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ABSTRACT

SOLVING OPTIMAL CONTROL TIME-DEPENDENT DIFFUSION-CONVECTION-REACTION
EQUATIONS BY SPACE TIME DISCRETIZATION

Seymen, Zahire
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Biilent Karasdzen

February 2013, 91 pages

Optimal control problems (OCPs) governed by convection dominated diffusion-convection-reaction
equations arise in many science and engineering applications such as shape optimization of the tech-
nological devices, identification of parameters in environmental processes and flow control problems.
A characteristic feature of convection dominated optimization problems is the presence of sharp lay-
ers. In this case, the Galerkin finite element method performs poorly and leads to oscillatory solutions.
Hence, these problems require stabilization techniques to resolve boundary and interior layers accu-
rately. The Streamline Upwind Petrov-Galerkin (SUPG) method is one of the most popular stabiliza-

tion technique for solving convection dominated OCPs.

The focus of this thesis is the application and analysis of the SUPG method for distributed and
boundary OCPs governed by evolutionary diffusion-convection-reaction equations. There are two ap-
proaches for solving these problems: optimize-then-discretize and discretize-then-optimize. For the
optimize-then-discretize method, the time-dependent OCPs is transformed to a biharmonic equation,
where space and time are treated equally. The resulting optimality system is solved by the finite

element package COMSOL. For the discretize-then-optimize approach, we have used the so called all-



at-once method, where the fully discrete optimality system is solved as a saddle point problem at once
for all time steps. A priori error bounds are derived for the state, adjoint, and controls by applying
linear finite element discretization with SUPG method in space and using backward Euler, Crank-
Nicolson and semi-implicit methods in time. The stabilization parameter is chosen for the convection
dominated problem so that the error bounds are balanced to obtain L? error estimates. Numerical ex-
amples with and without control constraints for distributed and boundary control problems confirm the
effectiveness of both approaches and confirm a priori error estimates for the discretize-then-optimize

approach.

Keywords: Optimal control, diffusion-convection-reaction equation, Streamline Upwind Petrov-Galerkin

method, COMSOL Multipysics, all-at-once method
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0z

ZAMANA BAGLI DIFUZYON-KONVEKSIYON-REAKSiYON DENKLEMLERININ
ENIYILEMELI KONTROL PROBLEMLERININ UZAY-ZAMAN ESZAMANLI
AYRIKLASTIRILMASI iLE COZUMU

Seymen, Zahire
Doktora, Matematik Boliimii

Tez Yoneticisi : Prof. Dr. Biilent Karas6zen

Subat 2013, 91 sayfa

Teknolojik sistemlerin eniyileme yontemi ile kontrolii, ¢evresel siire¢ icindeki parametrelerin tah-
mini, akigkan kontrol problemleri gibi ¢cok sayida problem difiizyon, konveksiyon, reaksiyon terimleri
iceren kismi tiirevli denklem sistemlerinden olusan eniyileme problemleri seklindedir. Konveksiyon
terimlerinin difiizyon terimlerinden ¢ok biiyiik oldugu durumlarda, bu tiir denklemlerin ¢oziimleri,
¢Oziimiin yiiksek egime sahip oldugu bolgelerde katmanlar olusturmaktadir. Galerkin sonlu elemanlar
yonteminin bu tiir problemler i¢in uygun olmadig1 ve sayisal ¢oztimlerin salinimlar olusturdugu bil-
inmektedir. Sinirda ve i¢ katmanlarda olugan katmanlar1 azaltmak i¢in farkli stabilizasyon yontemleri
kullanilmakta olup, bunlarin arasinda en ¢ok bilineni Streamline Upwind Petrov Galerkin (SUPG)

yontemidir.

Bu tez, konveksiyon agirlikli dagitik ve sinir deger eniyileme kontrol problemlerinin SUPG ile ¢oziimiinii
ve analizini icermektedir. Kismu tiirev denklemlerini igeren eniyileme kontrol problemlerinin ¢oziimiinde
genellikle iki farkli yaklagim kullanilmaktadir: dogrudan ayriklas-

tirmasiyla elde edilen ve eniyileme sisteminin ¢6ziimii elde edildikten sonra ayriklastirmasiyla elde

edilen sistemin ¢oziimii. Bu caligmanin ilk boliimiinde, eniyileme kogsullarinin elde edildikten sonra
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sayisal ayriklagtirma yaklagimi icin zamana bagl eniyileme kontrol problemi ikili harmonik bir den-
kleme doniistiiriilmiis ve COMSOL adli sonlu elemanlar paketi ile ¢oziilmiistiir. Caligsmanin ikinci
boliimiinde, sayisal ayriklagtirma yaklagimi icin elde edilen problemin ¢oziimii i¢in hepbirlikte ¢oziim
olarak adlandirilan eniyileme problemi bir eger nokta problemi halinde ¢oziilmiistiir. Zaman degiskeninde
geriye doniik backward Euler, Crank-Nicolson, yar1 kapali yontemlerle ayriklastirilan eniyileme sis-
temi, uzay degiskeninde dogrusal sonlu elemanlar ve SUPG kararlilig1 kullanilarak ayriklagtirilmisg,
onceden hata analiz leri gelistirilmigtir. Kararlilik parametresi eniyilemeli hata tahmini elde edilecek
sekilde secilmistir. Kontrol kisitlamali ve kisitsamasiz problemler igin cesitli sayisal 6rneklerde elde
edilen sonuclar, her iki yaklagimin etkinligini gostermekte olup, ayriklagtirma sonrasi eniyi-

leme yaklasimu i¢in elde edilen sonuglar, hata tahminlerini dogrulamaktadir.

Anahtar Kelimeler: Optimal kontrol, zamana bagli konveksiyon-reaksiyon-difiizyon denk-

lemi, Streamline Upwind Petrov-Galerkin yontemi, COMSOL, tek adimli ¢6ziim yontemi
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CHAPTER 1

INTRODUCTION

Recently, the optimal control problems (OCPs) that are governed by elliptic or time-dependent partial
differential equations (PDEs) have been extensively studied [1, 38, 53, 54, 58, 66]. Among them OCPs
governed by the diffusion-convection-reaction equations arise in environmental modeling, petroleum
reservoir simulation and in many other applications. Extensive research has been carried out on various
theoretical and numerical aspects of these problems [3, 4, 9, 13, 21, 23, 27, 28, 40, 45, 50, 52, 90].
In applications, the size of the diffusion term is smaller by several orders of magnitude than the norm
of the convection term. In convection dominated problems, interior and/or boundary layers generally
occur on a small region where the derivatives of the solution are large. Hence, the solution procedure
becomes hard to tackle to the steep gradients caused by these sharp layers. The accurate simulation
of these problems requires numerical methods which are able to compute sharp layers and prevent
the occurrence of spurious solutions. The standard Galerkin finite element method which is used to
approximate the solution of convection dominated problems leads to strong oscillatory solutions if the
mesh size & is large when compared to the ratio €/||8|| where €, 8 are the diffusion and convection
terms, respectively. In order to eliminate the oscillations around the boundary and/or interior layers
and to obtain accurate solutions, several stabilization techniques have been proposed and analyzed,
including the streamline diffusion finite element method [34, 46], and symmetric stabilization method
[9, 12]. Among them, the streamline upwind/Petrov Galerkin(SUPG) method, is one of the most well
known stabilization technique in the literature [10, 34, 46].

In the OCPs, there is a cost functional J(y,u) which is a function of the state variable y, and the
control variable u. The aim of the OCPs minimize the cost functional by approximating the state
variable to a given desired state y, as well as possible by using distributed or boundary controls. In this
thesis, we consider the time-dependent convection dominated diffusion-convection-reaction equation
as a constraint of the optimization problem. Moreover, the problems might include constraints on the
control given in a form of the box constraints. The OCPs governed by diffusion-convection-reaction
equations cause additional challenges due to one more diffusion-convection-reaction equation with an
opposite convection term, which is called the adjoint equation. In this sense, these problems have
boundary and/or interior layers generated not only in the state PDE but also in the adjoint PDE and
so the spurious oscillations are propagated along upwind and downwind directions due to this coupled
systems. Hence, the convergence properties for SUPG method applied to diffusion-convection-reaction
control problems can be different from the convergence properties of the SUPG method used to solve
a single PDE.

In case of steady-state convection dominated OCPs, various stabilization methods are proposed [3, 4,
9, 21, 23, 40, 45, 52, 90]. The discretized optimization problems governed by the elliptic diffusion-
convection-reaction equation were studied using the local projection approach [4, 52]. The variational



discretization and the edge stabilization Galerkin methods were combined in [45, 90]. Instead of
stabilizing the state and adjoint equations separately, stabilization of the Lagrangian was introduced
in [23]. In [3, 21, 40], the SUPG method was applied to the convection dominated stationary control
problems. Heinkenschloss and co-workers have emphasized that the solutions of the elliptic problems
by the SUPG method is hard to tackle numerically when compared to the solution of a single PDE in
[21, 40]. In these studies, error between the exact and SUPG solution is measured on a region which
is far away from the interior and/or boundary layers. In order to obtain a stable numerical solution,
SUPG method is applied by adding a term to the state equation. It is noted in [21] that the added term
vanishes at the exact solution. Thus, SUPG method is considered as a strongly consistent stabilization
method [84].

In contrast to the steady-state convection dominated optimization problems, there are few papers deal-
ing with the control problems governed by time-dependent PDEs. Dirichlet boundary OCPs of evo-
lutionary equations were studied in [50]. The characteristic finite-element method used in [27, 28]
and Crank-Nicholson method with symmetric stabilization was applied in [13] for distributed control
problems. To the best of our knowledge, there is no study dealing with the OCPs governed by time
dependent PDEs in terms of SUPG method. And in this thesis, we study the effect of the SUPG method
applied to the OCPs governed by convection dominated diffusion-convection-reaction equation.

There are two approaches for the numerical solution of the OCPs: optimize-then-discretize (OD) and
discretize-then-optimize (DO). In the OD approach, one first derives the optimality conditions which
consist of state, adjoint and gradient equations and then discretizes each equation using an appropriate
discretization scheme. In the DO approach, we first discretize the state equation and the cost functional.
Then, we construct the finite dimensional Lagrangian and derive the finite dimensional optimization
problem. Actually, the time-dependent diffusion-convection-reaction equation is not self-adjoint. As
a result, OD approach and DO approach will generally lead to the different discretization scheme for
solving optimality system involving the state and the adjoint equation which are discretized by pure
Galerkin method. In general, both approaches do not commute and lead to different discrete problems.
For the residual based stabilization methods [3, 21, 23, 40] and the SUPG method [21, 40, 46], OD
approach and DO approach lead to different discrete problems too.

The main objective of this thesis is the analysis and application of the SUPG method for time-dependent
convection dominated OCPs. Actually, the performance of the SUPG method is mostly proportional
to the choice of the stabilization parameter. In [33], different methods are studied to derive the er-
ror estimates for the SUPG method with backward Euler and Crank-Nicolson scheme applied to a
single evolutionary diffusion-convection-reaction equation. By choosing the stabilization parameter
depending on the length of the time step size k, we derive the error estimate for the SUPG method
with backward Euler and semi-implicit scheme. The error estimate for the SUPG method with Crank-
Nicolson scheme are derived due to the choice of the parameter proportional to the mesh size 4 as for
the steady-state case. Hence, we have illustrated the efficiency of the error estimates with numerical
examples. The rest of the thesis is organized as follows:

In Chapter 2, we consider both approaches, i.e., OD and DO to give the optimality systems of OCPs.
Firstly, we give the related functional preliminaries and the existence and uniqueness results for
diffusion-convection-reaction equation. Then, we introduce the distributed and boundary OCPs and
summarize the well-known results for these problems. In the rest of Chapter 2, we give optimality
systems for the OD approach by discretizing the state, the adjoint and the gradient equation. We apply
the SUPG method to both of the coupled system involving the original state equation as well as the
adjoint PDE which is also convection dominated diffusion-convection-reaction equation with negative
convection term. For time discretization, ® scheme and semi-implicit scheme are used. In the DO ap-



proach, we first discretize the cost functional and state equation using a standard finite element method
with SUPG in space, ®-scheme and semi-implicit scheme in time. Then, we derive the Lagrangian and
obtain the optimality system of the finite dimensional optimization problem by taking the derivatives
of Lagrangian with respect to y, u, p.

In Chapter 3, we consider one-shot approach to solve the state, adjoint and gradient equation at once
after converting the optimality system into a biharmonic equation in the space-time domain. The trans-
formation of the optimality system of linear parabolic OCPs with pointwise control constraints into a
biharmonic PDE were studied in [61, 64, 62, 65]. We solve the evolutionary convection dominated
distributed and boundary OCPs as an elliptic PDEs where space and time variables are treated equally.
Moreover, we show the existence of a solution of OCPs which are transformed into biharmonic PDEs.
For the distributed optimal control of the unsteady Burgers equation, the same approach was used in
[91]. For the numerical solution of the OCPs, we use the equation-based modeling and simulation
environment COMSOL Multiphysics.

In Chapter 4, we use all-at-once method to compute the solution of the distributed and boundary OCPs
with DO approach which results in a symmetric optimality system. Recently, all-at-once methods
were applied for OCPs governed by linear elliptic problems in [72, 73, 74] and for parabolic problems
in [78, 79]. These methods solve the state, control and adjoint equations explicitly for all time steps
at the same time by treating the state and control as independent optimization variables. The linear
system arising from the optimality system leads to a saddle-point system. The saddle point system
can be solved by employing a direct solver or an iterative solver. In general, iterative solvers can be
applied with a preconditioner chosen to speed up the convergence of the method. There have been
much effort spent for the solutions of saddle point systems [25, 55, 56, 57] and related to all-at-once
preconditioning of linear control problems [73, 74, 72, 78, 80]. In this thesis, as an iterative solver, we
choose the minimal residual method (MINRES) of Paige and Saunders [67] and appropriate symmetric
and positive definite block-diagonal preconditioner for MINRES. By using backward Euler, Crank-
Nicolson, and semi-implicit schemes as a time discretization, the effect of the stabilization parameter
for the time-dependent OCP is discussed in detail. Moreover, we derive a priori error estimates for
the SUPG method with these time integrators applied to the distributed OCPs. Due to the stabilization
parameter which depend on the length of the time step or mesh size, there are different approaches in
the a priori error analysis. The error bounds of these estimates are balanced to obtain L? error estimate
by choosing the optimal scaling of the mesh size & and time step size k. Numerical result for problems
with and without control constraints confirm the predicted a priori error estimates.






CHAPTER 2

OPTIMALITY SYSTEMS FOR
DIFFUSION-CONVECTION-REACTION EQUATION

In this chapter, we give the precise formulation of the optimization problems and cover some of their
theoretical results. We consider two approaches DO and OD to solve the distributed and boundary
OCPs.

In Section 2.1, we give some basic notations. Then, in Section 2.2, we formulate our distributed control
problem with and without control constraints. In the rest of the section, we give the existence and
uniqueness of solutions for DO and OD approaches. For both cases, we use SUPG stabilized spatial
discretization, ® scheme and semi-implicit scheme as an temporal discretization. Then, we obtain
the optimality systems. In Section 2.3, we consider the boundary OCPs with and without control
constraints. Similarly, we first give the existence and uniqueness of solutions and then consider the
approaches mentioned above with the same discretization techniques in space and time.

2.1 Basic notations

Throughout this thesis, Q denotes a bounded domain in R™ for {m € 1,2}, with Lipschitz boundary 9Q
[39]. Furthermore, we denote by I := (0, T) a bounded time interval with 0 < T < co. And we define
0 =1xQ, ¥ =1x0Q. We employ the usual notion for Lebesgue spaces L”(D) and sobolev spaces
W™P(D) with 1 < p < 00, m € N", see [51, 84, 86]

We use the same notations as in [84], consider the set of measurable functions w such that

f w(x)|Pdx < oo,
Q

and, when p = oo,

sup{|w(x)| | x € Q} < oo.

The associated norm of L7(Q) is the following:

I/p
ey = ( [ weopds) "L 1< p <o,
Q

and, when p = oo,

Wl := sup {lw(x)| | x € Q}.



Considering the classical Sobolev space W*P(Q), k is non-negative integer and 1 < p < oo, on a
domain Q c R”

Whr(Q) ::{w € L/(Q)| D"w € L7(Q) for each
non-negative multi-index o such that |o7| < k}
with the norm

1/p
Wlepa = D 107]q)

lor|<k

For the case p = 2 we write H*(Q) = W5(Q). We denote the subspace of H Q) vanishing on 9Q as
Hj(Q).
For the time-dependent norms

LI(I; WEP(Q)) :={w : [ — W*P(Q)| w is measurable

T
and satisfies f WO g < oo}
; 2

for 1 < g < co with the norm

T 1/q
. q
||W(t)||Lq(1;Wk,p(Q)) = (\f; “W(t)”k,p,gdl)

For a Banach space V, the space H'(I; V) can be defined as
1 2 ow _
H (I;V):= {w €L (I; V)| o € L°(I; V)}.
Throughout this thesis, we use the following notation for norms and inner products. The scalar product

(-, )12(q) 18 considered as (-, -)o,q or simply (-, -) and the norm in L*(Q) is denoted by || - [lo.o or simply
|| - ||. Similarly, || - || is the norm in the sobolev space H*(Q) for k > 0 and the scalar product

W, Vo = Z (D"w, D%v).

o<k

2.2 Distributed optimal control problem

We consider the following time-dependent distributed OCPs governed by the diffusion-convection-
reaction equation

. 1 o
min J(y,u) = 5y = yallg + 5 lullg (2.12)
subject to
yvi—€eAy+B-Vy+oy = f+u, in Q,
y = 0, on X, (2.1b)
yt,0) = yo, in Q,
with control constraints
u € Uygg C L*(Q), (2.1c)

where
Uw ={u€L*Q): u, <u<up, ae. in Q)



given the domain Q € R” forn = 1,2, ..., with u,, up, € L*(Q) and u, < up, almost everywhere (a.e.) in
Q. The regularization parameter is @ > 0, y and u denote the state and control variables, y,(x) is the
desired state. Let H = L>(Q) and V = H(')(Q) be Hilbert spaces. We make use of the following Hilbert
space

X = W) ={p e LI, V); ¢ € L*(I; V")},

where V* denotes the dual space of V. The inner product in the Hilbert space V is given with the
natural inner product in H as

(. ¥)1 = (¢',¥"), forall g,y € V.

It is well known that the standard Galerkin finite element method applied to the state equation (2.1b)
leads to strongly oscillatory solutions for mesh sizes that are larger than the ratio of diffusion and
convection. To produce better approximations to the solutions of (2.1b) for moderately sized meshes,
several well-established techniques have been proposed and analyzed [30, 59, 75, 84, 93]. There are
methods to stabilize this phenomenon such that the streamline diffusion finite element method [36, 46,
84], the discontinuous Galerkin method [35], edge stabilization [11] and local projection stabilization
methods [5, 68]. The streamline upwind/Petrov Galerkin method (SUPG) stabilized finite element
method [34, 46] is the most used stabilization methods for convection dominated partial differential
equations (PDEs).

In this thesis, we focus on the SUPG method [46]. By applying SUPG method, we add a term to weak
form of (2.1b). With this term, the modified weak form has better stability properties than unstabilized
case.

There are two approaches to solve the optimal control problem. In the first approach OD, we first
derive the optimality conditions which consist of the state equation (2.1b), the adjoint equation

~pi—€Ap=p-Vp+op = -(y-yi), inQ,
p = 0, on X, (2.2)
pG.T) = 0, inQ,
with the gradient equations
au—-p = 0 inQ. (2.3)

In case of pointwise control constraints, the gradient condition is
au—p+u,—f, = 0, inQ (2.4)

with an additional complementary slackness condition

(Mg tta — Wiy =0, u > uy , ug >0, a.e.in Q,
(Up, u = up)0) =0, u <up ,pp >0 a.e. in Q.

Then, we discretize each equation (2.1b), (2.2), (2.3) or (2.4) by using conforming finite elements. We
also use SUPG method to discretize the adjoint equation (2.2) which is also a diffusion-convection-
reaction equation. By this way, we obtain ’strongly consistent’ optimality system. Howewer, there is
no finite dimensional optimization problem because of the nonsymmetric linear system obtained by
this optimality system (2.1b), (2.2), (2.3) or (2.4). The other approach for solution of (2.1) is DO in
which we discretize the state equation (2.1b) using SUPG and the objective function. By defining the
Lagrangian and taking derivative of Lagrangian with respect to y, u, p, we obtain the discrete adjoint
equation, discrete gradient equation and discretized state equation respectively. The discrete adjoint
equation and discrete gradient equation are considered as a discretization of (2.2) and (2.3) or (2.4),



respectively. Although the discrete adjoint equation has a stabilizing effect due to the contribution of
the stabilization term added to the state eqaution (2.1b), the discrete adjoint equation is not a strongly
consistent stabilization method for (2.2). In the rest of the section, we discuss the existence and
uniqueness of solutions, and present details of DO, OD approaches and optimality systems obtained
by these approaches.

2.2.1 Existence and uniqueness of solutions

In this section, we consider the existence and uniqueness of distributed OCPs as stated in the texts
[29, 51, 82]. Let first pose the state equation of time-dependent distributed control problem (2.1b) is a
weak form for a given control u € Uy, y € X, f € L*(Q), and yy € L*(Q)

Onv) +aly,v) +bw,v) = (f,v), YveV,

2.5
WO = o, @)

where

a(y,v) = f eVyVv + B - Vyv + oyvdx,
Q

b(u,v) = — f uvdx,
Q

(f,v)zjg;fvdx.

The bilinear form a is continuous and moreover, weakly coercive in V [84], i.e., there exist two con-
stants £ > 0 and A > 0 such that

av,v) + AMPE = & YveV. (2.6)

The bilinear form a(-, -) is coercive if 1 = 0.
Now we consider the solution of the OCPs

. 1 a
min J(,u) = 5 Iy = yallg + 5 lullg (2.7a)
subject to
G V) +aQ,v) +bwy) = (fv), VeV, @75)
y©0) = o

Theorem 2.2.1 Let us assume that the bilinear form a(-,-) is continuous in V X V and that (2.6) is
satisfied with A = 0. Given f,y; € L*(Q), yo € H, € > 0, B, and o are fixed. Then the OCP (2.7) has
a unique solution (y,u) € X X Uyy.

Proof. The proof can be found Lions [51], Wloka [86] and Troltzsch [82]. [ |
As in [51], we can define the Lagrangian to provide necessary and sufficient optimality conditions

L(y,u,p) = 5y = yally + § gy + G p) + a(y, p) + b(u, p) = (£, p)- (2.8)

Taking derivative of Lagrangian with respect to y, u, p respectively, we obtain the following necessary
and sufficient optimality conditions:

(=pu¥) +aly, p) = =y = ya, ¥), Yy eV, peX, (2.92)
b(w, p) + alu,w) =0, VYw € Uy, (2.9b)
O, v) +ay,v) + by, v) = (f,v), YveV, (2.9¢)



where (2.9a) is the weak form of the adjoint equation (2.2), (2.9b) is the weak form of gradient equation
(2.3) and (2.9c¢) is the weak form of state equation (2.1b). We also note that for the control constraint
problem, we add the term u (1 — up) + (o (1, — u) to (2.8); then the term w;, — u, is added to (2.9b) which
is the weak form of the gradient equation (2.4).

Moreover, we need more regular y, u, p solutions than shown in Theorem 2.2.1 for convergence theory
of SUPG. Thm. 2.4,2.5 in [39] and Thm. 2.2 in [21] show that the unique solution of (2.7) and the
associated adjoint admit more regular solutions.

2.2.2 Discretize-then-optimize approach
2.2.2.1 Spatial discretization using SUPG method

In this section, we consider the approach DO to solve the optimization problem. For this scenario,
we discretize the functional (2.1a) and the state equation (2.1b) by using a standard finite element
approach in space.

As in [21], we consider the following finite element spaces to discretize the state and the control:

vV, = fvpeVivr e P(T)forall T € T}, k>1,

2.10
Uy {wp, € LX(Q) : wyly € Po(T) forall T € T3}, m >0, ( )

where {%}};-0 be a family of quasi-uniform triangulations of Q [19].

When we use the standard Galerkin method to discretize the state equation (2.1b) which is a con-
vection dominated problem, there is a strongly oscillatory solution. In this thesis, we analyze the
stabilized solution of the problem. For the stabilization method, we use SUPG method [21, 46] with
the stabilization parameter 7. We use the notation s as a superscript or underscript to indicate that the
stabilization method is applied to state equation. This leads to the following bilinear forms applied to
yi € Xp = H'(I; Vi)

ht> Vi) + Z TOnes B Vi + ayns vi) + by, vi) = (o vy, Yvi € Vi, (2.11)
KeT,
ay(y.v) = a(y.vi) + ) T(=€Ay+ B Vy+ 0y B Vidg, (2.122)
Ke%,
b, vi) = b(y,vi) = > 7w, B+ Yo, (2.12b)
Ke%,
ooy = oo+ D B I (2.12¢)
Ke%,

We can clearly see that if we extract the stabilizing term from (2.12), we obtain an approximation
yi € X, of the solution y of the state equation (2.1b) for the unstabilized case.
Then our optimization problem becomes

. 1 167
min J(y, 1) = 5 Iy = yallp + 5 lhuallg (2.13)
subject to
s Vi) + Z TOnss B Vv + ayn, vi) + by (un, vi) = (f, va);,, Vi € Vi, (2.13b)
Ke%T,
Yr(0) = yo . (2.13¢)



The Lagrangian for the discretized problem (2.13) is given by

. 1 a
L'(y,u,p) = 5 Ivn -yl + 5 llunllgy + Gns> P) + Z OB - Vplk (2.14)
Ke%,

+ay,(Yn, pn) + by (un, pr) = {f> Py

where yy,, p, € X, and u;, € Ugd = {u, € L*(;UL) ¢ ug < wy < up ae.,in Q). Setting partial
derivative of L* (2.14) to zero, we obtain the following necessary and sufficient optimality conditions
for the discretized problem (2.13):

—(Pni>¥n) = Z (P B Vg + ayWn, pr) = =On = Ya¥n)» Y €Vy,  (2.152)
Ke%,,

by, (W, pr) + alup, wyp) = 0, Ywy € Uy, (2.15b)

Oht> Vi) + Z TV B+ Vi + ayn, vi) + by (up, vi) = (f, vy Yvp € Vi, (2.15¢)
Ke%Ty

Corollary 2.2.2 Assume that the bilinear form a;(-,-) is continuous and coercive in V), X Vj,. Given
frya € LX(Q), you € H, € > 0, B, and o are fixed. The semi discrete optimal control problem (2.13)
has a unique solution (yy, u;) € Xj, X Uzd. The functions (yj, up) € Xj, X U,‘l’d solve (2.13) if and only if
O, un, pn) € Xp X Ufld X Xy, is a unique solution of the optimality system (2.15).

Proof. The proof can be found [51, 84]. [ |
As in [21], we use the discrete adjoint equation (2.15a) and the discrete gradient equation (2.15b),
which means that these are obtained from the discretized OCP. In the next section, we discretize the
adjoint equation (2.2) by SUPG method and gradient equation (2.3) to obtain discretized adjoint equa-
tion and discretized gradient equation respectively.

We note that since the optimal control u and the optimal state y satisfy (2.15c¢), the discretized state
equation (2.15¢) is strongly consistent. The optimal state y and the corresponding adjoint p do not
satisfy (2.15a) which means that the discrete adjoint equation (2.15a) is not strongly consistent. Simi-
larly, the discrete gradient equation (2.15b) is not strongly consistent, too.

We discretize the state, adjoint and control using the same finite element basis functions ¢; in the DO.
The approximation of y and u is the following form

n+l 1 n+l |

w0 = 37 OE, wn =" ul ek, (2.16)

j=1 k=1 j=1 k=1
set

YO = GHO, Y20, s VLD, s YL@, Y20, s ()T
u(t) = U0, ub (), ooyl (1), ooy (O, T (0), oy ()T (2.17)

where n + 1 is the number of triangles and / is local dimension. If we insert (2.16) into (2.13), we
obtain the following form of the semi discretization of the OCP

T 1 T
min  J,(§, @) = f 50T = 30" MG = ot + f %”Mﬁd; (2.18)
0 0
subject to
M5+ Ky-Mi = f, (2.18b)
¥y0) = o

10



Also note that if we extract the stabilization term from (2.18b), we get the following unstabilized semi
discretization of the state equation:

My, + Ky - Mii = f,

2.18
JO) = ¥ (2-18¢)

where
M*=M+1N; K’ =K+1B"BK +0pBN); K=eK+BN+0oM; f*=f,+1Bfi’

M = [ ei0pi(xdx,
K = [ Ve(0)Ve(x)dx,
N fR[ Vo (x)gi(x)dx, (2.19)
fi = Jp FaDgi0dx,
fit = fo S DV@i(0)dx,
where R; is the region over the i-th element, M is the mass matrix, K is the stiffness matrix and f; is

the vector coming from right hand side for the unstabilized case. When we apply SUPG method, we
have a new mass matrix M*, a new stiffness matrix K* and it

2.2.2.2 Time discretization using ® scheme

In this section, we use SUPG stabilized semi discretization (2.18b) and ® scheme for time discretiza-
tion so that we obtain the fully discretized system. The approximation of the state y and the control u
is given in (2.16) on the interval (0,1) with n uniform subdivisions. We use the following notations:

y =y u = u).

Given0 =1y < t; < ... <tyy1 = T, we define

At; =ty — t;, (i=0,..,N), withAr_; = Aty =0,

and for given time interval (0, 7)) with N uniform subdivions 0 = 7y < #; < ... < ty+; = T. Then using
a standard finite element approach in space and a trapezoidal rule, the cost functional (2.1a) becomes

At alt
W U) = (¥ =Y Mip(Y = Yo) + == U MipU (2.20)
with the matrix
iM 0 0 0
0O M O 0
Ml/z — o 0 . e R(n+l)><N,(n+1)><N. (2.21)
0 0 0 iMm

where M is mass matrix defined in (2.19) and
Y=@uh. oy"and U = @, ..., u™Y),

where y' and u' correspond to vector valued functions at the time step .
When we apply ® scheme [84] to (2.18b)
M3yt —y) + AtKS(@y™*! + (1 - ®)y) — AtM*(Ou'*! + (1 — O)u’)

. . ) (2.22)
= A Of (1) + (1 - O) (1), (i =0,...,N),

11



where M*, K*, f* are given in (2.19).
By defining
Fi = (M* + AOKY), F) = (-M’ + Al - ©)K?), (2.23)

we obtain the following fully discrete system in matrix form

E,Y — AtZ,U = F, (2.24)
where
QM 0 0 0 0
F, 0 0 0
(1-0)M* OM* 0 0 0
Fg F{ 0 0
Es = 0o . .0 25 = 0 . . 0 0 (2.25)
0 0' F; s 0 0 (1-0)M° QM 0
0o 71 0 0 0 1-em° oM’
and

—F3y" + MO f5 (1) + (1 = ©) (1))
F, = : : (2.26)
AHOf5(ty+1) + (1 = ) f(ty))

We introduce Lagrangian function L with the Lagrange multiplier P [83] to obtain the optimality
system containing the first order optimality conditions:

LY, U,P):= J,(Y,U)+ PT(- E;Y + AiZ,U + F,). (2.27)

In this sense by inserting (2.20) to (2.27), taking derivative of L with respect to to y and u and with the
equation (2.24), we obtain the following optimality conditions

VyL(Y*,U*, P*) = AtM;p(Y* = Y)) — ETP* = 0, (2.28a)
VpL(Y*,U*,P*) = —E,Y* + AtZ,U" + F, = 0, (2.28b)
VyL(Y*,U*, P*) = aAtM, pU* + AtZI P* = 0, (2.28¢)

where (2.28a), (2.28b), (2.28c) give the discrete adjoint equation, the discretized state equation and
the discrete gradient equation, respectively. Both of the discrete adjoint equation and the discrete
gradient equation have a stabilizing effect coming from the stabilization term added to state equation.
Howewer, the discrete adjoint equation and the discrete gradient equation are not strongly consistent
for (2.2) and (2.3), respectively. Although the optimality system (2.28) is not strongly consistent, there
is finite-dimensional problem and the following symmetric indefinite linear system:

AtMy ) 0 —EST Y AtM, 2 Y,
0 aAtM, /2 AZ‘ZZ,- U |= 0 . (2.29)
-E AtZ; 0 P —F;

The above system is solved for ® = % and ® = 1 which are called Crank-Nicolson method and
backward Euler method respectively.

For the unstabilized case with ® scheme:

We take F| = (M + At®K) and Fy = (-M + At(1 — ®)K) instead of F} and F; given in (2.23), where
M, K are given in (2.19). We can define the new matrix E for the unstabilized case by inserting Fy, Fy
instead of Fy, F; in the matrix E (2.25)and a new matrix Z by inserting M instead of M* in the matrix

12



form Z (2.25). We obtain a new vector F' by inserting Fo, f instead of Fj and f* in the vector form
(2.29). Moreover, the fully discrete system for the unstabilized case becomes

EY - AtZU = F. (2.30)

Then, by following the same steps, we obtain the symmetric indefinite linear system for unstabilized
case:

AtM)p 0 —ET Y AtM Y,
0 alAtM ) AtZT U |= 0 . (2.31)
-E AtZ 0 P -F

2.2.2.3 Time discretization using semi-implicit scheme

Similar to ® scheme, in this section we apply semi implicit scheme to SUPG stabilized semi discrete
problem (2.18b). By using semi implicit scheme, we can avoid stability restrictions without resorting
to the fully implicit approximation. In this sense, we evaluate the diffusion term, —€A at the time level
t.+1, whereas the remaining parts, convection and reaction terms, are considered at the time level ¢,.
Then this scheme:

MS(y*t —y) + AteKy™! + (ABN + oM + 1(B" BK + oBN))y' — AtM*u'*!

) . (2.32)
= Atf3(tiy1), (=0,..,N),
where M*, K, N, M, f* are given in (2.19) and 7 is the stabilization parameter.
Then we define
Fy = (M* + AteK), Fy = (=M* + At(BN + oM + (8" BK + o3N))). (2.33)
The fully discrete system in the matrix form
EY -AtZ,U = F,, (2.34)
where ~
F? 0 O
o M 0 O
_ Fy F; 0 0 .
Es = . . Zo=| o . 0 (2.35)
.. .. 0
L 0o 0 M
0 0 F; Fy
and ~
—F3y0 + Atfi(n)
F, = : , (2.36)

Atf(ty+1))

then by following the same procedure as in the previous section, we obtain the saddle point system

AIMI/Z 0 —EST Y AtM]/sz
0 aAtMy, AtZT || U | = 0 . (2.37)
-E, AtZ, 0 P -F,
For the unstabilized case with semi-implicit scheme:
We take
Fi = (M + AteK), Fo = (=M + At(BN + o M)). (2.38)

13



The block matrices are defined as

Frb 0 0 0
O M 0 O
3 Fo Fp 0 0 | _
E = ) Z= 0 . 0 (2.39)
. 0
~ . 0 0 M
0 0 Fy Fy
and ~
—Foy’ + Atf(r)
F= : (2.40)
Atf(ty))
and the indefinite linear system
AtM 2 0 —-ET Y AtM, Y
0 aAtMy, AZT || U |= 0 (2.41)
-E AtZ 0 P -F

2.2.2.4 Control constrained problem

When we consider the OCP (2.1), it is desirable to impose the control constraints. In this sense, with
the box constraints defined in (2.1c), we define the following optimality condition:

(U - UN'VyL(Y*,U*, P*) = (U = U (aAtM U + AtZI P*) > 0, (2.42)
where Vy given in (2.28c). In this section, we consider the ® scheme for time discretization. The idea

is the same as in the case of the semi-implicit scheme.

The following Lagrange multipliers u, and y;, for the inequality constraints on the control variable
defined as
Ua = (@AM U + AtZT P*)" and  := (@AM, U + AtZT P*)".

So, we introduce the following augmented Lagrange function [83]:

At alt
LY, U, P, pq, tp) = = 7(Y —Y) " Mip(Y - Yy) + TUTMl/zU
+ PT (= E\Y + MZ,U + F,) + L (U, = U) + p} (U = Up).

We consider an extension of theorem in [83] about the optimality conditions to N time-steps.

Theorem 2.2.3 For an optimal solution (y*, u*), there exists Lagrange multipliers p, u,, and p, such
that

VyL(y*’ M*, p*7/1a,ﬂb) = O’
VuL(y"',u, p*, tas ) = 0,
Mg = 0, Mp = O,

W (g — u*) = pf (0 = up) = 0.

The OCPs with additional constraints can be solved by interior point methods and active-set strategies.
We follow [7] to solve control constraint problem by using the active set method determined by

A+ = {le {lv,N} : (U*_ﬂ)l > (Ub)i}’
A_:={ief{l,...,N}: (U —p); < Uy},
I:={1,2,...,.N\N(A, UA.).
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With additional control constraints, the optimality conditions given for the unconstrained OCP (2.18)
is redefined by

VyL(Y*,U*, P*) = AtMyo(Y* = Y;) — ETP* = 0, (2.43a)
V(Y U*,P*")=-E, Y+ AtZ,U" + F, =0, (2.43b)
VUL(Y*, U*,P*) = (lAl‘M]/zU* + Al‘)(]ZSTP>k = CL’AZ‘M]/Q()(/L U, + XA, Ub), (2.43¢)

where y denotes the characteristic function of the given set.
By setting

A, ={xe Q: —aAtM U, — AZI'P < 0},
A_={xe Q:—aAtM Uy — AtZI' P > 0},
I=0\(A, UAL),

we solve the following saddle point system for the control constrained OCP.

AIMI/Q 0 —EST Y AtM]/ZYd
0 G’AIM]/Q Al‘,\/]ZZ,w U |= CL’AIM]/Q(X,L U, + XA, Ub), . (244)
-E AtZ, 0 P —Fy

A detailed discussion of active-set methods can be found in [7, 83].

2.2.3 Optimize-then-discretize approach
2.2.3.1 Space discretization with SUPG

In this section, we directly discretize each equation in (2.9) to obtain approximate solution of the OCP.
As we mentioned, this prodecure is called as OD approach. We use the same space X, defined in (2.10)
for state and adjoint equation and U fl‘ , for control equation. When we discretize the adjoint equation
(2.2), we again use SUPG method for the convection dominated adjoint equation. Then the discretized
adjoint equation with SUPG method is as follows:

(=P n) + Z T(=phs =B - V)k + ayWn, pp) = =On = Ya ¥n)y Y € Vi, pp € Xp,  (2.452)

KeT,,
where
asWn pi) = aW, pp) + ) T—=€Apy =B Vi + api, =B - Vmk, (2.45b)
Ke%T,
Oh = Yo Uy = On = Yartn) + ) T = Yar =B V. (2.450)
KeT,

After discretization of the gradient equation (2.9b), we have
bW, pr) + alup, wi) = 0 Ywy, € Uy, (2.45d)

and the discrete state equation is the same as in (2.15c¢).

We note that the discretized state, adjoint and gradient equations are strongly consistent which means
that the solution y, u, p of (2.9) also satisfy (2.45). Howewer, the system (2.45) is non-symmetric and
so there is no finite-dimensional optimization problem of the optimality system.
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For the finite element representation of this approach, we use the same approximation of y and u in
(2.16) and the approximation of p

n+l |
AR YW ACT S (2.46)
=1 k=1
by setting
PO = (PY(O), PYD); ooy LD, ooy PO, pE @), oy P ()

and we have the following semi discretization of the adjoint equation

MG, + KOG - Moy = —Mey,

0 = 24D
where
M =—-M +1N; K°=¢eK -BN + oM + (8" BK — o8N); M = (M — 18N), (2.48)
The semi discretization of the gradient equation is
aMi— Mp =0, (2.49)

and the semi discretization of state equation is the same as in (2.18b), where the matrices M, K, N are
defined in (2.19). We note that the superscript a is used for the discretization of the adjoint equation
with SUPG.

2.2.3.2 Time discretization with © scheme

As in the previous section, we obtain the fully discrete matrix form (2.24) of the stabilized semi discrete
state equation (2.18b). The matrix form of state equation is the same as the one obtained by OD
approach. Hence, we compute the fully discrete form of the adjoint equation by applying ®-scheme to
the stabilized semi discrete adjoint equation (2.47).

Let us define P = (p!, ..., pN*!) where p! correspond to vector valued functions at the time step i.
When we apply O scheme [84] to (2.47), we get

MeP™t —p)) +  AtRYOp’ + (1 - ®@)p™!) + AtM4 @y’ + (1 — @)y™*!)

- , o X (2.50)
= AtM*(@Oyq' + (1 - ®)yd™"'), (=N,...,0).
By defining
F{ = (M"+ AtOK"), F§ = (-M" + At(1 — ®)K"), (2.51)
we obtain the following full discrete system in matrix form
E.P + AtZ,Y = AtZ,Y,, (2.52)
where
oM 0 0 0 0
Frooo 00 (1-eMm* em* 0 0 0
Fg F{ 0 0
E,= . X v Za = 0 (253)
0o - 0 _ _
0 o F¢ Fo 0 0 (d-ewm- oM 0
o Sl 0 0 0 (1-em* oM
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Now we define following non-symmetric linear system

AtZ, 0 ET Y AtZ,Y,
0  aAtMyp -AZT || U |= 0 , (2.54)
E; —AZ‘Z‘Y 0 P Fy

where Z is the matrix including M instead of M°.

Clearly we can see that the optimality system (2.29) obtained from DO approach and the optimality
system (2.56) obtained from OD approach don’t commute, that is, these approaches lead to different
discrete equations.

2.2.3.3 Time discretization with semi-implicit scheme

We compute the fully discrete form of adjoint equation by applying semi-implicit scheme to the stabi-
lized semi discrete adjoint equation (2.47). Let us note that we obtain the full discretized state equation
with semi-implicit scheme (2.32) and then the fully discrete matrix system (2.34); so we use this sys-
tem as a fully discretized state equation:

Mot — ') + AteKp + (AN + oM + (BT BK — oBN))P*! + Aty

o 2.55
= +AtM%yq', (i=N,..,0), ( )
where K is given in (2.19), M® K¢, M are given in (2.48) and 7 is the stabilization parameter.
In a similar way, when we define
F¢ = (M* + AteK), F§ = (-M* + A(-BN + oM + 7(8" BK — a5N))), (2.56)
we obtain the full discrete system in matrix form
E.P+ AtZ,Y = AtZ,Y,, (2.57)
where
F@°o0 0 0 _
L M+ 0 O
. Fg Ff 0 0 .
E, = 0 . 0 Ly = 0 0 (2.58)
R 0 0 M
0 0 F; FY
and
M 0 0 O
0O M 0 O
M — e R(}1+1)XN,(H+1)XN. (259)
0 O 0
0O 0 0 M

Then, by following a procedure similar to the one in the previous section, we obtain the non-symmetric
saddle point system which is different from the symmetric system obtained by the semi-implicit
scheme in DO approach (2.37).

AtZ, 0 ET Y AtZ,Y,
0 (IAIM]/Q -AtM U |= 0 . (2.60)
E,  -AtZ, 0 P Fy
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2.2.3.4 Control constrained problem

In the DO approach, we give brief information about the active set method used for the control con-
strained problem. Therefore, we only give the optimality system of OCP (2.1) with control constraints
(2.1c). Let us use the semi implicit scheme for time discretization; then we have the following linear

system:
AtZ, 0 ET Y AtZ,Y,
0 alAtMyyp, Aty M U |= CZAtMl/z(XA_ Uy + x4, Up), | (2.61)
E, —AtZ, 0 P F,

2.3 Boundary optimal control problem

We consider the following time dependent boundary OCP governed by the diffusion-convection-reaction
equation with and without control constraints. We consider Robin type boundary conditions:

. 1 @
min J,u) = 5 lly = vallg + 5 llully (2.62a)
subject to
- A V = 9 i b
yi— €Ay +BVy+oy f {nQ (2.62b)
eVy+yy = u, inZ,
y:,0) = yo, inQ,
and
ue Uy c LX), (2.63)
where

Uy=uelX) : i, <u<iy, ae., inl},

with i1, i1, € L*(Z) and u, < u; almost everywhere in X.

Here the domain Q € R” for {n = 1,2}, and ¢,58,0 > 0 are diffusion, convection and reaction co-
efficients, respectively. Given the desired state y,; € L*(Q), u denote the control variable and « is
regularization parameter, and y € L*(X), and f € L*(Q),yo € LX(Q) are the forcing function and the
initial state respectively. We make use of the following Hilbert space Y:

Y = {p e LA(I; H(Q)); ¢, € LN, H'(Q)")),

where H'(Q)* denotes the dual space of H Q).
Using the approach OD, we obtain the following optimality conditions, the adjoint equation:

—pi—€Ap=pVy+op = -(y-yi), inQ,
EVp+(y+pp = 0, inZ, (2.64)
p.T) = 0, in Q,
with the gradient equations
au—p = 0, inZX. (2.65)

In case of pointwise control constraints, we get the gradient condition
au—p+u,—p, = 0, inX. (2.66)

By a similar way as in previous section, we get, ’strongly consistent’ optimality system obtained by
discretizing each equation (2.63b), (2.65), (2.66) and (2.67) with the use of discretization schemes. We
also apply DO approach, too.
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2.3.1 Existence and uniqueness of solutions

We define the weak form for the state equation (2.63b) of time dependent boundary control problem.
Letustakeu € Uy, ye, feL*Q), yoeL*(Q):

()’z, V) + a(y5 V) + E(M, V) = <f» V>’ VV € HI(Q)s

2.67
y(0) Yo (267)

where

aly,v) = a(y,v) + f il - yyvds,

0Q

bu,v) = —f i - uvds,
aQ

where a, (f,v) is defined in (2.5) and the bilinear form & is continuous and satisfies the coercivity (2.6)
with 1 = 0. Now, we consider the solution of the OCP

. 1 a
min J(,u) = 3 lly = yallg + 5 llullg (2.682)

subject to
(f,v), Yve H(Q)

Yo-

O, V) + a(y,v) + b(u,v)

2.68b
y(0) ( )

Theorem 2.3.1 Let us assume that the bilinear form a(-,-) is continuous in H'(Q) x H'(Q) and that
(2.6) is satisfied with A = 0. Furthermore, let me given f,y; € L*(0Q), yo€ H,and e >0, B, o, yare
fixed. Then the OCP (2.69) has a unique solution (y,u) € Y X U,a.

Proof. The proof can be found in the study of Lions [51], Wloka [86] and Troltzsch [82]. |
Let define the Lagrangian to provide necessary and sufficient optimality conditions

L(y.u,p) = 5 lly = yally + % lull§ + (s p) + @(y. p) + b(u. p) = (f. ), (2.69)

by taking derivative of L with respect to y, u, p respectively,

(=pu¥) +aW, p) = —y = ya, ¥), Yy € H'(Q), (2.70a)
b(w, p) + alu, w)s = 0, Vw € Uga, (2.70b)
O, V) + @y, v) + b(u, v) = (f,), Vv e H(Q), (2.70¢)

where (2.71a) is the weak form of the adjoint equation (2.65), (2.71b) is the weak form of gradient
equation (2.66) and (2.71c) is the weak form of state equation (2.63b). For the control constraint prob-
lem, by adding the term (4 — up) + po(u, — u) to (2.70), the term pp, — p, is added to (2.71b) which is
the weak form of the gradient equation (2.67).

2.3.2 Discretize-then-optimize approach
2.3.2.1 SUPG stabilized semi discretization in space

In the sense of DO approach, we use the similar finite element space to (2.10) such that V, for the
state and U, for the control variable. The only difference is that we take H'(Q), U, instead of V, Uy
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respectively. Similar to (2.12), by discretizing (2.63b) by using the standard Galerkin method with
SUPG, we obtain

O V) + ) T B - YUk + @0 vi) + Bun, vi) = (v, Yon € Vi, (271)
KeT,,
a,(y,vi) = a,(y,v) + f i - yyvds, (2.72a)
0Q
by (u, vi) = b(u, vy), (2.72b)

where a;, (f,v;); is defined in (2.12) and y;, € Y}, := H'(I;V},), uy € U",. Then, the semi discretized
boundary OCPS is given as:

min J(y, u) = %nyh - yally + % lluanll (2.73a)
subject to
> Vi) + Z T B+ VK + & hs Vi) + By (uny vi) = (fovad}, Yvn € Vi (2.73b)
KeT,
yi(0) = yo-

The Lagrangian for the discretized boundary control problem (2.74) is given by

L(y,u,p) = % llyn = yally + % llenlls, + nss pa) + KZT s B+ VP (2.74)
€Ty

+ Zl]i(yha ph) + BZ(M}I, Ph) - <fa ph>;l’

where y,, p € ¥, and u, € U .

By setting the derivatives of L* (2.75) with respect to the state, adjoint and control variable, we get the

following discrete adjoint equation and discrete gradient equation, which are not strongly consistent:
—(Phas ) — Z T(Pnis B VU + a,Wn, pr) = —=n = Yas ¥n), Y € Vi, (2.752)

Ke%T,
by(wn, pn) + aup, wi)s = 0, Ywj € U, (275b)
Ohts Vi) + Z TOne B Vi) + @,(Vhs vi) + B} (uny vi) = (fyva)s,s Yvi € Vi, (2.75¢)
Ke%,

now, using the approximation (2.16) we have

T T
1
min  J,(5, @) = f 5()7— IO MG - o)dt + f %*TMbﬁ’dt (2.76a)
0 0
subject to
M5+ Ky =Noit = f*, (2.76b)
¥O0) = o.

We also note that if we extract the stabilization term from (2.77b), we get the following unstabilized
semi discretization of the state equation:

M5 + KyY = Nyil e

H0) Y0

Let us use the matrices defined in (2.19) except M}, which is the boundary mass matrix and N, which

(2.76c)

corresponds to entries arising from terms within the integrals fm utr(v)ds and fm ytr(v)ds where u is
the boundary control, y is the state equation coming from Robin type boundary condition and tr(v)
denotes the trace function acting on a member of the Galerkin test space .
Moreover, we add a term to the stiffness matrix because of the Neumann boundary conditions such
that

IN(l‘j = K* +yNy; K, = K +yN,,. 2.77)

20



2.3.2.2 Time discretization with ® scheme and semi-implicit scheme

In this section, we apply both ® scheme and semi implicit scheme respectively. First, we apply trape-
zoidal rule to the cost functional (2.76a)

At aAt
W U) = S (¥ =Y Mip(Y = Yo) + —=U" MipppU, (2.78)
where the matrix
v, 0 0 0
2
0 M, O 0 N e DN
Ml/z,b = 0 0 0 € R(’H XN (nt1)x . (2.79)

0 0 O %Mb
When we apply © scheme similar to the distributed case (2.22), and define
F? = (M* + AOK}), FJ' = (-M’ + Al - ©)K}), (2.80)

then, we obtain the following fully discrete system in matrix form:

Es,bY - Atzs,bU = Fs,ln (2.81)
where
ON, 0 0 0 0
F?h 0 0 0 a ®b)N ON 0 0 0
F» P 0 0 b ON
Es,b = 0 . . 0 s Zs,b = 0 . . 0 0
0 O FS:b Fvb 0 0 (1 - @)Nh ®Nb 0
0 0 0 0 (1-O®)N, ON,
(2.82)
and

—F3Py0 + AH@ (1) + (1 - ©) f*(10))
Fp = : . (2.83)
AHO f¥(tys1) + (1 — ©)f3(tx))

Similar to the previous section, by defining the Lagrangian function and taking derivatives of the
Lagrangian with respect to y, u, p, we obtain the following symmetric linear system

AIM1/2 0 _EsT,h Y AlM]/QYd
0 a/AtMl/z,b A[Zib U |= 0 . (2.84)
_Es,b A[le-’b 0 P _Fs,b
For semi-implicit scheme, by using similar argument to (2.32), we obtain the following optimality
system:
AtM 2 0 _Ezb Y AtM Y,
0 aAtMl/Q,b AIZSTJ; U |= 0 . (2.85)
—EX,;, AIZS,;, 0 P —FS,;,
Here,
FYP = (M* + AteK), FY = (-M* + ABN + oM + YN, + (8" BK + o N))), (2.86)
" 0 0 0
_ ~ N, 0 O
i B 0 0 | b
Es,b = 0 . 0 ) Zs,b = 0 - 0 (287)
_ =~ 0 0 N
0o 0 B b



and

—ESPy0 4 Atfo (1)

Fyp = : . (2.88)
Atf S(tN+1))

2.3.3 Optimize-then-discretize approach

2.3.3.1 SUPG stabilized in space and time discretization

In this section, we give both of the space and time discretization. We don’t need to the give details of
the steps which are similar to the distributed case. In the OD approach, we discretize each equation in
(2.70) to obtain an approximate solution of the boundary OCP. We use the SUPG method to get the
following strongly consistent discretized adjoint equation

(=Dhs>¥n) + Z (=P =B - Vg + ayWn, pr) = —Vn = Yar¥ndy Vi € Vi, (2.89a)
Ke%T,
where
G W pr) = W pa) + f 7 (y + Byvds, (2.89b)
oQ

where aj, (yi — ya,¥n); is defined in (2.45). The strongly consistent discretized gradient equation is
obtained by discretization of the gradient equation (2.70b):

B(Wh,ph) + alup, wy)s =0 Ywy, € Uy,. (2890)

The discretization of the state equation is same as (2.75c).
Then, by using ® scheme, we have

A[Za,b 0 E;,b Y AlZa,b Y,
0 a/AtMl/g,b —AtZT U |= 0 , (2.90)
ES,;, —AIZX’}, 0 P Fs,b

where E,; have the diagonal entries F j”b = (M* + At@f(l‘;) and subdiagonal entries Fg’b = (=M +
Ar(1 - G)KZ) with KZ = (K* + (y + B)N,,). Here, Z,;, = Z, is given in (2.53), E;, Z, are introduced
in (2.82), Fy, defined in (2.83)

For the semi-implicit scheme, we have

Al‘Za!b 0 Eg,h Y A[Za,/,yd
0 C&'A[Ml/zyb —AtZT U |= 0 , (2.91)
Es,b —AZ‘ZSJ, 0 P Fs,b

where ES,;,, ZY,;, are given in (2.87), Fs,b given in (2.88). Here, Zd,b =Z7,is given in (2.58),Ea,b have
the diagonal entries F j"b = (M* + AteK) and subdiagonal entries F"g’b = (—-M* + At(-BN + oM +
(y + BN, + (BT BK — 0 8N))). where K is given in (2.19), M® K¢, M are given in (2.48) and 7 is the
stabilization parameter.
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2.3.4 Control constrained problem

When we consider the boundary control problem (2.62) with control constraints (2.63), we follow the
same way as we considered in the case of the distributed OCPs. We present the active set method
introduced in the previous section. In this section, we give the optimality systems for DO and OD
approach together.

For DO approach and the ® scheme, we have the following optimality system:

Al‘/\/tl/Z 0 _EZb Y AIMl/QYd
0 alAtM o AtXiZ£b U |= a'AtMl/z,;,(XA U, + XA, 0},) s (2.92)
_Es,b AlZs’b 0 P _Fs,b

where Ej, Zsp, Fsp are as in (2.82) and (2.83). Moreover, M2 is defined in (2.79) for boundary
OCPs.
By setting for boundary OCPs,

A, ={xeX: —aAtM U, - AthT,bP <0}
A ={xeX:—altMy, U, - AtZsT,bP >0}
I=3\(A, UAL).

with y denotes the characteristic function of the given set.
Now, the optimality system for OD approach with semi-implicit scheme is following as:

Al‘Za’b 0 Ez,b Y AtZa,b Y,
0 altMypp  —AtyiZT U |=| eAtMippxa U+ x2.05) | (2.93)
Es,b —AIZS!b 0 P Fs,b

where Ea,b, Zu,b, Fa,b are given (2.91).

In this chapter, we have the optimality systems for both OD and DO approaches. In both cases, we
apply SUPG finite element method in space discretization, ® scheme and semi-implicit scheme in time
discretization. We can see that the optimality systems of these approaches lead to the different discrete
solution. In the DO approach, we get the finite-dimensional optimization problem whereas, there is no
finite-dimensional optimization problem in the DO approach. In the following Chapter 3, we follow
the OD approach and the software Comsol Multiphsics is used to solve OCPS.

23






CHAPTER 3

OPTIMIZE-THEN-DISCRETIZE

In this chapter, we use the OD approach to solve the optimality system involving the state and the
adjoint equations. In this approach, firstly the necessary optimality conditions are established on the
continuous level consisting of the state, adjoint and the optimality equations, and then these equations
are discretized usually by finite elements. In this sense, we consider two strategies. One of these
strategies is the classical approach of sequentially solving state and adjoint equations, the other is to
interpret the time as an additional space dimension, i.e., to solve the whole optimality system in the
space-time cylinder by finite elements. These two approaches for linear parabolic control problems
are implemented in [61, 62, 63, 64] and for the optimal control of Burgers equation [91]. As in [14],
we need to show that the optimality system of the parabolic PDE constraints are elliptic, i.e., they are
equivalent to biharmonic equation which satisfy the condition of V-ellipticity. Then, we can solve this
elliptic system by using the space time meshes, adaptive and nonadaptive solvers, e.t.c; also [42].

Actually, some software packages define the systems of PDEs symbolically, i.e., the equations are
considered as differential operators instead of coefficients. Hence, predefined functions and operators
are obtained by these packages. As in [65], in our computations, we use an integrated modeling and
simulation environment COMSOL multiphysics, which provide us a few specialized programs build-in
tools as adaptivity and multigrid solvers.

In Section 3.1, we are concerned with the distributed optimal control of convection dominated diffusion-
convection-reaction equation with and without inequality constraints. Firstly, we show that the opti-
mality system is equivalent to V-elliptic equation; in this sense we obtain the biharmonic equation.
Then an iterative approach and the algorithm of the gradient method are introduced. Moreover the
variational formulation of the optimality system and its stabilization is covered. In the end of the
section, we give the implementation and numerical examples of these approaches. In Section 3.2, we
obtain the biharmonic equation for the boundary optimal control of convection dominated diffusion-
convection-reaction equation with and without inequality constraints. Moreover, we give the vari-
ational formulation of the optimality system and its stabilization. Finally, the implementation and
numerical results are presented.

3.1 Distributed optimal control problem

In this section, we consider the distributed optimal control problem (OCP) (2.1) and its optimality
system (2.2), (2.3). This optimality system is computed using one of the two approaches [61, 62, 63,
64].
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o The classical iterative approach: the optimality system is solved iteratively using the gradient
method. The control variable u is first initialized and the state equation and the adjoint equation
is found for y forwards and p backwards until convergence, respectively

e The one-shot approach: the optimality system in the whole space-time cylinder is resolved as
an elliptic (biharmonic) equation by considering the time as an additional space variable.

3.1.1 Transformation of the optimality system into elliptic pde: One shot approach

In this approach, we have to show how the time-dependent diffusion-convection-reaction equation can
be interpreted as an elliptic (biharmonic) equation in the time and space variables. The time is defined
as an additional space dimension. In this sense, we consider the space-time domain Q where space
and time are treated in the same manner. The transformation of the optimality system with the state
and the adjoint equation is described in detail in [63] for parabolic equations having only diffusion
and reaction terms with Neumann boundary conditions. It was shown that the optimality system for
parabolic optimal control problems is equivalent to a biharmonic H,; elliptic pde. Linear parabolic
problems without inequality constraints, with control and state constraints are solved using the one-
shot approach in [61, 64]. This approach was then extended to the optimal control of Burgers equation
in [91].

In the following, we will use this approach for distributed OCP problems with the diffusion-convection-
reaction equation. The state equation (2.1b) is homogenized as in [63] by setting ¥ =y — y4, it = u:

Vi — €AV +B-Vy+ oy

d .
ﬁ—f—(d—tyd—EAyd +B-Vys+oys), inQ,
—Vi, ONX, 3.1

y
¥, 0)

yo—ya(0), inQ.

We assume the existence of a function f fulfilling the initial and boundary conditions of (3.1). After
defining y := 5 + f and renaming u = i, we obtain

yi—€Ay+fB-Vy+oy u—f—(%ys— €Ayq+ B Vya + oya)

+ 4f—eAf+B-Vf+of, in Q,
y = 0, on X,
y:,0) = 0, in Q.

By resetting

d d . o o o
f=_(E)’d_fA)’d"‘ﬂ'V)’d‘*‘o')’d)_f"' d—tf—EAf+ﬂ-Vf+0f,

we obtain the homogenized state equation

yvi—€eAy+B-Vy+oy = u+f, inQ,
y = 0, onZX, 3.2)
y0 = 0 in Q.

Then the adjoint system becomes
—pi—€Ap=B-Vp+op =y, inQ,

p = 0, onZ, (3.3)
p(T)y = 0 inQ.
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In [65], it was shown that the optimality system for the distributed control problem of parabolic type
PDE equation can be transformed to a biharmonic elliptic pde. Also the existence, uniqueness and
regularity of the state equation is given in [65]. In the same manner, we will show that the optimality
system (3.2), (3.3) is equivalent to an elliptic pde. For the weak formulations of the optimality systems,
we give the following definitions of Hilbert spaces which are also used in [65].

Definition 3.1.1 The set
H*'(Q) := L*(0,T,H*(Q)) N H'(0, T, L*(Q))

is a Hilbert space with the inner product

d d N Py 0y
(o) = + —y1—y2+ Vy1Vy, + dxdt,
R fLylyz ar’ a2 T 2 i; (ﬁx,ﬁx.j Ox,-ﬁxj) ~

2]1/2

For the distributed OCP with the homogenous Dirichlet boundary conditions, now we introduce an-

and the natural norm

dty

2 2 2 dzy
I¥llzo) = | IV + + |1yl +Z,H Trdr,

i

other Hilbert space.

Definition 3.1.2 The set
A*'(Q) :={ye H*(Q): y=00nT and y(T) = 0}
is a closed subspace of H>'(Q) and it is also a Hilbert space with the inner product

dy; 0
O1Y2)aeg) = ff (ylyz + —ayl 22, Vy1Vy, + AylAyz)dxdt
0 t ot

and the natural norm

P 12
Dl g = (nyn2 " HEH SV + ||Ay||2) .

We note that for u € H>'(Q) the functions u(0) := u(0,-), u(T) := u(T,-) both are well defined in
L*(Q), because H'([) is continuously embedded in C(I).

Theorem 3.1.3 Let (u,y, p) be smooth function of the control problem (3.2)-(3.3) with y, p € H>'(Q)
andu € L*(0,T). Then p satisfies the following pde

—pu+ €N p—Qoe+p BAP-28- %(Vp) +(0% + é)p = f.in Q, (3.4a)

with the boundary conditions

—eAp—-B-Vp=0,0nZ, (3.4b)

p=0,o0nZ, (3.4¢)

-p:(,0) — eAp(-,0) = B-Vp(-,0) + op(-,0) = 0,in Q, (3.4d)
p(-,T)=0,in Q. (3.4e)
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Proof. We follow the procedure in [63]. Let us assume that all functions are smooth enough for the
following operations.
Taking derivative of —p, — eAp — 8- Vp + op = y with respect to ¢ gives
2 d d d

—-—p—€—Ap-B-—(Vp)y+0—p=—t

P et G ogr =g
Now replacing y;, into state equation

2

d d d 1
—aP e AP =B L (Vph+ o p— €Ay +B-Vy+oy=——p+f.

We use again the adjoint equation to replace y in the above equation

d? d d d
Pl ed—tAp -B- E(Vp)z top- €A(-p,—eAp—B-Vp+op)

1
+ B:V(-pi—€eAp-B-Vp+op)+o(-p;—€Ap--Vp+op) = —;p+f'

Rearranging the equation above, we obtain

d 1
—pu + €Np— Qoe+BBAp - 28- 5P+ (02 + =1

where all third-order and first-order terms of p disappear. Then we evaluate y = —p;, — eAp — 3 -
Vp + op on the boundary and obtain the boundary conditions (3.4b) and (3.4c) which are the original
homogenous Dirichlet boundary condition of adjoint equation. And we get the last two conditions
(3.4d) and (3.4e) by evaluating p(-,T) = 0 and y(0) = 0. By the same technique, we can derive
analogous equations for y and u. |

We continue with the bilinear form and give the ellipticity and boundness of the bilinear form.

Lemma 3.1.4 The solution p of the equation (3.4) satisfies the non-symmetric bilinear form

alp,w] = Fw) Y we H*'(Q) and F € (H*'(Q))",

where
alp.w] = ff Epd w+ €ApAw + 2oe + BT B)VpVw + 28 - (vp)—w + (0 + —)pw dxdt
+ fg €V p(x, 0)Vw(x, 0) + B - Vp(x, 0)w(x, 0) + op(x, 0)w(x, 0) dx (3.5)
+ ffzeﬂ-ﬁ-va dsdt.

Proof. Let us test (3.4a) by a function from w € H>'(Q) such that

- ff —puw + €A pw — Qo€ + BT BApw — 283 - i(Vp)w + (o + l)pw = ff fwdxdt.

Integration by parts yields
[l =paw+ €82 pw = Qe+ BT B)Apw = 25+ 4(Tp)w + (0 + Lypw
= [l 4paw + EApAw + Qo + BTAVPw + 2B - (V) w dxdt

+ ] fQ(a2 + Dypwdxdr - [ 4 pw|ldx— [, 28 Vpwlidx + || fQ(Za'E + BBV pVwdxdt
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— [ Qoe + BBt - Vpwdsdt - € [[. it - (V(Ap))wdsdt + it - (Ap)Vw)dsdt.

The integrals
f f Qoe+BIB)it - Vpwdsdt = 0
b

€ f f - (V(Ap)wdsdt = 0
z

vanish on the boundary X because w = 0 for all w € H>!(Q).

and

Using the boundary condition (3.4b) we get
€ [[L it (Ap)Vw)dsdt = [[, eB -7 - VpVw dsdt,

After integrating by parts of (3.4d), and w(x, T') = 0, we obtain
— o &pwiidx = [, €Vp(x,00Vw(x,0) = B Vp(x, 0)w(x,0) + op(x, 0)w(x, 0)dx

- fQ 23 - prlgdx = fg 28 - Vp(x, 0)w(x, 0)dx.

[[ s

is a functional from (A>'(Q))*. [ ]

The right-hand side

Lemma 3.1.5 The bilinear form (3.5) is H>! -elliptic, i.e., there is a constant ¢ > 0 such that

2

a[V, V] = c”V“HZI(Q)

forallv e H>'(Q).
Proof. We choose v € H>'(Q) and estimate a[v, v]:
afv,v] = f f (iv)2 + (A + Qoe+ BIB(Vv) + 28 (Vv)iv + (o + l)v2 dxdt
o dt dt a
+ f e(Vv(x,00)? + B - Vu(x, 0)v(x, 0) + o(v(x, 0))? dx + f f B - it - (Vv)? dsdt
Q z

Let us note thate > 0, 8 < 0, o > 0, ffz B -1t (Vv)? dsdt > 0. Since S is divergence free, we get
i, B+ Vv(x,0)v(x, 0) = — [, divp v(x,0)* = 0. For the ellipticity, we assume

d
fo 28 (W) v 2 0.

By using these assumptions, we have

av,v] > min{l, e, Qoe+BIB), (c* + é)} f f (ditv)2 + (AV)? + (V)2 +12 dxdt
9]
2

= C||V||If121(Q)

\

2
C”V”HZ,I (Q) .
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Lemma 3.1.6 The bilinear form a[v, w] is bounded in H>'(Q), i.e.,

2 2
alp.w] < cllplPas o /W1Ees o)

for allv,w € H>'(Q).

Proof. Let ¢ > 0 be a generic constant. We have by v, w € H>!(Q)

e(Vp(x,0), Vw(x, 0)r2q) < clIVp(x, O)ll2q) IVW(X, 0)llz2()
< cllp(x, O)llg @) lIw(x, Ol (o)
< ¢ ”PHC((),T;HI(Q)) ||W||C(0,T;H1(Q))
<

c “p”HZl(Q) ||W||H2-'(Q) .
In the same way, we obtain
BV p(x,0),w(x,0) 20 < ¢ Ipllgi(g) Wz (0) »

a(p(x,0), w(x, 0) 12 < clIpllgi(g) WllH21g) »

Using the inner product in H*!(Q), |lwl;2(o, can be bounded, so that
2B(Vp, w2y < clIVpliag) Willzzg) < clipllpag IWlE21) -
and we receive
€B(it - Vp, VW) <c ||Vp||L2(Q) VW20 < ¢ ||p||H2~'(Q) (Wllz21(0) -

After all these preparations, we can show that the bilinear form is bounded

IA

la[p, w]| ff—p —w+ ApAw + 2oe + BT B)VpVw + 28 - (Vp)—w+(a' + )pwdxdt

dt dt

+ f eVp(x,0)Vw(x,0) + 8- Vp(x, 0)w(x, 0) + op(x, O)w(x, 0)dx
Q
+ ffeﬂ‘fprdesdt
>
|e(Vp(x,0), Vw(x, 0) 20| + [BVP(x, 0), w(ix, 0) 200 | + |or(p(x, 0), wiix, 0)) 20|

+ ffeﬂ -1 - VpVw dsdt| + max {1, e, 2oe +[3Tﬁ), (0'2 + é)} |(v, w)gz,l(Q)|
p)

CcQ ||P||H2-1(Q) ||W||H2J(Q) + Ciax ||P||1q2.1(Q) ||W||1q2.1(Q)

IA

IA

IA

c ||P||H2-1(Q) W21 -

B Using the Lemma 3.1.5, Lemma 3.1.6 and the Lax-Milgram Theorem [51] we can state the Main
Theorem:

Theorem 3.1.7 For all F € (H>'(Q))* the bilinear equation
alp,w]=Fw)¥weH"(Q)
has a unique solution p € H>'(Q). There is a constant ¢ > 0 such that

Pl 0y < cIF N2 gy
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We consider now the regularization of inequality constrained OCP. After the non-differentiable opti-
mality system is described in terms of projections, we introduce a regularized projection formula and
prove convergence of the solutions following the approach in [62].

Definition 3.1.8 Let a,b,z € R be given real numbers. We define the projection

Praslz} := ma@ponfz(d} Y1 € L
Let use state the following helpful properties of the projection given in [65], without proof

Lemma 3.1.9 The projection Py, 1){z} satisfies

(i) —Pupi-z} = Prp-alzh

(ii) Prypiz} is strongly monotone increasing:
by z1 < 23 follows Py p){z1} < Prapiza), and Prapizi} = Plapiza} iff 21 = 22,

(iii) Prapiz} is continuous and measurable.

Now we consider the homogenized version of the inequality constrained problem which has the state
equation (3.2), the adjoint equation (3.3) and from variational equality

1
ph.

u' =Py, uf- o

Similar to Theorem 3.1.3, we find the biharmonic equation

—pu+ €Np—Qoe+pPAP—28- L(Vp) + o?p - Puyfi-1p) = f inQ,
—eAp—-5-Vp 0, onx,
p 0, onZX, 3.6)
-pr—€Ap—B-Vp+op = 0, inQy,
p,T) = 0 inQr.

We identify —IP’[ua,ub]{—é}v(-} with an element from A>'(Q)". By the same technique as in Lemma
3.1.4, we can show that equation (3.6) can be written in weak formulation as follows.

Corollary 3.1.10 We define the operators as A = A} + Ay, where
1

(A, w) = alv,w], (A, w) = Pluga, i==—v(x, D}w(x, D)dxdr.
0 a

Then, biharmonic form (3.6) is equivalent to

where F € (H*'(Q)*).

Lemma 3.1.11 The operator A defined in Corollary 3.1.10 is strongly monotone, coercive, and hemi-
continuous.
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Proof. We make use the results of Lemma 3.1.4 and Lemma 3.1.5. Let us first show that A is strongly
monotone. From Lemma 3.1.5 we have

2
(A1(vi = v2),vi = v2) = alvi = va,vi = Va2l 2 ¢IVllzp) -

By monotonicity of Py, ,,{v} in v we have (P[_ub,_uu]{ivl} = Py —ul Ly Wy = v,) > 0 for all vy, v,

[e3

and all (x, 1), hence,
1 1
ff(P[—u,,,—ua]{avl(X, D} - P[—ub,—ua]{avz(& HH1(x, 1) = va(x, 1)dxdt = 0.
(9]

We have to estimate (A,v, v) to prove the coercivity. First we observe that

—uzv, on Q, :={x,t€ Qv>—-u,}
Plosy—u Vv = S —upv, on Q) :={x,1 € Qv < —up}

V2 on Q\{Q, U Q).

Hence,
1 1
1, (Pl {8 D, Ddxdt = || (P { v DV, Ddxdt
Qa @

1 1
+ fob (]P[,ub,,ua]{av(x, HIv(x, Hdxdt + f fQ \QuuQ,,(P[’“”””“J{Ev(x’ HIv(x, Hdxdt

= —ff ug(x, t)v(x,t)dxdt—ff up(x, t)v(x,t)dxdt+ff V2(x, f)dxdt
a O 0\Q,V0y
—ff ug(x, t)v(x,t)dxdt—ff up(x, Hv(x, Hdxdt
a Qb

for all v € H>'(Q). By the Lemma 3.1.5 we have

\%

(Av,v) = (A1v,v) + (Av, V)

=alv,v] + fo(P[_ub,_ua]{év(x, Hiv(x, Hdxdt

> Vil = [J, taCr. OV, Ddxdt ||, up(x, 0v(x, )dxdr
= C||V“H2~1(Q) - ”uaV”L'(Qa) - ||ubV“L2(Qb)

2c “V“FIZJ(Q) - ”ua”Lz(Qa) ||V||L2(Qu) - ”Mb”LZ(Qb) ||V||L2(Qb)

2 C||V”H2~'(Q) - (”ua”Lz(Qa) + ||Mb||L2(Q,,)) ||V||L2(Q)

=c ”V”HZJ(Q) - (”ua”LZ(Qa) + ”ub”U(Qb)) ”V”HZ»I(Q),

which results in

Av,v Cap IVl g2
Ay > ¢ Mlgeig) — Zab WH>H(Q)

IVllg21 (o) IVl 0

with ¢, p, = |[uall2cg,) + 1Usll2c0,)-

Therefore we obtain
(Av, V)

—— — 00 if |V||g219) — 0.
V21 0) ©

It remains to be validated that A is hemi-continuous. By linearity, A; is hemi-continuous. We have to
show that ¢(s) = (A(v + sw), u) is continuous on [0, 1] for all u,v,w € H>'(0). By (A(v + tw),u) =
f fQ Py, 1v(x, ) +sw(x, £)}u(x, t)dxdt and by the continuity of the projection, this follows immediately;
hence A = A +A, is hemi-continuous. Now we are able to use the Main Theorem to show the existence
of a unique solution of (3.6). |
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Theorem 3.1.12 The biharmonic equation (3.6) has a unique solution p € H>'(Q) for all F €
(H'(Q))".

Proof. This follows by applying Theorem 4.1 in [83] to

where A is defined in Corollary 3.1.10. |

3.1.2 [Iterative approach

In this approach, we solved optimality system iteratively and we mention about the gradient method
which is used as an iterative method for solving optimal control problems iteratively. We can define the
solution operator G : L2(Q) — H. With the help of the solution operator G, we can express y = y(u)
and eliminate y from the objective function. For minimizing the functional J(G(u), 1) by the gradient
method which is described in [61], we have to evaluate the derivative

<%J(G(u), u), h> ={(Gu) —yq4,Gh) + k{u, h)

=(G*(G(u) = ya), h) + k{u, h),
where h € L?(Q) is a directional vector. A direction of descent is given by
v =G"(G(u) — yg) + ku.
Finally, p := G*(G(u) — y4) = G*(y — y4) is the adjoint state.

By using the algorithm of gradient method defined in [63], we provide a mathematically correct for-
mulation of the optimality conditions

3.1.3 Variational formulation of the optimality system and its stabilization

For convection dominated problems standard finite element discretization applied to the equation
(2.1b) lead to strongly oscillatating solution unless the mesh size 4 is sufficiently small with respect to
the ratio between € and ||8||. There are several methods known to improve the approximation proper-
ties of the pure Galerkin discretization and to reduce the oscillatory behavior; see, e.g., [4, 84]. The
Streamline Diffusion Stabilization Technique (SUPG) stabilizes oscillations and instabilities due to the
numerical method. The SUPG is an example of a Petrov-Galerkin method, where the test-function
space differs from the solution space. The modified test functions give rise to additional terms in the
weak formulation of the problem. The contribution of streamline-diffusion to the diffusion-convection-
reaction equation is given by

TB-V)(—eAy+B-Vy+oy— f—u,

where the "hat’ symbol denotes the corresponding test function.
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There exist several approaches for the choice of the stabilization parameter [4, 21]. For the SUPG, the
stabilization parameter 7 is chosen as

c ML” if Pe>1, a7
T= :
0, otherwise,

@. The Peclet number measures the relative

where ¢ € (0,1) and with the Peclet number Pe =
importance of the convective effects compared to the diffusive effects. Here Pe >> 1 indicates that the
convective effects dominate over the diffusive effects. In this section, we took ¢ = 0.1 for numerical

computations.

In COMSOL Multiphysics, when the state and adjoint equation are solved by the gradient method
iteratively, the diffusion-convection-reaction equations are discretized in time by the backward Euler
method. This will result in the following discrete equations [30]:

G V") + At(frat + a1, V),
n=0,1,..,N),

P+ A = ya) V")),
(n=N,N-1,..,1).

O V") + AET Y1, YV + (B Vynit + OYni1, V"))

—Pnt + AHEVDpo1, V") = (B VDut + TPp1, V")

The SUPG method consists of adding consistent diffusion terms in the state and adjoint equations with
the parameter 7; depending on the mesh cells:

0LV ALETY1, VWV + (B Vst + 0 e, V)]
At Z Tk(—€AYpi1 + B VVur1 + OYur1,6- VVh)K
KeQy,
= GV + AL Y Ti(—€Ay, + B Vyu + 0y B Tk
KeQ,,
+ A(frer + 1, V")) + At Z Tk (et + ttnr1), B+ VV)k
KeQy,
n=0,1,..N),
(" V) + AMEVPut, VY = (B Vst + Tpuet V]
+ At Z Tx(—€Apu-1 =B Vpu_1 + opu-_1,B- Vvh)K
KEQ/,
_ h h
= (V") + A1 Y Tk(=€Apy = B+ Vpy + opa - TV )k
KeQ,,
AU =YV + A D k(G = ya). B TV,

KeQ,
(n=N,N—-1,..,1).

3.1.4 Implementation and Numerical Examples

In this section, we will provide the details of the implementation of numerical realization of the one-
shot method in COMSOL Multiphysics for time-dependent convection dominated OCPs. We con-
sider unconstrained and control constrained OCPs for the diffusion-convection-reaction equation in
one space dimension by comparing the numerical results for the one-shot approach and the classi-
cal gradient method with stabilized and unstabilized solutions. We illustrate the applicability of the

34



one-shot approach using COMSOL Multiphysics for a convection dominated problem in two space
dimensions.

Example 3.1.1 (one-dimensional unconstrained problem):

We consider the equation (1) with € = 10,8 = =1, o = 1, a = 0.01 and with the constant forcing
term f = 1. The desired state y4(x, f) = yo(-,0) is

1, in (0,1),
0, otherwise.

yO('? 0) = {

There exists two different solvers in COMSOL Multiphysics; adaption, which solves the elliptic pde
using adaptive mesh refinement, and the femnlin without adaptation. We have chosen the same step
size for in space and time, i.e., h = A, = A;. The computed optimal state and control variables are
denoted by y;, and i, respectively. The subindex 4 indicates the computed state and control variables
with step sizes #. SUPG is implemented in COMSOL Multiphysics for the adaptive and non-adaptive
solvers as

fem.equ.weak={{’-h*(yx_test)/10*(yx+y-1-u)’
"-h*(px_test)/10* (px+p-y+yd(x,time))’ }};

The exact solution of the optimal control problem above is not known. Therefore, the evolution of the
values of the cost function ||J(y;, up)|| is shown for a sequence of uniformly refined meshes tending
to zero. The numerical results for the nonadaptive and adaptive elliptic solvers with and without the
stabilization are given in Table 3.1 and in Figure 3.1 for & = 273v2.  Figure 3.1 shows that the

Table 3.1: One-shot approach for the unconstrained control problem

non-adaptive solver adaptive solver
h/ 2 IS ns unllo I ns unllo 1T ns unllo I ns unllo

without stabilization  with stabilization = without stabilization = with stabilization

272 0.0559 0.0621 0.0703 0.0470

273 0.0778 0.0525 0.1520 0.0442

24 0.0978 0.0471 0.0906 0.0421

273 0.0686 0.0448 0.0661 0.0418

276 0.1400 0.0434 0.0422 0.0419

277 0.0565 0.0428 out of memory out of memory

stabilized problem has slight oscillatory solutions only in a thin region on boundary layer, whereas the
unstabilized solutions exhibit strong oscillations in a larger region near the boundary layer.

An important feature of the solution of OCPs is the mesh-independence. Mesh-independence asserts
that the convergence behavior of the iteration is the same for the discrete problem as for the infinite
dimensional problem. The number of iterations to reach a specified tolerance is therefore independent
of the mesh size. Mesh-independence of augmented Lagrangian-SQP methods for Burgers equation
in [88] was proved and observed numerically. Similarly, the mesh-independence was confirmed for
the one-shot approach for Burger’s equation in [91]. Mesh-independence for OCP’s with PDEs was
also shown for the semi-smooth Newton method [44]. Different values of tolerances were used to
stop the solver femnlin. The relative tolerances were based on a weighted Euclidean norm for the
estimated relative error. The iterations were stopped when the relative tolerance exceeded the relative
error computed as the weighted Euclidean norm.
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Figure 3.1: One-shot-approach for the unconstrained problem: unstabilized (left), stabilized (right),
optimal state (top), optimal adjoint state (middle), optimal control (bottom)
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Table 3.2: Mesh independence for the unconstrained problem

h/\2 273 24 25 26 o7
tol = le™? 2 2 2 2 2
tol=1e* 2 2 2 2 2
tol=1e% 2 2 2 2 2
tol=1e® 2 2 2 2 2
tol=1e 2 2 2 2 2

Table 3.3: Gradient method for the unconstrained problem

h/ V2 1 ns un)llo # iterations 1 ny un)llo # iterations
without stabilization with stabilization
272 0.1227 29 0.1266 34
273 0.0681 34 0.0702 82
274 0.0535 80 0.0551 66
273 0.0529 59 0.0480 112
276 0.0578 27 0.0452 104
277 0.0557 34 0.0438 104

The mesh-independence of the stabilized OCP is observed numerically for all mesh size and tolerances
in Table 3.2. The optimality system (2.1b), (2.2)-(2.4) can be solved for the coupled systems of
PDE:s for each unknown separately by the gradient method in COMSOL Multiphysics. Here, in order
to solve the state and adjoint equations by the gradient method iteratively, the diffusion-convection-
reaction equations are discretized in time by the backward Euler method [30]. The SUPG method
consists of adding consistent diffusion terms in the state and the adjoint equations with the parameter
7 depending on the mesh cells (see [30]).

The time dependent pde solver to solve state y is

fem.sol =
femtime(fem, ’solcomp’,{’y’}, 'outcomp’,{’y’,’p’,’u’,’uold’},...
'u’,fem.sol,’tlist’,[0,1]}

Similarly, the adjoint equation (2.2) and the gradient equations (2.3)-(2.4) are solved by redefining the
boundary conditions and the coefficients for p and u.

The SUPG is implemented in the gradient method y and p as

fem.equ.weak={{’-h*(yx_test)/10* (yx+y-f-u)’ 0’ 0’ ’0’} };
fem.equ.weak={{’0’ ’'-h*(px_test)/10* (px+p-y+yd(x))’ 0" '0" } };

Stabilization requires in for the gradient method more iterations, but the cost function smaller than for
the unstabilized solutions (see Table 3.3). The results obtained by the gradient method and by the
one-shot approach without adaptation are similar to those given in Figure 3.1.
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Table 3.4: One-shot approach for the control constrained problem

femnlin adaption
h/ N2 IS, un)llo IS ms un)llo IS, un)llo IS ms un)llo
without stabilization  with stabilization  without stabilization  with stabilization
272 0.0247 0.0109 0.0341 0.0117
273 0.0330 0.0115 0.0332 0.0120
274 0.0317 0.0118 0.0237 0.0122
273 0.0281 0.0121 0.0183 0.0123
276 0.0234 0.0122 0.0136 out of memory
277 0.0179 0.0123 out of memory out of memory

The control constraints are are handled by the projection method [62] which correspond to the im-
plementation of the active set strategy as a semi-smooth Newton method [43]. It can be shown that
complementary slackness conditions

W ug — U )0 =0, u" > u, , 1y >0, a.e.,in Q,
Wy, " —up)ry0 =0, u" <up , iy 20, a.e.,in Q,

are equivalent to

Ha = max(0, u, — pp + c(ug — ), pp = max(0, up — pg + c(u — up))

for any ¢ > 0. By choosing ¢ = a and using the gradient equation au™ + p + u;, — u, = 0, we obtain
e = max(0, p + aug), u, = max(0, —p — auy), a.e.,in Q.

Example 3.1.2 (one-dimensional control constrained problem):

The parameters of the differential equation (2.1b) and the forcing function are the same as in Example
3.1.1. We have the regularization parameter as @ = 0.05 and we consider unilateral control constraints
with 4, = 0 and u, = 0.3. The desired state is given as y; = yo with the initial state y(-,0) = —2x(x—1).

The numerical results of the one-shot approach are given in the Table 3.4 and in Figure 3.2 for h =
273 /2. Table 3.5 shows again the mesh-independence for the control constrained problem similar to
the unconstrained case.

Example 3.1.3 (two-dimensional control constrained problem):

We consider equation (2.1b) with the parameters € = 107, 8 = (=1,-2) , o = 1, with the forcing
function f = 1, the desired state y; = 1, @ = 0.1, initial condition yy = 0 and with the bounds for the
control constraints u, = 0.5,u, = 10,7 = 1. The same was used in [4] as the test example for the
stationary OCP problem for the diffusion-convection-reaction equation (2.1b).

SUPG is implemented in one-shot approach as
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Table 3.5: Mesh independence for the control constrained problem

h/\2 273 24 25 6 o7
tol=1e¢2 3 3 3 3 3
rol=1e?* 3 4 4 4 4
tol=1e® 4 4 4 4 4
tol=1% 4 5 5 5 5
tol=1e10 5 5 5 5 5

Figure 3.2: One-shot-approach for the control constrained problem: unstabilized (left), stabilized
(right), optimal state (top), optimal adjoint state (middle), optimal control (bottom)
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Table 3.6: Gradient method for the control constrained problem

h/ V2 I, un)llo # iterations IS, un)llo # iterations
without stabilization with stabilization
272 0.0156 32 0.0115 26
273 0.0178 14 0.0128 28
24 0.0189 22 0.0135 28
273 0.0204 31 0.0132 33
276 0.0193 20 0.0129 32
277 0.0200 24 0.0127 32

Table 3.7: One-shot approach for the 2D control constrained problem

femnlin adaption
h/ V2 IV s undllo Iy un)llo IV s un)llo IV s unllo
without stabilization ~ with stabilization = without stabilization = with stabilization
271 0.1802 0.3799 0.2683 0.3617
272 0.3372 0.3487 0.3489 0.3245
273 0.3206 0.3348 0.3317 0.3072

fem.equ.weak={{’-h*(yx1_test+yx2_test)/10*sqrt(5)* (yx1l+yx2) "\\
"-h*(pxl_test+px2_test)/10*sqrt(5)*(pxl+px2)’ 0’ ’0’} }I;

for the gradient method

fem.equ.weak={{’-h*(yx1_test+yx2_test)/10%*sqrt(5)*(yxl+yx2)’ ’0’ ’0’
07 0’ 0’} }; fem.equ.weak={{’0’
’-h*(px1_test+px2_test)/10%*sqrt(5)*(pxl+px2)’ 0’ '0’ ’0’ ’0’} };

In Table 3.8, we compute the values of the cost function ||J(y;, u)|| and the convergence of the gradient
method controlled by the difference of the current value of J and the average of the last and first
values of J as in [61]. Moreover the error bound in terms of cost functional can be measured by
following the approach in [58] and found the convergence error O(h + At). For the gradient method,
the number of the iterations for the stabilized and unstabilized solutions do not differ much and they
are less than for one-dimensional problems.  Figure 3.3 shows the computed optimal control uy,
the computed optimal state y;, and the associated optimal adjoint state p;, for the one-shot approach
with adaptation for & = Axpax = 273, Atmax = 0.01. Compared with the one-dimensional problem,
the unstabilized solutions exhibit strong oscillations almost in the entire space domain, whereas the
oscillations of stabilized solutions are located near the boundaries. They also show a different behavior
with increasing time; the oscillations are vanishing with time for the control and the adjoint variable.
They are distributed in a constant region for the state variable for all times. we want to mention
that for the convection dominated stationary OPC problem in [4], the solutions of the stabilized and
unstabilized problems behave similarly.
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Table 3.8: Gradient method for the control constrained problem with and without stabilization

h/ V2 1S ns un)llo iteration # IS ns un)llo iteration #
without stabilization with stabilization
27! 0.31705 26 0.34671 27
272 0.25627 24 0.32825 27
273 0.27519 26 0.31032 27
274 0.28663 27 0.30046 27
273 0.28848 23 0.29581 27
276 0.28503 16 0.29328 27

Figure 3.3: One-shot-approach for 2D control constrained problem: unstabilized (left), stabilized
(right), optimal state (top), optimal adjoint state (middle), optimal control (bottom)
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3.2 Boundary optimal control problem

In this section we consider the boundary (OCP) (2.20) and its optimality system (2.22)-(2.24). As in
previous section we apply the same two approaches: one shot approach and iterative approach. The
classical iterative approach is same as previous section. So we continue with one shot approach.

3.2.1 The one-shot approach

As we mentioned in the previous section, for time-dependent OCPs first the state equation (2.20b) is
solved forward in time and the adjoint equation (2.22) backward in time and the control is updated
by a gradient based algorithm. This approach requires storage and retrieval of the data containing
the state and adjoint variables computed at each discrete time point, which would be infeasible for
two-dimensional and three-dimensional problems. In order to apply the first approach, we have to
show how the time-dependent diffusion-convection-reaction equation can be interpreted as an elliptic
(biharmonic) equation in the time and space variables. In this approach, the time is defined as an
additional space dimension. In this sense, we consider the space-time domain Q, where space and
time are treated equivalently. Here, we follow the approach [63, 65] for linear parabolic equations.
The main difference to the work [63, 65], is that we have additional convection term; moreover, there
is a non-symmetric bilinear form with the contribution of this convection term. In Section 3.1, we
consider the distributed control problem as in [63, 65] and we follow similar steps with homogenized
boundary conditions. Howewer, in this case, there are additional non-homogenous boundary terms as
a result of boundary control.

We again start with the homogenization of the state equation (2.20b) by setting y = (yo,y1)’, u =

w,v)", y=y—yg with f = f(y4, y0) fixed:

Ji—€AV+B-Vi+0oy = f—Qa)+eAya—B-Vys—oye, inQ,
eVy + vy u - eVy; — vy, onx, 3.8)
3¢, 0) Yo — ya(0), in Q.

We assume the existence of a function f fulfilling the initial and boundary conditions of (3.8) and after
defining y := 5 + f we obtain

yi—€Ay+p-Vy+oy =0 +eAys—B-Vys—oya,

+ f,—eAf+B~Vf+o-f, in Q,
eVy+vyy = u, on %,

By rewriting
f=f=0ai+€eryi—B-Vyai—oya+ fi—eAf+B-Vf+0F,

the homogenized state equation is obtained:

yi—€Ay+B-Vy+oy = f, inQ,
eVy+vyy = u, onZX, 3.9
y-,00 = 0 inQ.

Then the adjoint equation becomes

-pr—€Ap—-B-Vp+op =y, inQ
eVp+(y+pP)p onX (3.10)
p(,T) in Q.

[l
oo
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The spaces H>'(Q) and H*!(Q) are given in the previous section. Let us define
A*1(Q) = {ye H*'(Q): eVy+(B+7)y=0 on T and y(T) =0}.

We will extend the following results from [63, 65] to the boundary control problem (2.20)

Theorem 3.2.1 Let us assume that the variables (u,y, p) are sufficiently smooth functions of our OCP
problem (3.9)-(3.10) with y, p € A*'(Q)andu € L*0,T). Then p satisfies the following biharmonic

pde:
—pu + E€Np—Qoe+B BAp-28-(Vp) +a°p=f, inQ,

with the boundary conditions

—-e*V(Ap) - €B+vy)Ap + (ec —yB)Vp+Bp: +yop =u, on X,
eVp+(y+Bp=0, onx,

—pi(-,0) = €Ap(,0) = - Vp(-,0) + op(-,0) = 0, in Q,
p(,T)=0, in Q.

Proof. Taking the partial derivative of —p, — eAp — 8- Vp + op = y with respect to ¢ gives
—pu — €Ap) —B-(Vp) + op: = yr.
After replacing y and y, from the adjoint and state equations we obtain

— Pu—€Ap;—B-(Vp)+op, —eAy+B-Vy+oy=f,
— Pu—€Ap;—B-(Vp)+0p; — eA(—=p; —eAp—B-Vp+0p),
+ B-V(p—€Ap-B-Vp+op)+o(-p,—e€Ap-B-Vp+op)=f.

Finally, after rearranging the terms we get

—pu + €M p—Qoe+ B BAp—2B- (Vp) +0°p = f.

(3.11a)

(3.11b)
(3.11c)
(3.11d)
(3.11e)

After evaluating y = —p, — eAp — B - Vp + o p on the boundary and we obtain the boundary condition

for the biharmonic pde

e(=V(p;) —eV(A)p —BAp +cVp) +y(-p; —ep-BVp+op) =u.

Using the original boundary condition for the adjoint equation, (3.11b) and (3.11c) are obtained. By

setting t = 0 and r = T, we obtain (3.11d) and (3.11e).

Now, we can continue with the following lemmas which give the bilinear form, its ellipticity and its

boundness, respectively.

Lemma 3.2.2 The solution p of equation (3.11a) satisfies the non-symmetric bilinear form

alp.wl=Fw)¥Ywe H*'(Q) and F € (H*(Q))",

F(w)=fffwdxdt+ffﬁ-uwdsdt
0 b3
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and

[p,w] ff (ptw, + EApAw + Qoe + BT BV pVw + 28 - (Vp)w; + 0'2pw) dxdt
Q

+

f (€eVp(x,0)Vw(x,0) + 8 - Vp(x, 0)w(x, 0) + op(x, 0)w(x, 0)) dx
Q

f fz (it - (€p + Bpr)w) dsdt.

Proof. The test function w € H>!(Q) is applied to (3.11a) to obtain the weak form

+

ff (_p,,w + XA’ pw — Qoe + BB Apw — 28 - Vpw + o-2pw) dxdt = ff Sfdxdt.
o o

Using integration by parts, we obtain :

ff (—p,,w + A’ pw — Qoe+ BTB)Apw — 28 - (Vp)w + o-zpw) dxdt
o

ff (p,w, + EApAw + Qo€ + BBV pVw + 28 - (Vp)wt) dxdt
o

ff (o-zpwdxdt—fp,wlgdx— f 28 - prlgdx+ ff(Zo-e +BT,8)Vpr) dxdt
Q Q Q Q

f f Qoe+ BByt - Vpw)dsdt — € f f (- (V(Ap)wdsdt + it - (Ap)Vw)) dsdt.
z z

+

Letussety =7y, ory =vy;.

We obtain Vw = —%ﬁw from the boundary conditions (3.11c). Using (3.11b) and letting & =

Te(B+2y)+yB(y+28)
€

ff —Qoe+pBIP)it- Vpw — 2t - (V(Ap)w + i - (Ap)Vw))dsdt = ff(fp + Bp, — wWw dsdt.
z b3

gives

Furthermore from w(x, T) = 0 and (3.11d) we have
- fQ powlbdx = - fQ px, T)w(x,T) + (eAp(x,0) + 8- Vp(x,0) — op(x, 0))w(x, 0)dx,
= Jo 2B Vpwlbdx = =2B([, -Vp(x, T)w(x, T) = Vp(x, 0)w(x, 0)dx.)

The right-hand side
fffwdxdl+ ffﬁ’-uwdsdt =: F(w)
o z

is a functional from (A>'(Q))*. |

Lemma 3.2.3 The bilinear form is ﬁz’l-elliptic, i.e., there is a constant ¢ > 0 such that

alv,v] > CIIVIIiﬂ,(Q) forallv e I:IZ‘I(Q).

Proof. We choose v € H>'(Q) and estimate a[v, v]:

av,v]

f f (v + € + Qoe + BT BV + 2B (Vv)v; + 02V doxdt
o]

+

f (€(Vv(x,0))? + B - Vu(x, 0)v(x, 0) + o(v(x, 0))* dx + f f - (& + Bvv))dsdt
Q z

\%

min {1, €%, Qoe + '), o} f f V2 (AV)? + (V)2 + V2 dxdt
9]

\%

2
C”v”HZ,I(Q)'
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Let us assume & > 0, and so f fz il - §-‘v2 > 0. As the convective term is divergence free, we obtain
_ 2 .

ffsz Py = —fo gv > 0. We assume fo 28 - (Vv)v; > 0, and since also the constant term S8

ispositive, 8 > 0, we receive

f B - Vv(x, 0)v(x,0) = — f divB v(x,0)* = 0.
Q Q

|
Lemma 3.2.4 The bilinear form a[v,w] is bounded in H>'(Q),i.e.
A nli2 2 72,1
a[p’ W] S L”p”HZl(Q)”WHHZI(Q) for all v, w € H (Q)
Proof. In the following, we let ¢ > 0 be a generic constant. We have by v, w € H>!(Q)
e(Vp(x,0), Vw(x, 0)r2) < clIVp(x, O)ll ) VWX, O)llz2 ()
< cllp(x, 0l q) Iw(x, Ol )
< cllipllcor:a @) Wllco.rm @)
< ¢ ||P||H2.1(Q) ||W||H2~I(Q) .
By a similar argument, we obtain the following bounds:
BVp(x, 0),w(x,0)2) < cllpllgeg) WllE210) 5
a(p(x,0), w(x, 0)r2@) < cllpllgig) IWllE21(0) -
By definition of the inner product defined on the space H>'(Q), we can bound ||w,|| 12(0) SO that
2B(Vp, w2y < clIpllgeig) W21 (g) -
Furthermore, f(fl) - P, W)L2(Z) and ﬁ(fi * Dt» W)LZ(Z) are be bounded by c ”p”HZI(Q) ”W”HZI(Q) .
Using all the bounds above we obtain as in [63, 65]
lalp, wll < cllpllg2ig) IWll21(g) -
|

By the Lemma 3.2.3, Lemma 3.2.4 and the Lax-Milgram Theorem our Main Theorem can be stated
as:

Theorem 3.2.5 For all F € (H>'(Q)), the bilinear equation
alp.wl = Fw) ¥ w € A*'(Q)
has a unique solution p € H>'(Q).
Now we introduce a regularized projection formula to make regularization of control constrained prob-

lem. We use again the projection [P|,;{z} given in the previous section.
Let write u := (u,v)" and we may represent as follows:

u = Pru{——} and v’ =Pp, {-

u v

I3
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Now we obtain the biharmonic equation, where a nondifferentiable, nonlinear terms appear at the left
hand side:

~pu + E€Np—Qoe+BIBAp-28-(Vp) +0’p = f, in Q,

—€V(Ap) — €(B+y)Ap + (€ —yB)Vp +Bp. +yop = P, ub]{ ™ on X,

~€2V(Ap) — €B+Y)Ap + (e —yBVp +Bpi+yop = Ppy -2 o =), onZ,
(3.12)

eVp+(y+Bp = 0, onZX,

—pi(-,0) — €Ap(-,0) =B - Vp(-,0) + op(-,0) = O, in Q,

p-,T) = 0 in Q.

By the same technique as used in Lemma 3.2.2, we can show that the above biharmonic equation can
be written in weak formulation as follows:

Corollary 3.2.6 We define the operators A = A1 + A,, where

(A w) = alv,wl, (Asv, w) = f Pl 2401, 1) 4 P, u,,]{v(g D)0, D).

V u

Then biharmonic form (3.12) is equivalent to

where F € (H*'(Q))".

Lemma 3.2.7 The operator A defined in Corollary 3.2.6 is strongly monotone, coercive, and hemi-
continuous.

Proof. The proof employs the results of Lemma 3.2.2 and Lemma 3.2.3. Let us first show that A is
strongly monotone: From Lemma 3.2.3 we have

2
(A1(vr =v2),vi = v2) = a[vi = v, vi = 2] 2 clvi = vallgia g, -

By monotonicity of P, ,,;{v} in v we have

T 0, 0,
f Frupar= 200y 2000 0,1 < a0,y 0,
0 ay a,

u

similarly, we receive

T 1, 19
fo (]P’[—vb,—va]{ma t)} - P[—vb,—val{vziy 2 Ni(1, 1) = va(1,0))dt > 0.

v v

To prove coercivity, we have to estimate (A, v, v). We first observe that

uv inXZ,, ={te(0,T) :v<u,l,
v
P[ua,ul,]{a’_}v =upy in%,, ={t€(0,T) :v>u),

" 2o \E, UL,

Similarly, we get

—vev in2, :={te€(0,T) :v>-v,},

-y in2, :={t€(0,T) :v<-v},

Py, —vaf—1}v
a, R
=~ in (0, T)\{Z,, UZ,}.
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Hence, we arrive it

T
f (P[ua.ub]{ V0,1 (0, l)) dt
0

@y

= f 1a(0, OO, Hdt + f up(0, W0, Hdt + f (0, £)2dt
T )y 0.1)\{Zu, Uz, }

g up,

> f ua(t, 0)0(t, 0)dt + f up(t, 0)v(t, 0)dt
2,

T

g

and, similarly,

T
f (P[_Vh,_va]{v(t’])}v(t,l))dtz— f v(t, Dv(t, Ddt — f vp(t, Dv(t, 1)dt.
0 v v

a,

" 2y,

By lemma 3.2.3, we have

(Av,v) = (A1v,v) + (Aav, V)
T T
=alv,v] + f (IP’[_V,”_VH]{ AURD (e, 1)) dt + f (]P’[umub]{ 60 (e, O)) dt
0 0

@y @y

= clVllg2ig) — f va(t, Dv(t, 1)dt - f vp(t, Dv(z, Ddt

a %,

+ f Ua(t, O)V(t, 0)dt + f up(t, O)(t, 0)dt
!

%,

> ¢ Ml — f va(t, Dv(t, Ddt — f v, Dv(t, Ddt,
z

va vp

2
(Av,v) 2 Mg, — IWallz,) + Wellz, ) Ml

which results in

(Av,v) Cab ||V||H2~1(Q)
2 c|Mlpprgy - —————
||V||H2~‘(Q) ||V||H2~1(Q)
with ¢, = [Vallr2g,) + Vallzz,)- Therefore, we obtain
(Av,v) .
= = o0 if |V]|g21g) — o
IVllz210)
A is hemi-continuous which is shown in [63]. |

Here, we have the following theorem.

Theorem 3.2.8 The biharmonic equation (3.12) has a unique solution p € H>'(Q) for all F €
(H>'(Q)).
Proof.This follows by applying Theorem 4.1, from [83] to

Ap=F

where A is defined in corollary 3.2.6. |

In order to avoid the non-differentiability caused by projection, a smoothing technique is considered
in [65]. A regularized projection formula is derived by using

-1, 7 < —¢€,
smsign(z; €) :=4 P), z€[—¢€e€l,
1, 7> €,
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where % is the polynomial with 7th degree that fulfills

Pe) = 1, P(—¢) = —1,PP(ze) = 0,

€ 0
\f@@ﬁ:ifpma=a
0 —€

This function fulfills the specifications of the flsmsing provided by COMSOL Multiphysics. We refer
to [65] for a detailed analysis for smoothing of the projection.

for k = 1, 2. Furthermore,

3.2.2 Variational formulation and Stabilization

We consider the boundary (OCP) (2.62) which is convection dominated problem. As in previous sec-
tion, we use SUPG which stabilizes oscillations and instabilities that arise from the numerical method.
If the SUPG method is used to solve optimization problems governed by an advection-dominated pde,
however, the convergence properties of the SUPG method can be substantially different from the con-
vergence properties of the SUPG method applied for the solution of an advection-dominated pde.

The SUPG method consists of adding consistent diffusion terms in the state and adjoint equations with
the stabilization parameter 7y, depending on the Peclet number defined in (3.7) and mesh cells [30]:

AHE(VYnat, V) + (B Vet + 0Yi1, V)]

+ ALY Ti(=€AY 1 + B Vynet + Vit B Vg
KeQ,,

+

h h
(yn+l’v )

= GV + AL Y Tr(=€Ay, + B Vv + 0y, B- Tk
KeQy,

A V) + ALY (), B TV

KEQ/Z
(n=0,1,---,N)

AH[E(V 1, V') = (B Vpuoi + o pyt V)]

+ At Z Tk(~€Aput =B+ VPuot + 0Pyt B - VW
KEQ/I

+

—(ph_ V"

= (pn,vh) + At Z Tx(—€Ap, —B-Vp, +0op,,B- Vvh)K
KeQy,

+ AU =YV + A D TG = Y. B TV,
KeQy,

(m=N,N—1,---,1)

3.2.3 Implementation and Numerical Examples

In this section, we provide the details of the implementation of numerical realization of the one-shot
method in COMSOL Multiphysics for time-dependent convection dominated OCPs. We consider un-
constrained and control constrained OCPs for the diffusion-convection-reaction equation in one space
dimension by comparing the numerical results for the one-shot approach with and without stabiliza-
tion.
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Table 3.9: One-shot approach with adaption-femlin for the unconstraint boundary control problem

adaptive solver non-adaptive solver
h J(n un) J(vn, un) J(n, un) J(yn, un)
without stabilization  with stabilization = without stabilization  with stabilization
273 0.0292 0.0155 0.0304 0.0160
274 0.0285 0.0156 0.0273 0.0159
273 0.0269 0.0157 0.0267 0.0158
276 0.0289 0.0158 0.0267 0.0158
277 out of memory out of memory 0.0273 0.0158

Example 3.2.1 (Boundary control problem without control constraints)

For the optimal control problem without control constraints we take ap = l,a, = @, = 0.5 and
€=107,f=0,=-1,0=1, 09 =0y = 0.1, ya(x) = x(x — 1), yo(x) = ya(x)

We apply the solvers of COMSOL Multiphysics; adaption, which solves the elliptic PDE using adap-
tive mesh refinement, and the femnlin that solves nonlinear problems without adaptation.

fem.xmesh=meshextend(fem); fem=adaption(fem); OR
fem.sol=femnlin(fem);

SUPG is implemented in COMSOL Multiphysics for the adaptive and non-adaptive solvers as

fem.equ.weak={{’-h*(yx_test)/20*% (yx+y+ytime)’
"-h*(px_test)/20* (px+p-ptime-y+zd(x,time))’ } }I};

The exact solution of the optimal control problem above is not known. Therefore, the evolution of the
values of the cost function J(y,, u;,) is shown for a sequence of uniformly refined meshes tending to
zero as in [4]. The numerical results for the nonadaptive and adaptive elliptic solvers with and without
the stabilization are given in Table 3.9 and in Figure 3.4 for Ax = At =27 at T = 1. Figure 3.4 shows
that the stabilized problem contains slight oscillatory solutions only in a thin region on boundary layer,
whereas the unstabilized solutions exhibit strong oscillations in a larger region near the boundary layer.
An important characteristic of nonlinear iterative solvers is the mesh independence of the solutions,
which shows that the convergence behavior of the iterations for the discrete problem is the same as
for the infinite dimensional problem. It allows to predict the convergence to the discretized problem
and it can be applied the increase of the performance of the method employing mesh refinement tech-
niques [48]. It asserts that the number of iterations to reach a specified tolerance is independent of the
mesh size. Mesh independence OCP’s with Burgers equation was observed numerically in [89] us-
ing Lagrangian-SQP method and COMSOL Multiphysics in [91]. Different values of tolerances were
applied to stop the solver femnlin, which is an affine invariant form of the damped Newton method.
The relative tolerances are based on a weighted Euclidean norm for the estimated relative error. The
mesh-independence of the stabilized OCP is observed numerically for all mesh size and tolerances in
Table 3.10. 'We consider now control constrained problem modified from [4], where the distributed
control problem was considered.

Example 3.2.2 (Boundary control problem with control constraints)
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Table 3.10: Mesh independence for the unconstrained boundary control problem

hjtol 271 272 273 27 273
le?? 2 2 2 2 2

le™ 2 2 2 2 2
le™S 2 2 2 2 2
le® 2 2 2 2 2
le?!* 2 2 2 2 2

0.05

0.04

0.03

0.02

0.01

-0.01

Figure 3.4: One-shot-approach for the unconstrained problem: unstabilized (left), stabilized (right),
optimal control (top), optimal adjoint state (middle), optimal state (bottom)
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Table 3.11: One-shot approach with adaption-nonadaption for the boundary control constraint problem

adaptive solver non-adaptive solver
h Jn, up) Jn, un) Jn, un) Jn, un)
without stabilization  with stabilization — without stabilization  with stabilization
273 0.2345 0.0731 0.1164 0.0780
24 0.0873 0.0730 0.2249 0.0758
273 out of memory 0.0734 0.1129 0.0748
276 out of memory out of memory out of memory 0.0743

Table 3.12: Mesh independence for the boundary control constrained problem

hjtol 271 272 273 o4 S

le 2 2 2 2 2
le™® 2 2 2 2 2
le® 2 2 2 2 2
le10 3 3 3 3 3
le2 3 3 3 3 3

Wesetanl,a'uzavzo.Sandé:10’5,f=0,ﬁ=—1, oc=1,0¢9=01=0.1,

1/2, in (0,1),
0, otherwise,

yo(+,0) = {

Ya(x) = yo(x), ug = —0,2 u, = 0, v, = —0.25, v, = 0.

We employ quadratic finite elements for the control constrained problem like in the unconstraint case
for state and adjoint state variables, but for the Lagrange multiplier y, linear finite elements are taken
as in [64].

The projection method [61] that is an implementation of the active set strategy as a semi-smooth
Newton method [49] for a boundary control problem, is implemented in COMSOL multiphysics as
follows:

fem.globalexpr={’'u’

*(p+mu®-mul) /alpha®’ ’'v’ ’(-p+eta®-etal)/alphal’ ’'mu®’
"max(0,ua(x,time)*alpha®-p)’ ’'mul’ ’'max(0,-ub(x,time)*alpha®+p)’...
’eta®’ 'max(0,va(x,time)*alphal+p)’’etal’ 'max(0,-vb(x,time)*alphal-p)’};

Numerical results for the nonadaptive and adaptive elliptic solvers with and without the stabilization
are given in Table 3.9 and in Figure 3.4 for 4 = 275. As in the case of unconstrained problem, SUPG
stabilization removes the oscillations caused by the boundary layer. Oscillations appear on a thin layer
near the boundary.

Table 3.12 shows again the mesh-independence for control constrained problem similar to the uncon-
strained case.
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i \w, il 1 |

PN

Figure 3.5: One-shot-approach for the control constrained problem: unstabilized (left), stabilized
(right), optimal control (top), optimal adjoint state (middle), optimal state (bottom)
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CHAPTER 4

DISCRETIZE-THEN-OPTIMIZE

In this chapter, we apply the DO approach mentioned in Chapter 2. In this sense, we use the opti-
mality systems of the finite-dimensional optimization problem obtained by this approach. When we
apply SUPG method to the convection dominated state equation, we get the symmetric matrix by this
approach of the system. We employ all-at-once method for using this approach. In this sense, the
optimality system is solved at once for all time steps. This method is applied to elliptic linear optimal
control problems in [72, 73, 74] and to parabolic control problems in [78].

Even this approach does not satisfy the adjoint consistency, it leads to a symmetric saddle point form
Ax =b:

T
(A B )xzb. 4.1

Here A € R™" is symmetric and positive definite or positive semi-definite and B € R™", m < n, is a
matrix of full rank. If the block A is positive definite on the kernel of B, the linear system (4.1) is well
defined and has a unique solution [6]. For two and three dimensional evolutionary OCPs, (4.1) can be
solved using iterative methods efficiently. We use MINRES as the iterative method with the symmetric
and positive block diagonal preconditioner to speed up the convergence of the solution. This method is
applied to both distributed and boundary OCPs with and without control constraints. The second part
of the chapter deals with the stabilization parameter and a priori error estimates for the fully discrete
optimality system. The stabilization parameter is chosen to be proportional to mesh size as in steady-
state case for Crank-Nicolson. In the case of backward Euler and semi-implicit scheme, we select the
stabilization parameter proportional to the length of the time step size. Finally, the numerical examples
are given to illustrate the theoretical results. Hence, the numerical results with the special choice of
stabilization parameters confirm the predicted convergence rates.

4.1 Distributed optimal control problems

4.1.1 All-at-Once Method

The optimality systems of distributed OCPs with ® scheme and semi-implicit scheme obtained in
Chapter 2 can be defined in the saddle point form (4.1). As an example we consider the optimality
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system (2.29) in which SUPG stabilized spatial discretization and the ® scheme as a time discretization
are used: We define

S
i
—

AIM1/2 0
0 a’AlMl/g ’

and furthermore,

Y AIM1/2Yd
x:=| U |, B:=< -E;, AtZ; ) and b := 0 R
P —F

where A, B are given in (4.1). Similarly, the other optimality systems can be reformulated in the saddle
point form by changing a matrix B and a vector b for each one.

The saddle point system can be solved by direct methods or iterative solvers. Direct methods perform
very well for one-dimensional parabolic problem, whereas they are likely to run out of memory for
two-dimensional parabolic problem. Although direct methods are faster than iterative solvers, we
apply iterative solvers for two-dimensional parabolic problem because of the huge dimension. When
we use iterative solvers, the convergence can be slow and so a preconditioner is needed to accelerate
the convergence rate.

4.1.1.1 Preconditioning the saddle point system

The preconditioner transforms the saddle point system into a better spectral system such that P~ AX =
P~1F, where P is preconditioner which has to be cheap to be inverted and has to cluster the eigenvalues
of PIA 6, 41].

There are two effective preconditioners for A demonstrated in [60] such that

A O A 0
pe(2 0 me(4 0) 0

where S is the (negative) Schur complement defined by S = BA~! BT, The spectra of 731‘1?{ and Pgl.?{
are given by

1 1
AP A) = S0 - \/3),1,5(1 +V5), AP A) =1,
and 7’1‘1.?{ and P; 1A are nonsingular [60].

We use the minimal residual method (MINRES) to solve the optimality systems, which are symmetric
and indefinite. For MINRES, the form of block-diagonal preconditioner #;, symmetric and positive
definite, is considered generally. Because, we need to compute the preconditioner # at each iteration,
and this process can be done cheaply by choosing the symmetric and positive definite . MINRES
constructs a Krylov subspace given by

2 k
span {ry, Ary, Arg, ..., A 1o},

and computes the solution to the linear system for every iteration step k = 1,2, ..., by minimizing the
Euclidean norm of the residual r; over the Krylov subspace. In [76, 87], there is a more detail on the
properties of MINRES.
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A nonstandard CG method [73] is employed with the block-triangular preconditioner $, which is
also effective for saddle point systems with symmetric and positive definite A. If A is semi-definite,
nonsymmetric methods such as GMRES [92] or BICG [26] can be considered with the block triangular
preconditioner. We also note that if we can construct a good approximation to A and S using the
Chebyshev semi-iterative method discussed in [85], such as A and S; then we have

0 R A 0

and so two preconditioners based on #; and #, can be derived for the OCPs. The approximation A,
given by
A= ( AIM\1 /2 9\ ]
0 aAtM

where the approximation of //\/(\1 /2, a Chebyshev semi-iteration process is taken to approximate the
mass matrices.

In our choice, we use the form of #; in (4.2), and for the saddle point systems (2.29) we have the
following preconditioner proposed in [81]:

AIM1 /2 0 0
P = 0 C&'AIMUZ 0 4.3)
0 0 S

with S := (1/ At)ESMl‘/'zEZ + (At/a)Zle‘/'2ZST. For the other optimality systems, we obtain precon-
ditioners in a similar way.

4.1.2 A priori error estimate of fully discrete scheme

The most popular SUPG method was introduced for steady-state diffusion-convection-reaction prob-
lem in [40]. The steady-state formulation of SUPG was extended in [47] to fully discrete space-time
formulation for time-dependent problem using discontinuous Galerkin method in time. Because the
space-time coupled formulation increase the computation of cost significantly, the spatial and temporal
discretization is usually separated [33].

In [31, 32], we can find the comparison of the SUPG method and other stabilized finite element meth-
ods. The approach given in these studies shows that by discretizing the equation in time and con-
sidering the equation as a steady-state diffusion-convection-reaction equation for each time steps and
using the spatial discretization with a stabilization method, the methodology leads to a stabilization
parameter which is proportional to the time step size and cause large spurious oscillations. When the
time and space grid is comparable k ~ h, the stabilization parameter can be of the same order in the
steady-state problem. Howewer, in many applications, such as the application with fast reactions, very
small time step have to be used. Additionally, in this case, the spatial and temporal errors have to be
balanced. Moreover, when we derive the fully discrete equation, we can start by discretizing in space
with a stabilized method and choose the appropriate stabilization parameter proportional to the mesh
size and then discretize in time. In [33], as an insight in the time-continuous case, the stabilization pa-
rameter is chosen like 7 = O(h) for all cells for evolutionary diffusion-convection-reaction equations.
Then, this choice of the stabilization parameter fullfill the convergence of the discrete solution for the
time-continuous case.
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A priori error estimation of OCPs has a recent history. In [53, 54], a priori error analysis for OCPs is
examined using discontinuous Galerkin methods in space and in time. In [84], a priori error analysis
for both semi discrete scheme and the fully discrete schemes of parabolic problems are given and
piecewise-linear polynomials are considered for spatial discretization, and the ® scheme and the semi-
implicit scheme are used for temporal discretization. SUPG discretization is applied to elliptic OCPs
and evolutionary equations, respectively, in [21, 33], and then a priori error analysis is conducted.

We extend the error analysis [33] which has given for a single PDEs to parabolic OCPs which have
extra difficulty because of the adjoint equation, also diffusion-convection-reaction equation with an
opposite convection field. We have presented the analysis of the fully discrete case using the Crank-
Nicolson, backward Euler and semi-implicit scheme as temporal discretization. We derive a priori
error estimates for the SUPG stabilized full discrete scheme of distributed OCPs (2.15), governed by
unsteady diffusion-convection-reaction equation. When we use the backward Euler and semi-implicit
scheme, the stabilization parameter depends on the length of the time step, and for Crank-Nicolson
scheme the parameter is chosen the same as in the steady-state case, i.e., it is proportional to the
mesh size. The stability bounds and error estimates are derived based on energy arguments for all
these schemes. According to our knowledge, error estimates of this kind for SUPG method applied
to OCPs governed by unsteady diffusion-convection-reaction equation have not yet been available
before. Moreover, in the most papers, the backward Euler and Crank-Nicolson schemes are used as a
temporal discretization generally, and this is the first time we give the error estimates for SUPG with
semi-implicit scheme applied to parabolic OCPs.

4.1.2.1 O scheme

We first give the stability bounds for the ® scheme by taking ® = 1/2 and ® = 1. We consider a
similar argument as in [33] to obtain stability bounds and introduce the preliminaries for the analysis.
The elliptic projection 7, : V — V, is defined by (V(y — 7;y), Vv;,) = O for all v;, € V;,. Now, we have
the following condition:

(mny)e = (V) = 7Y, 4.4

and the following inverse inequality holds for each v, € V, with the assumption of a quasi uniform

mesh (see, e.g., [19]):
l-m=d( 1)

Vallwnay < cimhy " WVallys (g (4.5)

Here,0<Il<m<1,1%< q/ < g < o0, hg is the mesh size diameter of K € ¥,; we note that we take
the same step size hx = h for all mesh cell K. The interpolation error estimate for y € V N H™*! is
well-known [20]:

lly = 7iyllo + Ally = 7yl < CH™ [yl (4.6)

where r is the degree of local polynomials and || - ||, denotes the norm in H" ().
Before giving the coercivity of a; defined in (2.12a), we note that there is a constant uo > 0 such that

1
o EV ‘B> pup ae. inQ, (C))

to ensure the well-posedness of the OCPs (2.1).

Lemma 4.1.1 (Coercivity of a;(-,")) (see, e.g., [77], Lemma 10.3). Let (4.7) be satisfied. If the SUPG

parameter T is chosen such that
Ho

T<
= R
2ol

(4.8)
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then the bilinear form a; (-, -) associated with SUPG method satisfies

1
@, ) 2 Sl 4.9)
where
Il 2= €llVyully + ) 7B - Yyl x + sollynll. (4.10)
KeT,

Now, we will derive the stability estimates for the state and adjoint equations. We take a fixed time
step k = At, and the fully discrete state adjoint and control solution at time ¢, = nk will be denoted by
Y, D), and ujy, respectively.

Let us first consider the stability bounds for the state equations and find approximate solution y; € V},
obtained by using the ® scheme and SUPG method forn = 1,2,..., N:

(yZ -y
k
+(1-0) (e(Vy;z*‘ Vso) + BV @)+ @y o) = O +upe) + (1 -0) (" + i)

G

Ke%T,

,so) +© (e(Vy), Vo) + (B V¥ ) + (0¥ ) (4.11)

K

+Z f +uj + €Ay — [3'V}’Z_O'y2)“8'v¢)1<
Ke%)

+ Z T((l - @)( "l eryr ! -Vt - o-yz_l),ﬁ~ch)K
Ke%

for all ¢ € V}, and yg = y5(0, x). Then, (4.11) can be written equivalently in the form

Oh = @) + kaj (@) + (1 = O, ) = k(O(f" + 1) + (1 = O + 14y, )

k| D T(OU" +up+ (=0 +upHB- Vo) | = D T0h =¥ B Vo (412)
Ke%,, K Ke%,,
Let us introduce the following notation given in [84] and useful for the proof of Theorem 4.1.2 which
gives the stability bounds of the state equations for both Crank-Nicolson and backward Euler scheme:
for any function ¢ € L*(Q), we define

(¢’ vh)

lvalli °

¢ll-1 = Uy, ev,, 4.13)

which is a norm on V;,. We note that ||¢||_ , < ||¢|lo for each ¢ € L*(Q).

In order to derive a priori error estimate for the OCPs, we firstly provide stability estimates for the
fully discrete state and adjoint equations.Afterwards, the convergence estimation are derived.

Theorem 4.1.2 (Stability of the state equation). Let (4.7) and (4.8) be fulfilled and uy be a positive
constant such that (4.7) holds. Then there exists constants C > 0, and C* > 0, independent of h and k
and with the following additional conditions for ® = 1: backward Euler scheme:

4k
T<—; (4.14)
5
the solution (4.12) satisfies
n 2 3k < Ji2 02 C in2 AR
I35 + 5 2 Il < CIDRIG + > 15 + eI | (4.15)
j=1 j=1
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for ® = 1/2: Crank-Nicolson scheme the solution (4.12) satisfies

. l+7 v : i
Ivillg < C*Llypllg + kl — Z 77115 + |qullﬁ], (4.16)
=1

with the additional conditions T < 1.

Proof. Let us take ¢ = (Qy, + (1 - (E))y’;l‘l) in (4.12). By the coercivity assumption (4.9) and using the
following equality

1 1 n
we Obtain

1 n n— 1 n n— k n n—
5 (D15 = 13 ™15) + (@ - 5) I = 57116 + 10y + (1 = @)1
< k(O™ +up + (1 = @)+, 0] + (1 - @)y )

A

' k[z (O +u) + (1= O + )8 Y@y + (1 - @)y2‘1>)]

KeT,,

K

Ay

+| D) T0h =¥ B V(@) + (1 - @)y )k
Ke%,

. 4.17)

Az

If we take 1/2 < ® < 1, we can apply the similar approach in [33] and estimate A;, A, by using the
Cauchy-Schwarz and Young’s Inequality. The term A3 can be estimated with the conditions (4.14) for
the special case ® = 1. Inserting all these estimates in (4.17) and after summation of the time steps
Jj =1,2,...,n, considering the conditions (4.14), we obtain the statements of Theorem, (4.15) for the
backward Euler scheme.

Howewer, when we consider the case 0 < ® < 1/2, especially the Crank-Nicolson scheme (® = 1/2),
the approach in [33] does not work because of the term Az. Therefore, we use the similar approach as
in [84] and take ¢ = (¥} — y’;l‘]) in (4.12), then we find:

-1)12
vy =y llo

= —kay(©Y; + (1= Oy = Vi) + k(0" + ) + (1 = O)("" + ™), 5 = i)

k| > T(O" +u + (=) B VG -3 )

Ke%,, K
= 3 =B O =k
KeT,
< YKI®Y; + (1 =0, iy = vyl + KIS + u) + (1 = O)(F™ " +uf Miallyy = vl

+k (IO +up) + (1 =)™+ up okl VO = Yy Dllox)

KeT,

+ > 7l =3 ol - VO = 3 Do (4.18)
Ke%),
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where 7y is the continuity constant defined in [84]. By using the property |[V(y} — yZ‘l)Ilo <ly; - y;z“l N
and the inverse inequality with the condition (4.13) and following the steps in [84], we have

2 -12
Iyl = vy~ g

C,
1-71

<

IO + 1) + (1= )"+ s+ . (10" + 1) + (1= O +uy llox)
Ke%),

for a suitable C, > 0. By using the inequality ||¢||-1.» < ||#|lo and summing from j = 1, ..., n, we obtain
the desired results (4.16). |
When we consider the stability estimate of the adjoint equation which is also convection dominated
parabolic equation with negative convection term, we apply the ® scheme to the discrete adjoint equa-
tion (2.15a). Then we find an approximate solution pZ‘l eV

(P! = pw) + kaj, (. Op)~ + (1= ©)p}) = =k (O] - ¥iL,) + (1 = O =¥, ¥)
- > Ty = B VK (4.192)

KeT,,

for all y € V,,. Consider ygn being an approximate solution of y; and pr; = pu(T, x). Finally, the
gradient equation looks:

(auf —pitw—u)>0 Yw e U, (4.19b)

Theorem 4.1.3 (Stability of the adjoint equation). Let (4.7) and (4.8) be fulfilled and ug be a positive
constant such that (4.7) holds. Then there exists positive constants C > 0 and C* > 0 independent of h
and k and with the additional conditions for ® = 1: backward Euler scheme:

T<— (4.20)

the solution (4.19) satisfies

3k & . n .
P2+ == > Wl IR < CHIPrallR + ) Iy =y 13| (4.21)
40 o
J=1

J=1

for ® = 1/2: Crank-Nicolson scheme: the solution (4.19) satisfies
2 * 2 kN J_ 2
lpsllo < € [IPTally + - Z Iy, = Y illo (4.22)
J=1
with the additional conditions T < 1.

Proof. If 1/2 < ® < 1, we choose ¥ = (@pZ‘1 + (1 -0)p;)in (4.19), and if 0 < ® < 1/2 we choose
Y= (pZ“ - p;,) and follow the steps as in the proof of Theorem 4.1.2. Herewith, we obtain the desired
results. |

Now, we shall use two auxiliary variables V@), pi(u) € Vpy xVy,n=12,.,N, associated with the
control variable to derive a priori error estimate of the full-discrete scheme as in [27]:

Oh) = Yy ), @) + kay (Oyj) + (1= @)y (), ¢) = k(O(F" + ") + (1 - O)(f*" +u""), )
+k[ D (O +un+ A=) w8 V)| - D TOhw — 3 W), B Ve

Ke%,, K Ke%,,
Vo e Vi, yow) =y, n=12,..,N, (4.23)
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(o ) = P, ) + kaj, (0, O™ () + (1 - ©)pj(w)
= —k (00}~ ¥if,) + (1 = OG5 @) =¥, ) ¥) = D T @) = phw), B Vi)

Ke%T,
Yy eV, prn=0, n=N,..,2,1. (4.24)

Let us first consider the connection between the approximation solutions (y;, p;) and the auxiliary
solution (v} (u), p(u)). We use the following notation:

0" =y, — y,(w), " = pp = ppw).

Furthermore, we need some useful lemmas before deriving the main a priori error estimates for the
OCPs.

Lemma 4.1.4 [24] Suppose us that f € L*(Q) and Ff(x) = f(x — g(x)k), where we assume that
g, andVg are bounded on Q. Then, for sufficiently small k, we have that

If(x) = fFXOll-1 < CkIIfll; here, the constant C depends only on ||gl|7’(Q2) and ||Vgl|7(€2), and the
negative norm || - ||-1 is defined in (4.13).

Lemma 4.1.5 Let (v, pr) and (yy(u), pr(w)) be the solutions of ((4.12),(4.19)) and ((4.23)-(4.24)) re-
spectively. Then there exists a constant C independent of h and k such that following estimates holds:

e = ye@ll2ci2)) + lpn — Pr@ll2g.2@y < Cllv = upllizg:2@))- (4.25)

Proof. As in [27], we firstly substract (4.12) from (4.23) to obtain the following inequality:

@ -8 ¢) + ka}, (00" + (1 - )" ) = k(O —u") + (1 - O) )" —u""). )

+k Z (O] —u) + (1 -©) ™ —u"™).5-Vg)| - Z @ -0 B-Vo)k.  (4.26)

Kei,, K KES;,

As in the proof of the Theorem 4.1.2, if 1/2 < ® < 1, we choose ¢ = (6" + (1 — ®)F"") as a test
function. From Lemma 4.1.4 we have

191 < (1 + Cch)lle™")1%. (4.27)

Inserting (4.27) in (4.26) and following the steps in Theorem 4.1.2, we get
9"2 3kn Jj112 N 2 =112 N j Ji2
16715 + 35 2 IIR < Ch| - I + 167G + I — | (4.28)
j=1 Jj=1 Jj=1

By applying the discrete Gronwall’s Lemma, we have

ye = yr@llz2a 2@ < Cllu = unlli2:2@))- (4.29)

In a similar way, we can obtain (4.29) by following the steps applied for Theorem 4.1.2, refinding the
part of 0 < ® < 1/2 by choosing the test function as ¢ = (6" — " ).
Similarly, we derive from the systems of equations (4.19) and (4.24) that

||§||L2(1;L2(Q)) < Cllyn - yh(”)l|L2(l;L2(Q))~ (4.30)

Therefore, Lemma 4.1.5 is proved through (4.29)-(4.30). |
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Lemma 4.1.6 Let (v, p,u) and (y}, p},uy) be the solutions of (2.9) and ((4.12),(4.19)), respectively.
We assume that u € L*(I; WH°(Q)), ulo- € L*(I; HZ(Q*)),p e LX(I; Wh°(Q)) where Q* := {Ux : K C
Q,uy < ulg < up}. Let uy be the piecewise linear element space; then for the backward Euler scheme
we have

e = il < € (B2 + k+ 1P = pllzaac) - (4.312)
for the Crank-Nicolson scheme:

" — wpll2 2 < C (h3/2 +I+ llp(u) — P||L2(1;L2(Q)))- (4.31b)
Proof. The proof can be found in [27]. |

Lemma 4.1.7 Let (y, p) and y,(u), pi(u) be the solutions of (2.9) and (4.23,4.24), respectively. Assume
thaty, p € L*(I; H)(Q)NH*(Q)NH' (I; H*(Q)NH*(I; L*(Q)), y, € H'(I; L*(Q)). If® = 1 (backward
Euler scheme), the additional condition (4.14) is satisfied then

b = Vi @lzgzy < C (A +k+ 7200 + b+ o+ 17'72) (4.322)

with
" 1/2
[k >l - yi(u)llx] <C(RE?+7" 4 h)y+ k+ 720 + h+ &) + W27 ?).
J=1

When ® = 1/2 (Crank-Nicolson scheme), we assume the stabilization parameter T < #I;i’l\ then the
following estimate holds:

3
Iy = Yallzaz@) + 1P = Ph@llaq) < ChE + k), (4.32b)

where C depends on some spatial and temporal derivatives of y, p, and yg.

Proof. Let us start by substracting (2.9¢) from (4.23) to obtain an error equation:

n _ -1

y -y

k

( (@) = Yy~ (w) ’ ‘p)

,s0)+a(®y"+(1—®y""),so)—( .

— a)(®y}(u) + (1 - O)y, " (u), @)

| D (@0 +u + (1 -0 w8 V)
KG‘I;, K
n _ -1
-3 T(y—h(”) il (”),th) - 0. 433)
KeT), k K

As in [33], we decompose the error y* — y;(u) into an interpolation error and the difference of the
interpolation and the solution

Vi) = y" = () — mpy) + (myy = ¥") = ) + 17}

The interpolation error 77, can be estimated with (4.6) by taking the degree of local polynomials r = 1.
Then we need only to derive an estimate for ej:
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(&) - ¢, ¢) + ka} (@} + (1 - O)e, ", )

ﬂ.ny _ ﬂn—ly
h h
- ’SD

=k|y —my + (nZy, - .

T

+k|Oc (y' = mhy) + (1= O)a (" =7 7'y) + OB - VO — mhy) + (1 - ©)B- V" =7 'y). 0

7,0
+k )" (T + Tao + OeA(mry — ") + (1 - ©)eA 'y =", B- Vo)k
KeT), 7,0
- Z €] — ¢ B Vo)k. (4.34)
Ke%T,

Particularly for the error estimate of backward Euler scheme, we take ® = 1 in (4.34) and obtain the
error equation similar to (4.12), so that we can apply the techniques of the stability estimate (Theorem
4.1.2) to (4.34) by choosing ¢ = ) with 32 =0:

3k & . & . . & .
IehI5 + 35 D llehlls < Ch| D ITII + TSl + & 3 IT ol |- (4.35)
j=1 Jj=1 J=1

By inserting the bounds for the right-hand side given in [33] to (4.35) and combining with the well-
known estimate (4.6), we finish the proof of one part of (4.32) by the following inequality:

" = ¥pllzqy < C (W + k+ 720 + h+ &) + P27 /?). (4.36)

To show the second part of (4.32), we subtract (2.9a) from (4.24) and proceed as in the first part by
using the stability estimate of adjoint equation (Theorem 4.1.3), we find the subsequent inequality:

lp" = Prll2a: 2@y < CIV' = Yi@ll2g:r20))- 4.37)

Thus, the first part of Lemma 4.1.7 is derived for the backward Euler scheme.
When we take ® = 1/2 in (4.34), by choosing ¢ = (e} + eZ‘l)/2 with 6‘2 = 0 and using Theorem 5.4
given in [33], we have

o S
Y4y oyt
2 2

Ip" = phaolG +k Y (4.38)

J=1

< C( + kY.

N

Combining (4.38) with (4.37), we obtain the second part of Lemma 4.1.7 for Crank-Nicolson scheme.
[ |

Theorem 4.1.8 Let y, p, u and y;, pj, uj be the solutions of (2.9) and (4.12, 4.19) respectively. If
® = 1 (backward Euler scheme) with additional condition (4.14), we have

" = Vil + 1P = Pullizaazqy + " = wgllizge @)
<C (h% + R +k+ PP +h+e) + hz‘r_l/z) . (4.39a)

For ® = 1/2 (Crank-Nicolson scheme) with the condition T < h/2||B||, we have
3
" = yillzazay + 19" = Pllzaza) + " = ufllzgza) < Ch? + k), (4.39b)

where C depends on some spatial and temporal derivatives of y, p, yqs and u.
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Proof. Combining the bounds given by Lemmas 4.1.5-4.1.7, the Main Result of Theorem 4.1.8 can be
established by the triangle inequality. |

4.1.2.2 Semi-implicit scheme

We first derive the stability bounds for the state and adjoint equations of OCP (2.1) by using the similar
argument in [84] which covers the error estimates of parabolic problems using semi implicit scheme.
In this sense, as in previous section, we first find the approximate solution Vi Py € Viand uj € Uzd
obtained by using semi-implicit scheme and SUPG method, respectively:

(yZ -yt

k "p) + (E(VyZ?V¢) + (ﬁ : Vyz_l,cp) + (O'yZ_l,go)) (44021)

n n—1
n n y _y n n n n— n—
= (f + uh,go) + Z T(—%,ﬁ-Vg&] + Z T(f + uy, + €Ay, — - Vy, .- oy, LB V(p)K
Ke%, KeT,
for all ¢ € Vj, and y) = y4(0, x), and

[pZ" -py

p wJ+(e(vw,w-l)+<ﬁ~w,pz>+fr<w,pz>)=( =) Y)

n-1 _ _n
£ 3 w(emv—pVu-ou.p- Vo) - Y v g vy (4400)
Ke%T, Ke%T,

for all ¥ € Vj. Let us consider yzyn is the approximate solution of y; and pr;, = pu(T, x), and the
gradient equation given by

(aufp — pp~' s w—u) >0 Yw e U (4.40¢)

We first present the stability bounds of state equation for semi-implicit scheme in the following theo-
rem.

Theorem 4.1.9 (Stability of the state equation) The semi-implicit approximation scheme (4.40a) is
unconditionally stable on any finite time interval (0, T) and the solution y, satisfies

IVAIG < | I65IG + CRCL+ 1) > A1 + ) I | - exp(C k(1 + 7)), (4.41)
j=1

where T < 1, C > 0, C* > 0 are constants independent of h and k.

Proof. As in backward Euler scheme, we start by choosing the test function ¢ = yj in (4.40a) and
using Poincare Inequality and Young Inequality, we have

1 ny2 1 n—12 1 n n—12 n2
5”}’;,”0 - Ellyh ”0 + 5”)’/, A ”o + €k||Vyh||0
< Ck(1+ DY MolIVypllo + Cak(1 + ) (ILf"llo + lllo) ¥l
T . _ T
+ I = Y5 + S 118 - Vsl
By following the steps in [84] and choosing 7 < 1, we easily obtain that
s — I 115 < €k + DIy, 1Ig + C(1 +7) (17115 + a3
Summation of the time steps j = 1,2, ..., n, and using Gronwall Inequality, we obtain the desired result

(4.41). ]
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Theorem 4.1.10 (Stability of the adjoint equation) The semi-implicit approximation scheme (4.40b)
is unconditionally stable on any finite time interval (0, T) and the solution p} satisfies

PR < |prally + Ck > lly) = ¥t AR |- exp(C k(1 + 7)), (4.42)
J=1

where T < 1, C > 0, C* > 0 are constants independent of h and k.

Proof. By proceeding essentially as in the proof of Theorem 4.1.9, choosing ¢ = pZ‘l in (4.40b), we
can obtain the desired result. |
To derive the Main Theorem, we need some lemmas as in previous section. In this sense, we shall use
two auxiliary variables y;(u), pj(u) € Vj, X Vj:

n _ -1
(M <P] +(€V00.Y0) + BV W) + (0¥ ) (4430)
n _ -1
- (fn +un,¢) + Z T(_M’ﬁ. V(p]
Ke%,
+ Z T (f" +u" + eAy,(u) - B+ VyZ_l(u) - O'yz_l(u),,B . Vgo)K

Ke%T,

forall ¢ € Vi, and y)(u) =y),n=1,2,..,N, and

(pZ‘l (u) = pj(u)

p , w) + (e(Vy, Vi @) + (B Vs, ppw) + o, phw) = (05 @) = ¥4,_) ¥)

n—1 _on
b 3 w(ehw-p-Vu-oup-Vpw) - Y w(A LI

Ke%, KeT,

B-Vik
(4.43b)

forall y € Vj and pr, = 0,n = N, ...,2,1. We use the same notation 8" and " as defined in previ-
ous section to have the connection between the approximation solution y}, p; and auxiliary solution

Yiw), p,(w).

Lemma 4.1.11 Let (yy,, pi) and (y,(u), pr(u)) be the solutions of (4.40a-b) and (4.43a-b), respectively.
Then there exists a constant C independent of h and k, such that the following estimates hold:

ve = yr@ll2:2 ) + lPn — Pr@l2¢:12)) < Cllu — uplli2g:12@))- (4.44)

Proof. We can estimate (4.44) by proceeding the same approach in Lemma 4.1.5 and using the proof
of the stability estimate (Theorem 4.1.9). |
The bound of |lu — upll 2122y is given by Lemma 4.1.6 in the previous section.

Lemma 4.1.12 Let (y, p) and y,(u), pp(u) be the solutions of (2.9) and (4.43a-b), respectively. We as-
sume that y, p € L*(I; Hy(Q)NH*(Q)NH'(I; H*(Q)NH*(I; L*(Q)), ys € H'(I; L*(Q)). Furthermore,
the additional condition (4.14) be satisfied. Then we have

Iy = ¥l < exp(Ch(1L+1) % (C (1 + k+ 70 + h+ &) + i*r'2)), (4.45)

where C* > 0 and C depends on some spatial and temporal derivatives of y, p, and yg.
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Proof. As in the ® scheme, we start the proof by substracting (2.9¢c) from (4.43a) and we decompose
the error y — y,(u) into an interpolation error and the difference of the interpolation and the solution:

Vi) =" = () — mpy) + (m,y = ¥") = ) + 17}

Now the interpolation error 77, can be estimated with (4.6), taking the degree of local polynomials
r = 1. Then, we only need to derive an estimate for e :

n_ ,n—1
(% ¢) (VL Vo) + (8- V) + ol )
+ Z T(EA(ZZ(M) -B- Vez_l(u) - o-ez_l(u),,B . V(p)K =}, ), (4.46)
Ke%),

where v} € V), is defined by the relation

ny, _ -n—1
N _ n n n ﬂhy 7rh y n n V" n
V@) = (V0 =Ty + |y = = +ff(y —7rhy)+ﬁ- 0" —my), @
T,
+ ) T T+ edmy -y Vo | = > (e —ei B Vg), . (4.47)
Kez, ﬁ;—’ o K

Now, e satisfies a scheme like (4.40a) and so, as in Theorem 4.1.9, by assuming e2 =0, we get
llejlly < [Ck > |Ivﬁ|l§] -exp(CTk(1 + 7). (4.48)
=1

The bound of ||Vi||0 can be found as in the backward Euler scheme. That is, when we take ® = 1 in
(4.34), the right-hand side of (4.34) is the same as in (4.47). Therefore,

kz V/llo < C (I + k+ 720 + h + €) + WP77'12). (4.49)
=1
By inserting (4.49) into (4.48), we obtain the desired result. ]

Now, we are ready to derive the following theorem.

Theorem 4.1.13 Lety, p, uandyy, p,, u, be the solutions of (2.9) and (4.40), respectively. Assuming
the additional condition (4.14), we have

" - )’Z”LZ(I;LZ(Q)) +1Ip" - PZ”LZ(I;LZ(Q)) + |l — MZ”LZ(I;LZ(Q))
3
< C(h* +exp(Ck(1 + 7)) - (W + k+ 7' 2(h* + h + €) + W7 7'1?)),

where C depends on some spatial and temporal derivatives of y, p, yq and u.

Proof. Combining the bounds given by Lemmas 4.1.11, 4.1.6, and 4.1.12, the main result of Theorem
4.1.13 can be established by the Triangle Inequality. ]
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4.1.3 Numerical Examples

In this section, we consider two-dimensional OCPs governed by diffusion-convection-reaction equa-
tion to demonstrate our convergence analysis. For all examples, we give the numerical performance of
the SUPG method by choosing an appropriate stabilization parameter. When we take Crank-Nicolson
method as a time integrators, we choose the stabilization parameter which is proportional to the mesh
width, i.e., T < h/2. Actually, in the application of the SUPG stabilization, the choice of the stabi-
lization parameter 7 is significantly important. Hence, in Example 4.1.1, we study SUPG method with
different stabilization parameters and compare the effect of these parameters. The equilibration of the
terms on the right hand side of (4.32b) gives the length of the time step k = 43/# and the expected order
of convergence is O(K*?) for the Crank-Nicolson method. As in the case of backward Euler and semi-
implicit schemes, we derive the optimal scalings of the mesh size A, and time step k by considering
the estimates given in Section 4.1.2. Then, we have the only one asymptotic order of convergence by
setting the stabilization parameter proportional to time step k, i.e., T < 4k/5. By scaling k = h*?3, we
balance the terms O(k) and O(h*>t~'/?) = O(h*k~'/?) to obtain the optimal L? error. Hence, when we
take the backward Euler and semi-implicit schemes as a time integrators, the expected order is O(h*/?).
We use the iterative method, MINRES with the idealized block-diagonal preconditioner (4.28) to solve
the fully discrete systems. In the following examples, the state variable y, the control variable u, and
the adjoint variable p are approximated by piecewise-linear elements with SUPG in the case of spa-
tial discretization. The results are presented for Crank-Nicolson, backward Euler and semi-implicit
methods. For the time-dependent distributed control problem, we use the examples from [27, 28] with
known exact solutions. For the time-dependent boundary OCPs, we have constructed from the elliptic
OCP given in [3] without exact solutions.

Example 4.1.1 (Two-dimensional control constrained problem)

We choose the OCP in [28]. The distributed OCP (2.1) with Q = (0,1)x (0,1), T >0, Q = (0,T) X Q,
> =(0,T)x 0Q. Let us choose o =0, 8= (1,0), and f(x,1), ys(x, ) andyy(x) are chosen such that
the state, adjoint state and control solutions are

y(x,t) = exp(—t)sin(2rx;) sin(27rx,),
p(x,t) = exp(—t)(1 —1)sin(2nx;) sin(27xy),

u(x,t) = max{-p,0}.
The control constraints (2.1c¢) is defined as u > 0.

In Figure 4.1, we can observe the order of convergence for different choices of stabilization parame-
ters. We can note that, the convergence order is estimated by taking the logarithm with base two of the
quotient of the error at grid size & and the error at grid size h/2.

Table 4.1: Example 4.1.1 with 7 = 2h/7,€ = 10~ via Crank-Nicolson method with SUPG.

h lly=yull  order [[p—psull order [lu—uyll  order

272 6.4921e-2 - 3.1103e-2 - 2.073e-2 -

273 3.4807e-2 089 1.1993e-2 1.37 8.1020e-3 1.36
27% 136582 135 3.7622e-3  1.67 2.5511e-3  1.66
275 5.1733e-3 140 1.3907e-3  1.44 9.1609e-4  1.48

In Table 4.1, we give the results by considering the stabilization parameter, 7 = 2h/7. With this pa-
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Figure 4.1: L, error for SUPG method with € = 1075,
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rameter, we can see the expected order O(h*?) as in observed in Figure 4.1.

In Figure 4.2, 4.3, we use Crank-Nicolson method and take € = 1075, 7 = 2h/7 with h = 25
and r = 0.5. The SUPG stabilized approximate solution are nearly the same as the exact solutions.
Moreover, in [28], the same example is discussed and the results which are presented by using the
characteristic finite element method in spatial discretization with backward Euler method, are similar
to our results. To see the efficieny of SUPG method, we can notice that the oscillations in the contours
of the unstabilized approximate state and control equation can be fixed in the contours of the SUPG
stabilized state and control equation.

Table 4.2: Example 4.1.1 with 7 = 2k/3, € = 1073 via backward Euler with SUPG.

h/N2  lly-yull  order [lp—psll order |lu—uyll  order
272 59934e-2 - 3.7142¢-2 - 3.0848e-2 -
273 346752 0.78 1.0944e-2 1.76  7.3083e-3  2.07
274 1.2344e-2 149 22452¢-3 228 1.3397¢-3 244
275 3.9486e-3 1.64 8.7074e-4 136  5.358e-4  1.32

Table 4.3: Example 4.1.1 with 7 = k/3, € = 1072 via semi-implicit with SUPG.

h/N2  lly—yull  order lp—pull order |ju—uwll  order

272 1.0183e-1 - 5.0774e-2 - 3.3047e-2 -

273 3.8663e-2 139 1.0921e2 221 7.3658e-3 2.16
274 1.2667e-2  1.60 1.56%4e-3 2779 9.8216e-4 2.90
275 3.8208e-3 1.72 59410e-4 1.40 4.2387e-4 1.21
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Figure 4.2: Example 4.1.1 via Crank-Nicolson method with 2 = 27°: The exact state solution (top), the
stabilized approximate state solution (middle), the unstabilized approximate state solution (bottom),
their contour lines in the left side.
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the stabilized approximate control solution (middle), the unstabilized approximate control solution
(bottom), their contour lines in the left side.
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In Tables 4.2-4.3, we can clearly observe the expected order O(h*3). As it is mentioned in [84], for
small € , the convergence of the semi-implicit scheme deteriorates exponentially. Hence, we choose
an appropriate value for € with semi-implicit scheme. In this example, by choosing € = 1072, we get a
satisfactory result in terms of convergence.

Example 4.1.2(Two-dimensional control constrained problem)

The basic setting of this example is taken from [28]. The domain, the OCP and control constraint are
presented as in the previous example. We choose € = 107, 8 = (0.5,0.5), o = 0, and f(x, 1) and y(x)
are chosen such that the state, adjoint state and control solutions are

= L — 8en? — f 1. 2
yx, 0 = p(z—\/E sin(zy) = 8er” = == + 2 sin(t)?)
~ xcos(a) sin(2x;) sin(2xy) exp( <250y
Ve
p(x,t) = sinxe) sin(2zx;) sin(2mxz) exp(w)’
Ve
u(x,r) = max{-p,0}
ya(x,t) = n(l +2+esin(t,)) sin(zrt) sin(27(x; + x3)) exp( L\;’S(m)’
€
Iy = t- 0.5()(1 + )C2).

As in the previous example, we first give the numerical studies obtained by using Crank-Nicolson
scheme. We take the same proportion between the mesh size 4 and time step size k, i.e., k = h3/*. By
choosing the stabilization parameter T = 1/4, we obtain the subsequent results supporting our analyti-
cal results. In Table 4.4, we obtain the expected order is O(43/?) for Crank-Nicolson method.

Table 4.4: Example 4.1.2 with 7 = h/4, € = 1073 via Crank-Nicolson method with SUPG.

h lly—ynll  order |lp—ppll order |lu—uyll  order

273 1.0512-1 - 1.5480e-2 - 1.0661e-2 -

274 3.9526e-2 141 5.9417e-3 138 4.2352e-3  1.33
275 1.2448e-2  1.66 2.6355¢-3 1.17 1.8845¢-3  1.17
276 32615e-3 193 9.219%-4 151 6.7908e-4 1.47

In the Figure 4.4, the SUPG stabilized approximate solution has more likeness to the exact solution
than the unstabilized solution. Although, the usage of the SUPG method provides us more accurate
solution than the unstabilized case, the differences between the exact and stabilized solution can be
seen especially in the direction of the convection term.

In Figure 4.5, we can clearly see the efficiency of the SUPG method in the solution of control variable.
Howewer as in Figure 4.4, there are some differences in the x = y direction.

In Table 4.5-4.6, we illustrate the numerical studies of backward Euler and semi-implicit scheme,
respectively. By choosing the appropriate stabilization parameter 7 = 4k/5 for both backward Euler
and semi-implicit scheme, we get the orders of convergence, O(h*/3).
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solution

solution

Figure 4.4: Example 4.1.2 via Crank-Nicolson method with Ax = 273: The exact state solution (top),
the stabilized approximate state solution (middle), the unstabilized approximate state solution (bot-
tom), their contour lines in the left side.

Table 4.5: Example 4.1.2 with 7 = 4k/5, € = 10~ via backward Euler method with SUPG.

h/N2  lly—yll  order [lp—psll order |lu—uyll  order
272 2.0462e-1 - 42855e2 - 4.0050e-2 -
273 92722¢-2  1.14 1.0940e-2 1.96 8.4754e-3 2.24
27%  4.6580e-2 0.99 53094e-3  2.04 4.0874e-3  1.05
275 20143e-2 121 24378-3 1.13 1.8015¢e-3 1.18
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Figure 4.5: Example 4.1.2 via Crank-Nicolson method with Ax = 273: The exact control solution (top),
the stabilized approximate control solution (middle), the unstabilized approximate control solution

(bottom), their contour lines in the left side.

Table 4.6: Example 4.1.2 with 7 = 4k/5, € = 0.005 via semi-implicit method with SUPG.

h/N2  lly—yull  order lp—pull order [u—uwll  order
272 1.5324e-1 - 4.6177e-2 - 3.1771e-2 -
273 7.8597e2 0.96 23064e2 1.00 1.6912e-2 0.90
274 26199%-2 158 1.0275¢-2 1.17 7.3080e-3 1.21
275 7.2459e-3 1.85 4.1238e-3  1.32  2.9196e-3  1.32
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Example 4.1.3(Two-dimensional control constrained problem)

This example is studied in [27]. For this example, we take the control constraints 0 < u < 0.5. We
choose € = 107, 8 = (0.5,0.5), o = 0, and f(x, 1), and yo(x) are chosen such that the state, adjoint
state and control solutions are

1 1
p(—— sin(ty) + 8en® + Ve 1 sin(t,)%)

0T P 2 72
—m cos(rt) sin(27rxy ) sin(2mx;) exp(w)’
Ve
p(x,t) = sin(xr) sin(2rx;) sin(27x;) exp(w),
Ve
u(x,t) = max{0, min(—p,0.5)}
ya(x,t) = n(1 +2+esin(t,)) sin(t) sin(2(x; + x2)) eXp(M),

Ve

t, = t—0.5(x +x).

This is so similar to Example 4.1.2, except the control constraints. The control constraint defined in
Example 4.1.2 has only a lower bound, whereas the control constraint in this example has both lower
and upper bound. In the following Table 4.7, we can see the O(h*/?) order accuracy for the Crank-
Nicolson method by taking the parameter 7 = h/8.

Table 4.7: Example 4.1.3 with 7 = h/8, € = 10~ via Crank-Nicolson method with SUPG.

h lly=yull  order [[p—psll order [lu—ull  order

272 2.6425¢-1 - 1.5792e-1 - 6.8394e-3 -

273 1.120le-1 124 2.3062e-2 277 1.4405e-2 1.07
274 3.9680e-2 1.49 6.5409e-3 1.82 4.0418e-3  1.83
275 1.2406e-2 1.67 2.8686e-3 1.19 1.7745¢e-3  1.19
276 3.1830e-3 136 9.2918e-4 1.62 5.9923e-4 1.56

For the backward Euler and semi-implicit scheme, we again take the stabilization parameter propor-
tional to the length of the time step size, i.e.,7 < 4k/5. Tables 4.8-4.9 show that the convergence orders
of L? error in all variables are achieved as expected.

Table 4.8: Example 4.1.3 with 7 = 4k/5, € = 10~ via backward Euler method with SUPG.

h/N2  lly—yull  order lp—pull order |ju—uwll  order

272 2.0429-1 - 4.2832e-2 - 3.8896e-2 -

273 927022 1.14 1.0957e2 1.96 7.6304e-3 2.34
274 4.6555e-2 099 53384e-3 1.04 3.3266e-3 1.20
275 201322 1.21 245393 1.12 151223 1.14
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Table 4.9: Example 4.1.3 with 7 = 4k/5, € = 0.005 via semi-implicit method with SUPG.

h/N2  lly—yull  order lp—pull order [u—uwull  order

272 1.4030e-1 - 4.9870e-2 - 2.4990e-2 -

273 6.6726e-2 1.07 2.3230e2 1.10 1.3974e-2 0.83
274 2.2837e-2  1.54 1.0395¢e-2 1.16 621493 1.17
275 8.4950e-3 142 4.1925¢-3 1.31 2.5356e-3  1.29

In Figure 4.6-4.7, we clearly present the accuracy of the SUPG method numerically. As a difference
of previous example, in this example we have upper bound for control variable which can be observed
in Figure 4.7. By correcting the unstabilized solutions, we obtain the good approximation to exact
solution with SUPG method except for the direction of convection term.
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Figure 4.6: Example 4.1.3 via Crank-Nicolson method with Ax = 273: The exact state solution (top),
the stabilized approximate state solution (middle), the unstabilized approximate state solution (bot-
tom), their contour lines in the right side.
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4.2 Optimal boundary control problem

4.2.1 All-at-Once method and preconditioning

We proceed the boundary OCPs and as we mentioned in the previous section, we apply the all-at-once
method to solve the optimality systems which are obtained using the DO approach in Chapter 2. In a
similar way, we redefine the optimality systems (2.84) in the saddle point form (4.1).

A= Al‘Ml/z 0
o 0 aAtM 2

and
Y AIM1/2Yd
x:=| U |, B:=(-E, A1Zy )andb:= 0
P _Fs,b

We can use both the direct method or the iterative method according to the dimension of the problem.
If the dimension is not too big, we can choose the direct method easily. Howewer, if the dimension
is huge, we can not use the direct method because of the memory problem, and we choose iterative
method with the following preconditioner:

AIMl/Q 0 0
P = 0 alAtMippp 0 (4.50)
0 0 S

In the case of the time-dependent boundary OCPs, we choose the Schur complement S := (1/ADE;, M7 }2E£h+
(At/a)Zoy M)y, 2T,

We note that as an assumption, all mass matrices are lumbed and M 25, M/, are a block-diagonal

matrix of lumbed boundary-mass matrices M;, and a mass matrix over the domain Q M, respectively.
Herewith, we can evaluate our problem efficiently. Moreover, in [81], effective preconditioners are
derived by evaluating the effective approximation of the Schur complement of the matrix system.

4.2.1.1 Numerical example

In this section, we consider a two-dimensional boundary OCP governed by convection-dominated
diffusion-convection-reaction equation. As in the distributed case, we give the numerical performance
of the SUPG method by choosing the appropriate stabilization parameter. The piecewise-linear ele-
ments with SUPG are used to approximate the state, the adjoint, and the control variables in the case
of spatial discretization. The studies are presented for Crank-Nicolson method.

We generate our time-dependent boundary OCPs from the elliptic boundary OCP given in [3]. The
boundary OCP (2.62) and the state equation (2.62b) with the domain Q = (0,1) x (0,0.2),7 >0, Q =
0, T)xQ,and X = (0, T)x0Q. Letus choose e = 0.001, o =1, f =0, y = 103, @ = 1074, B =[10).

The exact solution of the boundary OCP is not known, so we can observe the L? error of the cost
functional J;; with SUPG for a sequence of uniformly refined meshes and time steps tending to zero.
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Figure 4.8: L, error for SUPG method with € = 1073,

In Figure 4.8, we indicate the L? error of the cost functional for different choice of stabilization param-
eters. The relation between the mesh size & and the time step size k is taken as k = h3/4.

In Table 4.10, we demonstrate the L2 error with different stabilization parameter to see the effect of the
parameter on the SUPG method. For this example, the small stabilization parameter tends to a small
L? error of the cost functional.

Table 4.10: Example 4.2.1 with € = 10~* via Crank-Nicolson with SUPG.

1mell (1l (1l (1l
/N2 (x=h/2) (=2n/T) (=h/4) (t=h/)
273 4.4272e-2  2.7815e-2  2.8312e-2 3.5825e-2
24 7.5644e-3  4.0823e-3 4.0136e-3 4.3923e-3
273 1.1099¢e-3  5.4600e-4 5.2514e-4 5.2232e-4
276 1.1573e-4  4.9955e-5 4.6880e-5 4.2127e-5

In Figures 4.9-4.11, the approximate solution of the state, the adjoint, and the control variables are
shown with and without SUPG. The efficiency of the SUPG method can be seen by its contours lines.
Especially in Figure 4.9-4.10, we can observe the decreasing of the oscillation in the contours by ap-
plying the SUPG method. In Figure 4.11, its line is given for y = 0.2 to illustrate the efficiency on
the boundary. Since we do not have exact solution, we can compare the unstabilized and stabilized
solution to show the accuracy of the SUPG method. We take 7 = h/8, and ¢ = 0.5 in the following
figures.
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Figure 4.9: Example 4.2.1 via Crank-Nicolson method with Ax = 273 V2: The approximate state
solution (top), its contour line (bottom), stabilized (left), unstabilized (right).
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Figure 4.10: Example 4.2.1 via Crank-Nicolson method with 4 = 273 V2: The approximate adjoint
solution (top), its contour line (bottom),stabilized (left), unstabilized (right).
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Figure 4.11: Example 4.2.1 via Crank-Nicolson method with t = 0.5, h = 27° V2: The approxi-

mate control solution(top), its contour line (middle), its line with y = 0.2 (bottom), stabilized (left),
unstabilized (right)
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The optimal control problems (OCPs) consisting of the state, adjoint and control equations are dis-
cretized in space by linear finite elements with SUPG stabilization. For time discretization, backward
Euler, Crank-Nicolson and semi-implicit methods are considered. We have analyzed the effect of the
SUPG method applied to OCPs of evolutionary diffusion-convection-reaction equation using both OD
and DO approaches. The OD approach with the adaptive algorithms of COMSOL gives satisfactory
results for the optimization problem with and without control constraints. In the DO approach, nu-
merical results obtained by all-at-once method with a special choice of SUPG parameter confirm the
predicted convergence rates very well. Because the SUPG is a residual based stabilization, OD and
DO approaches do not commute.

As a future work, the symmetric stabilization techniques based on continuous interior penalty method
and edge stabilization can be applied to convection dominated OCPs governed by evolutionary diffusion-
convection-reaction equations.
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