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ABSTRACT

CONSTRUCTION OF PYRROLO[1,2-a]PYRAZINE STRUCTURE BY METAL CATALYZED
CYCLIZATION OF N-PROPARGYL SUBSTITUTED PYRROLES

GUVEN, Sinem
M.Sc., Department of Chemistry
Supervisor: Prof. Dr. Metin Balct

February 2013, 95 pages

Pyrrolo[1,2-a]pyrazine is one of the isomers of pyrolodiazine family. Pyrrolo[1,2-a]pyrazine
possesses a bicyclic heteroaromatic structure that have 10 electrons. It has various biological
importances in synthetic chemistry; therefore, many different approaches to generate this skeleton
have been developed so far. In this study, our prior aim was to develop a new synthetic methodology
for the formation of pyrrolo[1,2-a]pyrazine moiety. In the first part of this focus, the starting
compound, methyl 2-(2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-carboxylate  was
successfully synthesized, then the conversion of the ester group at the lower arm to the amine group
was carried out. Heteroatom cyclization catalyzed by Cul afforded the desired substituted pyrrolo[1,2-
a]pyrazine structure. In the second part, it was aimed to synthesize new compounds with unusual
structures which are not described in the literature; namely, as pyrrolo[1,2-a]pyrazine N-oxide. In this
direction, first pyrrole was submitted to Vilsmeier-Haack reaction to attach a formyl group at C-2.
Substitution reaction then effectively gave 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde, which was
a key molecule to synthesize the aldoxime. AuCl; catalyzed cyclization of the corresponding oxime
afforded pyrrolo[1,2-a]pyrazine N-oxide. In the next step, Sonogashira coupling reactions were
carried out to obtain terminal alkynes (RC=CR’) starting from 1-(prop-2-yn-1-yl)-1H-pyrrole-2-
carbaldehyde. The aim of this part was to study the effect of aryl groups to the activated alkyl
functional group by a metal catalyst. In this case, unexpected oxime-oxime transformation was
observed, which is unprecedented in the literature.

Keywords: Pyrrolodiazine, pyrrolo[1,2-a]pyrazine, pyrrolo[1,2-a]pyrazine N-oxide, oxime-oxime
transformation.



0z

METAL KATALIZORLER ESLIGINDE N-PROPARGIL SUBSTITUE PIROL TUREVLERININ
HALKALASMASI SONUCUNDA PIROLO[1,2-a]PIRAZIN ISKELETININ OLUSUMU

GUVEN, Sinem
Yiksek Lisans, Kimya Bélimu
Tez Yoneticisi: Prof. Dr. Metin Balci

Subat 2013, 95 sayfa

Pirolodiazin ailesinin tyelerinden biri olan pirolo[1,2-a]pirazin bisiklik aromatik bir bilesiktir. Baz1
onemli biyolojik 6zellik gostermeleri nedeniyle uzun yillardir bu iskeletin olusumu i¢in farkli sentetik
metotlar gelistirilmektedir. Bu calismada hedeflenen temel nokta pirolo[1,2-a]pirazin halkasinin
olusumu icin yeni bir yontem gelistirmektir. Caligmanin ilk kisminda, ¢ikis maddesi olan N-subsiitie
2,3-dikarboksilat pirolii basariyla sentezlendikten sonra alt koldaki ester fonksiyonel grubu amin
grubuna donistiiriildii. Ardindan Cul katalizorii esliginde aktive olmus tiglii bagdaki karbon atomuna,
azot atomunun molekil i¢i saldirist sonucunda hedeflenen yapi sentezlendi. Calismanin ikinci
kisminda ise literatlirde henliz bilinmeyen pirolo[1,2-a]pirazin N-oksit halkasinin olusturulmasi
hedeflenmistir. Bu nedenle pirolden baslayarak Vilsmeier-Haack reaksiyonu sonucunda pirolun C-2
karbon atomuna formil grubu takildi, propargil bromiir esliginde substitlisyon reaksiyonu
gerceklestirildi ve anahtar molekil olan azot atomuna propargil grubu bagl pirol-2-karboksialdehit
sentezlendi. Hemen ardindan aldoksim tirevi basariyla elde edildi ve sentezlenen aldoksimin AuCls;
katalizori esligindeki reaksiyonu sonucunda pirolo[1,2-a]pirazin N-oksit yapist etkili ve basit bir
yontemle sentezlendi. Boylelikle literature yeni bir heterosiklik N-oksit molekiilii kazandirildi.
Ardindan, propargil grubuna Sonogashira kenetlenme reaksiyonuyla farkli aril gruplan takildi ve
aldoksim olusturuldu. AuCl; katalizorliigiinde gergeklesen halkalagsma reaksiyonu sonucunda
beklenen Urinitn aksine, oksim-oksim diizenlenmesi sonucu farkli bir oksim Urini elde edildi.
Literature yeni bir diizenlenme tepkimesi kazandirildi.

Anahtar kelimeler: Pirolodiazine, pirolo[1,2-a]pirazin, pirolo[1,2-a]pirazin N-oksit, oksim-oksim
degisimi.
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CHAPTER 1

INTRODUCTION

1.1 Pyrrole
1.1.1 General Properties of Pyrrole

Pyrrole (1) is a five-membered heterocyclic molecule that contains sp? hybridized nitrogen atom.
Highly privileged pyrrole molecule possesses aromaticity; six z-electrons can delocalize around each
empty p orbital of each atom, all of which are definitely coplanar. The nonbonding electrons
participate to the delocalization; thus, weak acid behavior of pyrrole ring can be explained by its
aromatic character.

H1
Pyrrole
1

The carbon-carbon bond and the carbon-nitrogen bond distances do not show typical characteristics of
single bonds or double bonds.! Therefore, pyrrole must be regarded with the hybrid resonance
structures (1-1d) of which major contributors are shown below (Scheme 1).
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Scheme 1

The dipole moment of the pyrrole ring is 1.80 D in benzene solution and the positive end of the dipole
is directed toward the nitrogen atom®; on the other hand, in the case of furan (2) and thiophene (3),
these heteroaromatic molecules have much more lower dipole moments in the opposite direction than
the dipole moment of pyrrole, 0.7 D and 0.5 D respectively (Scheme 2).2

@;ﬁlmso [g§¢m7n [;§¢05D
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Pyrrole Furan Thiophene
1 2 3
Scheme 2

The orientation of the electrophilic substitution reaction in pyrrole ring is more selective by forming
intermediate A than intermediate B since the positive charge on nitrogen atom can delocalize more in
intermediate A than the case of B. However, this pattern could change depending upon the
substituents on the pyrrole ring (Scheme 3).°
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Pyrrole rings are found in porphyrins that involve the vital blood pigments e.g. heme B (4), in which
four substituted pyrrole rings are connected to each other with four methine groups and Fe" substitutes
two —NH group to form complex molecule, and also the essential pigment chlorophyll has porphyrin
unit itself e.g. chlorophyll b (5).*

HOOC

HOOC

Heme B Chlorophyll b

4 5
Furthermore some natural products containing pyrrole moiety display various biological activities;
Hughes and his coworkers isolated a bispyrrole compound, named as Marinopyrroles A and B (6) for
the first time despite its synthesis as well as other examples of chiral bispyrroles were known in the
literature. These axially chiral molecules show activity against metacillin-resistant Staphylococcus
Aureus stains.® Permethyl Storniamide (7), isolated from some marine species, has sensitizing property
of antitumor agents in those cases of multidrug resistance (MDR) according to Boger and his
collobrators’ study.® The importance of pyrrole skeleton in material sciences is also prominent. 4,4-
Difluoro-4-boradipyrrin units (8), known as BODIPY, possessing various biological and
electrochemical applications.”
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Due to its fundamental significance in chemistry, a number of efficient synthetic approaches have
been developed.



1.1.2 Pyrrole Synthesis

In 1884, Paal and Knorr separately reported a condensation reaction between 1,4-dicarbonyl
compounds with excess primary amines or ammonia to yield substituted pyrroles. When y-diketone 9
was treated with methyl amine, 2,5-disubsituted pyrrole 10 was formed successfully (Scheme 4).
However, the pH of the reaction affects the product formation as Amarnath et al.? showed. When the
pH was below 3, the furan ring was formed as a major product. Axially chiral 3,3- bispyrrole
dervatives 11 formation also can be achieved by Michael addition cascaded with Paal- Knorr type

condensation (Scheme 5).°
AcOH )\
+ CHyNH, ————> N O
EtOH-CHCI, &y
3

50 °C

85%

9 10
Scheme 4
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Scheme 5

Trofimov reaction is another route for the synthesis of pyrroles. Under the quite strong alkali
conditions, ketoxime 12 reacts with acetylene to give vinyl oxime 13 then subsequently vinyl oxime
13 tautomerizes to diene 14 which undergoes a sigmatropic rearrangement to form corresponding
imine 15 (Scheme 6). Intramolecular cyclization affords substituted pyrroles 16, 17, 18. Trofimov
reaction offers an easy route to generate aryl, alkyl, hetaryl substituted pyrroles (Scheme 5). However
harsh reaction conditions resulted in the formation of regioisomers and disfavored Trofimov Reaction.
Therefore, Ngwerume and Camp provided a regioselective milder reaction conditions under
microwave assisted nucleophilic catalysis as a modified Trofimov reaction (Scheme 7).%°

N/OH — pp Ph Ph Ph Ph Ph
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N \l HN' I NH °
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Ph)\ Ph Ph)\ Ph Ph Ph
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13 14 15
Scheme 6
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Alkynes are frequently found as a key functional group in a series of construction of pyrrole skeleton.
One or one of the most crucial methodologies for it was reported in 2001. It included a Cu-(l) assisted
heteroatom cyclization of alkynyl imines to generate 2-substituted or 2,5-disubstituted pyrrole fused
heteroaromatic molecules (Scheme 8).* One of the acidic protons of alkynyl imines was abstracted by
NEt; which was then subjected to propargyl-allenyl isomerization to generate allene 25 in situ as
Kel’in and his collaborators proposed.”™ Subsequent to the coordination of Cu-(l) to the terminal
double bond creating an electrophilic carbon, nucleophilic attack by non-bonding electrons on
nitrogen atom occurred to that carbon to generate zwitter ion intermediate 27. Isomerization to the
more stable zwitter ion intermediate 28 gave the product 29 successfully (Scheme 9). Deuterium shift
during propargyl-allenyl isomerization strengthened the group’s theory on the reaction mechanism.
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Scheme 9

The number of studies on synthesizing pyrrole ring starting from alkynes is very broad and there are
so many different approaches present in the literature. Another method on this area was represented by
Kamijo, Kanazawa and Yamamoto."? They indicated that regioselectivity of the product depends on
the catalyst used. (Scheme 10) If the reaction between isocyanate 29 and activated alkyne 30 are
catalyzed by Cu,O (Scheme 11), it yields 2,4-substituted pyrrole 31; on the other hand, if phosphine
catalyzes this reaction, the formation of 2,3-disubstituted product 32 occurs (Scheme 12).
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1.2 Pyrrolodiazine

Pyrrolodiazine is a class of pyrrole fused heteroaromatic molecules. They are also aza analogous of
indolizine (33) moiety. The four isomers of pyrrolodiazines are known in the literature, namely as
pyrrolo[1,2-a]pyrazine (34), pyrrolo [1,2-a]pyrimidine (35), pyrrolo[1,2-c]pyrimidine (36) and
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pyrrolo [1,2-b]pyridazine (37).** The nonbonding electrons on the pyrrole type nitrogen atom make
contribution to the total number of & electrons of the aromatic system (Scheme 13).

Zh—
s N7/
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Scheme 13

Pyrrolodiazines are the precursors for the synthesis of DNA intercalating agents.** Molecules 38 that
intercalate the DNA are crucial due to their behaving role as antitumor agents. These molecules are
generally found in heterocyclic molecules containing two or four aromatic systems fused to each other
having a quaternary nitrogen atom for the activity according to the studies of Pastor et al.**
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Moreover, pyrrolodiazine skeleton are found in many naturally isolated products. For instance
Variolins'>* (39, 40), alkaloid family isolated from Antarctic sponge specie Kirkpatrickia varialosa,
exhibit activity against some tumor cells and virus-related diseases. Alkaloid Hinckdentine!’ (41)
contains dihydro derivative of pyrrolo[1,2-c] structure, which are known as cataleptogens.

HoN

>/\KI/CH3

OH N \

Variolin A Variolin B Hinckdentine
39 40 41

There is a strong connection between mood-related disorders and reduced serotonin (42) levels in the
brain; therefore, new drug designs have been made for the development of new molecules targeted the
specific serotonin receptors, also known as 5-hydroxytryptamine or generally 5-HT receptors. One of
the designed 5-HT; receptor was tricyclic piperazinopyrrolothienopyrazine (PPTP) core (43)."
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This thesis only focuses on pyrrolo[1,2-a]pyrazine (34) skeleton; hence, the other isomers of
pyrrolodiazine are not elaborated for the rest of this thesis.

1.2.1 Properties of pyrrolo[1,2-a]pyrazine

Theoretical calculations by Paudler and Dunham® on pyrrolo[1,2-a]pyrazine structure show that C-1
and C-3 atoms have the highest electron density; on the other hand, the electron density on the C-8 is
the least among other atoms. These theoretical calculations were verified with the experiments carried
out with pyrrolo[1,2-a]pyrazine (34).

2 1
0 I\ R
NP NI
5\\/N7 \\/N
6
44: R= Ph
Pyrrolo[1,2-a]pyrazine 45: R= NH,
34 46: R=ClI
47: R= OMe

Electrophilic aromatic bromination and nitration to pyrrolo[1,2-a]pyrazine (34) occured at the position
1 and 3 and furthermore when it was treated with phenyllithium, 8-phenylpyrrolo[1,2-a]pyrazine (44)
was formed, which were in consistent with the theoretical calculations. Buchan and his coworkers®
further extended Paudler and Dunham’s study on the reactivity of pyrrolo[1,2-a]pyrazines. Only the
nonbridged nitrogen atom was subject to protonation or alkylation for the formation of a quaternary
nitrogen atom. Moreover, pyrrolo[1,2-a]pyrazines failed to undergo electrophilic substitution
reactions with weak electrophiles such as nitroso compounds to obtain aza-coupled product.
Vilsmeier-Haack formylation, in addition, did not work with pyrrolo[1,2-a]pyrazines although
indolizines successively gave formylation via Vilsmeier reaction.

Nucleophilic substitution reaction is another case for pyrrolo[1,2-a]pyrazines. Phenyllithium
successively attacked to the C-8 carbon to produce 8-phenylpyrrolo[1,2-a]pyrazines (44); however,
pyrrolo[1,2-a]pyrazine did not undergo amination to give 45 by Chichibabin reaction though the harsh
reaction conditions. While hydride departure did not occur, chlorine group at C-8 in 46 was
effectively substituted with amine or methoxy group to give 45 and 47 under the reported reaction
conditions.

1.2.2 Synthesis of pyrrolo[1,2-a]pyrazine derivatives

Rault and coworkers'® studied on the derivatives of piperazinopyrrolothienopyrazine (PPTP) (43)
some of which resulted in having great affinity to the specific 5-HT; receptor; hence, the group
achieved to synthesize this substituted PPTP core in different pathways. One of their synthetic
pathways included that first 2-amino-3-thiophenecarbonitrile (48) was treated with 2,5-
dimethoxytetrahydrofuran in acetic acid at reflux temperature afforded pyrrole derivative 49, and then
hydrolysis of nitrile group by NaOH gave the carboxylic acid 50. The conversion of carboxylic acid
group to acyl azide group 51 was done with ethyl chloroformate and sodium azide in acetone at 0 °C.
Curtius rearrangement in situ made the intermediate subject to afford the cyclization product 52, and
subsequently treatment with phosphoryl chloride in pyridine at reflux temperature gave the
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chlorinated product 53. The chlorinated product in DMF solution was treated with the corresponding
piperazine derivative in the presence of a base to yield 5-substituted pyrrolo[1,2-a]thieno[3,2-
e]pyrazines (43) (Scheme 14).
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> - =
q AcOH q Methanol q
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B

_ - Reflux 5 min
N Cl

Pyridine N CON,
Reflux, 3h H O
53 52 51
/ 0\ .
HN N-R
__/
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Reflux, 2h
s =
N
N=

43
Scheme 14

The oldest approach for the formation of pyrrolo[1,2-a]pyrazine (34) was reported by Herz and
Tocker.? 2-Pyrrolocarboxaldehyde (54) was condensed with aminoethylacetal to give pyrrole acetal
54. Treatment of pyrrole acetal 54 with phosphorous oxychloride and polyphosphoric acid resulted in
the desired pyrrolo[1,2-a]pyrazine (34) in overall yield of 18% (Scheme 15).

@ (Et0),CHCH,NH, N OFt POCI, /N

—_—

N~ CHO ——— N OEt " NI

H H \\/N

54 55 34
Scheme 15

Minguez et al.*® developed a much better synthetic approach for the synthesis pyrrolo[1,2-a]pyrazine
(34). First starting from pyrrole (56), the 3,4-dihdyropyrrolo[1,2-a]pyrazine (57) was synthesized and
then the oxidation by Pd/C catalyst in xylene at reflux temperature afforded the product 34 with a total
yield of 59% (Scheme 16).
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An efficient and versatile approach for generation of pyrazine scaffold was enhanced by Chen and his
coworkers.?? The cyclization between 2-pyrrolocarboxaldehyde (54) and vinyl azide 58 in the
presence of base resulted in pyrrolo[1,2-a]pyrazine derivative 59 in high yield. According to the
proposed mechanism, the reaction started with a proton abstraction from 54 by base to create a
nucleophilic nitrogen atom, which attacked to the double bond in 58 according to a Michael-type
addition reaction and to a release of N,. Finally, intramolecular condensation gave the cyclization
product 59 successfully (Scheme 17).
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N~ "CHO  DMF, conditions
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58 54 59

Scheme 17

Another cascade synthetic route consisted of TiCl, catalyzed heteroatom cyclization of N-alkynyl
pyrroles under microwave-assisted conditions. The reaction was carried out with different N-alkynyl
pyrroles as starting compounds. According to Alfonsi et al. reported®, some N-alkynyl pyrrole
derivatives 60 afforded pyrrolo[1,2-a]pyrazine derivative 61 along with its isomer dihydropyrrolo[1,2-
a]pyrazine 62. In this concise cascade reaction, first NH; readily reacted with ketone to yield the
corresponding imine, and then the coordination of TiCl, to the triple bond created an electrophilic
carbon atom. Intramolecular nucleophilic attack by the nitrogen atom to the electrophilic carbon
caused 6-exo-dig type cyclization to give pyrrolo[1,2-a]pyrazine dervatives 61 (Scheme 18).
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Scheme 18
1.2.3 Synthesis of new class of compounds: Pyrrolo[1,2-a]pyrazine N-oxides

Different classes of polycyclic heteroaromatic N-oxide molecules and their synthesis are described in
the literature. One of the examples for generating heterocyclic N-oxides is that 2-
alkynylbenzaldoxime 63 underwent electrophilic cyclization to generate isoquinoline N-oxide
derivative 64 (Scheme 19).The importance of this class of compounds was reported in the literature.
Some of them are used as organocatalysis in organic chemistry and they also play an important role at
charge-transfer, metal (Li*/Mg?®") sensor effects and initiators for radical polymerization reaction in
material science.?
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Scheme 19

Additionally, some heterocyclic N-oxides have got a reputation for being excellent catalysts for the
asymmetric synthesis. A very well-known N-methylmorpholine N-oxide (65) stoichiometrically
assists as an oxidant in Sharpless asymmetric dihydroxylation %; another example is polycyclic
pyridine N-oxide (66) which is used as a catalyst for the formation of homopropargylic alcohols with
a good enantioselectivity.?

65 66

However, the synthesis of pyrrolo[1,2-a]pyrazine N-oxide (67) and its properties have not been
investigated yet in the literature.

1.3 Aim of the study

In this thesis, we aimed to develop a new synthetic methodology leading to pyrrolo-fused new
heterocycles using electrophilic heteroatomic cyclization

N - - N = N
\ ______ ] \ ~
A A
68 69 70
Scheme 20

The first part of this research dealt with the construction of the desired N-alkynyl 2-substituted
methylamine pyrrole derivative 70 yet we needed to develop a concise method for the synthesis of
compound 68. In the light of this purpose, we offered an efficient way for the generation of substituted
pyrrole ring to get the molecule 68. Then it was aimed to convert the ester group to the amine group
using Curtius rearrangement. Electrophilic cyclization by using m-acid catalyst was planned to
perform to obtain the desired molecule 70 from which we totally intended to offer a new methodology
to construct the pyrrolo[1,2-a]pyrazine moiety (Scheme 20).
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The goal of the second part was to investigate the product resulted from metal-catalyzed cyclization of
pyrrole aldoxime substrates 71. Two possible nucleophilic attacks to the activated carbon were
possible as shown in Scheme 21, which was intriguing for us to study on it.
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Scheme 21
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CHAPTER 2

RESULTS AND DISCUSSION

2.1 Synthesis of pyrrolo[1,2-a]pyrazine moiety

2.1.1 Synthesis of the starting compound: methyl 2-(2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-
1H-pyrrole-3-carboxylate

During the investigations on the synthesis of N-alkynl-2-substituted pyrrole derivative, it was aimed to
develop a simple route for its formation. In this direction, Hantzsch synthesis of pyrroles was seemed
a conceivable way for the construction of pyrrole ring in the presence of ammonia or a primary amine
when considering the condensation mechanism behind 1,3-diketone 74 and halo carbonyl compounds
in the presence of a base. In 1994, Tada, Otsu and Chiba®’ reported that the synthesis of methyl 2-(2-
methoxy-2-oxoethyl)-3-furoate (78) was accomplished by condensation of dimethyl-1,3-
acetonedicarboxylate (76) with chloroacetaldehyde (77) in pyridine under the mild conditions
(Scheme 22), namely as Feist-Benary furan synthesis.

o o o ROy _R¢
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R1J\( I G G \
X R! R3
O
73 74 75
(@)
OMe
O O O o) Pyridi
A A e e &
O (0] H 50°C, 16 h O
ol OMe
76 77 78

Scheme 22

In the light of afore-mentioned information, it was planned to search whether presence of ammonia or
a primary amine could provide a pyrrole ring and/or with a furan ring. Our results showed that
dimethyl-1,3-acetonedicarboxylate (76), chloroacetaldehyde (77) and 25% solution of NH; in
pyridine at 50 °C yielded methyl 3-(2-methoxy-2-oxoethyl)-1H-pyrrole-2-carboxylate (79) in 17%
crude yield and methyl 2-(2-methoxy-2-oxoethyl)-3-furoate (78) in 57% crude yield (Scheme 23).

COOMe COOMe
O O O o) Pyridine U\/ T o0
+ + 25%aq.NHy; —————— > + Me

oA AN+ I 50°C, 200 Lo~ C00Me T K
H

57% 17%

76 77 78 79

Scheme 23
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In order to improve the yield of the desired product 79, same reaction was also carried out in the
presence of ammonia gas and ammonium acetate, separately. The crude yield of each compound is
shown in the Table 1. The yield of pyrrole derivative 79 was increased up to 32% by using ammonium

acetate.

Table 1: Yields of furan diester 78 and pyrrole diester 79 with different nitrogen sources

%Yield of 78% %Yield of 792
NHj(g) 61% 12%
25% aqueous NH; 57% 17%
CH;COONH;, 40% 32%

a: crude yield

Next, we carried out the same reaction with propargyl amine as an amine source to construct the key
compound, methyl 2-(2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-carboxylate (80)
(Scheme 24).

COOMe COOMe
O O O (0] SN Pyridine 7 m
+ + = NH, ————————> + COOMe

MeOJ\/U\/U\OMe HJ\/CI 2 50°C, 20 h 0 CcooMe N

N

Crude Yield: 63% 37%

Isolated Yield: 23% 20%

76 77 78 80

Scheme 24

Although haloaldehyde 77 was added after the addition of 1,3-dicarboxylate 76 and primary amine, it
still may be suggested that the reaction mechanism for the formation of pyrrole diester 80 proceeded
initially proton abstraction from 1,3-dicarbonyl compound 76 in the presence of a base to create a
carbanion which attacks chloroacetaldehyde (77) with an Sy2 fashion to generate 82. Enamine 83
formation and subsequently annulation gave pyrrole diester 80 (Scheme 25).
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Scheme 25

However, when this reaction was carried out without a base, furan diester 78 and pirol diester 80 were
formed as a mixture. In this case, Feist furan product 78 was again predominated Hantzsch pyrrole

product 80 (Scheme 26).
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This result showed that without a need for base, pyrrole 80 formation proceeded via enamine 85 then
nucleophilic substitution reaction resulted in the formation of 86 which underwent intramolecular
annulation to give 87, and finally elimination of H,O afforded pyrrole 80 (Scheme 27). The formation
of furan 78 was probably due to the hydrolysis of enamine 86.

R 7
o o 9 R-NH, 9 (NHRO o N0
PP o, |
MeO OMe MeO OMe
76 85 0 o) 86

MeO
O
| Me
77

Cl

HO HO,

- -H,0 L
R-N/~cooMe <~—— R-N A ~coome = R,g\ COOMe

COOMe COOMe COOMe
80 87b 87a
Scheme 27

2.1.2 Synthesis of methyl 2-(2-hydrazinyl-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-
carboxylate

After synthesis of the diester 80, the attention was turned to convert the ester functional group at the
lower arm of 80 to the amine group. For this purpose, we first planned to generate an acyl azide
functional group, which can be easily converted into the corresponding amine using Curtius
rearrangement in situ. To do so, hydrazide molecule 88 was chosen as a starting material to synthesize
the acyl azide (Scheme 28).

COOMe COOMe
mCOOMe NH,NH,.H,0 [_ﬁ\/CONHNHz
N\ Methanol, rt, 20 h N
N 92% \%
80 88
Scheme 28

Two different ester groups exist in the compound 80; however, reactivity difference provides
regioselectivity under the certain reaction conditions. In the case of furan, it was reported® that the
corresponding furan diester 78 was successively converted to furan dihydrazide in methanol at reflux
temperature. However, when 80 was treated with hydrazine monohydrate at room temperature,
hydrazide formation was regioselectively occurred at the lower arm to furnish 88 since the ester group
of the upper arm is conjugated with the pyrrole ring; thus, the reactivity of carbonyl carbon of the
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upper arm is lower than that of lower arm. Methyl 2-(2-hydrazinyl-2-oxoethyl)-1-(prop-2-yn-1-yl)-
1H-pyrrole-3-carboxylate (88) was generated as the sole product in a 92% vyield.

2.1.3 Synthesis of 1-{[3-(methoxycarbonyl)-1-prop-2-ynyl-1H-pyrrol-2-yl]acetyl}triaza-1,2-dien-
2-ium

The reaction shown in Scheme 29 was performed for the formation of 1-{[3-(methoxycarbonyl)-1-
prop-2-ynyl-1H-pyrrol-2-yl]acetyl}triaza-1,2-dien-2-ium (89) (Scheme 29).

COOMe COOMe
[§\/CONHNH2 NaNO, A/—_g\/CONs
—_—
N\ 1M HCl N
0-5°C, 1h \
X ; X
N 64% S
88 89
Scheme 29

In the presence of acid, nitrite was protonated and nitrosonium ion 90 was formed in situ. Electron pair
on B-nitrogen of the hyrazide 91 was available to attack to positively charged nitrosonium ion 90 to
form B-nitroso hydrazine intermediate 92. Then tautomerization of B-nitroso hydrazine and removal of
one mole H,O generated the desired acyl azide 94 (Scheme 30).

H+

No- o N A NL =
0° 0 == 0o* OH = o (OH, === N=0
90
(@] + o) (o)
ONN=090 ]|, H* L
R™ "N-NH, R” "N-N-N=0 —  R” "N-N-N=OH
H H
91 92 93
e} O O

H* i

RN, <—— R ;Iil'—N:N—OJer ~— R H—N:N—OH

96 95 94
Scheme 30

NMR spectra as well as the IR spectrum were compatible with the structure. Frequency at 2148 cm™
was arising from the azide group in the molecule 89.

2.14 Synthesis of methyl 2-[2-(chloroamino)-2-oxoethyl]-1-prop-2-ynyl-1H-pyrrole-3-
carboxylate

Curtius rearrangement®® is one way to produce amine from acyl azide 96. Heating acyl azide in a dry
aprotic solvent 96 leads to isocyanate 97 formation and N, evolution. Isocyanates are not so stable
and they prefer to react with other nucleophiles to generate stable compounds. Water can attack the
carbon group of isocyanate functionality to give carbamic acid 98, which undergoes decorboxylation
to produce amine 99 (Scheme 31).
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N OH
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Scheme 31

Acyl azide 89 was submitted to Curtius rearrangement in dry benzene at reflux temperature and the
corresponding isocyanate was formed in situ and addition of 8M HCI to the reaction mixture at room
temperature gave the desired amine 101 in 87% yield (Scheme 32).

COOMe COOMe COOMe
N Reflux, 2h N rt, overnight N
\ \ o \
X X X
89 100 101
Scheme 32

Attempts to deprotonate 101 with 10% NaOH solution were failed. Therefore further reactions were
carried out with the ammonium chloride salt 101.

2.1.5 Synthesis of methyl 3-methylpyrrolo[1,2-a]pyrazine-8-carboxylate

In the course of the cyclization reactions, a base needed to abstract proton from compound 101 to
generate amine in situ and also it was required to use apolar solvent with higher dipole moment to
dissolve the starting compound 101. Therefore, Kel’in, Sromek and Gevorgyan’s study™ of Cu (I)
catalyzed cyclization of alkynyl imines to generate pyrrole was applied cyclization reaction of 101 to
generate pyrrolo[1,2-a]pyrazine moiety 102 (Scheme 33).

COOMe COOMe
B " B
N NH;*ClI-  NEty/DMA (1:7) N + Unidentified fraction
_—
\
\ 130°C, 5 h <N
X
17 %
101 102
Scheme 33

The reaction mechanism emphasizes that presence of base is important not only for the generation of
amine in the reaction but also it renders propargyl-allene isomerization to yield allene 103.
Coordination of Cu-(I) to the terminal double bond increases the electrophilicity of the middle carbon
of allene, which makes it susceptible to intramolecular nucleophilic attack through nonbonding
electrons on nitrogen. Proton transfer and subsequently air oxidation of the compound 106 afforded
pyrrolo[1,2-a]pyrazine derivative 102 in yield of 17% (isolated yield) (Scheme 34).
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6-exo-dig and 7-endo-dig ring closure are favorable according to Baldwin’s rule

Cu
A
103 104 105
H* transfer
-Cul
COOMe COOMe
/\ [O] /
N | -~ N
‘ﬁ/N ‘\rNH
102 106
Scheme 34

30

as long as

nucleophile attacks to the electrophile from an ideal angle. In our case, 6-exo-dig ring closure
occurred due to electrophilic character of C-2 carbon in allene unit and aromaticity of pyrrolo[1,2-
a]pyrazine.

The *H-NMR spectrum of 3-methylpyrrolo[1,2-a]pyrazine-8-carboxylate (102) was shown in Figure
1. Protons belonging to pyrazine ring resonated at 8.04 ppm and 9.19 ppm and protons attached to the
pyrrole ring appeared at 7.48 ppm and 7.10 ppm. The other spectral data was also in agreement with
the proposed structure.
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Figure 1 'H-NMR Spectrum of compound 102
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Unfortunately, the yield of the product 102 was low, 17 %. This reaction was performed at very high
temperature, 130 °C, avoiding light; hence, that high reaction temperature may cause polymerization
of the pyrrole ring. As a matter of the fact that the crude product was dark and very viscous that
polymerization could be conceived here.

2.2 Synthesis of pyrrolo[1,2-a]pyrazine N-oxide moiety

2.2.1 Synthesis of 1H-pyrrole-2-carbaldehyde

Pyrrole ring is an electron rich heterocyclic aromatic compound. Electrophilic aromatic substitution
occurred at the C-2 site where positive charge was stabilized more by resonance, as it was already

mentioned. In the direction of our aim for this part, Vilsmeier-Haack reaction was applied for the
formylation of pyrrole (1) to give 1H-pyrrole-2-carbaldehyde (54) (Scheme 35).%

@ POC3 DMF Y\ |,

N Dry ether N

H 0°C—rt, 24 h H o
67%

1 54
Scheme 35

First, dimethyl formamide and phosphorus oxychloride were reacted to generate imminium ion 108.
Electrophilic aromatic substitution occurred at the C-2 position of pyrrole. Hydrolysis of imminium
intermediate 109 during the work up gave 1H-pyrrole-2-carbaldehyde (54) (Scheme 36).

o o POLCl
A 0 B
HJ{Q N o — H&ocﬂ “ci _<\:/\</T)\>
Q I~ \
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/ e N
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NM62 NMez - \(3 2
H

K H C C|H H Cl

NHMe2 NHMe, (/N H  H /" \_ H
N e - H

H -0 :OH
“H ®

Iz

54
Scheme 36

2.2.2 Synthesis of 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde

Lack of basicity of pyrrole ring and it’s even slightly acidic character can be explained by
participation of nonbonding electrons on nitrogen atom to the conjugation; therefore, substitution
reaction can take place after base abstracts proton attached to nitrogen. In the presence of NaH and
propargyl bromide, an Sp2 reaction took place to afford 1-(prop-2-yn-1-yl)-1H-pyrrole-2-
carbaldehyde in 71% yield (Scheme 37).%
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Scheme 37

2.2.3 Synthesis of 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde oxime

In this part of this thesis, we planned to synthesize the oxime 111 derived from 110 to perform
cyclization reaction between the propargyl group and oxime hydroxyl group. For the synthesis of
oxime, hydroxylamine was added to aldehydes or ketones to form aldoxime HRC=NOH or ketoxime
R,R;C=NOH. 1-(Prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde oxime (111) was successively formed
starting from the corresponding carbaldehyde 110 (Scheme 38).%

HO
@\WH NH,OH.HCI, Na,COs mN\OH @\ﬂ

N N + N
N) EtOH, 70 °C, 6 h \ \
N N X
E-isomer Z-isomer
64 % 16 %
110 111
Scheme 38

Karabatsos®*® reported that the aldoxime proton of the anti-configurated oxime resonates at lower

field than that of syn- configurated oxime. Afonin et al. investigated *H and **C-NMR spectra of 1-
vinylpyrrole-2-carbaldehyde oxime isomers’ in which all spectroscopic finding were in consistent
with Karabatsos’. Therefore, the assignments of the configuration E- and Z-isomers were made from
'H-NMR spectra. The intramolecular hydrogen bonding for both E-isomer and Z-isomer of 111 are
shown below (Scheme 39). As expected, intramolecular hydrogen bondings decreased the electron
density around those corresponding protons and made them shifted to downfield. On the basis of the
different chemical shifts of the relevant protons, we assigned the E- and Z- configuration of the
formed oximes.

56.99 §7.37
v v
H 88.11 H.__
“OH
3y S
N \,N—OH N H
e R
= H H X 87.55
2 A S
$5.00 54.77
111- (E)-isomer 111- (Z)-isomer
Scheme 39

2.2.4 Synthesis of 3-methylpyrrolo[1,2-a]pyrazine 2-oxide

In the formation of pyrrolo[1,2-a]pyrazine skeleton, we showed that ring closure occurred in a 6-exo-
dig fashion due to electrophilic character of middle carbon atom of allene unit and the aromatic
character of the formed six-membered ring. In the case of cyclization with oximes, there are two
possible nucleophilic attacks to the activated carbon exist; either nitrogen or oxygen can attack to the
electrophile whereas nitrogen is better nucleophile than oxygen.
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The cyclization reaction of oxime 111 was carried out with AuCl; as a catalyst at room temperature.
Its resistance to air and moisture makes AuCl; very preferable catalyst among other transition metal
catalysts. According to our result, 3-methylpyrrolo[1,2-a]pyrazine 2-oxide (112) was formed as the
sole product with an excellent yield of 97% (Scheme 40).

AuCl; (3 mol%) N

N
N
\ CHCl3, rt, 24 h N0
N
111

112

Scheme 40

A mixture of oxime isomers of 111 was used to give pyrrolo[1,2-a]pyrazine N-oxide 112. When this
reaction was carried out with E- and Z-isomers separately, regardless of the configuration of oximes,
the same product 112 was formed as the single product.

The structure of this compound was determined by 1D and 2D NMR spectral data. DEPT-90 spectrum
showed the presence of five CH carbon resonances in the sp? region of compound 112 (Figure2). The
presence of methyl carbon resonating at 20.7 ppm was established by DEPT-135 spectrum (Figure 3).
The HMBC spectrum totally proved the proposed structure of 112 (Figure 4). The important part here
was the correlation between H-1 proton and C-3 atom shown in Figure 4.
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Figure 2 DEPT-90 Spectrum of compound 111
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Proposed catalytic cycle for this reaction is shown in Scheme 41. Coordination of AuCl; to the triple
bond makes it susceptible to intramolecular nucleophilic attack by nitrogen via the 6-exo-dig
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cyclization to give zwitter ion intermediate 114. Proton transfer and regeneration of catalyst affords
the product 112 (Scheme 41). Careful examination of the reaction mixture did not reveal the formation
of a seven-membered ring where hydroxyl oxygen was involved in the cyclization reaction.

Furthermore, it was desired to investigate whether different metal catalysts would render exo/endo
selectivity in the activation of alkyne. None of metal catalysts provided any selectivity; the same
product was formed with yield shown in Table 2.

Table 2: Yields of 112 with different metal catalysts

Catalyst (3 mol%o) Crude Yield %
AuCl; 97%
LnAuCI*/ AgOTf 92%
CF3;S0,0Ag 82%
Cul 45%

LnAuCI”: Chloro[1,3-his(2,4,6-trimethylphenyl)imidazol-2-ylidene]gold(l)

14
~_N.

; \
112 ‘j>////’ AuCls -\\ﬁi:; \\111
Q\\@ [@vN’OH

>~ N~0OH r/‘
115 :\ 113

AUCls ClaAu
&)
\\\\\\ / \ ‘////
NI &
|N‘OH
AuCl
o 3
114
Scheme 41

2.3 Oxime-Oxime Transformation

2.3.1. Synthesis  of 1-(3-phenylprop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde, 1-(3-(4-
methoxyphenyl)prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde and 1-(3-(3-nitrophenyl)prop-2-yn-
1-yl)-1H-pyrrole-2-carbaldehyde

Sonogashira coupling is a convenient method so as to construct new C-C bonds. Some variations of
cross-coupling Sonogashira have been reported in the literature, yet copper-cocatalyzed Sonogashira
coupling was going to be emphasized here. One modification of Sonogashira couplings uses Pd
catalyst and Cul cocatalyst in the presence of a base, in which terminal alkynes and aryl halides
undergo coupling reaction. The exact mechanism behind this catalytic cycle has been still remained
unclear; however, it was thought that palladium(ll) diacetate was reduced by phosphine, amines and
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ethers. Oxidative addition of R'-X (aryl, hetaryl, vinyl) took place to form (a). Cu catalytic cycle
provided copper acetylide (b), which then participated to ligand substitution step to generate (c).
Finally reductive elimination provided coupling product (d) and regeneration of palladium catalyst
(Scheme 42).%

(d) R'—=——R2 0
PdL,
S
T L
(c) R'-Pd———R? 1o
[ R'-Pd—X (a)
L ]
L
cu*x Cu———R? (b)
+
R3NH X
— 2 3
H—R H—==R? RSN
Cu*X
L: phosphine
Scheme 42

We applied Sonogashira coupling to 1-(prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde (102) to generate
116, 117, and 118 (Scheme 43). The scope of having these coupling products was to investigate the
activity of alkyne carbon atoms during cyclization reaction.

/' N\ H  PdoAc), RXx I N\ H
N

N B —

1_c=c-C=C-R1
o} Cul, PPh;, DIPA o " R-C=C-C=C-R
X THF, reflux, 20-24 h S -
102
Entry R-X R Yield% of Product®  Yield% of Side Product?

116 lodobenzene @ 71% -
117 4-iodoanisole ‘QOMe 68% 23%

118  1-bromo-3-nitrobenzene 66% 21%
NO,

a: Crude yield

R': 102-
Scheme 43

We desired to get higher yields for Sonogashira couplings; however, homocoupling products were
formed in significant amounts. The reaction conditions should be completely oxygen-free, yet for our
reaction conditions it was not unfortunately. Here, in the presence of oxygen, it oxides Pd(0) to
Pd(11)*", which alternately catalyze homocoupling product since Pd(ll) is formed only over the
formation of bicoupling product.



2.3.2 Synthesis of 1-(3-phenylprop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde oxime, 1-(3-(3-
nitrophenyl)prop-2-yn-1-yl)-1H-pyrrole-2-carbaldehyde oxime, 1-(3-(4-methoxyphenyl)prop-2-
yn-1-yl)-1H-pyrrole-2-carbaldehyde oxime

Oximes of corresponding aldehydes 116, 117 and 118 were successfully generated (Scheme 44). *H-
NMR spectra of those oximes guided us to assign E- and Z-isomers.

HO
\
/" \___H  NH,OH.HCI, Na,COs, U\/“‘OH @\/“
N N + N
Q EtOH, 70°C, 7 h \\
N A AN
N R R R
Entry R Yield% (E-isomer)? Yield% (Z-isomer)?
119 ~® 62% 31%
120 @'OMe 56% 28%

NO,
121 60% 30%

a: Crude yield
Scheme 44

2.3.3 New Type of Rearrangement Arising: Oxime-oxime transformation

During the investigation of AuCls-assisted cyclization reaction of 1-(3-phenylprop-2-yn-1-yl)-1H-
pyrrole-2-carbaldehyde oxime (119), we were expecting basically 6-exo-dig type cyclization to give
pyrrolo[1,2-a]pyrazine skeleton without considering any electron donating or electron withdrawing
property of phenyl ring, yet the expected product did not form (Scheme 45).

OH

U\?NM AuCl; (3 mol%)
h —
CHCl3, 1t, 20-24 h

A

116
Scheme 45

We are glad to report a new type of oxime-oxime transformation for the first time, which is

unprecedented in the literature. The intramolecular heteroatom cyclization catalyzed by AuCls
resulted in different direction apart from our expectations (Scheme 46).
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A 8 %
116 122
Scheme 46

Although the oxime-oxime transformation mechanism is still being studied in detail, it seemed
probable that the mechanism proceeded via the formation seven-membered ring. 7-Endo-dig type
attack was in case since phenyl group could stabilize the partial positive charged localized on the a-
carbon, where the electron density at B-carbon was increased. Thus nucleophilic attack occurred to the
more electrophilic a-carbon, which generated 7-membered ring zwitter ion intermediate 124. Here an
attack of oxygen is probably disfavored to the formation of eight-membered ring. After formation of
124, water molecule present in the reaction media can attack the activated imine carbon to cause
subsequent ring-opening of the seven-membered ring to generate aldehyde structure. The oxime will
be formed on the carbon atom next to the benzene ring. The overall reaction is the intermolecular
transfer of oxime functionality from one carbon atom to another via a seven-membered ring formation
as an intermediate to form 122 (Scheme 47).

= “O-H
Dwo [Owor [0 avg
N N N \® -AuCl N W~ O
AuCly K ) N-OH _ "3 N-O
—_— — _ —(®
A AN
Clpu’ \© ClAu
116 L 123 124 125
» ®
/ \\_ 0 / \\  OH,
N H* transfer | ©
NJ\/‘/OH ransfer N-O
y -~ _
122 - 128 127 126

Scheme 47

The proposed structure was fully confirmed by 1D NMR as well as by 2D NMR spectra. DEPT-135
spectrum of compound 122 clearly showed the presence of two methylene carbon atoms. Furthermore,
COSY spectrum proved that these methylene groups are connected to each other. An isomeric oxime
was also formed. Careful examination of the H-NMR spectrum revealed the presence of two
methylene functionalities in the minor isomer of 122 (Figure 5).

In the HMBC spectrum of compound 122, characteristic oxime carbon resonating at 155.8 ppm
correlates with two methylene protons and it also correlates with phenyl protons. This finding clearly
supports that the oxime functionality was transferred from aldehyde to the propargyl carbon.
Aldehyde carbon correlates only with pyrrole protons clearly indicating the attachment of aldehyde to
pyrrole ring (Figure 6).
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We also proved the presence of hydroxyl group. The compound 122 underwent acetylation reaction,
and fortunately, in "H-NMR there was a peak at 2.14 ppm which was arising from methyl of acetyl
group (Scheme 48).

N Acetic Anhydride N
/N Pyridine, rt, overnight /N N
63%
122 129
Scheme 48

We further studied how activating or deactivating group on phenyl ring affected the activation of
alkyne during our cyclization reaction. Starting from compounds 130 and 131, oxime-oxime transfer
processes were also observed for both cases (Scheme 49).

©\¢ N Q\CHO

AUCl; (3 mol%)

\
_—
Nwn
\R CHCla, rt, 20-24 h k(/ OH

R
Entry R Yield% (E-isomer) (Z-isomer)
122 @ 83% 6%
130 OOMG 38% 38%
131 QNoz 73% 15%

Scheme 49
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CHAPTER 3

EXPERIMENTAL

3.1 General

Nuclear magnetic resonance (*H-NMR and *C-NMR) spectra were recorded on a Bruker Instrument
Avance Series-Spectrospin DPX-400 Ultrashield instrument in CDCl;, CD;OD, DMSO-d6, and
acetone-d6 with TMS as internal reference. Chemical shifts (8) were expressed in units parts per
million (ppm). Spin multiplicities were specified as singlet (s), doublet (d), doublet of doublets (dd),
triplet (t) and multiplet (m) and coupling constants (J) were reported in Hertz (Hz).

Infrared spectra were recorded on a Bruker Platinum ATR FT-IR spectrometer and Thermo Scientific
Nicolet iS10 FT-IR spectrometer. Band positions were reported in reciprocal centimeters (cm™).

Gallenkamp electronic melting point apparatus was used to obtain melting points.

Column chromatographic separations were performed by using Fluka Silica Gel 60 plates with a
particle size of 0.063—-0.200 mm. Thin layer chromatography (TLC) was performed by using 0.25 mm
silica gel plates purchased from Fluka.

ACD NMR (Name generator) was used for the nomenclature of the compounds.
Purification of solvents were performed as reported in the literature.®®
3.2 Synthesis of methyl 2-(2-methoxy-2-oxoethyl)-1-prop-2-ynyl-1H-pyrrole-3-carboxylate (80)

To a solution of dimethyl 1,3-acetonedicarboxylate (76) (15 g, 086 mol) in pyridine (30 ml),
propargyl amine (7,1 g, 0.129 mol) was added at room temperature. While reaction mixture is stirring
at room temperature for 10 min, the solution of chloroacetaldehyde (77) (22.5 g, 45%, 0,129 mol) was
added slowly to this mixture. After completion of the addition, reaction mixture was heated to 50 °C
for 20 h. Then the reaction mixture was extracted with water and ethyl acetate. The organic phase was
washed with 2M HCI, 5% NaHCOs;, and brine, respectively and dried over MgSO,. Reaction crude
was 14.65 g after evaporation. According to *H-NMR of crude, yield of furan diester 78 was 63% and
pyrrole diester 80 was 37%. The products were successively separated by column chromatography
over silica gel (400 g) eluated with hexane-ethyl acetate (4:1) gave first fraction, methyl [3-(1-
methoxyethenyl)furan-2-yl]acetate (78) as a yellowish liquid (4.0 g, 23%), and second fraction,
methyl 2-(2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-carboxylate (80) which was
further purified with recrystallization from hexane-ethyl acetate (6:1) to give as a white powder (4.5 g,
20%), mp 93-94 °C.

Procedure 2 for the synthesis of 80: To a solution of dimethyl 1,3-acetonedicarboxylate (76) (0.5 g,
2.87 mmol) in benzene (10 ml), propargyl amine (0.316 g, 5.74 mmol) was added at room
temperature. While reaction mixture is stirring at room temperature for 10 min, the solution of
chloroacetaldehyde (77) (0.751 g, 45%, 4.31 mmol) was added slowly to this mixture. After
completion of the addition, reaction mixture was heated to reflux temperature for 20 h with using
Dean-Stark apparatus and 4A molecular sieve. After reaction completion, reaction solvent was
removed under the reduced pressure. Then the residue was extracted with EtOAc. (3x 30 ml), and
dried over MgSO,. Removal of solvent under the reduced pressure gave crude (0.543 g). According to
'H-NMR of crude, yield of furan diester 78 was 57% and pyrrole diester 80 was 32%.
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IH-NMR (400 MHz, CDCl3) § 6.72 (d, Jss = 3.1 Hz, 1H, H-5), 6.58 (d, Jus =

O 3.1 Hz, 1H, H-4), 4.67 (d, J = 2.6 Hz, 2 H, -CH,), 4.21 (s, 2H, -CH,), 3.79
. 3/ ~OCHs (s, 3H, -OCHj), 3.71 (s, 3H, -OCH3), 2.43 (t, J = 2.6 Hz, 1H, -CH);
T\ 2 BC-NMR (100 MHz, CDOsD) & 172.1, 167.3, 132.7, 122.6, 115.1, 110.7,
5 78.6, 75.5, 52.7, 51.4, 37.4, 31.5;

1138, 1054, 1034, 991, 929, 900, 780;
Anal. Calcd. for C;,H;3NO,: C 61.27, H 5.57, N 5.95. Found: C 61.23, H
5.55, N 6.00.

IR (ATR) 3277, 1725, 1686, 1557, 1501, 1436, 1346, 1271, 1230, 1201,
/ o7 ~OCH;

3.3 Synthesis of methyl 2-(2-hydrazino-2-oxoethyl)-1-prop-2-ynyl-1H-pyrrole-3-carboxylate (88)

To a solution of methyl 2- (2-methoxy-2-oxoethyl)-1-(prop-2-yn-1-yl)-1H-pyrrole-3-carboxylate (80)
(1.52 g, 6.46 mmol) in methanol (15 ml), hydrazine monohydrate (1.62 g, 32 mmol) was added at
room tempareture. The reaction was stirred for 20 h at room temperature. Precipitate was filtrated and
washed with 5 ml of methanol, which afforded methyl 2-(2-hydrazinyl-2-oxoethyl)-1-(prop-2-yn-1-
yl)-1H-pyrrole-3-carboxylate (88) (1.41 g, 6.0 mmol) as a white solid (1.41 g, 92%), mp 149-150 °C.

'H-NMR (400 MHz, DMSO-d6) & 9.08 (br t, 1H, -NH), 6.86 (d, Js, = 3.1

Q Hz, 1H, H-5), 6.39 (d, Jus = 3.1 Hz, 1H, H-4), 4.87 (d, J = 2.6 Hz, 2H, -

4 3/ OCHs CH,), 4.19 (br d, J = 3.97 Hz, 2H, -CH,), 3.90 (br s, 2H, -NH,), 3.68 (s, 3H,
sU \2 -OCHj), 3.50 (t, J = 2.6, 1H, -CH);

N BC.NMR (100 MHz, DMSO-d6) & 167.7, 164.6, 132.6, 121.2, 112.7,

/ g7 ~NHNH; 108.8, 78.4, 76.5, 50.6, 36.2, 29.6;

Z IR (ATR) 3269, 1686, 1643, 1557, 1498, 1433, 1342, 1274, 1222, 1189,
1136, 1037, 987,

HRMS calcd for Cy;H33N305 [M+H]": 236.10297. Found: 236.1054

3.4 Synthesis of 1-{[3-(methoxycarbonyl)-1-prop-2-ynyl-1H-pyrrol-2-yl]acetyl}triaza-1,2-dien-2-
ium (89)

To a hydrazide 88 (1.41 g, 6.46 mmol) solution in 1M HCI (15 ml) cooled to 0-5 °C in an ice-bath,
aqueous solution of NaNO, (0.60 g, 7.72 mmol) was added dropwise. The reaction was stirred for 1 h
at 0-5 °C. The resulting solution was extracted with EtOAc (3 x 30 ml), and then the organic layer was
washed with sat. Na,COj3 and brine, respectively. Evaporation of the solvent under reduced pressure
gave orange colored crude (1.225 g). The purification of the reaction crude by column
chromatography with hexane:ethyl acetate (3:1) gave 1-{[3-(methoxycarbonyl)-1-prop-2-ynyl-1H-
pyrrol-2-yl]acetyl}triaza-1,2-dien-2-ium (89), as a white powder (1.02 g, 64%).

0 'H-NMR (400 MHz, CDCl3) & 6.73 (d, Jss = 3.1 Hz, 1H, H-5), 6.58 (d, Js5=
. 3)—OCH; | 3.1Hz 1H, H-4), 4.66 (d, J = 2.6 Hz, 2H, -CH,), 4.22 (s, 2H, -CH,), 3.80 (s,
J\ 2 3H, -OCHy), 2.46 (t, J = 2.6 Hz, 1H, -CH);
° NY BC-NMR (100 MHz, CDCls) & 176.7, 165.2, 129.7, 121.6, 114.9, 110.1, 76.7,
/ Ns 74.6,51.0, 36.8, 33.0;
“Z © IR (ATR) 3266, 2149, 1711, 1682, 1561, 1496, 1438, 1336, 1266, 1227, 1185,

1136, 1076, 1046, 1032.

3.5 Synthesis of methyl 2-[2-(chloroamino)-2-oxoethyl]-1-prop-2-ynyl-1H-pyrrole-3-carboxylate
(101)

Azide 89 (1.02 g, 4.16 mmol) was dissolved in dry benzene (10 ml), and the solution was heated to
reflux temperature, and stirred for 2.5 h. The solution was allowed to cool to room temperature, and
then 8M HCI was added to this solution at room temperature through overnight stirring. After the
completion of the reaction, aqueous layer was separated, and evaporation of water under reduced
pressure provided methyl 2-[2-(chloroamino)-2-oxoethyl]-1-prop-2-ynyl-1H-pyrrole-3-carboxylate
(101), as a white-greyish solid (0.83 g, 87%), mp 183-184 °C.
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'H-NMR (400 MHz, DMSO-d6) & 8.39 (br s, 3H, -NHj), 7.03 (d, Jss = 3.0 Hz,
0 1H, H-5), 6.50 (d, Jss= 3.0 Hz, 1H, H-4), 5.18 (br d, J = 2.5, 2H, -CH,), 4.29
4 3/ OCHs | (brg, 2H, -CH,), 3.75 (s, 3H, -OCHy), 3.60 (t, J= 2.5, 1H, -CH):
S\ BC-NMR (100 MHz, DMSO-d6) § 164.1, 129.4, 123.0, 115.3, 109.3, 78.2,
N 77.1,51.0, 36.6, 31.6
/ NHs*Cl| IR (ATR) 3268, 1686, 1643, 1558, 1497, 1435, 1341, 1219, 1191, 1049, 989,
Z 931

HRMS calcd for C1oH13N,0, [M+H]": 194.10498. Found: 193.0983.
3.6 Synthesis of methyl 3-methylpyrrolo[1,2-a]pyrazine-8-carboxylate (102)

The corresponding salt 101 (0.260 g, 1.14 mmol) was dissolved in anhydrous DMA, then Cul (0.072
g, 0.38 mmol) and NEt; (0.9 ml) was added to the mixture, respectively. The temperature was brought
to 130 °C with the protection the reaction from the light. The reaction was monitored via TLC. After
reaction was stirred for 5 h, reaction mixture was cooled to the room temperature. Extraction was
performed with ethyl acetate (15 ml) and water (25 ml); however, shaking resulted in an emulsion
formation due to Cu®. The middle and upper layer were separated from lower layer. The emulsion
layer and aqueous layer were individually washed with ethyl acetate (2 x 10 ml). The combination of
organic phases that was dried over MgSO4 was evaporated under reduced pressure gave dark-viscous
crude (0.33 g). Column chromatography over silica gel eluted with ethyl acetate gave the unidentified
fraction (6 mg) first and the second isolated product was the desired pyrrolo[1,2-a]pyrazine 102 as a
brownish solid (35 mg, 17%), 110-111 °C.

o 'H-NMR (400 MHz, acetone-d6) & 9.32 (s, 1H, H-1), 8.17 (s, 1H, H-4), 7.60
OCH (d, Js7= 2.7 Hz, 1H, H-6), 7.23 (d, J76= 2.7 Hz, 1H, H-7), 3.87 (s, 3H, -OCHjy),
78 31 2.40 (s, 3H, -CH,);
6/ \ga BC-NMR (100 MHz, acetone-d6) & 165.6, 145.9, 139.7, 129.8, 118.5, 118.0,
SN 117.3,108.6, 52.4, 21.7;
4‘\(N2 IR (ATR) 1688, 1532, 1449, 1357, 1273, 1243, 1201, 1150, 1079, 1044, 943,
3CH 817, 738;
3 HRMS calcd for C1gH1oN,0, [M+H]": 191.0815. Found: 191.0850.

3.7 Synthesis of 1H-pyrrole-2-carbaldehyde (54)

To a solution of POCI; (34.25 g, 0.2234 mol) and DMF (19.61 g, 0.2683 mol) in dry ether (60 ml),
pyrrole (15.0 g, 0.2234 mol) was added dropwise in an ice-bath. After the reaction was stirred for 24
h, the mixture was quenched with sat. NaHCO; solution until pH was brought around 7. Then the
extraction was performed with ethyl acetate. (Each 200 ml aqueous phase was washed with 250 ml
ethyl acetate with 3 times.) Dried over MgSO, and then the evaporation of solvent under the reduced
pressure gave residue. Separation by column chromatography eluted with hexane:ethyl acetate (3:1)
gave successively 1H-pyrrole-2-carbaldehyde (54) as a needle shaped colorless crystals (13.5 g, 64%),
mp 44-45°C.

4 3

/ \2 0

3.8 Synthesis of 1-prop-2-ynyl-1H-pyrrole-2-carbaldehyde (110)

'H-NMR (400 MHz, CDCl3) & 10.47 (br's, 1H, -NH), 9.51 (d, J = 1.0, 1H,
-CH), 7.18 (br s, 1H, H-3), 7.01 (ddd, Js, = 3.8 Hz, Js3= 2.3 Hz, “J=1.5 Hz, 1H,
H-5), 6.35 (ddd, Jus = 3.8 Hz, J;s =2.4 Hz, *J = 2.0 Hz, 1H, H-4);

BC-NMR (100 MHz, CDCl3) § 179.4, 132.8, 126.9, 121.8, 111.3.

To a solution of 1H-pyrrole-carbaldehyde (54) (10.0 g, 0.1051 mol) in DMF (70 ml), NaH (4.08 g,
0.17 mol) was added slowly to this solution cooled in an ice-bath. After the completion of addition,
the reaction mixture was stirred for 30 min, whereupon propargyl bromide (16.2 g, 0.14 mol) was
carefully added drop by drop to the solution. The reaction mixture was stirred for 24 h-48 h.
Extraction with ethyl acetate (3 x 150 ml) afforded the residue, which was then separated by column
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chromatography on silica gel eluted with hexane:ethyl acetate (3:1) to yield 1-(prop-2-yn-1-yl)-1H-
pyrrole-2-carbaldehyde (110) as on orange liquid (9.94 g, 71%).

43 'H-NMR (400 MHz, CDCl) § 9.55 (d, J = 1.0 Hz, 1H, -CH), 7.25 Hz (br s, 1H,
5@2\(0 H-3), 6.95 (dd, Js = 4.0 Hz, Jsz= 1.7 Hz, 1H, H-5), 6.27 (dd, Jus= 4.0 Hz, J;5=
N’ 2.6 Hz, 1H, H-4), 5.20 (d, J = 2.6 Hz, 2H, -CH,), 2.46 (t, J = 2.6 Hz, 1H, -CH);
BC.NMR (100 MHz, CDCly) § 179.5, 131.0, 130.3, 124.9, 110.1, 77.4, 74.3,

=Z 38.1.

3.9 Synthesis of 1-prop-2-ynyl-1H-pyrrole-2-carbaldehyde oxime (111)

To the mixture of NH,OH.HCI and anhydrous Na,CO3 in ethanol (10 ml), a solution of 1-(prop-2-yn-
1-yl)-1H-pyrrole-2-carbaldehyde (101) (0.5 g, 3.76 mmol) in ethanol (10 ml) was added. The reaction
mixture was heated to 70 °C for 6 h. After the completion of reaction, ethanol was removed under
reduced pressure. H,O (20 ml) was added and the mixture was extracted with ethyl acetate (3 x 20
ml). Organic layers were combined and dried over MgSO, and finally evaporation of solvent under
reduced pressure gave 0.46 g the mixture of E- and Z-isomers of 1-prop-2-ynyl-1H-pyrrole-2-
carbaldehyde oxime 111 as a light orange crystals. (E-isomer 0.356 g, 64 % and Z-isomer 0.089 g,
16%. The corresponding yields were calculated according to isomers’ ratio in NMR.)

4 3 oHl "H-NMR (E-isomer) (400 MHz, CDCls) 5 8.11 (s, 1H, -CH), 6.99 (br dd, Js
. @QN’” = 3.6 Hz, Jss= 1.7 Hz, 1H, H-3), 6.45 (dd, Js, = 3.7 Hz, Js3= 1.7 Hz, 1H, H-

N’ 5), 6.21 (br dd, Jss= 3.6 Hz, Jue= 3.6 Hz, 1H, H-4), 5.00 (d, J = 2.5 Hz, 2H, -
\ CHy), 2.43 (t, = 2.5 Hz, 1H, -CH);
X IH-NMR (Z-isomer) (400 MHz, CDCls) § 7.56 (s, 1H, -CH), 7.37 (dd, Jss =

3.9 Hz, J35 = 1.6 Hz, 1H, H-3), 6.87 (br dd, Js4, = 3.5 Hz, Js3= 1.7 Hz, 1H, H-
5), 6.28 (dd, J;s= 3.5 Hz, J;3= 3.1 Hz, 1H, H-4), 4.78 (d, J = 2.5 Hz, 2H, -CH,), 2.48 (t, J = 2.5 Hz,
1H, -CH);

3C-NMR (E-isomer) (100 MHz, CDCl,) § 143.2, 125.8, 124.4, 115.7, 109.2, 78.2, 73.7, 38.4;
BC.NMR (Z-isomer) (100 MHz, CDCl5) 6 135.6, 124.6, 122.4, 119.7, 109.6, 77.2, 74.6, 37.0;

IR (ATR) 3225, 1730, 1630, 1047, 1295, 1244, 1078, 933, 818, 725, 665, 504;

HRMS for CgHgN,O [M+H]": 149.07094. Found: 149.072.1.

3.10 Synthesis of 3-methylpyrrolo[1,2-a]pyrazine 2-oxide (112)

E/Z-isomer of the corresponding oxime 111 (100 mg, 0.675 mmol) was dissolved in CHCI; (3 ml) and
AuCl; (6.1 g, 3 mol%) was added in this solution. Reaction mixture was stirred for 20-24 h at room
temperature. Then reaction solvent was evaporated under the reduced pressure. The crude gave the N-
oxide 112 (97 mg, 97%). In order to obtain the analytically pure sample, purification column
chromatography eluted with ethyl acetate was performed, which afforded 112 as a yellow solid, 62
mg. (62%) 112 was further purified by recrystallization from CHCI; into the diethyl ether atmosphere
to give snowflake type colorless crystals, mp 78-79 °C.

) '"H-NMR (400 MHz, CDCls) & 8.74 (br s, 1H, H-1), 7.65 (m, 1H, H-4), 7.33 (m,
7\ sa 1H, H-8), 6.81 (dd, Jg; = 4.1 Hz, Jgg= 2.5 Hz, 1H, H-6), 6.73 (m, 1H, H-7), 2.40
oSN 1 (d, J=0.9 Hz, 3H, -CH,);
&)

BC.NMR (400 MHz, CDCly) 6 144.4, 135.2, 127.4, 114.8, 114.5, 114.2, 103.0,
4\\(”2\06 20.7;

3CH3 IR (ATR) 1629, 1302, 1036, 926, 721, 421;
HRMS for CgHgN, [M+H]": 133.07602. Found: 133.0760.

3.11 General procedure for Sonogashira couplings (116, 117, 118)

Cuprous iodide (17.05 mg, 0.089 mmol), triphenylphosphine (89 mg, 0.339 mmol), palladium acetate
(17.05 mg, 0.076 mmol) and dry diisopropylamine (14 ml, 0.138 mmol) were added in a solution of
aryl halide (6.83 mmol) in dry THF (50 ml) under nitrogen atmosphere. Then 1-(prop-2-yn-1-yl)-1H-
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pyrrole-2-carbaldehyde (107) (1 g, 7.51 mmol) diluted in dry THF (5 ml) was added in this reaction
mixture at room temperature. The mixture was heated to reflux temperature and stirred for 24 h. After
cooling, solvent was removed under reduced pressure. H,O (50 ml) was added to the residue and
extracted with ethyl acetate (3 x 50 ml) and lastly the combined organic layers washed with brine.
Dried over MgSQO, and removal of solvent under reduced pressure gave the crude. Separation of the
product with column chromatography on silica gel eluted with hexane:ethyl acetate (3:1) afforded the
compounds 116-118.

1-(3-Phenylprop-2-ynyl)-1H-pyrrole-2-carbaldehyde (116): obtained as a yellowish liquid (0.943
0, 66 % isolated yield).

4 3

T\> o| "H-NMR (400 MHz, CDCl3) § 9.59 (d, J =0.9 Hz, 1H, -CH), 7.47-7.43 (m,
SQ\( 5H, -CH), 7.37 (br s, 1H, H-3), 6.98 (dd, Js; = 4.0 Hz, Js3= 1.7 Hz, 1H, H-5),
H 6.30 (dd, Jss = 4.0 Hz, J43= 2.7 Hz, 1H, H-4), 5.43 (s, 1H, -CH,);
=z BC-NMR (400 MHz, CDCls) & 179.5, 131.7, 131.1, 130.4, 128.7, 128.3,
124.9,122.1, 110.0, 86.0, 82.6, 38.9.

1-[3-(4-Methoxyphenyl)prop-2-yn-1-yl]-1H-pyrrole-2-carbaldehyde  (117): obtained as a
yellowish liquid (0.434 g, 27% isolated yield).

T\, o "H-NMR (400 MHz, CDCIs) § 9.59 (d, J = 0.9 Hz, 1H, -CH), 7.47-7.43
5@\( (m, 5H, -CH), 7.37 (br s, 1H, H-3), 6.98 (dd, Js; = 4.0 Hz, Js3= 1.7 Hz,
' H | 1H, H-5), 6.30 (dd, Jss = 4.0 Hz, Js3= 2.7 Hz, 1H, H-4), 5.43 (s, 1H, -

Z CHy);
BCINMR (400 MHz, CDCly) 5 179.4, 160.0, 133.2, 131.0, 130.3, 124.8,
0 114.1, 113.8, 109.8, 86.0, 81.2, 55.1, 38.9;
HsC IR (ATR) 2928, 1604, 1508, 1465, 1298, 1244, 1172, 1075, 1027, 939,

829, 723, 604, 534,
HRMS for Cy5sH13NO, [M+H]": 240.10191. Found: 240.1037.

1-[3-(3-Nitrophenyl)prop-2-yn-1-yl]-1H-pyrrole-2-carbaldehyde (118): obtained as a pale yellow
powder (0.733 g, 42% isolated yield), mp 107-108 °C.

52/—§2\(0 "H-NMR (400 MHz, CDCl) 8 9.59 (d, J = 0.9 Hz, 1H, -CH), 8.26 (br dd,
N Jo= 3.5 Hz, Jg5-= 1.8 Hz, 1H, H-6), 8.17 (ddd, J,5- = 8.3 Hz, J,» = 2.2
g Hz, 3,5= 1.0 Hz, 1H, H-4'), 7.73 (br ddd, J;, = 8.3 Hz , J3 = 7.7 Hz,

Jye- = 1.1 Hz, 1H, H-3), 7.50 (br t, J = 8.0, 1H, H-), 7.28 (br s, 1H, H-3),
7.00 (ddd, Js, = 4.3 Hz, Jse= 1.9 Hz, J = 0.7 Hz, 1H, H-5), 6.32 (ddd, Jss=
3.8 Hz, Js3= 2.8 Hz, J = 0.7 Hz, 1H, H-4), 5.45 (s, 2H, -CH,);

H

“
NO,

B3C-NMR (400 MHz, CDCl;) 5 179.6, 148.0, 137.4, 131.1, 130.4, 129.4, 126.6, 125.0, 123.9, 123.4,
110.3, 85.7, 83.1, 38.7,

IR (ATR) 1648, 1526, 1473, 1401, 1369, 1348, 1311, 1216, 1073, 904, 874, 805, 770, 732, 671, 606,
522.

3.12 General procedure for oxime generation (119,120, 121)

A solution of the starting compound 116 to 118 (1 equiv.) in ethanol was added to the mixture of
NH,OH.HCI (2 equiv.) and anhydrous Na,COj3 (2 equiv.) in ethanol. The reaction mixture was heated
to 70 °C for 7 h. After the completion of reaction, ethanol was removed under the reduced pressure,
then H,O (20 ml) was added to the residue. The mixture was extracted with ethyl acetate (3 x 20 ml).
Organic layers were combined, washed with brine, dried over MgSO, and finally evaporation of
solvent under reduced pressure gave the mixtures of E- and Z-isomers of the corresponding oximes
119 to 121.
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1-(3-phenylprop-2-ynyl)-1H-pyrrole-2-carbaldehyde oxime (119): obtained as a pale yellow
powder (0.841 g, 3.75 mmol), E-isomer in a 62% yield and Z-isomer in a 31% yield.

T 'H-NMR (E-isomer) (400 MHz, CDCly) § 8.16 (s, 1H, -CH), 7.49-7.42
TV Newon| (M 2H),7.33-7.30 (m, 3H), 7.09 (br dd, Jss= 2.8 Hz, Js= 1.7 Hz, 1H,

SQ\( H-3), 6.49 (dd, Js, = 3.7 Hz, Jsa = 1.7 Hz, 1H, H-5), 6.23 (dd, Jss= 3.7

' Hz, Js3= 2.8 Hz, 1H, H-4), 5.21 (s, 2H, -CH,);

= IH-NMR (Z-isomer) (400 MHz, CDCls) & 7.66 (s, 1H, -CH), 7.49-7.42

(m, 2H), 7.39 (dd, Jss = 3.8 Hz, J3= 1.5 Hz, 1H, H-3), 7.33-7.30 (m,

3H), 6.95 (br dd, Js; = 2.8 Hz, Js3 = 1.7 Hz, 1H, H-5), 6.29 (dd, Js;5= 3.8

Hz, Jus= 2.8 Hz, 1H, H-4), 5.00 (s, 2H, -CH,):

BC-NMR (100 MHz, CDCly) § 143.3, 131.8 (br), 128.8, 128.6, 128.3, 128.2, 125.8, 124.6, 124.5,

122.3,121.9, 119.6, 109.4, 109.0 115.5, 86.0, 85.5, 83.4, 82.5, 39.2;

IR (ATR) 2844, 1637, 1479, 1405, 1328, 1289, 1227, 1128, 1075, 924, 846;

HRMS for C1,H1,N,0 [M+H]* :225.10224. Found: 225.1062.

1-[3-(4-Methoxyphenyl)prop-2-ynyl]-1H-pyrrole-2-carbaldehyde oxime (120): obtained as a
yellowish viscous liquid (0.388 g, 1.52 mmol), E-isomer in a 56 % yield, Z-isomer in a 28 % yield.

i3 'H-NMR (E-isomer) (400 MHz, CDCl5) &: 8.15 (s, 1H, -CH), 7.68

5@2\7NMOH (d, J=87 HZ, 2H, -CH), 7.08 (bl’ dd, J34: 2.8 HZ, J35: 1.7 HZ,

N+ 1H, H-3), 6.83 (d, J = 8.8 Hz, 2H, -CH), 6.47 (dd, Js; = 3.8 Hz, Js;

= 1.7 Hz, 1H, H-5), 6.21 (dd, Ju;5= 3.7 Hz, J,5= 2.8 Hz, 1H, H-3),

5.17 (s, 2H, -CH,), 3.80 (s, 3H, -OCHs);

o 'H-NMR (Z-isomer) (400 MHz, CDCls) & 7.65 (s, 1H, -CH), 7.38

HaG (d, J = 4.8 Hz, 2H, -CH), 7.40 (br dd, J3;= 2.9 Hz , Jss= 1.8 Hz,
1H, H-3), 6.94 (br dd, Js;, =3.7 Hz, Js3= 1.8, 1H, H-5), 6.28 (dd,

Jis= 3.7 Hz, J;3= 2.9 Hz, 1H, H-4), 4.97 (s, 2H, -CH,), 3.80 (s, 3H, -OCH);

B3C-NMR (100 MHz, aceton-d6) & 162.0, 161.9, 143.7, 136.9, 135.0, 134.9, 134.9, 127.2, 127.1,

125.6, 125.2, 120.0, 116.3, 116.0, 115.9, 115.9, 115.9, 86.6, 86.2, 84.9, 84.5, 56.6, 40.3, 39.0, 31.9;

IR (ATR) 2928, 1604, 1508, 1465, 1289, 1244, 1172, 1075, 1027, 939, 829, 723, 604, 534.

=

1-[3-(3-nitrophenyl)prop-2-ynyl]-1H-pyrrole-2-carbaldehyde oxime (121): obtained as pale
yellow solid (0.690 g, 2.83 mmol), E isomer in a 60 % vyield, Z isomer in a 30 % yield.

4__3 'H-NMR (E-isomer) (400 MHz, CDCl3) § 8.27 (br s, 1H, -CH), 8.17
o Nz N=OH| (1 1H) 812 (m, 1H), 7.72 (m, 1H), 7.49 (m, 1H), 7.02 (br s, 1H, H-
N 3), 6.45 (br dd, Js, = 2.1 Hz, 1H, H-5), 6.23 (br dd, J,;5s=2.1 Hz, 1H, H-
4),5.27 (s, 1H, -CH,);

'H-NMR (Z-isomer) (400 MHz, CDCls) &: 8.26 (br s, 1H, -CH), 8.18
(m, 1H), 7.72 (m, 1H), 7.50 (m, 1H), 7.44 (br s, 1H, H-3), 7.01 (br s,
1H, H-5), 6.34 (br dd, 1H, H-4), 5.07 (s, 1H, -CH,);

BC-NMR (100 MHz, aceton-d6) &: 150.2, 143.7, 139.4, 139.4, 132,
132, 128.0, 127.9, 127.5, 127.4, 126.5, 126.0, 125.7, 125.4, 125.2, 125.1, 120.6, 116.3, 110.8 (br),
89.4, 88.6, 84.3, 83.7, 40.3, 38.9;

IR(ATR) 3080, 1646, 1527, 1451, 1390, 1346, 1099, 932, 899, 871, 834, 784, 734, 670, 531, 408;
HRMS for C14H1:N305 [M+H]* :270.08732. Found: 270.0900.

=

O,N

3.13 General procedure for oxime-oxime transformation reactions (122, 130, 131)

Starting material 119 to 121 (2.0 mmol) was dissolved in CHCI; (5 ml). AuCl; (3 mol%) was added in
this solution and the reaction mixture was stirred for 24 h at room temperature. Evaporation of the
solvent under reduced pressure gave the residue. Mixture of E/Z-isomers of 122 to 131 was purified
with column chromatography on silica gel eluted with indicated solvent systems below.
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1-[(3E/Z)-3-(Hydroxyimino)-3-phenylpropyl]-1H-pyrrole-2-carbaldehyde (122): Ratio of isomers
according to *H-NMR gave the formation of E-isomer yielded as 85% and the formation of Z-isomer
yielded as 6%. Purification of the residue (0.288 g) by column chromatography on silica gel with
hexane:ethyl acetate (3:1) was carried out to afford 122 as a pale yellow solid.

IH-NMR (E-isomer) (400 MHz, CDCly) & 9.56 (br s, 1H, -CH), 7.58-7.54

3
N+ OH
NJ\I“
%

(m, 2H), 7.36-7.34 (m, 3H), 6.91-6.89 (M, 2H), 6.15 (dd, Jus = 3.8 Hz, Jus=
2.7 Hz, 1H, H-4), 4.64 (t, J = 7.1 Hz, 2H, -CH,), 3.29 (t, J = 7.1 Hz, 2H, -
CHy);

IH-NMR (Z-isomer) (400 MHz, CDCl) & 9.52 (d, J = 0.7 Hz, 1H, -CH),
7.53-7.50 (m, 2H), 7.43-7.39 (m, 3H), 6.95-6.92 (m, 2H), 6.19 (dd, Jss = 4.0
Hz, Js3= 2.5 Hz, 1H, H-3), 4.51 (t, J = 7.1 Hz, 2H, -CH,), 3.09 (7.1 Hz);
BC-.NMR (E-isomer) (100 MHz, CDCly) § 179.4, 157.0, 134.9, 131.9,
131.2, 129.6, 128.6, 126.2, 125.1, 109.8, 45.6, 29.0;

IR (ATR) 3063, 1659, 1480, 1403, 1362, 1321, 1213, 1068, 1026, 937, 743, 681, 609, 466.

1-[(3E/Z)-3-(Hydroxyimino)-3-(4-methoxyphenyl)propyl]-1H-pyrrole-2-carbaldehyde (130):
Ratio of isomers according to ‘H-NMR gave the formation of E-isomer yielded as 38% and the
formation of Z-isomer vyielded as 38%. Purification of the residue (0.228 g) by column
chromatography on silica gel with hexane:ethyl acetate (3:1) was carried out to afford 122 as a viscous
yellow liquid.

4 3

@2\%0 IH-NMR (400 MHz, CDCly) & 9.55 (s, 1H, -CH), 9.53 (s, 1H, -CH), 7.93-
N7 o | 789 (m, 2H), 7.55-7.52 (m, 2H), 7.14 (br s, 1H, -CH), 6.93 (dd, J = 4.0 Hz,
N J =16 Hz, 1H), 6.92-6.89 (m, 4H), 6.89-6.87(m, 3H), 6.85 (m, 1H), 6.18

/ (dd, J=4.0 Hz, J=2.5Hz, 1H, -CH), 6.14 (dd, J=4.0 Hz, J = 2.7 Hz, 1H, -
CH), 4.70 (t, J = 6.4 Hz, 2H, -CH,), 4.61 (t, J = 7.2 Hz, 1H, -CH), 3.84 (s,
3H, -OCHy), 3.80 (s, 3H, -OCH5), 3.43 (t, J = 6.4 Hz, 2H, -CH), 3.24 (t, J =
7.2 Hz);

OMe| 13c.NMR (100 MHz, CDCly) 6: 178.4, 178.3, 162.7, 159.6, 155.1, 133.0,
131.0, 130.0, 129.4, 129.1, 128.6, 126.7, 126.5, 126.3, 124.4, 124.1, 113.0, 112.9, 112.7, 108.8, 54.4,
54.2,44.7, 43.4, 38.3, 27.8;

IR (ATR) 2838, 1654, 1598, 1512, 1402, 1364, 1320, 1249, 1169, 1077, 1027, 832, 745, 594;

HRMS for Cy5H16N,05 [M+H]":273.12337. Found: 273.1236.

1-[(3E/Z)-3-(hydroxyimino)-3-(3-nitrophenyl)propyl]-1H-pyrrole-2-carbaldehyde (131): Ratio of
isomers according to "H-NMR gave the formation of E-isomer yielded as 73% and the formation of Z-
isomer yielded as 15%. Purification of the residue (0.134 g) by column chromatography on silica gel
with hexane:ethyl acetate (2:1) was carried out to afford 131 as a pale yellow solid.

4__3

o Do P

N

'"H-NMR (E-isomer) (400 MHz, CDCls) & 9.55 (s, 1H, -CH), 8.31-8.29
(m, 1H), 8.15 (m, 1H), 7.92-7.88 (m, 1H), 7.49 (t, J = 8.0 Hz, 1H, -CH),
OH 6.90-6.88 (m, 2H), 6.12 (br dd, J = 3.2 Hz, 1H, -CH), 4.65 (t, J = 7.0 Hz,
2H, -CH,), 3.31 (t, J = 7.0 Hz, 2H, -CH,);

'H-NMR (Z-isomer) (400 MHz, CDCl;) & 9.49 (s, 1H, -CH), 8.21 (m,
2H), 7.81-7.77 (m, 1H), 7.58 (m, 1H), 6.93-6.91 (m, 2H), 6.19 (br dd, J =
3.3 Hz, 1H, H-4), 454 (t, J = 7.1 Hz, 2H, -CH,), 3.1 (t, J = 7.1 Hz, 2H, -
CHy);

BC-NMR (E-isomer) (100 MHz, CDCl,) &: 179.7, 155.0, 137.0, 132.0, 131.8, 131.1, 129.4, 126.0,
125.5,123.8,121.0, 110.1, 45.5, 28.5;

IR (ATR) 2920, 1625, 1524, 1476, 1401, 1343, 1077, 1030, 966, 733, 678, 605;

HRMS for C14H13N30, [M-H] :286.08333. Found: 286.0847.

1

NO,
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3.14 Synthesis of 1-{(3E/Z)-3-[(acetyloxy)imino]-3-phenylpropyl}-1H-pyrrole-2-carbaldehyde

(129)

129 (72 mg, 0.29 mmol) was successively dissolved in pyridine (5 ml) and then acetic anhydride (88
mg, 0.87 mmol) was introduced to the solution. The reaction mixture was stirred overnight at room
temperature. Then H,O (10 ml) was added in the reaction mixture, which was extracted with ethyl
acetate (3 x 10 ml). The combined organic phases was washed with 2M HCI, 5% NaHCO,, and brine,
respectively, and dried over MgSO,. Removal of the solvent under the reduced pressure gave E/Z-
isomers as a yellow viscous liquid (52 mg, 62%). Ratio of isomers according to *H-NMR gave the
formation of E-isomer yielded as 59% and the formation of Z-isomer yielded as 3%.

4 3

o[ Ve 0

7

Ny O~

O

CH,

607,

'H-NMR (E-isomer) (400 MHz, CDCly) &: 9.54 (br s, 1H, -CH), 7.70-7.67
(M, 2H, -CH), 7.43-7.35 (m, 3H, -CH), 6.90 (dd, Js, = 4.0 Hz, Jos= 1.7 Hz,
1H, H-3), 6.77 (br s, 1H, H-5), 6.14 (dd, Jss= 4.0 Hz, Js3= 2.5 Hz, 1H, H-
4), 453 (t,J = 6.9 Hz, -CH,), 3.34 (t, J = 6.9 Hz, -CH},), 2.21 (s, 3H, -CH,)
BC-NMR (E-isomer) (100 MHz) &: 179.2, 168.4, 162.6, 133.2, 1315,
131.1, 130.1, 128.6, 127.1, 125.2, 109.9, 46.0, 30.0, 19.6;

IR (ATR) 1764, 1654, 1479, 1404, 1365, 1321, 1195, 997, 930, 748, 693,

HRMS for CysH16N,03 [M+Na]": 307.1053. Found 307.1085.
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CHAPTER 4

CONCLUSION

Pyrrole skeleton has attracted chemists not only for its vital role in natural products but also for its
broad applications in material sciences and playing as a key role for the construction of some
polycyclic heteroaromatic molecules. A large number of studies concerning pyrroles present in the
literature. For the last decades, particularly, using alkyne functionality substituted pyrrole ring, have
gained significance among diverse synthetic approaches for the generation of heterobicyclic aromatic
molecules. In this manner, we aimed obtaining pyrrolo[1,2-a]pyrazine moiety, a pyrrole fused
heterocyclic molecule, starting from N-propargylic substituted pyrroles by metal-catalyzed heteroatom
cyclization.

In the first part of this thesis, we pursued a purpose for the development of pyrrole[1,2-a]pyrazine
derivatives starting from N-propargylic substituted pyrroles. To do so, we first achieved to synthesize
our key compound N-propargylic substituted pyrrole dicarboxylate 80, inspiring from a well-known
substituted furan diester formation reaction, namely as Feist-Benary reaction. We modified Feist-
Benary reaction by introducing ammonia or a primary amine to the mixture of 1,3-dicarboxylate 76,
chloroacetone 77 and a base, from which we successively got the desired product 80. Then the
proceeding reaction steps included conversion of ester group attached to C-2 of pyrrole ring to the
amine group. We successfully performed this conversion via Curtius rearrangement to furnish our key
compound amine 101. Lastly, Cu-(l) catalyzed and base-assisted heteroatom 6-exo-dig cyclization
afforded pyrrole[1,2-a]pyrazine derivative 102 (Scheme 50).

COOMe COOMe
g_g\/COOMe A\
N > N \
\ N
A S
80 102
Scheme 50

6-Membered ring closure occurred to form 102 due to its possessing aromaticity and electrophilicity
of the middle carbon of allene, which was formed via propargyl-allene isomerization in the presence
of base. Therefore second part of this thesis was aimed to investigate how the presence of two
different nucleophiles affected the ring formation. We chose 1-(prop-2-yn-1-yl)-1H-pyrrole-2-
carbaldehyde oxime (111) as a key molecule. According to our result, AuCl; assisted cyclization gave
solely 6-exo-dig cyclization product, pyrrolo[1,2-a]pyrazine N-oxide derivative 112, which is not
described in the literature (Scheme 51).

U\//NNOH [

N AuCl3 N\ \N@ o
=0
s S
111 112
Scheme 51

We also performed the reaction shown in Scheme 49 with other metal catalysts, such as Ag*, Cu” and
Au’ to search whether some other metal catalyst would provide different product rather than 112.
According to our results, pyrrolo[1,2-a]pyrazine N-oxide derivative 112 was the only product that was
formed.
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For the above reaction shown in Scheme 49, Au®* which is a « electrophile, coordinated to triple bond
for the activation of B-carbon. In the last part of this thesis, we tested the effect of an electron donating
or withdrawing group attached to the terminal alkyne. We chose to perform Sonogashira coupling to
introduce phenyl group to the terminal alkyne. After we successively obtained coupling product 116,
which was reacted with hydroxyl amine to give 119. The formed oxime 119 underwent AuCls-
catalyzed cyclization reaction. The reaction, however, went in a different side. We observed that
oxime group attached to C-2 of the pyrrole ring moved to the B-carbon of propargyl group after a
series of steps, which gave 122 (Scheme 52). The mechanism of this transformation has not been
enlightened yet. Our future direction primarily includes conducting a mechanistical study on this
transformation, and trying same reaction with an alkynyl substituted N-propargyl pyrrole oximes to
study the effect of alkyl group to the activation of triple bond by a metal catalyst.

Q\4N”OH / \__o

AUC|3 N N JJ\‘OH
) 6
119 122
Scheme 52

In this way, we developed a new concise methodologies for the construction of pyrrolo[1,2-a]pyrazine
derivatives, and we presented a new type of transformation, which is called oxime transformation, to
the literature.
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Figure 7 "H-NMR Spectrum of Compound 80
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Figure 25 *C-NMR Spectrum of Compound 110
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Figure 35 *C-NMR Spectrum of Compound 117
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