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ABSTRACT 

PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF ILGAZ - ABANT SEGMENTS OF 
NORTH ANATOLIAN FAULT USING IMPROVED SEISMIC SOURCE MODELS 

 
 
 

Levendoğlu, Mert 
M.Sc., Department of Civil Engineering 

Supervisor: Asst. Prof. Dr. Zeynep Gülerce 

January 2013, 85 pages 

 

Bolu-Ilgaz region was damaged by several large earthquakes in the last century and the 
structural damage was substantial especially after the 1944 and 1999 earthquakes. The 
objective of this study is to build the seismic source characterization model for the rupture 
zone of 1944 Bolu-Gerede earthquake and perform probabilistic seismic hazard assessment 
(PSHA) in the region. One of the major improvements over the previous PSHA practices 
accomplished in this study is the development of advanced seismic source models in terms 
of source geometry and reoccurrence relations. Geometry of the linear fault segments are 
determined and incorporated with the help of available fault maps. Composite magnitude 
distribution model is used to properly represent the characteristic behavior of NAF without an 
additional background zone. Fault segments, rupture sources, rupture scenarios and fault 
rupture models are determined using the WG-2003 terminology. The Turkey-Adjusted NGA-
W1 (Gülerce et al., 2013) prediction models are employed for the first time on NAF system. 
The results of the study is presented in terms of hazard curves, deaggregation of the hazard 
and uniform hazard spectrum for four main locations in the region to provide basis for 
evaluation of the seismic design of special structures in the area. Hazard maps of the region 
for rock site conditions and for the proposed site characterization model are provided to 
allow the user perform site-specific hazard assessment for local site conditions and develop 
site-specific design spectrum. The results of the study will be useful to manage the future 
seismic hazard in the region. 

Keywords: Probabilistic Seismic Hazard Assessment, Seismic Source Modeling, Ground 
Motion Prediction Equations, North Anatolian Fault, 1944 Bolu-Gerede Earthquake 
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ÖZ 

GELİŞTİRİLMİŞ SİSMİK KAYNAK MODELLERİ OLUŞTURULARAK KUZEY ANADOLU 
FAY HATTI BOLU-ILGAZ BÖLÜMUNUN OLASILIKSAL SİSMİK TEHLİKE ANALİZİ 

 
 
 

Levendoğlu, Mert 
Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Zeynep Gülerce 

Ocak 2013, 85 sayfa 

 

Bolu-Ilgaz Bölgesi geçen yüzyıl boyunca çok sayıda büyük depremler ile sarsılmıştır, 
özellikle 1944 Bolu-Gerede ve 1999 Düzce depremlerinden sonra gözlenen yapısal hasar 
oldukça büyüktür. Bu çalışmanın amacı, 1944 Bolu-Gerede depreminin kırılma bölgesi için 
sismik kaynak karakteristiği modelinin oluşturması ve bölgede olasılıksal sismik tehlike 
analizinin (OSTA) yapılmasıdır. Bu çalışmanın bölgede daha önce yapılmış OSTA 
çalışmalarına göre en önemli üstünlüğü, geliştirilmiş çizgisel kaynak geometrisi ve 
tekrarlanma ilişkisi modellerinin ve Türkiye’ye uyarlanmış kuvvetli yer hareketi tahmin 
denklemlerinin kullanılmasıdır. Çalışma kapsamında düzlemsel fay segmentlerinin 
geometrisi belirlenmiş ve varolan fay haritaları yardımıyla Coğrafi Bilgi Sistemi’ne 
aktarılmıştır. Kompozit deprem büyüklüğü dağılımı modeli, ek bir arkaplan sismik kaynağı 
olmaksızın, Kuzey Anadolu Fay (KAF) Hattı’nın karakteristik davranışını yansıtmaya olanak 
tanımıştır. Fay segmentleri, kırılma kaynakları, kırılma senaryoları ve fay kırılma modeli 
USGS Çalışma Grubu-2003 terminolojisi kullanılarak belirlenmiştir. Türkiye’ye uyarlanmış 
yeni nesil (NGA-W1) (Gülerce ve diğerleri, 2013) kuvvetli yer hareketi tahmin denklemleri ilk 
olarak bu çalışma kapsamında KAF sisteminde kullanılmıştır. Bölgedeki özel yapıların 
depreme dayanıklı tasarımı ve değerlendirilmesi için temel oluşturmak amacıyla dört ana 
nokta için OSTA eğrileri ve tasarım spekturumları verilmiştir. Kullanıcının yerel bölge 
koşullarında sismik tehlike değerlendirmesi yapabilmesi ve bölgeye özgü tasarım spektrumu 
geliştirebilmesi için yerel kaya sınıflandırması modeli önerilmiş ve yerel zemin koşullarını 
içeren sismik tehlike haritaları yapılmıştır. Bu çalışma sonuçlarının bölgedeki gelecek sismik 
hazardinin değerlendirilmesi ve yönetilebilmesi için yararlı olacağı düşünülmektedir. 

Anahtar Kelimeler: Olasılıksal Sismik Tehlike Analizi, Sismik Kaynak Modeli, Kuvvetli Yer 
Hareketi Tahmin Denklemleri, Kuzey Anadolu Fay (KAF) Hattı, 1944 Bolu-Gerede Depremi 
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segments was released by characteristic events. The magnitude distribution functions of 
linear sources were considered to be fully characteristic. In addition, a background source 
representing the small-to-moderate magnitude earthquakes were added to the source model 
and the earthquake reoccurrence of the background source was modeled using truncated 
exponential magnitude distribution model. Due to the lack of local predictive models, early-
stage global ground motion prediction equations (GMPEs) such as Boore et al. (1997), 
Campbell (1997), and Sadigh et al. (1997) were used in earlier studies to represent the 
ground motion variability. A only the recent study by Kalkan et al. (2009) used NGA-W1 
ground motion prediction models along with a regional GMPE developed for Turkey after the 
1999 events by Kalkan and Gülkan (2004).  

The main components of PSHA methodology and framework for PSHA are rapidly improving 
by increase in the number of studies about seismic source and ground motion 
characterization for special structures and awareness of earthquake hazard reduction. The 
primary objective of this study is to evaluate the seismic hazard around the 1944 Bolu-
Gerede Earthquake Rupture Zone using improved seismic source models and regionalized 
global ground motion prediction equations within a probabilistic framework. Once published, 
this study will be one of the foremost probabilistic seismic hazard analysis studies performed 
on the rupture zones of 1939-1944 earthquake sequence on NAF system. 

1.1 Research Statement and Problem Significance 

Bolu is one of the industrialized cities of Turkey, located on the second degree earthquake 
zone according to the earthquake zonation map of Turkish Earthquake Code (2007). Being 
in the cross section of Düzce, Bolu-Gerede and Mudurnu-Abant segments of NAF, the city 
was damaged by several large earthquakes in the last century, however the structural 
damage in the city and its surroundings were substantial especially after the 1944 Bolu-
Gerede Earthquake (Mw = 7.2) and 1999 Düzce Earthquake (Mw = 7.1). Therefore, to 
reduce the damage in the structures and loss of lives in future earthquakes beside a sensible 
and economical design practice, accurate evaluation of seismic hazard for this region is vital. 
When compared to the Marmara Region and İstanbul Metropolitan Area on the west, the 
number of PSHA studies in the Bolu-Gerede Region is quite limited, only available PSHA 
study covering the region was performed decades ago by Erdik et al. (1985).  

One of the major improvements over the previous seismic hazard assessment practice 
accomplished in this study; is the development of advanced seismic source models in terms 
of source geometry and reoccurrence relations. Linear fault segments are defined for 1944 
earthquake rupture zone, geometry of the sub-segments (length, width, and segmentation 
points) are determined and incorporated with the help of updated active fault maps of 
General Directorate of Mineral Research and Exploration (2012).In this study, to represent 
the characteristic behavior of NAF, composite magnitude distribution model by Youngs and 
Coppersmith (1985) is used for all seismic sources without an additional background zone. 
Fault segments, rupture sources, rupture scenarios and fault rupture models are determined 
using the WG-2003 terminology and multi-segment rupture scenarios are considered. Events 
in the earthquake catalogue are attributed to the individual seismic sources and scenario 
weights are determined by balancing the accumulated seismic energy by the catalog 
(Statistical evaluation of Turkey earthquake catalog, Kalafat, 2010) seismicity.  

Gülerce et al. (2013) proposed that next generation Attenuation (NGA-W1) models are new 
and improved in terms of additional prediction parameters (such as depth of the source, 
basin effects, magnitude dependent standard deviations, etc.), statistical approach, and a 
well constrained global database. The applicability of the NGA-W1 models developed for 
California (US) is a controversial topic for PSHA studies conducted in other tectonic 
environments. Said study modified and used the recently developed Turkish Strong Motion 
Database (TSMD, Akkar et al., 2010) to check the compatibility of the magnitude, distance, 
and site amplification scaling of NGA-W1 horizontal prediction models with the ground 
motions recorded in Turkey and adjusted necessary coefficients of these models to reflect 
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the regional characteristics for the PSHA applications in Turkey. Within the contents of this 
study, the Turkey-Adjusted NGA-W1 prediction models are employed for the first time on 
NAF system.  

The results of the study is presented in terms of hazard curves, deaggregation of the hazard 
and uniform hazard spectrum for four main locations in the region (Bolu City Centre, Bolu 
Mountain Tunnel, Sarıyar Dam, and Hasanlar Dam) to provide basis for evaluation of the 
seismic design of special structures in the area. To perform site specific hazard assessment 
and to develop design spectrum for local site conditions, the site characterization model at 
the accepted hazard levels by TEC-2007 and the region’s hazard maps for rock and soil site 
conditions are provided. Moreover, the uniform hazard spectrum for selected locations 
compared with the results of TEC-2007 design spectrum. 

1.2 Scope of the Work 

Contents of the chapters of this study can be summarized to reveal the scope of this thesis 
as follows; 

In Chapter 1, the research statement and the scope of the study is provided with an 
emphasis on the problem significance and limitations of the previous PSHA procedures in 
the region. 

Chapter 2 briefly summarizes the geology of the study area and seismo-tectonic 
characteristics of the Ilgaz-Ismetpaşa Segment (1944 Rupture) of North Anatolian Fault 
System. Site characteristics model based on the 1/1,000,000 scaled geology map is also 
introduced in this section.   

The seismic source characterization model developed for the PSHA analysis is provided in 
Chapter 3. Source geometry, segmentation points, slip rates and moment accumulation in 
each sub-segment, magnitude recurrence relations and activity rates are detailed within the 
content of this chapter.    

Chapter 4 briefly introduces the PSHA framework and selection of the ground motion 
prediction models. Results of the study are presented in terms of hazard maps at selected 
hazard levels for general rock and soil site conditions. Site-specific design spectra for a few 
special locations in the region are also provided in this chapter. 

Chapter 5 includes a brief summary of the study and discussion of the result. The site 
characterization map given in Chapter 2 and the hazard maps at selected hazard levels for 
rock and soil site conditions given in Chapter 4 are interconnected and site specific hazard 
maps for different hazard levels are also presented in this chapter. 
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CHAPTER 2 

 

GENERAL GEOLOGY, GEOMORPHOLOGY AND TECTONIC 
SETTINGS OF NAF BOLU- ILGAZ SEGMENT 

 

 

The objective of this chapter is to present the seismo-tectonic features of the Bolu- Ilgaz 
Segment of North Anatolian Fault (NAF) for building a solid background on the seismic 
source characterization. A brief summary of the geology and geomorphology of Bolu Region 
is also provided to implement a general site characterization model on top of the probabilistic 
seismic hazard assessment (PSHA) results for rock site conditions. Starting from early 
1940s, many geological investigations were performed in Bolu-Gerede region (Blumenthal, 
1948, Tokay, 1952, Pınar, 1953, Abdüsselamoğlu, 1959). Currently, the main sources for 
any PSHA study performed in Turkey are the general geology map articulated on a 1/500000 
scale by the MTA General Directorate in 2002 and North Anatolian Fault Inventory published 
in 2003 (Herece and Akay, 2003). Within the contents of this chapter, studies by Tokay et al. 
(1973) and Şaroğlu et al. (1987, 1995) are utilized in addition to these sources for a detailed 
evaluation. 

There are several rock units in Bolu-Gerede region, whose ages are different but they came 
together lastly in Eocene as a result of the close up of continents and oceans among them. 
Consequently, rock units in the area are separated into some packets such as the Istanbul 
Paleozoic, Pontites, the Sakarya Continent Sequence and Suture Zone, which are similar to 
ophiolitic sequences. Sediments coming after these four sequences are described as cap 
rocks. The Istanbul Paleozoic consists of Archeozoic sediments, sandstones and shale, and 
its age is lower Paleozoic. The Pontites are composed of Mesozoic limestone, sandstone, 
claystone and volcanite. Additionally, the Sakarya continent sequence has Mesozoic 
sandstone, siltstone at the bottom, gravelstone, limestone, clayed limestone and volcanites 
at the upper part of it. Lastly, the suture zone rock units consist of ophiolite, ophiolitic 
mélange and relatively big scaled limestone blocks among them, whose age is Mesozoic. 
Different kind of lithologies have been developed within the cap rocks starting from upper 
cretase until today; Eocene sandstone, siltstone, gravelstone, tuff, andesites and basaltic 
lavas; Miocene sandstone, gravelstone, claystone; Quaternary alluviums, lacustrine 
sediments, stream sediments and landslides, from bottom to the upper. 

The units described above are deformed, folded and faulted in different times. They have 
been deformed by the earthquakes caused by the NAF for the last 4 million years. Details of 
these units will be described later in this chapter. 

2.1 General Geology and Tectonic Settings of NAF Bolu-Ilgaz Segment 

The part of North Anatolian Fault (NAF) between Abant and Ilgaz (Figure 2.1) was ruptured 
during 1944 Bolu Earthquake. The surface trace of the rupture starts at Ilgaz-Mehmetler 
village continues until Bolu Plain. In some areas the surface trace of the rupture is divided 
into a few branches forming a fault zone up to 5 kms.  Between Ilgaz and Abant Lake, the 
surface traces of the fault segment cannot be observed significantly. Large magnitude 
earthquakes occurred in last 100 years (1944 Gerede, 1953 Cerkes, 1957 Abant and 1967 
Dokurcun), on the NAF Bolu – Ilgaz segment are shown on Figure 2.1. Within the contents of 
this study, the fault segment between Abant and Ilgaz (1944 Rupture) is considered as a 
whole fault segment and divided into three sub-segments: Ilgaz-Ismetpaşa Segment, 
Ismetpaşa-Yenicağa Segment, and Yeniçağa-Abant Segment. 
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limestone show that it is relevant to lacustrine facieses. The average thickness of 
this formation is about 250-300 meters. 
 

b) The Bahçepınar Formation: This approximately 150 meters thick formation which 
expands in the middle of the region is represented by limestone and travertines. It is 
represented by lacustrine limestone which is thick or thin layered in some regions. 
Its porous levels are unfilled by travertines. Layers are horizontal, and important 
structural units cannot be seen on the surface. Its age is probably Early Pliocene 
according to the Pazarbaşı formation. 
 

c) The Meydan Formation: The unit settled in a large area from the Eskipazar- 
Gerede way to the East. It includes basalts and basaltic agglomerates. Tuff and 
agglomerates are seen together with coaled sediments in the west of Meydan 
Village and North of Yıpracık Village. The age of volcanic activity in the region is 
Pliocene. 
 

d) Unnamed Units: Quaternary travertines are not named even though they are drawn 
on the map (Figure 2.4). Vertebrate animal fossils which are denoted as Quaternary 
Sediments on the map (Figure 2.4) were found along the Gerede-Cerkes Road. 
Their age is Steinhenien (400,000 years old) to today. 
 

e) The Akçaşehir Formation: The Akçaşehir formation is generally composed of red 
gravelstones which expand toward the south of area (Figure 2.4). There are some 
parts of tuff, tuffites and lacustrine limestone at the upper part of unit. The Kayabasi 
and the Tozaklar, which are big enough to be mapped, are mapped seperately as 
lacustrine limestone (Figure 2.4). The thickness of Akçaşehir formation is about 250 
meters and its age is interpreted as Lower Pliocene according to fossils in clayed 
limestone. This unit is a product of continental facieses, and it is comprised of fans 
with lacustrine sediments. 
 

f) The Limestone Member: Lacustrine limestone that exists in the Akcaşehir 
Formation is mapped as a distinctive member in Figure 2.4. Its bedding is obvious 
and similar structures to pysolites are seen in the lower parts of the layer. Its clayed 
levels have gastropods and plant fossils. The Kayabaşı formation covers other 
layers discontinuously. It is about 50 meters thick, and its age is Early Pliocene. The 
limestone is created in lacustrine facieses. 
 

g) The Tozaklar Member: Red clays and mudstones in the Akçaşehir formation are 
drawn on the map as a seperate unit (Figure 2.4). It is composed of red or brown 
claystones, siltstones and mudstones. Borders of this layer are generally not clear. 
The Tozaklar member is mainy sedimented in laguner conditions and it is likely to 
cause landslides. There are many fossils seen in limestone, mudstone at the lower 
levels which has 80 meters thickness. From the fossil samples, its age is Early 
Pliocene.  
 

h) The Mangallar Agglomerates:Tertiary volcanites, expanding mainly from the East 
to the West in south block of the NAF, have these agglomerates. Its matrix is well 
attached ash, so it has many landslides. Besides, it has a little tuff and gravelstone 
which participated to the unit by basalt and andesitic lava flaws. Its layers are not 
clear. Silicate infillings exist in some joints. Its thickness is about 500 meters and its 
age is Pliocene due to its relationships with the Akçaşehir formation, but its lower 
levels may be Upper Miocene. 
 

i) The Ortadag Andesites: They are Tertiary andesites in south of the study area. 
The Ortadağ andesites are mostly settled down like lava flows in atmospheric 
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conditions and doms. These lava flows’ centers are distributed on the area rather 
than a single point. The main outflow center is near the Ortadağ. 
 

j) The Karakuz Basalts: They are the third group of Tertiary volcanism which expands 
through large areas. Basalts’ color is determined as dark grey or black and light 
minerals cannot be observed. Its age is approximately Upper Miocene- Pliocene. 
They came over the Akçaşehir formation in Early Pliocene by cutting some areas; 
hence, the age of lavas- Pliocene- is certain.  
 

k) The IIgaz Formation: Limited outcrops of this continental facieses in the south east 
path of study area are sequences of sandstones, siltstones and gravelstone. East 
part of this layer is Pliocene. It is reasonable to think that the formation is 
sedimented like a meandrous river, and then it turns to lacustrine conditions. 
 

l) The Selkeoglu Alluvium Fans: These alluvium fans, whose geometrical shapes 
are still preserved, are mapped as a different unit in the middle of study area (Figure 
2.4). This unit has an importance about both age and slip of the NAF. It is well 
compacted with the elements of sandstones, gravelstones and siltstones. Thus, it 
causes many landslides in the region. The main color is grey and dirty brown, 
gravels are not well rounded. The recharge area is not clear because the tectonic 
activity in the area distributed geometrical shapes of fans. It covers all units with 
angular unconformity. Its average thickness is about 100 meters, and its age is Late 
Pliocene-Quaternary 
 

m) The Kavaklar Alluvium Fan: This layer expands from the edge of NAF zone to 
Gerede. Its typical sections are not able to be determined because it is not well 
compacted, and it could easily be altered. The main color of this layer is red and can 
only be seen along the Ankara-Istanbul way. This fan which has gravelstone, 
siltstone and sandstone material preserves its original shape. It is aged as 
Plioquaternary, and its thickness is about 50 meters. 
 

n) The Unseparated Quaternary Sediments: There are a lot of sediment stocks 
which are related to today’s sedimentary system on a large area between the 
Yeniçağa and the Çerkeş. They are fans, which are developed along the fault valley, 
are transitional to lacustrine sediments. Only travertines in south west of the 
Yeniçağa Lake among these sediment stocks are mapped (Figure 2.4). Its thickness 
is about 100 meters.  
 

o) The Asagikuldan Travertines: The travertines in the south east part of the 
Yeniçağa are mapped with this geographical name (Figure 2.4). These rarely 
massive light colored travertines are about 50 meters thick. Quaternary travertines 
are still produced by outflows of mineral water on today. 
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The fault has a compression effect between the Imamlar and the Gerede Stream, the rocks 
in the area are mostly deformed. This field is higher than its west and its east. The fault is 
linear in the East. There are ridges, fault lakes and landslides. It is suggested that the south 
block of it is higher than its north because it spreads to the far eastern from the Gerede 
Stream, and it shaped a new valley. There are a lot of right lateral slips on morphological 
features along the fault as long as a range from a meter to a kilometer. 

Two large scaled earthquakes occurred in the area in 1944 and 1953, measuring 7.4 and 6.0 
on the Richter scale. A 2 meters long a right-lateral strike slip as related to the fault near the 
Bolu and a 2 meters long right-lateral strike slip near east of the Gerede were observed as a 
result of the earthquake in 1944. The creep measurements on the wall of the Ismetpaşa 
General Directorate of Highways Treatment Station show that the movement of the fault is 
still going on. These observations show that sedimentation of the Akçaşehir formation has a 
new active tectonic regime. This tectonic age started in the Middle and Upper Miocene 
before Early Pliocene. 

2.3 General Geomorphologic Features of the NAF Bolu-Ilgaz Segment 

The geomorphological structures of the area are governed by NAF zone. The age and slip 
rate of the NAF can be inferred by the distinctive ground shapes that are formed by erosions 
and sedimentation of shifted river beds. The length of NAF between the Yeniçağa and the 
Kabak Villages in the North of Cerkes is about 85 km as cutting through the area, which 
improves morphological structures (Figure 2.6). The area may be evaluated as two different 
sections; Gerede-Bayındır and the Bayındır-Kabak, due to their distinctive geomorphologic 
structures. While the north block of fault is morphologically lower in east of the area, the 
north block of it between the Gerede and the Bayındır is higher than the other in the South. 
This reversal structure is generally a product of the right strike slip fault, or the NAF, and it is 
closely related to contacts of different units each other. 

Upper Pliocene can be identified by geomorphologic erosion units in the area. In this epoch, 
erosion features were shaped apparently upon Lower Pliocene sediments and volcanic 
features. This activity eroded old structural features in the area. Upper Pliocene erosion 
surfaces along the Bayındır-Eskipazar-Dağlacık in the north block of NAF, along the Gerede 
and the Gerede Stream in the south block may clearly be seen on 1000-1300 meters 
altitudes. These erosion surfaces are really interesting along the NAF zone. The south 
border of plains, which Upper Pliocene erosion features shaped between the east part of the 
Bayındır-Eskipazar and the north block of NAF, is determined by the NAF. This border is 
about 1500-1600 meters long in the south part of it. The north border of these erosion 
surfaces between the Ismetpaşa and the Gerede ends up along the NAF zone. There are 
discordances between the Upper Pliocene drainage which shaped erosion surfaces and the 
Quaternary drainage which has been affected by the NAF. Erosion surfaces in the south 
block may be seen between the Ismetpaşa and the Gerede like they are in the north block. 

These observations indicate that the NAF does not have any effect on geomorphologic 
activities in the Upper Pliocene; Erosion plains in east of the Bayındır were formed in the 
same facieses; the drainage was shaped from the South to the North. The NAF shifted these 
erosion surfaces about 20 km along the right lateral, and it carried them against high 
morphologies. The upper Pliocene drainage is deformed along the NAF zone shows that the 
onset of NAF is the end of Upper Pliocene, or the beginning of Quaternary Age. Quaternary 
morphology of the NAF has apparently most of morphological features of the active right 
lateral strike slip fault. The forms of units, the width of the fault zone, organizations of cracks 
forming the fault zone and drainage-fault relationships may differ. Travertines may be seen 
besides many springs along the fault 6 km away from the east Hamamlı. Many right lateral 
offsets, which the most obvious one is in the Kabak valley, are formed along additional 
valleys combining to the Gerede Stream. The Akdere Valley is shifted to the right lateral 
about 1 km by the NAF. Some sediments of landslides in the east part of the Hamamlı are 
shifted laterally in right direction. Convergent ridges and sag ponds which were shaped by 
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the earthquake in 1944 are still obvious. The NAF between the Ismetpaşa and the Gerede 
has geomorphologic features about right lateral strike slip. The NAF zone is about 25 km in 
east of the Gerede, and it looks like a dry valley because it does not have any drainage area. 
This channel, which is formed how valleys from the North are blocked in the south block of 
the fault, has many fault-set basins. It has some lakes created by this activity. This 
morphological channel along the NAF zone is filled with sediments of Quaternary alluvium 
fans. As the older fans were deformed by the NAF, younger fans are able to preserve their 
morphologies. Parallel ridges to the fault are really apparent in the fault zone between the 
Kapaklı and the Deresaplan. Right lateral separations may be observed on the streams 
which are perpendicular to the fault’s strike. The most obvious one is near Imanlar. The 
Akdere Valley is shifted about 1.5 km in right lateral. The south block of the fault is 
morphologically higher between the Kapaklı and Gerede. Units in the north generally consist 
of alluvium fans. Many cut and shifted ridges are in the south of the fault. The most 
spectacular examples of these ridges is upon the plains formed by alluviums in west of the 
Kapaklı. A recently shaped very young hill may be observed in north-east of the ridge which 
the fault cut. The slope of east parts the stream valleys which are perpendicular to the fault 
in east of the Gerede is much more than the west part of it. This information shows that 
Quaternary drainage along the NAF is formed by the effect of a right lateral strike slip fault. 
The Yeniçaga Lake basin is bordered by the NAF in the South. 

All deformations of geomorphologic units of geomorphologic units and inversions on slopes 
of units show that the NAF is really active in Quaternary, and they have been formed for a 
long time. The morphological features shaped by the earthquake in 1944 prove this 
differentiation. Its micromorphology can be easily determined because of the terrains used 
for agricultural aims. 

2.4 Discussion and Conclusion 

The geology, tectonics, geomorphology and seismicity of the study area is investigated and 
the results of previous field investigations are summarized in terms of the age, length, slip 
rate and fault mechanism of NAF. The NAF is younger than the Akçasehir formation since it 
cuts the formation. The age of the NAF is relatively Late Pliocene. The amount of its slip is 
determined by comparing the same rock units on both sides of the fault each other. The 
most obvious slip of it is about 28 km on the contact of the Akçagil formation. The Pazarbaşi 
formation in north of the fault and the Akçasehir formation in south of it seems like the shifted 
parts of the same unit. The average slip from both sides of the fault is about 25 km. It is 
about 29 km if the Kavaklar formation in the South and the Cretase Ulus formation are 
accepted as the same unit. There is coeval erosion plain in the South, which cuts the 
Akçasehir formation. The slip is approximately 25 km in this field (Figure 2.8). Following 
interpretations can be made: 

 
 The age of the NAF is about 3 million years.  
 Total offset according to Eosen formation, pliosen Akçasehir formation, erosional 

surfaces, and drainage systems with en error of ±30 km. 
 The average annual movement is 30 km/ 3 million years (1 cm / year). (This value is 

due to long time measurements, for the critical 100 years periods the value will 
change). 
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CHAPTER 3 

 

SEISMIC SOURCE CHARACTERIZATION OF ILGAZ-
ISMETPAŞA SEGMENTS (1944 RUPTURE) OF NORTH 

ANATOLIAN FAULT 

 

 

Probabilistic Seismic Hazard Assessment (PSHA) described as a procedure of four steps: i) 
identification of the seismic sources and source geometry, ii) characterizing the seismic 
sources in terms of magnitude recurrence models, iii) estimation of ground motion intensity 
measures and its variability for each scenario, iv) constructing the hazard curve. The first two 
steps in the PSHA framework includes; the definition of the source geometry in terms of 
length, width, dip and strike angles of the fault plane, identification of the segmentation point 
locations, and modeling the earthquake recurrence relations of the source with the help of 
historic seismicity and available geological information. This is a critical part of PSHA since 
the estimated magnitudes of the future earthquake scenarios depend on this information 
(Reiter, 1990).  

Since speciality on structural geology, tectonics and seismology is a necessity to achieve an 
accurate and proper modeling of the seismic sources as an input to PSHA, expert evaluation 
of Dr. Şaroğlu for the fault geometry and source-epicenter matching for 1944 rupture zone is 
adopted for this study. General geological and tectonic features of the NAF system in the 
study area was presented in Chapter 2, however, contribution of this information to building 
the source model is summarized in this chapter. Furthermore, activity rates estimation and 
the reoccurrence relations are also included in this chapter whereas the use of seismic 
source models in probabilistic seismic hazard assessment will be discussed in details at 
Chapter 4. 

3.1 Source Geometry of 1944 Bolu Earthquake Rupture Zone  

On 1 February 1944, a destructive earthquake occurred in the Bolu and Gerede regions 
along the west-central portion of the NAF. The magnitude of this earthquake was 
recalculated as Ms=7.3 (Dewey, 1976) using seismogram records and as Mw=7.4 based on 
an empirical magnitude-slip relation and the assumed mean slip (Barka, 1996). Rupture 
trace of the earthquake was first examined by Taşman (1944) who reported the length of 
rupture as 180 km, the right-lateral strike-slip as 3.5 m, and vertical displacements as 0.4–
1.0 m. Later on, various aspects of the 1944 Bolu-Gerede earthquake were reexamined by 
several other authors (Ketin 1948, 1969; Ambraseys 1970; Lienkaemper 1984; Ozturk et al. 
1984; Wells and Coppersmith 1994; Barka 1996; Ambraseys and Jackson 1998; Demirtaş 
2000; Herece 2005; Kondo et al. 2005). The rupture zone extended from north of Kurşunlu 
(Bayramören) to the Abant Lake (Ketin, 1969; Ambraseys, 1970; Ozturk et al., 1984) for 165 
kilometers. The epicenter was located near the eastern end of the rupture zone (Dewey, 
1976) and depth of the 1944 Bolu-Gerede earthquake was estimated to be 21.6 km by 
Jackson & McKenzie (1988). The thicknesses of the seismogenic layer and the crust in this 
area were reported to be 17 km (Ozalaybey et al. 2002) and 31 ± 2 km (Zor et al. 2006), 
respectively. It was also suggested that the locking depth is between 15 and 21 km along the 
ruptured section of the Gerede fault zone (Nakiboğlu et al. 1998; Meade et al. 2002; Kocyiğit 
et al. 2006; Reilinger et al. 2006). 
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Figure 3.6 indicates that the average creep rate measured by recent studies is approximately 
8 mm/year. The slip rate assigned to the fault segment is reduced by this value for 
Ismetpaşa-Yeniçağa Segment and a total slip rate of 12 mm/year is assigned to that 
segment as shown in Figure 3.3. 

3.2 Source-Epicenter Matching and Magnitude Distribution Models  

A range of earthquake magnitudes will occur by a seismic source. The relative number of 
different magnitude earthquakes which occur on the seismic source is described by the 
magnitude distributions. Typical magnitude distributions used in PSHA are; 
 

1. Truncated Exponential Model 
2. Truncated Normal Model (Characteristic Model) 
3. Composite Model (Youngs and Coppersmith, 1985) 

The basic magnitude recurrence relation proposed by Gutenberg – Richter (G-R) (1944) is; 

LogNሺMሻ ൌ a െ bM																																																																																																																																															3.2 

In equation 3.2, the constants “a” and “b” represent the rate and relative frequency of 
earthquakes and the cumulative number of earthquakes greater than M is represented by N 
(M). Since there is a maximum magnitude for the source and a minimum magnitude for 
engineering interest, the G – R (1944) distribution is typically truncated at both ends and 
renormalized so that it integrates to unity. The truncated exponential model is limited at the 
minimum and maximum magnitude values and equation 3.3 shows that the distribution 
function is normalized to set the total probability value to unity. 

݂݉ሺݓܯሻ ൌ
β exp൫െβ	ሺMwെMminሻ൯

1 െ exp൫െβ	ሺ	Mmax െMminሻ൯
																																																																																																3.3	 

 
Where β is ln(10) times the b value.  

Youngs and Coppersmith (1985) proposed that the truncated exponential distribution is 
suitable for large regions or regions with multiple faults but in most cases does not work well 
for fault zones. Recent earthquakes and advances in understanding of earthquake 
generation process have indicated that EQ recurrence on individual faults may not conform 
to the exponential model developed from regional historical observations (Ocak, 2011). 

Instead, individual faults or fault segments may tend to rupture in what have been termed 
“characteristic” size events at or near. The characteristic magnitude distribution model in 
which the faults tend to generate only characteristic (or maximum) size events depends on 
the fault geometry. The general form of the fully characteristic model is represented by 
truncated normal distribution (Schwartz and Coppersmith, 1984). Truncation is done 
according to the standard deviation in magnitude – rupture area relation as shown in Figure 
3.7 (Ocak, 2011) 

Composite models combine the truncated exponential model and the characteristic model. 
The earthquakes whose sizes are small represented with the truncated exponential model 
whereas the earthquakes whose sizes are large represented with characteristic model in 
Composite Model. Equations 3.4 and 3.5 shows that 94% of seismic moment is released by 
the characteristic earthquakes whereas the rest of the total seismic moment is released by 
the smaller size earthquakes due to the constraints of the distribution equation. 
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follows; “The changes in the b-value have an insignificant effect on the recurrence relation 
but the function is more sensitive to the changes in upper bound magnitude”. The magnitude 
distribution function for each source is bounded with a minimum magnitude considering the 
engineering interest. The minimum magnitude is set to magnitude 4.5 for all sources 
considering the historical seismicity of the source. The upper bound for the magnitude 
distribution functions is calculated by adding 0.25 to the characteristic magnitude for each 
source (Youngs and Coppersmith, 1985). 

 

Figure 3.9 Hazard Curves for Bolu City Centre for different b values 

3.3 Fault Rupture Model 

Two types of sources can be defined in PSHA; areal sources and linear sources. Areal 
sources are based on the historical seismicity and these type of sources are used commonly 
in regions with unknown faults. Linear and multi-planar fault sources can be defined in the 
regions where trustable tectonic information on the fault geometry is available. Within the 
contents of this study, the definitions of USGS Working Group for Earthquake Probabilities 
(2003) (USGS_WG (2003)) are adopted for the first time for 1944 Bolu-Gerede earthquake 
rupture zone. 
  
The shortest fault capable of rupture to produce large earthquakes repeatedly defined as a 
segment by USGS_WG (2003). Three non-overlapping segments are defined above for 
1944 Bolu-Gerede earthquake rupture zone. Furthermore, fault segment or a combination of 
multiple adjacent fault segments that are possible to rupture and produce an earthquake in 
the future defined as source by USGS_WG (2003). These three segments are combined 
into six different rupture sources such as; 
 

a. Fault segments rupturing individually (Source 1,2 and 3 in Figure 3.10b),  
b. Combined rupture of two adjacent segments (Source 4 and 5 in Figure 3.10b)  
c. Combined rupture of three adjacent segments (Source 6 in Figure 3.10b). 

A scenario is defined as any possible combination of sources that describes a possible 
failure mode.  Rupture scenario covers the decision of assigning either a single or a set of 
faults to be involved in rupture. Six rupture sources creates four rupture scenarios as:  
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Table 3.6 Seismic Sources and Rupture Scenarios considered for study area

 

3.4 Activity Rates and Recurrence Relations 

In addition to the magnitude distribution model, estimation of activity rate is required for 
determining the magnitude reoccurrence relation of a seismic source. The definition of 
activity rate of a source can be given as the rate of earthquakes above the minimum 
magnitude and denoted by Nmin. Abrahamson, (2000) proposed that the historical seismicity 
or the geological information about the fault can be used for the estimation of the the activity 
rate. The geological (or geodetic) information is to be used to estimate Nmin and then it is 
required that balancing of the accumulation of the seismic moment by the release of the 
seismic moment in earthquakes. The total accumulated seismic moment (Mo) on a source is 
given by; 

Mo ൌ 	μ	. A	. D																																																																																																																																																							3.9 

Where, µ is the rigidity of the crust (~3 x 1011 dyne / cm²), A is the fault area (km²) and D is 
the average displacement. 

By taking the time derivative the annual accumulating seismic moment is found as; 

∂Mo
∂t

ൌ 	μ	. A	. s																																																																																																																																																						3.10 

Where, s is the slip rate (cm/year). Seismic moment release during an earthquake is given 
by Equation 3.10. 

Mr ൌ	10ଵ.ହ	୑ାଵ଺.଴ହ																																																																																																																																														3.11 

Therefore the activity rate Nmin is calculated by integrating the moment release per 
earthquake times the relative frequency of earthquakes as given in Equation 3.11 

NሺMminሻ ൌ 		
μ	. A	. s

׬ ݂݉ሺݓܯሻ
୑୫ୟ୶
୑୫୧୬ 10ଵ.ହ	୑୵ାଵ଺.଴ହ	dm

																																																																																						3.12 

The activity rate Nmin is combined with the magnitude distribution function to develop the 
recurrence model Nmin for the source: 
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NሺMሻ 	ൌ NሺMminሻන ݂݉ሺݓܯሻ
୑୫ୟ୶

୑୫୧୬
																																																																																																														3.13 

 

The cumulative rates of earthquakes for each scenario is calculated and plotted in Figure 
3.11 along with the cumulative rate of the events attributed to this 1944 Bolu-Gerede 
earthquake rupture zone. Uncertainty in the rates is represented by the error bars calculated 
by Weichert (1980) equations. Weichert (1980) developed empirical models explaining the 
uncertainty in the rates and suggested that the estimation of recurrence parameters of 
Gutenberg-Richter relation should always employ a maximum likelihood method. The 
method presented by Weichert (1980) gives the necessary extension of known results to the 
important case of unequal periods of observation.  

A weight is assigned to each rupture scenario presented in Table 3.6 and the weighted 
average of these scenarios (red line in Figure 3.11). To establish the best fit between the 
cumulative rates of historic earthquakes and weighted average lines, the weights of 
individual scenarios are modified.  

 

 

Figure 3.11 Comparison of rupture scenarios and weighted average scenario including 
Weichert (1980) error bars 

In order to evaluate the contribution of the weights for rupture scenarios, a sensitivity 
analysis is performed by arbitrarily changing the weights of rupture scenarios. Totally 223 
different rupture scenario weights are considered and PSHA are conducted for Bolu City 
Centre (located in the near vicinity of Yeniçağa-Abant Segment) for T=1 sec spectral period.  
Then, the median and the standard deviation of the total hazard is calculated for 223 
different weighted average scenarios. The median and 86th percentile hazard curves are 
presented in Figure 3.12. In Figure 3.12, the red line represents the median value, the 
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CHAPTER 4 

 

PROBABILISTIC SEISMIC HAZARD ASSESSMENT  
METHODOLOGY AND RESULTS 

 

 

The seismic source models to be used in probabilistic seismic hazard assessment (PSHA) 
were developed for the fault zones in study area and presented in Chapter 3. The activity 
rates, magnitude distribution functions, reoccurrence models and activity rates from the 
seismic source models were connected in hazard assessment analyses. Within the contents 
of this chapter, the probabilistic seismic hazard assessment methodology used for this study 
is summarized in terms of the hazard integral and its main ingredients. The selected ground 
motion prediction models and the evaluated hazard code are explained. The hazard curves, 
deaggregation of the hazard and uniform hazard spectrum for four selected sites in the 
region are offered. Acceptable hazard levels in Turkish Earthquake Code (TEC-2007) are 
presented and the uniform hazard spectra for selected four sites at rock and soil site 
conditions are compared to the TEC-2007 requirements. Hazard maps developed for rock 
and soil site conditions for PGA, T=0.2 and T=1 second spectral accelerations are offered. 
The rock classification map proposed in Chapter 2 is interconnected with the PSHA results 
and a site specific hazard map is given for future reference. The results provided in this 
chapter are discussed sufficiently in Chapter 5. 

4.1 Probabilistic Seismic Hazard Assessment Methodology 

The basic methodology of probabilistic seismic hazard analysis (PHSA) (Cornell 1968 and 
McGuire 2004 approach) requires the computation of how often a specific level of ground 
motion will be exceeded at the site. In other words, in a PSHA, the annual rate of events that 
produce a ground motion intensity measure, IM that exceeds a specified level, L, at the site 
is computed. This annual rate, , is also called the “annual rate of exceedence”. Traditionally, 
the equation for a seismic hazard analysis due to a single source has been given by: 

    4.1 

where the distance from the source to site is the R, earthquake magnitude M is the; the 
annual rate of earthquakes with magnitude bigger than or equal to the minimum magnitude 
is the Nmin, the probability density functions for the magnitude and distance are fM(M) and 
fR(M,R) and the probability of beholding a ground motion greater than L for a given 
earthquake magnitude and distance is the P(IM>L│M,R). 

Gülerce and Abrahamson (2010) explained that the probabilistic seismic hazard analysis 
comprises of identifying a set of earthquake scenarios, forecasting the range of ground 
motions for each earthquake scenario, and calculating the rate of each combination of 
earthquake scenario and ground motion. Each scenario is identified by the size of the 
earthquake (magnitude, M) and the location which defines the distance, R, from the site. The 
ground motion variability is contained in the P(IM>L│M,R) term such as: 

 

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where the number of standard deviations above or below the median is , the probability 
density function for the epsilon (given by a standard normal distribution) is the f() and 
P(IM>L│M,R,) is either 0 or 1. Bommer and Abrahamson (2006) said about this formulation 
that P(IM>L│M,R,) chooses those scenarios and ground motion combinations that cause 
ground motions greater than the test level L. The final form of the hazard integral is given in 
Equation 4.3: 

                       4.3 

 
For multiple seismic sources, the sum of the annual rate of events from the individual 
sources (assuming that the sources are detached) is the total annual rate of events with 
ground motions that exceed L at the site is given in Equation 4.4: 

 
Sources

i
i LIMLIM )()(                     4.4 

Seismic source characterization involves the definition of the location and geometry of 
seismic sources, assigning of the characteristic magnitude and activity rate for each seismic 
source, and selection of the suitable magnitude distribution function along with the 
reoccurrence relation. The probability density functions f(M) and f(M,R) in Equation 4.3, and 
the activity rates (denoted by Nmin in Equation 4.3) for the seismic sources in the study area 
were explained in Chapter 3. The hazard integral were combined to the ground motion and 
ground motion variability denoted by P(IM>L│M,R,) and f() by the selected ground motion 
prediction models.  

Gülerce et al. (2013) explained that Next Generation Attenuation (NGA-W1) models are 
renewed and improved in terms of supplement prediction parameters (such as depth of the 
source, basin effects, magnitude dependent standard deviations, etc.), statistical approach, 
and a well constrained global database. The feasibility of the NGA-W1 models developed for 
California (US) is an argumentative topic for PSHA studies handled in other tectonic 
environments. Gülerce et al. (2013) modified and used the recently developed Turkish 
Strong Motion Database (TSMD, Akkar et al., 2010) to check the compatibility of the 
magnitude, distance, and site amplification scaling of NGA-W1 horizontal prediction models 
with the ground motions recorded in Turkey and adjusted necessary coefficients of these 
models to reflect the regional characteristics for the PSHA applications in Turkey. The 
Turkey-Adjusted NGA-W1 prediction models are employed by to represent the ground 
motion variability for the first time on NAF system.  

A sensitivity analysis is performed to evaluate the effect of weights assigned to different TR 
Adjusted NGA-W1 models. The hazard curves for PGA for Bolu City Centre with rock site 
conditions that are developed using TR Adjusted NGA-W1 models individually are provided 
in Figure 4.1. A less than 0.02g difference in the hazard for small annual probability of 
exceedance levels (0.03 or less) caused by using different attenuation models. However, as 
the level annual probability of exceedance getting smaller, the effect of ground motion 
prediction model getting larger. The hazard curves obtained using TR Adjusted BA 2008 and 
TR Adjusted CB 2008 models are quite similar since only magnitude adjustment was applied 
to these models (Gülerce et al., 2013). In addition to the magnitude adjustment, the site 
amplification and large distance terms of AS 2008 and CY 2008 models were also modified. 
Therefore, these two models result in lower hazard curves for rock site conditions. To fully 
represent the ground motion variability, equal weights are assigned to each model for this 
step. 

 
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To check for the effects of regionalized ground motion prediction models to the final hazard 
output, the analysis were repeated for the same site with two sets of ground motion models. 
In the first set, equal weights are assigned to the original NGA-W1 models (denoted by the 
red line in Figure 4.2) and in the second set, equal weights are assigned to the TR-Adjusted 
NGA-W1 models (denoted by the blue line in Figure 4.2) in the hazard run. Figure 4.2 
indicates that the TR-Adjusted models leads to smaller hazard estimates for small return 
periods. This result is expected since all of these models were over-predicting the ground 
motions from small-to-moderate magnitude events, and modified to smaller estimates of 
ground motions in TR-Adjusted versions. For higher hazard levels, hazard curves from both 
sets of ground motions are in good agreement since, large magnitude scaling of the NGA-
W1 models were not modified to preserve the statistical stability of well-constrained NGA-W1 
database.  

 

Figure 4.1 The hazard curves for PGA developed using TR Adjusted NGA-W1 models 
individually for Bolu City Centre with rock site conditions. 

 

Figure 4.2 Comparison of the results of TR Adjusted NGA-W1 and NGA models hazard 
curves for PGA for Bolu City Centre 
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To make the comparison of the hazard results to the defined hazard levels in the Turkish 
Earthquake Code (TEC, 2007) possible, Poisson process is used: 

T

TLIMP
LIM

)(1ln(
)(


                   4.5 

where the number of years is T and the chance of being exceeded is the P(IM>L│T). The 
return period is theinverse of this rate. The different design codes around the world have 
acceptable hazard levels similar to the TEC-2007. Table 4.1 shows the different design 
codes including TEC-2007 with their acceptable hazard levels which were converted to the 
probability of exceedance and return periods: 

Table 4.1 Acceptable hazard levels in TEC-2007 and other design codes 

Code Time 
Prob. of 

Exceedance 
Return Period  

TEC 2007 50 years 2% 2475 years 0.0004 

50 years 10% 475 years 0.0021 

50 years 50% 72 years 0.0139 

NEHRP 
(FEMA - 
273) 

50 years 2% 2475 years 0.0004 

50 years 10% 475 years 0.0021 

Eurocode 50 years 10% 475 years 0.0021 

10 years 10% 95 years 0.0105 

 

4.2 PSHA Results for Example Sites in the Study Area 

The numerical integration of the PSHA integral is performed by the computer code HAZ43 
(developed by N. Abrahamson). The numerical integration of the hazard interval for this 
study is performed by HAZ39 (developed by N. Abrahamson, HGE, 2010). However, the 
code is modified to implement Turkey adjusted NGA-W1 models. HAZ 39 treats epistemic 
uncertanities in the source characterization and the GMPEs through the use of logic trees. 
For each source, all combinations of the logic tree are evaluated and combined to develop 
fractals on the total hazard. The results of the study are provided as hazard curves, 
deaggregation of the hazard, and uniform hazard spectrum for 4 sites in study area; Bolu 
City Centre, Bolu Mountain Tunnel, Hasanlar Dam, Sarıyar Dam (denoted by red stars in 
Figure 4.3). The effect of all possible combinations of magnitude and distance on the 
probability of exceeding a selected ground motion level is illustrated in hazard curves 
(Abrahamson, 2006). 
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levels, the dominating source is the Ilgaz-Ismetpaşa segment.. For 50% of probability of 
exceedance, the dominating scenario has magnitude 6.5-7.5 at the distance 30-50 
kilometers (Figure 4.30).  

For Sarıyar Dam, the dominating scenario again has the magnitude of 6.5-7.5 similar to the 
other sites (Figure 4.31 to Figure 4.33). For this site, the distance range of dominating 
scenario is 50-75 kilometers because of being far away from the seismic sources. When the 
hazard level increases, the percentage contribution of the dominating scenario to the total 
hazard decreases. However, the dominating scenario is always the same for different hazard 
levels. 

4.3 Uniform Hazard Spectrum and TEC 2007 Comparison 

The usage of Uniform Hazard Spectrum (UHS) is a general method for enhancing design 
spectra due to the probabilistic approach. The UHS is formed by calculating the hazard 
independently at a group of spectral periods and then calculating the ground motion for a 
determined probability level at each spectral period. Since the spectral acceleration value at 
each period has an equal opportunity of being exceeded, the term “uniform hazard 
spectrum” is used (Gülerce and Abrahamson, 2011). 

Figure 4.34 to Figure 4.36 show the uniform hazard spectra of the selected sites (Bolu City 
Centre, Bolu mountain Tunnel, Hasanlar Dam and Sarıyar Dam) at 2%, 10% and 50% 
probability of exceedance hazard levels for rock site conditions (Vs30=760 m/s). Similarly, 
Figure 4.37 to Figure 4.39 show the uniform hazard spectra of the selected sites at the same 
probability of exceedance hazard levels for soil site conditions (Vs30=270 m/s). In order to 
compare the results with the TEC-2007 design specifications, the UHS plots include also the 
TEC-2007 design spectrum for rock or soil site conditions. According to TEC 2007 
specifications, for plotting the TEC 2007 design spectrum, Z1 type soil class is assigned to 
represent rock site conditions (Vs30 = 760 m/s) and Z3 type is assigned to represent the soil 
site conditions (Vs30 = 270 m/s).  

For rock site conditions of Bolu City Centre and Bolu Mountain Tunnel the UHS developed is 
significantly higher than TEC-2007 design spectrum for all spectral periods at the hazard 
level levels of 2% and 10% probability of exceedance. For 50% probability of exceedance 
hazard level, Bolu City Centre UHS is smaller than the TEC-2007 design spectrum after 0.25 
second spectral period. Again for 50% probability of exceedance hazard level, the Bolu 
Mountain Tunnel UHS is smaller than the TEC-2007 design spectrum after 1 second spectral 
period. For the soil site conditions, the UHS developed is significantly higher than TEC-2007 
design spectrum at all of the hazard levels. 

For rock site conditions of Hasanlar Dam, the UHS developed is significantly lower than 
TEC-2007 design spectrum for all spectral periods and all of the hazard levels. However, for 
soil site conditions of Hasanlar dam, at 2% probability of exceedance hazard level, the UHS 
is higher than the TEC-2007 design spectrum up to 0.3 second spectral periods. For 10% 
probability of exceedance hazard level, the UHS level is approximately same as the TEC-
2007 design spectrum until 0.075 second spectral period. UHS is significantly lower than the 
TEC-2007 design spectrum for 50% probability of exceedance hazard level. 

For both rock and soil site conditions of Sarıyar Dam, the UHS developed is significantly 
lower than TEC-2007 design spectrum for all spectral periods and all of the different hazard 
levels.  
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 For rock site conditions, the highest value of T=0.2 second is around 1.77g at 2% 
probability of exceedence hazard level, 1.22g at 10% probability of exceedance 
hazard level and 0.45g at 50% probability of exceedance hazard level. 

 For soil site conditions, the highest value of T=0.2 second  is around 2.09g at 2% 
probability of exceedence hazard level, 1.38g at 10% probability of exceedance 
hazard level and 0.65g at 50% probability of exceedance hazard level. 

 The seismic hazard maps for T=1.0 second for rock site conditions (Vs30 = 760 m/s) 
and soil site conditions at 2%, 10% and 50% level of probability of exceedance at 50 
years are provided in Figure 4.57 to Figure 4.62. Generally, the fault lines followed 
by the contours of the maps as expected. The assigned segmentation locations on 
the sources and the overlap locations of the seismic sources are the locations where 
hazard level increase.  

 For rock site conditions, the highest value of T=1.0 second is around 0.81g at 2% 
probability of exceedence hazard level, 0.47g at 10% probability of exceedance 
hazard level and 0.17g at 50% probability of exceedance hazard level. 

 For soil site conditions, the highest value of T=1.0 second  is around 1.42g at 2% 
probability of exceedence hazard level, 0.86g 10% probability of exceedance hazard 
level and 0.35g at 50% probability of exceedance hazard level. 

 For both rock and soil conditions and all of the different hazard levels, smaller 
hazard levels are observed in the regions close to segment-2. The slip rate of 
segment-2 is smaller than the other segments due to the creep observed in 
Ismetpaşa. 

Figure 4.41 Hazard Map for PGA and Vs30 = 760 m/sec at 2% probability of exceedence 
hazard level 
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Figure 4.42 Hazard Map for PGA and Vs30 = 270 m/sec at 2% probability of exceedence 
hazard level

Figure 4.43 Hazard Map for PGA and Vs30 = 760 m/sec at 10% probability of exceedence 
hazard level
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Figure 4.44 Hazard Map for PGA and Vs30 = 270 m/sec at 10% probability of exceedence 
hazard level

Figure 4.45 Hazard Map for PGA and Vs30 = 760 m/sec at 50% probability of exceedence 
hazard level 



68 
 

Figure 4.46 Hazard Map for PGA and Vs30 = 270 m/sec at 50% probability of exceedence 
hazard level

Figure 4.47 Hazard Map for T = 0.2 second Vs30 = 760 m/sec at 2% probability of 
exceedence hazard level
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Figure 4.48 Hazard Map for T = 0.2 second Vs30 = 270 m/sec at 2% probability of 
exceedence hazard level

Figure 4.49 Hazard Map for T = 0.2 second Vs30 = 760 m/sec at 10% probability of 
exceedence hazard level 
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Figure 4.50 Hazard Map for T = 0.2 second Vs30 = 270 m/sec at 10% probability of 
exceedence hazard level

Figure 4.51 Hazard Map for T = 0.2 second Vs30 = 760 m/sec at 50% probability of 
exceedence hazard level
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Figure 4.52 Hazard Map for T = 0.2 second Vs30 = 270 m/sec at 50% probability of 
exceedence hazard level

Figure 4.53 Hazard Map for T = 1.0 second Vs30 = 760 m/sec at 2% probability of 
exceedence hazard level
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Figure 4.54 Hazard Map for T = 1.0 second Vs30 = 270 m/sec at 2% probability of 
exceedence hazard level

Figure 4.55 Hazard Map for T = 1.0 second Vs30 = 760 m/sec at 10% probability of 
exceedence hazard level
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Figure 4.56 Hazard Map for T = 1.0 second Vs30 = 270 m/sec at 10% probability of 
exceedence hazard level 

Figure 4.57 Hazard Map for T = 1.0 second Vs30 = 760 m/sec at 50% probability of 
exceedence hazard level
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Figure 4.58 Hazard Map for T = 1.0 second Vs30 = 270 m/sec at 50% probability of 
exceedence hazard level 
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CHAPTER 5  
 
 

SUMARY AND CONCLUSION 

 

 

Bolu-Ilgaz is one of the seismically active regions of Turkey, located on the second degree 
earthquake zone according to the earthquake zonation map of Turkish Earthquake Code 
(2007). Being in the cross section of Düzce, Bolu-Ilgaz and Mudurnu-Abant segments of 
North Anatolian Fault (NAF) system, the region was damaged by several large earthquakes 
in the last century, however the structural damage in Bolu and its surroundings were 
substantial especially after the 1944 Bolu-Gerede Earthquake (Mw = 7.2) and 1999 Düzce 
Earthquake (Mw = 7.1). Therefore, to reduce the damage in the structures and loss of lives 
in future earthquakes beside a sensible and economical design practice, accurate evaluation 
of seismic hazard for this region is vital.  
 
When compared to the Marmara Region and Istanbul Metropolitan Area, the number of 
PSHA studies in the Bolu-Gerede Region is quite inadequate. Actually, published PSHA 
studies for Turkey were limited (Erdik et al. 1985; Gülkan et al. 1993) before the 1999 
events. Several researchers published estimates of seismic hazard and hazard for Marmara 
Region and for Istanbul after these events. Seismic source characterization was typically 
based on earthquake catalogue data using areal sources in early seismic hazard 
assessment studies and the magnitude distributions of these areal sources were modeled 
with truncated exponential (GR) relationship. In more recent studies (Erdik et al. 2004; 
Crowley and Bommer 2006; Kalkan et al. 2009), seismic sources were modeled by defining 
linear fault segments with the assumption that the seismic energy along these fault 
segments was released by characteristic events. The magnitude distribution functions of 
linear sources were considered to be fully characteristic. In addition, a background source 
representing the small-to-moderate magnitude earthquakes were added to the source model 
and the earthquake reoccurrence of the background source was modeled using truncated 
exponential magnitude distribution model. Due to the lack of local predictive models, early-
stage GMPEs such as Boore et al. (1997), Campbell (1997), and Sadigh et al. (1997) were 
used in earlier studies to represent the ground motion variability. Only the recent study by 
Kalkan et al. (2009) used NGA-W1 ground motion prediction models along with a regional 
GMPE developed for Turkey after the 1999 events by Kalkan and Gülkan (2004). 
 
The main components of PSHA methodology and framework for PSHA are rapidly improving 
by increase in the number of studies about seismic source and ground motion 
characterization for special structures and awareness of earthquake hazard reduction. The 
primary objective of this study is to evaluate the seismic hazard around the 1944 Bolu-
Gerede Earthquake Rupture Zone using improved seismic source models and regionalized 
global ground motion prediction equations within a probabilistic framework. Once published, 
this study will be one of the foremost probabilistic seismic hazard analysis studies performed 
on the rupture zones of 1939-1944 earthquake sequence on NAF system.  
 
The development of advanced seismic source models in terms of source geometry and 
reoccurrence relations is one of the major improvements over the previous seismic hazard 
assessment practice accomplished in this study. Three linear fault segments are defined for 
1944 earthquake rupture zone: Ilgaz – Ismetpaşa Segment, Ismetpaşa – Yeniçağa segment, 
and Yeniçağa – Abant segment. Geometry of these sub-segments (length, width, and 
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segmentation points) are determined and incorporated with the help of available studies 
(Kondo et al., 2005 and Koçyiğit and Ayhan, 2009) and updated active fault maps of General 
Directorate of Mineral Research and Exploration (2012). Since speciality on structural 
geology, tectonics and seismology is a necessity to achieve an accurate and proper 
modeling of the seismic sources as an input to PSHA, expert evaluation of Dr. Şaroğlu for 
the fault geometry and source-epicenter matching for 1944 rupture zone is adopted for this 
study.  
 
Composite magnitude distribution model (Youngs and Coppersmith, 1985) is used for all 
seismic sources in the study area to appropriate representing of the characteristic behavior 
of NAF without an additional background zone. The key feature of this model is; 94% of 
seismic moment is released by the characteristic earthquakes whereas the rest of the total 
seismic moment is released by the smaller size earthquakes due to the constraints of the 
distribution equation. The recurrence models for each source are bounded by minimum and 
maximum magnitude values. The minimum moment magnitude value is selected as 4.5 
considering the engineering interest and the characteristic magnitude with one standard 
deviation is assigned to each source as maximum magnitude. The recurrence parameter b-
value of the area is calculated as 0.60 using maximum likelihood method. The b-value used 
by the previous studies in the literature is in good agreement with the value estimated in this 
study. In order to evaluate the contribution of the variability in the b-value to the total hazard 
output, a sensitivity analysis is performed for Bolu City Centre and it is found that the hazard 
results are quite insensitive to the changes in b-value especially for high hazard levels when 
the composite magnitude recurrence model is employed. Fault segments, rupture sources, 
and rupture scenarios are determined using the WG-2003 terminology and a full rupture 
model is developed for each source considering single and multi-segment ruptures. Events 
in the earthquake catalogue are attributed to the individual seismic sources and scenario 
weights are determined by balancing the accumulated seismic energy by the catalog (A 
revised and extended earthquake catalog for Turkey since 1900 (M≥4.0), Kalafat, 2010) 
seismicity.  
 
Activity rates for each source should be estimated for a complete source characterization 
model. The annual slip rate of each source is the main parameter to be estimated for 
calculating activity rate. The long period slip rate of the NAF system is found as 10 mm/year 
using geological observations (details are provided in Chapter 2). However, the short term 
slip rate of NAF branch in the area is assumed as 20 mm/year based on the geodetic 
measurements and assigned to each sub-segment. Several studies indicated that aseismic 
deformation is measured in İsmetpaşa therefore, in order to estimate the creep rate of 
Ismetpaşa-Yeniçağa segment, creep amount, time period, and measurement errors 
proposed in the previous studies from 1957 to 2010 are collected in a catalog of creep rates. 
Average creep rate measured by recent studies is found as approximately 8 mm/year. The 
slip rate assigned to the fault segment is reduced by this value for Ismetpaşa-Yeniçağa 
Segment and a total slip rate of 12 mm/year is assigned to that segment. 
 
A weight is assigned to each rupture scenario and the weighted average of these scenarios 
are calculated by assigning a weight to each scenario in the logic tree. To establish the best 
fit between the cumulative rates of historic earthquakes and weighted average lines, the 
weights of individual scenarios are modified. In order to evaluate the contribution of the 
weights for rupture scenarios, a sensitivity analysis is performed by arbitrarily changing the 
weights of rupture scenarios. Analysis results showed that the selected weighted average 
combination is slightly above the median but lies between ± 1 δ range. 
 
Gülerce et al. (2013) explained that Next Generation Attenuation (NGA-W1) models are 
renewed and improved in terms of supplement prediction parameters (such as depth of the 
source, basin effects, magnitude dependent standard deviations, etc.), statistical approach, 
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and a well constrained global database. Turkey-Adjusted NGA-W1 prediction models are 
employed by to represent for the first time on NAF system. Moreover, a sensitivity analysis is 
performed to evaluate the effect of weights assigned to different TR Adjusted NGA-W1 
models. A less than 0.02g difference in the hazard for small annual probability of 
exceedance levels (0.03 or less) caused by using different attenuation models. However, as 
the level annual probability of exceedance getting smaller, the effect of ground motion 
prediction model getting larger. The hazard curves obtained using TR Adjusted BA-2008 and 
TR Adjusted CB 2008 models are quite similar since only magnitude adjustment was applied 
to these models (Gülerce et al., 2013). In addition to the magnitude adjustment, the site 
amplification terms of AS 2008 and CY 2008 models were also modified. Therefore, these 
two models result in lower hazard curves for rock site conditions. To fully represent the 
ground motion predictability equal weights are assigned to each model.  
 
The hazard curves and uniform hazard spectra for different soil conditions (soil and rock) 
and for different hazard levels (2%, 10% and 50% probability of exceedence in 50 years) are 
provided for the four specific locations in the region (Bolu City Centre, Bolu Mountain Tunnel, 
Hasanlar Dam, Sarıyar Dam). In the PSHA analysis, the seismic sources on the west, Duzce 
Fault and NAF Southern Strand (Gülerce and Ocak, 2013), are also taken into consideration. 
The seismic source models of fault segments on the east are not completed yet, therefore 
these sources are not included in PSHA analyses. Highest hazard levels were obtained at 
Bolu City Centre and Bolu Mountain Tunnel and Sarıyar Dam has the lowest hazard curves 
for all of the different hazard levels since Sarıyar Dam is far away from the fault sources 
when compared with Bolu City Centre and Bolu Mountain Tunnel. The study area is located 
in first seismic zone according to TEC 2007 and 475 years return period design peak ground 
acceleration is 0.4g for regular buildings.  
 
The hazard maps for the region for the rock site and soil site conditions at the applicable 
hazard levels in Turkish Earthquake Code (2007) are built for PGA, T=0.2 second and T=1 
second spectral periods. Generally, the fault lines followed by the contours of the maps as 
expected. The assigned segmentation locations on the sources and the overlap locations of 
the seismic sources are the locations where hazard level increase. The west of the study 
area always has bigger hazard values since the sources on the west are included in PSHA. 
The highest value of PGA is around 0.95g for 2475 years return period for soil site (Vs30 = 
270 m/sec) and 0.77g for rock site (Vs30 = 760 m/sec). High spectral accelerations at 0.2 
second spectral period were observed at high return periods for sites very close to the active 
faults. The uncertainty level assigned to the ground motions for this study is median± 3σ as 
the new seismic hazard practice command which is significantly higher than the uncertainty 
level in TEC-2007.  

Detailed in-situ geotechnical tests are definitely required to make a comprehensive site 
classification. However, using the geology, tectonics and geomorphology of the study area, 
an empirical rock classification model is constructed by dividing the study area into two parts; 
hard rock and soft rock. Since, no site specific measurements are available; the rocks are 
classified with respect to their neotectonic period or paleotectonic period. The rocks from the 
neotectonic period are assumed as units that did not face enough diyasine and classified as 
soft rock on the map. On the contrary, the rocks from the paleotectonic period assumed as 
units that faced enough diyasine and classified as hard rock on the map. The emprical rock 
classification map given in Chapter-2 and the hazard maps for PGA for acceptable hazard 
levels given in Chapter-4 are correlated in Figures 5.1 to 5.3. The resulting site specific 
hazard maps for PGA at 2%, 10% and 50% probability of exceedance hazard levels in 50 
years are presented in Figure 5.1, 5.2 and 5.3, respectively. In order to construct these draft 
site specific hazard maps, the hazard values obtained from the soil rite runs (Vs30 = 270 
m/sec) are attributed to the soft rock regions and the hazard values obtained from the rock 
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rite runs (Vs30 = 760 m/sec) are attributed to hard rock regions. Following interprepations 
can be made:  
 

 The highest value of PGA is around 0.77g at 2% probability of exceedence hazard 
level, 0.49g at 10% probability of exceedence hazard level and 0.21g at 50% 
probability of exceedence hazard level for rock site conditions (Vs30 = 760 m/sec). 

 The highest value of PGA is around 0.95g at 2% probability of exceedence hazard 
level, 0.62g at 10% probability of exceedance hazard level and 0.29g at 50% 
probability of exceedence hazard level for soil site conditions (Vs30 = 270 m/sec).  

 In the draft site specific hazard map, the highest value of PGA is around 1.17g at 2% 
probability of exceedence hazard level, 0.77g at 10% probability of exceedance 
hazard level and 0.39g at 50% probability of exceedence hazard level. (Figure 5.1 to 
Figure 5.3)  

 The draft site specific hazard map has higher hazard levels when compared to other 
hazard maps. When contouring the site with full of soil or rock, the results are close 
to each other and in order to not having large errors, the GIS software eliminates 
some of extremely high values at regions close to the faults. Therefore, the resulting 
map does not show the result of real extremely high values at regions close to the 
faults.  

 The highest value of PGA at all of the different hazard levels are always West side of 
the study area for rock or soil maps since, the seismic sources on the west are taken 
into consideration but the seismic sources on the east are not included in PSHA 
analyses. As a result, the East side of the study area has smaller value of PGA at 
different hazard levels. However, for site specific hazard maps, the regions at the 
East side of the study area and close to the faults are assigned as soft rocks and 
assumed with Vs30 = 270 m/sec. Therefore, the resulting map shows higher PGA 
values at the East side of the study area. 

 The West side of the study area shows a huge region like a circle with higher PGA 
values for soil map. However, for site specific hazard maps, the West side of the 
study area shows again a region with large PGA values and the diameter of the 
circle shape get smaller. The East side is assigned as both rock and soil, the regions 
which are assigned as rocks resulting with lower PGA values and this is effecting the 
West side of the maps getting a smaller diameter circle shaped. 

 For both of the soil or rock maps, smaller hazard levels are observed in the regions 
close to segment-2. The region is the slip rate of segment-2 which is smaller than 
the other segments due to the creep observed in Ismetpaşa. 

 To say repeatedly because of big importance, detailed in-situ geotechnical tests are 
definitely required to make a comprehensive site classification. The results given in 
this study can be used to give an idea before in-situ geotechnical tests. The site 
specific results have larger errors for the regions close the fault because the type of 
soil assigned is changing in short distances. However, for the regions far away from 
the faults, the soil type assigned is not changing so much and generally hard rock 
definitions are assigned to these regions. Therefore, the results are with smaller 
errors when compared to the near fault sites. 
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Figure 5.1 Site specific hazard map for PGA at 2% probability of exceedance hazard level 

Figure 5.2 Site specific hazard map for PGA at 10% probability of exceedance hazard level
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Figure 5.3 Site specific hazard map for PGA at 50% probability of exceedance hazard level 
 

The seismic design of the special structures in the study area may be done with the help of 
the results of this study. Site-specific hazard assessment for local site conditions and site-
specific design spectrum may be constructed by the hazard maps of the study area for rock 
site and soil site conditions at the applicable hazard levels of TEC-2007. Alternatively, the 
emprical rock classification map and site specific hazard maps will give an idea about the 
future seismic hazard in the study area with a must of site-specific in-situ tests. Assigning the 
seismic sources outside the study area into the analysis may improve the results of this 
study. 
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