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ABSTRACT 

 

ROAD NETWORK EXTRACTION WITH HIGH-RESOLUTION MULTI-

SPECTRAL SATELLITE IMAGES 

 

 

 

Karaman, Ersin 

Ph.D., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

 

 

 

December 2012, 172 pages 

 

 

 

In this thesis, an automatic road extraction algorithm for multi-spectral images is developed. The 

developed model extracts elongated structures from images by using edge detection, 

segmentation and clustering techniques. The study also extracts non-road regions like vegetative 

fields, bare soils and water bodies to obtain more accurate road map. The model is constructed in 

a modular approach that aims to extract roads with different characteristics. Each module output 

is combined to create a road score map. The developed algorithm is tested on 8-band 

WorldView-2 satellite images. It is observed that, the proposed road extraction algorithm yields 

47 % precision and 70 % recall. The approach is also tested on the lower spectral resolution 

images with four-band, RGB and gray level. It is observed that the additional four bands provide 

an improvement of 12 % for precision and 3 % for recall. 
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Road type analysis is also in the scope of this study. Roads are classified into asphalt, concrete 

and unpaved using Gaussian Mixture Models. Other linear objects such as railroads and water 

canals may also be extracted by this process. An algorithm that classifies drive roads and 

railroads for very high resolution images is also investigated. It is based on the Fourier 

descriptors that identify the presence of railroad sleepers. Water canals are also extracted in 

multi-spectral images by using spectral ratios that employ the near infrared bands. Structural 

properties are used to distinguish water canals from other water bodies in the image.  

 

Keywords: Road extraction, railroad extraction, water canal extraction, multi-spectral, 

transportation infrastructure analysis. 
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ÖZ 

YÜKSEK ÇÖZÜNÜRLÜKLÜ ÇOK BANTLI UYDU İMGELERİNDEN 

KARAYOLU AĞI ÇIKARIMI 

 

 

 

Karaman, Ersin 

Doktora, Bilişim Sistemleri 

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 

 

 

 

Aralık 2012, 172 sayfa 

 

 

 

Bu çalışmada, multispektral imgeler için otomatik yol çıkarımı algoritması geliştirilmiştir. 

Geliştirilen model, kenar çıkarımı, bölütleme ve kümeleme yöntemlerini kullanarak uzun-ince 

yapıları çıkarmaktadır. Bu çalışma ayrıca daha yüksek performanslı yol çıkarımı sonucu almak 

için bitki, tarla ve su gibi yol olmayan bölgeleri de tespit etmektedir. Model, farklı özelliklere ait 

yolları çıkarmak için modüler bir yaklaşımla geliştirilmiştir. Her bir modüle ait sonuçlar bir 

araya getirilerek puan haritası oluşturulmuştur. Geliştirilen algoritma, WorldView-2 uydu 

görüntülerinde test edilmiştir.  Ortalama %70 geri çağırma ve %47 hassasiyet ile yol bulma 

başarımı sağladığı gözlenmiştir.  Bu yaklaşım daha düşük spektral çözünürlüğü olan 4-bant, 

RGB ve gri seviye imgelerde de test edilmiştir. Worldview-2 uydusu ile birlikte gelen ek dört 

bandın  % 12 geri çağırma ve % 3 hassasiyet kazandırdığı gözlemlenmiştir.  
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Bu çalışma kapsamında yol kaplama malzemesi sınıfı belirleme analizi de gerçekleştirilmiştir. 

Gauss Karışım Modeli kullanılarak yol kaplama mazlemesi asfalt, toprak ve beton olmak üzere 

sınıflandırılmıştır. Demiryolu ve su kanalı gibi diğer doğrusal yapılar da bu yaklaşımla 

çıkarılabilmektedir. Ayrıca, çok yüksek çözünürlüklü imgeler için demiryolu ve karayolu 

sınıflandırması yapan algoritma geliştirilmiştir. Bu yaklaşım demiryolu traverslerin varlığını 

belirten Fourier özniteliklerini temel almaktadır. Bunun yanında multispektral imgelerde yakın 

kızıl ötesi bantlarını kullanan spektral oranların yardımı ile su bölgeleri çıkarılmıştır.  Yapısal 

özellikler su kanallarının diğer su bölgeleri ile ayrımı için kullanılmıştır.   

Anahtar Kelimeler: Yol çıkarımı, demiryolu çıkarımı, su kanalı çıkarımı, multispektral, ulaşım 

altyapısı analizi.  
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

The importance of satellite systems has constantly been rising in response to the increasing 

decision needs in several areas. Satellite images provide information for urban planning, traffic 

management, emergency management, crop estimation, navigation and military operations.  

In addition to panchromatic images, contemporary satellites also provide hyper-spectral and 

multi-spectral images which enable us to analyze the Earth's surface in more detail.  With the 

introduction of these hyper-spectral and multi-spectral images, the spatial and spectral 

resolutions of satellite images have been continuously improving. In terms of spatial resolution, 

this means that the objects that were previously covered by one pixel are currently covered by 

multiple pixels. For instance, previously buildings are represented in one or two pixels in a 

satellite image; however, they have different sizes in new satellite images. This is also true for 

spectral resolution.  

Object detection from satellite images is also one of the most actively studied areas. Techniques 

used in this area include image processing, analysis and machine learning algorithms to detect, 

identify and recognize objects in an image. However, above-mentioned technical improvements 

also render a continuous necessity for the development of more complex object analysis 

techniques.  
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One of the most prominent problems in object detection is the extraction of roads from satellite 

images. A modular automatic road extraction algorithm based on image processing techniques is 

developed in this thesis. 

1.1 Purpose of the study 

Acquiring accurate information is important for faster decision making. To obtain such 

information for roads, in addition to the construction of an accurate road map, one must also be 

able to discriminate different types and characteristics of roads. Utilization of multi-spectral and 

high-spatial resolution images is also critical to realize the needs due to technical improvements. 

In this context, the purpose of this study is to fulfill the following objectives: 

1) to develop an automatic road extraction algorithm for high resolution multi-spectral 

satellite images to get accurate and detailed road map, 

2) to determine road properties like road type (asphalt, concrete, soil). 

3) to discriminate roads as motorway, railroad and waterway, 

4) to determine the contribution of new spectral bands to the accuracy of road extraction  

 

1.2 Justification of the Study 

Analysis of high resolution satellite images has been an important research topic for accurate and 

up-to-date GIS information including roads that are crucial for urban planning (Rajeswari, 

Gurumurthy, Omkar, Senthilnath, & Reddy, 2011). Roads are very important components of 

most applications such as; updating existing road maps for car navigation (Zhaoa, Kumagai, 

Nakagawa, & Shibasaki, 2002), city planning, management, cartography, (Wang, Qin, Du, 

Chen, & Tao, 2005), data acquisition, GIS systems updates, databases or site models for car 

navigation and emergency (rescue) system which may need instant map (Vandana, Chandrakant, 

& Ramachandran, 2002), producing topographic databases for military purposes and disaster 

management or relief (Bacher & Mayer, 2005), automated mapping (Ravanbakhsh, Heipke, & 

Pakzad, 2007), trajectory planning for unmanned aerial vehicles (Sırmaçek & Ünsalan, 2010) 

and topographic mapping (Zhang & Couloigner, 2006), 

 



3 

 

Developing a road extraction algorithm from multi-spectral images will provide more accurate 

information to enable effective decision making for military and emergency situations, urban 

planning, map updating, navigation support, vegetation field analysis and so on.  

 

Extracting roads manually from remotely sensed data is a costly and time consuming process 

(Mohammadzadeh, Valdan Zoej, & Tavakoli, 2008).  Semi-automatic methods, on the other 

hand, still have their own problems that will be detailed in Chapter 2. It is also stated that the 

ability of the upcoming sensors will produce better spatial resolution data which motivates 

researchers to develop automated road extraction approaches (Rajeswari et al., 2011).   

Roads may also be composed of different surface materials, and they have different 

characteristics in urban and rural regions. However, current studies do not acknowledge this 

point. So, an approach that acknowledges this difference rather than ignoring it is not just 

necessary but also may improve the performance of road extraction methods.  

 

Ever improving techniques in road extraction methods have also forced the development of more 

adaptive and flexible approaches. That is, it would be better if a newly developed efficient 

technique can easily be integrated into the existing ones. One method that satisfies this 

adaptability is to develop modular approaches. These approaches have also the advantage of 

being more data set independent.  

1.3 Research Questions: 

This study aims to extract roads from high spatial resolution and multi-spectral satellite images. 

In order to achieve this goal, five main research questions will be answered.  

R1: How can we develop an algorithm that can extract roads from 8-Band multi-spectral and 

high spatial resolution satellite images? 

R2: How will 8-Band MS image contribute to the accuracy of extracted roads compared to the 4-

band, RGB and Gray level satellite image?  

R3: How can we develop an algorithm that can be used to classify extracted roads as drive-roads 

and railroads?  
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R4: How can we develop an algorithm that can be used to extract water canals? 

R5: How can we develop an algorithm that can be used to determine road cover material? 

1.4 Thesis Overview 

This thesis is organized as seven chapters. The problem is defined in Chapter 1. In Chapter 2, the 

literature on road extraction from different perspectives is given. This chapter also includes 

railroad and waterway extraction studies in the literature. Chapter 3 explains the theoretical 

background of the proposed methods. It also describes the methods that are used in the model. 

Chapter 4 presents the proposed automatic road extraction algorithm. Each component of the 

model is detailed in this chapter. Chapter 5 presents data and experiments. In Chapter 6, results 

are presented separately for each type of data and comparison of the approach with other 

techniques is also provided. Chapter 7 presents the conclusions. Limitation and future works are 

also mentioned in this chapter.  
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CHAPTER 2 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Road Extraction 

Various road network extractions from satellite images have been proposed in literature. These 

approaches can be classified with different taxonomies. Mena (2003) proposed a classification 

system of road extraction studies with a summary of road extraction methods. These classes are 

determined using on preset objective, the extraction techniques, and sensor type. Moreover, 

Özkaya (2009) classified road extraction studies into six categories; basic image processing 

methods, frequency based methods, knowledge base approaches, supervised techniques, 

segmentation methods and other methods.  

In this study, the methods will be classified as automatic and semi-automatic approaches since 

most of them can be classified into more than one class according to the above mentioned 

taxonomies. Semi-automatic means that the algorithm requires user feedback before or during 

the road extraction operation. On the other hand, automatic road extraction methods work 

without user feedback. The literature review is reported chronologically.   

2.1.1 Semi-Automatic Road Extraction Methods 

Park and Kim (2001) propose a semi-automatic method for road extraction from IKONOS 

images. According to the researchers, the distinctive feature of their method is the introduction 
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of template matching algorithm to be used for road extraction. The method starts with the initial 

user input that indicates a point on the road center, i.e. road seed, for each segment in the image. 

Then orientation of the seed is calculated by Burns line extraction algorithm, where the 

algorithm extracts various lines around the initial point and the orientation of the longest line is 

taken as the orientation of the seed. In the next stage, by using seed and orientation, a template 

window and an initial target window (that is formed by shifting the template in the direction of 

orientation) are defined.  Next, by using adaptive least square matching and similarity 

transformations a true target window that best matches with the template window is formed. 

This true target window is then used to form another target window and the iterative process 

continues until two consecutive matches fail. A test for the method is conducted by using a one 

meter resolution panchromatic IKONOS image with. The results revealed that the method 

performed fairly well for roads with a few exceptional cases such as the ones with shadows, 

obstacles, abrupt orientation change, and “complicated structures of exchange”. However, even 

these cases may be handled by the user’s providing another road seed. One assumption of the 

method is that there exist small differences between the brightness values of the template 

window and the target window. Besides, the method is strictly dependent on the validity of the 

initial road seed input which raises an important limitation, as is also stated by the researchers. 

They mainly focus on main road extraction. 

In the study of Zhaoa et al. (2002), a semi-automatic approach is proposed. This study uses 4-

band (red, green, blue, and NIR) and 1 meter resolution pan-sharpened satellite images obtained 

from IKONOS. The study consists of three main stages: road mask extraction using commercial 

remote sensing software, road seed extraction via edge detection and road line extraction using 

template matching based on the road mask and road seeds. In order to extract the road mask, 

maximum likelihood method based on training values is used to classify the image. For road 

seed extraction, Canny edge detection algorithm is used. By tracing edge pixels, sudden and fast 

change points are determined and edge line is broken. In addition, edge lines which have similar 

direction and small gaps are merged. Then, starting with the user input template matching 

algorithm is applied. The user also assigns two directional control points for avoiding wrong 

direction matching. In terms of performance of the study, an experiment is conducted and it is 

observed that, the algorithm can return 4005 pixels by using a start and two control points. It is 

stated that, the final road mask may not include small roads and edges may belong long 

structures other than roads which may cause a failure of this approach. Even though it is stated 
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that this approach is valid for main road extraction in urban areas and all roads in rural areas, it 

actually depends on training data which is used for road mask extraction, edge based road seeds 

and user feedback.   

The method that is proposed in the study of Vandana et al. (2002) integrates cost minimization 

and path following techniques for semi-automatic road extraction. This method includes a pre-

processing stage where Non-Linear Anisotropic Coherence diffusion is used for scale-space 

routine and Canny edge-detector is used for edge detection. After pre-processing the method 

starts with two road input points provided by the user. From these points, the orientation and the 

width of the road are calculated. The results of edge-detection stage are used for the calculation 

of the width. From the orientation and width, three possible directions are extracted for further 

propagation. The cost of each direction is estimated by considering variance of intensity, 

direction, length and width of the road and the direction with the minimal cost is chosen as the 

next path. The iterative process continues until the cost value reaches the pre-defined values. If 

the algorithm encounters a junction point (same cost of possible next point), it selects one points 

to continue and save other points to follow later. The researchers tested the method on both 

IKONOS and aerial images (1 m and 2 m resolution). The results showed that the method 

performs well on roads in any orientation with moderate curvature, and on junction points. 

However, the model has some limitations such as roads cast by shadow may not be extracted, the 

input roads must have considerable width, and the edges of the roads must be detectable through 

the pre-processing. Results are presented visually rather than quantitative performance metrics. 

The performance of this semi-automatic approach depends on selected seed points as well as 

image quality. It is also important to note that path following operation cannot work if the edge 

is not extracted by Canny detection.  

Peteri and Ranchin (2003) proposed a two-step method for detecting and extracting road 

networks from high resolution images. In the experiments, 1 meter panchromatic IKONOS 

satellite images are used. The approach also uses prior knowledge about roads such as models of 

roads and properties of road network. Algorithm starts with extracting a topologically correct 

graph. This graph could come from a database or could be extracted automatically from the 

image by minimizing a cost function which evaluates the homogeneity of the local radiometric 

variance in several propagation directions. In the next step, roads are reconstructed as surface 

elements using the road graph obtained in the former step. This step uses specific active contours 

(snake) technique with multi-resolution analysis (MRA). Reconstruction procedure also consists 
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of two steps, namely extraction of parallel road sides and their intersections. Road segments with 

parallel sides are extracted using a new object called Double-Snake which composes two 

branches where two snakes are evolving jointly. Following the extraction of parallel road sides, 

intersection regions are identified using simple snakes which are initialized by pairing the 

extremity points of the Double Snakes. These simple snake objects are called “intersection 

snakes” in the procedure. A multi-resolution analysis is performed made the original image. 

Double Snakes is applied onto the several approximated images of different resolution they run 

on the original image. After Double Snakes minimizes the energy function, Intersection Snakes 

are initialized and run in same manner. In the results section, only outcomes of the 

reconstruction phase are given, and the graph is not automatically extracted. It is stated that the 

algorithm is successful in extracting the contours of the roads. 

T. Kim, Park, T. Kim, Jeong and K. O. Kim (2004) suggested a semi-automatic method which is 

based on template matching. Their method which tracks road centers is tested on 1 m resolution 

IKONOS images and it is based on least squares template matching. It is stated that the 

algorithm is successful on extracting road centerlines in different orientations. Proposed method 

starts with the user input. It is expected in this step that the user selects a point which is on the 

road centerline. A template window with the selected point at the center is defined and its 

orientation is calculated.  This step is either handled by automatic line extraction or using human 

interaction once again for direction estimation. An initial target window is then generated by 

shifting the template window using the orientation information estimated. Least Squares 

Correlation matching is used after this step to update the position and orientation of the target 

window. Proposed method works iteratively, estimating the new position and orientation of the 

target window and updating the corresponding properties of the template window at each step. 

Tests on IKONOS images showed that using three to five starting points by the user for each 

road segment as input, most parts of the road network could be extracted. Since the algorithm is 

based on template matching, it is also vulnerable to false inputs from user. If the user selects a 

point which is not inside a road region, the algorithm still tries to track regions with similar 

spectral characteristics. Finally it is stated that the proposed template matching method without 

global enforcement is a good alternative to energy minimization applications in the feature 

extraction area. 

In the study conducted by Wang et al. (2005), a multi-resolution approach is proposed based on 

the assumption that roads may show different characteristics at different levels of resolution. 
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Firstly, the satellite image is divided by using pyramidal decomposition to three different 

resolution levels: low, mid and high resolution. For the low resolution image, as roads can be 

approximated by line structures, median filter, Canny edge detection, 8-direction filter are 

applied sequentially. To get a more accurate road map, a set of operations is applied; breaking 

edges at acme points, edge tracing, removing small edges and merging close and appropriate 

edges. For mid-high resolution images, it is assumed that roads are polygonal structures having 

parallel edges and homogenous spectral information. To extract roads, the image gray value is 

thresholded to get candidate road masks, and then the morphological operation is applied to 

remove small components. Edges are extracted by the Canny filter, and Hough transform is 

applied on subsets of the image to find parallel edge pairs. Then mid-lines of these parallel edges 

and road regions are extracted. In order to combine the results, all masks are turned into original 

resolution and overlapped to extract all candidate roads. These candidate road are verified based 

on central lines and parallel sides. Manual correction is also applied for proper road selection. 

An IKONOS panchromatic image is used in the experiments, and the results are presented 

visually rather than quantitatively. It is stated that this semi-automatic method is more suitable 

for main road extraction.  

In the study conducted by Mohammadzadeh et al. (2008), firstly the user selects a few initial 

road points from IKONOS image. Three bands of the images were used. Then genetic algorithm 

is applied to calculate mean values of roads for the three bands by using five classes for each 

band. At the next step, fuzzy segmentation is applied on these mean values. After thresholding 

the fuzzy matrix, a binary mask is extracted. Morphological operations are applied to thin the 

binary mask, and ultimate road skeleton is extracted. It is reported that this method provides 

77% road extraction accuracy.  

In the study conducted by Mohammadzadeh, Valdan Zoej and Tavakoli (2009), a semi-

automatic approach is proposed for road extraction from multispectral satellite images. The 

algorithm requires a seed point generated by the user to create fuzzy classes belonging to the 

road region in each band based on intensity. Then random particles are generated. For each 

particle a fuzzy cost function is calculated and best particles that have minimum cost are selected 

to update the particle population. The best particles that have less cost function value than pre-

defined threshold are selected and fuzzy reasoning operation is applied to create the preliminary 

binary rod mask. Mathematical morphological post-processing operations are applied to the road 

mask to obtain noise removed road centerline. Based on the result, road detection correctness 
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(i.e. “amount of committed errors”) coefficient is 0.88 while, background detection correctness 

coefficient is 0.93. This approach is tested on IKONOS images.  

Movaghati, Moghaddamjoo, and Tavakoli (2010) introduced a semi-automatic tracking based 

algorithm which is a combination of Extended Kalman Filtering (EKF) and Particle Filtering 

(PF) methods to identify road segments in satellite images. Test images are obtained from two 

different satellites which are Indian Remote Sensing (IRS) with 5.8 m spatial resolution and 

IKONOS with 0.8 m resolution. The main algorithm starts with an initial point belonging to the 

road which is supplied to the system by an operator. Using this seed point which inherits the 

information such as the coordinates of the road center, direction and width estimation, a profile 

cluster is initialized and Kalman Filtering is performed. Using the initial state and initial profile 

cluster, EKF module starts to track the road. This step is iterative, so on each step profile clusters 

are updated and new ones are added. EKF module stops when it comes to an obstacle or a 

junction where the average profile error exceeds a predefined threshold. Following this step, PF 

module starts to run. By using a single road branch which is estimated by the former EKF 

module, N particles are generated. Then those particles will search for a new seed point which 

EKF module can take as a starting point. If such a seed point cannot be detected after predefined 

number of steps for any road branch, the algorithm is terminated and the final road network is 

obtained. In case of an appropriate seed point, EKF module starts to work and continues to trace 

the road after the obstacle. The proposed method obtained a very high correctness score (0.98) 

on both satellite images. Completeness scores slightly differ regarding to the satellite type; being 

0.92 for IRS and 0.85 for IKONOS. It is stated that the algorithm is generally tested on rural 

areas and for a better comparison it should be also tested in dense urban areas. 

Lin, Zhang, Liu, Shen and Duan (2011) developed a semi-automatic road network extraction 

algorithm based on tracking the lane markers present on the road for very-high-resolution (VHR) 

remote sensing images. The proposed approach consists of four steps namely, preprocessing of 

the image, seed points entry by the user, automatic road tracking, and operator intervention for 

post-editing. At the preprocessing step, the input image is enhanced and stretched using the 

dynamic range adjustment method when needed. Following this step, the operator selects three 

points on the road which define the starting point, direction and width of the road. Using this 

information, a rectangular window of a road template is initialized and the road markings inside 

this region are also identified. After the template is initialized, automatic tracking of roads 

begins. Road tracking is handled by finding the next road axis point by least squares matching 
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using initial template to obtain the accurate location of the next road center point. After adding 

this point to the extracted road network, the algorithm checks the condition to see if any stopping 

measure is fulfilled. When the tracking algorithm stops on such criterion, operator intervention is 

required. The operator then verifies and modifies the extracted road segments and starts the 

tracking procedure from another seed point if needed. The algorithm is tested on two different 

types of images, a QuickBird panchromatic image with 0.6 m resolution and an aerial image 

acquired using DMC camera with 0.2 m resolution. The quantitative results were given as root 

mean square error per pixel and it is 1.3 pixels for QuickBird and 1.9 pixels for DMC images.  

The results are compared with similar matching and tracking methods and the proposed 

approach outperformed them for the QuickBird image. It is stated in the conclusion that the 

current method cannot automatically detect the width and direction of the road and update road 

reference model. Thus, it performs poorly on sharp turns, junctions and shadows over roads.   

In their study, Da Silva and Centeno (2012) propose a semi-automatic road extraction method 

that uses Red band in 3-band (red, green, blue) high resolution aerial images. Their method 

consists of two stages, i.e. semiautomatic iterative extraction of centerlines and the extraction of 

the road track. In the study, a road is modeled as a chain of segments. Accordingly, the first 

stage starts by the first segment defined by the user input and then continues with the extraction 

of new segments in the search region. This stage uses Radon transform to find candidate 

segments, and the performance depends to two user defined parameters that determine the search 

region: the radius (r) and chord (c). The candidate with the largest gray level mean value is 

regarded as the best solution and the process continues iteratively until the search region is 

completed or no other candidate can be proposed. In the second stage, road borders are 

determined by using estimated width of the tracks which must be defined by the user in 

accordance with the road type. By using three aerial images, the method is evaluated with regard 

to completeness (i.e. “ability of method to extract roads”), correctness, and RMS index (i.e. “the 

geometric quality of the detected centerlines”) criteria. Results show that completeness is 

between 0.60 and 0.94, while correctness is between 0,6-0,94. RMS value varies between 0.7-

1.4. Also, after the comparison of their method with the method proposed by Zhang and 

Couloigner (2006), researchers claim that these two methods are complementary in the sense 

that their method is better in main roads, whereas the other is better in secondary roads. 
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2.1.2 Automatic Road Extraction Methods 

In Zhang, Shunji and Emmanuel (1999), mathematical morphology was applied on 1-m 

resolution satellite images to find roads. Roads are assumed as areas rather than lines because of 

high resolution. It is assumed that road networks are formed by elongated areas. In the study; 

classification (gray level analysis), segmentation and size distribution analysis, trivial opening, 

closing hole filling, removing small paths operations have been applied for road extraction. 

Semi-urban areas obtained from Toronto and Bern are used to demonstrate the algorithm. The 

approach is also used for aerial images.  

In the study conducted by H. Y. Lee, Park and H. K. Lee, 2000, 1 meter resolution IKONOS 

images have been used. The method consists of two steps. Firstly, road primitives were extracted 

using an intensity based segmentation approach called hierarchical gradient watershed 

algorithm. This algorithm was modified to avoid the over segmentation problem. With the 

assumptions that roads are elongated and large objects with constant intensity and have high 

contrast with their surroundings, intensity based segmentation is used and elongated and large 

road segments can be selected by analysis of mean gray value, size (number of pixels in 

segment) and shape information (major/minor axis). In order to complete missing roads, profile 

matching methods have been used basing on the primitive road segments direction. 

Experimental results are provided visually.  

Laptev et al. (2000) proposed a fully automatic approach for extracting road network from 

grayscale aerial images. Their method starts with extraction of lines in the image at coarse 

scales. In coarse scales, it is easier to disregard disturbances in roads such as spectral changes 

and artifacts. But it is also easier to complete and verify the road network in finer scales which 

inherits more information. The proposed algorithm fuses the finer parts of multi-scale 

information to obtain a more refined road network. After extracting the lines in coarse scale, 

salient, non-salient roads and crossings are identified in a finer scale using the line information 

obtained in the former step. Salient roads are defined as complete, easily distinguishable roads 

where as non-salient ones are disturbed by occlusions from the environment. To extract both 

types of roads, rubber snake method is employed. False lines are eliminated using the fact that 

roads generally have uniform widths. By optimizing the rubber snakes, salient roads are found. 

Non-salient roads are found by first creating an optimal path between two salient road segments 

and then comparing the optimal path with the extracted one. After extracting the salient and non-
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salient roads, junctions are identified with a similar hypothesis step. After the junctions are 

extracted, these structures form a road network. Although the method is generally developed for 

rural areas, experiments show that it tends to give successful results in some urban cases. For 

three 0.5 m aerial images, correctness and completeness measures are given. Proposed algorithm 

obtained relatively high correctness (>0.95) and completeness (>0.72) scores in those images.  

In Peteri et al. (2003), two sequential modules were used to extract roads from IKONOS images; 

Graph management and Reconstruction. In the graph management module, they aim to obtain a 

topologically correct graph of road network by selecting the best path for the potential road by 

minimizing a cost function which evaluates the homogeneity of local radiometric variance for 

several propagation directions. In the reconstruction module applied on the obtained graph, the 

snake algorithm and wavelet based multi-resolution approach (MRA) are used. It is stated that 

this method is not suitable for urban areas, and results have not been quantitatively evaluated.  

In the study conducted by Liu, Li and Chapman, 2003, genetic algorithm, fuzzy c-means and 

clustering analysis have been used to optimize clustering parameters for automatic road 

extraction from pan-sharpened 61 cm QuickBird satellite image. The experiments have been 

conducted on 350X214 image frames including vegetation, bare soil and pave roads. Although 

results look promising, the experiment is conducted on a simple satellite image which is not 

covering water, railway, buildings and other man-made or natural objects.  

The study conducted by Li et al. (2003) proposed an approach based on edge detection method. 

Firstly, edges are extracted by applying the Laplacian filter. Then, in order to remove not-road 

edges and complete broken or missing road edges, the snake method is applied. Then, final road 

lines are vectorized with the help of commercial GIS software. This approach is tested on 2.5 m 

resolution SPOT-5 images, and experimental results are presented visually.  

Shackelford and Davis (2003) used an iterative approach for extracting roads from multispectral 

high resolution satellite images. The study uses pan-sharpened IKONOS images with 1 meter 

resolution. The main algorithm starts with masking the pixels in the image which contributes to 

vegetation areas. Masking is done using NDVI index with a predefined threshold. The length 

and width features of roads are used for extraction. For each remaining non vegetation pixel, 

maximum and minimum length line segments comprising pixels with similar spectral 

characteristics which pass through the pixel is identified. The maximum length value, angle of 

file:///C:/Users/EKARAMANVB/AppData/Roaming/Microsoft/Word/Proposal_lit_kaynaklar/The%20Research%20of%20Road%20Extraction%20for%20High%20Resolution%20Satellite%20Image.pdf
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the maximum length line segment, endpoints of the maximum length segment and the minimum 

length value is stored for each pixel. Then each line segment is iteratively examined and added 

to the road network if it satisfied the conditions defined by the user. Iterative algorithm starts 

with the pixel with the highest maximum line segment length. Every pixel inside the line 

segment is checked if its angle and minimum line segment values are valid for a road part and 

labeled as road if it is. After this step, line segments are allowed to grow from end points in the 

general direction of the road segment. This is repeated until no growth is possible. This way, 

algorithm could track roads around curves and partially occluded areas. Finally, the parts of the 

obtained road segment that falls inside the buffer area are checked. This buffer defines the area 

around the extracted segment which potential new line segments will be examined. If the angles 

of the road sections are not in conflict with the buffer, these parts are also included in the road 

network set. The algorithm continues until no line segment length values larger than the 

minimum length set by the user are found. Algorithm is tested on two different data sets with 

urban and suburban characteristics. It is stated that better results could be obtained with 

improved ability to track curves and close gaps.  

Mena and Malpica (2005) addressed to automatic road network updating in GIS database. The 

approach uses RGB image and GIS vector information for this aim. As a first step, available 

road vectors and corresponded areas in the images is selected for creating base information for 

segmentation. In addition, median filter is applied to the image to eliminate noise. As a 

subsequent step, segmentation is applied based on the training data. Then segmented image is 

processed by using edge generalization, skeleton extraction, graph generation, geometrical 

adjustment and topological adjustment respectively. In the evaluation process different 

resolution images were used from 1m to 3m resolution. According to the test, this method 

provides 81% completeness and 87% correctness in average.  

An integrated approach is proposed by Long and Zhao (2005). In this approach grey level 

morphology, mean-shift segmentation, mathematical morphology, edge tracing and convex-hull 

algorithm are used under the assumption that roads are continuous and narrow regions which are 

lighter than their neighborhood sides, and have low gray-level variance and approximately fixed 

widths. Firstly grey-level morphology (cleaning and strengthening) is applied as a pre-

processing step to keep edges and smooth the image. Then mean-shift algorithm is applied to 

this preprocessed image to obtain “simplified image map” including homogenous areas. Then, 

grey-level thresholding is applied on the image map to get potential binary road mask. 
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Mathematical morphological opening and closing is applied to the mask to remove small pixel 

groups and merge small gaps. In order to remove holes, edge tracing is applied. Lastly, convex-

hull algorithm is used to detect minimal convex shape of regions. This approach is applied on 

optical satellite images, and quantitative results are not provided. Even though it is an integrated 

system and applicable to salient “Manhattan city” regions, still it is sequential approach and the 

performance depends on previous steps.  

An automatic road extraction approach using multi-spectral image is proposed by Bacher and 

Mayer (2005). This approach focuses on rural and sub urban regions. IKONOS images have 

been used for demonstration of the approach. First road characteristics are determined including 

both geometric and functional features. Roads are elongated regions and they have steady grey 

values. In addition, they form a network which provides navigation from one point to another. In 

order to extract roads based on these assumptions, firstly Streger line extraction algorithm is 

applied on all band of the image. To construct training areas of road regions, it is expected that 

these lines have a parallel pair and the region between parallel lines have constant grey value. 

Candidate road regions extracted from all bands are fused and used as training areas for 

classification. Fuzzy classification is applied using grey level variance and mean values and a 

probability map is constructed. In order to verify road region, fuzzy values belong to road 

lengths, widths and classification result are used. Minimum value of these three values is used as 

final weight of road regions. After thresholding the weight map, preliminary road mask is 

obtained. Then road network is generated by filling gaps. Performance of this approach is 

measured based on manually digitized reference data. Results show that, this approach provides 

0.76 completeness and 0.76 correctness.  

In the study of Zhang and Couloigner (2006), road extraction approach was proposed using 

multispectral satellite images. The approach starts with K-Means image segmentation. K-value 

was set to “6” based on experimental studies. Then fuzzy logic classifier was applied on the 

result with the assumption that roads have high reflectance in R, G, B bands and lower 

reflectance in the NIR band. Since, this spectrally segmented result may include objects having 

similar spectral characteristics, shape information is used to eliminate noises in the road cluster. 

Then the road network is extracted. According to the result, average completeness for different 

images is in the range of 0,45-0,73, while correctness is in 0,30-0,63. Results vary according to 

the complexity of the image. Since this method’s success essentially depends on the k-means 

algorithm results, any failure in this step may cause ineffectiveness of the approach. 
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In the study of Hsu and Yang (2007), a feature extraction method for classification of hyper-

spectral and high resolution images is proposed. AVIRIS data set has been used in the study, and 

it is concluded that wavelet transform is an effective tool for feature extraction. In Hu, Razdan, 

Femiani, Wonka, and Cui (2007), Fourier and pixel tracking based technique has been used for 

road extraction with the assumption that road network has low curvature.  The technique is based 

on road tracking which follows lines. In order to find the starting point for road tracking, Fourier 

shape descriptor of sample road seed (pixel footprint) is used. Validation of method is not based 

on a quantitative measure. Only sample output images are provided.  

In the study of Senthilnath, Rajeshwar and Omkar (2009), Normalized Cut method and texture 

progressive analysis (TPA) have been used for road extraction from high resolution multispectral 

satellite images. A commercial street area has been selected as a sample data since the study is 

intended to extract roads from urban regions.  QuickBird satellite images (0,61m panchromatic 

and 2,4 multispectral resolutions) are used. The approach is separated into three modules; pre-

processing, TPA and Normalized Cut method and performance evaluation. The pre-processing 

module consists of three steps; gray level images thresholding to get binary image, grouping of 

pixels and masking the vegetation area. In the TPA analysis, firstly training samples including 

different road textures are selected form the images. Then a window region is defined and its 

Haralick features are extracted for training samples. Lastly, the image is divided into small 

windows and their Haralick features are computed for comparison with the Haralick features of 

training set. Based on the difference of those two feature sets, the image is classified as a road 

and non-road region. On the other hand, the image is segmented by using normalized cut 

method. The image is partitioned into classes to form road regions. In order to evaluate 

performance of the methods (TPA and normalized cut), correctness, completeness and quality 

measures are calculated in addition to other performance metrics. The result shows that, 

normalized cut method (correctness 92.7%, completeness 88.4 % and quality 86.1%) is more 

accurate than TPA (correctness 89.6%, completeness 73.5 % and quality 72.8%).   

In Xu, Zhang and Liu (2009), roads are classified based on the number of lanes and widths. 

Road characteristics are also defined according to their geometric, radiation, topological and 

context characteristics. In short, roads are elongated structures and their lengths are greater than 

their widths. They have small curvature, fixed width and clear edges. Gray values are uniform in 

the area of roads. They have high contrast compared to their surroundings. They form a network 

which means that they are connected. Based on these assumptions, watershed Dual-Threshold 
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algorithm has been applied on the image. Then, the deviations from the mean of road pixels and 

from the 8- neighborhood are weighted to determine the road edges. If edges obtained from 

water-shed and Multi-weighted methods are the same, morphological operation is applied for 

noise removal. As a last step, shape index (area/perimeter ratio) is applied to separate road 

segments form non-road structures. Results are presented visually. 

The study provided by Grote, Heipke, Rottensteiner and Meyer (2009) suggests a road network 

algorithm for CIR images. The approach consists of three main parts; segmentation, road part 

extraction, sub graph generation. After segmentation of the image by the normalized cut method, 

segments with similar shapes are merged based on their shapes. Then, each grouped segment is 

analyzed by using shape (elongatedness, width uniformity) and spectral information (NDVI, 

color variation) to extract road parts. Then road parts are connected based on their distance, 

orientation and color similarity. Lastly, by using the contextual information of objects like cars 

and trees, the results are improved. They are presented in visual format.  

Yuan, Wang, Wu, Yan and Li (2009) proposed an approach for automatically extracting road 

networks from satellite images based on the principle that the roads are relatively thin and 

homogeneous regions with smooth directional changes. The proposed approach is built on the 

oscillatory correlation theory and the LEGION (Locally Excitatory Globally Inhibitory 

Oscillatory Networks) method is used both for segmenting the image and grouping road 

segments. Proposed method is tested on several input satellite images with different resolutions 

(4 meters and 30 meters). The algorithm starts with segmenting the gray-level image using the 

LEGION method. Since the LEGION algorithm is based on leaders which are centered on the 

center of large homogeneous regions and the roads are relatively thin and elongated regions, 

road sections are expected to be inside the background segment after the segmentation operation. 

After obtaining the background segment, the medial axis transform is employed to obtain 

candidate road regions. Using the Voronoi diagram as the boundary pixels of segments as 

samples, road regions are obtained with respect to their average distance of medial axis points to 

the boundary. Following this procedure, resulting segments are mostly road sections. To obtain a 

more refined representation, resulting segments are regrouped using the LEGION algorithm. 

Based on the assumption that road segments are aligned collinearly or curvilinearly, the 

LEGION model with long range horizontal connections to the medial axis points of segments is 

applied to obtain road segment grouping. In this step, if most of the medial axes of a segment are 

activated, this segment is regarded as a final road segment. This three step approach is applied 
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onto both synthetic and real satellite images. It is stated that a prior smoothing for images could 

result in better outcomes. 

Sırmaçek and Ünsalan (2010) proposed a road extraction algorithm from high resolution satellite 

images. The algorithm consist of five main steps; smoothing the image, edge detection and local 

feature extraction, spatial matrix creation, analysis of the matrix to find initial point and tracking 

algorithm. After smoothing the images, Canny edge detection is applied to the data, and gradient 

and orientation information is extracted. Based on these local features, a spatial voting matrix is 

constructed. In order to extract the road segment, spatial voting matrix is segmented at different 

levels. Each segment is analyzed whether it satisfied the elongatedness property of roads by 

using area and perimeter metrics ratio.   

Rajeswari et al. (2011) have developed road extraction algorithm for QuickBird satellite images 

which have 2,4m MS and 0,6m Pan resolution. The proposed method consists of two main parts; 

pre-processing and segmentation. For the pre-processing, image is classified into 15 clusters and 

five of them are considered as road class. Then in order to compensate for the deterioration of 

road segment due to cars other occluding objects, nearest neighborhood grouping is applied. 

Then median-filter is applied on the grouped image. Then Normalized-Cut- and Mean-Shift 

segmentation methods is applied separately and performance result are compared based on the 

segmentation method.  For the panchromatic images, normalized-cut procedure provided 96 % 

accuracy while mean-shift 80% only.  On the other hand, for the MS images (2,4 m resolution) 

Mean-Shift procedure provides 95 % accuracy while Normalized-Cut provides only 82 % 

accuracy.  

In the study of Rajeswari et al. (2011), level-set and mean-shift methods are compared for road 

extraction. IKONOS images are used in the experiments. Before applying the methods, the 

image is clustered into 20 clusters and five of those are selected as the road class. Then for 

smoothing nearest neighborhood grouping and Median filer are applied. According to the results, 

mean-shift provide better performance (Completeness, 93%, Correctness. 95%) than level-set 

(Completeness, 93%, Correctness, 87%) algorithm.  
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2.2 Water Canal Extraction 

Water body extraction is a well-studied problem of the contemporary remote sensing studies 

domain. Automatic extraction of water bodies from remotely sensed data is important for 

maintaining an up-to-date geographic database, effective usage of water resources and potential 

flood estimation. Furthermore, having water map for an image may also enable us to classify 

other critical objects like ships, bridges, dams.  

 

Most of water extraction studies are developed for low resolution images. Fraizer and Page 

(2000) summarized and discussed some studies of water body extraction for different low 

resolution satellite images. Johnston and Barson (1993) proposed a water body extraction 

method for Landsat TM images. They used images obtained from different seasons in a year to 

analyze how the water and vegetation fields vary. To do this, classification methods have been 

used. In the study of Alesheik, Ghorbanali and Nouri (2007), histogram thresholding and band 

ratio based water extraction (coastline detection) method is proposed. They used Landsat 7, 

Landsat 5 and Landsat 4 images representing Urmia Lake. Li et al. (2003) proposed a shape-

based change detection of water body by using Landsat images. 

 

High resolution satellite images are also used for water extraction and analysis studies. Luo et 

al. (2007), proposed a water extraction method in IKONOS images to extract bridges. They 

detect water areas in such images by using Markov Random Fields (MRF) and Support Vector 

Machines (SVM) based supervised approach.  After classification, mathematical morphology 

operations are used as post-processing step for water extraction. Since the study mainly aims to 

extract bridges there are no performance values related to water except the error matrix. 

Chaudhuri and Samal (2008) have also proposed a method for extraction of bridges over water 

regions. Firstly, the image is classified into eight classes (i.e. ice/snow, shrubs, concrete, water, 

sand, forest, soil, and rock) by using supervised classification methods. Then classification 

result divided into three parts as water, concrete and others.  IRS-C satellite images have been 

tested. Another study for bridge extraction is proposed by Gu, Zhu, Shen, Hu and Chang (2011). 

The approach consists of two main steps. Firstly; the image is filtered according to its spectral 

features by using iterative thresholding. In the second step, k-means clustering algorithm is 

employed to use both spatial and textural information to detect water regions.  
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Nath and Deb (2010) reported that, most of the unsupervised water extraction techniques in the 

literature use spectral bands and spectral band indexes. These bands and ratios are threshold by 

pre-defined value to filter image and extract water body. For example, Zhao, Yu and Zhang 

(2009) proposed a water extraction algorithm for IKONOS images. The method consists of five 

main parts: NDVI and NDWI calculation, segmentation, feature definitions, classification and 

feature extraction and post-processing steps.  

 

2.3 Railroad Extraction 

Railroads are important for both passenger and freight transportation. Railroads on satellite 

images are often extracted as road objects due to their common properties with roads such as 

elongated and curved structures with uniform intensity.  In high resolution aerial images, 

however, the sleepers between railroad tracks depict a distinctive texture from other elongated 

objects. Since sleeper objects are equally spaced and perpendicular to the railroad tracks, these 

additional cues can be employed to distinguish railroad objects in aerial images.  Even though 

road extraction has been studied extensively, there are very limited studies on railroad 

extraction.  In the study of Neubert et al. (2008), 5 cm spatial resolution digital ortho-imagery 

and LIDAR are used to extract railroads. They first attempted to use combined Fourier and 

Hough transformation, edge detection, object recognition, image segmentation tools of 

commercial software but were not satisfied with the results. They proposed two algorithms: the 

first was based on the extraction of straight lines and arcs of railroads using an adapted 

RANSAC algorithm, and the second was a knowledge-based algorithm that uses railroad 

properties such as fixed distance between tracks, free of objects, horizontal rail bed.  

 

In the study Hellwitch, Laptev and Mayer (2002), SAR images are used to extract linear 

structures. In order to test the proposed method, images including pipelines and railroads were 

used. Firstly, Markov Random Field based line extraction was proposed and employed, then 

ribbon snake approach was applied on the extracted lines. However, this approach focuses only 

on the linear structure extraction rather than railroad detection.  
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There are other periodic structure extraction studies. In Rabatel, Delenne and Deshayes (2008), a 

method is proposed to detect vine-plots based on Fourier transform and Gabor filters.  In Aksoy, 

Yalniz and Tasdemir (2012), high resolution satellite images have been used to extract orchards 

with periodicity. These studies aim to extract periodic vegetative field extraction which may 

have different periodicity distance.  
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CHAPTER 3 

 

 

 

3 BACKGROUND 

 

 

 

A summary of methods proposed for road extraction is presented in Chapter 2. In the present 

chapter, some of the techniques that are utilized in the proposed method are explained in more 

detail.  

3.1 Canny Edge Detection 

Edge detection methods are the most commonly used technique for road extraction. There are 

several edge detection methods including Sobel, Prewitt, Roberts, Laplacian and Canny.  

Canny edge detection algorithm is a well-known gradient based edge detection method proposed 

by Canny (1986). The algorithm simply aims to ensure three criteria: good detection, good 

localization and single response per edge. The technique is constructed on these requirements in 

order to ensure robust edge detection. The algorithm is composed of four main steps; 

a) Gaussian Smoothing 

Raw image noise is a challenging issue for Canny method as it has been built on a gradient based 

strategy. A 2D Gaussian filtering operator is applied on the input image in order to decrease the 
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degradation due to the noise. The convolution operation defined in Equation 3.1 is employed for 

the given input image       . 

                         (Equation 3.1) 

where Gaussian kernel is defined as; 

        
 

√    
   [ 

     

   ]   (Equation 3.2) 

b) Gradient Filtering 

Canny edge detection algorithm aims to locate edge points in all directions, so the derivatives 

along both x and y axes is computed. By using derivative information, one can compute 

magnitude the edge gradient and its direction as follows; 

         √  
         

        (Equation 3.3) 

                
       

       
     (Equation 3.4) 

where    and    are the first derivatives along x and y axes, respectively. Gradient direction   is 

computed by using Equation 3.4, and the angle values are rounded to one of the eight different 

directions including diagonals. 

c) Non-maximum Suppression 

Having reduced the variety of edge directions into eight directions, non-maximum suppression 

operation is applied in order to thin the edge ridges. The non-maximum suppression operation 

removes the non-maxima pixels along the edge direction, resulting in thin edges with one pixel 

width. That is, the edge magnitudes        are interpreted such that if the gradient magnitude 

of the current edge pixel is greater than two of its neighbors along the gradient 

direction       , then it is marked as an edge; otherwise it is set to null. 

d) Hysteresis Thresholding and Edge Linking 
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It is hard to define a single threshold suitable for determining all of the edge pixels without any 

false alarms. Canny algorithm uses of hysteresis thresholding technique to extract edges based 

on their neighborhood. The hysteresis thresholding is defined as; 

        {

           

                                                       (     )     

              

 (Equation 3.5) 

where    and    are low and high thresholds defined by the user. The edge linking operation 

begins with a pixel with magnitude greater than high threshold, and the edge tracing continues as 

long as the pixel values are greater than the low threshold.  

3.2 Mean-Shift Segmentation 

Segmentation is another method employed in classification problems. There are many 

segmentation methods in the literature. In our study, mean-shift segmentation is used.  

Mean-Shift is a nonparametric density gradient estimation method employing a generalized 

kernel based mode seeking approach. It was firstly generalized to a simple feature space analysis 

technique similar to k-nearest neighbor approach in the study of Fukunaga and Hostetler (1975).  

In a more recent article (Cheng, 1995), the author has further investigated and formulated the 

mean-shift procedure to reveal its strength for data analysis. Mean-shift algorithm’s ability to 

converge in multimodal feature spaces for discrete data is proved in the study Comaniciu and 

Meer (2002), and a robust image segmentation algorithm based on Mean-shift is proposed. In the 

context of feature space analysis, mean-shift considers the local maxima points as modes of the 

given discrete data sampled from an unknown density function. Therefore, the problem is 

reduced to a nonparametric function estimation problem. Mean-shift algorithm employs pre-

defined kernel functions to iteratively find the weights of nearby points. 

In the pattern recognition literature, the most popular kernel density estimation method is the 

Parzen window technique (Parzen, 1962), which is also used in our implementation. For a given 

data vector    where         defined in the d-dimensional space   , let f(x) be the 

multivariate kernel density estimation function, K(x) is the kernel function and H is the dxd 

bandwidth matrix;  

      
 

 
∑          

 
       (Equation 3.6) 
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where 

      | | 
 

             (Equation 3.7) 

 

The d-variate kernel K(x) is assumed to satisfy following conditions; 

∫         

  

 

(Equation 3.8) 

∫          

  

 

(Equation 3.9) 
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‖ ‖        (Equation 3.10) 

∫               

  

 

(Equation 3.11) 

 

where    is a constant. The kernel function is assumed to be radially symmetric (Comaniciu and 

Meer, 2002), therefore; we can obtain the final density estimation function as follows, 

         
    

   
∑   ‖
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        (Equation 3.12) 

In this equation, the size of search window is controlled by bandwidth parameter, h. Based on 

the definition of density estimation function, the local maxima points in the feature space are the 

locations of modes having zero gradient, so the mean-shift procedure can be written as;  
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  ] (Equation 3.13) 

where g(x) is the kernel profile and assumed to be nonnegative. From Equation 3.13, we can 

deduce that the density estimate at x computed with the kernel G is proportional to the first term; 
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   ]  (Equation 3.14) 

 

The mean-shift vector is represented by the second term in the Equation 3.15, which is the 

difference between the weighted means. The final mean-shift vector can be written as; 
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     (Equation 3.15) 

Simplifying these formulas yields to; 

         
 

 
    

        

        
   (Equation 3.16) 

The proportionality of the mean-shift vector computed with kernel G at location x with the 

normalized density gradient estimate produced by kernel K is clear in this equation. Therefore, it 

can be inferred that the mean-shift vector always has the same direction with the maximum 

intensity increase (Fukunaga and Hostetler, 1975). A stationary point of the estimated density is 

satisfied due to the fact that the local gradient estimate is aligned with the mean-shift vector. The 

local maxima points, so called modes, are these stationary points. The convergence of the mean-

shift procedure is guaranteed by the successive nature of the algorithm. That is, at each iteration, 

mean-shift vector          is computed and the kernel       is translated by        . 

Moreover, the Mean-Shift algorithms steps larger when the kernel is aligned with the regions 

having low density. Likewise, as approaching to the local maxima, the Mean-Shift vector’s 

magnitude begins to decrease. Therefore, an adaptive gradient ascent feature space analysis is 

accomplished. 

3.3 K-means 

In order to classify an image into object types, clustering methods are commonly used. K-means 

is a well-known and popular clustering algorithm commonly used in data mining.  K-means aims 

to partition “n” observations into “k” clusters where the observations are assigned to the nearest 

mean. Therefore, the data space can be divided into Voronoi cells. The original k-means 

algorithm was firstly published in Lloyd (1982). For a given set of observations               

where each observation is a d-dimensional vector, the aim is to partition the n observation into k 
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distinct clusters    {         } with the constraint    , so that the average distance of the 

observations to the cluster centers is minimum, i.e.  

        
∑ ∑ ‖     ‖

 
      

 
       (Equation 3.17) 

where    is the mean of the current cluster   . 

The k-means algorithm requires the number of clusters k and initial cluster centers   
   

    
   

 

from the user. In the assignment step, each observation is assigned to its closest cluster center 

resulting in a different Voronoi diagrams. The assignment operation can be written as; 

  
   

  {    ‖     
   

‖  ‖     
   

‖       }  (Equation 3.18) 

where    represents a single observation. In the update step, new mean values for each cluster 

are calculated by using; 

  
     

  
 

| 
 
   

|
∑        

 
        (Equation 3.19) 

The algorithm converges when the cluster assignments no longer change.  

In this study, we utilize random partition method to initialize cluster centers which randomly 

selects the cluster centers from the given observation set. Moreover, as a distance metric, we 

employ the Euclidean distance.  

3.4 Gaussian Mixture Model 

Gaussian mixture models are beneficial tools that are able to provide good semi-automatic 

clustering functionality. That is, sub-clusters within the given set of observations can be 

identified by estimating the parameters of Gaussian distributions formed by each clusters.  

For d-dimension, Gaussian distribution of a set of observations                 is defined 

as ; 

   |      
 

       √| |
      

 

 
                  (Equation 3.20) 

where   is the mean and   is the covariance matrix of the Gaussian. 
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By using the inferences presented by Bayesian theory, we can write the formulation of a mixture 

of K Gaussians as follows; 

       ∑     ( |     )
 
         (Equation 3.21) 

where Gaussian distribution with j th index has the prior probability of   . Thus; 

 ∑   
 
                     (Equation 3.22) 

The problem that is intended to be solved is the estimation of the parameter set   of the GMM 

model fitting the data. For a given set of data   {          } belonging to an unknown 

distribution, we can construct the solution by the help of maximum likelihood formulation as 

follows; 

            |            ∏     |   
 
     (Equation 3.23) 

In the context of this study, we employ expectation maximization (EM) algorithm to estimate 

hidden variables of the given distributions. The EM algorithm has an iterative structure, and at 

each iteration two major operations take place. The first operation is named as Expectation-Step; 

the distribution of the hidden variable is estimated for the given data and the current value of the 

parameters is computed. At the next step, the joint distribution of the observations and the 

hidden variable is maximized. In fact, the maximization step is dedicated to modify the 

distribution parameters according to hidden variables in order to increase the likelihood of the 

data and the hidden variables. 

The EM algorithm can be summarized as follows; 

          [          |    ]     (Equation 3.24) 

where Z is the hidden variable. The maximization step involves the solution of ; 

           [    |    ]     (Equation 3.25) 

Therefore, the likelihood value of    |   is proportional to  (    ). 

As long as the Z is known, the mixture parameters can be estimated. However, the hidden 

variables are not always about to be known. Thus, we need to introduce indicator variables in 

order to write joint likelihood of all X and Z as follows; 
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For a given definition of the indicator variable    ; 

    {
                             

            
  (Equation 3.26) 

              |       (Equation 3.27) 
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      (Equation 3.28) 
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     (Equation 3.29) 

Then taking the logarithm both of the sides yields; 

   [      ]  ∑ ∑       [      |  ]        [   |  ]  
   

 
    (Equation 3.30) 

The E-step can also be expressed by using the Equation 3.31 as follows; 

  (   | 
 )  

 ( |  ) (  |   
 )

    | 
  

     (Equation 3.31) 

which also indicates the posterior distribution. Moreover, the M-step is given by the equation; 

  (    )

  
        (Equation 3.32) 

Where 

         
    ,        ,    (Equation 3.33, a) 

 ∑   
 
                     (Equation 3.33, b) 

Finally, we can write mean and correlation matrices of the mixtures as follows; 
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     (Equation 3.33) 
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   (Equation 3.34) 
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3.5 Segment Analysis 

After segmentation operation, features are extracted for classification. For road extraction 

problems, segments are expected to be elongated structures. In order to make this analysis some 

metrics are used in this study. 

3.5.1 Calculating Eccentricity 

Eccentricity can be calculated as    √  
  

   . This also equals to 
 

 
 where “f” is foci point and 

“a” is the major axis. An eccentricity value close to 1 corresponds to a thin segment, whereas the 

segment is similar to a circle when the eccentricity is close to zero. 

 

Figure 1Eccentricity measure 

3.5.2 Calculating Elongatedness Value 

As stated in the study of Lee et al. (2000), road segments can be selected by analysis of their 

mean gray values, sizes (number of pixels in the segment) and shape information (major/minor 

axis). However, a high value of 
 

 
 (major/minor axis) ratio is not sufficient to show segment’s 

elonagatedness. Below, two simple segments are shown and minor/major values are calculated 

(Figure 2).  
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Major/Minor=5/3 Major/Minor=8/1 

Figure 2 Sample segments and basic elongatedness value.  

 

Based on the ratio, elongatedness value can be reproduced.  

Elongatedness= 
 

 
.   (Equation 3.35) 

For the ideal shape (rectangle) we can say that the area A is given by 

A=a.b      (Equation 3.36) 

So elongatedness value based on the ratio of minor and major axis values can be calculated as  

Elongatedness= 
 

 

 
.   (Equation 3.37) 

 Both segments have road characteristics, however, Figure 2.a, may not be detected as a road 

segment since its elongatedness value is smaller. Therefore, this equation is suitable only if the 

segment has an ideal shape like rectangle. In order to compensate this effect, Equation 3.38 can 

be used. In this equation, “extent” represents the ratio of pixels in the segment to number of 

pixels in the total bounding box. 

Elongatedness=
          

 
   (Equation 3.38) 

When we consider the structure of segments, for the ideal case of a rectangle (which is presented 

on Figure 2-b), the extent value is equal to one. However, the extent value for an irregular 

segment (such as the one that is presented on Figure 3-a) approaches zero. It is worthy to note 

that the extent value can vary in the range between 0 and 1 depending on the regularity of the 
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segment. From this equation it can be observed that elongatedness is dependent on the extent 

value, since (2-Extended) will be the coefficient for an approximation of the ideal major axis 

length value. For example, in Figure 3, there are three sample segments and respective 

elongatedness, 
 

 
  and extent values are shown 

 

 

 

 

 

 

Elongatedness Score ~ 2 Elongatedness Score ~ 8 Elongatedness Score ~ 8 

Major/Minor ~ 1 Major/Minor ~1 Major/Minor ~ 8 

Extent ~ 0.8 Extent ~ 0.3 Extent ~ 1 

 
Figure 3 Sample segments and elongatedness values 

 

3.6 Spectral Band Ratios 

In remote sensing, spectral band ratios provide essential discrimination for specific such as 

vegetation, shadow, water and land cover. By the introduction of multispectral imagery, band 

ratios became popular since they are capable of reducing topographical effects such as 

shadowing and surface slope directions among the bands of the image. With the help of band 

ratios, one can construct a robust indicator for the material of interested. 

More specifically the band where the material poses high reflectivity and another band where the 

material poses absorption characteristics can be combined to obtain a good indicator for the 

material. The band with high reflectivity should exist in the numerator whereas the band with 

absorption characteristics should be in the denominator. In this study, we employ three different 

band ratios including Normalized Difference Vegetation Index (NDVI), Soil Adjusted 

Vegetation Index (SAVI) and Normalized Difference Water Index (NDWI). These band ratios 

are used in our road extraction model to detect specific materials such as water and vegetation. 

NDVI has application areas in the fields of vegetation detection and plant growth monitoring. Its 

value ranges between -1 and 1The vegetative regions are bright in the NDVI mask, in other 

words; vegetation takes larger values in NDVI. The water regions, on the other hand, take values 

close to 1. NDVI is defined as follows; 
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      (Equation 3.39) 

SAVI is another band ratio useful for discriminating vegetation from the background. In fact, 

SAVI is an extended version of NDVI exploiting the effects caused by soil brightness. As in the 

Equation-4.6 The correction factor for the soil brightness is controlled by L parameter. 

       
       

         
          (Equation 3.40) 

Water regions can be detected by NDWI from a multispectral satellite image, which is defined 

as; 

      
         

         
     (Equation 3.41) 

These band ratios will be employed for vegetation and water body detection in the upcoming 

chapters. 
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CHAPTER 4 

 

 

4 ROAD EXTRACTION ALGORITHM 

 

 

 

As mentioned in the literature review chapter, many approaches have been proposed in order to 

extract roads from remotely sensed data. However, the developed algorithms produce promising 

results only for roads in open landscape and in restricted regions. Furthermore, semi-automatic 

or supervised approaches which depend on the data characteristics and satellite sensors have 

been used. Roads may have different characteristic in urban and rural regions. They may also be 

composed of different surface materials. This implies that it is required to develop a modular 

approach for road extraction algorithm. Moreover, in order to have a fully automatic road 

extraction algorithm providing higher road extraction performance for rural, sub-urban area and 

different surface materials, spatial and spectral features should be used in this modular approach.  

The proposed modular algorithm of this study focuses on extraction of road and non-road 

regions of the data. In addition, water-canal, railway detection and road material type 

classification are also addressed.  

4.1 Road Characteristics 

Roads are the prominent component of transportation system. Extraction of road from remotely 

sensed data via image processing techniques bring about some assumptions about road 

definitions. In the literature, Bacher and Mayer (2005) defines roads as elongated regions and 

having uniform grey values. They also stated that roads form topological network. It is 

frequently implied in the literature that roads are elongated structure having steady grey level 

intensity (Mena et al., 2005; Mohammadzadeh et al., 2009; Zhang and Couloigner, 2006)  
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In the study conducted by Long  et al. (2005), roads are defined as continuous and narrow 

regions with brighter intensity values lower variance than the surrounding pixels. It is mentioned 

that roads widths vary slowly (Vandana et.al, 2002; Zhao et al., 2009). Moreover, while roads 

are linear structures for low resolution images, they are parallelogram regions having 

homogenous gray values for middle and high resolution images (Wang et.al, 2005).   

 

In this study, in the light of this information roads are assumed to be  

a) Elongated regions 

b) Having fixed width with parallel edges  

c) Form topological network.  

 

The third assumption is not handled in this study since the experiments are conducted on limited 

size images which may not include roads forming a network.  

4.2 Road Extraction Model 

The general view of the model is shown in Figure 4 below. The model consists of three main 

modules; road region detection, non-road region detection and score map construction.  

 

This study aims to develop a modular automatic road extraction model (framework) for high 

spatial and spectral resolution images. We also aim to improve this model so that it can work 

independent of the spectral characteristics of satellites and sensors. Therefore, this model is 

mostly based on common structural properties of roads and spectral differences from 

surrounding objects. 

 



36 

 

 

Figure 4 General approach to road extraction 

 

In Figure 5 presented below shows the model in more detail. Both road region and non-road 

region detection modules can be extended by other approaches. Road region detection module, 

consist of three sub-modules; edge based, clustering base and structural analysis based road 

extraction. On the other hand non-road region module includes vegetation detection, structural 

based non-road region detection and water detection modules. In the score map construction 

modules, these results are merged and road mask is produced. Each module will be explained in 

more detail. It is important to note that non-road region detection module is also used as an input 

to road-region detection modules to reduce the road search region.  
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Figure 5 Automatic road extraction algorithm  

 

4.3 Road Region Detection 

Based on the assumptions, we attempted to extract roads via tree main modules; edge based road 

extraction, structural based road extraction and clustering based road extraction. In order to 

demonstrate the each module’s steps; an RGB image and the corresponding ground truth 

information presented in Figure 6 is used. Performance result will be provided in the Chapter 5.  
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Figure 6 Sample RGB and Ground Truth  Image 

 

4.3.1 Edge-Based Road Extraction 

In this part of the study, edge detection based approach will be explained. As a first step of this 

edge based module, Canny edge detection algorithm is applied on all bands of the data 

separately. For all resultant edge maps, parallel lines are found to obtain road center lines along 

with the width information of this line. In order to find parallel line pairs, each edge point pixel 

is visited and a pair point with in a pre-defined range is searched for. This procedure is applied 

for both horizontal and vertical directions. If a pair pixel is found in the range, their midpoint is 

set to as true.  

Furthermore, the algorithm continues iteratively for the previously found pair point. That is, for 

a particular pair point the existence of another pair point in the pre-defined range is also 

checked, and the mid-point of this new pair is also set to as true.  

At the end of this process, vertical and horizontal mid-point masks are obtained. Then, union of 

these two masks is constructed. Some mid-points are found both from vertical and horizontal 

procedures. For such cases, middle point width information is calculated as in Equation 4.1 

                                  (Equation 4.1) 
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where “a” is the vertical distance, “b” is the horizontal distance and “w” is the distance of the 

middle point to the edge as shown in the Figure 7.  

 

Figure 7 Middle Point’s Width Calculation. 
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Figure 8  Edge base road detection module. 
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The middle points from the middle lines of parallel pairs. In order to fill gaps smaller than a 

certain number of pixels, morphological dilation operation with the disk-structural element with 

radius “w” is applied. Then, short lines are removed to eliminate parallel edges obtained from 

non-road structures such as buildings. After the module is applied on all bands individually, the 

union operation is applied on the results obtained from each band. Edge based road detection 

module is summarized in Figure 8. 

  
a) Edges b) Middle Points 

  
c) Width map of middle points d) Dilated mask 

Figure 9 Edge Based Module Result 

 

In Figure 9, sample results for the edge based road extraction are provided. This result is 

corresponds to just one band of a WV-2 image. 
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4.3.2 Structure Analysis Based Road Detection  

In this module, data is segmented by using Mean-Shift algorithm and these segments are 

analyzed to detect road-like and non-road segments. Regardless of the segmentation method, the 

segments are classified in to three classes; road segments and non-road segments and 

unclassified segments. Extracting non-road segments will be described in structure analysis 

based non-road region extraction module (4.4.1).  

In order detect road segments from the segmentation output, each segment is analyzed 

separately. This stage consists of three steps for which each of the following three criteria are 

checked  

1. Detecting segments having eccentricity value greater than a predefined value (defined 

as 0.99 in this study), or 

2. Detecting segments having elongatedness greater than a predefined value (defined as 30 

in this study), 

3. The segment should have large enough area (more than 300 pixels in this study). 

 

For the third assumption, each segments area is checked out whether it is greater than pre-

defined amount of pixels. This is to avoid small segments that satisfy the conditions which may 

belong to a building, a tree or another small elongated structure. On the other hand, this may also 

lead to removal of small road segments. In order to solve this problem, road merging algorithm 

should be developed as a post-processing module for filling small gaps caused by removing  

In order to define discriminative bands, firstly the ground truth of the image is created. Then, all 

triple and quadruple combination of 8 bands is segmented by using the library developed by 

EDISON library. (C++ implementation of mean-shift-based image segmentation, 

a Matlab interface for EDISON) and segmentation results is analyzed based on the verification 

model stated in Section 4.9. Then structural analysis (Section 3.5) is applied on all segmentation 

outputs. Precision and recall values are used as the performance indicator (APPENDIX B).  For 

higher precision Coastal Blue, Red Edge, NIR1 and NIR2 bands are used. On the other hand, 

Blue, Green, Yellow and Red band combination provides higher recall value. Segmentation 

analysis result is shown in Figure 10. For the WV-2 images, since the all module outputs will be 

fused into a score map and the unlikely roads will be eliminated, we try to extract road regions 
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as much as possible at the stage. In order to achieve this goal, the two different four band 

combination results providing the highest recall and precision are combined by OR operation.  

 

  
a) Labels for CB,RE,NIR1,NIR2 b) Structure analysis based road mask  

  
c) Labels for B,G,Y,R d) Structure analysis based road mask  

Figure 10 4-Band structure analysis based road extraction result 

 

Briefly, Coastal Blue, Red Edge, NIR1 and NIR2 bands are used for segmentation to achieve 

higher precision and Blue, Green, Yellow and Red band combination will be used to achieve 

higher recall. 

Structure based analysis road detection module is summarized in the Figure 11 
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Figure 11 Structural Analysis for Road Detection 

 

Intermediate results for the structural analysis based road region extraction are provided in 

Figure 12. 
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a) Segments b) Area Map 

 
 

c) Elongatedness Map d) Elongatedness Analysis Result (>30) 

  
e) Eccentricity Map f) Eccentiricity Analysis Result (>0,99) 

Figure 12 Intermediate results for structural analysis module 
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4.3.3 Clustering Based Road Detection 

In this module, K-means clustering algorithm is applied on the image to get road cluster. K-

means clustering is used to reduce data into “K” cluster by gathering close mean values as 

mentioned in the previous chapter. In order to get more accurate cluster result, the vegetation 

and non-road masks (will be explained in the next section) are excluded from the image. Then, 

K-means clustering algorithm is applied on the remaining data to obtain the road cluster. For 

road extraction, in the study of Zhang and Couloigner (2006), K values is suggested to be “six”.  

After clustering, each cluster is labeled for further analysis. To do this, each pixel of each cluster 

is labeled based on their connectedness, meaning that connected pixels are grouped under the 

same label. Similarly, if two structures are identified to be separated by a gap between them, 

those structures are grouped under distinctive labels. In particular, within this context being 

connected means being adjacent. Then, each distinct labeled structure in each cluster is checked 

to define whether it is a road-like component by using the elongatedness assumption technique 

which is explained in the Structural Analysis Section. Successively, union operation is applied 

on all results to get the final road mask obtained from the clustering based road detection 

module. Since, K-means clustering module produces larger blocks or segments than mean-shift 

segmentation; eccentricity measure is not used in this module. Clustering based road detection 

module is summarized in Figure 13. 

For the some main step of the clustering based road extraction module, intermediate results are 

provided below in Figure 14. 
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Figure 13 Clustering Based Road Detection 

 

  
a) Clusters (K=6) b) Cluster analysis result 

Figure 14 Cluster based road extraction intermediate results 
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4.4 Non-Road Region Detection 

In this road extraction model, extraction of non-road region is important not only to verify road 

extraction result but also to exclude such regions from the image to be processed. In this part of 

the study, vegetation extraction, water region detection and structural analysis based non-road 

region detection will be introduced.  

4.4.1 Structure Analysis Based Non-Road Region Detection  

As it is mentioned in the structure analysis based road detection module, first the data is 

segmented and then non-road segments are extracted. In order to do this, it is assumed that non-

road regions are large and compact. For this purpose, each segment is examined to see whether 

its “thickness” (t) value and its area (A) are greater than 50 and 600, respectively. The thickness 

value is computed by using Equation 4.2.  

t=
 

            
      Equation (4.2) 

It is important to note that, while “elongatedness” measure is used for segment flatness 

calculation, “thickness” measure is used to measure the width of the segment which represents a 

segment’s fleshiness. Non-road region detection is summarized in Figure 15.  
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Segments
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Remove Segment
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Segment Area > 
Predefined Value

No

Add Segment to 
Non-Road Mask

Yes

Non-Road 
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Figure 15 Structural analysis based non-road region detection flow chart 



48 

 

Intermediate result for the non-road region detection is show in Figure 16. 

  
a) Segments b) Area Map 

  
c) Thickness Map d) Thickness Mask (>30) 

Figure 16 Structural analysis based non-road region samples  

 

4.4.2 Vegetation Detection  

Removing vegetative regions from the image may also improve classification results. In road 

extraction algorithm, it is also important to determine vegetative fields to get more accurate road 

regions. As mentioned in Chapter 3, commonly used broadband vegetation measures for this 

purpose are NDVI (Normalized Difference Vegetation Index),  SAVI (Soil-Adjusted 
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Vegetation Index), EVI (Enhanced Vegetation Index), SRI (Simple Ratio Index), ARVI 

(Atmospherically Resistant Vegetation Index), SGI (Sum Green Index)
1
.   

Briefly, NDVI= 
       

       
, which ranges between -1.0 and +1.0. The greater the NDVI value of a 

field, the more probable for it to be vegetative field. The data used in this study, WV-2, provides 

two different NIR bands: i.e. NIR1 (770-895 nm) and NIR2 (860-1040 nm). Similarly there are 

two different Red bands i.e. Red (630-690 nm), Red-Edge (705-745 nm). For the vegetation 

analysis in such images, NDVI index is calculated by NDVI= 
        

        
, equation as suggested 

by Wolf (2010). SAVI or other broadband vegetation detection indices can be used as well. 

After applying vegetation indices, results are thresholded by the predefined value and the 

vegetation mask is obtained.  The vegetation extraction module is summarized in Figure 17, 

sample result for WV-2 image is shown in Figure 18. 

N-Band 
Input 
Image

Vegetation 
Mask

Apply Vegetation 
Index

Thresholding

 

Figure 17 Vegetation detection flow chart 

 

  
NDVI Index Projection (-1 <NDVI<+1) NDVI >-0.2 

 
Figure 18 Vegetation extraction result 

 

                                                      
1
 (http://geol.hu/data/online_help/Vegetation_Indices.html). 

http://geol.hu/data/online_help/Vegetation_Indices.html
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4.4.3 Water Region Detection 

Water region extraction helps us to define non-road regions. It is known that water 

regions can be detected by using NIR bands because NIR band’s reflection is lower than 

of visible bands (Zhao et al., 2009). To find water regions, NDWI index is used as well. 

 

      
            

            
                          (Equation 4.3) 

This formula is used for 4-band images. For the WV-2 images, NDWI can be calculated 

as follows (Wolf, A., 2010). 

       
               

               
        (Equation 4.4) 

On the other hand, NDVI value is also used to determine the water regions. It is reported 

that a smaller NDVI value for the region under investigation will indicate that this 

region would be a water region rather than a vegetation region (Weier & Herring, 2012). 

In particular, if NDVI values for a region approaches to -1, then our confidence in 

classifying that region as water increases. In order to merge these cues for water 

extraction, the flow chart in Figure 19 is followed.  
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Figure 19 Water region detection 

  

Intermediate thresholded and final results for water extraction are shown in Figure 20. 

After thresholding the NIR2, NDVI and NDWI values, the union operation is applied to 

results. Removing connected components having area smaller than a predefined value 

(500 pixels in this study) provides the final result (Figure 20i). 
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a) RGB image b) RGB and Water Region c) NIR2 

   
d) NIR2 Thresholded e) NDVI f) NDVI Thresholded 

   

g) NDWI h) NDVI Thresholded i) Final Water Mask 

Figure 20 Water extraction intermediate result 
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4.5 Score Map Construction 

We developed a score map construction technique in order to fuse the information provided by 

road and non-road masks. Presently, we have six result masks; edge-based road mask, segment 

based road mask clustering based road mask, structure analysis based non-road mask, vegetation 

mask and water mask. Before fusing the masks, unconnected small parts (smaller than 100 

pixels) in each mask are removed. The main aim of the score map construction stage is to 

combine and synthetize the outputs of each module into more convenient form for road 

extraction. We have two different approaches to create a score map. First one is based on 

segments’ elongatedness values and second approach is based on statistical analysis of 

contribution of each module on the result.  

4.5.1 Score Map Construction Based on Segments 

Road masks yielded by the middle point, clustering and structural analysis are re-evaluated in 

accordance with the segmentation results, while the non-road regions such as vegetation and 

lands are excluded from the final score map. That is, the road masks are scored based on the 

elongatedness of the segments that they intersect with. The output label image of the mean-shift 

procedure is employed to evaluate road masks. 

Given a label image obtained by using a segmentation algorithm       , a set of road masks 

   {           } and non-road masks    {           }, we can formally express our 

score map construction method in two steps: 

Non-road Mask Exclusion: The pixels which are set to one in non-road mask are simply 

excluded from the score map P’ by adjusting corresponding pixel locations’ values to zero. 

          {
             
           

    (Equation 4.5) 

Road Mask Scoring: Firstly, the road mask is scored by intersecting the road mask with the 

label mask. That is, each intersected segment’s elongatedness value is computed, and the final 

score map is obtained by taking the maximum pixel value among the road masks. The segments 

to be scored are extracted by a series of set operators as follows; 

                  (Equation 4.6) 
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where    is the segment with label number of j, and R is an arbitrary road mask. Then, the 

extracted segment is scored with the elongatedness function defined before; 

 (  )                          (Equation 4.7) 

The final score map is obtained by taking the maximum values from the road masks to the 

corresponding pixel locations; 

                   
                  (Equation 4.8) 

The score map construction technique suggested in this study considers the local structural 

characteristics of the road masks yielded by different modules. Therefore, the performances of 

individual road extraction modules are boosted.  

Segment based score map and thresholded mask is shown below in Figure 21.  

  

a) Score Mask for WV-2 image b) Final Mask for WV-2 

 
Figure 21 Segment based score map and thresholded mask 

 

4.5.2 Statistical Analysis Based Score Map Construction 

In the study of Çinar (2012), a similar score map construction method for a multi-resolution 

mean-shift segmentation based road extraction algorithm is proposed. The main idea of the 

method is to find out the optimal parameter sets for each mean-shift segmentation instance 
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operating on different resolution level. For this purpose, each segment is evaluated using the 

elongatedness descriptor equation same as our study. From the optimization set, class separation 

scores are calculated for two classes; road and non-road. The author suggests using a fisher like 

discrimination equation, which is elaborated in Equation 4.9. 

  
      

      
      (Equation 4.9) 

Where    and    are means, and     and    are standard deviations of the road and non-road 

region’s distributions respectively. 

4.6 Water Canal Extraction 

As mentioned in the section 3.1.2.3, water regions are extracted from the image by using NIR, 

NDWI and NDVI values. While NIR and NDVI values are relatively smaller for water regions, 

NDWI value are relatively higher. The proposed method aims to detect threshold values 

automatically.  In order to determine threshold values automatically, critical points are extracted 

by calculating local minima and maxima (Figure 22).  For NIR and NDVI values, two local 

minima  and for NDWI two local maxima points are selected to be used as the low and high  

threshold values for hysteresis thresholding.  

 

a) NIR Histogram b) NDWI Histogram c) NDVI Histogram 

Figure 22 Automatic threshold computation 
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After thresholding, three different water masks are obtained. These masks are fused by AND 

operation.  This final binary mask is labeled. Each component is checked to define whether it is 

a road-like component or not by using the elongatedness property explained in the Section 4.3.2. 

Elongated water regions are assumed to be water canals. As the last step, small components are 

removed to obtain a clear mask. 

Flow chart of the water canal extraction is presented in Figure 23. 
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Hysterisis 
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Figure 23 Water region extraction flowchart 

 

Intermediate results for the water canal extraction are shown in Figure 24.  
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a) NDWI  b) NDWI Water  Mask 

  
c) NDVI  d) NDVI Water Mask 

  
e) NIR Band f) NIR Water Mask 
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g) Labels h) Water Canal Mask 

 
Figure 24 Intermediate results of water canal extraction 

 

4.7 Railroad Extraction 

In this part of the study, we treat railroad and road discrimination as a two-class classification 

problem. For a given road mask including roads and railroads, we strive to distinguish the 

regions belonging to railroads. The extraction of the initial road mask is achieved via the 

proposed method. Railroads on satellite images are often extracted as road objects due to their 

common properties with roads such as elongated and curved structure and uniform intensity.  In 

high resolution aerial images, however, the sleepers between railroad tracks depict a distinctive 

texture from other elongated objects. Therefore, this additional cue can be employed to 

distinguish railroad objects in aerial images.  The sleepers are perpendicular to the direction of 

the railroads and they are spatially periodic.  The distance between railroad sleepers is standard 

for a given country. We apply Fourier transform to overlapping windows of the original image 

and check the presence of spectral peaks corresponding to the spacing between sleepers. These 

peaks have fixed distance from the origin and are spaced perpendicular to the burst of energy 

due to the roadsides. Synthetic images are used to analyze the railroad classification 

method.   

Figure 25(a) and (b) depict a synthetic drive road segment and its Fourier Transform with 

suppressed DC component, respectively. Figure 25 (b) and (d), the burst of energy along the 

horizontal axes corresponds to the roadsides in the input images (a) and (c).  In Figure 25 (c) and 

(d) depict a portion of the image containing a synthetic railroad portion and the corresponding 
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Fourier Transform with suppressed DC component, respectively. The vertical series of white 

dots in Figure 25 (d) corresponds to the sleepers’ periodic structure which is perpendicular to the 

roadsides in Figure 25 (c).   As the distance between sleepers, λ0, is constant for a given country, 

the location of the corresponding spectral peaks at the frequency domain can be computed 

provided λ0>2λs where λs is the spatial image resolution.  Hence, standard spectral analysis 

techniques can be used to detect such peaks. For an NxN window, the NxN DFT is computed by 

   (Equation 4.10) 

and the spectral peaks at λ0 depict themselves at a distance 

  
  

  
 N        (Equation 4.11) 

from the origin.   

Furthermore, the harmonic components of the principal frequency in Equation 4.11 are located 

at integer multiples of r.  

  
a) Synthetic Vertical Drive-road b) Fourier Transform of (a) 

  
c) Synthetic Vertical Railroad d) Fourier Transform of (c) 

  
Figure 25 Sample synthetic drive road and railroad images and their Fourier transforms. 

 

The proposed methods rely on detecting this main visual distinction of railroad and drive-road 

spectra. There are two major cues to detect periodicity in Fourier domain. First, the energy 
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generated due to sleepers’ periodic arrangement in the spatial domain is expected to exist at a 

fixed distance from the origin as shown in Equation (4.11). Therefore, a circular search region 

can be employed to seek for energy peaks. Second major cue is the orientation of these peaks 

with respect to the road direction. This is critical because some of the peaks found in the circular 

search region may belong to road regions which do not pose periodic behavior in the spatial 

domain.  While “Ring Approach” uses first cue, “Perpendicular Axis Approach” is developed to 

use the second cue.  In the following, these two approaches will be explained.  

The Ring Approach: 

In this approach the Fourier transform of the image is analyzed with a window including a 

circular search region as shown in Figure 26(c). The energy peaks in the Fourier domain 

are investigated by calculating the total energy under the ring (Karaman, Çinar, Gedik, Yardımcı 

and Halıcı, 2012). The radius of the ring is determined as mentioned in Equation (4.11). For the 

sake of simplicity, synthetic image will be used as the sample images for demonstrating the 

approach. The synthetic 100X100 railroad image consists of 10 pixels periodic structures, and 10 

pixel road side width. The total energy in the Fourier transform intersecting with the ring(s) is 

calculated. It is observed that this total energy for railroad spectrum is greater than the one for 

drive-roads.  

 In Figure 26, synthetic railroad and drive-roads images and their corresponding steps is shown. 

For the analysis of harmonic components of the principle frequency, double rings are also used 

for the region of interest.   

Total and average energy for one-ring and double ring region of interest is shown in Figure 26.  

In the study Karaman et al. (2012), instead of the difference between total and average spectral 

energy of drive-road and railroad spectra, local peaks extracted by gray level dilation proposed 

in Heijmans (1991) have been used.  
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 TE=5.53*107 
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TEr1=5.40*107 

AEr1=3.00*105 

TEr2=5.19*107 

AEr2=9.54*104 
 

 
Figure 26 The Ring approaches result for synthetic data 

 

Perpendicular Axis Approach: 

In this approach, the orientation of the road should be determined initially. The orientation of the 

road is determined by the help of the linear structural element in the same window size as show 

in Figure 27 (b). This linear element is incrementally rotated around the origin and the total 

energy in Fourier transform intersecting with the line is calculated at each step. It is assumed that 

the orientation of the maximum energy line corresponds to the roadside.  Sample railroad 

synthetic image and direction of orientation of the maximum energy line is shown in Figure 27.  

The next step is determining whether this road is a railroad or drive-road. For this purpose, the 

total energy along the perpendicular direction of the orientation of the maximum energy line is 

computed. If the total energy under the perpendicular direction of the maximum energy line is 

higher than a pre-defined threshold, the region classified as railroad. The sample results for the 

perpendicular axis approach are shown in Table 1.  
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a) Image b) Structural Line c) Fourier Transform d) Maximum Energy 

Direction 

 

 
 

  
b) Image b) Structural Line c) Fourier Transform d) Maximum Energy 

Direction 

Figure 27 Sample railroad synthetic images and Perpendicular approches elements  

 

Table 1 Sample result for perpendicular axis approach.  

 Image Fourier 

Transform 

High Energy 

Regions 

Total Energy of 

Sleepers 

Railroad 

   
 

2,82*10^6 

 

Drive-road 

   

1,52*10^6 

 

As seen in Table 1, the road samples having the same orientation and width are used. It is 

observed that the total energy calculated for the drive road is less than the one for the railroad as 

proposed by this approach. 
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Combination of Adaptive Ring and Perpendicular Axis 

The two cues, i) energy peaks exist in a fixed distance from the origin, ii) the orientation of these 

energy peaks is perpendicular to the origin can be used simultaneously. In order to use both of 

these cues, ring and perpendicular axis approaches are fused. To define region of interest for 

searching the energy peaks in Fourier domain, the rings used in ring approach and the line used 

perpendicular axis approach are fused by AND operation after applying small dilation operation 

to make the region of interest more inclusive. The total energy in Fourier transform intersecting 

with the region of interest is computed. In Figure 28, synthetic railroad and drive roads and their 

corresponding steps are shown.  

     

a) Image b) Fourier 

Transform 

c) Region of 

interest (Double 

Ring) 

d) One Ring and 

Line 

ET1=1.39*10^6 

 

e) Region of 

interest 

ET2=2.30*10^6 

 

 

     

f) Image g) Fourier 

Transform 

h) Region of 

interest (Double 

Ring) 

i) One Ring and 

Line 

ET1=0.56*10^6 

 

j) Region of 

interest 

ET2=1.08*10^6 

Figure 28 Sample result for combination of perpendicuar axis and ring method 

In Table 2, comparison of adaptive ring, perpendicular axis and their combination is presented. 

Table 2 Performance comparison of ring, perpendicular axis and fused method 

 Railroad Drive-road Difference Ratio 

Perpendicular Axis 2,82 1,52 1,30 1,86 

Single Ring  2,17 1,51 0,66 1,44 

Double Rings 4,92 3,73 1,19 1,32 

Fused Method (1-Ring) 1,39 0,56 0,83 2,48 

Fused Method (2-Rings) 2,30 1,08 1,22 2,13 
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As shown in Table 2, in terms of difference, perpendicular axis approach provides more 

distinguishable values. On the other hand, when the fused method is applied with one-ring, it 

provides more distinguishable result in terms of ratio of the energies of railroad and drive-road. 

We decided to apply fused method with one ring to real data. 

The method is also tested for the multiple synthetic drive roads and railroads. It can be seen that, 

the energy peaks due to sleepers’ periodicity in Fourier spectrum still exist at a fixed distance 

and orientation from the origin. Sample adjacent roads and their Fourier transforms are shown in 

Figure 29. 

  
a) Adjacent drive-roads  b) Fourier Transform of “a” 

  
c) Adjacent railroads  d) Fourier Transform of “c” 

Figure 29 Adjacent roads and thier Fourier transforms 

 

Extension of the railroad classification method on real images 

The main purpose of this study is to apply these methods on the real remotely sensed image. A 

set of helicopter-borne aerial images with 20 cm resolution obtained from Google Earth is used 

as real data. Ground truths including both roads and railroads are prepared manually as shown in 

Figure 30. White regions represent drive-roads while red pixels depict railroad regions. Union of 

those white and red masks will be processed to distinguish the railroads in the road network.  
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(a)Helicopter borne image (b)Ground truth 

Figure 30 Sample image for railroad classification approaches 

 

The proposed railroad classification method is applied on the real images as presented in Figure 

31.  
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Figure 31The railroad classification approach flowchart 

 

After RGB image converted in to gray-level image, the road mask to be classified as railroad and 

drive-road is used to mask the parts that have roads. Then, the fused method of the single ring 

and perpendicular axis approaches is applied on the masked image. This procedure is employed 

over the whole image with nonoverlapping NXN windows.  

Sample drive-road and railroad window and corresponding Fourier transforms are shown in 

Figure 32. 
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(a) Sample Railroad Image   (b) Its Fourier Transform 

 
(c) Sample Highway Image   (d) Its Fourier Transform 

Figure 32 Sample Railroad and Highway Images and their Fourier Transforms 

 

Figure 32 (a) and Figure 32 (b) depict a portion of the image containing a railroad portion and 

the corresponding Fourier Transform with suppressed DC component. The two parallel lines at 

North-West and South-East corners of Figure 32 (b) correspond to the sleepers in the Fourier 

domain. The orientation of these lines is perpendicular to the actual direction of the railway 

which is represented by the diagonal line running along the South-West and North-East direction 

through the origin. Figure 32 (c) and (d) depict a highway segment and its Fourier Transform 

respectively. In Figure 32 (d), the spectral peaks corresponding to the frequency of the sleepers 

is missing. The periodic structure of road line markings have a frequency that is different that of 

the sleepers. Furthermore, their direction is identical to those of the roadsides so their 

contribution will be in the direction perpendicular to that of the sleepers. 

Histogram Analysis 

In order to determine the threshold value to discriminate between roads and railroads we need to 

further analyze the distribution of spectral energies. We have the Fourier energy values for each 

window. A map is constructed with same size of the real image. Note that only the windows 

overlapping with the road mask is considered. Fourier spectrum of railroad and drive-roads in 

the image are analyzed in terms of their total energy, average energy, and average energy in 

region of interest (ROI) in Figure 33. The average energy under ROI corresponds to the region 

of interest of the fused method as shown in Figure 28 (i). It is seen that average energy in the 

ROI histograms for the railroads and roads are significantly different from each other. 
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Total energy Railroad Total energy for drive-road 

  

Average energy for Railroad Average energy for drive-road 

  

Average energy in ROI for Railroad Average energy in ROI for drive-road 

Figure 33 Histogram of Fourier spectra energy for railroads and drive-roads 

 

A total energy in a window is the sum of signal and noise energies. To account for the 

background noise energy, we propose to substract its contribution from the total energy. We 

define background  energy regions in two ways i) average energy out of the ROI for sleepers 
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(BK1) and ii) average energy outside the region consisting of energy location of sleepers, road 

sides and road direction (BK2). Sample Fourier transform and background noise energy regions 

are shown Figure 34. 

   

Fourier Transform  Background Type 1 

(Black region) 

Background type 2 

(Black region) 

Figure 34 Sample Fourier transform and noise regions. 

 

Histograms of ratio and difference of average energy and background noise energy are shown in 

in Figure 35.  

It is observed that, compensating with  BK1 or BK2 does not affect the result significantly based 

on the histograms. In terms of average values ratio Average Energy and BK1 and ratio Average 

Energy and BK2 are more promising discriminative features. In order to deeply analyze these 

features, we apply the technique on three different images. In Figure 36, boxplots related to 

those features are shown. 
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Average Energy/BK1 for Railroad Average Energy/ BK1 for drive-road 

  

Average Energy/BK2 for Railroad Average Energy/ BK2 for drive-road 

  

Average energy – BK1 for Railroad Average energy – BK1 for drive-road 

  

Average energy – BK2 for Railroad Average energy – BK2 for drive-road 

Figure 35 Histogram of Fourier spectra energy computed by compensating for background energy 

regions  



70 

 

  

a) Average Energy b) Average Energy in ROI 

  

c) Ratio Average Energy and BK1 d) Ratio Average Energy and BK2 

  

e) Average energy – BK1 f) Average energy – BK2 

Figure 36 Boxplots of Fourier spectra energy for three different images.  
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As shown in Figure 36(e) and (f), subtraction of average energy and background value can be 

used to specify the score map threshold. We preferred using Average Energy-BK1 for score map 

construction. Sample road mask image and corresponding railroad score map are shown in 

Figure 37.  

  
a) Filtered image b) Score map 

Figure 37 Sample Score map 

After score map construction it is normalized between zero and one to use fixed threshold value. 

Then the map is thresholded by pre-defined value which is 0.18 for this study. Lastly post-

processing operations are applied on this mask. The post-processing operation consists of 

removal of small components (having higher energy due to zebra crossing or other periodic 

structure), segmenting initial road masks and associating the algorithm result with the original 

mask. Morphological operations are applied on the railroad mask to eliminate the remaining 

artifacts in the mask. Sample thresholded score map and railroad mask are shown in Figure 38. 

  
a) Thresholded Score map b) Processed railroad mask 

Figure 38 Sample thresholded Score map and final mask 

 

Since we have road network including railroad and drive road already, obtained mask is 

compared with the given road mask. Firstly, the junction points are found by the method 

proposed by Çinar, et al (2012). These junction points are excluded from the given road network 

skeleton and remaining network is labeled. Then, each component in the preliminary railroad 

mask is compared with the labeled road mask. If a labeled component in the railroad mask has 
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enough matching number of pixel with the given road mask, this component is classified as 

railroad. Lastly, morphological dilation is applied on the obtained mask to get clearer railroad 

mask. Sample labeled road network and algorithm result are shown in Figure 39. 

 
a) Labelled given road mask 

 
b) Algorithm result 

Figure 39 Labaled given road mask and the algorithm result 

.  
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4.8 Road-Type Classification 

Road type and surface material information is important for navigation, quality inspection and 

military applications. In this part of the study, an approach for road type detection is proposed.  

After extracting roads using the road detection algorithm, they are classified into three classes: 

asphalt, concrete and dirt (unpaved). Firstly, a training set is created by the user typifying the 

three classes; asphalt, concrete and soil. The training set is obtained from the image shown in 

Figure 41. As surface material such as asphalt could have various states such as dry, wet, old, 

new and so on, a single Gaussian distribution is not enough to cover all these cases.  Gaussian 

mixture models are useful to model such variations.  For asphalt and soil two Gaussian mixtures 

are created whereas only one Gaussian model is constructed for concrete roads. The mixture 

probabilities for asphalt and soil are selected as 0.5. 

For each point extracted by the road extraction algorithm, Mahalanobis distance to each 

Gaussian component in Gaussian mixtures in the spectral (color)  domain is computed as shown 

below. 

     √                  (Equation 4.12)  

where x represent the corresponding pixel’s spectral values of each band x=(xCB, xB, xG, xY, xR, 

xRE, xNIR1, xNIR2)
T
, S represents 8X8 the covariance matrix of each Gaussian distribution and µ 

represent the 8 dimensional mean vector of Gaussian distribution.  The point is classified based 

on the shortest distance to the individual classes. Once the individual pixels are assigned to the 

classes, the segmentation result is used to assign each segment into one class. If a segment 

includes pixels voting for different classes, they are merged into to one class based on the 

number of pixels voting for  each class. The flow chart of road type detection is shown in Figure 

40.  
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Figure 40 Road Type classification flow chart. 

 

Sample result about road type classification is shown in Figure 41. Blue parts represent asphalt 

and yellow parts represent unpaved roads. The result of the road material classification method 

will be presented in Section 5.4. 
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Figure 41 Road type classification sample result  

 

4.9 Verification  

To evaluate effectiveness of the algorithms precision, recall and F-measure metrics have been 

used. The proposed algorithm produces a road mask and it is compared with the “Ground 

Truth”. In this part of the study, performance metrics will be defined. We employed two types of 

performance measurement; “mask to mask” and “mask to skeleton”.   

Firstly, variable used in performance measurement is defined below; 

True Positives (TP) : Correspond to the number of pixels that belong to the roads in both GT 

and extracted road mask. 
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False Positives (FP) : Correspond to the number of pixels that are in the extracted road mask 

but does not belong to GT. 

True Negatives (TN) : Correspond to the number of pixels that are not in GT and road mask. 

False Negative (FN) : Correspond to the number of pixels that belong to GT but are not 

extracted by the algorithm. 

4.9.1 Precision: 

Precision refers to ratio of true positives over all produced data. It answers the question of “What 

percentage of the output  is indeed what I was looking for?”  Equation 4.13 shows the precision 

computation 

Precision  = 
  

     
     (Equation 4.13) 

4.9.2 Recall: 

Recall tries to answer the question “What percentage of all the extracted output is actually 

correct?” Recall is computed as shown in Equation 4.14.  

Recall  = 
  

     
      (Equation 4.14) 

4.9.3 F-Measure: 

There is a tradeoff between precision and recall values so that increasing one typically results in 

decreasing the other. In order to combine these two metrics, F-measure is used. F-Measure is the 

harmonic mean of those two metrics. It is given in Equation 4.15 as 

Fβ=(1+β)* 
                

                       
   (Equation 4.15) 

“β” parameter is used to differentiate the weights of precision and recall on F-Measure results. 

Generally F0.5, F1 and F2 are used for F-Measure calculation. The higher and smaller “β” value 

weigh the recall are precision values more, respectively. 
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4.9.4 Performance Measurement 

There are different  methods for evaluating the performance of linear object. In the study 

conducted by Aksoy, et.al. (2010), object-based performance measurement have been used 

which aims to measure performance based on ground truth and the result objects of the 

algorithm. However, object based road extraction performance measurement requires pre- 

processing of ground truth and objectification of the road extraction algorithm result. We 

preferred to measure the algorithm performance in two ways: mask-mask and mask-skeleton 

which can be used measure performance of both geometric and thematic object extraction 

algorithms. 

4.9.4.1 Mask – Mask Performance Measurement 

In this performance measurement approach, GT and extracted mask is used as in mask format 

rather than skeleton. In this type of measurement, TPs FPs and FNs are shown in Figure 42.  

 

Figure 42 Mask-Mask Performance measurement. 

Blue parts represent FPs, greens part show TPs and red parts represent FN respectively. 

Precision and recall are calculated based on the area of these parts.  

4.9.4.2 Mask – Skeleton Performance Measurement 

In this type of the performance measurement TPs and FPs are based on algorithm output 

skeleton. As shown in Figure 43, yellow parts represent GT mask, while blues are FP and greens 

are TP pixels.  

 

Figure 43 Mask-Skeleton performance measurement. 

For FN calculation, the GT is used as skeleton and algorithm result is obtained as mask. As 

stated below, reds are FN and yellow part is road algorithm result mask in polygon format.  
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Figure 44 Mask-Skeleton Recall Performance 

 

In short, FP and TP are calculated in the case of GT is a mask while FN is calculated when road 

output mask is represented as a polygon. 
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CHAPTER 5 

 

 

5 RESULTS AND DISCUSSION 

 

 

 

5.1 Dataset Used in Experiment  

In this thesis, we aimed to develop a road network extraction algorithm for high spatial 

resolution and multi-spectral satellite images. WorldView-2 (WV-2) images are used for this 

purpose. WV-2 satellite has been launched 8 October 2009 by DigitalGlobe, Inc. WV-2 provides 

eight spectral bands including one panchromatic and eight Multi-spectral bands each of which 

has 40-200 nm bandwidth. It was launched to provide images for spectral analysis, mapping and 

monitoring, disaster management, defense applications, visualization and simulation of 

environment. In addition, land-use planning including road network updating is also among 

expected studies for WV-2 images.  

The images have 50 cm and 2.0 m spatial resolution of panchromatic and multi-spectral bands 

respectively. These bands may contribute to more accurate feature classification and land-cover 

analysis. Multi spectral bands consist of Coastal Blue, Blue, Green, Yellow, Red, Red-Edge, 

NIR1and NIR2 bands.  
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Spectral properties of WV-2 images is shown in Table 3 

Table 3 Spectral properties of WV-2 

  Band Spectrum (nm) 

Panchromatic 400-1040 

Coastal Blue 400-450 

Blue 450-510  

Green 510-580 

Yellow 585-625 

Red 630-690 

Red Edge 705-745 

Near IR 1 770-895 

Near IR 2 860-1040 

 

Additional information about WV-2 is provided in Digital Globe official website. Detailed 

information is provided in APPENDIX F. 

In order to test the developed algorithm, four different WV-2 images are used. These images 

enable us to evaluate the model for different lands and different time. Three of those represent 

city of Ankara including different land covers. One is obtained on 16 November 2010 and two of 

them are taken on 26 September 2011.  

The first image also covers METU campus and neighborhood area. This enables us to determine 

the GT information easily.  Projection of the images representing city of Ankara is shown in 

Figure 45. 



81 

 

 

Figure 45 WV-2 Image obtained 16 November 2010 

 

In addition to this image, two more images for water analysis have been obtained 26 September 

2011. The image covering “Eymir lake” is shown in Figure 46.  

We have also obtained WV-2 image covering Yeni Mahalle region covering many different land 

objects. The image is shown in Figure 47. 

The fourth one represents a different country, Russia, and it is taken on 7 July 2010. The general 

view of this image is presented Figure 48. 
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Figure 46 WV-2 Image (Eymir Lake) 

 

  

Figure 47 WV-2 Image (Yeni Mahlle) 
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Figure 48 General view the image taken from Russia. 

 

One is the more important aim of this study is to measure additional spectral bands contribution 

on developed algorithm performance. In order to test this image, we need 4-Band, RGB and Gay 

level images.  

One of the important goals of this study is to measure the contribution of additional spectral 

bands on the developed algorithm performance. In order to test this image, we need 4-Band, 

RGB and Gray level images.  

Some satellites provide 4-band images including RGB and NIR bands. In order to compare the 

algorithm with 4-bands IKONOS and GEOEYE images can be used. At this point, we do not 

have IKONOS or GEOEYE (4-Band) images of the same area with the 8-Band WorldView-2 

image. Nevertheless, we use corresponding bands of GEOEYE the those of WorldView-2. For 

this purpose, blue, green, red and NIR1 bands of WV-2 images have been used. Reflectance 

comparison of some satellite images is shown in Figure 49. 
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Figure 49 Reflectance comparison of some satellite images 

 

5.2 Results  

In this part of the study, algorithm results will be reported for each module and for each image 

type: WV-2, 4-Band, RGB and Gray level image. Visual and quantitative results of the image 

shown in Figure 50 are used for demonstration. The results for all data used in this study will be 

presented in APPENDIX A.  
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Panchromatic (1 m)
Multi-Spectral (3.28 m)

GeoEye-1

Panchromatic (0.50 m)
Multi-Spectral (1.64 m)

QuickBird

Panchromatic(0.60 m)
Multi-Spectral (2.44 m)

WorldView-1

Panchromatic (0.50)
WorldView-2

Panchromatic(0.50)

800 900 1100450

Multi-Spectral (2.0 m)

Wavelength (nm)

500 600 700 1000
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Figure 50 Sample image for demonstration 

 

5.3 Road Extraction 

5.3.1 Edge-Based Road Extraction 

In this part of the study, edge detection based module will be applied on WorldView-2 (WV-2), 

RGB+NIR four band image, RGB, Grayscale, in addition to panchromatic image to analyze the 

contribution of the additional bands. 
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5.3.1.1 WorldView-2 Images 

Edge based road detection result for WV-2 images are presented below. In Figure 51, edge based 

road detection result mask is shown. In Figure 51(b), blue parts corresponds to FP while red 

parts represent FN and green ones corresponds to the TP.  

  

a) Edge based road mask b) Edge based road mask (colored) 
Figure 51 Edge Based Result for WV-2 image 

 

As mentioned in Chapter 4, we have three parameters for edge based road extraction module. 

For center line extraction we used three parameters, maximum width, minimum width, and 

minimum length. These values is set as 4 meters (2 px), 40 meters(20px) and 80 meters (40 px).  

However, the module is also tested with different parameters. The results are presented in Table 

4. 
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Table 4 Edge based road extraction module performance for different width values. 

Max Width 10 

Min Width 1 2 4 6 

 
MM MS MM MS MM MS MM MS 

Precision 0,34 0,32 0,41 0,42 0,58 0,65 0,58 0,64 

Recall 0,43 0,39 0,42 0,33 0,20 0,15 0,05 0,03 

F0.5 0,35 0,33 0,41 0,40 0,42 0,39 0,18 0,12 

F1 0,38 0,35 0,41 0,37 0,29 0,24 0,09 0,06 

F2 0,41 0,37 0,41 0,35 0,23 0,17 0,06 0,04 
 

Max Width 20 

Min Width 1 2 4 6 

 
MM MS MM MS MM MS MM MS 

Precision 0,29 0,25 0,34 0,32 0,49 0,52 0,55 0,57 

Recall 0,61 0,53 0,59 0,46 0,37 0,24 0,22 0,10 

F0.5 0,33 0,28 0,38 0,35 0,46 0,42 0,42 0,30 

F1 0,40 0,34 0,43 0,38 0,42 0,32 0,31 0,18 

F2 0,50 0,43 0,51 0,42 0,39 0,26 0,25 0,12 
 

Max Width 30 

Min Width 1 2 4 6 

 
MM MS MM MS MM MS MM MS 

Precision 0,27 0,24 0,32 0,30 0,41 0,46 0,43 0,49 

Recall 0,62 0,55 0,60 0,47 0,39 0,25 0,23 0,11 

F0.5 0,31 0,27 0,35 0,32 0,41 0,39 0,37 0,29 

F1 0,38 0,33 0,41 0,37 0,40 0,32 0,30 0,18 

F2 0,50 0,43 0,51 0,42 0,39 0,27 0,26 0,13 
 

Max Width 40 

Min Width 1 2 4 6 

 
MM MS MM MS MM MS MM MS 

Precision 0,26 0,23 0,30 0,29 0,36 0,42 0,34 0,41 

Recall 0,63 0,55 0,61 0,48 0,40 0,25 0,24 0,11 

F0.5 0,29 0,26 0,33 0,31 0,37 0,37 0,32 0,27 

F1 0,37 0,33 0,40 0,36 0,38 0,31 0,29 0,18 

F2 0,49 0,43 0,50 0,42 0,39 0,27 0,26 0,13 
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It is also important to note that narrow roads which are mostly soil type roads can be extracted 

with this module. However, visual results depict that still most part of tiny roads are missing. 

Increasing minimum width value results in missing more tiny roads as expected.  

Since modular approach is employed in this study, we aim to extract higher precision and recall 

in each module. In order to achieve higher F-measure, we apply union operation for all edge 

based road masks instead of intersection. For all type of input image, we use the same 

parameters for this module.   

5.3.1.2 Four-Band 

As it is mentioned, Blue, Red, Green and NIR1 bands of WV-2 images are combined for testing 

the proposed approach for Four-band images. Edge based road extraction result for the four-band 

image is given in Figure 52. 

  
a) Edge based road mask b) Edge based road mask (colored) 

Figure 52 Edge Based Result for Four-band image 
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5.3.1.3 RGB Image 

In Figure 53 Edge Based Result for the RGB image is presented.  

  
a) Edge based road mask b) Edge based road mask (colored) 

Figure 53 Edge Based Result for the RGB image 

 

5.3.1.4 Gray Level Image 

For the gray-level image, edge based road extraction result is presented in Figure 54.  

  
a) Edge based road mask b) Edge based road mask (colored) 

Figure 54 Edge Based Result for Gray image 
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5.3.1.5 Panchromatic Image 

Panchromatic image is also tested in this study. Edge based road extraction result for 

panchromatic images are presented in Figure 55. 

  
a) Edge based road mask b) Edge based road mask (colored) 

Figure 55 Edge Based Result for Panchromatic image 

 

All result related to this module is summarized in Table 5 and Figure 56. 

Table 5 All result of edge based road detection module 

  WV-2 Four-band RGB Gray Pan 

  M-M M-S M-M M-S M-M M-S M-M M-S M-M M-S 

Precision 0,25 0,27 0,34 0,32 0,28 0,32 0,32 0,34 0,30 0,30 

Recall 0,63 0,53 0,59 0,50 0,56 0,46 0,32 0,34 0,35 0,30 

F0,5 
0,28 0,29 0,38 0,33 0,31 0,35 0,39 0,34 0,31 0,30 

F1 
0,36 0,35 0,43 0,38 0,37 0,38 0,34 0,33 0,32 0,30 

F2 
0,48 0,44 0,51 0,44 0,46 0,42 0,36 0,33 0,34 0,30 
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Figure 56 Edge based module results 

As shown in Figure 56, the edge based module provide lower precision value for WV-2 images 

than four-band and RGB images. As WV-2 images, the module may produce more edges, since 

it uses more spectral bands. Some of these edges may include parallel non-road regions. This 

causes to achieve higher recall but lower precision.   

5.3.2 Structure analysis based road extraction  

In this part of the study, structure analysis based road detection module result will be 

presented for WV-2, RGB+NIR, RGB, Grayscale and Panchromatic images.  As mentioned 

in Chapter 4, Mean-Shift segmentation needs three different parameters; “Minimum 

Region”, “Range Bandwidth” and “Spatial Bandwidth”.  In the study of Çinar (2012), it is 

suggested to set “range bandwidth” parameter as 8 and “spatial bandwidth” as 4.  It is also 

reported that these bandwidth parameters have a minor effect in the structure analysis based road 

extraction performance. On the other hand, the “minimum region” parameter is shown to be 

influential factor for segments shape. Therefore, we conducted experiments for “minimum 

region” parameter. Different minimum region parameters have been tested to define the 

parameter of Mean Shift segmentation. As seen in Figure 57, we set the minimum region 

parameter as 380. 
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Figure 57 Minimum-region parameter of Mean-Shift segmentation 

  

5.3.2.1 WV-2 Images 

As mentioned in Chapter 4, structure analysis on segmentation result for WV-2 will be applied 

on two different four band combinations since one combination provides higher precision while 

other provides higher recall.  Then, these two results are fused by the union operation.   

In Table 6, performance result of the demonstration image for structure analysis based road 

extraction module is presented.  

Table 6 Result of Structure analysis based road extraction module for WV-2 Image 

 CB,RE,NIR1,NIR2 B,G,Y,R Merged for WV-

2 

 MM MS MM MS MM MS 

Precision 0.3801 0.3262 0.3924 0.3472 0.3372 0.2869 

Recall 0.5031 0.3276 0.4336 0.3238 0.6039 0.4379 

F0.5 0.3992 0.3265 0.3974 0.3423 0.3699 0.3082 

F1 0.4318 0.3269 0.4090 0.3351 0.4328 0.3467 

F2 0.4703 0.3273 0.4214 0.3282 0.5214 0.3962 
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a) Labels for CB,RE,NIR1,NIR2 b) Structure analysis based road mask 

(colored) 

  
c) Labels for B,G,Y,R d) Structure analysis based road mask 

(colored) 

  
e) Segmentation Result f) Segmentation result (Colored) 

Figure 58 Structure analysis based module result for WV-2 
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5.3.2.2 Four-Band image 

For four-band image (RGB,NIR-1), visual results of structure analysis based road extraction 

module are presented in Figure 59.  

  
a) Structure analysis based road mask b) Structure analysis based road mask 

(colored) 
Figure 59 Structure analysis based result for four-band image 

5.3.2.3 RGB Image 

For RGB image, edge based road extraction result is presented in Figure 60.  

  
a) Structure analysis based road mask b) Structure analysis based road mask 

(colored) 
Figure 60 Structure analysis based result for RGB image 
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5.3.2.4 Gray Level Image 

For Gray-level image, structure analysis based road extraction result is presented in Figure 61.  

  
a) Structure analysis based road mask b) Structure analysis based road mask 

(colored) 
Figure 61 Structure analysis based for gray image 

5.3.2.5 Panchromatic Image 

Structure analysis based road extraction result for panchromatic images is presented in Figure 62. 

In  

Table 7 All result of structure analysis based road extraction is depicted. The visual comparison 

of the results of the module is shown in Figure 63. 

  
a) Structure analysis based road mask b) Structure analysis based road mask 

(colored) 
Figure 62 Structure analysis based result for panchromatic image 
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Table 7 All result of structure analysis based road extraction 

  WV-2 Four-band RGB Gray Pan 

  M-M M-S M-M M-S M-M M-S M-M M-S M-M M-S 

Precision 0,34 0,29 0,35 0,29 0,38 0,32 0,32 0,27 0,32 0,27 

Recall 0,60 0,44 0,50 0,34 0,47 0,31 0,44 0,27 0,39 0,23 

F0,5 0,37 0,31 0,37 0,30 0,39 0,32 0,33 0,27 0,34 0,26 

F1 0,43 0,35 0,41 0,32 0,42 0,32 0,37 0,27 0,36 0,25 

F2 0,52 0,40 0,46 0,33 0,45 0,31 0,41 0,27 0,38 0,24 

 

 

Figure 63 Structure analysis based road extraction module results. 

5.3.3 Clustering-Based Road Extraction 

Clustering based road detection result will be presented in this part of the study.  

5.3.3.1 WV-2 Images 

WV-2 images are clustered and analyzed as mentioned in Chapter 4. In Figure 64, road mask 

and colored mask representing TP, FP and FN values are in different color.  As it is mentioned 

before, we have two different approaches for clustering. One is clustering each band separately 

and union of each output. Second approach is clustering all data together and analyze clusters.  
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a) Clustering based road mask (all bands 

separately) 

b) Clustering based road mask (all bands 

separately) (colored) 

  
c) Clustering based road mask (all bands 

together) 

d) Clustering based road mask (all bands 

together) (colored) 

Figure 64 Clustering based result for WV-2 image 

In Table 8, performances of clustering algorithms on the demonstration image for this module 

are presented. 

Table 8 Result of cluster based module for WV-2 image 

 Clustering Each Band Separately  Clustering all bands together 

 Mask-Mask Mask-Skeleton Mask-Mask Mask-Skeleton 

Precision 0.2316 0.1828 0.2706 0.2303 

Recall 0.8105 0.7089 0.4980 0.5182 

F0.5 0.2702 0.2147 0.2978 0.2591 

F1 0.3603 0.2907 0.3507 0.3189 

F2 0.5404 0.4499 0.4263 0.4146 
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5.3.3.2 Four-Band 

Combination of Blue, Red, Green and NIR1 bands of WV-2 images are clustered and analyzed. 

Result of this module is presented below.  

  
a) Clustering based road mask (all bands 

separately) 

b) Clustering based road mask (all bands 

separately) (colored) 

  
c) Clustering based road mask (all bands 

together) 

d) Clustering based road mask (all bands 

together) (colored) 
Figure 65 Clustering based result for four-band image 
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5.3.3.3 RGB Image 

For RGB image, clustering based road extraction result is presented in Figure 66. 

  
a) Cluster based road mask b) Cluster based road mask (colored) 

Figure 66 Clustering based result for RGB image 

 

5.3.3.4 Gray Level Image 

For Gray-level image, clustering based road extraction result is shown in Figure 67. 

  
a) Clustering based road mask b) Clustering based road mask (colored) 

Figure 67 Clustering based result for gray image 
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5.3.3.5 Panchromatic Image 

Clustering based road extraction module output is shown in Figure 68.  

  
a) Clustering based road mask b) Clustering based road mask (colored) 

 
Figure 68 Clustering based result for panchromatic image 

 

When all clustering results are quantitatively compared, it can be seen that, F1 value is decreased 

while number of bands is increased. Since the algorithm fuses all band clustering results, the 

precision values is getting lower since the FPs are increased for each band. Similarly, recall 

value is increased with each additional band since the TPs are also increasing for each band. 

However, the increase in recall value is more significant than the precision value which results in 

lower  F1 value higher number of bands. The results are depicted in Table 9 and Figure 69. 

Table 9 Combined results of clustering based road extraction module 

  WV-2 Four-band RGB Gray Pan 

  M-M M-S M-M M-S M-M M-S M-M M-S M-M M-S 

Precision 0,23 0,18 0,27 0,21 0,29 0,24 0,38 0,31 0,33 0,26 

Recall 0,81 0,71 0,74 0,64 0,71 0,60 0,47 0,39 0,42 0,35 

F0,5 0,27 0,21 0,30 0,25 0,33 0,27 0,40 0,33 0,35 0,28 

F1 0,36 0,29 0,39 0,32 0,41 0,34 0,42 0,35 0,37 0,30 

F2 0,54 0,45 0,54 0,46 0,55 0,46 0,45 0,37 0,40 0,33 
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Figure 69 All result of clustering based road extraction module. 

 

5.3.4 Structure Analysis Based Non-Road Detection 

In this section, non-road analysis based on structure analysis will be investigated for all types of 

input images mentioned before. Images are segmented by using mean-shift algorithm. Non-road 

segments are expected to be thick enough as considered in Chapter 3. It is assumed that these 

segments are bare soil or uniform large areas that do not have road characteristics.  

5.3.4.1 WV-2 Image 

In Figure 70, structure analysis based non-road result is shown. In Figure 70(a), general 

segments and in Figure 70(b), a non-road mask is shown. For WV-2 images, two different four-

band combinations are used for structure analysis for non-road detection. Then these two results 

are fused by union operation to obtain the final-non-road images. 
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a) Labels for CB,RE,NIR1,NIR2 b) Structure analysis based road mask 

(colored) 

  
c) Labels for B,G, Y,R d) Structure analysis based road mask 

(colored) 

  
Not-road structural analysis Not-road structural analysis (colored) 

Figure 70 Structure analysis based non-road result 
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5.3.4.2 Four-band image 

In Figure 71, structure analysis based non-road result is shown for four-band image which is 

simulated image of Geoeye satellite.  

  
a) Labels b) Structure analysis based non-road 

mask (colored) 
Figure 71 Structure analysis based non-road result for four-band 

5.3.4.3 RGB image 

In Figure 72 structure analysis based non-road result is shown for RGB image.   

  
a) Labels b) Structure analysis based non-road 

mask (colored) 
Figure 72 Structure analysis based non-road result for RGB image 
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5.3.4.4 Gray-level image 

Structure analysis based non-road result for gray level images and segments are shown in Figure 

73.  

  
a) Labels b) Structure analysis based non-road 

mask (colored) 
Figure 73 Structure analysis based non-road result for gray level images 

5.3.4.5 Panchromatic image 

Structure analysis based non-road result for panchromatic image and corresponding segments 

are shown in Figure 74.  

  
a) Labels b) Structure analysis based non-road mask 

(colored) 
Figure 74 Structure analysis based non-road result for panchromatic image 
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5.3.5 Vegetation Detection 

In this part of the study, result for vegetation analysis of WV-2 and four-band image will be 

reported.   

5.3.5.1 WV-2 Image 

NDVI and SAVI results are threshold by the predefined value (0.1) to obtain the vegetation 

mask. Results are presented in Figure 75.  

  
a) NDVI b) NDVI >0.1 

  
c) SAVI  d) SAVI>0.1 

Figure 75 Vegetation results for WV-2 image.  
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5.3.5.2 Four-band image 

Red and NIR1 values are used to calculate the indexes for simulated Geoeye image. Sample 

vegetation masks are shown in Figure 76. 

  
a) NDVI b) NDVI >0.1 

  
c) SAVI  d) SAVI>0.1 

Figure 76 Vegetation results for four-band image. 

 

5.3.6 Water Extraction  

In this part of the study, water mask is aimed to extract as a non-road region. Since, there Is no 

water region in the demonstration area, results will be shown other parts of images.  
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5.3.6.1 WV-2 Image 

NDWI, NDVI results and NIR band are employed to detect water regions.  In Figure 77 these 

values and water mask is presented.  

    
a) RGB b) NDWI c) NDWI Mask d) NDVI 

    
e) NDVI Mask 

(with NIR2) 
f) NIR2 g) NIR2 Maks h) Result 

Figure 77 Water results for WV-2 image.  

 

5.3.6.2 Four-band image 

Blue, Red, and NIR1 values are used to calculate the indexes for simulated Geoeye image. 

Results are almost the same with the water region result for WV-2 Image.  NDWI, NDVI results 
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and NIR bands and corresponding automatic hysteresis thresholded masks and final result on 

RGB image is shown in Figure 78.  

    
a) RGB b) NDWI c) NDWI Mask d) NDVI 

    
e) NDVI Mask f) NIR1 g) NIR1 Maks h) Result 

 
Figure 78 Water region detection result for four-band.  

Additional result for water extraction module presented in APPENDIX C.  
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5.3.7 Score map Construction 

5.3.7.1 WV-2 Image 

In Figure 79, Score map and thresholded road network is given.  

  
a) Score Map based on segment b) Final Result 

Figure 79 Road Network result for WV-2 image.  

5.3.7.2 Four-Band Image 

In Figure 80, Score map and thresholded road network for four-band image is given.    

  
c) Score Map based on segment d) Final Result 

Figure 80 Road Network result for Four-band image.  
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5.3.7.3 RGB Image 

Score map and thresholded road network of the algorithm for RGB images is presented in Figure 

81. 

  
a) Score Map based on segment b) Final Result 

Figure 81 Road Network result for RGB image.  

5.3.7.4 Gray Level Image 

Score map and thresholded road network of the algorithm for Gray Level images are presented 

in Figure 82.  

  
c) Score Map based on Segment d) Final Result 

 
Figure 82 Road Network result for Gray image.  
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5.3.7.5 Panchromatic Image 

Score map and thresholded road network of the algorithm for Gray Level image is presented in  

Figure 83 .  

  
e) Score Map based on segment f) Final Result 

 
Figure 83 Road Network result for Panchoromatic image.  

 

5.3.8 Overall Result 

As it is seen in Table 10 and Figure 84, when WV-2 image is used as an input for the proposed 

algorithm, higher recall is obtained. Even precision is higher for low level images, when we look 

at F1-measure which gives the same importance to recall and precision, it can be inferred that the  

more number of band is employed, the higher performance is obtained.  

Table 10 Road extraction results for all bands 

 WV-2 Four-band RGB Gray Pan 

 M-M M-S M-M M-S M-M M-S M-M M-S M-M M-S 

Pre 0,61 0,47 0,44 0,35 0,40 0,33 0,41 0,37 0,49 0,43 

Rec 0,51 0,70 0,57 0,67 0,49 0,63 0,43 0,59 0,51 0,57 
F0.5 0,58 0,51 0,46 0,38 0,41 0,37 0,42 0,40 0,49 0,45 

F1 0,55 0,57 0,50 0,46 0,44 0,44 0,42 0,46 0,50 0,49 
F2 0,52 0,64 0,54 0,57 0,47 0,54 0,43 0,53 0,50 0,54 
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Figure 84 Algorithm Results 

 

5.4 Road Material Classification 

Road material classification has been conducted on WV-2 and four-band images. The training 

set is obtained from the image shown in Figure 41 of Section 4.8.  Road Material Classification 

for WV-2 Images is presented in Figure 85. Yellow parts correspond to unpaved road regions 

whereas blue parts represent asphalt covered roads.  
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Figure 85 Road Material Classification Result for WV-2 Images 

Classification for four-band Images is presented in Figure 86.  

 

  

Figure 86 Road Material Classification Result for four-band Images 

 

Another result used for road type classification is shown in Figure 87. The algorithm is tested 

both on ground truth and road extraction algorithm. Yellow parts correspond to unpaved road 

regions whereas blue parts represent asphalt covered roads. 
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a) RGB image b) Ground Truth representing road 

classes 

  
c) Road type classification result on road 

GT 

d) Road type classification result on the 

road extraction algorithm output 
Figure 87 Road type classification result on GT and road extraction algorithm output 

 

As shown in Figure 87, some regions of asphalted roads are classified as un-paved roads. This 

case occurs for narrow roads which are either deteriorated or mixed with neighboring soil 

regions. Some miss classified regions may be due to the fact that road mask may also cover 

unpaved parts adjacent to the asphalted roads.  
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5.5 Water Canal Extraction 

Water regions are found as mentioned Chapter 4. In order to find water canals, elongatedness 

analysis is applied. All results related to water canal extraction is shown in APPENDIX D.  

5.5.1 WV-2 Image 

 Sample image and water canal detection result for WV-2 images is shown in Figure 88 

 
a) RGB 

 

 
b) Water Mask 

Figure 88 Water results for WV-2 image.  

When the output is analyzed, it can be seen that, unextracted water canal segment is drier than 

the extracted parts. This affects the NDWI values and automatic hysteresis thresholding method. 

 

5.5.2 Four-band 

 Sample image and water canal detection result for four-band image is shown in Figure 89.  
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a) Water canal mask 

 

 
b) Water canal mask (colored) 

 
Figure 89 Water results for four-band  image. 

5.6 Railroad Extraction 

This approach has been tested on four different 20 cm resolution Google Earth images including 

both railroad and road structures.   Since the proposed method relies on the sleepers’ periodicity 

as a distinctive features of railroads, high resolution images are needed. Some of the sample 

results can be seen at Figure 90. 

Generally, the algorithm achieves good qualitative results for most circumstances.  However in 

some cases because of the railroad intensity and the deterioration of sleepers’ structure, the 

proposed method may not be successful in distinguishing railroads from other regions.  



117 

 

 
(a) RGB İmage 

 
c) Score map based on energy 

 
b) Ground truth. Red parts represent railroads and blue parts represent railroads. 

 
d) Final Result 

Figure 90 Railroad result 
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As it is seen in Figure 90, some parts cannot be classified. This may be because of  bridges. 

Another factor that affects the result is pillars. Some of those and their shadows occlude some 

part of railroad. On the other hand, since the approach uses all road map for classification, some 

zebra crossing on drive roads can be extracted as railroad because of periodicity. Another results 

of the railway classification is shown in Figure 91 and Figure 92 .  

 
(a) RGB İmage 

 
c) Score map based on avarage energy 

 
b) Ground truth. Red parts represent railroads and blue parts represent railroads. 

 
d) Final Result 

Figure 91 Railroad classification result. 
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(a) RGB İmage 

 
c) Score map based on avarage energy 

 
b) Ground truth. Red parts represent railroads and white parts represent railroads. 

 
d) Final Result 

Figure 92 Sample railroad classification result 

 

As seen in the score maps depicted in Figure 90 (c) Figure 91(c) and Figure 92(c), some drive-

road parts depict railroad characteristics. This may be because of local periodic structure like 

zebra crossing, road markings or cars. Another problematic case occurs at junction points for 
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which it is difficult to detect road direction. Some sample regions are shown in Figure 93. Even 

though the highest energy is not in the ROI, still there may be higher energy than the 

background. In Figure 93 (d), parking lines have a periodic structure. Although they do not have 

the same periodicity with railroad sleepers, the harmonic components of their Fourier spectra can 

be located at the ROI. 

    
a) Junction point and Fourier 

Transform 

b) Road Marks and its Fourier 

Transform 

    
c) Road Marks and Fourier 

Spectra 

d) Parking lines and Fourier 

Transform  

Figure 93 Sample road parts having periodic structure 

After thresholding the score map, such cases are classified as railroad. Such disconnected 

regions are eliminated in post-processing phase by removing small unconnected components as 

demonstrated in Figure 38 of Section 4.7.  

Some railroad parts, on the other hand, may not have enough energy to classify them as 

railroads.  Such railroads may have deteriorated sleepers or they are constructed with a 

technology that does not incorporate sleepers as shown in Figure 94.  

    
a) Deteriorated sleeper sample and 

its Fourier Transform  

b) Railroad that excludes sleepers  

and its Fourier Transform 

Figure 94 Sample railroad parts without discernable periodicity 
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5.7 Discussion 

In this study we aimed to develop a road network extraction algorithm from remotely sensed 

multi-spectral data. In order to make the model flexible, a modular approach has been proposed. 

In this part of the study, each module of the model will be discussed. Each module has some 

parameters determined according to the road assumptions. The effect of changing the values of 

these parameters will be investigated in this part of the study.  In addition, results will be 

compared with the existing methods qualitatively and quantitatively.    

The first module of the proposed model is edge based road extraction. This module consists of 

three main steps i.e. edge detection, center line extraction and middle line selection.  

Canny edge detector has been used to find contours of the gray level images. This edge detector 

requires two different parameters. First parameter is the hysteresis threshold (determined by low 

and high thresholds), to detect edges from gradient magnitudes of each band. Second parameter 

is sigma that refers to the standard deviation of the Gaussian filter. Setting these parameters to 

pre-determined fixed values may cause the detection of edges only with a specific gradient 

value. In order to avoid this problem, these parameters should be set automatically for each 

image. Automatic thresholds are determined based on the highest value of gradient magnitude of 

the image and the low threshold equals to 40 % of highest gradient magnitude threshold in this 

study. Sigma is set as “1” in this study.  

For center line extraction we used two parameters, maximum width and minimum width. These 

values are dependent on the image resolution. Since this study aims to extract roads with width 

in the range of 4 meters and 80 meters, these values are set as 2 and 40 for the 2 meters 

resolution multi-spectral images. Middle points are selected as mentioned in Chapter 4. 

However, there may be some gaps between these middle points.  In order to fill these gaps, an 

approach that checks the orientation of each line and searches for continuing pairs in a pre-

defined range is developed.   

As it is shown in Figure 95, dashed lines represent the link connecting two  middle lines with 

same orientation and the given gap.  
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When this approach has been tested on images and it was observed that, this method also merges 

middle points extracted from buildings in a row. Other approaches such as spline, line fitting, or 

the one used in Li et al. (2003), have the same problem. We decided to exclude this property 

from the module in order to reduce FP and increase the precision value.  

In order to select appropriate middle lines, small segments are discarded. We aimed to remove 

short lines obtained from non-road structures such as buildings. Another parameter used in edge 

based road extraction module is “line length” to be removed. It is assumed in this study that road 

parts should be greater than 60 meters. This may result in the elimination short road parts 

obtained by edge based module. On the other hand, if they are not removed many small parallel 

structures are considered as road segments inducing lower precision.  

Also, in the edge based road extraction module each spectral band is processed separately. It is 

observed that, Canny edge detection result is different for each spectral band (Figure 96). This 

makes us to consider edge map merging of each band to provide smoother and more complete 

middle line results.   

 

 

 

Figure 95 Edge linking sample 

file:///C:/Users/EKARAMANVB/AppData/Roaming/Microsoft/Word/Proposal_lit_kaynaklar/The%20Research%20of%20Road%20Extraction%20for%20High%20Resolution%20Satellite%20Image.pdf
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a) Edges coastal blue band b) Edges of blue band 

  
c) Edges green band d) Edges of yellow band 

  
e) Edges red band f) Edges of red edge band 

  
g) Edges NIR-1 band h) Edges NIR-2 band 

Figure 96 Edge detection result for each band 
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After merging operation is employed for all edge maps, it is observed that a registration problem 

occurs. There may be two possible sources of this problem. One is that the gradient may be 

different in the same region for each band. Second is that the automatic gradient threshold 

detection may produce different threshold values for different bands. In order to eliminate the 

second problem, tests with fixed threshold values were conducted and it was observed that the 

registration problem still could not be solved. This problem also hampers us to employ edge 

voting method to get all related edges from different spectral characteristics.  

Sample result for edge map merging is shown in Figure 97 

 

Figure 97 Edge registration problem 

In structure analysis based road extraction, mean-shift segmentation is employed. This method 

needs three parameters: Min Region Area, Spatial bandwidth, Range bandwidth. “Spatial 

bandwidth” and “Range bandwidth” parameters are optimized in Çinar (2012) as 8, 4 pixels 

respectively for 1024X1024 IKONOS images.  After segmentation is completed, segment 

analysis is conducted by using elongatedness and eccentricity analysis. Before computing these 
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values, each segment is checked to ensure its area is large enough.  However, in some cases road 

parts may be eliminated because of segment area threshold. In order to solve this problem, some 

segments that have lower areas are considered as road segments, if they are elongated enough. 

Table 11 shows the decision matrix for segment analysis using area and elongatedness threshold 

values.  

Table 11 Segment analysis decision matrix for area and elongatedness values. 

Area/Elongatedness High Low 

High Road Not-Road 

Low Probably Road Not-Road 

 

In Figure 98, mentioned metrics are shown in color.  

 
Figure 98 Elongatedness and Area analysis 

 

In Figure 98, yellow parts represent low area and low elongatedness, dark blue parts represent 

high area and high elongatedness. On the other hand, ligth blue parts represent high 

elongatedness and low area, while red regions represent high area and low elongatedness. In the 

experiments it is observed that, classification of segment elongatedness structure in these classes 
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is not needed, since pre-defined thresholds already provide the satisfactory solution. For 

example, structure analysis also produces light blue regions as roads for the above image.  

 In the clustering part, images are clustered into six clusters as suggested by Zhang and 

Couloigner (2006). Instead of selecting one cluster for road extraction, each component in each 

cluster is analyzed to detect roads as mentioned in Chapter 4. It should be noted that more 

clusters may also be used in our approach since all clusters are analyzed separately. For different 

K values, clustering and cluster analysis results are shown in Figure 99. 

Increasing the number of clusters results in higher recall but lower precision values. Therefore, 

we set the value of K to “6”. 

Non-road regions including bare soil, water and vegetation for multi-spectral images are also 

extracted in this study. These non-road regions can be excluded from the road region detection 

part of the model. In this manner, structure of the model can be changed and turned into two 

main consecutive steps i.e.  non-road and road region detection parts. This means that, non-road 

regions can be excluded from all road part detection module result. This also affects the score 

map construction method. Instead of using non-road result as a reduction factor for the score 

map, they may not be considered at all as conducted in the study of Shackelford et al. (2003).  

However, such a consecutive structure means that overall performance highly depends on the 

non-road region extraction performance. We conclude that, the modular approach is much more 

reliable to use.  

As mentioned in Chapter 4, vegetation, water, and large regions assumed to be bare soil are 

extracted as non-roads. For vegetation detection different indexes can be employed in this study. 

Since SAVI requires soil adjusted factor, it depends on image characteristics. EVI index can also 

be employed. For empirical tests, EVI index is calculated as follows,  

      
       

                    
 ,    (Equation 5.1) 

where L is a canopy background adjustment, G is a gain factor and c1, and c2 are the coefficients. 

In MODIS-EVI algorithms these coefficients are defined as L=1, c1 = 6, c2 = 7.5, and G = 2.5. 

However, it is empirically observed that NDVI index is more stable and usable for all type of 

images and textures. 
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K=4 

 
 

 
K=5 

 

 
K=8 

 

 
K=10 

 

Figure 99 Clusters and clustering result for different K values 
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Comparison of NDVI and EVI projections and thresholded sample images are shown in Figure 

100.  

 

      
       

                    
 

 
EVI>0 

 

        
                   

                                
 

 
EVI_2 >0 

 
EVI_2=1 & NDVI=0 

 
EVI_2=0 & NDVI=1 

Figure 100 Comparison of EVI index calculated by NIR2 and average of NIR1 and NIR2 
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Segmentation based non-road region detection module also needs some parameters. One is the 

minimum region area for the mean-shift algorithm. This parameter is set as 750 for 1024X1024 

and 2m resolution images. A higher “minimum region area” threshold may cause the loss of road 

parts since it forces the merging of segments.  Different minimum region area values have been 

tested. It was qualitatively observed that minimum region area threshold should not be much 

higher or lower.  

Band ratios may be used for segmentation to extract road and non-road regions. In order to test 

this idea, NDVI index result is segmented by using mean-shift algorithm. In Figure 101, road 

and non-road analysis based on NDVI segmentation is represented.  

   
   

   
Structural analysis of 

Segmentation result of 

NDVI 

(Red-Edge – Yellow )/  

(Red-Edge + Yellow) 

(Coastal Blue – NIR2)/  

(Coastal Blue + NIR2) 

Figure 101 Band ratios segmentation result. 

It can be shown that, even though segmentation analysis of spectral information ratios provide 

better result, they may not be stable as shown for not-road region detection parts.  

In the light of this information, the model is finalized as stated in Chapter 4. All results are 

presented in APPENDIX A. All parameters used in this study are also shown in APPENDIX E.  
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Each module is investigated in terms of contribution to the final result. In other words, different 

combination of module fusing is also analyzed. In Table 12, different combination of road 

extraction modules and corresponding result is shown. 

Table 12 Comparison of modules 

Edge 

Based 

Segment 

Based 

Clustering 

Based Precision Recall F0,5 F1 F2 

X 

  

32 45 33,96 37,40 41,62 

 

X 

 

72 23 50,49 34,86 26,62 

  

X 70 18 44,37 28,64 21,14 

X X 

 

46 68 49,18 54,88 62,06 

X 

 

X 50 50 50,00 50,00 50,00 

 

X X 53 59 54,10 55,84 57,69 

X X X 45 75 48,91 56,25 66,18 

 

We also analyzed the outputs of different module combinations visually. Even though edge-

based module provides less contribution to the model performance, we can see that this module 

extracts tiny roads more frequently than other modules. Furthermore, the extracted roads have 

smoother boundaries. Although clustering based module provides smaller recall value, the 

extracted road parts by this module are not fragmented as the outputs of the other modules. The 

structure analysis based module, on the other hand, provides the highest precision value but 

tends to extract roads as disconnected parts since it analyzes the segments independently. The 

input image and the final output is presented in Figure 102 and the contribution of individual 

modules is depicted in Figure 103.  

  
a) RGB Image b) Algorithm Result 

Figure 102 RGB image and the algorithm output 
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a) Edge based road extraction b) Clustering based road extraction 

  
c) Structure  analysis based road extraction d) Structure analysis and edge based road 

extraction 

  
e) Structure  analysis and clustering based 

road extraction 

f) Clustering and edge based road extraction 

Figure 103 Comparison of modules 
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5.7.1 Comparison with Other Methods 

Reviewing existing methods showed that most of the studies are semi-automatic. On the other 

hand, some automatic road extraction algorithms have focused only on specific regions and 

textures. In this study, we aimed to develop a road network extraction method that is not 

dependent on any condition like sensor specification, number of bands or specific regions.  

In order to compare performances with those of other approaches and determine the contribution 

of our methods for road extraction, the same data should be employed. However, license 

agreements have made this impossible and other authors have not agreed to share their codes 

with us. Hence, the discussion of the proposed method with existing methods will be made based 

on data characteristics, performance metrics and applied methods.  

In the study of Zhaoa et al. (2002), a semi-automatic approach is proposed. The approach needs 

user feedback continuously and traces only 4005 pixels in total. This limited number of pixels is 

not appropriate to give any opinion about the accuracy of the study. Another semi-automatic 

road extraction algorithm proposed in Vandana et al. (2002) is also based on road tracking 

approach. Quantitative results are not provided but visual results are promising. However, the 

test image does not include any occlusions or shadows. Also, the method was not tested on 

multi-spectral images. In Lin et al. (2011), proposed their approach and tested the approach on 

512X512 IKONOS images. In our experience, it is not plausible to generalize results and 

performance with such small size of images. In Long and Zhao (2005), an integrated approach 

including segmentation, morphology and thresholding procedures is proposed. The study applies 

thresholding on simplified images (mean of intensity values of segments) obtained by the mean-

shift procedure. This may produce good results; however fixed thresholding on color 

information may result in removal of the road parts. Fixed color thresholding for pre-processing 

is also used in Zhang et al. (1999). In our approach, instead of color thresholding of segments’, 

shape information is utilized to extract the road map.  

In general, in road tracking and template matching based approaches as in Da Silva et al. (2012), 

Park et al. (2001), Kim et al. (2004), Movaghati et al. (2010), and  Lin et al. (2011) the 

performances strictly depend on the choice of the initial road seed. In Lin et al. (2011) lane 

markers are also employed but lane markers are available only for very high resolution images.  
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In Bacher and Mayer (2005), results are provided quantitatively and look promising but all 

images are selected from rural areas. They focused on extraction of main roads on such images. 

In our approach, main roads in rural areas can also be extracted with high performance. Sample 

result on rural area is shown in Figure 104. 

  
a) Our sample result 

including rural roads 

b) Bacher & Mayer, 

(2005) sample input 

c) Bacher & Mayer, 

(2005) sample output 

 
Figure 104 Sample rural area result and comparison with Bacher & Mayer (2005) 

 

In the study conducted by Mohammadzadeh et al. (2008), a semi-automatic approach based on 

fuzzy cost function calculation according to initial pixel selected by user has been proposed. A 

small size rural area image has been used in the study. In addition, the approach includes 

consecutive post-processing steps which may not work well for other regions including other 

types of land cover.  

In the study of Senthilnath et al. (2009), panchromatic QuickBird images have been tested with 

TPA and Normalized cut methods. In addition to its small size, the image just includes roads, 

buildings and little vegetation regions. The results are promising, but for the pre-processing 

method image is converted to binary image by using simple thresholding assuming that roads are 

darker and buildings are brighter objects. However, this assumption may not hold for images 

with many land cover objects. Sample result of the study and our algorithm result having similar 

texture is shown in Figure 105.  
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a) Sample result of our algorithm b) Sample result of Senthilnath et. al. (2009)  

Figure 105 Comparison with Senthilnath et.al (2009) 

 

In Sırmaçek and Ünsalan (2010), edge map voting based segmentation is applied and each 

segment is analyzed to check whether it satisfies the elongatedness property of roads by using 

the ratio of region area and square of perimeter normalized by 4π. This property may not include 

junction points as mentioned in Chapter 4.  This inference is also valid for the study of Xu et al. 

(2009) which uses ratio of area and perimeter as the shape index. 

In the study conducted by Lee et al. (2000), road segments are selected by analysis of mean gray 

value, size (number of pixels in segment) and shape information (major/minor axis). Visual 

results look promising and supported by quantitative values. However, image characteristics 

have similar texture, and cover rural areas and main roads.  Sample result of Lee et al. (2000) 

and our algorithm result are shown in Figure 106.  

   
a) Our sample result b) Lee et.al (2000) 

sample input 

c) Lee et.al (2000) 

sample output 
Figure 106 Comparison with Lee et.al (2000) 
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Color thresholding, shape index and shape size are commonly used features in the literature. 

However, they should be adaptive.In our experience, fixed color thresholding does not provide 

road map since it may change according to region and satellite sensors. Also, shape index should 

handle junction points and grid structure. Hence elongatedness measure is needed for 

enhancement as proposed in this thesis.  

In the study of Rajeswari et al.(2011), the image is clustered into 15 clusters. Five of them are 

considered to belong to the road class. After smoothing the image to eliminate occlusion effects 

by filtering, segmentation algorithms are applied. As mentioned above, selecting fixed cluster or 

clusters as the road cluster may not provide road region. In our approach, each component in 

each cluster is analyzed to detect roads. Although it is reported that the approach provides over 

80 % performance, they focused only on highways in sample images. In addition, pre-processing 

techniques consist of successive steps which affect overall performance.  In Figure 107, a sample 

result of their study and our algorithm are shown.  

   
d) Our sample result e) Rajeswari et.al (2011) 

sample input 

f) Rajeswari et.al (2011) 

sample output 
Figure 107 Comparison with Rajeswari et.al (2011). 

 

The study conducted by Mohammadzadeh et al.(2008), proposed fuzzy segmentation based 

approach. The approach needs initial road segments and based on these initial segments’ mean 

values, membership functions are constructed including five members. Then fuzzy segmentation 

is applied and the result is thresholded to obtain the road mask. It is obvious that, the 

performance of the algorithm depends on the initial segment selection. 

Mena and Malpica (2005) proposed a method to update existing GIS database. Since they use 

available road network to enhance the map, it is not possible to compare with our results. 



136 

 

However, it is important to note that, our model would be enhanced by using existing data as 

well.  

In Liu et al. (2003), a genetic algorithm based road extraction method has been proposed. They 

employed a 350X214 image in the approach consisting of two different objects i.e. road and bare 

soil. Although the result is very promising; the method should be tested with more images 

including different type of land covers. Our algorithm result and sample algorithm input and 

output of the study Liu et al. (2003) are shown in Figure 108.  

   
a) Our sample result b) Liu et.al (2003) sample 

input 

c) Liu et.al (2003) sample 

output 
Figure 108 Comparison with Liu et al. (2003). 

 

In the study of Zhang and Couloigner (2006), a clustering base method is proposed. Based on 

color assumptions, classification is conducted. Results are closer to our approach. However, this 

method’s performance strictly depends on the k-means algorithm results and color assumptions 

which may vary for different regions which may have different intensity.  

In Laptev et al. (2000), it is reported that the proposed algorithm produces 95 % correctness and 

72 % completeness. Although the proposed method can be used for improving performance, it 

can be seen that the images do not include any buildings objects other than road and soil.  

In the study of Grote et al., (2009), graph based approach is proposed. After segmentation on 10 

cm resolution images, the segments are merged according to their shapes and spectral features. 

This may cause miss-merging since spectral characteristics of elongated buildings may be 

similar to roads as discussed in Chapter 6.  

In Yuan et al. (2009), a segmentation based method is proposed. It is expected to extract roads 

by using LEGION segmentation. It is assumed that since roads are thin and elongated, they 

belong to background segments. Visual results show that this method can be used in rural areas. 
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Since the method does not employ any post-processing method for roads, it may not differentiate 

roads with other elongated structures like rivers, railroads, and etc. In Figure 109, sample result 

of the study and our sample result including rural region roads are represented. 

   

a) Our sample result 

including rural roads 

b) Yuan et al. (2009), 

sample input 

c) Yuan et al. (2009), 

sample output 

d)  
Figure 109 Comparison with Yuan et al. (2009). 

 

In Peteri et al. (2003), a snake based approach has been proposed. Visual result shows that the 

algorithm is promising for rural areas. However, the algorithm needs the initial road map from 

GIS database or other resource. Also the edge based road extraction module proposed in this 

study, provides comparable performance when it is conducted on similar satellite images.  

As mentioned before, since we neither have the same data nor do we have the final codes of  

other authors, we could not compare our results with theirs. On the other hand, we discussed our 

visual results and quantitative performance values with their reported results. We may say that, 

our approach is comparable and has demonstrated robust performance over a larger class of 

roads. 
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CHAPTER 6 

 

 

6 CONCLUSION AND FUTUREWORK 

 

 

 

In this thesis, transportation infrastructure extraction from multispectral satellite images has been 

studied. In this context, an algorithm for automatic road extraction from multispectral satellite 

images is developed. A water canal extraction algorithm and a railroad classification algorithm is 

also described in this thesis. Moreover, road cover material analysis is investigated. 

 

Road Network Extraction 

The road extraction model developed in this thesis does not require user feedback or interaction. 

In this manner this approach is a fully automatic road network extraction system.  

 

One distinctive feature of the proposed model is its modular structure. A score may is 

constructed by fusing all the outputs of different modules. This structure enables the model to 

handle different spatial and material characteristics of roads in urban and rural areas. Also, since 

this modular approach is organized as a set of parallel modules, it limits the interaction between 

different modules. 

 

Furthermore, the modular structure increases the adaptability of the model, since it allows us to 

integrate new modules. Another factor that enhances the adaptability is its applicability to lower 

and higher spatial resolution images by parameter adjustment.  Aince each band is processed 

separately, the model also supports different spectral resolution images including hyper-spectral 
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images that provide a higher spectral resolution than multi-spectral images. One other property 

that contributes to the satellite sensor independency of the model is its being an unsupervised-

approach.   

 

The algorithm is tested on four different WV-2 images to evaluate the model for different 

regions and times. Three of those are from the city of Ankara including different land covers. 

One is obtained on 16 November 2010 and the other two are taken on 26 September 2011. The 

fourth one is from a different country, Russia, and it is taken on 7 July 2010.  

 

Results show that, this algorithm provides a promising performance on WV-2 satellite images 

with an average of 45% precision and 70% recall. The algorithm is also employed with four 

band, RGB and grayscale images.  Overall, it was observed that additional bands returned 

moderately higher performance rates. Each additional band resulted in extraction of more road 

parts, in particular, for the edge based road extraction module.  Moreover, the increasing of the 

number of bands makes the contribution of clustering based module more significant in terms of 

recall value. 

 

These performance values are dependent on the road assumptions. If a road path is not elongated 

enough or it is occluded by some objects, it may not be extracted. These cases specially occur 

for the urban areas since cars and buildings may cast shadows on roads. Moreover, the proposed 

method may have some problems if a road segment is recovered by a new or different material 

than the original, since it violates the uniformity of color or edge gradient.  Another problematic 

case occurs when some trees and branches cover roads, since such parts may be eliminated by 

the vegetation analysis module. Furthermore, the proposed algorithm unintentionally extracts 

runways and taxi routes of airports since they are similar to roads in terms of their spatial and 

spectral characteristics. 

 

Water Canal Extraction 

Water canal extraction algorithm is also important for the transportation analysis. In the 

literature, water regions are extracted only by using band ratio or band thresholding. In our 

study, NDVI, NDWI and NIR bands are employed together and their thresholds are determined 

automatically. Structural analysis is also applied on water extraction module to extract only 
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water canals rather than other type of wetlands like lakes and seas.  Results show that the water 

canal extraction part of the study provides 80% precision and 85% recall. 

 

However, it is important to note that, it is hard to discriminate water and elongated shadow 

regions because of their spatial and spectral similarities. Moreover, in some cases new asphalted 

road parts may be labeled as water or vice versa for the same reasons. 

 

Railroad Classification 

Railroads are another important component of the transportation network, although there are 

very few studies on railroad extraction from remotely sensed data. In this study, we aimed to 

differentiate road and railroad structures. For this purpose, Fourier transform is used since the 

distance between railroad sleepers is constant and they provide extra spectral peaks in the 

frequency domain. This approach has been tested on six different 20 cm resolution Google Earth 

images including both railroad and road structures. The algorithm provides satisfactory 

performance when the railroad sleepers depict good contrast with the background and they are 

not deteriorated.  

 

Road Type Classification 

Road type and material classification is also studied in this thesis. Roads’ cover materials are 

classified as asphalt, unpaved and concrete by using GMM classification. It is important to note 

that this part of the study requires training data and performance of this part is highly dependent 

on the training set. This may cause sensor and region dependency, in the sense that it may limit 

the applicability of the algorithm to images other than WV-2 images.  

 

6.1 Limitations 

Some of the limitations of the proposed method are due to the limited scope of roads definitions.  

Even though the road extraction model includes some contextual information like “vegetative 

fields cannot cover roads” and “water regions cannot be on roads”, other contextual information 

that may improve the performance has not been included.  
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Another limitation is due to the number of bands used in the segmentation module. In order to 

improve the adaptability of this model to other types of multispectral satellite images, an N-Band 

segmentation application is needed, but we used at most 4-bands.  

 

Although the test data set for road extraction model is significantly largers than those used in  

the literature, it would be better to test the method on data obtained from different geographic 

regions at different seasons. These tests might help develop more effective and generalizable 

algorithm, since the spatial and spectral characteristics may change significantly. The test data of 

water extraction method is also limited due to land cover of test images.  

 

More training data set gathered from different locations is required for more accurate road type 

classification. Images that cover the wavelengths beyond 1300 nm are not used in this study but 

they may be useful for classifications. 

 

Lastly, more efficient and reliable evaluation of the model needs more “ground truth” 

information. However this is a very costly and time consuming process.  

 

6.2 Future Works 

The proposed algorithm works both for rural and urban regions but it performs better for rural 

regions. Accordingly, one possible improvement of the model may be to develop a new module 

that focuses particularly on extraction of the narrow roads and city roads.  

 

Construction of a better ontology that includes more contextual information can also contribute 

the proposed model on the problem of developing a line merging method to fill the gaps that are 

caused by shadows or other objects. Such ontology may additionally enable the removal of non-

road objects more efficiently.    

 

New satellite systems have capability to provide stereo images. One possible extension of the 

study may be the adaptation of the model to use stereo images for road extraction. Additionally, 

when the high resolution depth information is available, this feature may also be used to improve 

road extraction performance. These improvements can easily be included to the model due to its 

modular structure that provides flexibility.  
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Aside from road network extraction, water canals and railroads are also studied in this thesis. 

These applications are the first step for the development of new methods for extraction of some 

important structures, such as bridges and junctions. This thesis lays the foundation to detect such 

features since it enables the extraction of intersections of different transportation infrastructures.  

 

Based on the proposed model, the possibility of obtaining seed points automatically to be used in 

the road tracking methods can be investigated. Such an improvement will be also beneficial in 

the water canal and railroad extraction.  

 

The railroad algorithm developed in this study is specifically for the higher resolution images. 

However, development of other methods that are applicable to lower resolution images may be 

valuable, because of the scarcity of the high resolution images.  

 

One important contribution of this study to the current literature is the inclusion of a technique 

for the discrimination of different road types, since – to our knowledge -- none of the previously 

proposed methods aim to solve this problem. As a classification problem, the full-fledged 

solution of this discrimination is beyond the scope of this thesis. 
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APPENDICIES 

APPENDIX A: ALL ROAD EXTRACTION RESULTS 

    
WorldView-2 Four Band RGB Gray 

Figure 110All results of Cankaya-1 Image 
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WorldView-2 Four Band RGB Gray 

Figure 111 All results of Cankaya-2 Image 
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Worldview-2 Four Band 

  
RGB Gray 

Figure 112 All results of Yeni Mahalle-1Image 
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Worldview-2 Four Band 

  
RGB Gray 

Figure 113 All results of Yeni Mahalle-2 Image 
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WorldView-2 Four Band 

  

RGB Gray 
Figure 114 All results of METU (1) 
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WorldView-2 Four Band 

  

RGB Gray 
Figure 115 All results of METU (2) 
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WorldView-2 Four Band 

  

RGB Gray 
Figure 116 All results of METU (3) 
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WorldView-2 Four Band 

  

RGB Gray 
Figure 117 All results of METU (4) 
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WorldView-2 Four Band 

  

RGB Gray 
Figure 118 All results of METU (5) 
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WorldView-2 Four Band 

  

RGB Gray 

Figure 119 All results of METU (6) 
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APPENDIX B: STRUCTURE BASED ANALYSIS 

PERFORMANCES OF ALL BAND COMBINATION   

Four Band Combinations 

Band1 Band2 Band3 Band4 Recall Precision F0.5 F1 F2 

Red Red Edge NIR1 NIR2 0,44 0,51 0,49 0,47 0,45 

Yellow Red Edge NIR1 NIR2 0,47 0,49 0,48 0,48 0,48 

Yellow Red NIR1 NIR2 0,49 0,51 0,51 0,50 0,50 

Yellow Red Red Edge NIR2 0,45 0,47 0,46 0,46 0,45 

Yellow Red Red Edge NIR1 0,47 0,46 0,46 0,47 0,47 

Green Red Edge NIR1 NIR2 0,44 0,46 0,45 0,45 0,45 

Green Red NIR1 NIR2 0,50 0,46 0,47 0,48 0,49 

Green Red Red Edge NIR2 0,51 0,50 0,50 0,50 0,51 

Green Red Red Edge NIR1 0,47 0,45 0,45 0,46 0,46 

Green Yellow NIR1 NIR2 0,42 0,47 0,46 0,44 0,43 

Green Yellow Red Edge NIR2 0,47 0,47 0,47 0,47 0,47 

Green Yellow Red Edge NIR1 0,46 0,47 0,47 0,47 0,46 

Green Yellow Red NIR2 0,46 0,48 0,48 0,47 0,46 

Green Yellow Red NIR1 0,46 0,49 0,49 0,48 0,47 

Green Yellow Red Red Edge 0,42 0,45 0,44 0,43 0,43 

Blue Red Edge NIR1 NIR2 0,43 0,50 0,49 0,46 0,44 

Blue Red NIR1 NIR2 0,45 0,46 0,46 0,45 0,45 

Blue Red Red Edge NIR2 0,51 0,47 0,47 0,49 0,50 

Blue Red Red Edge NIR1 0,48 0,48 0,48 0,48 0,48 

Blue Yellow NIR1 NIR2 0,41 0,50 0,48 0,45 0,42 

Blue Yellow Red Edge NIR2 0,48 0,50 0,50 0,49 0,49 

Blue Yellow Red Edge NIR1 0,46 0,50 0,49 0,48 0,46 

Blue Yellow Red NIR2 0,51 0,46 0,47 0,48 0,50 

Blue Yellow Red NIR1 0,52 0,50 0,50 0,51 0,51 

Blue Yellow Red Red Edge 0,53 0,51 0,51 0,52 0,53 

Blue Green NIR1 NIR2 0,50 0,49 0,50 0,50 0,50 

Blue Green Red Edge NIR2 0,46 0,45 0,45 0,46 0,46 

Blue Green Red Edge NIR1 0,45 0,49 0,48 0,47 0,46 

Blue Green Red NIR2 0,51 0,47 0,48 0,49 0,50 

Blue Green Red NIR1 0,48 0,47 0,47 0,47 0,48 
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Blue Green Red Red Edge 0,44 0,51 0,49 0,47 0,45 

Blue Green Yellow NIR2 0,44 0,47 0,46 0,45 0,45 

Blue Green Yellow NIR1 0,47 0,46 0,46 0,46 0,47 

Blue Green Yellow Red Edge 0,49 0,50 0,50 0,49 0,49 

Blue Green Yellow Red 0,44 0,44 0,44 0,44 0,44 

Coastal Red Edge NIR1 NIR2 0,46 0,51 0,50 0,48 0,47 

Coastal Red NIR1 NIR2 0,49 0,52 0,51 0,50 0,50 

Coastal Red Red Edge NIR2 0,48 0,47 0,47 0,47 0,48 

Coastal Red Red Edge NIR1 0,43 0,47 0,46 0,45 0,44 

Coastal Yellow NIR1 NIR2 0,43 0,57 0,53 0,49 0,45 

Coastal Yellow Red Edge NIR2 0,43 0,48 0,47 0,46 0,44 

Coastal Yellow Red Edge NIR1 0,44 0,48 0,47 0,46 0,45 

Coastal Yellow Red NIR2 0,46 0,47 0,46 0,46 0,46 

Coastal Yellow Red NIR1 0,49 0,51 0,50 0,50 0,49 

Coastal Yellow Red Red Edge 0,50 0,47 0,47 0,48 0,49 

Coastal Green NIR1 NIR2 0,44 0,48 0,47 0,46 0,45 

Coastal Green Red Edge NIR2 0,47 0,49 0,49 0,48 0,48 

Coastal Green Red Edge NIR1 0,48 0,45 0,45 0,46 0,47 

Coastal Green Red NIR2 0,45 0,48 0,47 0,46 0,46 

Coastal Green Red NIR1 0,52 0,52 0,52 0,52 0,52 

Coastal Green Red Red Edge 0,51 0,47 0,47 0,49 0,50 

Coastal Green Yellow NIR2 0,45 0,51 0,50 0,48 0,46 

Coastal Green Yellow NIR1 0,47 0,47 0,47 0,47 0,47 

Coastal Green Yellow Red Edge 0,49 0,51 0,50 0,50 0,50 

Coastal Green Yellow Red 0,46 0,46 0,46 0,46 0,46 

Coastal Blue NIR1 NIR2 0,48 0,52 0,51 0,50 0,49 

Coastal Blue Red Edge NIR2 0,47 0,46 0,46 0,47 0,47 

Coastal Blue Red Edge NIR1 0,45 0,48 0,48 0,47 0,46 

Coastal Blue Red NIR2 0,53 0,50 0,51 0,51 0,52 

Coastal Blue Red NIR1 0,46 0,52 0,51 0,49 0,47 

Coastal Blue Red Red Edge 0,42 0,48 0,47 0,45 0,43 

Coastal Blue Yellow NIR2 0,44 0,47 0,46 0,46 0,45 

Coastal Blue Yellow NIR1 0,46 0,54 0,53 0,50 0,48 

Coastal Blue Yellow Red Edge 0,52 0,49 0,50 0,51 0,52 

Coastal Blue Yellow Red 0,48 0,50 0,49 0,49 0,48 

Coastal Blue Green NIR2 0,49 0,46 0,47 0,47 0,48 

Coastal Blue Green NIR1 0,47 0,49 0,48 0,48 0,47 



164 

 

Coastal Blue Green Red Edge 0,50 0,49 0,49 0,49 0,50 

Coastal Blue Green Red 0,49 0,49 0,49 0,49 0,49 

Coastal Blue Green Yellow 0,44 0,47 0,46 0,45 0,44 

Avarege 0,47 0,48 0,48 0,48 0,47 

 

Three Bands 

Band1 Band2 Band3 Recall Precision F0.5 F1 F2 

Coastal Blue Green 0,53 0,47 0,48 0,50 0,52 

Coastal Blue Yellow 0,52 0,50 0,50 0,51 0,51 

Coastal Blue Red 0,50 0,45 0,46 0,48 0,49 

Coastal Blue Red Edge 0,50 0,50 0,50 0,50 0,50 

Coastal Blue NIR1 0,50 0,48 0,49 0,49 0,50 

Coastal Blue NIR2 0,50 0,50 0,50 0,50 0,50 

Coastal Green Yellow 0,50 0,48 0,48 0,49 0,50 

Coastal Green Red 0,50 0,50 0,50 0,50 0,50 

Coastal Green Red Edge 0,49 0,47 0,47 0,48 0,49 

Coastal Green NIR1 0,49 0,56 0,54 0,52 0,50 

Coastal Green NIR2 0,49 0,51 0,51 0,50 0,49 

Coastal Yellow Red 0,49 0,45 0,45 0,47 0,48 

Coastal Yellow Red Edge 0,48 0,51 0,51 0,50 0,49 

Coastal Yellow NIR1 0,48 0,46 0,47 0,47 0,48 

Coastal Yellow NIR2 0,48 0,47 0,47 0,48 0,48 

Coastal Red Red Edge 0,48 0,44 0,44 0,46 0,47 

Coastal Red NIR1 0,48 0,49 0,48 0,48 0,48 

Coastal Red NIR2 0,48 0,50 0,49 0,49 0,48 

Coastal Red Edge NIR1 0,47 0,45 0,46 0,46 0,47 

Coastal Red Edge NIR2 0,47 0,46 0,46 0,46 0,47 

Coastal NIR1 NIR2 0,47 0,49 0,49 0,48 0,48 

Blue Green Yellow 0,47 0,47 0,47 0,47 0,47 

Blue Green Red 0,47 0,47 0,47 0,47 0,47 

Blue Green Red Edge 0,47 0,51 0,50 0,48 0,47 

Blue Green NIR1 0,46 0,50 0,49 0,48 0,47 

Blue Green NIR2 0,46 0,52 0,51 0,49 0,47 

Blue Yellow Red 0,46 0,49 0,48 0,48 0,47 

Blue Yellow Red Edge 0,46 0,52 0,50 0,49 0,47 

Blue Yellow NIR1 0,46 0,50 0,49 0,48 0,47 

Blue Yellow NIR2 0,46 0,48 0,48 0,47 0,47 

Blue Red Red Edge 0,46 0,45 0,45 0,45 0,46 
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Blue Red NIR1 0,46 0,46 0,46 0,46 0,46 

Blue Red NIR2 0,46 0,46 0,46 0,46 0,46 

Blue Red Edge NIR1 0,46 0,45 0,45 0,45 0,46 

Blue Red Edge NIR2 0,45 0,48 0,47 0,47 0,46 

Blue NIR1 NIR2 0,45 0,48 0,48 0,47 0,46 

Green NIR1 NIR2 0,44 0,48 0,47 0,46 0,45 

Green Red Edge NIR2 0,44 0,48 0,48 0,46 0,45 

Green Red Edge NIR1 0,44 0,51 0,49 0,47 0,45 

Green Red NIR2 0,44 0,48 0,47 0,46 0,45 

Green Red NIR1 0,44 0,48 0,47 0,46 0,45 

Green Red Red Edge 0,44 0,49 0,48 0,47 0,45 

Green Yellow NIR2 0,44 0,47 0,46 0,45 0,44 

Green Yellow NIR1 0,44 0,45 0,45 0,45 0,44 

Green Yellow Red Edge 0,44 0,48 0,47 0,46 0,44 

Green Yellow Red 0,43 0,44 0,44 0,43 0,43 

Yellow NIR1 NIR2 0,43 0,50 0,49 0,46 0,44 

Yellow Red Edge NIR2 0,43 0,46 0,45 0,44 0,43 

Yellow Red Edge NIR1 0,43 0,47 0,46 0,45 0,43 

Yellow Red NIR2 0,42 0,48 0,47 0,45 0,43 

Yellow Red NIR1 0,42 0,46 0,45 0,44 0,43 

Yellow Red Red Edge 0,41 0,41 0,41 0,41 0,41 

Red Red Edge NIR1 0,41 0,43 0,43 0,42 0,41 

Red Red Edge NIR2 0,40 0,47 0,46 0,44 0,42 

Red NIR1 NIR2 0,39 0,44 0,43 0,41 0,40 

Red 
Edge 

NIR1 NIR2 
0,36 0,48 0,45 0,41 0,38 

  Average 0,46 0,47 0,47 0,46 0,46 

 

One Band 

Band Recall Precision F 0.5 F1 F2 

Coastal 0,382596 0,486863 0,461698 0,428478 0,399717 

Blue 0,442923 0,425185 0,428618 0,433873 0,439258 

Green 0,43242 0,423312 0,425103 0,427818 0,430567 

Yellow 0,402127 0,411211 0,409361 0,406618 0,403911 

Red 0,410872 0,419455 0,41771 0,415119 0,41256 

Red Edge 0,356751 0,491179 0,456757 0,413309 0,37741 

NIR1 0,379385 0,458114 0,439858 0,415049 0,392889 

NIR2 0,343178 0,474091 0,440485 0,39815 0,363239 

Average 0,393782 0,448676 0,434949 0,417302 0,402444 
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APPENDIX C: WATER BODY EXTRACTION 

RESULTS  

    
a) RGB b) NDWI c) NDWI Mask d) NDVI  
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e) NDVI Mask 

(with NIR2) 

f) NIR2  g) NIR2 Maks h) Result 

Figure 120 Water extraction for Eymir 

 

    
a) RGB b) NDWI c) NDWI Mask d) NDVI  

    
e) NDVI Mask 

(with NIR2) 

f) NIR2  g) NIR2 Maks h) Result 

Figure 121 Water Extraction result for METU 
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a) RGB b) NDWI c) NDWI Mask d) NDVI  

    
e) NDVI Mask 

(with NIR2) 

f) NIR2  g) NIR2 Maks h) Result 

Figure 122 Water extraction result for east of Ankara 
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APPENDIX D: WATER CANAL EXTRACTION RESULTS  

 

    

a) RGB b) NDWI c) NDWI Mask d) NDVI  

    

e) NDVI Mask (with NIR2) f) NIR2  g) NIR2  h) Result 

Figure 123 Water extraction for Yenimahalle  
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APPENDIX E: PARAMETERS USED IN THE STUDY  

 Module Parameter 
Default 

Value 

Edge Based Road Detection 

Maximum Width 40 

Minimum Width 4 

Minimum Length 80 

Structure Analysis Based Road Detection 

Minimum Region Area 380 

Range Bandwidth 8 

Spatial Bandwidth 4 

Eccentricity 0,99 

Elongatedness 30 

Segment Area 30 

Clustering Based Road Detection 

K value 6 

Elongatedness 30 

Area 30 

Score Map 
Maximum Region Area 20 

Score Map Threshold 15 

Structure Analysis Based Non-Road 

Minimum Region Area 750 

Range Bandwidth 2 

Spatial Bandwidth 2 

Minimum Segment Width 30 

Minimum Segment Area 500 

Water Extraction Min Area 2000 

Vegetation NDVI Threshold 0,1 
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APPENDIX F: THE ROLE OF SPECTRAL BAND OF WV-2 

 

 

(http://worldview2.digitalglobe.com/docs/WorldView-2_8-Band_Applications_Whitepaper.pdf) 

http://worldview2.digitalglobe.com/docs/WorldView-2_8-Band_Applications_Whitepaper.pdf
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