

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A HIGH-SPEED
ADAPTABLE PACKET SWITCH FABRIC

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM EYÜP AKBABA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2013

Approval of the thesis:

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A HIGH-SPEED

ADAPTABLE PACKET SWITCH FABRIC

submitted by ERDEM EYÜP AKBABA in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Electronics Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Ece Güran Schmidt

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Dr. Mustafa SANLI

ASELSAN Inc.

 Date: 25/01/2013

iv

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name : Erdem Eyüp AKBABA

Signature :

v

ABSTRACT

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A HIGH-SPEED

ADAPTABLE PACKET SWITCH FABRIC

Akbaba, Erdem Eyüp

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Ece Güran Schmidt

February 2013, 54 pages

Routers have to be fast enough to keep pace with increasing traffic data rate because of the

increasing need for network bandwidth and processing. The switch fabric component of a router is

a combination of hardware and software which moves the incoming packets to the outgoing ports.

The access of the input ports to the switch fabric is controlled by a scheduler which affects the

overall performance together with the fabric design. In this thesis we investigate two switch fabric

and scheduler architectures, the well-known iSlip fabric scheduler and the Byte-Focal switch. We

observe that these two architectures have different behaviors under different input traffic load

ranges. The novel contribution of this thesis is a combined switch architecture which is composed

of these two architectures that are implemented and run in parallel to selectively forward the

packets with lower delay to the outputs to achieve an overall lower average delay. The design of
the combined switch is carried out on FPGA and simulated. Our results show that the combined

architecture has 100% throughput and a lower average delay compared to the Byte-Focal switch

and the input-queued switch with iSlip. On the other hand, our combined switch uses more

resources in FPGA than individual iSlip and Byte-Focal switch.

Keywords: Throughput, FPGA, crossbar switch, load-balanced switches, Byte-Focal switch, iSlip,

input buffering.

vi

ÖZ

YÜKSEK HIZLI UYARLANABİLİR BİR PAKET ANAHTAR ÖRGÜSÜNÜN

GELİŞTİRİLMESİ VE DONANIM GERÇEKLEMESİ

Akbaba, Erdem Eyüp

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ece Güran Schmidt

Şubat 2013, 54 sayfa

İnternet ağlarındaki bant genişliği ve veri işlenmesi ihtiyacı arttığından, yönlendiricilerin artan

trafik hızına uyum sağlayabilmesi için yeterince hızlı olmaları gerekmektedir. Yönlendiriciler,

yazılım ve donanımın birleşmesiyle oluşan ve gelen paketleri çıkış portlarına yönlendiren paket

anahtarlarından oluşur. Giriş portlarının paket anahtarına erişimi anahtar yapısıyla birlikte genel

performansı etkileyen çizelgeleyiciler tarafından kontrol edilir. Bu tezde sıkça kullanılan iSlip

çizelgeleyicisi ve Byte-Focal anahtar yapıları araştırılmıştır. Yapılan araştırmada her iki paket

anahtarının farklı trafik yük dağılımlarında farklı davranışlara sahip olduğunu gözlemlenmiştir. Bu

tezdeki yeni fikir, çıkış paketlerinde genel olarak daha düşük gecikmelerin sağlanması için her iki

paket anahtarının paralel olarak uygulanmasıyla oluşan ve paketleri seçerek daha düşük

gecikmeleri sağlamak için çıkış portundan çıkaran birleşik paket anahtarının uygulanmasıdır.
Birleşik paket anahtar yapısı FPGA üzerinde uygulanarak simüle edilmiştir. Elde ettiğimiz

sonuçlara göre uyguladığımız birleşik anahtar yapısı %100 verimlidir ve Byte-Focal paket anahtarı

ile iSlip giriş tamponlu paket anahtarına ile kıyaslandığında düşük ortalama gecikme sürelerine

sahiptir. Ancak, birleşik paket anahtarı Byte-Focal paket anahtarı ve iSlip giriş tamponlu paket

anahtarı ile kıyaslandığında daha fazla FPGA kaynağı harcamaktadır.

Anahtar Kelimeler: Verim, FPGA, matriks anahtarı, yük dengeleyici anahtarlar, Byte-Focal

anahtarı, iSlip, giriş tamponlama.

vii

To my family,

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks to my supervisor Assoc. Prof. Dr. Ece Güran Schmidt for

her guidance, support, encouragement, trust, patience and valuable contributions throughout the

preparation of my thesis.

I would like to acknowledge the support of ASELSAN Inc. for the realization of this thesis.

I would like to thank my colleague Mehmet Ufuk Büyükşahin for his great contributions

throughout the preparation of this thesis.

The last but not the least, I express my sincerest thanks to my family and friends who have given

me encourage and support.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xii

CHAPTERS

1 INTRODUCTION ... 1

2 LITERATURE OVERVIEW .. 3

2.1 Switch Fabric Architectures and Algorithms .. 3

2.2 Switch Fabrics .. 4

2.2.1 Shared Memory Switches ... 5

2.2.2 Input Buffered Switches ... 5

2.2.3 Banyan-Based Switches ... 5

2.2.4 Clos-Network Switches .. 5

2.2.5 Load-Balanced Switches .. 5

2.2.6 Crossbar Switches .. 6

2.2.7 Fabric Schedulers ... 6

2.2.8 The iSlip Scheduling Algorithm for Input Queued Switches.. 6

2.2.9 The Byte-Focal Switch Architecture ... 9
2.3 Performance Metrics and Challenges ... 12

2.3.1 Average Delay ... 12

2.3.2 Complexity .. 12

2.3.3 Switch Size .. 13

2.3.4 Throughput .. 13

2.3.5 Input and Output Buffers .. 13

2.3.6 Input Traffic Load .. 14

2.4 Comparison of the Byte-Focal and iSlip Algorithms .. 14

3 IMPLEMENTATION OF THE PROPOSED COMBINED SWITCH ARCHITECTURE .. 17

3.1 Fixed-size Packet Switching Model ... 18

3.2 Data Format .. 18
3.2.1 Input Port Field .. 19

3.2.2 Time Field ... 19

3.2.3 Output Port Field ... 19

3.3 Implementation of Input queued switch using iSlip algorithm .. 20

3.3.1 Buffers used in FPGA design ... 20

3.3.2 iSlip Algorithm Implementation ... 21

3.4 Implementation of the Byte-Focal Switch Architecture .. 27

3.4.1 First Stage Scheduling Algorithm ... 28

3.4.2 Second Stage Scheduling Algorithm ... 31

3.4.3 Resequencing Buffer Design .. 32

3.5 Implementation of the Combined Switch Architecture ... 36

4 PERFORMANCE EVALUATION ... 41
4.1 Input Traffic Generation.. 41

4.2 Test Setup ... 44

4.3 Performance Metrics ... 48

4.4 Simulations ... 49

4.5 Results and Discussion .. 50

5 CONCLUSIONS .. 51

REFERENCES ... 53

x

LIST OF TABLES

TABLES

Table 3-1 Resources used in the input-queued switch with iSlip algorithm 27
Table 3-2 Resources used in the Byte-Focal switch architecture ... 35
Table 3-3 Resources used in the combined switch architecture... 39

xi

LIST OF FIGURES

FIGURES

Figure 2-1 Head-of-line blocking ... 4
Figure 2-2 Request step (step 1) of an iSlip iteration ... 7
Figure 2-3 Grant step (step 2) of an iSlip iteration .. 8
Figure 2-4 Accept step (step 3) of an iSlip iteration .. 9
Figure 2-5 Architecture of the load-balanced Birkhoff-von Neumann switch 10
Figure 2-6 Architecture of the Byte-Focal switch ... 10
Figure 2-7 Virtual input queue structure for output 1 .. 12
Figure 2-8 Average queuing delay for different algorithms [2] .. 14
Figure 3-1 Proposed combined switch fabric architecture ... 17
Figure 3-2 Header format for implemented switch fabrics .. 19
Figure 3-3 Implemented input queued switch with iSlip ... 20
Figure 3-4 FIFOs used in VOQ implementation ... 21
Figure 3-5 State machine structure of iSlip ... 21
Figure 3-6 Request signal assertions of iSlip algorithm design .. 22
Figure 3-7 Grant pointers and request signal assertions ... 22
Figure 3-8 Accept pointers and grant signal assertions .. 23
Figure 3-9 Packets times when they enter input ports at the same time .. 24
Figure 3-10 Packets times when they enter input ports at different times 25
Figure 3-11 Input queued switch with iSlip simulation screen ... 26
Figure 3-12 Implemented Byte-Focal architecture .. 28
Figure 3-13 Connection pattern at time t = 0 ns .. 29
Figure 3-14 Connection pattern at time t = 10 ns .. 30
Figure 3-15 Connection pattern at time t = 20 ns .. 30
Figure 3-16 Connection pattern at time t = 30 ns .. 31
Figure 3-17 Connection between second stage VOQ and RB .. 32
Figure 3-18 Packets times when they enter input ports at the same time 33
Figure 3-19 Packets times when they enter input ports at different times 34
Figure 3-20 The Byte-Focal switch simulation screen ... 35
Figure 3-21 Clock division process in the combined switch .. 37
Figure 3-22 Implemented combined switch architecture ... 38
Figure 3-23 Combined switch simulation screen... 40
Figure 4-1 Packet generation flow .. 42
Figure 4-2 Random number generator tool ... 43
Figure 4-3 Generated input packets for input port 2 .. 44
Figure 4-4 Read process for input port 4... 46
Figure 4-5 Write process for output port 3 .. 47
Figure 4-6 Queuing delays for output 1 packets .. 48
Figure 4-7.. 49
Figure 4-8.. 50

xii

LIST OF ABBREVIATIONS

DRR : Deficit Round Robin

FIFO : First-In-First-Out

FPGA : Field Programmable Gate Array

HOL : Head-of-Line

iSlip : Iterative Round-Robin Matching with SLIP

LQF : Longest-Queue First

MUCFA :Most Urgent Cell First Algorithm

PIM : Parallel Iterative Matching
QoS : Quality of Service

VOQ : Virtual Output Queue

1

CHAPTER 1

INTRODUCTION

The bandwidth demand in the Internet grows rapidly in the past few decades so routers have to

work under Gbps or more operation speed. It is not reasonable to connect the distant points in the

Internet, so service providers depend on each other by connecting the dots [18]. Switch fabric is the

router component which forwards the incoming data to the correct output and it is a combination of
hardware and software. Switch fabric is a limited hardware resource so it has to be arbitrated by a

fabric scheduler. The design of fabric scheduler affects the switch fabric capacity. Therefore, the

overall performance depends on the fabric performance.

Packet forwarding process is an important issue in switch fabrics because of some specific

problems such as queuing delay, throughput, switch size, scalability, buffering and incoming

traffic. Fabric schedulers have to forward the incoming packets to their output ports immediately.

Therefore, packets which are waiting in the fabric queues should have access to fabric as soon as

possible in order to minimize queuing delay.

In fabric topologies, there is a certain need for buffers because of the packets which are destined to

same output port. Buffers can be found either in input ports or in output ports. They can also be
found in both inputs and outputs. Fabric scheduling is an important issue in order to achieve low

delay and high throughput for large capacity switch fabrics. Most of the fabrics include a

centralized scheduler which increases the interconnection complexity of the switch. Some of them

require a speedup larger than 1 in order to keep pace with processing speed demand.

The proposed architectures and algorithms are studied and they are compared according to their

advantages and disadvantages. Some switch fabrics algorithms are DRR, PIM, iSlip and some

architectures are the Byte-Focal, crossbar, input-buffered, shared-memory, Banyan, clos network

switches. iSlip switch is widely used switch fabric algorithm because it has low delay values and it

is highly scalable. The Byte-Focal architecture became popular recently because it has better

overall performance then the iSlip switch. However, they have different behaviors under different
loads.

Since the Byte-Focal and iSlip switches have different queuing delay properties, we propose a new

architecture which is supposed to have better performance than the proposed architectures. The

new architecture is designed to combine the two architectures in FPGA so that they work in

parallel. In order to implement the combined architecture, iSlip and Byte-Focal switches are

implemented separately and verified. Then, the combined switch architecture is implemented in

FPGA and simulations are done for different traffic loads, switch size and algorithms. The

combined switch has always lower delay values under different traffic loads according to

simulation results. We present simulation results of the Byte-Focal, iSlip and combined switch in

Chapter 4.

To the best of our knowledge, the combined switch approach is a novel architecture. However,

there are some dynamic reconfigurable and adaptive switching approaches for QoS improvement

[5]. Furthermore we carry out full FPGA implementation and performance evaluations on hardware

for iSlip, Byte-Focal and combined switches.

2

In this thesis, a high-speed switch fabric is developed and hardware implemented in FPGA. The
thesis starts with an introduction part where the motivation of the study and some publications on

this subject are presented.

In Chapter 2, literature overview on general switch fabric architectures is introduced. Then, iSlip

algorithm which is proposed by Nick McKeown et al. [1] and the Byte-Focal architecture which is

proposed by Shen et al. [2] is discussed in detail. Our proposed combined switch architecture

which is composed of the Byte-Focal switch and the input-queued switch with iSlip is mentioned.

Hardware implementation procedures are explained in Chapter 3. Problems faced while

implementing the architectures are discussed. The combined switch architecture is also described in

detail.

In Chapter 4, composed simulation platforms and setups are mentioned. Simulation results are

obtained in terms of performance metrics such average delay, switch size and input traffic.

Simulation results are discussed whether they are expected or not.

The thesis concludes with Chapter 5, where summary and future works are presented and

discussed. In this chapter, all the work that has been done in this study will be summarized. The

simulation and experimental results will be stated and evaluated. The possible future works are

mentioned.

3

CHAPTER 2

LITERATURE OVERVIEW

2.1 Switch Fabric Architectures and Algorithms

In this section, functions, performance metrics and challenges of switch fabrics are presented.

Proposed architectures and algorithms are described and some fabric scheduling terms are defined.

Router is a network element which is used to forward data packets between computer networks.

Routers which are located at gateways connect data lines from different networks. The connected

networks are usually two LANs or WANs or a LAN and its ISP network. Router architecture is

basically composed of input and output line cards, router processor (CPU) and backplane. Routers

are connected to different networks that employ different datalink technologies through input and

output line cards. Today, routers are capable of routing at multi-gigabit speeds, but routing demand

is still increasing.

Recent researches on router architectures mostly include specialized hardware, efficient and faster

lookup algorithms and also switching fabrics. Packet switch fabric is a mechanism whose

fundamental role is to forward packets from input ports to output ports. Switch fabrics and routers

form the junction between connected links. Therefore, switch fabrics have the major effect on

performance of the Internet.

There are lots of fabric architectures and switching algorithms proposed in the literature so far.

Each switch fabric architecture and algorithm has its own advantages and disadvantages. Every

application has some more important performance challenges and some less important challenges

when performing packet switching process. The optimum switch fabric architecture compatible

with the best effort algorithm should be selected according to the network application. There are
also some adaptable switch architectures which is able to reconfigure according to different input

traffic loads [5], [16].

Switch fabrics are classified into 2 categories which are Time Division and Space Division fabrics.

Every packet is time division multiplexed in Time Division fabrics. They have the advantage of

extending into multicast broadcast applications. Their disadvantage is the strict capacity limitation

of the internal communication structure. Some examples of the Time Division fabrics are shared

medium switches (shared bus architecture) and shared memory switches. There are multiple

physical paths between inputs and outputs in Space Division fabrics. Packets can be forwarded

through these multiple paths simultaneously so that there can be multiple input-output

interconnections at the same time. They have the advantage of non-blocking, but the disadvantage

of complexity.

Head-of-line blocking (HOL) is a phenomenon which limits the performance of a switch fabric in

computer networking. Head-of-line blocking occurs when packets cannot be forwarded because of

waiting packets at the head of the queue even if they are going to another destination.

4

Figure 2-1 Head-of-line blocking

Head-of-line blocking is shown in

Figure 2-1. It is seen that packets at input ports 1 and 3 are waiting because of blocking packets at

the head of the queues.

Virtual output queues (VOQ) are proposed in order to overcome head-of-line blocking problem. In

virtual output queue mechanism, there are dedicated queues for each output port at the inputs.

Virtual output queues provide a much higher throughput because of breaking the HOL blocking

problem.

Fabric speedup is also an important parameter about the performance of a switch. The speedup of a

switch is the ratio between the rate of traffic transferred from the inputs to an output port and the

rate of the network port. It profoundly affects the control-path capabilities although the speedup is a

datapath parameter. A speedup of one is a requirement for a minimal correct operation. However,

as the speedup of the datapath grows, the control-path may deploy more ambitious scheduling

algorithms [25].

2.2 Switch Fabrics

The need for bandwidth in network systems is increasing because data demand for recent internet

applications is growing rapidly. In order to keep up with recent network applications, there has

been a remarkable research about high-speed switch fabric topologies. There are lots of

architectures and algorithms proposed so far. Each algorithm and architecture has its own

advantages and disadvantages.

We can classify some of the proposed switch fabric architectures as shared memory switches, input

buffered switches, banyan-based switches, clos-network switches and load-balanced switches.

These architectures are explained in this chapter in detail.

5

2.2.1 Shared Memory Switches

Incoming packets are time-division multiplexed into a single data stream and sequentially written

to the shared memory. In the share memory switches, outgoing packets are extracted from the

shared memory and form a single output data stream. The packets are also demultiplexed into

several outgoing lines. The control module checks the cell headers for output ports and extracts the

memory addresses for both writing incoming packets and reading out stored packets.

2.2.2 Input Buffered Switches

FIFO queues are put in front of each input queue and they are used to store the input packets

entering the switch [18], [22]. When virtual output queue structure is applied, each input has N
queues for each output port. There are some algorithms applied for input buffered switches. These

algorithms are namely PIM, iSlip, DRR and MUCFA [18]. iSlip algorithm is discussed in Chapter

2 in detail.

2.2.3 Banyan-Based Switches

Banyan-based switches are constructed from 2x2 crossbar switches. There is only one single path

between any input-output pair. The implementation complexity is O (Nlog2N) for banyan-based

switches. No control mechanism is needed for routing packets from inputs to outputs; routing

information is contained within each packet.

2.2.4 Clos-Network Switches

Clos-network switch is a three stage network which is defined by five parameters. r1, r2 and r3 are

the number of switches in each stage, m1 is the number of inputs to a first stage switch and n3 is

the number of outputs to a third stage switch. In this architecture, switches in consecutive stages are

connected by exactly one edge.

2.2.5 Load-Balanced Switches

Load-balanced switch architecture is proposed to overcome throughput, delay and interconnection

complexity problems [3], [4], [6], [8], [11]. Load-balanced switches use the virtual output queuing

technique (VOQ) in order to solve the head-of-line (HOL) blocking problem [10].

LB-BvN switch does not need any schedulers because the connection pattern between stages is

deterministic and repeated periodically [13], [19], [21]. This architecture has many advantages.

First of all, the switch is highly scalable because implementation complexity is O (1). The switch

has also 100% throughput and low average delay under heavy load and bursty traffic. The Byte-

Focal architecture is discussed in Chapter 2 in detail.

6

2.2.6 Crossbar Switches

Crossbar switches are internally non-blocking and simple architectures which are composed of N2

crosspoint switches [7], [12], [17]. Each crosspoint has two possible states which are “cross state”

or “bar state”. In order to set a connection between input port i and output port j, the cross point (i,

j) is set to bar state and the rest of the cross points remain in cross state.

In the literature, the architecture “Combined Input Crosspoint Buffered Switches” contains both

input buffers and crosspoint buffers [15].

2.2.7 Fabric Schedulers

Fabric scheduling is the mechanism which packet selection is carried out. Each algorithm uses a

different scheduling mechanism to exit more packets from their output ports. Buffering is also an

important structure of switch fabric architectures. Virtual output queues (VOQ) which is described

in detail in section 2.2 are widely used in recent fabric schedulers.

In the literature, there are lots of proposed algorithms such as iSlip, Byte-Focal, DRR and PIM.

iSlip and the Byte-Focal algorithms are widely used because they are highly scalable and they have

low average delay values under various traffic. They are also discussed in Chapter 2.

2.2.8 The iSlip Scheduling Algorithm for Input Queued Switches

The iSlip is a scheduling algorithm for input-queued switches which proposed by Nick McKeown
in 1999 [1]. It is an input queued switch using Iterative Round-Robin with SLIP algorithm. In order

to solve the contention between inputs and outputs, the iSlip algorithm uses round-robin schedulers.

The incoming packets are initially stored in virtual output queues (VOQ). There are three steps in

each iteration. It is possible to have a total of N iterations in each time slot. All inputs and outputs

are unmatched at the beginning of each iteration. Inputs and outputs which are not matched at the

end of iteration are available in the next iteration. The three steps for this scheme are defined as

follows:

Step 1 : Request

A request is send from every unmatched input to every output for which it has a packet.

Step 2 : Grant

The output chooses the next input in a fixed, round robin schedule starting from the highest priority

in the case of there are multiple requests for the same output. The output sends a grant to each input

indicating whether its request was granted. The grant pointer gi is incremented (modulo N) to one

location beyond the granted input if and only if the grant is accepted in step 3 of the first iteration.

Step 3 : Accept

The input chooses the next input in a fixed, round-robin schedule starting from the highest priority

element. The accept pointer aj is incremented (modulo N) to one location beyond the accepted
output. The accept pointers ai are only updated in the first iteration.

7

An example of iteration steps is shown in Figure 2-2, Figure 2-3 and Figure 2-4.

There is one packet in input port 1 which will be destined to output port 1, four packets which will

be destined to output port 2. Input port 3 has two packets which will be destined to output port 2

and one packet which will be destined to output port 4. Input port 4 has three packets which will be

destined to output port 4 at the same time. All input ports send requests to the outputs for which

they have packets to be destined as seen in Figure 2-2.

Figure 2-2 Request step (step 1) of an iSlip iteration

Each output port receives request signals from inputs. Then, outputs send grant signals after

checking their grant pointers. If grant pointer points the input port which sends request, the output

selects that input port; otherwise it grants an input port in a round-robin manner. The grant signals

in our example are shown in Figure 2-3. The output 1 and output 2 chooses input port 1 and send

grants to that input ports, as their grant pointers g1 and g2 point to input port 1. Grant pointer of

output port 4 also points input port 1, but it receives requests from inputs 3 and 4. Therefore, it
chooses input port 3 since decision of input port selection is made in a round-robin manner.

8

Figure 2-3 Grant step (step 2) of an iSlip iteration

Each input port receives grant signals from outputs after the grant step. Each input port checks that

their accept pointers. If accept pointer of an input port points to the output port which sends grant

signal, it accepts that output port; otherwise it chooses an output port in a round-robin manner. The

accept signals in our example is shown in Figure 2-4. Input port 1 receives grants from outputs 1

and 2. It chooses output port 1 because its accept pointer points to that output port. Input port 3

receives grant from output port 4, but its accept pointer points to output 1. Therefore, it chooses

output port 4 since decision of output port selection is made in a round-robin manner.

9

Figure 2-4 Accept step (step 3) of an iSlip iteration

After all steps, the packet forwarding decision is made and input ports sends their packets to the

output ports which they accept. When packet forwarding process is done, all of the aj and gj

pointers are updated to modulo N to one location beyond the accepted output, where N is the

number of ports.

2.2.9 The Byte-Focal Switch Architecture

The load-balanced (LB) switch which is proposed by C.S. Chang et al. [4] consists of two stages.

The first stage is load-balancing stage which converts incoming traffic into a uniform traffic. The

second stage forwards packets coming from the first stage to their final destination.

10

The architecture of the load-balanced switch is shown in Figure 2-5. The load-balanced switch is
composed of two stages and does not require any centralized scheduler. The first stage is a load-

balancer which distributes the received input packets evenly into the second stage ports. It

generates a uniform traffic by using a predetermined connection pattern. The second stage is a

crossbar switch with virtual output queues (VOQ) and each VOQ is served at a fixed rate.

Figure 2-5 Architecture of the load-balanced Birkhoff-von Neumann switch

The load-balanced switch can guarantee 100% throughput because the second stage receives a

uniform traffic due to load-balancing. However, load-balancing leads to packet missequencing at

the output ports. The reason of out-of-sequence problem is that every packet can go different

directions in the switch and subject to different delays.

There are many solutions in order to solve the out-of-sequence problem so far, but they are either

too complex to implement or they cause a significant additional delay. In order to solve this

problem, the Byte-Focal switch architecture is proposed in Shen et al. [2]. This architecture uses

packet-by-packet scheduling in order to increase the bandwidth utilization. Therefore, the average

delay performance is maximized significantly.

Figure 2-6 Architecture of the Byte-Focal switch

11

The architecture of the Byte-Focal switch is shown in Figure 2-6. The Byte-Focal switch
architecture is comprised of three main stages which are namely the first stage input queue i, the

middle stage queue j and the output resequencing buffer k (RB) where i, j, k = 1, 2, … N. Both

switch fabrics have periodic and predetermined connection pattern.

The connection pattern (i, j) at any time slot t at the first stage is given by

j = (i + t) mod N, where i = 1, …, N and j = 1,…,N.

The connection pattern (j, k) at any time slot t at the second stage is given by

j = (k + t) mod N, where j = 1, …, N and k = 1,…,N.

If packets arriving at the input port i and destined to output port k is defined as fik, packets from

flow fik are put in VOQ1 (i,k). Those packets are served in a round-robin manner such as VOQ2

(1, k), VOQ2 (2, k), …, VOQ2 (N, k) according to time slot at that instant.

Te first stage scheduling algorithm has a very important effect on the average delay performance.

During the interconnection between input port i and middle stage port j, only some of the VOQ1s

can be served. Therefore, each VOQ1 (i, k) has a pointer that holds the last second stage port that a

packet is transferred which is called J pointer. VOQ1 (i, k) is served provided that its J pointer is

pointing to the second stage input j when the first stage input i is connected to the second stage

input j. After VOQ1 (i, k) is serviced, its J pointer points to the next second stage input (j + 1) mod

N. Therefore, the first stage scheduling problem is:

“When input i is connected with j, each VOQ1 (i, k) whose J pointer value is equal to j sends a

request to the arbiter, and the arbiter selects one of them to serve.”

There are 4 algorithms for selecting a VOQ1 in order to serve the set of VOQs that can send

packets to the second stage input j at time t.

1) Round-Robin:

The round-robin algorithm ensures that the arbiter makes selection in a round-robin manner. If

VOQ1 (i, k) is served in a time slot, the pointer will point to the next VOQ1, i.e.. (k + 1) mod N.

2) Longest Queue First:

In the longest queue first algorithm, the arbiter makes selection to serve the VOQ1 longest queue

from the set of VOQ1s that can send packets to the second stage input j at time t.

3) Fixed Threshold Scheme:

The fixed threshold scheme selects the VOQ1s that exceed a predetermined threshold (TH) length.

4) Dynamic Threshold Scheme:

The dynamic threshold scheme selects the VOQ1s that exceed a threshold (TH) value which
changes dynamically with time.

The Byte-Focal switch also includes a resequencing buffer (RB) in order to solve the out-of-

sequence problem at the outputs. The virtual input queue (VIQ) structure is applied in the

resequencing buffers.

12

There are N sets of VIQs corresponding to each input port i at each output. Each VIQ set consists
of N queues corresponding to a second stage input j. In Figure 2-7, it is shown for output port k = 1

that there are N sets of VIQs corresponding to each input port and there are N queues for each

corresponding middle stage j in each set.

Figure 2-7 Virtual input queue structure for output 1

Packets coming from input port i and destined to output port k through middle stage port j are

stored in VIQ (i, j, k). All packets in VIQ (i, j, k) are in order, because packets that are delivered in

the same direction comes into the same VOQs sequentially. The advantage of using VIQs is that

complexity of finding and serving packets in sequence is O (1). It is guaranteed that all packets
which are exiting the output ports are in order.

2.3 Performance Metrics and Challenges

All of the proposed switch fabric architectures have their own advantages and disadvantages in

terms of some specific performance metrics as mentioned previously. These metrics are namely

average delay, complexity, switch size, throughput, buffers and load.

2.3.1 Average Delay

Average delay is an important performance metric for switch fabrics. Incoming packets are subject
to input and output buffering delay, processing delay and also queuing delay until they exit the

output ports. The most critical delay type is the queuing delay for switch fabrics. Some packets

might be lost because of queuing if it is not bounded by a fixed value.

2.3.2 Complexity

Complexity is another performance metric for switch fabrics. It is also an important metric because

implementation difficulty of a switch fabric is directly dependent on complexity. Byte-Focal

Switch using Round-Robin, Fixed Threshold and Dynamic Threshold algorithms has a complexity

of O (1), but Byte-Focal Switch using Longest Queue First (LQF) algorithm has a complexity of O

(log N).

13

2.3.3 Switch Size

Switch size has also an important role when switch fabrics perform switching process since it has a

significant effect on average delay for packets exiting from output ports. Average delay for exiting

packets from output ports usually increases with switch size.

2.3.4 Throughput

Throughput is also an important performance metric for switch fabrics. A high-speed switch fabric

supporting a large number of ports is expected to have a throughput of 100%. Input Queued Switch

using iSlip algorithm and The Byte-Focal switch using Round-Robin, Longest Queue First (LQF),

Fixed Threshold and Dynamic Threshold algorithms have 100% throughput.

2.3.5 Input and Output Buffers

Switch fabric architectures possess some buffers for storing the data which will be forwarded to

output ports. Buffers are usually essential for packets which are waiting in queues. These buffers

can exist at the inputs, outputs, or inside the fabric according to switch architecture.

Input Queued Switch using iSlip algorithm has N
2
 Virtual Output Queues (VOQ) at input ports.

There is no buffering mechanism inside or outside the fabric. On the other hand, The Byte-Focal

switch has three stage buffering mechanisms. In this architecture, there are N2 Virtual Output

Queues (VOQ1) at input ports. There are also N2 Virtual Output Queues (VOQ2) at middle stage.

Finally, N3 Virtual Input Queues (VIQ) exist at output ports.

14

2.3.6 Input Traffic Load

Incoming traffic load has the most significant effect on switch average delay performance. Delay

experienced by forwarded packets becomes larger as input traffic load increases.

Figure 2-8 shows average queuing delays for different switching algorithms. Delay values are

measured under uniform traffic for Input Queued Switch using iSlip algorithm and Byte-Focal

Switch using Round-Robin, LQF, Dynamic Threshold and Fixed Threshold scheduling algorithms.

Figure 2-8 Average queuing delay for different algorithms [2]

As seen in Figure 2-8 average queuing delay for Input Queued Switch using iSlip algorithm is

lower than Byte-Focal Switch using Round-Robin, LQF, Dynamic Threshold and Fixed Threshold
scheduling algorithms under uniform traffic until load is about 0.8. However, average queuing

delay for Input Queued Switch using iSlip algorithm becomes higher than Byte-Focal Switch using

Round-Robin, Longest Queue First (LQF), Dynamic Threshold and Fixed Threshold scheduling

algorithms under uniform traffic for loads above 0.8.

2.4 Comparison of the Byte-Focal and iSlip Algorithms

Switch fabric architecture is a combination of hardware and software which is aimed to maximize

number of packets being forwarded in a unit time interval. Proposed switch architectures and

algorithms have some acquisitions but they also have losses. Performance of a switch is measured

according to metrics such as average delay, complexity, switch size, throughput, buffers and load
which are discussed in Section 2.3 in detail.

15

When Input Queued Switch using iSlip algorithm and The Byte-Focal switch using Round-Robin,
Longest Queue First (LQF), Fixed Threshold and Dynamic Threshold algorithms are compared in

terms of their Average Delay vs. Input Load performance, it can be concluded that iSlip switch has

better performance for lower input traffic. iSlip switch has less average delay values than The Byte-

Focal switch using Round-Robin, Longest Queue First (LQF), Fixed Threshold and Dynamic

Threshold algorithms under loads of 0.8 and below as seen in Figure 2-8. However, delay values

for iSlip switch increases dramatically under input traffic loads of above 0.8. We can conclude that

Input Queued Switch using iSlip algorithm has a better average delay performance than The Byte-

Focal switch using Round-Robin, Longest Queue First (LQF), Fixed Threshold and Dynamic

Threshold algorithms for lower input traffic loads and vice versa. The Byte-Focal switch has lower

average delay thanks to its three-stage buffering which brings an additional implementation cost.

16

17

CHAPTER 3

IMPLEMENTATION OF THE PROPOSED COMBINED SWITCH ARCHITECTURE

The average queuing delay might be a critical issue for high-speed network applications. While

working under 10 Gbps or higher network speed, even a few nanoseconds are important in order

not to lose any data packets. Average queuing delay has also a significant role in real-time network

applications such as VoIP. The Byte-Focal switch and Input Queued Switch using iSlip algorithm
have different delays for different input traffic loads as we presented in the previous Chapter and

shown in Figure 2-8. In this thesis we propose a combined switch architecture as shown in Figure

3-1 to have a switch fabric with lower average delay values than both algorithms.

Figure 3-1 Proposed combined switch fabric architecture

The two switch fabric architectures have the same input buffering mechanism. They have both

virtual output queues (VOQ) at input ports. Therefore, a combined switch which consists of the

Byte-Focal switch architecture and Input Queued Switch with iSlip algorithm can have common

input data because of having virtual output queues at input ports. It is shown in Figure 3-1 that each

incoming packet is first copied and then two identical packets are inserted in the VOQs of the both

switch fabric architectures. Arrows are drawn for only input and output ports 1 in the figure, but the

same process is valid for all input ports.

In our proposed combined architecture; when a copy of an incoming packet appears at the output of

iSlip or Byte-Focal fabrics the first time, that packet is forwarded to the output linecard to be

further processed and the second copy that arrives later is discarded. Input Queued Switch with
iSlip algorithm and the Byte-Focal switch have the same input buffering mechanisms but their

output buffering is not the same, because the Byte-Focal switch has resequencing buffers (RB) at

outputs.

18

Total delay which a packet is experienced from entering the input ports until exiting from the
output ports includes both “processing delay” and “queuing delay”. Processing delay is different

for the implemented Byte-Focal and iSlip switch. Therefore, a normalization is done on different

processing delay values of the implemented architectures which is discussed in Section 3.5 in

detail. Same input packets experience different queuing delays, since two switches have different

architectures and different algorithms. Thus, packets which have arrived at different time intervals

can exit from outputs of two switches at the same time intervals.

The packet selection mechanism in our combined switch architecture analyses the packets that are

at the fabric outputs of both iSlip and Byte-Focal fabrics according to their arrival time and picks

the earlier copy of each packet to minimize the average queuing delay and maximize the number of

packets that exit the combined switch.

FPGAs are convenient for the implementation of the combined switch architecture because of their

parallel operating feature with reconfigurable and adaptive processing capability. It is known that

having the feature of parallel processing, very high-speed applications are designed to run on

FPGAs. Therefore, implementation and verification of the combined switch architecture is possible

by operating the two switch architectures in parallel and selecting the correct input packets at the

outputs. If this architecture is implemented properly, there will be an important acquisition on

average delay of outgoing packets.

We note that, in the combined switch architecture, there will more FPGA resource usage because

input queued switch using iSlip algorithm and the Byte-Focal switch architectures are both

implemented.

In the following of this chapter, packet switching model that we have used and data header format

is expressed. Also, the Byte-Focal switch and iSlip switch architectures are described in detail.

Finally, the combined switch architecture is represented at the end of this chapter.

3.1 Fixed-size Packet Switching Model

We have used the fixed-size packet switching model while implementing our architectures. In this

scheme, the variable size IP packets are chopped into fixed size packets. This technique is widely

used in the implemented routers and fabrics. Cisco 12000 series internet router architecture

contains crossbar switch fabrics inside which use fixed-size packet and these cells are called “Cisco
cells” [26], [27]. These cells carry parts of the IP packet as the payload and have their own headers

for control. In the fixed-size packet switching model, the data payload can be selected as required.

For example, cells are 64 bytes long, with an 8-byte header, a 48-byte payload and an 8-byte cyclic

redundancy check (CRC) for Cisco 12000 series internet router architecture [26].

In this thesis, we have fixed size packet assumption. These packets have to be reassembled at the

output port after switching process. However, this is out of our research scope. The implemented

Byte-Focal and iSlip switch fabric architectures both designed and evaluated for fixed size

packages. Since the packets are fixed size, buffer data length is arranged so that an input packet is

loaded into buffer in one clock cycle. This arrangement is done for testing the switch fabrics faster

and independent of the payload size. When we call “packets”, the fixed-size packet headers are

implied in the rest of this thesis.

3.2 Data Format

The proposed combined architecture has two different types of switch fabric architectures with

different behaviors at various input traffic loads. In order to run input queued switch with iSlip

algorithm and the Bye-Focal switch together, data types and switch timings must be adjusted so

that two architectures operate coherently.

19

Data packet format for both switch architectures should be the because of the same virtual output
queue (VOQ) buffers. Data format of input packets consist of three main fields. The first field

keeps the information about the input port from which packets comes. The second field keeps the

information when a packet goes into the switch. The third field shows the port to which the packet

will be forwarded. Each packet has binary data which refers to the mentioned fields. Each packet

header consists of a total of 24 bits.

Figure 3-2 Header format for implemented switch fabrics

In Figure 3-2 it can be seen that the most significant five bits are assigned for input port, the next

fourteen bits for time and the last five bits are assigned for output port information.

3.2.1 Input Port Field

We need to indicate the number of input port from which packets comes since the Byte-Focal

switch architecture has three stage buffering. Resequencing buffers (RB) holds the packets

according to their input port i, middle stage port j and output port k where i, j, k = 1, 2, …, N.

When a packet comes to an output port, it is essential to know that packet is destined from which

input port before writing it to correct resequencing buffer. Therefore, we assigned five bits of a
packet header as input port data field.

3.2.2 Time Field

Combined switch architecture is intended to have low average delay values of input queued switch

with iSlip algorithm and the Bye-Focal switch as they work together. In order to make the

measurement of average delay values possible, it is required to have a time field on the packets

entering the switch. Every incoming packet will carry the information about when it entered the

switch. The difference between the time a packet departed from output and the time it entered in

input (which is present on packet data) states total delay that packet experienced in switch. In our

designed switch architecture, every packet has a 14 bit time field which means that we can generate
214 different packets in our system.

3.2.3 Output Port Field

VHDL test bench for Xilinx ISE compiler is used when doing tests of switch fabrics. The output

port field of packets is needed during average delay tests and measurements. A total of five bits is

assigned to indicate which output port a packet goes out.

20

3.3 Implementation of Input queued switch using iSlip algorithm

iSlip is one component of our combined switch fabric architecture. The architecture of input

queued switch using iSlip algorithm is proposed by Nick McKeown in 1999 [1]. The proposed

algorithm is discussed in detail in Section 2.2.8.

3.3.1 Buffers used in FPGA design

The switch has virtual output queues at the input ports as mentioned before. There are N input

buffers at each of input ports. Therefore, there are total of N2 input buffers for virtual output

queues.

An example of 4-port switch is shown in Figure 3-3. As seen from the figure, each VOQ set
consists of 4 queues namely VOQ1, VOQ2, VOQ3 and VOQ4. Each set contains 128 packets

depth of 24 bits. As an example, VOQ sets for input port 2 are shown as VOQ(2,1), VOQ(2,2),

VOQ(2,3) and VOQ(2,4).

Figure 3-3 Implemented input queued switch with iSlip

21

The queues are implemented using “LogiCORE IP FIFO Generator v6.2” of ISE 13.4 project
navigator tool. Block RAMs are used as memory type and read/write clock domains use common

clock (clk) for this type of memory. FIFOs used in our design have signals of clock, reset, data_in,

data_out, write enable, read enable, full and empty signals. Note that data_in and data_out signal

are actually a bus of 24 bits. Input and output signals of each virtual output queue FIFO is shown in

Figure 3-4.

Figure 3-4 FIFOs used in VOQ implementation

3.3.2 iSlip Algorithm Implementation

The iSlip algorithm is performed by state machines in our implementation. General appearance of

the generated state machines is shown in Figure 3-5. All states have active high and asynchronous

reset structure which means that all state machines goes to idle state when a reset signal is asserted

high.

Figure 3-5 State machine structure of iSlip

When device power is on, the switch is initially in the idle state. The state machine also returns to

the idle state when “rst” signal is asserted high.

22

3.3.2.1 Idle State

In the “idle state”, all of the configuration signals wait in their initial values. as proposed by Nick

McKeown [1], request signals are initially in low state, grant pointers and accept pointers initially

points to input port 1 and output port 1. In this state, “empty” and “full” signals of all queues are

checked in every clock. When an input packet is written to any input queue at any instance, state

machine monitors which “empty” signals are deasserted (i.e. which buffers has a packet), then

sends request signals for input ports which have input packets.

Figure 3-6 Request signal assertions of iSlip algorithm design

Request signal definitions in FPGA design is seen in Figure 3-6. For example, if there is a packet in

VOQ(3,1), the empty signal of FIFO “empty_01_03” will be equal to ‘1’ so the request signal for

that buffer “r_01_03” will also be asserted high in the idle state.

When all the request signal assertions are completed, the state machine will change its state to

“grant state”.

3.3.2.2 Grant State

In the “grant state”, outputs check the request signals coming from inputs and send grant signals
according to their grant pointers at that moment after request signals are asserted in the idle state. If

a grant pointer points to the input port which sends request signal, it grants that input port,

otherwise it grants the input port in a round-robin manner.

Figure 3-7 Grant pointers and request signal assertions

Figure 3-7 shows an example state of grant pointers. Grant pointer g1 for output 1 points to input

port 1 and there is also a request signal “r_01_01” from input port 1. Therefore, output port sends a

grant signal “g_o01_i01” which indicates the grant of input port 1. Grant pointer g2 for output 2

points to input port 1 but there is a request signal “r_02_02” and “r_03_02” from input ports 2 and

3. Output port selects an input port to grant in a round-robin manner so a grant signal “g_o02_i02”

which indicates the grant of input port 2 is sent by output port 2.

After all the requested output ports send their grant signals to their corresponding input ports, grant

state terminates and the state machine changes its state to “accept state”.

23

3.3.2.3 Accept State

In the “accept state”, grant signals are received by input ports. By the time grant signals are

received, input ports check their accept pointers and they send accept signals to output ports which

they accept. If an accept pointer points to the output port which sends grant signal, it accepts that

output port, otherwise it accepts the output port in a round-robin manner.

Figure 3-8 Accept pointers and grant signal assertions

Figure 3-8 shows an example state of accept pointers. Accept pointer for input 1 “a1” points to

output port 1 and there is also a grant signal “g_o01_i01” from input port 1. Therefore, input port

sends an accept signal “a_i01_o01” which indicates the accept of output port 1. Accept pointer a2

for input 2 points to output port 3 but there is an accept signal “g_o02_i02” and “g_o04_i02” from

output ports 2 and 4. Input port selects an output port to accept in a round-robin manner so an

accept signal “a_i02_o04” which indicates the acceptance of output port 4 is sent by input port 2.

By the time all the granted input ports send their accept signals to their corresponding output ports,

“accept state” is completed and the state machine changes its state to “idle state”. Before the state

is changed, all grant pointers and accept pointers are updated to their current positions.

After the state machine returns to the idle state, all the processes mentioned in the idle state restart.

If some input packets come to inputs while the state machine is trying to determine which packets
will be forwarded, incoming packets have to wait in the queues until the state machine finishes its

deciding process.

The time between an input packet enters the buffer of an input port and it exits the output port is 6

clock cycles. This shows the processing time of the iSlip switch for any packet. In this calculation,

queuing delay is not included since calculation is done in an emtpy switch. Therefore, we need to

have an interarrival time of 6 clocks when the switch is operating at maximum input load. In other

words, the switch can forward packets to their destination outputs within 6 clock time intervals. For

example, if a packet comes to an input port one clock later than the switch begins deciding process,

it has to wait five more clock cycles in order to take part in deciding process.

24

Figure 3-9 shows packet forwarding time for input packets which come to input ports 1 and 2 at the
same time when clock cycle is 10 nanoseconds. Both packets come to input ports 1 and 2 at the

same time when t=0 ns. When the packets come to switch, deciding process begins to operate. The

packets arrive at the outputs after six clock cycles which is equal to 60 nanoseconds.

Figure 3-9 Packets times when they enter input ports at the same time

25

Figure 3-10 shows packet forwarding time for input packets which come to input ports 1 and 2 at
different times when clock cycle is 10 nanoseconds. First packet comes to input port 1 at t = 0 ns.

When the packets come to switch, deciding process begins to operate. Second packet comes to

input port 2 at t=10 n i.e. 10 ns after the beginning of the deciding operation. Since the state

machine is already started to operate when the second packet comes, it has to wait until the state

machine process terminate. The packet 1 exists from the output 1 after six clock cycles when time

is equal to 60 nanoseconds. At this time, the state machine returns to idle state and realizes that

there is a waiting packet in input 2 buffer. Therefore, packet 2 arrives at the output 2 after six clock

cycles when time is equal to 120 nanoseconds.

Figure 3-10 Packets times when they enter input ports at different times

As a result of this discussion, we have to send input packets with 60 nanosecond interarrival time in

order to measure queuing delays correctly.

26

A simulation screen is seen in Figure 3-11. As seen from this figure, the departure times for
outgoing packets is 60 nanoseconds when clock cycle is 10 nanoseconds.

Figure 3-11 Input queued switch with iSlip simulation screen

27

Number of used resources for different number of ports is given in Table 3-1.

Table 3-1 Resources used in the input-queued switch with iSlip algorithm

iSlip Switch

4-Port 8-Port

Number of Slice Registers 1307 4944

Number of Slice LUTs 1208 6185

Number of Block RAM/FIFO 8 32

3.4 Implementation of the Byte-Focal Switch Architecture

The Byte-Focal switch architecture is described in Section 2.2.3 in detail [2]. In this architecture,

there are virtual output queues (VOQ) at both first (input) stage and second (middle) stage. There

are also virtual input queues (VIQ) at the output ports. Virtual input queues are also called

Resequencing Buffer (RB) since the out-of-order packets are resequenced at the output ports by

using these buffers.

The implemented Byte-Focal switch architecture consists of three stage buffering mechanisms. The

first stage and second stage buffers are standard virtual output queue (VOQ) buffers. Third stage

buffers are used to put the packets in order. The implemented design in the thesis also consists of

two switch fabrics which forward packets across first stage, second stage and resequencing buffers.

At the first stage, there are N sets of buffers which belong to each input port. Each buffer set

contains N queues for each output port. In others words, there are a total of N2 queues in the first

stage of input ports.

The same buffer architecture exists in the middle stage. A packet in the first stage buffer is

forwarded to a second stage buffer according to the used algorithm in the first stage switch. A

packet is written to a second stage buffer according to its output port knowledge which is included

in its data. For example, if a packet in VOQ1 (2,4) is read from the first stage, it is forwarded to a

second stage port according to its pointer value at that time. The pointer value depends on the used

algorithm by the first stage switch and time.

The resequencing buffer structure is based on virtual input queue buffering architecture. In each

output port, there are N sets of buffers and each set corresponds to an input port. In each set, there

are N queues which are reserved for middle stage ports. Therefore, a total of N3 queues exist in the

output ports.

28

The implemented architecture for a 4-port switch is shown as an example in Figure 3-12. As seen
from the figure, there are four virtual output queues at input ports and each of them consists of four

queues. Therefore, there are a total of 16 queues at the input ports. The middle stage has the same

buffer design as the first stage, i.e., there are also a total of 16 queues at the middle stage port.

Finally, there are 64 resequencing buffers at the output ports.

Figure 3-12 Implemented Byte-Focal architecture

3.4.1 First Stage Scheduling Algorithm

The Byte-Focal switch architecture can run with four different algorithms which are described in

Section 2.2.9 in detail [2]. These algorithms are

1. Round-Robin

2. Longest Queue First

3. Fixed Threshold

4. Dynamic Threshold

In the first algorithm, the first stage switch emits packets in a round-robin manner. The arbiter

selects to serve the longest queue in the second algorithm. Third and last algorithms make a

selection in the queues according to a predetermined or dynamic threshold limits.

29

In our design, the first stage algorithm is selected as “Round-Robin”. The packet forwarding

pointers are updated in a round-robin manner as time proceeds. Therefore, input traffic is

distributed uniformly, because the first stage switch distributes incoming traffic evenly among all

the second stage buffers.

The connection pattern (i, j) at any time slot t at the first stage is given by

j = (i + t) mod N, where i = 1,…,N and j = 1,…,N (3)

The connection pattern is advanced by one in every time clock. It can be concluded from the

equation (3) that connection patterns are the same for every N clock cycles. Connection patterns are

shown in Figure 3-13, Figure 3-14, Figure 3-15 and Figure 3-16 for a switch that has a clock period
of 10 nanoseconds. Time values are shown in each figure in terms of clock cycles. Input ports i are

connected to middle stage ports j where i=j at time t=0. Then the connection pattern is shifted by

one for every clock cycle progress.

Figure 3-13 Connection pattern at time t = 0 ns

30

Figure 3-14 Connection pattern at time t = 10 ns

Figure 3-15 Connection pattern at time t = 20 ns

31

Figure 3-16 Connection pattern at time t = 30 ns

3.4.2 Second Stage Scheduling Algorithm

After the packets are read from queues at input ports, they are written to second stage virtual output

queues according to their output port information which is included in its data. First stage switch

uses round-robin algorithm in order to convert input traffic into uniform traffic. Therefore, an input

packet is written to a middle stage buffer according to time interval.

The second stage is responsible to forward packets in middle stage buffers to resequencing buffers

independent of time. Second stage is an input-queued crossbar switch, and each VOQ is served at a

fixed rate [2].

Each middle stage packet is written to related queue of a resequencing buffer. Since resequencing

buffers need middle stage port as well as first stage port information, we have to know the
information from which input port a packet is written, we check the input port data of each packet.

32

Figure 3-17 shows an example connection between second stage buffers and resequencing buffers.
If there is a packet in VOQ2 (2, 3), we can understand that the packet is going to exit from output

port 3. Therefore, it has to be written to output port 3 buffers. We also know that the packet is in

middle state port 2. However, we have to know the input port number of the packet in order to

write it to correct virtual input queue. This information is included in the packet data. After reading

the packet data, the state machine observes its input port data and writes the packet to correct

destination. For the example, the input data information read is 4 and the packet is forwarded to

VIQ (4, 2, 3).

Figure 3-17 Connection between second stage VOQ and RB

3.4.3 Resequencing Buffer Design

The Byte-Focal architecture uses resequencing buffers (RB) in order to solve out-of-sequence
problem [2]. There are N sets of VIQs at each output and each set corresponds to an input port i

where i = 1,2,…,N. There are N queues with each queue corresponding to a second stage input j

where j = 1,2,…,N. VIQ (i, j, k) organizes packets according to their input and output port as well

as middle stage port information. Packets which come from input port i, and destined to output port

k through middle stage port j are stored in virtual input queue VIQ (i, j, k). All the packets in VIQ

(i, j, k) are in order.

33

Figure 3-18 shows times when two different packets enter the input ports and exits from output
ports. As seen from the figure, if two packets enter different ports of the switch at the same time,

they exit from correct output ports 120 ns after they enter the switch. Note that clock cycle for the

switch is 10 nanoseconds.

Figure 3-18 Packets times when they enter input ports at the same time

34

Figure 3-19 shows times when two different packets enter the input ports at different times and
exits from output ports. As seen from the figure, if two packets enter different ports of the switch in

a 10 nanoseconds time interval, they exit from correct output ports 120 ns after they enter the

switch. Note that clock cycle for the switch is 10 nanoseconds.

Figure 3-19 Packets times when they enter input ports at different times

It can be concluded that processing time of the switch is 12 clock cycles for any clock cycle

interval. Waiting time in the queue because of processing does not change with time when a packet

enters the switch. Therefore, it is fixed and independent of any parameter.

The input-queued switch architecture with iSlip algorithm emits packets from outputs at 60

nanoseconds time intervals when it works with a clock with period 10 nanoseconds as mentioned in

Section 3.2., but the Byte-Focal switch is able to send packets from outputs at 10 nanoseconds time

intervals. In order for two architectures to work together properly, we have to set their working

speed so that the architectures can extract output packets compatible with each other. Since the

Byte-Focal architecture packets exits from output ports 6 times faster than the input-queued switch

with iSlip, the Byte-Focal switch is arranged to work with a clock of 6 times slower than the input-

queued switch with iSlip.

35

A simulation screen is seen in Figure 3-20. As seen from this figure, the departure times for
outgoing packets is arranged so that departure time between two consecutive packets is 60

nanoseconds when clock cycle is 10 nanoseconds.

Figure 3-20 The Byte-Focal switch simulation screen

Also number of used resources for different number of ports is given in Table 3-2.

Table 3-2 Resources used in the Byte-Focal switch architecture

The Byte-Focal Switch

4Port 8Port

Number of Slice Registers 11491 76554

Number of Slice LUTs 21139 141264

Number of Block RAM/FIFO 96 640

36

3.5 Implementation of the Combined Switch Architecture

Since the input-queued switch with iSlip algorithm and the Byte-Focal Switch are implemented

correctly, the two switches are tested in order to verify the operation of switches. No problems are

encountered during tests of both architectures. Therefore, we are confident of the correct operation

of the two switches. Test procedures are mentioned in CHAPTER 4 in detail.

After two switch fabrics are tested, we tried to implement the combination of two switch

architectures in FPGA. Although two architectures work properly alone, we described some

problems which may occur when the combined switch architecture is implemented. These

problems are explained below:

1. Although the Byte-Focal switch has resequencing buffers (RB), the input-queued switch

with iSlip does not have any buffers at the outputs.

2. Working speed of the Byte-Focal switch architecture is 6 times faster than the input-

queued switch with iSlip.

3. The input-queued switch with iSlip does not have an internal processing delay, while the

Byte-Focal switch has a processing delay of 12 clock cycles.

Before we start to implement the combined architecture, we have to solve described problems

above and propose some methods in order to work two architectures coherently. Proposed solutions

are listed below according to each related problems.

1. The Byte-Focal switch has reseqeuncing buffers at the outputs in order to solve the out-of-

sequence problem. There are a total of N2 queues for each output ports. Output packets exits from

output ports after selection of a packet between packets in N2 queues. Therefore, when the two

switches are combined to work together, the packet selection structure should make selection

between exiting packets at last stage of each outputs. In other words, packets of the Byte-Focal

architecture are selected after exiting the related output port.

2. In order to solve working speed difference problem, the two architectures are arranged so

that different clock signals are applied to the Byte-Focal switch and the input-queued switch with

iSlip. Therefore, two switches do not work with the same clock signal. The combined switch has an
internal structure which divides the applied input clock signal into a clock with desired speed.

37

Figure 3-21 Clock division process in the combined switch

Clock division process is shown in Figure 3-21. In the figure, clk6 represents the input clock which

is applied to combined switch and also to the input queued switch with iSlip. After the clock signal
is divided, it is applied to the Byte-Focal switch. Therefore, two architectures are arranged so that

output packets exit synchronously.

38

3. Since we desire a combined system working coherently, two switches should work in
synchronous with each other. Therefore, we added same processing delay to the Byte-Focal switch

with the Input Queued Switch with iSlip so that packet transitions from the output ports starts

simultaneously. The processing delay is not considered in performance evaluation, only queuing

delay is calculated since processing delay is not significant with respect to queuing delay.

Performance evaluations in [1] and [2] are shown in terms of average queuing in which the Byte-

Focal and iSlip architectures are discussed. Queuing delay may also be excessive and undetermined

for different loads. Therefore, if there were real fixed size cells which exist in IP networks, the

processing delay is negligible because an actual packet consists of large number of cells. In this

situation, queuing delay will be dominant. We started the implementation of the combined switch

architecture after we have solution proposals to described problems above. The implemented

combined switch architecture is shown in Figure 3-22.

Figure 3-22 Implemented combined switch architecture

As seen from Figure 3-22, virtual output queues of input queued switch with iSlip algorithm and

the Byte-Focal switch are used together so that input packet is written to buffers of both

architectures.

When the packets are written to input buffers, empty signals of buffers are asserted low. Both

architectures begin to run their algorithms in order to forward incoming packets to their output

ports. Packets begin to exit from outputs after a specific interval of time.

A packet selection module is connected to output ports of both architectures. It makes a selection

between output ports of the switches in order to forward the newer packet between the two
candidate packets. There is a comparator connected to output ports of Byte-Focal and iSlip

architectures. This selection is made by selecting the most recent packet between the two

alternative output packets. Since the most recent packet is selected by the packet selection module,

there is no possibility that a packet which is released from that output before exits. At this point, we

should also mention on an important point. If a packet which already exited from an output port of

any switch fabric is deleted in the other switch fabric, there would be no change in the overall

combined switch fabric since the combined switch extracts output packets of the faster switch

under traffic at that instance. Also, this is out of scope of our analysis.

We know that the Byte-Focal switch performance is better for high loads (for loads 0.8 or above)

and the input queued switch with iSlip has lower queuing delays under low loads (for loads 0.8 or
below) for uniform input traffic. Therefore, we expect from the combined switch to have the

behavior of the Byte-Focal switch under high loads and the behavior of the input queued switch

with iSlip under low loads when uniform i.i.d. traffic model is applied.

39

Our results in Chapter 4 confirms that we have better average delay values compared to the input
queued switch with iSlip and the Byte-Focal switch but the combined switch uses more FPGA

resources.

Table 3-3 shows total FPGA resource used by the combined switch architecture.

Table 3-3 Resources used in the combined switch architecture

The Combined Switch

4 Ports 8 Ports

Number of Slice Registers 14846 84732

Number of Slice LUTs 24608 152186

Number of Block RAM/FIFO 104 672

Total used FPGA resource is approximately equal to sum of resources used by the input queued

switch with iSlip and the Byte-Focal switch individually. Used FPGA resource by the combined 4-

port switch architecture is shown in Table 3. These values are more than total used resources by the

two architectures.

40

Figure 3-23 shows a simulation screen of the combined switch. Packets exit from the output ports
at 60 nanoseconds time intervals.

Figure 3-23 Combined switch simulation screen

41

CHAPTER 4

PERFORMANCE EVALUATION

4.1 Input Traffic Generation

In this section, 4-port and 8-port switch fabric architectures are evaluated in order to compare their

performances. Their average delay values are calculated for switches having different number of

ports and by applying input traffic with different loads. In order to evaluate switches for different

loads, we should be able to generate appropriate input traffic with desired format and we should

have a proper test setup in order to test and measure delay data correctly.

Packet distribution for the uniform traffic model is as follows:

Uniform i.i.d : λik = λ/N, where i is the input port, k is the output port.

We generate input traffic data for “uniform i.i.d.”. Data format for input packets are described in
Section 3.1. There are 5-bit partitions which are reserved for input port and output port information

and 14-bit partition which is reserved for time information.

In order to create input traffic, a C# project is generated. The generated C# code uses random

number generation property to produce random data. Composed program is able to generate

“uniform i.i.d.” traffic model with desired load.

The used algorithm to compose “uniform i.i.d.” model is explained as follows:

1. A timing counter counts for every cycle of a packet generation phase so timing value is

increased by one initially.

2. Generate a random number between 1and 100.

3. If the generated random number is smaller than or equal to desired load percentage, then

generate an input packet. If the generated number is bigger, then do not generate an input packet.

When the packet is not generated, 24-bit data which is composed of all zeros is written to output

text file.

4. If an input packet is generated then generate a random number between 1 and number of

ports N. The random number generated in this step is the output port to which packet will be

forwarded.

5. Input port information is converted to 5-bit binary data, timing counter value is converted to

14-bit binary data and input port information is converted to 5-bit binary data.

6. Finally, input port, time and output port information are concatenated and written to output

text file as 24-bit data packet.

This process continues until desired number of packets is generated.

42

Figure 4-1 Packet generation flow

Packet generation flow is shown in Figure 4-1. For example, desired load is 0.2 (i.e. load

percentage is 20%) and N=4 for input port 1. If the number generated between 1 and 100 is larger

than 20, generated data will be “000000000000000000000000”. Let’s say the number generated is

16. Since 16 is smaller than 20, a packet will be generated. Then another random number is

generated between 1 and N, let’s say the number is 3. If the counter value at that time is 12, the

generated packet will be “000010000000000110000011”.

43

Composed C# program is shown in Figure 4-2.

Figure 4-2 Random number generator tool

User enters corresponding data into text boxes and program generates desired data into a text box.

In “Rnd Gen” program, meanings of text boxes are expained below:

 Number of randoms shows desired number of data.

 Value length is the number of bits which time counter value is converted.

 Max port is the number of ports which switch fabric possesses.

 Input is the number of port for which packets are generated.

 Trackbar (0-100) indicates the load percent of generated traffic.

 Linear button generates input packets which have linear time values while start button
generates input packets which have random time values.

 Start from textbox is used to define the initial value of time information.

In “Rnd Gen” program, the input packets are composed by entering proper values into textboxes

and track bars. For example, if we want to generate input packets with load percentage 40% for

input port 2 of a 4-port switch fabric and required packets will have a 14-bit time information

starting from 1, we enter the values shown in Figure 4-2 then press “Linear” button and input

packets are written to a text file.

44

An example output file of generated packets is shown in Figure 4-3. Load is 0.2 and packets are
generated for input port 2. First five bits are assigned for input port information, last five bits are

assigned for output port information and bits 6-19 are assigned for time information.

Figure 4-3 Generated input packets for input port 2

4.2 Test Setup

We used VHDL test bench in order to test implemented switch architectures and measure their

performance metrics. We have the input queued switch with iSlip algorithm, the Byte-Focal switch

and the combined switch implementations on FPGA and required input traffic packets are

generated until now. Therefore, a proper test setup which is compatible with our implementations

and generated packets should be composed.

Xilinx ISE Simulator (ISim) tool is used in order to test the implemented FPGA designs. ISim
provides a full-featured HDL simulator integrated within ISE [24].

45

Testbench tool assignments are given as:

1. Setting timing values for each signal applied to design,

2. Generating essential reset and clock signals,

3. Reading input packets from text files,

4. Sending the input packets which are read from text files to correct input ports,

5. Keeping instantaneous time value by counting a counter value in every clock period,

6. Calculating the queuing delay value by taking difference of times between a packet enters

the switch and exits the switch,

7. Writing queuing delay value for every packet into a text file.

Test bench simulator reads an input data in each clock cycle and sends data to related output ports.
This operation is performed by a process in VHDL test bench. In this process, a 24-bit line from

text file is read. Initially data is checked whether it is composed of all zeros. If it is all zeros then no

packet is send to input port. If data is not all zeros, the process checks the last five bits and writes

the packet into correct buffer of the input port. An example read process for input port 4 is shown

as an example in Figure 4-4.

46

Figure 4-4 Read process for input port 4

47

When the packets exit from output ports, queuing delay for each packet is calculated by taking the
difference between timing counter value at that time and time value existing in the packet. In other

words, queuing delay (tq) is calculated as:

tq = tout – (tin + tp)

where tout is time when packet exit from switch, tin time value when packet enter to switch and tp is

processing delay. After calculating the difference, queuing delay (tq) for each exiting packet is

written to an output text file. The writing process for output port 3 is shown in Figure 4-5.

Figure 4-5 Write process for output port 3

48

An example output text file in which queuing delay values for each packet is written is shown in
Figure 4-6. Queuing delay for each packet is a 14-bit number in terms of clock cycles. For

example, fifth packet in the “out1_islip.txt” file has a queuing delay of 2 clock cycles.

Figure 4-6 Queuing delays for output 1 packets

4.3 Performance Metrics

Performance metrics are described in Section 2.3 in detail. Switch performance is evaluated in

terms of average delay, switch size and input traffic load in Shen et al. [2]. Since the Byte-Focal

switch and input-queued switch with iSlip both have 100% throughput, we can say that the

combined switch architecture will have also 100% throughput provided that the switch has enough

buffers in virtual output queues.

We evaluate the Byte-Focal switch, input-queued switch with iSlip and the combined switch in
terms of average delay, switch size and input traffic load to be able to compare our results with

results in Shen et al. [2].

49

4.4 Simulations

The Byte-Focal switch, input-queued switch with iSlip and the combined switch architectures are

simulated using ISE Simulator (ISim) tool from Xilinx, Inc. and the behavioral simulation tool is

used. Simulation results are obtained for different size switches, different input traffic types and

load values and different architectures.

Average delay-Load graphs are shown below for 4-port and 8-port iSlip, Byte-Focal and combined

switch architectures. Average queuing delay values are given in terms of clock cycles and

processing delays are not included in average delay calculations. Load is defined as the percentage
of total incoming packet density in time. Average delay values are calculated for delay average of

all the output ports. Note that, average delay values seen on the graphs are given for queuing delay

parts for each fabric, so processing delay values which are given in Chapter 3 would be negligible

if a packet consists of a number of cells, for example 48 Byte packets for Cisco routers [27].

In Figure 4-7 and Figure 4-8, the average queuing delay values for iSlip, Byte-Focal and combined

switches are drawn on the same graph.

Figure 4-7Average Delay vs. Load for 4-port iSlip, Byte-Focal and Combined Switch under
uniform traffic

50

Figure 4-8Average Delay vs. Load for 8-port iSlip, Byte-Focal and Combined Switch under

uniform traffic

When the graphs are investigated, we see that for loads below 60% iSlip has better performance in
terms of average queuing delay and the Byte-Focal switch has lower delay values for loads above

60%. Actually, the plots have expected lines since similar results can be seen from Shen et al. [2].

The combined switch has always lower queuing delay values because it includes both iSlip and

Byte-Focal switch and a packet selection mechanism selects the faster packets between outputs of

the two switch under all traffic loads.

4.5 Results and Discussion

In this chapter, simulations and tests of our proposed combined switch architecture are done.

Simulation results are obtained for 4-port and 8-port architectures of the Byte-Focal switch, the
input-queued switch with iSlip algorithm and the combined switch under different loads and

different types of traffic. Average delay - load graphs are given in Section 4.4.

When the obtained average delay – load graphs are investigated, the input-queued switch with iSlip

algorithm has lower average delay values uniform traffic with loads less than 0.6. However, The

Byte-Focal switch has better average delay values for loads higher than 0.6 under uniform traffic.

The combined switch has always lower delay values when compared to iSlip and Byte-Focal

architectures. However, used FPGA resource by the combined switch is slightly more than sum of

resources used by iSlip and Byte-Focal switches.

51

CHAPTER 5

CONCLUSIONS

High-speed switch fabrics are needed because of increasing bandwidth demand on today’s network

applications. In the literature, there are lots of architectures and algorithms proposed so far. Some

important algorithms are DRR, PIM and iSlip. There are also some important structures proposed

such as input-buffered, clos network, crossbar, load-balanced and Byte-Focal architectures.

iSlip architecture is widely used since it has low queuing delays, 100% throughput and it is highly

scalable. The Byte-Focal architecture is in the structure of a load-balanced switch and it has more

performance under heavy loads. When their average queuing delay-load graphs are investigated in

[2], it can be seen that iSlip delay is lower than the Byte-Focal under uniform traffic with low

loads. However, the Byte-Focal switch has better performance than iSlip under high loads.

Therefore, the two fabric architectures have different behaviors under different traffic loads.

Therefore, the combined switch idea works well with all traffic loads.

In this thesis, we implement iSlip and Byte-Focal switch architectures in FPGA and verify them by

doing simulations. When the two switches are implemented, combined switch architecture is

composed by implementing the iSlip and Byte-Focal architectures together in FPGA and working
them in parallel. After implementation of combined switch, simulations are done for iSlip, Byte-

Focal and combined architectures and the results are given in Chapter 4. According to simulation

results, advantage of the combined architecture is that it has always lower delay values of iSlip and

Byte-Focal architectures and it has 100% throughput under uniform and hot-spot loading. Also, the

combination of switches is a novel idea since there is no reference combined architecture in the

literature. A similar approach is reconfiguration in runtime for QoS increase [5], [16]. On the other

hand, both iSlip and Byte-Focal switches are located in FPGA in order to implement the combined

architecture and more resource for the combined switch is used than used for a single architecture.

We used round robin scheduling of the Byte-Focal switch because of its relatively low complexity

in our implementations. We expect a better performance especially under high input traffic loads if
the other scheduling algorithms such as LQF, fixed threshold or dynamic threshold for Byte-Focal

switch [2] are implemented.

In this thesis, iSlip, Byte-Focal and combined switch architectures are implemented on FPGA and

they are simulated under different switch size and different traffic load. In the future, the added

delay to iSlip switch for the synchronization might be removed by proposing a new solution.

Furthermore, the parts which have the same functions of the two architectures might be shared in

order to reduce the total resource consumption. This can be done by modular implementation of the

common parts which is adaptable for both switch fabrics.

52

53

REFERENCES

[1] McKeown, N., The iSlip Scheduling Algorithm for Input-Queued Switches, IEEE/ACM

Transactions on Networking, Vol. 7, No. 2, 1999.

[2] Shen, Y., Panwar, S. S., Chao, H. J., Design and Performance Analysis of a Practical Load-

Balanced Switch, IEEE Transactions on Communications, Vol. 57, No. 8, 2009.

[3] Keslassy, I., Chuang, S.T., McKeown, N., A Load-Balanced Switch with an Arbitrary Number

of Linecards, IEEE INFOCOM 2004.

[4] Chang, C. S., Lee, D. S., Jou, Y. S., Load-Balanced Birkhof – von Neumann switches, part I :

one - stage buffering, Computer Communications, 2002.

[5] Kachris, C., Vassiliadis, S., A Dynamically Reconfigurable Queue Scheduler, IEEE, 2006

[6] Audzevich, Y., Ofek, O., Telek, M., Yener, M., Analysis of load-balanced switch with finite

buffers, IEEE, 2008.

[7] Chang, C. S., Chen, W. J., Huang, H. Y., Birkhoff-von Neumann Input Buffered Crossbar

Switches, IEEE, 2000.

[8] Yu, C. L., Chang, C. S., Lee,D. S., CR Switch: A Load-Balanced Switch With Contention and

Reservation, IEEE/ACM Transactions on Networking, Vol. 7, No. 2, 1999.

[9] He, R., Delgado-Frias, J. G., “Fault Tolerant Interleaved Switching Fabrics for Scalable High-

Performance Routers”, IEEE Transactions on Parallel and Distributed Systems, Vol. 18, No. 12,

2007.

[10] Hu, B., Yeung, K. L., Feedback-Based Scheduling for Load-Balanced Two-Stage Switches,

IEEE/ACM Transactions on Networking, Vol. 18, No. 4, 2010.

[11] Rojas-Cessa, R., Dong, Z., Load-Balanced Combined Input-Crosspoint Buffered Packet
Switches, IEEE, 2011.

[12] Mhamdi, L., A Partially Buffered Crossbar Packet Switching Architecture and its Scheduling,

IEEE, 2008.

[13] Shen, Y., Panwar, S. S., Chao, H. J., Performance Analysis of a Practical Load Balanced

Switch, IEEE, 2006.

[14] Minkenberg, C., Performance of i-SLIP Scheduling with Large Round-Trip Latency, IEEE,

2003.

[15] Duan, Q., Quality of service provision in combined input and crosspoint queued switches
without output queueing match, Computer Communication, 2006.

[16] Laskaridis, H. S., Papadimitriou, G. I., Pomportsis, A. S., Reconfigurable ATM Switch Fabrics

Using Traffic History, IEEE, 2002.

54

[17] Yoshigoe, K., Trends in highly scalable crossbar-based packet switch architecture, Computer
Communications, 2008.

[18] Chao, H. J., Liu, B., High performance switches and routers, 2007.

[19] Chang, C., Lee, D., Jou, Y., Load balanced Birkhoff-von Neumann switches, part II: multi-

stage buffering, Computer Communications, vol. 25, pp. 623-634, 2002.

[20] Keslassy, I., McKeown, N., Maintaining packet order in two-stage switches, IEEE

INFOCOM, vol. 2, pp. 1032-1041, 2002.

[21] Chang, C. S., Chen, J. W., Huang, H., Y., On service guarantees for input-buffered crossbar
switches: a capacity decomposition approach by Birkhoff and Von Neumann, IEEE IWQoS, 1999.

[22] McKeown, N., Anantharam, V., Walrand, J., Achieving 100% throughput in an input-queued

switch, Proceedings of IEEE INFOCOM’96, pp. 296-302, 1996.

[23] http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf (last visited on

12.02.2013)

[24] http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/plugin_ism.pdf (last

visited on 12.02.2013)

[25] http://www.eetimes.com/design/communications-design/4143689/Calculating-Speedup-in-
Switch-Fabric-Designs (last visited on 12.02.2013)

[26]http://www.cisco.com/en/US/products/hw/routers/ps167/products_tech_note09186a00801e1da

7.shtml (last visited on 12.02.2013)

[27]http://www.cisco.com/en/US/products/hw/switches/ps1925/products_white_paper09186a0080

0887ae.shtml (last visited on 12.02.2013)

http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/plugin_ism.pdf
http://www.eetimes.com/design/communications-design/4143689/Calculating-Speedup-in-Switch-Fabric-Designs
http://www.eetimes.com/design/communications-design/4143689/Calculating-Speedup-in-Switch-Fabric-Designs
http://www.cisco.com/en/US/products/hw/routers/ps167/products_tech_note09186a00801e1da7.shtml
http://www.cisco.com/en/US/products/hw/routers/ps167/products_tech_note09186a00801e1da7.shtml
http://www.cisco.com/en/US/products/hw/switches/ps1925/products_white_paper09186a00800887ae.shtml
http://www.cisco.com/en/US/products/hw/switches/ps1925/products_white_paper09186a00800887ae.shtml

