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Supervisor, Scientific Computing

Examining Committee Members:

Prof. Dr. Bülent Karasözen
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ABSTRACT

ANALYSIS OF THRESHOLD DYNAMICS OF EPIDEMIC MODELS IN A
PERIODIC ENVIRONMENT

Evcin, Cansu

M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Ömür Uğur

February 2013, 48 pages

Threshold dynamics used to control the spread of the disease in infectious dis-
ease phenomena has an overwhelming importance and interest in mathematical
epidemiology. One of the famous threshold quantity is known to be the basic
reproduction ratio. Its formulation as well as computation is the main concern
of infectious diseases.

The aim of this thesis is to analyze the basic reproduction ratio in both au-
tonomous and periodic systems via defining R0 as the spectral radius of the next
generation operator.

This thesis presents the vector host model for the diseases Dengue fever and avian
influenza. As emerging of the diseases shows periodicity, systems of periodic
ordinary differential equations are considered for both types of diseases. Simple
implementation of the time-averaged systems gives rise to the comparison of these
with the periodic systems. Thus, we investigate the occurence of the existence
of underestimation or overestimation of the basic reproduction ratio in time-
averaged systems.

Keywords : Threshold dynamics, basic reproduction ratio, periodicity, compart-
mental models, time averaged systems
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ÖZ

EPİDEMİK MODELLERİN EŞİK DEĞER DİNAMİĞİNİN PERİODİK
ÇEVREDE ANALİZİ

Evcin, Cansu

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Ömür Uğur

Şubat 2013, 48 sayfa

Bulaşıcı hastalıklarda hastalığın yayılmasını kontrol etmek için kullanılan eşik
değer dinamiği matematiksel epidemiolojide büyük bir öneme ve ilgiye sahiptir.
En bilinen eşik değerlerinden biri, esas çoğalma oranıdır. Onun hesaplanmasının
yanı sıra formüllenmesi de bulaşıcı hastalıkların temel sorunudur.

Bu tezin amacı, R0’yı yeni nesil operatörün spektral yarıçapı olarak tanımlayarak
hem zamandan bağımsız hem de periodik zamanlı sistemlerde esas çoğalma oranını
analiz etmektir.

Bu tez dang humması ve kuş gribi gibi hastalıklar için vektör-konak modelini sun-
maktadır. Bulaşıcı hastalıkların ortaya çıkışı periyodiklik gösterdiğinden, bu iki
hastalık için de periyodik adi diferansiyel denklemler gözönüne alındı. Zaman or-
talamalı sistemlerin uygulama kolaylığı onları periyodik sistemlerle karşılaştırmaya
yöneltti. Bu yüzden, esas çoğalma oranının zaman ortalamalı sistemlerde az tah-
mininin ya da aşırı tahmininin varlığının oluşumunu sorguladık.

Anahtar Kelimeler : eşik değer dinamiği, esas çoğalma oranı, periodiklik, kom-
partmansal modeller, zaman ortalamalı sistemler
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CHAPTER 1

INTRODUCTION

Mathematical epidemiology provides a way to understand the foundational struc-
tures that effect the spread of diseases and control strategies to prevent the spread
of diseases. This branch differs from the most branches of epidemiology as it
does not require experimental validation of the models investigated. Moreover,
because of the unethical reasons, experiments become impossible to implement
and compare strategies for anticipated epidemic, and it is almost inapplicable to
deal with a disease outbreak in real time within an experimental setting. Thus,
mathematical epidemiology gains great importance as a possible tool for dealing
with diseases, specially with the infectious ones.

The first known development of mathematical epidemiology to infectious diseases
is introduced by Daniel Bernuolli in [6] in 1760 as a defense of the study of vacci-
nation against smallpox. After a long break, the first contribution in this branch
seems to be made by P. D. En’ko between the years 1873 and 1894 by (see [13],
for instance). Sir Ross by [24], Hamer by [16], McKendrick and Kermack by
[1, 2, 3] establish the fundamentals of epidemiology constructed on compartmen-
tal models between 1900 and 1935. Compartmental models is one for which the
individuals in a population are classified into compartments depending on their
status with regard to the infection under study [11]. The basic and advanced
material for the study of compartmental models can be found in [4, 8, 17, 23, 25].

The greatest concern for mathematical epidemiology is the threshold phenomena.
The computation of nondimensional quantities which determine the nature of the
disease dynamics have a long tradition in epidemiology [10]. Among all quanti-
ties, the basic reproduction ratio R0 is arguably the most important quantity in
infectious disease epidemiology [12]. This quantity can be defined as the expected
number of secondary cases produced, in a completely susceptible population, by
a typical infected individual during its entire period of infectiousness [11]. The
famous threshold criterion then claims that the disease can invade if R0 > 1,
whereas it cannot if R0 < 1.

The definition of R0 is given by a next generation matrix (or operator) in [11].
Diekmann et al. [11] states that one can define a matrix, denoted by K, that
relates the number of newly infected individuals in the various categories in con-
secutive generations. In the context, such a matrix is called the next generation
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matrix and R0 is defined to be the dominant eigenvalue of this matrix. Defining
and computing of R0 is studied by many researchers, as in [7, 9, 26, 14].

Another important concern in infectious disease epidemiology is periodicity: os-
cilatory behavior of the disease dynamics. This dynamics of infectious diseases
can occur because of some factors such as seasonal weather changes, periodic
gathering of people, or vaccination. Specificially, due to weather changes, con-
tact rates for influenza may vary seasonally. Therefore, periodicity becomes an
important issue for mathematical epidemiology. As a result, periodic models for
infectious diseases are considered in many works as in [18] and [28].

This thesis brings together comparisons of basic reproduction ratios of time-
averaged and periodic systems conducted by the articles [26] and [27]. In this
thesis, we make use of these articles while using the notations and results related
to basic reproduction ratios of time-averaged and periodic systems as well.

As a first contribution of this thesis, pest control strategy is applied to the au-
tonomous model of Dengue fever with a vector-host model and differences between
basic reproduction ratios of two systems is analyzed. Second, avian influenza is
modeled by a nonautonomous vector-host model considering periodicity. More-
over, threshold dynamics of time-averaged and periodic system is analyzed and
overestimation and underestimation cases of R0 is examined.

This study is organized as follows: In Chapter 2, we review the foundations of
dynamical systems. As we will be studying ordinary differential equations as a
particular case of dynamical systems, we review the fundamental theory about
flows and properties of ODEs. Lastly, we introduce the stability theory for ODEs.

Chapter 3 focuses on the periodicity in continuous dynamical systems. We review
the Floquet theory and introduce the periodic solutions in linear systems.

In Chapter 4, we introduce the study of compartmental epidemic models de-
scribed by autonomous systems. In addition to the vector-host model in [26],
we introduce a pest control strategy as an eradication policy and examine its
effectiveness on the basic reproduction ratio R0.

After having reviewed the study in [27], Chapter 5 introduces the avian influenza
as an epidemic model and adapts it to vector-host model. We compute R0 of
both time-averaged and periodic systems. Then we observe the overestimations
and underestimations of R0 in the time-averaged system.

As a conclusion in Chapter 6, we give a short summary of the overall study in
this thesis and possible future work that can be carried out in the compartmental
epidemic models of mathematical epidemiology.
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CHAPTER 2

DYNAMICAL SYSTEMS

2.1 Introduction

This chapter reviews the dynamical systems in detail as discrete and continuous
dynamical systems inspired by Martelli [20] and Meiss [21]. Besides, we give a
revision of the fundamental theory of differential equations and flows as explained
thoroughly in Liu [19] and Miller [22]. This revision includes the existence of
solutions, linearization and stability of differential equations.

A dynamical system is defined as an evolution rule with respect to time on a state
space or phase space. In this sense, a state space is the set of all possible states
of a dynamical system and any abstract set could be a state space. It is often
called as a phase space when the state space is finite.

Since the fundamentals of a dynamical system are its evolution rule, phase space
and the set of times, it can be categorized accordingly: an evolution rule of a
dynamical system could be deterministic or stochastic. Thus, a dynamical system
is called deterministic if its evolution rule is a function which takes a given state
to a unique state, otherwise it is nondeterministic. Dynamical systems that are
nondeterministic are said to be stochastic. Considering phase space, a dynamical
system could have a continuous phase spaceM , which is typically R

n or a discrete
phase space which can illustrated in the heads-tail model of a coin toss.

Another classification type is the set of times. If the set of times is discrete, such
as a subset of integers, then the system is called discrete dynamical system or
cascade. If the set of times is continuous, such as R, then the system is called
continuous dynamical system or, sometimes, flow.

Assuming the evolution rule is deterministic, formally a dynamical system is
represented as a function of time:

ϕ : T ×M →M,

where T denotes the set of time and M denotes the phase space. In order to call
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a map ϕ as a dynamical system, there are some properties that ϕ should satisfy:

(i) ϕ(t, x) = x, for every x ∈M (identity property),

(ii) ϕ(s, ϕ(t, x)) = ϕ(t+ s, x), for all t, s ∈ T and x ∈M (group property).
(2.1)

If a continuous dynamical system satisfies these properties for the set of time
T = R, then it is called a complete flow, and if it satisfies for T = R

+ then it is
called a semi-flow. Considering cascades, if a discrete dynamical system satisfies
these properties for the set of time T = Z then it is called a complete cascade,
and if it satisfies for T = N then it is called a semi-cascade. In the sequel, we
call complete flows as flows and complete cascades as cascades, unless otherwise
is stated.

An orbit or a trajectory of a state x is the time-ordered collection of states that
follows from x using the evolution rule. It is formulated as a union of its two
subsets as forward and backward orbits:

Γ(x) = Γ+(x) ∪ Γ−(x),

where

Γ+(x) = {ϕ(t, x) : t ≥ 0} ,

Γ−(x) = {ϕ(t, x) : t ≤ 0} .

If the orbit consists of only a single state x then it is called an equilibrium. An
orbit ΓT (x) is called a periodic orbit if there is a time T such that the state
returns back to itself at time T , that is

ϕ(T, x) = x.

Regarding cascades, the evolution rule of a cascade is given by a difference equa-
tion which defines recursively a sequence and mostly defined by

xn+1 = f(xn),

x0 = ξ.

where f is a map such that f : M ⊂ R
n → M , and ϕ(n, x0) := xn = fn(x0) for

all n ∈ Z. The orbit of a cascade with initial state x0 is

Γ(x0) = {. . . , x−1, x0, x1, . . . , xn, . . .} .

A periodic orbit of period T consists of only T states and its given as

ΓT (x0) = {x0, x1, . . . , xT−1} .

If x∗ is an equilibrium then Γ(x∗) = x∗. To illustrate these abstract definitions,
we present an example for the cascades.
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Example 2.1. Consider the difference equation

xn+1 = x3n,

where the map f is then x 7→ x3. The orbit of this cascade with initial state x0 is

Γ(x0) =
{

. . . , f−1(x0), x0, f(x0), . . . , f
n(x0)

}

.

If we look for the equilibriums of this system, we solve the equation f(x) = x as

x = x3,

0 = x(x2 − 1).

Then there are three equilibriums as x = 0, x = −1 and x = 1. Moreover, we
show that ϕ(n, x) satisfies the conditions (2.1):

(i) ϕ(0, x0) = f 0(x0) = x0,

(ii) ϕ(n, ϕ(m,x0)) = ϕ(n+m,x0) for all n,m ∈ Z is also satisfied by

ϕ(n, ϕ(m,x0)) = ϕ(n, fm(x0)) = ϕ(n, x3m0 ) = fn(x3m0 ) = x3mn
0

= fn+m(x0) = ϕ(n+m,x0).

Considering flows, the evolution rule of a flow is given, in most cases, by an initial
value problem which can be represented as

ẋ =f(t, x),

x(0) =x0,

where f is a function such that f : R ×M → M and x(t) = ϕ(t, x0). The orbit
of a flow with initial state x0 is

Γ(x0) = {x(t) : ẋ = f(t, x), x(0) = x0, t ∈ R} .

In order to find an equilibrium of a continuous dynamical system, we look for the
solutions of the equation f(t, x) = 0 for all t ∈ R. Below is a simple example to
simplfy this discussion about flows.

Example 2.2. Consider the ordinary differential equation

ẋ = ax, a ∈ R,

with the initial condition x(0) = x0 ∈ R
n. The solution of the differential equation

is x(t) = x0e
at = ϕ(t, x0). It is easy to see that ẋ = 0 if and only if x = 0, that

is an equilibrium of this system is x = 0. Moreover, we can show that ϕ(t, x)
satisfies the conditions (2.1):

(i) ϕ(0, x0) = x0e
a.0 = x0,

(ii) ϕ(t, ϕ(s, x0)) = ϕ(t+ s, x0) is also justified by

ϕ(t, ϕ(s, x0)) = ϕ(t, x0e
as) = x0e

a(s+t) = ϕ(t+ s, x0).

Throughout this work we will be interested in mostly the deterministic continuous
dynamical systems, therefore, we recall more detailed information about flows and
ordinary differential equations in the following section.
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2.2 Flows and Differential Equations

In the previous section, we see that a flow is defined by an ordinary differential
equation. However, every ordinary differential equation does not define a dynam-
ical system since its solution may not be defined for all t ∈ R or may not be
unique. Therefore, we will make use of theorems in [19] to be able to qualify an
ODE in terms of a dynamical system. We start with basic definitions which are
necessary to understand the theorems better. The definitions and properties of
these concepts can be found in [19]. Consider an IVP as

ẋ = f(t, x),

x(t0) = x0,
(2.2)

where f : D ⊂ R× R
n → R

n and (x0, t0) ∈ D.

A function f(t, x) on a domain D ⊂ R×R
n is said to satisfy a Lipschitz condition

with respect to x onD if there exists a constant k > 0 (called a Lipschitz constant)
such that

‖f(t, x)− f(t, y)‖ ≤ k ‖x− y‖ for (t, x), (t, y) ∈ D.

A weaker version of the condition is the Weak Lipschitz condition: a function
f(t, x) on a domain D ⊂ R×R

n is said to satify a weak Lipschitz condition with
respect to x on D if there exists a nonnegative continuous fucntion k(t) such that

‖f(t, x)− f(t, y)‖ ≤ k(t) ‖x− y‖ for (t, x), (t, y) ∈ D.

Accordingly, one can also define the Lipschitz condition locally. Specifically, a
function f(t, x) on a domainD ⊂ R×R

n is said to satify a local Lipschitz condition
with respect to x on D if for any (t1, x1) ∈ D, there exists a domain D1 such that
(t1, x1) ∈ D1 ⊂ D and that f(t, x) satisfies a Lipschitz condition with respect to
x on D1. That is, there exists a positive constant k1 such that

‖f(t, x)− f(t, y)‖ ≤ k1 ‖x− y‖ for all (t, x), (t, y) ∈ D1.

Using these definitions, local existence and uniqueness of a solution of a differen-
tial equation (2.2) could be examined by the following theorem with the Lipschitz
condition on f .

Theorem 2.1 (Local Existence and Uniqueness). Assume that f(t, x) is contin-
uous on a domain D ⊂ R×R

n and satisfies a Lipschitz condition with respect to
x on D. Let (t0, x0) ∈ D. Then there exist positive constants a and b such that
the region

R = {(t, x) : |t− t0| ≤ a, ‖x− x0‖ ≤ b}

is in D. Moreover, if we define

r = min

{

a,
b

M

}

, where M = max
(t,x)∈R

‖f(t, x)‖ ,

6



then r > 0 is finite and in the interval I = (t0 − r, t0 + r), (2.2) has a unique
solution, denoted by x(t, t0, x0), passing through (t0, x0).

Considering the existence and uniqueness of a solution, by Theorem 2.1, the max-
imal interval on which the solution is defined and unique is important, especially
in dynamical systems theory.

For a differential equation, if x = ϕ(t)(t) is a unique solution defined on an
interval q, and if there is no interval p such that q ⊂ p, q 6= p, and x is also a
unique solution of the same differential equation on p, then q is called the maximal
interval of existence of x .

On the other hand, the global existence of solutions for (2.2) could be examined
by having a weak Lipschitz condition on f . Specifically, if f(t, x) is continuous
on R× R

n and satisfies a weak Lipschitz condition with respect to x on R× R
n

and x(t) = x(t, t0, x0) be the unique solution of (2.2) on its maximal interval of
existence (α, β), then α = −∞, and β = ∞.

Another way of showing global existence of a solution of (2.2) is to have a local
Lipschitz condition on f and boundedness of f : if f(t, x) is continuous on R×R

n

and satisfies a local Lipschitz condition with respect to x on R × R
n, and that

for some constant M > 0, ‖f(t, x)‖ ≤ M , (t, x) ∈ R × R
n and x(t) = x(t, t0, x0)

be the unique solution of (2.2) on its maximal interval of existence (α, β), then
α = −∞, β = ∞.

Consequently, one can determine the interval of existence of solutions according
to the form of the function f in (2.2). In particular, weak Lipschitz condition and
local Lipschitz condition together with the boundedness of f play an important
role in dynamical systems.

In the following parts of this section we introduce the linear homogeneous and
nonhomogeneous systems. This piece of information can be found, for instance, in
the book of Miller [22]. Consider, now, linear homogeneous and nonhomogeneous
systems as

ẋ = A(t)x, (2.3)

and
ẋ = A(t)x+ g(t), (2.4)

respectively, where x ∈ R
n, A(t) = [aij(t)] is n×n matrix and g(t) is an n-vector

valued function. These systems have unique solutions for every (t0, x0) ∈ D where

D = {(t, x) : t ∈ J = (α, β), x ∈ R
n} .

First, we introduce the basic definitions of linear systems. Consider a set of
n linearly independent solutions of (2.3) on J , {φ1, · · · , φn}, which is called a
fundamental set of solutions of (2.3). The n× n matrix

Φ =
[

φ1 φ2 · · · φn

]

7



is called a fundamental matrix for (2.3). Furthermore, a fundamental matrix
Φ for (2.3) whose columns are determined by the linearly independent solutions
φ1, . . . , φn with

φ1(t0) = e1, . . . , φn(t0) = en, for t0 ∈ J,

is called the state transition matrix for (2.3). Equivalently, if Ψ is any fundamen-
tal matrix for(2.3), then the matrix Φ determined by

Φ(t, t0) = Ψ(t)Ψ−1(t0) for all t, t0 ∈ J,

is the (unique) state transition matrix for (2.3).

The characteristic properties of the state transition matrix can be summarized
in the following way: Let t0 ∈ J , let x(t0) = x0, and let Φ(t, t0) denote the state
transition matrix for (2.3) for all t ∈ J . Then:

(i) Φ(t, t0) is the unique solution of the matrix equation

∂

∂t
X = X ′ = A(t)X

with X(t0) = I, the n× n identity matrix;

(ii) Φ(t, t0) is nonsingular for all t ∈ J ;

(iii) for any t, s, t0 ∈ J , we have

Φ(t, t0) = Φ(t, s)Φ(s, t0),

(iv) [Φ(t, t0)]
−1 = Φ−1(t, t0) = Φ(t0, t) for all t, t0 ∈ J ,

(v) the unique solution x(t, t0, x0) of (2.3), with x(t0, t0, x0) = x0 specified is
given by

x(t, t0, x0) = Φ(t, t0)x0, for all t ∈ J.

The state transition matrix is also used to formulate the unique solution of (2.2).
If t0 ∈ J , and (t0, x0) ∈ D then the unique solution x(t, t0, x0) of (2.4) satisfying
x(t, t0, x0) = x0 is given by

x(t, t0, x0) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)g(s)ds,

Having introduced linear systems, a general way to study nonlinear systems to
a certain extent is carried out by the so-called linearization. In this context, we
assume that f ∈ C1(R × D) where D is a domain in R

n and ϕ(t) is a given
solution of (2.2) defined for all t ≥ t0 ≥ 0, then the linearization can be applied
as follows: define y = x− ϕ(t) so that

y′ = f(t, x)− f(t, ϕ(t)) = f(t, y + ϕ(t))− f(t, ϕ(t))

=
∂f

∂x
(t, ϕ(t))y +G(t, y),

where G(t, y) = f(t, y + ϕ(t)) − f(t, ϕ(t)) − ∂f

∂x
(t, ϕ(t))y is o(|y|) as |y| → 0

uniformly in t.
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2.3 Stability

Stability is one of the fundamental topics of both differential equations and dy-
namical systems. Its great importance comes from its place in analyzing behavior
of systems. What is meant by stability of a solution ϕ of a differential equation
is that solutions with inital data close to initial data of ϕ will remain close to ϕ
for future times. In other words, a solution ϕ is stable if solutions start nearby
solution ϕ stay nearby for all times.

In this section, first, we introduce the basic definitions of stability for general
differential equations. Next, we restrict the theory to stability of linear differ-
ential equations since we examine the stability of linearized form of systems in
proceeding chapters. Beside the usual definitions of stability we provide, there
is another way to describe and examine the stability: Lyapunov second method
for stability. Although this method provides theoretically a huge understanding
of stability, its application is not practical because of the difficulty of finding a
Lyapunov function. Therefore, our study does not include this method but we
suggest readers who are interested in this method should read Miller [22] and
Liu [19].

Furthermore, the studies in the sequel have applications in constant coefficients
systems, hence, the stability of linear system with constant coefficients needs
particular attention as well. All information in this section is a summary of the
related parts of Miller [22] and Liu [19].

2.3.1 Introduction to Stability of General Differential Equations

We start with an assumption to make sure that differential equation has a unique
solution and t = 0 is included in the interval of existence and uniqueness. Specif-
ically, we consider the differential equation (2.2) in D = [0,∞) × Q, where
Q ⊂ R

n is a domain containing the zero solution vector. Assume that for any
(t0, x0) ∈ D = [0,∞)×Q, the initial value problem in (2.2) has a unique solution
x(t, t0, x0) existing on [t0,∞) with x(t0) = x0. We introduce the fundamental
definitions of stability.

Definition 2.1 (Stability). Let x(t) = ϕ(t, t0) denote a solution of (2.2) on
[t0,∞), t0 ≥ 0 for the following definitions.

(a) ϕ(t, tϕ) is said to be stable if for any t0 ≥ tϕ and any ǫ > 0, there exists a
δ = δ(ǫ, t0) > 0 such that ‖x0 − ϕ(t0)‖ ≤ δ implies ‖x(t, t0, x0)− ϕ(t)‖ ≤ ǫ
for t ≥ t0.

(b) ϕ(t, tϕ) is said to be uniformly stable if it is stable and δ in the definition of
”stable” can be choosen to be independent of t0 ≥ tϕ. That is for any ǫ > 0,
there exists a δ = δ(ǫ) > 0, such that t0 ≥ tϕ and ‖x(t, t0, x0)− ϕ(t)‖ ≤ ǫ
for t ≥ t0.
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(c) ϕ(t, tϕ) is said to be asymptotically stable if it is stable and in addition, for
any t0 ≥ tϕ, there exists an r(t0) > 0 such that ‖x0 − ϕ(t0)‖ ≤ r(t0) implies
lim
t→∞

‖x(t, t0, x0)− ϕ(t)‖ = 0.

(d) ϕ(t, tϕ) is said to be uniformly asymptotically stable if it is uniformly stable
and in addition, there exists an r > 0 independent of t0 ≥ tϕ, such that
‖x0 − ϕ(t0)‖ ≤ r implies that lim

t→∞
‖x(t, t0, x0)− ϕ(t)‖ = 0 uniformly for

t0 ≥ tϕ in the following sense: for any ǫ > 0, there exists a τ = τ(ǫ) > 0 such
that t0 ≥ tϕ, ‖x0 − ϕ(t0)‖ ≤ r, t ≥ t0 + τ imply ‖x(t, t0, x0)− ϕ(t)‖ ≤ ǫ.

(e) ϕ(t, tϕ) is said to be unstable if it is not stable.

(f) In particular, if ϕ(t) = 0, t ≥ 0, is a solution of (2.2), or equivalently
when f(t, 0) = 0, t ≥ 0, then the above give the corresponding definitions
concerning stability properties for the zero solution.

After giving the basics of stability, we consider the well-known approaches to
analyze the stability of the linear system in (2.3) in the next section.

2.3.2 Stability of Linear Equations

In this section, we analyze the stability properties of systems of linear equations
and consider (2.3) as a system of linear equations. We introduce the stability
conditions for homogeneous linear equation (2.3) by the statement of Theorem
9.2.1 in Liu [19]. Assuming that A(t) is continuous on R

n and letting Φ be the
state transition matrix of (2.3), the stability of the zero solution ϕ ≡ 0 of (2.3)
can be examined as in the following theorem.

Theorem 2.2. The zero solution ϕ ≡ 0 of (2.3) is

(i) stable if and only if there is a constant C > 1 such that ‖Φ(t, 0)‖ ≤ C,
0 ≤ t <∞.

(ii) uniformly stable if and only if there is a constant C > 1 such that ‖Φ(t, s)‖ ≤
C, 0 ≤ s ≤ t <∞.

(iii) asymptotically stable if and only if ‖Φ(t, 0)‖ −→ 0, as t→ ∞.

(iv) uniformly asymptotically stable if and only if there are constants C > 1 and
α > 0 such that ‖Φ(t, s)‖ ≤ Ce−α(t−s), for 0 ≤ s ≤ t <∞.

For the nonhomogeneous linear systems such as (2.4), we present the statement
of Theorem 9.2.3 in Liu [19] as follows: Assume that A(t) and g(t) are continuous
on R

+, then zero solution of (2.4) is stable if and only if every solution of (2.3)
is stable. The same statement is valid for uniform stability, asymptotic stability,
and uniform asymptotic stability. See, for instance, Liu [19] for more details on
the stability of solutions.
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As stated before, the present study will make use of the stability properties of
systems with constant coefficients. Therefore, we consider the systems

x′(t) = Ax(t) (2.5)

and
x′(t) = Ax(t) + g(t) (2.6)

with inital data x(t0) = x0 and A being a constant matrix. For systems as in
(2.5), a state transition matrix can be represented as

Φ(t, t0) = exp

(∫ t

t0

Ads

)

= e(t−t0)A

and a solution of (2.6) is simply formulated by the variation of constants formula,

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Ag(s)ds.

As a summary of the main discussion about stability of this type of systems, we
present the statement of Theorem 5.2.1 in Liu [19].

Theorem 2.3. If ϕ = 0 is the zero solution of (2.5), then the stability of φ ≡ 0
can be examined as in the following:

(A) the following statements are equivalent:

(i) ϕ = 0 is stable or uniformly stable;

(ii) for each eigenvalue λ of the matrix A, Re (λ) ≤ 0. If Re (λ) = 0,
then λ appears only in matrices Ji (in the Jordan canonical form for
A) such that Ji is a 1× 1 matrix;

(iii) there is a constant C > 1 such that
∥

∥etA
∥

∥ ≤ C, for 0 ≤ t <∞.

(B) the following statements are equivalent:

(i) ϕ = 0 is asymptotically stable or uniformly asymptotically stable;

(ii) each eigenvalue of matrix A has a negative real part;

(iii) There are constants C > 1 and α > 0 such that
∥

∥etA
∥

∥ ≤ Ce−αt, for
0 ≤ t <∞.

(C) the following statements are equivalent:

(i) ϕ = 0 is unstable;

(ii) there is an eigenvalue λ of matrix A with Re (λ) = 0 and λ appears in
a matrix Ji that is at least 2× 2 matrix;

(iii) there is an eigenvalue of matrix A with a positive real part.

Having introduced the essential parts of the stability for this study, in the se-
quel, we present another important concept: following chapter is devoted to the
periodic solutions in continuous dynamical systems.
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CHAPTER 3

PERIODIC SOLUTIONS IN CONTINUOUS

DYNAMICAL SYSTEMS

The study of periodic systems and their periodic solutions is an extremely im-
portant subject in dynamical systems. The reason is simply that is they appear
in many real-world problems: radio circuits, temperature distribution, or chem-
ical and biological oscillations are some of the examples of periodic systems. In
the sequel, we are interested in periodicity in population dynamics in terms of
epidemiology. In the first part, we recall the basics of this concept, starting with
introducing a general periodic differential equation. As we will make use of the
Floquet theory, we further study this theory and its results. Although periodicity
can be analyzed in nonlinear systems with its own theorems, we only recall in
detail periodic solutions of linear systems as we use the linearized form of the
nonlinear systems in the second part of this chapter. We suggest readers who are
interested in periodic solutions in nonlinear systems should read Liu [19]. Unless
otherwise is stated, the content in this section is based on Liu [19].

Consider the general differential equation (2.2) in D = [0,∞)×R
n, where f(t, x)

is continuous and satisfies at least a local Lipschitz condition with respect to x
on D. For simplicity, let us assume that t0 = 0, and hence, for any x0 ∈ R

n, (2.2)
has a unique solution x(t, 0, x0) existing on [0,∞) with x(0, 0, x0) = x0. In order
to have a periodic system, a necessary condition is that the function f is periodic
in t. That is, there is a constant T > 0 such that

f(t+ T, x) = f(t, x)

for (t, x) ∈ D. It is important to note that this contains the case when f is
autonomous for which periodic solutions can be obtained with periods that are
not predetermined. A first basic result of periodic solutions can be given by the
following lemma.

Lemma 3.1. Assume that for a constant T > 0, f(t+T, x) = f(t, x) for (t, x) ∈
D. Then, it holds:

(i) If x(t) is a solution of (2.2), then so is x(t+ T ), t ≥ 0.

(ii) Let x(t, 0, x0) be a solution of (2.2) with x(0, 0, x0) = x0. Then x(t, 0, x0)
is T - periodic if and only if x(T, 0, x0) = x0.
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In the following section, we introduce the linear periodic systems via Floquet
theory.

3.1 Periodic Coefficients and Floquet Theory

As the simplest periodic systems appear as linear systems with periodic coeffi-
cients, we introduce the Floquet theory constructed on these systems. Consider
the linear periodic differential equation as

x′(t) = A(t)x(t), x(t0) = x0, (3.1)

where A(t) is T -periodic, that is,

A(t) = A(t+ T ), t ∈ R.

We then recall a lemma which is used in the proof of the Floquet theory. This
lemma defines the natural logarithmic function for a nonsingular matrix. It states
that any n×n constant nonsingular matrix B can be represented as B = eC , where
C is an n× n matrix. Because of this lemma, the fundamental matrix of Φ(t) of
a linear periodic differential equation can be written in terms of an exponential
matrix function. Consequently, we may transform (3.1) into a linear differential
equation with constant coefficients using the Floquet theory. Accordingly, if
A(t) = A(t+ T ) for some constant T > 0 and Φ(t, t0) is the fundamental matrix
of (3.1), then there exists a constant C and a nonsingular, continuous, T -periodic
matrix function P (t), such that

Φ(t) = P (t)etC .

Application of the Floquet theory to transform (3.1) into a constant coefficient
system can be expressed via the statement of Theorem 3.4.4 in Liu [19]: If A(t) is
T -periodic and let C and P (t) are given as above, and y(t) = P−1(t)x(t), where
x(t) = x(t, t0, x0) is the unique solution for (3.1), then y(t) satisfies the linear
differential equation with constant coefficients

y′(t) = Cy(t), y(t0) = P−1(t0)x0. (3.2)

In the study of the Floquet theory, there are some basic interpretations. If we
consider the matrices A(t) and C given as in Floquet theory, then

(a) The matrix eTC is called the monodromy matrix of (3.1).

(b) The eigenvalues of the matrix C are called the Floquet exponents of (3.1).

(c) The eigenvalues of the monodromy matrix are called the Floquet multipliers
of (3.1).
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We note that transformation of (3.1) into (3.2) provides an easier way to analyze
the behavior of the former, as the latter is a constant coefficient system. There-
fore, boundedness and stability relations between these two systems are given as
the statements of Theorem 3.4.6 in Liu [19].

Theorem 3.2. If A(t) is periodic and the matrix C is given in Floquet theory,
then

(A) The following statements are equivalent:

(i) There is a constant C1 > 0 such that every solution of (3.1) satisfies
‖x(t, t0, x0)‖ ≤ C1 ‖x0‖, t0 ≤ t <∞;

(ii) There is a constant C2 > 0 such that every solution of (3.2) satisfies
‖y(t, t0, y0)‖ ≤ C2 ‖y0‖, t0 ≤ t <∞;

(iii) For each Floquet exponent λ, Re (λ) ≤ 0. If Re (λ) = 0, then λ
appears only in the matrices Ji such that Ji is a 1×1 matrix of Jordan
canonical form for C;

(iv) For each Floquet multiplier η, |η| ≤ 1. If |η| = 1, then η appears only
in the matrices Ji such that Ji is a 1 × 1 matrix of Jordan canonical
form for eTC.

(B) The following statements are equivalent:

(i) Every solution of (3.1) satisfies lim
t→∞

‖x(t, t0, x0)‖ = 0;

(ii) Every solution of (3.2) satisfies lim
t→∞

‖y(t, t0, y0)‖ = 0;

(iii) Each Floquet exponent has a negative real part;

(iv) Each Floquet multiplier satisfies |η| < 1.

(C) The following statements are equivalent:

(i) There is a solution x of (3.1) with lim
t→∞

‖x(t, t0, x0)‖ = ∞;

(ii) There is a solution y of (3.2) with lim
t→∞

‖y(t, t0, y0)‖ = ∞;

(iii) Either there is a Floquet exponent λ with Re (λ) = 0 and λ appears in
a matrix Ji that is at least 2× 2, or there is a Floquet exponent with a
positive real part;

(iv) Either there is a Floquet multiplier η with |η| = 1 and η appears in a
matrix Ji that is at least 2× 2, or there is a Floquet multiplier η with
|η| > 1.

Beside the Floquet theory, there is another way to examine linear periodic sys-
tems. In the following section, we study the linear periodic systems via fixed
points of a map Π.
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3.2 Periodic Solutions of Linear Systems

In this part of the study, we make use of Lemma 3.1 and fixed point theorems in
order to derive periodic solutions of linear periodic systems. Moreover, we analyze
the stability of these systems by considering the eigenvalues of the monodromy
matrix. Recall that a continuous function x(t, 0, x0) is a solution of the IVP (2.2)
if and only if

x(t) = x0 +

∫ t

0

f(s, x(s))ds, for all t ≥ 0.

Next, for x0 ∈ R
n and the unique solution x(t, 0, x0) with x(0, 0, x0) = x0, we can

define a mapping Π : Rn → R
n such that

Π(x0) = x(T ) = x0 +

∫ T

0

f(s, x(s))ds. (3.3)

Considering Lemma 3.1, we conclude that (2.2) has a T -periodic solution if and
only if the mapping Π has a fixed point, that is, Π(x0) = x0. This result is stated
by the following lemma.

Lemma 3.3. Assume that for a constant T > 0, f(t+T, x) = f(t, x) for (t, x) ∈
D, then (2.2) has a T -periodic solution if and only if mapping Π : Rn → R

n

defined in (3.3) has a fixed point.

The results for linear differential equations for deriving periodic solutions are
given by Theorems 11.2.1 and 11.2.2 in Liu [19]. Liu states that if A(t) is
continuous and T -periodic, then (2.3) has a nonzero T -periodic solution if and
only if 1 is an eigenvalue of Φ(T, 0). Accordingly, for nonhomogeneous case, if
A(t) is continuous and T -periodic, then (2.4) has a T -periodic solution for any
continuous and T -periodic function f if and only if 1 is not an eigenvalue of
Φ(T, 0).

Now, consider the linear homogeneous systems with linear or nonlinear pertur-
bations, which can also be regarded as a linearization of a general differential
equation:

ẋ = A(t)x(t) + g(t, x(t)), for all t ≥ 0, (3.4)

where x ∈ R
n and g(t, x(t)) is also T -periodic in t. Again, the results for dif-

ferential equations as in (3.4) for deriving periodic solutions are given by the
statements of Theorem 11.2.3 and Theorem 11.2.4 in Liu [19]. Assuming that
(3.4) is T -periodic in t and that g(t, x) is continuous on [0,∞)×R

n and satisfies
a weak Lipschitz condition with respect to x, first statement asserts that if 1
is not an eigenvalue of Φ(T, 0) and if ‖f(t, x)‖ ≤ C, (t, x) ∈ [0,∞) × R

n, for
some constant C > 0, then (3.4) has a T -periodic solution. Additionally, second
statement asserts that if 1 is not an eigenvalue of Φ(T, 0) and if

lim
‖x‖→∞

‖g(t, x)‖

‖x‖
= 0, (3.5)

uniformly for t ∈ [0, T ], then (3.4) has a T -periodic solution.
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CHAPTER 4

THRESHOLD DYNAMICS FOR A GENERAL

COMPARTMENTAL EPIDEMIC MODEL

In this chapter, we introduce the threshold dynamics for a general compartmental
epidemic model. Theoretical background of this chapter is provided by Driessche
and Watmough [26].

For many epidemiology models, threshold dynamics is governed by the basic
reproduction ratio, R0. Formally, the basic reproduction ratio is defined by Het-
hcote [17] as the average number of secondary infections produced when one
infected individiual is introduced into a host population where everyone is sus-
ceptible. According to this definition, the dynamics of disease transmission is
determined by the following: if the basic reproduction ratio is less than unity
then diease dies out, on the other hand, if it is greater than unity then disease
is established in the population. Following this idea, we examine a compartmen-
tal epidemic model which is represented by a system of autonomous ordinary
differential equations.

4.1 A General Compartmental Epidemic Model

In this section, we analyze a heteregeneous population whose individuals can be
divided into n homogeneous compartments with respect to their age, behavior,
spatial position, stage of disease, etc.. We establish a general epidemic model for
such a population dynamics as in Driessche and Watmough [26].

Let x = (x1, . . . , xn)
T , with each xi ≥ 0 be the state of individuals in each

compartment. We categorize the compartments into two types: infected com-
partments, labeled by i = 1, . . . ,m, and uninfected compartments, labeled by
i = m+ 1, . . . , n. We specify Xs to be the set of all disease-free states

Xs = {x ≥ 0 : xi = 0 for all i = 1, . . . ,m} .

In [26], Driessche and Watmough state that while getting R0, distinguishing new
infection from all other changes in population becomes an important issue. There-
fore they examine the system of ordinary differential equations in this respect.
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Thus, some new variables and definitions given in this respect are

Fi(x) : the rate of appearence of new infections in compartment i,
V+
i (x) : the rate of transfer of individuals in a compartment i by all other means,

V−
i (x) : the rate of transfer of individuals out of compartment i.

Having defined these rates, the disease transmission model is constructed by the
following system of equations (together with nonnegative initial conditions)

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n. (4.1)

where Vi = V−
i − V+

i . Surely, this system of equations is accompanied by non-
negative initial contitions, such as xi(0) = αi ≥ 0 for each i.

Assumptions and Clarifications.

Below we present and clarify some of the necessary assumptions in order to ana-
lyze disease transmission models.

(A1) if x ≥ 0, then Fi,V
+
i ,V

−
i ≥ 0 for i = 1, . . . , n. The first part of this

assumption comes from the fact that each function represents a directed
transfer of individuals.

(A2) if xi = 0 then V−
i = 0. In particular, if x ∈ Xs then V−

i = 0 for i = 1, . . . ,m.
This assumption means that if a compartment is empty then there is no
transfer of individuals out of the compartment.

(A3) Fi = 0 if i > m. This assumption states that the incidence of infection for
uninfected compartment is zero.

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i = 0 for i = 1, . . . ,m. By this assumption,

our aim is to make the disease-free subspace be invariant, so that if the
population is free of the disease, then the population continues to be free of
the disease. In other words, there is no immigration of infected individuals.

We assume that the model has a disease-free solution x0 = (0, . . . , 0, x0m+1, . . . , x
0
n)

T

with x0i > 0 for m+ 1 ≤ i ≤ n and it is locally asymptotically stable equilibrium
solution. This helps us investigate the linearized system about the equilibrium
solution x0, that is,

ẋ = Df(x0)(x− x0), (4.2)

whereDf(x0) is the Jacobian of f evaluated at x0. Our main concern is, therefore,
systems for which the disease-free equilibrium is stable in the absence of new
infection. Therefore, the next assumption is also necesary.

(A5) if F(x) is set to zero, then all eigenvalues of Df(x0) have negative real
parts.
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According to Driessche and Watmough in [26], the Jacobian of f , Df(x0), can
be partitioned by the help of the conditions and assumptions listed above.

Lemma 4.1. If x0 is a disease-free equilibrium of (4.1) and fi(x) satisfies (A1)-
(A5), then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

(

F 0
0 0

)

, DV(x0) =

(

V 0
J3 J4

)

,

where F and V are the m×m matrices defined by

F =

[

∂Fi

∂xj
(x0)

]

and V =

[

∂Vi

∂xj
(x0)

]

for 1 ≤ i, j ≤ m. Furthermore, F is non-negative, V is non-singular M-matrix,
and all eigenvalues of J4 have positive real part.

Proof. Assume that x0 is a disease-free equilibrium solution of (4.1). First, for
the partitioning of DF(x0), consider all cases for i, j indices:

If i > m and 1 ≤ j ≤ n, then, by (A3), Fi = 0, thus ∂Fi

∂xj
(x0) = 0.

If i ≤ m and j > m, then, by (A4),

∂Fi

∂xj
(x0) = lim

h→0+

Fi(x
0 + hej)−Fi(x

0)

h
= 0,

where ej is the jth column of the n× n identity matrix and x0 + hej ∈ Xs.

If 1 ≤ i, j ≤ m, then

F =
∂Fi

∂xj
(x0) = lim

h→0+

Fi(x
0 + hej)−Fi(x

0)

h
≥ 0

since Fi(x
0) = 0 by (A4) and Fi(x

0 + hej) ≥ 0 by (A1). This result shows the
nonnegativity of F and partitioning of zero blocks.

Now, consider the partitioning of the matrixDV(x0): if i ≤ m and j > m, then by
(A2) and (A4), Vi(x

0) = 0 and Vi(x
0 + hej) = 0 since x0 ∈ Xs and x

0 + hej ∈ Xs.
Therefore,

∂Vi

∂xj
(x0) = lim

h→0+

Vi(x
0 + hej)− Vi(x

0)

h
= 0

gives the zero block.

Next, in order to show that V is a non-singular M -matrix, we should show that
V satisfies the Z-sign pattern (that is, Vij ≤ 0 for i ≤ m and j 6= i), and

all eigenvalues of V have positive real parts. In fact, if V =
[

∂Vi

∂xj
(x0)

]

with

1 ≤ i, j ≤ m, then for i 6= j we have

Vij =
∂Vi

∂xj
(x0) = lim

h→0+

Vi(x
0 + hej)− Vi(x

0)

h
≤ 0,
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since Vi(x
0) = 0 by (A2) and (A4), V−

i (x0+hej) = 0 by (A2), and V+
i (x

0+hej) ≥ 0
by (A1). This shows that V has the Z-sign pattern. Moreover, by (A5) all
eigenvalues of V have positive real parts. Owing to these conditions, V is a
non-singular M -matrix.

Again by (A5), the eigenvalues of J4 have positive real parts. Hence the proof is
completed.

By the help of the proof of Lemma 4.1, we are now able to construct the formu-
lation of the basic reproduction ratio.

The Basic Reproduction Ratio

Considering an infective individual introduced into the population and assuming
that reinfection is turned off, the dynamics of the linearized system (4.2) reduces
to

ẋ = −DV(x0)(x− x0). (4.3)

By the assumption (A5), we conclude that the disease-free equilibrium is locally
asymptotically stable in this system. Therefore, it is possible to use (4.3) to
determine the effect of a small number of the infected individuals introduced to
the disease-free population.

Let ψi(0) be the number of infected individuals initially in compartment i, and
ψ(t) = (ψ1(t), . . . , ψm(t))

T be the number of these initially infected individuals
remaining in the infected compartments at time t. Due to the partitioning of
−DV(x0), ψ(t) satisfies

ψ′(t) = −V ψ(t)

and hence, is uniquely determined by

ψ(t) = e−V tψ(0).

Owing to Lemma 4.1, V is a nonsingular M -matrix and so invertible and all of
its eigenvalues have positive real part. Therefore, integrating Fψ(t) from zero to
infinity, the expected number of new infections produced by the initially infected
individuals can be found as

∫ ∞

0

Fψ(s)ds =

∫ ∞

0

Fe−V sψ(0)ds

= FV −1ψ(0).

We then define the basic reproduction ratio as

R0 = ρ(FV −1), (4.4)

where ρ(A) denotes the spectral radius of a matrix A.
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According to the stability theory, a disease-free equilibrium is locally asymptoti-
cally stable if all eigenvalues of the matrix Df(x0) have negative real parts and
unstable if any eigenvalues of Df(x0) has a positive real part. As a consequence
of Lemma 4.1, the eigenvalues of Df(x0) can also be partitioned into two sets cor-
responding to the infected and uninfected compartments. These two sets are the
eigenvalues of F − V and those of −J4. As we have proven that (by Lemma 4.1)
the eigenvalues of −J4 all have negative real part, the stability of disease-free
equilibrium is determined by the eigenvalues of F − V .

The relation between the stability of the desease-free equalibrium x0 and the basic
reproduction ratio R0 is given by the following theorem.

Theorem 4.2 (Driessche, Watmough [26]). Consider the disease transmission
model given by (4.1) with f(x) satisfying conditions (A1)–(A5). Then, x0 is
locally asymptotically stable if R0 < 1, and it is unstable if R0 > 1, where R0 is
defined by (4.4).

Proof. Assume that R0 < 1 then from the definiton of R0, ρ(FV
−1) < 1. Because

of the nonnegativity of FV −1, all eigenvalues of FV −1 have magnitude that are
less than or equal to ρ(FV −1). Therefore, s(I − FV −1) > 0 where s(A) denotes
the maximum real part of all the eigenvalues of a matrix A (the spectral abscissa).

Again because of the nonnegativity of FV −1, if B = I − FV −1 = [bij ], then
bij ≤ 0 for i 6= j, that is, I −FV −1 has the Z-sign pattern. These two properties
of I − FV −1 ensures it a non-singular M -matrix.

Since we can express I−FV −1 as (V −F )V −1 and by the theorem in appendix A of
Driessche an Watmough [5], V −F is also a non-singularM -matrix. Accordingly,
all eigenvalues of F − V has negative real parts and thence x0 is asymptotically
stable.

Similarly, if R0 = 1 we have ρ(FV −1) = 1 and s(I−FV −1) = 0. As we have that
I − FV −1 has the Z-sign pattern and s(I − FV −1) = 0, the matrix I − FV −1

becomes a singular M -matrix. Using I − FV −1 = (V − F )V −1 and the theorem
in appendix A of Driessche an Watmough [5], V − F is a singular M -matrix.
Hence, s(V − F ) = 0 and s(F − V ) = 0.

Combining these two results, we have s(F − V ) < 0 if R0 < 1 and s(F − V ) = 0
if R0 = 1. Therefore, we can conclude that s(F − V ) > 0 if R0 > 1, that is, if
R0 > 1 then all eigenvalues of matrix F −V have positive real parts. As a result,
x0 is unstable if R0 > 1. The proof is completed.

4.2 Applications on an Autonomous Vector Host Model

In this part, we introduce an epidemic model which is called the vector-host model
and apply the theory given within this chapter to analyze its dynamics. First,
let us present the vector-host model: in this context, a vector may be regarded
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as a carrier, as in the situation that an animal which transfers an infective agent
from one host to another. A host is an organism that harbors or nourishes
another organism. As we study epidemic diseases, we consider the modelling
of the Dengue fever which is an infectious disease of the tropics transmitted by
mosquitos and characterized by rash and aching head and joints.

Dengue virus is primarily transmitted by Aedes mosquitos. They typically bite
during the day, particularly in the early morning and in the evening. Humans are
the primary host of the virus, but it also circulates in nonhuman primates. An
infection can be acquired via a single bite. A female mosquito that takes blood
meal from a person infected with Dengue fever becomes itself infected with the
virus in the cells lining its gut. The virus seems to have no-detrimental effect on
the mosquito, which remains infected for life. There are no approved vaccines for
the Dengue virus. Prevention thus depends on control of and protection from the
bites of the mosquito that transmits it.

For many reasons, such as population growth, increased international travel and
global warming, the incidence of Dengue increased between 1960-2010. Therefore,
this particular disease attracts attention of many scientists, not only from medical
societies, but also from different branches of applied sciences, engineering, and
mathematics, who are interested in mathematical modelling.

4.2.1 An analysis on Dengue Fever

Now, we formulate the dynamics of the disease transmisson model of Dengue
Fever as a coupled system of ordinary differential equations

İ = βsSV − (b+ γ)I,

V̇ = βmMI − cV,

Ṡ = b− bS + γI − βsSV,

Ṁ = c− cM − βmMI,

(4.5)

where I, V , S and M , named as compartments, and denote the infected hosts,
infected vectors, susceptible hosts and susceptible vectors, respectively. In this
model, hosts are infected by contacts with vectors, and vectors are in turn infected
by contacts with infected hosts. The contact rates of host and vectors are given
by the two terms βsSV and βmMI.

Other parameters in the system can be interpreted as
b : birth and death rates for the host,
c : birth and death rates for the vector,
γ : recovery rate for the host .

Clearly, the disease-free equilibrium for this model is x0 = (0, 0, 1, 1)T where
x = (I, V, S,M). Before finding the partitioned linearized system, we formulate
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the Jacobian of f as

Dxf(x) =







−(b+ γ) βsS 0 0
βmM −c 0 βmI
γ −βsS −b− βsV 0

−βmM 0 0 −c− βmI






,

and by substituting x0, we find

Dxf(x
0) =







−(b+ γ) βs 0 0
βm −c 0 0
γ −βs −b 0

−βm 0 0 −c






.

Now, considering the way of transmisson of Dengue fever between compartments
and following assumptions, functions Fi, V

−
i and V+

i are formulated as

F1(x) = βsSV, V−
1 (x) = (b+ γ)I, V+

1 (x) = 0,

F2(x) = βmMI, V−
2 (x) = cV, V+

2 (x) = 0,

F3(x) = 0, V−
3 (x) = bS + βsSV, V+

3 (x) = b+ γI,

F4(x) = 0, V−
4 (x) = cM + βmMI, V+

4 (x) = c.

After stating these functions, we present the matrices F and V introduced in
Lemma 4.1:

(

∂Vi

∂xj

)

(x0) =

(

b+ γ 0
0 c

)

,

(

∂Fi

∂xj

)

(x0) =

(

0 βs
βm 0

)

for any 1 ≤ i, j ≤ 2.

Now as we have the matrices F and V at hand, it is not difficult to calculate the
basic reproduction ratio R0 = ρ(FV −1): it follows from

FV −1 =

(

0 βs

c
βm

b+γ
0

)

,

that

R0 =

√

βmβs

c(b+ γ)
.

Biologically, the basic reproduction ratio means that each infected host results
in βm

c
new infected vectors over its expected period and each infected vector

results in βs

b+γ
new infected hosts over its expected period. Moreover, the square

root appears from the two ‘resources’ required for an infected vector or host to
‘generate’ itself [26].
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Figure 4.1: The change of R0 as (a) b+ γ, (b) βs varies.

As a contribution to the work of Watmough and Driessche [26], we investigate
and understand the behavior of R0 with respect to the parameters of the system.
Since c and b + γ are included in the denominator as factors, behaviour of the
basic reproduction ratio is depicted in Figure 4.1a only with respect to the sum
of b and γ. Considering the numerator in the representation of R0, which consists
of the factors βs and βm, it is sufficient to illustrate the changes of the basic
reproduction ratio with respect to βs as in Figure 4.1b.

From Figure 4.1a, it is clear that R0 decreases as the sum b + γ increases. In
other words, an increase of the birth and/or the recovery rate of the host leads
to diminishing of the disease.

It is also apparent in Figure 4.1b that R0 increases provided that βs (or βm)
increases. That is, an increment of any contact rates causes the spread of the
disease.

These two observations indicate that the method considered is consistent with
the natural phenomena of this particular infectious disease and is suitable for
other diseases which have similar transmission way in population.

4.2.2 An Analysis on Pest Control for Dengue Fever

After analyzing dynamics of Dengue fever, it is reasonable to seek a way to control
of the disease in some way. Since there has not been developed a vaccine for the
Dengue virus, pest control on the vectors can be studied as an eradication policy.
Thus, as another additional piece to the work of Watmough and Driessche [26],
we model the dynamics of Dengue fever with pest control and compare the basic
reproduction ratio for the systems with and without the pest control. To do
so, a new parameter d, which indicates the effect of pesticide on the vector, is
adjusted to the equations for the dynamics of V andM , respectively, infected and
susceptible vectors, of the system (4.5). The renewed system is then formulated
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Figure 4.2: The change of R0 with and without pest control as (a) b + γ, (b) βs
varies.

as

İ = βsSV − (b+ γ)I,

V̇ = βmMI − cV − dV,

Ṡ = b− bS + γI − βsSV,

Ṁ = c− cM − βmMI − dM.

(4.6)

As a result of this modification, the matrix V is now computed as

V =

(

b+ γ 0
0 c+ d

)

,

and, accordingly, the basic reproduction ratio R0 is found to be

R0 =

√

βmβs

(c+ d)(b+ γ)
.

In Figure 4.2, the dynamics of the renewed system (4.6) is shown as a function
of the sum b + γ and βs, respectively. The effect of d on the basic reproduction
ratio is obvious: pest control has a great effect on the eradication of the disease.

Additionally, one can determine the minimum level of pesticide to apply on vec-
tor as long as the other parameters included in the system are prescribed. For
example, if the parameters in the system were βs = βm = 0.5, c = γ = 0.1,
and b = 1, then the minimum value of d is calculated as 0.1273. The change
of the basic reproduction ratio as a function of the parameter d is depicted in
Figure 4.3: if d > 0.1273, then R0 is less than 1, conversely, if d < 0.1273 then
R0 is greater than 1. In other words, if d > 0.1273 then disease will be extinct,
and if d < 0.1273, then disease will invade the population despite the effect of
the pest control on the vectors (carriers). This anaylsis enables ust to prevent
the spread of the disease.
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CHAPTER 5

THRESHOLD DYNAMICS FOR A PERIODIC

COMPARTMENTAL EPIDEMIC MODEL

In this chapter, we introduce the threshold dynamics for a compartmental epi-
demic model with the difference of periodic environment. In the previous chapter,
disease transmisson model is considered for the autonomous case, however, in this
chapter we analyze this model for the nonautonomous case based on the theory
provided by Wang and Zhao [27].

In real life, many epidemic diseases show seasonal behavior for many reasons.
For example, seasonal contact rates because of the opening and closing schools,
periodic changes in birth rates and vaccination programs can be considered as
a source of periodicity. Therefore, in order to analyze threshold dynamics for a
disease transmisson, it is important to consider periodicity as well. We establish
the basic reproduction ratio, defined in the preceding chapter, for the periodic
epidemic model and analyze the threshold dynamics of the periodic system.

5.1 A Periodic Compartmental Epidemic Model

In this part, we consider again a heteregenous population, cited in Chapter 4, but
now within a periodic environmental setting. We make some modifications to the
given definitions and additions to the previous assumptions to have a system of
nonautonomous, but periodic, ordinary differential equations.

We classify the population in n homogeneous compartments as before, and seper-
ate them into two types: infected compartments, labeled by i = 1, . . . ,m, and
uninfected compartments, labeled by i = m + 1, . . . , n. The brief description of
variables can be given as follows: we denote again the state of individuals in each
compartment by x = (x1, . . . , xn)

T , and the set of all disease-free states by

Xs = {x ≥ 0 : xi = 0, for i = 1, . . . ,m} .

Furthermore, we define
Fi(t, x) : the input rate of newly infected individuals in the ith compartment,
V+
i (t, x) : the input rate of individuals by other means,

V−
i (t, x) : the rate of transfer of individuals out of the the compartment i.
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The disease transmission model is constructed by the nonautonomous differential
system

dxi

dt
= Fi(t, x)− Vi(t, x) = fi(t, x), i = 1, . . . , n. (5.1)

where Vi = V−
i − V+

i . As Wang and Zhao [27] did, using the information for
autonomous compartment model in Driesshe and Watmough [26], we make the
following assumptions for nonautonomous case in the sequel.

Assumptions and Clarifications.

(A1) For each 1 ≤ i ≤ n, the functions Fi(t, x), V
+
i (t, x) and V−

i (t, x) are non-
negative and continuous on R × R

n
+ and continuously differentiable with

respect to x. This assumption represents the idea of that each function
denotes a directed non-negative transfer of individuals.

(A2) There is a real number ω > 0 such that for 1 ≤ i ≤ n, the functions Fi(t, x),
V+
i (t, x) and V−

i (t, x) are ω-periodic in t in order to define a periodic system.

(A3) If xi = 0, then V−
i = 0. Particularly, if x ∈ Xs, then V−

i = 0 for i = 1, . . . ,m.
This means that if a compartment is empty, then there is no transfer of
individuals out of the compartment.

(A4) Fi = 0 for i > m. That is, the incidence of infection for uninfected com-
partment is zero.

(A5) If x ∈ Xs, then Fi(x) = V+
i (x) = 0 for i = 1, . . . ,m. This assumption states

that the population will remain free of disease if it is so initially.

In [27], Wang and Zhao assume that the model (5.1) has a disease-free periodic
solution x0(t) = (0, . . . , 0, x0m+1(t), . . . , x

0
n(t)) with x

0
i (t) > 0, m + 1 ≤ i ≤ n for

all t. Let f = (f1, . . . , fn)
T and define an (n−m)× (n−m) matrix

M(t) =

[

∂fi(t, x
0(t))

∂xj

]

m+1≤i,j≤n

.

Let ΦM(ω) be the monodromy matrix of the linear ω-periodic system

dz

dt
=M(t)z.

Then, we impose another condition that x0(t) is linearly asymptotically stable in
the disease-free subspace Xs:

(A6) ρ(ΦM(ω)) < 1, where ρ(ΦM(ω)) is the spectral radius of ΦM(ω).

Following the similar arguments of Chapter 4, specifically by Lemma 4.1, we are
able to state that

DxF(t, x0(t)) =

(

F (t) 0
0 0

)

, DxV(t, x
0(t)) =

(

V (t) 0
J(t) −M(t)

)

,
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where F (t) and V (t) are two m×m matrices defined by

F (t) =

[

∂Fi(t, x
0(t))

∂xj

]

1≤i,j≤m

, V (t) =

[

∂Vi(t, x
0(t))

∂xj

]

1≤i,j≤m

,

respectively, and J(t) is an (n − m) × m matrix. From their definitions, it is
clear that F (t) is nonnegative and −V (t) is cooperative in the sense that the
off-diagonal elements of −V (t) are nonnegative.

The Basic Reproduction Ratio

Now, in order to define the basic reproduction ratio, let us consider an infective
individual introduced into the population and assume that reinfection is turned
off. Therefore, the dynamics of the linearized system for (5.1) is represented by

ẋ = −DxV(t, x
0(t))(x− x0).

First, let φ(s) be the initial distribution of infectious individuals, that is, φ(s)
shows the first m component of x at time s. Because of the partitioning of
−DxV(t, x

0(t)), solution of the system

dy

dt
= −V (t)y (5.2)

with initial condition φ(s) gives the distribution of infectious individuals newly
infected at time s and remain in the infected compartment at time t. Thus, if
Y (t, s) is the evolution operator for (5.2) and satisfy

d

dt
Y (t, s) = −V (t)Y (t, s), Y (s, s) = I,

then Y (t, s)φ(s) is the solution of (5.2).

Next, F (s)Y (t, s)φ(s) describes the distribution of new infections produced by the
infected individuals who were introduced at time s and remain in the infected
compartment at time t. Furthermore,

ψ(t) =

∫ t

−∞

F (s)Y (t, s)φ(s)ds =

∫ ∞

0

F (t− a)Y (t, t− a)φ(t− a)da (5.3)

gives the distribution of accumulative new infections at time t produced by all
those infected individuals φ(s) introduced at previous times till time t.

Meanwhile, we note that the internal evolution of individuals in the infection
compartments is dissipative and exponentially decreasing in many cases due to the
loss of infective members from natural mortalities and disease-induced mortalities.
Therefore, another assumption becomes

(A7) ρ(Φ−V (ω)) < 1.
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Considering the last assumption and the standard Floquet theory, there exist
K > 0 and α > 0 such that

‖Y (t, s)‖ ≤ Ke−α(t−s) (5.4)

for t ≥ s and s ∈ R. This follows that

‖Y (t, t− a)F (t− a)‖ ≤ K ‖F (t− a)‖ e−αa

for t ≥ s, and a ∈ [0,∞).

Now, we introduce the next infection operator L: let Cω be the ordered Banach
space of all ω-periodic functions from R to R

m, which is equipped with the maxi-
mum norm ‖·‖ and the positive cone C+

ω = {φ ∈ Cω : φ(t) ≥ 0, for t ∈ R}. Then,
the linear operator L : Cω → Cω is defined by

(Lφ)(t) =

∫ ∞

0

Y (t, t− a)F (t− a)φ(t− a)da (5.5)

for every t ∈ R and φ ∈ Cω.

Operator L is called the next infection operator and its spectral radius is defined
to be the basic reproduction ratio:

R0 = ρ(L)

of the epidemic model (5.1). Note that we can state (5.3) as a linear operator by
defining

(L̃φ)(t) =

∫ t

−∞

F (s)Y (t, s)φ(s)ds =

∫ ∞

0

F (t− a)Y (t, t− a)φ(t− a)da,

where L̃ : Cω → Cω. Although the kernel in the operator L is different from the
one in the operator L̃, the two operators have the same spectral radius. Using
this fact and following the study in [27], we choose to work with the operator L.

If we take into account the case where V (t) is reducible, then we define

Vǫ(t) = V (t)− ǫE

for ǫ ∈ [0,∞), where E is the m ×m matrix with each element being unity. In
this case, −Vǫ(t) becomes cooperative and irreducible for each t ∈ R. By this
modification, Yǫ(t, s) represents the evolution operator of the linear system (5.2)
with V (t) replaced by Vǫ(t). This follows that there exists an ǫ0 > 0 such that for
any ǫ ∈ [0, ǫ0), Yǫ(t, s) admits a similar property as in Hale [15], by the theory of
perturbed linear systems. As a consequence, we introduce the linear operator Lǫ

by replacing Y (t, s) in (5.5) with Yǫ(t, s) and set Rǫ
0 = ρ(Lǫ) for ǫ ∈ [0, ǫ0).

Lemma 5.1 (Wang, Zhao [27]). Let the assumptions (A1)–(A7) hold. Then,

(i) the operator L is positive, continuous and compact on Cω.
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(ii) lim
ǫ→0+

ρ(ΦF−Vǫ
(ω)) = ρ(ΦF−V (ω)), and lim

ǫ→0+
Rǫ

0 = R0.

Lemma 5.1 will be useful in the proofs of the following theorems.

Now, in the search of calculating the basic reproduction ratio R0, but not di-
rectly form the spectral radius of L, we investigate the following linear ω-periodic
equation

dw

dt
=

[

−V (t) +
F (t)

λ

]

(5.6)

with parameter λ ∈ (0,∞). Moreover, letW (t, s, λ), t ≥ s, s ∈ R be the evolution
operator of the system (5.6) on R

m.

It is easy to see that if λ = 1 then W (t, 0, 1) = ΦF−V (t), t ≥ 0 and for each λ ∈

(0,∞) the matrix −V (t)+ F (t)
λ

is cooperative. Then, the linear operatorW (t, s, λ)
is positive in R

m for each t ≥ s, s ∈ R. Therefore, the Perron Frobenius theorem
in [5] states that ρ(W (ω, 0, λ)) is an eigenvalue of W (ω, 0, λ) with a nonnegative
eigenvector. Another observation can be noticed from the Floquet theory. Since
the matrix W (s + ω, s, λ) is similar to the matrix W (ω, 0, λ), clearly, σ(W (s +
ω, s, λ)) = σ(W (ω, 0, λ)) for any s ∈ R, where σ(D) denotes the spectrum of the
matrix D.

Theorem 5.2 (Wang, Zhao [27]). Let the assumptions (A1)–(A7) hold. Then,

(i) if ρ(W (ω, 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of
L, and R0 > 0;

(ii) if R0 > 0, then λ = R0 is the unique solution of ρ(W (ω, 0, λ)) = 1;

(iii) R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 for all λ > 0.

Proof. We consider the cases separately:

(i) Let us consider the case ρ(W (ω, 0, λ)) = 1 for some λ0 > 0. As stated before
the theorem, 1 is an eigenvalue ofW (ω, 0, λ) with a nonnegative eigenvector
φ0. So, W (ω, 0, λ)φ0 = φ0 and this means that system (5.6) with λ = λ0
has an ω-periodic solution which is represented by φ(t) = W (t, 0, λ0)φ0. By
treating system (5.6) as a nonhomogeneous ordinary differential equations

in the form of dw
dt

= −V (t)w + F (t)
λ
w and using constant-variation formula,

we are able to express φ(t) as

φ(t) = Y (t, τ)φ(τ) +

∫ t

τ

Y (t, s)
F (s)

λ0
φ(s)ds

for t ≥ τ , and τ ∈ R. Then we take the limit as τ → −∞ in order to reach
L in terms of the integral form. Due to the boundedness of φ(t) on R and
the inequality in (5.4), Y (t, τ)φ(τ) −→ 0 as τ → −∞, we obtain

φ(t) =

∫ t

−∞

Y (t, s)
F (s)

λ0
φ(s)ds

31



for t ∈ R, that is, Lφ = λ0φ. In other words, λ0 ∈ σ(L)\ {0} and from the
definition of R0, ρ(L) = R0 > 0.

(ii) Now, let R0 be positive. Due to the Lemma 5.1, there exists ǫ1 ∈ (0, ǫ0] such
that Rǫ

0 = ρ(Lǫ) > 0 for all ǫ ∈ [0, ǫ1]. Because Lǫ is positive, bounded and
compact, by using the Krein Rutman theorem we conclude that Rǫ

0 is an
eigenvalue of Lǫ with an eigenvector w > 0 in Cω, w ∈ C+

ω \ {0}. Therefore,
there exists a s0 ≥ 0 such that w(s0) > 0 in R

m. If we call Wǫ(t, s, λ) for
t ≥ s, s ∈ R as the evolution operator of the linear periodic system

dw

dt
=

[

−Vǫ(t) +
F (t)

λ

]

(5.7)

with parameter λ ∈ (0,∞) then w(t) satisfies the system (5.7) with λ = Rǫ
0

since Lǫw = Rǫ
0. Therefore, we have w(t) = Wǫ(t, s0, R

ǫ
0)w(s0), for all

t ≥ s0. Especially, having w(s0) = w(s+ ω) we conclude that

w(s0 + ω) = Wǫ(s0 + ω, s0, R
ǫ
0)w(s0) = w(s0).

This shows that 1 (unity) is an eigenvalue of Wǫ(s0 + ω, s0, R
ǫ
0) with the

eigenvector w(s0) > 0 corresponding to that. Since Wǫ(s0 + ω, s0, R
ǫ
0)

is compact and strongly positive on R
m, by the Krein Rutman theorem

we have ρ(Wǫ(s0 + ω, s0, R
ǫ
0)) = 1. Then, ρ(Wǫ(ω, 0, R

ǫ
0)) = 1 because

σ(Wǫ(s0 + ω, s0, R
ǫ
0)) = σ(Wǫ(ω, 0, R

ǫ
0)). If we let ǫ → 0+, then we get

ρ(W (ω, 0, R0)) = 1. The remaining part to prove is that ρ(W (ω, 0, λ)) = 1
has at most one positive solution for λ. Firstly, the fact that F (t) is nonneg-
ative and −V (t) is cooperative implies that ρ(W (ω, 0, λ)) is nonincreasing
in λ ∈ (0,∞) by the standard comparison theorem. By contradiction, as-
sume that ρ(W (ω, 0, λ)) = 1 has two positive solutions λ1 < λ2. Then,
since ρ(W (ω, 0, λ)) is nonincreasing in λ ∈ (0,∞), ρ(W (ω, 0, λ)) = 1 for
all λ ∈ [λ1, λ2]. By part (i) each λ in [λ1, λ2] is an eigenvalue of L, how-
ever, this contradicts with the fact that L is a compact linear operator and
has countably eigenvalues. Therefore, λ = R0 is the unique solution of
ρ(W (ω, 0, λ)) = 1.

(iii) By part(i) and (ii), we conclude that ρ(W (ω, 0, λ)) = 1 has a positive
solution for some λ if and only if R0 > 0. Hence, R0 = 0 if and only
if ρ(W (ω, 0, λ)) 6= 1 for all λ ∈ (0,∞). The continuity of spectrum for
matrices implies that ρ(W (ω, 0, λ)) is continous in λ ∈ (0,∞) and

lim
λ→∞

ρ(W (ω, 0, λ)) = ρ(Φ−V (ω)) < 1.

This shows that R0 = 0 if and only if ρ(W (ω, 0, λ)) < 1 for all λ ∈ (0,∞).

The proof is completed.

In order to give an explicit formula for R0 in a special case of the periodic setting
of (5.1), we introduce the average of a continuous periodic function as

[g] =
1

ω

∫ ω

0

g(t)dt (5.8)
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where g(t) is a continuous ω-periodic function.

Lemma 5.3 (Wang, Zhao [27]). Let the assumptions (A1)–(A7) hold. If V (t) =

diag(V1(t), . . . , Vm(t)) and F (t) = diag(F1(t), . . . , Fm(t)), then R0 = max
1≤i≤m

{

[Fi]

[Vi]

}

.

Proof. If the matrices F (t) and V (t) are in the diagonal form, then the mon-
odromy matrix of the system (5.6) is represented by

W (ω, 0, λ) = diag

(

exp

∫ ω

0

(

−V1(t) +
1

λ
F1(t)

)

dt,

. . . , exp

∫ ω

0

(

−Vm(t) +
1

λ
Fm(t)

)

dt

)

for all λ > 0. Thus,

ρ(W (ω, 0, λ)) = max
1≤i≤m

{

exp

∫ ω

0

(

−Vi(t) +
1

λ
Fi(t)

)

dt

}

.

In order to find R0 we are looking for a λ which satisfies

ρ(W (ω, 0, λ)) = max
1≤i≤m

{

exp

∫ ω

0

(

−Vi(t) +
1

λ
Fi(t)

)

dt

}

= 1

and this is valid if and only if

max
1≤i≤m

{∫ ω

0

(

−Vi(t) +
1

λ
Fi(t)

)

dt

}

= 0,

If we consider the integrals interms of a average of a function, then we obtain

max
1≤i≤m

{

−ω [Vi] +
ω

R0

[Fi]

}

= 0.

Consequently, we see that R0 = max
1≤i≤m

{

[Fi]

[Vi]

}

, which completes the proof.

By Lemma 5.3 we give an expression of R0 for a special case in which V (t)
and F (t) are diagonal matrices. Now, in the following theorem, we present an
interpretation of R0 for any form of V (t) and F (t) by considering the spectral
radius of the monodromy matrix of system (5.6) with λ = 1.

Theorem 5.4 (Wang, Zhao [27]). Let the assumptions (A1)–(A7) hold. Then,

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.

(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

33



(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

In particular, x0(t) is asymptotically stable if R0 < 1, and unstable if R0 > 1.

Proof. Particular case is trivial, and the proofs of the statements are below.

(i) Assume that R0 = 1, then by Theorem 5.2(ii), we obtain ρ(W (ω, 0, 1) = 1.
On the other hand, if ρ(W (ω, 0, 1) = 1 then again by Theorem 5.2(i) and
(ii) provide that R0 = 1.

(ii) If R0 > 1 then it means that R0 > 0. Thus, due to the Krein Rutman
theorem, there exists w > 0 in Cω such that Lw = R0w. This implies that
w(t0) > 0 in R

m for some t0 ∈ [0, ω] and w(t) satisfies (5.6) with λ = R0.
Then we rearrange this system as

dw

dt
= (F (t)− V (t))w(t) +

(

1

R0

− 1

)

F (t)w(t). (5.9)

In this manner, first claim is that F (t)w(t) 6= 0. By contradiction let us
assume that F (t)w(t) = 0, ∀t ∈ R. Accordingly, system (5.9) reduces to

dw

dt
= −V (t)w(t). (5.10)

If Φ−V (t, s), t ≥ s, s ∈ R is the evolution operator of the linear system
(5.10), then

w(t0) = w(t0 + ω) = Φ−V (t0 + ω, t0)w(t0).

That is, 1 ∈ σ(Φ−V (t0 + ω, t0)) = σ(Φ−V (ω)) since Φ−V (t0 + ω, t0) =
Φ−V (ω, 0) and Φ−V (t) = Φ−V (t, 0). But this contradicts with the assump-
tion (A7) which says that Φ−V (ω) < 1. Therefore, F (t)w(t) 6= 0.

Next, we use the constant-variation formula for the linear system (5.9) and
we obtain

w(t0) = w(t0 + ω) = W (t0 + ω, t0, 1)w(t0) + h,

where

h =

(

1

R0

− 1

)∫ t0+ω

t0

W (t0 + ω, s, 1)F (s)w(s)ds.

Thus,
w(t0)−W (t0 + ω, t0, 1)w(t0) = h. (5.11)

If V (t) is irreducible for each t ∈ [0, ω], then W (t, s, 1) is strongly positive
for each t > s, s ∈ R. Since we see that F (t)w(t) 6= 0, we get

∫ t0+ω

t0

W (t0 + ω, s, 1)F (s)w(s)ds≫ 0
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in R
m. Then by the assumption R0 > 1, we obtain that h < 0. Hence,

we see that 1 < ρ(W (t0 + ω, t0, 1)) = ρ(ΦF−V (ω)). In the reducible case
of V (t), we replace V (t) with Vǫ(t) and use the limit as ǫ → 0 and obtain
ρ(ΦF−V (ω)) ≥ 1. However, ρ(ΦF−V (ω)) 6= 1 by the conclusion (i), then we
obtain ρ(ΦF−V (ω)) > 1. Now, assume that ρ(ΦF−V (ω)) > 1. Because of the
result of (i), we have R0 6= 1. Theorem 5.2(iii) indicates that R0 > 0 since
ρ(W (ω, 0, 1)) = ρ(ΦF−V (ω)) > 1. In this concept, (5.11) is still valid. It is
necessary to prove that R0 > 1. By contradiction, suppose that R0 ∈ (0, 1).
If V (t) is irreducible for each t ∈ [0, ω], then (5.11) holds with h >> 0 in
R

m. Therefore, 1 > ρ(W (t0 + ω, t0, 1) = ρ(ΦF−V (ω)). In the reducible case
of V (t), again we replace V (t) with Vǫ(t) and use the limit as ǫ → 0 and
obtain ρ(ΦF−V (ω)) ≤ 1 which is a contradiction since we have R0 > 1.

(iii) This statement is a consequence of (i) and (ii). Linearized form of the
system in (5.1) yields

Dxf(t, x
0(t)) =

(

F (t)− V (t) 0
−J(t) M(y)

)

.

By (A6), we have ρ(ΦM(ω)) < 1 and now adding the new result of this
observation, we see that x0(t) is asymptotically stable if ρ(Φ(F−V (ω))) < 1
and unstable if ρ(Φ(F−V (ω))) > 1.

The proof is completed.

5.2 Applications on a Periodic Vector Host Model

In this section, we present applications of the theory given through this chapter.
We consider the vector-host model, however, in the case of a periodic setting.

Firstly, we examine the Dengue fever in a periodic environment since contact rates
for this disease are sensitive to weather changes. Then, we study time-averaged
system for Dengue fever and compare the results of both systems. Next, as a
contribution of this work, we introduce a periodic vector-host model for avian
influenza. Again, after analyzing the threshold dynamics of the model, we study
time-averaged model and compare these results with periodic system.

5.2.1 An Analysis on Dengue Fever in a Periodic Environment

In this part of the study, we analyze the threshold dynamics of Dengue fever
within a vector-host model considering periodic contact rates. Since we are fa-
miliar with this model, we give only the differences from the previous application
in Chapter 4.
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The model (4.5) has some parameters changing with time:

İ = βs(t)SV − (b+ γ)I,

V̇ = βm(t)MI − cV,

Ṡ = b− bS + γI − βs(t)SV,

Ṁ = c− cM − βm(t)MI,

(5.12)

where βs(t) and βm(t) are functions of time. If we choose them as in Wang and
Zhao [27]

βs(t) = k(1 + δ cos(2πt)),

βm(t) = β0(1 + δ cos(2πt)),

with δ being a constant parameter, then system (5.12) becomes a 1-periodic
system because of including 1-periodic functions as βs(t) and βm(t). According
to this modification, the partitioning of the linearized system give the matrices

F (t) =

(

0 βs(t)
βm(t) 0

)

and V (t) =

(

b+ γ 0
0 c

)

.

If we further formulate the system of differential equation, we get

dw

dt
=

(

−(b+ γ) βs(t)
λ

βm(t)
λ

−c

)

w.

To begin with, we examine the general behavior of the periodic system with
respect to its parameters. As an additional work to the paper of Wang and
Zhao [27], we consider the birth rate b for the host and birth rate c for the vector
as well. The change of R0 is depicted in the following graphs with respect to the
parameters b, c, k and δ, respectively.

Figure 5.1a analyses the behavior of R0 according to the birth and death rate of
the host b. It shows that R0 is decreasing while b is increasing. In Figure 5.1b,
the birth and death rate of the vector is considered. Clearly, an increment of c
causes to spreading of the disease since vector is the main source of the disease.

Further, in Figure 5.2a we figured the change of R0 with respect to the parameter
k included in the contact rate between host and vector. Since increment of k
implies increment of the contact rate βs(t), this leads to increment of R0 as well.
Similarly, in Figure 5.2b a change of δ causes to spread of the disease as k does.

After insight of this work, we look for any extension of this theory and applica-
tion. In this sense, since it is easier to work with an autonomous system instead of
a periodic system, we consider the time-averaged one. However, the theory con-
structed for a periodic system can be unsuccesfull when the time-averaged system
is used instead. For example, R0 may be overestimated or underestimated by the
time-averaged system. Therefore, we compare the basic reproduction ratio of the
periodic system and the time-averaged system for this example in order to see
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Figure 5.1: The change of R0 as (a) b, (b) c varies.
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Figure 5.2: The change of R0 as (a) k, (b) δ varies.
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Figure 5.3: The changes of R0 and [R0] as (a) b, (b) c varies.

whether there is a difference between them. In the time-averaged system, instead
of βs(t) and βm(t), the averages [βs] and [βm] are used. By the definition given
in (5.8)

[βs] =
1

1

∫

k(1 + δ cos(2πt))dt = k,

[βm] =
1

1

∫

β0(1 + δ) cos(2πt)dt = β0.

Now, the system turns out to be an autonomous system and therefore the theory
given in Chapter 4 is applicable for it. So, as an additional work to the paper of
Wang and Zhao [27], we compare the results of these two systems according to
the birth rate for the host b and birth rate for the vector c as well.

Meanwhile, let [R0] represent the basic reproduction ratio of the time-averaged
system and be called as the average basic reproduction ratio.

For Figure 5.3a, we fix γ = 0.1, k = 0.65, δ = 1, β0 = 0.3, c = 0.1 and let
b varies in [0, 3]. Numerical calculations shows that [R0] = 1 when b = 1, 85
and R0 = 1 when b = 1.993. Further, [R0] = 0, 9794 when b = 1, 933. This
indicates that the average basic reproduction ratio underestimates the disease
transmission risk. After that, we fix b = 2, γ = 0.1, k = 0.65, δ = 1, β0 = 0.3 and
let c varies in [0.07, 0.8]. By Figure 5.3b, we infer that [R0] = 1 when c = 0, 092,
R0 = 1 when c = 0, 097 and [R0] = 0.09784 when c = 0.097. It is noted that
there is an underestimation of the disease transmission risk by the average basic
reproduction ratio.

Another proof of underestimation is obtained by numerical calculation in Fig-
ure 5.4a. If we fix b = 2, γ = 0.1, δ = 1, β0 = 0.3, c = 0.1 and let k varies in [0, 1].
We obtain that [R0] = 1 when k = 0.7, R0 = 1 when k = 0.67 and [R0] = 0.9783
when k = 0.67. Therefore, it is clear that the averaged basic reproduction ratio
underestimates the disease transmisson risk. Last but not the simplest result is
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Figure 5.4: The changes of R0 and [R0] as (a) k, (b) δ varies.

obtained in Figure 5.4b. One can definitely notice that [R0] is always 0.9636 when
δ varies in [0, 1] if we fix k = 0.68 and other parameters are unchanged as above.
However, R0 is 1 when δ = 0.808 and greater than 1 when 0.81 < δ < 1.

Consequently, all numerical calculations and figures imply the underestimation of
the disease transmisson risk in the case of using the time-averaged system instead
of using the periodic system.

5.2.2 An Analysis on Avian Influenza in a Periodic Environment

In this part of the work, we study another epidemic disease avian influenza, which
can occur periodically, through a vector-host model. Avian influenza is known
informally as avian flu or bird flu and refers to an ifluenza caused by viruses
adapted to birds. However, adaptation is not restricted and viruses responsible
for influenza outbreaks are adapted to both humans and birds. There are many
subtypes of avian influenza viruses, but only some strains of four subtypes have
been higly pathogenic in humans. These are the types H5N1, H7N3, H7N7 and
H9N2. The most well known is the H5N1 subtype virus and it causes to death of
at least 300 humans in Azerbaijan, Turkey and many countries. Currently, virus
H5N1 is not transmitted easily from human to human. If the transmission rate
from human to human increases, then another pandemic could occur. Therefore,
people and organizations interested in this area work for developing strategies
to prevent the spread of H5N1. So, this disease is also worthy of consideration
in terms of examining its dynamics and making some progress of predicting its
behavior.

As a contribution, we formulate the dynamics of the disease avian influenza in
conjuction with vector-host model as the following system of ordinary differential
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equations

İ = η(t)SV + µ(t)SI − (b+ γ)I,

V̇ = β(t)MV − cV,

Ṡ = b+ γI − bS − η(t)SV − µ(t)SI,

Ṁ = c− cM − β(t)MV,

(5.13)

where I, V , S, and M compartments denote the infected humans, infected birds,
susceptible humans and susceptible birds respectively. Here,

η(t) : the disease transmission rate between humans and birds,
µ(t) : the disease transmission rate between humans,
β(t) : the disease transmisson rate between birds,

b : the birth and death rate for the humans,
c : the birth and death rate for the birds,
γ : the recovery rate for the humans.

In order to use the theory given in this chapter, first we find the partitions of
(5.13) as functions Fi(t, x) and Vi(t, x) where x = (I, V, S,M)T for i = 1, . . . , 4.

F1(t, x) = η(t)SV + µ(t)SI, V−
1 (t, x) = (b+ γ), V+

1 (t, x) = 0,

F2(t, x) = β(t)MV, V−
2 (t, x) = cV, V+

2 (t, x) = 0,

F3(t, x) = 0, V−
3 (t, x) = bS + η(t)SV, V+

3 (t, x) = b+ γI,

F4(t, x) = 0, V−
4 (t, x) = cM + β(t)MV, V+

4 (t, x) = c.

Then (5.13) can be studied in the form of

dxi

dt
= Fi(t, x)− Vi(t, x)

where Vi(t, x) = V−
i (t, x) − V+

i (t, x) for i = 1, . . . , 4. Next, since the disease-free
equilibrium of this model is x0 = (0, 0, 1, 1)T , two partitions of the linearized
system at x0 is formulated as F (t) and V (t) matrices where

F (t) =

[

∂Fi

∂xj
(t, x0)

]

1≤i,j≤2

=

(

µ(t) η(t)
0 β(t)

)

,

V (t) =

[

∂Vi

∂xj
(t, x0)

]

1≤i,j≤2

=

(

b+ γ 0
0 c

)

so that we arrange (5.6) for this model as

dw1

dt
=

(

−(b+ γ) +
µ(t)

λ

)

w1 +
η(t)

λ
w2,

dw2

dt
=

(

−c+
β(t)

λ

)

w2.
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Figure 5.5: The change of R0 as (a) b, (b) c varies.

For this application we consider the η(t), µ(t), and β(t) as

η(t) = η0(1 + α1 sin(2πt)),

µ(t) = µ0(1 + α2 sin(2πt)),

β(t) = β0(1 + α3 sin(2πt)).

Now that we have a periodic system with period 1, as a contribution, using
Theorem 5.2, the basic reproduction ratio of the system is calculated, and stability
of the disease-free equilibrium can be analysed.

First, we consider all of the parameters of system to perform an analysis of
the stability. However, we see that three of them, η0, α1 and α2 do not have
any notable effect on the change of stability when other parameters unchanged.
Therefore we take into account of b, c, γ, β0, µ0 and α3. By numerical calculations,
we find a threshold parameter of each of them which determines that R0 is greater
or less than unity.

By Figure 5.5a, R0 is considered according to parameter b. We see that if we
fix other parameters, then R0 = 1 when b = 0.7520. That is, if b < 0.7520 then
disease free equilibrium is asymptotically stable and if b > 0.7520 then disease
free equilibrium is unstable. In Figure 5.5b, we are interested with parameter c.
It is observed that keeping c greater than 0.7540 satisifes the asymptotic stability
of disease free equilibrium, otherwise disease free equilibrium is unstable.

In Figure 5.6a, while µ0 changes from 0.3 to 1, R0 increases accordingly. Further,
when µ0 > 0.9280, R0 > 1 and when µ0 < 0.9280, R0 < 1. Numerical calculations
for Figure 5.6b imply that if β0 is greater than 0.7520 then R0 > 1 and if β0 <
0.7520 then R0 > 1 as in the case of b.

Next, the effect of γ is analyzed in Figure 5.7a and the observation says that
if γ > 0.7540 then disease free equilibrium is asymptotically stable, and if γ <
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Figure 5.6: The change of R0 as (a) µ0, (b) β0 varies.
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Figure 5.7: The change of R0 as (a) γ, (b) α3 varies.

0.7540 then disease free equilibriums unstable. Finally, in Figure 5.7b we analyze
α3 and notice that when α3 = 0.9430, R0 = 1. That is, if α3 > 0.9430 then
R0 > 1, and if α3 < 0.9430 then R0 < 1.

Briefly, all the parameters are analyzed and their effects on the stability of disease
free equilibrium are observed. After getting this general inspect about the system,
we investigate how the time-averaged system is close to the periodic system in
terms of the stabillity of disease free equilibrium. Therefore, averages of the
function η(t), µ(t) and β(t) are found as

[η] =
1

1

∫ 1

0

η0(1 + α1 sin(2πt))dt = η0

[µ] =
1

1

∫ 1

0

µ0(1 + α2 sin(2πt))dt = µ0

[β] =
1

1

∫ 1

0

β0(1 + α3 sin(2πt))dt = β0
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Figure 5.8: The changes of R0 and [R0] as (a) b, (b) c varies.

so that we have an autonomous form of the system that can be solved via the
theory summarized in Chapter 4.

Clearly, for analysis of avian influenza, the case more tragic than the case of
Dengue fever. Although in analysis of Dengue fever the time-averaged system
only underestimates the disease transmisson risk, now it both underestimates and
overestimates. This can be seen from the following figures of the comparison of
the time-averaged and periodic system. Through these six figures, R0 is analyzed
with respect to the parameters b, c, µ0, β0, γ, and α3.

Figure 5.8a proves the overestimation for b < 0.7540 and underestimation for
b > 0.7540, clearly. Also, R0 and [R0] show different types of characteristics
since [R0] is decreasing function and R0 is increasing function according to b. In
Figure 5.8b, it is noted that [R0] and R0 have same types of behaviors according
to c but there is an underestimation for c < 0.8470 and an overestimation for
c > 0.8470.

In Figure 5.9a, we observed that while for all µ0 ∈ [0, 1], [R0] can not reach
1, R0 = 1 when µ0 = 0.9280 and R0 > 1 when µ0 > 0.9280. Moreover, for
0.65 ≤ µ0 ≤ 1 the time averaged system underestimates the disease transmisson
risk. In Figure 5.9b, the graph of β0 resembles the graph of b, that is, both graphs
imply the same behavior.

More apparent difference occurs in Figure 5.10a since R0 = 1 when γ = 0.7540
and [R0] = 1 when γ = 0.1490. There is a huge difference between the values of
R0 and [R0] for γ ∈ [0, 1]. Lastly by Figure 5.10b, as in the analysis of Dengue
fever, definite proof of underestimation of the disease transmission risk is observed
on the graph of α3. Despite the fact that R0 > 1 for α3 > 0.9430 and R0 < 1 for
α3 < 0.9430, [R0] is always 0.9231 for all α3 ∈ [0, 1].

Consequently, all of the numerical calculations imply that the time-averaged sys-
tem underestimates or overestimates the disease transmisson risk. Therefore, the
time-average system is not appropriate to use it instead of a periodic system.
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Figure 5.9: The changes of R0 and [R0] as (a) µ0, (b) β0 varies.
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Figure 5.10: The changes of R0 and [R0] as (a) γ, (b) α3 varies.
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CHAPTER 6

CONCLUSION AND OUTLOOK

In this thesis, we have reviewed several works that analyze the threshold dynamics
for compartmental epidemic models for both autonomous and periodic systems.
Moreover, we have made some additional works to the paper of Driessche and
Watmough [26], and as a contribution, we model the dynamics of the disease
transmission model of avian influenza.

First of all, we have reviewed the study of Driessche and Watmough [26], in which
the threshold dynamics is examined for Dengue fever via autonomous systems.
As an additional application of this theory, we have applied a strategy to control
the spread of the disease, which is called pest control. The observations have
showed the positive effect of pest control as an eradication policy, since it reduces
the basic reproduction ratio of the disease. We conclude that due to this strategy
one can determine the minimum level of pesticide to prevent the spread of the
disease.

Next, we have presented a detailed study of Wang and Zhao [27]. Application of
this theory consists of two main parts. Considering periodic vector-host model
for Dengue fever, firstly, as an additional piece to the work of Wang and Zhao,
we analyze the threshold dynamics of this model with respect to the birth rate of
humans and mosquitos as well. Then, we have made a comparison between time-
averaged and periodic systems and accordingly, results show the underestimation
of the disease transmission risk by the time-averaged system. In the second part,
as a contribution, we have proposed a vector host model for avian influenza. We
examine the threhold dynamics of this disease with respect to all parameters in-
cluded in the model. Moreover, we have implemented the calculation of R0 in
time-averaged system for avian influenza and compared this result with periodic
case. As a result, the implementations clearly indicate the proof of the underesti-
mation and overestimation of the time-averaged basic reproduction ratio, which
clearly implies the risky assessment of the disease transmission prediction by the
averaged basic reproduction ratio.

We believe that this study could also be investigated using stochasticity in the
contact rates in order to further extend the theiry and to mimic the real world
applications. Additionaly, approaches by delay differential equations or impul-
sive differential equations may improve the analysis of the models in terms of

45



consistency with the real world.
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