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ABSTRACT

IMPLEMENTATION OF COUPLED THERMAL AND STRUCTURAL ANALYSIS
METHODS FOR REINFORCED CONCRETE STRUCTURES

Albostan, Utku
M.S, Department of Civil Engineering
Supervisor : Assoc. Prof. Dr. Ozgiir Kurc
January 2013, 105 pages

Temperature gradient causes volume change (elongation/shortening) in concrete
structures. If the movement of the structure is restrained, significant stresses may
occur on the structure. These stresses may be so significant that they can cause
considerable cracking at structural components of large concrete structures. Thus,
during the design of a concrete structure, the actual temperature gradient in the
structure should be obtained in order to compute the stress distribution on the
structure due to thermal effects. This study focuses on the implementation of a
solution procedure for coupled thermal and structural analysis with finite element
method for such structures. For this purpose, first transient heat transfer analysis
algorithm is implemented to compute the thermal gradient occurring inside the
concrete structures. Then, the output of the thermal analysis is combined with the
linear static solution algorithm to compute stresses due to temperature gradient.
Several, 2D and 3D, finite elements having both structural and thermal analysis
capabilities are developed. The performances of each finite element are investigated.
As a case study, the top floor of two L-shaped reinforced concrete parking structure
and office building are analyzed. Both structures are subjected to heat convection
at top face of the slabs as ambient condition. The bottom face of the slab of the
parking structure has the same thermal conditions as the top face whereas in the
office building the temperature inside the building is fixed to 20 degrees. The
differences in the stress distribution of the slabs and the internal forces of the
vertical structural members are discussed.

Keywords: Finite Element, Heat Transfer Analysis, Coupled Analysis, Thermal
Gradient, Reinforced Concrete Structure.
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BETONARME YAPILAR ICIN ISI ILETIMI VE YAPISAL COZUMLEME METOTLARI
KULLANILARAK IKiLI COZUMLEME YONTEMININ GELISTIRILMESI

Albostan, Utku
Yiiksek Lisans, Insaat Miithendisligi Blimi
Tez Yéneticisi : Doc. Dr. Ozgtir Kurg
Ocak 2013, 105 sayfa

Betonarme yapilarda sicaklik degisimi hacim degisikligine (genlesme/buzilme)
sebep olmaktadir. Eger yapinin eksenel yondeki deformasyonu engellenirse yapi
Uzerinde ciddi mertebede gerilmelerin olustugu goértlmektedir. Bu yuksek
gerilmeler buydk betonarme yapilarda kirilma veya catlamalara sebep
olabilmektedir. Bu nedenle betonarme yapilarin tasarimi sirasinda, yapisal
elemanlarda sicaklik farkliliklar1 nedeniyle olusan gerilme miktarlarinin
hesaplanabilmesi icin, elemanlardaki sicaklik dagilimi dikkate alinmalidir. Bu
calisma betonarme yapilarin sonlu elemanlar yontemi ile gelistirilmis 1s1 iletimi ve
yapisal cézimleme yontemleri ile ikili olarak c¢céztimlenmesini incelemektedir. Bu
amacla ilk olarak zamana bagh 1s1 iletimi c¢éziimlemesi yapilarak betonarme
elemanlarin icerisinde olusan sicaklik dagilimi elde edilmistir. Sonrasinda bu
sicaklik degerleri kullanilarak sistem yapisal olarak c¢oztimlenmis ve yapidaki
gerilme degerleri hesaplanmistir. Bu ¢éziimleme uygulamasinda kullanilmak tzere
2 ve 3 boyutlu cesitli sonlu elemanlar gelistirilmistir. Bu elemanlar hem 1s1 iletimi
hem de yapisal ¢6zimlemelerde kullanilabilecek sekilde gelistirilmis ve dogrulama
testleri yapilmistir. Test problemi olarak L seklindeki betonarme park yeri yapisi ile
ofis binasinin en st katlar1 ¢cézimlenmistir. Her iki yapinin cati désemesinin Ust
yluzeyine 1s1 konveksiyonu uygulanmistir. Park yeri binasinin cati désemesinin alt
ylzeyine de Ust ylzeye uygulanan 1s1 yukti aynen etki ettirilirken ofis binasinin i¢
sicakligi 20 derecede sabit tutulmustur. Her iki yapida sicaklik ytkleri nedeniyle
cati désemelerinde olusan gerilmeler ve disey elemanlarda olusan i¢c kuvvetler
karsilastirilmistir.

Anahtar Kelimeler: Sonlu Eleman, Is1 Iletimi Céztimlemesi, Ikili Céztimleme,
Sicaklik Degisimi, Betonarme Yapilar.
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CHAPTER 1

INTRODUCTION

1.1. Problem Definition

Concrete is a composite material used commonly for any type of structures such as
buildings, dams, pipes, roads, etc. due to its advantageous properties. In fact, its
higher strength in compression, workability and being cheaper than the other
construction materials are the reasons why concrete is the main construction
material all over the world.

Concrete structures generally show volume change under four different time
dependent effects; elastic deformation, creep, shrinkage and temperature change.
Creep and shrinkage effects occur due to time dependent changes in the material
properties. Indeed, creep mechanism is related to change of elastic properties of
concrete with respect to time. In addition, temperature change, moisture content,
humidity and stresses on the structure affect the mechanism of the creep.
Similarly, shrinkage mechanism depends on moisture content and time. Unlike
creep, it is independent of stress on the structure. Axial deformations due to
temperature changes may cause significant stresses in structures with high degree
of indeterminacy.

PTI, Post Tension Institute presents that according to ACI Committee 318, during
the design of reinforced concrete structures, the aforementioned time dependent
effects should be considered in serviceability and strength conditions. It also
requires that these effects should be taken into account as reliable with the
practical applications; accordingly, instead of upper bound values, more realistic
conditions should be utilized. Current design approaches, however, use very simple
assumptions and simple analysis methods for the consideration of time dependent
axial deformations of concrete structures which may lead to excessive use of
construction materials. Among the aforementioned time dependent effects,
determination of maximum and minimum temperature gradient that can occur in
the concrete structural components is always the problematic one. The common
engineering approach is to use the yearly weather temperature information and
come up with design temperature difference values. Unfortunately, this approach
ignores the environmental conditions and heat transfer properties of concrete
which might produce unrealistic design forces and stresses.

Change in temperature causes volume change (elongation/shortening) of the
unrestrained structures without any stress if nonlinear thermal gradient is ignored.
On restrained structures, however, stresses are generated due to the temperature
gradient. Indeed, inability of thermal expansion/shortening causes stress on the
body. Effects of temperature gradient depend on the volume of a structural
component. For structural components with relatively small volumes such as
columns, temperature change effects can be neglected. On the other hand,
temperature gradient induces significant amount of stress on components with
large volumes such as slab systems. For such components’ thermal stresses can
cause significant cracking if necessary precautions are not taken.



Since concrete has low conductivity, temperature gradient occurs among the depth
of the structure. This temperature gradient induces uneven stress distribution
along the thickness of the structure. In addition, having high heat capacitance
causes the change of the heat energy in the concrete structure slowly. In other
words, the energy coming from the ambient conditions such as convection or
radiation does not affect the inside of the section immediately. Therefore, warming
and cooling of concrete structures occurs slowly and thus the temperature gradient
of the concrete is not same with the temperature gradient of ambient. In order to
consider these properties of concrete structures, more detailed solution procedures
are required.

In this study, coupled, heat transfer and structural analyses, solution methods will
be developed by utilizing finite element method. This way, thermal behavior of the
reinforced concrete structure will be solved by considering the environmental
thermal effects and actual temperature gradient in components of the structure will
be obtained. Then, thermal strains due to thermal gradient will be computed and
the structural solution will be performed. Accordingly, more realistic stress
distribution and internal forces due to thermal gradient will be obtained.

1.2.Related Work

According to PTI, structures having large plans with short floor to floor distance
such as parking structures are subjected to four different types of shortening.
These are shortenings in post-tension slabs, creep, shrinkage and temperature
change. In order to examine the effects of these four mechanisms, PTI analytically
examined the floor shortening of a parking garage in Houston, Texas. According to
the results of the example, the largest shortening occurs due to shrinkage with the
percentage of 55%. Temperature change is the second largest shortening
mechanism whose percentage is 27.7%. The percentages of elastic and creep
shortenings are 8% and 9.3%, respectively. These results show that temperature
change should not be ignored for designing of expansion joints for parking
structures (PTI).

When a reinforced concrete structure is subjected to thermal loads due to
temperature gradient, stress occurs on the structure if thermal expansion of the
structure is restrained (Vecchio, 1987). Such stresses may cause cracking of the
body. There are several techniques for represent the actual behavior of concrete
structures under thermal loading. Temperature strains are calculated by
multiplying thermal coefficient of concrete with temperature change values being
maximum seasonal temperature changes for that location (PTI). This way, no
temperature gradient through section thickness is taken into account.

Igbal (2012) stated that most parking structures are concrete, open and unheated
structures. Accordingly, creep, shrinkage and temperature affect such structures
by changing volume. These effects induce displacements in structures. If these
displacements are restrained, additional stresses occurs in the structure that cause
crack, leaks and premature deterioration in the structure.

According to Igbal (2012), in general, the duration of construction of such
structures is more than one year. In order to simplify the determination of the
construction temperature, Tc, mean value of the construction season is utilized. It
was stated that minimum temperature, Tmin is defined by Federal Construction
Council (Technical Report No 65) as the equal or greater than the 99% of the



temperature of winter months at that location. Accordingly, design temperature is
calculated by utilizing the Equation 1-1.

Tdesign = Tconstruction - Tmin (1_1)

According to Saetta et al. (n.d.), for structures having large concrete bodies such as
bridges or dams, temperature gradient occurs due to thermal loads; nevertheless,
the difficulties of modeling the actual environmental conditions force designers to
utilize simplified methods. This causes unreliable results. Accordingly, for analyzing
such structures under thermal loads, temperature gradient occurring inside the
concrete structure should be taken into account. For linear stress calculations,
they followed three assumptions. First assumption is that heat transfer and
structural analysis are performed independently (coupled analysis in weak form).
The second one is utilizing small displacements and strains. Finally, linear elastic
material properties are considered only.

By utilizing these three assumptions, Saetta et al. (n.d.) analyzed the Sa Stria dam,
built in Sardegna (Italy) and a box girder bridge section subjected to climatic
conditions of northern Italy. These structures were analyzed by utilizing coupled
analysis in weak form. First, Sa Stria dam is a roller compacted concrete dam. They
performed transient heat transfer solution to the dam by utilizing heat of hydration
and heat convection conditions. This way, they obtained temperature gradient
occurring in the dam body at several days. Then, they performed linear static
analysis in order to obtain stresses on the dam body due to the temperature
gradient. According to the results, tensile stress occurred near the edges where the
temperature was lower; whereas, at core of the dam, compressive stress generated.

Similarly, Saetta et al. (n.d.) analyzed a box girder bridge section by utilizing actual
thermal conditions such as heat convection, heat radiation etc. They applied
coupled analysis in weak form and obtained temperature gradient and related
stress and force distribution. According to the results, the maximum stress
occurred in wings of the section. Accordingly, they indicated that if those regions
are not designed properly, cracking may occur due to temperature gradient.

Vecchio stated that for continuous structures, thermal stress can be divided into
two parts, primary and secondary thermal stresses (1987). Primary thermal
stresses occur on unrestrained structures due to nonlinear thermal gradient
through thickness. Indeed, since the thermal expansion coefficients of concrete and
reinforcing bars are not same, internal restriction occurs between concrete and
bars. Accordingly, internal stresses occur although the thermal expansion of the
structure is not restrained. On the other hand, secondary thermal stresses generate
on restrained structures. According to Vecchio (1987), the secondary thermal
stresses are more critical than the first one.

Vecchio presented nonlinear frame analysis procedure for solution of reinforced
concrete frames under thermal loading. The general solution procedure is the same
with the most of the linear elastic frame analysis programs. On the other hand, this
procedure provides to apply more factors such as nonlinear material, nonlinear
thermal gradient, thermal creep, time history etc. Indeed, he added the effects of
elevated temperatures to the physical and material properties such as strength or
stiffness etc. He also implemented nonlinear temperature gradient through
reinforced concrete section. He utilized the standard one dimensional heat transfer
principals and he calculated the temperature values at any depth through
thickness of the structure. Vecchio compared the performance of the solution
procedure with the experimental results and obtained fair accuracy (1987).



In another paper, Vecchio et al. (1992) stated that reinforced concrete structures
are subjected to thermal loads such as design function of the structure, ambient
conditions, heat of hydration or fire. These loadings cause nonlinear temperature
and strain profiles which produce increased level of stress, distortion and damage
(i.e. primary thermal stresses). In addition to the primary thermal stresses, thermal
loads induce restrained structural deformation (i.e. secondary thermal stresses). it
was stated that second thermal stresses are more significant.

Vecchio et al. (1992) also stated that ACI Committee 349 includes less computation
about the analysis of concrete structures under thermal load and this solution
technique does not represent the actual behavior. In order to investigate the
behavior of concrete shell structures under thermal load, they performed two tests.
First, they tested concrete slab under both thermal and mechanical loadings. The
slab was simply supported at each corner and concentrated load was applied to the
center of the slab. In addition to mechanical load, the slab was subjected to heat at
the top surface; whereas, temperature of bottom face was kept close to room
temperature. Accordingly, temperature gradient was through the thickness. This
test was repeated for different reinforcement ratios and orientations. The
displacements at the center of the slab were compared with the analytical
solutions. They computed analytical solution by utilizing the Equation 1-2.

acATI?

A =
¢ 4h

(1-2)
In Equation 1-2, Ac, h, I, ac, AT are deflection at center of slab, thickness of slab,
length of slab span, thermal expansion coefficient and temperature gradient,
respectively. Since the slab was simply supported, no external stress due to
thermal loading was expected. On the other hand, since reinforcement and concrete
have different thermal coefficients, reinforcing bars restrained the slab; accordingly,
internal stresses occurred in the slab body. In other words, nonlinear thermal
gradient occurred. They, however, indicated that the effects of primary thermal
stresses are negligible and no crack was occurred at the specimen during these
tests.

Second, Vecchio et al. (1992) tested the same specimen under thermal load by
restraining the center along thickness direction. This restriction caused stresses
and related cracks on the slab. According to test results, internal forces increased
up to occurring of first crack. This crack causes reduce in stiffness; accordingly,
immediate relaxation occurred.

Chou and Cheng (n.d.) presented the study of measuring joint movements and
seasonal thermal stresses of concrete slab located at the Chiang Kai-Shek
international airport. They used optical fiber sensors to measure the joint
displacements due to seasonal temperature change. These sensors were located at
the middle layer of the slab through thickness and for approximately one year,
displacements and temperature values had been stored. Since the sensors received
temperature of only middle point layer, stresses on the slab were calculated with
the assumption of constant temperature change along the thickness. They
calculated stresses by considering the shrinkage mechanism also. According to
their results, tensile stress will occur on concrete slab most of the time due to
temperature changes if the casting of it is performed in hot temperatures. In
addition to this, they made predictions about the future movement and thermal
stresses by utilizing regression analysis.



According to Li et al. (2009), concrete slab bends if it is subjected to negative
temperature gradient through thickness. This bending causes tensile stress at top
layer of the slab. Although the maximum tensile stress is expected at the bottom
layer of the slab, due to negative temperature gradient, it can occur at top layer.
Accordingly, first cracking occurs at top layer. Because of this, they solved the
system by acting the thermal and axle load together.

Li et al. (2009) utilized linear temperature gradient through thickness of the slab
and solved the slab by considering each combination of axle load. This solution was
performed by utilizing finite element method (FEM). According to their study, the
maximum tensile stress occurred at top layer of the slab. This causes cracking from
top to bottom; although, the designers in China expected cracks from bottom to
top. On the other hand, these results are obtained from a structural model
composed of a single slab. Behavior of an indeterminate system was not considered.

Thelandersson stated that thermal loading can be added to the mechanical analysis
as initial strain for both linear and nonlinear solutions (1987). According to
Thelandersson, this approach was developed for metals; whereas, for concrete, the
mechanism is more complex than stated above because mechanical properties
depend on temperature. Accordingly, Thelandersson stated change of strain by
utilizing the Equation 1-3.

&j = _gd—kkaij + %dij + [(@ + B0y )8i + Boy1T (1-3)
Where

Br=2(=2) (1-4)

By = (= (1-5)

f1 and f- represent change of elastic properties of concrete with respect to
temperature and if these elastic properties are independent of temperature,
isotropic linear thermo-elastic material behavior is obtained (Thelandersson, 1987).
Thelandersson developed constitutive material model including the derivatives of
elastic properties and verified the method with experimental results. According to
the results, this tangent modulus gives reliable results; although, it is simple.

Borst and Peters presented the material behavior of concrete under elevated
temperatures (1988). Indeed, they indicated that concrete behaves nonlinear under
elevated temperature due to thermal dilatation, temperature dependent material
properties, transient creep, and cracking. Transient creep mechanism includes
both thermal expansion with thermal expansion coefficient whose function is
nonlinear of the temperature and change of elastic properties of the material such
as Modulus of elasticity etc.

According to Borst and Peters (1988), large scale structures should be solved by
utilizing smeared crack formulation. Otherwise, reliable results are not obtained.
However, derivation of the material behavior composed of smeared crack and other
nonlinear mechanisms stated above is not appropriate. Accordingly, they utilized
strain decomposition approach to handle this problem. Indeed, they used separate
constitutive law for each strain rate. They simulated the test of plain concrete
cylinders. They stated that this test was conducted by Anderberg and
Thelandersson (1978) in order to discover the mechanical behavior under high



temperatures. This simulation reveals that analysis of concrete structure does not
represent the actual behavior if transient creep is not taken into account.

1.3. Objectives and Scopes

The main objective of this study is the development of finite element solution
platform that enables the coupled, thermal and structural, analysis of civil
engineering structures. This allows the detailed investigation of stress caused by
thermal effects in any structure of any geometry.

For this purpose, linear heat transfer and linear structural analysis solution
algorithms are combined as weak form of coupled analysis. Since for structural
solutions, no significant geometry change is generated, thermoelastic property of
the material may be ignored. Accordingly, weak form of coupled analysis is
preferred. In other words, linear heat transfer analysis and linear structural
analysis are performed in sequential order. Heat transfer analysis computes
temperature values of certain locations at a body for a certain time period and
structural analysis uses these temperature values for calculating the thermal
strains. These thermal strains are then converted to equivalent nodal forces and
the corresponding deformations are computed.

In addition, several types of 2D and 3D finite elements will be developed. This way,
structures with complex geometries can also be analyzed. Each element will include
both structural analysis and heat transfer solution related algorithms. Moreover the
performance of each element for both cases for several benchmark problems will be
investigated.

By utilizing the developed solution algorithms, the top floor of a typical L-shaped
building will be analyzed as a case study. Indeed, the building will be solved twice
with different thermal conditions. First, it will be analyzed as a parking structure
being open and subjected to ambient temperature conditions only. For the second
case, the same building will be analyzed as an office building thus the internal
temperature of the building will be fixed to 20°C. Both structures will be subjected
to heat convection with ambient temperature of Adana at July 23 (Bulut et al.,
n.d.) but the heat radiation effect will be ignored. Also, heat convection occurring
on the columns and walls are neglected. Casting temperature of the structure is
assumed to be equal to 14°C and temperature gradient of slab through thickness
for only one day will be investigated. For several hours of that day, stresses on the
slab due to temperature gradient at that time will be calculated and compared with
each other.

For both the heat transfer and structural analyses, all material properties will be
assumed as linear. In other words, effects of nonlinear stress - strain relationship,
nonlinear temperature gradient, transient creep, and shrinkage will be ignored.
Only stresses generated due to temperature change will be discussed.

1.4. Thesis Outline

Outline of the thesis is as follows. Theory of solution methods of solid mechanics
and heat transfer and finite element procedures are discussed in Chapter 2. All
implementations are presented in Chapter 3. In this chapter, structures of solution



algorithms, linear structural and linear heat transfer analysis and coupled system
are presented. In addition, finite elements existing in finite element library of the
platform and their basic properties are explained. Chapter 4 includes verification of
the solution algorithms and finite elements stated in Chapter 3. Behaviors of L-
shaped concrete structures under different thermal loads are going to be discussed
in Chapter 5. Indeed, parking and office structures having same geometry and
different thermal loading conditions are compared. Finally, Chapter 6 is conclusion
part of the thesis. In addition to these, properties of integration points used for
calculation of integrals numerically are tabulated in the appendices.






CHAPTER 2

THEORY

2.1.Introduction

In this chapter, theories used for this study are explained. Theory of solution
algorithms, structural, heat transfer and coupled analysis equations and finite
element method are discussed. Indeed, general equations of each solution method,
structural analysis and heat transfer, and adapting them to finite element method
are explained briefly. Moreover, theory of the coupled analysis procedure derived by
utilizing these heat transfer and structural analysis solution is discussed.

2.2, Structural Analysis

Structural analysis solution is derived from principals of thermodynamics with the
assumption of having uniform and constant temperature distribution over the
body. The strong form of general mechanical equation second order differential
equation is presented in Equation 2-1.

pii = C:u" + pb (2-1)

In Equation 2-1, p, C, b, and u indicate density, constitutive material matrix, body
load and displacement, respectively. This equation can be rewritten in Galerkin
functional form by using integration by parts and Gauss integral theorems
(Equation 2-2).

Gw8u) = [, SupidV — [(Su(C:u)n dS+ [ 8u'C:u' dV — [ SupbdV =0 (2-2)

In Equation 2-2, Ju represent test function and it is zero at boundary. According to
finite element discretization yields the following expressions.

u=Nd Vu=VNd =Bd ii =Nd
8u = N&d V8u = VN&d = B &d 8u = N&d (2-3)

In Equations 2-3, d represents the element displacement vector and N is shape
function. Inserting definitions (Equation 2-3) into the Galerkin functional yields to
the Equation 2-4.

J,8d"NT pNd av — [8d"NT t dS + [, 6d"BTC:Bd dV — [,8d"N" pbdV =0  (2-4)
By rearranging the Equation 2-4, Equation 2-5 is obtained.
Yodement 8d” (f,NT pNddV — [(NTtdS + [,B"C:Bd dV — [ NTpbdV) =0 (2-5)

Equation 2-5 may be stated in terms of internal and external forces (Equation 2-6).



ZZilfment SdT (fint - fext) =0
fine = J,NT pNddV + [, B"C:Bd dV
foxe = [(NTt dS+ [ NT pb dV (2-6)

For arbitrary test function &8d the following equation (Equation 2-7) should be
satisfied.

fint = fext (2_7)

The equation 2-6 implies that internal forces are function of nodal displacements,
d.

fint = fine () (2-8)
Therefore, internal forces may be expressed in matrix form (Equation 2-9).

fine = Mod + K,d

M, = [,NT pN dv

K, = [,BTC:B dV (2-9)
M, and K, stated in Equation 2-9 are element mass and stiffness matrices,

respectively. In Equation 2-9, strain-displacement relation matrix is indicated with
letter B and calculated from Equation 2-10.

ANy ANy,
o W}
_ M . 2N ]
- | - - (2-10)
|2 i |
0z 0z

Equation 2-10 is valid for 3D finite elements; whereas, B matrix of a 2D element
has two rows. In other words, it includes derivative of shape functions with respect
to two axes. In this equation, number of shape functions indicated with letter of m.
Matrix form of general structural analysis equation (Equation 2-2) is presented in
Equation 2-11.

Md+Kd=F (2-11)
In Equation 2-11, M, K, F and d are mass and stiffness matrices and external force
and displacement vectors, respectively. For linear static solution, time derivative of
the displacement is zero. Accordingly, Equation 2-11 is simplified and general
linear static equation (Equation 2-12) is obtained.

Kd=F (2-12)
In the Equation 2-12, since the system is linear, stiffness matrix is computed by

using initial geometry and linear material properties. The external force vector can
be calculated as Equation 2-13.

F = Foaa + Fetement (2-13)
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External force vector can be divided into two parts, nodal loads and element loads
(Equation 2-13). Nodal loads come from input directly. On the other hand, element
loads are calculated by using the element geometry and material properties and
converted to equivalent nodal loads. There are four different types of element loads;
body load, surface load, thermal load, initial strain load presented in Equations 2-
14 to 2-17, respectively.

Fyoay = J,N"bav (2-14)
Fsurface = [ Nourface WaV (2-15)
Fthermal = fV BTC(At a)dV (2-16)
Fytrain = J, BTCéiniriar AV (2-17)
strain 14 initial

In Equations 2-14 to 2-17, W, A, a and ¢ represent uniform surface load,
temperature change, thermal coefficient and strain vector, respectively.

In Equation 2-16, thermal load due to constant temperature change over body is
calculated. Whereas, since in coupled analysis, nodal temperature change values
are obtained from heat transfer solution, modification of calculation of thermal load
is required. In fact, thermal strains and corresponding stresses due to temperature
change at each nodal point are calculated (Equations 2-18 and 2-19). Then, these
nodal stress values contribute to calculation of equivalent nodal load with the rate
of weight value of the corresponding integration points. Numerical integration of
calculation of equivalent load vector is presented in Equation 2-20.

g=[At;xa At;xa At;xa 0 0 0]7 (2-18)
g; = C &; (2_19)
Fequivalent = 2?;1 Blfro-i |]i|Wi (2'20)

In equations 2-18 to 2-20, o0 and w are stress vector and weight value of the
integration point scheme.

Each integral is handled numerically by utilizing Gauss Quadrature rule. Some
integration point schemes cause problematic element behaviors such as shear/
membrane locking or hourglassing modes etc. First, shear/membrane locking
occurs in linear elements if full integration scheme is utilized (Dhondt, 2004). As a
matter of fact, under pure bending load case, there is no shear strain in the body
since no shear force exists. However, if full integration scheme is used, virtual
shear strains occur at gauss points existence of shear strain makes the behavior
stiffer. On the other hand, utilizing reduced integration scheme hinders generation
of shear locking since virtual shear strain does not occur at center of the element.

The other problematic behavior is hourglassing mode called also zero energy mode.
It occurs if displacement modes of element do not create any strain and stress at
the integration points (Dhondt, 2004). Presence of this problematic behavior can be
checked by using the Equation 2-21 (Dhondt, 2004).

nZEM = (nd *n) — (nIP *nS) — nRBM (2-21)
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In Equation 2-21, nZEM, nd, n, nIP, nS, and nRBM represent numbers of zero
energy modes, degree of freedoms, nodes, integration points, strain components
and rigid body modes, respectively. As seen in the equation, this problem can be
handled by increasing the number of integration points.

2.3. Heat Transfer Analysis

The heat transfer occurs due to energy transfer between material bodies because of
their temperature difference (Lewis et al., 2004). There are three different ways of
energy transport:

e Conduction
e Convection
e Radiation

Conduction

Conduction mode occurs by transporting energy from one molecule to another
without any motion of these molecules (Lewis et al., 2004). Therefore, conduction
mode heat transfer occurs between solid bodies.

This mode can be explained by Fourier’s law. The transferred energy per unit time
and per unit area is presented in Equation 2-22.

q=—k (V) (2-22)

In Equation 2-22, g, k, and divergence of 8 represent heat flux (W/m?2), thermal
conductivity (W/mOK) and temperature gradient (°K/m), respectively.

Convection

Convection mode comes into existence by transferring energy from one molecule to
another with free motion of molecules belonging to liquids or gases (Lewis et al.,
2004). Because of this, heat transfer between a solid and fluid can be described by
heat convection. There are two types of convection; forced convection and free
convection. In forced convection, fluid is sent to the solid material with an external
force such as pump or fan; whereas, there is no external contribution in free
convection.

Convection heat transfer can be described by Newton’s law of cooling. The
transferred energy per unit time can be calculated with Equation 2-23.

gn=h(6 — 6a) (2-23)
In Equation 2-23, convection heat transfer coefficient (W/m? ©K) and temperature
difference between body and fluid (°K) are symbolized with h and 6-0,, respectively.
The direction of heat flux stated in Equation 2-23 is perpendicular to the boundary.
Radiation
Lewis et al. states that the radiation occurs in all bodies at all temperature. In fact,

all bodies transfer their energy by emitting radiation (2004). Because of this, it is
not required to contact between bodies to change their temperatures. When the

12



radiation waves emitted by a body hit to surface of another body, some of these
waves are reflected, some part is transmitted, and the remaining part is absorbed
(Lewis et al., 2004).

Stefan - Boltzmann law is related with radiative heat transfer mode. The
transferred energy per unit time is found by Equation 2-24.

gn=06"* (2-24)
In Equation 2-24, 0 and o are surface temperature (°K) and Stefan — Boltzmann
constant (5.669*10-8 W/m?2 ©K%), respectively. Similar to heat convection, the
direction of heat flux is perpendicular to the boundary.

Formulation of Heat Transfer

Total energy in current direction is calculated by multiplying the flux with the
perpendicular area (Equation 2-25).

Q=qA (2-25)

According to conservation of energy law, energy storage in a system is equal to the
difference between the inlet energy and outlet energy. Conservation of energy law is
displayed in Equation 2-26.

dQstored — dQin _ dQout (2—26)
dt dt dt

Q:

-

Qriar

2,

Figure 2-1 Control Volume (Lewis et al., 2004)

In Figure 2-1, control volume of a body and inlet/outlet heat energies are
represented. The output energies can be redefined by substituting Taylor Series
expansion without higher terms (Equation 2-27).

0Qx

Qx +dx = Qx+EAx
Qy +dy = Qy + 52 1y
Qz +dz = Qz + %Az (2-27)
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Moreover, the heat generation and rate of energy storage of control volume are
presented in Equations 2-28 and 2-29, respectively.

Q = G AxAyAz (2-28)

% = pc, aa—(ZAxAyAZ (2-29)
In Equation 2-28, G is rate of internal heat generation per unit volume (W/mb3).
Similarly, in Equation 2-29, p and c, indicate density and specific heat,
respectively. Substituting Equations 2-27, 2-28 and 2-29 into conservation of
energy equation (Equation 2-26) yields the general equation of heat transfer
(Equation 2-30).

0Qz

aQx aQy
Ax 3y Ay P

a6
P Az + G AxAyAz = pAxAyAzc, T (2-30)

Simplified form of Equation 2-30 is presented in Equation 2-31.

Vg +G+qc+q,= pcy 0 (2-31)

In Equation 2-31, g, qc, and gr are conduction, convection and heat radiation
fluxes, respectively. Similar to structural analysis equation, Equation 2-31 can be
solved by utilizing Galerkin functional. Galerkin functional form of the general heat
transfer equation is presented in Equation 2-32.

G(6,560) = — [, 60 Vq.dV + [,56q,dS + [, 66GdV — [, 86pc, 0 dV = 0 (2-32)

In Equation 2-32, 66 is test function which is zero at boundaries and surface flux,
gs includes both heat convection and heat radiation fluxes. By utilizing integration
by parts and Gauss integral theory, rearranged form of Equation 2-32 is obtained
(Equation 2-33).

— (80 )ndS + [, V86q.dV + [, 60q.dS + [, 66pGdV — [,80pcOdV = 0 (2-33)

Finite element discretization of heat transfer equation yields to the following
expressions.

6 =NT V6 =VNT =BT 6 =NT

86 = NST V86 = VN 8T = B 8T 86 = NST (2-34)
In Equations 2-34, T represents the element temperature vector and N is shape
function of the element. Inserting definitions stated above into the Galerkin

functional yields to the Equation 2-35.

J, 8T"B"q.dV — [ ST"NTh(NT — 6 a)dS — [ 8T"N"a(NT)*dS + [, ST"N"pGdV —
J, 8T"Npc, NTdV = 0 (2-35)

Equation 2-35 can be written in matrix form (Equation 2-36).
C,T+KT=F (2-36)

In Equation 2-36, C. and K. are element heat capacitance and thermal stiffness
matrices and they are presented in Equations 2-37 and 2-38, respectively.

14



Co=J,N"pc,N dv (2-37)
K, = [, BTkB dV + [,NThN dS (2-38)

In Equation 2-38, stiffness matrix includes conduction and convection modes first
and second term, respectively. Thermal forces, however, do not depend on element
temperature vector. It is possible to separate element thermal forces into groups
such as heat generation, heat convection, heat radiation and surface flux forces
(Equation 2-39).

fext = fheat generation + fheat convection + fsurface flux

fheat generation = fV NT pG av

Jfheat convection = fs N"h6ads

fheat radiation — fS NTU(NT)4 as

fsurface flux = fSNT qnds (2-39)
In this study, radiation part was ignored; accordingly, there are three different
thermal loadings, heat generation, heat convection, and surface flux (Equation 2-
39). The direction of surface flux loading is inward to the body.
There are two boundary conditions of differential equation of heat transfer physic;
constant nodal temperatures and surface flux. Indeed, constant temperature and
surface flux are essential and Neuman boundary conditions, respectively (Equation
2-40). Surface flux boundary condition can include heat convection, heat radiation,
and external flux.

Essential BC: 0 =0g

Neuman BC: q=qg q=h(0-6,), q=06* qg=0 (2-40)

2.4.Coupled Analysis Methods

The term coupled analysis refers to the combined analysis of multi-physics
problems. There are two ways of coupled solution, strong and weak formulation.

In strong form, different physics analyses are performed at the same time.
Therefore, each effect of these analysis types is included in solution of the problem.
Strong form of coupled analysis equation in matrix form is presented in Equation 2-

41.
Kll KlZ] {Xl} {Fl}
- 2-41
Koo Kool UGS T 1R, 241)
In equation stated above, X: and X2 represent solution vectors of two different
physics. K and F are stiffness matrix and force vector, respectively. Indeed, first and

second rows indicate different types of analysis systems. These two analysis
systems are connected to each other due to Ki2 and K2; matrices.
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On the other hand, in weak form of coupled analysis, different physics analyses are
performed, sequentially. In other words, first one analysis system is performed and
results of it implemented to the other solution system. Then the second analysis is
executed. The matrix form of coupled analysis in weak form is presented in
Equation 2-42.

bl =) 242

Unlike strong form, off diagonal terms are zero matrices in weak form solution. This
makes these analysis systems unbounded. However, force vector of second analysis
system includes not only external load of it but also loads due to solution of first
equation. This loading is the only connection between these equations.

Due to having unbounded stiffness matrix, weak form requires less memory during
execution and implementation of it is easier than the strong form.

16



CHAPTER 3

IMPLEMENTATION

3.1.Introduction

In this chapter, implementation of solution algorithms and finite elements used for
this study are discussed. In fact, linear static analysis algorithm, linear heat
transfer algorithms (steady-state and transient) developed for this study, and
coupled analysis system obtained by executing heat transfer and structural
analysis algorithms sequentially, are explained. In fact, procedure of linear static
and linear steady state algorithms solve linear system of equations. On the other
hand, time integration schemes are used for solution of transient heat transfer
algorithm. Finally, for coupled analysis, either steady-state or transient heat
transfer solution and linear static algorithm are performed, sequentially.

Moreover, several two and three dimensional finite elements were developed. Each
element has two formulation types, linear and quadratic and is suitable for two
different physics problems, structural analysis and heat transfer. In structural
analysis part, elements have routines required for linear static analysis such as
calculation of linear stiffness matrix, internal force and element stress vectors.
Moreover, they have the capability of converting element loads such as body load,
surface load, temperature differences and initial strain to equivalent nodal loads. In
addition to structural analysis part, each element has linear heat transfer analysis
routines such as calculating linear conduction, heat capacitance and various types
of loading such as heat convection, surface flux, and heat generation.

3.2. Structure of Panthalassa

For implementation of the new solution algorithms and finite element models, a
finite element analysis platform, Panthalassa was used (Kur¢ et al., 2012).
Panthalassa is an extensible finite element analysis environment which was
developed by using C++ language with object-oriented data structure (Bahcecioglu
et al., 2012). Panthalassa includes an analysis engine that performs data
input/output, handling of the structural objects, such as finite elements, loading
definitions etc., and general routines such as matrix assembly, solution etc. the
design of the engine allows addition of new solution algorithms, material models or
finite elements externally as plug-in modules.

In this study, owing to extensibility property of the platform, several two and three
dimensional finite element models and linear heat transfer solution algorithms were
developed and added to the platform in the plug-in format. In fact, Panthalassa has
virtual classes such as element, material model and solution algorithm etc. and
these virtual classes let user to develop a new class including same properties with
them and be implemented to the platform in plug-in format (Kurc et al., 2012).
Because of this, heat transfer analysis plug-in having linear steady-state and
transient solution algorithms can reach the model properties such as loading and
boundary conditions from the platform and give the results to it. Similarly, each
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finite element reaches the geometry and material property of the system and gives
the element matrices such as stiffness or stress etc. This process is illustrated in
Figure 3-1.

( Input J
A\ 4
Model L Model )
Finite Element Properties ‘ Engine of Properties ASIoluF:;n
Plug-in e
g Element Ranthalassa Analysis Plug-in
Properties Results ‘
B AN
Ve
| Output )

Figure 3-1 Connections of Plug-ins with Panthalassa Engine

3.3. Solution Algorithms

In this section, structure and implementation to the Panthalassa platform of
solution algorithms, linear static and linear heat transfer (steady-state and
transient) and coupled analysis with these two solutions are discussed.

3.3.1. Linear Static Analysis

In the linear static analysis for structural analysis problems, basically the equation
system presented in Equation 3-1 is formed and solved. For the solution of the
linear system of equations, LU decomposition method stated in MUMPS library is
used (Kurg et al. 2012).

KU=F (3-1)

In Equation 3-1, K, F, and U indicate stiffness matrix, nodal force vector, and nodal
displacement vector, respectively. Nodal force vector includes both external nodal
load and equivalent nodal loads due to element loads. Equivalent nodal loads of
each element are computed by the subroutines of the element plug-ins and
assembled by the subroutines of the solution algorithm plug-in utilizing the service
routines of the Panthalassa Engine.
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Figure 3-2 Flow Chart of Linear Static Analysis Algorithm

In Figure 3-2, flow chart of linear static analysis algorithm is presented. In fact,
element stiffness matrix and equivalent element nodal load vector are computed by
each finite element and they are assembled into to the system stiffness matrix and
system nodal force vector. Such assembly operations are handled by Panthalassa
routines automatically; whereas, the element loads computations are performed at
the algorithms of the plug-ins. As the stiffness matrix and the force vector of the
whole structure are obtained, they are solved by the LU decomposition based solver
routines of Panthalassa and the nodal displacements are computed. By using the
element nodal displacements, element stresses and forces are calculated. As a final
step, nodal displacements and element stresses are written to the output file for
post processing.

3.3.2. Linear Heat Transfer Analysis

The basic equation for the general heat transfer problem in matrix form is
presented in Equation 3-2.

CO + K,0 = F.(t) (3-2)
In the above equation, heat capacitance matrix, thermal stiffness matrix, thermal

load vector, and nodal temperature vector are represented by letters C, K, F(t), and
0, respectively.
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The general heat transfer equation can be solved in two ways. In the first approach,
called steady-state solution, time derivatives of temperatures are ignored. This way
the solution of the equation is significantly simplified. This solution way gives the
final equilibrium condition of the structure under given loads. Therefore, it is not
possible to obtain time required for equilibrium condition like linear static analysis.
Since the solution performs only once, duration of solution is not significant. On
the other hand, linear transient solution uses time integration scheme for solution.
Since the structure is solved for each time step, it consumes more time than the
steady state way. However, transient solution calculates the behavior of the
structure even if equilibrium condition has not been satisfied yet. Since this
solution needs heat capacitance matrix, C and essential boundary conditions, more
memory is required.

Linear Steady-State Analysis

Steady-state analysis system assumes no change of temperature with respect to
time. Therefore, Equation 3-2 is simplified and general steady-state heat transfer
analysis equation is obtained (Equation 3-3). In the linear steady-state analysis
approach, K; does not change with respect to temperature values.

K.0 = F, (3-3)

In the computational point of view, steady-state heat transfer analysis equation is
similar to the linear static analysis equation (Equation 3-1). On the other hand,
forming the thermal stiffness matrix and thermal load vector is quite different than
the linear static analysis. First of all, heat stiffness matrix is composed of
conduction and convection stiffness matrices. Conduction stiffness matrix is
calculated by using material and geometric properties of the element; whereas, heat
convection loading on the element influences the convection stiffness matrix in
addition to the material and geometric properties of the element. Heat convection
surface load also contributes to nodal load vector with ambient temperature. Flow
chart of matrix assembly of heat transfer analysis algorithm is shown in Figure 3-3.

-

Geometry of Material of Element | Surface Load ( Ambient
Element (Heat Convection) \_ Temperature

A 4 \ 4
Conduction Stiffness Convection Stiffness
Matrix Matrix
\ 4 \ 4
Heat Stiffness Equivalent
Matrix Nodal Load Vector

Figure 3-3 Flow Chart of Matrix Assembly of Heat Transfer Solution Algorithm
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Three different boundary conditions, constant temperature, heat convection, and
surface flux can be described for heat transfer problems. Constant temperature
condition is defined at nodal points and taken into account as restraints. Whereas,
heat convection and surface flux conditions need boundary definition. For
Panthalassa, boundary of an element is defined by giving the element nodal ids of
that boundary.

Element loads of heat transfer problems, heat convection, surface flux, and heat
generation, are handled by element plug-ins and sent to the algorithm plug-in as
element equivalent nodal load vector. Unlike linear static solution, system load
vector is composed of only element loads since there is no nodal load definition for
this type of problems.

In other words, the general process of the algorithm is similar with the one of linear
static analysis except the assembly of the system matrices. Flow chart of linear
steady-state heat transfer solution algorithm is displayed in Figure 3-4.

Finite Element

\ 4 \ 4

Element Thermal Stiffness
Matrix
(Conduction + Convection)

Element Thermal Load Vector
(Convection + Surface Flux + Heat Generation)

Assembly

System Thermal System Thermal
Stiffness Matrix Load Vector

>» Solution <

\ 4

{ Output )

- /

Figure 3-4 Flow Chart of Linear Steady-State Analysis Algorithm

As seen in Figure 3-4, general solution of the steady-state heat transfer algorithm is
very similar to the one in linear static analysis algorithm. In fact, thermal stiffness
matrix and nodal load vector of elements are obtained from finite element plug-ins
and they are assembled into the system stiffness matrix and system load vector,
respectively. These system matrix and system vector are then solved by using LU
decomposition method and as a result, nodal temperatures and element fluxes are
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obtained. Nevertheless, the only difference from linear static analysis algorithm is
the formation of system thermal stiffness matrix and thermal load vector. In linear
static analysis algorithm, loadings whether element or nodal has contribution to
the nodal load vector, only. Whereas nodal load vector includes only element
loadings.

Linear Transient Analysis

The linear transient analysis is performed by utilizing two different time integration
approaches; implicit and explicit Euler. As a first step, Taylor Series expansion of
the general heat transfer equation (Equation 3-2) was calculated as shown in
Equation 3-4.

f6) = F@+ '@ - a) + 72 (x —a)2 4+ = 5, L@ (x — ay 3-4)

2 i!

In Equation 3-4, ignoring the higher order terms yields to Equation 3-5.

fG) =f(a)+f'(a@) (x —a) (3-5)

By adapting Equation 3-5 to the general equation of heat transfer, Equation 3-6 is
obtained.

{6 = (831 + {(1 — By + B(6,)3AL (3-6)

In Equation 3-6, 6, n, and At indicate nodal temperature vector, number of step,
and time increment, respectively. Moreover, 3 is the coefficient used for selecting
the solution method. In fact, the main point is to decide which slope, 6,_, or 6, is
used. In here, different integration schemes having different slope definition such
as forward, backward or central difference can be taken into account by changing
B. In fact, for backward and forward Euler schemes, } is taken as 1 and O,
respectively. Backward integration scheme use the time derivation of temperatures
at current time step. Since, the slope and temperatures at current time step (n) are
not known, the method is called implicit. Whereas, forward integration scheme is
called explicit since the slope in previous time step (n-1) is required. Therefore, only
the temperature values of current time step is unknown. In addition to this, it is
possible to use any other integration scheme by inserting appropriate coefficient, 3.

Substituting Equation 3-6 into Equation 3-2 gives the following equation.
0, = (C + BKAY) " [FAt + CO,_, + (B — 1)KAL] (3-7)

In Equation 3-7, F is total nodal force vector and calculated as stated in Equation
3-8.

F= - B)Fn—l + BE, (3-8)

In linear transient heat transfer analysis algorithm, Equation 3-7 is solved. Flow
chart of linear transient analysis algorithm is presented in Figure 3-5. In addition
to thermal stiffness and thermal load vector, heat capacitance matrix, C is also
calculated at the element level and assembled to the system matrices. These system
matrices and temperature vector in previous time step (n-1) are solved by using
implicit or explicit Euler integration scheme and temperature vector of the current
time step (n) is obtained. Temperature vector of previous time step is updated and
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solution process repeats until the solution time is equal to end time. Nodal
temperature vectors in any step are saved to the output file of the model.

Model

|

Finite Element

v l v

\ 4

Element Heat Stiffness Element Change of Element Heat Load Vector
Matrix Energy Storage (Heat Convection + Surface Flux + Heat
(Conduction + Convection) Matrix Generation)
Y
IF
n=1 4
Assembly

System Change of
Energy Storage
Matrix

System Heat
Stiffness Matrix

System Heat Load
Vector

A

\ 4

A 4

Solution <

v

Temperatures “/
(n+1) 1al Output

IF

N - N N
Updating Variables f€—————YES ime < End tim. N ' g Finalize

Y
. >
Previous -

»

Temperatures

n: Time step

Figure 3-5 Flow Chart of Linear Transient Heat Transfer Analysis Algorithm

As stated above, implicit and explicit time integration schemes use the same
equation (Equation 3-7) with different B coefficients. Taking 3 as zero (explicit
scheme) and lumped heat capacitance matrix, C reduces the computational cost of
inverse process. Whereas, even if lumped heat capacitance matrix, C is used,
summation with thermal stiffness matrix damages the lumped property. This
causes higher computational cost.

3.3.3. Coupled Analysis

The term coupled analysis refers to the combined analysis of multi-physics
problems. The combination of different physics equations can be done by utilizing
either strong or weak forms of the governing differential equations. Matrix form of
weak form of coupled analysis is shown in Equation 3-9 (ANSYS, 2009).
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o k0= (3-9)

In Equation 3-9, first and second row indicate heat transfer and structural analysis
solution equations, respectively. Structural force vector, F, includes both
mechanical force and thermal force coming from heat transfer solution. Thus, it is
required to solve heat transfer and structural analysis equations, sequentially.

In the weak form, first the analysis of a single physics problem, in this case heat
transfer analysis, is performed and then the analysis of the second physics problem
(linear static analysis) is conducted utilizing the output of the first analysis.

In this implementation, first of all, transient heat transfer analysis is performed
and nodal temperature values for each time step are calculated. Then, subtracting
output temperature values from initial ones, temperature change values are
obtained for static analysis. Then, these values are inserted the linear static
analysis algorithm; accordingly, nodal displacements and element stresses are
obtained and saved to output file of the model. This procedure repeats until the
solution time is equal to end time. Flow chart of coupled analysis implementation
with transient solution is presented in Figure 3-6.

1 Y
Linear Heat
Transfer Nodal Temperature Linear Static Nodal
> wl
Analysis Temperatures Yes Change Vlues > Analysis Displacements and
Plug-in Element Stresses

A
No
/\ v
i 4 A
< <
Update Parameters |« Y W‘ Output )

No

/4*;,

A 4
A

Finalize |

Figure 3-6 Flow Chart of Coupled Analysis Algorithms with Transient Solution in
Weak Form

As heat transfer analysis, it is possible to use linear steady-state solution
algorithm, also. Since this algorithm does not include iterative solution,
implementation is quite simpler than the transient one. In fact, nodal temperatures
and temperature change values are calculated once and then first solution process
is finalized. The second process is same with the transient solution. This
implementation process of steady-state solution is presented in Figure 3-7.
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Figure 3-7 Flow Chart of Coupled Analysis Algorithm with Steady-State Solution in
Weak Form

Linear static analysis algorithm sends nodal temperature change values to the
finite element plug-in and equivalent nodal loads go back to the analysis plug-in. In
fact, in finite element plug-ins, thermal strains due to nodal temperature change
are calculated and these strains are converted to equivalent nodal force. These
forces are sent back to the solution algorithm (linear static analysis algorithm) and
assembled into the system nodal load vector. Flow chart of the process stated above
is presented in Figure 3-8.

( Nodal

\ Temperatures /

4
1 Linear Static 2
Finite Element | | Analysis - .
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A
) 4
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Element

Load
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A\ 4
Calculating
Equivalent Nodal
Force due to Nodal
Temperatures

Figure 3-8 Flow Chart of Converting Nodal Temperatures to Equivalent Nodal Force
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3.3.4. Parallel Solution Algorithms

Panthalassa has ability to execute parallel solution algorithms. Accordingly, parallel
linear static and linear heat transfer analysis algorithms (steady-state and

transient) were developed.

Linear static and linear steady-state analyses were parallelized by utilizing MUMPS
(Multifrontal Massively Parallel Sparse Direct Solver) library (Amestoy et al., 2000).
Indeed, in this study, solution of sparse matrix was performed by utilizing MUMPS.
In these algorithms, sparse stiffness matrix is obtained at each core. MUMPS
divides the sparse matrix and distributes each sub-matrix to all cores. Then the
linear system is solved by MUMPS and the solution vector is sent to the main core.
The flow chart of linear steady-state heat transfer analysis algorithm is presented in
Figure 3-9. The procedure is the same for linear static analysis algorithm.

f/ Model

A 4

Finite Element

\ 4 \ 4

Element Thermal Load Vector
(Heat Convection + Surface Flux + Heat
Generation)

Element Thermal Stiffness
Matrix
(Conduction + Convection)

Assembly
A 4 A 4

SystemThermal System Thermal |
Stiffness Matrix Load Vector [~

A 4

Linear Solution of Equations
A 4
Temperatures

/,7‘77,
( Output

Figure 3-9 Flow Chart of Parallel Steady-State Heat Transfer Algorithm
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For parallelization of linear transient heat transfer analysis algorithm, explicit Euler
scheme was utilized assembly of the system equations and solution is performed at
the element level. Accordingly, it is very suitable for parallelization. Indeed, in
explicit scheme, heat capacitance matrix was taken as lumped; accordingly, taking
inverse of lumped matrix does not cause significant computational cost. In this
algorithm, thermal stiffness matrix is divided into sub-matrices and distributed to
each core. Since each core knows the load vector and heat capacitance matrix, they
solve the each substructure. Then they transfer the solution to each other;
accordingly, each core has the total solution vector of the system. Each core
updates the temperature values and repeats this procedure up to end time is
reached. The flow chart of parallel transient heat transfer analysis algorithm is
presented in Figure 3-10.
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Figure 3-10 Flow Chart of Parallel Transient Heat Transfer Analysis Algorithm
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3.4.Finite Elements

In this section, details of the two and three dimensional finite elements developed
for this study are discussed. Linear and quadratic formulations of quadrilateral and
triangular membrane elements were implemented as two dimensional elements.
Similarly, linear and quadratic forms of hexahedral, wedge, and tetrahedral
elements were implemented as three dimensional elements.

3.4.1. Geometrical Properties of Finite Elements

Description and general properties of 2D and 3D element are presented in Tables 3-
1 and 3-2, respectively. In element geometry columns of the table, isoparametric
and Cartesian geometry of the element are presented, respectively. Similarly,
isoparametric boundary geometry of that element is listed in boundary geometry
section. Moreover, shape functions of each finite element are presented in Table 3-
3.
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Table 3-1 Properties of 2D Finite Elements

Finite Element Number Degrees of Freedoms Element Geometry Boundary Geometry
Element  Description  of Nodes
2D Mechanical: Ux, Uy
Quad4 Linear
Quadrilateral 4 Heat Transfer: 6
2D Mechanical: Ux, Uy
Quad8 Quadratic !
Quadrilateral 8 Heat Transfer: 0
2D Mechanical: Ux, Uy
TriM3 Linear
Triangular 3 Heat Transfer: 0
Membrane
2D Mechanical: Ux, Uy
TriM6 Quadratic -
Triangular 6 Heat Transfer: 6

Membrane




o€

Table 3-2 Properties of 3D Finite Elements

Finite Element Number Degrees of Freedoms Element Geometry Boundary Geometry
Element Description of Nodes
3D Mechanical: Ux, Uy, Uz
Brick8 Linear 8
Hexahedral Heat Transfer: 0
3D Mechanical: Ux, Uy, Uz =
Brick20 Quadratic 20 "
Hexahedral Heat Transfer: 0 -
3D Mechanical: Ux, Uy, Uz e "
Wedgeb Linear 6 ™~ B
Wedge Heat Transfer: 0
3D Mechanical: Ux, Uy, Uz — -
Wedgel5  Quadratic 15 f- ¢
Wedge Heat Transfer: 6 )
3D Mechanical: Ux, Uy, Uz N
Tet4 Linear 4 . -,
Tetrahedron Heat Transfer: 0 -
3D Mechanical: Ux, Uy, Uz N P
Tet10 Quadratic 10 il S < LN
Tetrahedron Heat Transfer: 0 ~L— ~N—




Table 3-3 Shape Functions for Finite Elements

Finite Shape Functions Limitations
Element
Line2 12§ 14§ -1<é<1
27 2
Line3 @,@,1_52 -1<é<1
Quad4 1= a-n @+ A-n) A+§ A+n) (1-§) (1+n) -1<é<1
4 ! 4 ’ 4 ! 4 1<n<1

(1-§)a-m-[(1- é’)(l n%)+(1-§%)(1- n)]

@+ a-n-[(1- 52)(1 m++8)(1-n2 ]

Quads8 A+ +m)- [(1+€)(1 n?)+(1- 52)(1+n)] Sl<E<
-l<p<

—

—

a-Ha+m-[(1- 52)(1+n)+(1 Ha-1%)]

(1-82)(a-n) (1+$)(1—n2) (1-83)(1+n) 1-OA-1%

4 ’ 4 ’ 4 ’ 4
TriM3 Enl—-¢-n 0<¢<1
O<n<1
TriM6 §RE-Dn2n-D,A-¢—m2A-¢-m-1) 0<¢<1
4n,4an(1—-¢—n),4(A—-&—n) O<n<1
1= A-m) (1=9) (148 A-n) (1=9) (1+&) (147) 1=9) (1= (1+n) (1= 1<éE<1
. 8 ’ 8 ’ 8 ’ 8
Brick8 (1-9) (1= (149) (1+§) (A=) (1+9) A+ A+ (1+9) (-Ha+pa+g — ~L <7 <1
3 ) 8 B 8 ’ 8 —]_ < g < 1
-1+ a-n) (1 ~9) @E4n+S) (1-6) (=) (1 -5) (2=§+7+9)
(-1-9) (1+1) (1 D (fn+§) (1+6) (14m) (1 ~5) (2+£-1+9)
(-1+§) (1-n) (1+¢) @+E4n=9) (-1-5) (=) <1+<) @-E+1-9)
(-1-8) 1+n) (1+<) (2=§=1=9) (-148) (4n) (1+c) 2+£E-7-9) -1<&<1
Brick20 -l<p<1
2 (1-¢) (1+§) (1-n) (1- c> 2 (148) (1— n) () =9 2t-9) (1+§’) (147) 1-9)
-1 < g <1
2 (1-§) (o) (L4m) (1= 9 20-9 (14§ (1) (+9) 2G+p) - n) (147) (149)
8 8
2(1-8) 1+ (1+7) (1+<> 2 (1-§) (1—n) (1+7) (1+<> 2(1-9) (1- n) (1-9) (1+9)
8 8
2G4 Qo) A=) (49) 2(+) (41) G=9) (149) 2G-9) (L) (1-9) (149)
8 8 8
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Table 3-3 (Continued)

(1-¢-n) (1-6) £(1-S) n(1-G) -1<é<1
Wedge6 (1-E-m) (149 £(1+9) 1 (149 -l<n<1
2 o2 7 2 0<¢G<1

(=148+n) 1-S) (2§+2n+G) §(1-S) (2§-6-2)

2 ’ 2
n (1-6) (2n-G-2) (-1+§+n) (1+S) (2§+27-C)

2 2 -1<é<1

Wedge15 £(149) (225+<—z>_n<1+<> (22n+§—2) Qe<g<1

20(1-¢-n(1-9,26n(1=9) 0<G<1

2n(1-¢§-n(1-6,2§A-&—n (1 +9)
26n(1+6),2n(1-&—n) (1 +G)
A-¢-—n@A-63¢01-6),n(1-6%

0<é&<1

Tet4 1-¢§-n1-G¢,n6 O0<n<1

0<G<1

CA-¢-n-9-1DA-¢-1-6),§2E-1),n(2n - 1) 0<¢<1
Tet10 C26—-1),4(1—-¢—n—0),4n,4m(1—-&—n—-0) O<np<1
4G(1 - & —n — ), 446, 4nS 0<G<1

As seen in Table 3-1, Quad4 and Quad8, TriM3 and TriM6 are linear and quadratic
form of 2D quadrilateral and triangular elements, respectively. These 2D elements
have only in-plane (membrane) behavior. Triangular elements are better suited for
modeling the irregularly shaped domains.

In addition to 2D elements, Brick8 and Brick20, Wedge6 and Wedgel5, and Tet4
and TetlO are linear and quadratic forms of hexahedral, wedge, and tetrahedral
elements, respectively (Table 3-2). They can be used for modeling 3D solids.

Each element shown in Tables 3-1 and 3-2 has both mechanical and heat transfer
degrees of freedom. 2D and 3D elements have two and three mechanical degrees of
freedom for each node, respectively. For the heat transfer analysis part, whereas
each element has only one degree of freedom.

Each element can calculate linear stiffness matrix, internal force and element
stress vectors. In fact, element stresses are calculated at nodal points. Moreover,
they can convert element loads such as body loads, surface loads, temperature
change loads, and initial strains to equivalent nodal load vector. For computing
equivalent nodal loads due to temperature change, two different methods were
developed for each element. First method assumes constant temperature difference
throughout the element and computes the nodal loads accordingly. During the
coupled analysis, however, nodal temperatures are obtained at the end of heat
transfer analysis. In other words, each element can have different temperature
values at its nodal points. Because of this, second method was developed to
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compute nodal loads from different nodal temperatures. In fact, nodal temperature
strains and corresponding stress values are calculated from nodal temperature
values (Equations 3-10 and 3-11). Then, these nodal stress values contribute to
calculation of equivalent nodal load with the rate of weight value of the
corresponding integration points (Equation 3-12).

g =[At;xa At;xa At;xa 0 0 0]F (3-10)
o; = c & (3—1 1)
Fequivalent = Z?:l Blfro-i Uilwi (3_12)

In Equations 3-10 to 3-12, &, At, o;, B, J;, and w indicate strain, temperature
change, stress, strain field, and Jacobian of it node, respectively. Similarly,
thermal expansion coefficient, constitutive material matrix and number of node are
represented by letters a, C, and n, respectively.

Each element can also calculate heat conduction and heat convection stiffness
matrices and heat generation, heat convection, and surface flux load vectors. Heat
generation is a kind of body loading; heat convection and surface flux loading
conditions are surface loadings. Heat convection stiffness matrix is obtained from
heat convection loading condition as stated in Solution Algorithm part.

In Table 3-3, shape functions for each geometry used for body and surface
definition of finite elements are listed. As seen in Tables 3-1 and 3-2, volume
elements have either triangular or quadrilateral faces and surface elements have
linear edges. 2D surface elements can have linear or quadratic edges depending on
the element’s number of nodes. Likewise, linear and quadratic 3D solid elements
have linear and quadratic quadrilateral/triangular faces. Whenever an edge loading
in 2D elements and surface loading in 3D elements are converted into nodal values,
the corresponding edge or face elements’ shape functions are utilized. Thus,
mechanical stiffness, element stresses, internal forces heat conduction, heat
convection, heat generation, heat capacitance are obtained from body integration.
On the other hand, by taking boundary integrals, mechanical surface loads such as
distributed load over surface of a body, and surface loads of heat transfer problems
such as surface flux and heat convection are converted to equivalent nodal load
vector.

3.4.2. Numerical Integration

Body and boundary integrals are evaluated numerically by using Gauss
Quadrature method. According to Gauss Quadrature method, function is evaluated
at certain integration points and multiplied with the corresponding weight value.
Then, by summing the results obtained from each integration point, integral over
the domain is obtained. The general equation for Gauss Quadrature Rule is
presented in Equation 3-13.

I=fﬂfdﬂ= fVGdV= ~, WigGi (3-13)
In Equation 3-13, n, W, and G represent number of integration points, weight of
integration points, function defined in the mapped domain. Since the numerical

integrations are valid for corresponding domains, it is required to map the function,
f to the integration domain.
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For each finite element, the choice of the location and number of integration points
significantly affect the behavior and accuracy of the results. Due to problematic
element behavior mechanisms such as shear locking or hourglassing, and accuracy
condition of Gauss Quadrature rule, appropriate number of integration points with
the domain should be chosen.

Quadrilateral membrane elements are integrated numerically by applying
Multidimensional Gauss Quadrature method, called Gaussian product rule (Cook
et al. 1989). For linear quadrilateral element, deciding the number of integration
points for computation is a problematic issue. 2x2 full integration causes shear
locking; whereas, single point integration results in zero energy modes
(hourglassing). In this study, for linear elements, full integration scheme was
selected (four integration points) for integration of both structural analysis and heat
transfer part. On the other hand, for structural calculations of quadratic elements,
nine integration points (full integration) were used. This way, the zero energy modes
in quadratic elements were eliminated. Four integration points are however
sufficient for heat transfer calculations. In order to improve the conditions of heat
capacitance matrix, full integration was applied for both linear and quadratic
elements. Properties of integration point schemes of quadrilateral are listed in Table
A-2.

For linear and quadratic triangular elements, reduced integration (one and three
integration points, respectively) was utilized. Such integration approach for
stiffness calculation does not cause any zero energy (hourglassing) modes in
triangular elements. Moreover, since the element has constant stress ditribution,
shear locking phenomena occurs for linear triangular element. Using reduced
integration for calculation of heat capacitance matrix, [C] however causes
instability. Accordingly, six integration points were utilized for [C] matrix for each
type of triangular element. Details of integration point schemes of linear and
quadratic triangular elements are presented in Table A-3.

Full integration scheme (eight integration points) hindering zero energy modes were
utilized for both structural and heat transfer matrices of hexahedral elements.
However, twenty-seven integration points were preferred to improve conditions of
heat capacitance matrix [C]. For quadratic element, all numerical integrations were
calculated with twenty-seven points (full integration). Properties of integration point
schemes for hexahedrons are listed in Table A-4.

Wedge elements are special 3D solid elements that have both triangular and
rectangular faces. Because of this reason, distribution of integration points is quite
different than other elements. For the triangular top and bottom faces integration
points defined for triangular elements were used. On the other hand, along the
depth of the element, integration points were distributed similar to quadrilateral
elements. Two and nine integration points are utilized for the linear and quadratic
wedge elements, respectively. Such number of integration points hinders zero
energy mode. In order to improve conditions of heat capacitance matrix [C], eight-
teen integration points advised by Dhondt (2004) are preferred. Details of
integration point scheme of Wedge elements are listed in Table A-5.

For linear and quadratic tetrahedral elements, one and four integration points are
utilized, respectively. They are the minimum number of integration points that do
not create any hourglassing mode. Similar to the other solid elements, fifteen
integration points suggested by Dhondt (2004) are utilized in order to improve the
condition of heat capacitance matrix, [C]. Properties of integration points of
tetrahedrons are illustrated in Table A-6.
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The behavior of the boundaries of linear and quadratic forms of 2D quadrilateral
and triangular elements are described by the linear and quadratic form of line
elements, respectively. For taking line integrals, Gauss Quadrature method is used.
In order to represent actual behavior of boundaries better, two and three
integration points (full integration) are preferred for linear and quadratic line
elements, respectively. For calculating the surface loads of heat transfer analysis,
using more integration points provides higher accuracy. Details of integration point
schemes of line element are shown in Table A-1.

In a similar manner, linear and quadratic forms of Quad and TriM elements were
used to describe the behavior of the faces of 3D elements. Therefore, same
integration schemes for Quad and Trim elements stated above were taken into
account for integration of boundaries of 3D elements. In other words, four and nine
integration points are utilized for linear and quadratic quadrilateral elements,
respectively. Similarly, one and three integration points are sufficient for linear and
quadratic triangular faces, respectively. Properties of the integration point scheme
of a rectangle and a triangle are tabulated in Table A-2 and Table A-3, respectively.
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CHAPTER 4

VERIFICATION PROBLEMS

4.1.Introduction

In this chapter, verifications of solution algorithms and finite elements stated in
previous chapters are discussed. Two different types of engineering problems, linear
structural analysis and linear heat transfer being part of coupled analysis system
were solved.

Several structural analysis problems, proposed by MacNeal and Harder (1985) for
finite element formulation verification were solved by using all the implemented
elements. The test problems can be considered in two parts, problems with static
loads and with temperature loads. This way the element performances under direct
and indirect loading were examined.

Likewise, in order to verify the implemented heat transfer solution algorithms and
finite elements for heat transfer, two different plate problems suggested by Reddy
and Gartling (2010), square and rectangular plates were analyzed. While square
plate problem only focuses on heat conduction and heat generation routines, the
rectangular plate problem needs all routines heat conduction, heat convection, heat
generation, surface flux of heat transfer part of finite elements.

4.2, Structural Analysis Verification

4.2.1. Linear Static Problems

This part includes the structural performance of elements, existing finite element
library and linear solution algorithms under static loads. In order to verify finite
elements for structural problems and corresponding solution algorithms, first
straight cantilever beam problem recommended by MacNeal and Harder (1985) was
solved. This beam problem was analyzed by using both two and three dimensional
finite elements.

2D Straight Beam with Static Loads
Straight cantilever beams modeled with 2D quadrilateral and triangular elements
suggested by MacNeal and Harder (1985) are presented in Figure 4-1 and Figure 4-

2, respectively and the geometrical and material properties are tabulated in Table
4-1.
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Figure 4-1 Straight Beams with Quadrilateral Elements. (A) Rectangular Meshed
Beam. (B) Trapezoidal Meshed Beam.
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Figure 4-2 Straight Beams with Triangular Elements. (D) With 12 Triangular
Elements. (E) With 24 Triangular Elements

Table 4-1 Straight Beam with Static Loads — Model Properties

Geometric Properties Material Properties Section Properties
. Modulus of . .
. 2 .
Length: 61in Elasticity: 1,000,000 1b / in Depth: 0.11in
Height: 0.21in Poisson's Ratio: 0.3

Shear Modulus: 3,846,154 1b / in?

To display the performances of the finite elements under different loading
conditions, the load cases listed in Table 4-2 were applied to the beam. Since 2D
elements in the finite element library include only in-plane (membrane) action, out
of plane loading cases were eliminated for analyses of these elements.

The beam was analyzed under different behavior modes and the accuracy of each

element was investigated. The applied loadings and corresponding behavior modes
are presented in Table 4-2. Currently, only membrane (in-plane) action was
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considered. Two types of quadrilateral and two types of triangular elements were
examined.

Table 4-2 Straight Beam with Static Loads — Load Cases

Loading Behavior Mode Load
1 Axial Extension Fx = 0.51b at each joints at the free end
2 Shear and Bending F, = 0.5 Ib at each joints at the free end

Fx = -5 1b at bottom joint of free end

3 Pure Bending F, = 5 Ib at top joint of free end

Displacements at the free end and stresses at the fixed-end of the beam modeled
with linear and quadratic quadrilateral elements (Quad4 and Quad8) and linear
and quadratic triangular elements (TriM3 and TriM6) are compared with the
analytical results. The results cover the beams modeled with distorted or uniform
elements (Figure 4-1, model A,B,C) for every quadrilateral elements. Tables 4-3 and
4-5 present the displacement values for both quadrilateral and triangular elements,
respectively. Whereas the stress results are shown in Tables 4-4 and 4-6.

Table 4-3 Straight Beam with Quad Elements (Quad4 & Quad8) — Displacements at
the Free-End

Loading Model Output Quad4 Quad8 Analytical
Condition Parameter (in) (in) (in)
Axial A 3.00*10-5 3.02*10-5
o B Ux 3.00¥105  3.02*10- 3.00%10-5
Extension
C 3.00105 3.02*10-5
Sh d A 1.01*10-2 1.07*%10-!
car an B W 2.90*10  1.06*10-! 1.08%10-2
Bending
C 3.60%10-3 8.06*10-2
A 8.40*%10-5 9.00*%104
Pure ) ) i
. B Ux 2.06*10-5 8.93*104 9.00*%104
Bending
C 2.82*10-5 6.22*%104

According to the values stated in Table 4-3, linear quadrilateral element has slightly
better performance than the quadratic one under axial loading cases. Since the
axial deformation behavior is linear (Equation 4-1), shape functions of linear
element coincides better with real behavior. On the other hand, for shear and
bending and pure bending cases, results of quadratic element are closer to the
analytical results than the ones of linear element. In fact, deformed shape under
shear and bending and moment load cases has higher order function (Equation 4-
2). Because of this reason, quadratic shape functions represent the deformed shape
better than the linear ones.

§=[—dx (4-1)
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§ = [~x*dx (4-2)

In general, using elements with distorted shapes reduces the accuracy of the
results. In order to show the performances of 2D linear and quadratic quadrilateral
elements with distortions, same cantilever beam was modeled by using trapezoidal
and parallelogram shaped elements (Figure 4-1 (B) and (C)). When the corner
angles diverge from 90°, the accuracy of the mapping with Jacobian matrix
diminishes (Cook et al, 1989). According to the results stated in Table 4-3, for cases
B and C under axial loading, models with trapezoidal and parallelogram elements
display same accuracy with the analytical results for the linear element. The reason
is again the function of axially deformed shape of beam is same order with the
shape functions of linear element. Nevertheless, similar to models without any
distortion, quadratic element is able to mimic the deformation function under
shear-bending and pure bending cases even if it is distorted. The elements with
parallelogram perform better than the trapezoidal one.

Table 4-4 Straight Beam with Quad Elements (Quad4 & Quad8) — Stresses at the
Fixed-End

Output Quad4 Quad8 Analytical

Behavior Mode  Model  p ) hcter (Ib/in?) (Ib/in?)  (Ib/in?)

A 5.00¥10! 5.38*10!

Axial Extension B Ox 5.00¥10! 4.99*10! 5.00*10!
C 5.00¥10! 5.02*10!
A 8.46*102 9.00*103

Egzzrinznd B Ox 2.19%102 8.44*10% 9.00%103
C 6.35%102 9.48*103
A 1.54*102 1.50*103

Pure Bending B Ox 3.59*10! 1.38*103 1.50*103
C 1.23*102 1.60*103

Stresses depend on strains which are the first derivatives of the displacements.
Thus, the error in stresses is usually much larger than the error in displacements
since they depend on the rate of change in displacements. According to the results
presented in Table 4-4, the stress outputs of the quadratic element are much better
than the linear ones. When compared with the analytical results, the error in the
stress values of linear elements is unacceptable for both bending problems.
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Table 4-5 Straight Beam with Triangular Elements (TriM3 & TriMo6) —
Displacements at the Free-End

Behavior Model Output TriM3 TriM6 Analytical
Mode Parameter (in) (in) (in)
Axial D 3.00*105 3.03*10-5 15

Extension E e 3.00*105 3.03*10-5 3.00710
D 2.48*102 1.07*10-!
Shear and u, 1.08*101
Bending E 4.98*102 1.08*10-!
Pure D 2.08*10% 9.00*10%
. x 9.00*10#
Bending E v 4.17¥10% 9.00*104

In Table 4-5, end displacements of the cantilever beam displayed in Figure 4-2 (D,
E) under each loading conditions stated in Table 4-2 are tabulated and compared
with analytical results. Similar to rectangular membrane elements, under axial
loading case, performances of linear triangular element are slightly better than the
quadratic one; on the other hand, under shear-bending and pure bending load
cases, quadratic triangular membrane element has higher accuracy.

In fact, since axial deformation function is linear, increasing mesh does not provide
higher accuracy for both linear and quadratic elements. Whereas under shear-
bending and pure bending conditions, since the displacement function of the beam
is a third order polynomial, quadratic element fits better than the linear one.
Hence, increasing mesh density does not affect the accuracy of the problem for
quadratic element. On the other hand, in order to obtain higher accuracy, mesh
should be increased for linear elements. In other words, it is possible to get the
performance same as with the one of quadratic element by using very fine meshed
linear elements.

When performances of quadrilateral and triangular elements are compared, it can
be seen that in general, quadrilateral elements have better performance. In fact,
due to the fact that triangular elements have high stiffness values at mutual nodes,
they behave stiffer than quadrilateral elements.

Table 4-6 Straight Beam with Triangular Elements (TriM3 & TriM6) — Stresses at
the Fixed-End

Behavior Model Output TriM3 TriM6  Analytical
Mode Parameter (lb/in%) (lb/in2?) (Ib/in2)

i D 5.00*10! 5.30*%101

Axial - Ox 5.00*10!
Extension E 5.00*10! 5.00*10!?
D 2.57*102 8.36*108

Sheal.* and o 9.00*103
Bending E 4.76*102 8.41*103
D 4.72*101 1.50*103

Pure Ox 1.50%103
Bending E 8.65*10! 1.50*103
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In Table 4-6, normal stresses along x direction at fixed-end of the beam are
tabulated. According to the results of Table 4-6, similar to the displacement
behavior of linear elements, using more elements fits better to the actual behavior
under shear-bending and pure bending cases. On the other hand, although
increasing mesh does not affect the displacement performance of quadratic
element, it provides better accuracy for stresses since the error in stress calculation
is larger than the one in displacement.

3D Straight Beam with Static Loads
Same cantilever beam stated in previous part of this chapter was modeled with

each three dimensional element in finite element library (Figure 4-3 and Figure 4-
4). Properties of the beams are presented in Table 4-7.

(A) (8) (C)

Figure 4-3 Straight Beams with Hexahedral Elements. (A) Rectangular Prismatic
Element. (B) Trapezoidal Prismatic Element. (C) Parallelogram Prismatic Element

(D) (E)

Figure 4-4 Straight Beams with Wedge Elements. (D) Beam with Linear Wedge
Elements. (E) Beam with Quadratic Wedge Elements

Table 4-7 Straight Beam with Static Loads — Model Properties

Geometric Properties Material Properties
Length: 6in Modulus of Elasticity: 1,000,000 lb / in?
Height: 0.2 in Poisson's Ratio: 0.3
Width: 0.1in Shear Modulus: 3,846,154 1b / in2
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The cantilever beam was analyzed under different behavior modes and the accuracy
of each 3D finite element was investigated. The applied loadings and the
corresponding behavior modes are presented in Table 4-8.

Table 4-8 Straight Beam with Static Loads — Load Cases

Loading Behavior Mode Load
1 Axial Extension Fx=0.25 1b at each joints at the free end
2 Shear and Benghng M F,=0.25 Ib at each joints at the free end
Strong Axis
Shear and Bending in _ -
3 Weak Axis Fy=0.25 1b at each joints at the free end
4 Twistin Fy=-2.5 1b at bottom joints of free end
& Fy=2.5 1b at top joints of free end
5 Pure Bending in Strong Fx=-2.5 1b at bottom joints of free end
Axis Fx=2.5 Ib at top joints of free end
Fx=5 1b at joints of free end exist on plane
6 Pure Bending in Weak y=0
Axis Fy=-51b at joints of free end exist on plane
y=0.1

Displacement results of the cantilever beam at the free-end modeled by using linear
and quadratic hexahedral (Brick8 & Brick20), linear wedge (Wedge6), quadratic
wedge (Wedgel5), linear tetrahedral (Tet4), and quadratic tetrahedral (TetlO)
elements are presented in Table 4-9, Table 4-11, Table 4-13, Table 4-15, and Table
4-17, respectively. Similarly, stresses at the fixed end of the beam are shown in
Table 4-10, 4-12, 4-14, 4-16, and 4-18 for hexahedral, wedge, and tetrahedral
elements, respectively.

Table 4-9 Straight Beam with Hexahedral Elements (Brick8 & Brick20) —-
Displacements at the Free-End

Behavior Model Mesh Output Br?ck8 Brl.ckQO Ana!ytlcal
Mode Parameter (in) (in) (in)
6x1x1 2.99*105 3.01*10-5
Axial A 30x1x1 3.00*10-5 -
. 30x4x8 Ux 3.71*10° - 3.00%10°
Extension
B 6x1x1 2.99*105 3.01*10-5
C 6x1x1 2.99*10-5 -
Shear 6x1x1 1.00*102  1.07*10-!
and A 30x1x1 7.18*102 -
Bending 30x4x8 U, 1.07*101 - 1.08*101
in Strong B 6x1x1 2.84*103  9.72*102
Axis Cc  6xlxl 3.46*1073 -
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Table 4-9 (Continued)

Shear 6x1x1 1.09*102  4.16*10!
and A 30x1x1 1.56*10-1 -
Bending 30x4x8 Uy 4.17*10-1 - 4.32*%10-1
in Weak B 6x1x1 4.65*103  3.98*10-!
Axis C 6x1x1 6.23*103 -
6x1x1 2.86*103 2.90*10°3
A 30xlx1 2.92%103 .
Twisting 30x4x8 uy 3.39%103 - 3.41%103
B 6x1x1 1.62%103  3.09*1073
C 6x1x1 1.10%10-3 §
6x1x1 8.38*105  9.00%10
gured, A 30xlxl 5.99%10- -
pending 30x4x8 Us 9.55%104 . 9.00*10
in Strong
Axis B 6x1x1 1.94*105  8.30*104
C 6x1x1 2.56%105 -
6x1x1 4.53*105  1.80*10%3
gured A 30xl1x1 6.50*10-4 .
pending 30x4x8 Us 1.87%10°3 - 1.80%103
in Weak
Axis B 6x1x1 1.72%105  1.66*1073
C 6x1x1 2.51*10-5 -

In Table 4-9, end displacements of the cantilever beam created with hexahedral
elements under each loading condition are listed and they are compared with the
analytical results. According to results stated in Table 4-9, displacements under
axial loading condition are close to analytical results. For the other cases, however,
difference between results of linear element (Brick8) and analytical ones are much
larger. Moreover, distorting the geometry of the elements affects the performances
of each loading condition negatively as also observed for 2D membrane elements.

When behaviors of quadrilateral and hexahedral elements are compared, it can be
seen that hexahedral elements behave more stiff under axial and moment load
cases. This situation occurs because of the handling the Poisson’s effect. Due to
having stiffness along thickness, hexahedral element behaves stiffer. If Poisson’s
effect is neglected, the behaviors of these two types of elements become same.

Another important result observed from the results in Table 4-9 is increasing mesh
size of the beam model provides more realistic behavior. In fact, since deformed
shape of the beam with linear elements is a piecewise linear function, it is possible
to get function closer to the actual one by dividing the structure into smaller
elements. Because of this, displacements of the beam modeled with fine mesh
model are close to the analytical one. However, axial deformation of beam with
30x4x8 meshed elements is greater than the analytical result. The reason is that
dividing the cross section into parts causes another mechanism which is ignored
during the analytical solution. This mechanism is the deformation of the cross
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section. In fact, the beam was solved in analytically according to “plane section
remains plane” assumption. Nevertheless, meshing the cross section and not using
uniformly distributed load over the cross section results in deformation of the
section. Because of this, axial deformation exceeds the analytical value.

Table 4-10 Straight Beam with Hexahedral Elements — Stresses at the Fixed-End

Behavior Model Output Brick8 Brick20 Analytical
Mode Parameter (lb/in?) (Ib/in?) (Ib/in2)
) A 5.30*10! 5.30*10!
Axial B Ox 5.30¢10! 5.20*10' 5.00%10!
Extension
C 5.30*101 -
Shear and A 1.02*10% 9.44*103
Bending in B o 2.32¥102 8.87*103 9 00*103
Strong
Axis C 8.33*102 -
Shear and A 5.40*102 1.87*10%
Bending in B Ox 2.06*102 1.83*104 1.80*10%
Weak Axis C 4.97%102 _
A 2.54*%10% 5.76*102
Twisting B Ox 1.64*102 6.77*102 2.45*103
C 1.27*102 -
Pure A 1.87*102 1.67*103
Bending in B o 30.8%101 1.61*10% 1.50%103
Strong
Axis C 1.54*102 -
Pure A 3.73*102 3.33*103
Bending in B Ox 3.10*101 3.23*10% 3.00*103
Weak Axis C 9.10*%101 _

In Table 4-10, fixed end stresses of the structure are shown. Since nodal
displacements contribute to the calculation of element stresses, stress values of
quadratic element represent the analytical solutions better. Since quadratic
element was developed with full integration, higher stress values compared to
analytical ones were obtained. In addition, distortion causes reduction in accuracy
of element stresses for both linear and quadratic elements as expected.
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Table 4-11 Straight Beam with Linear Wedge Elements (Wedge6) — Displacements at

the Free-End

Behavior Model Mesh Output Br}ck8 Wefige6 Ana%ytlcal
Mode Parameter (in) (in) (in)
Axial 6x1x1 (Bri.) #1015 #1005 #1005
Extension D 12x1x1 (Wed.) Ux 2.99%10-5 2.98*10 3.00*10

Shear and .

Bendingin D 6x1x1 (Bri) e 1.00¥102 9.93*10-1 1.08*10!
S . 12x1x1 (Wed.)

trong Axis

Shear and .

Bendingin D 1SX}X1 (\];“a) Uy 1.09%102 1.09¥102 4.32%10-!
Weak Axis xlx1 (Wed.)

. 6x1x1 (Bri.) £100.3 #1003 £100.3
Twisting D 12x1x1 (Wed.) Uy 2.86*10 2.11*10 3.41*10
Pure .

Bendingin D 6x1x1 (Bri.) Ux 8.38¥105 8.29*105 9.00%10
S . 12x1x1 (Wed.)

trong Axis

Pure .

Bendingin D 1SX1X1 (\?,“3 Ux 4.53*105 4.53*105 1.80*10-
Weak Axis xlx1 (Wed.)

Table 4-12 Straight Beam with Quadratic Wedge Elements (Wedgel5) —
Displacements at the Free-End

Behavior Model Mesh Output Brick20 Wedgel5 Analytical
Mode Parameter (in) (in) (in)
Axial 6x1x1 (Bri.) £1005 %1005 %1005
Extension 12x1x1 (Wed.) i 3.01710% 3.01710 8.00710

Shear and

gf:c‘)‘il;g n g 122}’: :5‘;613) w, 1077107 1.06*10 1.08%10"
Axis

Shear and .

Bendingin = E 12"1"1 (5‘,“3 Uy 4.16*101 4.17*101 4.32%10-1
Weak Axis xl1x1 (Wed.)

Twisting E 12;1;‘1 :3,23) Uy 2.90*10% 2.85%103 3.41*10°
Pure

Sfﬁ;ffgg R 122;‘1 :\]i’/r;g) Us 9.00¥10+ 8.99*104 9.00%10-
Axis

Pure .

Bendingin  E 13"1"1 (\];“g Ux 1.80*10% 1.80*103 1.80%10%
Weak Axis xlx1 (Wed.)
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In Table 4-11 and Table 4-12, end displacements of cantilever beam created with
linear and quadratic wedge elements under each loading condition are tabulated
and the performances of the elements are compared with the analytical results.

Although the axial extension behavior of linear wedge element is the same with
linear hexahedron, under other load cases, linear wedge element behaves stiffer.
Since the nodes used mutually around cross section have higher stiffness values
than the other nodes. In Figure 4-5, cross section of the beam modeled with linear
wedge elements are presented. In the figure, stiffness of nodal points 1 and 3 are
computed by considering both elements’ contributions (Upper and lower).

4 3

Figure 4-5 Cross Section of Beam with Linear Edge Elements

Same situation is also valid for quadratic wedge element. Similar to previous
elements, quadratic element behaves more flexible than linear one and this makes
it preferable for each condition except axial extension load case. On the other hand,
as stated in “Finite Element” section, wedge elements cannot behave as well as
hexahedral elements without any distortion. Hence, wedge elements should be
preferred to distorted hexahedral elements.

Table 4-13 Straight Beam with Wedge Elements — Stresses at the Fixed-End

Behavior Model Output Wedge6 WedgelS Analytical
Mode Parameter (lb/in?) (Ib/in?) (Ib/in?)

Axial D/E Ox 5.3%10!  5.3*10!  5.00*10!

Extension

Shear and

Bendingin —  p Oy 1.01*10° 8.82*10° 9.00*103
Strong

Axis
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Table 4-13 (Continued)

Shear and
Bending in D/E Ox 5.56%102 1.85*10% 1.80*10%
Weak Axis

Twisting D/E Ox 3.86*101 3.07 *102 2.45*10%

Pure
Bending in
Strong
Axis

Pure
Bending in D/E Ox 1.01¥102 3.37*10%  3.00*103
Weak Axis

D/E Ox 1.85%102 1.57*10%  1.50*103

Stresses at fixed end of the beam are displayed in Table 4-13. According to the
table, quadratic elements calculate stresses more accurately. It is possible to
improve stress values by using finer mesh providing results close to the actual
deformation function of the beam.

In Table 4-14 and Table 4-15, displacements of linear and quadratic tetrahedral
elements are displayed. In order to adapt tetrahedrons to the beam geometry, 288
elements were required. Thus, beam with linear tetrahedrons becomes more flexible
under shear-bending and moment loading condition than one modeled with
hexahedral elements. However performance of the linear tetrahedral element under
twisting case is stiffer.

Table 4-14 Straight Beam with Linear Tetrahedral Elements (Tet4) — Displacements
at the Free-End

Behavior Output Brick8 Tet4 Analytical
Mode Model  Mesh Parameter (in) (in) (in)
Axial 288 Tet. £1005 £10.5 #1005

Extension A 6 Bricks Ux 2.99%10-5 2.98*10 3.00*10
Shear and
Bending in A 288 Tet. u, 1.00¥102 1.28*102 1.08*10!
S . 6 Bricks
trong Axis
Shear and
Bending in A gSBS Tit Uy 1.09%¥102 1.44*102 4.32*10!
Weak Axis ricks
" 288 Tet. £100.3 %1005 £1003
Twisting A 6 Bricks Uy 2.86*10-3 8.99*10 3.41*10
Pure
Bending in A 288 .Tet. Ux 8.38*105 1.07*10+ 9.00*10-*
. 6 Bricks
Strong Axis
Pure
Bending in A 28];3 Ti[ Ux 4.53*105 6.07*105 1.80*10-3
Weak Axis Ticks

48



Table 4-15 Straight Beam with Quadratic Tetrahedral Elements (Tet10) -
Displacements at the Free-End

Behavior Model Mesh Output Br1§:k20 T gth Ana!ytlcal
Mode Parameter (in) (in) (in)
Axial 288 Tet. £1005 £1005 £1005

Extension A 6 Bricks Ux 3.01*10-5 3.01*10 3.00*10

Shear and

Bending in A 288 Tet. u, 1.07*¥10-1 9.55*102 1.08*10-!
. 6 Bricks

Strong Axis

Shear and

Bending in A 58];3 Tit Uy 4.16*10-1 3.57*101 4.32*10-!

Weak Axis ricks

. 288 Tet. £100.3 £1003 £100.3

Twisting A 6 Bricks Uy 2.90*10-% 3.10*10 3.41*10

Pure

Bending in A 288 Tet. Ux 9.00*10+ 7.39*104 9.00*104
. 6 Bricks

Strong Axis

Pure

Bending in A 28]38 T(;t Ux 1.80*¥10% 1.29*10° 1.80*103

Weak Axis rieKs

This stiff behavior is valid for quadratic tetrahedral element also. In spite of using
288 quadratic tetrahedral elements, beam with quadratic hexahedral elements
behaves more flexible. This situation shows that using tetrahedral elements for
regular geometries does not provide good performance. Accordingly, as stated in
Finite Elements section, tetrahedral elements were developed for irregular
geometries.

Table 4-16 Straight Beam with Tetrahedral Elements — Stresses at the Fixed-End

Behavior Model Output Tet4 Tet10 Analytical
Mode Parameter (lb/in2) (Ib/in?) (Ib/in?)
Axial A Ox 4.53*10!  4.98*10! 5.00%10!
Extension
Shear and
Bending in A Ox 1.03*102 8.36*103 9.00*1083
Strong Axis
Shear and
Bending in A Ox 5.99*102 1.66*104 1.80*10%
Weak Axis
Twisting A Ox 2.19*109 1.55*102 2.45*103
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Table 4-16 (Continued)

Pure
Bending in A ox 1.77*102 1.44*103 1.50*103
Strong Axis

Pure
Bending in A ox 1.16*102 1.40*103 3.00*103
Weak Axis

In Table 4-16, stresses at fixed end of the beam with both linear and quadratic
tetrahedral elements are displayed. Similar to previous elements, calculating stress
by using quadratic elements is more reliable due to order of its shape function. In
addition to this, stress values can be cured by increasing mesh of the structure
because it provides more realistic approximation for actual behavior of structure.

4.2.2. Temperature Load

In this part, behaviors of each finite element under temperature loading are
examined. 2D and 3D plane models (MacNeal and Harder ,1985) were solved. For
each case, displacements and stresses were compared with the analytical solutions.

2D Temperature Load

First, rectangular plate problem was solved in order to verify the performances of
two dimensional elements (Quad and TriM) (Figures 4-6 and 4-7). To check nodal
displacements and elements stresses, identical models with different restraint
conditions were utilized. For displacement verification, only one corner node was
fixed in order to see the expansion of the plate (Figures 4-6 and 4-7, Model A). On
the other hand, for stresses due to temperature load, the plate was fully restrained
(Figures 4-6 and 4-7, Model B). Model properties are presented in Table 4-17.
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Figure 4-6 Plate Models with Quadrilateral Elements
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Geometric Properties

A)

Figure 4-7 Plate Models with Triangular Elements

Material Properties

Table 4-17 2D Temperature Load — Model Properties

Section Properties

Length: 0.24 in

Height:

0.12 in

Modulus of .
Elasticity: 1,000,000 1b / in2
Poisson's Ratio: 0.25

Thermal

Expansion

Coefficient: 5.5*106

Depth: 0.001 in

As loading, a 100°F temperature increase was applied to the whole plate.
Displacements and stresses due to temperature loading at the top corner of the
plate (Node 8) are shown in Table 4-18 for each 2D finite element.

Table 4-18 2D Temperature Load — Displacements and Axial Stresses

B‘;ﬁf&’;"r Pg‘;fg;ter Quad4  Quad8  TriM3 TriM6  Analytical
Us 1.72¥104 1.49*10+ 1.54*10% 1.77*10+  1.32*10+
Free uy 1.43*105 3.30*105 2.18*105 -2.32*10°5 6.60*10°
Exp. Oxx 0 0 0 0 0
Oy 0 0 0 0 0
Ux 0 0 0 0 0
Uy 0 0 0 0 0
Restr.
O 7.33*102  -7.33*102 -7.33*102 -7.33*102 -7.33*102
Oyy 27.33%*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102
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According to Table 4-18, distortion also affects negatively the behavior under
temperature change load. Similar to previous problems, quadratic element
represents the actual behavior better for quad elements. On the other hand, for
triangular elements, displacement of linear element is closer to the analytical
solution. However, due to geometry of the model, the plate was not modeled by
utilizing proper triangular mesh. Accordingly, the results do not represent the
performance of the triangular elements under temperature change load. On the
other hand, each element can calculate the same stress amount due to temperature
change loading with analytical solutions.

Each finite element calculates total element stresses by the summation of stress
due to temperature and stress due to displacements. Because of this, since Model A
is free to expand due to temperature, stresses on the body are equal to zero. When
expansion is restrained (Model B), only stresses due to temperature occurs. As seen
in Table 4-18, each form of quadrilateral and triangular elements calculate stresses
due to temperature change correctly.

3D Temperature Load

In this part, behavior of 3D finite elements under temperature loading is discussed.
For this purpose, square plate proposed by MacNeal and Harder (1985) was
modeled with each 3D finite element (Figure 4-8). Model properties are stated in
Table 4-19.

‘l‘!‘l‘!‘!
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Figure 4-8 3D Temperature Load

Table 4-19 3D Temperature Load — Model Properties

Geometric Properties Material Properties
. . Modulus of . 5
Length: 10in Elasticity: 1,000,000 1b / in
Width: 10 in Poisson's Ratio: 0.25

Thermal Expansion

Depth: lin Coefficient: 5.5%10-6

In this model, nodes at bottom edge are totally restrained, other nodes are
restrained in x and y direction. Similar to previous example, a 100°F temperature
increase was applied to the model as loading. Stress values in x and y direction at
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anywhere of the plate were compared with the analytical results in Tables 4-20 and
4-21 for each 3D element.

Table 4-20 3D Temperature Load — Axial Stresses (Bricks and Wedges)

Output Brick8 Brick20 Wedge6b WedgelS Analytical
Parameter (Ib/in?) (Ib/in2) (Ib/in2) (Ib/in?) (Ib/in2)
Oxx
Anywhere -7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102
in plate
Oyy
Anywhere -7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102
in plate

Table 4-21 3D Temperature Load — Axial Stresses (Tetrahedrons)

Output Tet4 Tet10 Analytical
Parameter (Ib/in? (Ib/in?) (Ib/in?)
Oxx
Anywhere -7.33*102 -7.33*102 -7.33*102
in plate
Oyy
Anywhere -7.33*102 -7.33*102 -7.33*102
in plate

According to Tables 4-20 and 4-21, stresses obtained from each elements type are
same with the analytical one. This situation shows that calculations of stress due
to temperature load algorithms of each element are acceptable.

4.3.Verification of Heat Transfer Analysis

Square and rectangular plate problems suggested by Reddy and Gartling (2010)
were solved in order to verify the implementation heat transfer analysis algorithms
and corresponding elements.

4.3.1. Square Plate Problem

In this part, heat conduction and heat generation definitions of the finite elements
and steady-state solution algorithm was examined. For that purpose, quarter of a
square plate suggested by Reddy and Gartling (2010) was solved with each element
and performances of the elements were compared. Since the plate has four different
symmetry axes (Figure 4-9 (A), x=0, y=0, x=y, and x=-y), solving only quarter of the
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plate provides simplicity. Square plate and quarter plate are presented in Figure 4-
9 (A) and Figure 4-9 (B), respectively.

Undeformed Shape Undeformed Shape

7 8 9

(A) (B)
Figure 4-9 Plate Models. (A) Full Plate. (B) Quarter Plate

As shown in Figure 4-9(A), temperature of nodes at edges are fixed to 0°C (orange
nodes) and heated uniformly with the amount of 1 W/cm3. Since the plate is
symmetric, quarter of it (Figure 4-9 (B)) is taken into account with no surface flux
at symmetry edges (line x=0 and line y=0). Then temperature values at free nodes
(green nodes) are observed. Model properties of quarter of plate are tabulated in
Table 4-22.

Table 4-22 Square Plate Problem — Model Properties

Geometric Properties Material Properties Section Properties
Heat Conduction
. O .
Length: 1 cm Coefficient: 1 W/cm °C Depth: 1 cm
Width: 1 em Heat Generation per 1 W/cm?
Volume:

Temperature distribution of full plate and quarter of that plate are shown in Figure
4-10 (A) and Figure 4-10 (B), respectively.

Temperature Distribution Temperature Distribution

0.15

05k

(A) (B)

Figure 4-10 Temperature Distribution of Full and Quarter Plate
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Results obtained from the models with different elements are compared with the
analytical results. Two different mesh densities were utilized for each case except
tetrahedral elements. Nodal temperatures along the edge (x=0) for each model are
presented in Table 4-23.

Table 4-23 Performances of Each Element

Temperatures at Nodes (°C)
y=0 y=0.25 y=0.5 y=0.75 y=1.0

Element Mesh

Analytical - 0.2947 0.2789 0.2293 0.1397 0.0000
Quadd 4 0.3107 0.2759 0.2411 0.1205 0.0000
ua
16 0.2984 0.2824 0.2322 0.1414 0.0000
Quads 4 0.2941 0.2791 0.2292 0.1395 0.0000
ua
16 0.2946 0.2788 0.2293 0.1397 0.0000
M3 8 0.3125 0.2708 0.2292 0.1146 0.0000
ri
32 0.3013 0.2805 0.2292 0.1392 0.0000
TrM6 8 0.2950 0.2786 0.2296 0.1395 0.0000
ri
32 0.2947 0.2789 0.2294 0.1397 0.0000
Bricks 4 0.3107 0.2759 0.2411 0.1205 0.0000
ric
16 0.2984 0.2824 0.2322 0.1414 0.0000
. 4 0.2941 0.2790 0.2292 0.1396 0.0000
Brick20
16 0.2946 0.2788 0.2293 0.1397 0.0000
8 0.3125 0.2708 0.2292 0.1146 0.0000
Wedge6b
32 0.3013 0.2805 0.2292 0.1392 0.0000
8 0.2950 0.2786 0.2296 0.1395 0.0000
Wedgel5
32 0.2947 0.2789 0.2294 0.1397 0.0000
Tet4 294 0.2939 0.2712 0.2177 0.1294 0.0000
Tet10 294 0.2946 0.2734 0.2293 0.1324 0.0000

According to the values in Table 4-23, it can be seen that using quadratic elements
give closer results to the analytical ones when compared with the linear elements.
Moreover, modeling with finer mesh provides better approximation of the actual
temperature distribution function; therefore, accuracy of the solution increases.
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When the performances of 2D and 3D elements are compared, their results are
completely the same. Such a result is expected, since temperature distribution
through the thickness is zero for this problem, 3D element behaves like 2D
element.

Due to adaptation problem of tetrahedral elements to overall structure, more
elements were required. Even so, linear element conducts less thermal energy when
compared with the linear hexahedral element. On the other hand, results of
quadratic tetrahedron are very close to the analytical ones.

Final point is that in general, accuracy of triangular elements is better than the
quadrilateral elements. As heat generation load is applied to the body, not to nodal
points, using finer mesh increases the accuracy of calculation of equivalent nodal
load. In order to adapt triangular elements to geometry of the structure, more
triangular elements are needed. Accordingly, using triangular elements behave
better than the rectangular ones.

4.3.2. Rectangular Plate Problem

In addition to the element performances, linear steady-state and transient solution
algorithms were tested by solving the rectangular plate problem suggested by
Reddy and Gartling (2010). In this model, all types of loading and boundary
condition definitions were verified. The rectangular plate model is presented in
Figure 4-11.

005 B

{T
0 0.05 0.1 0.15

Figure 4-11 Rectangular Plate Model

As shown in Figure 4-11, temperature values of the nodes at the right side of the
plate and colored with orange (2 and 3) are fixed to 25°C. At the left side (orange
line) and top side (light blue line) of the plate, surface flux and heat convection are
defined, respectively. Moreover, heat generation exists in whole plate. Temperatures
of nodes at right edge are fixed to 25°C. Model properties are tabulated in Table 4-
24.
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Table 4-24 Rectangular Plate Problem — Model Properties

Geometric Properties Material Properties Section Properties
) Heat Conduction o .
Length: 0.1 m Coefficient: 0.4 W/m ©°C Depth: 1 m
. Heat Convection
. 2

Width: 0.05 m Coefficient: 60 W/m
Ambient 250C
Temperature:
Flux: 3,500 W/m?2

Heat Generation: 135,300 W/m3

The problem defined above was solved for each finite element and results were
compared with the analytical solutions. Temperature values at node 1, node 4 and
midpoint of node 3 and node 4, and flux amount at node 1 (Figure 4-11) of each
model are tabulated in Table 4-26 and temperature distribution of the plate is
illustrated in Figure 4-12. Results in Table 4-25 were obtained from linear steady-
state analysis.

Temperature Distribution

0.15

800
700
01t 1 F 1600
4500
400

005 1
4300
200
Or 1 100

0 0.05 0.1 0.15

Figure 4-12 Temperature Distribution of Rectangular Plate Modeled with TriM3
Elements
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Table 4-25 Performances of Elements in Element Library

Middle of

Element Number 1 points 3 and 4 4
Type Elements Tem;()oeé?lture 1(:\‘;1}1/)( rr(1>2<)) Temr()oe(r;ture Temr()oe(r:?ture
Analytical - 8.54*102 3.50*103 1.28*102 2.34*102
Quad4 25 8.55*%102 3.12*%103 1.28%102 2.27*%102
Quads8 25 8.54*102 3.47*%103 1.28*102 2.33*102
TriM3 S0 8.55*%102 3.21*%103 1.28%102 2.32*%102
TriM6 50 8.54*102 3.49*103 1.28*102 2.33*102
Brick8 25 8.55*%102 3.12*%103 1.28%102 2.27*%102
Brick20 25 8.54*102 3.48*103 1.28*102 2.33*102
Wedge6 S0 8.55*%102 3.21*%103 1.28%102 2.32*%102
WedgelS 50 8.54*102 3.49*103 1.28*102 2.33*102
Tet4 137 8.40%102 2.14*103 1.18%102 2.86%102
Tet10 137 8.61*102 3.68*103 1.26*102 2.31*102

This problem shows performances of surface load algorithms such as heat
convection and surface flux of each element. As shown in Table 4-25, similar to
previous example, quadratic elements represent the actual behavior better.
Moreover, temperature distribution along z direction is zero then, results of 2D and
3D elements are the same except models with tetrahedrons. When the plate was
modeled with unsymmetrical tetrahedral mesh, there is a nonzero temperature
distribution along the plate thickness which causes a deviation from analytical
results. In fact, the plate has symmetry along thickness; accordingly, temperature
gradient along its thickness must be zero.

Rectangular plate was modeled with 1000 TriM3 elements and analyzed with the
linear transient solution algorithm to check its accuracy. The analysis was repeated
four times with different versions of the algorithm; i.e. Explicit and implicit
integration with consistent heat capacitance matrix, explicit and implicit
integration with lumped heat capacitance matrix. The model is shown in Figure 4-
13. In addition to the properties of the model stated above, analysis time was taken
as 40000 seconds. The results of linear transient analysis procedure are tabulated
in Table 4-26.
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Undeformed Shape

01 o

Figure 4-13 Rectangular Plate Modeled with 1000 TriM3 Elements

Table 4-26 Performance of Heat Transfer Analysis Algorithms

TriM3 Temperatures
1000 Elements at Node 1
t = 40000 seconds (°C)
Steady-state 854.51
Explicit Transient 853.55
(lumped)
Explicit Transient 853.57
Implicit Transient 85353
(lumped)
Implicit Transient 853.55

According to results of Table 4-26, temperature values obtained from implicit and
explicit algorithm are close to each other. Similarly, using lumped or consistent
heat capacitance matrix does not create important difference between the results of
each other. Therefore, lumped energy storage change matrix can be used to reduce
computational costs.
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4.4. SUMMARY

To sum up, according to the structural analysis results, linear finite elements
represent the axial extension behavior better; whereas, quadratic elements are
more suitable for shear-bending and pure bending conditions. Since shear-bending
and pure bending behaviors are higher order polynomial, linear elements does not
fit this higher order polynomial.. The performances of linear elements under shear-
bending and pure bending conditions are improved by increasing mesh of the
model.

Meshing cross-section of the beam provides more flexible behavior because it
refuses the assumption “plane sections remain plane”. Moreover, distortion reduces
the accuracy of the elements. According to the results, parallelogram shaped
distortion is more suitable for linear elements; whereas, trapezoidal shaped
distortion is better for quadratic elements.

When triangular and quadrilateral elements are compared, quadrilateral elements
behave more flexible. If the mechanism through the thickness of the element is
ignored (i.e. neglecting the Poisson Effect), the behaviors of quadrilateral and
hexahedral elements are completely the same. Otherwise, quadrilateral element is
more flexible. Then, wedge and tetrahedral elements are stiffer than the hexahedral
elements.

Heat transfer performances of the finite elements are similar to the structural
analysis performances. Since the equation of heat transfer is not linear, quadratic
elements represent the behavior better. In addition, increasing mesh provides better
approximation of the actual behavior.

If the temperature gradient through the thickness of the element is ignored, the
behaviors of the quadrilateral and hexahedral elements are completely the same.
Finally, triangular elements are better for heat transfer problems due to having
more accurate loading calculations.
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CHAPTER 5

CASE STUDY

5.1.Introduction

According to PTI structures having large plans with short floor to floor distance
such as parking structures are subjected to four different types of shortening.
These are shortenings due to pre-compression in post-tension slabs, creep,
shrinkage, and temperature change. Usually expansion/shortening of slabs due to
temperature changes are up to one third of total shortening of slabs (PTI).
Therefore, axial deformation of slabs due to temperature changes should be taken
into account while designing the expansion joints, diaphragm reinforcement and
slab column/wall connections.

In this chapter, the effect of thermal loading (temperature change) on slab stresses
and internal forces of vertical components were investigated. For this purpose, top
floors of two typical L-shaped buildings, parking and office buildings were modeled.
In other words, the same structure was solved by utilizing different thermal
conditions of parking structure and office structure, separately.

Both cases were solved by utilizing heat transfer and structural analysis,
sequentially (coupled analysis in weak form). First, temperature distributions of the
components were obtained by performing linear transient heat transfer analysis.
Then, the structures were solved by utilizing linear static solution algorithm and
stresses over the slabs and internal forces at columns and walls were computed.

5.2. Model Properties

As a case study, top story of a typical L-shaped building was modeled. This
structure has a uniform and continuous moment frame system. In order to
increase the lateral stiffness of the building, shear walls were added to the system.
Plan view of the building and section properties of each structural element are
presented in Figures 5-1 and 5-2, respectively.
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Figure 5-1 Plan View of L-Shaped Structure
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Figure 5-2 Section Properties of Structural Elements

As seen in Figure 5-2, each column and beam has square section whose
dimensions are 50x50 cm. Similarly, the thicknesses of shear walls are 50 cm also.
Floor to floor height is 400 cm. Finally, slab thicknesses were taken into account as
30 cm. 3D model of the L-shaped structure is shown in Figure 5-3.
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Figure 5-3 3D Model of L-Shaped Structure

Top story of an L-shaped structure was investigated under thermal loading. Each
structural element was modeled by using three dimensional hexagonal (Brick)
elements. Therefore, 35595 nodes and 21580 linear hexahedral elements were
utilized to model this building. Slab element was meshed with two elements
throughout the thickness in order to get temperature values of nodes at center level
of the slab. This also provides more accurate temperature distribution on section of
the slab. Meshing of structural elements is shown in Figure 5-4. According to
verification results of linear hexahedron element, the current mesh size may not be
sufficient to represent the actual bending behavior at columns and walls. On the
other hand, since both cases were solved by using the model with the same mesh,
approximately the same amount of error occurred for both cases.

Figure 5-4 Model Mesh

These buildings were modeled with C35 reinforced concrete. Material properties of
L-shaped structures are listed in Table 5-1.
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Table 5-1 Material Properties of Parking Structure

Mechanical Properties

Chemical Properties

Modulus of Elasticity:
(TS500, 2000)

Poisson’s Ratio:

(TS500, 2000) 0.2

Thermal Expansion
Coefficient:
(T'S500, 2000)

Density:
(Kosmatka et al., 2003)

33000 MPa

0.00001 /oC

2400 kg / m?3

Heat Conduction
Coefficient:
(ASHRAE, 2001)

1.5 W/m °K

Heat Convection
Coefficient:

(Air) (Free Conv.)
(Lewis et al, 2004)

15 W/m2 oK

Specific Heat
Capacity:

(ASHRAE, 2001) 1 kJ/kg °K

Although the heat convection coefficient depends on the geometry of the structure,
in this study, heat convection coefficient was taken into account as a constant

value.

For the thermal analysis, the initial temperature of concrete was assumed as 14°C
during the casting period (no hydration effect). For the first case parking structure,
hourly temperature values in Adana at June 23 (Bulut et al.) were applied to both
bottom and top surface of the slab. On the other hand, for second case, the same
temperature distribution was accounted only for the outside of the building;
whereas, inside temperature was assumed to be 20°C constant temperature.

Temperature distribution of Adana on June 23rd is presented in Figure 5-5.
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Hourly Temperature Distribution of Adana - July 23
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Figure 5-5 Hourly Temperature Distribution of Adana

Currently, the radiation effects were ignored; accordingly, these buildings were
subjected to only heat convection as ambient thermal load. Another assumption is
that no convection occurs at faces of the columns and walls of the system. Heat
convection was defined only at the top face of the slabs and bottom faces of the
beams and slabs.

5.3.Case 1: Parking Structure

For the parking structure, both top and bottom faces of the slab were subjected to
same ambient temperature presented in Figure 5-5. In order to obtain temperature
distribution of the slab, transient heat transfer analysis was performed for twenty-
four hour duration and structure was solved by utilizing structural analysis for the
several times, 5Sth, 12th  14th 20th and 24t hours. In 5% and 14t hours, air
temperature reaches the minimum and maximum, respectively. In addition to this,
stress distribution at 12th, 14th and 24th hours were investigated. The temperature
distribution of the slab along the slab section and at a single point for different
times were presented in Figures 5-7 and 5-8, respectively. The location of the
section cut and the point is presented in Figure 5-6. Units of temperature values
presented in Figure 5-7 are ©C.
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Figure 5-6 Section Cut of the Slab and Point 1
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Figure 5-7 Temperature Distribution of Slab of Parking Structure (A) 5t hour (B)
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According to Figure 5-7, the top and bottom faces of the concrete slab were exposed
to the same thermal energy and this energy expanded toward the midlevel of the
section during warming of the slab and temperature of midlevel increases (Figure 5-
7 A to D). Whereas during cooling, the thermal energy stored inside the concrete
slab transforms to the ambient; accordingly, heat energy stored in the concrete
section expands through the faces (Figure 5-7 E). In Figure 5-8, temperature
gradients of the slab through thickness at Point 1 (Figure 5-6) are presented for the
times stated above.
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005 —

Figure 5-8 Temperature Gradient through Thickness

Since the thermal conditions at bottom and top faces of the slab were the same,
same temperature values are expected for both faces. However, bottom faces of
some slab elements have no contact with the air due to existence of beams.
Therefore, the temperature values of bottom and top faces of the slab are not totally
the same in spite of having the same ambient temperature. However, for whole
slab, this behavior cannot create serious temperature gradient through the
thickness. The mean temperature values at top, center and bottom layers of the
whole slab are presented in Figure 5-9.
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Hourly Temperature Distribution of Adana - July 23
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Figure 5-9 Mean Temperature Distribution of Slab Layers (Parking Structure)

According to the Figure 5-9, the temperature of the slab increases 15t hour and
then cooling began at top and bottom faces. At the end of the day, temperature
values through thickness were equalized and the structure became slightly hotter
than the ambient.

Then, linear static analysis was performed for each time stated above by utilizing
the temperature gradients for current time. This way, stress distribution of the slab
was obtained. Displacements of midlevel slabs for 24th hour are presented in Figure
5-10. Moreover, stress distributions of slab for 5th, 12th 14th 20th and 24th are
presented in Figures 5-11 to 5-15, respectively.
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Figure 5-10 Displacements at 24th Hour. (A) x Direction (B) y Direction
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Figure 5-11 Stress Distributions of Slab at 5t Hour (Parking Structure) (MPa). (A)
Stresses in x Direction. (B) Stresses in y Direction
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Figure 5-12 Stress Distributions of Slab at 12th Hour (Parking Structure) (MPa). (A)
Stresses in x Direction. (B) Stresses in y Direction
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Figure 5-13 Stress Distributions of Slab at 14tk Hour (Parking Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction
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Figure 5-14 Stress Distributions of Slab at 20th Hour (Parking Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction
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Figure 5-15 Stress Distributions of Slab at 24th Hour (Parking Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction

Since the orientation and location of the shear walls are not the same for both
direction, x and y, displacements are not symmetric for both axes (Figure 5-9).
Stress distributions in Figures 5-10 to 5-15 are related to the displacement
distribution. Indeed, significant stresses occur at location where displacements
have been restrained. For x direction, existing of shear wall being close to inner
corner of L-shape causes significant compressive stress concentration at that
region. On the other hand, for y direction, displacements at region between the
inner corner of L-shape and shear walls in y direction are approximately zero;
accordingly, corresponding compressive stress spreads at that region and
magnitude is less than the one in x direction.
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Since the top and bottom faces are subjected to the same ambient condition, stress
distributions for each time were similar to each other. These stress distributions
alter towards to the midlevel of the slab (Figures 5-10 to 5-15). At midlevel of the
slab section, the zero displacement region becomes smaller with respect to time due
to the increase in temperature change; accordingly, the region being subjected to
compressive stress increases with time.

5.4. Case 2: Office Structure

In the second case, same structure was solved with different thermal conditions. As
a matter of fact, inside temperature of the structure was assumed to be constant
(20°C) for twenty-four hours. On the other hand, top face of the slab was subjected
to same convection conditions of parking structure. Similar to previous case, this
structure was solved by utilizing linear transient heat transfer analysis and at
several times and temperature change values at nodes of the slab were obtained.
These temperature distributions at same slab section with are presented in Figure
5-16.
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Figure 5-16 Temperature Distribution of Slab of Office Building (A) Sth hour (B) 12tk
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Since the ambient temperature affecting the top face is higher than the inside
temperature, heat energy moves from top to bottom (Figure 5-16 A to D).
Accordingly, bottom face has always the lowest temperature; whereas, top face has
the highest temperature value. During cooling, temperature of the top faces begins
to drop (Figure 5-16 E). The temperature gradient at Point 1 and mean temperature
values at top, center and bottom layers are presented in Figures 5-17 and 5-18,
respectively.
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Figure 5-17 Temperature Gradient through Thickness at Point1
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Figure 5-18 Mean Temperature Distribution of layers of Slab (Office Structure)

Mean values of the layers represent the behavior of slab under ambient
temperature distributions. As seen in Figure 5-18, increase of temperature of
bottom layer is about 3°C; whereas, temperature changes in top layer is
approximately 13°C. As a result, temperature gradient occurs through the
thickness of the slab of office structure. In addition, although, after 14th hour, top
layer begins to cool, whereas the other layers stay warm for the whole day.
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Then linear static solutions were performed for each time stated above and the
stress distributions over the slab were obtained. Displacements of the slab in both
x and y directions at the end of the day are presented in Figure 5-19. Moreover,
stress distributions at top, middle, and bottom layers of the slab for 5th, 12th 14th
20t and 24th are presented in Figures 5-20 to 5-24, respectively.
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Figure 5-19 Displacements at 24th Hour. (A) x Direction (B) y Direction

78



Stress X) Stress X.
5
2.5

Stress XX
5
25
0 0
Fd
=3 E 2 5 =25
o< C Pra— o
E;; 5 Es
7 —7 -7
(A) Top — Mid — Bottom Layer
Stress YY

4

2

0

Stress Y I Stress Y
)

p - |- ?

-5 -5

&

(B) Top — Mid — Bottom Layer

Figure 5-20 Stress Distributions of Slab at 5t Hour (Office Structure) (MPa). (A)
Stresses in x Direction. (B) Stresses in y Direction
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Figure 5-21 Stress Distributions of Slab at 12th Hour (Office Structure) (MPa). (A)
Stresses in x Direction. (B) Stresses in y Direction
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Figure 5-22 Stress Distributions of Slab at 14th Hour (Office Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction
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Figure 5-23 Stress Distributions of Slab at 20t Hour (Office Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction
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Figure 5-24 Stress Distributions of Slab at 24th Hour (Office Structure) (MPa). (A)
Stresses in x Direction (B). Stresses in y Direction

According to Figure 5-19, although general displacement distributions in both x
and y direction of midlevel of the slab at the end of the day are similar with the
parking structure, the displacements of office structure less due to having smaller
total temperature change amount.

Similar to first case, concentrated compressive stress occurs between inner corner
of L-shape and shear walls in x direction due to restrained displacements. On the
other hand, in y direction, zero displacement region is largely at region between
inner corner and shear wall in y direction (Figure 5-19 B), compressive stresses
spread to that region; accordingly, their amounts are less than the other direction.
According to Figures 5-20 to 5-24, at midlevel, the same regions stated above
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becomes subjected to compression due increase in temperature and the
compression region expands with time.

5.5. Comparison

Two top floors of typical L-shaped structures were subjected to different thermal
loading and different stress distributions generated on slabs of the structures.
Indeed, due to different thermal gradient on slab section, behaviors of the
structural components were not the same.

Since parking structure was subjected to ambient conditions at both faces,
temperature of the slab along its thickness was balanced with the outer face
temperatures. Accordingly, the general temperature distribution of slab resembles
to the distribution of ambient temperature with respect to time. On the other hand,
slab of office building were subjected to heat convection with different ambient
conditions for bottom and top faces. Accordingly, it was impossible for midlevel
temperature to be balanced with the outer face temperatures and temperature
gradient through thickness is not constant for the duration of day. Because of this
reason, the slab temperature of parking structure is higher than the office building.
Accordingly, displacements occurring on parking structure are greater than the
office structure.

For both cases, the same regions between shear wall and inner corner of L-shape
are critical. Although parking structure has higher temperature change, top face of
the office structure is subjected to higher compressive stress due to having
inconstant temperature gradient. Indeed, the mid and bottom levels of slab of office
structure cannot expand as much as the top face; in other words, bottom levels try
to restrict the expansion of the top level. Accordingly, at top face of slab of office
building, additional compressive stresses occur. Similarly, slab of parking structure
is subjected to higher tension. For both structures, stress distribution in x direction
of top, midlevel and bottom faces at 14th hour are presented in Figures 5-25.
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Figure 5-25 Stress Distribution in x Direction at 14th Hour. (A) Parking Structure

(B) Office Structure

Internal forces of vertical elements, Wall 7 and Column 35, were investigated for
both structures and compared with each other. These vertical components and
their locations are presented in Figure 5-26.
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Figure 5-26 Plan View of L-Shaped Structure — Wall 7 and Column 35

For internal force investigation, Wall 7 was selected since maximum compressive
stress in x direction occurs at region near it. Moreover, since maximum
displacement in x direction occurs at region right hand side of the structure, the
internal forces of Column 35 due to thermal load was examined. Shear force in x
direction of bottom level of Wall 7 and Column 35 are presented in Figures 5-27
and 5-28, respectively.
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Figure 5-28 Shear Reaction Forces - Column 35

According to Figures 5-27 and 5-28, parking structure is subjected to shear force a
little bit greater due to having higher temperature change. Shear force amounts
increase with respect to time for both structural components as displacements of
the slabs also increase due to thermal load.

87



5.6. Parallelization Aspect

The parking and office structures were solved by utilizing parallel solution
techniques. Each structure has 35595 nodal points and 21580 linear hexahedral
elements. In other words, 35595 and 106785 equations were solved by utilizing
parallel solution techniques for transient heat transfer and linear static solutions,
respectively. Actually, 8640 steps were taken into account for transient heat
transfer analysis and 5 static cases were performed during the solution. Indeed, for
linear static analysis algorithm, MUMPS library parallelizes the solution; whereas,
transient heat transfer analysis algorithm uses MPI for partitioning of the model.
Parallel performance of the solution of case study is presented in Figure 5-29.
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Figure 5-29 Parallel Performance of Solution Algorithm

According to the Figure 5-29, parallelization techniques provide a speed-up
approximately 7 times with respect to the performance of one core. Parallel
performance of initialization and one step duration of the transient heat transfer
solution algorithm are presented in Figure 5-30.
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Figure 5-30 Parallel Performances of Initialization and Duration of One Step
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According to Figure 5-30, initialization time is the same for each parallel solution.
Whereas, the one step duration reduces up to 7.5 times with respect to the solution
with one core.
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CHAPTER 6

CONCLUSION AND FUTURE PLANS

6.1. Conclusion

For this study, coupled analysis with thermal and structural analysis, methods
were implemented. Moreover, two and three dimensional finite elements having
capability of both heat transfer and structural analysis solutions were developed
and their performances for several benchmark problems were verified. Finally, top
floors of two typical L-shaped structures, parking and office buildings, were
analyzed by utilizing coupled analysis and results of these two structures were
compared.

According to the verification results of finite elements for structural analysis
problems, the following conclusions were obtained. First, linear elements represent
axial extension behavior better; whereas, under shear-bending and pure bending
loading conditions, quadratic elements have better performance. For shear-moment
or pure moment related problems, the behavior of linear elements may be improved
by utilizing finer mesh.

Distortion on elements reduces the accuracy and parallelogram shaped distortion
for linear element is more reliable than the trapezoidal shaped distortion; whereas,
for quadratic elements, accuracy of trapezoidal element is greater. According to
results of verification problems, quadrilateral elements behave more flexible then
the triangular ones since triangular elements have high stiffness at mutual nodes.

For problems having negligible action in out-of-plane direction, the behavior of
hexahedron element become the same with the quadrilateral element. Accordingly,
for such situations, using quadrilateral element reduces the computational cost.
However, if action in the out-of plane direction cannot be ignored, hexahedral
elements behave stiffer than the quadrilateral elements.

Applying non-uniform loading on meshed cross — section of an element behaves
more flexible for axial extension condition since the assumption of “plane section
remains plane” is not valid for that section. Finally, wedge and tetrahedral elements
may be preferred for modeling of irregular geometries. Because they are stiffer than
hexahedral elements; accordingly, finer meshing is required to improve the
behavior.

In general, heat transfer behaviors of finite elements are similar to the structural
analysis ones. Since the temperature gradient is not linear, quadratic elements
represent the actual behavior better. Similarly, utilizing finer mesh provides closer
results to the analytical results. Behaviors of 2D and 3D elements are the same if
temperature gradient through the third axis is assumed to be equal to zero. Finally,
performance of triangular element is better than the quadrilateral one as having
finer mesh for triangular element provides more accurate calculation of thermal
body loads such as heat convection or surface flux etc.
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Finally, two L-shaped structures, parking and office structures, under different
thermal loading were analyzed. According to the results, parking structure is
subjected to higher stress amounts due to having higher temperature change.
Moreover, for both structures, critical stresses occur at location where the
displacements are restrained; accordingly, at regions between inner corner of the L-
shape and shear walls, maximum compressive stress occurs. If this region is small,
the stress amount is high; whereas, for large regions, compressive stress is
distributed to the region.

6.2. Future Plans

This study has some limitations in order to simplify the procedure. However, by
utilizing some improvements, more accurate results may be obtained. These
improvements are presented below.

e Modeling Improvement:

Since the linear element is not sufficient for calculation of stresses,
increasing mesh or using higher order finite elements should be used to get
better stress density. As discussed in “Verification Chapter”, linear
hexahedral element is subjected to shear locking; accordingly, stress
distribution does not represent the actual behavior. This problem may be
handled by increasing number of elements or utilizing higher order finite
element. Quadratic hexahedral element provides better temperature
distribution through the thickness and stress distribution over the slab.

¢ Ambient Conditions

In this study, radiation condition was ignored. However, radiation effect
provides increase in temperature on top faces of the slabs and more
significant temperature gradient through thickness may occur. Especially,
for parking structures, radiation effect hinders the occurring of the same
temperature values on top and bottom layer. Accordingly, stress distribution
may become more significant.

e Ambient Conditions for Columns and Walls
For the solution of L-shaped structures, heat convection occurring on faces
of columns and walls was ignored. However, temperature gradient through
thickness of outer columns and walls induce additional bending for those
elements and accordingly additional internal forces in vertical elements and
stresses on horizontal elements.

e Nonlinear Material

For solution of both physics problems, heat transfer and structural, linear
material models were utilized. However, nonlinear behaviors in both
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solutions represent the actual behavior better. Actually, in heat transfer
solution, conductivity of concrete material depends on the temperature.
Similarly, elastic properties are related with the temperature, time and
loading history. In addition to this, thermal expansion coefficient is a
function of temperature. By considering these mechanisms, more reliable
results may be obtained.

e Crack Model

Cracking is a complex mechanism for reinforced concrete structures.
Although, in general, cracks occur at regions having higher stresses, after
cracking, stresses relaxation occurs and the behavior of the structure may
change. By implementing the cracking mechanism to the constitutive
material model, this complex mechanism may be investigated in details.

By considering all of these conditions, more realistic solution of large structures
built with reinforced concrete may be utilized.
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APPENDIX A

INTEGRATION POINTS

A.1. Integration Points for Line Element
To calculate line integrals, ‘Gauss Quadrature Rule’ is used. It is possible integrate

a function whose limits are from -1 to 1 by using Gauss Quadrature Rule. In other

words, any line integral can be calculated numerically by transforming the limits to
the limits stated above.

I=[7fdc= [' GdE= T, WiGi (A-1)
Where n: Number of integration points
It is important to choose appropriate order with rule of (2n-1). In fact, Gauss
Quadrature method has acceptable accuracy of functions with order of (2n-1) if n

integration points are taken into account (Cook et al. 1989).

Table A-1 Integration Point Scheme for Line Element

Total Location Weight Factor
Number (&) Number (Wi)
of Points
1
2 T = 2 1
+10.6 2 2
3
0 1 2
9

Where -1 <& <1

A.2. Integration Points for a Quadrilateral Element

It is possible to consider that there are two line integrals through two different axes
x and y in order to handle rectangular surface integral, numerically. In other words,
the location of integration points and their weights are obtained by combining these
two line integral parameters. Hence, the limits of both integrals are again from -1 to
1. These parameters are tabulated at table A.2.
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Table A-2 Integration Point Scheme for Quadrilateral Element

Total Number ' on (6 ni)  Number  Weight (Wi)

of Points
4 t= t= 4 1
K 0,4+ 4 o
0, 0 1 =

81

Where -1<¢f<land-1<pn<1

A.3. Integration Points for Triangular Element

For triangular surface integrals, it is not acceptable to use Gauss Quadrature Rule.
Because of this, new definition is needed for the ‘Quadrature Rule’. According to
Quadrature Rule, the limits are from O to 1, different from the previous ones. The
locations of the integration points and the consistent weights are listed at table A.3.

Table A-3 Integration Point Scheme for Triangular Element

Total Weight
Number Location (&i, ni) Number Factor
of Points (Wi)

1 0,0 1 1
0, 0.5 2 -
3 3
0.5, 0.5 1 .
0.816847, 0.091576 2 0.109951
6 0.091576, 0.091576 1 0.109951
0.108103, 0.445948 2 0.223381
0.445948, 0.445948 1 0.223381

Where0<¢é<landO<n<1
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A.4. Integration Points for Hexahedral Element

Similar to rectangular surface integral, it is possible to use Gauss Quadrature Rule
multiple times in order to calculate volume integral of hexahedral element. In fact,
three line integrations through local axes, x, y, and z, are needed. Therefore, the
location of integration points and their weight factors can be calculated by using
the ones stated at table A.1.

Table A-4 Integration Point Scheme for Hexahedral Element

Weight
Total Ngmber Location (&i, ni, Ci) Number Factor
of Points i
(Wi)
1 1 1
125
+ 3 , + 3 , + 3 8 _—
5 5 5 729
200
0,3, 12 729
27 320
3
+ |2 6 759
0,0, —\ﬂ 729
0,0, 0 1 512
729

Where -1<&<1,-1<np<1,and -1 <C<1

A.5. Integration Points for Wedge Element

Table A-5 Integration Point Scheme for Wedge Element

Total Number ) o Weight
i Location (§i, ni, Ci)  Number Factor
of Points (
(Wi)
1 1 1 1 1
2 33 g,i—3 2 -
11 4 3 5
9 g,g,g,i z 6 =
11 4 8
575’5 "0 3 o
11 4 3 1
g,g,g,i : 6 -
s :
18
210+ 2 6 N
2727 7775 108
2,2,0,0 3 2
2.2 135
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Where0<é<1,0<n<1l,and0<C<1

A.6. Integration Points for Tetrahedral Element

Table A-6 Integration Point Scheme for Tetrahedral Element

Total Number Location Numb Weight Factor
of Points (&, i, Ci, 1-€i-ni-Ci) umber (Wi)
! Ot ! :
4 5-V5 5-V5 5-V5 543V 4 E
20 20 20 20 24
1111 ) 16
4’ 4’ 4’ a4 810
7-vV15 7-y15 7-15 13+3V15 4 2665+14v15
34 ' 34’ 34 '’ 34 226800
15 7-V15 7-V15 7-V15 13+3V15 4 2665-1415
34 ' 34 ' 34’ 34 226800
10-2V15 10-2V15 10+2V15 10+2V15 6 _20
40 ' 40 ' 40 ' 40 2268

Where0<¢<1,0<np<1,and 0 < C<l1
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APPENDIX B

INPUT FORMAT OF PANTHALASSA

<ptlx version="8" solution_space="000111">
<MaterialModel id="1" plugin="linear _material" E="33000000" Mu="0.2" conductivity_x="1.5"
conductivity_y="1.5" conductivity_z="1.5" specific_heat="1000.0" convection_coeff="15.0"
density="2400.0" thermal_expansion="0.00001" Sy="0.0" Et="0.0"/>
<Process rank="all">
<Structure id="0">
<Nodes>
<Node id="1" x="0.0" y="0.0" z="0.0"/>
<Node id="2" x="0.5" y="0.0" z="0.0"/>
<Node id="3" x="1.0" y="0.0" z="0.0"/>
<Node id="4" x="1.5" y="0.0" z="0.0"/>
<Node id="5" x="2.0" y="0.0" z="0.0"/>
<Node id="6" x="2.5" y="0.0" z="0.0"/>
<Node id="7" x="3.0" y="0.0" z="0.0"/>
<Node id="8" x="3.5" y="0.0" z="0.0"/>

</Nodes>

<Elements plugin="Brick8" material="1">
<Element id="1" nodes="1,42,43,2,3978,4019,4020,3979"/>
<Element id="2" nodes="2,43,44,3,3979,4020,4021,3980"/>
<Element id="3" nodes="3,44,45,4,3980,4021,4022,3981" />
<Element id="4" nodes="4,45,46,5,3981,4022,4023,3982" />

</Elements>

<LoadingCondition id="1">
<l-- Restraints -->

<NodeLoad id="1" type="Restraint"
nodes="31844,31845,31846,31847,31872" dimensions="000111">

</NodeLoad>
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dimensions="000001">

<!-- Initial Temperatures -->

<NodeLoad id="2" type="Temperature" nodes=" 1, 2, 3, 4, 5"

<Step magnitude="287.15" time="0.000000">
</Step>

</NodeLoad>

<!-- Top Surface Convection -->

<ElementLoad id="1" type="HeatConvection" elements="3841, 3842"

dimensions="000001" matrix_dim="1,5">

time="0.000000"/>

time="3891.024000"/>

time="3891.024000"/>

<Step  magnitude="[5 6 7 8  298.139500;]"

<Step magnitude="[5 6 7 8 298.139500;]"

<Step magnitude="[5 6 7 8 298.013200;]"

</ElementLoad>

</LoadingCondition>

<LoadCombo id="1">
<LoadingCondition id="1" multiplier="1.0">
</LoadingCondition>

</LoadCombo>

</Structure>

</Process>

<Analyzer force_create_temperature="true">

<TimeTable start_time="0.000000">

<TimeLine sithe="85860.50000" delta="400.00000">

</TimeLine>

</TimeTable>

<!-- Transient Heat Transfer (O - 5 hours) -->

<Algorithm id="1" plugin="heat_transfer" analysis_type="transient explicit_parallel"

start_time="0.000000"

end_time="18000.000000" structure="0" loadcombo="1"

OutputFolder="d:\ \utku\ \Output) \case_study) \Brick8_21580_Adana_parking">
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</Algorithm>
<l-- Linear Static (@ 5th hour) -->

<Algorithm id="2" plugin="mumps_linear_static" apply_temp_loads="true"
start_time="18000.000000" end_time="18000.000000" structure="0" loadcombo="1">

</Algorithm>

<l-- Transient Heat Transfer (5 - 12 hours) -->

<Algorithm id="3" plugin="heat_transfer" analysis_type="transient_explicit_parallel"
is_continue="true" previous_id="1" start_time="18000.0001000" end_time="43200.000000" structure="0"
loadcombo="1" OutputFolder="d:\ \utku\ \Output)\\case_study)\ \Brick8_21580_Adana_parking">

</Algorithm>

<!-- Linear Static (@ 12th hour) -->

<Algorithm id="4" plugin="mumps_linear_static" apply_temp_loads="true"
start_time="43200.0000000" end_time="43200.000000" structure="0" loadcombo="1">

</Algorithm>

<Tracker id="1" plugin="nodal"
output_file="d:\utku\Output\case_study\Brick8_21580_office_Output.nodal" nodes="1">

<TimeTable start_time="0.0">
<TimeLine sithe="1.0" delta="1.0">
</TimeLine>
</TimeTable>
</Tracker>

</Analyzer>

</ptlx
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APPENDIX C

OUTPUT FORMAT OF PANTHALASSA

<VTKFile type="UnstructuredGrid" version="0.10000000000000001" byte_order="LittleEndian">
<UnstructuredGrid>
<Piece NumberOfPoints="35595" NumberOfCells="21580">
<PointData>
<DataArray Name="displacement" type="Float32" format="ascii"
NumberOfComponents="6">0.000163634 9.48534e-005 -2.785e-005 0 0 0 0.000169823 6.49232e-005 -
6.46195e-006 0 0 O </DataArray>

<DataArray Name="temperature" type="Float32" format="ascii"
NumberOfComponents="1">0.222224 0.221567 </DataArray>

<DataArray Name="avg_stress_at_nodes" type="Float32"
format="ascii" NumberOfComponents="6">183126 232641 -992720 88564.5 -461962 -393456 429308
194578 59900.4 17884.4 -258331 -222645 </DataArray>

</PointData>
<CellData/>
<Points>
<DataArray Name="" type="Float32" format="ascii"
NumberOfComponents="3">0 0 0 0.5 0 O </DataArray>
</Points>
<Cells>
<DataArray = Name="connectivity" type="Int32" format="ascii"

NumberOfComponents="1">0 41 42 1 3977 4018 4019 3978 1 42 43 2 3978 4019 4020 3979
</DataArray>

<DataArray Name="offsets" type="Int32" format="ascii"
NumberOfComponents="1">8 16 </DataArray>

<DataArray Name="types" type="UInt8" format="ascii"
NumberOfComponents="1">12 12 </DataArray>

</Cells>
</Piece>
</UnstructuredGrid>

</VTKFile>
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