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submitted byTÜRKER ERTEM in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Mathematics Department, Middle East Technical Universityby,

Prof. Dr. Canan̈Ozgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Mustafa Korkmaz
Head of Department,Mathematics

Prof. Dr. Ağacık Zafer
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ABSTRACT

ASYMPTOTIC INTEGRATION OF DYNAMICAL SYSTEMS

Ertem, T̈urker

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Ăgacık Zafer

January 2013, 51 pages

In almost all works in the literature there are several results showing asymptotic relationships between
the solutions of

x′′ = f (t, x) (0.1)

and the solutions 1 andt of x′′ = 0. More specifically, the existence of a solution of (0.1) asymptotic
to x(t) = at+ b, a,b ∈ R has been obtained.

In this thesis we investigate in a systematic way the asymptotic behavior ast → ∞ of solutions of a
class of differential equations of the form

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0 (0.2)

and
(p(t)x′)′ + q(t)x = g(t, x, x′), t ≥ t0 (0.3)

by the help of principalu(t) and nonprincipalv(t) solutions of the corresponding homogeneous equa-
tion

(p(t)x′)′ + q(t)x = 0, t ≥ t0. (0.4)

Here, t0 ≥ 0 is a real number,p ∈ C([t0,∞), (0,∞)), q ∈ C([t0,∞),R), f ∈ C([t0,∞) × R,R) and
g ∈ C([t0,∞) × R × R,R).

Our argument is based on the idea of writing the solution ofx′′ = 0 in terms of principal and nonprin-
cipal solutions asx(t) = av(t) + bu(t), wherev(t) = t andu(t) = 1.

In the proofs, Banach and Schauder’s fixed point theorems areused. The compactness of the operator
is obtained by employing the compactness criteria of Riesz and Avramescu.

The thesis consists of three chapters. Chapter 1 is introductory and provides statement of the problem,
literature review, and basic definitions and theorems.
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In Chapter 2 first we deal with some asymptotic relationshipsbetween the solutions of (0.2) and the
principalu(t) and nonprincipalv(t) solutions of (0.4). Then we present existence of a monotoneposi-
tive solution of (0.3) with prescribed asimptotic behavior.

In Chapter 3 we introduce the existence of solution of a singular boundary value problem to the Equa-
tion (0.2).

Keywords: dynamical system, differential equation, asymptotic integration, principal andnonprincipal

solutions, fixed point theory.
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ÖZ

DİNAM İK SİSTEMLEṘIN ASİMPTOTİK İNTEGRASYONU

Ertem, T̈urker

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Ăgacık Zafer

Ocak 2013, 51 sayfa

Literatürde yer alan çalışmaların hemen hemen hepsinde

x′′ = f (t, x) (0.5)

denkleminin ç̈ozümleri ile x′′ = 0 denkleminin ç̈ozümleri 1 vet arasında asimptotik ilişkileri g̈osteren
sonuçlar vardır. Yapılan çalışmalardaözel olarak (0.5) denklemininx(t) = at+b, a,b ∈ R fonksiyonuna
asimptotik olan bir ç̈ozümünün varlı̆gı gösterilmiştir.

Biz bu tezde,
(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0 (0.6)

ve
(p(t)x′)′ + q(t)x = g(t, x, x′), t ≥ t0 (0.7)

tipinde bir sınıf denklemin ç̈ozümlerinin sonsuz civarında asimptotik davranışını, ilgili

(p(t)x′)′ + q(t)x = 0, t ≥ t0 (0.8)

homojen denkleminin k̈uçük (recessive/principal) ve b̈uyük (dominant/nonprincipal) ç̈ozümleri yardımıyla
daha sistematik bir şekilde inceledik. Buradat0 ≥ 0 verilen bir reel sayı,p fonksiyonuC([t0,∞), (0,∞))
sınıfından,q fonksiyonuC([t0,∞),R) sınıfından,f fonksiyonuC([t0,∞)×R,R) sınıfından veg fonksiy-
onu daC([t0,∞) × R × R,R) sınıfındandır.

Argümanımız temel olarak,x(t) = at + b fonksiyonununx′′ = 0 denkleminin bir ç̈ozümü oldŭgu
ve bu ç̈ozümün x(t) = av(t) + bu(t) şeklinde b̈uyük v(t) = t ve küçük u(t) = 1 çözümleri cinsinden
yazılabilmesi gerçĕgine dayanmaktadır.

Yapılan ispatlarda Banach ve Schauder Sabit Nokta Teoremleri kullanılmıştır. Schauder Sabit Nokta
Teoremi kullanılarak yapılan ispatlarda, operatörün kompaktlı̆gını g̈ostermeye ihtiyaç duyulduğunda
Avramescu Lemması, M. Riesz Teoremi gibi kompaktlık kriterleri kullanılmıştır.
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Tez üç b̈olümden oluşmaktadır. Birinci b̈olüm giriş nitelĭgindedir ve bu b̈olümde problemin ifadesi,
literatür taraması ve temel tanım teoremler verilmektedir.

İkinci bölümde ilk olarak (0.6) denkleminin çözümleri ile (0.8) denkleminin k̈uçük u(t) ve b̈uyük v(t)
çözümleri arasında elde edilen asimptotik ilişkileri verdik. Daha sonra (0.7) denkleminin belli bir
asimptotik g̈osterimde monoton pozitif bir ç̈ozümünün varlı̆gına ÿonelik sonucu verdik.

Üçünc̈u bölümde (0.6) denklemi için bir sing̈uler sınır dĕger probleminin ç̈ozümünün varlı̆gını g̈osterdik.

Anahtar Kelimeler: dinamik sistem, diferansiyel denklem,asimptotik integrasyon, k̈uçük ve b̈uyük

çözümler, sabit nokta teorisi.
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To the memory of my father,
Mustafa ERTEM
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Statement of the Problem

Consider a second order nonhomogeneous differential equation

x′′ =
1
t3

having the general solution of the form

x(t) =
1
2t
+ c1t + c2, c1, c2 ∈ R.

If we let t → ∞ we see that solution is asymptotic to a linec1t + c2. In other words, for each real
numbersa andb there is a solutionx(t) of the equation with the representation

x(t) − (at+ b) = o(1), t → ∞.

Note that the lineat + b is a solution of the corresponding homogeneous differential equationx′′ = 0.
There are many articles which concerning the existence of solutions satisfying similar asymptotic
representations of the second order nonlinear differential equations

x′′ = f (t, x)

or
x′′ = g(t, x, x′).

In this thesis our aim is to study the asymptotic integrationproblem for the nonlinear equation

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0, (1.1)

or
(p(t)x′)′ + q(t)x = g(t, x, x′), t ≥ t0, (1.2)

in connection with the nonprincipal and principal solutions of the corresponding linear homogeneous
equation

(p(t)x′)′ + q(t)x = 0 (1.3)

wheret0 is a fixed nonnegative real number,p ∈ C([t0,∞), (0,∞)), q ∈ C([t0,∞),R), f ∈ C([t0,∞) ×
R,R), andg ∈ C([t0,∞) × R × R,R). Later, we will give the definitions of the above mentioned
principal and nonprincipal solutions of the homogeneous equation (1.3) and talk about their existence.
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1.2 Literature review

To the best of our knowledge the first work concerning the asymptotic integration problem is due to
Caligo [1] who considered the simple linear second-order equation

x′′ + q(t)x = 0 (1.4)

whereq ∈ C([0,∞),R) and proved by using an integral equation approach that if

|q(t)| ≤ l
t2+ρ
, l > 0, ρ > 1,

then the solutions of (1.4) are asymptotically linear, i.e., they satisfy

x(t) = at+ b+ o(1), t → ∞ (1.5)

wherea andb ∈ R.

In 1942 Boas, Boas and Levinson [2] considered second order linear nonhomegeneous differential
equations of the form

x′′ + q(t)x = r(t)

and they showed under the conditions
∫ ∞

0
t|q(t)|dt < ∞,

∫ ∞

0
r(t)dt < ∞

that these equations have solutions satisfying the same representation as in Caligo’s result. Here the
condition on the functionq is weaker than that in Caligo’s result. So Boas et al. obtained the same
result for the homogeneous equations under weaker conditions.

In 1942 Haupt [3] considered then−th order linear equation

x(n) + qn−1(t)x(n−1) + · · · + q0(t)x = h(t)

whereh andqm, m = 0,1,2, · · · n − 1 are taken from the setC([a,∞),R) for some givena > 0 and
showed that the limits

lim
t→∞

(n− 1−m)!tm+1−nx(m)(t), m= 0,1,2, · · · n− 1

are exist and equal for all solutions of the equation under the conditions
∫ ∞

a
h(t)dt < ∞,

∫ ∞

a
tn−1−mqm(t)dt < ∞, m= 0,1,2, · · · n− 1.

In 1947 Bellman [4] considered then−th order linear equation

x(n) + r1(t)x(n−1) + · · · + rn(t)x = 0

and proved using the Gronwall-Bellman inequality that the limits

lim
t→∞

x(n−1)(t)

are exist for all solutions of the equation under the conditions
∫ ∞

0
tk−1|rk(t)|dt < ∞ k = 1,2, · · · n.
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In 1957 Bihari [5] considered the second order nonlinear differential equation of the form

x′′ + q(t) f (x) = 0 (1.6)

and he proved that this equation has solution for any given real numbersa andb with the representation
(1.5) under the below conditions on the functionsq and f :

∫ ∞

0
tq(t)dt < ∞, | f (x)| ≤ tg

(

|x|
t

)

∫ ∞

0

1
g(x)

dx= ∞, g(x) > 0, ∀x > 0.

In general, there are no functionsq and f as in (1.6) that will correspond to the nonhomonegenous
equation given by Boas et al. [2]. So the result obtained by Bihari does not contain the result obtained
in [2]. But, the homogeneous equation given by Caligo in [1] can be written as (1.6) withf (x) = x and
in this case Bihari’s conditions are weaker than that in Caligo’s study, that is, Bihari showed the same
result under weaker conditons.

In 1963 Trench [6] considered the differential equation of the form

x′′ = ( f (t) + g(t))x. (1.7)

He showed that if the general solution of the equation

y′′ = f (t)y (1.8)

is known and if the integral

∫ ∞

0
|g(t)|z(t)dt < ∞, z(t) = max

{

|y1(t)|2, |y2(t)|2
}

is convergent, wherey1 andy2 are linearly independent solutions of (1.8), then for eacha, b ∈ R the
equation (1.7) has a solutionx(t) with the representation

x(t) = α(t)y1(t) + β(t)y2(t)

where

α(t)→ a, β(t)→ b as t → ∞.

In 1963 Hale and Onuchic [7] considered the equation

x′′ + f (t, x, x′) = 0, t ≥ t0 > 0 (1.9)

and they showed that under the conditions

| f (t, x, y)| ≤ h(t)F(|x|, |y|),
∫ ∞

t0

h(t)F(β, βt−1)dt < ∞, β > 0

the equation (1.9) has a solutionx(t) with the representations

x(t) = a+ o(1), t → ∞

3



and
x′(t) = o(1/t), t → ∞.

In 1963 Hartman and Onuchic [8] considered the same equationunder the conditions

| f (t,at+ b+ u,a+ v)| ≤ g(t),

where |u|, |v| ≤ ρ for some ρ > 0 and
∫ ∞

t0

tg(t)dt < ∞

and showed that (1.9) these equations has a solution satisfying the representations

x(t) = at+ b+ o(1), x′(t) = a+ o(1), t → ∞.

In 1964 Waltman [9] consdired the differential equation

x′′ + q(t)x2m+1 = 0, m≥ 0 (1.10)

under the condition
∫ ∞
|q(t)|t2m+1dt < ∞,

and showed that the equation (1.10) has a solution satisfying

x(t) = at+ b+ o(1), t → ∞.

In 1967 Cohen [10] considered second the order nonlinear differential equation

x′′ + f (t, x) = 0. (1.11)

He showed that iff is differentiable with respect tox and if

fx(t, x) > 0, (t, x) ∈ D = [0,∞) × R,

| f (t, x(t))| ≤ fx(t,0)|x(t)|, on D

with the integral satisfying
∫ ∞

t fx(t,0)dt < ∞,

then for eachb and nonzeroa there is a solutionx(t) of the equation (1.11) satisfying

x(t) = at+ b, t → ∞.

Later, several others worked on the same problem and obtained quite important results: Brauer, Wong
[11], Coffman, Wong [12], Hartman [13], Kusano, Trench [14, 15], Kusano, Naito, Usami [16].

Recently, Mustafa and Rogovchenko [17] considered the equation

x′′ + f (t, x, x′) = 0, (1.12)

for t ≥ t0 ≥ 1. They proved that, if

| f (t, x, y)| ≤ h(t)

[

p1

(

|x|
t

)

+ p2(|y|)
]

4



whereh ∈ C((0,∞), (0,∞)), p1, p2 ∈ C((0,∞), (0,∞)), nondecreasing functions satisfying

∫ ∞

t0

sh(s)ds< ∞

and
∫ ∞

t0

1
p1(s) + p2(s)

ds= ∞,

then for any given numbera there is a solution of equation (1.12) satisfying

x(t) = at+ o(t), t → ∞.

In 2003 Yin [18] considered the same equation fort ≥ 0. He showed that the equation has a monotone
positive solutionx(t) defined on the interval [0,∞) satisfying

lim
t→∞

x(t)
t
= c

under the conditions
∫ ∞

0
F(t,2ct,2c)dt < c, c > 0

and
| f (t, x, x′)| ≤ F(t, |x|, |x′|)

whereF is nondecreasing with respect to its second and third arguments.

Lipovan [19] obtained the asymptotic representation (1.5)for solutions of more general second-order
nonlinear equations

x′′ = f (t, x), t ≥ 1 (1.13)

when the functionf satisfies

| f (t, x)| ≤ h1(t)g

(

|x|
t

)

+ h2(t) (1.14)

for some continuous functionsh1 andh2 such that

∫ ∞

1
shi(s)ds< ∞, i = 1,2. (1.15)

Mustafa and Rogovchenko [20] improved the result of Lipovanby showing that (1.13) has a solution
x(t) such that

x(t) = at+ o(t1−µ), t → ∞, µ ∈ [0,1) (1.16)

provided thatf satisfies (1.14) with

∫ ∞

t0

tµhi(t)dt < ∞, i = 1,2.

In 2006, Mustafa and Rogovchenko [21] considered a ”singular boundary value problem of the form”

x′′ + f (t, x) = 0, t ≥ t0 ≥ 1

x(t0) = x0, x0 ∈ R,

x(t) = at+ o(t1−µ), t → ∞

5



wherea > 0 andµ ∈ [0,1). They showed that the problem has a unique solution, underthe conditions

α(t) ≤
∫ ∞

t
f (s, x(s))ds≤ β(t), x ∈ X

and

| f (t, x1(t)) − f (t, x2(t))| ≤ k(t)
t
|x1(t) − x2(t)|, x1, x2 ∈ X

where
∫ ∞

t0

k(t)dt ≤ 1− µ

andX is defined as

X =
{

C([t0,∞);R)| α(t) ≤ x′(t) − a ≤ β(t), t ≥ t0, x(t0) = x0
}

where
α(t) ≤ β(t), β(t) = o(t−µ), t → ∞.

In functional differential equations Grammatikopoulos [22] and Philos [23],in the application to partial
differential equations Zhao [24] and Constantin [25] gave important contributions to the literature with
regards to using asymptotic integration.

The proofs in the recent papers based on obtaining an equivalent integral equation and using fixed
point theorems.

For an excellent survey of almost all results up to 2007, we refer the reader in particular to a recent
paper by Agarwal et al. [26]. Further results can be found in the monographs by Bellman [27], Coppel
[28], Brauer [29], Eastham [30], Agarwal et al. [31], Kiguradze and Chanturia [32].

1.3 Factorizations

Consider the equation (1.3). Letp be a strictly positive continuous function andq be a continuous
function on some intervalI ⊂ R. DefineD as

D :=
{

x : x andpx′ continuously differentiable on I
}

.

D is a linear space with usual addition and multiplication. Define a second order formally self-adjoint
linear operator

Lx(t) = (p(t)x′(t))′ + q(t)x(t), t ∈ I

on the vector spaceD, cf. [33].

Theorem 1.3.1 (Polya factorization) [33] Assume that Lx= 0 has a positive solution u on some
interval J⊂ I. Then L can be written as

Lx(t) =
1

u(t)

[

p(t)u2(t)

(

x(t)
u(t)

)′]′

, ∀x ∈ D, ∀t ∈ J.

Theorem 1.3.2 (Trench factorization) [33] Assume Lx= 0 has a positive solution on[a,b) ⊂ I,
where−∞ < a < b ≤ ∞. Then there is a positive solution v of Lx= 0 such that

Lx(t) =
1

v(t)

[

p(t)v2(t)

(

x(t)
v(t)

)′]′

, ∀x ∈ D, ∀t ∈ J
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and
∫ b

a

1
p(t)v2(t)

dt < ∞.

These factorizations are especially useful when converting (1.1) and (1.2) into an integral equation,
which we will be doing in proving our results.

It is well-known that (see [33, 34]), if the second order linear equation (1.3) has an eventually positive
solution or equivalently (1.3) is nonoscillatory at infinity, then there exist two special linearly inde-
pendent solutionsu andv of (1.3) called, respectively, the principal and nonprincipal solutions. The
principal solutionu is unique up to a constant multiple, and any solutionv that is linearly independent
of u is a nonprincipal solution. The solutionsu andv have the following useful properties:

lim
t→∞

u(t)
v(t)
= 0; (1.17)

∫ ∞

t∗

1
p(t)u2(t)

dt = ∞,
∫ ∞

t∗

1
p(t)v2(t)

dt < ∞, t∗ ≥ 0; (1.18)

p(t)v′(t)
v(t)

>
p(t)u′(t)

u(t)
, t ≥ t∗, (1.19)

wheret∗ ≥ 0 is sufficiently large.

Factorizations and the existence of principal and nonprincipal solutions for impulsive differential equa-
tions are obtained bÿOzbekler and Zafer [35]. Factorizations and the existence of those solutions are
well-known for difference equations and time scale calculus, cf. [36, 37].

We should note thatx(t) = at+ b appearing (1.5) is a solution of the unperturbed equationx′′ = 0, and
this solution can be written in the formx(t) = av(t)+bu(t), wherev(t) = t andu(t) = 1 are nonprincipal
and principal solutions, respectively ofx′′ = 0. Indeed, this observation has been our motivation to
study the asymptotic integration problem for (1.1) and (1.2) in connection with the nonprincipal and
principal solutions of the corresponding linear equation (1.3).

1.4 Basic Definitions and Theorems

Let us denote byK either of the fieldsR orC.

Linear spaces[38] A linear space VoverK is a nonempty setV, in which an addition+ : V×V → V
and scalar multiplication· : K × V → V with the following properties are defined:

1. (V,+) is an Abelian group with the zero element 0.

2. λ(x+ y) = λx+ λy for all λ ∈ K andx, y ∈ V.

3. (λ + µ)x = λx+ µx for all λ, µ ∈ K, x ∈ V.

4. (λµ)x = λ(µx) for all λ, µ ∈ K, x ∈ V.

5. 1x = x for all x ∈ V.
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The elements ofV are calledvectors.

Linear subspaces[38] A nonempty subsetW of aK−vector spaceV is called alinear subspaceof V
if λx+ µy ∈W for all x, y ∈W andλ, µ ∈ K.

Convex set[38] A subsetM of aK−vector spaceV is said to beconvexif λ x+ (1− λ) y ∈ M for all
x, y ∈ M andλ ∈ [0,1].

Metric spaces[38] Let X be a set. Ametricon X is a functiond : X × X→ [0,∞) with the following
properties:

(M1) d(x, y) = d(y, x) for all x, y ∈ X (symmetry).

(M2) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

(M3) d(x, y) = 0 if and only if x = y.

A metric space(X,d) is a nonempty setX on which a metricd is given.

Cauchy sequences[38] Supposed is a metric on a setX. A sequence{xn} in X is aCauchy sequence
if to everyǫ > 0 there corresponds an integerN such thatd(xm, xn) < ǫ wheneverm> N andn > N.

Convergent sequences[38] A sequence{xn} in a metric spaceX = (X,d) said toconvergeor to be
convergentif there is anx ∈ X such that

lim
n→∞

d(xn, x) = 0.

Complete metric spaces[38] A metric spaceX is said to becompleteif every Cauchy sequence inX
is convergent.

Continuous map [38] Let X andY be metric spaces. A mapf : X → Y is said to becontinuous at a
point x0 ∈ X if for every ǫ > 0, there is aδ > 0, such thatd( f (x), f (x0)) < ǫ for all x ∈ X satisfying
d(x, x0) < δ. A map f said to becontinuousif it is continuous at every point ofX.

Uniformly continuous map [38] Let X andY be metric spaces. A mapf : X → Y is said to be
uniformly continuousif, for each givenǫ > 0, there exists aδ > 0, such thatd( f (x), f (y)) < ǫ for all
x, y ∈ X satisfyingd(x, y) < δ.

Bounded set[38] If d is a metric on a setX, a setM ⊂ X is said to bed−bounded if there is a number
M < ∞ such thatd(x, y) ≤ L for all x andy in M.

Relatively compact set[38] A subsetM of a metric spaceX is said to berelatively compactif its
closureM is compact.

Precompact set[38] Let X be a metric space andM , ∅ be a subset ofX. ThenM is precompact
(in the induced metric) if and only if for everyǫ > 0 there are finitely manyx1, x2, ... ∈ X, such that
∪n

j=1Uǫ(x j).

Theorem 1.4.1 [38] For a subset M of a complete metric space X the following statements are equiv-
alent:
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1. M is relatively compact.

2. M is precompact.

3. Every sequence in M contains a subsequence which is convergent in X.

Normed Spaces[38] Let V be aK−vector space. AnormonV is a function‖·‖ : V → [0,∞) with the
following properties:

(N1) ‖λx‖ = |λ| ‖x‖ for all λ ∈ K, x ∈ V.

(N2) ‖x+ y‖≤ ‖x‖+‖ y‖ for all x, y ∈ V (triangle inequality).

(N3) ‖x‖ = 0 holds only ifx = 0.

A normed space(V, ‖·‖) is aK−vector spaceV, on which a norm is defined.

If V is a normed space, then it follows from the properties (N1)-(N3) of the norm that a metricd is
defined onV by

d(x, y) := ‖x− y‖ , x, y ∈ V.

This metric is called thecanonical metricof the normed spaceV.

Banach Spaces[38] A Banach spaceis a normed space which is complete under its canonical metric.

Compact and completely continuous operatorsAn operatorF on a normed space iscompactif
it maps every bounded set into a relatively compact set. A continuous compact operator is called
completely continuous, cf. [39, 40].

We also need to use Lebesgue dominated convergence theorem in the proofs.

Theorem 1.4.2 [41] If { fn} is a sequence of measurable functions on a measurable set E such that
fn(t) → f (t) as n→ ∞ a.e. on E and| fn(t)| ≤ g(t) a.e. on E, where g is an itegrable function on E,
then

∫

E
f dµ = lim

n→∞

∫

E
fndµ.

1.4.1 Fixed Point Theorems

We used the following Banach fixed point theorem and Schauder’s fixed point theorem in the proofs.

Theorem 1.4.3 [42] Let (X,d) be a complete metric space and let F: X → X be a contraction with
Lipschitzian constant L. Then F has a unique fixed point u∈ X. Furthermore, for any x∈ X we have

lim
n→∞

Fn(x) = u

with

d(Fn(x),u) ≤ Ln

1− L
d(x, F(x)).

Theorem 1.4.4 [43] Let C be a closed bounded convex subset of a normed linear space E. Then every
compact continuous map F: C→ C has at least one fixed point.
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1.4.2 Compactness Criteria

We need the following compactness criterion forLp spaces due to M. Riesz and J. D. Tamarkin (see
[44, 45, 46, 47]).

Lemma 1.4.5 LetΩ ⊂ R
n. A set M⊂ Lp(Ω) is compact if

(a) there exists a number B> 0 such that‖ f ‖Lp(Ω) ≤ B for all f ∈ M;

(b) ‖τh f − f ‖Lp(Ω) → 0 as h→ 0, where

(τh f )(x) := f (x1 + h, x2 + h, ..., xn + h), x ∈ Ω.

Let
V :=

{

h ∈ C ([t0,∞) ,R) | lim
t→∞

h(t) exists
}

.

It is known thatV is a Banach space with usual supremum norm (see [48]). We needalso the next
compactness criteria for the subsets ofV due to C. Avramescu:

Lemma 1.4.6 [49] Assume that a subset N⊂ V satisfies the following conditions:

(1) N is uniformly bounded: There exists an L> 0 such that|h(t)| ≤ L for all t ≥ t0 and for all
h ∈ N.

(2) N is equicontinuous: For allǫ > 0 there exists aδǫ > 0 such that

|t1 − t2| < δǫ ⇒ |h(t1) − h(t2)| < ǫ

for all t1, t2 ≥ t0 and for all h∈ N.

(3) N is equiconvergent: For allǫ > 0 there exists a tǫ > t0 such that|h(t)− h(s)| < ǫ for all t, s≥ tǫ
and for all h∈ N.

Then, N is relatively compact in V. Coversely, if a set N⊂ V is relatively compact in V, then it satisfies
(1)–(3).
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CHAPTER 2

NONLINEAR DIFFERENTIAL EQUATIONS

2.1 Asymptotic Integration

2.1.1 Introduction

In this chapter we study the asymptotic integration problemfor a general class of second-order differ-
ential equations of the form

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0, (2.1)

where t0 is a fixed nonnegative real number,p ∈ C([t0,∞), (0,∞)), q ∈ C([t0,∞),R) and f ∈
C([t0,∞) × R,R).

For clarity and comparison purposes we also restate the results as corollaries for the special case

x′′ = f (t, x), t ≥ 1. (2.2)

It is clear that ifu is a given principal solution of (1.3) which is positive fort ≥ t1 for somet1 > t∗,
then one can take the set

{

u(t), v(t) = u(t)
∫ t

t1

1
p(s)u2(s)

ds

}

(2.3)

as a fundamental set of solutions of (1.3), wherev is a nonprincipal solution. Furthermore, ifv is a
given nonprincipal solution of (1.3) which is positive fort ≥ t1 for somet1 > t∗, then a close look at
the proof of Polya factorization reveals that

{

u(t) = v(t)
∫ ∞

t

1
p(s)v2(s)

ds, v(t)

}

(2.4)

becomes a fundamental set of solutions of (1.3), whereu is principal solution.

2.1.2 Main Results

In the sequel we make the standing hypothesis that the unperturbed equation (1.3) has an eventually
positive solution and denote by{u, v} a set of principal and nonprincipal solutions introduced in(2.3)
and (2.4). We will state and prove four theorems concerning the asymptotic integration of solutions.
The results in the special case (2.2) will be stated as corollaries.
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Theorem 2.1.1 Let u and v be principal and nonprincipal solutions of (1.3) given by (2.3) and g∈
C([0,∞), [0,∞)), h1, h2 ∈ C([t1,∞), [0,∞)). Suppose that

| f (t, x)| ≤ h1(t)g

(

|x|
v(t)

)

+ h2(t), t ≥ T (2.5)

for some T> t1, and
∫ ∞

T
v(s)hi(s)ds< ∞, i = 1,2. (2.6)

Then for any given a,b ∈ R there is a solution x(t) of equation (2.1) satisfying

x(t) = av(t) + bu(t) + o(u(t)), t → ∞. (2.7)

Proof. Let a, b ∈ R be given. Define

y(t) := x(t) − av(t).

Then from (2.1) we have

(p(t)y′)′ + q(t)y = f (t, y+ av(t)). (2.8)

It suffices to show that (2.8) has a solutiony(t) so that

y(t) = bu(t) + o(u(t)), t → ∞.

Define

M := max
0≤η≤|a|+|b|+1

|g(η)|. (2.9)

In view of (1.17) and (2.6), we may chooseT1 > T large enough so thatu(t) ≤ v(t),

∫ ∞

T1

v(s)h1(s)ds<
1

2M
,

∫ ∞

T1

v(s)h2(s)ds<
1
2
. (2.10)

Consider the linear space

Y =

{

y ∈ C([T1,∞),R)
∣

∣

∣

∣

∣

|y(t)|
v(t)

≤ My, t ≥ T1

}

.

It is easy to check thatY is a Banach space with norm

‖y‖ = sup
T1≤t<∞

|y(t)|
v(t)
.

Let K be the set given by

K := {y ∈ Y| ‖y− bu‖ ≤ 1} .

It is easy to show thatK is a closed, bounded, convex, and nonempty subset ofY. Define the operator
F : K → Y by

(Fy)(t) = bu(t) + u(t)
∫ ∞

t
f (τ, y(τ) + av(τ))u(τ)

∫ τ

t

1
p(s)u2(s)

dsdτ, t ≥ T1.

It is easy to check that each fixed point ofF is a solution of (2.8). We will use Schauder’s fixed point
theorem to show thatF has a fixed point.
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F maps K into K:For eachy ∈ K we have

|(Fy)(t) − bu(t)|
v(t)

≤ |(Fy)(t) − bu(t)|
u(t)

≤
∫ ∞

t
| f (τ, y(τ) + av(τ))|u(τ)

∫ τ

t

1
p(s)u2(s)

dsdτ

≤ M
∫ ∞

t
v(τ)h1(τ)dτ +

∫ ∞

t
v(τ)h2(τ)dτ

≤ M
∫ ∞

T1

v(τ)h1(τ)dτ +
∫ ∞

T1

v(τ)h2(τ)dτ

≤ 1,

where (2.3), (2.5), and (2.10) are used. Taking the supremumwe see thatFK ⊂ K.

F is continuous:Let {yn}∞n=1 ⊂ K be an arbitrary sequence converging toy ∈ K. For eachn ∈ N, in
view of (2.3) and (2.5) we have that

|(Fyn)(t) − (Fy)(t)|
v(t)

≤ |(Fyn)(t) − (Fy)(t)|
u(t)

≤
∫ ∞

t
gn(τ)u(τ)

∫ τ

t

1
p(s)u2(s)

ds dτ

≤
∫ ∞

t
gn(τ)v(τ)dτ

≤ 2M
∫ ∞

T1

h1(τ)v(τ)dτ + 2
∫ ∞

T1

h2(τ)v(τ)dτ,

where
gn(τ) = | f (τ, yn(τ) + av(τ)) − f (τ, y(τ) + av(τ))|.

By applying Lebesgue’s dominated convergence theorem we obtain from (2.11) thatFyn → Fy as
n→ ∞.

F is completely continuous:Let {yn}∞n=1 ⊂ K be an arbitrary sequence. We need to show that there
existw ∈ K and a subsequence

{

ynk

}∞
k=1 so thatFynk → w ask→ ∞. We will use Lemma 1.4.5 to show

the existence of such a functionw.

Define

fn(τ) := f (τ, yn(τ) + av(τ))u(τ)
∫ τ

t

1
p(s)u2(s)

ds.

Since{Fyn}∞n=1 ⊂ K, it follows that

‖ fn‖L1([T1,∞)) ≤ 1, n ≥ 1,

i.e., the condition (a) of Lemma 1.4.5 holds. To see that (b) is also satisfied, we first define

(τh f )(τ) = f (τ + h).

Using (2.5) we estimate that
∫ ∞

T1

|(τh fn)(τ) − fn(τ)|dτ ≤
∫ ∞

T1

| fn(τ + h)|dτ +
∫ ∞

T1

| fn(τ)|dτ

≤
∫ ∞

T1+h
| fn(τ)|dτ +

∫ ∞

T1

| fn(τ)|dτ

≤
∫ ∞

T1

2| fn(τ)|dτ

≤
∫ ∞

T1

2(Mh1(τ) + h2(τ))v(τ)dτ
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By Lebesgue’s dominated convergence theorem, we obtain from the above inequality that

‖τh fn − fn‖L1([T1,∞)) → 0 ash→ 0.

Now an application of Lemma 1.4.5 shows that there exists a subsequence{ fnk} so that
∥

∥

∥ fnk − z
∥

∥

∥

L1([T1,∞))
→ 0 ask→ ∞

for somez ∈ L1([T1,∞)).

If we define

w(t) := bu(t) + u(t)
∫ ∞

t
z(τ)dτ,

then we see that
|(Fynk)(t) − w(t)|

v(t)
≤

∫ ∞

T1

| fnk(τ) − z(τ)|dτ.

Taking the supremum and applying Lebesgue’s dominated convergence theorem, we get the complete
continuity ofF.

It follows from the Schauder’s fixed point theorem that the operatorF has a fixed pointy ∈ K, that is,

y(t) = bu(t) + u(t)
∫ ∞

t
f (τ, y(τ) + av(τ))u(τ)

∫ τ

t

1
p(s)u2(s)

dsdτ.

To show the asymptotic representation (2.7), we start with the following estimate:

|y(t) − bu(t)| ≤ u(t)
∫ ∞

t
| f (τ, y(τ) + av(τ))|u(τ)

∫ τ

t

1
p(s)u2(s)

dsdτ

≤ u(t)
∫ ∞

t
| f (τ, y(τ) + av(τ))|u(τ)

∫ τ

t1

1
p(s)u2(s)

dsdτ

≤ u(t)
∫ ∞

t
v(τ)(Mh1(τ) + h2(τ))dτ,

where (2.3) and (2.5) are used. Dividing byu(t) and taking limit ast → ∞ we see that

y(t) − bu(t) = o(u(t)), t → ∞. (2.11)

In view of
x(t) = y(t) + av(t) (2.12)

and the fact thatv is a solution of (1.3), we have

Lx = Ly+ aLv= f (t, y+ a v(t)) = f (t, x),

i.e, x is a solution of (2.1). Using (2.11) and (2.12) we obtain the asymptotic representation (2.7).

�

Corollary 2.1.2 If (1.14) and (1.15) hold, then for any given a,b ∈ R there is a solution x(t) of (2.2)
satisfying

x(t) = at+ b+ o(1), t → ∞.
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Theorem 2.1.3 Let u and v be principal and nonprincipal solutions of (1.3) given by (2.4). Suppose
that (2.5) holds along with the following being true;

∫ ∞

T
u(s)hi(s)ds< ∞, i = 1,2, (2.13)

lim sup
t→∞

u(t)
v(t)

∫ t

T
v(s)hi(s)ds= 0, i = 1,2. (2.14)

Then for any given a,b ∈ R there is a solution x(t) of (2.1) satisfying

x(t) = av(t) + bu(t) + o(v(t)), t → ∞. (2.15)

Proof. Let a, b ∈ R be given. Define

y(t) := x(t) − bu(t). (2.16)

Then equation (2.1) becomes
(p(t)y′)′ + q(t)y = f (t, y+ bu(t)). (2.17)

Now we need to show that equation (2.17) has a solutiony(t) satisfying

y(t) = av(t) + o(v(t)), t → ∞.

Let M be as in (2.9). Without loss of generality we can chooseT1 so large that

∫ ∞

T1

u(s)h1(s)ds<
1

2M
,

∫ ∞

T1

u(s)h2(s)ds<
1
2
, (2.18)

hold withv(t) ≥ u(t) > 0, t ≥ T1. Consider the linear space

Y =

{

y ∈ C([T1,∞),R)
∣

∣

∣

∣

∣

|y(t)|
v(t)

≤ My, t ≥ T1

}

.

Y is a Banach space with the norm defined by

‖y‖ = sup
T1≤t<∞

|y(t)|
v(t)
.

Let K be the set given by
K := {y ∈ Y| ‖y− av‖ ≤ 1} .

It is easy to show thatK is a closed, bounded, convex, and nonempty subset ofY. Define an operator
F : K → Y by

(Fy)(t) = av(t) − u(t)
∫ t

T1

f (τ, y(τ) + bu(τ))v(τ)dτ − v(t)
∫ ∞

t
f (τ, y(τ) + bu(τ))u(τ)dτ, t ≥ T1.

It is easy to check that each fixed point ofF is a solution of (2.17). To show thatF has a fixed point,
again we will use the Schauder’s fixed point theorem.
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F maps K into K:For eachy ∈ K we have

|(Fy)(t) − av(t)|
v(t)

=

∣

∣

∣

∣

∣

−
∫ ∞

t

1
p(s)v2(s)

ds
∫ t

T1

f (τ, y(τ) + bu(τ))v(τ)dτ

−
∫ ∞

t
f (τ, y(τ) + bu(τ))u(τ)dτ

∣

∣

∣

∣

∣

≤
∫ t

T1

| f (τ, y(τ) + bu(τ))|v(τ)
∫ ∞

t

1
p(s)v2(s)

dsdτ

+

∫ ∞

t
| f (τ, y(τ) + bu(τ))|u(τ)dτ

≤
∫ ∞

T1

| f (τ, y(τ) + bu(τ))|v(τ)
∫ ∞

τ

1
p(s)v2(s)

dsdτ

≤ M
∫ ∞

T1

u(τ)h1(τ)dτ +
∫ ∞

T1

u(τ)h2(τ)dτ

≤ 1

where (2.4), (2.5), and (2.18) are used. Taking the supremumon left-hand side we getFK ⊂ K.

F is continuous:Now let {yn}∞n=1 ⊂ K be an arbitrary sequence converging toy ∈ K. In order to see
thatF is continuous we need to show thatFyn → Fy, n→ ∞. For eachn ∈ N, in view of (2.4) and
(2.5) we have that

|(Fyn)(t) − (Fy)(t)|
v(t)

≤
∫ ∞

t

1
p(s)v2(s)

ds
∫ t

T1

gn(τ)v(τ)dτ +
∫ ∞

t
gn(τ)u(τ)dτ

≤
∫ ∞

T1

gn(τ)u(τ)dτ

≤ 2M
∫ ∞

T1

h1(τ)u(τ)dτ + 2
∫ ∞

T1

h2(τ)u(τ)dτ.

where

gn(τ) = | f (τ, yn(τ) + bu(τ)) − f (τ, y(τ) + bu(τ))|.

Applying Lebesgue dominated covergence theorem we get the continuity of F.

F is completely continuous:Let {yn}∞n=1 ⊂ K be an arbitrary sequence. Consider the corresponding
sequence

(Fyn)(t) = av(t) − v(t)
∫ t

T1

f (τ, yn(τ) + bu(τ))v(τ)
∫ ∞

t

1
p(s)v2(s)

dsdτ

−v(t)
∫ ∞

t
f (τ, yn(τ) + bu(τ))u(τ)dτ.

Define a sequence{ f 1
n }∞n=1 by

f 1
n (τ) := f (τ, yn(τ) + bu(τ))v(τ)

∫ ∞

t

1
p(s)v2(s)

ds.

Since{Fyn}∞n=1 ⊂ K we have
∥

∥

∥ f 1
n

∥

∥

∥

L1([T1,∞))
≤ 1, ∀n.
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By the following estimate
∫ ∞

T1

| f 1
n (τ + h) − f 1

n (τ)|dτ ≤
∫ ∞

T1

| f 1
n (τ + h)|dτ +

∫ ∞

T1

| f 1
n (τ)|dτ

≤
∫ ∞

T1+h
| f 1

n (τ)|dτ +
∫ ∞

T1

| f 1
n (τ)|dτ

≤
∫ ∞

T1

2| f 1
n (τ)|dτ

≤ 2M
∫ ∞

T1

h1(τ)u(τ)dτ + 2
∫ ∞

T1

h2(τ)u(τ)dτ

and using Lebesgue dominated convergence theorem we get

∥

∥

∥τh f 1
n − f 1

n

∥

∥

∥

L1([T1,∞))
→ 0, h→ 0,

where (τh f )(x) = f (x+h). Thus according to M. Riesz Theorem there exists a subsequence { f 1
nk
}∞n=1 so

that
∥

∥

∥ f 1
nk
− w1

∥

∥

∥

L1([T1,∞))
→ 0, k→ ∞

for somew1 ∈ L1([T1,∞)).

Consider now the subsequence{ynk}∞k=1 and define a sequnece{ f 2
nk
}∞k=1 by

f 2
nk

(τ) := f (τ, ynk(τ) + bu(τ))v(τ)
∫ ∞

τ

1
p(s)v2(s)

ds.

By the similar estimates as above there exists a subsequence{ f 2
nkl
}∞l=1 so that

∥

∥

∥

∥

f 2
nkl
− w2

∥

∥

∥

∥

L1([T1,∞))
→ 0, k→ ∞

for somew2 ∈ L1([T1,∞)).

Now define

z(t) := av(t) − v(t)
∫ t

T1

w1(τ)dτ − v(t)
∫ ∞

t
w2(τ)dτ.

Then we have

|(Fynkl
)(t) − z(t)|
v(t)

≤
∫ ∞

T1

| f 1
nkl

(τ) − w1(τ)|dτ +
∫ ∞

T1

| f 2
nkl

(τ) − w2(τ)|dτ.

Taking the supremum on the left handside and applying Lebesgue dominated convergence theorem we
get the complete continuity ofF.

Now applying the Schauder fixed point theorem we can see that Fhas a fixed pointy ∈ K, that is, there
exists ay ∈ K so that

y(t) = av(t) − u(t)
∫ t

T1

f (τ, y(τ) + bu(τ))v(τ)dτ − v(t)
∫ ∞

t
f (τ, y(τ) + bu(τ))u(τ)dτ, t ≥ T1.

Finally, we show that (2.15) holds. We start with the following estimate:

|y(t) − av(t)| ≤ u(t)
∫ t

T1

| f (τ, y(τ) + bu(τ))|v(τ)dτ + v(t)
∫ ∞

t
| f (τ, y(τ) + bu(τ))|u(τ)dτ

≤ u(t)
∫ t

T1

(Mh1(τ) + h2(τ))v(τ)dτ + v(t)
∫ ∞

t
(Mh1(τ) + h2(τ))u(τ)dτ,

17



where (2.4) and (2.5) are used. Dividing byv(t) and using (2.14) it is easy to see that

y(t) − av(t) = o(v(t)), t → ∞. (2.19)

In view of

x(t) = y(t) + bu(t) (2.20)

and the fact thatu is a solution of (1.3), we have

Lx = Ly+ bLu= f (t, y+ b u) = f (t, x),

i.e, x is a solution of (2.1). Using (2.19) and (2.20) we obtain the asymptotic representation (2.15).

�

Remark 2.1.4 If v′(t) , 0, t ≥ T, then the condition (2.14) can be replaced with

lim sup
t→∞

u′(t)
v′(t)

∫ t

T
v(s)hi(s)ds= 0, i = 1,2. (2.21)

Corollary 2.1.5 Let (1.14) hold. If

∫ ∞

1
hi(s)ds< ∞, i = 1,2

then for any given a,b ∈ R there is a solution x(t) of (2.2) satisfying

x(t) = at+ b+ o(t), t → ∞.

Theorem 2.1.6 Let u and v be principal and nonprincipal solutions of (1.3) given by (2.3). Suppose
that (2.5) holds and

| f (t, x1) − f (t, x2)| ≤ k(t)
v(t)
|x1 − x2|, t ≥ T (2.22)

where k∈ C([t1,∞), [0,∞)). Suppose further that

∫ ∞

T
u(s)k(s)ds< ∞ (2.23)

and
1

p(t)u2(t)

∫ ∞

t
u(s)hi(s)ds≤ β(t), t ≥ T, i = 1,2, (2.24)

whereβ ∈ C([t1,∞), [0,∞)) and

∫ t

T
β(s)ds= o((v(t))µ), t → ∞, µ ∈ (0,1). (2.25)

Then for any given a,b ∈ R there is a solution x(t) of (2.1) satisfying

x(t) = av(t) + bu(t) + o(u(t)(v(t))µ), t → ∞ (2.26)
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Proof. Let M be as in (2.9), andT1 large enough so that (2.18) holds and
∫ ∞

T1

u(s)k(s)ds< µ.

Consider the space of functions

X =

{

x ∈ C([T1,∞),R)
∣

∣

∣

∣

∣

|x(t) − av(t) − bu(t)|
v(t)

≤ 1, ∀t ≥ T1

}

.

It can be shown thatX is a complete metric space with the metric

d(x1, x2) = sup
t≥T1

1
v(t)
|x1(t) − x2(t)|, x1, x2 ∈ X.

Define an operatorF on X by

(Fx)(t) = −u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ) f (τ, x(τ))dτds+ av(t) + bu(t)

Note thatF is well defined by the conditions of the theorem. We will use the Banach contraction
principle to show thatF has a fixed point.

Let x ∈ X. In view of (2.3) and (2.5), we see that

|(Fx)(t) − av(t) − bu(t)| ≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x(τ))|dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

T1

u(τ)| f (τ, x(τ))|dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

T1

u(τ)

(

h1(τ)g

(

|x(τ)|
v(τ)

)

+ h2(τ)

)

dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

T1

u(τ)(Mh1(τ) + h2(τ))dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

ds

≤ v(t),

i.e.,FX ⊂ X.

Let x1, x2 ∈ X. Using (2.22) and (2.23), we have

|(Fx1)(t) − (Fx2)(t)| ≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x1(τ)) − f (τ, x2(τ))|dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)

k(τ)
v(τ)
|x1(τ) − x2(τ)|dτds

≤ d(x1, x2)u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)k(τ)dτds

≤ d(x1, x2)u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

T1

u(τ)k(τ)dτds

≤ µd(x1, x2)v(t).

This implies that
d(Fx1, Fx2) ≤ µd(x1, x2),

i.e.,F is a contraction mapping.
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According to the Banach contraction principleF has a unique fixed pointx and this fixed point is the
solution of equation (2.1).

Finally, since

|x(t) − av(t) − bu(t)| ≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x(τ))|dτds

≤ u(t)
∫ t

T1

1
p(s)u2(s)

∫ ∞

s
u(τ)(Mh1(τ) + h2(τ))dτds

≤ (M + 1)u(t)
∫ t

T1

β(s)ds,

where (2.5), (2.23) and (2.24) are employed, we see that thissolution satisfies (2.26). �

Corollary 2.1.7 Let (1.14) hold and

| f (t, x1) − f (t, x2)| ≤ k(t)
t
|x1 − x2|, t ≥ 1, (2.27)

where k∈ C([1,∞), [0,∞)). Suppose further that

∫ ∞

1
k(s)ds< ∞

and
∫ ∞

t
hi(s)ds≤ β(t), t ≥ 1, i = 1,2,

whereβ ∈ C([1,∞), [0,∞)) with

∫ t

1
β(s)ds= o(tµ), t → ∞, µ ∈ (0,1).

Then for any given a,b ∈ R there is a solution x(t) of (2.2) satisfying

x(t) = at+ b+ o(tµ), t → ∞.

Theorem 2.1.8 Let u and v be principal and nonprincipal solutions of (1.3) given by (2.4). Suppose
that (2.5) and (2.22) hold. Suppose further that

∫ ∞

T
v(s)k(s)ds< ∞ (2.28)

and
1

p(t)v2(t)

∫ ∞

t
v(s)hi(s)ds≤ β(t), t ≥ T, i = 1,2, (2.29)

whereβ ∈ C([t1,∞), [0,∞)) and

∫ ∞

t
β(s)ds= o((u(t))µ), t → ∞, µ ∈ (0,1). (2.30)

Then for any given a,b ∈ R there is a solution x(t) of (2.1) satisfying

x(t) = av(t) + bu(t) + o(v(t)(u(t))µ), t → ∞ (2.31)
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Proof. Let M be as in (2.9), andT1 large enough so that (2.10) holds and

∫ ∞

T1

v(s)k(s)ds< µ.

We also take (X,d) the same metric space as in the proof of previous theorem.

Define an operatorF on X by

(Fx)(t) = v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ) f (τ, x(τ))dτds+ av(t) + bu(t).

It is easy to see thatF is well defined by the conditions of the theorem. We will use the Banach fixed
point theorem to show thatF has a fixed point.

Let x ∈ X. In view of (2.4) and (2.5), we see that

|(Fx)(t) − av(t) − bu(t)| ≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x(τ))|dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

T1

v(τ)| f (τ, x(τ))|dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

T1

v(τ)

(

h1(τ)g

(

|x(τ)|
v(τ)

)

+ h2(τ)

)

dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

T1

v(τ)(Mh1(τ) + h2(τ))dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

ds

≤ v(t),

i.e.,FX ⊂ X.

Let x1, x2 ∈ X. Using (2.22) and (2.28), we have

|(Fx1)(t) − (Fx2)(t)| ≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x1(τ)) − f (τ, x2(τ))|dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)

k(τ)
v(τ)
|x1(τ) − x2(τ)|dτds

≤ d(x1, x2)v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)k(τ)dτds

≤ d(x1, x2)v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

T1

v(τ)k(τ)dτds

≤ µd(x1, x2)v(t)

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

ds

≤ µd(x1, x2)v(t).

This implies that

d(Fx1, Fx2) ≤ µd(x1, x2),

i.e.,F is a contraction mapping.

By Banach fixed point theoremF has a unique fixed pointx. It is easy to see thatx is a solution of
equation (2.1).
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Finally, since

|x(t) − av(t) − bu(t)| ≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x(τ))|dτds

≤ v(t)
∫ ∞

t

1
p(s)v2(s)

∫ ∞

s
v(τ)(Mh1(τ) + h2(τ))dτds

≤ (M + 1)v(t)
∫ ∞

t
β(s)ds,

where (2.5), (2.29) and (2.30) are employed, we see that thissolution satisfies (2.31). �

Corollary 2.1.9 Let (1.14) and (2.27) hold. Suppose further that

∫ ∞

1
sk(s)ds< ∞

and
1
t2

∫ ∞

t
shi(s)ds≤ β(t), t ≥ 1, i = 1,2,

whereβ ∈ C([1,∞), [0,∞)) with

∫ ∞

t
β(s) ds= o(1), t → ∞.

Then for any given a,b ∈ R there is a solution x(t) of (2.2) satisfying

x(t) = at+ b+ o(t), t → ∞.

2.1.3 Examples

In this section we give three examples to illustrate the results. The examples are constructed in such a
way that the principal and nonprincipal solutions are easy to calculate.

Example 2.1.10Consider the nonlinear differential equation

(tx′)′ − 1
t

x =
x3 sinx

t4(1+ x2)
+ te−t, t ≥ 1. (2.32)

The corresponding linear equation is

(tx′)′ − 1
t

x = 0, t ≥ 1.

In correlation with the definitions given in Section 2.1.1 and Theorem 2.1.1 lett1 = 1 andT = 2. It is
easy to see that

p(t) = t, f (t, x) =
x3 sinx

t4(1+ x2)
+ te−t, u(t) =

1
2t
, andv(t) = t − 1

t
.

We take

h1(t) =
1
t3
, h2(t) = te−t, g(x) = x.
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Clearly,

| f (t, x)| ≤ |x|
t4
+ te−t ≤ h1(t)g

(

|x|
v(t)

)

+ h2(t), t ≥ 2,

∫ ∞

2
v(s)h1(s)ds=

∫ ∞

2

(

s− 1
s

)

1
s3

ds=
11
24
< ∞,

and
∫ ∞

2
v(s)h2(s)ds=

∫ ∞

2

(

s− 1
s

)

se−sds= 7e−2 < ∞.

Since all conditions of Theorem 2.1.1 are satisfied, we may conclude that for any given real numbers
a, b there exists a solutionx(t) of (2.32) such that

x(t) = a

(

t − 1
t

)

+
b
2t
+ o

(

1
2t

)

, t → ∞.

Example 2.1.11We consider the nonlinear differential equation

(t2x′)′ − 2x =
ln t

1+ x2
+

x2

1+ t2
, t ≥ 1. (2.33)

The corresponding linear equation is

(t2x′)′ − 2x = 0, t ≥ 1.

Let t1 = T = 1. Notice that

p(t) = t2, f (t, x) =
ln t

1+ x2
+

x2

1+ t2
, u(t) =

1
3t2
, andv(t) = t.

If we take

h1(t) = 1, h2(t) = ln t, g(x) = x2,

then we see that

| f (t, x)| ≤ x2

t2
+ ln t = h1(t)g

(

|x|
t

)

+ h2(t),

and
∫ ∞

1
u(s)hi(s)ds=

1
3
< ∞, u(t)

v(t)

∫ t

1
v(s)hi(s)ds≤ 1

t
, i = 1,2.

and
∫ ∞

1
u(s)h2(s)ds=

∫ ∞

1

1
3s2

ln sds=
1
3
< ∞.

Since all conditions of Theorem 2.1.3 are satisfied, for any given real numbersa andb there exists a
solutionx(t) of (2.33) such that

x(t) = at+
b

3t2
+ o(t), t → ∞.

Note that Theorem 2.1.1 fails to apply here since
∫ ∞

1
v(s)h1(s)ds=

∫ ∞

1
sds= ∞.
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Example 2.1.12We consider the nonlinear differential equation

(t
√

tx′)′ − 1

2
√

t
x =

x3

t3(t + x2)
+ tν, t ≥ 1, ν ≤ −5

2
. (2.34)

Let t1 = 1 andT = 2. Then

p(t) = t
√

t, f (t, x) =
x3

t3(t + x2)
, u(t) =

2
3t
, andv(t) =

√
t − 1

t
.

We take

h1(t) =
1
t3

(√
t − 1

t

)

, h2(t) = tν, g(x) = x, k(t) =
3
2

h1(t), β(t) =
1
t2
.

Clearly,

| f (t, x)| ≤ |x|
t3
+ tν = h1(t)g

(

|x|
v(t)

)

+ h2(t), t ≥ 2,

| f (t, x1) − f (t, x2)| ≤ 3
2t3
|x1 − x2| =

k(t)
v(t)
|x1 − x2|, t ≥ 2,

∫ ∞

2
u(s)k(s)ds=

∫ ∞

2

(

s−7/2 − s−5
)

ds< ∞,

1
p(t)u2(t)

∫ ∞

2
u(s)hi(s)ds≤ 1

t2
= β(t),

and

∫ t

2

1
s2

ds= o ((v(t))µ) , t → ∞, µ ∈ (0,1).

We may conclude by Theorem 2.1.6 that for any given real numbers a, b there exists a solutionx(t) of
(2.34) such that

x(t) = a

(√
t − 1

t

)

+ b
2
3t
+ o

(

2
3t

(√
t − 1

t

)µ)

, t → ∞.

2.2 Monotone Positive Solutions

2.2.1 Introduction

The problem of existence of monotone positive solutions forequations of the form

x′′ = f (t, x, x′), t ≥ 0

has been studied by several authors since such equations areoften encountered in studying mathemat-
ical modeling of real-life problems.
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Among numerous works we choose to mention about the work of Yin [18], who proved that iff
satisfies the inequality

| f (t, x, y)| ≤ F(t, |x|, |y|)

whereF ∈ C([0,∞) × [0,∞) × [0,∞), [0,∞)) is nondecreasing with respect to its second and third
variables for each fixedt ∈ [0,∞) and satisfying

∫ ∞

0
F(t,2ct,2c)dt < c

for somec > 0, then the above equation has a monotone positive solutionx(t) such thatx(0) = 0 and

lim
t→∞

x(t)
t
= c. (2.35)

Yin’s proof is based on arguments developed by Constantin [25] for second-order equations of the
form

x′′ = h(t, x), t ≥ 0,

where the same limit conclusion as in (2.35) was obtained.

We consider the second-order nonlinear differential equation of the from

(p(t)x′)′ + q(t)x = f (t, x, x′), t ≥ 0, (2.36)

wherep ∈ C([0,∞), (0,∞)), q ∈ C([0,∞),R) and f ∈ C([0,∞) × R × R,R). Motivated by the above
works, our aim is to prove that under some reasonable conditions there is a monotone positive solution
x(t) of (2.36) such that

lim
t→∞

x(t)
v(t)
= c, (2.37)

wherev(t) is a nonprincipal solution of the corresponding homogeneous equation (1.3).

We assume that (1.3) has a positive solution, i.e., it is nonoscillatory. Then, for any given nonprincipal
solutionv(t) of (1.3) we may write in view of (1.18) that

u(t) = v(t)
∫ ∞

t

1
p(s)v2(s)

ds. (2.38)

We will also assume that
v(t) > 0, v′(t) > 0, and u′(t) ≥ 0. (2.39)

for all t ≥ t0 for somet0 ≥ 0.

Note that ifp(t) = 1 andq(t) = 0, then we may takeu(t) = 1 andv(t) = t. In this case (2.39) holds and
the asymptotic representations (2.35) and (2.37) coincide.

2.2.2 A Compactness Criterion

This subsection is devoted to a compactness result which we will need in the proof of our next main
result.

Lemma 2.2.1 Let (2.39)hold, and denote

Y =
{

y ∈ C1 ([t0,∞) ,R) | lim
t→∞

y(t) and lim
t→∞

z(t) exist
}

(2.40)
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where

z(t) = y(t) +
v(t)
v′(t)

y′(t). (2.41)

Then the set Y, which is endowed with usual linear operationsis a Banach space with norm

‖y‖Y = max

{

sup
t≥t0
|y(t)| , sup

t≥t0
|z(t)|

}

.

Proof. It is easy to check thatY is a normed space. Let{yn}∞n=1 be a Cauchy sequence inY. Then it is
a Cauchy sequence inV. Therefore there exists ay ∈ V such thatyn→ y in V asn→ ∞. Definezn by

zn(t) := yn(t) +
v(t)
v′(t)

y′n(t).

Then{zn}∞n=1 is also a Cauchy sequence inV. So there exists az ∈ V such thatzn → z in V asn→ ∞.
Clearly,

zn→ z in C([t0, t
∗],R), ∀ t∗ ≥ t0.

From this we have
wn := v′zn→ v′z=: w in C([t0, t

∗],R), ∀ t∗ ≥ t0.

By the definition ofwn we also can write

v(t)yn(t) − v(t0)yn(t0) =
∫ t

t0

(v(s)yn(s))′ds=
∫ t

t0

wn(s)ds.

Because of uniform convergence, by lettingn→ ∞ we see that

v(t)y(t) − v(t0)y(t0) =
∫ t

t0

w(s)ds, t ∈ [t0, t
∗].

This implies thaty ∈ C1([t0,∞),R), sincet∗ is arbitrary. Then we can write

w(t) = v′(t)y(t) + v(t)y′(t), z(t) = y(t) +
v(t)
v′(t)

y′(t).

Hencey ∈ Y, and by the definitions of‖·‖V and‖·‖Y we obtainyn → y in Y. ThereforeY is complete.
�

Lemma 2.2.2 Let (2.39)hold and Y be as in(2.40). Assume that a subset E⊂ Y satisfies the following
conditions:

(i) E is uniformly bounded: There exists an L> 0 such that

|y(t)| ≤ L and |z(t)| ≤ L, ∀t ≥ t0, ∀y ∈ E.

(ii) E is equicontinuous:∀ ǫ > 0 ∃ δǫ > 0 such that

|t1 − t2| < δǫ ⇒ |y(t1) − y(t2)| < ǫ and |z(t1) − z(t2)| < ǫ

for all t1, t2 ≥ t0 and for all y∈ E.
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(iii) E is equiconvergent:∀ ǫ > 0 ∃ tǫ > t0 such that

|y(t) − y(s)| < ǫ and |z(t) − z(s)| < ǫ

for all t, s≥ tǫ and for all y∈ E.

Then, E is relatively compact in Y. Conversely, if a set E⊂ Y is relatively compact in Y, then it satisfies
(i)–(iii).

Proof.

Let {yn}∞n=1 be a sequence inE. Then by Lemma 1.4.6 there exists a subsequence{ynk}∞k=1 such that
ynk → y ask → ∞ for somey ∈ V. Definezn as in proof of Lemma 2.2.1. Then by Lemma 1.4.6
again there exists a subsequence{znkl

}∞l=1 such thatznkl
→ z ask→ ∞ for somez ∈ V. Without loss of

generality, we may write thatyn → y and andzn → z asn→ ∞. It is clear thatzn → z in C([t0, t∗],R)
for all t∗ ≥ t0. Definewn as in proof of Lemma 2.2.1. Thuswn→ w in C([t0, t∗],R). Now by following
the same procedure as in the proof of Lemma 2.2.1, we gety ∈ Y andyn → y in Y. ThereforeE is
relatively compact inY.

Assume now thatE ⊂ Y is relatively compact inY. Let {yn}∞n=1 be an arbitrary sequence inE. Then
there exits a subsequence{ynk}∞n=1 so thatynk → y in Y ask → ∞, for somey ∈ Y. Then by the
definitions of the norms‖·‖Y and‖·‖V we haveynk → y in V ask→ ∞, that is,E is relatively compact
in V. Define the set

M =

{

z ∈ V
∣

∣

∣ ∃ y ∈ E such that z(t) = y(t) +
v(t)
v′(t)

y′(t)

}

.

Let {zn}∞n=1 be an arbitrary sequence inM. Consider the sequence{φn}∞n=1, where

zn(t) = φn(t) +
v(t)
v′(t)
φ
′

n(t).

Then there exists a subsequence{φnl }∞l=1 which is converging to someφ ∈ Y, that is,

∥

∥

∥φnl − φ
∥

∥

∥

Y
= max

{

sup
t≥t0
|φnl (t) − φ(t)|, sup

t≥t0
|znl (t) − z(t)|

}

→ 0 as l → ∞,

and hence
∥

∥

∥znl − z
∥

∥

∥

V
= sup

t≥t0
|zn(t) − z(t)| → 0 as l → ∞.

Thus M also is relatively compact inV. According to Lemma 1.4.6 we conclude that (i)–(iii) are
fullfilled. �

2.2.3 The main result

Theorem 2.2.3 Let (2.39)hold, and asssume that

| f (t, x, y)| ≤ F(t, |x|, |y|), t ≥ t0, x, y ∈ R, (2.42)
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where F∈ C([t0,∞) × [t0,∞) × [t0,∞), [0,∞)) is nondecreasing with respect to its second and third
arguments for each fixed t and for which

∫ ∞

t0

u(t)F(t,2cv(t),2cv′(t))dt < c, c > 0 (2.43)

and
u′(t)
v′(t)

∫ t

t0

v(τ)F(τ,2cv(τ),2cv′(τ))dτ→ ∞, as t→ ∞ (2.44)

are satisfied. Then (2.36) has a monotone positive solution x(t) defined on[t0,∞) which satisfies the
asymptotic property(2.37).

Proof.

By the hypotheses (2.42) and (2.43) there exists aδ ∈ (0, c) so that

∫ ∞

t0

u(t)F(t, (2c− δ)v(t), (2c− δ)v′(t))dt ≤ c− δ. (2.45)

Let

K :=
{

y ∈ Y
∣

∣

∣ δ ≤ y(t) ≤ 2c− δ, δ ≤ z(t) ≤ 2c− δ
}

Obviously K is closed, bounded, convex and nonempty. Define an operatorT on the setK by the
formula

(Ty)(t) := c− u(t)
v(t)

∫ t

t0

v(τ)g(τ)dτ −
∫ ∞

t
u(τ)g(τ)dτ, (2.46)

where for simplicity

g(τ) := f (τ, y(τ)v(τ), (y(τ)v(τ))′).

T maps K into K.Indeed, we may write from (2.38) and (2.46) that

|(Ty)(t) − c| ≤ u(t)
v(t)

∫ t

t0

v(τ)|g(τ)|dτ +
∫ ∞

t
u(τ)|g(τ)|dτ

=

∫ ∞

t

1
p(s)v2(s)

ds
∫ t

t0

v(τ) |g(τ)|dτ +
∫ ∞

t
u(τ) |g(τ)|dτ.

Then, in view of (2.42) and (2.45),

|(Ty)(t) − c| ≤
∫ t

t0

u(τ) |g(τ)|dτ +
∫ ∞

t
u(τ) |g(τ)|dτ

=

∫ ∞

t0

u(τ) |g(τ)|dτ

≤
∫ ∞

t0

u(τ)F(τ, (2c− δ)v(τ), (2c− δ)v′(τ))dτ

≤ c− δ.

Next setting

(S y)(t) = (Ty)(t) +
v(t)
v′(t)

(Ty)′(t)
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we see in a similar manner that

|(S y)(t) − c| ≤ u′(t)
v′(t)

∫ t

t0

v(τ)|g(τ)|dτ +
∫ ∞

t
u(τ)|g(τ)|dτ

≤ u(t)
v(t)

∫ t

t0

v(τ) |g(τ)|dτ +
∫ ∞

t
u(τ) |g(τ)|dτ

≤ c− δ

where we have used (1.19) and (2.39).

T is compact.It is enough to prove thatT(K) is relatively compact inY. To do this we show thatT(K)
satisfies the hypotheses (i)–(iii) of the Lemma 2.2.2.

(i) T(K) is uniformly bounded.By the estimates above we have

|(Ty)(t)| ≤ 2c− δ and |(S y)(t)| ≤ 2c− δ, ∀t ≥ t0, ∀y ∈ K.

(ii) T(K) is equicontinuous.Le ǫ > 0 be given. In view of (1.18) and (2.45), there existtǫ ≥ t0 and
t
′

ǫ ≥ tǫ such that
∫ ∞

tǫ

u(τ)G(τ)dτ <
ǫ

6
and

∫ tǫ

t0

v(τ)G(τ)
∫ ∞

t
′
ǫ

1
p(s)v2(s)

dsdτ <
ǫ

2
,

whereG(τ) := F(τ, (2c− δ)v(τ), (2c− δ)v′(τ)). Sincev is increasing andu is nondecreasing, and (1.17)
and (1.19) hold, there existst

′′

ǫ ≥ tǫ such that

u′(t)
v′(t)

∫ tǫ

t0

v(τ)G(τ)dτ <
ǫ

6
, t ≥ t

′′

ǫ .

Rewrite the operatorT as

(Ty)(t) = c−
∫ ∞

t0

u(τ)g(τ)dτ +
∫ t

t0

v(τ)g(τ)
∫ t

τ

1
p(s)v2(s)

dsdτ.

Let t1, t2 ≥ t0 be arbitrary. Without loss of generality assume thatt2 ≥ t1. Then,

|(Ty)(t1)−(Ty)(t2)| =
∣

∣

∣

∣

∣

∫ t1

t0

v(τ)g(τ)
∫ t1

τ

1
p(s)v2(s)

dsdτ −
∫ t2

t0

v(τ)g(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ

+

∫ t1

t0

v(τ)g(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ −
∫ t1

t0

v(τ)g(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ
∣

∣

∣

∣

∣

≤
∫ t1

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ +
∫ t2

t1

G(τ)v(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ. (2.47)

Define
M1 := max

t0≤s≤tǫ

1
p(s)v2(s)

, M2 := max
tǫ≤s≤t

′
ǫ

1
p(s)v2(s)

, M3 := max
t0≤τ≤tǫ

G(τ)u(τ).

If t0 ≤ t1 ≤ t2 ≤ tǫ , then

∫ t1

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ ≤
∫ tǫ

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ

≤ M1|t1 − t2|
∫ tǫ

t0

G(τ)v(τ)dτ (2.48)
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and
∫ t2

t1

G(τ)v(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ ≤
∫ t2

t1

G(τ)v(τ)
∫ ∞

τ

1
p(s)v2(s)

dsdτ

=

∫ t2

t1

G(τ)u(τ)dτ ≤ M3|t1 − t2|. (2.49)

If tǫ ≤ t1 ≤ t2 ≤ t
′

ǫ , then

∫ t1

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ ≤
∫ tǫ

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ

+

∫ t1

tǫ

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ

≤ M2|t1 − t2|
∫ tǫ

t0

G(τ)v(τ)dτ +
∫ ∞

tǫ

G(τ)u(τ)dτ (2.50)

and
∫ t2

t1

G(τ)v(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ ≤
∫ t2

t1

G(τ)v(τ)
∫ ∞

τ

1
p(s)v2(s)

dsdτ

≤
∫ ∞

tǫ

G(τ)u(τ)dτ. (2.51)

If t
′

ǫ ≤ t1 ≤ t2, then

∫ t1

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ ≤
∫ tǫ

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ

+

∫ t1

tǫ

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ

≤
∫ tǫ

t0

G(τ)v(τ)
∫ ∞

tǫ ′

1
p(s)v2(s)

dsdτ +
∫ ∞

tǫ

G(τ)u(τ)dτ (2.52)

and
∫ t2

t1

G(τ)v(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ ≤
∫ t2

t1

G(τ)v(τ)
∫ ∞

τ

1
p(s)v2(s)

dsdτ

≤
∫ ∞

tǫ

G(τ)u(τ)dτ. (2.53)

Now let us consider the operatorS. Clearly,

|(S y)(t1) − (S y)(t2)| =
∣

∣

∣

∣

∣

− u′(t1)
v′(t1)

∫ t1

t0

v(τ)g(τ)dτ +
u′(t2)
v′(t2)

∫ t2

t0

v(τ)g(τ)dτ

−
∫ ∞

t1

u(τ)g(τ)dτ +
∫ ∞

t2

u(τ)g(τ)dτ
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)|g(τ)|dτ + u′(t2)
v′(t2)

∫ t2

t1

v(τ)|g(τ)|dτ +
∫ t2

t1

u(τ)|g(τ)|dτ

≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)G(τ)dτ + 2
∫ t2

t1

u(τ)G(τ)dτ (2.54)
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If t0 ≤ t1 ≤ t2 ≤ tǫ , then

∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)G(τ)dτ ≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ tǫ

t0

v(τ)G(τ)dτ (2.55)

and
∫ t2

t1

G(τ)u(τ)dτ ≤ M3|t1 − t2|. (2.56)

Note that sinceu′/v′ is uniformly continuous on [t0, tǫ ], there exists aρ1 > 0 such that if|t1 − t2| <
ρ1,wheret0 ≤ t1, t2 < tǫ , then

∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ tǫ

t0

v(τ)G(τ)dτ <
ǫ

3
. (2.57)

If tǫ ≤ t1 ≤ t2 ≤ t
′′

ǫ , then

∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)G(τ)dτ ≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ tǫ

t0

v(τ)G(τ)dτ

+ 2 max

{

u′(t1)
v′(t1)

,
u′(t2)
v′(t2)

}∫ t1

tǫ

v(τ)G(τ)dτ

≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ tǫ

t0

v(τ)G(τ)dτ + 2
∫ ∞

tǫ

G(τ)u(τ)dτ (2.58)

and
∫ t2

t1

G(τ)u(τ)dτ ≤
∫ ∞

tǫ

G(τ)u(τ)dτ.

Sinceu′/v′ is uniformly continuous on [tǫ , t
′′

ǫ ], there exists aρ2 > 0 such that if|t1 − t2| < ρ2,where
tǫ ≤ t1, t2 < t

′′

ǫ , then

∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ tǫ

t0

v(τ)G(τ)dτ <
ǫ

3
. (2.59)

Lastly, if t
′′

ǫ ≤ t1 ≤ t2, then

∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)G(τ)dτ ≤ 2 max

{

u′(t1)
v′(t1)

,
u′(t2)
v′(t2)

}∫ tǫ

t0

v(τ)G(τ)dτ

+ 2 max

{

u′(t1)
v′(t1)

,
u′(t2)
v′(t2)

}∫ t1

tǫ

v(τ)G(τ)dτ

≤ 2 max

{

u′(t1)
v′(t1)

,
u′(t2)
v′(t2)

}∫ tǫ

t0

v(τ)G(τ)dτ + 2
∫ ∞

tǫ

G(τ)u(τ)dτ (2.60)

and
∫ t2

t1

G(τ)u(τ)dτ ≤
∫ ∞

tǫ

G(τ)u(τ)dτ. (2.61)

Let

δǫ = min



















ǫ

2M1

∫ tǫ
t0

G(τ)v(τ)dτ
,
ǫ

3M3
,

ǫ

2M2

∫ tǫ
t0

G(τ)u(τ)dτ
, ρ1, ρ2



















.
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In view of (2.47)–(2.61), we see that if|t1 − t2| < δǫ , then

|(Ty)(t1) − (Ty)(t2)| < ǫ and |(S y)(t1) − (S y)(t2)| < ǫ

for all t ≥ t0 and for ally ∈ Y. ThusT(K) is equicontinuous.

(iii) T(K) is equiconvergent.Fix ǫ > 0, and taket
′

ǫ andt
′′

ǫ as above. Lett1, t2 ≥ max{t′ǫ , t
′′

ǫ }. Without
loss of generality assume thatt2 ≥ t1. Then we have

|(Ty)(t1) − (Ty)(t2)| ≤
∫ t1

t0

G(τ)v(τ)
∫ t2

t1

1
p(s)v2(s)

dsdτ +
∫ t2

t1

G(τ)v(τ)
∫ t2

τ

1
p(s)v2(s)

dsdτ

≤
∫ tǫ

t0

G(τ)v(τ)
∫ ∞

t
′
ǫ

1
p(s)v2(s)

dsdτ + 2
∫ ∞

tǫ

G(τ)u(τ)dτ < ǫ

and

|(S y)(t1) − (S y)(t2)| ≤
∣

∣

∣

∣

∣

u′(t1)
v′(t1)

− u′(t2)
v′(t2)

∣

∣

∣

∣

∣

∫ t1

t0

v(τ)G(τ)dτ + 2
∫ t2

t1

u(τ)G(τ)dτ

≤ 2 max

{

u′(t1)
v′(t1)

,
u′(t2)
v′(t2)

}∫ tǫ

t0

v(τ)G(τ)dτ + 4
∫ ∞

tǫ

G(τ)u(τ)dτ < ǫ

for all y ∈ K. ThusT(K) is equiconvergent. In conclusion,T(K) satisfies all the hypotheses of Lemma
(2.2.2) and soT is a compact operator.

T is continuous.Fix ǫ > 0 andy1, y2 ∈ K. Let t∗ ≥ t0 be so large that
∫ ∞

t∗

u(τ)G(τ)dτ <
ǫ

3
.

Define
m1 = min

t0≤τ≤t∗
v′(t), M1 = max

t0≤τ≤t∗
v′(t).

Since f is uniformly continuous on [t0, t∗] × [δv(t0), (2c − δ)v(t∗)] × [δm1, (2c − δ)M1], there exists a
ρ > 0 such that for allτ ∈ [t0, t∗] and r1, r2 ∈ [δv(t0), (2c − δ)v(t∗)] with |r1 − r2| < ρ and for all
s1, s2 ∈ [δm1, (2c− δ)M1] with |s1 − s2| < ρ we have

|g1(τ) − g2(τ)| ≤ ǫ

3(t∗ − t0)u(t∗)
,

where
gi(τ) = f (τ, v(τ)yi(τ), (v(τ)yi(τ))

′), i = 1,2.

Let

γ = min

{

ρ

2v(t∗)
,
ρ

2M1

}

.

Then if ‖y1 − y2‖ < γ, by (2.42) and (2.43) we have

|(Ty1)(t) − (Ty2)(t)| ≤ u(t)
v(t)

∫ t

t0

v(τ)|g1(τ) − g2(τ))|dτ +
∫ ∞

t
u(τ)|g1(τ) − g2(τ)|dτ

≤
∫ ∞

t0

u(τ)|g1(τ) − g2(τ)|dτ

≤
∫ t∗

t0

u(τ)|g1(τ) − g2(τ)|dτ +
∫ ∞

t∗

u(τ)|g1(τ) − g2(τ)|dτ

≤ u(t∗)(t∗ − t0)
ǫ

3u(t∗)(t∗ − t0)
+ 2

∫ ∞

t∗

u(τ)G(τ)dτ

< ǫ
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Also,

|(S y1)(t) − (S y2)(t)| ≤ u′(t)
v′(t)

∫ t

t0

v(τ)|g1(τ) − g2(τ)|dτ +
∫ ∞

t
u(τ)|g1(τ) − g2(τ)|dτ

≤ u(t)
v(t)

∫ t

t0

v(τ)|g1(τ) − g2(τ)|dτ +
∫ ∞

t
u(τ)|g1(τ) − g2(τ)|dτ

< ǫ.

Therefore,

‖Ty1 − Ty2‖ = max

{

sup
t≥t0
|(Ty1)(t) − (Ty2)(t)|, sup

t≥t0
|(S y1)(t) − (S y2)(t)|

}

< ǫ

whenever‖y1 − y2‖ < γ, which means thatT is continuous.

According to Schauder’s fixed point theorem,T has a fixed point inK, sayTy= y. Define

x(t) = v(t)y(t), t ≥ t0.

We can write

x(t) = cv(t) − u(t)
∫ t

t0

v(τ) f (τ, x(τ), x′(τ))dτ − v(t)
∫ ∞

t
u(τ) f (τ, x(τ), x′(τ))dτ.

It is not difficult to see thatx is a solution of (2.36), and by the definition ofK,

x(t) ≥ δ > 0

and

z(t) = y(t) +
v(t)
v′(t)

y′(t) =
x′(t)
v′(t)

≥ δ > 0.

One can also easily check that

lim
t→∞

x(t)
v(t)
= c.

The proof is complete. �

We end this section by posing two open problems: (1) Find conditions (if any) under which (2.36) has
a monotone positive solutionx(t) satisfying

lim
t→∞

x(t)
u(t)
= c.

(2) Is there also a monotone positive solution of (2.36) which is asymptotic toau(t) + bv(t) for some
real numbersa andb ast → ∞?

2.2.4 An Example

Example 2.2.4 Consider the second order nonlinear differential equation

(

1
t

x′
)′
+

3
4t3

x =
x′3 (x2 + sint)

(1+ x′2)t6
, t ≥ 1. (2.62)

We can easily check that
u(t) = t1/2, v(t) = t3/2
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are principal and nonprincipal solutions of

(

1
t

x′
)′
+

3
4t3

x = 0,

and that

f (t, x, y) =
y3 (x2 + sint)

(1+ y2)t6

satisfies the estimate

| f (t, x, y)| ≤ |y|(|x|
2 + 1)
t6

=: F(t, |x|, |y|).

Also, the function F is nondecreasing with respect to its second and third arguments for each fixed t
and

∫ ∞

t0

u(t)F(t,2cv(t),2cv′(t))dt =
∫ ∞

1

3c (4c2t3 + 1)
t5

dt < c

lim sup
t→∞

u′(t)
v′(t)

∫ t

t0

v(τ)F(τ,2cv(τ),2cv′(τ))dτ = lim sup
t→∞

1
3t

∫ t

1

3c (4c2τ3 + 1)
τ4

dτ = 0

hold with c= 1/7. Since all conditions of Theorem 2.2.3 are satisfied, we may conclude that (2.62)
has a monotone positive solution x(t) satisfying

lim
t→∞

x(t)
t3/2
=

1
7
.

Below are the graphs of the solution x= x(t) and the function7x(t)/t3/2 that confirm our finding in
this example. The graphs are obtained by employing Mathematica software.
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Figure 2.1: Graph of the solutionx = x(t).
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Figure 2.2: Graph of the function 7x(t)/t3/2.
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CHAPTER 3

NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS

3.1 Introduction

Boundary value problems on half-line occur in various applications such as in the study of the unsteady
flow of a gas through semi-infinite porous medium, in analyzing the heat transfer in radial flow between
circular disks, in the study of plasma physics, in an analysis of the mass transfer on a rotating disk in
a non-Newtonian fluid, etc. More examples and a collection ofworks on the existence of solutions of
boundary value problems on half-line for differential, difference and integral equations may be found
in the monographs [50, 51] For some works and various techniques dealing with such boundary value
problems (we may refer to [52, 53, 54, 55] and the references cited therein).

In this chapter by employing principal and nonprincipal solutions we introduce a new approach to
study nonlinear boundary problems on half-line of the form

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0, (3.1)

x(t0) = x0, (3.2)

x(t) = a v(t) + b u(t) + o(r(t)), t → ∞, (3.3)

whereaandbare any given real numbers,uandvare, respectively, principal and nonprincipal solutions
of

(p(t)x′)′ + q(t)x = 0, t ≥ 0 (3.4)

andp ∈ C([0,∞), (0,∞)), q ∈ C([0,∞),R) and f ∈ C([0,∞) × R,R).

We will show that the problem (3.1)–(3.3) has a unique solution in the case when

r(t) = o(u(t)(v(t))µ) (3.5)

and

r(t) = o(v(t)(u(t))µ), (3.6)

whereµ ∈ (0,1) is arbitrary but fixed real numbers.

The nonlinear boundary value problem (3.1)–(3.3) is also closely related to asymptotic integration of
second order differential equations. Indeed, there are several important works in the literature, see
[1, 2, 3, 5, 7, 19, 20, 26, 30, 32], dealing with mostly the asymptotic integration of solutions of second
order nonlinear equations of the form

x′′ = f (t, x).
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The authors are usually interested in finding conditions on the function f (t, x) which guarantee the
existence of a solution asymptotic to a linear function of the form

x(t) = a t+ b, t → ∞. (3.7)

We should point out thatu(t) = 1 andv(t) = t are principal and nonprincipal solutions, respectively, of
the corresponding unperturbed equation

x′′ = 0,

and the functionx(t) in (3.7) can be written as

x = a v(t) + b u(t).

Note thatv(t) → ∞ ast → ∞ but u(t) is bounded in this special case. It turns out such information
is crucial in investigating the general case. Our results will be applicable whether or notu(t) → ∞
(v(t)→ ∞) ast → ∞.

3.2 Existence of Solutions

Let u be a principal solution of (3.4). Without loss of generalitywe may assume thatu(t) > 0 if t ≥ t1
for somet1 ≥ 0. It is easy to see that

v(t) = u(t)
∫ t

t1

1
p(s)u2(s)

ds (3.8)

is a nonprincipal solution of (3.4), which is strictly positive for t > t1.

Theorem 3.2.1 Let t0 > t1. Assume that the function f satisfies

| f (t, x)| ≤ h1(t)g(|x|) + h2(t), t ≥ t0 (3.9)

and

| f (t, x1) − f (t, x2)| ≤ k(t)
v(t)
|x1 − x2|, t ≥ t0, (3.10)

where g∈ C([0,∞), [0,∞)) is bounded; h1, h2, k ∈ C([t0,∞), [0,∞)). Suppose further that
∫ ∞

t0

u(s)k(s)ds≤ µ (3.11)

and
1

p(t)u2(t)

∫ ∞

t
u(s)hi(s)ds≤ β(t), t ≥ t0, i = 1,2 (3.12)

hold for someβ ∈ C([t0,∞), [0,∞)) such that
∫ t

t0

β(s)ds= o((v(t))µ), t → ∞. (3.13)

If either
v(t)→ ∞, t → ∞ (3.14)

or

b =
x0

u(t0)
− a

∫ t0

t1

1
p(s)u2(s)

ds, (3.15)

then there is a unique solution x(t) of (3.1)−(3.3), where r is given by(3.5).
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Proof. Denote byM the supremum of the functiong over [0,∞). Let X be a space of functions defined
by

X = {x ∈ C([t0,∞),R)| |x(t)| ≤ l1v(t) + l2u(t), ∀t ≥ t0} ,

where
l1 = (M + 1)p(t0)u2(t0)β(t0) + |a|

and

l2 =
|x0|
u(t0)

+ |a|
∫ t0

t1

1
p(s)u2(s)

ds.

Note thatX is a complete metric space with the metricd defined by

d(x1, x2) = sup
t≥t0

1
v(t)
|x1(t) − x2(t)|, x1, x2 ∈ X.

Define an operatorF on X by

(Fx)(t) = −u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ) f (τ, x(τ))dτds+ av(t)

+

[

x0

u(t0)
− a

∫ t0

t1

1
p(s)u2(s)

ds

]

u(t).

In view of conditions (3.9) and (3.12) we see thatF is well defined. Next we show thatFX ⊂ X.
Indeed, letx ∈ X, then

|(Fx)(t)| ≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x(τ))|dτds+ |a|v(t) + l2u(t)

≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

t0

u(τ)| f (τ, x(τ))|dτds+ |a|v(t) + l2u(t)

≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

t0

u(τ)(h1(τ)g(|x(τ)|) + h2(τ))dτds+ |a|v(t) + l2u(t)

≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

t0

u(τ)(Mh1(τ) + h2(τ))dτds+ |a|v(t) + l2u(t)

≤ (M + 1)p(t0)u2(t0)β(t0)u(t)
∫ t

t0

1
p(s)u2(s)

ds+ |a|v(t) + l2u(t)

≤ l1v(t) + l2u(t),

which means thatFx ∈ X.

Using (3.8), (3.10), and (3.11) we also see that

|(Fx1)(t) − (Fx2)(t)| ≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x1(τ)) − f (τ, x2(τ))|dτds

≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)

k(τ)
v(τ)
|x1(τ) − x2(τ)|dτds

≤ d(x1, x2)u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)k(τ)dτds

≤ d(x1, x2)u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

t0

u(τ)k(τ)dτds

≤ d(x1, x2)v(t)
∫ ∞

t0

u(τ)k(τ)dτ

≤ µd(x1, x2)v(t),
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wherex1, x2 ∈ X are arbitrary. This implies thatF is a contraction mapping.

Thus according to Banach contraction principleF has a unique fixed pointx. It is not difficult to see
that the fixed point solves (3.1) and (3.2). It remains to showthat x(t) satisfies (3.3) as well. It is not
difficult to show that

|x(t) − av(t) − bu(t)| ≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)| f (τ, x(τ))|dτds+ |c|u(t)

≤ u(t)
∫ t

t0

1
p(s)u2(s)

∫ ∞

s
u(τ)(Mh1(τ) + h2(τ))dτds+ |c|u(t)

≤ (M + 1)u(t)
∫ t

t0

β(s)ds+ |c|u(t),

where

c =
x0

u(t0)
− a

∫ t0

t1

1
p(s)u2(s)

ds− b.

If (3.14) is satisfied, then in view (3.13) and the above inequality, we easily obtain (3.3). In case (3.15)
holds, thenc = 0 and hence we still have (3.3). �

From Theorem 3.2.1 we deduce the following Corollary.

Corollary 3.2.2 Assume that the function f satisfies(3.9) and

| f (t, x1) − f (t, x2)| ≤ k(t)
t
|x1 − x2|, t ≥ t0,

where k∈ C([t0,∞), [0,∞)). Suppose further that
∫ ∞

t0

k(s)ds≤ µ;
∫ ∞

t
hi(s)ds≤ β(t), t ≥ t0, i = 1,2

for someµ ∈ (0,1) andβ ∈ C([t0,∞), [0,∞)), where
∫ t

t0

β(s)ds= o(tµ), t → ∞.

Then for each a,b ∈ R the boundary value problem

x′′ = f (t, x), t ≥ t0,

x(t0) = x0,

x(t) = at+ b+ o(tµ), t → ∞

has a unique solution.

Let v be a nonprincipal solution of (3.4). Without loss of generality we may assume thatv(t) > 0, if
t ≥ t2 for somet2 ≥ 0. It is easy to see that [34, 33]

u(t) = v(t)
∫ ∞

t

1
p(s)v2(s)

ds (3.16)

is a principal solution of (3.4) which is strictly positive.Taket2 large enough so that
∫ ∞

t

1
p(s)v2(s)

ds≤ 1, t ≥ t2.

Then from (3.16), we havev(t) ≥ u(t) for t ≥ t2, which is needed in the proof of the next theorem.
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Theorem 3.2.3 Let t0 ≥ t2. Assume that the function f satisfies(3.9) and(3.10). Suppose further that
∫ ∞

t0

v(s)k(s)ds≤ µ (3.17)

and
1

p(t)v2(t)

∫ ∞

t
v(s)hi(s)ds≤ β(t), t ≥ t0, i = 1,2 (3.18)

hold for someβ ∈ C([t0,∞), [0,∞)) such that
∫ t

t0

β(s)ds= o((u(t))µ), t → ∞. (3.19)

If either
u(t)→ ∞, t → ∞ (3.20)

or

a =
x0

v(t0)
− b

∫ ∞

t0

1
p(s)v2(s)

ds, (3.21)

then there is a unique solution x(t) of (3.1)−(3.3), where r is given by(3.6).

Proof. Denote byM the supremum of the functiong over [0,∞), as in the proof of the previous
theorem. Define a function setX by

X = {x ∈ C([t0,∞),R)| |x(t)| ≤ l1v(t) + l2u(t), ∀t ≥ t0} ,

where

l1 = (M + 1)p(t0)u(t0)v(t0)β(t0) +
|x0|
v(t0)

+ |b|
∫ ∞

t0

1
p(s)v2(s)

ds and l2 = |b|.

Again, X is a complete metric space with the metricd given by the formula as in the proof of the
previous theorem. Define an operatorF on X by

(Fx)(t) = −v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ) f (τ, x(τ))dτds

+

[

x0

v(t0)
− b

∫ ∞

t0

1
p(s)v2(s)

ds

]

v(t) + bu(t).

In view of conditions (3.9) and (3.18) we see thatF is well defined. Now, letx ∈ X be arbitrary. Then

|(Fx)(t)| ≤ v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x(τ))|dτds+ |d1|v(t) + l2u(t)

≤ v(t)
∫ ∞

t0

1
p(s)v2(s)

∫ ∞

t0

v(τ)| f (τ, x(τ))|dτds+ |d1|v(t) + l2u(t)

≤ v(t)
∫ ∞

t0

1
p(s)v2(s)

∫ ∞

t0

v(τ)(h1(τ)g(|x(τ)|) + h2(τ))dτds+ |d1|v(t) + l2u(t)

≤ v(t)
∫ ∞

t0

1
p(s)v2(s)

∫ ∞

t0

v(τ)(Mh1(τ) + h2(τ))dτds+ |d1|v(t) + l2u(t)

≤ (M + 1)p(t0)u(t0)v2(t0)β(t0)v(t)
∫ ∞

t0

1
p(s)v2(s)

ds+ |d1|v(t) + l2u(t)

≤ l1v(t) + l2u(t),

where

d1 =
x0

v(t0)
− b

∫ ∞

t0

1
p(s)v2(s)

ds.
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Thus we see thatFx ∈ X.

Using (3.10), (3.16), and (3.17) we also see that

|(Fx1)(t) − (Fx2)(t)| ≤ v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x1(τ)) − f (τ, x2(τ))|dτds

≤ v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)

k(τ)
v(τ)
|x1(τ) − x2(τ)|dτds

≤ d(x1, x2)v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)k(τ)dτds

≤ d(x1, x2)v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

t0

v(τ)k(τ)dτds

≤ d(x1, x2)v(t)
∫ ∞

t0

v(τ)k(τ)dτ

≤ µd(x1, x2)v(t),

wherex1, x2 ∈ X are arbitrary. This implies thatF is a contraction mapping.

Thus according to Banach contraction principleF has a unique fixed pointx. It is easy to check that the
fixed point solves (3.1) and (3.2). It remains to show thatx(t) satisfies (3.3) as well. It is not difficult
to show that

|x(t) − av(t) − bu(t)| ≤ v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)| f (τ, x(τ))|dτds+ |d2|v(t)

≤ v(t)
∫ t

t0

1
p(s)v2(s)

∫ ∞

s
v(τ)(Mh1(τ) + h2(τ))dτds+ |d2|v(t)

≤ (M + 1)v(t)
∫ t

t0

β(s)ds+ |d2|v(t),

where

d2 =
x0

v(t0)
− b

∫ ∞

t0

1
p(s)v2(s)

ds− a.

If (3.20) is satisfied, then in view (3.19) and the above inequality we easily obtain (3.3). In case (3.21)
holds, thend2 = 0 and hence we still have (3.3).

�

Corollary 3.2.4 Assume that the function f satisfies(3.9) and(3.10). Suppose further that
∫ ∞

t0

sk(s)ds≤ µ; 1
t2

∫ ∞

t
shi(s)ds≤ β(t), t ≥ t0, i = 1,2

for someµ ∈ (0,1) andβ ∈ C([t0,∞), [0,∞)), where
∫ t

1
β(s)ds= o(1), t → ∞.

If for any given a,b ∈ R the condition(3.21)holds then the boundary value problem

x′′ = f (t, x), t ≥ t0,

x(t0) = x0,

x(t) = at+ b+ o(t), t → ∞

has a unique solution.
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3.3 An Example

Example 3.3.1 Consider the boundary value problem

(tx′)′ =
1
t2

arctanx+ tν, t ≥ t0, ν < −2, (3.22)

x(t0) = x0, (3.23)

x(t) = a ln t + b+ o((ln t)µ), t → ∞. (3.24)

where t0 > t1 = 1 andµ ∈ (0,1) are chosen to satisfy

1+ ln t0
t0

≤ µ. (3.25)

Note that since

lim
t0→∞

1+ ln t0
t0

= 0

for any givenµ ∈ (0,1), there is a t0 such that(3.25)holds.

Comparing with the boundary value problem (3.1)–(3.3) we see that p(t) = t, q(t) = 0, and f(t, x) =
(1/t2) arctanx+ tν. The corresponding linear equation becomes

(tx′)′ = 0, t ≥ t0.

Clearly, we may take
u(t) = 1 and v(t) = ln t.

Let

h1(t) =
1
t2
, h2(t) = tν, g(x) = arctanx, k(t) =

ln t
t2
, β(t) =

1
t2
.

Then it is easy to check that

| f (t, x)| ≤ 1
t2

arctan|x| + tν = h1(t)g(|x|) + h2(t),

| f (t, x1) − f (t, x2)| ≤ 1
t2
|x1 − x2| =

k(t)
v(t)
|x1 − x2|,

∫ ∞

t0

k(s)ds=
∫ ∞

t0

ln s
s2

ds=
1+ ln t0

t0
≤ µ by (3.25)

1
t

∫ ∞

t
h1(s)ds≤ 1

t

∫ ∞

t

1
s2

ds=
1
t2
= β(t), t ≥ t0,

1
t

∫ ∞

t
h2(s)ds= − tν

ν + 1
≤ β(t), t ≥ t0,

∫ t

t0

β(s)ds=
∫ t

t0

1
s2

ds=
1
t0
− 1

t
= o((ln t)µ), t → ∞, µ ∈ (0,1),

and
v(t) = ln t → ∞, t → ∞,

i.e., all the conditions of Theorem 3.2.1 are satisfied. Therefore we may conclude that if (3.25) holds,
then the boundary value problem (3.22)–(3.24) has a unique solution.

Furthermore, we may also deduce that there exist solutions x1(t) and x2(t) such that

x1(t) = 1+ o((ln t)µ), t → ∞

and
x2(t) = ln t + o((ln t)µ), t → ∞.

by taking(a,b) = (0,1) and(a,b) = (1,0), respectively.
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