

HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING
PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAMAN AMINBAKHSH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR
THE DEGREE OF MASTER OF SCIENCE

IN
CIVIL ENGINEERING

JANUARY 2013

Approval of the thesis:

HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING
PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM

submitted by SAMAN AMINBAKHSH in partial fulfillment of the requirements for
the degree of Master of Science in Civil Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Cevdet Yalçıner
Head of Department, Civil Engineering

Assoc. Prof. Dr. Rıfat Sönmez
Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Asst. Prof. Dr. Metin S. Arıkan
Civil Engineering Dept., METU

Assoc. Prof. Dr. Rıfat Sönmez
Civil Engineering Dept., METU

Prof. Dr. M. Talat Birgönül
Civil Engineering Dept., METU

Asst. Prof. Dr. Aslı Akçamete
Civil Engineering Dept., METU

Ender Şenkaya, M.Sc.
Partner, Angora Beach Resort

Date: 25.01.2013

iv

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name : Aminbakhsh Saman

Signature :

v

ABSTRACT

HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING
PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM

Aminbakhsh, Saman

M.S., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Rıfat Sönmez

January 2013, 92 Pages

In pursuance of decreasing costs, both the client and the contractor would
strive to speed up the construction project. However, accelerating the project
schedule will impose additional cost and might be profitable up to a certain
limit. Paramount for construction management, analyses of this trade-off
between duration and cost is hailed as the time-cost trade-off (TCT)
optimization. Inadequacies of existing commercial software packages for such
analyses tied with eminence of discretization, motivated development of
different paradigms of particle swarm optimizers (PSO) for three extensions of
discrete TCT problems (DTCTPs). A sole-PSO algorithm for concomitant
minimization of time and cost is proposed which involves minimal adjustments
to shift focus to the completion deadline problem. A hybrid model is also
developed to unravel the time-cost curve extension of DCTCPs. Engaging
novel principles for evaluation of cost-slopes, and pbest/gbest positions, the
hybrid SAM-PSO model combines complementary strengths of overhauled
versions of the Siemens Approximation Method (SAM) and the PSO algorithm.
Effectiveness and efficiency of the proposed algorithms are validated
employing instances derived from the literature.

Throughout computational experiments, mixed integer programming
technique is implemented to introduce the optimal non-dominated fronts of
two specific benchmark problems for the very first time in the literature.
Another chief contribution of this thesis can be depicted as potency of SAM-
PSO model in locating the entire Pareto fronts of the practiced instances,
within acceptable time-frames with reasonable deviations from the optima.
Possible further improvements and applications of SAM-PSO model are
suggested in the conclusion.

Keywords: Discrete Time-Cost Trade-Off Problem, Time-Cost Curve Problem,
Pareto Front, Particle Swarm Optimization, Hybrid Algorithm

vi

ÖZ

KESİKLİ ZAMAN-MALİYET ÖDÜNLEŞİM PROBLEMLERİNDE PARETO EĞRİSİNİN
MELEZ KUŞ SÜRÜSÜ OPTİMİZASYON ALGORİTMASI İLE OLUŞTURULMASI

Aminbakhsh, Saman

Yüksek Lisans, İnşaat Mühendisliği Bölümü
Tez Yöneticisi: Doç. Dr. Rıfat Sönmez

Ocak 2013, 92 Sayfa

İnşaat projelerinin süresinin kısaltılması maliyetleri düşürebileceğinden hem
işveren hem de müteahhit açısından önemlidir. Ancak, projelerin
hızlandırılması ek maliyetlere neden olmakta ve sadece belirli bir sınıra kadar
toplam maliyetleri düşürebilmektedir. İnşaat yönetiminde büyük önem
taşımakta olan, süre ve maliyet arasındaki bu ödünleşimin analizi, zaman-
maliyet ödünleşim (TCT) optimizasyonu olarak adlandırılmaktadır. Mevcut
ticari yazılımlar ve literatürde önerilen yöntemler kesikli zaman-maliyet
ödünleşim probleminin (DTCTP) çözümü için son derece sınırlı çözümler
üretebilmektedir. Bu doğrultuda, bu tezde DTCTP’nin üç farklı türü için,
değişik kuş sürüsü algoritmaları (PSO) geliştirilmiştir. Önerilen yalın-PSO
algoritması zaman ve maliyetin birlikte minimize edilmesini mümkün kılmakta
ve küçük değişiklerle, zaman sınırlı problem için de sonuç elde edilmesini
sağlamaktadır. Bir diğer model ise, DTCTP’nin zaman-maliyet ödünleşim
eğrisinin elde edilmesi için geliştirilmiştir. Bu model doğrultusunda oluşturulan
melez algoritmada maliyet eğrileri ve pbest/gbest pozisyonlarının
değerlendirilmesi için yeni yöntemler önerilmiş ve aynı zamanda Siemens
Yaklaşım Metodu (SAM) ve PSO algoritmasının güçlü özellikleri entegre
edilmiştir. Önerilen algoritmaların etkinliği ve performansı literatürden alınmış
örneklerle gösterilmiştir.

Sayısal deneyler esnasında, karışık tamsayı programlama tekniği vasıtasıyla,
iki denektaşı probleminin optimal tam Pareto eğrileri literatürde ilk kez
belirlenmiştir. Bu çalışmanın bir diğer önemli katkısıysa, geliştirilen SAM-PSO
algoritmasının örnek problemlerin tam Pareto eğrisini kısa bir süre içerisinde
optimum eğrilerden makul bir sapma ile elde edilebilmesidir. SAM-PSO'nun
kullanılabileceği diğer alternatif uygulamalar ve geliştirilebileceği potansiyel
alanlar sonuç kısmında önerilmiştir.

Anahtar Kelimeler: Kesitli Zaman-Maliyet Ödünleşim Problemi, Zaman-Maliyet
Eğrisi Problemi, Pareto Eğrisi, Kuş Sürüsü Algoritması, Melez Algoritması

vii

This thesis is dedicated to my beloved family

viii

ACKNOWLEDGEMENTS

The best and the worst moments of my Master’s journey have been shared
with many people. One of the joys of completion is to look over the journey
past and remember all the friends and family who have helped and supported
me along this long but fulfilling road. It has been a great privilege to spend
some years in the Construction Engineering and Management division of
Middle East Technical University; members of which will always remain dear
to me. There are a number of people without whom this thesis might not have
been written, and to whom I am greatly indebted.

First and foremost, I would like to extend my sincere thanks to my supervisor,
Assoc. Prof. Dr. Rıfat Sönmez, who offered his continuous advice and
encouragement throughout the course of this thesis. I attribute the level of
my Master’s degree to his encouragement and effort and without him this
thesis, too, would not have been completed or written.

I take this opportunity to offer my sincerest gratitude with all of my heart to
my beloved parents, Mohammad Aminbakhsh and Simin Nahaei. They raised
me, supported me, taught me, and loved me; living thousand miles apart
from them was not easy at all. I also wish to thank my lovely grandmother
for her love and affection, not to mention her frequent morale booster phone
calls.

I would like to show my greatest appreciation to my roommate, best friend,
greatest thing that has ever happened in my life, sibling, or maybe it is just
better to call him my brother, Sina Aminbakhsh. His love and continuous
support, both spiritually and materially, have been great sources of
motivation and encouragement at every stage of my life.

I am especially grateful to Marjan and Mozhgan Khoylou sisters for helping me
get through the difficult times, for all the good memories and all the
emotional support, camaraderie, entertainment, and caring they provided.

Last but not least, I would like to express my thankfulness to Özgür
Dedekargınoğlu and Murat Ayhan, for their precious friendship, and for all the
academic and non-academic supports they provided throughout this journey.
They were the persons who made me feel at home in a foreign land.

ix

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS .. xiv

CHAPTER

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 5

2.1. CPM ... 5

2.2. TCTP .. 6

2.3. Exact, Heuristic, and Meta-heuristic Methods 10

2.4. Exact, Heuristic, and Meta-heuristic Methods for TCTP 11

2.4.1. Exact methods for TCTP ... 12

2.4.2. Heuristic methods for TCTP... 13

2.4.3. Meta-heuristic methods for TCTP ... 13

3. PARTICLE SWARM OPTIMIZATION ALGORITHMS 25

3.1. Particle Swarm Optimization (PSO) .. 25

3.1.1. Modified particle swarm optimization (M-PSO) 29

3.1.2. Discrete binary particle swarm optimization (D-PSO) 30

3.2. Siemens Approximation Method (SAM) 31

3.3. Initialization and Termination ... 32

3.4. Particle Swarm Optimizer for Time-Cost Trade-Off Analyses 33

3.4.1. Discrete TCTP ... 33

3.4.2. Time-constraint TCTP ... 38

3.4.3. Time-cost curve TCTP .. 41

4. VALIDATION AND EMPIRICAL ANALYSES ... 49

4.1. Validating the Algorithms ... 49

4.2. Empirical Analyses .. 50

x

4.2.1. Discrete TCTP analyses .. 51

4.2.2. Time-constraint TCTP analyses ... 59

4.2.3. Time-cost curve TCTP analyses ... 60

5. CONCLUSIONS ... 83

REFERENCES ... 87

xi

LIST OF TABLES

TABLES

Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP. 19

Table 4.1 – Data for the 18-activity TCT problem. 51

Table 4.2 – Parameters selected for discrete PSO algorithm. 52

Table 4.3 – Results of experimental analyses for the proposed discrete PSO

algorithm. .. 53

Table 4.4 – Data for the 63-activity TCT problem. 54

Table 4.5 – Parameters selected for discrete PSO algorithm. 56

Table 4.6 – Results of analyses for the 63-activity problem with daily indirect

cost of 2,300$. ... 58

Table 4.7 – Results of analyses for the 63-activity problem with daily indirect

cost of 3,500$. ... 59

Table 4.8 – Parameters of the discrete PSO algorithm for the deadline

problem. .. 60

Table 4.9 – Results of experimental analyses for time-constraint TCT problem.

 .. 60

Table 4.10 – Optimal solutions for 18-activity problem over feasible set of

durations (No indirect cost). ... 61

Table 4.11 – Optimal solutions for 18-activity problem over feasible set of

durations (daily indirect cost of 200$). .. 62

Table 4.12 – Optimal solutions for 18-activity problem over feasible set of

durations (daily indirect cost of 1,500$)... 62

Table 4.13 – Results provided by modified-SAM for 18-activity problem

through the first phase of hybrid algorithm (No indirect cost). 63

Table 4.14 – Results provided by modified-SAM for 18-activity problem

through the first phase of hybrid algorithm (daily indirect cost of 200$).

 .. 63

xii

Table 4.15 – Results provided by modified-SAM for 18-activity problem

through the first phase of hybrid algorithm (daily indirect cost of

1,500$). .. 63

Table 4.16 – Parameters of the SAM-PSO model for the 18-activity problem.

 .. 64

Table 4.17 – Complete Pareto front of 18-activity problem obtained by SAM-

PSO model (No indirect cost). .. 66

Table 4.18 – Complete Pareto front of 18-activity problem obtained by SAM-

PSO model (daily indirect cost of 200$). .. 67

Table 4.19 – Complete Pareto front of 18-activity problem obtained by SAM-

PSO model (daily indirect cost of 1,500$). 68

Table 4.20 – Optimal solutions for 63-activity problem over feasible set of

durations (daily indirect cost of 2,300$). ... 72

Table 4.21 – Optimal solutions for 63-activity problem over feasible set of

durations (daily indirect cost of 3,500$). ... 73

Table 4.22 – Results provided by modified-SAM for 63-activity problem

through the first phase of hybrid algorithm (daily indirect cost of

2,300$). .. 75

Table 4.23 – Results provided by modified-SAM for 63-activity problem

through the first phase of hybrid algorithm (daily indirect cost of

3,500$). .. 76

Table 4.24 – Parameters of the SAM-PSO model for the 63-activity problem.

 .. 77

Table 4.25 – Complete Pareto front of 63-activity problem obtained by SAM-

PSO model (daily indirect cost of 2,300$). 78

Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-

PSO model (daily indirect cost of 3,500$). 79

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 – Project acceleration results in a nonlinear escalation of direct

costs. ... 8

Figure 2.2 – Project acceleration cause linear decline in indirect costs. 8

Figure 2.3 – Variation of total cost as a result of project acceleration. 9

Figure 3.1 – Demonstration of PSO concepts (Yang 2007a). 28

Figure 3.2 – Flowchart of the proposed discrete PSO algorithm. 34

Figure 3.3 – Pseudo-code of the proposed discrete PSO algorithm. 38

Figure 3.4 – Flowchart of the proposed PSO algorithm for time-constraint

TCTP. .. 39

Figure 3.5 – Pseudo-code of the proposed PSO algorithm for the deadline

problem. .. 41

Figure 3.6 – Flowchart of the proposed hybrid SAM-PSO algorithm. 43

Figure 3.7 – Pseudo-code of the proposed hybrid SAM-PSO algorithm. 47

Figure 4.1 – Activity on node (AoN) representation of the 18-activity network.

 .. 52

Figure 4.2 – Activity on node (AoN) representation of the 63-activity network.

 .. 57

Figure 4.3 – Comparison of obtained Pareto fronts for 18-activity problem (No

indirect cost). ... 69

Figure 4.4 – Comparison of obtained Pareto fronts for 18-activity problem

(daily indirect cost of 200$). .. 70

Figure 4.5 – Comparison of obtained Pareto fronts for 18-activity problem

(daily indirect cost of 1,500$). .. 70

Figure 4.6 – Comparison of obtained Pareto fronts for 63-activity problem

(daily indirect cost of 2,300$). .. 82

Figure 4.7 – Comparison of obtained Pareto fronts for 63-activity problem

(daily indirect cost of 3,500$). .. 82

xiv

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization
ACS Ant Colony System
ANOVA Analysis Of Variance
AoA Activity on Arrow
AoN Activity on Node
APD Average Percent Deviation
Avg. Average
CPM Critical Path Method
CPU Central Processing Unit
cs Centiseconds
CS Cost Slope
dc Direct Cost
D-PSO Discrete Binary Particle Swarm Optimization
DTCTP Discrete Time-Cost Trade-Off Problem
Dur. Duration
ES Early Start
FMOPSO Fuzzy Multi-Objective Particle Swarm Optimization
GA Genetic Algorithm
gbest Global Best Position
GHz Gigahertz
GMIR Graded Mean Integration Representation
HA Hybrid Genetic Algorithm
ic Indirect Cost
MA Memetic Algorithm
MAWA Modified Adaptive Weight Approach
MOW Multi-Objective Weighting
M-PSO Modified Particle Swarm Optimization
NA-ACO Non-dominated Archiving Ant Colony Optimization
NP-Hard Non-Polynomial Hard
pbest Personal Best Position
PD Percent Deviation
PSO Particle Swarm Optimization
QSA Quantum Simulated Annealing
RAM Random Access Memory
SA Simulated Annealing
SAM Siemens Approximation Method
SFL Shuffled Frog Leaping
TCT Time-Cost Trade-Off
TCTP Time-Cost Trade-Off Problem
USD United States Dollar
WM-ACO Weighted Method Ant Colony Optimization

1

CHAPTER 1

INTRODUCTION

Due to ever evolving competition among construction firms, besides, owing to
the intrinsic challenges associated with the construction projects, the
prerequisite for a company to survive is to perform profound appraisals in
preparation of the project schedules. Opposed to other industries, transient
nature of the construction projects impose heavy burden to decision makers
regarding unequivocal optimal devotions of time, cost, and resources.
Conflicting aspects of planning coupled with other impartible components of
prosperous project plans further narrow the field for the project management
teams; such aspects involve provisions of safety and productivity upkeeps in
the interim of the planning phase. Accordingly, uniting multidisciplinary
collaborations, construction companies seek to develop realistic schedules
with systematic updating techniques. Evidently, any company would fail to
meet the anticipated resolutions in the absence of a decent schedule.

Classical network analyses like critical path method (CPM), in essence, merely
incorporate the time aspect. Such methods attempt to minimize the project
duration regardless of the availability of resources (both money and physical
resources). Even suchlike analyses necessitate a number of assumptions in
coping with constriction endeavors. Logical relationships, lag times, working
calendars, resource requirements, and contingency plans are some of the
many essential concerns amidst preparation of a schedule. An inadequate
schedule might induce misery for a company, grounding for financial losses,
dissatisfied customers, disputes, bad reputation, and so forth.

Almost every construction project involves a completion deadline determined
in the contract by the client. This date is generally obtained by means of the
network analyses. For such limitations, resource overloads are usually
provisioned by recruiting subcontractors or directing alternative resource
supplies. In addition, it is common for construction projects to seek meeting
shorter than prescribed deadlines, in pursuance of making more profits. Any
reduction in project duration is facilitated by compression or acceleration of
the schedule. Decision makers speed up the project forcing least additional
costs by deploying the slack times of the networks along determining the best
combination of alternatives for realization of the activities. This task is
facilitated by providing the best balance between the direct and indirect costs
of a project, since, exposed to schedule accelerations, they exhibit inverse
oscillations.

This trade-off between time and cost of projects are dubbed as time-cost
trade-off problem (TCTP), which is one of the most prominent aspects of the
project management. For the first time, considerations of TCT problem have
emerged almost half a century ago in 1960s. Ever since, it has caught

2

attention of numerous researchers and as a result, several studies have been
devoted to address this problem in the literature. The discrete version of this
problem considers discrete sets of time-cost options for the activities. Such a
concern is imperative to TCT practices as they are commonplace in real-life
projects; besides, time-cost function of any type can be estimated by discrete
functions.

A real-life construction project almost always involves hundreds or even
thousands of multi-modal activities. Projects of such kind are classified as
Non-Polynomial hard (NP-hard) problems that require concurrent searches
over the solution space, owing to the reason that any escalation in the size of
the project significantly augments the required time to determine the optimal
combination of options. Due to this inherent complexity, discrete TCT
problems are unraveled merely for small instances.

In the literature, the discrete TCT problem has been studied under three
classes of deadline, budget, and time-cost curve problems. Deadline problem
minimizes the total cost taking into account an upper boundary for the
duration of the project. Whilst, the budget constraint minimizes the duration
of the project without exceeding an upper boundary set for the budget. It is
traced to find the solutions with minimum amounts of cost or duration while
satisfying any of these constraints. The latter state of the discrete TCT
problem maps optimal total costs to any feasible completion time to generate
a set of so-called non-dominated solutions. It is extensively acknowledged in
the literature (e.g. Zheng et al. 2005, Yang 2007a, Eshtehardian et al.2008)
that the ultimate resolution of TCT analyses is to generate all the non-
dominated solutions, hailed as the Pareto front, for all the practical
realizations of project duration.

Although implementation of the scheduling principles appears to be
straightforward, the commercial scheduling software packages virtually
provide inadequate strategies for TCT analyses, signalizing presence of a gap
between the theoretical attainments and the practical exertions. On the other
hand, exhaustive enumerations fall short of delivering an efficient and
convenient mean for discrete TCT analyses. Existence of such gap coupled
with inefficiencies of the existing procedures, have initiated development of
several algorithms and heuristics addressing the optimal or near-optimal
solution for this problem. The researchers, benefitting from the ever evolving
computer science technologies have established numerous optimization
methods, mainly involving exact methods (such as linear programming,
dynamic programming, branch-and-bound methods), heuristic, and meta-
heuristic algorithms (such as genetic algorithms (GAs), particle swam
optimization method (PSO), and so forth). Though, none of the proposed
methods are without deficiencies. The proposed exact algorithms, while
necessitating massive computational resources, are incapable of solving large
problems. They are more difficult to implement and are prone to being
stagnated in local optima in non-convex solution spaces (De et al. 1995, Feng
et al. 1997, Eshtehardian et al. 2008, Afshar et al. 2009). The studies
providing heuristic algorithms acknowledge that they are problem dependent
and cannot handle large-scale problems efficiently (Siemens 1971). Most of
the heuristics assume merely linear time-cost functions and they fail to solve

3

time-cost curve problems (Feng et al. 1997, Zheng et al. 2005). Besides,
main deficiency of the existing meta-heuristic algorithms is observed as their
inability to escape from local optima (Zheng et al. 2005, Sonmez and
Bettemir 2012).

In fact, exact procedures are the only methods guaranteeing optimality of the
solutions; nevertheless, heuristics and meta-heuristics are incapable of
securing the optimality of the solutions. Compared to exact procedures,
heuristics and meta-heuristics demand insignificant computational efforts to
determine optimal or near-optimal solutions, within acceptable time-frames.
In recent years, in order to improve the convergence capabilities of the meta-
heuristics, researchers have focused on hybrid algorithms to combine the
complementary strengths of different procedures. Results of the Hybrid
algorithms reveal that they are capable of dealing with real-world instances
more efficiently than the sole algorithms.

In this thesis study, it is perceived that relatively scarce devotion is made
toward identification of the complete Pareto front for discrete TCT problems.
Owing to this inadequacy, it is of great importance to provide the decision
makers with robust techniques to take on the TCT analyses. It is also
observed that a relatively scant work has been carried out to adopt particle
swarm optimization (PSO) method in discrete TCT problems. Consequently,
due to efficiency of meta-heuristics along with the robustness of the PSO
algorithm, this study aims to take on different paradigms of the PSO
algorithm in analyzing three extensions of the TCT problems.

The main objective of this study is to present a state-of-the-art model with
higher efficiency and improved accuracy, which is capable of exerting the
time-cost curve problem, i.e., identifying the complete Pareto front for larger
discrete TCT networks. To this end, heuristic method of Siemens (1971) along
with PSO algorithm are recruited. Primarily, overhauled versions of the
Siemens Approximation Method (SAM) and the PSO algorithm are introduced;
thereby, a hybrid-PSO model is generated exploiting the merits of the
modified-SAM method augmented with the global convergence capabilities of
the proposed PSO algorithm. The hybrid algorithm contrasts with the previous
studies both in terms of the approach taken to generate the first population,
and in terms of the objective function used to evaluate pbest and gbest of the
particles. The SAM-PSO model is envisioned to support decision makers in
competent evaluations of the subsequent “what if” scenarios.

All the proposed algorithms have been implemented in C++ programming
language using the Microsoft Visual Studio 2010. Well-known problems
obtained from the literature are fed into the PSO optimizers, and experiments
have been directed to validate their potencies accordingly. In addition, on the
verge of performance assessments, all the instances are solved to optimality
by dint of mixed integer programming using the AIMMS optimization software.
The quality of solutions obtained from the PSO algorithms are measured using
the optimal solutions; the average deviations are then evaluated for multiple
experimental runs. Moreover, the time-frames required to unravel the test
problems are also determined. The results reveal that the proposed
algorithms are successful for providing optimal or near optimal solutions for

4

the discrete TCT problems. The SAM-PSO was able to obtain adequate Pareto
fronts for every discrete TCTP, within reasonable computational time.

The sequel of the thesis is organized as follows. Chapter 2 starts with a brief
introduction on CPM and TCTP, followed by detailed review of existing
optimization techniques dealing with TCT analyses. Chapter 3 presents the
main body of this work, illustrating the particle swarm optimizers followed by
description of the novel hybrid algorithm, and its implementation for solution
of optimization problems. Chapter 4 presents TCT analyses of sample problem
sets, followed by results of the computational experiments. Chapter 5 includes
the conclusions and points out potential topics for future research.

5

CHAPTER 2

LITERATURE REVIEW

In this chapter, the principles of project scheduling are summarized. First,
Critical path method (CPM) is described along with the types of the expenses
imposed to the contractors. The time-cost trade-off problem (TCTP) is
presented in addition to some of the related optimization techniques. Along
with the other proposed methods in the literature, prospects of particle swarm
optimization (PSO) in TCT problem are then presented.

2.1. CPM

Scheduling can be defined as the appraisal of timing and sequence of a
project’s actions which facilitates determination of the overall completion date
(Mubarak 2010). In the course of scheduling, network analysis – a generic
term for various planning methods – is always exploited (Lock 2007).

Being one of the most widespread scheduling and network analysis
techniques, the critical path method (CPM), involves determination of the
longest path through the network. It facilitates defining a project’s duration in
conjunction with the shortest amount of time required to complete the project
(Kerzner 2009). Adoption of this technique necessitates identification of the
duration and logical relationship among the activities. Based upon the initial
information set, an illustration of the schedule is prepared either by using the
activity on arrow (AoA) or the activity on node (AoN) notation systems. As the
names imply, in the first system (AoA) the activities are represented by
arrows intersecting nodes which resemble events; while, in the second system
(AoN) activities are represented by nodes and the logical relationships are
traced by arrows. Courtesy of the ensuing reasons, the activity on node
system of notation is recruited in this thesis:

• Compared to activity on arrow diagrams, they are more easily understood

due to their resemblance with the engineering flow diagrams.

• Starts and finishes of activities that do not directly correspond to their
immediate predecessor and successor activities are clearly demonstrated.

• They assist designation of the activities capable of overlapping each other
or, the contrary, identification of the activities that must be delayed
imposing lag times.

• Widespread adoption of the activity on node systems by computer
programs opposed to the activity on arrow system.

6

Accordingly, the activity on node system of notation is generally preferred and
has emerged as the prominent method used for the scheduling (Lock 2007).

In a CPM schedule, all the remaining paths of a network are either equal in
length to or shorter than the critical path. The time discrepancy between the
latest possible completion times of each activity without affecting the
completion of the overall project, and the planned completion date is known
as the slack time. The slack times of the activities are determined by forward-
pass and backward-pass calculations in finding activities’ early start/finish and
late start/finish times, respectively. If the admissible delay in start/finish time
of an activity – slack time – is equal to zero, this indicates that the concerned
activity must be commenced as soon as its predecessors are accomplished;
these type of activities which constitute the critical path(s) of the network are
called critical activities.

Virtually every construction project has an overall completion deadline
determined by the client that is specified in the contract. Some of these
deadlines are assigned strictly not allowing for any delays in the completion of
the project. Thus, amidst scheduling phase of a construction project, the
procedure must be time-limited if the completion date is considered as the
chief objective. The prevailing resolution in this case is to warrant the project
will be accomplished on the definite date. This date is usually the earliest
possible completion date designated via network analysis (indicated by the
CPM); however, the completion date might also be targeted on a later date.
Any projected resource over-allocations must be accepted for a time-limited
scheduling, possibly assuming that either resource overloads can be alleviated
through hiring subcontract workforce or by making alternative short-term
resource provisions.

2.2. TCTP

Obviously, it is an important resolution for both the contractor and the client
to finish the project on or ahead of the schedule. Unambiguously, finishing on
or under the specified budget is another favorable achievement. Accordingly,
simultaneous realization of these two objectives is undeniably desirable for
both the parties. Considering the slack time in conjunction with the possible
crashing alternatives of the activities, a project manager can speed up the
project to meet a predetermined deadline with imposition of least additional
costs. For this purpose, respecting the crashing alternatives of the tasks, a
manager evaluates the cost per unit time (Cost Slope) as well as a feasible
budgets (cash-flow) region for the project. Hence, one of the dominant
prospects of the network analysis can be concluded as finding a solution that
not only satisfies the completion deadline, but also has the lowest feasible
total cost that resides within the feasible budget boundaries.

Rather than targeting to meet a prescribed completion deadline, there might
be a couple of other reasons for a contractor to speed up a project. For
instance, a contractor with good economic conditions might esteem to
expedite a project in order to be able to start another earlier; to wit, to make
more profit. Usually, the contractor knows the required date to mobilize to

7

another project; and thus, this may involve compressing the current project in
favor of freeing required resources so that they can be allocated to the new
project. However, accelerating a project schedule might prove profitable only
up to a certain level; since, it gets costly to diminish the project duration
below a certain limit. The act of accelerating (compressing) or crashing a
project schedule literally means reducing the duration of a project. Though,
the distinction between these two approaches must first be clarified. Whilst
both the techniques aim at advancing the completion date of the project,
accelerating does not necessarily mean targeting to reach the least possible
duration.

It must be also clarified that the possibility of schedule acceleration or
availability of the crashing alternatives for the activities of the projects is
highly affiliated with the typology of the projects. Those with strict logical
relationships among the activities, such as high-rise buildings, usually offer
less flexibility regarding the schedule acceleration compared to other types,
such as pipeline projects.

According to the Construction Industry Institute (Force 1988), there are more
than 90 techniques to compress a schedule. Reviewing these techniques,
Mubarak (2010) has abstracted the ensuing 9 methods to accelerate a project
schedule:

• Review or evaluate the schedule to discover any errors or imperfect
logical relationship or constraints

• Fast-track achieving project objectives

• Carry out constructability studies and value engineering

• Assign over-time schedule either by increasing the hours per day
and/or days per week

• Devote incentives for more productive workers or crews

• Allocate more human resources

• Undertake special construction method using specific materials and/or
equipment to expedite the project

• Revamp project management and improve supervision

• Prevent communications breakdowns among parties

Throughout a project, the main expenses a contractor has to cope with are
often classified into two categories; Direct costs and Indirect costs. The main
principle for distinguishing the direct expenses from the indirect costs can be
depicted as a direct cost item is directly associated with an explicit work item.
Direct expenses may encompass labor, material, equipment, subcontractor,
machinery, and other costs related to fees and permits; whereas, the indirect
costs might bear project overhead, and general overhead expenditures.

8

Overhead expenses might incorporate salaries of the guard, cook, and office
personnel as well as the energy costs. It is imperative for a contractor to
regard that the amounts of direct and indirect costs are susceptible to
schedule compression; they are usually impacted in an opposite manner as
the acceleration takes place.

Despite the fact that staffing more crews or assigning them to work over-time
decreases the productivity and, in turn, increases the ratio of unit cost per
unit output, though, either of these approaches can be adopted should a
schedule acceleration required. Therefore, in general, direct costs get
increased in case of project acceleration; the more the acceleration is
augmented, the more the daily cost of acceleration increases. As shown in
Figure 2.1, this progression is usually nonlinear.

Figure 2.1 – Project acceleration results in a nonlinear escalation of direct costs.

As depicted previously, indirect costs encompass mainly the overhead
expenditures which vary on daily basis in accord with the climatic conditions
and the number of the staffed personnel. Nevertheless, for the sake of
simplified cost computations, they are usually assumed to be linearly
comparative to the duration of the project; besides, due to exact same
reason, second order cost components, e.g. insurance and bond payments,
are excluded from the daily indirect expenses. Hence, in case of schedule
acceleration, the indirect costs decline at a constant rate (Figure 2.2).

Figure 2.2 – Project acceleration cause linear decline in indirect costs.

As for the total cost curve, as shown in Figure 2.3, the total cost initially
declines at a diminishing rate till it reaches a minimum amount. This point

D
ir

ec
t

C
os

t
($

)

Duration (days)

In
d

ir
ec

t
C

os
t

($
)

Duration (days)

9

resembles the least total cost for the project. As the acceleration continues,
total cost increases till the project’s least possible duration is met.

Figure 2.3 – Variation of total cost as a result of project acceleration.

According to the trend of project’s total cost as a function of duration, it can
be inferred that, in general, the less expensive the recruited resources are,
the more time it takes to complete the tasks (Feng, Liu et al. 1997). This
trade-off between time and cost of projects are termed as time-cost trade-off
problem (TCTP) which is one the prominent aspects of the project
management and there have been much considerations devoted to this
problem in the literature.

On the verge of time–cost trade-off analysis, it is the lowest feasible total cost
that gets assessed within the feasible budget boundaries, usually in accord to
a specific deadline. Hence, a TCT problem in essence, is an optimization
problem that attempts to reduce the project duration through accelerating the
critical activities while relaxing non-critical ones to narrow the expenses
(Siemens 1971). TCT aims at providing an optimal balance of project duration
and cost by analyzing different combinations of decisions.

A real-life construction project almost always has hundreds or even thousands
of activities each which might have several alternatives to opt from.
Accordingly, it is a challenge for the project managers to find the optimal TCT
decisions; in fact, it is a Non-Polynomial hard (NP-hard) problem and may
require extremely time-consuming computations. Since any variation in
selection of the alternative decisions alters the project schedule, therefore, it
is required to re-assess the schedule, total cost, and total duration of the
project using the critical path method (CPM). Exhaustive enumeration even
with very fast computers is, therefore, not a convenient and economically
feasible method in TCT analysis; specifically for a real-time project comprised
of numerous activities. In pursuance of overcoming the pitfalls pertinent to
the exhaustive enumeration, several algorithms and heuristics have been
proposed in the literature addressing the optimal or near-optimal solution for
the TCT problem.

For the first time, considerations of TCT problem emerged almost half a
century ago, virtually concurrently with the introduction of project analysis
techniques by Fulkerson (1961) and Kelley (1961). The TCT problem has been
classified into several categories, ever since it was presented in the primary

To
ta

l C
os

t
($

)
Duration (days)

10

studies of the early sixties. There have been numerous studies conducted
covering TCT problems with linear, non-linear, and discrete objective
functions. Amidst analysis of the latter state of the TCT problem, i.e., a TCT
problem with a discrete objective function, attempts are raised to make
appropriate decisions among the limited number of time-cost alternatives,
referred to as modes. Thus, one mode is assigned for any of the activities of
the project with regard to the resolution of the TCT analysis. Such a concern
is imperative to TCT practices as the discrete time-cost alternatives are
commonplace in real-life projects; to boot, corresponding to the prospect of
the TCT problem, three types of constraints might be incorporated in the TCT
analysis. The three categories encompass the Deadline, Budget, and Time-
cost curve problems. As it was discussed previously, generally it is essential
for both the contractor and the client to finish the project on or ahead of the
schedule, or, on or under a specified budget. The first assumption, being
called the Deadline problem, minimizes the total cost taking into account an
upper boundary for the duration of the project. Whilst, the second approach,
termed as the Budget problem, minimizes the duration of the project without
exceeding an upper boundary set for the budget. It is by exploitation of
deadline or budget problem that all the non-dominated solutions generate
with regard to the project duration and the total cost benchmarks. Thus, the
latter state of the TCT analysis, referred to as the Time-cost curve problem,
aims to generate all the efficient i.e. non-dominated set of solutions.

2.3. Exact, Heuristic, and Meta-heuristic Methods

Since, all the categories of the TCT problem are Non-Polynomial hard (NP-
hard) problems and that finding the optimal decisions require enormous time-
consuming computations, several different algorithms have been proposed in
the literature to cope with this problem. The researchers, benefitting from the
ever evolving computer science technologies, seek to implement various
optimization methods in their TCTP studies. TCT problem mainly involve
Exact, Heuristic, and Meta-heuristic optimization algorithms.

Exact procedures, as the name implies, attempt to explore the entire solution
space in finding the exact optimal solution. Accordingly, they require massive
amounts of computations which, in turn, necessitate higher-spec computers
as well as intricate coding procedures. Respectively, they are often charged to
just reinforce the competency of the Heuristic algorithms. Nevertheless, exact
algorithms are indispensible means of the optimization problems since they
are the only methods capable of guaranteeing optimality of the results. Some
of the most popular variants of the exact algorithms are linear programming,
mixed-integer programming, dynamic programming, and branch-and-bound
method.

Opposed to the exact procedures, Heuristic algorithms involve much less
computational efforts and are capable of producing solutions virtually in no
time; usually they can be implemented even short of a computer’s assist.
Derived from the Greek word “Heuriskein” meaning “to find”, heuristics
involve simple rules to discover solutions to difficult optimization problems.
Nonetheless, the optimality is not guaranteed in the heuristic methods and

11

the obtained solutions are near-optimal, but rather satisfactory solutions. The
constructive and the improvement heuristics are the most revered variants of
the heuristic algorithms. The former uses a stepwise procedure to generate
solutions, generating them one at a time until a feasible solution is met.
Generally, a feasible solution is not obtained in the course of the construction
heuristics unless the conclusion of the procedure is reached. The latter type of
the heuristic algorithms i.e. the improvement heuristics, initiate with a
feasible solution and successively improve it via a series of modifications. In
the course of this procedure, usually a feasible solution is preserved
regardless of the progression of the process.

In addition, the novel algorithms inspired by the stochastic occurrences of the
nature, are called Meta-heuristic algorithms. “Meta”, meaning “beyond” is an
indication of higher-level algorithms when compared to the heuristics, since,
heuristics are problem dependent; whilst, meta-heuristics are independent of
the problem’s nature. These random search techniques unravel an
optimization problem by simulating the evolution and intelligent behaviors of
the natural organisms. Iterative quality of the meta-heuristic algorithms, in
contrast with the heuristics, may prevent getting stuck into the local optima.
This latter trait generally stipulates thorough searches within the solution
space, increasing the chances of discovering the desired global optimum
solution. However, similar to the heuristics, meta-heuristics are incapable of
securing the optimality of the solutions; rather, they obtain near-optimal
solutions in an inconsiderable amount of time, with trivial computational
efforts. This category of algorithms is well associated with the modern
studies, such as evolutionary computation and swarm intelligence, promising
for those who would prefer fast converged near optimal solutions in the face
of slow but accurate ones. Some of the most prevalent meta-heuristics are
genetic algorithms (GA), ant colony optimization (ACO), particle swarm
optimization (PSO), shuffled frog leaping (SFL), simulated annealing (SA), and
so forth.

2.4. Exact, Heuristic, and Meta-heuristic Methods for TCTP

Conventionally, the objective function of the TCT analysis was supposed to be
linear (Fulkerson 1961) and the first notable attempt in construal of the TCT
problem was regarded as the heuristic method proposed by Nicolai Siemens
(1971). Subsequently, the assumption of linearity was relaxed allowing for
consideration of other types of the objective function, namely, concave
function (Falk and Horowitz 1972), convex function (Foldes and Soumis
1993), a hybrid of concave and convex functions (Moder, Phillips et al. 1983),
quadratic function (Deckro, Hebert et al. 1995), and discrete function
(Skutella 1998, Zheng, Ng et al. 2004). The last type of the TCT analysis,
being more tangible in real-life, constitutes a large portion of the recent
studies. As a result, several different approaches have been proposed for the
various time-cost objective functions; viz., linear programming, integer
programming, dynamic programming, and of course, the heuristics and meta-
heuristics. In this part of the chapter, various methods adopted by the
researchers in analyzing the TCT problem have been abstracted following a
comprehensive literature survey.

12

2.4.1. Exact methods for TCTP

The study carried out by Meyer and Shaffer (1965), remains the pioneering
attempt in application of mixed-integer programming for solving the TCT
problem. Inspired by this endeavor, Moussourakis and Haksever (2004)
present a flexible mixed-integer model considering the indirect cost in the
analysis, whilst, making minimal assumptions regarding the type of the time-
cost objective function. Assuming no specific notation system for the network,
this model tackles objective functions that are linear, piecewise linear, or
discrete. The only assumption required for this approach is stated as
presumption of piecewise linearity for nonlinear continuous functions. This
model is capable of minimizing the total cost subject to a completion deadline;
besides, should a slight modification made to the algorithm, it optimizes the
total cost respecting a budget constraint. Evidently, this model assists the
decision makers in measuring several different “what if” scenarios.

De et al. (1995) discuss the scant and sparse considerations of the discrete
TCT problem. Conducting an inclusive literature review, they survey some the
previous solution approaches and thereby identify drawbacks pertinent to
these methodologies. Introducing a new dynamic programming formulation,
they present a centralized approach for the deadline problem with no parallel
modules. Eventually, adopting the activity on arrow (AoA) representation,
they take on modular decomposition conjointly with the incremental reduction
approaches for the TCT problems with parallel modules.

Demeulemeester et al. (1998) propose an exact algorithm for discrete TCT
problem assuming the activity on arrow (AoA) notation system for the
network analysis. A variant of branch and bound optimization model is
programmed by introducing a horizon-varying approach benefiting from the
Visual C++ platform. This approach iterates minimizing the total cost of a
time restricted scheduling problem in accord with the interval bounded by the
crash modes and normal modes of the activities. They calculate the lower
boundaries by setting out convex piecewise linear underestimations for the
discrete TCT curves. They propose two distinct rules to assess qualities of
underestimations, involving vertical distances computations. In the course of
the branching process of this model, the activity with the largest vertical
distance is identified; withal, in order to promote convex piecewise linear
underestimations, they separate crashing modes of the activities into two
subsets. The results are validated by means of a factorial experiment and are
compared to the results of Demeulemeester et al.’s (1996) study which
reveals that this model is capable of solving instances with up to 30 activities
having 4 crashing modes.

Primarily introduced by Yang and Chen (2000), Vanhoucke (2005) elaborates
on time/switch constrained discrete TCT problems. Time/switch constraints
are established by imposing specific start time and inactive time-intervals to
deal with day, night, and weekend shifts for the activities. Exploiting the lower
bound calculation approach which was first introduced by Demeulemeester et
al. (1998), the author suggests another branch and bound algorithm coded in
the Visual C++. With the activity on arrow (AoA) considerations, this study
incorporates a branching algorithm that identifies those activities whose lead

13

times are greater than their durations under the lower bound calculations. The
branching process creates three child nodes as it divides the start time of
activities into three sections, which, is later relaxed by imposing a dominance
rule. Referring to the results and further amplifying the real-life instances of
the study carried out by Vanhoucke et al. (2002), Vanhoucke (2005) validates
the solutions of this algorithm. The results show that on average, this model
is four times faster than Vanhoucke et al.’s (2002) approach and that it is
capable of solving instances of 30 activities with up to seven modes in less
than 7 seconds on average.

2.4.2. Heuristic methods for TCTP

Siemens (1971) develops a logical systematic procedure based upon intuitive
logic and analysis and verifies the algorithm using an empirical instance. The
author proposes Siemens Approximation Method (SAM), a heuristic method
for the TCT problem suited for both manual and computer aided calculations.
It is capable of solving convex nonlinear TCT problems by making multiple
curvilinear approximations. The procedure initiates with the construction of
the project network, and involving a number of rules attempts to expedite
selected activities that incur least additional costs. The results of this model
are compared to a linear programming approach which affirms that the
obtained results are either nearly the same or identical to the exact
algorithms. However the author acknowledges that the heuristic algorithm
might shorten the duration of a project beyond the intended amount, due to
crashing activities merely with the minimum cost slope considerations, and
regardless of the number of different paths the activities belong to.

Vanhoucke and Debels (2007) study three extensions of the discrete TCT
problem; time/switch constraints (Yang and Chen 2000), work continuity
constraints (El-Rayes and Moselhi 1998), and net present value maximization
(Herroelen, VanDommelen et al. 1997). Assuming activity on arrow (AoA)
representation, they provide a new meta-heuristic algorithm coded in the
Visual C++. The heuristic portion of the proposed algorithm involves iteration
of neighborhood search and diversification steps. The former step selects the
best nearby solution whilst the latter randomly chooses a crash mode while
setting taboo for the frequently evaluated mode-combinations. The second
portion of their algorithm includes a truncated dynamic programming which
increases the duration of the non-critical activities while meeting the desired
completion deadline. Administering comparisons with results of an exact
algorithm, they state the new approach is capable of producing promising
results for time/switch constrained and net present value versions of the
discrete TCT problem.

2.4.3. Meta-heuristic methods for TCTP

Feng et al. (1997) outline the favored results of TCTP analysis as providing
optimal balance of time and cost, besides, delivering a TCT curve that shows
the relationship between total duration and total cost of a project. The authors
addressing the inefficacy of the existing methods in coping with large-scale

14

TCT problems, propose a more efficient model based upon the principle of
Holland’s (1975) genetic algorithm (GA). The authors argue the drawbacks
pertinent to multi-objective decision-making techniques such as multi-
objective weighting (MOW) and there forth incorporate Pareto front approach
by introducing the convex hull. This model sets two chromosomes, i.e.
decision sequences, involving normal and crash modes of the activities;
thence, determines the fitness values of the solutions in accord with their
minimal distances to the convex hull. Iterative cross-overs and mutations are
then performed to reproduce new solutions. This algorithm retains each string
for the next generation in order to avoid the problem raised by Goldberg and
Segrest (1987), called the genetic drift phenomenon. The authors validate
their algorithm after developing a computer program (TCGA) with an interface
designed in Microsoft Excel. Results indicate that this algorithm is capable of
discovering more than 95% of the optimal solutions for a discrete TCT
problem comprised of 18-activities.

The GA model proposed by Zheng et al. (2005) attempts to compromise the
genetic drift phenomenon by reducing the chance of getting stuck into the
local optima. Thus, the authors integrate a modified adaptive weight approach
(MAWA) to adjust the priority of objectives respecting the quality of the
preceding generation. MAWA flags and ranks all the non-dominated solutions
that are identified amid each generation and clues higher ranked solutions are
more likely to survive. As the generations evolve, MAWA administers a
decreasing pattern for the mutation rate to prevent premature convergence.
Pareto ranking and niche formation are also incorporated to this model with
the former serving as selection criterion and the latter exerting as population
diversifier besides supporting uniform sampling. The authors enhance the
validation process of this model by means of a prototype system which
operates in conjunction with the Microsoft Project. The 18-activity instance
used by Feng et al. (1997) is fed into three representative modules and the
results prove robustness of the proposed module, principally for the solutions
archived beyond 300 generations.

In order for project managers to incorporate uncertainties in their TCT
analysis, Eshtehardian et al.(2008), in their study, integrate GA with the fuzzy
sets theory of Zadeh (1965). A model to tackle stochastic TCT problem is
prepared for the real-life instances throughout which triangular fuzzy numbers
are assumed for direct cost of the activities rather than their probability
distribution, in that, they are merely partially known. Distinct Pareto fronts
comprised of the non-dominated solutions are developed with consideration of
the risk attitude of the experts, defined through α cut approach. Adopting
Hamming-distance for binary comparison of fuzzy numbers and employing
Euclidian-distance in fitness calculations, two separate techniques are
prepared to rank the alternative set of options under different values of α cut.
Implementing single crossover and uniform mutation, the 18-activity problem
used by Feng et al. (1997) is fitted into the GA based prototype model. The
second approach, not dealing with a defuzzifier, proves to perform slightly
better than the other method.

Sonmez and Bettemir (2012) addressing the inherent inadequacies of sole
meta-heuristic methods along with the merits pertinent to hybrid algorithms,

15

introduce a hybrid GA (HA) for the discrete TCT analysis. This model combines
the complementary potencies of genetic algorithm (GA), simulated annealing
(SA), and quantum simulated annealing (QSA) in exploration of the solution
space. SA introduces a better hill climbing capability for the HA in view of
attaining the global optima; whilst, QSA revamps the quality of local search
for this algorithm. HA is implemented to ten benchmark instances ranging
from 18 to 630 activities, by means of the Visual C++ programming
language. Test problems include 18-activity TCT problem described by Feng et
al. (1997), highway upgrading project derived from Chassiakos and
Sakellaropoulos (2005), and a hypothetical TCT problem with 63 activities,
which is introduced in the course of this study. All the instances are analyzed
regarding various assumptions and constraint impositions. Compared to
optimal results of AIMMS optimization software (mixed integer programming),
the average percent deviation (APD) of ten runs are measured. The authors
apply paired t-test to assess the significance of performance difference
between HA and sole GA, results of which, verifies robustness of the proposed
algorithm.

Being first introduced by Colorni et al. (1992), Ng and Zhang (2008) use an
evolutionary-based optimization algorithm known as the ant colony (ACO) to
analyze the multi-objective TCT problem. They propose an ant colony system
(ACS) adopting the modified adaptive weight approach (MAWA) (Zheng, Ng et
al. 2004) for evaluating the fitness of their solutions. Exploiting the Visual
Basic platform, an optimization program is developed, by means of which, the
soundness of their algorithm is tested against other analytical methods that
were studied by Elbeltagi et al. (2005) previously. They conclude that the
results of the proposed ACS algorithm for the 18-activity instance depicted in
Feng et al. (1997) are improved compared to the basic ACO and that it is
capable of solving the TCT problem with much less requirements of
computational resources.

Another attempt toward combining Zheng et al.’s (2004) modified adaptive
weight approach (MAWA) with ant colony algorithm is made by Xiong and
Kuang (2008). MAWA, applying a search stress toward the desired optimal
point at each of the iterations, enhances the ACO in construal of the optimal
solutions, and delivering the Pareto front as well. Thru this method, two
selections are made to decide on possible alternatives. According to the
membership of a random variable, the first selection is made regarding a
maximization criterion, and the other involves a probability distribution
function. The performance of this prototype model is assessed using the 7-
activity problem acquired from Zheng et al. (2004) and the 18-activity
instance solved by Feng et al. (1997). Modifying the parameters of the
proposed ACO by a sequel of trial and error, this model manages to find the
same results found thru the abovementioned studies by exploring rather
smaller portion of the solution space; proving to be a more efficient measure.

The discrete TCT problem is represented as a graph in the study carried out
by Afshar et al. (2009). In this study, a multi-colony non-dominated archiving
ACO (NA-ACO) is introduced thru which separate ant colonies are assigned to
each of TCTP objectives. Solutions found by agents of each colony are
iteratively transferred to the next colony to be evaluated in accord with the

16

competing objective. New solutions are then generated regarding the updated
pheromone trail. Any iteration of this algorithm concludes with reserving the
non-dominated solutions in a separate offline archive. Performance of this
method is measured using the 18-activity problem derived from Feng et al.
(1997), and the results are compared to WM-ACO (Weighted Method Ant
Colony Optimization) and the GA model of Zheng et al. (2005). The test
problem is solved engaging three alternate indirect costs of 0, 200, and 1500
units and for all the instances, it manages to substantially outperform the
compared algorithms. This model surpasses the previous algorithms
specifically for the problems with lower incurred indirect costs; however, it
lacks the competency of exerting the full Pareto front for any of the
considered cases.

Elbeltagi et al. (2007) recall shuffled frog leaping (SFL) as a robust algorithm
in handling complex large-scale problems due to its competency in
incorporating PSO-like (particle swarm optimization) local search along with
information exchange of parallel local searches. They modify the original SFL
algorithm by implementing a search-acceleration parameter (C) to avoid MSFL
from being stagnated at local optimums. Time-variant augmentation of this
parameter sustains the balance between local and global search; that is,
gradually decreasing the amount of C from a larger initial value, contributes
to a wider global search followed by a deeper local search. A parametric study
is conducted on this parameter toward realization of better results. The
authors validate their marks by feeding their model into F8 and F10
benchmark problems, variants of 18-activiy problem derived from Feng et al.
(1997), and “rehabilitation of bridge-deck infrastructure” problem acquired
from Hegazy et al. (2004). Test problems are set by implementing MSFL using
Visual Basic, Microsoft project, and Microsoft Excel programs and are
compared to original SFL and GA algorithms. The results of this study
demonstrate competency of the MSFL, as it outperforms the matched
approaches requiring significantly smaller time frames to produce set of
solutions with higher success rates.

Anagnostopoulos and Kotsikas (2010) analyze five variants of a simulated
annealing algorithm using activity on node (AoN) type of networks. They seek
applying a search method analogous to annealing process of melted
materials; besides, they utilize analysis of variance (ANOVA) and Duncan
Multiple Range Test to measure quality and efficiency of the solutions exposed
to several problem factors. They also estimate the confidence interval for the
optimal solutions pertinent to discrete TCT instances. Sample problem sets
are generated randomly using RanGen2 program for the SA algorithms coded
in Visual Basic programming language. Exploiting formal statistical methods in
conjunction with Microsoft Excel, SPSS, and Mathcad programs, they evade
from drawing conclusions flawed by sampling errors. Eventually they rank the
SA variants in accord with the results of the Duncan test and estimate
confidence interval of optimum solution for the best and the worst algorithms.

Yang (2007a) bases its model upon the modified PSO algorithm of Shi and
Eberhart (1998) to archive the Pareto front in a single run, for the feasible
project durations. Selection of pbest is modified in this PSO as to update
should a strongly dominating solution emerges. Withal, gbest membership

17

only consents particles that dominate fewest members of the library. This
algorithm, not relying on metrics, is capable of handling various types of
objective functions regardless of the time-cost scaling. Non-dominated
solutions are iteratively stored in a separate elite library, meanwhile, deleting
the dominated particles. Members of this archive aid further explorations over
the search space. Indirect costs are not provisioned throughout the
optimization process; rather, they are implemented exogenously after setting
up the final Pareto front. The performance of this algorithm is measured by
externally imposing the constraints of the deadline and budget problems to
the archived solutions of a 14-activity network. Results demonstrate the
efficiency of the proposed algorithm, facilitating subsequent “what if” analysis
by the decision makers.

Yang (2007b), in another study, uses the PSO algorithm to analyze crashing
alternatives of the budget and deadline TCT problems. Capable of treating
objective functions of any type, this method aims at creating the Pareto front,
so as to assist decision makers in conducting further “what if” analysis. This
model is coded in MATLAB programming environment and is implemented into
a hypothetical test problem, as well as a real-life highway restoration project.
Indirect costs are provisioned after setting up the final Pareto front for both
the hypothetical example involving an 8-activty network, and the case-study
incorporating 28 activities. Parametric studies for the algorithm operators of
swarm size, inertia weight, and damping limit are performed, taking on the
sensitivity analyses. Adopting appropriate parameters, performance of this
algorithm is assessed through measurement of the average percent deviation
(APD) per ten runs. Signifying rather small percentages of deviations, the
efficiency and performance of the proposed PSO algorithm is validated.

In a recent venture by Zhang and Xing (2010), the authors attempt to
introduce a Fuzzy-based PSO for solving time-cost-quality trade-off problems
with nondeterministic input data. Fuzzy multi-attribute utility technique
derived from Keeney and Raiffa (1976), is embedded to the constrained fuzzy
arithmetic operations to enhance the PSO algorithm with exploration of
solutions that secure maximum quality while requiring minimum time and
cost. Fuzzy-multi-objective PSO (FMOPSO) is coded in Visual C++, treating
time, cost, and quality of the alternatives as triangular fuzzy numbers.
FMOPSO uses fuzzy attribute utility for generating composite fuzzy utility
values for each mode combination. The proposed PSO algorithm incorporates
the mean integration representation (GMIR), so as to discover the solution
with the largest composite fuzzy utility. The algorithm is examined using a
three modal 13-activity network, and the results are compared to a fuzzy-GA
algorithm, illustrating the potency of the FMOPSO.

Another PSO-based algorithm for optimizing intrinsic problems of the
construction industry is developed by Ashuri and Tavakolan (2012). This study
integrates the Fuzzy set theory with the hybrid GA-PSO algorithm of Juang
(2004), to tackle continuous time-cost-resource trade-off problems.
Triangular fuzzy numbers are presumed for nondeterministic values of time,
cost, and resources; further, GA and PSO are applied to lower and upper
halves of the population, respectively. The proposed hybrid GA-PSO is
implemented in Delphi programming platform to construct the Pareto fronts

18

for the 7-activity instance acquired from Zheng and Ng (2005), as well as the
14-activity network discussed in Yang (2007a). Compared to earlier methods,
this algorithm is capable of finding less costly solutions that not only require
shorter durations, but also, prescribe fewer variations in allocated resource.
Supremacy of the proposed algorithm is further proved by contrasting the
demanded processing time with the previous approaches.

A renowned study covering various evolutionary meta-heuristic algorithms is
carried out by Elbeltagi et al. (2005). In the course of this work, the authors
conduct a comparison among five meta-heuristic algorithms. The performance
and efficiency of GA, Memetic algorithm (MA), PSO, ACO, and SFL are
compared with each other with regard to the required processing time and
quality of the obtained solutions. Models are coded in Visual Basic platform
and fitted with three benchmark test problems, including the F8 function, F10
function, and the 18-activity network explained in Feng et al. (1997). Best-
suited parameters are identified for all the approaches subsequent to a large
number of trials. The discrete TCT instance is analyzed with a deadline
consideration of 110 days. Executing twenty experimental runs for each of the
instances, mean processing time and quality of the results are observed. The
results of this comparison demonstrate a rather poor performance by the GA;
whereas, the PSO algorithm manages to outperform all the other approaches,
inasmuch as, it produces solutions of higher quality within an acceptable time-
frame, with a greater success rate.

Table 2.1 summarizes the exact, heuristic, and meta-heuristic procedures for
TCT analyses that are detailed in this section. Records are arranged in a
chronological order in this table, encompassing brief explanations for each
study. Aside from the adopted methods and administered problems, the
implemented programming languages are also indicated for due models. The
table also includes the size of the network problems fitted into the models, as
well as, the required processing times (seconds), and the associated average
percent deviations (APD) per multiple runs. The last two columns of this table
highlight remarkable points and clear-cut drawbacks pertinent to each study.
Unreported materials are tabulated as ‘na’ in Table 2.1.

19

Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP.

Year of
Publication Author(s) Method Problem Platform # of

Activities Seconds APD
(%) Remarks Shortcomings

1971 Siemens Heuristic
(SAM)

Time-
Cost na 5 na na

Logical systematic
approach involving a
number of rules for
expediting the activities
that incur least additional
costs.

Merely considers
minimum cost
slope for crashing
activities that
might shorten the
duration beyond
required amount.

1995
De, Dunne,
Ghosh, and
Wells

Dynamic
Program
ming

Time-
Cost na 5, 10 na na

A centralized approach for
deadline problem with no
parallel modules and a
combination of modular
decomposition with
incremental reduction
approaches for problems
with parallel modules.

Only effective for
networks with
reasonably low
values of certain
parameters.

1997 Feng, Liu,
and Burns GA Time-

Cost na 18 na na

A genetic algorithm (GA)
that calculates fitness
values exploiting minimal
distance to convex hull and
retains each string for next
generation to avoid genetic
drift.

Only tackles
Finish-to-Start
relationships
neglecting
possible resource
constraints.

1998

Demeulem
eester,
Reyck,
Foubert,
Herroelen,
and
Vanhoucke

Branch
and
Bound

Time-
Cost

Visual
C++

10, 20,
30, 40,
and 50

0.34,
19.17,
58.00,
105.40,
and
127.56

na

Horizon-varying approach
is embedded into branch
and bound method and
qualities of lower boundary
underestimations are
assessed by vertical
distance computations.

Effectiveness and
efficiency
decreases
significantly for
larger networks
with multiple
modes.

2004
Moussoura
kis and
Haksever

Mixed-
Integer
Program
ming

Time-
Cost na 7 na na

Requires no network
notation system and
makes minimal
assumptions regarding the
type of TCT functions
availing subsequent "what
if" analysis.

Requires
substantial
computational
resources, thus,
suits small to
medium
instances.

20

Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued)

Year of
Publication Author(s) Method Problem Platform # of

Activities Seconds APD
(%) Remarks Shortcomings

2005 Vanhoucke
Branch
and
Bound

Time-
Cost

Visual
C++

10, 20,
and 30

0.004,
1.507,
and
11.506

0.000,
0.003,
and
0.138

Branch and bound
procedure incorporating a
lower bound branching
algorithm that involves
activities whose lead times
are greater than their
durations.

na

2005

Zheng, Ng,
and
Kumaraswa
my

GA Time-
Cost na 18 na na

A genetic algorithm (GA)
that recruits MAWA, Pareto
ranking, and Niche
formation to avoid genetic
drift, administer selection
pattern, and exert
diversifier, respectively.

na

2005

Elbeltagi,
Hegazy,
and
Grierson

GA, MA,
PSO,
ACO, SFL

Time-
Cost

Visual
Basic 18

GA (16),
MA (21),
PSO
(15),
ACO
(10), SFL
(15)

GA
(0.022),
MA
(0.007),
PSO
(0.004),
ACO
(0.033),
SFL
(0.029)

Five meta-heuristic
algorithms (GA, MA, PSO,
ACO, SFL) are compared,
revealing poor
performance of GA as well
as robustness of PSO
methods.

na

2007 Vanhoucke
and Debels

Meta-
heuristic
(Exact+
Heuristic)

Time-
Cost

Visual
C++

10, 20,
30, 40,
and 50

0.008,
0.096,
0.337,
0.811,
and
1.605

0.037,
0.050,
0.044,
0.098,
and
0.114

Heuristic portion involves
neighborhood search and
diversification steps. The
second portion of
algorithm uses truncated
dynamic programming to
relax non-critical activities.

na

2007

Elbeltagi,
Hegazy,
and
Grierson

SFL Time-
Cost

Visual
Basic 18 8 0

A modified Shuffle Frog
Leaping (SFL) algorithm
that incorporates a time-
variant parameter to avoid
falling into local optima.

na

21

Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued)

Year of
Publication Author(s) Method Problem Platform # of

Activities Seconds APD
(%) Remarks Shortcomings

2007 Yang PSO Time-
Cost na 14 na na

Selection process of
Particle Swarm
Optimization (PSO)
method is modified in favor
of strongly dominant
solutions as pbest, and
solutions of scant areas as
gbest.

Indirect costs are
not provisioned
throughout the
optimization
process.

2007 Yang PSO Time-
Cost MATLAB 8 and 28 48 and

600
0.406
and na

A PSO algorithm capable of
handling any function type
which requires manual
calculations for subsequent
"what if" analysis.

Indirect costs are
not provisioned
throughout the
optimization
process.

2008 Ng and
Zhang ACO Time-

Cost
Visual
Basic 18 na na

Modified adaptive weight
approach (MAWA) is
integrated into Ant Colony
System (ACS).

Probable
premature
convergence with
higher iterations
and too sensitive
to selection of
parameters.

2008 Xiong and
Kuang ACO Time-

Cost na 7 and 18 na na

MAWA is embeded into Ant
colony System (ACS) and
selection of the options are
made according to
membership of a random
variable, the first selection
involving a maximization
criterion, and the other
incorporating a probability
distribution function.

na

2008

Eshtehardia
n, Afshar,
and
Abbasnia

GA Time-
Cost na 18 na 0.73

Fuzzy set theory enables
genetic algorithm (GA) to
handle stochastic TCTPs.

na

22

Table 2.1 – Exact, Heuristic, and Meta-heuristic algorithms for TCTP (Continued)

Year of
Publication Author(s) Method Problem Platform # of

Activities Seconds APD
(%) Remarks Shortcomings

2009

Afshar,
Ziaraty,
Kaveh, and
Sharifi

ACO Time-
Cost na 18 na na

Multi-colony non-
dominated archiving ACO
(NA-ACO) that assigns
separate ant colonies to
each objective and
evaluates the found
solutions respecting the
competing objective within
the next colony.

na

2010
Anagnostop
oulos and
Kotsikas

SA Time-
Cost

Visual
Basic na na na

Performance of five
variants of simulated
annealing (SA) algorithm
are analyzed and
compared to each other.

na

2010 Zhang and
Xing PSO

Time-
Cost-
Quality

Visual
C++ 13 na na

A Fuzzy-based PSO with
quality considerations that
employs fuzzy attribute
utility to generate
composite values.

Generates only a
single optimal
solution rather
than the Pareto
front.

2012
Sonmez
and
Bettemir

Hybrid-
GA

Time-
Cost

Visual
C++

18, 29,
63, 290,
and 630

na

0.00,
0.00,
2.50,
0.43,
and
2.41

A hybrid genetic algorithm
combining potencies of
simulated annealing (SA)
along with quantum
simulated annealing
(QSA).

na

2012 Ashuri and
Tavakolan

Hybrid
GA-PSO

Time-
Cost-
Resource

Delphi 7 and 14 348 and
1140 na

A fuzzy-based hybrid GA-
PSO with resource
considerations that treats
lower and upper halves of
population using GA and
PSO, respectively.

Only handles
TCRO problems
with continuous
functions.

23

It is widely documented in the literature (e.g. Zheng et al. 2005, Yang 2007a,
Eshtehardian et al.2008) that the ultimate resolution of TCT analyses is to find
non-dominated set of solutions, dubbed as the Pareto front, for the feasible
set of durations. Experts undertake TCT analyses to come up with appropriate
selection of resources such as crews, equipment, machinery, etc., required for
execution of project activities. Obtaining the Pareto front assists the decision
makers in construal of minimum costs associated with any of the possible
completion dates. Archiving the Pareto front in essence is a bi-criterion
optimization problem that attempts to concurrently solve two classical
derivate of TCT problems, viz., the budget and the deadline problems.

It is also argued in the literature that, literally, every construction project
involves non-renewable resources dedicated for the discrete modes of the
activities. Besides, discretization might come in handy amidst approximation
of any time-cost relationship. Though, in accord to its intrinsic complexity, the
discrete TCT problem is unraveled merely for small instances. Broadly
embraced in the literature, is the network explained by Feng et al. (1997)
comprising only 18-activities. Having surveyed a relatively vast domain of the
management literature, there seems to be a scant attention devoted to
practical procedures capable of scrutinizing large-scale projects. It is also
perceived that sporadic devotion is made toward identification of the complete
Pareto front for the problems.

As long as the commercial scheduling software packages, in general, do not
bear robust strategies for TCT analyses, various methods have been
developed by the researchers. Though, it is noticed that most of the proposed
exact algorithms suffer from incapability to simultaneously exert more than
one objective. Linear programming techniques are alleged that they fail to
solve instances with discrete time-cost relationships. Besides, integer
programming approaches demonstrate massive consumption of computational
resources as the size and complexity of multi-modal problems increases. As
depicted by De et al. (1995), any exact solution algorithm for the discrete TCT
problem would almost always exhibit an exponential worst-case complexity;
in that, the processing time would increase in an exponential manner as the
size of the problem gets augmented. It has been concluded that exact
algorithms are prone to being stagnated in local optima in non-convex
solution spaces (De et al. 1995, Feng et al. 1997, Eshtehardian et al. 2008,
Afshar et al. 2009). Moreover, the studies recruiting heuristic algorithms
acknowledge that they, analogous to exact procedures, cannot handle large-
scale problems efficiently (Siemens 1971). Most of the heuristics presume
merely linear time-cost relationships and they fall short of delivering the set
of possible solutions (Feng et al. 1997, Zheng et al. 2005). Main deficiency of
the existing meta-heuristic algorithms is observed as the chance to get stuck
into local optima (Zheng et al. 2005, Sonmez and Bettemir 2012). Such a
condition causes premature convergence despite of iterated process of
randomly manipulating the generated solutions. Accordingly, recognizing the
limitations pertinent to various optimization techniques including the sole
meta-heuristic algorithms, a recent trend toward combining various
optimization methods has been emerged as hybrid algorithms. They are
envisaged to combine the complementary strengths of different procedures to

24

provide more efficient approaches in dealing with complex real-world
problems.

Acquiring the drawbacks inherent to most of the existing techniques, it is of
great importance to develop a state-of-the-art model, capable of identifying
the complete Pareto front for larger discrete TCT networks. In addition, it is
inferred from the literature on meta-heuristics that, contrasting with the
genetic algorithms (GAs), a relatively scarce endeavor has been carried out to
implement particle swarm optimization (PSO) technique in TCT problems.
Accordingly, considering the efficiency of the meta-heuristic procedures in
conjunction with the robustness of the PSO method illustrated by Elbeltagi et
al. (2005), two particle swarm optimizers, as well as, a hybrid PSO algorithm
are developed in this thesis study, so as to escalate the global convergence
capabilities of the proposed method. The hybrid algorithm is intended to help
decision makers to conduct subsequent “what if” analyses efficiently.

In the ensuing chapter, characteristics of the proposed particle swarm
optimizers along with the hybrid PSO algorithm developed to solve different
extensions of time-cost trade-off problems (TCTP) for construction projects
are going to be presented.

25

CHAPTER 3

PARTICLE SWARM OPTIMIZATION ALGORITHMS

This chapter is devoted to particle swarm optimizers (PSO). Initially,
theoretical properties of contemporary PSO algorithms in conjunction with
principles of Siemens approximation method (SAM) are clarified.
Developments of two particle swarm optimizers, as well as a hybrid meta-
heuristic algorithm are presented for solution of time-cost trade-off problems,
contributing specific emphasis on time-cost curve extension of these analyses.
To this end, slight modifications as stated herein, are made to both of the
SAM and PSO methods and a new hybrid SAM-PSO meta-heuristic algorithm
with improved convergences capabilities is introduced. Flowcharts are given,
illustrating the infrastructures of the proposed methods; besides,
implementations of the proposed methods in C++ programming language are
explained in the form of pseudo-codes.

3.1. Particle Swarm Optimization (PSO)

Exquisite studies on natural biological evolution and social behavior extant in
systems such as animal herds, fish schools, and flock of birds where
aggregated behaviors take place, triggered origination of swarm intelligence.
Millonas (1994), toward developing models for artificial life, have documented
five chief principles of the swarm intelligence, owing to the mutual properties
of such natural systems:

1. Proximity: Ability to conduct space and time computations.

2. Quality: Ability to respond to environmental quality factors.

3. Diverse response: Flexibility of the responses with multitude spectrum
of reactions.

4. Stability: Retain unaffected mode of behavior under slight
environmental changes.

5. Adaptability: Change behavior mode under rewarding external stimuli.

This collective behavior of decentralized natural organisms, which was further
studied and supported by numerous researchers, established the primitive
initiatives for development of the PSO algorithm. The earliest precursors of
PSO were computer simulations of migrating bird flocks for visualizing
swarming behavior of the species in their search for food, carried out by
Reynolds (1987) and Heppner and Grenander (1990). The basic rules
governing simulation experiments of the migrating birds were to match

26

nearest neighbor velocity and to accelerate by distance. Apprehending the
potency of these simulation models in optimization and analysis of
sophisticated problems, Kennedy and Eberhart in 1995 developed the first
paradigm of the PSO, based upon the principles of the swarm intelligence
(Eberhart and Kennedy 1995, Kennedy and Eberhart 1995).

PSO algorithm is a population-based algorithm that recruits potential solutions
to concurrently search the domain, that is, promising to deliver enhanced
convergence capabilities. It is rooted upon imitating the choreography of bird
flocks that communicate together as they fly. This algorithm conceptually
resembles evolutionary strategies and has ties to genetic algorithms; in that,
it vastly relies on stochastic procedures, like the evolutionary algorithms.
Withal, similar to genetic algorithms, PSO involves randomly generated
populations and evolves individual solutions providing cooperation and
competition processes that are theoretically analogous to the crossover
operations. However, unlike evolutionary algorithms, PSO mimics the social
behavior of the biological agents. Opposed to genetic algorithms, PSO
incorporates memory; in addition, unlike GAs randomized velocities are
assigned for individual solutions.

The system initializes with a population of random potential solutions. The
population is hailed as “swarm”, while, the potential solutions are termed as
“particles”. The particles are flown through a multidimensional search space.
Particles iteratively fly over the search space in explicit directions, and are
attracted to self-attained historical best position (personal best; pbest) and to
the best position among the entire swarm (global best; gbest). Each particle
memorizes the coordinates associated with the best location it has visited so
far. At each time step, particles evaluate their own positions with respect to
definite fitness criteria, then, comparing the fitness values, they communicate
to identify the particle located in the best position. Thenceforth, aiming to
imitate the best bird, each bird speeds towards the best position using a
velocity that incorporates coordination of the personal best location.
Accordingly, at any iteration, velocity of each particle is adjusted depending
on random terms, with independent random numbers being generated for
acceleration toward personal and global bests. Each particle, then, evaluates
the domain from its new location, and the process reiterates until either the
swarm reaches to a predefined target, or a computational limit.

Considering the numbers of variables, 𝑆, PSO randomly positions 𝑁 particles
in a 𝑆-dimensional solution space. Each particle is initialized with position and
velocity vectors of 𝑆 elements. The swarm comprising 𝑁 particles is defined as
a set:

 𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑁}

where each 𝑥𝑖 is represented by its position as a decision vector in the search
space, denoted as a set:

 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑆}

27

where each 𝑥𝑖𝑠 resembles particle 𝑖’s coordinates on 𝑆th dimension. The
particles are assumed to fly within the search space, iteratively. The position
change is facilitated by means of each particle’s velocity, represented as:

 𝑣𝑖 = {𝑣𝑖1, 𝑣𝑖2 , … , 𝑣𝑖𝑆}

velocities are modified with respect to the information acquired thru the
earlier steps of the algorithm. Accordingly, in addition to the swarm set, 𝐴,
containing current positions of the particles, PSO retains a memory set where
each particle stores the best position visited thus far. This set is defined as:

 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁}

which contains the personal best positions (pbest) reached in previous cycles,
on 𝑆th dimension, for each particle:

 𝑝𝑖 = {𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑆}

The index of the best particle among the entire swarm in the population – the
lowest function value in 𝑃 at a given iteration – is represented by the symbol
𝑔, and the array index of that agent is assigned to a variable called gbest.

If 𝑡 signifies the iteration counter, then the current position and velocity of the
𝑖th particle will be henceforth denoted as 𝑥𝑖

(𝑡) and 𝑣𝑖
(𝑡), respectively.

Accordingly, each particle updates its velocity at each time step 𝑡, using
current velocity, 𝑣𝑖

(𝑡), the distance to personal best experience, and the
distance to best position of the swarm. Withal, the velocity term is modified
involving some randomness in the direction of pbest and gbest, so as to
approach toward the best particle 𝑔, using the velocity update equation (3.1).

 𝑣𝑖𝑖
(𝑡+1) = 𝑣𝑖𝑖

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� (3.1)

𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑆

Likewise, using the velocity in proceeding time step, 𝑣𝑖𝑖

(𝑡+1), the particle’s
updated position is measured exploiting the position update equation (3.2).

 𝑥𝑖𝑖
(𝑡+1) = 𝑥𝑖𝑖

(𝑡) + 𝑣𝑖𝑖
(𝑡+1) (3.2)

where, for both Eqs. (3.1) and (3.2), subscript 𝑗 denotes the dimension of the
search space; 𝑟1 and 𝑟2 are random 𝑆-dimensional vectors with their
components uniformly distributed within the range [0,1]; and the constants 𝑐1
and 𝑐2 are hailed as the cognitive and social parameters, respectively. At each
time step, 𝑡, succeeding the velocity and position modifications, the
performance of particles are reevaluated respecting a predefined problem-
specific fitness function. Thereon, the memorized personal bests (pbest) are
updated accordingly. Ultimately, redetermination of index 𝑔 for the updated
“pbest”s, completes a cycle of the PSO algorithm. The computation of Eqs.
(3.1) and (3.2) is demonstrated in Figure 3.1. Particle 1 is directed toward a

28

new location regarding the positions of the pbest and the gbest, in this
particular case the fifth particle.

Figure 3.1 – Demonstration of PSO concepts (Yang 2007a).

On the verge of eliminating the explosion effect, i.e., the unrestrained
escalation of the velocities that promotes swarm divergence, a mechanism to
clamp individuals’ velocities is applied. This damping factor is implemented
using Eq. (3.3) prior to the position update.

 𝑣𝑖𝑖
(𝑡+1) ∈ [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥] , �

𝑣𝑖𝑖
(𝑡+1) < −𝑣𝑚𝑎𝑥 → 𝑣𝑖𝑖

(𝑡+1) = −𝑣𝑚𝑎𝑥
𝑣𝑖𝑖

(𝑡+1) > 𝑣𝑚𝑎𝑥 → 𝑣𝑖𝑖
(𝑡+1) = 𝑣𝑚𝑎𝑥

 (3.3)

where negative velocities are also considered, for, velocity vectors might
reverse. In consensus with numerous studies, this parameter, 𝑣𝑚𝑎𝑥, is set as
integer 2 for problems with continuous objective functions.

The values of 𝑐1 and 𝑐2 constants in Eq. (3.1), controlling the magnitude of
search, can affect the convergence capabilities of a particle by biasing its
movement either toward the pbest or the gbest positions, respectively. In
that, in case of 𝑐1 > 𝑐2, migration would be biased toward the direction of
pbest, whilst, the contrary, 𝑐1 < 𝑐2 case would favor migration toward the
direction of gbest. In the literature, these two constants are commonly set to
be integer 2, in favor of ascribing weighted average of 1 for the second and
third terms of the equation. On the other hand, the randomness of 𝑟1 and 𝑟2
further adjust weightings which facilitate finding a better solution along the
direction guided toward pbest and gbest.

The previous velocity term, 𝑣𝑖𝑖

(𝑡), in the right-hand side of Eq. (3.1) provides
the particle with an inertial movement, taking on its preceding velocity. This
principle enhances the convergence capability of the swarm by avoiding
biased migration towards the pbest and gbest positions. That is, this term
functions as a perturbation for the global best particle, 𝑃𝑔. In absence of this
term, the search space would shrink over generations and the global best
particle might stagnate at the same location for several cycles, until
identification of a better position by another particle. The ultimate generation

1

2
pbest

4

3

5
gbest

𝑥𝑖𝑖
(𝑡)

𝑥𝑖𝑖
(𝑡+1)

𝑣𝑖𝑖
(𝑡+1)

29

deeply relies on the initial population (seeds), hence, most probably the
swarm would perform local search short of the first term. The second term of
Eq. (3.1) represents cognition, or the private thinking of the particle since
compares current position to personally experienced positions. Whereas, the
third term, characterizes the social cooperation among the particles, since
compares current position of particles to the best position experienced by the
swarm. Without these two terms, the particles will continue flying at a
constant speed in the same direction. Therefore, the swarm would not be able
to find any suitable solution unless meeting one on their flying trails.

3.1.1. Modified particle swarm optimization (M-PSO)

Shi and Eberhart (1998) introduced the so-called inertia weight (𝑤) parameter
for the original particle swarm optimization algorithm (PSO) of Kennedy and
Eberhart (1995). Revisiting the roles for each part associated with the PSO
velocity update equation, and hinting at the trade-off between local and global
search capabilities of the particles, Shi and Eberhart (1998) modify the
original velocity update equation by insertion of the inertia weight (3.4).

 𝑣𝑖𝑖
(𝑡+1) = 𝑤(𝑡)𝑣𝑖𝑖

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖
(𝑡) − 𝑥𝑖𝑖

(𝑡)� (3.4)

𝑖 = 1, 2, … ,𝑁, 𝑗 = 1, 2, … , 𝑆

Coding the proposed modified PSO in Borland C++ compiler, the benchmark
F6 function is solved under various 𝑤 considerations. Thirty test runs are
executed for each value of the 𝑤, and the number of failures (if any) is
dedicated for each 𝑤. Visualizing the flying process along with the frequency
of the failures, the authors conclude local search capabilities for smaller
values of 𝑤, whereas, determine larger values of 𝑤 treat PSO with more global
search capabilities. Accordingly, the authors propose a time-variant (iteration)
reduction for this parameter to enhance the algorithm with a better balance
between the local and global searches, for, providing more exploration ability
at the initial stages followed by more exploitation ability at the closing cycles.
Hence, the modified PSO commences with a larger value of 𝑤, in order to
promote the swarm with a better global search throughout the initial stages;
thereafter, this parameter linearly decreases as a function of time (iteration)
to avail a more in-depth local search by the particles (3.5).

 𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) �
𝑡𝑚𝑎𝑥 − 𝑡
𝑡𝑚𝑎𝑥 − 1

� (3.5)

where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 denote upper and lower bounds of 𝑤, respectively; and
𝑡𝑚𝑎𝑥 is the total number of iterations. Shi and Eberhart (1998) conclude the
modified PSO with a range of [0.9, 1.2] for the inertia weight outperforms the
classical PSO algorithm discussed in section 3.1.

30

3.1.2. Discrete binary particle swarm optimization (D-PSO)

Acknowledging the importance of discrete optimization problems, the
founders of classical PSO algorithm (Kennedy and Eberhart 1997), in 1997,
introduced the binary version of this algorithm for problems with discrete
objective functions which is slightly modified and adopted in the ensuing
sections of this thesis to unravel discrete TCT problems. In the original
paradigm of PSO, each particle’s trajectory was defined as changes in position
on some dimensions in a 𝑆-dimensional space; whereas, in the discrete
version, trajectories and velocities are defined in a probabilistic space
concerning state selection of the bits. The algorithm commences by randomly
generating 𝑁 particles with their corresponding velocity vectors. Then, based
on a predefined fitness function, the swarm aims to uphold the probability of
the binary variable that contributes to a better fit, through assigning due
velocities. Kennedy and Eberhart (1997) define the migration of particles as
flying in a state space with binary values of zero and one on any of the
dimensions. Velocity on a single dimension is defined as the probability of
change which is measured using the aforementioned Eq. (3.1), while
satisfying the condition (3.3). Kennedy and Eberhart (1997), this time
around, propose clamping the velocity for discrete PSO with 𝑣𝑚𝑎𝑥 = 6, since,
contrary to continuous version, smaller 𝑣𝑚𝑎𝑥 allows for a larger range to be
explored by the binary system. Moreover, the inertia weight parameter is not
adopted for the velocity calculations, for, this version was developed prior to
the modified paradigm of Shi and Eberhart (1998). Following the velocity
measurements, they are margined to the range [0,1] using the ensuing
sigmoid function (3.6).

 𝑠𝑖𝑔�𝑣𝑖𝑖
(𝑡)� =

1

1 + exp (−𝑣𝑖𝑖
(𝑡))

 (3.6)

where each 𝑣𝑖𝑖

(𝑡) represents the probability that the bit 𝑥𝑖𝑖
(𝑡) would take the

value 1, at time step 𝑡.

The component values of 𝑥𝑖𝑆’s, including the pbest and gbest positions, are
determined by selection of elements from the set {0,1}. However, 𝑥𝑖𝑆 does not
hold a value unless it is evaluated based the probabilistic update equation.
Accordingly, any bit with a certain velocity vector 𝑣𝑖𝑆 might possess diverse
positions, 𝑥𝑖𝑆, on a single dimension at every generation. The position update
for 𝑖th particle on the 𝑗th dimension is measured subject to the following
probabilistic condition (3.7).

 𝑥𝑖𝑖
(𝑡+1) = �1 𝑖𝑓 𝑠𝑖𝑔 (𝑣𝑖𝑖

(𝑡+1)) > 𝑟𝑖𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.7)

where 𝑟𝑖𝑖 is a uniformly distributed random number in the range [0, 1]. Eq.
(3.7) indicates that the value of 𝑥𝑖𝑖 will be kept 0, in case 𝑠𝑖𝑔�𝑣𝑖𝑖� equals to 0.

31

3.2. Siemens Approximation Method (SAM)

As it was discussed previously, in 1971, Siemens has developed a heuristic
algorithm, hailed as the Siemens Approximation Method (SAM), for time-cost
trade-off analyses (Siemens 1971). This method will be slightly modified and
exploited in the ensuing sections of this thesis to provide a hybrid SAM-PSO
algorithm for solving discrete time-cost curve problems. The original
procedure is initiated with construction of the project network; thereafter,
administering a couple of rules, activities that incur least additional costs are
identified and crashed. The SAM algorithm comprises the stepwise procedure
as follows:

I. Construction of the project network.

II. Identification of the paths in the network passing through the initial
and final activities.

III. Evaluation of the cost slopes (cost per unit of time saved) for the
activities in the network.

IV. Measurement of the completion time for the identified paths.

V. Determination of the longest path i.e. the critical path. If more than
one choice exists, discrimination is made in favor of the path having
smaller least cost slope.

VI. Detection of the activity with least cost slope within the selected
critical path. If cost slope is common to more than one activity,
discrimination is made in favor of the activity which is common to
greater number of paths. If more than one choice still exists,
discrimination is made in favor of activity that permits greater amount
of expedition.

VII. Expedition of the detected activity by the available amount of duration.

VIII. Reiteration of steps III through VII until all the activities of the
selected critical path is crashed.

The most prominent aspect of this method can be depicted as its assistance in
crashing activities with lowest cost slopes, on progressively changing paths
that have the longest duration, i.e., incessantly changing critical paths.
However this heuristic algorithm might shorten the duration of a project
beyond the intended amount, due to crashing activities merely with the
minimum cost slope considerations, and regardless of the number of different
paths the activities belong to. Besides, the cost slopes are evaluated merely
with regard to the utmost tuples having shortest and longest durations. Thus,
any crashing mode residing within the cheapest and the expensive modes will
most probably be neglected in cost slope calculations. Acknowledging this
drawback, a slight modification will be made prior to adoption of this model in
the novel hybrid algorithm.

32

3.3. Initialization and Termination

It is obvious that any optimization algorithm involves fitness functions,
suchlike, any algorithm requires a pattern to initialize the process, and
another condition to terminate it. Initialization can be performed either by a
deterministic or a random scheme; nonetheless, the latter condition is most
commonly used with the population-based stochastic algorithms. Though,
following types of initialization can be generally adopted for iterative
algorithms (Parsopoulos and Vrahatis 2009):

• Deterministic initialization with constant seed: Suitable for the
algorithm that repeatedly initialize from a certain point, determined by
the users.

• Deterministic initialization with different seeds: Appropriate for the
algorithm that initialize from a different point thru each cycle, selected
by the user within the domain.

• Random initialization with constant seed: Applicable for the algorithm
that repeatedly requires a certain randomly selected point to initialize.

• Random initialization with different seeds: Due for the algorithm that
at each time step requires a different randomly generated point to
initialize, selected from the domain.

The latter scheme is widely incorporated with the evolutionary strategies.
Accordingly, in this thesis, in addition to a sole-PSO algorithm with random
initial seeds, a hybrid PSO is also developed which embeds both the merits of
the first scheme and the last pattern. Deterministic seeds developed by SAM
portion of the algorithm are fed into the PSO, while, generating additional
random populations.

Such as the initialization, there exist a couple of approaches toward
termination of an algorithm. Termination is probably the most user-dependent
part of the optimization process, and occurs when at least one of the user-
defined conditions arise. The most typical termination conditions are as
follows (Parsopoulos and Vrahatis 2009):

• Convergence in domain: The series of produced solutions converge to
a minimizer.

• Convergence in function value: The function values of the solutions
converge to a minimum.

• Computational budget limitations: The exhaustion of all the available
computational resources.

• Search stagnation: The state of not being able to produce any new
solutions. Such condition occurs when velocities in PSO incline to zero.

33

The latter condition is typically used as a termination criterion in the
evolutionary algorithms. The progress rate of an algorithm reveals its
efficiency as well as its potential for improving the attained results. In case of
slow evolutions, search is said to be stagnated. Consequently, in this thesis,
the algorithm halts if no improvement is observed for the best solution, within
a certain number of successive generations (a fraction of the maximum
number of iterations), or, if the maximum number of iterations is reached.

3.4. Particle Swarm Optimizer for Time-Cost Trade-Off Analyses

In this thesis, TCT problem has been provisioned under three different
considerations. Initially, slight modifications are applied to the discrete
version of the classical sole-PSO algorithm. Additionally, a time-constraint
paradigm has been also developed. Afterwards, a novel hybrid algorithm has
been introduced that embeds a slightly modified SAM method to an
overhauled discrete PSO algorithm, extended for multi-objective
optimizations. The hybrid SAM-PSO model aims at solving the time-cost curve
problem in archiving the full Pareto front. In the ensuing sections, the
developed algorithms, as wells as their flowcharts and pseudo-codes are
elaborated.

3.4.1. Discrete TCTP

As it was discussed earlier, it is imperative for the TCT practices to consider
discrete sets of time-cost options for the activities, whereof, discrete
alternatives are commonplace in real-life projects and that any time-cost
function can be estimated by means of discretization. Accordingly, an efficient
procedure has been developed in this thesis to enhance the decision making
process for the managers. The initial discrete sole-PSO algorithm is grounded
on the version proposed by the founders (Kennedy and Eberhart 1997), which
was demonstrated in section 3.1.2. However, slight modifications have been
applied to the equations and an alternate position update equation has been
adopted. The flowchart of the proposed discrete PSO algorithm is
demonstrated in Figure 3.2, which is going to be detailed step by step in this
section.

34

Figure 3.2 – Flowchart of the proposed discrete PSO algorithm.

Generate
Particles

Compare
Fitness

Update Inertia
Weight

Start

Update gbest

Evaluate Velocity

pbest has change

Update pbest

Precedence
Constraint Valid

gbest has changed

Transform Velocity
to Probability Update Position

Stop Iteration

gbest improved
for last 0.2(t_max)

Output gbest

End

YES NO

YES

NO

YES

NO

YES

NO

Calculate
Total Cost

Determine
Duration

NO

YES

35

Since the CPM calculations are executed within the framework of the proposed
algorithm, the initial step requires definition of the project by the users,
namely, direct cost (𝑑𝑐), duration (𝑑), logical relationship, and realization
alternatives of the activities, as well as the daily indirect cost (𝑖𝑐). Thereafter,
the algorithm demands setting values for the operators like number of
generations (𝑡) and number of birds (𝑁). Subsequent to determination of the
preliminary information, the PSO algorithm commences as follows.

First of all, it must be noted that in this thesis, alternatives are presumed as
the decision variables; yet, solutions are encoded in 𝑁 number of 𝑆 × 2𝑚
matrices, called position matrices, in which 𝑚 is the maximum number of
available modes (each mode comprising 2 columns, with odd columns
dedicated for “duration” amounts, and even columns devoted for “direct
costs” values) for 𝑆 number of activities. The position of 𝑖th particle for the 𝑘th
option of the 𝑗th activity, in the time step 𝑡 is represented by 𝑥𝑖𝑖𝑘

(𝑡). Moreover,
the algorithm involves binary discrete values, that is, each particle 𝑖, for its
𝑗th activity selects only a certain 𝑘 that obtains integer 1 as its value,
whereas, the rest of the 𝑥𝑖𝑖𝑘 ’s hold 0. In doing so, it is guaranteed that during
each iteration, every particle chooses only a single option for any of the
activities (3.8).

 �𝑥𝑖𝑘
(t)

𝑚

𝑘=1

= 1 , ∀ 𝑗 = {1, … , 𝑆} (3.8)

Accordingly, incorporating the initialization techniques detailed in section 3.3,
this model starts with positioning 𝑁 number of randomly generated seeds,
𝑥𝑖𝑖𝑘 ’s, over the solution space, subject to the precedence constraints
formulated as Eq. (3.9).

 𝐸𝑆𝑖
(𝑡) + 𝑑𝑖

(𝑡) − 𝐸𝑆𝑙
(𝑡) ≤ 0 , ∀ 𝑙 ∈ 𝑆𝑖 (3.9)

where 𝑑𝑖 is activity 𝑗’s duration; 𝐸𝑆𝑖 represents the early start time of 𝑗th
activity; and 𝑆𝑖 contains all the immediate successors of the 𝑗th activity. For
the first activity of the network (𝑗 = 1), the early start time is assumed to be
1, i.e., 𝐸𝑆1

(𝑡) = 1. Besides, non-negativity of the early start times and the
durations are ensured satisfying the (3.10) condition.

 𝐸𝑆𝑖
(𝑡) ,𝑑𝑖

(𝑡) ≥ 0 (3.10)

In addition to the random positions, each particle is treated with a random
velocity vector through the first generation, 𝑣𝑖𝑖𝑘

(1), which is clamped in accord
with the predetermined 𝑣𝑚𝑎𝑥, as follows:

 𝑣𝑖𝑖𝑘
(1) = 𝑅𝑎𝑛𝑑𝑜𝑚 𝑁𝑢𝑚𝑏𝑒𝑟 , 𝑣𝑖𝑖𝑘

(1) ∈ [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥] (3.11)

36

Conception of the first generation finalizes with setting each particle’s primary
pbest, 𝑃𝑖

𝑡0, and gbest, 𝑃𝑔
𝑡0, positions as the current randomly generated

location, using 𝑆 × 2𝑚 matrices, as:

 𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑥𝑖𝑖𝑘
(1) (3.12)

Concluding construction of the initial generation, each particle 𝑖’s fitness is
evaluated with respect to the objective function (3.13), which involves
minimization of the total project cost in this case.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒�𝐶𝑖
∀𝑖

 (3.13)

And the fitness evaluations are conducted by means of the fitness functions
(3.14) and (3.15).

 𝐷𝑖 = max ���𝑑𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡)
𝑚

𝑘=1

𝑆

𝑖=1

� (3.14)

𝐶𝑖 = ��𝑑𝑐𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡) + 𝐷𝑖 × 𝑖𝑐
𝑚

𝑘=1

𝑆

𝑖=1

 (3.15)

∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚}

where 𝐷𝑖 and 𝐶𝑖 represent the total duration and the total cost of 𝑖th particle,
respectively; 𝑑𝑖𝑘 represents duration of the 𝑘th options for the 𝑗th activity; 𝑑𝑐𝑖𝑘
denotes direct cost for the 𝑘th alternative of the 𝑗th activity; and 𝑖𝑐 denotes
the daily indirect cost.

Succeeding fitness evaluation of the particles, the optimality of the solutions
are compared with each other regarding condition (3.16).

 𝑢 > 𝑣 𝑖𝑓 𝐶𝑢 ≤ 𝐶𝑣 (3.16)

which determines discrimination is made in favor of decision vector 𝑢, in case
the total cost of that particle is less than or equal to decision vector 𝑣; while,
in case of equality, i.e., 𝐶𝑢 = 𝐶𝑣, discrimination is made in favor of the particle
having smaller duration (3.17).

 𝑢 > 𝑣 𝑖𝑓 �𝐶𝑢 = 𝐶𝑣
𝐷𝑢 < 𝐷𝑣

 (3.17)

For the occasion that both particles 𝑢 and 𝑣 provide the same total costs and
durations, discrimination is made randomly. Following identification of the
better fitted individuals, 𝑃𝑖’s and 𝑃𝑔’s are updated accordingly. Meanwhile, for
the first generation, 𝑃𝑖𝑖𝑘 will remain identical to 𝑥𝑖𝑖𝑘.

37

Later, particles are flown to their new positions using the velocity vector
formulated as Eq. (3.18) which are also encoded as 𝑆 × 2𝑚 matrices. Albeit,
notwithstanding the absence of the inertia weight (𝑤) in the original velocity
update equation of the discrete PSO (Kennedy and Eberhart 1997), this
parameter is incorporated in this thesis. Hence, recruiting the aforementioned
Eq. (3.5), a time-variant reduction for this parameter is directed to enhance
the algorithm with a better balance between the local and global searches.

 𝑣𝑖𝑖𝑘
(𝑡+1) = 𝑤(𝑡) 𝑣𝑖𝑖𝑘

(𝑡) + 𝑐1𝑟1�𝑃𝑖𝑖𝑘
(𝑡) − 𝑥𝑖𝑖𝑘

(𝑡)� + 𝑐2𝑟2�𝑃𝑔𝑖𝑘
(𝑡) − 𝑥𝑖𝑖𝑘

(𝑡)� (3.18)

Components of the Eq. (3.18) are identical to those discussed in sections 3.1
and 3.1.1; whilst, subscript 𝑘, denoting the numeral of the alternatives, has
been supplemented to the operators. As mentioned in section 3.1, damping
factor (3.3) is applied to the calculated velocities. Thence, measured velocities
are transformed to probabilities and are margined to the range [0,1], using a
logistic transformation (3.19), as discussed earlier.

 𝑠𝑖𝑔�𝑣𝑖𝑖𝑘
(𝑡)� =

1

1 + exp (−𝑣𝑖𝑖𝑘
(𝑡))

 (3.19)

Each particle is then migrated to a new position subject to the probabilistic
condition (3.20), adopted from Izakian et al. (2009, 2010).

 𝑥𝑖𝑖𝑘
(𝑡+1) = �1 𝑖𝑓 𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘

(𝑡+1)) = max�𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘
(𝑡+1))�

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.20)

Eq. (3.20) differs from the position update equation proposed by Kennedy and
Eberhart (1997), in that, for every activity, it involves determination of the
alternative(s) associated with the maximum amount of probability; whereas,
the original version takes on a uniformly distributed random number for
evaluations. Eq. (3.20) indicates that in each row of position matrix, only a
single alternative will obtain value 1, whose corresponding element in the
velocity vector has the maximum probability. If max�𝑠𝑖𝑔 (𝑣𝑖𝑖𝑘

(𝑡+1))� is common to
more than one alternative, then, discrimination will be made randomly.

There forth, the process will reiterate by making comparison among particles
using the fitness functions. This procedure will repeat until meeting the
termination conditions, deliberated in section 3.3. Accordingly, the algorithm
will halt if no improvement is monitored for the best particle, within 0.2 × 𝑡𝑚𝑎𝑥
successive generations, or, if the maximum number of iterations is reached.
Ultimately, the algorithm will return the final gbest particle as the optimum or
near-optimum solution for the discrete TCT problem. The pseudo-code of the
proposed discrete PSO algorithm is illustrated in Figure 3.3.

38

Begin;
 For each 𝑗 = 1, … , 𝑆;
 For each 𝑘 = 1, …𝑚;
 Retrieve first information;
 Create 𝑆 × 2𝑚 matrices for 𝑁 particles;
 End;
 End;
 For each particle 𝑖 = 1, … ,𝑁;
 Initialize an array with random positions and velocities on 𝑆 dimensions;
 If Eq. (3.9)=true;
 While 𝑡 ≤ 𝑡𝑚𝑎𝑥 && gbest improved within last 0.2 × 𝑡𝑚𝑎𝑥;
 For each particle 𝑖 = 1, … ,𝑁;
 Determine Duration using Eq. (3.14);
 Calculate Total Cost using Eq. (3.15);
 Initialize value of 𝑤;
 If 𝑥𝑖 > 𝑃𝑖;
 Set 𝑥𝑖𝑖𝑘 as pbest;
 If 𝑃𝑖 > 𝑃𝑔;
 Set 𝑃𝑖 as gbest;
 End;
 End;
 Calculate velocity using Eq. (3.18);
 Transform velocity to probability using Eq. (3.19);
 Update position using Eq. (3.20);
 End;
 Update value of 𝑤;
 End;
 End;
 End;
 Return gbest;
End;

Figure 3.3 – Pseudo-code of the proposed discrete PSO algorithm.

3.4.2. Time-constraint TCTP

In addition to the modified discrete PSO procedure, a slightly revised version
of this algorithm is also developed for time-constraint TCT analyses, which is
going to be presented in this section. The time-constraint TCT problems
engage minimization of the total cost, taking into account an upper boundary
for the completion time of projects. These types of TCT problems typically
occupy contractual clauses concerning the daily liquidated damages for
delays, and daily incentives for early completions. Accordingly, an efficient
procedure has been developed in this thesis to assist decision makers with
assessment of provisions that employ incentives and liquidated damages. On
the verge of satisfying the resolution of time-constraint optimization, minor
adjustments are applied to the algorithm detailed in section 3.4.1. These
adjustments comprise implementation of three new parameters of Deadline,
Penalty, and Bonus, as well as, introduction of a new fitness function to the
system. The flowchart of the proposed PSO algorithm for time-constraint

39

version of TCT problem is demonstrated in Figure 3.4, which is going to be
explained methodically in this section.

Figure 3.4 – Flowchart of the proposed PSO algorithm for time-constraint TCTP.

Generate
Particles

Compare
Fitness

Update Inertia
Weight

Start

Update gbest

Evaluate Velocity

pbest has change

Update pbest

Precedence
Constraint Valid

gbest has changed

Transform Velocity
to Probability Update Position

Stop Iteration

gbest improved
for last 0.2(t_max)

Output gbest

End

YES NO

YES

NO

YES

NO

YES

NO

Calculate
Total Cost

Determine
Duration

NO

YES

Evaluate Duration
versus Deadline

40

The proposed procedure remains identical to the version demonstrated in
section 3.4.1, except for the retrieved initial information and the fitness
function. In addition to the former definitions, this extension involves setting
values for three new parameters by the users, namely, the amount of daily
liquidated damage (𝑝𝑐), the daily incentive amount (𝑏𝑐), and the desired
deadline (𝑑𝑑). Total cost representing the fitness of the particle is revised,
such that, it ensures completion date of the optimal solution to be equal to or
less than the specified deadline. Respectively, succeeding construction of the
first generation, each particle 𝑖’s fitness is evaluated with regard to the
following conditions:

 𝐷𝑖 = max ���𝑑𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡)
𝑚

𝑘=1

𝑆

𝑖=1

� (3.21)

𝑇𝑖 = 𝐷𝑖 − 𝑑𝑑 (3.22)

𝐶𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧
���𝑑𝑐𝑖𝑘

(𝑡)𝑥𝑖𝑘
(𝑡) + 𝐷𝑖 × 𝑖𝑐

𝑚

𝑘=1

𝑆

𝑖=1

� + (|𝑇𝑖| × 𝑝𝑐) 𝑖𝑓 𝑇𝑖 ≥ 0

���𝑑𝑐𝑖𝑘
(𝑡)𝑥𝑖𝑘

(𝑡) + 𝐷𝑖 × 𝑖𝑐
𝑚

𝑘=1

𝑆

𝑖=1

� − (|𝑇𝑖| × 𝑏𝑐) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.23)

∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚}

Eq. (3.21) measures the critical path’s duration; afterwards using Eq. (3.22),
for each particle 𝑖, the time discrepancy between the desired deadline (𝑑𝑑)
and the calculated duration is evaluated. This time discrepancy is then
reflected on total cost calculations (3.23) as an extra term, provisioning
penalties (𝑝𝑐) for delays and bonus payments (𝑏𝑐) for early completions. The
sequel of this algorithm practices exactly the same procedure as, the system
discussed in section 3.4.1. The pseudo-code of the proposed discrete PSO
algorithm for time-constraint TCT problem is illustrated in Figure 3.5.

41

Begin;
 For each 𝑗 = 1, … , 𝑆;
 For each 𝑘 = 1, …𝑚;
 Retrieve first information;
 Create 𝑆 × 2𝑚 matrices for 𝑁 particles;
 End;
 End;
 For each particle 𝑖 = 1, … ,𝑁;
 Initialize an array with random positions and velocities on 𝑆 dimensions;
 If Eq. (3.9)=true;
 While 𝑡 ≤ 𝑡𝑚𝑎𝑥 && gbest improved within last 0.2 × 𝑡𝑚𝑎𝑥;
 For each particle 𝑖 = 1, … ,𝑁;
 Determine Duration using Eq. (3.21);
 Evaluate Duration vs. Deadline;
 Calculate Total Cost using Eq. (3.23);
 Initialize value of 𝑤;
 If 𝑥𝑖 > 𝑃𝑖;
 Set 𝑥𝑖𝑖𝑘 as pbest;
 If 𝑃𝑖 > 𝑃𝑔;
 Set 𝑃𝑖 as gbest;
 End;
 End;
 Calculate velocity using Eq. (3.18);
 Transform velocity to probability using Eq. (3.19);
 Update position using Eq. (3.20);
 End;
 Update value of 𝑤;
 End;
 End;
 End;
 Return gbest;
End;

Figure 3.5 – Pseudo-code of the proposed PSO algorithm for the deadline problem.

3.4.3. Time-cost curve TCTP

It was declared earlier that the major concern with the TCT analyses is to
unravel time-cost curve problem through obtaining a complete time-cost
profile for the feasible project completion times. Originally conceded by
Vilfredo Pareto, this profile is dubbed as the Pareto front or the efficient
frontier, whose components are mutually non-dominated with respect to
multiple criteria. As such, time-cost curve extension of the TCT problem is a
multi-objective decision making problem, and any of its objectives might
reach their optimal amounts at miscellaneous positions; thus, necessitating
judgments of the experts for ultimate selection of the optimum solution along
the efficient frontier. Obtaining the Pareto front for TCT problem, in essence,
engages concurrent optimization of two classical TCT extensions, viz., the
budget and the deadline problems. The results of these analyses are typically
stored in a repository hailed as the external archive. Resultantly, for TCT

42

problems, the Pareto front does not occupy 𝑣th solution if there is already
another solution, 𝑢, in the archive, such that 𝐷𝑣 ≥ 𝐷𝑢 while 𝐶𝑣 ≥ 𝐶𝑢, and one of
these inequalities holds strictly.

Owing to inherent complexity of the time-cost curve problem, it is imperative
to develop a state-of-the-art model, capable of identifying the complete
Pareto front for larger discrete TCT networks. To this end, two chief
considerations are taken into account in this thesis. First, as stated in section
3.3, most of the evolutionary algorithms use a random scheme to initialize the
first generation. Though, convergence capabilities of these algorithms
extremely rely on the initial seed. Second, it is a challenge for the multi-
objective optimization problems to compare the fitness of the archived
solutions; for, solutions stored in the repository are mutually non-dominated
and that there exist no general criterion for optimality. Thus, extending PSO
for multi-objective problems urges practicing novel approaches toward
evaluation of pbest and gbest positions of the particles.

Focusing on the two concerns mentioned, in this thesis, the complementary
potencies of a heuristic method and a PSO are combined to develop a novel
hybrid algorithm. Toward satisfying the first concern, minor modifications are
applied to the original Siemens Approximation Method (SAM), and it is then
embedded to a revamped PSO algorithm. The modified-SAM method accounts
for a certain portion of the initial seed, with the remaining initial particles
being generated randomly. Grounded upon the discrete PSO algorithm
proposed in section 3.4.1, an overhauled system has been developed to
address the second problem. Novel techniques for fitness evaluations are
implemented into this paradigm of the PSO algorithm.

Correspondingly, this hybrid approach contrasts with the previous studies
both in terms of the scheme used to generate the first population, and in
terms of the objective function used to evaluate pbest and gbest of the
particles. The escalated convergence competencies of this model, in mapping
optimal costs to feasible durations, will be verified in the ensuing chapter. This
section is dedicated to practice of the proposed hybrid SAM-PSO algorithm,
whose flowchart is presented in Figure 3.6. Steps of this model are going to
be illuminated in the sequel of this section.

43

Figure 3.6 – Flowchart of the proposed hybrid SAM-PSO algorithm.

Generate N-M
Particles

Update Inertia
Weight

Start

Evaluate Velocity

Precedence
Constraint Valid

Transform Velocity
to Probability Update Position

Output
archive O

End

YES

NO

Calculate
Total Cost

Determine
Duration

NO

YES

Construct
Project Network

Identify Paths
containing
j=1 and j=S

Determine
Duration

Calculate
Total Cost

Store critical path
in archive O

Evaluate
Cost Slopes

Feed archive O
with M solutions

to PSO

Crash least
Cost Slope

in Critical path

NO

YES

Duration within
specified Interval

Same Duration(s)
exist in archive O

Equal or
less Total Cost

YES

Store in
archive O

Dominates
previous pbest

Update gbest Update pbest

NO NO

YES

NO

YES

NO

YES

Stop
Iteration

All critical
activities
crashed

44

Identical to the earlier proposed systems, the initial step of this model
requires definition of the project by the users, namely, direct cost (𝑑𝑐),
duration (𝑑), logical relationship, and realization alternatives of the activities,
as well as the daily indirect cost (𝑖𝑐). In addition to project information, the
hybrid algorithm demands assigning a time interval (𝑍𝑚𝑖𝑛 to 𝑍𝑚𝑎𝑥) within
which, the feasible realizations of durations will be explored. Afterwards, the
algorithm invokes setting values for the operators like number of generations
(𝑡) and number of birds (𝑁), with the latter being set meticulously (usually
larger swarms) for the sake of deterministic seeds (discussed later in this
section). Subsequent to determination of the preliminary information, the
SAM-PSO algorithm embarks performing the following sequence of actions.

In lieu of the initialization technique adopted in the former models, SAM-PSO
incorporates a semi-deterministic (semi-random) initialization scheme
(readers are referred to section 3.3). To this end, a certain portion of the
initial population is generated by dint of the modified-SAM method, with the
remaining initial seeds being generated randomly. The modified-SAM method
remains virtually unchanged compared to the original procedure (section 3.2),
with a minor revision made to the cost slope evaluation pattern (step III). The
reason behind this modification, as discussed in section 3.2 previously, is that
the original SAM method evaluates cost slopes merely with regard to the
utmost tuples having the shortest and the longest durations, which most
probably causes neglecting any crashing mode residing within these
alternatives. However, the modified-SAM assumes an incremental order for
the tuples, from left to right, with respect to their costs; and unlike the
original method, for each activity 𝑗, calculates the cost slopes (𝐶𝑆𝑖) involving
the available utmost right and the penult crashing modes. During any
iteration, this method uses Eq. (3.24) to evaluate the cost slopes.

 𝐶𝑆𝑖 = (𝐶𝑖𝑘 − 𝐶𝑖(𝑘−1))(𝐷𝑖𝑘 − 𝐷𝑖(𝑘−1))−1 (3.24)

∀ 𝑗 = {1, … , 𝑆}, ∀ 𝑘 = {1, … ,𝑚}

where the cost slopes of the first network are evaluated by setting 𝑘 = 𝑚;
afterwards, decreasing the numeral of option 𝑘, one at a time, as more
alternatives of the 𝑗th activity gets crashed. The attained solutions from
modified-SAM are represented by 𝑦𝑖𝑖𝑘, which implies solution 𝑖’s position, for
the 𝑘th option of the 𝑗𝑡ℎ activity. An external repository, 𝑂, has been
dedicated to the SAM-PSO model, so as to store all the non-dominated
solution found by this algorithm. This external archive is designed to hold
�(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1� solutions, which are encoded in 𝑆 × 2𝑚 matrices (𝑚,
allowable modes for 𝑆 activities, comprising 2 column; odd and even columns
devoted for “duration” and “direct costs”, respectively). Primarily, this hollow
repository is exploited by the modified-SAM to archive all the time-cost
realizations obtained thru each cycle. The number of solutions recorded in
repository 𝑂, at the final cycle of this phase is denoted by 𝑀, allowing
��(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1� − 𝑀� number of non-dominated particles to be added to the
repository over the subsequent stages of SAM-PSO. Accordingly, as expressed
previously, it is of great importance for this algorithm to set the number of
particles, 𝑁, with a great obsession; in that, 𝑀 number of particles will be

45

occupied in this phase, leaving 𝑁 −𝑀 particles to be generated randomly
amidst the PSO stage. Hence, the users are advised to take on larger swarms,
such that:

𝑁 > 𝑀

The modified-SAM stage concludes with submission of the results stored in
the archive 𝑂, to the particle swarm optimizer. In doing so, it is intended to
feed the solutions archived in repository 𝑂, as initial seeds into the PSO
model; as well, to exploit these solutions in pbest and gbest calculations of
the PSO algorithm. It must be emphasized, however, that the external archive
𝑂 is dedicated only to the non-dominated solutions and that the PSO process
engages alternate matrices for the calculations. Therefore, succeeding the
final cycle of the modified-SAM, solutions are seeded to the particle swarm
optimizer; 𝑁 −𝑀 particles are then generated using a random scheme
(identical to systems discussed in sections 3.4.1 and 3.4.2), initializing the
PSO process. The aforementioned Eq. (3.9) is used to satisfy the precedence
constraints of the generated particles. Thereafter, clamped to the feasible
region [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥], all the initial seeds, i.e., 𝑀 deterministic and 𝑁 −𝑀
random particles are treated with random velocity vectors, 𝑣𝑖𝑖𝑘

(1), through the
first iteration.

Conception of the first generation concludes with determination of the
primitive pbest, 𝑃𝑖

𝑡0, and gbest, 𝑃𝑔
𝑡0, positions. Encoded in 𝑆 × 2𝑚 matrices,

each particle acquires the “best” positions using Eq. (3.25) as follows:

 �
𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑦𝑖𝑖𝑘 , ∀𝑖 ∈ {1, … ,𝑀}

𝑃𝑖𝑖𝑘
𝑡0 = 𝑃𝑔𝑖𝑘

𝑡0 = 𝑥𝑖𝑖𝑘
(1) , ∀𝑖 ∈ {𝑀 + 1, … ,𝑁}

 (3.25)

where each 𝑦𝑖𝑖𝑘 is the position of the particle attained from the modified-SAM;
and each 𝑥𝑖𝑖𝑘

(1) represents position of the randomly generated particle.

Toward fitness evaluations, the rationale of the system discussed in section
3.4.1 has been totally revamped; in that, each particle 𝑖’s fitness is evaluated
with respect to the new objective function (3.26), which involves concurrent
minimization of both the total duration and the total cost of the project.

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑦 ≡ (𝐷,𝐶) (3.26)

The fitness evaluations involve Eqs. (3.14) and (3.15) for total duration and
total cost measurement. Herein, a controller is devised to carry out judgments
regarding particles’ qualification to enter the external archive 𝑂. For any
decision vector 𝑥, this controller engages the following criteria with respect to
the measured 𝐷𝑥 and 𝐶𝑥:

46

 𝐴𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 �
 𝑍𝑚𝑖𝑛 ≤ 𝐷𝑥 ≤ 𝑍𝑚𝑎𝑥
𝐷𝑥 ≠ 𝐷𝑦 (3.27)

 𝑜𝑟 �
 𝑍𝑚𝑖𝑛 ≤ 𝐷𝑥 ≤ 𝑍𝑚𝑎𝑥
𝐷𝑥 = 𝐷𝑦
𝐶𝑥 ≤ 𝐶𝑦

 (3.28)

𝑅𝑒𝑗𝑒𝑐𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.29)

where 𝐷𝑦 and 𝐶𝑦 respectively represent duration and cost of particle 𝑦, a
solution in the archive 𝑂. Eq. (3.27) indicates any particle 𝑥, with a duration
within the predetermined allowable interval, will be accepted if there is no
decision vector 𝑦 inside the archive with the same duration amount. Eq.
(3.28) dictates any allowable solution 𝑥, with a duration amount identical to
particle(s) 𝑦 placed inside the repository, will be accepted if total cost of this
solution is less than or equal to the archived particle(s). In this equation, a
non-strict inequality is incorporated for cost comparison, so as to promote
exploration. If particle 𝑥 satisfies (3.28) condition, the individual 𝑦 gets
removed from the archive automatically. Moreover, Eq. (3.29) specifies no
decision vector 𝑥 will be accepted if none of the abovementioned conditions
are met. At the end of the iterations, the solutions stored in the external
repository form the non-dominated front have hitherto been solved.

Succeeding consecution of the archive members, SAM-PSO takes on a novel
approach to measure pbets, 𝑃𝑖, and gbest, 𝑃𝑔, positions of the particles to
calculate the velocity vectors. Selection of pbest is modified as to update
should a strongly dominating solution emerges; that is, pbest will be updated
only when the new position is non-dominated and it dominates all the
preceding pbests. Former pbest, 𝑢, is said to dominate new postion, 𝑣,
regarding condition (3.30).

 𝑢 > 𝑣 𝑖𝑓 �𝐷𝑢 < 𝐷𝑣 𝑎𝑛𝑑 𝐶𝑢 ≤ 𝐶𝑣
𝐷𝑢 ≤ 𝐷𝑣 𝑎𝑛𝑑 𝐶𝑢 < 𝐶𝑣

 (3.30)

which determines discrimination is made in favor of decision vector 𝑢, in case
its duration and cost are less than or equal to 𝑣, while one of these
inequalities holds strictly. Meanwhile, for the first generation, 𝑃𝑖’s will remain
intact. Furthermore, the selection of gbest is revised to randomly select a
non-dominated particle from the external repository, 𝑂, throughout each
iteration. Such a concern is paramount for the model, since, all the archived
solutions are non-dominated and are equally good.

Ultimately, particles are flown to their new positions following exactly the
same procedures discussed in section 3.4.1. This process will reiterate until
meeting the termination condition deliberated in section 3.3. Accordingly, the
algorithm will halt if the maximum number of iterations is reached.
Eventually, the algorithm will return the non-dominated solutions stored in
the external archive, 𝑂, as the Pareto front of the time-cost curve problem.
The pseudo-code of the proposed hybrid SAM-PSO algorithm is illustrated in
Figure 3.7.

47

Begin;
 For each 𝑗 = 1, … , 𝑆;
 For each 𝑘 = 1, …𝑚;
 Retrieve first information;
 Create 𝑆 × 2𝑚 matrices for (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) + 1 particles;
 Create 𝑆 × 2𝑚 matrices for 𝑁 particles;
 End;
 End;
 For each particle 𝑖 = 1, … ,𝑀;
 Construct network;
 If path contains 𝑗 = 1 && 𝑗 = 𝑆;
 While all critical activities crashed != true;
 Determine Duration;
 Calculate Total Cost;
 Store critical path in archive 𝑂;
 Evaluate cost slopes using Eq. (3.24);
 Crash critical activity with least cost slope;
 End;
 End;
 Set 𝑦𝑖𝑖𝑘 as pbest and gbest using Eq. (3.25);
 End;
 For each particle 𝑖 = 𝑀 + 1, … ,𝑁;
 Initialize an array with random positions and velocities on 𝑆 dimensions;
 If Eq. (3.9)=true;
 Set 𝑥𝑖𝑖𝑘 as pbest and gbest using Eq. (3.25);
 While 𝑡 ≤ 𝑡𝑚𝑎𝑥;
 For each particle 𝑖 = 1, … ,𝑁;
 Determine Duration using Eq. (3.14);
 Calculate Total Cost using Eq. (3.15);
 Initialize value of 𝑤;
 If Eq. (3.27) || Eq. (3.28) =true;
 Add to archive 𝑂;
 If 𝑥𝑖 is non-dominated && Eq. (3.30) =true;
 Set 𝑥𝑖𝑖𝑘 as pbest;
 End;
 Select gbest randomly from archive 𝑂;
 End;
 Calculate velocity using Eq. (3.18);
 Transform velocity to probability using Eq. (3.19);
 Update position using Eq. (3.20);
 End;
 Update value of 𝑤;
 End;
 End;
 End;
 Return archive 𝑂;
End;

Figure 3.7 – Pseudo-code of the proposed hybrid SAM-PSO algorithm.

49

CHAPTER 4

VALIDATION AND EMPIRICAL ANALYSES

This chapter is devoted to validation and performance measurement of the
developed algorithms. The proposed optimizers for discrete TCTP, as well as
the time-constraint TCTP are validated using instances widely adopted in the
literature. Empirical analyses are then conducted to measure performance and
efficiency of the proposed model for solution of the time-cost curve problem.
Throughout the computational experiments, the complete non-dominated
fronts of test problems are introduced for the very first time in the literature.
Experiments are also exerted to compare the obtained results using mixed
integer programming technique.

4.1. Validating the Algorithms

In the course of development of the proposed algorithms, several test
problems were employed to experiment their convergence capabilities. One of
the chief prospects of these experimentations was to scrutinize the effect of
selected parameters on the performance of the algorithms. As a result, the
selected parameters were fine-tuned via a series of trial and error tests,
respecting the convergence speed and quality of the solutions. The final
operators set for each method, namely, iterations (𝑡), particles (𝑖), 𝑐1, 𝑐2,
inertial weight (𝑤), and 𝑣𝑚𝑎𝑥 are given in the sequel of this chapter. The
practiced test instances are some of the best known TCT problems analyzed in
the construction management literature. Three extensions of discrete TCT
problems are fed into the PSO optimizers, and experiments have been
directed to validate their potencies accordingly.

Yet, as stated earlier, the optimality of the results cannot be confirmed unless
an exact procedure is recruited. Respectively, it is not possible to accurately
assess quality of the solutions obtained from heuristic or meta-heuristic
algorithms short of identified optimal solutions. Accordingly, on the verge of
performance evaluations, an exact procedure is also adopted within the
context of this thesis. All the instances are solved to optimality by dint of
mixed integer programming using the AIMMS 3.11 optimization software.
Therewith, the obtained results are compared to solutions provided by the
PSO models. The average percent deviations are then evaluated for multiple
experimental runs. Moreover, the processing times required to unravel the
test problems are also determined.

The first test problem involves the 18-activity network derived from Feng et
al. (1997) incorporating the time-cost alternatives defined in Hegazy (1999).
This instance is widely adopted by numerous researchers (Elbeltagi et al.
2005, Zheng et al. 2005, Elbeltagi et al. 2007, Ng and Zhang 2008, Xiong and

50

Kuang 2008, Afshar et al. 2009, Sonmez and Bettemir 2012) as a test-bed for
performance evaluations. Four sample tests with different indirect cost
provisions have been implemented to the discrete PSO algorithm introduced
in section 3.4.1. This algorithm is also experimented for solution of a more
complex problem to optimize time and cost concomitantly. Thus, the
hypothetical 63-activity project derived from Sonmez and Bettemir (2012) is
fitted into the model. Details of these instances along with the results of
computational experiments are going to be presented in section 4.2.1. The
achieved results ensure the robustness of the proposed algorithm compared
to the solutions of well-developed algorithms, as well as the exact procedure.

For the time-constraint TCT analysis, a third test problem based upon the
former 18-acitivty network is practiced. Described in Hegazy (1999), this
instance incorporates liquidated damages and incentive payments with regard
to a predetermined completion deadline. This instance has been implemented
to the method discussed in section 3.4.2. The attained results further confirm
efficiency of the proposed algorithm, providing sound solutions within a very
small processing time. This test problem including the empirical analyses is
going to be elaborated in section 4.2.2.

The hybrid SAM-PSO model is initially tested against the model developed by
Afshar et al. (2009). To this end, the 18-activity TCT problem is adopted to
unravel time-cost curve problem, assuming different values for the indirect
cost. The results obtained from the modified-SAM method, and the final
Pareto front are then compared against the optimal efficient frontier achieved
by means of the exact procedure. Compared well against Afshar et al.’s
(2009) model, application of SAM-PSO in solution of 63-activity problem
derived from Sonmez and Bettemir (2012) is experimented. SAM-PSO’s
convergence capabilities in locating the Pareto front are demonstrated
alongside the results of mixed integer programming. The results prove
successful operation of the proposed algorithm by searching merely a small
fraction of the search space, within an acceptable processing time. Details of
the experimentations are given in section 4.2.3.

Throughout the validation process, ten successive test runs are executed for
analysis of any of the instances. The average percent deviations from the
optima, acquired by means of the exact procedure, are evaluated accordingly.
The required processing times are also determined with regard to the CPU
times taken to implement the instances. Throughout these implementations,
no inflation, interest, or any second order cost component is reflected to the
cost calculations. Besides, a 7-day workweek calendar is assumed to be
available for the projects. Details of all the implemented TCT problems,
selected parameter values, and the results of the empirical analyses are going
to be presented in the ensuing section.

4.2. Empirical Analyses

All the algorithms proposed in sections 3.4.1, 3.4.2, and 3.4.3 have been
coded in C++ programming language. Microsoft Visual Studio 2010 Ultimate
Edition has been exploited to compile and debug the implemented algorithms.

51

All the experimentations have been carried out by a laptop computer running
Windows 7 Ultimate Edition (64-bit) operating system, with Intel Core 2 Duo
3.06 GHz CPU, and 6 Gigabytes of Physical memory (RAM). The prepared
programs engage CPM calculations for logical relationships of type finish-to-
start, considering no lags in between. Processing times, presented in precision
to centiseconds (cs), are measured concerning main blocks of code,
regardless of the interval required to insert the inputs and the period taken to
return the outputs. All the durations are reflected in “days”, and the costs are
measured in “USD ($)”.

In the following sections, TCT problems and the experimentations are
abstracted.

4.2.1. Discrete TCTP analyses

The validation and performance assessment of the algorithm introduced in
section 3.4.1 is carried out implementing various cases of two test problems
derived from the literature. The first examined TCT problem involves the 18-
activity project derived from Feng et al. (1997) and Hegazy (1999). The
logical relationships among the activities of this problem, together with the
available time-cost alternative are given in Table 4.1. In this example, there is
one activity with single mode, ten activities with three modes, two activities
with four modes, and five activities with five modes; accounting for a total of
5.9×109 possible schedules. The activity on node (AoN) representation of this
problem is illustrated in Figure 4.1. This problem has been examined under
four different conditions regarding the amount of the indirect costs. The
assumed indirect costs are as 200$/𝑑𝑎𝑦, 500$/𝑑𝑎𝑦, and 1,500$/𝑑𝑎𝑦; while, in
one of the situations the example is solved with no daily indirect cost
considerations, i.e., 0$/𝑑𝑎𝑦.

Table 4.1 – Data for the 18-activity TCT problem.

Act. No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

 Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

 (days) $ (days) $ (days) $ (days) $ (days) $

1 – 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200

2 – 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000

3 – 15 4,500 22 4,000 33 3,200 – – – –

4 – 12 45,000 16 35,000 20 30,000 – – – –

5 1 22 20,000 24 17,500 28 15,000 30 10,000 – –

6 1 14 40,000 18 32,000 24 18,000 – – – –

7 5 9 30,000 15 24,000 18 22,000 – – – –

8 6 14 220 15 215 16 200 21 208 24 120

9 6 15 300 18 240 20 180 23 150 25 100

10 2, 6 15 450 22 400 33 320 – – – –

11 7, 8 12 450 16 350 20 300 – – – –

52

Table 4.1 – Data for the 18-activity TCT problem. (Continued)

Act. No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

 Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

 (days) $ (days) $ (days) $ (days) $ (days) $

12 5, 9, 10 22 2,000 24 1,750 28 1,500 30 1,000 – –

13 3 14 4,000 18 3,200 24 1,800 – – – –

14 4, 10 9 3,000 15 2,400 18 2,200 – – – –

15 12 12 4,500 16 3,500 – – – – – –

16 13, 14 20 3,000 22 2,000 24 1,750 28 1,500 30 1,000

17 11, 14, 15 14 4,000 18 3,200 24 1,800 – – – –

18 16, 17 9 3,000 15 2,400 18 2,200 – – – –

Figure 4.1 – Activity on node (AoN) representation of the 18-activity network.

The algorithm detailed in section 3.4.1 is adopted to exert TCT analyses for
this problem. Since the convergence capabilities of the proposed algorithm
are sensitive to the selected parameters, values are set for the operators
through a series of trial experiments which are given in Table 4.2.

Table 4.2 – Parameters selected for discrete PSO algorithm.

Parameter Value
𝑡 40
𝑖 70
𝑐1 2
𝑐2 2

𝑤𝑚𝑎𝑥 1.2
𝑤𝑚𝑖𝑛 0.4
𝑣𝑚𝑎𝑥 6

Start

2
25

4
20

1
24

3
33

6
24

5
30

10
33

9
25

8
24

7
18

11
20

12
30

14
18

15
16

17
24

13
24

16
30

18
18

Finish

Activity
Duration

Critical Path

53

As shown in Table 4.2, 40 generations with a swarm size of 70 are sufficient
for the proposed algorithm to tackle the discrete TCT problem efficiently.
Acquired from the literature, the cognition and social coefficients are set as
integer 2, ascribing weighted average of 1 for the second and the third terms
of Eq. (3.18). The inertia weight is set to linearly decrease through the
execution of the algorithm, from the maximum value of 1.2 to the minimum
value of 0.4. As depicted in section 3.1.2, the maximum allowed velocity is
set as integer 6, contributing calculations of probabilities of range 0.0025 to
0.9975 via Eq. (3.19).

The results of this experiment are shown in Table 4.3, first column of which
shows the amount of daily indirect cost; the second and the third columns
demonstrate the best solution found by this algorithm. These results are
compared to both the solutions provided by numerous researchers (Feng, Liu
et al. 1997, Hegazy 1999, Elbeltagi, Hegazy et al. 2005, Zheng, Ng et al.
2005, Elbeltagi, Hegazy et al. 2007, Ng and Zhang 2008, Xiong and Kuang
2008, Sonmez and Bettemir 2012) and the optimal solutions. The optimal
solutions are obtained using mixed integer model of Sonmez and Bettemir
(2012) along with the AIMMS optimization software. The average percent
deviations (APD) from the optima are then evaluated for ten consecutive
experimental runs. Inasmuch as the algorithm located the global optima in
any of the attempts, single solution for any values of the indirect cost are
presented. Accordingly, APD’s of zero amounts have been measured for the
obtained solutions. In addition, the average CPU times taken to implement
instances are also given in the last column of Table 4.3. The results prove that
the proposed algorithm is capable of handling this instance effectively and
efficiently, in that, finds global optimum solutions by searching merely a small
fraction of the search space. In fact, only 2800 possible different schedules
are explored thru each experiment. Searching only a small portion of the
search space (4.74×10-5 %) allows this procedure to perform within an
inconsiderable processing time of 0.08 seconds. As a result, the proposed
algorithm outperforms all the earlier optimizers with regard to both the
convergence speed and the quality of the solutions.

Table 4.3 – Results of experimental analyses for the proposed discrete PSO algorithm.

Number of
Indirect

Cost Duration Cost APD
(%)

Average

Analyses CPU time
(s)

10 0 169 99,740 0.00 0.08
10 200 126 127,770 0.00 0.08
10 500 110 161,270 0.00 0.08
10 1,500 110 271,270 0.00 0.08

A second experiment employing a more complex problem is also conducted to
measure the performance of the discrete PSO algorithm described in section
3.4.1. To accomplish this goal, the hypothetical 63-activity project described
in Sonmez and Bettemir (2012) is fed into the model. Details of this instance,
comprising the logical relationships of the activities, along with the available
time-cost alternative are tabulated in Table 4.4. This instance contains two

54

activities with three modes, fifteen activities with four modes, and forty-six
activities with five modes; inducing a total of 1.37×1042 different possible
project realizations. The activity on node (AoN) diagram of this problem is
illuminated in Figure 4.2. This problem has been experimented under two
different assumptions regarding the amount of the daily indirect costs. The
presumed indirect costs are as 2,300$/𝑑𝑎𝑦, and 3,500$/𝑑𝑎𝑦.

Table 4.4 – Data for the 63-activity TCT problem.

Act.
No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

 Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

 (days) $ (days) $ (days) $ (days) $ (days) $

1 ‐ 14 3,750 12 4,250 10 5,400 9 6,250 ‐ ‐

2 ‐ 21 11,250 18 14,800 17 16,200 15 19,650 ‐ ‐

3 ‐ 24 22,450 22 24,900 19 27,950 17 31,650 ‐ ‐

4 ‐ 19 17,800 17 19,400 15 21,600 ‐ ‐ ‐ ‐

5 ‐ 28 31,180 26 34,200 23 38,250 21 41,400 ‐ ‐

6 1 44 54,260 42 58,450 38 63,225 35 68,150 ‐ ‐

7 1 39 47,600 36 50,750 33 54,800 30 59,750 ‐ ‐

8 2 52 62,140 47 69,700 44 72,600 39 81,750 ‐ ‐

9 3 63 72,750 59 79,450 55 86,250 51 91,500 49 99,500

10 4 57 66,500 53 70,250 50 75,800 46 80,750 41 86,450

11 5 63 83,100 59 89,450 55 97,800 50 104,250 45 112,400

12 6 68 75,500 62 82,000 58 87,500 53 91,800 49 96,550

13 7 40 34,250 37 38,500 33 43,950 31 48,750 ‐ ‐

14 8 33 52,750 30 58,450 27 63,400 25 66,250 ‐ ‐

15 9 47 38,140 40 41,500 35 47,650 32 54,100 ‐ ‐

16 9, 10 75 94,600 70 101,250 66 112,750 61 124,500 57 132,850

17 10 60 78,450 55 84,500 49 91,250 47 94,640 ‐ ‐

18 10, 11 81 127,150 73 143,250 66 154,600 61 161,900 ‐ ‐

19 11 36 82,500 34 94,800 30 101,700 ‐ ‐ ‐ ‐

20 12 41 48,350 37 53,250 34 59,450 32 66,800 ‐ ‐

21 13 64 85,250 60 92,600 57 99,800 53 107,500 49 113,750

22 14 58 74,250 53 79,100 50 86,700 47 91,500 42 97,400

23 15 43 66,450 41 69,800 37 75,800 33 81,400 30 88,450

24 16 66 72,500 62 78,500 58 83,700 53 89,350 49 96,400

25 17 54 66,650 50 70,100 47 74,800 43 79,500 40 86,800

26 18 84 93,500 79 102,500 73 111,250 68 119,750 62 128,500

27 20 67 78,500 60 86,450 57 89,100 56 91,500 53 94,750

28 21 66 85,000 63 89,750 60 92,500 58 96,800 54 100,500

29 22 76 92,700 71 98,500 67 104,600 64 109,900 60 115,600

30 23 34 27,500 32 29,800 29 31,750 27 33,800 26 36,200

55

Table 4.4 – Data for the 63-activity TCT problem. (Continued)

Act.
No. Pred. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

 Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

 (days) $ (days) $ (days) $ (days) $ (days) $

31 19, 25 96 145,000 89 154,800 83 168,650 77 179,500 72 189,100

32 26 43 43,150 40 48,300 37 51,450 35 54,600 33 61,450

33 26 52 61,250 49 64,350 44 68,750 41 74,500 38 79,500

34 28, 30 74 89,250 71 93,800 66 99,750 62 105,100 57 114,250

35 24, 27, 29 138 183,000 126 201,500 115 238,000 103 283,750 98 297,500

36 24 54 47,500 49 50,750 42 56,800 38 62,750 33 68,250

37 31 34 22,500 32 24,100 29 26,750 27 29,800 24 31,600

38 32 51 61,250 47 65,800 44 71,250 41 76,500 38 80,400

39 33 67 81,150 61 87,600 57 92,100 52 97,450 49 102,800

40 34 41 45,250 39 48,400 36 51,200 33 54,700 31 58,200

41 35 37 17,500 31 21,200 27 26,850 23 32,300 ‐ ‐

42 36 44 36,400 41 39,750 38 42,800 32 48,300 30 50,250

43 36 75 66,800 69 71,200 63 76,400 59 81,300 54 86,200

44 37 82 102,750 76 109,500 70 127,000 66 136,800 63 146,000

45 39 59 84,750 55 91,400 51 101,300 47 126,500 43 142,750

46 39 66 94,250 63 99,500 59 108,250 55 118,500 50 136,000

47 40 54 73,500 51 78,500 47 83,600 44 88,700 41 93,400

48 42 41 36,750 39 39,800 37 43,800 34 48,500 31 53,950

49 38, 41, 44 173 267,500 159 289,700 147 312,000 138 352,500 121 397,750

50 45 101 47,800 74 61,300 63 76,800 49 91,500 ‐ ‐

51 46 83 84,600 77 93,650 72 98,500 65 104,600 61 113,200

52 47 31 23,150 28 27,600 26 29,800 24 32,750 21 35,200

53 43, 48 39 31,500 36 34,250 33 37,800 29 41,250 26 44,600

54 49 23 16,500 22 17,800 21 19,750 20 21,200 18 24,300

55 52, 53 29 23,400 27 25,250 26 26,900 24 29,400 22 32,500

56 50, 53 38 41,250 35 44,650 33 47,800 31 51,400 29 55,450

57 51, 54 41 37,800 38 41,250 35 45,600 32 49,750 30 53,400

58 52 24 12,500 22 13,600 20 15,250 18 16,800 16 19,450

59 55 27 34,600 24 37,500 22 41,250 19 46,750 17 50,750

60 56 31 28,500 29 30,500 27 33,250 25 38,000 21 43,800

61 56, 57 29 22,500 27 24,750 25 27,250 22 29,800 20 33,500

62 60 25 38,750 23 41,200 21 44,750 19 49,800 17 51,100

63 61 27 9,500 26 9,700 25 10,100 24 10,800 22 12,700

It has been widely documented in the literature that both the effectiveness
and the efficiency of any meta-heuristic algorithm might be affected by the

56

size of the problem; since, the solution space extents dramatically exposed to
large-sized instances, urging excessive number of iterations. For such
complex instances, setting larger swarm sizes with greater iterations provide
greater chances in locating the global optimum; however, near optimum
solutions demanding insignificant computational efforts are preferred for
larger test problems. Accordingly, concluding several trial and error processes
involving the 63-activity problem, as shown in Table 4.5, the discrete PSO
algorithm is accommodated with tuned values for the operators.

Table 4.5 – Parameters selected for discrete PSO algorithm.

Parameter Value
𝑡 500
𝑖 300
𝑐1 2
𝑐2 2

𝑤𝑚𝑎𝑥 1.9
𝑤𝑚𝑖𝑛 0.7
𝑣𝑚𝑎𝑥 6

57

Figure 4.2 – Activity on node (AoN) representation of the 63-activity network.

Start

1
14

2
21

3
24

4
19

5
28

6
44

7
39

12
68

13
40

20
41

21
64

27
67

28
66

8
52

14
33

22
58

9
63

15
47

23
43

30
34

16
75

24
66

10
57

17
60

25
54

31
96

37
34

44
82

49
173

54
23

11
63

18
81

26
84

32
43

38
51

19
36

33
52

46
66

39
67

34
74

52
31

47
54

40
41

29
76

35
138

41
37

36
54

42
44

43
75

48
41

53
39

55
29

59
27

58
24

62
25

60
31

56
38

63
27

61
29

57
41

51
83

45
59

50
101

Finish

Activity
Duration

Critical Path

58

500 iterations and a swarm size of 300 are experienced to provide sufficient
convergence speed and quality for the proposed algorithm in solving the 63-
activity TCT problem. The cognition and social coefficients remain unchanged
with values set as integer 2, attributing weighted average of 1 for the second
and the third terms of Eq. (1.18). For this instance, the inertia weight is set to
linearly decrease through the iterations, from a larger maximum value of 1.9
to the minimum value of 0.7, for the sake of enhancing the process with
greater explorations at the initial stages. However, the damping factor applied
to the velocity calculations remains as integer 6, contributing calculations of
probabilities of range 0.0025 to 0.9975 via Eq. (3.19).

The results of the experiments for the 63-activity project are abstracted in
Table 4.6 and Table 4.7. The second and the third columns demonstrate
durations and total costs of the best solutions found by this algorithm,
respectively. These results are compared to both the solutions provided by
Sonmez and Bettemir (2012), and the optimal solutions acquired from the
mixed integer programming. Results of ten consecutive experimental runs are
illustrated in Table 4.6 and Table 4.7, with corresponding percent deviations
from the optima (PD) specified in the last columns of the aforementioned
tables. The average percent deviations (APD) from the optima are then
evaluated for each presumed values of daily indirect cost. In addition, last
rows of these tables demonstrate the average processing times required to
implement the instances. The results further validate robustness of the
proposed algorithm, for, in any of the attempts it finds optimum or near-
optimum solutions by searching simply a small portion of the solution space.
Literally, mere 1.5× 10P

5 possible different combinations of the time-cost
alternatives are explored throughout each experiment; that is, searching only
a small fraction of the search space (1.09×10-35 %). This latter achievement
allows the procedure to perform within an acceptable CPU time of 45 seconds.

Table 4.6 – Results of analyses for the 63-activity problem with daily indirect cost of 2,300$.

Analysis
No. Duration Cost PD (%)

1 630 5,421,120 0.00
2 630 5,422,420 0.02
3 630 5,421,120 0.00
4 630 5,421,120 0.00
5 633 5,421,320 0.00
6 636 5,422,970 0.03
7 631 5,424,420 0.06
8 633 5,421,320 0.00
9 633 5,421,320 0.00
10 629 5,423,270 0.04
 APD (%) 0.02

Avg. CPU
time (s)

45.00

59

Results summarized in Table 4.6 indicate that the proposed algorithm,
concerning the values assigned for the generation and the swarm size (given
in Table 4.5) was able to locate the global optimum solution during three
attempts out of ten successive experiments; whereas, results for a higher
daily indirect cost of 3,500$ reveals that the algorithm was able to find the
global optimum only once over ten experiments. Nonetheless, setting larger
iterations and/or swarms are discarded considering the closeness of the rest
of the solutions to the global optimum; with the largest percent deviation
being 0.03%. Ultimately, the proposed procedure proves to outperform all the
earlier genetic algorithms discussed in Sonmez and Bettemir (2012),
providing solutions with much less deviations from the optimum amounts.

Table 4.7 – Results of analyses for the 63-activity problem with daily indirect cost of 3,500$.

Analysis
No. Duration Cost PD (%)

1 616 6,177,820 0.03
2 626 6,177,370 0.02
3 621 6,176,220 0.00
4 621 6,178,020 0.03
5 629 6,177,270 0.02
6 621 6,177,120 0.02
7 621 6,176,170 0.00
8 618 6,177,570 0.02
9 618 6,177,670 0.02
10 618 6,177,570 0.02
 APD (%) 0.02

Avg. CPU
time (s)

45.00

4.2.2. Time-constraint TCTP analyses

Performance of the PSO model elucidated in section 3.4.2 is experimented
implementing a time-constraint TCT problem derived from Hegazy (1999).
The test problem exploited for the analyses is identical to the 18-activiy
example described in section 4.2.1; though, it imposes an additional
constraint by assuming a completion deadline for the project. Liquidated
damages and incentive payments are incorporated into this problem. This
instance has been examined under two different circumstances concerning the
completion deadline. Supposed desired level of deadline, or, the maximum
allowable duration for two analyses are set as 110 days and less than 110
days, respectively. Both the experiments assume an indirect cost of 200$/𝑑𝑎𝑦,
liquidated damages of 20,000$/𝑑𝑎𝑦, and incentive payments of 1,000$/𝑑𝑎𝑦.

For this specific example, appropriate values for the operators of the proposed
PSO algorithm are identified following a sequence of trial and error. As

60

presented in Table 4.8, the selected values for the parameters are analogous
to the amounts identified for the experiments described in section 4.2.1.

Table 4.8 – Parameters of the discrete PSO algorithm for the deadline problem.

Parameter Value
𝑡 40
𝑖 70
𝑐1 2
𝑐2 2

𝑤𝑚𝑎𝑥 1.2
𝑤𝑚𝑖𝑛 0.4
𝑣𝑚𝑎𝑥 6

The solutions obtained from this experiment are demonstrated in Table 4.9.
The third and the fourth columns of this table show durations and total costs
of the global optima found by this algorithm, respectively. The acquired
results are evaluated with regard to both the solutions provided Hegazy
(1999) and the optimal solutions of AIMMS optimization software. The
average percent deviations (APD) from the optima are measured for ten
successive solutions provided by PSO optimizer for the deadline problem.
Insomuch the algorithm located the global optima in any of the experiments,
single solution for each of the assumed completion deadlines are tabulated. As
a result, APD’s of zero amounts have been measured for the obtained
solutions. Moreover, the average CPU times taken to process the instances
are illustrated in the last column of Table 4.9. These experiments verify the
strengths of the proposed algorithm in dealing with such instances engaging
exogenous constraints. Notwithstanding the extra calculations imposed to the
algorithm, this procedure takes an inconsiderable processing time of 0.08
seconds, equal to the time required by the experimentations elaborated in
section 4.2.1. As a result, the proposed algorithm outdoes the earlier
optimizer with regard to the convergence speed; in addition, it bests
nonsense solution of Hegazy (1999) for 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 110 situation, where it
provides a solution with duration of 107 days and total cost of 138,170$. The
sound solutions provided by the PSO algorithm further affirm efficiency of the
proposed optimizer.

Table 4.9 – Results of experimental analyses for time-constraint TCT problem.

Number of
Deadline Duration Cost APD (%)

Average

Analyses CPU time (s)

10 110 110 128,270 0.00 0.08
10 <110 104 136,120 0.00 0.08

4.2.3. Time-cost curve TCTP analyses

The validation and computational experiments of the hybrid SAM-PSO
algorithm proposed in section 3.4.3 are carried out implementing various
cases of the 18-activity and 63-activity problems, given in section 4.2.1

61

previously. For the primary analyses the 18-activity instance is occupied
which was also used by Afshar et al. (2009) in a similar attempt for obtaining
the Pareto front. However, the results of Afshar et al. (2009) fall short of
delivering the full profile of the efficient frontier that comprises seventy
solutions; rather, they report four, eighteen, and forty-four solutions located
over the frontier for three different values of daily indirect cost. Furthermore,
they do not report on the performance of their algorithm concerning multiple
experiments; instead, results of only single experiments are documented.
Therefrom, more comprehensive experiments involving multiple runs are
directed within the context of this thesis.

Experimentations for the proposed hybrid algorithm have been initialed by
evaluation of the durations associated with any feasible realization of the
project. Thereafter, having identified the set of feasible durations, total costs
will be calculated accordingly. Determination of the feasible durations is
carried out by solving the instance to optimality, recruiting mixed integer
programming technique. Accordingly, feasibility of the project for any amount
of duration is tested using the AIMMS 3.11 optimization software, whereon,
the optimal costs are evaluated. Tabulated below, the complete optimal
Pareto fronts acquired by dint of this procedure for assumed indirect costs of
0$/𝑑𝑎𝑦, 200$/𝑑𝑎𝑦, and 1,500$/𝑑𝑎𝑦 are being illustrated in Table 4.10, Table
4.11, and Table 4.12, respectively.

Table 4.10 – Optimal solutions for 18-activity problem over feasible set of durations (No indirect

cost).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

(days) $ (days) $ (days) $ (days) $ (days) $

100 133,320 114 105,270 128 102,320 142 100,870 156 99,950

101 128,320 115 105,020 129 102,320 143 100,770 157 99,950

102 128,070 116 104,770 130 102,320 144 100,770 158 99,900

103 127,820 117 104,770 131 102,170 145 100,570 159 99,870

104 120,320 118 104,470 132 101,970 146 100,570 160 99,870

105 120,070 119 104,220 133 101,820 147 100,570 161 99,820

106 119,820 120 103,970 134 101,570 148 100,270 162 99,820

107 119,770 121 103,820 135 101,570 149 100,270 163 99,820

108 119,270 122 103,570 136 101,570 150 100,270 164 99,820

109 119,020 123 103,570 137 101,510 151 100,070 165 99,820

110 106,270 124 103,070 138 101,470 152 100,070 166 99,820

111 106,020 125 102,820 139 101,170 153 100,070 167 99,820

112 105,770 126 102,570 140 100,970 154 100,010 168 99,820

113 105,770 127 102,570 141 100,970 155 100,010 169 99,740

62

Table 4.11 – Optimal solutions for 18-activity problem over feasible set of durations (daily
indirect cost of 200$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

(days) $ (days) $ (days) $ (days) $ (days) $

100 153,320 114 128,070 128 127,920 142 129,270 156 131,150

101 148,520 115 128,020 129 128,120 143 129,370 157 131,350

102 148,470 116 127,970 130 128,320 144 129,570 158 131,500

103 148,420 117 128,170 131 128,370 145 129,570 159 131,670

104 141,120 118 128,070 132 128,370 146 129,770 160 131,870

105 141,070 119 128,020 133 128,420 147 129,970 161 132,020

106 141,020 120 127,970 134 128,370 148 129,870 162 132,220

107 141,170 121 128,020 135 128,570 149 130,070 163 132,420

108 140,870 122 127,970 136 128,770 150 130,270 164 132,620

109 140,820 123 128,170 137 128,910 151 130,270 165 132,820

110 128,270 124 127,870 138 129,070 152 130,470 166 133,020

111 128,220 125 127,820 139 128,970 153 130,670 167 133,220

112 128,170 126 127,770 140 128,970 154 130,810 168 133,420

113 128,370 127 127,970 141 129,170 155 131,010 169 133,540

Table 4.12 – Optimal solutions for 18-activity problem over feasible set of durations (daily
indirect cost of 1,500$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

(days) $ (days) $ (days) $ (days) $ (days) $

100 283,320 114 276,270 128 294,320 142 313,870 156 333,950

101 279,820 115 277,520 129 295,820 143 315,270 157 335,450

102 281,070 116 278,770 130 297,320 144 316,770 158 336,900

103 282,320 117 280,270 131 298,670 145 318,070 159 338,370

104 276,320 118 281,470 132 299,970 146 319,570 160 339,870

105 277,570 119 282,720 133 301,320 147 321,070 161 341,320

106 278,820 120 283,970 134 302,570 148 322,270 162 342,820

107 280,270 121 285,320 135 304,070 149 323,770 163 344,320

108 281,270 122 286,570 136 305,570 150 325,270 164 345,820

109 282,520 123 288,070 137 307,010 151 326,570 165 347,320

110 271,270 124 289,070 138 308,470 152 328,070 166 348,820

111 272,520 125 290,320 139 309,670 153 329,570 167 350,320

112 273,770 126 291,570 140 310,970 154 331,010 168 351,820

113 275,270 127 293,070 141 312,470 155 332,510 169 353,240

Table 4.10, Table 4.11, and Table 4.12 reveal 70 possible completion times
for the 18-activity project. Therefore, having discussed in section 3.4.3, the
external repository 𝑂, must be able to store 70 solutions as 18 × 2(5) matrices

63

so as to be able to position one particle for any possible duration. Accordingly,
for the sake of increasing the chances of obtaining a complete Pareto front
thru any iteration, at least 70 particles must be generated. Respecting Table
4.13, Table 4.14, and Table 4.15, throughout the first phase of the hybrid
algorithm, modified-SAM locates 24 particles over the solution space allowing
for the rest of the population to be generated randomly.

Table 4.13 – Results provided by modified-SAM for 18-activity problem through the first phase

of hybrid algorithm (No indirect cost).

Duration Cost Duration Cost Duration Cost Duration Cost

(days) $ (days) $ (days) $ (days) $

100 133,420 114 105,270 128 102,970 154 100,010

101 128,320 116 105,020 134 101,570 156 99,950

101 128,420 120 104,770 140 100,970 158 99,900

104 120,320 122 104,270 145 100,570 159 99,870

105 120,270 123 104,020 148 100,270 161 99,820

110 106,270 124 103,770 151 100,070 169 99,740

Table 4.14 – Results provided by modified-SAM for 18-activity problem through the first phase

of hybrid algorithm (daily indirect cost of 200$).

Duration Cost Duration Cost Duration Cost Duration Cost

(days) $ (days) $ (days) $ (days) $

100 153,420 114 128,070 128 128,570 154 130,810

101 148,520 116 128,220 134 128,370 156 131,150

101 148,620 120 128,770 140 128,970 158 131,500

104 141,120 122 128,670 145 129,570 159 131,670

105 141,270 123 128,620 148 129,870 161 132,020

110 128,270 124 128,570 151 130,270 169 133,540

Table 4.15 – Results provided by modified-SAM for 18-activity problem through the first phase

of hybrid algorithm (daily indirect cost of 1,500$).

Duration Cost Duration Cost Duration Cost Duration Cost

(days) $ (days) $ (days) $ (days) $

100 283,420 114 276,270 128 294,970 154 331,010

101 279,820 116 279,020 134 302,570 156 333,950

101 279,920 120 284,770 140 310,970 158 336,900

104 276,320 122 287,270 145 318,070 159 338,370

105 277,770 123 288,520 148 322,270 161 341,320

110 271,270 124 289,770 151 326,570 169 353,240

64

Considering the total durations of the crashed (𝑍𝑚𝑖𝑛) and the all normal (𝑍𝑚𝑎𝑥)
schedules, time intervals within which the feasible realizations of durations
will be explored, and thereby the minimum population sizes have been
identified. Consequently, performing numerous experiments with minimum
population sizes of 70, the adequate values for the parameters have been
dedicated as shown in Table 4.16.

Table 4.16 – Parameters of the SAM-PSO model for the 18-activity problem.

Parameter Value
𝑡 100
𝑖 80
𝑐1 2
𝑐2 2

𝑤𝑚𝑎𝑥 2.2
𝑤𝑚𝑖𝑛 1.0
𝑣𝑚𝑎𝑥 2

100 generations with a swarm size of 80 are experienced to suffice the
convergence capabilities of the hybrid algorithm for the 18-activity problem.
The cognition and social coefficients remain unchanged with values set as
integer 2, attributing weighted average of 1 for the second and the third
terms of Eq. (1.18). For this instance, the inertia weight is defined as a
function of time to linearly decrease from a maximum value of 2.2 to a
minimum amount of 1.0, through the execution of the PSO phase. Assignment
of larger maximum and minimum values for the inertia weight facilitates
broader explorations by the individuals through the entire execution of PSO
phase. Moreover, the maximum allowed velocity is set as integer 2,
contributing calculations of probabilities of range 0.12 to 0.88 via Eq. (3.19).
In doing so, not only the unrestrained escalation of velocities that promote
swarm divergence is eliminated, but also, the algorithm is accommodated
with more exploration capabilities.

For any amount of daily indirect cost, ten successive experiments have been
directed for solution of the time-cost curve problem. Henceforth, average
percent deviations (APD) from the optima have been evaluated for any
solution located along the time-cost profile. The ultimate Pareto fronts
obtained by the hybrid algorithm, for three cases of the 18-activity problem
are demonstrated in Table 4.17, Table 4.18, and Table 4.19. Associated to
any identified duration, these tables encompass the least total cost observed
over ten incessant trials. In any of these tables, in addition to APD’s pertinent
to each solution, the overall APD’s are also evaluated, implying the
performance of the proposed algorithm. It has been observed that the overall
APD’s of this model are slightly greater for the cases that assume smaller
values for the indirect costs. Aside from that, the last rows of Table 4.17,
Table 4.18, and Table 4.19 demonstrate the average processing times
required to implement the instances; hereof, it takes an acceptable CPU time
of approximately 8 seconds for the algorithm to unravel the 18-activity
instance. These results validate effectiveness and efficiency of the hybrid
model in locating the complete Pareto front for the 18-activity problem, thru
any of the experimented cases. This model outperforming Afshar et al.’s

65

(2009) procedure, searches a mere 1.35×10-4 fraction of the solution space to
provide the whole non-dominated front with inconsiderable deviations from
the optimal solutions.

66

Table 4.17 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (No indirect cost).

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ %

100 133,320 0.00 114 105,270 0.00 128 102,320 0.00 142 100,870 0.00 156 99,950 0.00

101 128,320 0.00 115 105,020 0.00 129 102,510 0.19 143 100,770 0.00 157 100,370 0.42

102 128,070 0.00 116 104,770 0.00 130 102,470 0.15 144 101,050 0.28 158 99,900 0.00

103 127,820 0.00 117 104,770 0.00 131 102,170 0.00 145 100,570 0.00 159 99,870 0.00

104 120,320 0.00 118 104,470 0.00 132 101,970 0.00 146 100,710 0.14 160 100,540 0.67

105 120,070 0.00 119 104,220 0.00 133 101,820 0.00 147 100,750 0.18 161 99,820 0.00

106 119,820 0.00 120 103,970 0.00 134 101,570 0.00 148 100,270 0.00 162 100,940 1.12

107 119,770 0.00 121 103,820 0.00 135 101,770 0.20 149 100,570 0.30 163 100,240 0.42

108 119,270 0.00 122 103,570 0.00 136 101,620 0.05 150 100,450 0.18 164 100,440 0.62

109 119,020 0.00 123 103,570 0.00 137 101,510 0.00 151 100,070 0.00 165 100,740 0.92

110 106,270 0.00 124 103,070 0.00 138 101,470 0.00 152 100,400 0.33 166 99,940 0.12

111 106,020 0.00 125 102,820 0.00 139 101,170 0.00 153 100,150 0.08 167 100,240 0.42

112 105,770 0.00 126 102,570 0.00 140 100,970 0.00 154 100,010 0.00 168 na na

113 105,770 0.00 127 102,570 0.00 141 101,270 0.30 155 100,100 0.09 169 99,740 0.00

 Overall APD (%) 0.10

 Avg. CPU time (s) 8.18

67

Table 4.18 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (daily indirect cost of 200$).

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ %

100 153,320 0.00 114 128,070 0.00 128 127,920 0.00 142 129,270 0.00 156 131,150 0.00

101 148,520 0.00 115 128,020 0.00 129 128,310 0.15 143 129,370 0.00 157 131,770 0.32

102 148,470 0.00 116 127,970 0.00 130 128,470 0.12 144 129,850 0.22 158 131,500 0.00

103 148,420 0.00 117 128,170 0.00 131 128,370 0.00 145 129,570 0.00 159 131,670 0.00

104 141,120 0.00 118 128,070 0.00 132 128,370 0.00 146 129,910 0.11 160 132,540 0.51

105 141,070 0.00 119 128,020 0.00 133 128,420 0.00 147 130,150 0.14 161 132,020 0.00

106 141,020 0.00 120 127,970 0.00 134 128,370 0.00 148 129,870 0.00 162 133,340 0.85

107 141,170 0.00 121 128,020 0.00 135 128,770 0.16 149 130,370 0.23 163 132,840 0.32

108 140,870 0.00 122 127,970 0.00 136 128,820 0.04 150 130,450 0.14 164 133,240 0.47

109 140,820 0.00 123 128,170 0.00 137 128,910 0.00 151 130,270 0.00 165 133,740 0.69

110 128,270 0.00 124 127,870 0.00 138 129,070 0.00 152 130,800 0.25 166 133,140 0.09

111 128,220 0.00 125 127,820 0.00 139 128,970 0.00 153 130,750 0.06 167 133,640 0.32

112 128,170 0.00 126 127,770 0.00 140 128,970 0.00 154 130,810 0.00 168 na na

113 128,370 0.00 127 127,970 0.00 141 129,470 0.23 155 131,100 0.07 169 133,540 0.00

 Overall APD (%) 0.08

 Avg. CPU time (s) 7.98

68

Table 4.19 – Complete Pareto front of 18-activity problem obtained by SAM-PSO model (daily indirect cost of 1,500$).

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ % (days) $ %

100 283,320 0.00 114 276,270 0.00 128 294,320 0.00 142 313,870 0.00 156 333,950 0.00

101 279,820 0.00 115 277,520 0.00 129 296,010 0.06 143 315,270 0.00 157 335,870 0.13

102 281,070 0.00 116 278,770 0.00 130 297,470 0.05 144 317,050 0.09 158 336,900 0.00

103 282,320 0.00 117 280,270 0.00 131 298,670 0.00 145 318,070 0.00 159 338,370 0.00

104 276,320 0.00 118 281,470 0.00 132 299,970 0.00 146 319,710 0.04 160 340,540 0.20

105 277,570 0.00 119 282,720 0.00 133 301,320 0.00 147 321,250 0.06 161 341,320 0.00

106 278,820 0.00 120 283,970 0.00 134 302,570 0.00 148 322,270 0.00 162 343,940 0.33

107 280,270 0.00 121 285,320 0.00 135 304,270 0.07 149 324,070 0.09 163 344,740 0.12

108 281,270 0.00 122 286,570 0.00 136 305,620 0.02 150 325,450 0.06 164 346,440 0.18

109 282,520 0.00 123 288,070 0.00 137 307,010 0.00 151 326,570 0.00 165 348,240 0.26

110 271,270 0.00 124 289,070 0.00 138 308,470 0.00 152 328,400 0.10 166 348,940 0.03

111 272,520 0.00 125 290,320 0.00 139 309,670 0.00 153 329,650 0.02 167 350,740 0.12

112 273,770 0.00 126 291,570 0.00 140 310,970 0.00 154 331,010 0.00 168 na na

113 275,270 0.00 127 293,070 0.00 141 312,770 0.10 155 332,600 0.03 169 353,240 0.00

 Overall APD (%) 0.03

 Avg. CPU time (s) 7.97

69

The solutions obtained from mixed integer programming, modified-SAM, and
SAM-PSO procedures are plotted against each other in the ensuing figures.
Figure 4.3, Figure 4.4, and Figure 4.5 illuminate the solutions obtained via
SAM-PSO model for the 18-activity problem with indirect costs of 0$/𝑑𝑎𝑦,
200$/𝑑𝑎𝑦, and 1500$/𝑑𝑎𝑦, respectively. For any of the cases, it can be easily
observed that the 24 initial solutions seeded by modified-SAM are virtually
lying over the final efficient frontier. Solutions located through this phase
provide the second phase with seeds of higher quality. To some extent, these
solutions give head-start to the PSO stage of the hybrid algorithm. Eventually,
the best non-dominated solutions found over ten incessant experiments
constitute the final time-cost profile, which practically lies over the optimal
frontier solved by the AIMMS software. Contrary to the mixed integer
programming technique, the proposed hybrid algorithm generates solutions
only with regard to different combinations of time-cost alternatives and
without incorporating lag times between finish-to-start relationships of the
activities. Owing to this approach, the hybrid algorithm maps minimum total
costs to 69 feasible realizations of project duration, whereas, the mixed
integer programming technique benefitting from lag times, locates 70
solutions. In other words, for the 18-activity problem, there exist no certain
combination of time-cost alternatives that results in 168 days of duration, that
is, it is only feasible by adding lag times between the activities.

Figure 4.3 – Comparison of obtained Pareto fronts for 18-activity problem (No indirect cost).

90,000

95,000

100,000

105,000

110,000

115,000

120,000

125,000

130,000

135,000

140,000

95 105 115 125 135 145 155 165

To
ta

l C
os

t
($

)

Duration (days)

AIMMS M-SAM SAM-PSO

70

Figure 4.4 – Comparison of obtained Pareto fronts for 18-activity problem (daily indirect cost of
200$).

Figure 4.5 – Comparison of obtained Pareto fronts for 18-activity problem (daily indirect cost of
1,500$).

Concluding analyses of the 18-activity TCT problem, computational
experiments of the proposed SAM-PSO model engaging a more complex
problem have also been conducted; as a result, the hypothetical 63-activity
project detailed in section 4.2.1 is fitted into the model. Experimentations

120,000

125,000

130,000

135,000

140,000

145,000

150,000

155,000

160,000

95 105 115 125 135 145 155 165

To
ta

l C
os

t
($

)

Duration (days)

AIMMS M-SAM SAM-PSO

250,000

270,000

290,000

310,000

330,000

350,000

370,000

95 105 115 125 135 145 155 165

To
ta

l C
os

t
($

)

Duration (days)

AIMMS M-SAM SAM-PSO

71

have been initiated by determining durations associated with any feasible
realization of the project. The feasible set of non-dominated solutions with
corresponding amounts of duration and cost are identified by dint of the
mixed integer programming technique derived from Sonmez and Bettemir
(2012). Pareto fronts achieved through this technique have been tabulated in
Table 4.20 and Table 4.21, involving two assumptions regarding the amount
of daily indirect cost; the first case incorporates indirect cost of 2,300$/𝑑𝑎𝑦,
while the second case considers 3,500$/𝑑𝑎𝑦.

72

Table 4.20 – Optimal solutions for 63-activity problem over feasible set of durations (daily indirect cost of 2,300$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost
(days) $ (days) $ (days) $ (days) $ (days) $ (days) $ (days) $

513 5,864,180 541 5,677,990 569 5,549,700 597 5,468,920 625 5,427,920 653 5,428,770 681 5,448,720
514 5,861,380 542 5,669,650 570 5,547,450 598 5,467,370 626 5,426,170 654 5,429,470 682 5,449,720
515 5,845,840 543 5,664,040 571 5,541,450 599 5,466,020 627 5,425,770 655 5,429,770 683 5,451,420
516 5,839,680 544 5,661,740 572 5,535,390 600 5,464,520 628 5,423,520 656 5,430,970 684 5,452,170
517 5,832,630 545 5,653,650 573 5,533,330 601 5,465,220 629 5,422,470 657 5,430,720 685 5,453,170
518 5,822,815 546 5,645,640 574 5,530,430 602 5,460,970 630 5,421,120 658 5,432,120 686 5,454,870
519 5,811,205 547 5,642,490 575 5,524,770 603 5,461,920 631 5,422,370 659 5,432,220 687 5,455,870
520 5,804,630 548 5,637,350 576 5,522,420 604 5,460,570 632 5,421,820 660 5,433,070 688 5,457,470
521 5,797,465 549 5,636,200 577 5,519,720 605 5,461,820 633 5,421,320 661 5,433,420 689 5,458,520
522 5,792,065 550 5,627,900 578 5,516,420 606 5,460,620 634 5,421,420 662 5,434,420 690 5,459,620
523 5,782,505 551 5,623,890 579 5,512,370 607 5,458,420 635 5,422,220 663 5,435,820 691 5,460,970
524 5,779,190 552 5,620,850 580 5,511,020 608 5,456,630 636 5,422,320 664 5,436,170 692 5,461,970
525 5,770,100 553 5,616,490 581 5,508,530 609 5,453,680 637 5,421,620 665 5,437,170 693 5,463,670
526 5,760,405 554 5,612,000 582 5,503,030 610 5,452,130 638 5,422,320 666 5,438,370 694 5,464,670
527 5,756,740 555 5,604,750 583 5,498,980 611 5,451,280 639 5,422,520 667 5,438,720 695 5,466,270
528 5,747,900 556 5,603,000 584 5,496,480 612 5,445,870 640 5,423,220 668 5,439,470 696 5,467,620
529 5,740,040 557 5,600,850 585 5,494,580 613 5,445,270 641 5,423,470 669 5,439,770 697 5,468,620
530 5,739,090 558 5,593,530 586 5,487,770 614 5,443,270 642 5,424,170 670 5,440,970 698 5,470,320
531 5,729,750 559 5,591,640 587 5,487,140 615 5,440,820 643 5,424,470 671 5,440,720 699 5,471,320
532 5,726,650 560 5,586,840 588 5,483,170 616 5,438,020 644 5,425,670 672 5,442,120 700 5,472,920
533 5,719,250 561 5,583,440 589 5,479,670 617 5,436,620 645 5,425,420 673 5,442,220 701 5,474,820
534 5,714,340 562 5,577,590 590 5,476,520 618 5,435,020 646 5,426,720 674 5,443,070 702 5,476,920
535 5,709,040 563 5,575,350 591 5,475,020 619 5,434,020 647 5,426,920 675 5,443,420 703 5,478,720
536 5,702,900 564 5,570,450 592 5,473,070 620 5,434,270 648 5,427,620 676 5,444,420 704 5,480,420
537 5,696,040 565 5,566,640 593 5,473,470 621 5,430,970 649 5,426,920 677 5,445,820 705 5,481,420
538 5,693,450 566 5,565,200 594 5,471,720 622 5,430,820 650 5,427,620 678 5,446,170 706 5,483,020
539 5,688,850 567 5,555,900 595 5,470,420 623 5,430,820 651 5,427,820 679 5,447,170 707 5,484,920
540 5,679,740 568 5,552,550 596 5,469,220 624 5,428,570 652 5,428,520 680 5,448,370 708 5,487,020

73

Table 4.21 – Optimal solutions for 63-activity problem over feasible set of durations (daily indirect cost of 3,500$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost
(days) $ (days) $ (days) $ (days) $ (days) $ (days) $ (days) $

513 6,479,780 541 6,327,190 569 6,232,500 597 6,185,320 625 6,177,920 653 6,212,370 681 6,265,920
514 6,478,180 542 6,320,050 570 6,231,450 598 6,184,970 626 6,177,370 654 6,214,270 682 6,268,120
515 6,463,840 543 6,315,640 571 6,226,650 599 6,184,820 627 6,178,170 655 6,215,770 683 6,271,020
516 6,458,880 544 6,314,540 572 6,221,790 600 6,184,520 628 6,177,120 656 6,218,170 684 6,272,970
517 6,453,030 545 6,307,650 573 6,220,930 601 6,186,420 629 6,177,270 657 6,219,120 685 6,275,170
518 6,444,415 546 6,300,840 574 6,219,230 602 6,183,370 630 6,177,120 658 6,221,720 686 6,278,070
519 6,434,005 547 6,298,890 575 6,214,770 603 6,185,520 631 6,179,570 659 6,223,020 687 6,280,270
520 6,428,630 548 6,294,950 576 6,213,620 604 6,185,370 632 6,180,220 660 6,225,070 688 6,283,070
521 6,422,665 549 6,295,000 577 6,212,120 605 6,187,820 633 6,180,920 661 6,226,620 689 6,285,320
522 6,418,465 550 6,287,900 578 6,210,020 606 6,187,820 634 6,182,220 662 6,228,820 690 6,287,620
523 6,410,105 551 6,285,090 579 6,207,170 607 6,186,820 635 6,184,220 663 6,231,420 691 6,290,170
524 6,407,990 552 6,283,250 580 6,207,020 608 6,186,230 636 6,185,520 664 6,232,970 692 6,292,370
525 6,400,100 553 6,280,090 581 6,205,730 609 6,184,480 637 6,186,020 665 6,235,170 693 6,295,270
526 6,391,605 554 6,276,800 582 6,201,430 610 6,184,130 638 6,187,920 666 6,237,570 694 6,297,470
527 6,389,140 555 6,270,750 583 6,198,580 611 6,184,480 639 6,189,320 667 6,239,120 695 6,300,270
528 6,381,500 556 6,270,200 584 6,197,280 612 6,180,270 640 6,191,220 668 6,241,070 696 6,302,820
529 6,374,840 557 6,269,250 585 6,196,580 613 6,180,870 641 6,192,670 669 6,242,570 697 6,305,020
530 6,375,090 558 6,263,130 586 6,190,970 614 6,180,070 642 6,194,570 670 6,244,970 698 6,307,920
531 6,366,950 559 6,262,440 587 6,191,540 615 6,178,820 643 6,196,070 671 6,245,920 699 6,310,120
532 6,365,050 560 6,258,840 588 6,188,770 616 6,177,220 644 6,198,470 672 6,248,520 700 6,312,920
533 6,358,850 561 6,256,640 589 6,186,470 617 6,177,020 645 6,199,420 673 6,249,820 701 6,316,020
534 6,355,140 562 6,251,990 590 6,184,520 618 6,176,620 646 6,201,920 674 6,251,870 702 6,319,320
535 6,351,040 563 6,250,950 591 6,184,220 619 6,176,820 647 6,203,320 675 6,253,420 703 6,322,320
536 6,346,100 564 6,247,250 592 6,183,470 620 6,178,270 648 6,205,220 676 6,255,620 704 6,325,220
537 6,340,440 565 6,244,640 593 6,185,070 621 6,176,170 649 6,205,720 677 6,258,220 705 6,327,420
538 6,339,050 566 6,244,400 594 6,184,520 622 6,177,220 650 6,207,620 678 6,259,770 706 6,330,220
539 6,335,650 567 6,236,300 595 6,184,420 623 6,178,420 651 6,209,020 679 6,261,970 707 6,333,320
540 6,327,740 568 6,234,150 596 6,184,420 624 6,177,370 652 6,210,920 680 6,264,370 708 6,336,620

74

Results given in Table 4.20 and Table 4.21 reveal that the optimal Pareto
front comprises a total of 196 solutions for the 63-activity project. Thus, as
stated previously, the external repository 𝑂, must be able to store 196
particles as 63 × 2(5) matrices that represent solutions along the non-
dominated front for any possible completion time. Accordingly, in behalf of
increasing the probability of locating the entire Pareto front through each
cycle, at least 196 particles must be generated. Respecting Table 4.22 and
Table 4.23, throughout the first portion of the hybrid algorithm, modified-SAM
locates 130 particles over the solution space leaving the rest of the population
to be generated following a random scheme.

75

Table 4.22 – Results provided by modified-SAM for 63-activity problem through the first phase of hybrid algorithm (daily indirect cost of 2,300$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

(days) $ (days) $ (days) $ (days) $ (days) $

513 5,913,780 566 5,718,280 584 5,572,140 615 5,515,230 668 5,455,970
516 5,914,930 566 5,721,430 584 5,575,240 616 5,504,580 668 5,461,420
519 5,916,480 567 5,673,230 585 5,572,990 616 5,510,230 671 5,460,220
522 5,918,130 569 5,659,680 586 5,573,340 618 5,500,830 672 5,456,870
526 5,912,630 569 5,662,930 587 5,562,420 618 5,506,130 673 5,457,770
529 5,913,430 569 5,674,680 587 5,567,370 619 5,498,230 674 5,458,770
530 5,870,480 570 5,659,580 587 5,572,620 620 5,491,880 677 5,463,120
534 5,874,830 571 5,656,530 588 5,559,170 620 5,495,330 679 5,465,220
537 5,866,230 572 5,633,930 590 5,554,680 629 5,499,080 680 5,465,070
539 5,827,580 572 5,639,830 590 5,560,380 634 5,488,380 681 5,457,420
539 5,868,080 572 5,653,680 592 5,552,830 639 5,490,080 681 5,463,920
540 5,820,830 573 5,619,805 597 5,559,930 645 5,497,130 682 5,455,320
541 5,820,680 573 5,624,730 600 5,563,730 646 5,480,930 682 5,456,170
542 5,808,330 575 5,615,905 602 5,544,030 648 5,482,880 683 5,456,020
542 5,817,530 575 5,620,705 602 5,566,330 650 5,469,330 684 5,457,170
544 5,799,180 576 5,611,855 604 5,540,180 650 5,475,430 685 5,457,870
546 5,793,980 577 5,603,680 604 5,544,930 650 5,481,430 686 5,459,670
548 5,789,830 577 5,608,455 605 5,531,130 653 5,473,330 687 5,456,170
552 5,781,530 578 5,595,230 605 5,537,930 655 5,463,330 690 5,459,620
553 5,775,330 578 5,602,830 608 5,533,330 655 5,471,280 692 5,461,970
555 5,772,630 579 5,586,290 609 5,519,780 656 5,458,880 697 5,468,620
556 5,729,180 579 5,590,480 609 5,528,930 658 5,450,670 699 5,471,320
559 5,727,330 580 5,585,740 611 5,516,430 658 5,458,230 700 5,472,920
560 5,720,030 581 5,579,040 611 5,520,730 658 5,461,280 706 5,483,020
564 5,720,230 581 5,583,990 613 5,516,330 661 5,453,420 707 5,484,920
566 5,707,430 582 5,575,140 615 5,509,730 664 5,455,970 708 5,487,020

76

Table 4.23 – Results provided by modified-SAM for 63-activity problem through the first phase of hybrid algorithm (daily indirect cost of 3,500$).

Dur. Cost Dur. Cost Dur. Cost Dur. Cost Dur. Cost

(days) $ (days) $ (days) $ (days) $ (days) $

513 6,529,380 566 6,397,480 584 6,272,940 615 6,253,230 668 6,257,570
516 6,534,130 566 6,400,630 584 6,276,040 616 6,243,780 668 6,263,020
519 6,539,280 567 6,353,630 585 6,274,990 616 6,249,430 671 6,265,420
522 6,544,530 569 6,342,480 586 6,276,540 618 6,242,430 672 6,263,270
526 6,543,830 569 6,345,730 587 6,266,820 618 6,247,730 673 6,265,370
529 6,548,230 569 6,357,480 587 6,271,770 619 6,241,030 674 6,267,570
530 6,506,480 570 6,343,580 587 6,277,020 620 6,235,880 677 6,275,520
534 6,515,630 571 6,341,730 588 6,264,770 620 6,239,330 679 6,280,020
537 6,510,630 572 6,320,330 590 6,262,680 629 6,253,880 680 6,281,070
539 6,474,380 572 6,326,230 590 6,268,380 634 6,249,180 681 6,274,620
539 6,514,880 572 6,340,080 592 6,263,230 639 6,256,880 681 6,281,120
540 6,468,830 573 6,307,405 597 6,276,330 645 6,271,130 682 6,273,720
541 6,469,880 573 6,312,330 600 6,283,730 646 6,256,130 682 6,274,570
542 6,458,730 575 6,305,905 602 6,266,430 648 6,260,480 683 6,275,620
542 6,467,930 575 6,310,705 602 6,288,730 650 6,249,330 684 6,277,970
544 6,451,980 576 6,303,055 604 6,264,980 650 6,255,430 685 6,279,870
546 6,449,180 577 6,296,080 604 6,269,730 650 6,261,430 686 6,282,870
548 6,447,430 577 6,300,855 605 6,257,130 653 6,256,930 687 6,280,570
552 6,443,930 578 6,288,830 605 6,263,930 655 6,249,330 690 6,287,620
553 6,438,930 578 6,296,430 608 6,262,930 655 6,257,280 692 6,292,370
555 6,438,630 579 6,281,090 609 6,250,580 656 6,246,080 697 6,305,020
556 6,396,380 579 6,285,280 609 6,259,730 658 6,240,270 699 6,310,120
559 6,398,130 580 6,281,740 611 6,249,630 658 6,247,830 700 6,312,920
560 6,392,030 581 6,276,240 611 6,253,930 658 6,250,880 706 6,330,220
564 6,397,030 581 6,281,190 613 6,251,930 661 6,246,620 707 6,333,320
566 6,386,630 582 6,273,540 615 6,247,730 664 6,252,770 708 6,336,620

77

Once again, the time intervals within which the feasible realizations of
durations will be explored, have been evaluated using the total durations of
the crashed (𝑍𝑚𝑖𝑛) and the all normal (𝑍𝑚𝑎𝑥) schedules. Thereupon, the
minimum population sizes have been identified with respect to the evaluated
time intervals. Subsequently, performing several trials with minimum swarm
sizes of 196, the adequate values for the operators of the algorithm have
been designated as shown in Table 4.24.

Table 4.24 – Parameters of the SAM-PSO model for the 63-activity problem.

Parameter Value
𝑡 500
𝑖 500
𝑐1 2
𝑐2 2

𝑤𝑚𝑎𝑥 2.2
𝑤𝑚𝑖𝑛 1.0
𝑣𝑚𝑎𝑥 2

After a series of trial and error, 500 generations with a swarm size of 500 are
practiced for SAM-PSO, which provides sufficient convergence capabilities for
solution of the 63-activity problem. The cognition and social coefficients
remain untouched with selected values of integer 2, contributing weighted
average of 1 for the second and the third terms of Eq. (1.18). For this
experiment, the inertia weight during performance of the PSO phase is
defined to linearly reduce from a maximum value of 2.2 to a minimum
amount of 1.0. As depicted earlier, selection of region with larger values for
the inertia weight enhances the PSO phase with broader explorations.
Unrestrained escalation of velocities that promote swarm divergence is
eliminated clamping the velocity to the feasible region of [−2, 2], which
contributes calculations of probabilities of range 0.12 to 0.88 via Eq. (3.19).
Smaller values of 𝑣𝑚𝑎𝑥 provide more exploration by this algorithm.

Ten consecutive runs have been executed for any assumed value of daily
indirect cost. Thereafter, average percent deviations (APD) from the optima
have been measured for any solution located along the non-dominated front.
The ultimate Pareto fronts archived by the hybrid algorithm, for two cases of
the 63-activity problem are illustrated in Table 4.25 and Table 4.26. Akin to
the previous tests, corresponding to any certain duration determined by the
hybrid model, the least total cost observed over ten incessant experiments is
recorded throughout the computational experiments. In addition to APD’s of
each solution, these tables also contain the overall APD’s as an indication of
the performance of the hybrid algorithm. In the same way as the former
experiments, it has been observed that the overall APD is slightly larger for
the case with smaller assumed value of indirect cost. The average processing
times required by the proposed model to unravel the 63-activity problem are
reported in the last rows of Table 4.25 and Table 4.26. The algorithm
searching 1.82×10-35 fraction of the solution space, takes a reasonable CPU
time of 108 to 111 seconds to locate the time-cost profile for the 63-activity
project. These results further verify the robustness of the hybrid model in
obtaining the entire Pareto front for the discrete TCT problems. Searching

78

rather small portion of the solution space, the proposed model provides the
complete efficient frontier with inconsiderable deviations from the optimal
solutions.

Table 4.25 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily
indirect cost of 2,300$).

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ %

513 5,898,380 0.61 562 5,589,880 0.27 611 5,452,480 0.04 660 5,438,270 0.11

514 5,901,380 0.68 563 5,583,880 0.19 612 5,451,730 0.13 661 5,441,320 0.16

515 5,872,390 0.59 564 5,576,580 0.18 613 5,453,380 0.17 662 5,441,670 0.16

516 5,850,755 0.31 565 5,573,930 0.22 614 5,445,570 0.13 663 5,440,920 0.11

517 5,837,830 0.17 566 5,571,480 0.20 615 5,446,620 0.22 664 5,440,970 0.10

518 5,833,380 0.23 567 5,567,640 0.22 616 5,459,970 0.75 665 5,441,970 0.09

519 5,815,230 0.30 568 5,564,890 0.23 617 5,454,630 0.62 666 5,440,820 0.05

520 5,810,530 0.30 569 5,555,280 0.15 618 5,450,930 0.59 667 5,441,170 0.05

521 5,800,030 0.23 570 5,550,180 0.10 619 5,448,730 0.56 668 5,441,270 0.04

522 5,794,605 0.19 571 5,635,740 1.75 620 5,445,980 0.39 669 5,439,770 0.00

523 5,788,055 0.15 572 5,627,480 1.68 621 5,441,820 0.26 670 5,441,120 0.02

524 5,785,565 0.17 573 5,613,880 1.48 622 5,439,470 0.17 671 5,441,470 0.01

525 5,778,715 0.17 574 5,592,650 1.26 623 5,433,870 0.12 672 5,442,170 0.00

526 5,788,165 0.51 575 5,587,300 1.27 624 5,433,320 0.10 673 5,443,170 0.04

527 5,772,905 0.40 576 5,580,700 1.20 625 5,431,120 0.08 674 5,444,570 0.04

528 5,764,290 0.39 577 5,579,490 1.21 626 5,428,820 0.05 675 5,444,920 0.05

529 5,740,040 0.23 578 5,576,990 1.14 627 5,429,020 0.06 676 5,458,520 0.34

530 5,741,240 0.14 579 5,580,900 1.24 628 5,426,420 0.09 677 5,447,120 0.13

531 5,737,290 0.21 580 5,565,680 1.08 629 5,425,220 0.06 678 5,447,470 0.09

532 5,728,050 0.16 581 5,555,200 1.04 630 5,424,920 0.11 679 5,447,170 0.01

533 5,722,200 0.15 582 5,556,300 1.06 631 5,471,830 1.22 680 5,449,170 0.04

534 5,720,400 0.23 583 5,548,980 1.03 632 5,446,770 0.55 681 5,450,970 0.04

535 5,719,000 0.23 584 5,545,970 1.00 633 5,438,420 0.39 682 5,449,720 0.00

536 5,709,150 0.17 585 5,539,240 0.94 634 5,435,220 0.26 683 5,454,220 0.07

537 5,705,450 0.20 586 5,551,940 1.17 635 5,426,170 0.15 684 5,454,920 0.07

538 5,698,400 0.09 587 5,536,830 0.92 636 5,425,270 0.13 685 5,454,820 0.06

539 5,693,450 0.09 588 5,531,830 0.90 637 5,423,870 0.10 686 5,455,170 0.03

540 5,685,600 0.12 589 5,531,670 0.95 638 5,425,870 0.15 687 5,456,170 0.01

541 5,682,280 0.25 590 5,526,170 0.91 639 5,424,770 0.11 688 5,457,470 0.00

79

Table 4.25 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily
indirect cost of 2,300$). (Continued)

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ %

542 5,677,290 0.30 591 5,522,170 0.88 640 5,425,570 0.12 689 5,458,520 0.00

543 5,672,750 0.32 592 5,514,780 0.78 641 5,426,920 0.10 690 5,459,620 0.00

544 5,668,580 0.24 593 5,511,220 0.69 642 5,424,870 0.08 691 5,461,220 0.01

545 5,665,080 0.33 594 5,504,880 0.64 643 5,425,170 0.06 692 5,461,970 0.00

546 5,657,080 0.31 595 5,504,680 0.66 644 5,428,570 0.08 693 5,464,370 0.04

547 5,653,840 0.30 596 5,488,230 0.46 645 5,429,670 0.09 694 5,465,270 0.03

548 5,653,070 0.38 597 5,485,630 0.39 646 5,465,780 0.85 695 5,466,270 0.02

549 5,640,230 0.23 598 5,476,120 0.32 647 5,455,970 0.57 696 5,468,170 0.01

550 5,633,630 0.23 599 5,470,670 0.25 648 5,438,270 0.42 697 5,468,620 0.00

551 5,627,280 0.21 600 5,468,170 0.25 649 5,432,320 0.36 698 5,470,320 0.01

552 5,624,180 0.17 601 5,490,030 0.88 650 5,432,070 0.12 699 5,471,320 0.00

553 5,622,480 0.19 602 5,480,420 0.37 651 5,430,470 0.09 700 5,472,920 0.00

554 5,617,130 0.18 603 5,476,180 0.28 652 5,430,720 0.08 701 5,474,820 0.00

555 5,609,630 0.24 604 5,466,880 0.19 653 5,431,870 0.08 702 5,476,920 0.00

556 5,714,780 2.02 605 5,465,580 0.18 654 5,432,220 0.06 703 5,478,720 0.00

557 5,615,640 0.33 606 5,465,180 0.16 655 5,431,470 0.03 704 5,481,470 0.02

558 5,611,230 0.36 607 5,461,280 0.12 656 5,431,970 0.07 705 5,481,420 0.01

559 5,609,570 0.35 608 5,465,770 0.17 657 5,431,820 0.09 706 5,483,020 0.00

560 5,603,240 0.31 609 5,456,620 0.10 658 5,438,670 0.12 707 5,484,920 0.00

561 5,593,740 0.23 610 5,452,320 0.02 659 5,439,620 0.14 708 5,487,020 0.00

 Overall APD (%) 0.31

 Avg. CPU time (s) 111.51

Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily
indirect cost of 3,500$).

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ %

513 6,513,980 0.55 562 6,255,800 0.10 611 6,189,230 0.08 660 6,230,020 0.10

514 6,516,030 0.60 563 6,256,000 0.09 612 6,189,070 0.15 661 6,244,620 0.29

515 6,496,330 0.53 564 6,248,600 0.05 613 6,181,980 0.09 662 6,243,520 0.26

516 6,481,780 0.38 565 6,249,800 0.09 614 6,181,620 0.09 663 6,240,920 0.18

80

Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily
indirect cost of 3,500$). (Continued)

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ %

517 6,478,730 0.41 566 6,248,900 0.10 615 6,179,720 0.09 664 6,238,420 0.10

518 6,468,565 0.43 567 6,244,850 0.15 616 6,204,470 0.68 665 6,237,820 0.08

519 6,458,280 0.42 568 6,240,100 0.12 617 6,200,720 0.60 666 6,240,020 0.04

520 6,454,590 0.41 569 6,235,730 0.10 618 6,190,970 0.47 667 6,239,170 0.03

521 6,447,865 0.42 570 6,235,280 0.07 619 6,187,470 0.39 668 6,241,770 0.03

522 6,439,215 0.36 571 6,302,440 1.40 620 6,187,520 0.42 669 6,243,070 0.03

523 6,428,955 0.33 572 6,290,290 1.31 621 6,183,420 0.38 670 6,245,120 0.03

524 6,431,055 0.37 573 6,304,005 1.34 622 6,182,370 0.37 671 6,246,670 0.04

525 6,423,050 0.38 574 6,279,600 1.13 623 6,181,670 0.34 672 6,248,570 0.02

526 6,403,850 0.35 575 6,277,950 1.16 624 6,180,120 0.25 673 6,252,920 0.05

527 6,399,350 0.38 576 6,271,000 1.08 625 6,181,320 0.23 674 6,254,820 0.05

528 6,388,140 0.22 577 6,270,790 1.09 626 6,178,970 0.16 675 6,257,020 0.06

529 6,391,390 0.30 578 6,265,950 1.04 627 6,178,770 0.09 676 6,259,070 0.12

530 6,376,890 0.05 579 6,273,940 1.08 628 6,181,170 0.15 677 6,261,270 0.06

531 6,373,400 0.14 580 6,271,900 1.07 629 6,180,120 0.12 678 6,263,170 0.07

532 6,369,100 0.10 581 6,260,040 0.98 630 6,182,720 0.13 679 6,264,220 0.05

533 6,361,850 0.05 582 6,254,590 0.94 631 6,208,080 0.78 680 6,264,370 0.03

534 6,361,940 0.14 583 6,221,450 0.65 632 6,189,480 0.41 681 6,265,920 0.04

535 6,355,440 0.11 584 6,202,320 0.52 633 6,188,480 0.21 682 6,268,120 0.00

536 6,351,650 0.10 585 6,249,940 0.87 634 6,188,420 0.18 683 6,271,020 0.01

537 6,342,890 0.09 586 6,248,420 0.95 635 6,190,620 0.13 684 6,273,220 0.02

538 6,341,130 0.08 587 6,242,370 0.86 636 6,191,230 0.11 685 6,275,170 0.01

539 6,340,980 0.11 588 6,238,730 0.83 637 6,192,220 0.11 686 6,278,070 0.00

540 6,335,180 0.14 589 6,234,570 0.80 638 6,189,820 0.07 687 6,280,270 0.00

541 6,345,940 0.54 590 6,229,880 0.82 639 6,192,170 0.14 688 6,283,070 0.00

542 6,340,405 0.38 591 6,196,600 0.55 640 6,193,570 0.07 689 6,285,320 0.00

543 6,333,465 0.35 592 6,192,380 0.42 641 6,195,470 0.06 690 6,287,620 0.00

544 6,326,400 0.26 593 6,196,830 0.43 642 6,197,170 0.07 691 6,291,670 0.03

545 6,325,400 0.30 594 6,188,480 0.32 643 6,198,420 0.06 692 6,292,370 0.00

546 6,318,000 0.30 595 6,187,470 0.32 644 6,200,470 0.06 693 6,295,270 0.01

547 6,315,330 0.27 596 6,190,070 0.24 645 6,202,020 0.06 694 6,297,470 0.00

81

Table 4.26 – Complete Pareto front of 63-activity problem obtained by SAM-PSO model (daily
indirect cost of 3,500$). (Continued)

Dur. Cost APD Dur. Cost APD Dur. Cost APD Dur. Cost APD

(days) $ % (days) $ % (days) $ % (days) $ %

548 6,303,350 0.16 597 6,205,120 0.35 646 6,240,980 0.75 695 6,300,270 0.02

549 6,304,200 0.16 598 6,208,930 0.41 647 6,214,770 0.42 696 6,302,820 0.00

550 6,299,430 0.19 599 6,202,280 0.34 648 6,225,270 0.48 697 6,305,020 0.00

551 6,295,600 0.26 600 6,197,580 0.29 649 6,219,320 0.37 698 6,307,920 0.00

552 6,290,500 0.18 601 6,206,330 0.33 650 6,217,570 0.29 699 6,310,120 0.00

553 6,287,450 0.21 602 6,199,630 0.27 651 6,218,870 0.29 700 6,312,920 0.00

554 6,287,400 0.22 603 6,197,230 0.25 652 6,210,920 0.18 701 6,316,020 0.01

555 6,280,290 0.24 604 6,190,930 0.20 653 6,213,870 0.16 702 6,319,320 0.01

556 6,300,180 1.16 605 6,191,530 0.15 654 6,216,170 0.14 703 6,322,320 0.00

557 6,281,540 0.29 606 6,189,830 0.08 655 6,218,070 0.16 704 6,325,220 0.01

558 6,282,210 0.34 607 6,191,930 0.14 656 6,220,020 0.13 705 6,327,420 0.00

559 6,268,940 0.18 608 6,187,530 0.09 657 6,220,820 0.16 706 6,330,220 0.00

560 6,263,040 0.14 609 6,185,930 0.04 658 6,228,270 0.12 707 6,333,320 0.00

561 6,263,450 0.12 610 6,185,470 0.02 659 6,230,420 0.12 708 6,336,620 0.00

 Overall APD (%) 0.27

 Avg. CPU time (s) 108.02

The solutions obtained from mixed integer programming (Sonmez and
Bettemir 2012), modified-SAM, and SAM-PSO procedures are once more
plotted against each other in the ensuing figures. Figure 4.6 and Figure 4.7
illuminate the solutions obtained via SAM-PSO model for the 63-activity
problem with indirect costs of 2,300$/𝑑𝑎𝑦 and 3,500$/𝑑𝑎𝑦 respectively. These
figures unveil a reasonably good fit for 130 solutions provided by modified-
SAM for any of the experimented cases. Followed by the overhauled PSO
algorithm, these solutions, in essence, impart the particles with somewhat of
a head-start. Thus, solutions located through this phase provide the second
stage with seeds of higher quality. The best non-dominated solutions located
within ten consecutive trials establish the final time-cost profile. This profile,
to some extent, lies over the optimal frontier obtained through the mixed
integer programming; besides, the deviations occur within an acceptable
range from the optima.

82

Figure 4.6 – Comparison of obtained Pareto fronts for 63-activity problem (daily indirect cost of
2,300$).

Figure 4.7 – Comparison of obtained Pareto fronts for 63-activity problem (daily indirect cost of
3,500$).

Throughout the computational experiments, the optimal non-dominated time-
cost profiles of the 18-activity and the 63-activity problems were introduced
for the very first time in the literature. Due to sound convergence speed and
quality of the proposed algorithm in locating the entire Pareto fronts of the
noted instances, it is considered to be a pioneering technique in the
construction management spectrum.

5,350,000

5,450,000

5,550,000

5,650,000

5,750,000

5,850,000

5,950,000

500 550 600 650 700

To
ta

l C
os

t
($

)

Duration (days)

AIMMS M-SAM SAM-PSO

6,120,000
6,170,000
6,220,000
6,270,000
6,320,000
6,370,000
6,420,000
6,470,000
6,520,000
6,570,000

500 550 600 650 700

To
ta

l C
os

t
($

)

Duration (days)

AIMMS M-SAM SAM-PSO

83

CHAPTER 5

CONCLUSIONS

In this thesis, significance of adequate schedules for construction projects has
been discussed. Of the scheduling techniques, the TCT analyses have been
brought to light along with the inadequacies of existing commercial scheduling
software packages for such analyses. Stated motives tied with eminence of
discretization, initiated development of PSO based algorithms for discrete TCT
optimizations. Two particle swarm optimizers, as well as a hybrid meta-
heuristic algorithm have been proposed for solution of TCT problems,
explicitly emphasizing time-cost curve extension of these analyses.
Respectively, a state-of-the-art model with decent capabilities in identifying
the entire Pareto front for discrete TCT problems has been presented.

On the verge of validation and performance assessments of the proposed
algorithms, empirical analyses have been conducted by implementing a well-
known 18-activity benchmark problem, as well as a more complex 63-activity
problem into the models. The adequate values for the operators of the
algorithms have been fine-tuned via sequences of trial and error, with regard
to the solutions provided for these instances within the literature. Amidst
computational experiments, implementing mixed integer programming
technique in the AIMMS 3.11 optimization software, the optimal non-
dominated time-cost profiles of the 18-activity and the 63-activity problems
have been introduced for the very first time in the literature. Therewith, the
closeness of solutions obtained from the proposed particle swarm optimizers
have been measured compared to the optimal solutions; the average
deviations have been reported for ten consecutive experimental runs. The
average processing times required to unravel the test problems have been
also documented. The efficiency and robustness of the proposed algorithms
have been verified concerning the results attained from these analyses.

The discrete sole-PSO algorithm introduced in this thesis has been established
upon the classical version proposed by the founders, with trajectories and
velocities defined as probabilities of state selection for the bits. However,
modifications have been applied to the equations and an alternate scheme for
position update has been adopted. The implemented scheme contrasting with
the original method, in lieu of using uniformly distributed random numbers,
involves determination of the alternatives holding the maximum probabilities.
Similarly, notwithstanding the absence of the inertia weight (w) in the
classical velocity update equation, the proposed algorithm has been treated
with this parameter.

Compared to solutions of well-developed algorithms along with the optimal
solution attained from the exact method, it has been verified that the
proposed discrete PSO algorithm is capable of finding optimum or near-

84

optimum solutions for the medium-sized problems with insignificant
deviations from the optimal solutions. It has been observed that the quality of
the obtained solutions for larger instances slightly deteriorate as exposed to
larger daily indirect costs. It has been shown that this algorithm operates
within acceptable processing time by searching merely small fractions of the
search space. As a result, the proposed algorithm has been proven to
outperform all the earlier optimizers with regard to both the convergence
speed and the quality of the solutions. However, generic to all meta-heuristic
algorithms, it is impossible to ensure quality of the obtained solutions short of
the exact procedure.

Another paradigm of the discrete PSO algorithm has been introduced within
the context of this thesis for solution of the time-constraint TCT problems.
Minor modifications mainly engaging the fitness functions have been applied
to the previously specified particle swarm optimizer. Performed revisions
enhancing assessment of problems with provisions of incentives and
liquidated damages have been demonstrated. It has been observed that in
spite of extra calculations imposed to the algorithm, this procedure demands
inconsiderable processing time due to searching small portions of the solution
space. The efficiency of this algorithm has been confirmed in providing sound
solutions throughout the empirical analyses. The optimality of the solutions
obtained through experimentations has been verified in comparison with the
results of the exact procedure. In consequence, the proposed algorithm has
been proven to outdo all the earlier optimizers concerning its convergence
capabilities.

Reckoned as the chief contribution of this thesis, a novel hybrid SAM-PSO
algorithm has been introduced for solution of the time-cost curve extension of
discrete TCT problems. Complementary strengths of the Siemens
Approximation Method (SAM) and the discrete PSO algorithm have been
combined to develop a hybrid algorithm. To this end, a new approach has
been taken toward cost slopes measurements of the SAM method; thereupon,
the modified-SAM has been embedded to an overhauled discrete PSO
algorithm. Principles for selection of the pbest and the gbest positions have
been totally revamped for the overhauled PSO phase of the hybrid model. A
semi-deterministic (semi-random) initialization scheme has been incorporated
into the SAM-PSO model, seeding a certain portion of the initial population by
dint of the modified-SAM method, followed by a random scheme for
generation of the rest of the population.

Convergence capabilities of the proposed SAM-PSO model in locating the
Pareto front have been demonstrated in a scatter chart, plotted against the
results of the mixed integer programming. It has been observed that the
solutions provided via modified-SAM phase of the hybrid model have
reasonably good fit compared to the optimal frontier, thus, providing the
second phase with initial seeds of higher quality. The ultimate time-cost
profiles located by the hybrid algorithm have been experienced to roughly lie
over the efficient frontier with deviations within acceptable ranges from the
optima. However, it has been observed that the quality of the obtained
solutions slightly deteriorate for instances with smaller daily indirect costs.
Robustness of this model has been confirmed regarding its competency in

85

locating the entire non-dominated front for the medium-sized instances. As a
result, operating within reasonable time-frames, the proposed algorithm has
been proven to outperform the results of the previous researches reported in
the literature. Albeit, as stated earlier, optimality of the obtained solutions
through the SAM-PSO model cannot be ensured unless an exact procedure is
adopted. Moreover, despite the efficiency of the hybrid algorithm in solving
instances having up to 63 activities, the same level of performance cannot be
guaranteed extending its application for real-life projects that comprise
hundreds or even thousands of activities.

The SAM-PSO model is envisioned to support decision makers in competent
evaluations of the subsequent “what if” scenarios. Due to sound convergence
capabilities of the proposed algorithm in locating the entire Pareto fronts of
the represented instances, it is considered to be a pioneering technique in the
construction management spectrum. Further, it has been noted that the
performance of SAM-PSO is sensitive to parameter selection, and that setting
larger values for the generations and/or swarms in behalf of augmented
solution quality is advisable. However, setting larger values for these
parameters necessitate greater processing times. As a result, benefitting from
supercomputers or grid-computing systems that render more processing units
would be an alternative study area.

Despite potencies of the proposed model, a need remain for methods that
incorporates resources availabilities during analyses. A comprehensive
research extending optimization of time-cost to other perspectives of the
projects such as quality, productivity, safety, etc., is also an investigation
area that deserves further devotion. Including second order cost components
– such as insurance or bond expenses that are functions of both the overall
duration and cost of the project – within TCT analyses would be another
remarkable focus in this spectrum. Last but not least, it is a common practice
to assume deterministic amounts for the durations and costs of the time-cost
alternatives; however, a model can be designed to reflect uncertainties of the
actual practices.

87

REFERENCES

Afshar, A., Ziaraty, A. K., Kaveh, A., & Sharifi, F. (2009). Nondominated Archiving
Multicolony Ant Algorithm in Time-Cost Trade-Off Optimization. Journal of
Construction Engineering and Management-ASCE, 135(7), 668-674. doi:
10.1061/(ASCE)0733-9364(2009)135:7(668)

Anagnostopoulos, K. P., & Kotsikas, L. (2010). Experimental evaluation of simulated

annealing algorithms for the time-cost trade-off problem. Applied Mathematics
and Computation, 217(1), 260-270. doi: 10.1016/j.amc.2010.05.056

Ashuri, B., & Tavakolan, M. (2012). Fuzzy Enabled Hybrid Genetic Algorithm–Particle

Swarm Optimization Approach to Solve TCRO Problems in Construction Project
Planning. Journal of Construction Engineering and Management, 138(9), 1065-
1074. doi: 10.1061/(ASCE)CO.1943-7862.0000513

Chassiakos, A. P., & Sakellaropoulos, S. P. (2005). Time-cost optimization of construction

projects with generalized activity constraints. Journal of Construction
Engineering and Management-ASCE, 131(10), 1115-1124. doi:
10.1061/(ASCE)0733-9364(2005)131:10(1115)

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies.

Toward a Practice of Autonomous Systems, 134-142.

De, P., James Dunne, E., Ghosh, J. B., & Wells, C. E. (1995). The discrete time-cost

tradeoff problem revisited. European Journal of Operational Research, 81(2),
225-238. doi: 10.1016/0377-2217(94)00187-H

Deckro, R. F., Hebert, J. E., Verdini, W. A., Grimsrud, P. H., & Venkateshwar, S. (1995).

Nonlinear Time Cost Tradeoff Models in Project-Management. Computers &
Industrial Engineering, 28(2), 219-229. doi: 10.1016/0360-8352(94)00199-W

Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., & Vanhoucke, M. (1998).

New computational results on the discrete time/cost trade-off problem in
project networks. Journal of the Operational Research Society, 49(11), 1153-
1163. doi: 10.1057/palgrave.jors.2600634

Demeulemeester, E. L., Herroelen, W. S., & Elmaghraby, S. E. (1996). Optimal procedures

for the discrete time cost trade-off problem in project networks. European
Journal of Operational Research, 88(1), 50-68. doi: 10.1016/0377-
2217(94)00181-2

88

Eberhart, R., & Kennedy, J. (1995, 4-6 Oct 1995). A new optimizer using particle swarm
theory. Paper presented at the Micro Machine and Human Science, 1995. MHS
'95., Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, 39-43.

El-Rayes, K., & Moselhi, O. (1998). Resource-driven scheduling of repetitive activities.

Construction Management and Economics, 16(4), 433-446. doi:
10.1080/014461998372213

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-

based optimization algorithms. Advanced Engineering Informatics, 19(1), 43-53.
doi: 10.1016/j.aei.2005.01.004

Elbeltagi, E., Hegazy, T., & Grierson, D. (2007). A modified shuffled frog-leaping

optimization algorithm: applications to project management. Structure and
Infrastructure Engineering, 3(1), 53-60. doi: 10.1080/15732470500254535

Eshtehardian, E., Afshar, A., & Abbasnia, R. (2008). Time–cost optimization: using GA and

fuzzy sets theory for uncertainties in cost. Construction Management and
Economics, 26(7), 679-691. doi: 10.1080/01446190802036128

Falk, J. E., & Horowitz, J. L. (1972). Critical Path Problems with Concave Cost-Time

Curves. Management Science Series B-Application, 19(4), 446-455. doi:
10.1287/mnsc.19.4.446

Feng, Liu, L., & Burns. (1997). Using Genetic Algorithms to Solve Construction Time-Cost

Trade-Off Problems. Journal of Computing in Civil Engineering, 11(3), 184-189.
doi: 10.1061/(ASCE)0887-3801(1997)11:3(184)

Foldes, S., & Soumis, F. (1993). Pert and Crashing Revisited - Mathematical

Generalizations. European Journal of Operational Research, 64(2), 286-294. doi:
10.1016/0377-2217(93)90183-N

Force, University of Texas at Austin. Construction Industry Institute. Cost/Schedule

Controls Task Force (1988). Concepts and Methods of Schedule Compression:
The Institute.

Fulkerson, D. R. (1961). A Network Flow Computation for Project Cost Curves.

Management Science, 7(2), 167-178. doi: 10.1287/Mnsc.7.2.167

Goldberg, D. E., & Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms.

Paper presented at the Proceedings of the Second International Conference on
Genetic Algorithms on Genetic algorithms and their application, Cambridge,
Massachusetts, United States.

89

Hegazy, T. (1999). Optimization of construction time-cost trade-off analysis using genetic
algorithms. Canadian Journal of Civil Engineering, 26(6), 685-697. doi:
10.1139/cjce-26-6-685

Hegazy, T., Elbeltagi, E., & El-Behairy, H. (2004). Bridge deck management system with

integrated life-cycle cost optimization. Maintenance and Management of
Pavement and Structures(1866), 44-50.

Heppner, F., & Grenander, U. (1990). A Stochastic Nonlinear Model for Coordinated Bird

Flocks. Ubiquity of Chaos, 233-238.

Herroelen, W. S., VanDommelen, P., & Demeulemeester, E. L. (1997). Project network

models with discounted cash flows a guided tour through recent developments.
European Journal of Operational Research, 100(1), 97-121. doi: 10.1016/S0377-
2217(96)00112-9

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence:
University of Michigan Press.

Izakian, H., Ladani, B. T., Abraham, A., & Snasel, V. (2010). A Discrete Particle Swarm

Optimization Approach for Grid Job Scheduling. International Journal of
Innovative Computing Information and Control, 6(9), 4219-4233.

Izakian, H., Ladani, B. T., Zamanifar, K., & Abraham, A. (2009). A Novel Particle Swarm

Optimization Approach for Grid Job Scheduling. Information Systems,
Technology and Management-Third International Conference, Icistm 2009, 31,
100-109.

Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for

recurrent network design. IEEE Trans Syst Man Cybern B Cybern, 34(2), 997-
1006.

Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives : preferences and

value tradeoffs. Sydney.

Kelley, J. E. (1961). Critical-Path Planning and Scheduling - Mathematical Basis.

Operations Research, 9(3), 296-320. doi: 10.1287/Opre.9.3.296

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 Ieee International

Conference on Neural Networks Proceedings, Vols 1-6, 1942-1948.

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm

algorithm. Smc '97 Conference Proceedings - 1997 Ieee International
Conference on Systems, Man, and Cybernetics, Vols 1-5, 4104-4108.

90

Kerzner, H. (2009). Project Management: A Systems Approach to Planning, Scheduling,
and Controlling: John Wiley & Sons.

Lock, D. (2007). Project Management: 9Th Edition: Gower.

Meyer, W. L., & Shaffer, L. R. (1965). Extending CPM for Multifirm Project Time-Cost

Curves. J. Construct. Div., ASCE, 91(1), 45-68.

Millonas, M. M. (1994). Swarms, phase transitions and collective intelligence. In C.

Langton (Ed.), Artificial Life III: Addison-Wesley.

Moder, J. J., Phillips, C. R., & Davis, E. W. (1983). Project management with CPM, PERT,

and precedence diagramming (3rd ed.). New York: Van Nostrand Reinhold.

Moussourakis, J., & Haksever, C. (2004). Flexible model for time/cost tradeoff problem.

Journal of Construction Engineering and Management-ASCE, 130(3), 307-314.
doi: 10.1061/(ASCE)0733-9364(2004)130:3(307)

Mubarak, S. (2010). Construction Project Scheduling and Control: John Wiley & Sons.

Ng, S. T., & Zhang, Y. S. (2008). Optimizing construction time and cost using ant colony

optimization approach. Journal of Construction Engineering and Management-
ASCE, 134(9), 721-728. doi: 10.1061/(ASCE)0733-9364(2008)134:9(721)

Parsopoulos, K. E., & Vrahatis, M. N. (2009). Particle Swarm Optimization and

Intelligence: Advances and Applications: IGI Global.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Paper

presented at the Proceedings of the 14th annual conference on Computer
graphics and interactive techniques.

Shi, Y. H., & Eberhart, R. (1998). A modified particle swarm optimizer. 1998 Ieee

International Conference on Evolutionary Computation - Proceedings, 69-73.
doi: 10.1109/Icec.1998.699146

Siemens, N. (1971). A Simple CPM Time-Cost Tradeoff Algorithm. Management Science,

17(6), B354-B363. doi: 10.2307/2629138

Skutella, M. (1998). Approximation algorithms for the discrete time-cost tradeoff

problem. Mathematics of Operations Research, 23(4), 909-929. doi:
10.1287/moor.23.4.909

Sonmez, R., & Bettemir, O. H. (2012). A hybrid genetic algorithm for the discrete time-

cost trade-off problem. Expert Systems with Applications, 39(13), 11428-11434.
doi: 10.1016/j.eswa.2012.04.019

91

Vanhoucke, M. (2005). New computational results for the discrete time/cost trade-off
problem with time-switch constraints. European Journal of Operational
Research, 165(2), 359-374. doi: 10.1016/j.ejor.2004.04.007

Vanhoucke, M., & Debels, D. (2007). The discrete time/cost trade-off problem:

extensions and heuristic procedures. Journal of Scheduling, 10(4-5), 311-326.
doi: 10.1007/s10951-007-0031-y

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2002). Discrete time/cost trade-

offs in project scheduling with time-switch constraints. Journal of the
Operational Research Society, 53(7), 741-751. doi:
10.1057/palgrave.jors.2601351

Xiong, Y., & Kuang, Y. P. (2008). Applying an ant colony optimization algorithm-based

multiobjective approach for time-cost trade-off. Journal of Construction
Engineering and Management-ASCE, 134(2), 153-156. doi: 10.1061/(ASCE)0733-
9364(2008)134:2(153)

Yang, H. H., & Chen, Y. L. (2000). Finding the critical path in an activity network with

time-switch constraints. European Journal of Operational Research, 120(3), 603-
613. doi: 10.1016/S0377-2217(98)00390-7

Yang, I. T. (2007a). Using elitist particle swarm optimization to facilitate bicriterion time-

cost trade-off analysis. Journal of Construction Engineering and Management-
ASCE, 133(7), 498-505. doi: 10.1061/(ASCE)0733-9364(2007)133:7(498)

Yang, I. T. (2007b). Performing complex project crashing analysis with aid of particle

swarm optimization algorithm. International Journal of Project Management,
25(6), 637-646. doi: http://dx.doi.org/10.1016/j.ijproman.2006.11.001

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:

http://dx.doi.org/10.1016/S0019-9958(65)90241-X

Zhang, H., & Xing, F. (2010). Fuzzy-multi-objective particle swarm optimization for time-

cost-quality tradeoff in construction. Automation in Construction, 19(8), 1067-
1075. doi: 10.1016/j.autcon.2010.07.014

Zheng, D. X. M., & Ng, S. T. (2005). Stochastic time-cost optimization model

incorporating fuzzy sets theory and nonreplaceable front. Journal of
Construction Engineering and Management-ASCE, 131(2), 176-186. doi:
10.1061/(ASCE)0733-9364(2005)131:2(176)

Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2004). Applying a genetic algorithm-

based multiobjective approach for time-cost optimization. Journal of
Construction Engineering and Management-ASCE, 130(2), 168-176. doi:
10.1061/(ASCE)0733-9364(2004)130:2(168)

92

Zheng, D. X. M., Ng, S. T., & Kumaraswamy, M. M. (2005). Applying pareto ranking and
niche formation to genetic algorithm-based multiobjective time-cost
optimization. Journal of Construction Engineering and Management-ASCE,
131(1), 81-91. doi: 10.1061/(ASCE)0733-9364(2005)131:1(81)

	ABSTRACT
	HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR OBTAINING PARETO FRONT OF DISCRETE TIME-COST TRADE-OFF PROBLEM
	ÖZ
	KESİKLİ ZAMAN-MALİYET ÖDÜNLEŞİM PROBLEMLERİNDE Pareto EĞRİSİNİN MELEZ Kuş Sürüsü OPTİMİZASYON Algoritması İLE OLUŞTURULMASI
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	LITERATURE REVIEW
	2.1. CPM
	2.2. TCTP
	2.3. Exact, Heuristic, and Meta-heuristic Methods
	2.4. Exact, Heuristic, and Meta-heuristic Methods for TCTP
	2.4.1. Exact methods for TCTP
	2.4.2. Heuristic methods for TCTP
	2.4.3. Meta-heuristic methods for TCTP

	CHAPTER 3
	PARTICLE SWARM OPTIMIZATION ALGORITHMS
	3.1. Particle Swarm Optimization (PSO)
	3.1.1. Modified particle swarm optimization (M-PSO)
	3.1.2. Discrete binary particle swarm optimization (D-PSO)

	3.2. Siemens Approximation Method (SAM)
	3.3. Initialization and Termination
	3.4. Particle Swarm Optimizer for Time-Cost Trade-Off Analyses
	3.4.1. Discrete TCTP
	3.4.2. Time-constraint TCTP
	3.4.3. Time-cost curve TCTP

	CHAPTER 4
	VALIDATION AND EMPIRICAL ANALYSES
	4.1. Validating the Algorithms
	4.2. Empirical Analyses
	4.2.1. Discrete TCTP analyses
	4.2.2. Time-constraint TCTP analyses
	4.2.3. Time-cost curve TCTP analyses

	CHAPTER 5
	CONCLUSIONS
	REFERENCES

