
USE OF DESIGN PATTERNS IN NON-OBJECT ORIENTED REAL-TIME SOFTWARE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYŞEGÜL ÇİFTCİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2013

1

Approval of the thesis:

USE OF DESIGN PATTERNS IN NON-OBJECT ORIENTED REAL-TIME SOFTWARE

submitted by AYŞEGÜL ÇİFTCİ in partial fulfillment of the requirements for the degree of Master of
Science in Electrical and Electronics Engineering Department, Middle East Technical University
by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet ERKMEN
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ilkay Ulusoy Parnas
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ali Hikmet Doğru
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Dept., METU

Özgü Özköse Erdoğan, M.Sc.
Software Department Manager, ASELSAN

Date: 25.01.2013

I hereby declare that all information in this document has been obtained and presented in ac-
cordance with academic rules and ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and results that are not original to
this work.

Name, Last Name: AYŞEGÜL ÇİFTCİ

Signature :

iv

ABSTRACT

USE OF DESIGN PATTERNS IN NON-OBJECT ORIENTED REAL-TIME SOFTWARE

Çiftci, Ayşegül
M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Semih Bilgen

January 2013, 65 pages

After the book, Design Patterns: Elements of Reusable Object-Oriented Software was published in
1994, usage of design patterns in object-oriented (OO) programming has been investigated by many
researchers. However, the effects of design patterns on non-object oriented (non-OO) programming
have not been analyzed too much in the literature. This study focuses on various design pattern imple-
mentations using non-OO programming and investigates the benefits of design patterns upon real-time
software. In order to evaluate the results, specific quality metrics were selected and performance of
traditionally developed software was compared with that of software developed using design patterns.

Keywords: Design Patterns, Non-Object Oriented Programming, Software Maintainability, Real Time
Software Performance

v

ÖZ

TASARIM KALIPLARININ GERÇEK ZAMANLI NESNE TABANLI OLMAYAN
YAZILIMLARDA KULLANIMI

Çiftci, Ayşegül
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Semih Bilgen

Ocak 2013, 65 sayfa

1994 yılında Design Patterns: Elements of Reusable Object-Oriented Software kitabının basımından
sonra tasarım kalıplarının nesne tabanlı programlamada kullanımı bir çok araştırmacı tarafından ince-
lenmiştir. Ancak, tasarım kalıplarının nesne tabanlı olmayan programlama dillerinde kullanımı çok
fazla analiz edilmemiştir. Bu çalışma, tasarım kalıplarının nesne tabanlı olmayan yazılımlarda nasıl
uygulanabileceğine odaklanmıştır ve bu kullanımın gerçek zamanlı yazılımlarda sağlayacağı yararlar
araştırılmıştır. Sonuçları değerlendirmek için ise, uygun metrikler seçilmiş ve geleneksel yöntemlerle
geliştirilmiş yazılımlar tasarım kalıpları uygulanmış yazılımlar ile karşılaştırılmıştır.

Anahtar Kelimeler: Tasarım Kalıpları, Nesne Tabanlı Olmayan Programlama, Yazılım Bakım Yapıla-
bilirliği, Gerçek Zamanlı Yazılım Başarımı

vi

To my mother and Mustafa Ozan...

vii

ACKNOWLEDGMENTS

This thesis would not have been possible without the help of several individuals who in one way or
another contributed their valuable help in the preparation of this study.

First and foremost, I offer my sincerest gratitude to my advisor, Prof. Dr. Semih Bilgen. I know him
from my undergraduate years. I know how he fights for his beliefs and I am grateful that he had faith
in me for this study. His support and valuable guidance are my inspirations as I encounter problems in
the completion of this research work.

I would like to thank to ASELSAN INC for encouragements and resources that are supported for this
thesis.

I really appreciate the love and support of all my friends. They make me smile when I get tired
throughout this thesis.

I owe my deepest gratitude to my mother, dear sister, and all my family members for their infinite love
and support. They are one of the best families one can have.

Last but not the least; I would like to express my special thanks to Mustafa Ozan for his endless love
and patient. His understanding, encouragement and trust throughout this study are beyond description.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES . xiii

LIST OF LISTINGS . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Introduction to the Problem . 1

1.2 Statement of the Problem . 1

1.3 Purpose of the Study . 2

1.4 Significance of the Study . 3

1.5 Outline . 3

2 LITERATURE REVIEW . 5

2.1 What is a Software Design Pattern? . 5

2.2 Software Design Patterns in the Literature 5

2.3 Software Quality Metrics . 7

2.3.1 Maintainability . 8

2.3.2 Performance Efficiency . 9

2.4 Design Patterns and Non-OO Programming 10

3 THE PROPOSED MODEL . 13

3.1 Important Aspects of OO Programming and Their Realization in C 13

3.1.1 Class Representation with Some Encapsulation 14

3.1.2 Inheritance and Polymorphism . 16

3.2 First Class Abstract Data Type (ADT) Pattern 22

3.3 Chain of Responsibility Pattern . 25

3.4 Strategy Pattern . 29

3.5 Decorator Pattern . 33

4 EXPERIMENTAL WORK . 39

4.1 Description of the Software . 39

4.2 Experimental Methodology . 40

Validity and Reliability Issues of the Study 40

ix

4.3 Instruments . 41

4.4 Experimental Process . 43

Explanation of MI Tables 43

Explanation of ABTM Figures 44

Explanation of Memory Utilization Tables 44

4.4.1 LibraryA Tests . 45

4.4.1.1 Chain of Responsibility Pattern 45

Maintainability Analysis 45

A-B Timing . 46

Memory Utilization 46

4.4.1.2 Strategy Pattern . 46

Maintainability Analysis 47

A-B Timing . 47

Memory Utilization 47

4.4.1.3 First Class ADT Pattern 48

Maintainability Analysis 48

A-B Timing . 48

Memory Utilization 49

4.4.1.4 Decorator Pattern . 49

Maintainability Analysis 49

A-B Timing . 50

Memory Utilization 50

4.4.1.5 All Patterns . 51

Maintainability Analysis 51

A-B Timing . 51

Memory Utilization 52

4.4.2 LibraryB Tests . 53

4.4.2.1 Chain of Responsibility Pattern 53

Maintainability Analysis 53

A-B Timing . 53

Memory Utilization 54

4.4.2.2 Strategy Pattern . 54

Maintainability Analysis 54

A-B Timing . 54

Memory Utilization 55

4.4.2.3 First Class ADT Pattern 55

Maintainability Analysis 55

A-B Timing . 56

Memory Utilization 56

4.4.2.4 Decorator Pattern . 56

x

Maintainability Analysis 57

A-B Timing . 57

Memory Utilization 57

4.4.2.5 All Patterns . 58

Maintainability Analysis 58

A-B Timing . 58

Memory Utilization 59

5 DISCUSSION AND CONCLUSIONS . 61

REFERENCES . 63

xi

LIST OF FIGURES

FIGURES

Figure 3.1 Class Diagram for Inheritance . 16

Figure 3.2 Class Diagram for Possible Inheritance Method . 19

Figure 3.3 Representation of Inheritance Method . 20

Figure 3.4 Chain of Responsibility Pattern Class Diagram [14] 26

Figure 3.5 Strategy Pattern Class Diagram [14] . 29

Figure 3.6 Decorator Pattern Class Diagram [14] . 33

Figure 4.1 LibraryA Tests - ABTM Measurement of Chain of Responsibility Pattern 46

Figure 4.2 LibraryA Tests - ABTM Measurement of Strategy Pattern 47

Figure 4.3 LibraryA Tests - ABTM Measurement of First Class ADT Pattern 49

Figure 4.4 LibraryA Tests - ABTM Measurement of Decorator Pattern 50

Figure 4.5 LibraryA Tests - ABTM Measurement of All Patterns 51

Figure 4.6 LibraryB Tests - ABTM Measurement of Chain of Responsibility Pattern 53

Figure 4.7 LibraryB Tests - ABTM Measurement of Strategy Pattern 55

Figure 4.8 LibraryB Tests - ABTM Measurement of First Class ADT Pattern 56

Figure 4.9 LibraryB Tests - ABTM Measurement of Decorator Pattern 57

Figure 4.10 LibraryB Tests - ABTM Measurement of All Patterns 59

xii

LIST OF TABLES

TABLES

Table 4.1 LibraryA Tests - MI of Chain of Responsibility Pattern 45

Table 4.2 LibraryA Tests - Memory Utilization of Chain for Responsibility Pattern 46

Table 4.3 LibraryA Tests - MI of Strategy Pattern . 47

Table 4.4 LibraryA Tests - Memory Utilization of Strategy Pattern 48

Table 4.5 LibraryA Tests - MI of First Class ADT Pattern . 48

Table 4.6 LibraryA Tests - Memory Utilization of First Class ADT Pattern 49

Table 4.7 LibraryA Tests - MI of Decorator Pattern . 50

Table 4.8 LibraryA Tests - Memory Utilization of Decorator Pattern 50

Table 4.9 LibraryA Tests - MI of All Patterns . 51

Table 4.10 LibraryA Tests - Maximum Overhead of All Patterns 52

Table 4.11 LibraryA Tests - Memory Utilization of All Patterns 52

Table 4.12 LibraryB Tests - MI of Chain of Responsibility Pattern 53

Table 4.13 LibraryB Tests - Memory Utilization of Chain for Responsibility Pattern 54

Table 4.14 LibraryB Tests - MI of Strategy Pattern . 54

Table 4.15 LibraryB Tests - Memory Utilization of Strategy Pattern 55

Table 4.16 LibraryB Tests - MI of First Class ADT Pattern . 56

Table 4.17 LibraryB Tests - Memory Utilization of First Class ADT Pattern 56

Table 4.18 LibraryB Tests - MI of Decorator Pattern . 57

Table 4.19 LibraryB Tests - Memory Utilization of Decorator Pattern 58

Table 4.20 LibraryB Tests - MI of All Patterns . 58

Table 4.21 LibraryB Tests - Maximum Overhead of All Patterns 59

Table 4.22 LibraryB Tests - Memory Utilization of All Patterns 60

xiii

LIST OF LISTINGS

LISTINGS

3.1 Pseudo Code for Class Representation in C++ . 14

3.2 Pseudo Code for Class Representation in C . 14

3.3 Pseudo Code for Class Representation with Some Encapsulation - Header File 15

3.4 Pseudo Code for Class Representation with Some Encapsulation - Source File 15

3.5 Pseudo Code for Class Representation with Some Encapsulation - Class Usage 16

3.6 Pseudo Code for Inheritance without Additional States - AbstractClass.h 17

3.7 Pseudo Code for Inheritance without Additional States - AbstractClass.c 17

3.8 Pseudo Code for Inheritance without Additional States - ConcreteClass1.c 18

3.9 Pseudo Code for Inheritance without Additional States - ConcreteClass2.c 18

3.10 Pseudo Code for Inheritance without Additional States - Client.c 18

3.11 Pseudo Code for Possible Inheritance Method - ConcreteClass.c 19

3.12 Pseudo Code for Possible Inheritance Method - Client.c 19

3.13 Pseudo Code for Inheritance with Additional States - AbstractClass.h 20

3.14 Pseudo Code for Inheritance with Additional States - ConcreteClass.c 21

3.15 Pseudo Code for Inheritance with Additional States - Client.c 21

3.16 Pseudo Code for Definition of Data Type . 22

3.17 Pseudo Code for Implementation of Data Type . 22

3.18 Pseudo Code for Client of Data Type . 22

3.19 Pseudo Code for Definition of Abstract Data Type . 23

3.20 Pseudo Code for Implementation of Abstract Data Type 24

3.21 Pseudo Code for Client of Abstract Data Type . 25

3.22 Pseudo Code for Chain of Responsibility Pattern - ChainOfResponsibility.h File 26

3.23 Pseudo Code for Chain of Responsibility Pattern - ChainOfResponsibility.c File 27

3.24 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler1.c File 27

3.25 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler2.c File 28

3.26 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler3.c File 28

3.27 Pseudo Code for Chain of Responsibility Pattern - Client.c File 29

3.28 Pseudo Code for Strategy Pattern - Context.h File . 30

3.29 Pseudo Code for Strategy Pattern - Context.c File . 30

3.30 Pseudo Code for Strategy Pattern - Strategy.h File . 31

3.31 Pseudo Code for Strategy Pattern - Strategy.c File . 31

3.32 Pseudo Code for Strategy Pattern - ConcreteStrategyA.c File 31

3.33 Pseudo Code for Strategy Pattern - ConcreteStrategyB.c File 32

xiv

3.34 Pseudo Code for Strategy Pattern - ConcreteStrategyC.c File 32

3.35 Pseudo Code for Strategy Pattern - Client.c File . 32

3.36 Pseudo Code for Decorator Pattern - Component.h File 34

3.37 Pseudo Code for Decorator Pattern - Component.c File . 34

3.38 Pseudo Code for Decorator Pattern - ConcreteComponent.c File 34

3.39 Pseudo Code for Decorator Pattern - Decorator.h File . 35

3.40 Pseudo Code for Decorator Pattern - Decorator.c File . 35

3.41 Pseudo Code for Decorator Pattern - ConcereteDecorator.c File 36

3.42 Pseudo Code for Decorator Pattern - Client.c File . 37

xv

LIST OF ABBREVIATIONS

ABTM : A-B Timing Measurement
ADT : Abstract Data Type
CC : Cyclomatic Complexity
COM : Comment on Module
HV : Halstead Volume
IDE : Integrated/Interactive Development Environment
LOC : Line of Code
MI : Maintainability Index
Non-OO : Non-Object Oriented
OO : Object-Oriented

xvi

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

Career-professionals, especially in the area of software engineering, work together to compose large
scale systems by using small well-designed pieces and each area of specialization is considered to be
accessible over well-defined interfaces to others. Detailed design and implementation processes are
hidden from users. Software can be thought as a big company in which not only each part should
perform its responsibility perfectly, but also they have to be used together. Therefore, providing use-
ful interface to small software units and making them re-usable is advisable. When the OO concept
was introduced in the 1980’s, programmers thought that they found the solution to achieve reusabil-
ity of software. It was believed that OO programming could resolve the problem by providing the
features which structural programming cannot offer, like data abstraction and encapsulation. The re-
ality showed that OO concept was just one step among many, however a very important one, toward
software reusability [6].

According to [19], OO design is one of the solutions for extending the life-span of software. However,
this design requires high attention to achieve this goal. On this subject, Gamma, Helm, Johnson,
and Vlissides collected their experiences and provided proven solutions to the problems that every
programmer encounters over and over again [14]. In [8], the author claims that developers without
the knowledge of design patterns cannot understand the critical points in design issue. He suggests
that every developer should understand the general idea behind design patterns in order to gain a new
design point of view. Solutions proposed by design patterns are based on the idea that well-designed
code is described as reusable, extensible and maintainable [17] [18].

1.2 Statement of the Problem

From the beginning of the years OO design patterns were introduced, many studies on the effects of
design patterns have been carried out. Language specific implementations were given in many books
as well as their effects on software quality. Furthermore, [5] explored the language dependencies
of the design patterns and compared the performance of languages under the same design pattern
implementations. Although that study includes only five leading programming languages and does not
include C, language dependency of design patterns is an important feature that emerges in this study.

The only non-OO implementation for design patterns were given in Petersen’s publications [21]. In
these publications, First Class Abstract Data Type (ADT), State, Strategy, Observer and Reactor Pat-
terns were implemented in C language and each step of the implementation process was given in detail.
The aim of these papers is to motivate the C programmers who do not want to be outdated by design

1

patterns. These implementations show that unlike the widely accepted opinion, design patterns are not
necessarily OO. On the other hand, Petersen’s study is just an implementation guide for five design pat-
terns. There is no study in the literature that implements design patterns in C programming language
and measures its effects. Clearly, there is a need to determine how design pattern implementations
affect quality of software in C, as a non-OO programming language.

The main aim of the present study is to investigate whether the performance of real-time software is
degraded with design patterns while maintainability increases. The literature largely accepts that usage
of design patterns has a price in terms of system performance. Although design patterns increase one or
more quality characteristic of software, increasing performance is not the aim of any of these patterns
[10]. To be strictly accurate, whether the amount of degradation will be acceptable or not will be the
main question here. Hence, based on a review of the relevant literature, to be presented in Chapter 2,
below, the hypotheses of the present study can be stated as:

Hypothesis-1 : Using OO design patterns in C programming language, increases the software main-
tainability.

Hypothesis-2 : Using OO design patterns in C programming language, does not pose a threat related
to performance efficiency of the system if it is used in a correct manner.

1.3 Purpose of the Study

"The problem with OO languages is they’ve got all this implicit environment that they carry around
with them. You wanted a banana but what you got was a gorilla holding the banana and the entire
jungle."

(Joe Armstrong)

Since OO programming was introduced, there has been an endless debate between the developers
about the subject whether OO programming is better than structured-procedural programming or not.
The comparison between these groups is not the scope of this study. However, the reason why C++ is
not preferred will be mentioned briefly in this section.

OO programming inherently has some features which can be very helpful, if the tasks to be carried out
are not time-critical. To provide encapsulation and data abstraction, it usually sacrifices performance.
Therefore, time constraint forces real-time software developers to compromise the maintainability of
OO technology. On the other hand, without taking the total OO overhead, one can profit from the
design principles of OO idea. [29] reports a study to show the effect of object modeling technique
on non-OO language and concludes that this technique leads to fewer anomalies and needs less fixing
time. This explains the reason why Bruce used object-based perspective while proposing some real
time design patterns for C [12].

By implementing a similar technique, OO design patterns can be used in a non-OO way. Since the
catalog is given as "Design Patterns: Elements of Reusable Object-Oriented Software", one may think
that they are not applicable in non-OO programming. However, Petersen’s publications show that
unlike the accepted opinion, design patterns do not have to be restricted to OO software.

The primary purpose of this study is to show implementation of some OO design patterns in C pro-
gramming language and to investigate the effects of these patterns on performance and maintainability

2

concern of the software.

1.4 Significance of the Study

While real-time software developers are searching for maintainable software components, they cannot
discard the time requirements. This thesis will provide a way to have more maintainable software
while satisfying the performance constraints.

One important contribution of this study is that it proposes a way to implement the OO design patterns
in C programming language. Since there is no study recorded about this topic in the literature, except
from Petersen’s publications [21], it will help to make up for this deficiency. This thesis aims to set up
a model to implement design patterns in C. The proposed model, to be explained in Chapter 3, focuses
on the general class diagrams of design patterns and proposes a guide for implementation of these
diagrams. The claim here is to show that many design patterns can be applied by using this guide.
To proof this thesis, four design patterns, needed by software under investigation, were implemented.
Then, the effects of these patterns on software maintainability and performance efficiency were inves-
tigated. These are the points that have not been answered in the literature yet. Therefore, showing that
the maintainability of the software is improved and degradation of the performance is acceptable may
lead real-time software developers to use design patterns.

1.5 Outline

This thesis document has been divided into five chapters and the first one is organized to underline the
reason why this topic is chosen and to outline the rest of the paper.

Before going into the detailed design, a literature survey about design patterns and software quality
metrics will be presented in Chapter 2. Studies that have been conducted so far will be reviewed and
in which part of the literature that this study can hold a place will be underlined. Then, the proposed
model will be given in Chapter 3 and the detailed information about case studies will be shared under
Chapter 4. Finally, the last chapter will assess the conclusion and discussions about the study.

3

4

CHAPTER 2

LITERATURE REVIEW

"A good design is one composed of a set of design patterns applied to a piece of functional software
that achieves a balanced optimization of the design criteria and incurs an acceptable cost in doing
so."

(B. P. Douglass, "Design Patterns for Embedded Systems in C")

2.1 What is a Software Design Pattern?

Pattern concept was first introduced by Christopher Alexander in 1977. It was an architectural concept
used for recurring design issues about buildings. Kent Beck and Ward Cunningham applied this idea to
programming in 1987. After that, many attempts have been recorded in the literature. Lots of studies
have been conducted, many experiences have been reported, and many groups aiming to find new
patterns have been established. Some of them will be reviewed below.

Software Design Patterns are defined as "proven solutions to recurring design problems" [14]. They
propose a design model for a specific purpose. Design itself is reusable and makes the software
reusable with the help of "open for extension, closed for modification" principle.

Restricting the patterns with this catalogue is not right. Some architectural patterns or real time de-
sign patterns also serve the same purpose. They propose solutions to problems that occur over and
over again. They provide a common vocabulary for developers. This common understanding makes
cooperative working easier. Since design details are already known, the documentation process is also
faster [8].

2.2 Software Design Patterns in the Literature

As software becomes large-scale, maintenance and reusability become difficult. The necessity for a
well-designed code has increased in the years. When the design patterns idea was introduced, it was
taken as a remedy. Many researchers started to learn and implement the design patterns and many
industrial experiences were reported in the literature.

At the beginning of the years when design patterns had started to receive a lot of attention, software
designers from the companies, First Class Software, AT&T, Motorola Inc., Siemens AG, Bell Northern
Research and IBM Research collected their experience about design patterns in an article. Although
that article does not contain measurable results, it is clear that the interest in the issue has increased

5

dramatically [4]. Among the companies included in another study [23], Motorola and Ericson have
the first large-scale distributed system projects, adopting reuse strategy based on design pattern tech-
niques. Dozens of design patterns are implemented in these systems. The main outcome of this study
is that, reusing existing software is possible by using design patterns. After that, many industrial ex-
perience reports are added with the similar opinion. To illustrate, [25] summarizes the benefits of the
design patterns usage in a speech recognition application. An OO framework is extended to develop
four different applications. In order to perform the reuse of design for each application, different de-
sign patterns are used and decision mechanism for choosing the patterns is explained at each level.
Adapter, Observer, Facade, Singleton, Active Object, Asynchronous Completion Token and Service
Configurator Patterns are the patterns that are examined in the scope of this study. In the end, the
author concludes that using design patterns enriches the design and makes the reuse of the existing
software possible.

All these experience reports have a common point on the idea that design pattern smoothes the path
for having reusable and easily extendable software. In the case study reported in [19], in order to see
the effect of design patterns, decision tree learning system is redesigned and the effects of patterns
on software flexibility and extensibility are evaluated quantitatively. Detailed analysis of different
decision tree learning systems is made and hot-spots of the system are listed. Although all of them are
implemented, one is chosen and its implementation process is detailed in the paper. Before applying
design patterns and after the implementation, C&K metrics, given in [7], are used to measure the
software flexibility and extensibility. Then, Mann-Whitny U-test, one of the non-parametric statistical
hypothesis tests for assessing whether one of two samples of independent observations tends to have
larger values than the other, is used with 5% difference level. According to this result, design patterns
increase the software flexibility and extensibility.

Similarly, [1] evaluates effect of design pattern usage in real-time embedded software in terms of code
size, reusability, extensibility and understandability. In order to make such an evaluation, a radar
system which has different interfaces with different protocols is used. Whenever a new interface is
introduced to the radar system, it has to be redesigned since extensibility is not applicable. In this
study, pure C code implementation of this radar system is improved with five different approaches.
As the sixth step, the code is converted to C++ programming language and Bridge Design Pattern is
applied. Six different implementations are compared in terms of reusability, extensibility and under-
standability qualitatively and code size is measured. At the end of the study, the author concludes that
when the code size is not critical, design pattern usage improves software reusability, extensibility and
understandability more than any other method applied.

Another important research is reported in [27]. Software, which is used in ASELSAN INC. as a
real-time application, is analyzed in the scope of this study. This software, named as routing software,
accepts connections from other applications and routs the given message in accordance with the routing
algorithm. For this study, it is redesigned by using Reactor, Acceptor Connector, Forwarder Receiver,
Smart Pointer and Command Processor Patterns. At each step, one or two patterns are implemented
and measurements taken before and after each step are compared. To make this comparison, twelve OO
software maintainability metrics are used and detailed descriptions are given. The relationship between
the metrics and their effects on maintainability are also discussed. At the end of the measurement, the
author concludes that Reactor, Acceptor Connector, Forwarder Receiver Patterns improve most of the
maintainability metrics while Smart Pointer and Command Processor Patterns improve all of them.

These studies and experience reports show that design patterns provide a well-structured way to sat-
isfy design constraints. On the other hand, researchers have another common point on this issue that
learning design patterns and using them effectively are difficult. [19] states that using design patterns

6

is helpful but it is also a hard process. Choosing the right pattern is the first step and implementation
process is the second one whose difficulty level depends on the ability of the programmer. Another
contribution to this idea can be found in [4] and [8]. They agree that writing good patterns is challeng-
ing and time-consuming since design patterns are quite numerous and difficult to learn and implement.
For all that, author in [8] claims that the process for using design patterns uniformly can be too long
for a company, but it is required.

2.3 Software Quality Metrics

Evaluation of software in a validated and widely accepted manner is important in terms of quality.
Addressing this issue, ISO/IEC 9126 was published in 1991 and a revision was issued in 2001 [30]. In
the first part of the revised version, software quality characteristics are given. This part of the standard
includes two sections, namely internal and external quality part and quality in use part. First part intro-
duces six main characteristics called as functionality, reliability, usability, efficiency, maintainability,
and portability. Internal metrics can be applied to non-executable products while the external metrics
are applicable to running software. Second part has four quality in use characteristics namely effec-
tiveness, productivity, safety, and satisfaction. Some of these main categories also have subcategories.
One can follow the sub characteristic to achieve the necessary quality requirements.

This international publication provides a framework to specify quality requirements of software and
supply a clear definition of the user’s requirements that can change during the development phase.
On the other hand, according to the [2], ISO/IEC 9126-1 has some weaknesses. In this study, 158
final year computer science and engineering students were instructed to design two related modules
of a realistic network project management tool. They were given the information about the system
explained in UML diagram and conceptual data. They also had unified set of ISO/IEC 9126 quality
metrics to use the evaluation of the software developed. At the end of the study, the students find the
concept of usability is difficult to understand and the standard itself difficult to interpret since some
of the definitions are ambiguous. With a detailed analysis, the authors conclude that some metrics
are not well defined and some of them are overlapping. Some important concepts like validity and
modularity are not included. Some metrics like functional understandability cannot be measured by
the developers. In summary, the authors claim that ISO/IEC 9126 Quality Standard must be improved
in order to achieve its purpose.

To correct these deficiencies, this standardization has been revised in 2010 and re-published with
the name ISO/IEC FDIS 25010:2010 [31]. In this version, new categories are added, some of the
categories are given more accurate name, and the scope of the standard is extended to computer system
rather than software specific definitions. This standard includes two models as quality in use model
and product quality model. Quality in use part is categorized into five characteristics as effectiveness,
efficiency, satisfaction, freedom from risk, and context coverage, while product quality model has eight
categories: Functional suitability, reliability, performance efficiency, usability, security, compatibility,
maintainability, and portability. Definitions of all these categories are given and some of them are
subcategorized in the catalog.

Quality of the software can be measured in terms of this standardization. On the other hand, keeping
all quality metrics at a high level is difficult. The main requirements differ from system to system.
[30] states that as a first step, one needs to determine the external quality and quality in use metrics to
be met by the end product. Then, the internal metrics should be specified to achieve this goal. While
doing this, a range for the satisfaction of the requirement should be determined and during the inter-
nal process, measurements should be done accordingly. To make a valid comparison, measurements

7

should be objective, empirical using a valid scale, and producible. These statements show that satis-
fying all these quality metrics is not necessary. Determining the system needs can be thought as main
concern of the developers.

According to [27], maintenance is one of the most important but challenging issues for real time
software. The author analyzed the effects of design patterns on maintainability in her study. On her
pattern cluster, she claims that design patterns improve the software maintainability. On the other
hand, performance is the most critical issue for real-time software. However, performance criterion
is not among the aims of design patterns. On the contrary, design patterns have their own overhead.
Clearly, there is a need to show that while gaining the maintainability, performance efficiency is not
placed at a risk.

To investigate the effects of some design patterns on real-time software, a research was conducted. [3]
claimed that when the design patterns are used in a correct manner, the decrease in performance due
to OO design can be reduced and become acceptable. In order to prove his claim, the author chooses
State, Strategy Observer, Smart Pointer, Garbage Collection, Garbage Compactor and Observer Pat-
terns. The reason behind this choice is that these patterns are the ones expected to affect performance
of real time software. After determining the patterns, he converts pure C codes to C++ in order to see
the effect of OO programming on real time performance. Then, same implementation is done by using
design patterns. Performances of these software implementations are examined in terms of execution
time, memory consumption and memory fragmentation. At the end of the study, the author proves his
claim that, using design patterns effectively decreases the loss of performance due to OO programming
coming with an overhead.

In the light of [3], [10], and [27], one concludes that design patterns increase the maintainability of
software and if they are used in correct manner, performance degradation is ignorable. On the other
hand, all these investigations have been conducted on OO programming by using OO metrics. In
the present study, the hypothesis is that design patterns can be implemented in a non-OO way, they
increase the maintainability, and the effect on software performance is acceptable.

2.3.1 Maintainability

A large set of metrics used to determine the maintenance level of software can be found in [27].
When the metrics are categorized into OO and procedural way, a narrow set is gained for procedural
languages. Line of code (LOC), cyclomatic complexity (CC), and knot metric are evaluated among
them [28]. All these metrics can be used by analyzing their effect on maintainability one by one.
Another way to determine the relative maintainability of software is combining multiple metrics into
a single indicator. On this subject, the most widely used calculation was developed by Oman and
Hagemeister in 1991. They developed a set of polynomial metrics at University of Idaho and validated
in the Hewlett-Packard Company. To measure the maintainability of software, they combined different
metrics and introduced a calculation. In 1994, this calculation was re-analyzed and final version was
formulated [9]. Although different variants of it have been introduced and some of the factors have
been argued over the years, this language independent calculation has been applied successfully to lots
of software systems [28].

According to [9], maintainability index (MI) of software can be calculated by using the following
formula:

MI = 171 − 5.2 ∗ ln(HV) − 0.23 ∗CC − 16.2 ∗ ln(LOC) + 50.0 ∗ sin(
√

2.46 ∗COM)

8

MI consists of LOC, CC, Halstead volume (HV), and optionally comment on module (COM) metrics.

• LOC, can be described as the average number of lines of executable code in the software program
or module being measured.

• CC metric was proposed by McCabe [20]. In his article, complexity calculation was given as:

V(G) = E − N + P

E : Number of edges in a graph

N : Number of nodes (vertices) in a graph

P : Number of connected components

In software engineering, CC metric is used to count the number of linearly independent paths
through the source code. To illustrate, if the source code does not have a decision point such
as IF statement, the complexity is 1. It means that there is only one single path through the
program. If the code has a single IF statement with a single condition, there will be two different
paths to follow. One path is for IF statement is true and one path for IF statement is false. Then
the CC will be 2.

• HV measurements were introduced by Halstead [15]. The calculations of several measures were
given in his book. The volume calculation is:

V = N ∗ log(n)

N : Program length (N1 + N2)

N1 : The total number of operators

N2 : The total number of operands

n : Program vocabulary (n1 + n2)

n1 : The number of distinct operators

n2 : The number of distinct operands

• COM, can be described as the average percent of lines of comments per module. Some imple-
mentations omit this variable in the formula.

2.3.2 Performance Efficiency

Performance efficiency is described as performance of software relative to the amount of resources and
can be divided into three categories [31].

• Time behavior, represents the response time of program to the given task.

• Resource utilization, shows the usage of resources while performing the given task.

• Capacity, indicates the level of maximum limits that meet the system requirements.

9

The reason why writing code for embedded systems is more difficult than that of for a general-purpose
computer system is its strictly determined design constraints. Embedded software is surrounded by a
hardware which is not extendable. Software is adjusted according to integrated hardware constraints.
Therefore, the main purpose of the developer is minimizing the use of hardware resources such as
memory or power [12]. Due to this reason, extra memory used for design pattern implementation will
be analyzed as the resource utilization and capacity usage.

In order to evaluate whether the software can meet all time constraints, the time spent to perform a
given task is needed to be observed. [16] states that most crucial timing measurement for real-time
systems is A-B Timing, since it allows developers to verify whether the timing objectives for a piece of
code are being satisfied. A-B Timing, defined as the time spent between the two specific points of the
code, will be used in this study to show that time behavior of the software does not affected severely.

2.4 Design Patterns and Non-OO Programming

[22] has the following statement: "Least Privilege: Every program and every user of the system should
operate using the least set of privileges necessary to complete the job. Primarily this principle limits
the damage that can result from an accident or error"

Many fields with the inclusion of computer science take into account this principle, known as the
principle of least privilege, in the early phase of development. According to this idea, every module
must be able to access only information and resources that are mandatory for its legitimate purpose. It
forces giving a user account only those concessions which are essential to that user’s work.

In software world, two principles, called "Low coupling" and "High cohesion", are strongly in support
of this privilege. The terms coupling and cohesion were proposed by [26] for structured programming,
yet the idea was applied to OO programming too. According to [26], coupling can be described as the
measure of the strength of association from one module to another. High coupling results in strong
dependency between two modules. Changing or correcting one of them ends up with alteration of
the other. In addition, reusability of the module requires taking the other parts together. Therefore,
reducing the coupling is important in terms of code complexity and reusability.

Cohesion, on the other hand, shows the connectivity among the elements of single module. Low
cohesion is the signal of combining unrelated parts. It makes hard to comprehend and maintain the
code. Reusable parts may not be reused due to the unnecessary dependency. Due to these reasons, the
responsibility of the module cannot be determined easily.

Clearly, low coupling and high cohesion serve for maintainability of the code by holding the related
parts together as a single module and separating the modules with necessary interfaces. This explains
the reason why design patterns aim to provide low coupling and high cohesion.

A closer look reveals that the idea behind design patterns were borrowed from structured programming.
The difference between the OO and non-OO programming is their way of thinking, not their goals. At
this point, some explanations can clear the difference between their programming points of view.

Structured-procedural programming based on two different aspects, data structures and functions.
Functions are the piece of code that perform an action and return its result by a function call. Data
structures contain information needed by those functions. Any data structures can be served to any
functions. They are not necessarily bounded to each other. This type of programming fully concen-
trates on procedures. It follows the sequence of actions in a determined flow chart.

10

On the other hand, OO programming can be described as collection of loosely connected agents, each
of which is responsible for a specific task. Every single module combines both data and behaviors. It
is based on the orthogonal paradigm. This means that one concept does not either imply or exclude the
other. The support of OO programming to the least privilege principle cannot be ignored. However,
this does not mean that structured programming is not able to do the same. Herein, the important point
is using the language effectively. That is what the design patterns try to achieve.

11

12

CHAPTER 3

THE PROPOSED MODEL

In this study, some OO programming principles are implemented to structured programming in order
to realize the design patterns. To describe this approach, this chapter is divided into five main parts. In
the first part, implementations of some OO concepts in C are given. The following sections contain the
proposed model for four design pattern realizations, namely, First Class ADT, Chain of Responsibility,
Strategy, and Decorator.

3.1 Important Aspects of OO Programming and Their Realization in C

An OO program is structured as a community of interacting agents, called objects. An object can
be defined as an entity in a program which includes both data and behaviors. Class is the template
describing the details of an object. It is the repository for the states and behaviors associated with the
object [13].

Object states and functions, that can manipulate these states, are kept together. They are encapsulated
so that the only way to change the internal state is calling the operations. Direct access is not pro-
posed to the other agents [14]. This is called as encapsulation and mostly achieved by information
hiding, which means process of hiding all the secrets of an object that do not contribute to its essen-
tial characteristics. By this way, it plays an important role in terms of realization of least privilege
principle.

Relations among the encapsulated objects are arranged by using association, aggregation or compo-
sition. Association is the weakest relationship and means that one object uses another at some time.
Aggregation and composition are stronger than association and used to describe "part-of" relation. In
composition, whole and part have to share the same life-cycle, while aggregation does not force this.

Another important concept is the relationships between the classes. Inheritance provides creating more
specialized classes by using existing ones. The new class is called subclass, child class or derived class
while the existing one is referred as super class, parent class or base class. When a derived class is
created, it takes all attributes and definition of operations related to its base class. Then, it can add
new attributes and operations. Inheritance is one of the strong features of OO programming. Generic
features are implemented one time in base class and reused in subclasses. For this reason, inheritance
is a form of reuse in which new class absorbs the data and behaviors of existing class and enriches it
by adding new capabilities [11].

The behaviors in super class can be overwritten by subclasses. A request can be handled by different
objects that have the correct interface. This means that, same message can have many forms of results.
This type of diversity in OO programming is called as polymorphism [11].

13

According to [14], the choice of language is very determining for difficulty of design patterns’ imple-
mentation process. They noted that, encapsulation, inheritance and polymorphism in itself are design
patterns for C, since the language does not support these aspects inherently. That is to say, these three
concepts must be handled first to achieve the main purpose of this study. For this reason, following
subsections focus to explain implementation method of these concepts.

3.1.1 Class Representation with Some Encapsulation

Information hiding is generally referred as controlling the visibility. OO language has its own feature
that a variable can be declared as private, protected, or public. Private variables cannot be accessed
directly. Methods have to be presented to get or set these variables. Language protects the variables
from the interruption of the other classes or clients. Since C does not force this, information hiding is
the issue that deserves extra attention for this language.

In C, to provide information hiding, the public information is put into the header file and local ones are
preserved in source files. All parameters of the structure presented into the header file can be accessed
directly by the users including this header file. If a variable in one source file is needed in another
source file, "extern" keyword is used [33].

Observing the class representation of both C and C++ together can clear the difference between the
languages. Classes are thought to be structures holding the operations [12]. A simple way to implement
a class in C is declaring the public variables and operations into a header file and keeping the private
ones in source files. In order to implement the class shown in Listing 3.1, Listing 3.2 is generally used.

Listing 3.1 Pseudo Code for Class Representation in C++

class SampleClass
{

private : int variable_1;
int variable_2;

Public :
SampleClass (int variable_1, int variable_2);
~SampleClass(void);

void SampleClassOperation();
}

Listing 3.2 Pseudo Code for Class Representation in C
/* SampleClass.h */

struct SampleClass
{

int variable_1;
int variable_2;

}

void SampleClassOperation(struct SampleClass);

14

By this way, files not including SampleClass.h can see neither the structure nor operation. By including
the header file, user can only create the structure or call the operation without knowing implementation
details of SampleClassOperation(). However, encapsulation means not only information hiding, but
also binding data and functions. To provide this, pointers to functions are used [12]. Listing 3.3 shows
encapsulated class in C. In this case, the operation is bounded to structure. Even if the header is
included, calling the operation is not possible without its structure.

Listing 3.4 illustrates an example for the implementation of the operations given in header file. It
is important to underline that, in C++, class members can be accessed implicitly through the "this"
pointer. However, this kind of access is not possible for C. Therefore, operations need to take the
calling object as an argument.

Listing 3.3 Pseudo Code for Class Representation with Some Encapsulation - Header File
/* SampleClass.h */
typedef struct SampleClass* SampleClass_Ptr;
typedef void (*ClassMethod)(SampleClass_Ptr spSampleClass);

struct SampleClass
{

int variable_1;
int variable_2;
ClassMethod SampleClassOperation;

}

/* constructor */
SampleClass_Ptr SampleClass_New(int variable_1, int variable_2);
/* destructor */
void SampleClass_Delete(SampleClass_Ptr);

Listing 3.4 Pseudo Code for Class Representation with Some Encapsulation - Source File
/* SampleClass.c */

#include "SampleClass.h"

void SampleClassOperation(SampleClass_Ptr spSampleClass)
{

/* perform the operation */
}
/* constructor */
SampleClass_Ptr SampleClass_New(int variable_1, int variable_2)
{

SampleClass_Ptr spSampleClass =
(SampleClass_Ptr)malloc(sizeof(struct SampleClass));

spSampleClass->variable_1 = variable_1;
spSampleClass->variable_2 = variable_2;
spSampleClass->SampleClassOperation = SampleClassOperation;
return spSampleClass;

}
/* destructor */
void SampleClass_Delete(SampleClass_Ptr spSampleClass)
{

free(spSampleClass);
}

15

As can be seen from Listing 3.4, SampleClassOperation() cannot be seen from outside of the source
file. When the constructor is called, the operation is determined. The only way to use this operation is
calling the constructor of structure, like in C++ case. After creating the structure, the way to call its
operation is shown in Listing 3.5.

Listing 3.5 Pseudo Code for Class Representation with Some Encapsulation - Class Usage
/* Client.c */

#include "SampleClass.h"

...

...
/* create a pointer to the struct */
SampleClass_Ptr spSampleClass = SampleClass_New(a, b);
/* call its operation */
spSampleClass->SampleClassOperation(spSampleClass);

...

...

Main drawback of this representation is that it reveals the structure. This makes all the attributes of
class public unlike C++ representation. However, making attributes private is not always required.
This can sacrifice the performance if it is used for every structure. When it is necessary, First Class
ADT Pattern can be used. Hiding the structure to the source file and giving the user only a reference
is what this pattern does. Although the details are not shared here, it must be underlined that this
drawback can be removed by using the information given in Section 3.2.

3.1.2 Inheritance and Polymorphism

The most popular drawing among the UML diagram of design patterns is shown in Figure 3.1.

Figure 3.1: Class Diagram for Inheritance

In this representation, polymorphism is provided by allowing the subclasses to overwrite the virtual
operation. Here, the idea is letting the subclasses define which operation will be performed at run-time.
To achieve this goal, an interface is presented to the users and they are allowed to create a subclass and
to call PerformOperation() function. By this way, implementation details of operation are kept from
the user. Therefore, changing implementation of one subclass or adding new subclasses implementing
the same interface can affect neither other subclasses nor user.

16

Definition of class and constructors of concrete classes are given in AbstractClass.h file like shown in
Listing 3.6. Since all the concrete classes share the same interface and there is no added state, one
structure and one destructor will be sufficient here not to make unnecessary code duplication.

Listing 3.6 Pseudo Code for Inheritance without Additional States - AbstractClass.h
typedef struct AbstractClass* AbstractClass_Ptr;
typedef void(*VirtualMethod)(AbstractClass_Ptr);

struct AbstractClass
{

int variable_1;
int variable_2;
VirtualMethod PerformOperation;

};

/* constructors */
AbstractClass_Ptr AbstractClass_New(int variable_1, int variable_2);
AbstractClass_Ptr ConcreteClass1_New(int variable_1, int variable_2);
AbstractClass_Ptr ConcreteClass2_New(int variable_1, int variable_2);

/* destructor */
void Class_Delete(AbstractClass_Ptr);

Listing 3.7 shows the implementation of abstract class defined in the header file. As can be seen,
AbstractClass_New() operation does not overwrite the virtual method. The method is still null since it
is the responsibility of concrete classes.

Listing 3.7 Pseudo Code for Inheritance without Additional States - AbstractClass.c
#include "AbstractClass.h"

/* constructor */
AbstractClass_Ptr AbstractClass_New(int variable_1, int variable_2)
{

AbstractClass_Ptr spAbstractClass =
(AbstractClass_Ptr)malloc(sizeof(struct AbstractClass));

spAbstractClass->variable_1 = variable_1;
spAbstractClass->variable_2 = variable_2;
return spAbstractClass;

}

/* destructor */
void Class_Delete(AbstractClass_Ptr spAbstractClass)
{

free(spAbstractClass);
}

Since concrete classes do not add new attributes or operations for this case, there is no need to write
three different structures. One structure, carrying the necessary attributes and PerformOperation()
method, is sufficient for both abstract and concrete classes. Like shown in Listing 3.8 and 3.9, each
subclass only overwrites the method to provide polymorphism when its constructor is called.

17

Listing 3.8 Pseudo Code for Inheritance without Additional States - ConcreteClass1.c
#include "AbstractClass.h"

void ConcreteClass1_Operation(AbstractClass_Ptr a_AbstractClass)
{

/* do something special to ConcreteClass1 */
}

/* constructor */
AbstractClass_Ptr ConcreteClass1_New(int variable_1, int variable_2)
{

AbstractClass_Ptr spAbstractClass = AbstractClass_New(variable_1, variable_2);
spAbstractClass->PerformOperation = ConcreteClass1_Operation;
return spAbstractClass;

}

Listing 3.9 Pseudo Code for Inheritance without Additional States - ConcreteClass2.c
#include "AbstractClass.h"

void ConcreteClass2_Operation(AbstractClass_Ptr a_AbstractClass)
{

/* do something special to ConcreteClass2 */
}

/* constructor */
AbstractClass_Ptr ConcreteClass2_New(int variable_1, int variable_2)
{

AbstractClass_Ptr spAbstractClass = AbstractClass_New(variable_1, variable_2);
spAbstractClass->PerformOperation = ConcreteClass2_Operation;
return spAbstractClass;

}

Listing 3.10 shows an example for usage of this class. While creating the class, concrete class is
chosen. Virtual operation is overwritten by selected class. When the PerformOperation() is invoked,
command executed according to this class. Diversity between the classes sharing the same interface is
achieved by this way.

Listing 3.10 Pseudo Code for Inheritance without Additional States - Client.c
#include "AbstractClass.h"

int main()
{

...
/* choose the concrete class */
AbstractClass_Ptr spOperation = ConcreteClass2_New(a,b);
/* perform the operation */
spOperation->PerformOperation(spOperation);
/* delete the object */
Class_Delete(spOperation);
...

}

18

On the other hand, concrete classes can add new attributes or new behaviors in addition to the abstract
methods and common attributes. In this case, all of the concrete classes have to create their own
structures to add some new states or responsibilities. One way to solve this inheritance problem is
holding a reference in the subclasses and calling its functions when needed. For [12], inheritance can
be done by using Figure 3.2.

Figure 3.2: Class Diagram for Possible Inheritance Method

Implementation of this class representation can be performed by using the simple example given below.
Listing 3.11 shows a concrete class, adding additional states of the existing class, and Listing 3.12
illustrates the usage of this class

Listing 3.11 Pseudo Code for Possible Inheritance Method - ConcreteClass.c
#include "AbstractClass.h"

struct ConcreteClass
{

AbstractClass* spAbstractClass;
int variable_3;

};

Listing 3.12 Pseudo Code for Possible Inheritance Method - Client.c
#include "ConcreteClass.h"

...

...
struct ConcreteClass* spConcreteClass;
spConcreteClass->spAbstractClass->PerformOperation(spConcreteClass->spAbstractClass)

...

...

As can be seen from the listings, clients have to know the internal structure of the concrete classes since
PerformOperation() cannot be called directly anymore. Listing 3.12 clearly shows that with the inclu-
sion of "ConcreteClass.h" file, low coupling principle is violated. Per contra, in OO implementation,
user calls just PerformOperation() without knowing the details of subclasses. Due to these reasons,
this method is not preferred in this study.

19

Another way to implement the inheritance is copying the representation of abstract class and adding
components and behaviors at the end [24]. Since the beginning of a subclass is the same with that of its
super class, a pointer to subclass object can be used as a pointer to super class object with up-casting.
Figure 3.3 explains this idea and Listing 3.13, 3.14, and 3.15 shows a simple example.

Figure 3.3: Representation of Inheritance Method

As can be seen from Listing 3.13, constructor of concrete class takes same arguments with abstract
class, but returns a pointer to the concrete class. Therefore, two destructors for two pointers are
needed here. Since user is not able to see the ConcreteClass structure, an operation to get variable_3
is proposed in the AbstractClass.h file. It must be underlined that this operation takes a pointer to
ConcreteClass structure. In order to use this operation, user needs to call the constructor of concrete
class and have a pointer to the structure.

Listing 3.13 Pseudo Code for Inheritance with Additional States - AbstractClass.h

typedef struct AbstractClass* AbstractClass_Ptr;
typedef struct ConcreteClass* ConcreteClass_Ptr;
typedef void(*VirtualMethod)(AbstractClass_Ptr spAbstractClass);

struct AbstractClass
{

int variable_1;
int variable_2;
VirtualMethod PerformOperation;

};

/* constructors */
AbstractClass_Ptr AbstractClass_New(int variable_1, int variable_2);
ConcreteClass_Ptr ConcreteClass_New(int variable_1, int variable_2);

/* destructors */
void Class_Delete(AbstractClass_Ptr);
void ConcreteClass_Delete(ConcreteClass_Ptr);

/* added state */
int getvariable_3(ConcreteClass_Ptr);

As can be observed from Listing 3.14, concrete class has exactly same variables and operations in the
same order with its super class. Extra parameters are listed at the end in order not to have a problem
about up-casting.

20

Listing 3.14 Pseudo Code for Inheritance with Additional States - ConcreteClass.c
#include "AbstractClass.h"

struct ConcreteClass
{

int variable_1;
int variable_2;
VirtualMethod Operation;
int variable_3;

}

void ConcreteClass_Operation(ConcreteClass_Ptr spConcreteClass)
{

/* do something special to ConcreteClass */
}

/* constructor */
ConcreteClass_Ptr ConcreteClass_New(int variable_1, int variable_2)
{

ConcreteClass_Ptr spConcreteClass =
(spConcreteClass)AbstractClass_New(variable_1, variable_2);

spConcreteClass->PerformOperation = ConcreteClass_Operation;
return spConcreteClass;

}

/* destructor */
void ConcreteClass_Delete(ConcreteClass_Ptr spConcreteClass)
{

free(spConcreteClass);
}

/* added state */
int getvariable_3(ConcreteClass_Ptr spConcreteClass)
{

return spConcreteClass->variable_3;
}

Like shown in Listing 3.15, user can call the same method both for abstract and concrete classes. With
the help of this method, internal structure of concrete classes is totally hidden from its user. Only
necessary information is presented in header file of abstract class.

Listing 3.15 Pseudo Code for Inheritance with Additional States - Client.c
#include "AbstractClass.h"

...

...
AbstractClass_Ptr spConcreteClass = (AbstractClass_Ptr)ConcreteClass_New(a,b);
spConcreteClass->PerformOperation(spConcreteClass);
x = getvariable_3((ConcreteClass_Ptr)spConcreteClass);
...
...

In this section, some important aspects of OO programming, necessary for design patterns, are realized.
With this background, four design pattern implementations will be presented in the following sections.

21

3.2 First Class Abstract Data Type (ADT) Pattern

Data Type can be defined as the set of values and collection of operations working with those values
[24]. To illustrate, "int" is a data type whose set contains distinct values between -32767 and 32767.
Operations related to this data type are +, -, *, /.

User can define new data types and their operations by using existing ones. An example for this can be
found in the below listings. Listing 3.16 represents the definition of the data type and its operations,
while Listing 3.17 illustrates the implementation process. Then, Listing 3.18 shows the client code.

Listing 3.16 Pseudo Code for Definition of Data Type
/* RectangleDT.h */

typedef struct rectangle Rectangle;
struct rectangle
{

float width;
float height;

};
/* operations */
float Area(Rectangle);
float Circumference(Rectangle);

Listing 3.17 Pseudo Code for Implementation of Data Type
/* RectangleDT.c */

#include "RectangleDT.h"

float Area(Rectangle)
{

/* return the area of the rectangle */
}
float Circumference(Rectangle)
{

/* return the circumference of the rectangle */
}

Listing 3.18 Pseudo Code for Client of Data Type
/* Client.c */
#include "RectangleDT.h"
int main()
{

float area, circumference;
Rectangle rec;
rec.height = 10;
rec.width = 20;
area = Area(rec);
circumference = Circumference(rec);
...
...

}

22

A closer look reveals that structure is open for users. Struct rectangle is represented through the
RectangleDT.h file. Any code including the header file can see the structure. The representation
cannot be changed without changing all client programs that can access the representation directly
from the interface. As a result, any change in this data type affects its users. Plainly, data type needs
some rectifications in order to break off the connection between users and providers.

Hiding the representation in the implementation is possible by using abstract data type. A data type is
an Abstract Data Type, if its internal representation is not presented to the user. Direct manipulation
of the code is not allowed by this way. Operations are provided only through the interface which is a
contract between the clients and providers [24].

Clients can only have the pointers rather than whole structure. Pointers permit to conceal the represen-
tation of data items and declare only possible manipulations. The reason why this pattern is called as
First Class ADT Pattern is that it is the first instance among many that one can create from it.

Consequences of the pattern can be listed as follows:

• This pattern fills the missing point about encapsulation. Especially for libraries, this is very
helpful.

• Implementation can change without disturbing the client.

• Program is decomposed into simpler tasks.

• Complexity is hidden from the clients.

• Readability of the code increases.

An example showing the implementation and usage of the pattern can be found in Listing 3.19, 3.20
and 3.21.

Listing 3.19 Pseudo Code for Definition of Abstract Data Type
/* RectangleDT.h */

typedef struct rectangle* RectanglePtr;

/* constructor */
RectanglePtr newRectangle(float, float);

/* destructor */
void deleteRectangle(RectanglePtr);

/* set operations */
void setWidth(RectanglePtr, float);
void setHeight(RectanglePtr, float);

/* get operations */
float getWidth(RectanglePtr);
float getHeight(RectanglePtr);

/* other operations */
float Area(RectanglePtr);
float Circumference(RectanglePtr);

23

Listing 3.20 Pseudo Code for Implementation of Abstract Data Type
/* RectangleDT.c */

#include "RectangleADT.h"

struct rectangle
{

float width;
float height;

};

/* constructor */
RectanglePtr newRectangle(float height, float width)
{

RectanglePtr spRectangle = (RectanglePtr)malloc(sizeof(struct rectangle));
spRectangle->height = height;
spRectangle->width = width;
return spRectangle;

}

/* destructor */
void deleteRectangle(RectanglePtr spRectangle)
{

free(spRectangle);
}

/* set operations */
void setWidth(RectanglePtr spRectangle, float width)
{

spRectangle->width = width;
}
void setHeight(RectanglePtr spRectangle, float height)
{

spRectangle->height = height;
}

/* get operations */
float getWidth(RectanglePtr spRectangle)
{

return spRectangle->width;
}
float getHeight(RectanglePtr spRectangle)
{

return spRectangle->height;
}

/* other operations */
float Area(RectanglePtr spRectangle)
{

/* returns the area of the rectangle */
}
float Circumference(RectanglePtr spRectangle)
{

/* returns the circumference of the rectangle */
}

24

Listing 3.21 Pseudo Code for Client of Abstract Data Type
/* Client.c */

#include "RectangleADT.h"

int main()
{

float area, circumference;
RectanglePtr rec;
/* create the rec pointer */
RectanglePtr rec = newRectangle(10,20);
/* calculate the area */
area = Area(rec);
/* calculate the circumference */
circumference = Circumference(rec);
...
...
/* get Heigth and Width values and print */
printf("Heigth = %f\n",getHeight(rec));
printf("Width = %f\n",getWidth(rec));
...
...
/* change Heigth and Width values */
setHeight(rec,30);
setWidth(rec,50);
/* calculate the new area */
area = Area(rec);
/* calculate the new circumference */
circumference = Circumference(rec);
...
...
return 0;

}

3.3 Chain of Responsibility Pattern

An agent asks for a request and there are different providers that can help for this request. To illustrate,
a mail comes to the mail box. Which folder can take this mail is not known. If it is a spam, it goes to
spam-box or if it is a complaint, it goes to complaint-box, etc. Bad way to solve this problem is making
everything public and using reference for every object. Long if statement is used and complexity of
the code increases. Low coupling principle is violated due to the dependency between sender and
receivers.

To solve this problem in a more rational way, [14] proposes Chain of Responsility Pattern. This pattern
provides to give more than one object a chance to handle the request without attaching requester and
provider. The objects become part of a chain. They can handle the request or pass it to their successors.
Request is sent across the chain until it is handled. By this way, senders can send a command without
knowing what object will receive and handle it.

Advantages and drawbacks of these patterns can be found in [14]. Herein, only the implementation
process regarding C programming language is presented. For this purpose, Figure 3.4 is presented to
show the class diagram of the pattern.

25

Figure 3.4: Chain of Responsibility Pattern Class Diagram [14]

As can be seen from Figure 3.4, this pattern is nothing but the inheritance with an association relation.
Therefore, it can be implemented as stated in the first part of this section. Listing from 3.22 to 3.26
contain the pseudo codes to show the implementation process of the pattern while Listing 3.27 gives
an example for possible usage.

As Listing 3.22 shows, Handler structure is created in ChainOfResponsibility.h file and includes a
successor to pass the request in case not to handle by itself and a virtual method to be overwritten
by concrete class. Since the user only see this interface, declaration of concrete class’ constructor
is given here. Client can create concrete handler class without knowing the implementation details.
All constructors of concrete class return the same abstract type. This is preferred since the concrete
classes do not have added state or behavior in this pattern representation. In order not to make code
duplication, concrete classes share the same structure with abstract one.

Listing 3.22 Pseudo Code for Chain of Responsibility Pattern - ChainOfResponsibility.h File

typedef struct Handler* Handler_Ptr;
typedef void(*VirtualMethod)(Handler_Ptr spHandler);

/* abstract class */
struct Handler
{

Handler_Ptr Successor;
VirtualMethod HandleRequest;

};

/* constructors */
Handler_Ptr Handler_New();
Handler_Ptr ConcreteHandler1_New();
Handler_Ptr ConcreteHandler2_New();
Handler_Ptr ConcreteHandler3_New();

/* destructor */
Handler_Delete(Handler_Ptr spHandler);

26

Constructor and destructor implementations of abstract class are given "ChainOfResponsibility.c" file
and virtual method leaves as null like shown in Listing 3.23. Each concrete class implements its
constructor and overrides the virtual method as indicated in Listings 3.24, 3.25, and 3.26. When a
class is created, its virtual method is determined. User can handle the request just by calling the
HandleRequest() function. Special function of concrete class is used without knowing the details like
shown in Listing 3.27.

Listing 3.23 Pseudo Code for Chain of Responsibility Pattern - ChainOfResponsibility.c File
#include "ChainOfResponsibility.h"

/* constructor */
Handler_Ptr Handler_New()
{

Handler_Ptr spHandler = (Handler_Ptr)malloc(sizeof(struct Handler);
return spHandler;

}

/* destructor */
Handler_Delete(Handler_Ptr sphandler)
{

free(sphandler);
}

Listing 3.24 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler1.c File
#include "ChainOfResponsibility.h"

/* Virtual function for ConcreteHandler1 */
void ConcreteHandler1_Function(HandlerPtr spHandler)
{

if (/* can handle */)
{

/* Handle */
}
else if (handler->Successor != NULL)
{

spHandler->Successor->HandleRequest(spHandler->Successor);
}

}

/* constructor */
Handler_Ptr ConcreteHandler1_New()
{

Handler_Ptr spConcreteHandler1 = Handler_New();
spConcreteHandler1->HandleRequest = ConcreteHandler1_Function;
return spConcreteHandler1;

}

27

Listing 3.25 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler2.c File
/* ConcreteHandler2.c */

#include "ChainOfResponsibility.h"

/* Virtual function for ConcreteHandler2 */
void ConcreteHandler2_Function(HandlerPtr spHandler)
{

if (/* can handle */)
{

/* Handle */
}
else if (handler->Successor != NULL)
{

spHandler->Successor->HandleRequest(spHandler->Successor);
}

}

/* constructor */
Handler_Ptr ConcreteHandler2_New()
{

Handler_Ptr spConcreteHandler2 = Handler_New();
spConcreteHandler2->HandleRequest = ConcreteHandler2_Function;
return spConcreteHandler2;

}

Listing 3.26 Pseudo Code for Chain of Responsibility Pattern - ConcreteHandler3.c File
/* ConcreteHandler3.c */

#include "ChainOfResponsibility.h"

/* Virtual function for ConcreteHandler3 */
void ConcreteHandler3_Function(HandlerPtr spHandler)
{

if (/* can handle */)
{

/* Handle */
}
else if (handler->Successor != NULL)
{

spHandler->Successor->HandleRequest(spHandler->Successor);
}

}

/* constructor */
Handler_Ptr ConcreteHandler3_New()
{

Handler_Ptr spConcreteHandler3 = Handler_New();
spConcreteHandler3->HandleRequest = ConcreteHandler3_Function;
return spConcreteHandler3;

}

28

Listing 3.27 Pseudo Code for Chain of Responsibility Pattern - Client.c File
/* Client.c */
#include "ChainOfResponsibility.h"
int main()
{

/* create the part of chain */
HandlerPtr spHandler1 = (HandlerPtr)ConcreteHandler1_New();
HandlerPtr spHandler2 = (HandlerPtr)ConcreteHandler2_New();
HandlerPtr spHandler3 = (HandlerPtr)ConcreteHandler3_New();

/* set the chain */
spHandler1->Successor = spHandler2;
SpHandler2->Successor = spHandler3;

/* perform the action */
spHandler1->HandleRequest(spHandler1);

/* delete the chain */
Handler_Delete(spHandler1);
Handler_Delete(spHandler1);
Handler_Delete(spHandler1);

}

3.4 Strategy Pattern

Strategy pattern is used when one request can be performed by different ways. Algorithm can vary
independently from the user. Figure 3.5 shows the class diagram of the pattern.

Figure 3.5: Strategy Pattern Class Diagram [14]

In this diagram, Context receives requests from the client and sends them to its Strategy object. Client
creates the concrete class, preferred to use, and pass it to the Context. Context contains a reference
to concrete strategy so that interaction between the Strategy and client is performed across the con-
text. Strategy provides an interface to the concrete class performing the same task by using different
algorithms. ConcreteStrategy implements the algorithm presented in Strategy interface.

Advantages and drawbacks of these pattern can be found in [14]. Herein, only the implementation
process regarding C programming language is presented. Like Chain of Responsibility, this pattern
can be implemented as stated in the first part of this section. Following the idea emphasized there, this

29

can be realized easily. Listings from 3.28 to 3.34 contain the pseudo codes to show the implementation
process of the pattern while Listing 3.35 gives an example for possible usage.

As can be seen from Listing 3.28, aggregation relation between the Context and Strategy classes is
provided by giving a pointer to the Context structure. This pointer shows that Context structure "has-
a" Strategy structure in it. Constructor of this class takes a pointer of Strategy structure and sets its
Strategy attribute as can be shown in Listing 3.29. By this way, when its ContextInterface() operation
is called, it invokes AlgorithmInterface() of its Strategy attribute.

Listing 3.28 Pseudo Code for Strategy Pattern - Context.h File
#include "Strategy.h"

typedef struct Context* ContextPtr;
typedef void (*ContextMethod)(ContextPtr spContext);

struct Context
{

ContextMethod ContextInterface;
StrategyPtr Strategy; /* aggregation */

};

/* constructor */
struct Context* Context_New(StrategyPtr spStrategy);

/* destructor */
void Context_Delete(ContextPtr context);

Listing 3.29 Pseudo Code for Strategy Pattern - Context.c File
#include "Context.h"

void ContextInterface(ContextPtr spContext)
{

/* let the concrete strategy perform the task */
spContext->Strategy->AlgorithmInterface();

}

/* constructor */
ContextPtr Context_New(StrategyPtr spStrategy)
{

ContextPtr spContext = (ContextPtr)malloc(sizeof(struct Context));
spContext->Strategy = spStrategy;
spContext->ContextInterface = ContextInterface;
return spContext;

}

/* destructor */
void Context_Delete(ContextPtr spContext)
{

free(spContext);
}

30

Implementation of the Strategy class and its concrete classes are very similar to that of Chain of
Responsibility Pattern since they share the same class diagram with different intent. Abstract and
concrete classes use the same structure and different virtual functions provide polymorphism.

Listing 3.30 Pseudo Code for Strategy Pattern - Strategy.h File
typedef struct Strategy* StrategyPtr;
typedef void (*VirtualMethod)();

struct Strategy
{

VirtualMethod AlgorithmInterface;
};

/* constructors */
StrategyPtr Strategy_New();
StrategyPtr ConcreteStrategyA_New();
StrategyPtr ConcreteStrategyB_New();
StrategyPtr ConcreteStrategyC_New();

/* destructor */
void Strategy_Delete(StrategyPtr spStrategy);

Listing 3.31 Pseudo Code for Strategy Pattern - Strategy.c File
#include "Strategy.h"

/* constructor */
StrategyPtr Strategy_New()
{

StrategyPtr spStrategy = (StrategyPtr)malloc(sizeof(struct Strategy));
return spStrategy;

}
/* destructor */
void Strategy_Delete(StrategyPtr spStrategy)
{
free(spStrategy);

}

Listing 3.32 Pseudo Code for Strategy Pattern - ConcreteStrategyA.c File
#include "Strategy.h"

/* special method for ConcreteStrategyA */
void AlgorithmA()
{

/* perform the task by using algortihm A*/
}

/* constructor */
StrategyPtr ConcreteStrategyA_New()
{

StrategyPtr spConcreteStrategyA = Strategy_New();
spConcreteStrategyA->AlgorithmInterface = AlgorithmA;
return spConcreteStrategyA;

}

31

Listing 3.33 Pseudo Code for Strategy Pattern - ConcreteStrategyB.c File
#include "Strategy.h"

/* special method for ConcreteStrategyB */
void AlgorithmB()
{

/* perform the task by using algortihm B*/
}
/* constructor */
StrategyPtr ConcreteStrategyB_New()
{

StrategyPtr spConcreteStrategyB = Strategy_New();
spConcreteStrategyB->AlgorithmInterface = AlgorithmB;
return spConcreteStrategyB;

}

Listing 3.34 Pseudo Code for Strategy Pattern - ConcreteStrategyC.c File
#include "Strategy.h"

/* special method for ConcreteStrategyC */
void AlgorithmC()
{

/* perform the task by using algortihm C*/
}
/* constructor */
StrategyPtr ConcreteStrategyC_New()
{

StrategyPtr spConcreteStrategyC = Strategy_New();
spConcreteStrategyC->AlgorithmInterface = AlgorithmC;
return spConcreteStrategyC;

}

Listing 3.35 Pseudo Code for Strategy Pattern - Client.c File
/* Client.c */
#include "Context.h"
int main()
{

/* Perform the given task by using ConcreteStrategyA */
StrategyPtr spConcreteStrategyA = ConcreteStrategyA_New();
ContextPtr spContext = Context_New(spConcreteStrategyA);
spContext->ContextInterface(spContext);
Strategy_Delete(spConcreteStrategyA);

/* Change the strategy and perform the same task by using ConcreteStrategyC */
StrategyPtr spConcreteStrategyC = ConcreteStrategyC_New();
spContext->Strategy = spConcreteStrategyC;
spContext->ContextInterface(spContext);
Strategy_Delete(spConcreteStrategyC);

/* Delete spContext*/
Context_Delete(spContext);

}

32

3.5 Decorator Pattern

Decorator Pattern is designed to add additional responsibility dynamically to an object. Subclassing
would solve the problem when the number of subclasses is acceptable. However, when this number
is impractical, it would be hard to handle. Instead of creating a subclass, including entire operations,
adding additional responsibilities at run time is the main motivation of this pattern.

Figure 3.6: Decorator Pattern Class Diagram [14]

Figure 3.6 shows the class diagram of the pattern. In this diagram, Component provides an interface
for objects that can have additional responsibilities at run-time. ConcreteComponent implements the
default behavior of the class. ConcreteDecorator adds new behaviors or states to default ones and
Decorator presents an interface for ConcreteDecorator.

Advantages and drawbacks of this pattern are discussed in [14]. Herein, only the implementation
process regarding C programming language is presented. To implement this pattern, necessary infor-
mation can be found in the first part of this section. In this case, additional responsibilities are given to
the concrete classes. Therefore, each has to create their special structure. One common point between
them is that they have to connect Component class with an aggregation relation.

Listings from 3.36 to 3.41 contain the pseudo codes to show the implementation process of the pattern
while Listing 3.42 gives an example for possible usage. As can be seen from the listings, "inher-
itance without additional states" method is used to set up the relation between the Component and
ConcreteComponent classes. Decorator and ConcreteDecorator classes, on the other hand, require
using "inheritance with additional states" method. While implementing this method, Decorator.c file
may not be used in order not to make code duplication. Then, the declarations of concrete decorators’
constructors and destructors are given in Component.h file.

33

Listing 3.36 Pseudo Code for Decorator Pattern - Component.h File

typedef struct Component* ComponentPtr;
typedef void (*VirtualMethod)(ComponentPtr spComponent);

struct Component
{

int variable_1;
int variable_2;
VirtualMethod Operation;

};

/* constructor */
ComponentPtr Component_New();
ComponentPtr ConcreteComponent_New();

/* destructor */
void Component_Delete(ComponentPtr spComponent);

Listing 3.37 Pseudo Code for Decorator Pattern - Component.c File
#include "Component.h"

/* constructor */
ComponentPtr Component_New()
{

ComponentPtr spComponent = (ComponentPtr)malloc(sizeof(struct Component));
return spComponent;

}

/* destructor */
void Component_Delete(ComponentPtr spComponent)
{

free(spComponent);
}

Listing 3.38 Pseudo Code for Decorator Pattern - ConcreteComponent.c File
#include "Component.h"

/* base operation */
void FundamentalOperation(ComponentPtr spComponent)
{

/* perform fundemantal operation */
}

/* constructor */
ComponentPtr ConcreteComponent_New()
{

ComponentPtr spComponent = Component_New();
/* initialization */
spComponent->variable_1 = 0;
spComponent->variable_2 = 0;
spComponent->Operation = FundamentalOperation;
return spComponent;

}

34

Listing 3.39 Pseudo Code for Decorator Pattern - Decorator.h File
#include "Component.h"

typedef struct Decorator* DecoratorPtr;
typedef struct ConcereteDecorator* ConcereteDecoratorPtr;

struct Decorator
{

int variable_1;
int variable_2;
VirtualMethod Operation;
ComponentPtr spComponent; /* aggregation */

};

/* constructors */
DecoratorPtr Decorator_New();
ConcereteDecoratorPtr ConcereteDecorator_New();

/* destructors */
void Decorator_Delete(DecoratorPtr spDecorator);
void ConcereteDecorator_Delete(ConcereteDecoratorPtr spConcereteDecorator);

/* added state */
int getVariable_3(ConcereteDecoratorPtr spConcereteDecorator);

Listing 3.40 Pseudo Code for Decorator Pattern - Decorator.c File
#include "Decorator.h"

/* constructor */
DecoratorPtr Decorator_New()
{

DecoratorPtr spDecorator = (DecoratorPtr)malloc(sizeof(struct Decorator));
spDecorator->spComponent = ConcreteComponent_New();
return spDecorator;

}

/* destructor */
void Decorator_Delete(DecoratorPtr spDecorator)
{

Component_Delete(spDecorator->spComponent);
free(spDecorator);

}

As can be observed from Listing 3.38, Component structure has two variables and they are initialized
when the structure is created. If the user calls Operation() method, these attributes are calculated ac-
cording to the FundamentalOperation() function. On the other hand, ConcreteDecorator has additional
one parameter as can be seen from Listing 3.41. It uses the same base operation, but performs extra
calculations for variable_3. To do this, fundamental operation, defined in ConcreteComponent.c file,
is used with the help of the aggregation relation between the Component and Decorator interfaces.

35

Listing 3.41 Pseudo Code for Decorator Pattern - ConcereteDecorator.c File
#include "Decorator.h"

struct ConcereteDecorator
{

int variable_1;
int variable_2;
VirtualMethod Operation;
ComponentPtr spComponent; /* aggregation */
int variable_3; /* added state */

};

/* added behavior */
int AddedBehavior()
{

/* perform some added operation */
}

/* virtualMethod for ConcreteComponent */
void ConcreteDecoratorOperation(ConcereteDecoratorPtr spConcereteDecorator)
{

/* base operation */
spConcereteDecorator->spComponent->Operation((ComponentPtr)spConcereteDecorator);
/* added behavior */
spConcereteDecorator->variable_3 = AddedBehavior();

}

/* constructor */
ConcereteDecoratorPtr ConcereteDecorator_New()
{

ConcereteDecoratorPtr spConcereteDecorator =
(ConcereteDecoratorPtr)malloc(sizeof(struct ConcereteDecorator));

spConcereteDecorator->spComponent = (ComponentPtr)ConcreteComponent_New();
spConcereteDecorator->variable_3 = 0;
spConcereteDecorator->Operation = (VirtualMethod)ConcreteDecoratorOperation;
return spConcereteDecorator;

}

/* destructor */
void ConcereteDecorator_Delete(ConcereteDecoratorPtr spConcereteDecorator)
{

free(spConcereteDecorator);
}

/* return added state */
int getVariable_3(ConcereteDecoratorPtr spConcereteDecorator)
{

return spConcereteDecorator->variable_3;
}

Providing same interface for Component and Decorator classes requires extra attention here. Like
shown in Listing 3.41, ConcreteDecoratorOperation() gives spConcreteDecorator as an input to the
base function so that the results are written into spConcreteDecorator, not (spConcreteDecorator ->
spComponent), although it uses the (spConcreteDecorator->spComponent)’s operation actually. By
this way, user does not need to know the internal structure of concrete classes, as can be seen from
Listing 3.42

36

Listing 3.42 Pseudo Code for Decorator Pattern - Client.c File
/* Client.c */
#include "Decorator.h"
int main()
{

int var1, var2, var3;

/* Perform the given task by using ConcreteDecorator */
DecoratorPtr spConcereteDecorator = (DecoratorPtr)ConcereteDecorator_New();
spConcereteDecorator->Operation((ComponentPtr)spConcereteDecorator);

/* get the results */
var1 = spConcereteDecorator->variable_1;
var2 = spConcereteDecorator->variable_2;
var3 = getVariable_3((ConcereteDecoratorPtr)spConcereteDecorator);
ConcereteDecorator_Delete(spConcereteDecorator);
...
...

return 0;
}

37

38

CHAPTER 4

EXPERIMENTAL WORK

The purpose of the study is to show implementation of some design patterns in C programming lan-
guage and to investigate the effects of these design patterns on performance and maintainability con-
cern of the software. In accordance with the purpose of this study, the following questions are investi-
gated:

1. How can design patterns be implemented by using C programming language?

2. Does the usage of design patterns in C programming language increase the software maintain-
ability?

3. Does the usage of design patterns in C programming language decrease the software perfor-
mance efficiency critically?

Answer for the first question was presented in Chapter 3. To give the explicit answers for the rest of the
research questions, a quantitative research model is performed. This study focuses on some real-time
embedded software codes prepared by ASELSAN INC. The results are expected to be generalizable
to all C codes.

The research design, procedures, data collection, and analysis techniques used in the study will be
explained in this section. After the descriptions of the software will be given, methodology of the ex-
periments will be stated. In that section, validity and reliability issue of the research will be underlined.
Then, in subsequent section, the instruments used in the study will be stated. Finally, experimental pro-
cess and results will be discussed in the Experimental Process section.

4.1 Description of the Software

In computer science, a library is a compilation of an application performing a specific task. It has a
well-defined interface so that can be invoked by independent programs. Main difference between a
piece of code and a library is that libraries are organized in order to be reused by different programs.
The user only knows the interface, not the details of the behavior [37].

ASELSAN INC has its own libraries. Each library is given a responsibility needed for more than one
project. Project can be thought as the collection of libraries and control tasks connecting the libraries
and sharing the responsibilities.

In the scope of this thesis, a study on two libraries of ASELSAN INC, written in C, is conducted. Due

39

to the company secrecy, the details of the libraries will not be given here. The applications used for
this purpose will be referred as LibraryA and LibraryB.

4.2 Experimental Methodology

Applying the method given in Chapter 3, majority of design patterns can be implemented easily. Four
of them are given a place in this study. The reason behind this choice will be stated here. Then the
steps followed during the experimental work will be shared.

Of the first consideration, libraries need well-defined interfaces independent from their behaviors.
Information special to the library must be hidden from users. According to the background given in
Chapter 3, this need addresses the First Class ADT Pattern. This pattern improves information hiding
and helps to create interfaces independent from their users. Structures specific to the library can be
hidden from the user with the help of this pattern. Therefore, in order to create reusable libraries, using
First Class ADT Pattern for both applications is not coincident.

Another common necessity of the libraries can be thought as solving the additional responsibilities
problem. To illustrate, Project X expects from two variables after the execution of the library, while
Project Y waits for three variables. In ASELSAN INC, to solve this problem, biggest set of the
variables are calculated without taking into account the requirements of the users. It is true in one
aspect that this makes the library independent from the user and avoids from putting if statements for
each project. On the other hand, unnecessary calculations can be performed for some projects. In this
study, Decorator Pattern is proposed as a solution to this issue. As stated in Chapter 3, this pattern is
used to add extra responsibilities at run-time. That is to say, instead of preparing an output structure
with biggest set of variables, smallest set with essential variables for all projects, can be used. Then,
with the help of Decorator Pattern, additional states or behaviors can be added at run-time.

Chain of Responsibility and Strategy Patterns are very helpful in terms of reducing the conditional
statements. Degradation of code complexity can be achieved by using these patterns in accordance
with their purposes stated in Chapter 3.

Among the libraries in ASELSAN INC, two are selected by taking into account their needs to design
patterns. Same patterns are preferred to be used so that second library can echo the confirmation of the
claim.

In order to build the assertion of the study on firm ground, exactly same procedures are used on
two libraries. First of all, existing version of the codes are analyzed in terms of MI, A-B timing,
and memory utilization. Then, each library is subjected to four design patterns one by one. For each
implementation, original code is taken as a base. MI, A-B timing, and memory utilization of the pattern
applied version of the codes are analyzed again. As a final step, all patterns are applied together to
observe the effects of design patterns on the software under investigation.

Validity and Reliability Issues of the Study In this study, a quantitative research model is used.
Therefore, validity and reliability issue of a quantitative research is taken into account.

For this type of study, internal validity is the ability to control other variables [40]. It means that obser-
vations are actually the result of the experimental treatment. In this study, internal validity is improved
by providing that same procedure is followed both before and after design pattern implementations.
There is no difference between the instruments and experimental set up for two cases. The difference

40

between the metrics gives only the effect of design patterns.

Together with its strong internal validity, external validity of the study is also high. External validity
refers to generalizatibility of the experiement [40]. The procedure followed in this study is not machine
dependent. The same results can be observed by using different real-time operating systems, or code
can be developed with different development tools. Moreover, changing the static analysis tool would
not create any difference between the results.

For the MI calculation and memory usage, data is the code itself. These are the measurements that
are not hardware dependent. The only measurement that is affected by environmental change is A-B
timing. Therefore, this analysis deserves extra attention for this study. In order to minimize the chances
of machine malfunction and maintain validity and reliability of the study, the same measurements are
taken many times until the confident stopping rule is satisfied [36]. As stopping rule, achieving 95%
confidence level with ±0.1 confidence intervals is used. Then, average of the results is noted as the
performance of the software.

For the performance measurement, the data given to the code is selected randomly among the test
vectors. These test vectors are prepared by using data collected on real platform and used for the
library test in ASELSAN INC. That is to say, random sampling is used for this study in order to show
that the results do not depend on the data supplied to the code. Moreover, the same data is used both
before and after implementation phase to control the effect of data on the performance measurements.

Another important point that must be stated here is that since the codes are library applications, there
are different projects using these codes. Projects set the input parameters of the library in accordance
with their system specifications. It means that, with the same data set, each project can get different
results from the library due to the constraints of the projects. In this study, same data sets are run for
three different projects. For Chain of Responsibility, Strategy and First Class ADT Patterns, changing
the limit of the library is nothing but feeding the algorithm with different data sets. However, Decorator
Pattern changes its behavior according to the project, since projects can add additional responsibilities
at run-time. Therefore, in this pattern representation and the case for all patterns applied, graphs and
tables are divided into three sub parts. By this way, the effects of Decorator Pattern will be elaborated.

Despite all these precautions, the validity of this study will still be limited by the reliability of the
instruments. Instruments used in the study will be described in following section.

4.3 Instruments

In this study, code is developed on Wind River Workbench development tool [34], compiled by using
Vxworks operating system and run on the CPU-7448 processor card developed by ASELSAN INC. By
using the run-time analysis tools of Wind River Workbench, information is collected for performance
analysis. The obtained results are analyzed by using Mathworks Matlab. Then, maintainability analysis
of developed code is done by using Understand for C/C++ tool. The general description and features
of these tools will be given in this section.

VxWorks is a real time operating system which is developed for use in embedded systems. Work-
bench is an integrated development environment (IDE) developed by WindRiver Company and facili-
tates managing and building projects, running, debugging, and monitoring VxWorks applications [39].
Workbench consists of the following components: [34]

41

X Eclipse

– Eclipse platform 3.3.1

– C/C++ Development Tooling

– Target Management/Remote System Explorer

– Device Debugging

X Project System

X Build System

X Index-based global text search-and-replace

X Wind River compilers

– Wind River Compiler for VxWorks

– Wind River GNU Compiler

X Debugger

– Target debugging agents for Wind River Linux

– Target debugging agent for VxWorks

X Shell environments

X Simulators

– VxWorks Simulator

– QEMU open source emulator

X Configuration tools

– VxWorks Kernel Configurator

– Linux Kernel and User Space Configuration Tools

– Linux File System Configurator

X Run-time visualization and analysis tools

– System Viewer

– Performance Profiler

– Memory Analyzer

– Data Monitor

– Code Coverage Analyzer

– Function Tracer

In this study, System Viewer and Memory Analyzer tools are used. In order to measure the A-B timing,
wvEvent() function of VxWorks library is used and the difference between the two wvEvent() function
calls is observed on Wind River System Viewer Event Graph. The data is collected by using CPU7448
processor card with 166.66 MHz clock rate. The results, gathered by System Viewer, is plotted by

42

using Mathworks Matlab which is a high level language and an interactive development environment
(IDE) for programming, numeric calculations and visualizations [38].

Memory usage is observed by using Memory Analyzer tool. For all design pattern implementation
given in Chapter 3, dynamic memory allocation is used. On the other hand, dynamic memory allo-
cation is not preferred since it can fragment the memory. In ASELSAN INC, as a principle, memory
needed during the execution of the library is allocated by the user at one time and given to the library.
In order to hold by this principle, memory, feeding the library at the outset, is used for the design
pattern implementation. This ensures that memory fragmentation is not allowed during the experi-
mental process. Therefore, in the scope of memory utilization, only maximum memory need during
the execution of the libraries is considered.

For MI calculation, Understand for C/C++ tool is used. Understand is a static code analysis software
tool produced by SciTools. It is used for reverse engineering, documentation and metrics measurement
purposes. Understand for C/C++ is an IDE designed to help, maintain and understand large amounts
of C and C++ source code [32]. For this study, basic features of the tool are not sufficient, so a plug-in
is used to measure MI of the examined codes [35].

4.4 Experimental Process

In this study, experimental process focuses on two software quality metrics, maintainability and per-
formance efficiency. For performance efficiency, software is analyzed in terms of both time behavior
and resource utilization.

Explanation of MI Tables To determine maintainability level of the software, following MI calcu-
lation, proposed in [9], is used:

MI = 171 − 5.2 ∗ ln(HV) − 0.23 ∗CC − 16.2 ∗ ln(LOC) + 50.0 ∗ sin(
√

2.46 ∗COM)

In this section, while presenting MI, following abbreviations are used in the tables:

HV : 5.2 ∗ ln(HV)
CC : 0.23 ∗CC
LOC : 16.2 ∗ ln(LOC)
COM : 50.0 ∗ sin(

√
2.46 ∗COM)

Among these factors, HV and CC simply indicate the difficulty of the program to write or understand
as stated in Chapter 2. Any decrease in these factors is good in terms of maintainability. Another factor
whose decrease results in an increase for maintainability is LOC. Programs with larger LOC values
need more effort to develop. High LOC is used as a sign of low cohesion for this formula, although it
is not always the case. That is to say, as LOC increases, MI decreases. Therefore, COM is only factor
contributes to the MI here. All tables showing the maintainability analysis are interpreted according to
these opinions.

In the tables showing the maintainability analysis, right most columns indicate the change as a per-
centage of the original code’s MI. The leftmost column contains the short version of the following
statements:

43

LibraryX : Original Code
LibraryX+CoR : Chain of Responsibility Pattern applied version
LibraryX+Strategy : Strategy Pattern applied version
LibraryX+Dec : Decorator Pattern applied version
LibraryX+FCADT : First Class ADT Pattern applied version
LibraryX+CoR+Strategy : Chain of Responsibility and Strategy Pattern applied version
LibraryX+CoR+Strategy+Dec: Chain of Responsibility, Strategy and Decorator applied version
LibraryX+AllPatterns : Four patterns applied together version

Explanation of ABTM Figures The results of A-B timing are introduced as a graph showing both
the values of original code and pattern applied code. Each graph, named as "ABTM Measurement of
... Pattern", has the following common features unless otherwise indicated.

• Test vectors, mature data sets for the test of the library, are numbered starting from 1. X axis
shows the index of these test vectors.

• Y axis indicates the time passed to execute the given test vector. Declared time is the average
time of iterations that are repeated until the result falls into the confident interval range.

• Time measurement unit is given as milliseconds.

• "o" marked-red points denote the execution time of original code. "Original Code" legend is
used to refer the result of the code that is not applied any design pattern.

• "x" marked-blue points are used to indicate the execution time of the code subjected to specified
pattern. "Pattern Applied Code" legend is used to cite this meaning.

• A-B Timing graphs contain three parts. First one-third indicates that library is used according
to the Project-1 limits. Middle of the graph illustrates the results of the library usage in Project-
2 format while the last-third is arranged to show the usage format of Project-3. For Chain of
Responsibility, Strategy and First Class ADT Patterns, division of the graphs does not make any
sense. However, graphs of Decorator Pattern and the case when all patterns are applied together
are divided into three parts visually to show the effects.

Explanation of Memory Utilization Tables In the scope of resource utilization, memory usage is
analyzed. Amount of memory retained during the execution is noted and presented as a table. For each
pattern, original code and pattern applied version of it are shared together. Same abbreviations with
the MI tables are used. To show the effect of project constraints, table of Decorator Pattern has also
following notations:

LibraryX+Dec(Project-1) : Decorator Pattern applied version used with Project-1 parameters
LibraryX+Dec(Project-2) : Decorator Pattern applied version used with Project-2 parameters
LibraryX+Dec(Project-3) : Decorator Pattern applied version used with Project-3 parameters

Similarly, when all patterns are applied together, extra abbreviations needed are as follows:

44

LibraryX+AllPatterns(Project-1): Four patterns applied version used with Project-1 parameters
LibraryX+AllPatterns(Project-2): Four patterns applied version used with Project-2 parameters
LibraryX+AllPatterns(Project-3): Four patterns applied version used with Project-3 parameters

In these tables, difference is indicated in the right most columns as percentage of the extra memory
needed for design pattern. In this representation, if the memory demand of the code decreases with
design pattern, negative sign is used.

To show the results, this section is divided into two main parts as LibraryA Tests and LibraryB Tests.
Each main part includes the results of four design pattern implementations. These results are presented
according to the remarks stated above.

4.4.1 LibraryA Tests

This section includes the tests conducted on LibraryA and contains four parts for each design pattern
and one for all of them. For these tests, 60 test vectors are selected randomly among the data sets.
However, ABTM figures show 180 indexes since it covers three different projects.

4.4.1.1 Chain of Responsibility Pattern

In this test, a code segment containing an if-statement is rearranged by using Chain of Responsibility
Pattern. The aim of these statements is to determine the analysis method of the variables given as an
input and set necessary parameters at the end. Starting from the first case, when the condition is not
satisfied, it is given to next statement to check the variables according to its prerequisite. Chain of
Responsibility Pattern is used to allocate these conditional statements and wrap the calculations on
different functions.

Maintainability Analysis Table 4.1 shows the maintainability analysis of Chain of Responsibility
Pattern as a part of LibraryA tests. As can be observed from the table, pattern yields to decrease
in average HV, average CC, average LOC, and average COM ratio. Among these parameters only
decrease in COM affects maintainability in a worse way. Other decline strengthens the maintainability.
As a result of these degradations, MI increases.

The reason can be explained as follows: Chain of Responsibility Pattern breaks the conditional state-
ments and creates a new function for each of these statements. As a consequence, complexity and HV
of the code decrease. In addition, increase in the number of functions leads average LOC decreases
although LOC increases actually. Consequently, despite the small decrease in COM, maintainability
of LibraryA rises at a rate of 4.76 percent with this pattern implementation.

Table 4.1: LibraryA Tests - MI of Chain of Responsibility Pattern

MI HV CC LOC COM Change(%)
LibraryA 100.26 40.45 2.45 70.34 42.50 -
LibraryA+CoR 105.03 39.30 1.96 66.88 42.18 4.76

45

A-B Timing Figure 4.1 illustrates the execution time of the test vectors prepared for the algorithm.
As can be shown from the figure, Chain of Responsibility Pattern affects the timing of LibraryA very
slightly. Maximum overhead is recorded as 5.5681 ∗ 10−5 msec. The percentage of this duration to the
execution time of the original code is 2.3690%. Small difference between the original code and pattern
applied version can be thought as the result of the function call overhead.

Figure 4.1: LibraryA Tests - ABTM Measurement of Chain of Responsibility Pattern

Memory Utilization Table 4.2 shows the memory utilization of the Chain of Responsibility Pattern.
As stated in class diagram given in Chapter 3, each handler in the chain contains a successor and a
function pointer to be overwritten. 8 bytes are used for these pointers. This makes 24 bytes for three
handlers. One chain is located in one function and one for the other for this test. As a result, extra 48
bytes are consumed.

Even if design pattern is not used, client has to have 8804072 bytes in order to use this library. 48 bytes
are 0.000545% of this amount. Therefore, it does not hurt to say that Chain of Responsibility Pattern
does not pose a threat in terms of memory utilization for LibraryA application.

Table 4.2: LibraryA Tests - Memory Utilization of Chain for Responsibility Pattern

Memory Usage(byte) Additional Memory(%)
LibraryA 8804072 -
LibraryA+CoR 8804120 0.000545

4.4.1.2 Strategy Pattern

In this test, Strategy Pattern is used to separate the switch cases in the function whose responsibility
is sorting. One concrete strategy class per each switch case is created. Instead of calling the sorting
function with a parameter indicating the sorting method, a concrete strategy class carrying related
sorting strategy is invoked.

46

Maintainability Analysis Table 4.3 shows that Strategy Pattern adds up the MI of LibraryA. This
increase is the result of the decrease in HV, CC, and LOC. The reason is similar to that of Chain
of Responsibility Pattern. Removing the conditional statement leads a fall in complexity of code.
Increasing number of files and functions not only facilitates to this fall, but also decreases average
LOC. Combination of small degradation in HV and CC with the high one in LOC dominates the small
decrease of COM. As a result, MI of the LibraryA increases with the addition of Strategy Pattern at a
rate of 4.17 percent.

Table 4.3: LibraryA Tests - MI of Strategy Pattern

MI HV CC LOC COM Change(%)
LibraryA 100.26 40.45 2.45 70.34 42.50 -
LibraryA+Strategy 104.44 39.43 2.00 67.31 42.18 4.17

A-B Timing Instead of calling a function with a parameter indicating the sorting method, calling the
concrete strategy class operation is what this pattern offers. Timing overhead related to the usage of
design pattern is expected to be small since both methods are predicated on function call. Figure 4.2
illustrates the execution time of the test vectors prepared for the algorithm and validates this expecta-
tion. As can be seen from the figure, there is no significant difference between the original code and
pattern applied one. Maximum difference reported on graph is 1.8252 ∗ 10−5 msec and it is 1.9846%
of the time passed to execute the original code.

Figure 4.2: LibraryA Tests - ABTM Measurement of Strategy Pattern

Memory Utilization Table 4.4 shows the memory utilization before and after Strategy Pattern im-
plementation. As can be seen, Strategy Pattern needs additional 24 bytes for LibraryA tests. Strategy
structure only holds the pointer to the AlgorithmInterface() virtual function and uses only 4 bytes.
Context structure includes a pointer for sorting structure and a pointer to ContextInterface() function.
8 bytes are reserved for these pointers. Additional 12 bytes are used as input parameters of the sorting
methods. 24 bytes are very small compared to the original need of the library and only 0.000273% of
it. This result makes Strategy Pattern secure in terms of memory utilization.

47

Table 4.4: LibraryA Tests - Memory Utilization of Strategy Pattern

Memory Usage(byte) Additional Memory(%)
LibraryA 8804072 -
LibraryA+Strategy 8804096 0.000273

4.4.1.3 First Class ADT Pattern

This pattern is used to hide the structures of the library from its users so that coupling between them
decreases. Input and output structures are preserved and get-set operations are presented to the user.

Maintainability Analysis As stated in the Experimental Methodology part, First Class ADT Pattern
is just the right thing for library applications. The result shown in Table 4.5 confirms this statement.
High increase in MI is due to the decrease in HV, CC and LOC. The reason behind these declines is the
increase in number of functions. Output and input structures of the library are covered by using this
pattern. As a result, getting or setting parameters necessitate creating new functions. Direct access is
not allowed anymore. Coupling between the library and its users is decreased. All these improvements
reflect positively on MI.

Table 4.5: LibraryA Tests - MI of First Class ADT Pattern

MI HV CC LOC COM Change(%)
LibraryA 100.26 40.45 2.45 70.34 42.50 -
LibraryA+FCADT 112.39 37.49 1.46 61.52 41.86 12.1

A-B Timing Internal design of the code is not changed during this pattern implementation. Makeup
of the library is redesigned so that low coupling is established between the requesters and provider.
The only overhead here is setting the input and getting the output parameters through function calls.
Test results shown in Figure 4.3 include the preparation time of the input structure and copying time
of the output structure. Maximum lost on the graph is 4.7122 ∗ 10−5 msec and it is 2.4744% of the
execution time of the original code. Therefore, it can be said that performance of the LibraryA does
not place at risk with First Class ADT Pattern implementation.

48

Figure 4.3: LibraryA Tests - ABTM Measurement of First Class ADT Pattern

Memory Utilization This pattern does not need additional memory since it does not affect the inter-
nal structure of the library.

Table 4.6: LibraryA Tests - Memory Utilization of First Class ADT Pattern

Memory Usage(byte) Additional Memory(%)
LibraryA 8804072 -
LibraryA+FCADT 8804072 0

4.4.1.4 Decorator Pattern

Decorator Pattern is used to add additional responsibility at run-time. Output structure is rearranged
as the smallest set of variables needed for all projects. Calculations and variables which are special
to one project are excluded from the main function of the program. Instead of this, concrete classes
are created for those extra features. Projects call one of the concrete constructors depending on their
demand from the library. Extra parameters are gotten with a function call since the internal structures
of the concrete classes are abstracted from the user.

In this test, Project-1 and 3 use different concrete classes each of which has one extra parameter to the
default output structure. Extra calculation is performed for both of them. Project-2 uses only default
set and does not need additional behavior.

Maintainability Analysis According to the result shown in Table 4.7, all changes implemented in
the scope of Decorator Pattern eventuate in increase of MI. In addition to the small decrease in HV and
CC, LOC decrease with the additional functions improves the maintainability about 8.69%.

49

Table 4.7: LibraryA Tests - MI of Decorator Pattern

MI HV CC LOC COM Change(%)
LibraryA 100.26 40.45 2.45 70.34 42.50 -
LibraryA+Dec 108.97 38.36 1.73 64.12 42.18 8.69

A-B Timing Figure 4.4 shows the execution time of the library before and after Decorator Pattern
implementation. A closer look reveals that at some points, blue points have smaller time than red ones.
This means that, excluding the calculation not needed results small improvement in the performance.
If data set does not already pass through excluded lines, extra function call can affect the performance
a little bit. At worse case, max overhead on the graph is 4.7850 ∗ 10−5 msec and it is the 2.5445% of
the execution time of the original code with the same data set.

Figure 4.4: LibraryA Tests - ABTM Measurement of Decorator Pattern

Memory Utilization With the exclusion of the unnecessary behaviors, some memory gain is recorded.
Project-1 and 3 gain 1552 bytes while Project-2 saves 4000 bytes. Percentages of these amounts are
not too high, as can be shown from Table 4.8. However, main concern of this study is showing that
design patterns do not demand considerable memory rather than providing a remarkable profit. By
looking at the Table 4.8, it can be said that this claim is satisfied.

Table 4.8: LibraryA Tests - Memory Utilization of Decorator Pattern

Memory Usage(byte) Additional Memory(%)
LibraryA 8804072 -
LibraryA+Dec(Project-1) 8802520 -0.0176
LibraryA+Dec(Project-2) 8800072 -0.0454
LibraryA+Dec(Project-3) 8802520 -0.0176

50

4.4.1.5 All Patterns

This test is prepared to observe the consequences of the design patterns when they are applied together.

Maintainability Analysis Table 4.9 shows the effect of the MI when the patterns are applied con-
secutively. The result shows that applying patterns together increase the maintainability. Since all of
the patterns are reported as maintainability increase pattern in the previous sections, result is not sur-
prising. However, as expected from the MI formula, the increase is neither linear nor the cumulative
of all improvements.

Chain of Responsibility and Strategy Patterns break the conditional statements in accordance with
their purposes and share the responsibilities among different functions rather than simple switch cases.
Decorator Pattern cleans the project special calculations from the main function of the library and
keeps them into concrete classes which do not have interface with the user. Finally, First Class ADT
gives a new form to the framework of the library and decreases coupling to its users. At the end of
these efforts, as can be seen from Table 4.9, very appreciable increase is recorded as 18.04% of the MI
of the original code.

Table 4.9: LibraryA Tests - MI of All Patterns

MI HV CC LOC COM Change(%)
LibraryA 100.26 40.45 2.45 70.34 42.50 -
LibraryA+CoR 105.03 39.30 1.96 66.88 42.18 4.76
LibraryA+CoR+Strategy 108.13 38.50 1.68 64.54 41.86 7.85
LibraryA+CoR+Strategy+Dec 113.48 37.05 1.33 60.31 41.17 13.19
LibraryA+AllPatterns 118.35 35.78 1.08 56.61 40.82 18.04

A-B Timing When the slight increases in execution time are taken into account, two questions arise.
One of them is that whether these small changes cumulate when all of the patterns are applied together.
Regarding to the answer of this question, second one is whether the consequence is acceptable or not.

Figure 4.5: LibraryA Tests - ABTM Measurement of All Patterns

51

Figure 4.5 gives an explicit answer to these questions. Maximum difference in this measurement is
reported as 6.7632 ∗ 10−5 msec and it is 2.8775% of the execution time of the original code. This
means that, the increase is neither cumulative nor threatening.

Table 4.10 presents a summary about the maximum overhead of the patterns. Since each pattern
affects different part of the code, the result highly depends on the characteristic of the data given to
the code. That is to say, maximum overhead of all patterns is not the sum of maximum overhead of
each pattern. Among these patterns Strategy has the smallest overhead and Decorator has the biggest.
However, neither of them puts the performance efficiency at a risk. Even if they are applied together,
the overhead is not too high to be unacceptable.

Table 4.10: LibraryA Tests - Maximum Overhead of All Patterns

Max Difference(msec) Max Difference(%)
LibraryA+Strategy 1.8252 ∗ 10−5 1.9846
LibraryA+CoR 5.5681 ∗ 10−5 2.3690
LibraryA+FCADT 4.7122 ∗ 10−5 2.4744
LibraryA+Dec 4.7850 ∗ 10−5 2.5445
LibraryA+AllPatterns 6.7632 ∗ 10−5 2.8775

Memory Utilization Same questions are valid in terms of memory utilization too. Table 4.11 shows
that only extra memory consumption is demanded by Chain of Responsibility and Strategy Patterns.
Percentages of these utilizations are very small compared to the need of original code. First Class ADT
Pattern does not require additional memory and Decorator makes an improvement for this tests. At the
end, in spite of other patterns, users still have the memory gain due to the Decorator Pattern.

It must be emphasized that the purpose of the Decorator Pattern is not recording gains from memory
or timing. This decrease in memory consumption of the library is not always the case. The aim here is
showing that performance efficiency is not affected severely due to design patterns. Table 4.11 corrects
this claim for this case study conducted on LibraryA.

Table 4.11: LibraryA Tests - Memory Utilization of All Patterns

Memory Usage(byte) Additional Memory(%)
LibraryA 8804072 -
LibraryA+Dec(Project-1) 8802520 -0.0176
LibraryA+Dec(Project-3) 8802520 -0.0176
LibraryA+Dec(Project-2) 8800072 -0.0454
LibraryA+FCADT 8804072 0
LibraryA+Strategy 8804096 0.000273
LibraryA+CoR 8804120 0.000545
LibraryA+AllPatterns(Project-1) 8802592 -0.0168
LibraryA+AllPatterns(Project-3) 8802592 -0.0168
LibraryA+AllPatterns(Project-2) 8800144 -0.0446

52

4.4.2 LibraryB Tests

This section is prepared to share the results of the experiments conducted on LibraryB and contains
four parts for each design pattern and one for all of them. For these tests, 25 test vectors are selected
randomly among the data sets. However, ABTM figures show 75 indexes since it covers three different
projects.

4.4.2.1 Chain of Responsibility Pattern

In LibraryB application, when the data is given to the algorithm, a calculation is performed first. Then
the data is send to an analysis function according to the result of this calculation. If the prerequisite
of first analysis is not satisfied, it is forwarded to the next one. This mechanism is provided by using
if-statement. In this test, Chain of Responsibility Pattern is offered instead of conditional statement.

Maintainability Analysis The effect of Chain of Responsibility Pattern on MI of LibraryB is recorded
as 3.02%, as can be seen from Table 4.12. The reason of this increase is similar to that of LibraryA.
Separating if statement into different files leads to decreases in HV, CC and LOC. Despite small de-
crease in COM, MI increases.

Table 4.12: LibraryB Tests - MI of Chain of Responsibility Pattern

MI HV CC LOC COM Change(%)
LibraryB 98.97 39.33 2.29 69.26 38.85 -
LibraryB+CoR 101.96 38.57 1.98 66.92 38.42 3.02

A-B Timing Figure 4.6 shows the effect of Chain of Responsibility Pattern on A-B timing. As can
be seen from the figure, the difference is not distinguishable. Maximum overhead is 1.4270∗10−5 msec
and it is 0.0607% of the A-B timing of the original code. When function call overhead is considered,
this slight change seems logical.

Figure 4.6: LibraryB Tests - ABTM Measurement of Chain of Responsibility Pattern

53

Memory Utilization This pattern needs extra 24 bytes for LibraryB implementation. Each handler
holds a virtual function pointer and a pointer for its successor. This makes 8 bytes for each handler.
Three handlers are used for this chain. As a result, 24 bytes are consumed. As stated on the table, the
ratio between the memory usage of the library and this consumption is 0.00243%. Therefore, there is
no hesitation to say that Chain of Responsibility Pattern does not create a threat in terms of memory
utilization for this case study.

Table 4.13: LibraryB Tests - Memory Utilization of Chain for Responsibility Pattern

Memory Usage(byte) Additional Memory(%)
LibraryB 988224 -
LibraryB+CoR 988248 0.00243

4.4.2.2 Strategy Pattern

Similar to LibraryA, Strategy Pattern is used to reorganize a sorting function in LibraryB. This function
decides which sorting method is performed according to the number given as input. Four if statements
carry four different sorting types. For Strategy Pattern implementation, each of these methods is de-
fined as a concrete class inherited from the abstract Strategy interface. Depending on the chosen
concrete class, different methods are performed.

Maintainability Analysis Removing conditional statement and creating functions, whose respon-
sibilities are well-defined, decrements HV, CC and LOC factors on the formula. Despite the slight
decrease in COM, 3.63% gain is recorded with the help of Strategy Pattern as can be seen from the
Table 4.14.

Table 4.14: LibraryB Tests - MI of Strategy Pattern

MI HV CC LOC COM Change(%)
LibraryB 98.97 39.33 2.29 69.26 38.85 -
LibraryB+Strategy 102.56 38.33 1.88 66.20 37.98 3.63

A-B Timing In the A-B Timing measurement of Strategy Pattern, no critical overhead is recorded.
As can be seen from Figure 4.7, execution time of the original code and pattern applied code is very
close to each other. Maximum difference between blue and red points on the graph is 3.4183 ∗ 10−6

msec. This time is the 0.0036% of the execution time of the original code. This small increase can be
explained as the overhead of function call rather than performing the sorting in a conditional statement.

54

Figure 4.7: LibraryB Tests - ABTM Measurement of Strategy Pattern

Memory Utilization For this pattern implementation, four concrete classes are created. They are all
given to the same pointer since they are not used together. One Strategy class needs only 4 bytes to
hold a pointer to its virtual function. Context class, on the other hand, requires two pointers one of
which is for ContextInterface() function and the other one is for Strategy class. This means that 12
bytes are consumed by the essential features of the pattern. Additional 20 bytes are needed by Context
structure to give to the sorting methods. Like shown in Table 4.15, extra 32 bytes is only 0.0032% of
the memory utilization of the original code.

Table 4.15: LibraryB Tests - Memory Utilization of Strategy Pattern

Memory Usage(byte) Additional Memory(%)
LibraryB 988224 -
LibraryB+Strategy 988256 0.0032

4.4.2.3 First Class ADT Pattern

First Class ADT Pattern is used to hide the structures of the library from its users. Only necessary
functions are presented to set input and get output structures.

Maintainability Analysis This pattern confirms its necessity for library applications one more time
for this case study. As can be seen from Table 4.16, maintainability shows an increase at the rate
of 11.56%. This increase is the result of decrease in HV, CC and LOC. Saving the structure inside
requires presenting get and set options to the client for essential parameters. Small functions, whose
responsibility is only giving an access to the user, decrease the average HV, CC and LOC of the code.

55

Table 4.16: LibraryB Tests - MI of First Class ADT Pattern

MI HV CC LOC COM Change(%)
LibraryB 98.97 39.33 2.29 69.26 38.85 -
LibraryB+FCADT 110.41 36.46 1.39 60.71 37.98 11.56

A-B Timing Figure 4.8 shows that First Class ADT Pattern does not create an overhead that cannot
be handled. Maximum of these overheads is 1.1284 ∗ 10−5 msec. This is the 0.0363% of the execution
time of the original code.

Figure 4.8: LibraryB Tests - ABTM Measurement of First Class ADT Pattern

Memory Utilization This pattern does not need additional memory like shown in Table 4.17.

Table 4.17: LibraryB Tests - Memory Utilization of First Class ADT Pattern

Memory Usage(byte) Additional Memory(%)
LibraryB 988224 -
LibraryB+FCADT 988224 0

4.4.2.4 Decorator Pattern

In this test, the main function of the library is minimized to operate basic operations. Concrete classes
are given to the responsibility of executing extra features. Among the projects considered in this test,
Project-1 uses only default behaviors of the library. There is no additional state or function is required
for this project. Project-2 expects two additional states and calculations from the library whereas
Project-3 uses four extra behaviors.

56

Maintainability Analysis Decorator Pattern increases MI of LibraryB due to the similar reasons
with LibraryA. Main function of the code is separated into different parts. Pieces of code, not necessary
for all projects, are given to the concrete classes. By doing so, the improvement of the code complexity
can be observed with HV and CC factors of the Table 4.18. Main contribution comes from the LOC
factor. Since a long function performing too many responsibilities is separated into different functions,
average LOC highly decreases.

Table 4.18: LibraryB Tests - MI of Decorator Pattern

MI HV CC LOC COM Change(%)
LibraryB 98.97 39.33 2.29 69.26 38.85 -
LibraryB+Dec 105.06 37.69 1.66 64.11 37.52 6.15

A-B Timing As Figure 4.9 shows, very small improvement is recorded at some points for Project-1
portion of the graph. However, since Project-2 expects two additional states and calculations from the
library, its timing includes a little bit overhead due to function calls. As can be seen from the figure,
difference increases on Project-3 part of the graph since it uses four additional behaviors. At worse
case, project suffers 0.0110 msec delay. This is 0.8172% of the original waiting time of user for library
execution.

Figure 4.9: LibraryB Tests - ABTM Measurement of Decorator Pattern

Memory Utilization As stated in Chapter 3, in this pattern implementation, concrete classes start
with the same structure with the abstract class, follow with a pointer to the concrete component and
add extra parameters to the end. To call the concrete component class operation in order to perform
default behavior, pointer of concrete component is needed to be given a memory. This means that,
smallest set of the output structure has to be created in addition to that of concrete classes. This is
the reason behind the increase of memory utilization of Project-2 and 3. Project-1 only uses default
behavior and slight improvement is recorded for this project. Even in the worse case, lost is 0.0045%
of the original memory requirement of the library.

57

Table 4.19: LibraryB Tests - Memory Utilization of Decorator Pattern

Memory Usage(byte) Additional Memory(%)
LibraryB 988224 -
LibraryB+Dec(Project-1) 988212 -0.0012
LibraryB+Dec(Project-2) 988260 0.0036
LibraryB+Dec(Project-3) 988268 0.0045

4.4.2.5 All Patterns

This test is prepared to observe the consequences of the design patterns when they are applied together.
As a first step, Chain of Responsibility Pattern applied code is subjected to the Strategy Pattern. After
the MI analysis of this version, Decorator Pattern is implemented. MI of the code is measured again.
Finally, First Class ADT Pattern is applied and measurement is repeated. Then, all patterns applied
version of the code is analyzed in terms of A-B timing and memory utilization.

Maintainability Analysis When the patterns are applied to the base code, major improvements are
gained after Decorator and First Class ADT Pattern implementations. Decorator increases maintain-
ability 6.15%, while First Class ADT makes 11.56% improvements. Table 4.20 shows the results when
these patterns applied together. After each pattern implementation, maintainability is analyzed. Table
shows an incremental graphic during the pattern implementation. Biggest progress is still due to the
Decorator and First Class ADT Patterns.

Table 4.20: LibraryB Tests - MI of All Patterns

MI HV CC LOC COM Change(%)
LibraryB 98.97 39.33 2.29 69.26 38.85 -
LibraryB+CoR 101.96 38.57 1.98 66.92 38.42 3.02
LibraryB+CoR+Strategy 104.77 37.73 1.68 64.34 37.52 5.86
LibraryB+CoR+Strategy+Dec 108.89 36.58 1.34 60.74 36.55 10.02
LibraryB+AllPatterns 115.02 35.09 1.05 56.38 36.55 16.22

A-B Timing Figure 4.10 shows the ABTM measurement of the LibraryB when all the patterns ap-
plied together. In this figure, maximum overhead is 0.0247 msec. This amount seems high compared
to the other test results and the difference can be observed from the graph for this case, unlike the oth-
ers. However, this amount is only the 1.6085% of the execution time of the original code. This means
that, the percentage of this overhead is smaller than that of LibraryA. Therefore, it can be concluded
that the reason behind the visibility of the difference is not the amount, but the scale of the graphing.

58

Figure 4.10: LibraryB Tests - ABTM Measurement of All Patterns

Table 4.21 summarizes the results given above sections combining with this one. According to the re-
sults, minimum overhead belongs to Strategy Pattern. The reason behind this small change is explained
in Strategy Pattern section. For this case study, Decorator Pattern has maximum overhead among these
patterns. These outcomes are similar to that of LibraryA application except from Chain of Responsi-
bility Pattern swops places with First Class ADT Pattern. Apart from small differences between the
maximum overhead of the patterns, percentages of all overheads are very slight to be dangerous.

Table 4.21: LibraryB Tests - Maximum Overhead of All Patterns

Max Difference(msec) Max Difference(%)
LibraryB+Strategy 3.4183 ∗ 10−6 0.0036
LibraryB+FCADT 1.1284 ∗ 10−5 0.0363
LibraryB+CoR 1.4270 ∗ 10−5 0.0607
LibraryB+Dec 0.0110 0.8172
LibraryB+AllPatterns 0.0247 1.6085

Memory Utilization Memory utilization of each pattern is given in previous subsections. In this
section, a general look is presented with Table 4.22. As can be observed from the table, design pat-
terns need extra memory expect from the Decorator Pattern working with Project-1. Reducing the
memory usage with Decorator Pattern is not the intent here. This is a consequence of the making out-
put structure smaller. Other patterns have small addition regarding to the original need of the library.
LibraryB requires 988224 bytes like shown in the table. This amount does not affected by First Class
ADT Pattern usage. Chain of Responsibility and Strategy Patterns need very small additional mem-
ory compared to that of original code. When the Decorator Pattern is used by Project-2, the highest
increase is achieved as 0.0045%.

In the case when all patterns are applied together, the minimum additional memory is 44 bytes. In
the worse case, the amount rises to 100 bytes. This is 0.0101% of the original memory requirement.
Therefore, it can be concluded that memory usage is not threatening in terms of resource utilization.

59

Table 4.22: LibraryB Tests - Memory Utilization of All Patterns

Memory Usage(byte) Additional Memory(%)
LibraryB 988224 -
LibraryB+Dec(Project-1) 988212 - 0.0012
LibraryB+FCADT 988224 0
LibraryB+CoR 988248 0.00243
LibraryB+Strategy 988256 0.0032
LibraryB+Dec(Project-2) 988260 0.0036
LibraryB+Dec(Project-3) 988268 0.0045
LibraryB+AllPatterns(Project-1) 988268 0.0045
LibraryB+AllPatterns(Project-2) 988316 0.0093
LibraryB+AllPatterns(Project-3) 988324 0.0101

60

CHAPTER 5

DISCUSSION AND CONCLUSIONS

This study was performed in order to observe the effect of design patterns on non-OO real-time soft-
ware. Main motivation of this study is incontestable effects of design patterns on OO language. The
aim here is not to show how OO programming is implemented by using C. Like [29] or [24], there are
many books and articles written for this purpose. When using OO programming is not possible for
some development environment or systems, these techniques can be preferred. However, the reason
here is not due to the constraints of the systems. For software used in this study, OO programming
is consciously not used for specific reasons such as preventing OO overhead that is not acceptable for
time-focused software. Therefore, target audience of this study is real-time software developers who
still choose a procedural language even if their environments do not force them.

Herein, after previous studies about the topic were reviewed, a guide for implementing the design
patterns in C language was proposed. Practices of First Class ADT, Strategy, Chain of Responsibility
and Decorator Patterns were detailed. These patterns were implemented on two library applications
developed in ASELSAN INC. The effects on software maintainability were analyzed by using MI
calculation proposed by [9]. For performance efficiency, A-B timing [16], and maximum memory
usage were investigated.

The results of the experimental work showed that First Class ADT and Decorator Patterns increased MI
significantly, whereas Chain of Responsibility and Strategy Patterns caused less obvious improvement.
In addition, effect of the patterns on performance efficiency is so marginal that neither of them creates
a risk in terms of timing or memory utilization.

The most important point that must be stated here is that design patterns are useful only if they are used
correctly, like [3] and [10] stated. The present study does not claim that implementing design patterns
always solves the problems and improves maintainability. Here, the results showed that patterns were
implemented in code which really needed design patterns. However, as stated in [4],[8], and [19],
using design patterns effectively requires a lot of practices.

This thesis has some similarities with previous work carried out by T. Turk and M.Ayata. Turk [27]
investigated the effects of some design patterns on maintainability and Ayata [3] studied the real-time
performance effects of design patterns. However, those studies analyzed the design patterns applied in
OO environments and used OO metrics. In the present study, both maintainability and performance
issues of different pattern cluster were investigated together, but in a non-OO environment.

This study can be considered as a deep analysis of Petersen’s series [21]. In those series, implementa-
tion of First Class ADT, State, Strategy, Observer and Reactor Patterns were given. On the other hand,
experimental analysis was not conducted on those implementations. This study presented new pattern
implementations and most importantly measured their effects on some software quality metrics.

61

At the end of the case study, the research hypotheses stated in Chapter 1 were satisfied on two li-
brary applications. To make general statements on these claims, further implementations on different
software components must be studied. This study opens a door for future works. Implementation
of different design patterns in C can be studied. The effects of design patterns on different software
quality metrics can be analyzed. Other than all of these, metrics used in this study can be improved.

62

REFERENCES

[1] Akdur, D. "Comparative Evaluation of Design Pattern Usage in Real-Time Embedded Software
Development", Technical Report, Informatics Institute, METU (2011)

[2] Al-Kilidar, H., Cox, K.& Kitchenham, B. "The Use and Usefulness of the ISO/IEC 9126 Quality
Standard", International Symposium on Empirical Software Engineering (2005)

[3] Ayata, M. "Effect of Some Software Design Patterns on Real Time Software Performance", Ms
Thesis, Information System Department, METU (2010)

[4] Beck, K. et. all. "Industrial Experience with Design Patterns", Proceedings of the 18th Interna-
tional Conference on Software Engineering, 103-114 (1996)

[5] Billard, E.A. "Language-Dependent Performance of Design Patterns", ACM SIGSOFT Software
Engineering Notes, 28(3) (2003)

[6] Booch, G. "Object Oriented Design with Applications", Redwood City, CA : Ben-
jamin/Cummings Publishing Company Inc. (1994)

[7] Chidamber, S. & Kemerer, C. "A Metrics Suite for Object-Oriented Design", IEEE Transactions
on Software Engineering, 20(6) (1994)

[8] Cline, M.P. "The Pros and Cons of Adopting and Applying Design Patterns in the Real world",
Communications of the ACM, 39(10) (1996)

[9] Coleman, D. M.,Ash D., Lowther, B. & Oman, P. W. "Using Metrics to Evaluate Software System
Maintainability", IEEE Computer, 27(8), 44-49 (1994)

[10] Constantinescu, I. "Performance of Object Oriented Design with Patterns", MS Thesis, ECE
Department, Carleton University (1999)

[11] Deitel, P. C++ How to Program, 5th Edition, Prentice Hall (2005)

[12] Douglas, B.P. Design Patterns for Embedded Systems in C, 1st ed., Oxford : Elsevier Inc (2011)

[13] Farrell, J. Object Oriented Programming Using C++, 4th Edition, Course Technology (2008)

[14] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software, 1st ed., Addison-Wesley, (1995)

[15] Halstead, M. H. Elements of Software Science (Operating and Programming Systems Series),
New York, NY (1977)

[16] Hillary, N. "Measuring Performance for Real-Time Systems", Freescale Semiconductor, Novem-
ber (2005)

[17] Huaxin, M. & Shuai, J. "Design Patterns in Software Development", IEEE 2nd International
Conference on Software Engineering and Service Science, 322-325 (2011)

63

[18] Huaxin, M. & Shuai, J. "Design Patterns in Object Oriented Analysis and Design", IEEE 2nd
International Conference on Software Engineering and Service Science, 326-329 (2011)

[19] Masuda, G., Sakamoto, N. & Ushijima, K. "Redesigning of an Existing Software Using De-
sign Patterns", Proceedings of the International Symposium on Principles of Software Evaluation
(2000)

[20] McCabe, T. J. "A Complexity Measure", IEEE Trans. Software Eng, 2(4), 308-320 (1976)

[21] Petersen, A. "Patterns in C", C Vu, Journal of the ACCU (Association of C and C++ Users),
17(1, 2, 3, 4, 5) (2005)

[22] Saltzer, J.H. & Schroeder, M.D. "The Protection of Information in Computer Systems", Proceed-
ing of IEEE, 63(9), 1278-1308 (1975)

[23] Schmidt, D.C. "Using Design Patterns to Develop Reusable Object-Oriented Communication
Software", Communications of the ACM - Special Issue on Object-Oriented Experiences and
Future Trends, 38, 10 (1995)

[24] Schreiner, A.T., Object Oriented Programming with ANSI-C (1993)

[25] Srinivasan, S. "Design Patterns in Object-Oriented Frameworks", IEEE Journal, 32(2), 24-32
(1999)

[26] Stevens, W., Myers, G. & Constantine, L. "Structured Design", IBM Systems Journal, 13(2),
115-139 (1974)

[27] Turk, T. "The Effect of Software Design Patterns on Object-Oriented Software Quality and Main-
tainability", MS Thesis, EEE Department, METU (2009)

[28] Welker, K. "The Software Maintainability Index Revisited", CROSSTALK, 18-21 (2001)

[29] Williams, K. "Using Object Oriented Analysis and Design in a Non-Object Oriented Environment
Experience Report", International Conference on Software Maintenance, 109-114 (1995)

[30] International Standard ISO/IEC 9126-1:2001, Software Engineering - Product Quality - Part 1:
Quality Model (2001)

[31] International Standard ISO/IEC FDIS 25010:2010, Systems and Software Quality Requirements
and Evaluation - System and Software Quality Models (2010)

[32] Scientific Toolworks, Inc., "Understand 3.0 User Guide and Reference Manual" (2012)

[33] SEL-94-003, "The C Style Guide", NASA Software Engineering Laboratory Series, Greenbelt,
Maryland (1994)

[34] Wind River Systems, Inc., "Wind River Workbench 3.0" (2007)

[35] "acjf_maint_index_halstead.pl", http://www.scitools.com/plugins/perl_scripts.php, Access date:
02/01/2013

[36] "Benzetim Sonuçlarının Güvenilirliği", http://www.eee.metu.edu.tr/ bilgen/Guvenilirlik.pdf, Ac-
cess date: 07/01/2013

[37] "Library (computing)", http://en.wikipedia.org/wiki/Library_(computing), Access date:
01/01/2013

64

[38] "MATLAB-The Language of Technical Computing", http://www.mathworks.com/products/matlab,
Access date: 02/01/2013

[39] "Wind River VxWorks", http://www.windriver.com/products/vxworks, Access date: 02/01/2013

[40] "Validity and Reliability", http://hsc.uwe.ac.uk/dataanalysis/quantissuesvalid.asp, Access date:
04/01/2013

65

