparable to that of a shaker 

testing. Impact testing has many advantages over shaker testing as the most important one 

being the reduction of setup preparation time and test duration. Moreover, the possibility of 

damaging the specimen during localization tests is much less in impact testing. The nonzero 

and relatively high NLI values obtained at coordinates not adjacent to damaged locations are 

believed to be due to measuring only translational FRFs and not including those related with 

rotational DOF. As a final case study, a real engineering structure, a waveguide is tested with 

great success. Consequently, it can be said that the proposed improved DF method is 

applicable to damage detection studies, but still open to further improvements. 
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CHAPTER 9 

 

 

9.                            RECOMMENDATIONS FOR FUTURE WORK 

 

 

 

Although in this study a variety of topics concerning nonlinear identification are covered, there 

are still several aspects that need further investigation. 

 

First of all, multi-harmonic identification is one of the important topics that may be researched. 

In order to perform multi-harmonic identification, the formulations used for describing 

function should be multi-harmonic. Furthermore, the step sine tests conducted should be also 

modified to capture the multi harmonic responses. 

 

Secondly, as the step sine tests require long testing time, the accuracy of random excitation and 

impact testing in nonlinearity identification using describing functions should be investigated.  

 

Another improvement that can be accomplished in the DFI method is, instead of using only 

polynomial type functions using more complicated functions to fit DFs, which will definitely 

improve the quality of RFs. 

 

Finally, the methods proposed can be extended to include rotational DOFs which will improve 

identification results especially for more complicated structures.  
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APPENDIX A 

 

 

COMMON RESTORING FORCE FUNCTIONS AND CORRESPONDING 

DESCRIBING FUNCTIONS 

 

 

 

The RFs and corresponding DFs for nonlinear elements usually encountered in practice are 

given in Figure A-1 and A-2. 

 

 

 

 
 

Figure A-1. RF and DF representations of nonlinear elements 
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Figure A-2. RF and DF representations of nonlinear elements 
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