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ABSTRACT 

 

 

THE DEVELOPMENT AND HARDWARE IMPLEMENTATION OF A HIGH-SPEED 

ADAPTABLE PACKET SWITCH FABRIC 

 

 

 

Akbaba, Erdem Eyüp 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Ece Güran Schmidt 

 
February 2013, 54 pages 

 

Routers have to be fast enough to keep pace with increasing traffic data rate because of the 

increasing need for network bandwidth and processing. The switch fabric component of a router is 

a combination of hardware and software which moves the incoming packets to the outgoing ports. 

The access of the input ports to the switch fabric is controlled by a scheduler which affects the 

overall performance together with the fabric design. In this thesis we investigate two switch fabric 

and scheduler architectures, the well-known iSlip fabric scheduler and the Byte-Focal switch. We 

observe that these two architectures have different behaviors under different input traffic load 

ranges. The novel contribution of this thesis is a combined switch architecture which is composed 

of these two architectures that are implemented and run in parallel to selectively forward the 

packets with lower delay to the outputs to achieve an overall lower average delay. The design of 
the combined switch is carried out on FPGA and simulated. Our results show that the combined 

architecture has 100% throughput and a lower average delay compared to the Byte-Focal switch 

and the input-queued switch with iSlip. On the other hand, our combined switch uses more 

resources in FPGA than individual iSlip and Byte-Focal switch. 

 

Keywords: Throughput, FPGA, crossbar switch, load-balanced switches, Byte-Focal switch, iSlip, 

input buffering. 
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ÖZ 

 

 

YÜKSEK HIZLI UYARLANABİLİR BİR PAKET ANAHTAR ÖRGÜSÜNÜN 

GELİŞTİRİLMESİ VE DONANIM GERÇEKLEMESİ 

 

 

 

Akbaba, Erdem Eyüp 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Ece Güran Schmidt 

 
Şubat 2013, 54 sayfa 

 

İnternet ağlarındaki bant genişliği ve veri işlenmesi ihtiyacı arttığından, yönlendiricilerin artan 

trafik hızına uyum sağlayabilmesi için yeterince hızlı olmaları gerekmektedir. Yönlendiriciler, 

yazılım ve donanımın birleşmesiyle oluşan ve gelen paketleri çıkış portlarına yönlendiren paket 

anahtarlarından oluşur. Giriş portlarının paket anahtarına erişimi anahtar yapısıyla birlikte genel 

performansı etkileyen çizelgeleyiciler tarafından kontrol edilir. Bu tezde sıkça kullanılan iSlip 

çizelgeleyicisi ve Byte-Focal anahtar yapıları araştırılmıştır. Yapılan araştırmada her iki paket 

anahtarının farklı trafik yük dağılımlarında farklı davranışlara sahip olduğunu gözlemlenmiştir. Bu 

tezdeki yeni fikir, çıkış paketlerinde genel olarak daha düşük gecikmelerin sağlanması için her iki 

paket anahtarının paralel olarak uygulanmasıyla oluşan ve paketleri seçerek daha düşük 

gecikmeleri sağlamak için çıkış portundan çıkaran birleşik paket anahtarının uygulanmasıdır. 
Birleşik paket anahtar yapısı FPGA üzerinde uygulanarak simüle edilmiştir. Elde ettiğimiz 

sonuçlara göre uyguladığımız birleşik anahtar yapısı %100 verimlidir ve Byte-Focal paket anahtarı 

ile iSlip giriş tamponlu paket anahtarına ile kıyaslandığında düşük ortalama gecikme sürelerine 

sahiptir. Ancak, birleşik paket anahtarı Byte-Focal paket anahtarı ve iSlip giriş tamponlu paket 

anahtarı ile kıyaslandığında daha fazla FPGA kaynağı harcamaktadır.  

 

Anahtar Kelimeler: Verim, FPGA, matriks anahtarı, yük dengeleyici anahtarlar, Byte-Focal 

anahtarı, iSlip, giriş tamponlama. 
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CHAPTER 1  
 

 

 

INTRODUCTION 

 

 

 

The bandwidth demand in the Internet grows rapidly in the past few decades so routers have to 

work under Gbps or more operation speed. It is not reasonable to connect the distant points in the 

Internet, so service providers depend on each other by connecting the dots [18]. Switch fabric is the 

router component which forwards the incoming data to the correct output and it is a combination of 
hardware and software. Switch fabric is a limited hardware resource so it has to be arbitrated by a 

fabric scheduler. The design of fabric scheduler affects the switch fabric capacity. Therefore, the 

overall performance depends on the fabric performance. 

 

Packet forwarding process is an important issue in switch fabrics because of some specific 

problems such as queuing delay, throughput, switch size, scalability, buffering and incoming 

traffic. Fabric schedulers have to forward the incoming packets to their output ports immediately. 

Therefore, packets which are waiting in the fabric queues should have access to fabric as soon as 

possible in order to minimize queuing delay. 

 

In fabric topologies, there is a certain need for buffers because of the packets which are destined to 

same output port. Buffers can be found either in input ports or in output ports. They can also be 
found in both inputs and outputs. Fabric scheduling is an important issue in order to achieve low 

delay and high throughput for large capacity switch fabrics. Most of the fabrics include a 

centralized scheduler which increases the interconnection complexity of the switch. Some of them 

require a speedup larger than 1 in order to keep pace with processing speed demand. 

 

The proposed architectures and algorithms are studied and they are compared according to their 

advantages and disadvantages. Some switch fabrics algorithms are DRR, PIM, iSlip and some 

architectures are the Byte-Focal, crossbar, input-buffered, shared-memory, Banyan, clos network 

switches. iSlip switch is widely used switch fabric algorithm because it has low delay values and it 

is highly scalable. The Byte-Focal architecture became popular recently because it has better 

overall performance then the iSlip switch. However, they have different behaviors under different 
loads. 

 

Since the Byte-Focal and iSlip switches have different queuing delay properties, we propose a new 

architecture which is supposed to have better performance than the proposed architectures. The 

new architecture is designed to combine the two architectures in FPGA so that they work in 

parallel. In order to implement the combined architecture, iSlip and Byte-Focal switches are 

implemented separately and verified. Then, the combined switch architecture is implemented in 

FPGA and simulations are done for different traffic loads, switch size and algorithms. The 

combined switch has always lower delay values under different traffic loads according to 

simulation results. We present simulation results of the Byte-Focal, iSlip and combined switch in 

Chapter 4. 

 
To the best of our knowledge, the combined switch approach is a novel architecture. However, 

there are some dynamic reconfigurable and adaptive switching approaches for QoS improvement 

[5]. Furthermore we carry out full FPGA implementation and performance evaluations on hardware 

for iSlip, Byte-Focal and combined switches. 
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In this thesis, a high-speed switch fabric is developed and hardware implemented in FPGA. The 
thesis starts with an introduction part where the motivation of the study and some publications on 

this subject are presented. 

 

In Chapter 2, literature overview on general switch fabric architectures is introduced. Then, iSlip 

algorithm which is proposed by Nick McKeown et al. [1] and the Byte-Focal architecture which is 

proposed by Shen et al. [2] is discussed in detail. Our proposed combined switch architecture 

which is composed of the Byte-Focal switch and the input-queued switch with iSlip is mentioned. 

 

Hardware implementation procedures are explained in Chapter 3. Problems faced while 

implementing the architectures are discussed. The combined switch architecture is also described in 

detail.  
 

In Chapter 4, composed simulation platforms and setups are mentioned. Simulation results are 

obtained in terms of performance metrics such average delay, switch size and input traffic. 

Simulation results are discussed whether they are expected or not. 

 

The thesis concludes with Chapter 5, where summary and future works are presented and 

discussed. In this chapter, all the work that has been done in this study will be summarized. The 

simulation and experimental results will be stated and evaluated. The possible future works are 

mentioned. 

 

 

 



3 

CHAPTER 2  
 

 

 

LITERATURE OVERVIEW 

 

 

 
2.1 Switch Fabric Architectures and Algorithms 

 
In this section, functions, performance metrics and challenges of switch fabrics are presented. 

Proposed architectures and algorithms are described and some fabric scheduling terms are defined. 

 

Router is a network element which is used to forward data packets between computer networks. 

Routers which are located at gateways connect data lines from different networks. The connected 

networks are usually two LANs or WANs or a LAN and its ISP network. Router architecture is 

basically composed of input and output line cards, router processor (CPU) and backplane. Routers 

are connected to different networks that employ different datalink technologies through input and 

output line cards. Today, routers are capable of routing at multi-gigabit speeds, but routing demand 

is still increasing. 

 
Recent researches on router architectures mostly include specialized hardware, efficient and faster 

lookup algorithms and also switching fabrics. Packet switch fabric is a mechanism whose 

fundamental role is to forward packets from input ports to output ports. Switch fabrics and routers 

form the junction between connected links. Therefore, switch fabrics have the major effect on 

performance of the Internet. 

 

There are lots of fabric architectures and switching algorithms proposed in the literature so far. 

Each switch fabric architecture and algorithm has its own advantages and disadvantages. Every 

application has some more important performance challenges and some less important challenges 

when performing packet switching process. The optimum switch fabric architecture compatible 

with the best effort algorithm should be selected according to the network application. There are 
also some adaptable switch architectures which is able to reconfigure according to different input 

traffic loads [5], [16]. 

 

Switch fabrics are classified into 2 categories which are Time Division and Space Division fabrics. 

Every packet is time division multiplexed in Time Division fabrics. They have the advantage of 

extending into multicast broadcast applications. Their disadvantage is the strict capacity limitation 

of the internal communication structure. Some examples of the Time Division fabrics are shared 

medium switches (shared bus architecture) and shared memory switches. There are multiple 

physical paths between inputs and outputs in Space Division fabrics. Packets can be forwarded 

through these multiple paths simultaneously so that there can be multiple input-output 

interconnections at the same time. They have the advantage of non-blocking, but the disadvantage 

of complexity. 
 

Head-of-line blocking (HOL) is a phenomenon which limits the performance of a switch fabric in 

computer networking. Head-of-line blocking occurs when packets cannot be forwarded because of 

waiting packets at the head of the queue even if they are going to another destination.  
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Figure 2-1 Head-of-line blocking 

 

Head-of-line blocking is shown in 

Figure 2-1. It is seen that packets at input ports 1 and 3 are waiting because of blocking packets at 

the head of the queues. 

 
Virtual output queues (VOQ) are proposed in order to overcome head-of-line blocking problem. In 

virtual output queue mechanism, there are dedicated queues for each output port at the inputs. 

Virtual output queues provide a much higher throughput because of breaking the HOL blocking 

problem. 

 

Fabric speedup is also an important parameter about the performance of a switch. The speedup of a 

switch is the ratio between the rate of traffic transferred from the inputs to an output port and the 

rate of the network port. It profoundly affects the control-path capabilities although the speedup is a 

datapath parameter. A speedup of one is a requirement for a minimal correct operation. However, 

as the speedup of the datapath grows, the control-path may deploy more ambitious scheduling 

algorithms [25]. 
 

2.2 Switch Fabrics 

 

The need for bandwidth in network systems is increasing because data demand for recent internet 

applications is growing rapidly. In order to keep up with recent network applications, there has 

been a remarkable research about high-speed switch fabric topologies. There are lots of 

architectures and algorithms proposed so far. Each algorithm and architecture has its own 

advantages and disadvantages. 

 

We can classify some of the proposed switch fabric architectures as shared memory switches, input 

buffered switches, banyan-based switches, clos-network switches and load-balanced switches. 

These architectures are explained in this chapter in detail. 
 

 

 

 



5 

2.2.1 Shared Memory Switches 
 

Incoming packets are time-division multiplexed into a single data stream and sequentially written 

to the shared memory. In the share memory switches, outgoing packets are extracted from the 

shared memory and form a single output data stream. The packets are also demultiplexed into 

several outgoing lines. The control module checks the cell headers for output ports and extracts the 

memory addresses for both writing incoming packets and reading out stored packets. 

 

2.2.2 Input Buffered Switches 

 

FIFO queues are put in front of each input queue and they are used to store the input packets 

entering the switch [18], [22]. When virtual output queue structure is applied, each input has N 
queues for each output port. There are some algorithms applied for input buffered switches. These 

algorithms are namely PIM, iSlip, DRR and MUCFA [18]. iSlip algorithm is discussed in Chapter 

2 in detail. 

 

2.2.3 Banyan-Based Switches 

 

Banyan-based switches are constructed from 2x2 crossbar switches. There is only one single path 

between any input-output pair. The implementation complexity is O (Nlog2N) for banyan-based 

switches. No control mechanism is needed for routing packets from inputs to outputs; routing 

information is contained within each packet.  

 

2.2.4 Clos-Network Switches 
 

Clos-network switch is a three stage network which is defined by five parameters. r1, r2 and r3 are 

the number of switches in each stage, m1 is the number of inputs to a first stage switch and n3 is 

the number of outputs to a third stage switch. In this architecture, switches in consecutive stages are 

connected by exactly one edge. 

 

2.2.5 Load-Balanced Switches 

 

Load-balanced switch architecture is proposed to overcome throughput, delay and interconnection 

complexity problems [3], [4], [6], [8], [11]. Load-balanced switches use the virtual output queuing 

technique (VOQ) in order to solve the head-of-line (HOL) blocking problem [10]. 
 

LB-BvN switch does not need any schedulers because the connection pattern between stages is 

deterministic and repeated periodically [13], [19], [21]. This architecture has many advantages. 

First of all, the switch is highly scalable because implementation complexity is O (1). The switch 

has also 100% throughput and low average delay under heavy load and bursty traffic. The Byte-

Focal architecture is discussed in Chapter 2 in detail. 
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2.2.6 Crossbar Switches 
 

Crossbar switches are internally non-blocking and simple architectures which are composed of N2 

crosspoint switches [7], [12], [17]. Each crosspoint has two possible states which are “cross state” 

or “bar state”. In order to set a connection between input port i and output port j, the cross point (i, 

j) is set to bar state and the rest of the cross points remain in cross state. 

 

In the literature, the architecture “Combined Input Crosspoint Buffered Switches” contains both 

input buffers and crosspoint buffers [15]. 

 

2.2.7 Fabric Schedulers  

 
Fabric scheduling is the mechanism which packet selection is carried out. Each algorithm uses a 

different scheduling mechanism to exit more packets from their output ports. Buffering is also an 

important structure of switch fabric architectures. Virtual output queues (VOQ) which is described 

in detail in section 2.2 are widely used in recent fabric schedulers. 

 

In the literature, there are lots of proposed algorithms such as iSlip, Byte-Focal, DRR and PIM. 

iSlip and the Byte-Focal algorithms are widely used because they are highly scalable and they have 

low average delay values under various traffic. They are also discussed in Chapter 2. 

 

2.2.8 The iSlip Scheduling Algorithm for Input Queued Switches 

 

The iSlip is a scheduling algorithm for input-queued switches which proposed by Nick McKeown 
in 1999 [1]. It is an input queued switch using Iterative Round-Robin with SLIP algorithm. In order 

to solve the contention between inputs and outputs, the iSlip algorithm uses round-robin schedulers. 

The incoming packets are initially stored in virtual output queues (VOQ). There are three steps in 

each iteration. It is possible to have a total of N iterations in each time slot. All inputs and outputs 

are unmatched at the beginning of each iteration. Inputs and outputs which are not matched at the 

end of iteration are available in the next iteration. The three steps for this scheme are defined as 

follows: 

 

Step 1 : Request 

 

A request is send from every unmatched input to every output for which it has a packet. 
 

Step 2 : Grant 

 

The output chooses the next input in a fixed, round robin schedule starting from the highest priority 

in the case of there are multiple requests for the same output. The output sends a grant to each input 

indicating whether its request was granted. The grant pointer gi is incremented (modulo N) to one 

location beyond the granted input if and only if the grant is accepted in step 3 of the first iteration. 

 

Step 3 : Accept 

 

The input chooses the next input in a fixed, round-robin schedule starting from the highest priority 

element. The accept pointer aj is incremented (modulo N) to one location beyond the accepted 
output. The accept pointers ai are only updated in the first iteration. 
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An example of iteration steps is shown in Figure 2-2, Figure 2-3 and Figure 2-4. 
 

There is one packet in input port 1 which will be destined to output port 1, four packets which will 

be destined to output port 2. Input port 3 has two packets which will be destined to output port 2 

and one packet which will be destined to output port 4. Input port 4 has three packets which will be 

destined to output port 4 at the same time. All input ports send requests to the outputs for which 

they have packets to be destined as seen in Figure 2-2. 

 

 
 

Figure 2-2 Request step (step 1) of an iSlip iteration 

 

Each output port receives request signals from inputs. Then, outputs send grant signals after 

checking their grant pointers. If grant pointer points the input port which sends request, the output 

selects that input port; otherwise it grants an input port in a round-robin manner. The grant signals 

in our example are shown in Figure 2-3. The output 1 and output 2 chooses input port 1 and send 

grants to that input ports, as their grant pointers g1 and g2 point to input port 1. Grant pointer of 

output port 4 also points input port 1, but it receives requests from inputs 3 and 4. Therefore, it 
chooses input port 3 since decision of input port selection is made in a round-robin manner. 
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Figure 2-3 Grant step (step 2) of an iSlip iteration 

 

Each input port receives grant signals from outputs after the grant step. Each input port checks that 

their accept pointers. If accept pointer of an input port points to the output port which sends grant 

signal, it accepts that output port; otherwise it chooses an output port in a round-robin manner. The 

accept signals in our example is shown in Figure 2-4. Input port 1 receives grants from outputs 1 

and 2. It chooses output port 1 because its accept pointer points to that output port.  Input port 3 

receives grant from output port 4, but its accept pointer points to output 1. Therefore, it chooses 

output port 4 since decision of output port selection is made in a round-robin manner. 
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Figure 2-4 Accept step (step 3) of an iSlip iteration 

 

After all steps, the packet forwarding decision is made and input ports sends their packets to the 

output ports which they accept. When packet forwarding process is done, all of the aj and gj 

pointers are updated to modulo N to one location beyond the accepted output, where N is the 

number of ports. 
 

2.2.9 The Byte-Focal Switch Architecture 

 

The load-balanced (LB) switch which is proposed by C.S. Chang et al. [4] consists of two stages. 

The first stage is load-balancing stage which converts incoming traffic into a uniform traffic. The 

second stage forwards packets coming from the first stage to their final destination. 
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The architecture of the load-balanced switch is shown in Figure 2-5. The load-balanced switch is 
composed of two stages and does not require any centralized scheduler. The first stage is a load-

balancer which distributes the received input packets evenly into the second stage ports. It 

generates a uniform traffic by using a predetermined connection pattern. The second stage is a 

crossbar switch with virtual output queues (VOQ) and each VOQ is served at a fixed rate. 

 

 
 

Figure 2-5 Architecture of the load-balanced Birkhoff-von Neumann switch 

 

The load-balanced switch can guarantee 100% throughput because the second stage receives a 

uniform traffic due to load-balancing. However, load-balancing leads to packet missequencing at 

the output ports. The reason of out-of-sequence problem is that every packet can go different 

directions in the switch and subject to different delays.  

 
There are many solutions in order to solve the out-of-sequence problem so far, but they are either 

too complex to implement or they cause a significant additional delay. In order to solve this 

problem, the Byte-Focal switch architecture is proposed in Shen et al. [2]. This architecture uses 

packet-by-packet scheduling in order to increase the bandwidth utilization. Therefore, the average 

delay performance is maximized significantly. 

 

 

 
 

Figure 2-6 Architecture of the Byte-Focal switch 
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The architecture of the Byte-Focal switch is shown in Figure 2-6. The Byte-Focal switch 
architecture is comprised of three main stages which are namely the first stage input queue i, the 

middle stage queue j and the output resequencing buffer k (RB) where i, j, k = 1, 2, … N. Both 

switch fabrics have periodic and predetermined connection pattern. 

 

The connection pattern (i, j) at any time slot t at the first stage is given by 

 

j = (i + t) mod N, where i = 1, …, N and j = 1,…,N. 

 

The connection pattern (j, k) at any time slot t at the second stage is given by 

 

j = (k + t) mod N, where j = 1, …, N and k = 1,…,N. 
 

If packets arriving at the input port i and destined to output port k is defined as fik, packets from 

flow fik are put in VOQ1 (i,k). Those packets are served in a round-robin manner such as VOQ2 

(1, k), VOQ2 (2, k),  …, VOQ2 (N, k)  according to time slot at that instant. 

 

Te first stage scheduling algorithm has a very important effect on the average delay performance. 

During the interconnection between input port i and middle stage port j, only some of the VOQ1s 

can be served. Therefore, each VOQ1 (i, k) has a pointer that holds the last second stage port that a 

packet is transferred which is called J pointer. VOQ1 (i, k) is served provided that its J pointer is 

pointing to the second stage input j when the first stage input i is connected to the second stage 

input j. After VOQ1 (i, k) is serviced, its J pointer points to the next second stage input (j + 1) mod 

N. Therefore, the first stage scheduling problem is: 
 

“When input i is connected with j, each VOQ1 (i, k) whose J pointer value is equal to j sends a 

request to the arbiter, and the arbiter selects one of them to serve.” 

There are 4 algorithms for selecting a VOQ1 in order to serve the set of VOQs that can send 

packets to the second stage input j at time t. 

 

1) Round-Robin: 

 

The round-robin algorithm ensures that the arbiter makes selection in a round-robin manner. If 

VOQ1 (i, k) is served in a time slot, the pointer will point to the next VOQ1, i.e.. (k + 1) mod N. 

 
2) Longest Queue First: 

 

In the longest queue first algorithm, the arbiter makes selection to serve the VOQ1 longest queue 

from the set of VOQ1s that can send packets to the second stage input j at time t. 

 

3) Fixed Threshold Scheme: 

 

The fixed threshold scheme selects the VOQ1s that exceed a predetermined threshold (TH) length. 

 

4) Dynamic Threshold Scheme: 

 

The dynamic threshold scheme selects the VOQ1s that exceed a threshold (TH) value which 
changes dynamically with time. 

 

The Byte-Focal switch also includes a resequencing buffer (RB) in order to solve the out-of-

sequence problem at the outputs. The virtual input queue (VIQ) structure is applied in the 

resequencing buffers. 

 

 



 

12 

There are N sets of VIQs corresponding to each input port i at each output. Each VIQ set consists 
of N queues corresponding to a second stage input j. In Figure 2-7, it is shown for output port k = 1 

that there are N sets of VIQs corresponding to each input port and there are N queues for each 

corresponding middle stage j in each set. 

 

 
 

Figure 2-7 Virtual input queue structure for output 1 

 

Packets coming from input port i and destined to output port k through middle stage port j are 

stored in VIQ (i, j, k). All packets in VIQ (i, j, k) are in order, because packets that are delivered in 

the same direction comes into the same VOQs sequentially. The advantage of using VIQs is that 

complexity of finding and serving packets in sequence is O (1). It is guaranteed that all packets 
which are exiting the output ports are in order. 

 

2.3 Performance Metrics and Challenges 

 

All of the proposed switch fabric architectures have their own advantages and disadvantages in 

terms of some specific performance metrics as mentioned previously. These metrics are namely 

average delay, complexity, switch size, throughput, buffers and load. 

 

2.3.1 Average Delay 

 

Average delay is an important performance metric for switch fabrics. Incoming packets are subject 
to input and output buffering delay, processing delay and also queuing delay until they exit the 

output ports. The most critical delay type is the queuing delay for switch fabrics. Some packets 

might be lost because of queuing if it is not bounded by a fixed value. 

 

2.3.2 Complexity 

 

Complexity is another performance metric for switch fabrics. It is also an important metric because 

implementation difficulty of a switch fabric is directly dependent on complexity. Byte-Focal 

Switch using Round-Robin, Fixed Threshold  and Dynamic Threshold algorithms has a complexity 

of O (1), but Byte-Focal Switch using Longest Queue First (LQF) algorithm has a complexity of O 

(log N). 
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2.3.3 Switch Size 
 

Switch size has also an important role when switch fabrics perform switching process since it has a 

significant effect on average delay for packets exiting from output ports. Average delay for exiting 

packets from output ports usually increases with switch size. 

 

2.3.4 Throughput 

 

Throughput is also an important performance metric for switch fabrics. A high-speed switch fabric 

supporting a large number of ports is expected to have a throughput of 100%. Input Queued Switch 

using iSlip algorithm and The Byte-Focal switch using Round-Robin, Longest Queue First (LQF), 

Fixed Threshold and Dynamic Threshold algorithms have 100% throughput. 
 

2.3.5 Input and Output Buffers 

 

Switch fabric architectures possess some buffers for storing the data which will be forwarded to 

output ports. Buffers are usually essential for packets which are waiting in queues. These buffers 

can exist at the inputs, outputs, or inside the fabric according to switch architecture. 

Input Queued Switch using iSlip algorithm has N
2
 Virtual Output Queues (VOQ) at input ports. 

There is no buffering mechanism inside or outside the fabric. On the other hand, The Byte-Focal 

switch has three stage buffering mechanisms. In this architecture, there are N2 Virtual Output 

Queues (VOQ1) at input ports. There are also N2 Virtual Output Queues (VOQ2) at middle stage. 

Finally, N3 Virtual Input Queues (VIQ) exist at output ports. 
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2.3.6 Input Traffic Load 
 

Incoming traffic load has the most significant effect on switch average delay performance. Delay 

experienced by forwarded packets becomes larger as input traffic load increases.  

 

Figure 2-8 shows average queuing delays for different switching algorithms. Delay values are 

measured under uniform traffic for Input Queued Switch using iSlip algorithm and Byte-Focal 

Switch using Round-Robin, LQF, Dynamic Threshold and Fixed Threshold scheduling algorithms. 

 

 
 

Figure 2-8 Average queuing delay for different algorithms [2] 

 

As seen in Figure 2-8 average queuing delay for Input Queued Switch using iSlip algorithm is 

lower than Byte-Focal Switch using Round-Robin, LQF, Dynamic Threshold and Fixed Threshold 
scheduling algorithms under uniform traffic until load is about 0.8. However, average queuing 

delay for Input Queued Switch using iSlip algorithm becomes higher than Byte-Focal Switch using 

Round-Robin, Longest Queue First (LQF), Dynamic Threshold and Fixed Threshold scheduling 

algorithms under uniform traffic for loads above 0.8. 

 

2.4 Comparison of the Byte-Focal and iSlip Algorithms 

 

Switch fabric architecture is a combination of hardware and software which is aimed to maximize 

number of packets being forwarded in a unit time interval. Proposed switch architectures and 

algorithms have some acquisitions but they also have losses. Performance of a switch is measured 

according to metrics such as average delay, complexity, switch size, throughput, buffers and load 
which are discussed in Section 2.3 in detail. 
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When Input Queued Switch using iSlip algorithm and The Byte-Focal switch using Round-Robin, 
Longest Queue First (LQF), Fixed Threshold and Dynamic Threshold algorithms are compared in 

terms of their Average Delay vs. Input Load performance, it can be concluded that iSlip switch has 

better performance for lower input traffic. iSlip switch has less average delay values than The Byte-

Focal switch using Round-Robin, Longest Queue First (LQF), Fixed Threshold and Dynamic 

Threshold algorithms under loads of 0.8 and below as seen in Figure 2-8. However, delay values 

for iSlip switch increases dramatically under input traffic loads of above 0.8. We can conclude that 

Input Queued Switch using iSlip algorithm has a better average delay performance than The Byte-

Focal switch using Round-Robin, Longest Queue First (LQF), Fixed Threshold and Dynamic 

Threshold algorithms for lower input traffic loads and vice versa. The Byte-Focal switch has lower 

average delay thanks to its three-stage buffering which brings an additional implementation cost. 
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CHAPTER 3  
 

 

 

IMPLEMENTATION OF THE PROPOSED COMBINED SWITCH ARCHITECTURE 

 

 

 

The average queuing delay might be a critical issue for high-speed network applications. While 

working under 10 Gbps or higher network speed, even a few nanoseconds are important in order 

not to lose any data packets. Average queuing delay has also a significant role in real-time network 

applications such as VoIP. The Byte-Focal switch and Input Queued Switch using iSlip algorithm 
have different delays for different input traffic loads as we presented in the previous Chapter and 

shown in Figure 2-8. In this thesis we propose a combined switch architecture as shown in Figure 

3-1 to have a switch fabric with lower average delay values than both algorithms. 

 

 
 

Figure 3-1 Proposed combined switch fabric architecture 

 
The two switch fabric architectures have the same input buffering mechanism. They have both 

virtual output queues (VOQ) at input ports. Therefore, a combined switch which consists of the 

Byte-Focal switch architecture and Input Queued Switch with iSlip algorithm can have common 

input data because of having virtual output queues at input ports. It is shown in Figure 3-1 that each 

incoming packet is first copied and then two identical packets are inserted in the VOQs of the both 

switch fabric architectures. Arrows are drawn for only input and output ports 1 in the figure, but the 

same process is valid for all input ports. 

 

In our proposed combined architecture; when a copy of an incoming packet appears at the output of 

iSlip or Byte-Focal fabrics the first time, that packet is forwarded to the output linecard to be 

further processed and the second copy that arrives later is discarded. Input Queued Switch with 
iSlip algorithm and the Byte-Focal switch have the same input buffering mechanisms but their 

output buffering is not the same, because the Byte-Focal switch has resequencing buffers (RB) at 

outputs. 
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Total delay which a packet is experienced from entering the input ports until exiting from the 
output ports includes both “processing delay” and “queuing delay”. Processing delay is different 

for the implemented Byte-Focal and iSlip switch. Therefore, a normalization is done on different 

processing delay values of the implemented architectures which is discussed in Section 3.5 in 

detail. Same input packets experience different queuing delays, since two switches have different 

architectures and different algorithms. Thus, packets which have arrived at different time intervals 

can exit from outputs of two switches at the same time intervals. 

 

The packet selection mechanism in our combined switch architecture analyses the packets that are 

at the fabric outputs of both iSlip and Byte-Focal fabrics according to their arrival time and picks 

the earlier copy of each packet to minimize the average queuing delay and maximize the number of 

packets that exit the combined switch. 
 

FPGAs are convenient for the implementation of the combined switch architecture because of their 

parallel operating feature with reconfigurable and adaptive processing capability. It is known that 

having the feature of parallel processing, very high-speed applications are designed to run on 

FPGAs. Therefore, implementation and verification of the combined switch architecture is possible 

by operating the two switch architectures in parallel and selecting the correct input packets at the 

outputs. If this architecture is implemented properly, there will be an important acquisition on 

average delay of outgoing packets. 

 

We note that, in the combined switch architecture, there will more FPGA resource usage because 

input queued switch using iSlip algorithm and the Byte-Focal switch architectures are both 

implemented. 
 

In the following of this chapter, packet switching model that we have used and data header format 

is expressed. Also, the Byte-Focal switch and iSlip switch architectures are described in detail. 

Finally, the combined switch architecture is represented at the end of this chapter. 

 

3.1 Fixed-size Packet Switching Model 

 

We have used the fixed-size packet switching model while implementing our architectures. In this 

scheme, the variable size IP packets are chopped into fixed size packets. This technique is widely 

used in the implemented routers and fabrics. Cisco 12000 series internet router architecture 

contains crossbar switch fabrics inside which use fixed-size packet and these cells are called “Cisco 
cells” [26], [27]. These cells carry parts of the IP packet as the payload and have their own headers 

for control. In the fixed-size packet switching model, the data payload can be selected as required. 

For example, cells are 64 bytes long, with an 8-byte header, a 48-byte payload and an 8-byte cyclic 

redundancy check (CRC) for Cisco 12000 series internet router architecture [26]. 

 

In this thesis, we have fixed size packet assumption. These packets have to be reassembled at the 

output port after switching process. However, this is out of our research scope. The implemented 

Byte-Focal and iSlip switch fabric architectures both designed and evaluated for fixed size 

packages. Since the packets are fixed size, buffer data length is arranged so that an input packet is 

loaded into buffer in one clock cycle. This arrangement is done for testing the switch fabrics faster 

and independent of the payload size. When we call “packets”, the fixed-size packet headers are 

implied in the rest of this thesis. 
 

3.2 Data Format 

 

The proposed combined architecture has two different types of switch fabric architectures with 

different behaviors at various input traffic loads. In order to run input queued switch with iSlip 

algorithm and the Bye-Focal switch together, data types and switch timings must be adjusted so 

that two architectures operate coherently. 
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Data packet format for both switch architectures should be the because of the same virtual output 
queue (VOQ) buffers. Data format of input packets consist of three main fields. The first field 

keeps the information about the input port from which packets comes. The second field keeps the 

information when a packet goes into the switch. The third field shows the port to which the packet 

will be forwarded. Each packet has binary data which refers to the mentioned fields. Each packet 

header consists of a total of 24 bits. 

 

 
 

Figure 3-2 Header format for implemented switch fabrics 

 

In Figure 3-2 it can be seen that the most significant five bits are assigned for input port, the next 

fourteen bits for time and the last five bits are assigned for output port information. 

 

3.2.1 Input Port Field 

 

We need to indicate the number of input port from which packets comes since the Byte-Focal 

switch architecture has three stage buffering. Resequencing buffers (RB) holds the packets 

according to their input port i, middle stage port j and output port k where i, j, k = 1, 2, …, N. 

When a packet comes to an output port, it is essential to know that packet is destined from which 

input port before writing it to correct resequencing buffer. Therefore, we assigned five bits of a 
packet header as input port data field. 

 

3.2.2 Time Field 

 

Combined switch architecture is intended to have low average delay values of input queued switch 

with iSlip algorithm and the Bye-Focal switch as they work together. In order to make the 

measurement of average delay values possible, it is required to have a time field on the packets 

entering the switch. Every incoming packet will carry the information about when it entered the 

switch. The difference between the time a packet departed from output and the time it entered in 

input (which is present on packet data) states total delay that packet experienced in switch. In our 

designed switch architecture, every packet has a 14 bit time field which means that we can generate 
214 different packets in our system. 

 

3.2.3 Output Port Field 

 

VHDL test bench for Xilinx ISE compiler is used when doing tests of switch fabrics. The output 

port field of packets is needed during average delay tests and measurements. A total of five bits is 

assigned to indicate which output port a packet goes out. 

 

 

 

 
 



 

20 

3.3 Implementation of Input queued switch using iSlip algorithm 
 

iSlip is one component of our combined switch fabric architecture. The architecture of input 

queued switch using iSlip algorithm is proposed by Nick McKeown in 1999 [1]. The proposed 

algorithm is discussed in detail in Section 2.2.8.  

 

3.3.1 Buffers used in FPGA design 

 

The switch has virtual output queues at the input ports as mentioned before. There are N input 

buffers at each of input ports. Therefore, there are total of N2 input buffers for virtual output 

queues. 

An example of 4-port switch is shown in Figure 3-3. As seen from the figure, each VOQ set 
consists of 4 queues namely VOQ1, VOQ2, VOQ3 and VOQ4. Each set contains 128 packets 

depth of 24 bits. As an example, VOQ sets for input port 2 are shown as VOQ(2,1), VOQ(2,2), 

VOQ(2,3) and VOQ(2,4). 

 

 
 

Figure 3-3 Implemented input queued switch with iSlip 
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The queues are implemented using “LogiCORE IP FIFO Generator v6.2” of ISE 13.4 project 
navigator tool. Block RAMs are used as memory type and read/write clock domains use common 

clock (clk) for this type of memory. FIFOs used in our design have signals of clock, reset, data_in, 

data_out, write enable, read enable, full and empty signals. Note that data_in and data_out signal 

are actually a bus of 24 bits. Input and output signals of each virtual output queue FIFO is shown in 

Figure 3-4. 

 

 
 

Figure 3-4 FIFOs used in VOQ implementation 

 

3.3.2 iSlip Algorithm Implementation 

 

The iSlip algorithm is performed by state machines in our implementation. General appearance of 

the generated state machines is shown in Figure 3-5. All states have active high and asynchronous 

reset structure which means that all state machines goes to idle state when a reset signal is asserted 

high. 

 

 
 

Figure 3-5 State machine structure of iSlip 

 

When device power is on, the switch is initially in the idle state. The state machine also returns to 

the idle state when “rst” signal is asserted high. 
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3.3.2.1 Idle State 
 

In the “idle state”, all of the configuration signals wait in their initial values. as proposed by Nick 

McKeown [1], request signals are initially in low state, grant pointers and accept pointers initially 

points to input port 1 and output port 1. In this state, “empty” and “full” signals of all queues are 

checked in every clock. When an input packet is written to any input queue at any instance, state 

machine monitors which “empty” signals are deasserted (i.e. which buffers has a packet), then 

sends request signals for input ports which have input packets. 

 

 
 

Figure 3-6 Request signal assertions of iSlip algorithm design 
 

Request signal definitions in FPGA design is seen in Figure 3-6. For example, if there is a packet in 

VOQ(3,1), the empty signal of FIFO “empty_01_03” will be equal to ‘1’ so the request signal for 

that buffer “r_01_03” will also be asserted high in the idle state. 

 

When all the request signal assertions are completed, the state machine will change its state to 

“grant state”. 

 

3.3.2.2 Grant State 

 

In the “grant state”, outputs check the request signals coming from inputs and send grant signals 
according to their grant pointers at that moment after request signals are asserted in the idle state. If 

a grant pointer points to the input port which sends request signal, it grants that input port, 

otherwise it grants the input port in a round-robin manner. 

 

 

 
 

Figure 3-7 Grant pointers and request signal assertions 

 

Figure 3-7 shows an example state of grant pointers. Grant pointer g1 for output 1 points to input 

port 1 and there is also a request signal “r_01_01” from input port 1. Therefore, output port sends a 

grant signal “g_o01_i01” which indicates the grant of input port 1. Grant pointer g2 for output 2 

points to input port 1 but there is a request signal “r_02_02” and “r_03_02” from input ports 2 and 

3. Output port selects an input port to grant in a round-robin manner so a grant signal “g_o02_i02” 

which indicates the grant of input port 2 is sent by output port 2. 
 

After all the requested output ports send their grant signals to their corresponding input ports, grant 

state terminates and the state machine changes its state to “accept state”. 
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3.3.2.3 Accept State 
 

In the “accept state”, grant signals are received by input ports. By the time grant signals are 

received, input ports check their accept pointers and they send accept signals to output ports which 

they accept. If an accept pointer points to the output port which sends grant signal, it accepts that 

output port, otherwise it accepts the output port in a round-robin manner. 

 

 

 
 

Figure 3-8 Accept pointers and grant signal assertions 

 
Figure 3-8 shows an example state of accept pointers. Accept pointer for input 1 “a1” points to 

output port 1 and there is also a grant signal “g_o01_i01” from input port 1. Therefore, input port 

sends an accept signal “a_i01_o01” which indicates the accept of output port 1. Accept pointer a2 

for input 2 points to output port 3 but there is an accept signal “g_o02_i02” and “g_o04_i02” from 

output ports 2 and 4. Input port selects an output port to accept in a round-robin manner so an 

accept signal “a_i02_o04” which indicates the acceptance of output port 4 is sent by input port 2. 

By the time all the granted input ports send their accept signals to their corresponding output ports, 

“accept state” is completed and the state machine changes its state to “idle state”. Before the state 

is changed, all grant pointers and accept pointers are updated to their current positions. 

 

After the state machine returns to the idle state, all the processes mentioned in the idle state restart. 

If some input packets come to inputs while the state machine is trying to determine which packets 
will be forwarded, incoming packets have to wait in the queues until the state machine finishes its 

deciding process. 

 

The time between an input packet enters the buffer of an input port and it exits the output port is 6 

clock cycles. This shows the processing time of the iSlip switch for any packet. In this calculation, 

queuing delay is not included since calculation is done in an emtpy switch. Therefore, we need to 

have an interarrival time of 6 clocks when the switch is operating at maximum input load. In other 

words, the switch can forward packets to their destination outputs within 6 clock time intervals. For 

example, if a packet comes to an input port one clock later than the switch begins deciding process, 

it has to wait five more clock cycles in order to take part in deciding process. 
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Figure 3-9 shows packet forwarding time for input packets which come to input ports 1 and 2 at the 
same time when clock cycle is 10 nanoseconds. Both packets come to input ports 1 and 2 at the 

same time when t=0 ns. When the packets come to switch, deciding process begins to operate. The 

packets arrive at the outputs after six clock cycles which is equal to 60 nanoseconds. 

 

 
 

Figure 3-9 Packets times when they enter input ports at the same time 
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Figure 3-10 shows packet forwarding time for input packets which come to input ports 1 and 2 at 
different times when clock cycle is 10 nanoseconds. First packet comes to input port 1 at t = 0 ns. 

When the packets come to switch, deciding process begins to operate. Second packet comes to 

input port 2 at t=10 n i.e. 10 ns after the beginning of the deciding operation. Since the state 

machine is already started to operate when the second packet comes, it has to wait until the state 

machine process terminate. The packet 1 exists from the output 1 after six clock cycles when time 

is equal to 60 nanoseconds. At this time, the state machine returns to idle state and realizes that 

there is a waiting packet in input 2 buffer. Therefore, packet 2 arrives at the output 2 after six clock 

cycles when time is equal to 120 nanoseconds. 

 

 
 

Figure 3-10 Packets times when they enter input ports at different times 

 

As a result of this discussion, we have to send input packets with 60 nanosecond interarrival time in 

order to measure queuing delays correctly. 
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A simulation screen is seen in Figure 3-11. As seen from this figure, the departure times for 
outgoing packets is 60 nanoseconds when clock cycle is 10 nanoseconds. 

 

 

 
 

Figure 3-11 Input queued switch with iSlip simulation screen 
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Number of used resources for different number of ports is given in Table 3-1. 
 

Table 3-1 Resources used in the input-queued switch with iSlip algorithm 

 

 

iSlip Switch 

4-Port 8-Port 

Number of Slice Registers 1307 4944 

Number of Slice LUTs 1208 6185 

Number of Block RAM/FIFO 8 32 

 

 

3.4 Implementation of the Byte-Focal Switch Architecture 

 

The Byte-Focal switch architecture is described in Section 2.2.3 in detail [2]. In this architecture, 

there are virtual output queues (VOQ) at both first (input) stage and second (middle) stage. There 

are also virtual input queues (VIQ) at the output ports. Virtual input queues are also called 

Resequencing Buffer (RB) since the out-of-order packets are resequenced at the output ports by 

using these buffers. 

 

The implemented Byte-Focal switch architecture consists of three stage buffering mechanisms. The 

first stage and second stage buffers are standard virtual output queue (VOQ) buffers. Third stage 

buffers are used to put the packets in order. The implemented design in the thesis also consists of 

two switch fabrics which forward packets across first stage, second stage and resequencing buffers. 
 

At the first stage, there are N sets of buffers which belong to each input port. Each buffer set 

contains N queues for each output port. In others words, there are a total of N2 queues in the first 

stage of input ports. 

 

The same buffer architecture exists in the middle stage. A packet in the first stage buffer is 

forwarded to a second stage buffer according to the used algorithm in the first stage switch. A 

packet is written to a second stage buffer according to its output port knowledge which is included 

in its data. For example, if a packet in VOQ1 (2,4) is read from the first stage, it is forwarded to a 

second stage port according to its pointer value at that time. The pointer value depends on the used 

algorithm by the first stage switch and time.  
 

The resequencing buffer structure is based on virtual input queue buffering architecture. In each 

output port, there are N sets of buffers and each set corresponds to an input port. In each set, there 

are N queues which are reserved for middle stage ports. Therefore, a total of N3 queues exist in the 

output ports. 
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The implemented architecture for a 4-port switch is shown as an example in Figure 3-12. As seen 
from the figure, there are four virtual output queues at input ports and each of them consists of four 

queues. Therefore, there are a total of 16 queues at the input ports. The middle stage has the same 

buffer design as the first stage, i.e., there are also a total of 16 queues at the middle stage port. 

Finally, there are 64 resequencing buffers at the output ports.  

 

 
 

Figure 3-12 Implemented Byte-Focal architecture 
 

3.4.1 First Stage Scheduling Algorithm 

 

The Byte-Focal switch architecture can run with four different algorithms which are described in 

Section 2.2.9 in detail [2]. These algorithms are 

 

1. Round-Robin 

2. Longest Queue First 

3. Fixed Threshold 

4. Dynamic Threshold 

 
In the first algorithm, the first stage switch emits packets in a round-robin manner. The arbiter 

selects to serve the longest queue in the second algorithm. Third and last algorithms make a 

selection in the queues according to a predetermined or dynamic threshold limits. 
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In our design, the first stage algorithm is selected as “Round-Robin”. The packet forwarding 

pointers are updated in a round-robin manner as time proceeds. Therefore, input traffic is 

distributed uniformly, because the first stage switch distributes incoming traffic evenly among all 

the second stage buffers. 

 

The connection pattern (i, j) at any time slot t at the first stage is given by 

 

j = (i + t) mod N, where i = 1,…,N and j = 1,…,N (3) 

The connection pattern is advanced by one in every time clock. It can be concluded from the 

equation (3) that connection patterns are the same for every N clock cycles. Connection patterns are 

shown in Figure 3-13, Figure 3-14, Figure 3-15 and Figure 3-16 for a switch that has a clock period 
of 10 nanoseconds. Time values are shown in each figure in terms of clock cycles. Input ports i are 

connected to middle stage ports j where i=j at time t=0. Then the connection pattern is shifted by 

one for every clock cycle progress. 

 

 

 
 

Figure 3-13 Connection pattern at time t = 0 ns 
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Figure 3-14 Connection pattern at time t = 10 ns 

 

 
 

Figure 3-15 Connection pattern at time t = 20 ns 
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Figure 3-16 Connection pattern at time t = 30 ns 

 

3.4.2 Second Stage Scheduling Algorithm 

 
After the packets are read from queues at input ports, they are written to second stage virtual output 

queues according to their output port information which is included in its data. First stage switch 

uses round-robin algorithm in order to convert input traffic into uniform traffic. Therefore, an input 

packet is written to a middle stage buffer according to time interval. 

 

The second stage is responsible to forward packets in middle stage buffers to resequencing buffers 

independent of time. Second stage is an input-queued crossbar switch, and each VOQ is served at a 

fixed rate [2]. 

 

Each middle stage packet is written to related queue of a resequencing buffer. Since resequencing 

buffers need middle stage port as well as first stage port information, we have to know the 
information from which input port a packet is written, we check the input port data of each packet. 
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Figure 3-17 shows an example connection between second stage buffers and resequencing buffers. 
If there is a packet in VOQ2 (2, 3), we can understand that the packet is going to exit from output 

port 3. Therefore, it has to be written to output port 3 buffers. We also know that the packet is in 

middle state port 2. However, we have to know the input port number of the packet in order to 

write it to correct virtual input queue. This information is included in the packet data. After reading 

the packet data, the state machine observes its input port data and writes the packet to correct 

destination. For the example, the input data information read is 4 and the packet is forwarded to 

VIQ (4, 2, 3). 

 

 
 

Figure 3-17 Connection between second stage VOQ and RB 

 

3.4.3 Resequencing Buffer Design 

 

The Byte-Focal architecture uses resequencing buffers (RB) in order to solve out-of-sequence 
problem [2]. There are N sets of VIQs at each output and each set corresponds to an input port i 

where i = 1,2,…,N. There are N queues with each queue corresponding to a second stage input j 

where j = 1,2,…,N. VIQ (i, j, k) organizes packets according to their input and output port as well 

as middle stage port information. Packets which come from input port i, and destined to output port 

k through middle stage port j are stored in virtual input queue VIQ (i, j, k). All the packets in VIQ 

(i, j, k) are in order. 
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Figure 3-18 shows times when two different packets enter the input ports and exits from output 
ports. As seen from the figure, if two packets enter different ports of the switch at the same time, 

they exit from correct output ports 120 ns after they enter the switch. Note that clock cycle for the 

switch is 10 nanoseconds.  

 

 
 

Figure 3-18 Packets times when they enter input ports at the same time 
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Figure 3-19 shows times when two different packets enter the input ports at different times and 
exits from output ports. As seen from the figure, if two packets enter different ports of the switch in 

a 10 nanoseconds time interval, they exit from correct output ports 120 ns after they enter the 

switch. Note that clock cycle for the switch is 10 nanoseconds. 

 

 
 

Figure 3-19 Packets times when they enter input ports at different times 

 

It can be concluded that processing time of the switch is 12 clock cycles for any clock cycle 

interval. Waiting time in the queue because of processing does not change with time when a packet 

enters the switch. Therefore, it is fixed and independent of any parameter. 

 
The input-queued switch architecture with iSlip algorithm emits packets from outputs at 60 

nanoseconds time intervals when it works with a clock with period 10 nanoseconds as mentioned in 

Section 3.2., but the Byte-Focal switch is able to send packets from outputs at 10 nanoseconds time 

intervals. In order for two architectures to work together properly, we have to set their working 

speed so that the architectures can extract output packets compatible with each other. Since the 

Byte-Focal architecture packets exits from output ports 6 times faster than the input-queued switch 

with iSlip, the Byte-Focal switch is arranged to work with a clock of 6 times slower than the input-

queued switch with iSlip.  
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A simulation screen is seen in Figure 3-20. As seen from this figure, the departure times for 
outgoing packets is arranged so that departure time between two consecutive packets is 60 

nanoseconds when clock cycle is 10 nanoseconds. 

 

 

 
 

Figure 3-20 The Byte-Focal switch simulation screen 

 
Also number of used resources for different number of ports is given in Table 3-2. 

 

Table 3-2 Resources used in the Byte-Focal switch architecture 

 

 

The Byte-Focal Switch 

4Port 8Port 

Number of Slice Registers 11491 76554 

Number of Slice LUTs 21139 141264 

Number of Block RAM/FIFO 96 640 
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3.5 Implementation of the Combined Switch Architecture 
 

Since the input-queued switch with iSlip algorithm and the Byte-Focal Switch are implemented 

correctly, the two switches are tested in order to verify the operation of switches. No problems are 

encountered during tests of both architectures. Therefore, we are confident of the correct operation 

of the two switches. Test procedures are mentioned in CHAPTER 4 in detail. 

 

After two switch fabrics are tested, we tried to implement the combination of two switch 

architectures in FPGA. Although two architectures work properly alone, we described some 

problems which may occur when the combined switch architecture is implemented. These 

problems are explained below: 

 
1. Although the Byte-Focal switch has resequencing buffers (RB), the input-queued switch 

with iSlip does not have any buffers at the outputs. 

 

2. Working speed of the Byte-Focal switch architecture is 6 times faster than the input-

queued switch with iSlip. 

 

3. The input-queued switch with iSlip does not have an internal processing delay, while the 

Byte-Focal switch has a processing delay of 12 clock cycles. 

 

Before we start to implement the combined architecture, we have to solve described problems 

above and propose some methods in order to work two architectures coherently. Proposed solutions 

are listed below according to each related problems. 
 

1. The Byte-Focal switch has reseqeuncing buffers at the outputs in order to solve the out-of-

sequence problem. There are a total of N2 queues for each output ports. Output packets exits from 

output ports after selection of a packet between packets in N2 queues. Therefore, when the two 

switches are combined to work together, the packet selection structure should make selection 

between exiting packets at last stage of each outputs. In other words, packets of the Byte-Focal 

architecture are selected after exiting the related output port. 

 

2. In order to solve working speed difference problem, the two architectures are arranged so 

that different clock signals are applied to the Byte-Focal switch and the input-queued switch with 

iSlip. Therefore, two switches do not work with the same clock signal. The combined switch has an 
internal structure which divides the applied input clock signal into a clock with desired speed. 
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Figure 3-21 Clock division process in the combined switch 

 

Clock division process is shown in Figure 3-21. In the figure, clk6 represents the input clock which 

is applied to combined switch and also to the input queued switch with iSlip. After the clock signal 
is divided, it is applied to the Byte-Focal switch. Therefore, two architectures are arranged so that 

output packets exit synchronously. 
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3. Since we desire a combined system working coherently, two switches should work in 
synchronous with each other. Therefore, we added same processing delay to the Byte-Focal switch 

with the Input Queued Switch with iSlip so that packet transitions from the output ports starts 

simultaneously. The processing delay is not considered in performance evaluation, only queuing 

delay is calculated since processing delay is not significant with respect to queuing delay. 

Performance evaluations in [1] and [2] are shown in terms of average queuing in which the Byte-

Focal and iSlip architectures are discussed. Queuing delay may also be excessive and undetermined 

for different loads. Therefore, if there were real fixed size cells which exist in IP networks, the 

processing delay is negligible because an actual packet consists of large number of cells. In this 

situation, queuing delay will be dominant. We started the implementation of the combined switch 

architecture after we have solution proposals to described problems above. The implemented 

combined switch architecture is shown in Figure 3-22. 
 

 

 
 

Figure 3-22 Implemented combined switch architecture 

 

As seen from Figure 3-22, virtual output queues of input queued switch with iSlip algorithm and 

the Byte-Focal switch are used together so that input packet is written to buffers of both 

architectures. 

 

When the packets are written to input buffers, empty signals of buffers are asserted low. Both 

architectures begin to run their algorithms in order to forward incoming packets to their output 

ports. Packets begin to exit from outputs after a specific interval of time. 

 

A packet selection module is connected to output ports of both architectures. It makes a selection 

between output ports of the switches in order to forward the newer packet between the two 
candidate packets. There is a comparator connected to output ports of Byte-Focal and iSlip 

architectures. This selection is made by selecting the most recent packet between the two 

alternative output packets. Since the most recent packet is selected by the packet selection module, 

there is no possibility that a packet which is released from that output before exits. At this point, we 

should also mention on an important point. If a packet which already exited from an output port of 

any switch fabric is deleted in the other switch fabric, there would be no change in the overall 

combined switch fabric since the combined switch extracts output packets of the faster switch 

under traffic at that instance. Also, this is out of scope of our analysis. 

 

We know that the Byte-Focal switch performance is better for high loads (for loads 0.8 or above) 

and the input queued switch with iSlip has lower queuing delays under low loads (for loads 0.8 or 
below) for uniform input traffic. Therefore, we expect from the combined switch to have the 

behavior of the Byte-Focal switch under high loads and the behavior of the input queued switch 

with iSlip under low loads when uniform i.i.d. traffic model is applied. 
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Our results in Chapter 4 confirms that we have better average delay values compared to the input 
queued switch with iSlip and the Byte-Focal switch but the combined switch uses more FPGA 

resources. 

 

Table 3-3 shows total FPGA resource used by the combined switch architecture. 

 

Table 3-3 Resources used in the combined switch architecture 

 

 

The Combined Switch 

4 Ports 8 Ports 

Number of Slice Registers 14846 84732 

Number of Slice LUTs 24608 152186 

Number of Block RAM/FIFO 104 672 

 

 

Total used FPGA resource is approximately equal to sum of resources used by the input queued 

switch with iSlip and the Byte-Focal switch individually. Used FPGA resource by the combined 4-

port switch architecture is shown in Table 3. These values are more than total used resources by the 

two architectures. 
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Figure 3-23 shows a simulation screen of the combined switch. Packets exit from the output ports 
at 60 nanoseconds time intervals. 

 

 

 
 

Figure 3-23 Combined switch simulation screen 
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CHAPTER 4  
 

 

 

PERFORMANCE EVALUATION 

 

 

 
4.1 Input Traffic Generation 

 
In this section, 4-port and 8-port switch fabric architectures are evaluated in order to compare their 

performances. Their average delay values are calculated for switches having different number of 

ports and by applying input traffic with different loads. In order to evaluate switches for different 

loads, we should be able to generate appropriate input traffic with desired format and we should 

have a proper test setup in order to test and measure delay data correctly. 

 

Packet distribution for the uniform traffic model is as follows: 

 

Uniform i.i.d : λik = λ/N, where i is the input port, k is the output port. 

 

We generate input traffic data for “uniform i.i.d.”. Data format for input packets are described in 
Section 3.1. There are 5-bit partitions which are reserved for input port and output port information 

and 14-bit partition which is reserved for time information.  

 

In order to create input traffic, a C# project is generated. The generated C# code uses random 

number generation property to produce random data. Composed program is able to generate 

“uniform i.i.d.” traffic model with desired load. 

 

The used algorithm to compose “uniform i.i.d.” model is explained as follows: 

 

1. A timing counter counts for every cycle of a packet generation phase so timing value is 

increased by one initially. 
 

2. Generate a random number between 1and 100. 

 

3. If the generated random number is smaller than or equal to desired load percentage, then 

generate an input packet. If the generated number is bigger, then do not generate an input packet. 

When the packet is not generated, 24-bit data which is composed of all zeros is written to output 

text file. 

 

4. If an input packet is generated then generate a random number between 1 and number of 

ports N. The random number generated in this step is the output port to which packet will be 

forwarded. 

 
5. Input port information is converted to 5-bit binary data, timing counter value is converted to 

14-bit binary data and input port information is converted to 5-bit binary data. 

 

6. Finally, input port, time and output port information are concatenated and written to output 

text file as 24-bit data packet. 

 

This process continues until desired number of packets is generated. 
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Figure 4-1 Packet generation flow 

 
Packet generation flow is shown in Figure 4-1. For example, desired load is 0.2 (i.e. load 

percentage is 20%) and N=4 for input port 1. If the number generated between 1 and 100 is larger 

than 20, generated data will be “000000000000000000000000”. Let’s say the number generated is 

16. Since 16 is smaller than 20, a packet will be generated. Then another random number is 

generated between 1 and N, let’s say the number is 3. If the counter value at that time is 12, the 

generated packet will be “000010000000000110000011”. 
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Composed C# program is shown in Figure 4-2. 
 

 

 
 

Figure 4-2 Random number generator tool 

 

User enters corresponding data into text boxes and program generates desired data into a text box. 

In “Rnd Gen” program, meanings of text boxes are expained below: 

 

 Number of randoms shows desired number of data. 

 Value length is the number of bits which time counter value is converted. 

 Max port is the number of ports which switch fabric possesses. 

 Input is the number of port for which packets are generated. 

 Trackbar (0-100) indicates the load percent of generated traffic. 

 Linear button generates input packets which have linear time values while start button 
generates input packets which have random time values. 

 Start from textbox is used to define the initial value of time information. 

 

In “Rnd Gen” program, the input packets are composed by entering proper values into textboxes 

and track bars. For example, if we want to generate input packets with load percentage 40% for 

input port 2 of a 4-port switch fabric and required packets will have a 14-bit time information 

starting from 1, we enter the values shown in Figure 4-2 then press “Linear” button and input 

packets are written to a text file. 
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An example output file of generated packets is shown in Figure 4-3. Load is 0.2 and packets are 
generated for input port 2. First five bits are assigned for input port information, last five bits are 

assigned for output port information and bits 6-19 are assigned for time information. 

 

 

 
 

Figure 4-3 Generated input packets for input port 2 

 

4.2 Test Setup 

 

We used VHDL test bench in order to test implemented switch architectures and measure their 

performance metrics. We have the input queued switch with iSlip algorithm, the Byte-Focal switch 

and the combined switch implementations on FPGA and required input traffic packets are 

generated until now. Therefore, a proper test setup which is compatible with our implementations 

and generated packets should be composed. 

 

Xilinx ISE Simulator (ISim) tool is used in order to test the implemented FPGA designs. ISim 
provides a full-featured HDL simulator integrated within ISE [24]. 
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Testbench tool assignments are given as: 
 

1. Setting timing values for each signal applied to design, 

2. Generating essential reset and clock signals, 

3. Reading input packets from text files, 

4. Sending the input packets which are read from text files to correct input ports, 

5. Keeping instantaneous time value by counting a counter value in every clock period, 

6. Calculating the queuing delay value by taking difference of times between a packet enters 

the switch and exits the switch, 

7. Writing queuing delay value for every packet into a text file. 

 

Test bench simulator reads an input data in each clock cycle and sends data to related output ports. 
This operation is performed by a process in VHDL test bench. In this process, a 24-bit line from 

text file is read. Initially data is checked whether it is composed of all zeros. If it is all zeros then no 

packet is send to input port. If data is not all zeros, the process checks the last five bits and writes 

the packet into correct buffer of the input port. An example read process for input port 4 is shown 

as an example in Figure 4-4. 
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Figure 4-4 Read process for input port 4 
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When the packets exit from output ports, queuing delay for each packet is calculated by taking the 
difference between timing counter value at that time and time value existing in the packet. In other 

words, queuing delay (tq) is calculated as: 

 

tq = tout – (tin + tp) 

 

where tout is time when packet exit from switch, tin time value when packet enter to switch and tp is 

processing delay. After calculating the difference, queuing delay (tq) for each exiting packet is 

written to an output text file. The writing process for output port 3 is shown in Figure 4-5. 

 

 
 

Figure 4-5 Write process for output port 3 
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An example output text file in which queuing delay values for each packet is written is shown in 
Figure 4-6. Queuing delay for each packet is a 14-bit number in terms of clock cycles. For 

example, fifth packet in the “out1_islip.txt” file has a queuing delay of 2 clock cycles. 

 

 

 
 

Figure 4-6 Queuing delays for output 1 packets 

 

4.3 Performance Metrics 

 

Performance metrics are described in Section 2.3 in detail. Switch performance is evaluated in 

terms of average delay, switch size and input traffic load in Shen et al. [2]. Since the Byte-Focal 

switch and input-queued switch with iSlip both have 100% throughput, we can say that the 

combined switch architecture will have also 100% throughput provided that the switch has enough 

buffers in virtual output queues. 

 

We evaluate the Byte-Focal switch, input-queued switch with iSlip and the combined switch in 
terms of average delay, switch size and input traffic load to be able to compare our results with 

results in Shen et al. [2]. 
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4.4 Simulations 

 

The Byte-Focal switch, input-queued switch with iSlip and the combined switch architectures are 

simulated using ISE Simulator (ISim) tool from Xilinx, Inc. and the behavioral simulation tool is 

used. Simulation results are obtained for different size switches, different input traffic types and 

load values and different architectures. 

 

Average delay-Load graphs are shown below for 4-port and 8-port iSlip, Byte-Focal and combined 

switch architectures. Average queuing delay values are given in terms of clock cycles and 

processing delays are not included in average delay calculations. Load is defined as the percentage 
of total incoming packet density in time. Average delay values are calculated for delay average of 

all the output ports. Note that, average delay values  seen on the graphs are given for queuing delay 

parts for each fabric, so processing delay values which are given in Chapter 3 would be negligible 

if a packet consists of a number of cells, for example 48 Byte packets for Cisco routers [27]. 

 

In Figure 4-7 and Figure 4-8, the average queuing delay values for iSlip, Byte-Focal and combined 

switches are drawn on the same graph. 

 

 

 
 

Figure 4-7Average Delay vs. Load for 4-port iSlip, Byte-Focal and Combined Switch under 
uniform traffic 
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Figure 4-8Average Delay vs. Load for 8-port iSlip, Byte-Focal and Combined Switch under 

uniform traffic 

 

When the graphs are investigated, we see that for loads below 60% iSlip has better performance in 
terms of average queuing delay and the Byte-Focal switch has lower delay values for loads above 

60%. Actually, the plots have expected lines since similar results can be seen from Shen et al. [2]. 

 

The combined switch has always lower queuing delay values because it includes both iSlip and 

Byte-Focal switch and a packet selection mechanism selects the faster packets between outputs of 

the two switch under all traffic loads. 

 

4.5 Results and Discussion 

 

In this chapter, simulations and tests of our proposed combined switch architecture are done. 

Simulation results are obtained for 4-port and 8-port architectures of the Byte-Focal switch, the 
input-queued switch with iSlip algorithm and the combined switch under different loads and 

different types of traffic. Average delay - load graphs are given in Section 4.4. 

 

When the obtained average delay – load graphs are investigated, the input-queued switch with iSlip 

algorithm has lower average delay values uniform traffic with loads less than 0.6. However, The 

Byte-Focal switch has better average delay values for loads higher than 0.6 under uniform traffic. 

The combined switch has always lower delay values when compared to iSlip and Byte-Focal 

architectures. However, used FPGA resource by the combined switch is slightly more than sum of 

resources used by iSlip and Byte-Focal switches. 
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CHAPTER 5  
 

 

 

CONCLUSIONS 

 

 

 

High-speed switch fabrics are needed because of increasing bandwidth demand on today’s network 

applications. In the literature, there are lots of architectures and algorithms proposed so far. Some 

important algorithms are DRR, PIM and iSlip. There are also some important structures proposed 

such as input-buffered, clos network, crossbar, load-balanced and Byte-Focal architectures. 
 

iSlip architecture is widely used since it has low queuing delays, 100% throughput and it is highly 

scalable. The Byte-Focal architecture is in the structure of a load-balanced switch and it has more 

performance under heavy loads. When their average queuing delay-load graphs are investigated in 

[2], it can be seen that iSlip delay is lower than the Byte-Focal under uniform traffic with low 

loads. However, the Byte-Focal switch has better performance than iSlip under high loads. 

Therefore, the two fabric architectures have different behaviors under different traffic loads. 

Therefore, the combined switch idea works well with all traffic loads. 

 

In this thesis, we implement iSlip and Byte-Focal switch architectures in FPGA and verify them by 

doing simulations. When the two switches are implemented, combined switch architecture is 

composed by implementing the iSlip and Byte-Focal architectures together in FPGA and working 
them in parallel. After implementation of combined switch, simulations are done for iSlip, Byte-

Focal and combined architectures and the results are given in Chapter 4. According to simulation 

results, advantage of the combined architecture is that it has always lower delay values of iSlip and 

Byte-Focal architectures and it has 100% throughput under uniform and hot-spot loading. Also, the 

combination of switches is a novel idea since there is no reference combined architecture in the 

literature. A similar approach is reconfiguration in runtime for QoS increase [5], [16]. On the other 

hand, both iSlip and Byte-Focal switches are located in FPGA in order to implement the combined 

architecture and more resource for the combined switch is used than used for a single architecture. 

 

We used round robin scheduling of the Byte-Focal switch because of its relatively low complexity  

in our implementations. We expect a better performance especially under high input traffic loads if 
the other scheduling algorithms such as LQF, fixed threshold or dynamic threshold for Byte-Focal 

switch [2] are implemented. 

 

In this thesis, iSlip, Byte-Focal and combined switch architectures are implemented on FPGA and 

they are simulated under different switch size and different traffic load. In the future, the added 

delay to iSlip switch for the synchronization might be removed by proposing a new solution. 

Furthermore, the parts which have the same functions of the two architectures might be shared in 

order to reduce the total resource consumption. This can be done by modular implementation of the 

common parts which is adaptable for both switch fabrics. 
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