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ABSTRACT

ANALYZING EFFECTIVE CONNECTIVITY OF BRAIN USING FMRI DATA: DCM AND
PPI

Mojtahedi, Sina
M.Sc., Department of Biomedical Engineering

Supervisor: Prof. Dr. Ugur HALICI
Co-Supervisor: Prof. Dr. Metehan CICEK

January 2013 | 110page

In neuroscience and biomedical engineering fields, one of the most important issues nowadays is
finding a relationship between different brain regions when it is stimulated. Connectivity is an
important research area in neuroscience which tries to determine the relationship between different
brain region when the brain is stimulated externally or internally. Three main type of connectivity are
discussed in this field: Anatomical, Functional and Effective connectivity. Importance of effective
connectivity is its ability to detect brain disorders in early stages. Some brain disorders are
Schizophrenia, MS and Major Depression disease. Comparing the effective connectivity between a
healthy and unhealthy brain will help to diagnose brain disorder. In this master study, two methods
named Dynamic Causal Modeling (DCM) and Psychophysiological Interaction (PPI) are used to
compare effective connectivity and neuronal activity between different regions of brain when there
are three different stimulations. Since the neural activity is latent in fMRI data, there is a need to a
model which is able to transfer data from neuronal level to a visible data like Blood-Oxygen level
dependent (BOLD) signal. DCM uses a haemodynamic balloon model (HD) to represent this data
transfer. The hemodynamic model must be so that the parameters of neural and BOLD signal be the
same. It should be noted that what is looked for is not the BOLD signal but the neuronal activity. In
this study, as the first step, we did preprocessing of MR images and after ROI’s are created using the
program MARSBAR. Ten ROIs, which are thought to have connections between them are selected by
considering the stimulations used in the experiments in obtaining the data used in this thesis. The data
used contains fMRI images of 11 healthy subjects. Stimulations of experiment are applied to images
got from group analysis of 11 healthy subjects. These Stimulations are then used in preparing the
design matrix and the parameters related to DCM. These parameters are the values related to
connection matrices defining bilinear dynamic model on ROI. Bayesian method is used to select best
model between all these models.

Another method of PPI is also applied to analyze effective connectivity between 10 ROIls. This
method considers two issues of physiological and psychological effects. Like DCM, the preprocessing
steps and ROI selection is done for PPl and hemodynamic model is designed for this method. Neural
and hemodynamic responses of ROIs are compared using this method.

Keywords: Functional MRI, Effective connectivity, Dynamic Causal Modeling, Psychophysiological
Interaction, Haemodynamic Model.
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Oz

FMRI VERILERI KULLANILARAK BEYINDEKI ETKiLi KONNEKTIVITE ANALIiZi:
DCM VE PPi

Mojtahedi, Sina

Yiiksek Lisans, Biyomedikal Miihendisligi Anabilim Dali
Tez Yoneticisi: Prof. Dr. Ugur Halic1
Ortak Tez Yoneticisi: Prof. Dr. Metehan Cigek

Ocak 2013  110sayfe

Son giinlerde sinirbilim ve biyomedikal miithendisligi alaninda disaridan uygulanan bir uyaranin etkisi
altinda beynin farkli bolgeleri arasindaki iliskinin bulunmasi 6nem kazanmistir. Konnektivite
sinirbilim ¢aligmalarinda dis ya da i¢ uyaranlarla uyarilan beynin degisik bdlgeleri arasindaki
iligkinini ortaya konmasi agisindan 6nemlidir. Bu alanda ¢ tiir konnektivite 6n plana ¢ikmaktadir:
Anatomik, islevsel ve efektif konnektivite. Efektif konektivitenin 6nemi ruh ve sinir hastaliklarinda
erken tan1 imkani saglayabilmesidir. Bu hastaliklarin bazilar1 sizofreni, multiple sklerosis ve major
depresyondur. Hasta ve saglikli beyinlerin efektif konektivitilerinin karsilastirilmast bozuklugun
teshisinde faydali olacaktir.. Bu ¢alismada, degisik uyaranlarin varliginda beynin bolgelerinin efektif
konnektivitlierinin karsilagtiritlmasi i¢in Psiko fizyolojik Etkilesim (PPE) ve Dinamik Nedensel
Modelleme (DNM) isimli yontemler kullanilmistir. Islevsel Manyetik Rezonans goriintiileme
(IMRGA)’ da noral aktivite gizli oldugu icin BOLD sinyali gibi goériinebilen bir sinyal elde edebilmek
icin bir modele ihtiyag vardir. DNM veriyi doniistirmek icin hemodinamik balon modeli
kullanmaktadir. Hemodinamik model &yle bir secilmelidir ki noéral sinyalin ve BOLD’un
parametreleri ayni olmalidir. Burada dikkat edilmesi gereken nokta aranilanin BOLD sinyali degil
noronal aktivite olmasidir. Bu ¢alismada ilk asamada MR goriintiilerinde 6n islemeler yapildiktan
sonra MARSBAR ile ilgilenilen bdlgeler segildi. Tliskinin olabilecegi on bélge segildi. Daha sonra 11
saglikli denege grup analizi yapildi ve deneyin uyaranlariyla beraber model olusturuldu. Uyaranlar
dizayn matrisine uygulandi ve parametreler DNM ile bulundu. Modeller i¢inden en iyisi Bayesci
yaklagimla se¢ildi. On bolge arasindaki efektif konektivite ayrica PPE ile de bulundu. Bu yontem
fizyolojik ve psikolojik etkileri de dikkate alir. DNM gibi, veri Onislemeden geger, ilgilenilen
bolgeler segilir ve hemodinamik model tasarlanir. Bolgelerin néronal ve hemodinamik yanitlart bu
yontem ile karsilastirlir.

Anahtar Kelimeler: islevsel MRG, Efektif konnektivite, Dinamik Nedensel Modelleme,
Psikofizyolojik Etkilesim, ,Haemodynamic Model.
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CHAPTER 1

Introduction

1.1 Motivation of the study

In neuroscience field, the question of how brain works has great importance. Because of complexity in
neural connections of brain, answering this question is not easy. To analyze brain behavior, there is a need
to the methods which are able to deal with a huge number of neurons. Furthermore, these neurons differ in
behavior while considering their connectivity. Analyzing the connectivity and finding a relationship
among these neurons is done in three main levels:

1) Structural or Anatomical Connectivity describes the actual connectivity in brain. The connection
between all neurons of brain is discussed in this connectivity.

2) Functional Connectivity describes the connectivity among group of neurons. The emphasize in
this connectivity is on effect of one region of brain on all other regions.

3) Effective Connectivity gives the details of connection between regions or voxels of interest in
brain. It considers the whole brain as it is divided into small regions as Dorsal ACC, Ventral ACC,
Leftinsula, etc. and tries to find a relationship between these regions.

In field of neuroimaging, there are some usual techniques as Magnetic Resonance Imaging (MRI),
Electroencephalography (EEG) and Magnetoencephalography (MEG). All these techniques can be used to
identify the regions of brain that have special characteristics.

Main reason for analyzing the connectivity of brain is the importance of this analysis in detecting brain
disorder diseases in early stages is the answer of the question. Analysis of effective connectivity gives
important information about responding of brain to stimulations. Using this information, it will be
possible to differentiate healthy and disease brain.

Effective connectivity can be analyzed using methods: Structural Equation Modeling (SEM), Granger
Causality Modeling (GC), Psychophysiological Interaction Method (PPI) and Dynamic Causal Modeling
(DCM). The main purpose in this thesis work is to find effective connectivity using fMRI data time-series
by using two methods of Dynamic Causal Modeling and Psychophysiological Interactions. Between these
models we eliminated SEM and GC methods because of some drawbacks of these two methods. SEM
method has 3 main weak points. This method is depending on sample sizes to estimate model fit. To use
this method one needs to know direction of connections. SEM does not support reciprocal models (in
which the connections are symmetric).

In case of GC method, stability of hypothesis is decreased if there are many regions and this method needs
short repetition times (TR) to extract time-series. The most important weakness of GC method is that it
cannot give true estimation of directional effects in fMRI data time-series. For the case that data is
acquired from a stimulated brain, the DCM is a suitable method. This method relates stimulation of brain,
physiological interactions and effective connectivity to each other.

1.2 Scope of the study

Before analyzing fMRI data however, there is a need for preprocessing the data. During acquisition of MR
images, the subject may move his head and data maybe noisy. Also the brain sizes differ in different
people. To solve discussed problems, preprocessing is done. This step includes slice-timing correction,
realignment, co-registration, normalization and smoothing. Then, design matrix and contrast matrices are
determined and applied to data. At next step is ROI's are created. These ROI's are the active parts of brain
after applying stimulation to the brain. In finding effective connectivity, the only important areas to be



analyzed are ROI's (region of interest. After these steps, as neural activity is latent in fMRI data, there is a
need to a model which transfers latent data to visible format. This model is named hemodynamic model
that turns neural activity to a visible BOLD (Blood-Oxygen Level Dependent) signal. In order to make a
general decision on connectivity between different ROIs, group analysis is done. This analysis covers all
subjects in the experiment. There are three parameters which bilinear DCM tries to find. These three
parameters are in the shape of 3 matrices. First one is A matrix which gives intrinsic connectivity.
Intrinsic Connectivity shows connection between brain regions without considering any stimulation on
brain.

Second is B matrix which gives modulatory effects of stimulations on connection between brain regions.
The third is C matrix and shows the direct effect of stimulation directly on brain regions. The differences
between these models are the place of applying stimulation. Stimulation applied directly to the regions or
to the connections between regions. The application of stimulation to any place defines different models.
In some cases there are more than 60 models. For each model, B and C matrices should be determined and
then Bayesian method is used to compare models. After finding these three matrices, models are
completed and best model can be chose by using Bayesian Factor. This is done by comparing model
complexity and accuracy. The term “log posterior” is used for “accuracy — complexity”. This means that
the best model is selected among the most accurate and complex models. Bayesian Factor compares log-
posteriors of models to give the best model as final step.

In addition to bilinear DCM, also PPI is considered in this study. Psychophysiological Interaction method
(PPI) gives responses in one region of brain which is the result of affecting this region by another brain
region or any stimulation. In this master thesis work only effect of stimulation is considered. Two
important issues are discussed in this method as Psychological and physiological effects. Psychological
effects refer to the stimulations in the experiment related to this thesis work.

1.3 Thesis outline

This Thesis is organized as follows: In chapter one a survey of current studies in Effective
connectivity is presented and then in second chapter DCM and PPl methods are explained in details. In
the third chapter data description and the stimulations used are presented. Chapter four describes our
methods and results. Finally, the overall conclusion of the research is given and the potential future works
are described in chapter 5. APPENDICES A and B describe t-test and Statistical Regression analysis. The
performance evaluation of the presented methods and all results including best models for DCM method
are presented in APPENDIX C. PPI results including Neuronal and Haemodynamic responses and
stimulations for all ROI's of subjects are included in APPENDIX D.



CHAPTER 2

Theoretical Background

2.1 Effective Connectivity

The usage of Functional neuroimaging techniques in cognitive sciences to investigate the aspects of
functional specialization and integration in human brain is inevitable. Functional integration could be
characterized within Functional Connectivity and Effective Connectivity [1, 2, 3]. As functional
connectivity is describing how data are dependent, effective connectivity concentrates on mechanistic
models of causal effects which generated that data [4, 5].

In literature the term Effective Connectivity is defined in many ways. The most general one is that the
effective connectivity is describing causal influences which neural units exert over another [1]. The
simplest description of effective connectivity is the influence of one neuronal region on another. In details
“Effective connectivity should be understood as the experiment-dependent and time-dependent simplest
possible circuit diagram that would replicate the observed timing relationships between the recorded
neurons”’[6]. In both of definitions, the emphasize is on determining effective connectivity there is a need
to a causal model of the interactions between the elements of the neural system.

2.2 Dynamic System Model

Using general mathematical framework provided in dynamic system theory, brain is modeled as a
dynamic system which is characterized by n variables which interact with each other. These variables are
x; , (1<i < n) time-varying state variables and progression of any of state variables depends on other state
variables. As an example consider membrane potential which depends on number of ion channels which
are open or opening the voltage-dependent ion channels directly depends on membrane voltage.

These kinds of functional dependencies could be expressed using differential equations and some
parameters like © determining form and strength of causal influences between variables.

In case of neuronal systems, parameters are time constants or synaptic strength in connections between
elements. If the system is non-autonomous (a system with changing matter, energy and information with
environment) inputs into the system like sensory information into brain must be considered.

In non-autonomous deterministic system with m vector function (m known inputs) one can define such a
general equation:

= F(xu,0) (Eq. 2.1)
In the equation above, x are the neuronal states of system, u are inputs and 6 are the parameters of the
desired model. The equation above easily describes how system structure can affect system dynamics as it
describes two important issues: (i) time and region of external inputs to the system and (ii) changes
happened in state of system. Let’s integrate equation 1.1 considering initial state x(0). This would be like

x(1) = x(0) + [, F(x,u,0)dt (Eq.2.2)

Equation 1.2 is a general form of models of effective connectivity for neural systems [6, 7].



As we want to work in continuous time we use time dependent equation. This situation is also true for
discrete system as multivariate/vector autoregressive models (M/VAR) and static system (static systems
are at equilibrium every single time).

This method has been applied to structural equation modeling also [8, 9, 10, 11].

The Psychophysiological Interactions (PPI) and Dynamic Causal Modeling (DCM) consider special cases
of the Dynamic system model given here in order to find effective connectivity among brain regions
represented by state variables. On the other hand, haemodynamic model is describing how the signal of
neuronal state x(t) transfers to BOLD signal of y(t) included in 2.3 [12, 4, 5].

f(x,u,0) X

Figure 2.1. Schematic of a Dynamic system model.

Figure 2.1 is a graphical schematic of a dynamic model. In this figure u is inputs of system which have
effect on the state of system. State of the system here is shown by x. The system is represented by a
recurrent function of inputs (u), system states (x) and system parameters (6).

Dynamic system model could be considered as Linear Dynamic system model as a special case. In linear
dynamic model only simple form of Taylor series is considered. In next sections other special kinds of
Dynamic model will be discussed in details. These special cases are bilinear and nonlinear dynamic
models. In these two cases, Taylor series is expanded and this series is result in the equations of
calculating dynamic causal modeling.

2.2.1  Bilinear Dynamic Model

In a system of n interacting brain regions, input-state-output model of neuronal dynamics could be
represented by DCM. In order to show activity in each region there is a single variable which could
change by experimentally controlled inputs u. DCM has the ability to model the temporal changes in
neuronal vectors x whole the system is in resting state (x, = 0,u, = 0). This could be possible using a
bilinear Taylor series approximation to any nonlinear function f(x,u) [8].

f(x,u):Z—’: ~ £(0,0) + Z—ix + g—iu + a‘fafuxu (Eq.2.3)



This series is shortened in a way that it only includes bilinear (second-order) terms describing interactions
between states and input n. For m known inputs the matrices will be like equation 2.3[8].

ALy BO=DL e (Eq.2.4)

dxou;’ gy 1u=0

In this manner, the direct neurophysiological interpretation could be equation 2.5 [8].
fou)=2 = (4 + 2, wBO)x + Cu (Eq.2.5)

There are three matrices in equation 2.5. Matrix A represents the fixed (endogenous) connections between
regions. Matrix B® represents the modulatory connections. When there is a change in inputs (u;) these
matrices will change which is induced by the i** input u; as an additive change. These changes will be the
result of learning or attention for example. Matrix C, gives the effect of exogenous or direct inputs to the
system. These direct inputs are any given stimulation to the brain [8].

2.2.2  Nonlinear Dynamic Model

If one extend Taylor series in equation 2.13 to second state order, it will results in nonlinear interactions
modeling for n states of system [12].

fou) =2 ~ £0,0) + L+ Lot 2oy + L2 (Eq.2.6)

axau dx2 2

1af

Settlng DY) = |u o (1= j < n) will result in Eq.2.6:

f(x,u) = (A + zl L uBO + 37 x;DD)x + Cu (Eq.2.7)

Matrices DU) encrypt connections in the system, which are gated by regions. Specifically, any non-zero
entry D,E{) indicates that response of region k to inputs from region | depend on activity in region j [8].

Figure 2.4, simply depicts the difference between bilinear and nonlinear dynamic causal modeling
method [8].

2.3 Haemodynamic Model

Reviewing literatures on cognitive neuroscience, one will come across with classical models of effective
connectivity like SEM, VAR and PPI. All these methods operate at the level of measured signals but to
identify causal structure of the system which lies under neuronal level, we come to an end with non-
invasive methods. Considering fMRI data, all methods named above could be applied to time series which
are the result of haemodynamic responses convolution with neuronal activity. There is a need to a forward
model which link neuronal activity accuracy in the dynamic model to measured haemodynamic response
signal to give a meaning for analysis of inter-regional connectivity, because different brain regions could
be affected by different neurovascular stimulations [12].

Dynamic Causal Modeling combines neural dynamics with the experimentally confirmed haemodynamic
model. This haemodynamic model shows transformation of neural activity to BOLD response.
Haemodynamic model which is built on “Balloon Model”[13] can be showed on a differential equations
which shows that changes in neural activity can cause changes in vascodilatory signal, blood flow volume



and deoxyhemoglobin content [14]. The most recent version of haemodynamic model is shown in figure
(2.3) which is completely described by Stephan et al. [15].

Measured BOLD signal will be able to estimate the set of neural and haemodynamic parameters as
0 ={6™,0M3}.  For this purpose, among different methods, we choose Bayesian approach with
empirical priors for haemodynamic and coupling parameters. More details on parameter estimation,
Bayesian algorithm, Gaussian Estimation and expectation Maximization can be found in [4, 16, 17].

Neuronal and haemodynamic equations together, give a deterministic forward model with hidden states.
Measured BOLD response which is shown with y could be modeled as a linear combination of predicted
BOLD signal h(u,©) and confounds signal drift which is shown by X8 and Gaussian observation error e

[8]:
y=h(u,0)+XB+e (Eq.2.8)

Experimentally controlled input functions u evoke neural responses x, modeled by a bilinear differential
state equation, which trigger a haemodynamic cascade, modeled by 4 state equations with 5 parameters.
These haemodynamic parameters comprise the rate constant of the vasodilatory signal decay (k), the rate
constant for auto-regulatory feedback by blood flow (y), transit time (1), Grubb's vessel stiffness exponent
(o), and capillary resting net oxygen extraction(p). The model consists of the two equations describing the
dynamics of blood volume (v) and deoxyhemoglobin content (q). Integrating the state equations for a
given set of inputs and parameters produces predicted time-series for v and g which enter a BOLD signal
equation A to give a predicted BOLD response.

Neural State Equation

Vasodilatory Signal

flow induction

rCBF

Change in volume Change in dHb

| BOLD signal change cquation |

Figure 2.2. Schematic summary of the neural state equation and the haemodynamic forward model based
on neuronal state equation explaining BOLD signals.

Vasodilatory signal is defined as :
ds/dt =x—ks—y(f—1) (Eq.2.9)



Flow induction is calculated as:

df Jdt = s (Eq.2.10)
Using equation 2.8 gives us the change in volume:
tdv/dt = f —vl/e (Eq.2.11)
Changes in deoxyhemoglobin level is defined as:

1
tdq/dt = f@ —vagh (Eq.2.12)

Equation 2.8 gives us the information about changes in BOLD signal:
y=Av,q) (Eq.2.13)

2.4 Dynamic Causal Modeling (DCM)

In order to be able to infer on connectivity between neuronal regions, there must be models that are able to
combine conceivable model of neural population dynamics in neurobiological manner with a forward
model which is able to describe the transformation from neuronal activity form to measured signal form in
a conceivable biophysical format [18, 19, 20]. Such a model then will fit predicted time-series similar to
observed time-series.

Integrating the state equation gives predicted neural dynamics (x) that enter a model of haemodynamic
response (A) to give predicted BOLD responses (y). The parameters at both neural and haemodynamic
levels are adjusted such that the differences between predicted and measured BOLD series are minimized.
Critically, the neural dynamics are determined by experimental manipulations. These enter the model in
the form of external inputs. Driving inputs elicit local responses directly that is propagated through the
system according to the intrinsic connections. The strength of these connections can be changed by
modulatory inputs [21].

In classical form of DCM, the change of a neural vector x in time with each region which is being
represented by a single variable, has been modeled. It’s shown in Equation 2.9.

Z=F(x, U, 0)=(4 + X%, wBO)x + Cu (Eq.2.14)
The given equation 2.9 is called the Bilinear model for DCM.

Considering equation 2.4, the neural parameters 6 = {A, B, C} can be expressed as partial derivatives of
F as below [11]:

A= z—i|u=0

0] — 92%F
B oxou; (Eg2.15)
C=20x=0

In equation 2.10 above, there are 3 matrices. Matrix A represents fixed or endogenous or intrinsic
connectivity between regions in the absence of any input. Matrices B® encode any change in connectivity



which is caused by any of inputs. Matrix C shows us direct or exogenous effect of inputs on neural
activity.

2.4.1 Bayesian Model Selection (BMS)

The important part of DCM is selecting best fitted model for data. All preprocessing and processing steps
are done and the data is prepared. The problem now is finding the best model.

The decision cannot be made just by comparing the relative fit of different models. The differences in
complexity like number of parameters and the degree of inter-dependency are important issues. Notice
that by increasing model complexity, there will be an increase in model fit but, in the same way, there will
be an increase in noise either. Therefore, the problem changed from finding only optimal model to finding
a model which is able to balance fit and complexity. Doing this will result in a model that maximizes
model evidence [22, 23];

p(yIm)=[ p(y|6, m)p(6lm)de (Eq2.16)

In equation 2.16, parameter y corresponds to changes in BOLD signal, m is the selected model and
parameter © is parameters of model m. In this equation all parameters of determining interdependencies,
including numbers of free parameters and functional form of generative model are subsumed by
integration. As this integral cannot be solved analytically, there is an approximation to the log of the
model evidence and this means that we apply logarithm to both sides of equation. This approximation is
usually a free energy bound on the log evidence [17]. More detailed discussion on this issue could be
found in [24, 25].

Given two models m; and m;, the difference in log evidence can be transformed into a Bayes factor (BF)
as below:

_ pImy
i = p—(y|mj) (Eq2.72)
BMS is applied to both single subjects and the whole groups. Random effects BMS could be used when
variation of optimal model across subjects is expected. Also, variational Bayes [25] could be used in case
of applying probability density on model themselves. Using all mentioned above with together, it’s seen a
specific model generated the data of a randomly chosen subject is similar to the increase probability of
one model being more likely than any other model.

The most important role of BMS in DCM is that it is used to select most probable model than other
estimations before considering any particular parameters. As an example BMS could be used to show
effect of anatomical connection strength on effective connection strength [26].

BMS is also able to compare two or more portions of model space [25]. This is useful because model
space reflects some important aspects like (i) including a specific connection in a model or not (ii) a
particular connection is modulated by which condition (iii) special effects are linear or non-linear.

Ability of this method to consider large set of models together which allows one to be sure of selecting
model structure and comparing different models with each other is its advantage.



2.5 Psychophysiological Interactions (PPI)

PPI is a method which is used to understand difference in correlation of activities between two different
brain areas in different psychological situations. In a simple way this method shows relations between
psychological condition and functional interaction between two regions in the brain.

As an example consider a task which activates both prefrontal cortex and hippocampus in brain. Here we
must be able to explain two important matters. (i) both regions were activated independently (ii) both
regions are working with each other interactively.

The first principle to look for regions which are interacting with each other is considering if the activity
level in those areas will correlate in time. This means that any “in-synch” increase or decrease in activity
between regions will result in a functional relation between them. There is a basic way: extracting time-
series from some representative voxel in a region and then apply General Linear Model using the activity
time-course of that region.

The most important issue here is change of interaction between areas in different conditions which will
influence correlation between the time-course of those areas. Consider a task which your previous
knowledge about the content of task may have an effect on it. So, in PPI, the areas of higher correlations
with time-course in seed regions are considered and only relationships are considered which change
during a task in an experiment. For example consider navigating around a labyrinth, some areas of your
brain is active to find a way. We are interested in regions which interact during navigation not during
passive travel.

In order to solve the problems mentioned above it's preferable to generate an interaction regressor instead
of using explanatory variable in GLM [27, 28, 29, 30, 31, 32].

2.5.1 Regression Analysis

Changes in models in order to model the influences between regions will result in diversity in Effective
Connectivity. In this part we want to focus on psychophysiological interactions. Consider a simple linear
model and show regression analysis on this model.

Consider activity in i" voxel to be modeled as;

x;(t) = X Cij. x;(t) (Eq.2.18)
with summation over j; the activity of x;(t) is sum of influences of C;;.x;(t) from other regions. Notice
that there is not any self-connection (C;; = 0). The C;; corresponds to connection strength from j to i;
Note that C;; is not equal to Cj;. In electrophysiology C;; is known as efficacy and x;(t) is postsynaptic
response to presynaptic inputs x;(t). In such a simple model inputs sum with each other instead of
interacting in time-courses. Also, connection strengths are fixed, preventing time-dependent changes
[33]. These strong and unrealistic considerations are more robust than similar methods like Structural
Equation Modeling [34, 35].

Consider a multiple linear regression equation in matrix format. This is given by equation 2.19.
X; = [X1 e Xgoaen XK][B“ Bik BiK]T + G. BG + e; (Eq219)



where T denotes transpose. x; is a column vector of response variables at each voxel i; G is a matrix
whose columns contain a collection of unnecessary effects like global activity, time effects; £3;, and 3,
are the parameter estimates and e; is a well-behaved error term. Estimated f3;, in this equation can be
identified with C;;, as we include all regions from 1 ... K (in DCM case there were m selected regions)
[38]. Response for only one region is given in equation 2.20 below:

X; = Xkﬁik + G. BG + €; (Eq220)

If dont consider influence of other regions, the relation between f3;, and effective connectivity is fine
here. It’s logical to refer to f3;, as “contribution” to clarify that the slope of regression is not necessarily an
estimate for effective connectivity. Regression significance test (3;, = 0) is also a correlation significance
between x; and x,, i.e. the functional connectivity. But there is no need to functional connectivity for this
study work therefore, more and more areas must be included so that the contribution will approximate the
effective connectivity [33]. This also means “contribution from voxel k to | as a regression just could be
reached by showing activation in k as an explanatory variable and activation in i as a response” [33].

2.5.2 Factorial Design and Physiological Interactions

Factorial design means combining two or more facts in a task. This is done by combining the interactions
between these factors or the effect of one factor on response of another one. In neuroimaging field,
factorial design for the first time has been applied on interaction between motor activation [34]. It simply
was the effect of time on activation which was resulted by motor performance. In general, interaction is
different responses to any factor influenced by other factors or processes. As an example consider
different brain responses when stimulation frequency is increasing and looking for a reasonable response
like differential sensitivity, brain responses which are sensitive to stimulation, in brain.

In some of experiments [35], they gave auditory and visual stimulations and during stimuli application,
they changed presentation ratio of stimuli. The subject had to pay attention to visual stimuli as well as
motion. They used equation 2.18 to test differential sensitivity for increasing in rate of stimulation.
Equation 2.20 will change to equation 2.21. in this situation [33].

X; = 8r X 8a- B + [8:84G]- B¢ + € (Eq.2.21)

In this equation g, and g, are explanatory variables of experimental conditions. g, gives a mean vector
for the rate of presentation of the stimuli and g, is a variable which has a value 1 or -1 to indicate whether
subject is pay attention to visual or motion stimulation. All these mentioned are the main effects in this
experiment. g. x g, shows interaction term which models differences in regression slope under different
attentional sets. Notice that, this is an element by element matrix. At the end of experiment, interactions in
thalamus were observed [35]. The important issue here is increasing in activation of thalamus happened in
presence of auditory stimuli.

Explanation of regressor variables are shown by columns of a matrix named Design Matrix. t-statistics is
able to detect positive and negative contribution of physiological interactions and it would treat main
effects which are modeled by g, and g, as effects of interest.

Xj = [8r X 8a8rBal - Bi + G.Bg + ¢ (Eq.2.22)

Now, consider replacing the explanatory variables with measured physiological activity in two different
brain regions and identify a significant interaction in a third brain area. If we do so, then third region will
be explained as an activity in first area which will depend on activity in second area. This is what
Physiological Interaction means.
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As an example, consider experiment conducted by Buechel and Friston [36, 37] in which attention to
visual motion was analyzed and the design was in a way that they could examine interactions among the
three brain regions called: V5, PPC and PFC. The design was in a way that they could examine
interactions among three regions of brain called V5, PPC and PFC (three regions in brain). Nonlinear
structural equation modeling (SEM) also could modulate V5—PPC using PFC but this method don’t show
“How regionally specific was this modulation” Physiological interaction method answers this question
easily. Modulation between V5—PPC as described above depends on PFC. Equation 2.23 gives the
modulation:

[Crpcprexvs- Xprc(®)] - Xys(t) (Eq.2.23)

where the activity-dependent efficacy from V5 to PPC (inside brackets of equation 2.23) incorporates the
modulatory effects of Xprc(t). Considering the term Cppcprexys @s activity-independent efficacy of
interaction term equation 2.23 results in

[Crpcprexvs- Xprc (0)] Xys () = Cppe prexvs: [Xprc (E) - Xys ()] (Eq.2.24)
The statistical model by considering Eq.2.18 and Eq.2.19 will be as equation 2.25 below:

Xj = Xpfc X Xys- Bi + [XPFCXVSG].BG + € (Eq225)
Product of xppc X xys5 Which is an element by element production of modulatory effects of regions PFC
and V5, gives the activities in PFC and V5. Considering a regionally specific modulatory effect, we will
have the contribution effect only in PPC. So, now we can apply this method to three different region of
brain in any of subjects. Figure 2.5 illustrates that PPC is modulating V1—V5 connections. A t-statistics
testing with null hypothesis 13;=0 is considered and resulted in equation 2.26 as below:

Xi = Xppc X Xy1- Bi + [XV1XPPCG]' RG + € (Eq226)

Physialogical interaction

Physiological interaction

V5 response
V5 response

4
interaction between V1 and PP Interaction between V1 and PP
Figure 2.3. Regression of activity near right V5 on the product of Figure.2.4. this figure is like fig.2.5. but for a
activity in V1 and PPC. This regression shows the substantial voxel more anteriorly and superiorly. In this
contribution of of the interaction effect to V5 response and can figure slope is negative suggesting a negative
be interpreted as evidence for a positive modulation of VI—-V5 modulation of V1—V5 influnces by PPC activity
[33]. influences by PPC projections. This is an example of

physiological interaction [33].
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They chose a voxel in V1 with coordinates of (12, -81, -4) [38]. Another voxel from PPC with location of
(21, -5, 60) has been chosen. They observed a regionally specific interaction near V5. Note that, effects of
Xy; and xppc must be removed as it caused by contribution from V1 and PPC to V5, there will be a
variance in x; which could be explained by xppc and xy. Looking at two figures 2.3 and 2.4 above one
may concern the meaning of positive and negative slopes. Positive slope means that, the amount of
variation in V5 could be the result of positive interaction term. In this experiment they observed (Z=5.77,
P<0.001, z is the rate of acceptability). Although, in figure 2.5 we can see some regions that have negative
interactions either. Figure 2.6 illustrates this more clearly. Generally speaking, any positive or negative
slope is considered as positive or negative interactions respectly. The modulatory interaction could be
from V1 to V5 or vice versa.

2.5.3 Psychophysiological Interactions

Psychophysiological interactions explain that when there is an interaction between a sensorimotor or
process with activity which happened in other part of brain. Equation 2.27 is the statistical model for
psychophysiological interactions:

Xj = Xk X gp. ﬁi + [ngpG] BG + € (Eq227)

Here, in this equation the term (xy X g,.f3;) is the psychophysiological interaction between the
physiological activity in region k and another physiological parameter of the design g, which is the result
of conducting these two results. Just like previous part, we can examine any changes in contribution from
V1, under the condition that there is attention to visual motion, to V5 [13]. This gives an opinion of the
importance of this visual attention to motion in changing the contribution of between regions. In figure
2.5.a. V1 activity is showed in dotted line while the solid one is showing attentional effects. Figure 2.5.b.
though illustrates conduction between these two elements. Remember equation 2.27 in which V1 activity
resembles x. and attentional effect or the solid line resembles g, and therefore, figure 2.5.b. will give us
the term xy X g,.

V1 activity and attentional effects

Interaction effects

0 50 100 150 200 250 300 350 400 i} 50 100 150 200 250 a00 350 400

Figure (2.5.a) [33] Figure (2.5.b) [33]

Remember that, any interaction could be written as modulation of one effect from any of factors at
presence of other effects. For example, any response from V5 means that (i) there is a modulatory effect
of attention on contribution from V1 or (ii) modulatory effects of inputs of V1 on attention responses. To
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be generally speaking, one can consider psychophysiological interactions as (1) a change in contribution
of one region to another region or (2) a contribution of one region which results in modulation of

responses to a variable [33].

Figure 2.6 is the result of an experiment when two kinds of stimulations are considered at the same time.

Psychophysiologic Interaction
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Figure2.6. Regression of DACC activity on DLPFC activity while the stimulation is valance and
congruency.

Figure 2.6, shows the relation of activity in DACC to the responses DLPFC relatively in two stimulations
of valance and congruency. Black line and dots shows the situation of stimulation being valance while red
line and dots shows the situation of stimulations be congruency.
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CHAPTER 3

Materials and Methods

This chapter includes four main sections. In section 3.1 data is described in details. Section 3.2 includes
preprocessing steps, First level General Linear Model, Design and Contrast matrices, ROI creation and
application of two methods DCM and PPI to data. In section 3.3, application of Dynamic Causal
Modeling as our first method described in details. Section 3.4 includes Psychophysiological Interaction
method application to data as second method.

3.1 Data Description:

This part includes subjects and scanner, related to the data used in this thesis.

The fMRI data is provided by Assist. Prof. Dr. Didem Gokcay, Informatics Institute METU and my co-
advisor Prof. Dr. Metehan Cicek, Ankara University. The fMRI data used in this thesis was collected in
the UMRAM center by the team headed by Didem Gokcay under TUBITAK 109E081 project support.
Design of experiments and programming is done by Didem Gokcay and her team also. The ethical
committee approval for the healthy subjects was provided by Ankara University. This data includes 14
subjects but 3 of them have brain disorder or tumor and we couldn’t use their data. There are 11 healthy
subjects with no brain disorder or any brain tumor. Description of data in details is given in tables 3.1 and
3.2 below:

Table.3.1. Data description: Functional scans

fMRI protocol duration slices slice in-plane voxel TR TE samples
thickness resolution per run
echo 3.5min 34 4mm 3X3 mm 2000 30 100
planar each, 4 runs

Table.3.2. Data description: Structural scans

mprage protocol duration slices slice in-plane voxel TR TE FOV
thickness resolution
sagittal 6 min 224 1 mm 1X1 mm 2500 3.3 256

Considered sequences for the experiment are: Resting state functional, DT1 (Diffusion Tensor Imaging),
DT2, functional runs and structural scans.

There are four kinds of stimulations used in the experiment (see figure 3.1):
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1. Congruency Positive: A situation in which two parts of stimulation are congruent and gives a
positive feeling (as an example: showing an image in which a person is laughing and something
written which gives a positive or happy feeling).

2. Congruency Negative: A situation in which two parts of stimulation are congruent and gives a
negative feeling (as an example: showing an image in which a person is laughing and
something written which gives a negative or unhappy feeling).

3. Incongruency Positive: A situation in which two parts of stimulation are not congruent and
gives a positive feeling (as an example: showing an image in which a person is crying and
something written which gives a positive or happy feeling).

4. Incongruency Negative: A situation in which two parts of stimulation are not congruent and
gives a negative feeling (as an example: showing an image in which a person is laughing and
something written which gives a negative or unhappy feeling).

Congruency Positive  Congruency Negative

Laughing Crying

Incongruency Positive  Incongruency Negative

Crying Laughing

Figure 3.1. Graphical description of stimulations

3.2 Applying Methods on Data:

3.21 Preprocessing Steps:

Before DCM and PPI are applied on the acquired data, in order to improve signal to noise (SNR) ratio
and to be able to use data properly, we have to complete some preprocessing.

The preprocessing steps include: DICOM transformation, Slice-timing Correction, Realignment, Co-
registration, Normalization and Smoothing. After preprocessing step is completed GLM analysis is done.

Then ROI’s are created by using statistical group analysis. And finally DCM and PPI methods applied to
fMRI data. Details of preprocessing step applied on fMRI data are as given below.
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3.2.1.1 DICOM Transformation

As the first step of preprocessing we have DICOM transformation and Image Reconstruction. In this part
we can use some software to make our data readable by computer. We use SPM8 program to produce an
image file with a header which includes all the data related to that image. In fact the software does
Fourier Transform on raw data. From now on we are able to see slices of brain using SPM8 review or
any related programs. The details of preprocessing steps can be found in [39].

Slice-timing Correction: In functional MRI timing has an important rule. Generally, datasets are
measured using an iterative two dimensional method which results in temporal offsets between slices
of scans. Slice timing solves this problem.

Realignment: Main goal is to align a set of functional MRI images to a selected one of the images in a
way that all images are in the standard coordinates. Because of movements of subjects during scanning
session, functional images from time-series are not in same position. By realignment, it is provided that
the source of the signal in any voxel is the same point within any of scans.

Co-registration: In this step we want to overlap functional and anatomical images over each other in
order to be able to match activation regions to their real location on anatomical positions.

Normalization: Every person has different brain shape than others. If there is a single subject to be
analyzed, there is no need to do Normalization. However in a group analysis, it is necessary to bring all
brains in fMRI images to the same size and orientation. In this step, the images are warped to make
homologous regions from different subjects close to each other. As it is obvious, there could not be
exact overlap between function and structure images. Also, there is difference among anatomy of
subjects.

Smoothing: This method mathematically means, convolving data with a Gaussian filter like Gaussian
Kernel in order to reduce noise in the images and increase overlap of activation between subjects.
Smoothing operation does not change the size of the number of pixels, however results in blurring in
the images. This step is necessary because of the advantages listed below:

(i) Increase in SNR: as the signal in a voxel from a smoothed image, influenced from both
voxel itself and neighboring voxels, random noise is decreased.

(i) Increase in inter-subject overlap: there will be an increase between subjects in case of
averaging signal in larger area.

(iii) Increase in validity of analysis

Figure 3.1. illustrates reoriented anatomical brain image. We need this image to be able to specify our
regions exactly on the brain.
Figure 3.2. gives the way to reach a realigned image. Complete description of realignment is given above.

17



—— File :._0003-00001-000224 01.img
. CmSShUa; UPc‘n]s:oun Dimensions 256 x 256 x 224
mm: -
LAY Datatype int16
wx: | 169.01302 1111 Sl nden
b 84y 3T 3D GRYR TR=2500ms{TE=3.03ms#F A=Sdeg
i 4
fonrug\:rd{r:::'n} 36 Vox size-1x1x1
ol _10' Ongin:133 142 115
pl;::h "{:d} 004 Dir Cos:0.003 0.013 1.000
e
vaw {rad} .02
resize {x} 1
i U [_Hide Crosshairs ]
Z:z: g}} 3 Fall Volarma = Hide Crosshairs
[ Reorient images... Reset... Xv;:dv\?:::; : - M‘A;.d Blobs -
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Figure3.3. This step which is done using SPM8 program, shows realignment step in image file.
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3.2.1.2 Design Matrix and Contrasts

Design matrix is a matrix which includes preprocessed images, all regressors which in this case are
stimulations and 6 parameters of head motions in this experiment. An example of applying design matrix
is given in figure 3.3.
As discussed above we put stimulations in data as regressors and then high-pass filtered the data to
remove unwanted parts. We consider 4 stimulations as below:

- Congruency Positive

- Congruency Negative

- Incongruency Postive

- Incongruency Negative

We produce a t-test design matrix for regressors above as we know the onsets for stimulations of data.
We created a factorial design with two main effects and an interaction which is said to consider 3
different situation as: (i) Congruency (ii) Valance (iii) Congruency*Valance

Table 3.3 below shows how to combine 4 stimulations to design 3 main stimuli.

Table.3.3. Stimulations

CONGRUENCY | VALANCE | CONGRUENCY*VALANCE

Congruency

Positive . . .
Congruency ) )

Negative 1 . .
Incongruency 1 1 1

Positive
Incongruency 1 1 1

Negative

The table above shows what is the exact meaning of Cong., Val and Cong*Val.
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Statigtical analysis: Design
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Figure 3.4. Shows applying design matrix and contrasts to data considering stimulation ofcongruency.

Figure 3.3. shows the image after applying design matrix. Description of design is seen under the image.
Figure 3.4 gives active parts of brain after applying design matrix which are easily visible in figure and we
can now create ROI’s using this informations.

3.2.1.3 First Level General Linear Model

In GLM or statistical analysis we consider three steps:

1) Specifying a design matrix and filtering.
2) Estimating GLM parameters using Bayesian method.
3) Integrating results using contrast vectors.

Design matrix is our experimental design. This matrix consists of rows and columns which indicates
scans and effect or explanatory variables respectly. Explanatory variables here are stimulus functions.
Responses in our data are event-related designed. Mathematically, we model our responses by a box
function to indicate the onsets of an event with a set of basic functions. These basic functions, model the
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haemodynamic response of brain with inputs. Basic functions can be used to plot estimated responses to
events [40, 41]. We can also use Bayesian functions to plot estimated response. First level GLM analysis
is also used to implement a within subject analysis. This is an iterative method which we applied to 4
sessions of every single subject in our data. Note that, applying contrast to images from any subject gives
the measure of brain response as we consider contrasts from our hypothesis and applied them to the
images and now all that images are affected by contrast matrix. In another words, by GLM analysis we
try to model our conditions and regressors into our images and apply a high-pass filter to that image. The
reason of using high-pass filter here is to reduce the noise. Note that, signals with low frequencies will
be emitted after filtering.

As discussed in previous part we applied our 4 different kinds of stimulations to data as regressors. Our
main goal from entering these stimulations to images is to observe the influence of Congruency, Valance
and Congruency*Valance on connections between different ROI’s.

Until now we have done preprocessing steps as slice-timing, realignment, smoothing. We also put our
inputs which are stimulations as contrast matrix into data [42, 43]. Next step is creating ROI's from
preprocessed data.

3.2.1.4 ROI Creation

After entering stimulations as contrasts to data, ROI's are created . In both methods ROI's will be used.
There is a program named MARSBAR which creates ROI with a great details and we used this program.
Here, it’s so important to use MNI Atlas which is a brain atlas that maps brain parts. Considering active
parts of brain and neurological information, we found 10 ROI's in brain which is significately active
(p<0.05). Before using marsbar program, we noted the coordination for each of ROI's and then created
these regions considering three stimulations of Congruency, Valance and Congruency*Valance.

Table 3.4. Name and MNI coordinates of ROI’s for each condition.

Congruency Valance Congruency*Valance
DorsalACC (16,-2,34) DorsalACC (-16,28,28) Ventral ACC (-4,40,10)
LeftInsula (-44,0,6) Vetral ACC (-4,40,-8) RostralACC (-14,38,18)

Leftinsula (-44,-2,-4)
Rightlnsula (44,8,-6)
LeftDLPFC (-22,22,46)
RightDLPFC (26,26,48)

ACC is Anterior Cingulate Cortex and DLPFC is Dorsolateral Prefrontal Cortex.

As shown in table 3.4, now we have regions with coordinates of their center point. We choose the radius
of 9 mm. and consider a sphere form for ROI’s to be created.

Using marsbar and entering coordinates of ROI's and their radius we obtain what we were looking for.
Figures 3.5.a and 3.5.b are exmples of ROI creation.
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Figure 3.5.a. ROI Dorsal ACC when stimuli is valance Figure 3.5.b. ROI DorslACC when stimuli is
congruency

Figure 3.5.a,b. shows two sample ROI’s obtained as the results of group analysis. Figure 3.5.a shows the
region of interest considering the effect of Valance in Dorsal ACC with center coordination of (-16,28,28)
and figure 3.5.b. in the same way shows Dorsal ACC with center point of (16,-2,34) considering the effect
of Congruency.

As we created these 10 ROI's from group analysis, we can use any of them instead of any of the subjects.

All the steps before applying methods of DCM and PPI are completed and from this step we can use data
to analyze effective connectivity by applying two methods of DCM and PPI.

3.3 Dynamic Causal Modeling (DCM)

The main idea of DCM is to observe some changes in brain regions activity as a result of connectivity
differences. By applying some changes in brain using inputs, changes in brain would be measured as
responses of brain so that this enables us to give an idea about how states of brain could change. For
example a bilinear approximation gives a reparametrization which could be considerd as Effective
Connectivity. This bilinear connectivity could be changed by model selection. This model selection will
be done using Bayesian method.

The major difference between DCM and other methods like Structural Equation Modeling and
Multivariate Autoregressivemethod is, in DCM the input enters as a known parameter not stochasticaly.
Doing this, we can consider DCM as conventional method to analyze neuroimage time-series. This is
because we enter causal parameters as known fixed variables.

Our generated model for DCM is described completely using figure 3.6.
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-
Figure 3.6. Generated model for DCM for this thesis work.

In figure 3.6. two inputs are showned by X1 and X2. If these inputs are considered to affect just ROIs,
they are indicated by C and if they affect connection between ROI’s they indicated by B. In the figure,
intrinsic connectivities are showned by A matrices. For this special case input X1 affects ROI1 and input
X2 affects ROI2. There is reciprocal connectivity between ROI1 and ROI2. Modulatory stimulation or B
matrix only effects connection from ROI2 toward ROI1. In order to show all thses matrices which are the

O _[ 0 B _[A11 Alz]
parameters of DCM we have: C—[ Cz] B—[321 0 and A—[A21 Ay

In this step, the theory that applied to data is described and then some sample models of our experiment
will be given. Examples of all other models are included in Appendix C. Best models are included in this
chapter.

The main purpose here is to find any changes in BOLD response . In the case of DCM, the terms of priors
and model likelihood are very important. Bayes rule combines priors and likelihood which will result in
formation of posterior distribution. To compute amount of posterior distribution, we use Expectation-
Maximisation method iteratively. Second step however includes finding model evidence. Consider the
term model evidence as choosing from accuracy and complexity. | will describe it later. Finally our best
model will be choosen between models with highest evidence [44]. To make comparison between models,
we use Bayes factors and model evidence ratios [39].

As it mentioned in chapter 2, DCM includes a bilinear model for neuronal responses and uses a
Haemodynamic Balloon Model for haemodynamic responses[40]. Consider equation 2.3. Note that, t here

shows continuity in time. We say this model is a bilinear model as % depends on both x(t) and u(t). Term

X(t) is the neuronal activity of brain which is a Lx1 vector. L denotes regions and u(t) is also a vector
which includes inputs of u;(t) with j=1,...,M.

The term effective connectivity is known by three main matrices named A, B and C. Matrix A indicates
intrinsic connectivity that shows which regions are connected. This matrix also shows whether these
regions are connected in one or two directions, unidirectional or bidirectional. Matrix B shows which
intrinsic connections could differ by applying which inputs or stimulations. Matrix C however, shows
which stimulations are connected to which regions. These three matrices give an information of our model
sturcture. We can define a connectivity vector as equation 3.1

vec(A)

"= vec(B) =[A11,412, A1, 422 B13, B21, €1, Co]" (Eq.3.1)
vec(C)

In equation 3.1 vec(A), vec(B) and vec(C) are vectors. By changing the variables in matrices named

above, model structure could change. Available connections and inputs will have a nonzero amount in
matrices and only these nonzero variables will appear in connectivity vector. Number of entries for 6"
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will be the sum of all entries for matrices A, B and C.

Another important issue is parameter values © as shown in equation 3.2 and includes neuronal and

haemodynamic response parameters.
- o"

o= | ]

o (Eq3.2)

Whenever the parameters are determined, all parametrs to estimate the DCM model are found. External
stimulations or u, are known as we entered them in data and these are Congruency, Valance and
CongValance. Estimating neuronal states results in predicting a model [41, 45].

For a data of n scans, N, the h(6,u) will be a LN x 1 vector to cover all points in ROI's. Equation 3.3
gives observed data.

y=h(B, u)+XR+e (Eq.3.3.)

In equation 3.3 above, e is also an LN x 1 vector and is error term. It has a zero mean and covarience of
C, which includes an LxL matrix of error variance for any of ROI's. X in our condition, is the effect of
resting states and it is in somehow irrelevant to our model.

Figure 3.7 is an example of our designed model. Consider Congruency as input. From neurological
acknowledgment, we estimate there must be an intrinsic bidirectional connection between DorsalACC and
Leftinsula regions. This means that there is an A matrix with nonzero parameters. We prefer to test the
effect of Congruency on both ROI's and connections between ROI’s.

A

Dorsal ACC Left Insula

P Congruency \

Figure 3.7. Example of ROI's and stimuli cong.

B and C matrices have nonzero parameters and will appear in model state equations. Consider this model
as our first model. If we don't want to test the effects of congruency on for example one of ROI's or
connections, we will put zero in its related matrix. Relatively, this will affect our neurodynamic equation
and connectivity vector changes and the result will be changes in p-values vector and as a result we will
observe differences in result of observed data y.

We know that priors that considered in two matrices A and B are different than priors and likelihood in
matrix C [40]. The priors for matrix C are called “shrinkage-priors”. In this case, prior mean is zero and
posterior estimates shrink towards zero mean amount. Using equations 3.4 and 3.5, we can calculate priors
of matrices A, B and C.

p(4y) = N(0,v,) and p(B) = N(0,v,) (Eq.3.4)
p(Cim) = N(0,v,) (Eq.3.5.)

In equations 3.4 and 3.5 above v,, v, and v, are vectors. We can use equations 3.6 and 3.7 to calculate
initial prior.
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p(8°) = N(65, C) (Eq.3.6)
65 = [Oye]" andCy = diag [v,1N,, v 1Ny, v 1N,] (Eq.3.7)

05 indicates priors and C; shows covariances. For haemodynamic parameters in case of priors mean and
covariance matrix which are showed by e;; and Cg , We have to choose the parameters in a meaningful

physiological ranges [43]. Finally, we are able to calculate total prior and covariance of our DCM model
using equation 3.8 below:

05 cs 0
0, = eg and C, = 0 Czﬁl (Eq.3.8)

From this moment, one is able to calculate the priors and likelihood respectly for any model named m
using equations 3.9. and 3.10 below:

p(8lm) = N(8,,C,) and p(y|6,m) = N(h(6,u) + X8 + C, (Eq.3.9.)
N(©,,C,) isnormal distribution with mean 6,, and covariance matrix C,.

In case of expanding equation 3.9, result will be equation 3.10. as below:
_p _ -
p(Blm) = (2m)~ /2|C,|~1/% exp(= e(0) C;e(0))
and (Eq.3.10)
NS
p(yl6,m) = (2m)~ /2| C. |2 exp( r(©)7 C;'r(0))

In equation 3.10, e(©) = O - 6, term, gives parameter errors and (8) =y — h(8,u) — X8 , gives the
prediction errors.

The main aim of calculating prior and likelihood is to find posterior distribution using Bayes formula as
equation 3.11 below:

_ pylem) p(6lm)
p(Bly,m) = =" "= (Eq.3.11.)
As equation 3.11 is not solvable in normal condition, taking logarithm of posterior distribution of equation
3.11 will give log-posterior as equation 3.12.

log(6ly,m) = log (y|6,m) + log(6|m) + log(y|m) (Eq.3.12)

In case of fMRI data time-series which has large amount of data points, it would be logical to use
Gaussian to approximate data proportion to regions [46]. So, using Gauss-Newton optimization method,
we will find Maximum Posterior solution to make posterior probability maximum. Gaussian optimization
will result in estimation of mean and covariance matrix. After estimating, the mean and covariance
matrices could be calculated using Expectation-Maximization method [34]. There are two separate steps
in EM method. First step is Expectation step and includes using Gaussian method to update posterior
mean and covariance which we show them by 0 and ), . Maximization step however, will update
covariance matrix of noise. This method will iterate until finding proper posterior probability.
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In this step we have the model m, but we are not sure if it is the best proper model or not. May be another
hypothesis and its related model be better. So the question is which model best fits our parameters or
which model is the best between different models. A mean to compare different models is called Model
Evidence. Consider equations 3.13 to 3.15:

p(yIm) = [ p(y| 6,m) p@@lm)d6 — logp(y|m), = Accuracy(m) — Complexity(m)  (Eq.3.13.)
Accuracy (m) =-1/2 log |C,| - Y2 r(Byp)T Co2 7 (Oyp) (Eq.3.14.)
Complexity (m) =¥2log|C,|-1/210g| Y yp+ %2 €(04p) " Cp t 7(Bup) (Eg.3.15.)

Here, just consider r(8,.p) is observed error. In equation 3.13 log p(y|m), term gives the log-posterior
probability considers the most accurate parameters for models.

Finally, proper models can be decided. The most important of all we discussed is finding the best model
between all models. Bayes factors will give us the best model between all proper models. It will be so
easy to calculate equation 3.16. below:

_ p(yIm=i)
B = oy (Eq.3.16.)
In equation 3.16, if B;; > 1, it means data is more fitted on model i and if B;; < 1, it means data best fit
model j .

3.4 Psychophysiological Interactions (PPI)

Between different methods for brain imaging, fMRI has different characteristics as it does filter neuronal
activity by using haemodynamic responses function. In another word, neuronal response can be
approximated by haemodynamic responses. In analyzing fMRI data, main challenge is to understand the
time-series of data because these time-series are convolved neuronal and haemodynamic responses [44].
One way to analyze data is deconvolution of given BOLD signal with an assumed haemodynamic
response [44].

As mentioned, interactions of brain happen in neuronal level but what is seen from fMRI data is in
haemodynamic response form which is the result of that neuronal level response.

In this method main aim is to define suitable regressors for haemodynamic responses to enable modeling
neuronal influences.

It would be possible to model haemodynamic response to neuronal activity using convolution with a finite
impulse responses as equation 3.17 below:

Ve = XoheXe o (Eq.3.17)
Here, y; is BOLD signal and h, is haemodynamic response and x;_, is neuronal response signal.

The equation 3.17 could be written in the matrix format as equation 3.18 below:
y = Hx (Eq.3.18.)
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H in Eqg.3.18 is haemodynamic response frequency (HRF) [44]. Taking the product of BOLD signal from
two regions A and B will not give us the proper signal for interaction because this signal is not convolved
with HRF. If we want to say mathematically, we will introduce two equations 3.19 and 3.20 below:

Ya¥Ye = (Hxa)(Hxp) # H(x4xp) (Eq.3.19.)
HPy, = (HP)(Hx,) # H(Px,) (Eq.3.20.)

BOLD signal (y) is used to extract physiological-neuronal signal (x). In order to do this, first of all we
must expand x as a Fourier series in terms of temporal basis as equation 3.21 below:

xq = XB (Eq.3.21.)

in which, B are variables that control the expression of various frequency parameters of x. We must
consider noise here, also. We take a linear model with MLE (maximum likelihood estimations) as
equations 3.22 and 3.23 below:

v =HXpB + ¢ (Eq.3.22))
Bu, =XTHTY THX)TXTHTY, 'y, (Eq.3.23)

In these equations, consider e~N (0,02 ) a Gaussian and o2 is error variance and Y, is the error
correlation matrix.

Estimating By, extracts neuronal activity signal for any BOLD vector. Then we can calculate the required
interaction terms using equation 3.20.

All discussed above is very inefficient in our case if we just consider coefficients in B, which is
controlling high frequencies, where HRF diminishes high-frequency. We must use regular estimation.
This is done using remaining high-frequency variables from main set. This would give us least-squares
maximum likelihood deconvolution.

But, Bayesian estimation could be better alternative as it conforms neuronal signals to priors on its
frequency. The advantage of using Bayesian formulation is its flexibility in specifying priors [32].
Mathematically saying, equation 3.24 would be given:

Buap = (XTHTY "' HX + 02Cz)XTHT Y 'y, (Eq.3.24.)

In equation 3.24, the term S, IS maximum a posteriori and Cﬁ_l is prior precision of £.

Considering all diagonal parameters of Cz be infinite (high-frequency), Cﬁ_l will be restricted to low-
frequencies. Doing this means that, in equation 3.24 we get least-square deconvolution without having any
high-frequency in x. Obviously for any parameter, if C,;l is infinite, it will give us a zero value and there
won't be any change by entering X parameters into formulation [46].

In case of PPI, production of neuronal response and psychological variables will give psychophysiological
interaction term.

y=(Ty—Tp) By + (S —S)B, + (T, — Tp)(S; — S,)f33 + e (Eq.3.25)
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In equation 3.25, term (T, — Tg) 3, gives main effect of task. Term (S; — S,)R, gives main effect of
stimulations and (T, — T)(S; — S,)35 is the interaction term. e is error term. y gives the changes in slope
of regression due to both psychological and physiological interaction terms and is the psychophysiological

interaction term.
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CHAPTER 4

Experimental Results

4.1 Dynamic Causal Modeling Results

We apply DCM on our experiment. We considered ten separate basic models for any couple of
ROI’s which are explained in details. In this models, we tested the effect of valance, Congruency and
Congruency*Valance on selected pairs of ROI's and connections between regions. In the first step,
we considered any of models without the effect of any stimuli. This step gives us intrinsic
connectivity between ROI’s and then considering any stimulation on any part of model will give us
differences which appear by applying any of three stimulations above. ROI's and the related stimuli
are the significant results of group analysis. For Valance, we restricted the couples to most probably
connected regions according to the related cognitive studies. Six situations are considered.

ROI pairs and stimulation related to any pairs are given below:

Congruency in between DorsalACC and Leftlnsula
Congruency*Valance in between RostralACC and VentralACC
Valance in between DorsalACC and LeftDLPFC

Valance in between DorsalACC and RightDLPFC

Valance in between Ventral ACC and RightInsula

Valance in between DorsalACC and VentralACC

ouhkwnE

For any stimuli and couple of ROI's as mentioned, we tested ten models. Among these models the only
difference is the place of entering stimulus. These tested models are shown in graphs as follows:

Model 1.

—>( ron < roe <—

In this model, we considered effect of valance on none of connections. This model will gives us only
intrinsic connectivities. This model considered to show the intrinsic connectivities between ROI’s for 6
situations discussed above.
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- Intrinsic connectivity between DorsalACC and LeftInsula:
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Figure 4.1.b

200

In figure 4.1.a it is seen that intrinsic connectivity between Dorsal ACC and Leftlnsula is weak in its
normal situation without applying any stimulation. In the figure 4.1.a only A matrix is available as
:[au a12] _ [—0.18 —0.02

az1 Ay —0.05 -0.28
there is a negative effect of ROI's over each other. Probability of connection is also weak. Figure 4.1.b
gives information on predicted and observed responses of ROI's DorsalACC and Leftlnsula to the inputs
of matrix A. Here, probability of connection from Leftinsula toward DorsalACC is stronger than the
connection from DorsalACC to Leftinsula. Figure 4.1.b illustrates predicted and observed responses of
regions to signals over each other. Matrix A is based on power of signal and because of that results for all
three matrices are calculated in hertz.

]. Also, there is a negative activity on both regions and this means

30



- Intrinsic Connectivity between RostralACC and Ventral ACC:
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In figure 4.2.a above, we can see strong intrinsic connection between RostralACC and VentralACC
without applying any stimuli. Here almost the probability of connection from RostralACC to Ventral ACC
is 1. In figure 4.2.b we see differences between observed and predicted signals resulted from response of
Ventral ACC. This could be from biological effects of other regions on VentralACC. A matrix for this

.o _[G1n G121 _ [—0.3  0.18
Cond't'O”'SA‘[azl azz]_ 0.15 —0.31)
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- Intrinsic Connectivity between DorsalACC and LeftDLPFC:

fixed P{coupling > 0.00)

Valance_DorsalACC: responses and predictions

predicted
2 ohserved

05

05

-\fa\anceborsalACC a . R L L L " . .
:]Vafance'_enDLPFC 0 20 40 60 SOH 100 120 140 160 180 200
ime {seconds}
A - fixed effects A - probability -
01 - 1 Valance_LeftDLPFC: responses and predictions
15
0.05 = e o i3] ey predicted
08 1 ohserved |
0
2 005 g 08
= S
g g
g 04
-015
02
-02 -
opl——— | 0 15
Walance_DorsalAG&lance_LefiDLPFC Walance_DokabhCs: LeftDLPFC 0 20 40 60 80 100 120 140 160 180 200
target region target region lime {seconds}
Figure 4.3.a Figure 4.3.b

From figure 4.3.a, it’s obvious that there is an strong intrinsic connectivity from Dorsal ACC toward
LeftDLPFC. Observed and predicted response signals as shown in figure 4.3.b are similar and there is not

- . . .. . a a _
so much differences between them. A matrix for this condition is A :[ai aZ] = O%E _%';4 .
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- Intrinsic Connectivity between Dorsal ACC and RightDLPFC:
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In figure 4.4.a, we can see an interesting result. These two regions have a negative effect on each other
and this means that they reduce activity of each other. The intrinsic connection between these two ROI is
strong in any direction. Here again, we see differences between observed and predicted response signals in

RightDLPFC. A matrix for this condition is A :[Zz Z:z] = __00'133 :8;2 .
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- Intrinsic Connectivity between Ventral ACC and Rightlnsula:
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Figure 4.5.a Figure 4.5.b

From figure 4.5.a, we can see that there is almost no intrinsic connection between Ventral ACC and

Rightlnsula. Figure 4.5.b also gives us a same result as predicted and observed response signals in both of

regions are different which shows the effect of other regions on these two ROI's. A matrix for this
.. [Gan G121 _ [—0.3  0.01

condition |sA—[a21 azz] = [ 0 _0'3].
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- Intrinsic Connectivity between Dorsal ACC and Ventral ACC:

Valance_DorsalACC: responses and predictions

predicted
observed

fixed P{coupling > 0.00) 1

05

05

0 20 40 60 20 100 120 140 160 180 200

I sience orsalAce time {seconds}
:] Valance, nralACC
A - fixed effects A - probability is Valance_VentralACC: responses and predictions
0.2 1 H predicted
- - - — — 1 o & ohserved |4
01 08 14

0

(85 0.00)

strength (Hz)
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-02 0.2
o3l = L 15
0S\Ialanne_DursaIAI}'ﬁlance_\lemalACG ° Valance_DovsHAGT VentralACC 0 20 40 60 80 100 120 140 160 180 200
target region target region time {secondis}
Figure 4.6.a Figure 4.6.b

From figure 4.6.a, it’s obvious there is strong connection between Dorsal ACC and Ventral ACC again in
both directions. Probability of these connections is almost 1. Because of effect of other regions on
Ventral ACC, we observe differences in observed and predicted response signals. A matrix for this
aiq a12] _ —-0.2 0.18

condition isA:[a21 (o 015 —03)°

In this step, we have some information about intrinsic connections between ROI’s without applying any
stimulations. After this step, | tested 9 other models by considering different stimulations in different
affecting parts.

It would be useful to give my models and shows where the stimulations show their effect.

R O=Cr

This model shows from which part we considered applying stimulation. In this model we have direct
effect of stimuli on both of ROI's and in both connections between ROI's.

Model 2:

Model 3:
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This model shows the applying of stimuli directly to ROI1 and connection from ROI1 to ROI2. Dashed
lines shows that there is an intrinsic connectivity but no stimulation is affecting these connections.

Model 4.:

In this model we applied stimulations to ROI2 and connection from ROI2 to ROIL.

Model 5:
——=>( ron X Ro <---
<

In model5 we considered stimuli only effects the connections between two ROI's. Here, we don’t have
any stimuli effecting regions of interest directly.

Model 6:

This model is just considered effects of stimulations on regions directly without considering this effect on
connections between regions.

Model 7:

Another hypothesis could be considering effect of stimulations only on ROI2 without considering
stimulation on any other region.
Model 8:

—>( ron 2::::> roiz )<=

In our 8" model, we tried to observe effect of stimuli only on ROI1 without applying to any other region.

Model 9:

We thought that, it would be useful if we analyze a situation in which stimulation only affects connection
between ROI2 to ROI1 without applying to other parts.

Model 10:

As the last model we considered that stimulation only affects connection from ROI1 to ROI2.

We considered all ten models for my 6 discussed situations. For example we considered stimulation to be
Congruency and ROI1 and ROI2 be DorsalACC and LeftInsula, respectly. All the results will be showed
in the rest of the work.

Results for remaining nine models of every six condition are in APPENDIX C.
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Using model selection method, best model for each condition is selected and are depicted as figures 4.7 —

4.12 below.
For Congruency and considering two ROI’s of Dorsal ACC and LeftInsula the best model is model2.

effects of all_condxCong*1 P(coupling > 0.00) fixed P(coupling > 0.00)

I oo, oesaace
Cong, ensda
G - direct effects (Hz) C - probabiity L
0.0c 1 3 - 1 A - fixed effects A - probability
)2 1
0 ,:,;,l =3
| = Ciaae e [\
l < s o1
om g o
|
o o 223 <
_ Cong_Dofoslgaeansuda 'n:.,n_]_c-,mmm.u ¥ o1 5 %
B4 pnodulatory effects {Hz} B - probability £ 3
s 1 ® 02 =3
& a 04
= s
= =3 03
§ 4 < 02
a 0 05 S - Qa L -
Cong_DarsalACC Cang_Leftnsuta Cong_DorsaBed_Letinzua Cang_DorssiACC Cong_Letinsula Cong_Dorsalleéy_Leftinsula
target ragion targst regon trget region gt regon

Figure 4.7. Best model of condition congruency:DorsalACC and Leftlnsula

In this model, applying stimulation of congruency reduces almost intrinsic connectivity between two
named regions of interest. Direct and modulatory effects of stimulation on regions and connection

between regions are almost small. C matrix is in the form of C = gl] = [0'83 ] and for B matrix
2

S _ B1z] _ 0 s A_[-05 0

its like B = [ Byl = [6* 10-8 ] and A matrix |sA—[ 0 _0.5].

In case of congruency*valance considering two regions of Rostral ACC and Ventral ACC the best model is
model7.
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effects of all_condxCongValance®1 P{coupling > 0.00)
fixed P(coupling > 0.00)
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Figure 4.8. Best Model of condition cong*val: Rostral ACC and Ventral ACC

In this selected model effect of stimuli, reduced connectivity between two regions. Here, this stimulation

results in an stronger intrinsic connectivity, though.

For stimuli valance and regions of Dorsal ACC and LeftDLPFC, the best model is model7. C matrix is in

the form of C = [ Cl]
G,

_[-05 0 ]
0.02 —051"
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effects of all_condxValance®1 P(coupling > 0.00)

fixed P(coupling > 0.00)
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Figure 4.9. Best Model of condition valance: DorsalACC and LeftDLPFC

In this model, effect of stimuli in reducing connectivity is shown. There is not modulatory effect.
Stimulation is directly effects the region Dorsal ACC. Intrinsic connectivity is increased when stimuli

applied to model. C matrix is in the form of C = gl] = [0'%58 ] and for B matrix its like B =
2

giﬂ - [g ] and A matrix is A = [_8-5 _8_5]-

Model 2 is selected when considering valance effecting two regions of Dorsal ACC and RightDLPFC.
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effects of all_condxValance®™1 P(coupling > 0.00) fixed P(coupling > 0.00)
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Figure 4.10. Best Model of condition valance: DorsalACC and RightDLPFC

Applying stimuli to DorsalACC and connection from DorsalACC toward RightDLPFC results in an
increase in positive connectivity. There is decrease in intrinsic connectivity and an increase in effective
connectivity between regions. The connectivity from RightDLPFC toward Dorsal ACC is also greater than
the reverse connection.
Considering valance and two ROI's of Ventral ACC and Rightinsula, the best model will be model5.
C matrix is in the form of C = Cl] = [0'06 ] and for B matrix its like B = Blz] =
Cz 0 BZl

0 - _[—-04 0

[4 £10-8 ] and A matrix is A = [0.38 _0.4].

effects of all_condxValance®1 P(coupling > 0.00) fixed P{coupling > 0.00)
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Figure 4.11. Best Model of condition valance: Ventral ACC and Rightlnsula
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In this condition even without considering any stimulation, the connectivity between two regions is so
small. Allpying valance to the ROI’s in this

model will results in a small decrease in connectivity between regions. No modulatory effect is applied.
Effect of valance on Rightinsula is greater than the effect on VentralACC. C matrix is in the form of C =

Ci] _ 10.006 o _ Blz] 10 . _

Cz] = 10013 ] and for B matrix its like B = Byl = [0 ] and A matrix is A =
[—0.5 0 ]

0 —0.51"

For stimulation of valance and its effect on DorsalACC and VentralACC, model6 is selected as best
model.

effects of all_condxValance®1 P(coupling > 0.00) fixed P(coupling > 0.00)
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Figure 4.12. Best Model of condition valance: Dorsal ACC and Ventral ACC

In the case of no stimulation for this model, there is great intrinsic connection between regions. Applying
valance to the region of Ventral ACC results in a great degrease of connectivity between regions. C matrix

is in the form of C = [ gl] ] and for B matrix its like B = [ 312] = [8 ] and A
2

= [ 0
0.6 1078 By,

matrix is A = [_8'5 _8.5].

Probability of error for selected best models are provided for all models of six conditions and included in
table 4.1. below.
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Table 4.1. Probability of error for all models.

P(e) Model 1 | Model2 | Model 3 Model 4 Model 5 Model 6 Model 7 | Model 8 | Model 9
Condition 1 0.5 0.2 0.5 0.3 0.5 0.5 0.5 0.3 0.3
Condition 2 0.1 0.5 0.5 0.3 0.1 0.5 0.03 0.3 0.3
Condition 3 0.5 0.5 0.5 0.15 0.5 0.5 0.15 0.15 0.15
Condition 4 0.5 0.05 0.5 0.15 0.5 0.5 0.5 0.05 0.05
Condition 5 0.5 0.5 0.5 0.5 0.2 0.5 0.5 0.5 0.5
Condition 6 0.5 0.5 0.5 0.3 0.5 0.15 0.5 0.3 0.3

In table 3.6 Model NULL is not considered. This model shows the condition of no-stimulation and in this
condition only A matrix is considered. This model analyzes only intrinsic connectivity between regions.

Best model selection considers p(e), accuracy and complexity of models then compares these three
important parameters for all models shown above and select the best one among sixty models. Selected
models for each condition are bolded in table.

4.2 Psychophysiological Interactions Results

In the case of PPI, we choose seven ROI's. These ROI's are named as: DorsalACC, Leftlnsula,
Rightlnsula, LeftDLPFC, RightDLPFC, VentralACC and RostralACC. Using these ROI's we design
models to analyze connectivity between regions when stimulation applied to these regions. Between all
models, only 4 models responded with existence of connectivity between regions and in other models
there are not observed existence of connection between regions as a result of stimulation. The main
difference of this method and DCM is that in PPI method we can include all three type of stimulation as
regressors for our design matrix.

In Model 1, we considered DorsalACC which affected by congruency stimulation and Leftlnsula in two
conditions which affected by both congruency and valance. Model 2, includes DorsalACC, LeftDLPFC
and RightDLPFC. Here in this condition, valance is the only stimulation and we considered LeftDLPFC
and RightDLPFC as a single region named DLPFC. Model 3, includes 3 regions of Rostral ACC which is
affected by cong*valance stimulation, Left and Right DLPFC as a single region DLPFC. Model 6 includes
Leftinsula with stimulation of congruency and DLPFC region.

Using General Linear Model, we entered stimulations as our regressors and as we describe in previous
chapters, our main purpose here is to deconvolve haemodynamic response with BOLD signal to get neural
activity of regions just like DCM.

As the first step we try to extract PPl signals which are the product of psychological and physiological
signals of brain. Psychological signals are dependent to stimulations and Physiological signals are depend
on brain structure which means in our experiment it depends on our extracted time-series from
preprocessing step.

It would be useful if take a look at PPI's of regions and discuss what they really mean. All related figures
and descriptions are in Appendix D.

All figures show the PPI term for regions. A graph to show neuronal and haemodynamic response is also
seen in each graph. We are sure that there is a response from any of regions to the stimulation. All figures
have three graphs. The upper graph shows neuronal and haemodynamic response of region to stimulation.
Blue line show BOLD signal and green line shows neuronal. Figurel shows region of VentralACC and its
response to the stimulation valance. In figure2 we have Rightinsula while responding to valance.
RightDLPFC which is shown in figure3 responds to valance. RostralACC shown in figure4 responds to
con*val. In figureb we can see LeftInsula responding to valance. Leftlnsula in figure6 is different because
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it responds to congruency. In figure7 region named LeftDLPFC shows response to the stimulation named
valance. Figure8 and 9 shows response of Dorsal ACC to stimulations valance and congruency.

Now we have PPI which includes interaction term of haemodynamic response and neuronal response. The
PPI can be get from looking for a difference between regression slope of ROI1 and activity of ROI2. The
slope of ROI1 shows the response of ROI1 to the activity of ROI2.

In our experiment we choose ROI's from group analyses and p-value is 0.05 for our time-series extraction
and we have a filter to remove significances lower than 3.9. Range for Z-Score (a rate which shows
acceptability of model) for our experiment is (3.9, 4.3) which is a high amount.

We satisfied from 4 models which are able to show effective connectivity between regions in brain. These
models are as shown below:

Psychophysiologic Interaction
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Figure 4.13. PPI of Dorsal ACC activity and LeftInsula response

Model 1 shows connection between Dorsal ACC and Leftlnsula. Slope of regression which is shown for
both regions as their activity and response shows effect of stimulations and activity of one region which
results in response from another region. From graph we can see that there is response from Leftlnsula to
the activity of Dorsal ACC in both conditions of applying congruency or valance. X and Y axes are in the
unit of frequency which both show the power of signal. Leftinsula shows a small response to the activity
of DorsalACC when stimulation is valance. This response in attendance of congruency increased when
stimulation is congruency. Dorsal ACC shows activity in case of both congruency and valance.
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Figure 4.14. PPI of Dorsal ACC activity and DLPFC response

Model 2 shows connection between Dorsal ACC and DLPFC. From graph we can see that there is
response from Leftinsula to the activity of DorsalACC in both conditions of applying congruency or
valance. X and Y axes are in the unit of frequency which both show the power of signal. As we can see
response of DLPFC to the activity of Dorsal ACC when stimulation is congruency is nearly zero while
respding rate of DLPFC to the activity of DorsalACC when stimulation is valance is acceptible.
Dorsal ACC shows activity in case of both congruency and valance.
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Figure 4.15. PPI of Rostral ACC activity and DLPFC response.

This model shows activity of RostralACC and response of DLPFC to this activity. In this model the
connectivity is low and there is not acceptable changes in responses of DLPFC. Here also, response of
DLPFC by applying valance to the activity of Rostral ACC is more than when the stimulation is cong*val.
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Figure 4.16. PPI of Leftinsula activity and DLPFC response.

In this model, there is response from DLPFC to the activity of Leftinsula in attendance of valance. The
interesting issue here is that connectivity between ROI's is reducing when the activity of Leftinsula is
increasing and the stimulation is congruency. For more activity from Leftlnsula, response from DLPFC

reducing.

45



46



CHAPTER 5

Conclusions

5.1 Conclusion

In this thesis work, effective connectivity is analyzed on a fMRI data. We used two methods of DCM and
PPI for our purpose. During data acquisition, 11 subjects were tested using 4 stimulations which are
congruency positive, congruency negative, incongruency positive and incongruency negative. We used
these stimulations to test the effect of Congruency, Valance and Cong*Val (combination of both
stimulations) on brain regions. 10 different ROIs were created after a group analysis. These ROIs were
considered to be connected to each other intrinsically. At the beginning of this study, we assumed that
there must be connections between selected ROIs tested them by applying DCM and PPI.

Ten different models were designed for every six pairs of conditions for DCM. Stimulations are
considered as inputs which directly affect regions and/or connections between regions. All three
parameters of DCM found and applied to all models. Using Bayesian Factors, best model for any
condition is selected.

In PPI method seven ROIs are selected and four acceptable models are selected between them and the
effect of stimulations on regions are discussed in terms of activity of one region and response of another
region when there is one or two of stimulations is available.

Results for DCM are in the form of graphs which are showing parameters of DCM as A, B and C
matrices. Any changes in any of these matrices are shown in both graphical and matrix format to ease the
comparison of models. Totally, we designed sixty different models for ten ROI's and six situations. One
of these models for every situation is stimulus free and means that in this model we don’t consider effect
of stimuli. Remaining nine models for any six conditions includes stimuli.

For PPI, results are shown in graphs by considering regression slope of activity and responses of two
different regions. Changes in slope of regression shows effect of activity of one region over the response
of other region.

The results for both methods are as we considered in our hypothesis. The effect of stimulations on ROIs
and related connectivity is observed in results of DCM. In most of the designed models, changes in
connectivities resulted from effecting stimulations on regions or connections are observed.

In case of PPI, only 4 models were acceptable and the other models were not satisfactory. In these four
models, we considered effect of congruency, valance and cong*val. In two of these four models, there are
results that shows reverse effect of stimulation. This means an increase in activity of one region results in
decrease in response of another region or connection between regions.

We were able to observe effect of stimulations on regions using DCM method. Applying stimuli to
models result in positive or negative connectivity as well. Considering stimuli congruency and ROI’s

DorsalACC and Leftinsula result in a positive connectivity which means an increase in connection
between these two ROI's when stimulus is applied. Results for all models are included in APPENDIX C
and selected best models and situation without considering effect of stimuli is considered in chapter 4.

In case of PPI, from mentioned seven different ROI's, we found four suitable models to show changes of
activity and response in regions when stimulation is applied. For PPI the psychophysiological interactions
for all ROI's are plotted and results are included in APPENDIX D. Results of effective connectivity
analysis are included in chapter 4
. From all results which are hold by DCM and PPI after applying stimuli, connectivity between the regions
of interest in both of conditions show a similarity between PPl and DCM in some cases. For example
consider two ROI’s of DorsalACC and DLPFC (right and left), we can see the effect of stimulation on
connectivity between ROI’s by both DCM and PPl method. In case of DorsalACC and Leftlnsula, DCM
shows that changes between activity and response as a result of VValance while PP1 show this as a result of
Congruency. For other three models, results of PPI are similar with results of DCM. This experiment also
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proves that DCM is more robust than PPI and the results DCM are more reliable than results obtained by
other method.

5.2 Future Work

In this study, Bilinear forward model DCM was used. Our hypothesis was to analyze connectivity
between ROI pairs. We did not consider effect of other regions on connections between ROIs. Also, in
finding best model, Bayesian factor was selected. As model selection is based on comparison between
many models, it is considered as weak point for DCM. Introducing a method which gives more reliable
results in model comparison and model selection could be a future work for DCM [46].
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APPENDIX A

T-TEST

At-testis any statistical hypothesis testin which the test statistic follows a Student's t distribution if
the null hypothesis is supported. It is most commonly applied when the test statistic would follow
anormal distribution if the value of a scaling term in the test statistic were known. When the scaling
term is unknown and is replaced by an estimate based on the data, the test statistic (under certain
conditions) follows a t distribution.

Among the most frequently used t-tests are:

e A one-sample location test of whether the mean of a normally distributed population has a value
specified in a null hypothesis.

e A two sample location test of the null hypothesis that the meansof two normally
distributed populations are equal. All such tests are usually called t-tests, though strictly speaking
that name should only be used if the variances of the two populations are also assumed to be equal;
the form of the test used when this assumption is dropped is sometimes called Welch's t-test. These
tests are often referred to as "unpaired” or "independent samples” t-tests, as they are typically applied
when the statistical units underlying the two samples being compared are non-overlapping.

e A test of the null hypothesis that the difference between two responses measured on the same
statistical unit has a mean value of zero. For example, suppose we measure the size of a cancer
patient's tumor before and after a treatment. If the treatment is effective, we expect the tumor size for
many of the patients to be smaller following the treatment. This is often referred to as the "paired” or
"repeated measures" t-test.

o A test of whether the slope of a regression line differs significantly from 0.

Assumptions:

Most t-test statistics have the form T =Z/s, where Zand s are functions of the data. Typically, Zis
designed to be sensitive to the alternative hypothesis (i.e. its magnitude tends to be larger when the
alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of T to be
determined.

As an example, in the one-sample t-test Z = X/ §/v/n, where X is the sample mean of the data, n is the
sample size, and § is the population standard deviation of the data; sin the one-sample t-test is &",
where &" is the sample standard deviation.

The assumptions underlying a t-test are that

o 7 follows a standard normal distribution under the null hypothesis

e s?follows ay* distribution with p degrees of freedom under the null hypothesis, where p is a positive
constant

e Zand s are independent.
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In a specific type of t-test, these conditions are consequences of the population being studied, and of the
way in which the data are sampled. For example, in the t-test comparing the means of two independent
samples, the following assumptions should be met:

e Each of the two populations being compared should follow a normal distribution. This can be tested
using a normality test, such as the Shapiro-Wilk or Kolmogorov—Smirnovtest, or it can be assessed
graphically using a normal quantile plot.

e If using Student's original definition of the t-test, the two populations being compared should have
the same variance (testable using F test, Levene's test, Bartlett's test, or the Brown—Forsythe test; or
assessable graphically using a Q-Q plot). If the sample sizes in the two groups being compared are
equal, Student's original t-test is highly robust to the presence of unequal variances. Welch's t-test is
insensitive to equality of the variances regardless of whether the sample sizes are similar.

e The data used to carry out the test should be sampled independently from the two populations being
compared. This is in general not testable from the data, but if the data are known to be dependently
sampled (i.e. if they were sampled in clusters), then the classical t-tests discussed here may give
misleading results.

Paired and Unpaired two-sample t-tests:

Two-sample t-tests for a difference in mean involve independent samples, paired samples and overlapping
samples. Paired t-tests are a form of blocking, and have greater power than unpaired tests when the paired
units are similar with respect to "noise factors" that are independent of membership in the two groups
being compared. In a different context, paired t-tests can be used to reduce the effects of confounding
factors in an observational study.

Independent samples

The independent samples t-test is used when two separate sets of independent and identically
distributed samples are obtained, one from each of the two populations being compared. For example,
suppose we are evaluating the effect of a medical treatment, and we enroll 100 subjects into our study,
then randomize 50 subjects to the treatment group and 50 subjects to the control group. In this case, we
have two independent samples and would use the unpaired form of the t-test. The randomization is not
essential here—if we contacted 100 people by phone and obtained each person's age and gender, and then
used a two-sample t-test to see whether the mean ages differ by gender, this would also be an independent
samples t-test, even though the data are observational.

Paired samples

Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units
that has been tested twice (a "repeated measures" t-test).

A typical example of the repeated measures t-test would be where subjects are tested prior to a treatment,
say for high blood pressure, and the same subjects are tested again after treatment with a blood-pressure
lowering medication. By comparing the same patient's numbers before and after treatment, we are
effectively using each patient as their own control. That way the correct rejection of the null hypothesis
(here: of no difference made by the treatment) can become much more likely, with statistical power
increasing simply because the random between-patient variation has now been eliminated. Note however
that an increase of statistical power comes at a price: more tests are required, each subject having to be
tested twice. Because half of the sample now depends on the other half, the paired version of Student's t-
test has only 'n/2 - 1' degrees of freedom (with 'n' being the total number of observations). Pairs become
individual test units, and the sample has to be doubled to achieve the same number of degrees of freedom.
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A paired samples t-test based on a "matched-pairs sample" results from an unpaired sample that is
subsequently used to form a paired sample, by using additional variables that were measured along with
the variable of interest. The matching is carried out by identifying pairs of values consisting of one
observation from each of the two samples, where the pair is similar in terms of other measured variables.
This approach is sometimes used in observational studies to reduce or eliminate the effects of confounding
factors.

Paired samples t-tests are often referred to as "dependent samples t-tests" (as are t-tests on overlapping
samples).

Calculations:

Explicit expressions that can be used to carry out various t-tests are given below. In each case, the formula
for a test statistic that either exactly follows or closely approximates at-distribution under the null
hypothesis is given. Also, the appropriate degrees of freedom are given in each case. Each of these
statistics can be used to carry out either a one-tailed test or a two-tailed test.

Once at value is determined, a p-value can be found using a table of values from Student's t-distribution.
If the calculated p-value is below the threshold chosen for statistical significance (usually the 0.10, the
0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.

One-sample t-test
In testing the null hypothesis that the populations mean is equal to a specified value o, one uses the
statistic
t - ;C_ Ko
s/\/n

where ' is the sample mean, s is the sample standard deviation of the sample and n is the sample
size. The degrees of freedom used in this test is n — 1.

Slope of a regression line
Suppose one is fitting the model

Yi=at Bx; + ¢

where x;, i=1,..,nare known, o and fare unknown, and e are independent identically
normally distributed random errors with expected value 0 and unknown variance ¢°,
and Y;,i =1, ..., n are observed. It is desired to test the null hypothesis that the slope f is equal to
some specified value S, (often taken to be 0, in which case the hypothesis is that x and y are
unrelated).

Let

A A
a’ 'B = Ieast-squares estimators

SE A, SE  =the standard errors of least- squares estimators

a B

Then
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Y B
score SE
B

has a t-distribution with n —2 degrees of freedom if the null hypothesis is true. The standard
1 ~
\/EZ?ﬂ(Yi—Yi)

can be written in terms of the residuals. Let § = Y; — ;= Y; — (& + fx;) = residuals = estimated errors

error of the slope coefficient SE [A; =

SSR = ¥, €2 = sum of squares of residuals

Then t-score is given by:

¢ _ (B—Bo)Wn—2
scores VSSRIVE™ (xi—3 )
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APPENDIX B

STATISTICAL REGRESSION ANALYSIS AND GENERAL LINEAR MODEL

In statistics, regression analysis is a statistical technique for estimating the relationships among variables.
It includes many techniques for modeling and analyzing several variables, when the focus is on the
relationship between a dependent variable and one or more independent variables. More specifically,
regression analysis helps one understand how the typical value of the dependent variable changes when
any one of the independent variables is varied, while the other independent variables are held fixed. Most
commonly, regression analysis estimates the conditional expectation of the dependent variable given the
independent variables — that is, the average value of the dependent variable when the independent
variables are fixed. Less commonly other location parameter of the conditional distribution of the
dependent variable given the independent variables. In all cases, the estimation target is a function of the
independent variables called the regression function. In regression analysis, it is also of interest to
characterize the variation of the dependent variable around the regression function, which can be
described by a probability distribution.

Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap
with the field of machine learning. Regression analysis is also used to understand which among the
independent variables are related to the dependent variable, and to explore the forms of these
relationships. In restricted circumstances, regression analysis can be used to infer causal
relationships between the independent and dependent variables. However this can lead to illusions or false
relationships, so caution is advisable: See correlation does not imply causation.

A large body of techniques for carrying out regression analysis has been developed. Familiar methods
such as linear regression and ordinary least squares regression are parametric, in that the regression
function is defined in terms of a finite number of unknown parametersthat are estimated from
the data. Nonparametric regression refers to techniques that allow the regression function to lie in a
specified set of functions, which may be infinite-dimensional.

The performance of regression analysis methods in practice depends on the form of the data generating
process, and how it relates to the regression approach being used. Since the true form of the data-
generating process is generally not known, regression analysis often depends to some extent on making
assumptions about this process. These assumptions are sometimes testable if a large amount of data is
available. Regression models for prediction are often useful even when the assumptions are moderately
violated, although they may not perform optimally. However, in many applications, especially with
small effects or questions of causality based on observational data, regression methods give misleading
results.

Regression Models

Regression models involve the following variables:

e The unknown parameters, denoted as f§, which may represent a scalar or a vector.
e The independent variables, X.
e The dependent variable, Y.

In various fields of application, different terminologies are used in place of dependent and independent
variables.

A regression model relates Y to a function of X and .
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Y=f(X, B)

The approximation is usually formalized as E(Y | X) = f(X, B). To carry out regression analysis, the
form of the function f must be specified. Sometimes the form of this function is based on knowledge
about the relationship between Y and X that does not rely on the data. If no such knowledge is
available, a flexible or convenient form for f is chosen.

Assume now that the vector of unknown parameters B is of length k. In order to perform a regression
analysis the user must provide information about the dependent variable Y:

e IfNdata points of the form (Y,X) are observed, where N <k, most classical approaches to
regression analysis cannot be performed: since the system of equations defining the regression
model is underdetermined, there is not enough data to recover p.

o If exactly N =k data points are observed, and the function fis linear, the equations Y = f(X, B)
can be solved exactly rather than approximately. This reduces to solving a set ofN equations
with N unknowns (the elements of g), which has a unique solution as long as the X are linearly
independent. If f is nonlinear, a solution may not exist, or many solutions may exist.

e The most common situation is where N > k data points are observed. In this case, there is enough
information in the data to estimate a unique value for p that best fits the data in some sense, and
the regression model when applied to the data can be viewed as an over determined system in p.

In the last case, the regression analysis provides the tools for:

1. Finding a solution for unknown parameters @ that will, for example, minimize the distance
between the measured and predicted values of the dependent variable Y (also known as
method of least squares).

2. Under certain statistical assumptions, the regression analysis uses the surplus of information
to provide statistical information about the unknown parameters g and predicted values of
the dependent variable Y.

Necessary number of independent measurements

Consider a regression model which has three unknown parameters, By, f1, and B,. Suppose an
experimenter performs 10 measurements all at exactly the same value of independent variable
vector X (which contains the independent variables X3, X5, and Xs). In this case, regression analysis
fails to give a unique set of estimated values for the three unknown parameters; the experimenter did
not provide enough information. The best one can do is to estimate the average value and the
standard deviation of the dependent variable Y. Similarly, measuring at two different values
of X would give enough data for a regression with two unknowns, but not for three or more
unknowns.

If the experimenter had performed measurements at three different values of the independent variable
vector X, then regression analysis would provide a unique set of estimates for the three unknown
parameters in f.

In the case of general linear regression, the above statement is equivalent to the requirement that
matrix X"X is invertible.

Statistical assumptions

When the number of measurements, N, is larger than the number of unknown parameters, k, and the
measurement errors g are normally distributed then the excess of information contained in (N - k)
measurements is used to make statistical predictions about the unknown parameters. This excess of
information is referred to as the degrees of freedom of the regression.

Assumptions:
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Classical assumptions for regression analysis include:

e The sample is representative of the population for the inference prediction.

e The error is a random variable with a mean of zero conditional on the explanatory variables.

e The independent variables are measured with no error. (Note: If this is not so, modeling may be done
instead using errors-in-variables model techniques).

e The predictors are linearly independent, i.e. it is not possible to express any predictor as a linear
combination of the others.

e The errors are uncorrelated, that is, the variance—covariance matrix of the errors is diagonal and each
non-zero element is the variance of the error.

e The variance of the error is constant across observations (homoscedasticity). (Note: If not, weighted
least squares or other methods might instead be used).

These are sufficient conditions for the least-squares estimator to possess desirable properties; in particular,
these assumptions imply that the parameter estimates will be unbiased, consistent, and efficient in the
class of linear unbiased estimators. It is important to note that actual data rarely satisfies the assumptions.
That is, the method is used even though the assumptions are not true. Variation from the assumptions can
sometimes be used as a measure of how far the model is from being useful. Many of these assumptions
may be relaxed in more advanced treatments. Reports of statistical analyses usually include analyses of
tests on the sample data and methodology for the fit and usefulness of the model.

Linear Regression:

In linear regression, the model specification is that the dependent variable, Y3 is a linear combination of
the parameters (but need not be linear in the independent variables). For example, in simple linear
regression for modeling 7! data points there is one independent variable: Li, and two
parameters, S, and f;:

straight line: Vi = Bo + Bixi + & i=1,..,n

(In multiple linear regression, there are several independent variables or functions of independent
variables.)

Adding a term in x;? to the preceding regression gives:
parabola: : Vi = Bo + Bux; + Box? + g i=1,..,n

This is still linear regression; although the expression on the right hand side is quadratic in the
independent variable x;, itis linear in the parameters B,, fiand f,.

In both cases, ¢; is an error term and the subscript i indexes a particular observation. Given a random
sample from the population, we estimate the population parameters and obtain the sample linear
regression model:

¥i = Bo + Bax;

The residual e; = y; — ¥; is the difference between the value of the dependent variable predicted by the
model, y;, and the true value of the dependent variable, y;. One method of estimation is ordinary least
squares. This method obtains parameter estimates that minimize the sum of squared residuals, SSE, also
sometimes denoted RSS:

SSE=YN €2
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Minimization of this function results in a set of normal equations, a set of simultaneous linear equations in
the parameters, which are solved to yield the parameter estimators, By, ;.

In the case of simple regression, the formulas for the least squares estimates are ,

5 Lxi—0)yi—y) b —=_ P o=
br= 5oz @4 Bo=V - bux

where X is the mean (average) of the X values and )7 is the mean of the Y values. See simple linear
regression for a derivation of these formulas and a numerical example. Under the assumption that the
population error term has a constant variance, the estimate of that variance is given by:

SSE
N-—-2

This is called the mean square error (MSE) of the regression. The standard errors of the parameter
estimates are given by

A\/1+ x2
%0 = PN TS — %)?

— 1
= NS =y

Under the further assumption that the population error term is normally distributed, the researcher can use
these estimated standard errors to create confidence intervalsand conduct hypothesis tests about
the population parameters.

General Linear Model:

In the more general multiple regression model, there are p independent variables:

Vi = BiXin + Boxip + -+ &

where x; is the i™ observation on the j* independent variable, and where the first independent variable
takes the value 1 for all i (so 8 is the regression intercept).

The least squares parameter estimates are obtained from p normal equations. The residual can be written
as

& =Y — BiXip + Poxip +

The normal equations are:

n p R —\n D
i=1 2p=1 XijXikBrx = Xi=1 Xijyi » =L .., p.
In matrix notation, the normal equations are writtenas  (X"X)8 = XTY

where the ij element of X is x;, the i element of the column vector Y is y;, and the j element of [ is ﬂ]

Thus X is nxp, Y is nx1, and 15 is px1. The solution is ﬁ = (XTX)_1XTY
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APPENDIX C

DCM RESULTS

In this step, we will consider remaining nine models for six situations. In all these models, we
included stimulation in model. Models are based on the details given in chapter 4.

4,21  Congruency : Dorsal ACC and Leftinsula: We will consider remaining 9 models.

effects of all_condxCong*1 P{coupling > 0.00)

fixed P{coupling > 0.00)
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Figure C1: Model 1

In this model as seen in graphs, there is a change in fixed effects in ROI's. Considering this model without
applying any stimulations, we can see the effect of congruency on fixed connection, which there is a small
increase in connectivity between ROIs after applying Congruency. As we can see from B and C matrices
which 1 illustrate them, we can see the effect of congruency on Leftinsula is greater than its effect on
DorsalACC. In a similar way, effect of congruency on connection from Dorsal ACC toward Leftlnsula is

greater than reverse connection.
This model shows a small increase in positive direction in connectivity.
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fixed P{coupling > 0.00)
effects of all_condxCong"1 P(coupling > 0.00)
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Figure C2: Model 2

In this model, there is nearly zero connection between ROI’s. Direct effect of congruency on Dorsal ACC
is small (0.03 Hz) and also we have a small effect of congruency on connection from Dorsal ACC toward
Leftlnsula .

In this model also there is a small increase in activity in positive direction.

62



fixed P(coupling > 0.00)
effects of all_condxCong"1 P(coupling > 0.00)
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Figure C3: Model 3

This model, like model 3 shows small changes but the probability of this model is so smaller than the
threshold.

Figure C4: Model 4
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effects of all_condxCong"1 P(coupling > 0.00)
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Figure C4: Model 4
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In model above, we can see considering connection between two regions without applying stimuli directly
on regions, there is not any change in activity and connectivity.
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effects of all_condxCong"1 P{coupling > 0.00)
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Figure C5: Model 5

This model is like model 3 and 4. Here also the probability of choosing such a model is low. We don’t see
any B matrix in this model. Effect of congruency on Leftinsula is greater than Dorsal ACC.
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Figure C6: Model 6
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As it’s clear from graphs, this model, like previous models, could not change connectivity. In such models
the connection nearly disappears.

fixed P{coupling > 0.00)

effects of all_condxCong*1 P{coupling > 0.00)
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Figure C7: Model 7

In model above the only difference with model6 is increasing in effect of stimulation on DorsalACC.
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effects of all_condxCong™1 P(coupling > 0.00) fixed P(coupling:>:0:00)
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Figure C8: Model 8

This model is does not have any effect on connection and as we see there is an acceptable probability to
have an increase in connection from LeftInsula towards DorsalACC.
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Figure C9: Model 9
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There is not so much difference between model 8 and 9.

The graphs above were all the possible models for analyzing congruency in regions DorsalACC and

Leftinsula.
In the same way, | did analyze other situations and 9 models for any situation.

4.2.2  Congruency*Valance: RostralACC and VentralACC

fixed P{coupling > 0.00)
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Figure C10: Model 1

This is a model which shows applying stimuli directly on both regions and connections, will results in a
decrease in effective connectivity. Effect of stimulation on connections is in a negative direction. This
means that for example by effecting connection from RostralACC to VentralACC. The probability of

reducing connectivity by this model is high enough to be acceptable.
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fixed P{coupling > 0.00)

effects of all_condxCongValance™1 P(coupling > 0.00)

9

3

I Cooveerce oA
- CongValance odralACC : Congvaisrce aaralACC
[ congvatance prraiace
C - direct effects (Hz) G - probabilty A - fixed effects A - probability
0.06 1 02 1 :
=== ey
004 g 01 i
2 05 2
002 = 0 — =
0 0 E 01 802
Cong’ C Coryg : cC = =
B 4 odulatory effects {Hz} B - probability g‘ - B
0 1 828 ° & 04
g s 03
£ 2 S o5 02
g‘ @ -04
73 =
086 0
c}:‘rg\ramze_ﬁ'aemgme_\ma.acc %mgvawwvema,\cc CongValarce_RoQaglaaice Ve alACC CongValanoDoRgeliaRC Vet slACC
terget region target region gt region target region

Figure C11: Model 2

By this model we can see great decrease in connectivity but the probability of this model is low.
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effects of all_condxCongValance®1 P(coupling > 0.00) fixed P(coupling > 0.00)
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Figure C12: Model 3

This model like previous model has a low probability but in this model we also see a great increase in

connectivity.
Direct effects on regions and connections are very small.
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effects of all_condxCongValance*1 P(coupling > 0.00)
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This model as seen does not have effect on connectivity and can

small.
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Figure C14: Model 5
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This could be another model which is so close to the situation of testing intrinsic connectivity. Applying
stimuli on only regions can increase connection between regions in the direction from RostralACC

towards Ventral ACC.
Probability of applying stimuli directly on Ventral ACC is almost 90% and is very possible.

effects of all_condxCongValance™1 P(coupling > 0.00)

cor)
D

- CongValence_oralACC
=3

Congvatance, sréralaCC

fixed P(coupling > 0.00)

- Congvsarce o slACC
|:| CongVaarce srvslacc

A - fixed effects A - probability

C - direct effects (Hz) C - probability
1 T

0015

001 =3
< o5 %2 !
0008 = N e e B
08
Py —— T R et 0 [
= CongVaisona \VEarral At alA
B - B - probability )
' E
g os = ) N
& o = os
= | =
£ 908 § 04
Corgvaisnce_RoOmalgance_VErtalACC  CongValancBofgstmnmC et dACC i vaarce PoAmaTETte VETSACC  ComvalintdgeasASC e SACC
trget region 1BrgeEt region 120get region

target reghon

Figure C15: Model 6

This model shows decrease in connectivity. C here takes small parameters and the probability of this

model is low.
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effects of all_condxCongValance®1 P(coupling > 0.00)
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Figure C16: Model 7

This model is so similar to model 6. The probability of happening this condition is low.
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Figure C17: Model 8
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In this model we don’t see any acceptable changes by applying stimuli directly to connection but as it's
obvious there is a high probability of choosing this model. Effect of B here is negative and means that
connection from RostralACC to Venttral ACC decreases in power so we are sure that in this condition
there is an increase in connection in reverse direction.
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Figure C18: Model 9
This model is also like previous model, shows almost no changes but we can see an small changes in

connection from Ventral ACC to Rostral ACC here.

4.2.3 Valance: DorsalACC and LeftDLPFC
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Figure C19: Model 1

In the first model, we can see an increase in negative direction for self-connectivity in Dorsal ACC but
there is no change in connectivity. The only issue is an increase in probability of happening such a model.
Direct effect of stimuli on both regions and connections is small.
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Figure C20: Model 2
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There is a decrease in connectivity by using this condition. Reverse effect of stimuli on connection
between regions is observable. Probability of this model is low.
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Figure C21: Model 3

In model 3, the connection from DorsalACC to LeftDLPFC seems to be unchanged but we can see
decrease in reverse connection by applying stimuli to region LeftDLPFC and connection from this region

towards DorsalACC.
Probability of this model is also very low.
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Figure C22: Model 4

This model looks like the model without any stimulation if we look at connectivities. There is a reverse
increase in connections between regions. By applying valance to connection from DorsalACC to
LeftDLPFC, we can see an increase connection but in negative direction which means by applying this
stimuli, there will be decrease in the connection in forward direction and an increase in reverse direction.
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Figure C23: Model 5

This model shows an increase in self connectivities of regions and almost no change in effective

connectivity.
Direct effect of valance on these two regions is very small in amount so that it just results in an increase in

self-connectivity.
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Figure C24: Model 6

In this model we have direct effect on LeftDLPFC and as it's obvious from graphs there is a great increase

in self connectivity and decrease in effective connectivity between regions.
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Figure C25: Model 7
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Effective connectivity in this model between regions is already zero and there is a small effect of valance
on Dorsal ACC. Probability is also so small.

effects of all_condxValance®1 P(coupling > 0.00)
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Figure C26: Model 8

Applying valance to the connection from DorsalACC towards LeftDLPFC is not able to change
connectivity in a positive or negative direction. There is also a great decrease in amount of connection
from LeftDLPFC to Dorsal ACC. The probability for this model is also high.
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effects of all_condxValance™1 P{coupling > 0.00) fixed P{coupling > 0.00)
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Figure C27: Model 9

This model is so similar to the previous model discussed. The only difference is in entrance of stimulation
which in this model it enters to the connection of leftDLPFC to DorsalACC in negative direction. The

reverse connection will be positive.

4.24  Valance: DorsalACC and RightDLPFC
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Figure C28: Model 1
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Considering this model we see great differences in both regions. Changes in self connectivity and
effective connectivity. Direct effects of valance on regions and connections are almost zero. The

probability of such a model is very low.
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Figure C29: Model 2

Effective connectivity from DorsalACC to RightDLPFC decreased by applying stimuli while we observe
an increase of the effective connectivity in reverse direction. Probability of effecting stimuli directly on
region is high but direct effect of stimuli on connections is not considerable.
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Figure C30: Model 3

Applying stimulation to the RightDLPFC increases the effective connectivity from RightDLPFC to
Dorsal ACC but decreases connectivity in reverse direction. There is also a small amount of direct effect
on region and connection between regions.
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Figure C31: Model 4

This model does not have any effect on effective connectivity between these two regions because as we
can see the effect of valance on connections is not high and it is an amount near zero.
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Figure C32: Model 5
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A change in effective connectivity is observable in this model. A great self-connection in both regions is
seen. Effect of valance in this condition on both effective connectivities is almost same.
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Figure C33: Model 6

Applying stimulation only on RightDLPFC results in a decrease of connectivity for both regions.
Effective connectivity is almost zero for this model.
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effects of all_condxValance®1 P(coupling > 0.00)
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Figure C34: Model 7

Increase in self-connectivity of DorsalACC and decrease in effective connectivity from DorsalACC to
RightDLPFC is observable while there is a great increase in connectivity from RightDLPFC to

Dorsal ACC is shown in graphics.
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Figure C35: Model 8
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This model is so close to the condition that no stimulation was applied. So stimulation applied on
connection from Dorsal ACC to RightDLPFC does not effect model.
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Figure C36: Model 9

Like previous model we can’t see any difference here by applying valance directly to connection.
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4.25 Valance: VentralACC and RightInsula
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Figure C37: Model 1

There are not observable changes in connectivity in this model. Small amounts of B and C matrices are
shown in graphs.
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This model is almost the same as model 1 and we can't see any changes in effective connectivity except
increase in self-connectivities.
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Figure C39: Model 3
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This model is also not able to decrease or increase connectivity. Here, self-connections have an increase.
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Figure C40: Model 4

Model 4 is same as two previous models discussed above.
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Figure C41: Model 5

Effective connectivity for this model is also zero and we can’t see any connection between regions for this

model except self-connection.
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Figure C42:

91

drongih ()

fixed P(coupling > 0.00)

A - fixed effects

|

P(A> 0.00)

06
Valence_Vert@ASEance_Rightrsua Valancs _VerSSACE: Rgrtnause
target region

Erget regon

Model 6



Applying valance directly to the Rightlnsula does not effect effective connectivity between regions. The
probability of this model is very low.
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Figure C43: Model 7

This model seperates two regions completely so that the connectivity in this condition is zero.
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Figure C44: Model 8

In this model we see a small connectivity from Ventral ACC to Rightlnsula is observed. This is not true for
reverse connection.
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Figure C45: Model 9

This model can't apply changes to effective connectivity between two regions also. Changes in parameters
of B matrix of this model and previous model is interesting.
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426 Valance: DorsalACC and VentralACC

This model applies a great decrease in effective connectivity between regions. As its obvious from graphs,
the connectivity between regions becomes zero.
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Figure C46: Model 1
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Figure C47: Model 2
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Like model 1, this model also shows a decrease in connectivity. Direct effect of valance on Ventral ACC is
very small.
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Figure C48: Model 3

Here, we can see that direct effect of valance on VentralACC and connection from this region to
DorsalACC will result in a decrease of connectivity between regions and as it's clear from graphs

Ventral ACC did not affected by valance.
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Figure C49: Model 4

Applying valance only on connections did not change connectivity. There is just a small effect on

connections could be seen from graphs.
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Figure C50: Model 5
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Applying valance only on regions results in a decrease of connectivity. Valance has greater effect on
DorsalACC than Ventral ACC.

Even an small effect of valance on Ventral ACC will be enough to result in a decrease in connectivity
obetween regions as its obvious from graphics below.
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Figure C51: Model 6
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effects of all_condxValance®1 P{coupling > 0.00) fixed P(coupling > 0.00)
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Figure C52: Model 7

Like model 6, any effect on Dorsal ACC results in a decrease in effective connectivity between regions.
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Figure C53: Model 8

Applying valance to the connection from DorsalACC to VentralACC does ot have any effect to
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connectivity between these two regions. Almost by looking to the B matrix, we can say this connections
does not effect by stimulation.
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Figure C54: Model 9

This model is also like model 8, can’t show any change in connectivity by applying valance to the
connection from Ventral ACC to DorsalACC.
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APPPENDIX D

PPI RESULTS

We considered nine different regions in brain for PPl method. In all these regions, we found
haemodynamic and neuronal responses. The results are shown in graphs. Psychophysiological responses

also depicted using graphs and are included in figures. PPI for any of regions mentioned, are achieved and
illustrated in graphs. Below we give all graphs mentioned.
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Psychophyiologic Interaction: PPI
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Figure C55. Hemodynamic and neuronal responses for the region VentralACC when stimulation of
valance affects that region. Bottom-left graph shows convolution of hemodynamic and neural
response for VentralACC. Graph in bottom-right shows psychophysiological response of region
Ventral ACC to the stimulation of Valance.
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Psychophyiologic Interaction: PPI
WOI File: Walance_Rightinsula
Factors: all_condxvalance™] [1]
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Figure C56. Hemodynamic and neuronal responses for the region Rightlnsula when stimulation of
valance affects that region. Bottom-left graph shows convolution of hemodynamic and neural
response for Rightinsula. Graph in bottom-right shows psychophysiological response of region
RightInsula to the stimulation of Valance.
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Psychophyiologic Interaction: PPI
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Figure C57. Hemodynamic and neuronal responses for the region RightDLPFC when stimulation of
valance affects that region. Bottom-left graph shows convolution of hemodynamic and neural
response for RightDLPFC. Graph in bottom-right shows psychophysiological response of region
RightDLPFC to the stimulation of Valance.
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Psychophyiologic Interaction: PPI
WOI File: CongValance_RostralACC
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Figure C58. Hemodynamic and neuronal responses for the region Rostral ACC when stimulation of
cong*val affects that region. Bottom-left graph shows convolution of hemodynamic and neural response
for Rostral ACC. Graph in bottom-right shows psychophysiological response of region Rostral ACC to the
stimulation of cong*val.

105



Psychophyiologic Interaction: PPI
YOI File: Valance_Lefinsula
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Figure C59. Hemodynamic and neuronal responses for the region LeftInsula when stimulation of valance
affects that region. Bottom-left graph shows convolution of hemodynamic and neural response for
LeftInsula. Graph in bottom-right shows psychophysiological response of region LeftInsula to the
stimulation of Valance.
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Psychophyiologic Interaction: PPI
WOI File: Cong_Lefinsula
Factors: all_sondxCong™{ [1]
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Figure C60. Hemodynamic and neuronal responses for the region Leflnsula when stimulation of affects
that region. Bottom-left graph shows convolution of hemodynamic and neural response for Leftinsula.

Graph in bottom-right shows
Congruency.

psychophysiological response of region Leftlnsula to the stimulation of
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Psychophyiologic Interaction: PPI
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Figure C61. Hemodynamic and neuronal responses for the region LeftDLPFC when stimulation of
valance affects that region. Bottom-left graph shows convolution of hemodynamic and neural response for
LeftDLPFC. Graph in bottom-right shows psychophysiological response of region LeftDLPFC to the
stimulation of Valance.
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Psychophyiologic Interaction: PPI
YOI File: Valance_DorsalaCC
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Figure C62. Hemodynamic and neuronal responses for the region Dorsal ACC when stimulation of
valance affects that region. Bottom-left graph shows convolution of hemodynamic and neural response for
DorsalACC. Graph in bottom-right shows psychophysiological response of region Dorsal ACC to the
stimulation of Valance.
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Psychophyiologic Interaction: PPI
VOI File: Cong_DorsalaCC
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Figure C63. Hemodynamic and neuronal responses for the region Dorsal ACC when stimulation of
congruency affects that region. Bottom-left graph shows convolution of hemodynamic and neural
response for Dorsal ACC. Graph in bottom-right shows psychophysiological response of region

Dorsal ACC to the stimulation of Congruency.
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