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ABSTRACT

ASYMPTOTIC INTEGRATION OF DYNAMICAL SYSTEMS

Ertem, Turker
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Bacik Zafer

January 2013, 51 pages

In almost all works in the literature there are several tssiowing asymptotic relationships between
the solutions of

X’ = f(t,X) (0.2)
and the solutions 1 artdof X’ = 0. More specifically, the existence of a solution of (0.1) astatip
to x(t) = at+ b, a,b € R has been obtained.

In this thesis we investigate in a systematic way the asyticpbehavior ag — oo of solutions of a
class of diferential equations of the form

(P®X) +at)x=f(t.x), t=to (0.2)
and
(p®X) +at)x =9t x, X), t=to (0.3)
by the help of principal(t) and nonprincipal(t) solutions of the corresponding homogeneous equa-
tion
(p()X) +a()x=0, t>to. (0.4)

Here,tp > 0 is a real numberp € C([ty, =), (0, »)), q € C([tp, ), R), f € C([tp, ) x R, R) and
g € C([to, @) x R X R, R).

Our argument is based on the idea of writing the solutior’c 0 in terms of principal and nonprin-
cipal solutions ax(t) = avt) + bu(t), wherev(t) = t andu(t) = 1.

In the proofs, Banach and Schauder’s fixed point theoremssa®@. The compactness of the operator
is obtained by employing the compactness criteria of RiesizAwramescu.

The thesis consists of three chapters. Chapter 1 is inttoduand provides statement of the problem,
literature review, and basic definitions and theorems.



In Chapter 2 first we deal with some asymptotic relationsbigsveen the solutions of (0.2) and the
principalu(t) and nonprincipal(t) solutions of (0.4). Then we present existence of a monopose
tive solution of (0.3) with prescribed asimptotic behavior

In Chapter 3 we introduce the existence of solution of a dargeoundary value problem to the Equa-
tion (0.2).

Keywords: dynamical system,ftgrential equation, asymptotic integration, principal andprincipal

solutions, fixed point theory.
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DINAM IK SISTEMLERIN ASIMPTOTIK INTEGRASYONU

Ertem, Turker

Doktora, Matematik BIUmU

Tez Yoneticisi : Prof. Dr. Ajacik Zafer

Ocak 2013, 51 sayfa

Literatirde yer alan ¢calismalarin hemen hemen hepsinde
X" = f(t, ) (0.5)

denkleminin @ziimleri ile X’ = 0 denkleminin ¢ziimleri 1 vet arasinda asimptotik iliskileri@steren
sonugclar vardir. Yapilan ¢alismalardzel olarak (0.5) denkleminix(t) = at+b, a, b € R fonksiyonuna
asimptotik olan bir ziminin varlgi gosterilmistir.

Biz bu tezde,
(POX) +at)x= f(t.x), t=to (0.6)
ve
(P()X)" +qt)x=g(t. x,X), t=to (0.7)
tipinde bir sinif denklemin@ziimlerinin sonsuz civarinda asimptotik davraniginiliilgi
(P)X) +qt)x=0, t>to (0.8)

homojen denklemininikclik (recessivgprincipal) ve kilyiik (dominantonprincipal) §ziimleri yardimiyla
daha sistematik bir sekilde inceledik. Burdgla O verilen bir reel sayip fonksiyonuC([to, o), (0, o))
sinifindang fonksiyonuC([to, o), R) sinifindanf fonksiyonuC([to, «0)xR, R) sinifindan vey fonksiy-
onu daC([tp, o) x R x R, R) sinifindandir.

Argimanimiz temel olarak(t) = at + b fonksiyonununx” = 0 denkleminin bir $zimi olduju
ve bu @zimin x(t) = avt) + bu(t) seklinde fyiik v(t) = t ve kiigik u(t) = 1 gdzimleri cinsinden
yazilabilmesi gerggine dayanmaktadir.

Yapilan ispatlarda Banach ve Schauder Sabit Nokta Teorekubaniimistir. Schauder Sabit Nokta
Teoremi kullanilarak yapilan ispatlarda, opérah kompaktlgini gostermeye ihtiya¢c duyuldunda
Avramescu Lemmasi, M. Riesz Teoremi gibi kompaktlik kiggrkullaniimistir.
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Tez uic Blumden olusmaktadir. Birinciddim giris nitelgindedir ve bu Blimde problemin ifadesi,
literatlir taramasi ve temel tanim teoremler verilmektedir.

Ikinci boluimde ilk olarak (0.6) denkleminindgtimleri ile (0.8) denkleminin #clik u(t) ve biyiik v(t)
cozimleri arasinda elde edilen asimptotik iliskileri verdibaha sonra (0.7) denkleminin belli bir
asimptotik gsterimde monoton pozitif birdziminin varligina yonelik sonucu verdik.

Uclindi bdlimde (0.6) denklemi igin bir sirider sinir dger probleminin dziimiiniin varlgini gosterdik.

Anahtar Kelimeler: dinamik sistem, diferansiyel denkleasimptotik integrasyon,i¢iik ve hiyik

coziimler, sabit nokta teorisi.
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To the memory of my father,
Mustafa ERTEM
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Statement of the Problem

Consider a second order nonhomogeneofisrdintial equation

having the general solution of the form

1
X(t) = E +Cit+ ¢y, C1,C e R.

If we lett — oo we see that solution is asymptotic to a liog + c,. In other words, for each real
numbersa andb there is a solutiox(t) of the equation with the representation

X(t) — (at+ b) = 0(1), t — co.

Note that the linat + b is a solution of the corresponding homogeneotifedkntial equationx” = 0.
There are many articles which concerning the existence lotisns satisfying similar asymptotic
representations of the second order nonlinefiedintial equations

X" = f(t,X)

or
X’ =g(t, X, X).

In this thesis our aim is to study the asymptotic integrapooblem for the nonlinear equation
(P®X) +at)x = f(t.X), t>to, (1.2)
or
(P(HX) +alt)x=g(t,x, X), t>to, 1.2)
in connection with the nonprincipal and principal solusayf the corresponding linear homogeneous
equation
(P()x)" +a(t)x =0 (1.3)
wherety is a fixed nonnegative real numbgre C([tg, o), (0, )), q € C([tg, ), R), f € C([tg, o0) X

R,R), andg € C([to,0) x R x R,R). Later, we will give the definitions of the above mentioned
principal and nonprincipal solutions of the homogeneouségn (1.3) and talk about their existence.



1.2 Literature review
To the best of our knowledge the first work concerning the gugtit integration problem is due to
Caligo [1] who considered the simple linear second-ordeiaégn

X" +q(t)x=0 (1.4)

whereq € C([0, =), R) and proved by using an integral equation approach that if

A< g 150, p>1,
then the solutions of (1.4) are asymptotically linear, tleey satisfy

X(t)=at+b+0(1), t— e (1.5)
wherea andb € R.

In 1942 Boas, Boas and Levinson [2] considered second onuearl nonhomegeneoustigirential
equations of the form
X"+ q(t)x = r(t)

and they showed under the conditions

f tlq(t)/dt < co, f r(t)dt < co
0 0

that these equations have solutions satisfying the sameseqtation as in Caligo’s result. Here the
condition on the functiomg is weaker than that in Caligo’s result. So Boas et al. obththe same
result for the homogeneous equations under weaker conslitio

In 1942 Haupt [3] considered the-th order linear equation
X + o a ()X + - + go(t)x = h(D)

whereh andgm, m = 0,1,2,---n— 1 are taken from the s€([a, ), R) for some givera > 0 and
showed that the limits

lim(n—1-mu™ ™), m=012-n-1

are exist and equal for all solutions of the equation underctinditions

f h(t)dt < oo, f "I Mgn(tdt < o, m=0,1,2,---n-1.
a

a
In 1947 Bellman [4] considered thre-th order linear equation
XV 4 OX" D ()X =0
and proved using the Gronwall-Bellman inequality that theéts
fim X2
are exist for all solutions of the equation under the condi

f U @dt <o k=1,2,---n.
0



In 1957 Bihari [5] considered the second order nonlinefieéntial equation of the form
X" +qt)f(x) =0 (1.6)

and he proved that this equation has solution for any givelmtembers andb with the representation
(1.5) under the below conditions on the functiansnd f:

fom tqt)dt < oo, |f(X)] < tg(%)

fo Elx)dx= o, g(x)>0, VYx>0.
In general, there are no functionsand f as in (1.6) that will correspond to the nonhomonegenous
equation given by Boas et al. [2]. So the result obtained naBidoes not contain the result obtained
in [2]. But, the homogeneous equation given by Caligo in Hij be written as (1.6) witli(x) = x and

in this case Bihari's conditions are weaker than that in @2edi study, that is, Bihari showed the same
result under weaker conditons.

In 1963 Trench [6] considered thefiirential equation of the form
X" = (f(t) + g(t))x .7

He showed that if the general solution of the equation
y' =ty (1.8)
is known and if the integral
[ ozt <o, 20 = maxfir. (o)

is convergent, wherg; andy, are linearly independent solutions of (1.8), then for eadh € R the
equation (1.7) has a solutiodt) with the representation

X(t) = a(®ya(t) + BH)y2(t)

where
a(t) > a, B(t) > b ast— .

In 1963 Hale and Onuchic [7] considered the equation
X'+ ft,x,xX)=0, t>tg>0 1.9

and they showed that under the conditions
10x3)1 < ROFQL). [ DOF(.pt dt <o, >0
to
the equation (1.9) has a solutia(t) with the representations

xt)=a+0(1), t—o o



and
X (t) = o(1/t), t— oco.

In 1963 Hartman and Onuchic [8] considered the same equatidar the conditions

[f(t,at+b+u,a+v) < g),

where |u|, |v| < p for somep >0 and tg(t)dt < oo
to

and showed that (1.9) these equations has a solution $agjshe representations

X(t) =at+b+0(1), X(t)=a+0(1), t— oo.

In 1964 Waltman [9] consdired theftérential equation
X' +qt)x*™1=0, m>0 (1.10)

under the condition

f lq(®)It2™1dt < oo,

and showed that the equation (1.10) has a solution satisfyin

X(t) =at+b+0(1), t— oco.

In 1967 Cohen [10] considered second the order nonling&arditial equation
X’ + f(t,x) = 0. (1.11)
He showed that if is differentiable with respect toand if
fx(t,X) >0, (t,X) e D=[0,0) xR,

It X)) < f&(t, 0)x(®)l, on D
with the integral satisfying
f tfy(t,0)dt < oo,

then for eactb and nonzera there is a solutiox(t) of the equation (1.11) satisfying

X(t) =at+b, t - .

Later, several others worked on the same problem and obitguige important results: Brauer, Wong
[11], Coffman, Wong [12], Hartman [13], Kusano, Trench [14, 15], Kusaxaito, Usami [16].
Recently, Mustafa and Rogovchenko [17] considered thetegqua

X’ + f(t,x,x) =0, (1.12)

fort > tp > 1. They proved that, if

tx9) < 00)pr(5) + peto|

4



whereh e C((0, ), (0, »)), p1, P2 € C((0, =), (0, =0)), nondecreasing functions satisfying

fw sh(s)ds< oo

fo

and

f‘”;ds—m
o P1(S) + p2A(S) ’

then for any given numbexthere is a solution of equation (1.12) satisfying
X(t) =at+o(t), t— co.
In 2003 Yin [18] considered the same equationtfar0. He showed that the equation has a monotone

positive solutionx(t) defined on the interval [@o) satisfying

Iimﬂz

tooo t

C

under the conditions .
f F(t,2ct,2c)dt<c, c¢>0
0

and
[T (t, %, ) < F(t X, 1X])

whereF is nondecreasing with respect to its second and third argtsme

Lipovan [19] obtained the asymptotic representation (fobyolutions of more general second-order
nonlinear equations

X' =f(t,x), t=1 (1.13)
when the functiorf satisfies

X

1.1 < gy ) + ety (1.14)

for some continuous functiortg andh, such that

foo sh(s)ds< oo, =12 (1.15)
1

Mustafa and Rogovchenko [20] improved the result of Lipolsrshowing that (1.13) has a solution
X(t) such that
X(t) = at+ot'™), t—oco, uel0,1) (1.16)

provided thatf satisfies (1.14) with

jﬁﬂh®m<w,i:L2

to
In 2006, Mustafa and Rogovchenko [21] considered a "sinchdandary value problem of the form”
X'+ f(t,x)=0, t>tg>1

X(to) = X0, X0 €R,

x(t) = at+ o(t*™#), t— o



wherea > 0 andu € [0, 1). They showed that the problem has a unique solution, uhderonditions

a(t) < ft " (s x(9)ds< B(l), xe X

and

11 5(0) ~ 163000 < Do) - %), %% € X

where

k()dt<1-pu

to
andX is defined as

X={C([to,«): R)| o) <xX(t)-a<pl), txto, Xto)=Xo}

where

a(t) <BO). BM) =o(t™), t—co.

In functional diferential equations Grammatikopoulos [22] and Philos [@3he application to partial
differential equations Zhao [24] and Constantin [25] gave itgmbicontributions to the literature with
regards to using asymptotic integration.

The proofs in the recent papers based on obtaining an eguotvaltegral equation and using fixed
point theorems.

For an excellent survey of almost all results up to 2007, vier he reader in particular to a recent
paper by Agarwal et al. [26]. Further results can be fountiénmonographs by Bellman [27], Coppel
[28], Brauer [29], Eastham [30], Agarwal et al. [31], Kigdee and Chanturia [32].

1.3 Factorizations

Consider the equation (1.3). Letbe a strictly positive continuous function agce a continuous
function on some intervdl c R. DefinelD as

D := {x: xandpX continuously diferentiable on}l.

D is a linear space with usual addition and multiplicationfibea second order formally self-adjoint
linear operator
Lx(®) = (p()X (1) + a(t)x(t), tel

on the vector spad®, cf. [33].

Theorem 1.3.1 (Polya factorization) [33] Assume that Lx= 0 has a positive solution u on some
interval Jc I. Then L can be written as

1
u(t)

Lx(t) = [p(t)uz(t)(@)’},, vxeD, Vteld

u(t)

Theorem 1.3.2 (Trench factorization) [33] Assume Lx= 0 has a positive solution ofg,b) c I,
where—oo < a < b < . Then there is a positive solution v of Ex0 such that
x(t)

[p(t)vz(t)(wﬂ’, VxeD, Vteld

1

Lx(t) = o)



and

b1
I OIZC I

These factorizations are especially useful when conwgifinl) and (1.2) into an integral equation,
which we will be doing in proving our results.

It is well-known that (see [33, 34]), if the second order &inequation (1.3) has an eventually positive
solution or equivalently (1.3) is nonoscillatory at infipithen there exist two special linearly inde-
pendent solutions andv of (1.3) called, respectively, the principal and nonphiatisolutions. The
principal solutionu is unique up to a constant multiple, and any solutidhat is linearly independent
of uis a nonprincipal solution. The solutionsandv have the following useful properties:

Lou)

S © 1 _
i: Wdt = 00, i: Wdt <oo, t,.>0; (118)
PV (L) _ pHu'(t)

0 et (1.19)

wheret, > 0 is suficiently large.

Factorizations and the existence of principal and nongpaisolutions for impulsive dierential equa-
tions are obtained b{zbekler and Zafer [35]. Factorizations and the existeri¢ease solutions are
well-known for diference equations and time scale calculus, cf. [36, 37].

We should note that(t) = at + b appearing (1.5) is a solution of the unperturbed equatios 0, and
this solution can be written in the forr(t) = a\(t) + bu(t), wherev(t) = t andu(t) = 1 are nonprincipal
and principal solutions, respectively gf = 0. Indeed, this observation has been our motivation to
study the asymptotic integration problem for (1.1) and XinZonnection with the nonprincipal and
principal solutions of the corresponding linear equatibi3).

1.4 Basic Definitions and Theorems

Let us denote b either of the fieldR or C.

Linear spaces[38] A linear space \VoverK is a nonempty set, in which an addition+ : VxV — V
and scalar multiplication: K x V — V with the following properties are defined:

1. (V,+) is an Abelian group with the zero element 0.
2. A(x+Yy) =Ax+ Ayforall 1 e Kandx,ye V.

3. M+p)x=ax+uxforallA, pek, xeV.

4. (Qu)x = Aux) forall 2, u e K, xe V.

5. Ix= xforall x e V.



The elements of are calledvectors

Linear subspaceq38] A nonempty subseatV of a K—vector spac#/ is called ainear subspacef V
if Ax+uy e Wforall x, ye Wanda, u € K.

Convex set[38] A subsetM of a K—vector spac®/ is said to beconvexif A1 x+ (1 - 1)y € M for all
X,y € M anda € [0, 1].

Metric spaces[38] Let X be a set. Anetricon X is a functiond : X x X — [0, c0) with the following
properties:

(M1) d(x,y) = d(y, x) for all x,y € X (symmetry).

(M2) d(x, 2) < d(x,y) + d(y, 2) for all x,y,z e X (triangle inequality).

(M3)d(x,y) =0ifand only ifx =y.

A metric spacéX, d) is a nonempty seX on which a metria is given.

Cauchy sequencef38] Supposal is a metric on a seX. A sequencéx,} in X is aCauchy sequence
if to everye > 0 there corresponds an intedeisuch thatd(xm, X,) < € whenevemm > N andn > N.

Convergent sequencef38] A sequencdx,} in a metric spaceX = (X, d) said toconvergeor to be
convergentf there is anx € X such that

r!im d(%n, X) = 0.

Complete metric space$38] A metric spaceX is said to becompletdf every Cauchy sequence X
is convergent.

Continuous map[38] Let X andY be metric spaces. A map: X — Y is said to becontinuous at a
point x € X if for every e > 0, there is & > 0, such that(f(x), f(Xp)) < € for all x € X satisfying
d(x, Xp) < 6. Amap f said to becontinuousf it is continuous at every point oX.

Uniformly continuous map [38] Let X andY be metric spaces. A map: X — Y is said to be
uniformly continuousf, for each givene > 0, there exists @& > 0, such thatl(f(x), f(y)) < e for all
X,y € X satisfyingd(x,y) < 6.

Bounded se[38] If d is a metric on a seX, a setM c X is said to bed—bounded if there is a number
M < oo such thad(x,y) < L for all xandy in M.

Relatively compact set[38] A subsetM of a metric space is said to berelatively compacitf its
closureM is compact.

Precompact set[38] Let X be a metric space and # 0 be a subset oK. ThenM is precompact
(in the induced metric) if and only if for every > 0 there are finitely manyy, X, ... € X, such that
U?:lue(Xj).

Theorem 1.4.1[38] For a subset M of a complete metric space X the following statgs are equiv-
alent:



1. Mis relatively compact.
2. M is precompact.

3. Every sequence in M contains a subsequence which is cmien X.

Normed Spaceg38] LetV be aK-vector space. AormonV is a function||-|| : V — [0, o) with the
following properties:

(N1) [|ax| = Al forall 2 e K, x € V.
(N2) Ix + ylI< [IXI +] Il for all x,y € V (triangle inequality).

(N3) ||x]] = 0 holds only ifx = 0.

A normed spacéV, ||-||) is aKK—vector spac&/, on which a norm is defined.

If V is a normed space, then it follows from the properties (NN3)(of the norm that a metrid is
defined orV by
d(xy) :=1Ix=Vll, xyeV.

This metric is called theanonical metriof the normed spacé.
Banach Space$38] A Banach spacé a normed space which is complete under its canonical enetri

Compact and completely continuous operatorsAn operatorF on a normed space ompactif
it maps every bounded set into a relatively compact set. Aiwoous compact operator is called
completely continuoysf. [39, 40].

We also need to use Lebesgue dominated convergence theotieengroofs.

Theorem 1.4.2[41] If {f,} is a sequence of measurable functions on a measurable setiEttsat
fa(t) — f(t) as n— oo a.e. on E andf,(t)] < g(t) a.e. on E, where g is an itegrable function on E,

then
ffd,u: Iimffnd/,z.
E n—oo E

1.4.1 Fixed Point Theorems

We used the following Banach fixed point theorem and Schaufieed point theorem in the proofs.

Theorem 1.4.3[42] Let (X, d) be a complete metric space and let X — X be a contraction with
Lipschitzian constant L. Then F has a unique fixed poiatXi. Furthermore, for any x X we have

lim F"(x) = u

n—oo

with
Ln

d(F"(9.0) < 7=

d(x, F(X)).

Theorem 1.4.4[43] Let C be a closed bounded convex subset of a normed lineag §pathen every
compact continuous map FC — C has at least one fixed point.



1.4.2 Compactness Criteria

We need the following compactness criterion kgrspaces due to M. Riesz and J. D. Tamarkin (see
[44, 45, 46, 47]).

Lemma 1.4.5 LetQ c R". A set Mc L,(Q) is compact if
(a) there exists a number B0 such thau|f||Lp(Q) < Bforall f € M;
b) |ltnf - f||Lp(Q) — 0as h— 0, where
(thf)() = f(xa +h, % + h, ..., %+ h), XeQ.
Let

V= {h € C({to, ), R)| fim h(t) existi}.

It is known thatV is a Banach space with usual supremum norm (see [48]). We alsedhe next
compactness criteria for the subsetd/adue to C. Avramescu:

Lemma 1.4.6 [49] Assume that a subsetdNV satisfies the following conditions:

(1) N is uniformly bounded: There exists an>L0 such thatjh(t)] < L for all t > ty; and for all
heN.

(2) N is equicontinuous: For alt > 0 there exists @, > 0 such that
ti —tol <6 = |h(t1) — h(t2)l < €
forall ty, t, > tg and for all he N.

(3) N is equiconvergent: For all > O there exists at> to such thath(t) — h(s)| < eforall t, s> t,
and for all he N.

Then, N is relatively compact in V. Coversely, if a set N is relatively compact in V, then it satisfies

1)-@).
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CHAPTER 2

NONLINEAR DIFFERENTIAL EQUATIONS

2.1 Asymptotic Integration

2.1.1 Introduction

In this chapter we study the asymptotic integration problena general class of second-ordeffeli-
ential equations of the form

(POX) +alt)x = f(t.X), t>to, (2.1)
wheretp is a fixed nonnegative real numbgy, € C([tp, ), (0,0)), g € C([tp,),R) and f €
C([to, ) x R, R).

For clarity and comparison purposes we also restate thégesucorollaries for the special case

X = f(t,x), t>1 2.2)

It is clear that ifu is a given principal solution of (1.3) which is positive foe t; for somet; > t.,
then one can take the set

t
{u(t), v(t) = u(t) t m ds} (2.3)

as a fundamental set of solutions of (1.3), wheiie a nonprincipal solution. Furthermore\fis a
given nonprincipal solution of (1.3) which is positive foe t; for somet; > t., then a close look at
the proof of Polya factorization reveals that

0 1

becomes a fundamental set of solutions of (1.3), whéserincipal solution.

2.1.2 Main Results

In the sequel we make the standing hypothesis that the umped equation (1.3) has an eventually
positive solution and denote Ky, v} a set of principal and nonprincipal solutions introduceir8)
and (2.4). We will state and prove four theorems concerrtiegaisymptotic integration of solutions.
The results in the special case (2.2) will be stated as coied.

11



Theorem 2.1.1 Let u and v be principal and nonprincipal solutions of (1.3)emn by (2.3) and ¢
C(]0, =), [0, o)), hy, hy € C([t1, 0), [0, 0)). Suppose that

[T(t, X)] < hl(t)g( ) +ho(t), t=>T (2.5)

v(t)
for some T> t1, and

foo v(s)hi(s)ds< o, =12 (2.6)
T

Then for any given.@ € R there is a solution {t) of equation (2.1) satisfying

X(t) = av(t) + bu(t) + o(u(t)), t— oo. (2.7)

Proof. Leta, b € R be given. Define

y(t) ;= x(t) — au(t).
Then from (2.1) we have
(PM)Y)" +a(t)y = f(t.y+aut)). (2.8)
It suffices to show that (2.8) has a solutigt) so that

y(t) = bu(t) + o(u(t)), t— oo.

Define

M = 2.9
0<n<‘64+|b‘+1Ig(n)l (2.9)

In view of (1.17) and (2.6), we may choo$e > T large enough so thait) < v(t),
fm v(9)hy(s)ds< 1 foo v(9)hy(s)ds < 1 (2.10)
n 1 oM’ n 2 2 .

Consider the linear space

= {y € C([Tla OO),R)‘ % = My, t> Tl} .

It is easy to check that is a Banach space with norm

()l
Su
Ivil = TKK& YOR

Let K be the set given by
={yeYl ly-bul<1}.

It is easy to show th&t is a closed, bounded, convex, and nonempty subsét Define the operator
F:K—-Yhby

(Fy)(t) = bu(t) + u(t)f f(r, y(7) + av(‘r))u(‘r)f t>Ti.

(s)uZ(s) dscr. 1=

It is easy to check that each fixed pointfofis a solution of (2.8). We will use Schauder’s fixed point
theorem to show thd& has a fixed point.

12



F maps K into K:For eachy € K we have

I(Fy)® —bu®l  _  I(Ey)(® — bu®)
v(t) N u(t)

ft (2. y(r) + avD)Iu(e) f

IA

IO(S)UZ(S)
< M jt‘ v(t)hy()dr + I v(t)hy(7)dr

A

IA

M fT m v(T)hy(T)dr + f ) V(7)h(7)dr

T1
< 1
where (2.3), (2.5), and (2.10) are used. Taking the supremeisee thaFK c K.

F is continuous:Let {y,},.; ¢ K be an arbitrary sequence converging/te K. For eachn € N, in
view of (2.3) and (2.5) we have that

I(Fyn)® = ENOT _ 1(Fyn)® — (FY)O)
v(t) - u(t)

00 T 1

ft ) On(T)V(7)dr

IA

IA

IA

2M f ) hy(t)v(7)dr + 2 f N hy(7)v(7)dT,
T1 T1
where
On(7) = (7, yn(7) + au(1)) - f(7. y(z) + av(7))l.
By applying Lebesgue’s dominated convergence theorem warofyom (2.11) thatry, — Fy as

n — oo.

F is completely continuoustet {y,};7,; ¢ K be an arbitrary sequence. We need to show that there
existw € K and a subsequenés, -, so thatFy, — wask — co. We will use Lemma 1.4.5 to show
the existence of such a function

Define
() 1= £(5,yn(r) + aD)U(E) f
Since{Fyn}’, € K, it follows that

IO(S)UZ(S)

ol riey <L N21
i.e., the condition (a) of Lemma 1.4.5 holds. To see thatglajso satisfied, we first define

(tnf)(7) = f( + h).

fm |fo(r + h)|dr + fm|fn(r)|d‘r
fT LGS f [ fa(ldr
f 2/1()ldr

T1

f ) 2(Mhy(7) + ha(7))V(r)dr
T1

Using (2.5) we estimate that

fT e fa) () - fo()lce

IA

IA

IA

IA

13



By Lebesgue’s dominated convergence theorem, we obtaimtfie above inequality that
lIthfa = foll (T = O @sh— 0.
Now an application of Lemma 1.4.5 shows that there existdbaeuencéf,, } so that
[ f — Z||L1([T1,oo)) -0 ask— o
for somez € L1([Ty, 0)).

If we define

w(t) := bu(t) + u(t) f B Z(7)dr,
t

then we see that (Fyn)(®) — W) .
kVT < j;l | fn () — 2(7)|d7.

Taking the supremum and applying Lebesgue’s dominatedecgaxce theorem, we get the complete
continuity of F.

It follows from the Schauder’s fixed point theorem that theraporF has a fixed poiny € K, that is,

VO = bu) + ) [ 1yte) + e [ s

To show the asymptotic representation (2.7), we start waghfollowing estimate:

A

VOOl < u) [ i) + et [ )UZ(S)

IA

) [ 1yt + vt [ Ssds

IA

u(t) f V(r)(Mhy(7) + ho(0))dr,

where (2.3) and (2.5) are used. Dividing i) and taking limit ag — o we see that

y(t) - bu(t) = o(u(t)), t— oo. (2.11)

In view of
X(t) = y(t) + av(t) (2.12)
and the fact that is a solution of (1.3), we have

Lx=Ly+alLv= f(t,y+aut)) = f(t,x),
i.e, xis a solution of (2.1). Using (2.11) and (2.12) we obtain tegnaptotic representation (2.7).

Corollary 2.1.2 1f (1.14) and (1.15) hold, then for any givenktas R there is a solution ) of (2.2)
satisfying

X(t)=at+b+o0(1), t— oo

14



Theorem 2.1.3 Let u and v be principal and nonprincipal solutions of (1.8)emn by (2.4). Suppose
that (2.5) holds along with the following being true;

f ) u(9h(g)ds< oo, i=1,2, (2.13)
.

. ut) _ B .

“r:liUpW i v(s)hi(s)ds=0, i=12 (2.14)

Then for any given.@ € R there is a solution {t) of (2.1) satisfying

X(t) = au(t) + bu(t) + o(v(t)), t— oo. (2.15)

Proof. Leta, b € R be given. Define
y(t) = x(t) — bu(t). (2.16)

Then equation (2.1) becomes
()Y +a(t)y = f(t,y + bu(t)). (2.17)

Now we need to show that equation (2.17) has a solyiffrsatisfying

y(t) = av(t) + o(v(t)), t— oo.

Let M be as in (2.9). Without loss of generality we can chobgso large that

j: u(s)hy(s)ds< % j: u(s)hy(s)ds< % (2.18)

hold with v(t) > u(t) > 0,t > T;. Consider the linear space

t
Y = {y € C([Tl’ 00)7 R)‘ % S My, t Z Tl} .
Y is a Banach space with the norm defined by
ly(®
= su .
Iyl Tlsklzo v

Let K be the set given by
Ki={yeYl ly-avl<1}.

It is easy to show th& is a closed, bounded, convex, and nonempty subsét bfefine an operator
F:K—Yhy

t o0
(Fy)(t) = au(t) — u(t) j; f (7, y(r) + bu(r))v(r)dr — v(t) I f(r,y(7) + bu(@))u(r)dr, t=T;.

It is easy to check that each fixed pointfofs a solution of (2.17). To show th&t has a fixed point,
again we will use the Schauder’s fixed point theorem.
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F maps K into K:For eachy € K we have

(B0 a0 _ |71
t

o) f(T y(7) + bu(t))v(r)dr

(S)VZ(S)
- f B f (7, y(1) + bu(t))u(r)dr

f 1) + DU [ srsds
+ f |f (7, y(7) + bu(r))|u(r)dr
t

IA

IA

J ey vt [ Ssas

M j:o u(t)hy(r)dr + f"" u(r)ha(r)dr

Ta
< 1

IA

where (2.4), (2.5), and (2.18) are used. Taking the supreomleft-hand side we géiK c K.

F is continuous:Now let {y,};-; ¢ K be an arbitrary sequence converging/te K. In order to see
thatF is continuous we need to show tHag, —» Fy, n — oo. For eac € N, in view of (2.4) and
(2.5) we have that

EROSEN [ gts [ gn(T)V(T)dT+ [ sonterar

00

IA

gn(r)u(r)dr

T

2M f;o hy (7)u(r)dr + Zﬁi ha(7)u(r)dr.

IA

where
On(7) = If (7, yn(7) + bU(r)) - (7, ¥(7) + bu(T))I.

Applying Lebesgue dominated covergence theorem we geuithtinciity of F.

F is completely continuoustet {y,},., ¢ K be an arbitrary sequence. Consider the corresponding
sequence

EO = 2w [ 1)+ bt [ s
—-v(t) f f (7, yn(7) + bu(r))u(r)dr.
t

Define a sequendd}>, by

l(‘1‘) = f(7, yn(7) + bu(r))v(7) f p(S)Vz(S)

Since{Fyn}”, ¢ K we have

<1 Vn

e lron <

16



By the following estimate

|fnl(T+h)—fnl(T)|dT < |f1(7+h)|d7'+f |f1(T)|dT
T T

< [ it Il
T1+h T1

< f 2|fnl(T)|dT
T1

< 2M hl(‘r)u(‘r)d‘r+2f hy(7)u(r)dr

T

and using Lebesgue dominated convergence theorem we get

[enft - f -0, h-0,

1

n ”Ll([Tl,oo))
where ¢ f)(x) = f(x+h). Thus according to M. Riesz Theorem there exists a subsegéi&hi ; o
that

It

oWy 2 0 Ko

for somew! € Ly([ Ty, ).

Consider now the subsequer(gg, };>, and define a sequne(:é;i}f’:l by

%N%J@m@+WMqu @W@

By the similar estimates as above there exists a subsequﬁg;ﬁgl so that

2

T k- o

]

L1([T1.e0))

for somew? € Ly([Ty, 0)).

Now define

zZ(t) := av(t) — v(t) f; t w(r)dr — v(t) I ) WA (7)dr.

Then we have
|(FYnk| )(©) — z(1)]
v(t)

Taking the supremum on the left handside and applying Leizedgminated convergence theorem we
get the complete continuity df.

flf (r) - Wl(T)|dT+f |f (T) VVZ(T)IdT.

Now applying the Schauder fixed point theorem we can see thas R fixed poiny € K, that is, there
exists ay € K so that

t o0
y(t) = av(t) — u(t) j; f (7, y(r) + bu(t))v(r)dr — v(t) jt‘ f(r,y(r) + bu(n))u(r)dr, t=>Ts.

Finally, we show that (2.15) holds. We start with the follogriestimate:

A

t 00
YO —avt) < u) fT (2. y(r) + BUD)V(E)dr + () f [£(.(r) + bu@)u()de

IA

t 00
u(t) fT (Mhy(r) + ho()V(@)dr + V(1) f (Mhy(r) + ho(r))u(r)dr.
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where (2.4) and (2.5) are used. Dividing Wy) and using (2.14) it is easy to see that
y(t) — av(t) = o(v(t)), t— co. (2.19)

In view of
X(t) = y(t) + bu(t) (2.20)

and the fact that is a solution of (1.3), we have
Lx=Ly+bLu= f(t,y+bu) = f(t,x),

i.e, xis a solution of (2.1). Using (2.19) and (2.20) we obtain thgnaptotic representation (2.15).

Remark 2.1.4 If v'(t) # O, t > T, then the condition (2.14) can be replaced with

’ t
lim supu ®

nsupZ v(9hi(s)ds=0, i=12 (2.22)

Corollary 2.1.5 Let (1.14) hold. If

f hi(s)ds< oo, 1=1,2
1
then for any given @ € R there is a solution ) of (2.2) satisfying

X(t) =at+b+o(t), t— oo

Theorem 2.1.6 Let u and v be principal and nonprincipal solutions of (1.8)emn by (2.3). Suppose

that (2.5) holds and

[f(t, x1) — f(t, x)| < %le —X|, t=>T (2.22)

where ke C([t1, ), [0, o0)). Suppose further that

foo u(s)k(s)ds< o (2.23)
.
and L .
Mft u(hi(gds<pt), t=T, i=12 (2.24)
wheres € C([ty, =), [0, 0)) and
t
fT B(s)ds=o((v(t))*), t— oo, wue(0,1) (2.25)

Then for any given.@ € R there is a solution {t) of (2.1) satisfying

X(t) = au(t) + bu(t) + o(u®)(v(t))*), t— oo (2.26)
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Proof. Let M be as in (2.9), andl; large enough so that (2.18) holds and

f u(s)k(s)ds< pu.
T
Consider the space of functions

IX(t) — av(t) — bu(t)|
v(t)

It can be shown thaX is a complete metric space with the metric

X = {x e C([Tw, oo),R)‘ <1, vt> Tl}.

d(X1, X2) = SUp—— |X1(t) X0, X1, % € X

t>Ty V(t)
Define an operatdf on X by

(FX)(t) = —u(t) u2 S f u(r) f (r, x(r))drds+ au(t) + bu(t)

7. P(S)

Note thatF is well defined by the conditions of the theorem. We will use Banach contraction
principle to show thaF has a fixed point.

Letx € X. In view of (2.3) and (2.5), we see that

(RO - av) - b)) < u() | (S)uz(s) f U f(r, X()ldrds
< u(t) (s)uz(s)f u(@)If (r, x(z))|drds
1 IX(1)l
R S e )( ile ’g( ())*hZ(T))deS
< u(t) Tl p(s)uz(s)f u(t)(Mhy(7) + hy(r))drds
< u) L
= U0 | peeE®e
< ).

ie.,FXc X

Let x1, X2 € X. Using (2.22) and (2.23), we have

[(Fx1)(t) — (Fx2)(t)]

IA

u(t) u2(s) f u(@)If (1, x1(7)) - f(7, %z(7))ldrds

T1 p(s)

IA

u(t)

|X1(T) Xo(7)|d7ds

T p(S)uz(s) f
d(xe, X2)u(t) nm fs u(r)k(r)drds

IA

t 0o

7, P(UA(s) Jr,

IA

d(xz, X2)u(t)

Hd(Xg, X2)V(t).

u(r)k(r)drds

IA

This implies that
d(FXl, FX2) < Md(X]_, X2),

i.e.,F is a contraction mapping.
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According to the Banach contraction princigtehas a unique fixed pointand this fixed point is the
solution of equation (2.1).

Finally, since

IA

t 1 oo
u(t) POFG fs u(7)If (r, x(7))ldrds

T1

IX(t) — av(t) — bu(t)l

t 1 o0
u(t) m js‘ u(r)(Mhy(7) + hp(r))drds

T1

IA

t
(M + 1)u(t) i B(s)ds

where (2.5), (2.23) and (2.24) are employed, we see thasthigion satisfies (2.26). |

Corollary 2.1.7 Let (1.14) hold and
1) - (60 < Dy ), 121 227)

where ke C([1, ), [0, o0)). Suppose further that

flm k(s)ds< oo

fmhi(s)dssﬁ(t), t>1, i=12,
t

whereB € C([1, =), [0, 0)) with

and

ftﬂ(s)ds= o(t*), t— oo, ue(01).
1

Then for any given @ € R there is a solution {t) of (2.2) satisfying

X(t) = at+b+o(t"), t— .

Theorem 2.1.8 Let u and v be principal and nonprincipal solutions of (1.8)em by (2.4). Suppose
that (2.5) and (2.22) hold. Suppose further that

foo V(s)k(s)ds< oo (2.28)
.
and
1 0 .
Mft v(9hi(9ds<p(t), t>T, i=12 (2.29)
wheres € C([ty, =), [0, 0)) and
j;wﬁ(s)ds: o((ui))"), t— oo, wue(01). (2.30)

Then for any given @ € R there is a solution {t) of (2.1) satisfying

X(t) = au(t) + bu(t) + o(v(t)(u(t))¥), t— oo (2.31)
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Proof. Let M be as in (2.9), andl; large enough so that (2.10) holds and

f v(s)k(s)ds< pu.
T1
We also takeX, d) the same metric space as in the proof of previous theorem.
Define an operatdf on X by
00 1 00
Fx)(t =vtf —f V(1) f (7, X(7))drd s+ av(t) + bu(t).
FIO =V |~ | VX)) u() + bu(t)

It is easy to see thdt is well defined by the conditions of the theorem. We will use Banach fixed
point theorem to show th&t has a fixed point.

Letx € X. In view of (2.4) and (2.5), we see that

0o 1 =~
V(t) I m j; V(T)| f(T, X(T))lde S

o0 1 oo
v(t) ft m fT 1 V()| (7, X(1))|drds

. 1 . IX(7)l
v(t) ft —p SV Jr. V(1) (hl(‘r)g( o) ) + hz(T)) drds

00 1 00
V(t)I M - V(T)(M h]_(T) + hZ(T))deS

0 1
O [ e
).

IA

I(FX)(t) — av(t) - bu(t)]

IA

IA

IA

IA

IA

ie.,FXc X

Let x1, X2 € X. Using (2.22) and (2.28), we have

PO~ ERO < vo [ mm | V@I xa(0) - (. xo(@)idrds
< w0 [ —sem f ey - xe(idrds
< d(Xg, X)V(t) f M f v(T)k(r)drds
< d(Xg, X)v(t) f p(s)v2 ® Tw v(t)k(r)drds
< pd(xz, X)v(t)
0 1
<0 ] e
< pd(X, X)V(t).

This implies that
d(Fx1, Fx2) < pd(X1, X2),

i.e., F is a contraction mapping.

By Banach fixed point theorerfd has a unique fixed point. It is easy to see thatis a solution of
equation (2.1).
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Finally, since

IX(t) —av(t) — but)] < w(t) ft mm fs oov(r)|f(r, X(7))|drds
00 1 o0
< V(i) ft POVEE fs V(1)(Mhy(7) + hy(7))drds
< M+ [ A9ds
where (2.5), (2.29) and (2.30) are employed, we see thasthigion satisfies (2.31). [ |

Corollary 2.1.9 Let (1.14) and (2.27) hold. Suppose further that

flm sk(s)ds<

and

t%fw sh(9ds<p®), t=1 i=12,
t
whereg € C([1, ), [0, c0)) with

fmﬁ(s)ds= 0(1), t— oco.
t

Then for any given @ € R there is a solution {t) of (2.2) satisfying

X(t) =at+b+o(t), t— oo

2.1.3 Examples

In this section we give three examples to illustrate thelteslihe examples are constructed in such a
way that the principal and nonprincipal solutions are easatculate.

Example 2.1.10 Consider the nonlinear fierential equation

N1 x3sinx _
(tX)_YX:m-i_tet’ t>1 (2.32)

The corresponding linear equation is

(tx) - %x: 0, t>1

In correlation with the definitions given in Section 2.1.ddrheorem 2.1.1 Iy = 1 andT = 2. Itis
easy to see that

X3 sinx

PO=1 T = B0

1 1
te!, u(t) = =, andv(t) =t - =.
+te™, u(t) o andv(t) n
We take

M) = . M) =te, g9 = x
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Clearly,

X

If(t,X)ISt—4

hl(t)g( ) +hy(t), t=2

v(t)

0 o 1 11
fzv(s)hl(s)ds:fz (s )§ds— 52 <%

f V(s)hy(s)ds= f (s— }) seSds=7e? < .
2 2 S

Since all conditions of Theorem 2.1.1 are satisfied, we magloade that for any given real numbers
a, b there exists a solutiox(t) of (2.32) such that

X(t) = aft 1+b+o1 t—
= - - — — (']
t 2t 2t)’ '

Example 2.1.11We consider the nonlinearftitrential equation

and

Int X2

tzx/’—2X=—+—, t>1
() 1+x2 1412

(2.33)
The corresponding linear equation is
(XY -2x=0, t>1.

Lett; = T = 1. Notice that

Int X2

1
_ 12 _ _ = =
p(t) =t4, f(t,x) = 112 + 120 u(t) 3 andv(t) = t.
If we take
ha(t) = 1, hp(t) = Int, g(x) = X,
then we see that
2
(6, %) < )t(_z +int = hl(t)g(%) + ho(t),
and
* _ 1. u(t) 1
fl u(s)hi(s)ds= 3 (t) v(s)h (9)ds< o i=12
and

fl u(s)hy(s)ds= fl 32 Insds= 3 < o0

Since all conditions of Theorem 2.1.3 are satisfied, for amgrgreal numbers andb there exists a
solutionx(t) of (2.33) such that

b2 +0(t), t— oo.

) = at
X(t) a+3t

Note that Theorem 2.1.1 fails to apply here since

floo v(s)hy(s)ds= flm sds= oo
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Example 2.1.12We consider the nonlinearftirential equation

X3
— 1 -, 2.34
(tVixy — 2\/_ t3(t+x2)+t’ tz21, v<-3 (2.34)

Lett; =1 andT = 2. Then

X3

pit) =tvt, f(t,x) = BT ) u(t) = andv(t) = Vt-=

We take
) = 3 (VE- §) 1 = 9 = x k) = St 50 =
Clearly,
1 (t, %) < U = hl(t)g( '(t')) +hyt), t>2
1Tt x0) — f(t. X)l < 2—t3|x1 —X| = %le -X, t=2
fz u(s)k(s)ds= fz (s72-s®)ds< oo,
ool IRTCITCEEEE RG]

and

fids=o((v(t))ﬂ), t— oo, pe(01).
, &

We may conclude by Theorem 2.1.6 that for any given real nus#é there exists a solutior(t) of
(2.34) such that

x(t):a(\/f 1)+b§+o(32t(\/f—%)”), t — co.

2.2 Monotone Positive Solutions

2.2.1 Introduction
The problem of existence of monotone positive solutiongfprations of the form

X' =f(t,xx), t>0

has been studied by several authors since such equatioofferencountered in studying mathemat-
ical modeling of real-life problems.
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Among numerous works we choose to mention about the work of[¥8], who proved that iff
satisfies the inequality

IT(t, %, y)| < F(t, I, y)

whereF € C(]0, ) x [0, ) X [0, =), [0, )) is hondecreasing with respect to its second and third
variables for each fixetle [0, ) and satisfying

f F(t, 2ct,2c)dt < ¢
0

for somec > 0, then the above equation has a monotone positive solxtipeuch thatx(0) = 0 and

Iimwz

t—oo T

c. (2.35)

Yin's proof is based on arguments developed by Constanbh fir second-order equations of the
form
X’ =h(t,x), t>0,

where the same limit conclusion as in (2.35) was obtained.
We consider the second-order nonlinedfatential equation of the from
(p()X) +qt)x = f(t,x,x), t=0, (2.36)

wherep € C([0, ), (0, =)), q € C([0, ), R) and f € C([0, ) x R x R, R). Motivated by the above
works, our aim is to prove that under some reasonable condithere is a monotone positive solution

X(t) of (2.36) such that
()
lim —= =
e V()

wherev(t) is a nonprincipal solution of the corresponding homogesezjuation (1.3).

C, (2.37)

We assume that (1.3) has a positive solution, i.e., it is Boiflatory. Then, for any given nonprincipal
solutionv(t) of (1.3) we may write in view of (1.18) that

0 1

We will also assume that
v(t) >0, V() >0, and u'(t) > 0. (2.39)

for all t > to for sometg > 0.

Note that ifp(t) = 1 andq(t) = 0, then we may taka(t) = 1 andv(t) = t. In this case (2.39) holds and
the asymptotic representations (2.35) and (2.37) coincide

2.2.2 A Compactness Criterion

This subsection is devoted to a compactness result whichilveegd in the proof of our next main
result.

Lemma 2.2.1 Let (2.39)hold, and denote

Y= {y € Ct([to, ), R)| Jim y(t) and Jim z(1) exis§ (2.40)
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where
v(t)
v'(t)

Z(t) = y(t) + Y (1) (2.41)

Then the set Y, which is endowed with usual linear operai®asBanach space with norm

livlly = maX{SUpIy(t)l, supIZ(t)I}.
t>tg t>tg

Proof. It is easy to check that is a normed space. L&}, be a Cauchy sequenceYn Then it is
a Cauchy sequence \h Therefore there existsyae V such thaty, — yin V asn — . Definez, by

v(t)
V(1)

Zn(t) 1= yn(t) + = Va(0).

Then{z,}7? , is also a Cauchy sequence\in So there exists a€ V such thaiz, — zin V asn — .

Clearly,
Z, — z in C([to, '], R), Yt* > to.

From this we have
Wy i=VZ, > Vz=:w in C([to,t'],R), Vt* > to.

By the definition ofw,, we also can write

t t
VYA () — V(to)yn(to) = f (U(Syn(9) ds= f Wh(9)ds

Because of uniform convergence, by lettimg» oo we see that
t
VOV - VoYt = [ wds te ft]
to

This implies thaty € C1([to, o), R), sincet* is arbitrary. Then we can write

v(t
WO = VOV HYOY Q. 2 =Y + Sy )
Hencey € Y, and by the definitions df|ly and||-|ly we obtainy, — yin Y. ThereforeY is complete.

Lemma 2.2.2 Let(2.39)hold and Y be as if2.40) Assume that a subset&Y satisfies the following
conditions:

(i) E is uniformly bounded: There exists an-L0 such that

ly®) <L and |z(t)| < L, Yt>ty, YyeE.

(i) E is equicontinuousY ¢ > 036, > 0 such that
|t1 - t2| <0 = |y(t1) — y(t2)| <e and |Z(t1) - Z(t2)| <€

forallty, t, > tpand for allye E.
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(i) E is equiconvergenty € > 0 At, > tg such that

Iy(t) - ¥(s)l < e and [z(t) - Z(s)| < €

forallt, s>t. andforallye E.

Then, E is relatively compactin Y. Conversely, if a set E is relatively compact in Y, then it satisfies

()i

Proof.

Let {yn};>, be a sequence iB. Then by Lemma 1.4.6 there exists a subsequépgh: ; such that
Yn. — Y ask — oo for somey € V. Definez, as in proof of Lemma 2.2.1. Then by Lemma 1.4.6
again there exists a subsequeﬂz@.@l}l"i1 such thalznlq — zask — oo for somez € V. Without loss of
generality, we may write that, — y and andz, — zasn — oo. Itis clear thatz, — zin C([to, t*], R)

for all t* > to. Definew, as in proof of Lemma 2.2.1. Thwg, — win C([to, t*], R). Now by following
the same procedure as in the proof of Lemma 2.2.1, wg gel andy, — yin Y. ThereforeE is
relatively compact irY.

Assume now thaE c Y is relatively compact ir¥. Let{y,}’, be an arbitrary sequence ih Then

there exits a subsequenpg, ), so thaty, — yin Y ask — oo, for somey € Y. Then by the
definitions of the norm-|ly and||-|l, we havey, — yinV ask — o, that is,E is relatively compact
in V. Define the set

v(t)
v (t)

M = {ze V| 3y e E such that z(t) = y(t) + )/(t)}.

Let{z},., be an arbitrary sequence hh. Consider the sequenég, ). ,, where

3 v(t)
Zn(t) = ¢n(t) + V,—(t)¢n(t)-

Then there exists a subsequeiigg};2; which is converging to somge Y, that is,

[[én — ¢l = maX{it{plrﬁn. () = (V). supiza () - Z(t)l} — 0 asl - o,

and hence
Jzn = 2, = supizn() - 201 - 0 asl — e.
>l

Thus M also is relatively compact iv. According to Lemma 1.4.6 we conclude that (i)—(iii) are
fullfilled. u

2.2.3 The main result

Theorem 2.2.3 Let(2.39)hold, and asssume that

[Tt x, Y < F@IX V), t>t, XYyeR, (2.42)
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where Fe C([tg, o) X [tg, ) X [tg, ), [0, 0)) IS nondecreasing with respect to its second and third
arguments for each fixed t and for which

f " LOF(L 2eM1). 20V (O)dt < ¢, ¢ > 0 (2.43)
to

and
U,(t) t
V() Jy
are satisfied. Then (2.36) has a monotone positive solutfgrdgfined orty, co) which satisfies the
asymptotic property2.37)

V(1)F (7, 2c\U(7), 2cV (1))dr — o0, as t— oo (2.44)

Proof.

By the hypotheses (2.42) and (2.43) there exigti€40, c) so that

f ) U(t)F(t, (2c — S)V(t), (2c — SV (t))dt < c — 6. (2.45)
to
Let

K:=lyeY[s<yt)<2c-6 6<2t)<2c-4)

Obviously K is closed, bounded, convex and nonempty. Define an opefator the setK by the
formula

(Ty)@®) :=c- % t: v(r)g(r)dr — ft N u(r)g(r)dr, (2.46)

where for simplicity

9(7) := f(@ y@V(). (Y(OV(D))).

T maps K into KIndeed, we may write from (2.38) and (2.46) that

U(t) t 00
M0O-a = o | vl f u()lg(o)lde

co 1 t 0
_ ft st fto v(7) |g(7)| dr + ft u(7) l9(7)l dr.

Then, in view of (2.42) and (2.45),

A

t 00
T - < f () Ig(o)) dr + f u(r) lg(o)l de

to t

[ " u(r) lg() dr

to

IA

f“’ u(r)F(r, (2c - 6)v(1), (2c — 6)V'(7))dr
to
c—o.

IA

Next setting
v(t)

(SY0 = (MO + 5

(Ty)'(t)
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we see in a similar manner that

’ t 00
($90-d = T [ v+ [ uiatodr
< 39 [ oo+ [ s
< c-9¢

where we have used (1.19) and (2.39).

T is compactlt is enough to prove thait(K) is relatively compact iry. To do this we show thak (K)
satisfies the hypotheses (i)—(iii) of the Lemma 2.2.2.

(i) T(K) is uniformly boundedBy the estimates above we have

(TY)(M) <2c—-6 and |(SY()| < 2c-6, Yi>1ty, YyeK.

(ii) T(K) is equicontinuousLe € > 0 be given. In view of (1.18) and (2.45), there exist t; and
t_ > t. such that

jt: U(T)G(T)d‘l’<— andf V(T)G(T)f (S)VZ(S)

te

whereG(7) := F(r, (2c-6)v(1), (2c—6)V'(7)). Sincevis increasing and is nondecreasing, and (1.17)
and (1.19) hold, there exists > t. such that

u'(®
V(D)

€

te
V(D)G(r)dr < g, t>t
to

Rewrite the operatof as

) t t
(TY)(t) =c— jt‘ u(r)g(r)dr + \ft V(T)g(‘r)f —p(s):\lnlz(s)der

Letty, to > to be arbitrary. Without loss of generality assume that t;. Then,

I(TY)(t)—(Ty)(t)l =

t t 1 t, t> 1
jt; V(T)g(‘r)f —p(s)vz(s)dsdz'—ftO V(T)g(T)ﬁ —p(s)vz(s)der

ty to ty t2 1
- [ voue) [ St - [ o) [ o dsal

1 to 1 173 173 1
SL G(r)v(1) 5 —p(S)VZ(S)der-i_jt; G(1)V(1) ) —p(S)VZ(S)der' (2.47)

Define 1 L
M= max ———, My:= max ———, Mz := maxG(r)u(r).
P s P(S)VZ(s) 2 t<s<t. P(SVA(9) 8 to<t<t. (Mu(x)

If to <ty <tp <t then

ity to 1 te to 1
fto G(T)V(T)L —p(s)vz(s)dsdrsfto G(T)V(T)L —p(S)VZ(S)der

te
< Myty =ty G(r)v(r)dr (2.48)

to
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and

to to l it 00 1
jt; G(7)v(7) ) —p(s)vz(s)deTS X G(T)V(T)fT —p(s)vz(s)der

to
= G(r)u(r)dr < Malt; — to].

<]

Ifte <t <t <t,then

ty to 1 te 17 1
fto G(r)Vv(7) X —p(s)vz(s)dsdrs 5 G(r)v(7) ft; —p(s)vz(s)der

4 t,
+jt: G(T)v(7) 5 —p(s)vz(s)der

< Molt; — 1| ft ) G()V(r)dr + ft " Gu(@)dr

and

o 15} 1 153 00 1
L G(T)V(T)I —p(s)vz(s)derSL G(T)V(T)I —p(s)vz(s)der
< jt: G(r)u(r)dr.

If t. <t; <tp, then

1 ty 1 te v 1
jt; G(T)V(T),fl —p(S)VZ(S)derSjt; G(r)V(7) X —p(S)VZ(S)der

10 o 1
+ft; G()V(7) X —p(S)VZ(S)deT

e 00 1 00
SL G(r)V(1) fte —p(S)VZ(S)der+£ G(r)u(r)dr

and

ty t, 1 tp o0 1
L G(r)v(7) j; OV (S)dsdr < L G(r)v(7) fT DOES (S)dsdz'
L G(7)u(r)dr.

IN

Now let us consider the operatBr Clearly,

u(t) [
v (t2) Jy,

S u(t) [
V'(t) J,

- ft; u(r)g(r)dr + jt; u(r)g(r)dr
< U(ty) U(tz)
Tvt)  v(t)

w(ty) u(t)
Vi) V()

v(t)g(r)dr +

(SY(t) — (SY(tz)] = | V(r)g(r)dr

g u/ (tZ) to
5 V(@)lg(7)ld + (k) o

1 t2
f V(7)G(r)dr + 2 f u(r)G(r)dr
to t

<

30
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v(@)lg(r)ldr + f u()lg(o)ldr

(2.49)
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(2.51)

(2.52)

(2.53)
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If to <t; <ty <t then

V() u()| (™ U() u()] [~
Vi) V) ft; V(1)G(r)dr < Vi) Vi) jt; v(7)G(7)dr (2.55)
and o
[ G(T)U(T)dT < Mgslty —ty]. (256)

Note that sincer /v’ is uniformly continuous ont, t.], there exists @, > 0 such that ifit; — t5| <
p1,wherety < tg, to < t,, then

’ ’ te
323 _ 323 ft V(1)G()dr < ;E; (2.57)
Ifte<t; <t, <t ,then
u(t) u(t)| (™ w(t) u(t)| [~
vt -y ©) 5 V(7)G(1)dr < Vit v (@) jt; V(7)G(r)dr

U(t) u(t)) (™
+2max{v’(t1)’ v’(tz)}ﬁ V(7)G(r)dr

Ult) ()
vit)  v(®)

e 00
f V(T)G(T)dT+2f G(r)u(r)dr (2.58)
to te
and

o 00
G(ru(r)dr < f G(r)u(r)dr.
tl te
Sinceu’ /v’ is uniformly continuous ont[, t'], there exists @, > 0 such that ifit; — t;| < p,,where
te <t), tp <t/, then

tE

u(t) u(t) V(7)G(r)dr < :S)) (2.59)

vt) V()

to

Lastly, ift. <t; <tp, then

U(ty) U(t)
V() V()

V(ty)" V(t2)
’ ’ g
+2max{u (L) u (tZ)} f V(x)G(z)dr
te

f ¥ V(r)G(r)dr < 2 max{@ &} f ) V(1)G(7)dr
to to

V() v(t2)

u(t) u(ta)) [ ”
< zmax{v'(tl)’ V’(tz)}ft; V(T)G(T)dT+2I G(r)u(r)dr (2.60)

€

and o .
fG(T)U(T)dTSf G(r)u(r)dr. (2.61)
t1 te

Let

. € € €
66 = mln s s s pls p2 .
{ZMl Fee@v@dr 3Ma” 2m, [ G(r)u(r)de }
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In view of (2.47)—(2.61), we see thatlif — t;| < &, then

I(TY)(t2) - (TY)(t2)l < € and [(SY(ta) — (SY(t)l < €

forall't > tp and for ally € Y. ThusT(K) is equicontinuous.

(iii) T(K) is equiconvergentFix e > 0, and takd, andt, as above. Let;, t, > maxt,, t_}. Without
loss of generality assume that> t;. Then we have

I(TY)(t) - (TY)(t2)!

IA

ty to 1 t2 o 1
\ft; G(T)V(T)I —p(S)VZ(S)der+ 5 G(T)V(T)j; —p(S)VZ(S)der

1

te co 1 0o
L G(T)V(T)\ft; —p(s)vz(s)der+2£ G(ru(r)dr < e

IA

and
u (tl) u (t2) 1 ftz
- V(7)G(r)dr + 2 u(r)G(r)dr
V() V)|, (OO0 2 e
U(t) u(t)
2 max s
{V’(tl) V'(t2)
for ally € K. ThusT(K) is equiconvergent. In conclusiofi(K) satisfies all the hypotheses of Lemma
(2.2.2) and sd@ is a compact operator.

ISY(t2) - (SY(t) <

IA

te 00
} f v(t)G(r)dr + 4 f G(ru(r)dr < e
to te

T is continuousFix € > 0 andy;, v, € K. Lett, > ty be so large that
o €
f u(r)G(r)dr < =.
t. 3
Define
my = t[)rQTlSrL\/(t), M = tggrz?t( V().

Sincef is uniformly continuous ontg, t.] x [6V(to), (2¢ — 8)V(t.)] x [dmy, (2 — §)M4], there exists a
p > 0 such that for allr € [to,t.] andry, r € [6V(tp), (2 — 8)V(t,)] with |r; — ry] < p and for all
S1, S € [6my, (2¢ — §)Mq] with |s; — S| < p we have

€
191(7) = G2(7)] < m,

where
gi(7) = f(@ V(@)yi(r), (V()yi(7))), 1=12
Let

7o min{Zv/zt*)’ ZLMl}
Then if|ly; — y2|| < 7, by (2.42) and (2.43) we have
(MW - Ty)01< ) V() - g+ [ Ui - e
< f T U@ - g)ide
T, 0o
< f U(OI01(r) - Gp(D)ldr + f U(OI0x(r) - Ge(D)ldr
< u(t)(t - to)m 12 ft " WG

<€
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Also,

/ t .
(SWO - (SO < :8 DG () - (e)idr + ft ) — (e
< :8 V(7)I91(7) — G2(7)ldT + f u(t)lgu(r) - go(7)ldr

<

Therefore,

ITys = Tyall = maX{gfl(Tyl)(t) - (Ty2)(0)l, ?zlfopKS w() - (S yz)(t)l} <e
whenevetly; — || < v, which means that is continuous.
According to Schauder’s fixed point theoremhas a fixed point ik, sayTy = y. Define
X(t) = v(ty(t), t > to.
We can write
X(t) = ev(t) — u(t) ft t v(7) f (7, X(7), X (7))dr — V(t) ft ) u(r) f (7, x(r), X (r))dr.
0

It is not difficult to see thak is a solution of (2.36), and by the definition i&f

X(t)=6>0
e v o X0
X
t) = y(t t >06>0.
20 =Y0+ ;YO = T
One can also easily check that
2 X0
taoo V(t) ’
The proof is complete. |

We end this section by posing two open problems: (1) Find itimmd (if any) under which (2.36) has
a monotone positive solutiox(t) satisfying

(2) Is there also a monotone positive solution of (2.36) Whicasymptotic t@au(t) + bwt) for some
real numbers andb ast —» «?

2.2.4 An Example

Example 2.2.4 Consider the second order nonlineayfdrential equation

(}x’), 3 x3(x%+sint)

—X=—————", > 1 2.62
) " ae (1+x2)6 (2.62)

We can easily check that
ut) =t¥2,  v(t) =32
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are principal and nonprincipal solutions of

1\ 3
(YX) +FX—O,

and that

f(t,x,y) = y* (¢ + sint)
o (L+y?)e
satisfies the estimate
X2 +1
i xy)l < MOEED e E gy,

t
Also, the function F is nondecreasing with respect to it®edand third arguments for each fixed t

and . a2t
3(:(—t+1)dt<c

f " WOF (L 20u(0), 20V (1))dt = f =
1

to

u [t 1 (*3c(4c?r® +1)

limsup V(T)F (1, 2cM(1), 2¢V (7))d7 = lim supﬁ 2 dr=0
t—oo 1 T

o0 v (t) to

hold with c= 1/7. Since all conditions of Theorem 2.2.3 are satisfied, we maglade that (2.62)
has a monotone positive solutioft)satisfying
Xt 1
fm &z =7

Below are the graphs of the solution=xx(t) and the functior¥x(t)/t¥? that confirm our finding in
this example. The graphs are obtained by employing Matheasoftware.

34



X(t)

12000

10000

8000

6000

4000

2000

Figure 2.1: Graph of the solution= x(t).
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Figure 2.2: Graph of the functionxit)/t>/2.
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CHAPTER 3

NONLINEAR SINGULAR BOUNDARY VALUE PROBLEMS

3.1 Introduction

Boundary value problems on half-line occur in various aggilons such as in the study of the unsteady
flow of a gas through semi-infinite porous medium, in analgzive heat transfer in radial flow between
circular disks, in the study of plasma physics, in an analg§ithe mass transfer on a rotating disk in
a non-Newtonian fluid, etc. More examples and a collectiowarks on the existence of solutions of
boundary value problems on half-line forfigrential, diference and integral equations may be found
in the monographs [50, 51] For some works and various teclesigealing with such boundary value
problems (we may refer to [52, 53, 54, 55] and the referenited therein).

In this chapter by employing principal and nonprincipaluioins we introduce a new approach to
study nonlinear boundary problems on half-line of the form

(pP®X) +at)x= f(t,x), txto, (3.1)
X(to) = Xo, (3.2)
X(t) = av(t) + but) + o(r(t)), t — oo, (3.3)

whereaandb are any given real numbersandv are, respectively, principal and nonprincipal solutions
of
(p®X) +qt)x=0, t=0 (3.4)

andp € C([0, c0), (0, )), q € C([0, ), R) and f € C([0, o) X R, R).
We will show that the problem (3.1)—(3.3) has a unique sotuin the case when

r(t) = o(u(t)(vV(t)") (3.5
and

r(t) = o(v((u®Y"). (3.6)
whereu € (0, 1) is arbitrary but fixed real numbers.

The nonlinear boundary value problem (3.1)—(3.3) is alssdlly related to asymptotic integration of
second order dlierential equations. Indeed, there are several importaritsiaia the literature, see
[1,2,3,5,7,19, 20, 26, 30, 32], dealing with mostly the agtatic integration of solutions of second
order nonlinear equations of the form

X’ = f(t, X).
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The authors are usually interested in finding conditionshenftinctionf(t, X) which guarantee the
existence of a solution asymptotic to a linear function effibrm

X(t)=at+b, t— . (3.7)
We should point out thai(t) = 1 andv(t) = t are principal and nonprincipal solutions, respectively, o

the corresponding unperturbed equation
X// — O,

and the functiorx(t) in (3.7) can be written as

X =aut) + bu(t).

Note thatv(t) — oo ast — oo butu(t) is bounded in this special case. It turns out such inforomati
is crucial in investigating the general case. Our resultshve applicable whether or nai(t) — o
(V(t) — o) ast — co.

3.2 Existence of Solutions

Let u be a principal solution of (3.4). Without loss of generalitg may assume thatt) > O if t > t;
for somet; > 0. Itis easy to see that

t 1

is a nonprincipal solution of (3.4), which is strictly pasé fort > t;.

Theorem 3.2.1Let fy > t;. Assume that the function f satisfies

1Tt )1 < ha()g(x)) + ho(t), t>to (3.9)
and k)
1t %) — (LX)l < @'Xl =X, t>to, (3.10)
where ge C([0, =), [0, o)) is bounded; h, hy, k € C([tg, ), [0, =0)). Suppose further that
fm u(s)k(s)ds=< u (3.11)
to
and
1 ) hi(s)ds< B(t), t>ty, i=212 (3.12)
O . UIN(SIHO. 12t i=1 |
hold for somes € C([tg, =), [0, o)) such that
ft,B(s)ds: o((v(t))"), t— oo. (3.13)
to
If either
V(t) 5 00, t—o (3.14)
or . L
RN S
b= 2, e (519

then there is a unique solutior{txof (3.1)—(3.3), where r is given by3.5).
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Proof. Denote byM the supremum of the functianover [Q ). Let X be a space of functions defined
by
X = {x € C([to, ), R)l  [X(V) < [1v(t) + lou(t), V= to},
where
1= (M + 1)p(to)U(to)B(to) + lal
and
%ol

2= Uy T, e

Note thatX is a complete metric space with the mettidefined by
d(x1, Xp) = SUp—lxl(t) X, X, X% eX

2t (1)

Define an operatdf on X by

t o0
(Fx)(® = -u(t) jt; m j; u(7) f(r, x())drds+ a(t)

Xo o1
+ [m -af p(s)uZ(s)ds] 10

In view of conditions (3.9) and (3.12) we see tlrais well defined. Next we show th&X c X.
Indeed, letx € X, then

RO < uo [ (S)uz(s) f U, X(e))drds+ ) + 1200
< u(t) 5 p(s)uz(s) 5 u(r)lf(r,x(r))|drds+|a|v(t)+I2u(t)
<

u(t) f M f U (M (D)GXE)) + ha(r))drd s+ fav() + Tu(t)
< u®) p(s)uz(s) f u(t)(Mhy(7) + hy(r))drds+ |alv(t) + lou(t)

< (M + 1)p(to) (to)B(to)u(t) f o(Su — 5 ds+ [av(t) + lz2u(t)

< lav(t) + Lu(t),

P

which means thatx € X.

Using (3.8), (3.10), and (3.11) we also see that

IA

I(Fxa)(1) = (Fx2)(0)I u(t) u(@)If (7. x1(7)) — f(z, (7)) Id7ds

o P(S)UZ(S) f

IA

u(t)

to p(S)UZ(S) ()W|X1(T) Xo(7)|drds

d(x1, X2)u(t)

IA

t —p(s)uz(s) j; u(r)k(r)drds

SO0 Lw u(r)k(r)drds

d(x1, x2)v(t) ft ) u(t)k(r)dr

Hd(Xe, X)\(t),

IA

t
d(x1, x2)u(t) t

IA

IA

39



wherexy, X, € X are arbitrary. This implies thd is a contraction mapping.

Thus according to Banach contraction principléas a unique fixed point It is not difficult to see
that the fixed point solves (3.1) and (3.2). It remains to stmatx(t) satisfies (3.3) as well. It is not
difficult to show that

t 1
"0 )., peEE

t 1
"0 ). peeE

t
(M + 1)u() f B(S)ds+ [du(t).

IX(t) — av(t) - bu(t)l

IA

f N u(7)| f (z, x(r))|drd s+ |clu(t)

IA

fm u(t)(Mhy(7) + hy(r))drds+ |clu(t)

IA

where

X (1
S afq G ki

If (3.14) is satisfied, then in view (3.13) and the above iraditlyy we easily obtain (3.3). In case (3.15)
holds, therc = 0 and hence we still have (3.3). |

From Theorem 3.2.1 we deduce the following Corollary.

Corollary 3.2.2 Assume that the function f satisfi@9) and
160~ 1l < P -0l 21,
where ke C([tg, =), [0, o)). Suppose further that
ftm k(s)ds< y; ftm hi(s)ds<p(t), t=>ty, i=12
0

for someu € (0, 1) andp € C([tg, ), [0, )), where

tt,B(s)ds: o(t"), t— oo.

0

Then for each 2 € R the boundary value problem

X' =f(t,x), t=to,
X(to) = Xo,
X(t) =at+b+o(t), t—

has a unique solution.

Let v be a nonprincipal solution of (3.4). Without loss of genityalve may assume thaft) > O, if
t > t, for somet, > 0. Itis easy to see that [34, 33]

0 1

is a principal solution of (3.4) which is strictly positiv€aket, large enough so that

0 1
————ds<1 t>t.
ft p(9V2(3) ?

Then from (3.16), we have(t) > u(t) for t > t,, which is needed in the proof of the next theorem.

40



Theorem 3.2.3 Let {y > t,. Assume that the function f satisf(89) and(3.10). Suppose further that

foo v(s)k(s)ds< u (3.17)
to
and
1 °° .
O ) VOR@ds A, txt i-12 (3.18)
hold for some3 € C([tg, ), [0, o)) such that
t
[ B9ds= o). t- . (3.19)
If either
ut) - oo, t—- o0 (3.20)
or " S
=0, v (3.21)

then there is a unique solutior{txof (3.1)—(3.3), where r is given by3.6).

Proof. Denote byM the supremum of the functiog over [Q ), as in the proof of the previous
theorem. Define a function sktby

X = {x e C([tg, ), R)| [x(t)] < lyv(t) + lou(t), Vt=>tp},

where X N .
Xo
I1 = (M + 1)p(to)u(to)v(to)B(to) + —— + |b ——d d lI,=1bl.
1= (M + DpUiMB) + o2 + 10 [ —trds and 1o = o
Again, X is a complete metric space with the mettigiven by the formula as in the proof of the

previous theorem. Define an operakoon X by
t 1 )
EX)(t) = —th—f v(7) f(r, X(7))drds
(FY)() O | v . OTEX)

X0 <1
" [W - bfto D(S)VZ(S)dS v(t) + bu(t).

In view of conditions (3.9) and (3.18) we see tlkais well defined. Now, lek € X be arbitrary. Then

(FX)®)] < w(t) t m j:o V()| T (7, X(7))|drd s+ |dy [v(t) + lou(t)

to

IA

00 1 00
V(t)‘[t mjt; V()| f (7, X(7))|drd s+ |dy[v(t) + [ou(t)

0

IA

PO
O [ e . UKD + haehdrds s i) + 2wt

o0 1 00
V(t)‘ft m jt; V(T)(Mhy(7) + ha(r))drd s+ [dy|v(t) + [ou(t)

0 1
(M + 1)p(to)ulto A (to)B(to V() f S ETIe)
|]_V(t) + |2U(t),

IA

IA

ds+ [dy|v(t) + lou(t)

IA

where

Cx (1
dl‘m‘bfto CIZCh
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Thus we see thdx € X.

Using (3.10), (3.16), and (3.17) we also see that

t 00
F)O - F)Ol < V) f m f V@) 30(0)) — (., xe()ldeds

IA

t 1 « k(7)
V(t) m L V(T)ED(:L(T) - X2(T)|deS

to

IA

t o0
d(Xz, X2)V(t) t m j; v(t)k(r)drds

t 00
d(Xl, X2)V(t) \[ m \]t. V(T)k(T)deS
d(xg, X2)v(t) \[ ) v(T)k(r)dr

pd(xg, X2)v(t),

wherexy, X, € X are arbitrary. This implies thé&t is a contraction mapping.

IA

IA

IA

Thus according to Banach contraction principleas a unique fixed point Itis easy to check that the
fixed point solves (3.1) and (3.2). It remains to show tk{&) satisfies (3.3) as well. It is notftiicult
to show that

IX(t) — av(t) - bu(t)l

IA

t 1 oo
v(t) fto DOEE fs V()| (7, X(7))ldrd s+ |d|v(t)

t 1
YO ). oo

t
(M + 1)v(t) f B(S)ds + [dav(D)

IA

fm V(t)(Mhy(7) + hy(7))drds+ |da|v(t)

IA

where
Xo

° 1
=——-b f ———ds-a
V(to) o P(VA(S)
If (3.20) is satisfied, then in view (3.19) and the above iradityiwe easily obtain (3.3). In case (3.21)
holds, therd, = 0 and hence we still have (3.3).

dy

Corollary 3.2.4 Assume that the function f satisf{@9) and(3.10). Suppose further that

00 ] 1 00 .
ftosk(s)dssu, t—zft‘ sh(s)ds<p(t), t=>ty, i=12

for someu € (0, 1) andg € C([to, ), [0, 0)), where

ftﬁ(s)ds= o(1), t— oo.
1

If for any given ab € R the condition(3.21) holds then the boundary value problem
X' =f(t,x), t>to,

X(to) = Xo,
Xt)=at+b+o(t), t—

has a unique solution.
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3.3 An Example

Example 3.3.1 Consider the boundary value problem

1
(tX) = sarctarx +t", t>ty, v<-2 (3.22)
X(to) = Xo, (3.23)
X(t) =alnt+b+o((Int)), t— oo. (3.24)
where § > t; = 1 andyu € (0, 1) are chosen to satisfy
1+1
b . (3.25)
to
Note that since Leint
lim =10 _ g
to— o0 tO

for any givernu € (0, 1), there is a § such that(3.25)holds.
Comparing with the boundary value problem (3.1)—(3.3) weetbat (t) = t, q(t) = 0, and f(t,x) =
(1/t?) arctanx + t*. The corresponding linear equation becomes

(tx) =0, t=>tp.

Clearly, we may take
ut)=1 and \(t)=Int.

Let
hy(t) = tlZ ho(t) =t7, o(x) = arctanx, K(t) = In_t B(t) = tlz

Then it is easy to check that

1
IF(t, X < z arctanx| + 7 = ()g(x) + hao(t),

Kt
[F(t, %) = F(t, %)l < —le - Xl = %le - Xal,
k(s)ds= ";fd 1rint _ by (3.25)

to
fhl(s)ds<—f —ds— =), t=to,

- f hy(s)ds=

fﬁ(s)ds f —ds= 10 - % =o((Int)), t—- o0, wue(0,1),

t > 1o,

and
V(t) =Int > 00, t— oo,

i.e., all the conditions of Theorem 3.2.1 are satisfied. &fwge we may conclude that if (3.25) holds,
then the boundary value problem (3.22)—(3.24) has a uniquisn.
Furthermore, we may also deduce that there exist solutig(iy and »(t) such that

x1(t) = L+o((Int)), t— oo

and
X (t) = Int+o((Int)"), t— oo.

by taking(a, b) = (0, 1) and(a, b) = (1, 0), respectively.
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