
 

 
IMPLEMENTATION OF COUPLED THERMAL AND STRUCTURAL ANALYSIS 

METHODS FOR REINFORCED CONCRETE STRUCTURES 

 

 

 

 
 

 

 

 

 
 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 
 

 

 

 

BY 
 

 

 

 

 

UTKU ALBOSTAN 
 

 

 

 

 
 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER SCIENCE 
IN  

CIVIL ENGINEERING  

 

 

 

 
 

 

 

 

JANUARY 2013 

 





 

 
Approval of the thesis: 

 

IMPLEMENTATION OF COUPLED THERMAL AND STRUCTURAL ANALYSIS 

METHODS FOR REINFORCED CONCRETE STRUCTURES 

 

submitted by UTKU ALBOSTAN in partial fulfillment of the requirements for the 
degree of Master of Science in Civil Engineering Department, Middle East 

Technical University by,   

 

 

Prof. Dr. Canan Özgen                                                                                    

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. Ahmet Cevdet Yalçıner 

Head of Department, Civil Engineering 

 

Assoc. Prof. Dr. Özgür Kurç 

Supervisor, Civil Engineering Dept., METU 

 
 

 

Examining Committee Members: 

 

 
Prof. Dr. Ahmet Yakut 

Civil Engineering Dept., METU 

 

Assoc. Prof. Dr. Özgür Kurç 

Civil Engineering Dept., METU 

 

Prof. Dr. Barış Binici 

Civil Engineering Dept., METU 

 

Assoc. Prof. Dr. Yalın Arıcı 

Civil Engineering Dept., METU 

 

Assoc. Prof. Dr. Görkem Külah 

Chemical Engineering Dept., METU 

 

DATE: 

 



 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

 

Name, Last name : UTKU ALBOSTAN 

 Signature       :                               



 

 

iv 

 

 

 
ABSTRACT 
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METHODS FOR REINFORCED CONCRETE STRUCTURES 

 

Albostan, Utku 
M.S, Department of Civil Engineering 

Supervisor : Assoc. Prof. Dr. Özgür Kurç 

January 2013, 105 pages 

 

 

Temperature gradient causes volume change (elongation/shortening) in concrete 

structures. If the movement of the structure is restrained, significant stresses may 

occur on the structure. These stresses may be so significant that they can cause 

considerable cracking at structural components of large concrete structures. Thus, 
during the design of a concrete structure, the actual temperature gradient in the 

structure should be obtained in order to compute the stress distribution on the 

structure due to thermal effects. This study focuses on the implementation of a 

solution procedure for coupled thermal and structural analysis with finite element 

method for such structures. For this purpose, first transient heat transfer analysis 
algorithm is implemented to compute the thermal gradient occurring inside the 

concrete structures. Then, the output of the thermal analysis is combined with the 

linear static solution algorithm to compute stresses due to temperature gradient. 

Several, 2D and 3D, finite elements having both structural and thermal analysis 

capabilities are developed. The performances of each finite element are investigated. 

As a case study, the top floor of two L-shaped reinforced concrete parking structure 
and office building are analyzed. Both structures are subjected to heat convection 

at top face of the slabs as ambient condition. The bottom face of the slab of the 

parking structure has the same thermal conditions as the top face whereas in the 

office building the temperature inside the building is fixed to 20 degrees. The 

differences in the stress distribution of the slabs and the internal forces of the 

vertical structural members are discussed. 

 

Keywords: Finite Element, Heat Transfer Analysis, Coupled Analysis, Thermal 

Gradient, Reinforced Concrete Structure. 
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ÖZ 

 

 

 

BETONARME YAPILAR İÇİN ISI İLETİMİ VE YAPISAL ÇÖZÜMLEME METOTLARI 

KULLANILARAK İKİLİ ÇÖZÜMLEME YÖNTEMİNİN GELİŞTİRİLMESİ 

 

Albostan, Utku 
Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi : Doç. Dr. Özgür Kurç 

Ocak 2013, 105 sayfa 

 

 

Betonarme yapılarda sıcaklık değişimi hacim değişikliğine (genleşme/büzülme) 

sebep olmaktadır. Eğer yapının eksenel yöndeki deformasyonu engellenirse yapı 

üzerinde ciddi mertebede gerilmelerin oluştuğu görülmektedir. Bu yüksek 

gerilmeler büyük betonarme yapılarda kırılma veya çatlamalara sebep 
olabilmektedir. Bu nedenle betonarme yapıların tasarımı sırasında, yapısal 

elemanlarda sıcaklık farklılıkları nedeniyle oluşan gerilme miktarlarının 

hesaplanabilmesi için, elemanlardaki sıcaklık dağılımı dikkate alınmalıdır. Bu 

çalışma betonarme yapıların sonlu elemanlar yöntemi ile geliştirilmiş ısı iletimi ve 

yapısal çözümleme yöntemleri ile ikili olarak çözümlenmesini incelemektedir. Bu 
amaçla ilk olarak zamana bağlı ısı iletimi çözümlemesi yapılarak betonarme 

elemanların içerisinde oluşan sıcaklık dağılımı elde edilmiştir. Sonrasında bu 

sıcaklık değerleri kullanılarak sistem yapısal olarak çözümlenmiş ve yapıdaki 

gerilme değerleri hesaplanmıştır. Bu çözümleme uygulamasında kullanılmak üzere 

2 ve 3 boyutlu çeşitli sonlu elemanlar geliştirilmiştir. Bu elemanlar hem ısı iletimi 

hem de yapısal çözümlemelerde kullanılabilecek şekilde geliştirilmiş ve doğrulama 
testleri yapılmıştır. Test problemi olarak L şeklindeki betonarme park yeri yapısı ile 

ofis binasının en üst katları çözümlenmiştir. Her iki yapının çatı döşemesinin üst 

yüzeyine ısı konveksiyonu uygulanmıştır. Park yeri binasının çatı döşemesinin alt 

yüzeyine de üst yüzeye uygulanan ısı yükü aynen etki ettirilirken ofis binasının iç 

sıcaklığı 20 derecede sabit tutulmuştur. Her iki yapıda sıcaklık yükleri nedeniyle 
çatı döşemelerinde oluşan gerilmeler ve düşey elemanlarda oluşan iç kuvvetler 

karşılaştırılmıştır. 

 

Anahtar Kelimeler: Sonlu Eleman, Isı İletimi Çözümlemesi, İkili Çözümleme, 

Sıcaklık Değişimi, Betonarme Yapılar. 
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  CHAPTER 1
 

 

INTRODUCTION 

 

 

 
1.1. Problem Definition  

 

Concrete is a composite material used commonly for any type of structures such as 

buildings, dams, pipes, roads, etc. due to its advantageous properties. In fact, its 

higher strength in compression, workability and being cheaper than the other 

construction materials are the reasons why concrete is the main construction 

material all over the world. 

Concrete structures generally show volume change under four different time 
dependent effects; elastic deformation, creep, shrinkage and temperature change. 

Creep and shrinkage effects occur due to time dependent changes in the material 

properties. Indeed, creep mechanism is related to change of elastic properties of 

concrete with respect to time. In addition, temperature change, moisture content, 

humidity and stresses on the structure affect the mechanism of the creep. 
Similarly, shrinkage mechanism depends on moisture content and time. Unlike 

creep, it is independent of stress on the structure. Axial deformations due to 

temperature changes may cause significant stresses in structures with high degree 

of indeterminacy. 

PTI, Post Tension Institute presents that according to ACI Committee 318, during 
the design of reinforced concrete structures, the aforementioned time dependent 

effects should be considered in serviceability and strength conditions. It also 

requires that these effects should be taken into account as reliable with the 

practical applications; accordingly, instead of upper bound values, more realistic 

conditions should be utilized. Current design approaches, however, use very simple 

assumptions and simple analysis methods for the consideration of time dependent 
axial deformations of concrete structures which may lead to excessive use of 

construction materials. Among the aforementioned time dependent effects, 

determination of maximum and minimum temperature gradient that can occur in 

the concrete structural components is always the problematic one. The common 

engineering approach is to use the yearly weather temperature information and 
come up with design temperature difference values. Unfortunately, this approach 

ignores the environmental conditions and heat transfer properties of concrete 

which might produce unrealistic design forces and stresses.  

Change in temperature causes volume change (elongation/shortening) of the 

unrestrained structures without any stress if nonlinear thermal gradient is ignored. 

On restrained structures, however, stresses are generated due to the temperature 
gradient. Indeed, inability of thermal expansion/shortening causes stress on the 

body. Effects of temperature gradient depend on the volume of a structural 

component. For structural components with relatively small volumes such as 

columns, temperature change effects can be neglected. On the other hand, 

temperature gradient induces significant amount of stress on components with 
large volumes such as slab systems. For such components’ thermal stresses can 

cause significant cracking if necessary precautions are not taken.  
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Since concrete has low conductivity, temperature gradient occurs among the depth 

of the structure. This temperature gradient induces uneven stress distribution 
along the thickness of the structure. In addition, having high heat capacitance 

causes the change of the heat energy in the concrete structure slowly. In other 

words, the energy coming from the ambient conditions such as convection or 

radiation does not affect the inside of the section immediately. Therefore, warming 

and cooling of concrete structures occurs slowly and thus the temperature gradient 

of the concrete is not same with the temperature gradient of ambient. In order to 
consider these properties of concrete structures, more detailed solution procedures 

are required. 

In this study, coupled, heat transfer and structural analyses, solution methods will 

be developed by utilizing finite element method. This way, thermal behavior of the 

reinforced concrete structure will be solved by considering the environmental 
thermal effects and actual temperature gradient in components of the structure will 

be obtained. Then, thermal strains due to thermal gradient will be computed and 

the structural solution will be performed. Accordingly, more realistic stress 

distribution and internal forces due to thermal gradient will be obtained. 

 

1.2. Related Work 

According to PTI, structures having large plans with short floor to floor distance 

such as parking structures are subjected to four different types of shortening. 

These are shortenings in post-tension slabs, creep, shrinkage and temperature 

change. In order to examine the effects of these four mechanisms, PTI analytically 
examined the floor shortening of a parking garage in Houston, Texas. According to 

the results of the example, the largest shortening occurs due to shrinkage with the 

percentage of 55%. Temperature change is the second largest shortening 

mechanism whose percentage is 27.7%. The percentages of elastic and creep 

shortenings are 8% and 9.3%, respectively.  These results show that temperature 
change should not be ignored for designing of expansion joints for parking 

structures (PTI).  

When a reinforced concrete structure is subjected to thermal loads due to 

temperature gradient, stress occurs on the structure if thermal expansion of the 

structure is restrained (Vecchio, 1987). Such stresses may cause cracking of the 

body. There are several techniques for represent the actual behavior of concrete 
structures under thermal loading. Temperature strains are calculated by 

multiplying thermal coefficient of concrete with temperature change values being 

maximum seasonal temperature changes for that location (PTI). This way, no 

temperature gradient through section thickness is taken into account. 

Iqbal (2012) stated that most parking structures are concrete, open and unheated 
structures. Accordingly, creep, shrinkage and temperature affect such structures 

by changing volume. These effects induce displacements in structures. If these 

displacements are restrained, additional stresses occurs in the structure that cause 

crack, leaks and premature deterioration in the structure.  

According to Iqbal (2012), in general, the duration of construction of such 

structures is more than one year. In order to simplify the determination of the 
construction temperature, Tc, mean value of the construction season is utilized. It 

was stated that minimum temperature, Tmin is defined by Federal Construction 

Council (Technical Report No 65) as the equal or greater than the 99% of the 
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temperature of winter months at that location. Accordingly, design temperature is 

calculated by utilizing the Equation 1-1. 

                                             (1-1) 

According to Saetta et al. (n.d.), for structures having large concrete bodies such as 

bridges or dams, temperature gradient occurs due to thermal loads; nevertheless, 

the difficulties of modeling the actual environmental conditions force designers to 

utilize simplified methods. This causes unreliable results. Accordingly, for analyzing 
such structures under thermal loads, temperature gradient occurring inside the 

concrete structure should be taken into account. For linear stress calculations, 

they followed three assumptions. First assumption is that heat transfer and 

structural analysis are performed independently (coupled analysis in weak form). 

The second one is utilizing small displacements and strains. Finally, linear elastic 

material properties are considered only. 

By utilizing these three assumptions, Saetta et al. (n.d.) analyzed the Sa Stria dam, 
built in Sardegna (Italy) and a box girder bridge section subjected to climatic 

conditions of northern Italy. These structures were analyzed by utilizing coupled 

analysis in weak form. First, Sa Stria dam is a roller compacted concrete dam. They 

performed transient heat transfer solution to the dam by utilizing heat of hydration 
and heat convection conditions. This way, they obtained temperature gradient 

occurring in the dam body at several days. Then, they performed linear static 

analysis in order to obtain stresses on the dam body due to the temperature 

gradient. According to the results, tensile stress occurred near the edges where the 

temperature was lower; whereas, at core of the dam, compressive stress generated. 

Similarly, Saetta et al. (n.d.) analyzed a box girder bridge section by utilizing actual 
thermal conditions such as heat convection, heat radiation etc. They applied 

coupled analysis in weak form and obtained temperature gradient and related 

stress and force distribution. According to the results, the maximum stress 

occurred in wings of the section. Accordingly, they indicated that if those regions 

are not designed properly, cracking may occur due to temperature gradient.    

Vecchio stated that for continuous structures, thermal stress can be divided into 
two parts, primary and secondary thermal stresses (1987). Primary thermal 

stresses occur on unrestrained structures due to nonlinear thermal gradient 

through thickness. Indeed, since the thermal expansion coefficients of concrete and 

reinforcing bars are not same, internal restriction occurs between concrete and 

bars. Accordingly, internal stresses occur although the thermal expansion of the 
structure is not restrained. On the other hand, secondary thermal stresses generate 

on restrained structures. According to Vecchio (1987), the secondary thermal 

stresses are more critical than the first one. 

Vecchio presented nonlinear frame analysis procedure for solution of reinforced 

concrete frames under thermal loading. The general solution procedure is the same 
with the most of the linear elastic frame analysis programs. On the other hand, this 

procedure provides to apply more factors such as nonlinear material, nonlinear 

thermal gradient, thermal creep, time history etc. Indeed, he added the effects of 

elevated temperatures to the physical and material properties such as strength or 

stiffness etc. He also implemented nonlinear temperature gradient through 

reinforced concrete section. He utilized the standard one dimensional heat transfer 
principals and he calculated the temperature values at any depth through 

thickness of the structure. Vecchio compared the performance of the solution 

procedure with the experimental results and obtained fair accuracy (1987).  
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In another paper, Vecchio et al. (1992) stated that reinforced concrete structures 

are subjected to thermal loads such as design function of the structure, ambient 
conditions, heat of hydration or fire. These loadings cause nonlinear temperature 

and strain profiles which produce increased level of stress, distortion and damage 

(i.e. primary thermal stresses). In addition to the primary thermal stresses, thermal 

loads induce restrained structural deformation (i.e. secondary thermal stresses). it 

was stated that second thermal stresses are more significant.  

Vecchio et al. (1992) also stated that ACI Committee 349 includes less computation 
about the analysis of concrete structures under thermal load and this solution 

technique does not represent the actual behavior. In order to investigate the 

behavior of concrete shell structures under thermal load, they performed two tests. 

First, they tested concrete slab under both thermal and mechanical loadings. The 

slab was simply supported at each corner and concentrated load was applied to the 
center of the slab. In addition to mechanical load, the slab was subjected to heat at 

the top surface; whereas, temperature of bottom face was kept close to room 

temperature. Accordingly, temperature gradient was through the thickness. This 

test was repeated for different reinforcement ratios and orientations. The 

displacements at the center of the slab were compared with the analytical 

solutions. They computed analytical solution by utilizing the Equation 1-2. 

   
      

  
                  (1-2) 

In Equation 1-2, Δc, h, l, 𝛼c, ΔT are deflection at center of slab, thickness of slab, 

length of slab span, thermal expansion coefficient and temperature gradient, 

respectively. Since the slab was simply supported, no external stress due to 

thermal loading was expected. On the other hand, since reinforcement and concrete 
have different thermal coefficients, reinforcing bars restrained the slab; accordingly, 

internal stresses occurred in the slab body. In other words, nonlinear thermal 

gradient occurred. They, however, indicated that the effects of primary thermal 

stresses are negligible and no crack was occurred at the specimen during these 

tests. 

Second, Vecchio et al. (1992) tested the same specimen under thermal load by 
restraining the center along thickness direction. This restriction caused stresses 

and related cracks on the slab. According to test results, internal forces increased 

up to occurring of first crack. This crack causes reduce in stiffness; accordingly, 

immediate relaxation occurred.  

Chou and Cheng (n.d.) presented the study of measuring joint movements and 
seasonal thermal stresses of concrete slab located at the Chiang Kai-Shek 

international airport. They used optical fiber sensors to measure the joint 

displacements due to seasonal temperature change. These sensors were located at 

the middle layer of the slab through thickness and for approximately one year, 

displacements and temperature values had been stored. Since the sensors received 

temperature of only middle point layer, stresses on the slab were calculated with 
the assumption of constant temperature change along the thickness. They 

calculated stresses by considering the shrinkage mechanism also. According to 

their results, tensile stress will occur on concrete slab most of the time due to 

temperature changes if the casting of it is performed in hot temperatures. In 

addition to this, they made predictions about the future movement and thermal 

stresses by utilizing regression analysis. 
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According to Li et al. (2009), concrete slab bends if it is subjected to negative 

temperature gradient through thickness. This bending causes tensile stress at top 
layer of the slab. Although the maximum tensile stress is expected at the bottom 

layer of the slab, due to negative temperature gradient, it can occur at top layer. 

Accordingly, first cracking occurs at top layer. Because of this, they solved the 

system by acting the thermal and axle load together.  

Li et al. (2009) utilized linear temperature gradient through thickness of the slab 

and solved the slab by considering each combination of axle load. This solution was 
performed by utilizing finite element method (FEM). According to their study, the 

maximum tensile stress occurred at top layer of the slab. This causes cracking from 

top to bottom; although, the designers in China expected cracks from bottom to 

top. On the other hand, these results are obtained from a structural model 

composed of a single slab. Behavior of an indeterminate system was not considered. 

Thelandersson stated that thermal loading can be added to the mechanical analysis 
as initial strain for both linear and nonlinear solutions (1987). According to 

Thelandersson, this approach was developed for metals; whereas, for concrete, the 

mechanism is more complex than stated above because mechanical properties 

depend on temperature. Accordingly, Thelandersson stated change of strain by 

utilizing the Equation 1-3. 

  ̇   
 

 
 ̇      

   

 
 ̇    (𝛼       )           ̇             (1-3) 

Where 

   
 

  
( 

 

 
)                  (1-4) 

   
 

  
(
   

 
)                  (1-5) 

 1 and  2 represent change of elastic properties of concrete with respect to 

temperature and if these elastic properties are independent of temperature, 

isotropic linear thermo-elastic material behavior is obtained (Thelandersson, 1987). 

Thelandersson developed constitutive material model including the derivatives of 
elastic properties and verified the method with experimental results. According to 

the results, this tangent modulus gives reliable results; although, it is simple. 

Borst and Peters presented the material behavior of concrete under elevated 

temperatures (1988). Indeed, they indicated that concrete behaves nonlinear under 

elevated temperature due to thermal dilatation, temperature dependent material 

properties, transient creep, and cracking. Transient creep mechanism includes 
both thermal expansion with thermal expansion coefficient whose function is 

nonlinear of the temperature and change of elastic properties of the material such 

as Modulus of elasticity etc. 

According to Borst and Peters (1988), large scale structures should be solved by 

utilizing smeared crack formulation. Otherwise, reliable results are not obtained. 
However, derivation of the material behavior composed of smeared crack and other 

nonlinear mechanisms stated above is not appropriate. Accordingly, they utilized 

strain decomposition approach to handle this problem. Indeed, they used separate 

constitutive law for each strain rate. They simulated the test of plain concrete 

cylinders. They stated that this test was conducted by Anderberg and 

Thelandersson (1978) in order to discover the mechanical behavior under high 



 

 
6 

 

temperatures. This simulation reveals that analysis of concrete structure does not 

represent the actual behavior if transient creep is not taken into account. 

 

1.3. Objectives and Scopes 

The main objective of this study is the development of finite element solution 

platform that enables the coupled, thermal and structural, analysis of civil 

engineering structures. This allows the detailed investigation of stress caused by 

thermal effects in any structure of any geometry. 

For this purpose, linear heat transfer and linear structural analysis solution 

algorithms are combined as weak form of coupled analysis. Since for structural 
solutions, no significant geometry change is generated, thermoelastic property of 

the material may be ignored. Accordingly, weak form of coupled analysis is 

preferred. In other words, linear heat transfer analysis and linear structural 

analysis are performed in sequential order. Heat transfer analysis computes 

temperature values of certain locations at a body for a certain time period and 
structural analysis uses these temperature values for calculating the thermal 

strains. These thermal strains are then converted to equivalent nodal forces and 

the corresponding deformations are computed.  

In addition, several types of 2D and 3D finite elements will be developed. This way, 

structures with complex geometries can also be analyzed. Each element will include 

both structural analysis and heat transfer solution related algorithms. Moreover the 
performance of each element for both cases for several benchmark problems will be 

investigated.  

By utilizing the developed solution algorithms, the top floor of a typical L-shaped 

building will be analyzed as a case study. Indeed, the building will be solved twice 

with different thermal conditions. First, it will be analyzed as a parking structure 
being open and subjected to ambient temperature conditions only. For the second 

case, the same building will be analyzed as an office building thus the internal 

temperature of the building will be fixed to 20OC. Both structures will be subjected 

to heat convection with ambient temperature of Adana at July 23rd (Bulut et al., 

n.d.) but the heat radiation effect will be ignored. Also, heat convection occurring 

on the columns and walls are neglected. Casting temperature of the structure is 
assumed to be equal to 14OC and temperature gradient of slab through thickness 

for only one day will be investigated. For several hours of that day, stresses on the 

slab due to temperature gradient at that time will be calculated and compared with 

each other.  

For both the heat transfer and structural analyses, all material properties will be 
assumed as linear. In other words, effects of nonlinear stress - strain relationship, 

nonlinear temperature gradient, transient creep, and shrinkage will be ignored. 

Only stresses generated due to temperature change will be discussed. 

  

1.4. Thesis Outline 

Outline of the thesis is as follows. Theory of solution methods of solid mechanics 

and heat transfer and finite element procedures are discussed in Chapter 2. All 

implementations are presented in Chapter 3. In this chapter, structures of solution 
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algorithms, linear structural and linear heat transfer analysis and coupled system 

are presented. In addition, finite elements existing in finite element library of the 
platform and their basic properties are explained. Chapter 4 includes verification of 

the solution algorithms and finite elements stated in Chapter 3. Behaviors of L-

shaped concrete structures under different thermal loads are going to be discussed 

in Chapter 5. Indeed, parking and office structures having same geometry and 

different thermal loading conditions are compared. Finally, Chapter 6 is conclusion 

part of the thesis. In addition to these, properties of integration points used for 

calculation of integrals numerically are tabulated in the appendices. 
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  CHAPTER 2

 

 

THEORY 

 

 
 

2.1. Introduction 

In this chapter, theories used for this study are explained. Theory of solution 

algorithms, structural, heat transfer and coupled analysis equations and finite 

element method are discussed. Indeed, general equations of each solution method, 
structural analysis and heat transfer, and adapting them to finite element method 

are explained briefly. Moreover, theory of the coupled analysis procedure derived by 

utilizing these heat transfer and structural analysis solution is discussed.  

 

2.2. Structural Analysis 

Structural analysis solution is derived from principals of thermodynamics with the 

assumption of having uniform and constant temperature distribution over the 

body. The strong form of general mechanical equation second order differential 

equation is presented in Equation 2-1. 

  ̈                            (2-1) 

In Equation 2-1, ρ, C, b, and u indicate density, constitutive material matrix, body 

load and displacement, respectively.  This equation can be rewritten in Galerkin 
functional form by using integration by parts and Gauss integral theorems 

(Equation 2-2). 

  (     )  ∫      ̈
 

 
   ∫    (    )  

 

 
   ∫          

 
   ∫    

 

 
            (2-2) 

In Equation 2-2,  u represent test function and it is zero at boundary. According to 

finite element discretization yields the following expressions. 

                    ̈    ̈ 

                         ̈     ̈                   (2-3) 

In Equations 2-3, d represents the element displacement vector and N is shape 

function. Inserting definitions (Equation 2-3) into the Galerkin functional yields to 

the Equation 2-4. 

∫          ̈
 

 
   ∫         

 

 
   ∫             

 
   ∫       

 
            (2-4) 

By rearranging the Equation 2-4, Equation 2-5 is obtained. 

∑            
   (∫       ̈

 

 
   ∫      

 

 
   ∫          

 
   ∫    

 
     )        (2-5) 

Equation 2-5 may be stated in terms of internal and external forces (Equation 2-6). 
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∑            
   (         )     

     ∫       ̈
 

 
   ∫          

 
    

     ∫      
 

 
   ∫    

 
                             (2-6) 

For arbitrary test function    the following equation (Equation 2-7) should be 

satisfied. 

                           (2-7) 

The equation 2-6 implies that internal forces are function of nodal displacements, 

d. 

         ̂( )                            (2-8) 

Therefore, internal forces may be expressed in matrix form (Equation 2-9).  

        ̈                    

   ∫      
 

 
    

   ∫        

 
                   (2-9) 

   and    stated in Equation 2-9 are element mass and stiffness matrices, 
respectively. In Equation 2-9, strain-displacement relation matrix is indicated with 

letter B and calculated from Equation 2-10. 

   

[
 
 
 
 
   

  
 

   

  
   

  
 

   

  

   

  
 

   

  ]
 
 
 
 

                 (2-10) 

Equation 2-10 is valid for 3D finite elements; whereas, B matrix of a 2D element 
has two rows. In other words, it includes derivative of shape functions with respect 
to two axes. In this equation, number of shape functions indicated with letter of m. 

Matrix form of general structural analysis equation (Equation 2-2) is presented in 

Equation 2-11. 

  ̈                      (2-11) 

In Equation 2-11, M, K, F and d are mass and stiffness matrices and external force 

and displacement vectors, respectively. For linear static solution, time derivative of 

the displacement is zero. Accordingly, Equation 2-11 is simplified and general 

linear static equation (Equation 2-12) is obtained. 

                     (2-12) 

In the Equation 2-12, since the system is linear, stiffness matrix is computed by 

using initial geometry and linear material properties. The external force vector can 

be calculated as Equation 2-13. 

                                 (2-13) 
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External force vector can be divided into two parts, nodal loads and element loads 

(Equation 2-13). Nodal loads come from input directly. On the other hand, element 
loads are calculated by using the element geometry and material properties and 

converted to equivalent nodal loads. There are four different types of element loads; 

body load, surface load, thermal load, initial strain load presented in Equations 2-

14 to 2-17, respectively.  

              ∫      
 

 
               (2-14) 

          ∫         
  

 
                 (2-15) 

          ∫    (    )  
 

 
               (2-16) 

            ∫               
 

 
               (2-17) 

In Equations 2-14 to 2-17, W, Δt, a and ε represent uniform surface load, 

temperature change, thermal coefficient and strain vector, respectively.  

In Equation 2-16, thermal load due to constant temperature change over body is 
calculated. Whereas, since in coupled analysis, nodal temperature change values 

are obtained from heat transfer solution, modification of calculation of thermal load 

is required. In fact, thermal strains and corresponding stresses due to temperature 

change at each nodal point are calculated (Equations 2-18 and 2-19). Then, these 
nodal stress values contribute to calculation of equivalent nodal load with the rate 

of weight value of the corresponding integration points. Numerical integration of 

calculation of equivalent load vector is presented in Equation 2-20.  

                                            (2-18) 

                       (2-19) 

            ∑   
   |  |  

 
                 (2-20) 

In equations 2-18 to 2-20, σ and w are stress vector and weight value of the 

integration point scheme. 

Each integral is handled numerically by utilizing Gauss Quadrature rule. Some 

integration point schemes cause problematic element behaviors such as shear/ 

membrane locking or hourglassing modes etc. First, shear/membrane locking 

occurs in linear elements if full integration scheme is utilized (Dhondt, 2004). As a 
matter of fact, under pure bending load case, there is no shear strain in the body 

since no shear force exists. However, if full integration scheme is used, virtual 

shear strains occur at gauss points existence of shear strain makes the behavior 

stiffer. On the other hand, utilizing reduced integration scheme hinders generation 

of shear locking since virtual shear strain does not occur at center of the element.  

The other problematic behavior is hourglassing mode called also zero energy mode. 
It occurs if displacement modes of element do not create any strain and stress at 

the integration points (Dhondt, 2004). Presence of this problematic behavior can be 

checked by using the Equation 2-21 (Dhondt, 2004). 

     (    )  (      )                       (2-21) 
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In Equation 2-21, nZEM, nd, n, nIP, nS, and nRBM represent numbers of zero 

energy modes, degree of freedoms, nodes, integration points, strain components 

and rigid body modes, respectively. As seen in the equation, this problem can be 

handled by increasing the number of integration points.  

 

2.3. Heat Transfer Analysis 

The heat transfer occurs due to energy transfer between material bodies because of 

their temperature difference (Lewis et al., 2004). There are three different ways of 

energy transport: 

 Conduction 

 Convection 

 Radiation 

Conduction  

Conduction mode occurs by transporting energy from one molecule to another 
without any motion of these molecules (Lewis et al., 2004). Therefore, conduction 

mode heat transfer occurs between solid bodies.  

This mode can be explained by Fourier’s law. The transferred energy per unit time 

and per unit area is presented in Equation 2-22. 

     (  )                (2-22) 

In Equation 2-22, q, k, and divergence of   represent heat flux (W/m2), thermal 

conductivity (W/mOK) and temperature gradient (OK/m), respectively.  

Convection 

Convection mode comes into existence by transferring energy from one molecule to 

another with free motion of molecules belonging to liquids or gases (Lewis et al., 

2004). Because of this, heat transfer between a solid and fluid can be described by 

heat convection. There are two types of convection; forced convection and free 
convection. In forced convection, fluid is sent to the solid material with an external 

force such as pump or fan; whereas, there is no external contribution in free 

convection.  

Convection heat transfer can be described by Newton’s law of cooling. The 

transferred energy per unit time can be calculated with Equation 2-23. 

    (    )               (2-23) 

In Equation 2-23, convection heat transfer coefficient (W/m2 OK) and temperature 

difference between body and fluid (OK) are symbolized with h and θ-θa, respectively. 

The direction of heat flux stated in Equation 2-23 is perpendicular to the boundary. 

Radiation 

Lewis et al. states that the radiation occurs in all bodies at all temperature. In fact, 

all bodies transfer their energy by emitting radiation (2004). Because of this, it is 

not required to contact between bodies to change their temperatures. When the 
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radiation waves emitted by a body hit to surface of another body, some of these 

waves are reflected, some part is transmitted, and the remaining part is absorbed 

(Lewis et al., 2004).  

Stefan – Boltzmann law is related with radiative heat transfer mode. The 

transferred energy per unit time is found by Equation 2-24.  

                                       (2-24) 

In Equation 2-24, θ and σ are surface temperature (OK) and Stefan – Boltzmann 

constant (5.669*10-8 W/m2 OK4), respectively. Similar to heat convection, the 

direction of heat flux is perpendicular to the boundary. 

Formulation of Heat Transfer 

Total energy in current direction is calculated by multiplying the flux with the 

perpendicular area (Equation 2-25).  

                     (2-25) 

According to conservation of energy law, energy storage in a system is equal to the 

difference between the inlet energy and outlet energy. Conservation of energy law is 

displayed in Equation 2-26. 

        

  
 

    

  
 

     

  
               (2-26) 

 

Figure 2-1 Control Volume (Lewis et al., 2004) 

In Figure 2-1, control volume of a body and inlet/outlet heat energies are 
represented. The output energies can be redefined by substituting Taylor Series 

expansion without higher terms (Equation 2-27). 

         
   

  
    

         
   

  
    

         
   

  
                 (2-27) 
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Moreover, the heat generation and rate of energy storage of control volume are 

presented in Equations 2-28 and 2-29, respectively. 

                           (2-28) 

 
        

  
    

  

  
                    (2-29) 

In Equation 2-28, G is rate of internal heat generation per unit volume (W/m3). 

Similarly, in Equation 2-29, ρ and cp indicate density and specific heat, 

respectively. Substituting Equations 2-27, 2-28 and 2-29 into conservation of 

energy equation (Equation 2-26) yields the general equation of heat transfer 

(Equation 2-30).  

 
   

  
   

   

  
   

   

  
                       

  

  
           (2-30) 

Simplified form of Equation 2-30 is presented in Equation 2-31. 

                   ̇              (2-31) 

In Equation 2-31, qc, qC, and qr are conduction, convection and heat radiation 

fluxes, respectively. Similar to structural analysis equation, Equation 2-31 can be 
solved by utilizing Galerkin functional. Galerkin functional form of the general heat 

transfer equation is presented in Equation 2-32. 

 (    )   ∫   
 

 
      ∫       

 

 
 ∫       ∫       ̇    

 

 

 

 
           (2-32) 

In Equation 2-32,    is test function which is zero at boundaries and surface flux, 
qs includes both heat convection and heat radiation fluxes. By utilizing integration 

by parts and Gauss integral theory, rearranged form of Equation 2-32 is obtained 

(Equation 2-33). 

 ∫ (    )   
 

 
 ∫        

 

 
 ∫       

 

 
 ∫       

 

 
 ∫      ̇  

 

 
           (2-33) 

Finite element discretization of heat transfer equation yields to the following 

expressions. 

                    ̇    ̇ 

                          ̇     ̇         (2-34) 

In Equations 2-34, T represents the element temperature vector and N is shape 

function of the element. Inserting definitions stated above into the Galerkin 

functional yields to the Equation 2-35. 

∫          
 

 
 ∫       (     )  

 

 
 ∫       (  )   

 

 
 ∫          

 

 
 

∫            ̇  
 

 
                          (2-35) 

Equation 2-35 can be written in matrix form (Equation 2-36). 

   ̇                                    (2-36) 

In Equation 2-36, Ce and Ke are element heat capacitance and thermal stiffness 

matrices and they are presented in Equations 2-37 and 2-38, respectively.  
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   ∫       
 

 
                 (2-37) 

   ∫       

 
   ∫        

 

 
              (2-38) 

In Equation 2-38, stiffness matrix includes conduction and convection modes first 
and second term, respectively. Thermal forces, however, do not depend on element 

temperature vector. It is possible to separate element thermal forces into groups 

such as heat generation, heat convection, heat radiation and surface flux forces 

(Equation 2-39).  

                                                         

                 ∫    

 
       

                 ∫        
 

 
    

                           ∫    (  )  

 
    

              ∫      
 

 
                (2-39) 

In this study, radiation part was ignored; accordingly, there are three different 

thermal loadings, heat generation, heat convection, and surface flux (Equation 2-

39). The direction of surface flux loading is inward to the body. 

There are two boundary conditions of differential equation of heat transfer physic; 
constant nodal temperatures and surface flux. Indeed, constant temperature and 

surface flux are essential and Neuman boundary conditions, respectively (Equation 

2-40). Surface flux boundary condition can include heat convection, heat radiation, 

and external flux. 

 Essential BC:       

 Neuman BC:          (    )                          (2-40) 

 

2.4. Coupled Analysis Methods     

The term coupled analysis refers to the combined analysis of multi-physics 

problems. There are two ways of coupled solution, strong and weak formulation.  

In strong form, different physics analyses are performed at the same time. 

Therefore, each effect of these analysis types is included in solution of the problem. 
Strong form of coupled analysis equation in matrix form is presented in Equation 2-

41.  

[
      

      
] {

  

  
}  {

  

  
}               (2-41) 

In equation stated above, X1 and X2 represent solution vectors of two different 

physics. K and F are stiffness matrix and force vector, respectively. Indeed, first and 

second rows indicate different types of analysis systems. These two analysis 

systems are connected to each other due to K12 and K21 matrices.  
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On the other hand, in weak form of coupled analysis, different physics analyses are 

performed, sequentially. In other words, first one analysis system is performed and 
results of it implemented to the other solution system. Then the second analysis is 

executed. The matrix form of coupled analysis in weak form is presented in 

Equation 2-42. 

 [
    
    

] {
  

  
}  {

  

  
}               (2-42) 

Unlike strong form, off diagonal terms are zero matrices in weak form solution. This 

makes these analysis systems unbounded. However, force vector of second analysis 

system includes not only external load of it but also loads due to solution of first 

equation. This loading is the only connection between these equations. 

Due to having unbounded stiffness matrix, weak form requires less memory during 

execution and implementation of it is easier than the strong form.  
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  CHAPTER 3

 

 

IMPLEMENTATION 

 

 
 

3.1. Introduction 

In this chapter, implementation of solution algorithms and finite elements used for 

this study are discussed. In fact, linear static analysis algorithm, linear heat 

transfer algorithms (steady-state and transient) developed for this study, and 
coupled analysis system obtained by executing heat transfer and structural 

analysis algorithms sequentially, are explained. In fact, procedure of linear static 

and linear steady state algorithms solve linear system of equations. On the other 

hand, time integration schemes are used for solution of transient heat transfer 

algorithm. Finally, for coupled analysis, either steady-state or transient heat 

transfer solution and linear static algorithm are performed, sequentially.  

Moreover, several two and three dimensional finite elements were developed. Each 
element has two formulation types, linear and quadratic and is suitable for two 

different physics problems, structural analysis and heat transfer. In structural 

analysis part, elements have routines required for linear static analysis such as 

calculation of linear stiffness matrix, internal force and element stress vectors. 
Moreover, they have the capability of converting element loads such as body load, 

surface load, temperature differences and initial strain to equivalent nodal loads. In 

addition to structural analysis part, each element has linear heat transfer analysis 

routines such as calculating linear conduction, heat capacitance and various types 

of loading such as heat convection, surface flux, and heat generation.  

 

3.2. Structure of Panthalassa 

For implementation of the new solution algorithms and finite element models, a 

finite element analysis platform, Panthalassa was used (Kurç et al., 2012). 

Panthalassa is an extensible finite element analysis environment which was 
developed by using C++ language with object-oriented data structure (Bahçecioğlu 

et al., 2012). Panthalassa includes an analysis engine that performs data 

input/output, handling of the structural objects, such as finite elements, loading 

definitions etc., and general routines such as matrix assembly, solution etc. the 

design of the engine allows addition of new solution algorithms, material models or 

finite elements externally as plug-in modules. 

In this study, owing to extensibility property of the platform, several two and three 
dimensional finite element models and linear heat transfer solution algorithms were 

developed and added to the platform in the plug-in format. In fact, Panthalassa has 

virtual classes such as element, material model and solution algorithm etc. and 

these virtual classes let user to develop a new class including same properties with 
them and be implemented to the platform in plug-in format (Kurç et al., 2012). 

Because of this, heat transfer analysis plug-in having linear steady-state and 

transient solution algorithms can reach the model properties such as loading and 

boundary conditions from the platform and give the results to it. Similarly, each 
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finite element reaches the geometry and material property of the system and gives 

the element matrices such as stiffness or stress etc. This process is illustrated in 

Figure 3-1. 

 

Engine of 
Panthalassa

Solution 
Algorithm 

Plug-in

Input

Output

Model
 Properties

Analysis
 Results

Finite Element 
Plug-in Element

Properties

Model
Properties

 

Figure 3-1 Connections of Plug-ins with Panthalassa Engine 

 

3.3. Solution Algorithms 

In this section, structure and implementation to the Panthalassa platform of 
solution algorithms, linear static and linear heat transfer (steady-state and 

transient) and coupled analysis with these two solutions are discussed.  

 

3.3.1. Linear Static Analysis 

In the linear static analysis for structural analysis problems, basically the equation 

system presented in Equation 3-1 is formed and solved. For the solution of the 

linear system of equations, LU decomposition method stated in MUMPS library is 

used (Kurç et al. 2012).  

                       (3-1) 

In Equation 3-1, K, F, and U indicate stiffness matrix, nodal force vector, and nodal 

displacement vector, respectively. Nodal force vector includes both external nodal 
load and equivalent nodal loads due to element loads. Equivalent nodal loads of 

each element are computed by the subroutines of the element plug-ins and 

assembled by the subroutines of the solution algorithm plug-in utilizing the service 

routines of the Panthalassa Engine. 
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Figure 3-2 Flow Chart of Linear Static Analysis Algorithm 

In Figure 3-2, flow chart of linear static analysis algorithm is presented. In fact, 
element stiffness matrix and equivalent element nodal load vector are computed by 

each finite element and they are assembled into to the system stiffness matrix and 

system nodal force vector. Such assembly operations are handled by Panthalassa 

routines automatically; whereas, the element loads computations are performed at 
the algorithms of the plug-ins. As the stiffness matrix and the force vector of the 

whole structure are obtained, they are solved by the LU decomposition based solver 

routines of Panthalassa and the nodal displacements are computed. By using the 

element nodal displacements, element stresses and forces are calculated. As a final 

step, nodal displacements and element stresses are written to the output file for 

post processing. 

 

3.3.2. Linear Heat Transfer Analysis 

The basic equation for the general heat transfer problem in matrix form is 

presented in Equation 3-2. 

   ̇        ( )                 (3-2) 

In the above equation, heat capacitance matrix, thermal stiffness matrix, thermal 
load vector, and nodal temperature vector are represented by letters C, Kt, Ft(t), and 

 , respectively.  
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The general heat transfer equation can be solved in two ways. In the first approach, 

called steady-state solution, time derivatives of temperatures are ignored. This way 
the solution of the equation is significantly simplified. This solution way gives the 

final equilibrium condition of the structure under given loads. Therefore, it is not 

possible to obtain time required for equilibrium condition like linear static analysis. 

Since the solution performs only once, duration of solution is not significant. On 

the other hand, linear transient solution uses time integration scheme for solution. 

Since the structure is solved for each time step, it consumes more time than the 
steady state way. However, transient solution calculates the behavior of the 

structure even if equilibrium condition has not been satisfied yet. Since this 

solution needs heat capacitance matrix, C and essential boundary conditions, more 

memory is required. 

Linear Steady-State Analysis 

Steady-state analysis system assumes no change of temperature with respect to 

time. Therefore, Equation 3-2 is simplified and general steady-state heat transfer 
analysis equation is obtained (Equation 3-3). In the linear steady-state analysis 

approach, Kt does not change with respect to temperature values.  

                         (3-3) 

In the computational point of view, steady-state heat transfer analysis equation is 
similar to the linear static analysis equation (Equation 3-1). On the other hand, 

forming the thermal stiffness matrix and thermal load vector is quite different than 

the linear static analysis. First of all, heat stiffness matrix is composed of 

conduction and convection stiffness matrices. Conduction stiffness matrix is 

calculated by using material and geometric properties of the element; whereas, heat 
convection loading on the element influences the convection stiffness matrix in 

addition to the material and geometric properties of the element. Heat convection 

surface load also contributes to nodal load vector with ambient temperature. Flow 

chart of matrix assembly of heat transfer analysis algorithm is shown in Figure 3-3. 

Conduction Stiffness 
Matrix

Convection Stiffness 
Matrix

Heat Stiffness 
Matrix

Geometry of 
Element

Surface Load
(Heat Convection)

Material of Element

Equivalent 
Nodal Load Vector

Ambient 
Temperature

 

Figure 3-3 Flow Chart of Matrix Assembly of Heat Transfer Solution Algorithm  
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Three different boundary conditions, constant temperature, heat convection, and 

surface flux can be described for heat transfer problems. Constant temperature 
condition is defined at nodal points and taken into account as restraints. Whereas, 

heat convection and surface flux conditions need boundary definition. For 

Panthalassa, boundary of an element is defined by giving the element nodal ids of 

that boundary.  

Element loads of heat transfer problems, heat convection, surface flux, and heat 

generation, are handled by element plug-ins and sent to the algorithm plug-in as 
element equivalent nodal load vector. Unlike linear static solution, system load 

vector is composed of only element loads since there is no nodal load definition for 

this type of problems. 

In other words, the general process of the algorithm is similar with the one of linear 

static analysis except the assembly of the system matrices. Flow chart of linear 

steady-state heat transfer solution algorithm is displayed in Figure 3-4.  

Element Thermal Load Vector
(Convection + Surface Flux + Heat Generation)

Element Thermal Stiffness 
Matrix

(Conduction + Convection)

Finite Element

System Thermal 
Stiffness Matrix

Model

System Thermal 
Load Vector

Solution

Output

Assembly

 

Figure 3-4 Flow Chart of Linear Steady-State Analysis Algorithm 

As seen in Figure 3-4, general solution of the steady-state heat transfer algorithm is 
very similar to the one in linear static analysis algorithm. In fact, thermal stiffness 

matrix and nodal load vector of elements are obtained from finite element plug-ins 

and they are assembled into the system stiffness matrix and system load vector, 

respectively. These system matrix and system vector are then solved by using LU 
decomposition method and as a result, nodal temperatures and element fluxes are 
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obtained. Nevertheless, the only difference from linear static analysis algorithm is 

the formation of system thermal stiffness matrix and thermal load vector. In linear 
static analysis algorithm, loadings whether element or nodal has contribution to 

the nodal load vector, only. Whereas nodal load vector includes only element 

loadings. 

Linear Transient Analysis 

The linear transient analysis is performed by utilizing two different time integration 

approaches; implicit and explicit Euler. As a first step, Taylor Series expansion of 

the general heat transfer equation (Equation 3-2) was calculated as shown in 

Equation 3-4.  

  ( )   ( )    ( ) (   )  
   ( )

  
(   )     ∑

 ( )( )

  

 
   (   )            (3-4) 

In Equation 3-4, ignoring the higher order terms yields to Equation 3-5. 

  ( )   ( )    ( ) (   )                (3-5) 

By adapting Equation 3-5 to the general equation of heat transfer, Equation 3-6 is 

obtained.  

             (    )    
̇    (  ̇)                 (3-6) 

In Equation 3-6,  , n, and    indicate nodal temperature vector, number of step, 

and time increment, respectively. Moreover, β is the coefficient used for selecting 

the solution method. In fact, the main point is to decide which slope,     
̇  or   ̇ is 

used. In here, different integration schemes having different slope definition such 

as forward, backward or central difference can be taken into account by changing 

β. In fact, for backward and forward Euler schemes, β is taken as 1 and 0, 

respectively. Backward integration scheme use the time derivation of temperatures 
at current time step. Since, the slope and temperatures at current time step (n) are 

not known, the method is called implicit. Whereas, forward integration scheme is 

called explicit since the slope in previous time step (n-1) is required. Therefore, only 

the temperature values of current time step is unknown. In addition to this, it is 

possible to use any other integration scheme by inserting appropriate coefficient, β.  

Substituting Equation 3-6 into Equation 3-2 gives the following equation. 

   (      )    ̅         (   )                  (3-7) 

In Equation 3-7,  ̅ is total nodal force vector and calculated as stated in Equation 

3-8. 

  ̅  (   )                          (3-8) 

In linear transient heat transfer analysis algorithm, Equation 3-7 is solved. Flow 

chart of linear transient analysis algorithm is presented in Figure 3-5. In addition 

to thermal stiffness and thermal load vector, heat capacitance matrix, C is also 
calculated at the element level and assembled to the system matrices. These system 

matrices and temperature vector in previous time step (n-1) are solved by using 

implicit or explicit Euler integration scheme and temperature vector of the current 

time step (n) is obtained. Temperature vector of previous time step is updated and 
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solution process repeats until the solution time is equal to end time. Nodal 

temperature vectors in any step are saved to the output file of the model. 

Element Heat Load Vector
(Heat Convection + Surface Flux + Heat 

Generation)

Element Heat Stiffness 
Matrix

(Conduction + Convection)

Finite Element

System Heat 
Stiffness Matrix

Model

System Heat Load 
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Solution
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(n+1)

Output

Previous 
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IF
n = 1

IF
n > 1

IF 
time < End time

Updating Variables YES

n: Time step 

Assembly

Element Change of 
Energy Storage 

Matrix

System Change of 
Energy Storage 

Matrix

FinalizeNo

 

Figure 3-5 Flow Chart of Linear Transient Heat Transfer Analysis Algorithm 

As stated above, implicit and explicit time integration schemes use the same 
equation (Equation 3-7) with different β coefficients. Taking β as zero (explicit 

scheme) and lumped heat capacitance matrix, C reduces the computational cost of 

inverse process. Whereas, even if lumped heat capacitance matrix, C is used, 

summation with thermal stiffness matrix damages the lumped property. This 

causes higher computational cost. 

 

3.3.3. Coupled Analysis 

The term coupled analysis refers to the combined analysis of multi-physics 
problems. The combination of different physics equations can be done by utilizing 

either strong or weak forms of the governing differential equations. Matrix form of 

weak form of coupled analysis is shown in Equation 3-9 (ANSYS, 2009). 
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}  {
  

  
}                 (3-9) 

In Equation 3-9, first and second row indicate heat transfer and structural analysis 

solution equations, respectively. Structural force vector,    includes both 
mechanical force and thermal force coming from heat transfer solution. Thus, it is 

required to solve heat transfer and structural analysis equations, sequentially. 

In the weak form, first the analysis of a single physics problem, in this case heat 

transfer analysis, is performed and then the analysis of the second physics problem 

(linear static analysis) is conducted utilizing the output of the first analysis. 

In this implementation, first of all, transient heat transfer analysis is performed 
and nodal temperature values for each time step are calculated. Then, subtracting 

output temperature values from initial ones, temperature change values are 

obtained for static analysis. Then, these values are inserted the linear static 

analysis algorithm; accordingly, nodal displacements and element stresses are 
obtained and saved to output file of the model. This procedure repeats until the 

solution time is equal to end time. Flow chart of coupled analysis implementation 

with transient solution is presented in Figure 3-6. 
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Figure 3-6 Flow Chart of Coupled Analysis Algorithms with Transient Solution in 

Weak Form 

 

As heat transfer analysis, it is possible to use linear steady-state solution 
algorithm, also. Since this algorithm does not include iterative solution, 

implementation is quite simpler than the transient one. In fact, nodal temperatures 

and temperature change values are calculated once and then first solution process 

is finalized. The second process is same with the transient solution. This 

implementation process of steady-state solution is presented in Figure 3-7. 
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Figure 3-7 Flow Chart of Coupled Analysis Algorithm with Steady-State Solution in 

Weak Form 

 

Linear static analysis algorithm sends nodal temperature change values to the 
finite element plug-in and equivalent nodal loads go back to the analysis plug-in. In 

fact, in finite element plug-ins, thermal strains due to nodal temperature change 

are calculated and these strains are converted to equivalent nodal force. These 

forces are sent back to the solution algorithm (linear static analysis algorithm) and 

assembled into the system nodal load vector. Flow chart of the process stated above 

is presented in Figure 3-8. 
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Figure 3-8 Flow Chart of Converting Nodal Temperatures to Equivalent Nodal Force 
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3.3.4. Parallel Solution Algorithms 

Panthalassa has ability to execute parallel solution algorithms. Accordingly, parallel 
linear static and linear heat transfer analysis algorithms (steady-state and 

transient) were developed.  

Linear static and linear steady-state analyses were parallelized by utilizing MUMPS 

(Multifrontal Massively Parallel Sparse Direct Solver) library (Amestoy et al., 2000). 

Indeed, in this study, solution of sparse matrix was performed by utilizing MUMPS. 

In these algorithms, sparse stiffness matrix is obtained at each core. MUMPS 

divides the sparse matrix and distributes each sub-matrix to all cores. Then the 

linear system is solved by MUMPS and the solution vector is sent to the main core. 
The flow chart of linear steady-state heat transfer analysis algorithm is presented in 

Figure 3-9. The procedure is the same for linear static analysis algorithm. 
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Figure 3-9 Flow Chart of Parallel Steady-State Heat Transfer Algorithm 
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For parallelization of linear transient heat transfer analysis algorithm, explicit Euler 

scheme was utilized assembly of the system equations and solution is performed at 

the element level. Accordingly, it is very suitable for parallelization. Indeed, in 
explicit scheme, heat capacitance matrix was taken as lumped; accordingly, taking 

inverse of lumped matrix does not cause significant computational cost. In this 

algorithm, thermal stiffness matrix is divided into sub-matrices and distributed to 

each core. Since each core knows the load vector and heat capacitance matrix, they 

solve the each substructure. Then they transfer the solution to each other; 

accordingly, each core has the total solution vector of the system. Each core 
updates the temperature values and repeats this procedure up to end time is 

reached. The flow chart of parallel transient heat transfer analysis algorithm is 

presented in Figure 3-10.  

 

 

Figure 3-10 Flow Chart of Parallel Transient Heat Transfer Analysis Algorithm 
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3.4. Finite Elements 

In this section, details of the two and three dimensional finite elements developed 
for this study are discussed. Linear and quadratic formulations of quadrilateral and 

triangular membrane elements were implemented as two dimensional elements. 

Similarly, linear and quadratic forms of hexahedral, wedge, and tetrahedral 

elements were implemented as three dimensional elements.  

 

3.4.1. Geometrical Properties of Finite Elements 

Description and general properties of 2D and 3D element are presented in Tables 3-

1 and 3-2, respectively. In element geometry columns of the table, isoparametric 
and Cartesian geometry of the element are presented, respectively. Similarly, 

isoparametric boundary geometry of that element is listed in boundary geometry 

section. Moreover, shape functions of each finite element are presented in Table 3-

3. 



 

 

 

 

Table 3-1 Properties of 2D Finite Elements 

Finite 

Element 

Element 

Description 

Number 

of Nodes 

Degrees of Freedoms Element Geometry Boundary Geometry 

 

Quad4 

2D  

Linear  

Quadrilateral  

 

 

4 

Mechanical: Ux, Uy 

 

Heat Transfer:   
 

 

 

      

 

Quad8 

2D  

Quadratic 

Quadrilateral  

 

 

8 

Mechanical: Ux, Uy 

 

Heat Transfer:   
 

 

 

      

 

TriM3 

2D 

Linear 
Triangular 

Membrane 

 

 

3 

Mechanical: Ux, Uy 

 

Heat Transfer:   
 

 

 

      

 

TriM6 

2D  

Quadratic 

Triangular 

Membrane 

 

 

6 

Mechanical: Ux, Uy 

 

Heat Transfer:    

 

 

2
9
 



 

Table 3-2 Properties of 3D Finite Elements 

Finite 

Element 

Element 

Description 

Number 

of Nodes 

Degrees of Freedoms Element Geometry Boundary Geometry 

 

Brick8 

3D  

Linear 

Hexahedral 

 

8 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:   
 

 

      

 

Brick20 

3D 

Quadratic 

Hexahedral 

 

20 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:   
  

      

 

Wedge6 

3D 

Linear 

Wedge 

 

6 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:     
      

 

Wedge15 

3D 

Quadratic 

Wedge 

 

15 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:     
      

 

Tet4 

3D 

 Linear 

Tetrahedron  

 

4 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:    

 

      

 

Tet10 

3D 

Quadratic 

Tetrahedron 

 

10 

Mechanical: Ux, Uy, Uz 

 

Heat Transfer:    
 

3
0
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Table 3-3 Shape Functions for Finite Elements 

Finite 

Element 

Shape Functions Limitations 

 

Line2 

 

    
   

 
, 

   

 
 

 

-1 <   < 1 

 

 

Line3 

   
 (   )

 
 
 (   )

 
       

 

 

-1 <   < 1 

 

 

Quad4 

 
(   ) (   )

 
 
(   ) (   )

 
, 

(   ) (   )

 
 
(   ) (   )

 
 

 

 

-1 <   < 1 

-1 <   < 1 

 

 

 

 

Quad8 

 
(   )(   ) [(   )(    ) (    )(   )]

 
, 

(   )(   )  (    )(   ) (   )(    ) 

 
 

(   )(   )  (   )(    ) (    )(   ) 

 
, 

(   )(   )  (    )(   ) (   )(    ) 

 
, 

 
(    )(   )

 
 
(   )(    )

 
, 

(    )(   )

 
 
(   )(    )

 
 

 

 

 

 

 

-1 <   < 1 

-1 <   < 1 

 

TriM3 

 

 

          

 

0 <   < 1 

0 <   < 1 

 

TriM6 

 

 (    )  (    ) (     )( (     )   ) 

      (     )   (     ) 

 

 

0 <   < 1 

0 <   < 1 

 

 

Brick8 

 
(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
 

(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
, 

(   ) (   ) (   )

 
 

 

 

-1 <   < 1 

-1 <   < 1 

-1 <   < 1 

 

 

 

 

 

 

Brick20 

 
(    ) (   ) (   ) (       )

 
,
(    ) (   ) (   ) (       )

 
 

(    ) (   ) (   ) (       )

 
, 

(    ) (   ) (   ) (       )

 
 

(    ) (   ) (   ) (       )

 
, 

(    ) (   ) (   ) (       )

 
 

(    ) (   ) (   ) (       )

 
, 

(    ) (   ) (   )  (       )

 
 

  (   )  (   ) (   ) (   )

 
, 

  (   ) (   ) (   ) (   )

 
, 

  (   )  (   ) (   ) (   )

 
 

  (   ) (   ) (   ) (   )

 
 
  (   )  (   ) (   ) (   )

 
, 

  (   ) (   ) (   ) (   )

 
 

  (   )  (   ) (   ) (   )

 
, 

  (   ) (   ) (   ) (   )

 
 
  (   )  (   ) (   ) (   )

 
 

  (   )  (   ) (   ) (   )

 
 
  (   )  (   ) (   ) (   )

 
, 

  (   )  (   ) (   ) (   )

 
 

 

 

 

 

 

 

-1 <   < 1 

-1 <   < 1 

-1 <   < 1 
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Table 3-3 (Continued) 

 

 

Wedge6 

 
(     ) (   )

 
  

  (   )

 
 
  (   )

 
                               

 
(     ) (   )

 
 
  (   )

 
 
  (   )

 
 

 

-1 <   < 1 

-1 <   < 1 

0 <   < 1 

 

 

 

 

 

Wedge15 

 
(      ) (   ) (         )

 
 
  (   ) (       )

 
 

  (   ) (       )

 
 
(      ) (   ) (         )

 
 

  (   ) (       )

 
 
  (   ) (       )

 
 

    (     ) (   )       (   )  

    (     ) (   )     (     ) (   ) 

      (   )     (     ) (   ) 

(     ) (    )   (    ),   (    ) 

 

 

 

 

-1 <   < 1 

-1 <   < 1 

0 <   < 1 

 

 

Tet4 

 

              

0 <   < 1 

0 <   < 1 

0 <   < 1 

 

 

Tet10 

 

( (       )   )(       )  (    )  (    ) 

 (    )   (       )       (       ) 

  (       )         

 

 

0 <   < 1 

0 <   < 1 

0 <   < 1 

 

As seen in Table 3-1, Quad4 and Quad8, TriM3 and TriM6 are linear and quadratic 

form of 2D quadrilateral and triangular elements, respectively. These 2D elements 

have only in-plane (membrane) behavior. Triangular elements are better suited for 

modeling the irregularly shaped domains. 

In addition to 2D elements, Brick8 and Brick20, Wedge6 and Wedge15, and Tet4 
and Tet10 are linear and quadratic forms of hexahedral, wedge, and tetrahedral 

elements, respectively (Table 3-2). They can be used for modeling 3D solids.  

Each element shown in Tables 3-1 and 3-2 has both mechanical and heat transfer 

degrees of freedom. 2D and 3D elements have two and three mechanical degrees of 
freedom for each node, respectively. For the heat transfer analysis part, whereas 

each element has only one degree of freedom. 

Each element can calculate linear stiffness matrix, internal force and element 

stress vectors. In fact, element stresses are calculated at nodal points. Moreover, 

they can convert element loads such as body loads, surface loads, temperature 

change loads, and initial strains to equivalent nodal load vector. For computing 
equivalent nodal loads due to temperature change, two different methods were 

developed for each element. First method assumes constant temperature difference 

throughout the element and computes the nodal loads accordingly. During the 

coupled analysis, however, nodal temperatures are obtained at the end of heat 

transfer analysis. In other words, each element can have different temperature 
values at its nodal points. Because of this, second method was developed to 
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compute nodal loads from different nodal temperatures. In fact, nodal temperature 

strains and corresponding stress values are calculated from nodal temperature 
values (Equations 3-10 and 3-11). Then, these nodal stress values contribute to 

calculation of equivalent nodal load with the rate of weight value of the 

corresponding integration points (Equation 3-12).  

                                            (3-10) 

                       (3-11) 

            ∑   
   |  |  

 
                 (3-12) 

In Equations 3-10 to 3-12, εi, Δti, σi, Bi, Ji, and w indicate strain, temperature 

change, stress, strain field, and Jacobian of ith node, respectively. Similarly, 

thermal expansion coefficient, constitutive material matrix and number of node are 

represented by letters a, C, and n, respectively. 

Each element can also calculate heat conduction and heat convection stiffness 

matrices and heat generation, heat convection, and surface flux load vectors. Heat 

generation is a kind of body loading; heat convection and surface flux loading 
conditions are surface loadings. Heat convection stiffness matrix is obtained from 

heat convection loading condition as stated in Solution Algorithm part.  

In Table 3-3, shape functions for each geometry used for body and surface 

definition of finite elements are listed. As seen in Tables 3-1 and 3-2, volume 

elements have either triangular or quadrilateral faces and surface elements have 
linear edges. 2D surface elements can have linear or quadratic edges depending on 

the element’s number of nodes. Likewise, linear and quadratic 3D solid elements 

have linear and quadratic quadrilateral/triangular faces. Whenever an edge loading 

in 2D elements and surface loading in 3D elements are converted into nodal values, 

the corresponding edge or face elements’ shape functions are utilized. Thus, 

mechanical stiffness, element stresses, internal forces heat conduction, heat 
convection, heat generation, heat capacitance are obtained from body integration. 

On the other hand, by taking boundary integrals, mechanical surface loads such as 

distributed load over surface of a body, and surface loads of heat transfer problems 

such as surface flux and heat convection are converted to equivalent nodal load 

vector. 

 

3.4.2. Numerical Integration 

Body and boundary integrals are evaluated numerically by using Gauss 

Quadrature method. According to Gauss Quadrature method, function is evaluated 

at certain integration points and multiplied with the corresponding weight value. 

Then, by summing the results obtained from each integration point, integral over 

the domain is obtained. The general equation for Gauss Quadrature Rule is 

presented in Equation 3-13. 

  ∫     
 

 
  ∫       ∑       

   
 

 
                 (3-13) 

In Equation 3-13, n, W, and G represent number of integration points, weight of 

integration points, function defined in the mapped domain. Since the numerical 

integrations are valid for corresponding domains, it is required to map the function, 

f to the integration domain. 
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For each finite element, the choice of the location and number of integration points 

significantly affect the behavior and accuracy of the results. Due to problematic 
element behavior mechanisms such as shear locking or hourglassing, and accuracy 

condition of Gauss Quadrature rule, appropriate number of integration points with 

the domain should be chosen.  

Quadrilateral membrane elements are integrated numerically by applying 

Multidimensional Gauss Quadrature method, called Gaussian product rule (Cook 

et al. 1989). For linear quadrilateral element, deciding the number of integration 
points for computation is a problematic issue. 2x2 full integration causes shear 

locking; whereas, single point integration results in zero energy modes 

(hourglassing). In this study, for linear elements, full integration scheme was 

selected (four integration points) for integration of both structural analysis and heat 

transfer part. On the other hand, for structural calculations of quadratic elements, 
nine integration points (full integration) were used. This way, the zero energy modes 

in quadratic elements were eliminated. Four integration points are however 

sufficient for heat transfer calculations. In order to improve the conditions of heat 

capacitance matrix, full integration was applied for both linear and quadratic 

elements. Properties of integration point schemes of quadrilateral are listed in Table 

A-2. 

For linear and quadratic triangular elements, reduced integration (one and three 
integration points, respectively) was utilized. Such integration approach for 

stiffness calculation does not cause any zero energy (hourglassing) modes in 

triangular elements. Moreover, since the element has constant stress ditribution, 

shear locking phenomena occurs for linear triangular element. Using reduced 
integration for calculation of heat capacitance matrix, [C] however causes 

instability. Accordingly, six integration points were utilized for [C] matrix for each 

type of triangular element. Details of integration point schemes of linear and 

quadratic triangular elements are presented in Table A-3.  

Full integration scheme (eight integration points) hindering zero energy modes were 

utilized for both structural and heat transfer matrices of hexahedral elements. 
However, twenty-seven integration points were preferred to improve conditions of 

heat capacitance matrix [C]. For quadratic element, all numerical integrations were 

calculated with twenty-seven points (full integration). Properties of integration point 

schemes for hexahedrons are listed in Table A-4. 

Wedge elements are special 3D solid elements that have both triangular and 
rectangular faces. Because of this reason, distribution of integration points is quite 

different than other elements. For the triangular top and bottom faces integration 

points defined for triangular elements were used. On the other hand, along the 

depth of the element, integration points were distributed similar to quadrilateral 

elements. Two and nine integration points are utilized for the linear and quadratic 

wedge elements, respectively. Such number of integration points hinders zero 
energy mode. In order to improve conditions of heat capacitance matrix [C], eight-

teen integration points advised by Dhondt (2004) are preferred. Details of 

integration point scheme of Wedge elements are listed in Table A-5.  

For linear and quadratic tetrahedral elements, one and four integration points are 

utilized, respectively. They are the minimum number of integration points that do 

not create any hourglassing mode. Similar to the other solid elements, fifteen 
integration points suggested by Dhondt (2004) are utilized in order to improve the 

condition of heat capacitance matrix, [C]. Properties of integration points of 

tetrahedrons are illustrated in Table A-6.   
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The behavior of the boundaries of linear and quadratic forms of 2D quadrilateral 

and triangular elements are described by the linear and quadratic form of line 
elements, respectively. For taking line integrals, Gauss Quadrature method is used. 

In order to represent actual behavior of boundaries better, two and three 

integration points (full integration) are preferred for linear and quadratic line 

elements, respectively. For calculating the surface loads of heat transfer analysis, 

using more integration points provides higher accuracy. Details of integration point 

schemes of line element are shown in Table A-1. 

In a similar manner, linear and quadratic forms of Quad and TriM elements were 
used to describe the behavior of the faces of 3D elements. Therefore, same 

integration schemes for Quad and Trim elements stated above were taken into 

account for integration of boundaries of 3D elements. In other words, four and nine 

integration points are utilized for linear and quadratic quadrilateral elements, 
respectively. Similarly, one and three integration points are sufficient for linear and 

quadratic triangular faces, respectively. Properties of the integration point scheme 

of a rectangle and a triangle are tabulated in Table A-2 and Table A-3, respectively. 
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CHAPTER 4  

 

 

VERIFICATION PROBLEMS 

 

 
 

4.1. Introduction 

In this chapter, verifications of solution algorithms and finite elements stated in 

previous chapters are discussed. Two different types of engineering problems, linear 

structural analysis and linear heat transfer being part of coupled analysis system 

were solved. 

Several structural analysis problems, proposed by MacNeal and Harder (1985) for 
finite element formulation verification were solved by using all the implemented 

elements. The test problems can be considered in two parts, problems with static 

loads and with temperature loads. This way the element performances under direct 

and indirect loading were examined. 

Likewise, in order to verify the implemented heat transfer solution algorithms and 
finite elements for heat transfer, two different plate problems suggested by Reddy 

and Gartling (2010), square and rectangular plates were analyzed. While square 

plate problem only focuses on heat conduction and heat generation routines, the 

rectangular plate problem needs all routines heat conduction, heat convection, heat 

generation, surface flux of heat transfer part of finite elements. 

 

4.2. Structural Analysis Verification 

4.2.1. Linear Static Problems 

This part includes the structural performance of elements, existing finite element 

library and linear solution algorithms under static loads. In order to verify finite 

elements for structural problems and corresponding solution algorithms, first 

straight cantilever beam problem recommended by MacNeal and Harder (1985) was 

solved. This beam problem was analyzed by using both two and three dimensional 

finite elements. 

2D Straight Beam with Static Loads 

Straight cantilever beams modeled with 2D quadrilateral and triangular elements 

suggested by MacNeal and Harder (1985) are presented in Figure 4-1 and Figure 4-

2, respectively and the geometrical and material properties are tabulated in Table 

4-1. 
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Figure 4-1 Straight Beams with Quadrilateral Elements. (A) Rectangular Meshed 

Beam. (B) Trapezoidal Meshed Beam.  

(C) Parallelogram Meshed Beam 

 

Figure 4-2 Straight Beams with Triangular Elements. (D) With 12 Triangular 

Elements. (E) With 24 Triangular Elements 

Table 4-1 Straight Beam with Static Loads – Model Properties 

Geometric Properties Material Properties Section Properties 

Length: 6 in 
Modulus of 

Elasticity: 
1,000,000 lb / in2 Depth: 0.1 in 

Height: 0.2 in Poisson's Ratio: 0.3 
  

    Shear Modulus: 3,846,154 lb / in2     

 

To display the performances of the finite elements under different loading 

conditions, the load cases listed in Table 4-2 were applied to the beam. Since 2D 
elements in the finite element library include only in-plane (membrane) action, out 

of plane loading cases were eliminated for analyses of these elements.  

The beam was analyzed under different behavior modes and the accuracy of each 

element was investigated. The applied loadings and corresponding behavior modes 

are presented in Table 4-2. Currently, only membrane (in-plane) action was 
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considered. Two types of quadrilateral and two types of triangular elements were 

examined. 

Table 4-2 Straight Beam with Static Loads – Load Cases 

Loading Behavior Mode Load 

1 Axial Extension Fx = 0.5 lb at each joints at the free end 

2 Shear and Bending Fz = 0.5 lb at each joints at the free end 

3 Pure Bending 
Fx = -5 lb at bottom joint of free end 

Fx = 5 lb at top joint of free end 

 

Displacements at the free end and stresses at the fixed-end of the beam modeled 

with linear and quadratic quadrilateral elements (Quad4 and Quad8) and linear 
and quadratic triangular elements (TriM3 and TriM6) are compared with the 

analytical results. The results cover the beams modeled with distorted or uniform 

elements (Figure 4-1, model A,B,C) for every quadrilateral elements. Tables 4-3 and 

4-5 present the displacement values for both quadrilateral and triangular elements, 

respectively. Whereas the stress results are shown in Tables 4-4 and 4-6. 

Table 4-3 Straight Beam with Quad Elements (Quad4 & Quad8) – Displacements at 

the Free-End 

Loading 

Condition 
Model 

Output 

Parameter 

Quad4  

(in) 

Quad8  

(in) 

Analytical    

(in) 

Axial 

Extension 

A 

ux 

3.00*10-5 3.02*10-5 

3.00*10-5 B 3.00*10-5 3.02*10-5 

C 3.00*10-5 3.02*10-5 

      

Shear and 

Bending 

A 

uz 

1.01*10-2 1.07*10-1 

1.08*10-2 B 2.90*10-3 1.06*10-1 

C 3.60*10-3 8.06*10-2 

      

Pure 

Bending 

A 

ux 

8.40*10-5 9.00*10-4 

9.00*10-4 B 2.06*10-5 8.93*10-4 

C 2.82*10-5 6.22*10-4 

 

According to the values stated in Table 4-3, linear quadrilateral element has slightly 
better performance than the quadratic one under axial loading cases. Since the 

axial deformation behavior is linear (Equation 4-1), shape functions of linear 

element coincides better with real behavior. On the other hand, for shear and 

bending and pure bending cases, results of quadratic element are closer to the 
analytical results than the ones of linear element. In fact, deformed shape under 

shear and bending and moment load cases has higher order function (Equation 4-

2). Because of this reason, quadratic shape functions represent the deformed shape 

better than the linear ones.  

  ∫
 

  
                    (4-1) 
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  ∫
 

  
                      (4-2) 

In general, using elements with distorted shapes reduces the accuracy of the 

results. In order to show the performances of 2D linear and quadratic quadrilateral 
elements with distortions, same cantilever beam was modeled by using trapezoidal 

and parallelogram shaped elements (Figure 4-1 (B) and (C)). When the corner 

angles diverge from 90O, the accuracy of the mapping with Jacobian matrix 

diminishes (Cook et al, 1989). According to the results stated in Table 4-3, for cases 

B and C under axial loading, models with trapezoidal and parallelogram elements 
display same accuracy with the analytical results for the linear element. The reason 

is again the function of axially deformed shape of beam is same order with the 

shape functions of linear element. Nevertheless, similar to models without any 

distortion, quadratic element is able to mimic the deformation function under 

shear-bending and pure bending cases even if it is distorted. The elements with 

parallelogram perform better than the trapezoidal one.  

 

Table 4-4 Straight Beam with Quad Elements (Quad4 & Quad8) – Stresses at the 

Fixed-End 

Behavior Mode Model 
Output  

Parameter 

Quad4 

(lb/in2) 

Quad8 

(lb/in2) 

Analytical 

(lb/in2) 

 Axial Extension 

A 

σx 

5.00*101 5.38*101 

5.00*101 B 5.00*101 4.99*101 

C 5.00*101 5.02*101 

      

Shear and 

Bending 

A 

σx 

8.46*102 9.00*103 

9.00*103 B 2.19*102 8.44*103 

C 6.35*102 9.48*103 

      

Pure Bending 

A 

σx 

1.54*102 1.50*103 

1.50*103 B 3.59*101 1.38*103 

C 1.23*102 1.60*103 

 

Stresses depend on strains which are the first derivatives of the displacements. 
Thus, the error in stresses is usually much larger than the error in displacements 

since they depend on the rate of change in displacements. According to the results 

presented in Table 4-4, the stress outputs of the quadratic element are much better 

than the linear ones. When compared with the analytical results, the error in the 

stress values of linear elements is unacceptable for both bending problems. 
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Table 4-5 Straight Beam with Triangular Elements (TriM3 & TriM6) – 

Displacements at the Free-End 

Behavior 

Mode 
Model 

Output 

Parameter 

TriM3   

(in) 

TriM6    

(in) 

Analytical 

(in) 

Axial 

Extension 

D 
ux 

3.00*10-5 3.03*10-5 
3.00*10-5 

E 3.00*10-5 3.03*10-5 

      

Shear and 

Bending 

D 
uz 

2.48*10-2 1.07*10-1 
1.08*10-1 

E 4.98*10-2 1.08*10-1 

      

Pure 

Bending 

D 
ux 

2.08*10-4 9.00*10-4 
9.00*10-4 

E 4.17*10-4 9.00*10-4 

In Table 4-5, end displacements of the cantilever beam displayed in Figure 4-2 (D, 

E) under each loading conditions stated in Table 4-2 are tabulated and compared 

with analytical results. Similar to rectangular membrane elements, under axial 
loading case, performances of linear triangular element are slightly better than the 

quadratic one; on the other hand, under shear-bending and pure bending load 

cases, quadratic triangular membrane element has higher accuracy.  

In fact, since axial deformation function is linear, increasing mesh does not provide 

higher accuracy for both linear and quadratic elements. Whereas under shear-
bending and pure bending conditions, since the displacement function of the beam 

is a third order polynomial, quadratic element fits better than the linear one. 

Hence, increasing mesh density does not affect the accuracy of the problem for 

quadratic element. On the other hand, in order to obtain higher accuracy, mesh 

should be increased for linear elements. In other words, it is possible to get the 

performance same as with the one of quadratic element by using very fine meshed 

linear elements. 

When performances of quadrilateral and triangular elements are compared, it can 

be seen that in general, quadrilateral elements have better performance. In fact, 

due to the fact that triangular elements have high stiffness values at mutual nodes, 

they behave stiffer than quadrilateral elements. 

Table 4-6 Straight Beam with Triangular Elements (TriM3 & TriM6) – Stresses at 

the Fixed-End 

Behavior 

Mode 
Model 

Output  

Parameter 

TriM3 

(lb/in2) 

TriM6 

(lb/in2) 

Analytical 

(lb/in2) 

 Axial  

Extension 

D 
σx 

5.00*101 5.30*101 
5.00*101 

E 5.00*101 5.00*101 

      

Shear and 

Bending 

D 
σx 

2.57*102 8.36*103 
9.00*103 

E 4.76*102 8.41*103 

      

Pure 

Bending 

D 
σx 

4.72*101 1.50*103 
1.50*103 

E 8.65*101 1.50*103 
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In Table 4-6, normal stresses along x direction at fixed-end of the beam are 

tabulated. According to the results of Table 4-6, similar to the displacement 
behavior of linear elements, using more elements fits better to the actual behavior 

under shear-bending and pure bending cases. On the other hand, although 

increasing mesh does not affect the displacement performance of quadratic 

element, it provides better accuracy for stresses since the error in stress calculation 

is larger than the one in displacement. 

3D Straight Beam with Static Loads 

Same cantilever beam stated in previous part of this chapter was modeled with 

each three dimensional element in finite element library (Figure 4-3 and Figure 4-

4). Properties of the beams are presented in Table 4-7. 

 

Figure 4-3 Straight Beams with Hexahedral Elements. (A) Rectangular Prismatic 

Element. (B) Trapezoidal Prismatic Element. (C) Parallelogram Prismatic Element 

 

Figure 4-4 Straight Beams with Wedge Elements. (D) Beam with Linear Wedge 

Elements. (E) Beam with Quadratic Wedge Elements 

Table 4-7 Straight Beam with Static Loads – Model Properties 

Geometric Properties Material Properties 

Length: 6 in Modulus of Elasticity: 1,000,000 lb / in2 

Height: 0.2 in Poisson's Ratio: 0.3 

Width: 0.1 in Shear Modulus: 3,846,154 lb / in2 
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The cantilever beam was analyzed under different behavior modes and the accuracy 

of each 3D finite element was investigated. The applied loadings and the 

corresponding behavior modes are presented in Table 4-8. 

Table 4-8 Straight Beam with Static Loads – Load Cases 

Loading Behavior Mode Load 

1 Axial Extension Fx=0.25 lb at each joints at the free end 

2 
Shear and Bending in 

Strong Axis 
Fz=0.25 lb at each joints at the free end 

3 
Shear and Bending in 

Weak Axis 
Fy=0.25 lb at each joints at the free end 

4 Twisting 
Fy=-2.5 lb at bottom joints of free end 

Fy=2.5 lb at top joints of free end 

5 
Pure Bending in Strong 

Axis 

Fx=-2.5 lb at bottom joints of free end 

Fx=2.5 lb at top joints of free end 

6 
Pure Bending in Weak 

Axis 

Fx=5 lb at joints of free end exist on plane 
y=0  

Fx=-5 lb at joints of free end exist on plane 

y=0.1 

 

Displacement results of the cantilever beam at the free-end modeled by using linear 

and quadratic hexahedral (Brick8 & Brick20), linear wedge (Wedge6), quadratic 

wedge (Wedge15), linear tetrahedral (Tet4), and quadratic tetrahedral (Tet10) 
elements are presented in Table 4-9, Table 4-11, Table 4-13, Table 4-15, and Table 

4-17, respectively. Similarly, stresses at the fixed end of the beam are shown in 

Table 4-10, 4-12, 4-14, 4-16, and 4-18 for hexahedral, wedge, and tetrahedral 

elements, respectively. 

 

Table 4-9 Straight Beam with Hexahedral Elements (Brick8 & Brick20) – 

Displacements at the Free-End 

Behavior 

Mode  
Model Mesh 

Output 

Parameter 

Brick8  

(in) 

Brick20 

(in) 

Analytical 

(in) 

Axial 

Extension 

A 

6x1x1 

ux 

2.99*10-5 3.01*10-5 

3.00*10-5 

30x1x1 3.00*10-5 - 

30x4x8 3.71*10-5 - 

B 6x1x1 2.99*10-5 3.01*10-5 

C 6x1x1 2.99*10-5 - 

       

Shear 

and 
Bending 

in Strong 

Axis 

A 

6x1x1 

uz 

1.00*10-2 1.07*10-1 

1.08*10-1 

30x1x1 7.18*10-2 - 

30x4x8 1.07*10-1 - 

B 6x1x1 2.84*10-3 9.72*10-2 

C 6x1x1 3.46*10-3 - 
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Table 4-9 (Continued) 

Shear 
and 

Bending 

in Weak 

Axis 

A 

6x1x1 

uy 

1.09*10-2 4.16*10-1 

4.32*10-1 

30x1x1 1.56*10-1 - 

30x4x8 4.17*10-1 - 

B 6x1x1 4.65*10-3 3.98*10-1 

C 6x1x1 6.23*10-3 - 

       

Twisting 

A 

6x1x1 

uy 

2.86*10-3 2.90*10-3 

3.41*10-3 

30x1x1 2.92*10-3 - 

30x4x8 3.39*10-3 - 

B 6x1x1 1.62*10-3 3.09*10-3 

C 6x1x1 1.10*10-3 - 

       

Pure 
Bending 

in Strong 

Axis 

A 

6x1x1 

ux 

8.38*10-5 9.00*10-4 

9.00*10-4 

30x1x1 5.99*10-4 - 

30x4x8 9.55*10-4 - 

B 6x1x1 1.94*10-5 8.30*10-4 

C 6x1x1 2.56*10-5 - 

       

Pure 
Bending 

in Weak 

Axis 

A 

6x1x1 

ux 

4.53*10-5 1.80*10-3 

1.80*10-3 

30x1x1 6.50*10-4 - 

30x4x8 1.87*10-3 - 

B 6x1x1 1.72*10-5 1.66*10-3 

C 6x1x1 2.51*10-5 - 

 

In Table 4-9, end displacements of the cantilever beam created with hexahedral 

elements under each loading condition are listed and they are compared with the 

analytical results. According to results stated in Table 4-9, displacements under 

axial loading condition are close to analytical results. For the other cases, however, 
difference between results of linear element (Brick8) and analytical ones are much 

larger. Moreover, distorting the geometry of the elements affects the performances 

of each loading condition negatively as also observed for 2D membrane elements.  

When behaviors of quadrilateral and hexahedral elements are compared, it can be 

seen that hexahedral elements behave more stiff under axial and moment load 

cases. This situation occurs because of the handling the Poisson’s effect. Due to 
having stiffness along thickness, hexahedral element behaves stiffer. If Poisson’s 

effect is neglected, the behaviors of these two types of elements become same.  

Another important result observed from the results in Table 4-9 is increasing mesh 

size of the beam model provides more realistic behavior. In fact, since deformed 

shape of the beam with linear elements is a piecewise linear function, it is possible 
to get function closer to the actual one by dividing the structure into smaller 

elements. Because of this, displacements of the beam modeled with fine mesh 

model are close to the analytical one. However, axial deformation of beam with 

30x4x8 meshed elements is greater than the analytical result. The reason is that 

dividing the cross section into parts causes another mechanism which is ignored 

during the analytical solution. This mechanism is the deformation of the cross 
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section. In fact, the beam was solved in analytically according to “plane section 

remains plane” assumption. Nevertheless, meshing the cross section and not using 
uniformly distributed load over the cross section results in deformation of the 

section. Because of this, axial deformation exceeds the analytical value.  

 

Table 4-10 Straight Beam with Hexahedral Elements – Stresses at the Fixed-End 

Behavior 

Mode 
Model 

Output  

Parameter 

Brick8 

(lb/in2) 

Brick20 

(lb/in2) 

Analytical 

(lb/in2) 

 Axial 

Extension 

A 

σx 

5.30*101 5.30*101 

5.00*101 B 5.30*101 5.20*101 

C 5.30*101 - 

      

Shear and 
Bending in 

Strong 

Axis 

A 

σx 

1.02*103 9.44*103 

9.00*103 B 2.32*102 8.87*103 

C 8.33*102 - 

      

Shear and 
Bending in 

Weak Axis 

A 

σx 

5.40*102 1.87*104 

1.80*104 B 2.06*102 1.83*104 

C 4.97*102 - 

      

Twisting 

A 

σx 

2.54*102 5.76*102 

2.45*103 B 1.64*102 6.77*102 

C 1.27*102 - 

      

Pure 
Bending in 

Strong 

Axis 

A 

σx 

1.87*102 1.67*103 

1.50*103 B 30.8*101 1.61*103 

C 1.54*102 - 

      

Pure 
Bending in 

Weak Axis 

A 

σx 

3.73*102 3.33*103 

3.00*103 B 3.10*101 3.23*103 

C 9.10*101 - 

 

In Table 4-10, fixed end stresses of the structure are shown. Since nodal 
displacements contribute to the calculation of element stresses, stress values of 

quadratic element represent the analytical solutions better. Since quadratic 

element was developed with full integration, higher stress values compared to 

analytical ones were obtained. In addition, distortion causes reduction in accuracy 

of element stresses for both linear and quadratic elements as expected.  
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Table 4-11 Straight Beam with Linear Wedge Elements (Wedge6) – Displacements at 

the Free-End 

Behavior 

Mode 
Model Mesh 

Output 

Parameter 

Brick8 

(in) 

Wedge6 

(in) 

Analytical 

(in) 

Axial 

Extension 
D 

6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 2.99*10-5 2.98*10-5 3.00*10-5 

Shear and 
Bending in 

Strong Axis  

D 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uz 1.00*10-2 9.93*10-1 1.08*10-1 

Shear and 
Bending in 

Weak Axis 

D 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uy 1.09*10-2 1.09*10-2 4.32*10-1 

Twisting D 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uy 2.86*10-3 2.11*10-3 3.41*10-3 

Pure 
Bending in 

Strong Axis 

D 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 8.38*10-5 8.29*10-5 9.00*10-4 

Pure 
Bending in 

Weak Axis 

D 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 4.53*10-5 4.53*10-5 1.80*10-3 

 

Table 4-12 Straight Beam with Quadratic Wedge Elements (Wedge15) – 

Displacements at the Free-End 

Behavior 

Mode 
Model Mesh 

Output 

Parameter 

Brick20 

(in) 

Wedge15 

(in) 

Analytical 

(in) 

Axial 

Extension 
E 

6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 3.01*10-5 3.01*10-5 3.00*10-5 

Shear and 
Bending in 

Strong 

Axis 

E 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uz 1.07*10-1 1.06*10-1 1.08*10-1 

Shear and 
Bending in 

Weak Axis 

E 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uy 4.16*10-1 4.17*10-1 4.32*10-1 

Twisting E 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
uy 2.90*10-3 2.85*10-3 3.41*10-3 

Pure 

Bending in 
Strong 

Axis 

E 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 9.00*10-4 8.99*10-4 9.00*10-4 

Pure 

Bending in 

Weak Axis 

E 
6x1x1 (Bri.) 

12x1x1 (Wed.) 
ux 1.80*10-3 1.80*10-3 1.80*10-3 
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In Table 4-11 and Table 4-12, end displacements of cantilever beam created with 

linear and quadratic wedge elements under each loading condition are tabulated 

and the performances of the elements are compared with the analytical results.  

Although the axial extension behavior of linear wedge element is the same with 
linear hexahedron, under other load cases, linear wedge element behaves stiffer. 

Since the nodes used mutually around cross section have higher stiffness values 

than the other nodes. In Figure 4-5, cross section of the beam modeled with linear 

wedge elements are presented. In the figure, stiffness of nodal points 1 and 3 are 

computed by considering both elements’ contributions (Upper and lower).  

 

Figure 4-5 Cross Section of Beam with Linear Edge Elements 

 

Same situation is also valid for quadratic wedge element. Similar to previous 
elements, quadratic element behaves more flexible than linear one and this makes 

it preferable for each condition except axial extension load case. On the other hand, 

as stated in “Finite Element” section, wedge elements cannot behave as well as 

hexahedral elements without any distortion. Hence, wedge elements should be 

preferred to distorted hexahedral elements. 

 

Table 4-13 Straight Beam with Wedge Elements – Stresses at the Fixed-End 

Behavior 

Mode 
Model 

Output  

Parameter 

Wedge6 

(lb/in2) 

Wedge15 

(lb/in2) 

Analytical 

(lb/in2) 

Axial 

Extension 
D/E σx 5.3*101 5.3*101 5.00*101 

Shear and 
Bending in 

Strong 

Axis 

D/E σx 1.01*103 8.82*103 9.00*103 
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Table 4-13 (Continued) 

Shear and 
Bending in 

Weak Axis 

D/E σx 5.56*102 1.85*104 1.80*104 

Twisting D/E σx 3.86*101 3.07 *102 2.45*103 

Pure 
Bending in 

Strong 

Axis 

D/E σx 1.85*102 1.57*103 1.50*103 

Pure 
Bending in 

Weak Axis 

D/E σx 1.01*102 3.37*103 3.00*103 

 

Stresses at fixed end of the beam are displayed in Table 4-13. According to the 

table, quadratic elements calculate stresses more accurately. It is possible to 

improve stress values by using finer mesh providing results close to the actual 

deformation function of the beam. 

In Table 4-14 and Table 4-15, displacements of linear and quadratic tetrahedral 
elements are displayed. In order to adapt tetrahedrons to the beam geometry, 288 

elements were required. Thus, beam with linear tetrahedrons becomes more flexible 

under shear-bending and moment loading condition than one modeled with 

hexahedral elements. However performance of the linear tetrahedral element under 

twisting case is stiffer.  

Table 4-14 Straight Beam with Linear Tetrahedral Elements (Tet4) – Displacements 

at the Free-End 

Behavior 

Mode 
Model Mesh 

Output 

Parameter 

Brick8  

(in) 

Tet4     

(in) 

Analytical 

(in) 

Axial 

Extension 
A 

288 Tet. 

6 Bricks 
ux 2.99*10-5 2.98*10-5 3.00*10-5 

Shear and 
Bending in 

Strong Axis 

A 
288 Tet. 

6 Bricks 
uz 1.00*10-2 1.28*10-2 1.08*10-1 

Shear and 

Bending in 

Weak Axis 

A 
288 Tet. 

6 Bricks 
uy 1.09*10-2 1.44*10-2 4.32*10-1 

Twisting A 
288 Tet. 

6 Bricks 
uy 2.86*10-3 8.99*10-5 3.41*10-3 

Pure 
Bending in 

Strong Axis 

A 
288 Tet. 

6 Bricks 
ux 8.38*10-5 1.07*10-4 9.00*10-4 

Pure 
Bending in 

Weak Axis 

A 
288 Tet. 

6 Bricks 
ux 4.53*10-5 6.07*10-5 1.80*10-3 
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Table 4-15 Straight Beam with Quadratic Tetrahedral Elements (Tet10) – 

Displacements at the Free-End 

Behavior 

Mode 
Model Mesh 

Output 

Parameter 

Brick20 

(in) 

Tet10  

(in) 

Analytical 

(in) 

Axial 

Extension 
A 

288 Tet. 

6 Bricks 
ux 3.01*10-5 3.01*10-5 3.00*10-5 

Shear and 
Bending in 

Strong Axis 

A 
288 Tet. 

6 Bricks 
uz 1.07*10-1 9.55*10-2 1.08*10-1 

Shear and 
Bending in 

Weak Axis 

A 
288 Tet. 

6 Bricks 
uy 4.16*10-1 3.57*10-1 4.32*10-1 

Twisting A 
288 Tet. 

6 Bricks 
uy 2.90*10-3 3.10*10-3 3.41*10-3 

Pure 
Bending in 

Strong Axis 

A 
288 Tet. 

6 Bricks 
ux 9.00*10-4 7.39*10-4 9.00*10-4 

Pure 
Bending in 

Weak Axis 

A 
288 Tet. 

6 Bricks 
ux 1.80*10-3 1.29*10-3 1.80*10-3 

 

This stiff behavior is valid for quadratic tetrahedral element also. In spite of using 

288 quadratic tetrahedral elements, beam with quadratic hexahedral elements 
behaves more flexible. This situation shows that using tetrahedral elements for 

regular geometries does not provide good performance. Accordingly, as stated in 

Finite Elements section, tetrahedral elements were developed for irregular 

geometries. 

Table 4-16 Straight Beam with Tetrahedral Elements – Stresses at the Fixed-End 

Behavior 

Mode 
Model 

Output  

Parameter 

Tet4 

(lb/in2) 

Tet10 

(lb/in2) 

Analytical 

(lb/in2) 

Axial 

Extension 
A σx 4.53*101 4.98*101 5.00*101 

Shear and 
Bending in 

Strong Axis 

A σx 1.03*102 8.36*103 9.00*103 

Shear and 
Bending in 

Weak Axis 

A σx 5.99*102 1.66*104 1.80*104 

Twisting A σx 2.19*100 1.55*102 2.45*103 
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Table 4-16 (Continued) 

Pure 
Bending in 

Strong Axis 

A σx 1.77*102 1.44*103 1.50*103 

Pure 
Bending in 

Weak Axis 

 A σx 1.16*102 1.40*103 3.00*103 

In Table 4-16, stresses at fixed end of the beam with both linear and quadratic 

tetrahedral elements are displayed. Similar to previous elements, calculating stress 

by using quadratic elements is more reliable due to order of its shape function. In 

addition to this, stress values can be cured by increasing mesh of the structure 

because it provides more realistic approximation for actual behavior of structure. 

 

4.2.2. Temperature Load 

In this part, behaviors of each finite element under temperature loading are 

examined. 2D and 3D plane models (MacNeal and Harder ,1985) were solved. For 

each case, displacements and stresses were compared with the analytical solutions. 

2D Temperature Load 

First, rectangular plate problem was solved in order to verify the performances of 

two dimensional elements (Quad and TriM) (Figures 4-6 and 4-7). To check nodal 

displacements and elements stresses, identical models with different restraint 

conditions were utilized. For displacement verification, only one corner node was 

fixed in order to see the expansion of the plate (Figures 4-6 and 4-7, Model A). On 

the other hand, for stresses due to temperature load, the plate was fully restrained 

(Figures 4-6 and 4-7, Model B). Model properties are presented in Table 4-17. 

 

 

(A)                                     (B)  

Figure 4-6 Plate Models with Quadrilateral Elements 
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(A)                                    (B) 

Figure 4-7 Plate Models with Triangular Elements 

 

Table 4-17 2D Temperature Load – Model Properties 

Geometric Properties Material Properties Section Properties 

Length: 0.24 in 
Modulus of 

Elasticity: 
1,000,000 lb / in2    Depth: 0.001 in 

Height: 0.12 in Poisson's Ratio: 0.25 
  

    

Thermal 
Expansion 

Coefficient: 5.5*10-6 

    

 

As loading, a 100OF temperature increase was applied to the whole plate. 

Displacements and stresses due to temperature loading at the top corner of the 

plate (Node 8) are shown in Table 4-18 for each 2D finite element. 

 

 

Table 4-18 2D Temperature Load – Displacements and Axial Stresses 

Behavior 

Mode 

Output 

Parameter 
Quad4 Quad8 TriM3 TriM6 Analytical 

Free 

Exp. 

ux  1.72*10-4 1.49*10-4 1.54*10-4 1.77*10-4 1.32*10-4 

uy  -1.43*10-5 3.30*10-5 2.18*10-5 -2.32*10-5 6.60*10-5 

σxx  0 0 0 0 0 

σyy  0 0 0 0 0 

       

Restr. 

ux  0 0 0 0 0 

uy  0 0 0 0 0 

σxx  -7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102 

σyy  -7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102 
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According to Table 4-18, distortion also affects negatively the behavior under 

temperature change load. Similar to previous problems, quadratic element 
represents the actual behavior better for quad elements. On the other hand, for 

triangular elements, displacement of linear element is closer to the analytical 

solution. However, due to geometry of the model, the plate was not modeled by 

utilizing proper triangular mesh. Accordingly, the results do not represent the 

performance of the triangular elements under temperature change load. On the 

other hand, each element can calculate the same stress amount due to temperature 

change loading with analytical solutions. 

Each finite element calculates total element stresses by the summation of stress 
due to temperature and stress due to displacements. Because of this, since Model A 

is free to expand due to temperature, stresses on the body are equal to zero. When 

expansion is restrained (Model B), only stresses due to temperature occurs. As seen 
in Table 4-18, each form of quadrilateral and triangular elements calculate stresses 

due to temperature change correctly. 

3D Temperature Load 

In this part, behavior of 3D finite elements under temperature loading is discussed. 

For this purpose, square plate proposed by MacNeal and Harder (1985) was 

modeled with each 3D finite element (Figure 4-8). Model properties are stated in 

Table 4-19. 

 

Figure 4-8 3D Temperature Load  

 

Table 4-19 3D Temperature Load – Model Properties 

Geometric Properties Material Properties 

Length: 10 in 
Modulus of 

Elasticity: 
1,000,000 lb / in2 

Width: 10 in Poisson's Ratio: 0.25 

Depth: 1 in 
Thermal Expansion 

Coefficient: 5.5*10-6 

In this model, nodes at bottom edge are totally restrained, other nodes are 

restrained in x and y direction. Similar to previous example, a 100OF temperature 

increase was applied to the model as loading. Stress values in x and y direction at 
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anywhere of the plate were compared with the analytical results in Tables 4-20 and 

4-21 for each 3D element. 

Table 4-20 3D Temperature Load – Axial Stresses (Bricks and Wedges) 

Output 

Parameter 

Brick8 

(lb/in2) 

Brick20 

(lb/in2) 

Wedge6 

(lb/in2) 

Wedge15 

(lb/in2) 

Analytical 

(lb/in2) 

σxx  
Anywhere 

in plate 

-7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102 

σyy  
Anywhere 

in plate 

-7.33*102 -7.33*102 -7.33*102 -7.33*102 -7.33*102 

 

Table 4-21 3D Temperature Load – Axial Stresses (Tetrahedrons) 

Output 

Parameter 

Tet4 

(lb/in2) 

Tet10 

(lb/in2) 

Analytical 

(lb/in2) 

σxx  
Anywhere 

in plate 

-7.33*102 -7.33*102 -7.33*102 

σyy  
Anywhere 

in plate 

-7.33*102 -7.33*102 -7.33*102 

According to Tables 4-20 and 4-21, stresses obtained from each elements type are 

same with the analytical one. This situation shows that calculations of stress due 

to temperature load algorithms of each element are acceptable. 

 

4.3. Verification of Heat Transfer Analysis 

Square and rectangular plate problems suggested by Reddy and Gartling (2010) 

were solved in order to verify the implementation heat transfer analysis algorithms 

and corresponding elements.  

 

4.3.1. Square Plate Problem 

In this part, heat conduction and heat generation definitions of the finite elements 

and steady-state solution algorithm was examined. For that purpose, quarter of a 

square plate suggested by Reddy and Gartling (2010) was solved with each element 

and performances of the elements were compared. Since the plate has four different 
symmetry axes (Figure 4-9 (A), x=0, y=0, x=y, and x=-y), solving only quarter of the 
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plate provides simplicity. Square plate and quarter plate are presented in Figure 4-

9 (A) and Figure 4-9 (B), respectively. 

 

(A)                                                      (B)    

Figure 4-9 Plate Models. (A) Full Plate. (B) Quarter Plate 

As shown in Figure 4-9(A), temperature of nodes at edges are fixed to 0OC (orange 
nodes) and heated uniformly with the amount of 1 W/cm3. Since the plate is 

symmetric, quarter of it (Figure 4-9 (B)) is taken into account with no surface flux 

at symmetry edges (line x=0 and line y=0). Then temperature values at free nodes 

(green nodes) are observed. Model properties of quarter of plate are tabulated in 

Table 4-22. 

Table 4-22 Square Plate Problem – Model Properties 

Geometric Properties Material Properties Section Properties 

Length: 1 cm 
Heat Conduction 

Coefficient:  
1 W/cm OC     Depth: 1 cm 

Width: 1 cm 
Heat Generation per 

Volume: 
1 W/cm3     

Temperature distribution of full plate and quarter of that plate are shown in Figure 

4-10 (A) and Figure 4-10 (B), respectively. 

 

(A)                                         (B)                        

Figure 4-10 Temperature Distribution of Full and Quarter Plate 
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Results obtained from the models with different elements are compared with the 

analytical results. Two different mesh densities were utilized for each case except 
tetrahedral elements. Nodal temperatures along the edge (x=0) for each model are 

presented in Table 4-23.  

Table 4-23 Performances of Each Element 

Element Mesh 
Temperatures at Nodes (oC) 

y=0 y=0.25 y=0.5 y=0.75 y=1.0 

Analytical - 0.2947 0.2789 0.2293 0.1397 0.0000 

       

Quad4 
4 0.3107 0.2759 0.2411 0.1205 0.0000 

16 0.2984 0.2824 0.2322 0.1414 0.0000 

       

Quad8 
4 0.2941 0.2791 0.2292 0.1395 0.0000 

16 0.2946 0.2788 0.2293 0.1397 0.0000 

       

TriM3 
8 0.3125 0.2708 0.2292 0.1146 0.0000 

32 0.3013 0.2805 0.2292 0.1392 0.0000 

       

TriM6 
8 0.2950 0.2786 0.2296 0.1395 0.0000 

32 0.2947 0.2789 0.2294 0.1397 0.0000 

       

Brick8 
4 0.3107 0.2759 0.2411 0.1205 0.0000 

16 0.2984 0.2824 0.2322 0.1414 0.0000 

       

Brick20 
4 0.2941 0.2790 0.2292 0.1396 0.0000 

16 0.2946 0.2788 0.2293 0.1397 0.0000 

       

Wedge6 
8 0.3125 0.2708 0.2292 0.1146 0.0000 

32 0.3013 0.2805 0.2292 0.1392 0.0000 

       

Wedge15 
8 0.2950 0.2786 0.2296 0.1395 0.0000 

32 0.2947 0.2789 0.2294 0.1397 0.0000 

       

Tet4 294 0.2939 0.2712 0.2177 0.1294 0.0000 

       

Tet10 294 0.2946 0.2734 0.2293 0.1324 0.0000 

 

According to the values in Table 4-23, it can be seen that using quadratic elements 
give closer results to the analytical ones when compared with the linear elements. 

Moreover, modeling with finer mesh provides better approximation of the actual 

temperature distribution function; therefore, accuracy of the solution increases. 
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When the performances of 2D and 3D elements are compared, their results are 

completely the same. Such a result is expected, since temperature distribution 
through the thickness is zero for this problem, 3D element behaves like 2D 

element.  

Due to adaptation problem of tetrahedral elements to overall structure, more 

elements were required. Even so, linear element conducts less thermal energy when 

compared with the linear hexahedral element. On the other hand, results of 

quadratic tetrahedron are very close to the analytical ones. 

Final point is that in general, accuracy of triangular elements is better than the 
quadrilateral elements. As heat generation load is applied to the body, not to nodal 

points, using finer mesh increases the accuracy of calculation of equivalent nodal 

load. In order to adapt triangular elements to geometry of the structure, more 

triangular elements are needed. Accordingly, using triangular elements behave 

better than the rectangular ones. 

 

4.3.2. Rectangular Plate Problem 

In addition to the element performances, linear steady-state and transient solution 

algorithms were tested by solving the rectangular plate problem suggested by 

Reddy and Gartling (2010). In this model, all types of loading and boundary 
condition definitions were verified. The rectangular plate model is presented in 

Figure 4-11. 

 

Figure 4-11 Rectangular Plate Model 

 

As shown in Figure 4-11, temperature values of the nodes at the right side of the 
plate and colored with orange (2 and 3) are fixed to 25OC. At the left side (orange 

line) and top side (light blue line) of the plate, surface flux and heat convection are 

defined, respectively. Moreover, heat generation exists in whole plate. Temperatures 
of nodes at right edge are fixed to 25OC.  Model properties are tabulated in Table 4-

24. 
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Table 4-24 Rectangular Plate Problem – Model Properties 

Geometric Properties Material Properties Section Properties 

Length: 0.1 m 
Heat Conduction 

Coefficient: 
0.4 W/m OC    Depth: 1 m 

Width: 0.05 m 
Heat Convection 

Coefficient: 
60 W/m2 

  

  
Ambient 

Temperature: 
25OC   

  Flux: 3,500 W/m2   

    Heat Generation: 135,300 W/m3     

 

The problem defined above was solved for each finite element and results were 

compared with the analytical solutions. Temperature values at node 1, node 4 and 
midpoint of node 3 and node 4, and flux amount at node 1 (Figure 4-11) of each 

model are tabulated in Table 4-26 and temperature distribution of the plate is 

illustrated in Figure 4-12. Results in Table 4-25 were obtained from linear steady-

state analysis. 

 

 

Figure 4-12 Temperature Distribution of Rectangular Plate Modeled with TriM3 

Elements 
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Table 4-25 Performances of Elements in Element Library 

Element 

Type 

Number 
of 

Elements 

1 
Middle of 

points 3 and 4 
4 

Temperature 

(OC) 
Flux (x) 

(W/m2) 
Temperature 

(OC) 
Temperature 

(OC) 

Analytical - 8.54*102 3.50*103 1.28*102 2.34*102 

Quad4 25 8.55*102 3.12*103 1.28*102 2.27*102 

Quad8 25 8.54*102 3.47*103 1.28*102 2.33*102 

TriM3 50 8.55*102 3.21*103 1.28*102 2.32*102 

TriM6 50 8.54*102 3.49*103 1.28*102 2.33*102 

Brick8 25 8.55*102 3.12*103 1.28*102 2.27*102 

Brick20 25 8.54*102 3.48*103 1.28*102 2.33*102 

Wedge6 50 8.55*102 3.21*103 1.28*102 2.32*102 

Wedge15 50 8.54*102 3.49*103 1.28*102 2.33*102 

Tet4 137 8.40*102 2.14*103 1.18*102 2.86*102 

Tet10 137 8.61*102 3.68*103 1.26*102 2.31*102 

This problem shows performances of surface load algorithms such as heat 

convection and surface flux of each element. As shown in Table 4-25, similar to 

previous example, quadratic elements represent the actual behavior better. 
Moreover, temperature distribution along z direction is zero then, results of 2D and 

3D elements are the same except models with tetrahedrons. When the plate was 

modeled with unsymmetrical tetrahedral mesh, there is a nonzero temperature 

distribution along the plate thickness which causes a deviation from analytical 

results. In fact, the plate has symmetry along thickness; accordingly, temperature 

gradient along its thickness must be zero. 

Rectangular plate was modeled with 1000 TriM3 elements and analyzed with the 
linear transient solution algorithm to check its accuracy. The analysis was repeated 

four times with different versions of the algorithm; i.e. Explicit and implicit 

integration with consistent heat capacitance matrix, explicit and implicit 

integration with lumped heat capacitance matrix. The model is shown in Figure 4-
13. In addition to the properties of the model stated above, analysis time was taken 

as 40000 seconds. The results of linear transient analysis procedure are tabulated 

in Table 4-26. 
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Figure 4-13 Rectangular Plate Modeled with 1000 TriM3 Elements 

 

Table 4-26 Performance of Heat Transfer Analysis Algorithms 

TriM3 

1000 Elements 

t = 40000 seconds 

Temperatures 
at Node 1  

(OC) 

Steady-state 854.51 

Explicit Transient 

(lumped) 
853.55 

Explicit Transient 853.57 

Implicit Transient 

(lumped) 
853.53 

Implicit Transient 853.55 

 

According to results of Table 4-26, temperature values obtained from implicit and 

explicit algorithm are close to each other. Similarly, using lumped or consistent 
heat capacitance matrix does not create important difference between the results of 

each other. Therefore, lumped energy storage change matrix can be used to reduce 

computational costs.  
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4.4. SUMMARY 

To sum up, according to the structural analysis results, linear finite elements 
represent the axial extension behavior better; whereas, quadratic elements are 

more suitable for shear-bending and pure bending conditions. Since shear-bending 

and pure bending behaviors are higher order polynomial, linear elements does not 

fit this higher order polynomial.. The performances of linear elements under shear-

bending and pure bending conditions are improved by increasing mesh of the 

model.  

Meshing cross-section of the beam provides more flexible behavior because it 

refuses the assumption “plane sections remain plane”. Moreover, distortion reduces 
the accuracy of the elements. According to the results, parallelogram shaped 

distortion is more suitable for linear elements; whereas, trapezoidal shaped 

distortion is better for quadratic elements. 

When triangular and quadrilateral elements are compared, quadrilateral elements 

behave more flexible. If the mechanism through the thickness of the element is 

ignored (i.e. neglecting the Poisson Effect), the behaviors of quadrilateral and 

hexahedral elements are completely the same. Otherwise, quadrilateral element is 
more flexible. Then, wedge and tetrahedral elements are stiffer than the hexahedral 

elements. 

Heat transfer performances of the finite elements are similar to the structural 

analysis performances. Since the equation of heat transfer is not linear, quadratic 

elements represent the behavior better. In addition, increasing mesh provides better 

approximation of the actual behavior. 

If the temperature gradient through the thickness of the element is ignored, the 

behaviors of the quadrilateral and hexahedral elements are completely the same. 

Finally, triangular elements are better for heat transfer problems due to having 

more accurate loading calculations. 
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CHAPTER 5  

 

 

CASE STUDY 

 

 
 

5.1. Introduction 

According to PTI structures having large plans with short floor to floor distance 

such as parking structures are subjected to four different types of shortening. 

These are shortenings due to pre-compression in post-tension slabs, creep, 
shrinkage, and temperature change. Usually expansion/shortening of slabs due to 

temperature changes are up to one third of total shortening of slabs (PTI). 

Therefore, axial deformation of slabs due to temperature changes should be taken 

into account while designing the expansion joints, diaphragm reinforcement and 

slab column/wall connections. 

In this chapter, the effect of thermal loading (temperature change) on slab stresses 
and internal forces of vertical components were investigated. For this purpose, top 

floors of two typical L-shaped buildings, parking and office buildings were modeled. 

In other words, the same structure was solved by utilizing different thermal 

conditions of parking structure and office structure, separately.  

Both cases were solved by utilizing heat transfer and structural analysis, 
sequentially (coupled analysis in weak form). First, temperature distributions of the 

components were obtained by performing linear transient heat transfer analysis. 

Then, the structures were solved by utilizing linear static solution algorithm and 

stresses over the slabs and internal forces at columns and walls were computed.  

 

5.2. Model Properties 

As a case study, top story of a typical L-shaped building was modeled. This 

structure has a uniform and continuous moment frame system. In order to 
increase the lateral stiffness of the building, shear walls were added to the system. 

Plan view of the building and section properties of each structural element are 

presented in Figures 5-1 and 5-2, respectively. 
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Figure 5-1 Plan View of L-Shaped Structure 

 

 

Figure 5-2 Section Properties of Structural Elements 

 

As seen in Figure 5-2, each column and beam has square section whose 
dimensions are 50x50 cm. Similarly, the thicknesses of shear walls are 50 cm also. 

Floor to floor height is 400 cm. Finally, slab thicknesses were taken into account as 

30 cm. 3D model of the L-shaped structure is shown in Figure 5-3. 
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Figure 5-3 3D Model of L-Shaped Structure 

 

Top story of an L-shaped structure was investigated under thermal loading. Each 

structural element was modeled by using three dimensional hexagonal (Brick) 

elements. Therefore, 35595 nodes and 21580 linear hexahedral elements were 

utilized to model this building. Slab element was meshed with two elements 
throughout the thickness in order to get temperature values of nodes at center level 

of the slab. This also provides more accurate temperature distribution on section of 

the slab. Meshing of structural elements is shown in Figure 5-4. According to 

verification results of linear hexahedron element, the current mesh size may not be 

sufficient to represent the actual bending behavior at columns and walls. On the 

other hand, since both cases were solved by using the model with the same mesh, 

approximately the same amount of error occurred for both cases. 

 

Figure 5-4 Model Mesh 

These buildings were modeled with C35 reinforced concrete. Material properties of 

L-shaped structures are listed in Table 5-1. 
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Table 5-1 Material Properties of Parking Structure 

Mechanical Properties Chemical Properties 

Modulus of Elasticity: 

(TS500, 2000) 
33000 MPa 

Heat Conduction 

Coefficient: 

(ASHRAE, 2001) 

1.5 W/m OK 

    

Poisson’s Ratio: 

(TS500, 2000) 
0.2 

Heat Convection 

Coefficient: 

(Air) (Free Conv.) 

(Lewis et al, 2004) 

15 W/m2 OK 

    

Thermal Expansion 
Coefficient:               

(TS500, 2000) 

0.00001 /OC 

Specific Heat 
Capacity:  

(ASHRAE, 2001) 1 kJ/kg OK 

    

Density: 

(Kosmatka et al., 2003) 
2400 kg / m3  

 

Although the heat convection coefficient depends on the geometry of the structure, 
in this study, heat convection coefficient was taken into account as a constant 

value.  

For the thermal analysis, the initial temperature of concrete was assumed as 14OC 

during the casting period (no hydration effect). For the first case parking structure, 

hourly temperature values in Adana at June 23rd (Bulut et al.) were applied to both 
bottom and top surface of the slab. On the other hand, for second case, the same 

temperature distribution was accounted only for the outside of the building; 

whereas, inside temperature was assumed to be 20OC constant temperature. 

Temperature distribution of Adana on June 23rd is presented in Figure 5-5. 
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Figure 5-5 Hourly Temperature Distribution of Adana 

Currently, the radiation effects were ignored; accordingly, these buildings were 
subjected to only heat convection as ambient thermal load. Another assumption is 

that no convection occurs at faces of the columns and walls of the system. Heat 

convection was defined only at the top face of the slabs and bottom faces of the 

beams and slabs.  

 

5.3. Case 1: Parking Structure 

For the parking structure, both top and bottom faces of the slab were subjected to 

same ambient temperature presented in Figure 5-5. In order to obtain temperature 
distribution of the slab, transient heat transfer analysis was performed for twenty-

four hour duration and structure was solved by utilizing structural analysis for the 

several times, 5th, 12th, 14th, 20th and 24th hours. In 5th and 14th hours, air 

temperature reaches the minimum and maximum, respectively. In addition to this, 

stress distribution at 12th, 14th, and 24th hours were investigated. The temperature 
distribution of the slab along the slab section and at a single point for different 

times were presented in Figures 5-7 and 5-8, respectively. The location of the 

section cut and the point is presented in Figure 5-6. Units of temperature values 

presented in Figure 5-7 are OC.  
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Figure 5-6 Section Cut of the Slab and Point 1 
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E) 

Figure 5-7 Temperature Distribution of Slab of Parking Structure (A) 5th hour (B) 

12th hour (C) 14th hour (D) 20th hour (E) 24th hour  
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According to Figure 5-7, the top and bottom faces of the concrete slab were exposed 

to the same thermal energy and this energy expanded toward the midlevel of the 
section during warming of the slab and temperature of midlevel increases (Figure 5-

7 A to D). Whereas during cooling, the thermal energy stored inside the concrete 

slab transforms to the ambient; accordingly, heat energy stored in the concrete 

section expands through the faces (Figure 5-7 E). In Figure 5-8, temperature 

gradients of the slab through thickness at Point 1 (Figure 5-6) are presented for the 

times stated above. 

 

Figure 5-8 Temperature Gradient through Thickness 

Since the thermal conditions at bottom and top faces of the slab were the same, 
same temperature values are expected for both faces. However, bottom faces of 

some slab elements have no contact with the air due to existence of beams. 

Therefore, the temperature values of bottom and top faces of the slab are not totally 
the same in spite of having the same ambient temperature. However, for whole 

slab, this behavior cannot create serious temperature gradient through the 

thickness. The mean temperature values at top, center and bottom layers of the 

whole slab are presented in Figure 5-9.  
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Figure 5-9 Mean Temperature Distribution of Slab Layers (Parking Structure) 

According to the Figure 5-9, the temperature of the slab  increases 15th hour and 
then cooling began at top and bottom faces. At the end of the day, temperature 

values through thickness were equalized and the structure became slightly hotter 

than the ambient. 

Then, linear static analysis was performed for each time stated above by utilizing 

the temperature gradients for current time. This way, stress distribution of the slab 

was obtained. Displacements of midlevel slabs for 24th hour are presented in Figure 
5-10. Moreover, stress distributions of slab for 5th, 12th, 14th, 20th, and 24th are 

presented in Figures 5-11 to 5-15, respectively. 

 

(A)                                   (B)         

  

Figure 5-10 Displacements at 24th Hour. (A) x Direction (B) y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-11 Stress Distributions of Slab at 5th Hour (Parking Structure) (MPa). (A) 

Stresses in x Direction. (B) Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-12 Stress Distributions of Slab at 12th Hour (Parking Structure) (MPa). (A) 

Stresses in x Direction. (B) Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-13 Stress Distributions of Slab at 14th Hour (Parking Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-14 Stress Distributions of Slab at 20th Hour (Parking Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-15 Stress Distributions of Slab at 24th Hour (Parking Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 

Since the orientation and location of the shear walls are not the same for both 
direction, x and y, displacements are not symmetric for both axes (Figure 5-9). 

Stress distributions in Figures 5-10 to 5-15 are related to the displacement 

distribution. Indeed, significant stresses occur at location where displacements 

have been restrained. For x direction, existing of shear wall being close to inner 

corner of L-shape causes significant compressive stress concentration at that 
region. On the other hand, for y direction, displacements at region between the 

inner corner of L-shape and shear walls in y direction are approximately zero; 

accordingly, corresponding compressive stress spreads at that region and 

magnitude is less than the one in x direction. 
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Since the top and bottom faces are subjected to the same ambient condition, stress 

distributions for each time were similar to each other. These stress distributions 
alter towards to the midlevel of the slab (Figures 5-10 to 5-15). At midlevel of the 

slab section, the zero displacement region becomes smaller with respect to time due 

to the increase in temperature change; accordingly, the region being subjected to 

compressive stress increases with time. 

 

5.4. Case 2: Office Structure 

In the second case, same structure was solved with different thermal conditions. As 

a matter of fact, inside temperature of the structure was assumed to be constant 
(20OC) for twenty-four hours. On the other hand, top face of the slab was subjected 

to same convection conditions of parking structure. Similar to previous case, this 

structure was solved by utilizing linear transient heat transfer analysis and at 

several times and temperature change values at nodes of the slab were obtained. 

These temperature distributions at same slab section with are presented in Figure 

5-16.  
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(A) 

 

(B) 

 

(C) 

 

(D) 

 

(E)            

Figure 5-16 Temperature Distribution of Slab of Office Building (A) 5th hour (B) 12th 

hour (C) 14th hour (D) 20th hour (E) 24th hour 
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Since the ambient temperature affecting the top face is higher than the inside 

temperature, heat energy moves from top to bottom (Figure 5-16 A to D). 
Accordingly, bottom face has always the lowest temperature; whereas, top face has 

the highest temperature value. During cooling, temperature of the top faces begins 

to drop (Figure 5-16 E). The temperature gradient at Point 1 and mean temperature 

values at top, center and bottom layers are presented in Figures 5-17 and 5-18, 

respectively. 

 

Figure 5-17 Temperature Gradient through Thickness at Point1 

 

Figure 5-18 Mean Temperature Distribution of layers of Slab (Office Structure) 

Mean values of the layers represent the behavior of slab under ambient 
temperature distributions. As seen in Figure 5-18, increase of temperature of 

bottom layer is about 3OC; whereas, temperature changes in top layer is 

approximately 13OC. As a result, temperature gradient occurs through the 
thickness of the slab of office structure. In addition, although, after 14th hour, top 

layer begins to cool, whereas the other layers stay warm for the whole day. 
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Then linear static solutions were performed for each time stated above and the 

stress distributions over the slab were obtained. Displacements of the slab in both 
x and y directions at the end of the day are presented in Figure 5-19. Moreover, 

stress distributions at top, middle, and bottom layers of the slab for 5th, 12th, 14th, 

20th, and 24th are presented in Figures 5-20 to 5-24, respectively. 

 

 

(A)                                                      (B)        

   

Figure 5-19 Displacements at 24th Hour. (A) x Direction (B) y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-20 Stress Distributions of Slab at 5th Hour (Office Structure) (MPa). (A) 

Stresses in x Direction. (B) Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-21 Stress Distributions of Slab at 12th Hour (Office Structure) (MPa). (A) 

Stresses in x Direction. (B) Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-22 Stress Distributions of Slab at 14th Hour (Office Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-23 Stress Distributions of Slab at 20th Hour (Office Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 
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(A) Top – Mid – Bottom Layer 

 

(B) Top – Mid – Bottom Layer 

Figure 5-24 Stress Distributions of Slab at 24th Hour (Office Structure) (MPa). (A) 

Stresses in x Direction (B). Stresses in y Direction 

According to Figure 5-19, although general displacement distributions in both x 

and y direction of midlevel of the slab at the end of the day are similar with the 
parking structure, the displacements of office structure less due to having smaller  

total temperature change amount.  

Similar to first case, concentrated compressive stress occurs between inner corner 

of L-shape and shear walls in x direction due to restrained displacements. On the 

other hand, in y direction, zero displacement region is largely at region between 

inner corner and shear wall in y direction (Figure 5-19 B), compressive stresses 
spread to that region; accordingly, their amounts are less than the other direction. 

According to Figures 5-20 to 5-24, at midlevel, the same regions stated above 
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becomes subjected to compression due increase in temperature and the 

compression region expands with time. 

 

5.5. Comparison 

Two top floors of typical L-shaped structures were subjected to different thermal 

loading and different stress distributions generated on slabs of the structures. 

Indeed, due to different thermal gradient on slab section, behaviors of the 

structural components were not the same. 

Since parking structure was subjected to ambient conditions at both faces, 

temperature of the slab along its thickness was balanced with the outer face 
temperatures. Accordingly, the general temperature distribution of slab resembles 

to the distribution of ambient temperature with respect to time. On the other hand, 

slab of office building were subjected to heat convection with different ambient 

conditions for bottom and top faces. Accordingly, it was impossible for midlevel 

temperature to be balanced with the outer face temperatures and temperature 
gradient through thickness is not constant for the duration of day. Because of this 

reason, the slab temperature of parking structure is higher than the office building. 

Accordingly, displacements occurring on parking structure are greater than the 

office structure. 

For both cases, the same regions between shear wall and inner corner of L-shape 

are critical. Although parking structure has higher temperature change, top face of 
the office structure is subjected to higher compressive stress due to having 

inconstant temperature gradient. Indeed, the mid and bottom levels of slab of office 

structure cannot expand as much as the top face; in other words, bottom levels try 

to restrict the expansion of the top level. Accordingly, at top face of slab of office 

building, additional compressive stresses occur. Similarly, slab of parking structure 
is subjected to higher tension. For both structures, stress distribution in x direction 

of top, midlevel and bottom faces at 14th hour are presented in Figures 5-25. 
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(A) 

 

(B) 

Figure 5-25 Stress Distribution in x Direction at 14th Hour. (A) Parking Structure 

(B) Office Structure 

Internal forces of vertical elements, Wall 7 and Column 35, were investigated for 
both structures and compared with each other. These vertical components and 

their locations are presented in Figure 5-26. 
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Figure 5-26 Plan View of L-Shaped Structure – Wall 7 and Column 35 

For internal force investigation, Wall 7 was selected since maximum compressive 

stress in x direction occurs at region near it. Moreover, since maximum 

displacement in x direction occurs at region right hand side of the structure, the 

internal forces of Column 35 due to thermal load was examined. Shear force in x 

direction of bottom level of Wall 7 and Column 35 are presented in Figures 5-27 

and 5-28, respectively. 

Wall 7 Column 35 
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Figure 5-27 Shear Reaction Forces - Wall 7 

 

 

Figure 5-28 Shear Reaction Forces - Column 35 

According to Figures 5-27 and 5-28, parking structure is subjected to shear force a 

little bit greater due to having higher temperature change. Shear force amounts 

increase with respect to time for both structural components as displacements of 

the slabs also increase due to thermal load.  
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5.6. Parallelization Aspect 

The parking and office structures were solved by utilizing parallel solution 
techniques. Each structure has 35595 nodal points and 21580 linear hexahedral 

elements. In other words, 35595 and 106785 equations were solved by utilizing 

parallel solution techniques for transient heat transfer and linear static solutions, 

respectively. Actually, 8640 steps were taken into account for transient heat 

transfer analysis and 5 static cases were performed during the solution. Indeed, for 

linear static analysis algorithm, MUMPS library parallelizes the solution; whereas, 
transient heat transfer analysis algorithm uses MPI for partitioning of the model. 

Parallel performance of the solution of case study is presented in Figure 5-29. 

 

Figure 5-29 Parallel Performance of Solution Algorithm 

According to the Figure 5-29, parallelization techniques provide a speed-up 

approximately 7 times with respect to the performance of one core. Parallel 

performance of initialization and one step duration of the transient heat transfer 

solution algorithm are presented in Figure 5-30.  

 

Figure 5-30 Parallel Performances of Initialization and Duration of One Step 
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According to Figure 5-30, initialization time is the same for each parallel solution. 

Whereas, the one step duration reduces up to 7.5 times with respect to the solution 

with one core. 
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CHAPTER 6  

 

 

CONCLUSION AND FUTURE PLANS 

 

 
 

6.1. Conclusion 

For this study, coupled analysis with thermal and structural analysis, methods 

were implemented. Moreover, two and three dimensional finite elements having 

capability of both heat transfer and structural analysis solutions were developed 
and their performances for several benchmark problems were verified. Finally, top 

floors of two typical L-shaped structures, parking and office buildings, were 

analyzed by utilizing coupled analysis and results of these two structures were 

compared. 

According to the verification results of finite elements for structural analysis 

problems, the following conclusions were obtained. First, linear elements represent 
axial extension behavior better; whereas, under shear-bending and pure bending 

loading conditions, quadratic elements have better performance. For shear-moment 

or pure moment related problems, the behavior of linear elements may be improved 

by utilizing finer mesh.  

Distortion on elements reduces the accuracy and parallelogram shaped distortion 
for linear element is more reliable than the trapezoidal shaped distortion; whereas, 

for quadratic elements, accuracy of trapezoidal element is greater. According to 

results of verification problems, quadrilateral elements behave more flexible then 

the triangular ones since triangular elements have high stiffness at mutual nodes.  

For problems having negligible action in out-of-plane direction, the behavior of 

hexahedron element become the same with the quadrilateral element. Accordingly, 
for such situations, using quadrilateral element reduces the computational cost. 

However, if action in the out-of plane direction cannot be ignored, hexahedral 

elements behave stiffer than the quadrilateral elements. 

Applying non-uniform loading on meshed cross – section of an element behaves 

more flexible for axial extension condition since the assumption of “plane section 
remains plane” is not valid for that section. Finally, wedge and tetrahedral elements 

may be preferred for modeling of irregular geometries. Because they are stiffer than 

hexahedral elements; accordingly, finer meshing is required to improve the 

behavior. 

In general, heat transfer behaviors of finite elements are similar to the structural 

analysis ones. Since the temperature gradient is not linear, quadratic elements 
represent the actual behavior better. Similarly, utilizing finer mesh provides closer 

results to the analytical results. Behaviors of 2D and 3D elements are the same if 

temperature gradient through the third axis is assumed to be equal to zero. Finally, 

performance of triangular element is better than the quadrilateral one as having 

finer mesh for triangular element provides more accurate calculation of thermal 

body loads such as heat convection or surface flux etc. 
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Finally, two L-shaped structures, parking and office structures, under different 

thermal loading were analyzed. According to the results, parking structure is 
subjected to higher stress amounts due to having higher temperature change. 

Moreover, for both structures, critical stresses occur at location where the 

displacements are restrained; accordingly, at regions between inner corner of the L-

shape and shear walls, maximum compressive stress occurs. If this region is small, 

the stress amount is high; whereas, for large regions, compressive stress is 

distributed to the region. 

 

6.2. Future Plans 

This study has some limitations in order to simplify the procedure. However, by 

utilizing some improvements, more accurate results may be obtained. These 

improvements are presented below. 

 

 Modeling Improvement:  
 

Since the linear element is not sufficient for calculation of stresses, 

increasing mesh or using higher order finite elements should be used to get 
better stress density. As discussed in “Verification Chapter”, linear 

hexahedral element is subjected to shear locking; accordingly, stress 

distribution does not represent the actual behavior. This problem may be 

handled by increasing number of elements or utilizing higher order finite 

element. Quadratic hexahedral element provides better temperature 

distribution through the thickness and stress distribution over the slab.  

 

 Ambient Conditions 
 

In this study, radiation condition was ignored. However, radiation effect 

provides increase in temperature on top faces of the slabs and more 
significant temperature gradient through thickness may occur. Especially, 

for parking structures, radiation effect hinders the occurring of the same 

temperature values on top and bottom layer. Accordingly, stress distribution 

may become more significant. 

 
 

 Ambient Conditions for Columns and Walls 
 

For the solution of L-shaped structures, heat convection occurring on faces 

of columns and walls was ignored. However, temperature gradient through 

thickness of outer columns and walls induce additional bending for those 

elements and accordingly additional internal forces in vertical elements and 
stresses on horizontal elements.  

 

 

 Nonlinear Material 
 

For solution of both physics problems, heat transfer and structural, linear 
material models were utilized. However, nonlinear behaviors in both 
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solutions represent the actual behavior better. Actually, in heat transfer 

solution, conductivity of concrete material depends on the temperature. 
Similarly, elastic properties are related with the temperature, time and 

loading history. In addition to this, thermal expansion coefficient is a 

function of temperature. By considering these mechanisms, more reliable 

results may be obtained. 

 

 Crack Model 
 
Cracking is a complex mechanism for reinforced concrete structures. 

Although, in general, cracks occur at regions having higher stresses, after 

cracking, stresses relaxation occurs and the behavior of the structure may 

change. By implementing the cracking mechanism to the constitutive 

material model, this complex mechanism may be investigated in details. 

 

By considering all of these conditions, more realistic solution of large structures 

built with reinforced concrete may be utilized. 
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APPENDIX A 

 

 

INTEGRATION POINTS 

 

 
 

A.1 . Integration Points for Line Element 

To calculate line integrals, ‘Gauss Quadrature Rule’ is used. It is possible integrate 

a function whose limits are from -1 to 1 by using Gauss Quadrature Rule. In other 

words, any line integral can be calculated numerically by transforming the limits to 

the limits stated above. 

  ∫     
  

  
  ∫       ∑       

   
 

  
               (A-1) 

 Where n: Number of integration points 

It is important to choose appropriate order with rule of (2n-1). In fact, Gauss 

Quadrature method has acceptable accuracy of functions with order of (2n-1) if n 

integration points are taken into account (Cook et al. 1989). 

Table A-1 Integration Point Scheme for Line Element 

Total 

Number 

 of Points 

Location 

(ξi) 
Number 

Weight Factor 

(Wi) 

2   
 

√  
 2 1 

3 

 √      2  
 

 
 

 0 1  
 

 
 

 

Where -1 <   < 1 

 

A.2 . Integration Points for a Quadrilateral Element 

It is possible to consider that there are two line integrals through two different axes 

x and y in order to handle rectangular surface integral, numerically. In other words, 

the location of integration points and their weights are obtained by combining these 

two line integral parameters. Hence, the limits of both integrals are again from -1 to 

1. These parameters are tabulated at table A.2. 

 



 

 

98 

 

Table A-2 Integration Point Scheme for Quadrilateral Element 

Total Number  
of Points 

Location (ξi, ηi) Number Weight (Wi) 

4   
 

√  
,  

 

√  
 4 1 

9 

 √
 

 
 ,  √

 

 
  4  

  

  
  

0 ,  √
 

 
   4  

  

  
  

 0, 0 1   
  

  
   

 

Where -1 <   < 1 and -1 <   < 1 

 

A.3 . Integration Points for Triangular Element 

For triangular surface integrals, it is not acceptable to use Gauss Quadrature Rule. 

Because of this, new definition is needed for the ‘Quadrature Rule’. According to 

Quadrature Rule, the limits are from 0 to 1, different from the previous ones. The 

locations of the integration points and the consistent weights are listed at table A.3. 

Table A-3 Integration Point Scheme for Triangular Element 

Total 
Number  

of Points 

Location (ξi, ηi) Number 

Weight 
Factor 

 (Wi) 

1 0, 0 1 1 

3 
0, 0.5 2 

 

 
  

0.5, 0.5 1 
 

 
  

6 

0.816847, 0.091576 2 0.109951 

0.091576, 0.091576 1 0.109951 

0.108103, 0.445948 2 0.223381 

0.445948, 0.445948 1 0.223381 

 

Where 0 <   < 1 and 0 <   < 1 
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A.4 . Integration Points for Hexahedral Element 

Similar to rectangular surface integral, it is possible to use Gauss Quadrature Rule 
multiple times in order to calculate volume integral of hexahedral element. In fact, 

three line integrations through local axes, x, y, and z, are needed. Therefore, the 

location of integration points and their weight factors can be calculated by using 

the ones stated at table A.1. 

Table A-4 Integration Point Scheme for Hexahedral Element 

Total Number  

of Points 
Location (ξi, ηi, Ϛi) Number 

Weight 
Factor 

 (Wi) 

8  
 

√  
,  

 

√  
,  

 

√  
 8 1 

27 

 √
 

 
 ,  √

 

 
 ,  √

 

 
 8 

   

   
 

0 ,  √
 

 
 ,  √

 

 
 12 

   

   
 

0, 0 ,  √
 

 
 6 

   

   
 

0, 0, 0 1 
   

   
 

 

Where -1 <   < 1, -1 <   < 1, and -1 < Ϛ <1 

 

A.5 . Integration Points for Wedge Element 

Table A-5 Integration Point Scheme for Wedge Element 

Total Number  

of Points 
Location (ξi, ηi, Ϛi) Number 

Weight 
Factor 

 (Wi) 

2 
 

 
 

 

 
 

 

 
  

 

√  
  2  

 

 
  

9 
 
 

 
 
 

 
 
 

 
  √

 

 
  6  

 

  
  

 
 

 
 
 

 
 
 

 
     3  

 

  
  

18 

  
 

 
 
 

 
 
 

 
  √

 

 
  6  

 

  
  

 
 

 
 
 

 
 
 

 
   3  

 

  
  

   
 

 
 
 

 
    √

 

 
  6  

 

   
  

 

 
 
 

 
      3  
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Where 0 <   < 1, 0 <   < 1, and 0 < Ϛ <1 

 

A.6 . Integration Points for Tetrahedral Element 

 

Table A-6 Integration Point Scheme for Tetrahedral Element 

Total Number  

of Points 

Location  

(ξi, ηi, Ϛi, 1-ξi-ηi-Ϛi) 
Number 

Weight Factor 

 (Wi) 

1 
 

 
 

 

 
 

 

 
 

 

 
  1   

 

 
   

4 
  √ 

  
 

  √ 

  
 

  √ 

  
 

   √ 

  
  4    

 

  
   

15 

 

 
 

 

 
 

 

 
 

 

 
  1  

  

   
 

 
  √  

  
 

  √  

  
 

  √  

  
 

    √  

  
  4  

       √  

      
   

  √  

  
 

  √  

  
 

  √  

  
 

    √  

  
  4 

       √  

      
    

 
    √  

  
 

    √  

  
 

    √  

  
 

    √  

  
 6  

  

    
 

 

Where 0 <   < 1, 0 <   < 1, and 0 < Ϛ <1 
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APPENDIX B 

 
 

INPUT FORMAT OF PANTHALASSA 
 

 

 

<ptlx version="8" solution_space="000111"> 

 <MaterialModel id="1" plugin="linear_material" E="33000000" Mu="0.2" conductivity_x="1.5" 
conductivity_y="1.5" conductivity_z="1.5" specific_heat="1000.0" convection_coeff="15.0" 
density="2400.0" thermal_expansion="0.00001" Sy="0.0" Et="0.0"/> 

 <Process rank="all"> 

  <Structure id="0"> 

   <Nodes> 

    <Node id="1" x="0.0" y="0.0" z="0.0"/> 

    <Node id="2" x="0.5" y="0.0" z="0.0"/> 

    <Node id="3" x="1.0" y="0.0" z="0.0"/> 

    <Node id="4" x="1.5" y="0.0" z="0.0"/> 

    <Node id="5" x="2.0" y="0.0" z="0.0"/> 

    <Node id="6" x="2.5" y="0.0" z="0.0"/> 

    <Node id="7" x="3.0" y="0.0" z="0.0"/> 

    <Node id="8" x="3.5" y="0.0" z="0.0"/> 

</Nodes> 

 

   <Elements plugin="Brick8" material="1"> 

    <Element id="1" nodes="1,42,43,2,3978,4019,4020,3979"/> 

    <Element id="2" nodes="2,43,44,3,3979,4020,4021,3980"/> 

    <Element id="3" nodes="3,44,45,4,3980,4021,4022,3981"/> 

    <Element id="4" nodes="4,45,46,5,3981,4022,4023,3982"/> 

</Elements> 

 

   <LoadingCondition id="1"> 

    <!-- Restraints --> 

    <NodeLoad id="1" type="Restraint" 
nodes="31844,31845,31846,31847,31872" dimensions="000111"> 

    </NodeLoad> 
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    <!-- Initial Temperatures --> 

    <NodeLoad id="2" type="Temperature" nodes=" 1, 2, 3, 4, 5" 

dimensions="000001"> 

     <Step magnitude="287.15" time="0.000000"> 

     </Step> 

    </NodeLoad> 

     

    <!-- Top Surface Convection --> 

    <ElementLoad id="1" type="HeatConvection" elements="3841, 3842" 
dimensions="000001" matrix_dim="1,5"> 

     <Step magnitude="[5 6 7 8 298.139500;]" 
time="0.000000"/> 

     <Step magnitude="[5 6 7 8 298.139500;]" 
time="3891.024000"/> 

     <Step magnitude="[5 6 7 8 298.013200;]" 
time="3891.024000"/> 

    </ElementLoad> 

 

   </LoadingCondition> 

 

   <LoadCombo id="1"> 

     <LoadingCondition id="1" multiplier="1.0"> 

     </LoadingCondition> 

   </LoadCombo> 

  </Structure> 

 </Process> 

 

 <Analyzer force_create_temperature="true"> 

  <TimeTable start_time="0.000000"> 

   <TimeLine sithe="85860.50000" delta="400.00000"> 

   </TimeLine> 

  </TimeTable> 

 

  <!-- Transient Heat Transfer (0 - 5 hours) --> 

  <Algorithm id="1" plugin="heat_transfer" analysis_type="transient_explicit_parallel" 
start_time="0.000000" end_time="18000.000000" structure="0" loadcombo="1" 

OutputFolder="d:\\utku\\Output\\case_study\\Brick8_21580_Adana_parking"> 



 

 

103 

 

  </Algorithm> 

  <!-- Linear Static (@ 5th hour) --> 

  <Algorithm id="2" plugin="mumps_linear_static" apply_temp_loads="true" 
start_time="18000.000000" end_time="18000.000000" structure="0" loadcombo="1"> 

  </Algorithm> 

  <!-- Transient Heat Transfer (5 - 12 hours) --> 

  <Algorithm id="3" plugin="heat_transfer" analysis_type="transient_explicit_parallel" 
is_continue="true" previous_id="1" start_time="18000.0001000" end_time="43200.000000" structure="0" 

loadcombo="1" OutputFolder="d:\\utku\\Output\\case_study\\Brick8_21580_Adana_parking"> 

  </Algorithm> 

  <!-- Linear Static (@ 12th hour) --> 

  <Algorithm id="4" plugin="mumps_linear_static" apply_temp_loads="true" 

start_time="43200.0000000" end_time="43200.000000" structure="0" loadcombo="1"> 

  </Algorithm> 

<Tracker id="1" plugin="nodal" 
output_file="d:\utku\Output\case_study\Brick8_21580_office_Output.nodal" nodes="1"> 

   <TimeTable start_time="0.0"> 

    <TimeLine sithe="1.0" delta="1.0"> 

    </TimeLine> 

   </TimeTable> 

  </Tracker> 

</Analyzer> 

 

</ptlx
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APPENDIX C 

 
 

OUTPUT FORMAT OF PANTHALASSA 
 

 

 

<VTKFile type="UnstructuredGrid" version="0.10000000000000001" byte_order="LittleEndian"> 

 <UnstructuredGrid> 

  <Piece NumberOfPoints="35595" NumberOfCells="21580"> 

   <PointData> 

    <DataArray Name="displacement" type="Float32" format="ascii" 

NumberOfComponents="6">0.000163634 9.48534e-005 -2.785e-005 0 0 0 0.000169823 6.49232e-005 -
6.46195e-006 0 0 0 </DataArray> 

    <DataArray Name="temperature" type="Float32" format="ascii" 
NumberOfComponents="1">0.222224 0.221567 </DataArray> 

    <DataArray Name="avg_stress_at_nodes" type="Float32" 

format="ascii" NumberOfComponents="6">183126 232641 -992720 88564.5 -461962 -393456 429308 
194578 59900.4 17884.4 -258331 -222645 </DataArray> 

   </PointData> 

   <CellData/> 

   <Points> 

    <DataArray Name="" type="Float32" format="ascii" 

NumberOfComponents="3">0 0 0 0.5 0 0 </DataArray> 

   </Points> 

   <Cells> 

    <DataArray Name="connectivity" type="Int32" format="ascii" 

NumberOfComponents="1">0 41 42 1 3977 4018 4019 3978 1 42 43 2 3978 4019 4020 3979 
</DataArray> 

    <DataArray Name="offsets" type="Int32" format="ascii" 

NumberOfComponents="1">8 16 </DataArray> 

    <DataArray Name="types" type="UInt8" format="ascii" 
NumberOfComponents="1">12 12 </DataArray> 

   </Cells> 

  </Piece> 

 </UnstructuredGrid> 

</VTKFile> 


