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ABSTRACT

DESIGN OF MOVING TARGET INDICATION FILTERS WITH NON-UNIFORM PULSE
REPETITION INTERVALS

İspir, Mehmet

M.Sc., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Çağatay Candan

January 2013, 102 pages

Staggering the pulse repetititon intervals is a widely used solution to alleviate the blind speed
problem in Moving Target Indication (MTI) radar systems. It is possible to increase the first
blind speed on the order of ten folds with the use of non-uniform sampling. Improvement in
blind speed results in passband fluctuations that may degregade the detection performance
for particular Doppler frequencies. Therefore, it is important to design MTI filters with
non-uniform interpulse periods that have minimum passband ripples with sufficient clutter
attenuation along with good range and blind velocity performance.

In this thesis work, the design of MTI filters with non-uniform interpulse periods is studied
through the least square, convex and min-max filter design methodologies. A trade-off between
the contradictory objectives of maximum clutter suppression and minimum desired signal
attenuation is established by the introduction of a weight factor into the designs. The weight
factor enables the adaptation of MTI filter to different operational scenarios such as the
operation under low, medium or high clutter power.

The performances of the studied designs are investigated by comparing the frequency response
characteristics and the average signal-to-clutter suppression capabilities of the filters with re-
spect to a number of defined performance measures. Two further approaches are considered to
increase the signal-to-clutter suppression performance. First approach is based on a modified
min-max filter design whereas the second one focuses on the multiple filter implementations.
In addition, a detailed review and performance comparison with the non-uniform MTI filter
designs from the literature are also given.
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ÖZ

DÜZENSİZ DARBE TEKRARLAMA ARALIKLARINA SAHİP HAREKETLİ HEDEF
BELİRTİSİ SÜZGEÇLERİ TASARIMI

İspir, Mehmet

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Çağatay Candan

Ocak 2013, 102 sayfa

Darbe tekrarlama aralıklarını değiştirmek, Hareketli Hedef Belirtisi (MTI) radar sistemlerinde
kör hız problemini azaltmak için yaygın olarak kullanılan bir çözümdür. Düzgün olmayan
örnekleme ile ilk kör hızın yaklaşık olarak on kat artırılması mümkündür. Kör hızdaki iyileşme,
belirli Doppler frekanslarındaki tespit performansını azaltabilecek geçirme kuşağı salınımlarına
neden olmaktadır. Bu nedenle en küçük geçirme kuşağı dalgalanmasına sahip ve yeterli kargaşa
bastırımının yanında, iyi mesafe ve kör hız performansı olan, değişken aralıklı MTI süzgeç
tasarımı önemlidir.

Bu tez çalışmasında, değişken aralıklı MTI süzgeç tasarımı en küçük kareler, konveks ve en
küçük-en büyük süzgeç tasarımı metodolojileri kullanılarak çalışılmıştır. Tasarımlara ağırlık
faktörü eklenmesi ile, çakışan en büyük kargaşa bastırımı ve en küçük istenen sinyal bastırımı
amaçları arasında ilişki oluşturulmuştur. Ağırlık faktörü MTI süzgecinin düşük, orta ve yüksek
güçlü kargaşa ortamlarında işleyiş gibi farklı operasyonel senaryolara adaptasyonuna olanak
sağlamaktadır.

Çalışılan tasarımların performansları, süzgeçlerin frekans cevap karakteristikleri ve ortalama
sinyal-kargaşa bastırımı yetenekleri tanımlanan birkaç performans ölçütüne göre karşılaştırılarak
incelenmiştir. Sinyal-kargaşa bastırımını artırmak için ilaveten iki yaklaşım değerlendirilmiştir.
İlk yaklaşım değiştirilmiş en küçük-en büyük süzgeç tasarımına dayanmakta iken, ikincisi
ise önerilen süzgeç tasarımlarının çoklu süzgeçler olarak uygulamasına odaklanmaktadır. Ek
olarak, literatürdeki düzensiz MTI süzgeç tasarımları ile de detaylı bir gözden geçirme ve
performans karşılaştırması verilmiştir.
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CHAPTER 1

INTRODUCTION

Detection of moving targets in strong clutter has been one of the most important tasks of the
radar systems throughout the history. Through the evolution of radar systems a number of
techniques and methods are developed in order to increase the target detection capability of
the radar systems in strong clutter. One of the basic methods is the usage of Moving Target
Indication (MTI) signal processor. As the name implies, it is used to indicate the presence of
moving targets in heavy clutter by discriminating the component of the return echo due to
moving targets from stationary background.

First MTI designs were based on the analog delay line cancellers, which are used for cancelling
stationary clutter by subtracting the successive returns in order to improve the detection of
the target component. With the introduction of digital systems, digital filters are developed
and improvements in performance have been attained.

Design of the MTI processor is mainly based on the design of filter structure for clutter attenu-
ation. For stationary clutter attenuation, simple highpass filters provide sufficient attenuation,
whereas higher order filters can be required to sufficiently attenuate clutter with significant
Doppler spread.

Digital implementation of the MTI signal processor filter has a periodic characteristic due to
uniform sampling with constant pulse repetition frequency (PRF). Because of the periodic
nature, the moving targets having Doppler frequencies which are integer multiples of PRF
are cancelled by the MTI filter along with the background clutter. Therefore, these moving
targets are not seen by the radar. Velocities that correspond to the undetected frequencies are
called blind speeds [4]. There are different approaches for the solution of this problem in the
literature. One of them is staggering the interpulse durations, that is the usage of different
interpulse periods instead of a single one [5].

The usage of staggered interpulse durations improves the blind speed performance in MTI
radars. It should be noted that the improvement in blind speed comes at almost no additional
computational cost. An important disadvantage of non-uniform sampling is the passband rip-
ples which are much larger in comparison to uniform PRI systems. Due to these ripples, the
fluctuations of signal power at the MTI filter output may degrade the detection performance
for particular Doppler frequencies. Therefore, it is important to design MTI filters by consid-
ering the detection probability and performance of the radar system for the specific Doppler
frequencies.

Design of staggered MTI filters depends upon the radar system parameters that are related
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to the detection probability and clutter attenuation. Based upon these parameters, staggered
MTI filter design comprises on the optimization of two sets of parameters: the interpulse
time durations and the filter coefficients. The unambiguous range and velocity specifications
impose constraints on the interpulse periods. The desired clutter attenuation affects the values
of filter coefficients [6].

Our goal in this thesis is to apply classical uniform filter design techniques and present flexible
solution to the non-uniform MTI filter design for a given set of interpulse durations. Designed
filters can be adopted to different scenarios having different clutter attenuation and Doppler
frequency band of interest specifications. The presented designs provide the opportunity for
the selection of the best interpulse periods from a set of suitable candidates by satisfying the
unambiguous range-velocity constraints.

In the present work, we study three widely adopted FIR filter design techniques, the least
square, convex and min-max filter design. The systematic design of each approach is described.
A number of performance measures are defined and comparison between different filters is
given for the various scenarios. Obtained results indicate that it is possible to design non-
uniform filters according to different cutoff frequencies and clutter attenuation values. One can
optimize the filter response by defining the clutter attenuation, cutoff frequency and interested
Doppler frequency band and selecting a suitable weight factor.

A possible novelty of the present work is the design of a min-max MTI filter based upon im-
provement factor of the optimum filter. This design technique is different from the previously
stated min-max filter design and uses the information of improvement factor of optimum filter
response for a specified clutter power spectrum density.

Throughout the thesis work, a literature survey related to design of staggered MTI filters
is given and a detailed description of the mentioned filter design approaches are presented
with specific algorithm steps and performance comparisons for several parameters. Available
designs in the literature are implemented and numerical comparisons with these are given.

The organization of thesis is as follows: In Chapter 2, the background information related
to MTI filter is given. Different configurations of the MTI filters are given along with their
frequency response characteristics. The blind speed problem is explained and the staggered
PRF MTI filter solution is given.

In Chapter 3, the design of three different types of non-recursive staggered PRF MTI filters
are given. First, the properties and design constraints of the non-uniform FIR filter design
are explained. Later, three types of design approaches are presented in relation with the non-
uniform FIR filter design. Finally a numerical comparison between previously designed filters
are made.

In Chapter 4, the clutter attenuation is taken into account for the designed filters. First,
the definition and the properties of clutter are presented. The effect of clutter on the earlier
designs are discussed and the results are compared with respect to a number of figures of merits.
Later, a novel min-max filter design approach is explained based upon the improvement factor
of optimum filter. Finally, the multiple filter approach is described with time varying filter
coefficients.

In Chapter 5, the simulation results of the designed filters with the designs in the literature are
given. For each design in the literature, the design approach is explained with examples and

2



comparisons of the designed filters with respect to performance measures and improvement
factor are given.

In Chapter 6, concluding remarks are presented, obtained results are summarized and the
related future work is described.
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CHAPTER 2

BACKGROUND

2.1 Moving Target Indication (MTI) Radar

It is difficult to distinguish a moving target in the presence of ground-clutter or sea-clutter
environment due to strong clutter echos. Detection of moving targets in these conditions is
performed using Moving Target Indication (MTI) radar. The MTI radar is a type of pulse
radar that uses the non-zero Doppler shift of moving targets for their detection [5] by cancelling
the stationary background clutter.

There are different types of MTI Radars classified according to operation modes, environments
and used signal processing algorithms. Coherent MTI Radar is the type in which a moving
target is detected as a result of pulse-to-pulse change in echo phase relative to the phase of a
coherent reference oscillator [7]. In other words, it is a system that uses the phase difference
resulting from Doppler effect to separate the moving targets from stationary background
clutter. Pulses are transmitted and received echos are compared with the signal produced
by the coherent reference oscillator. Due to Doppler shift, moving target component of the
received echo has a phase difference in comparison to the reference oscillator signal and can
be discriminated from clutter.

Another type of MTI radar that uses the clutter echo as the reference signal to discriminate
the Doppler-shifted information of target echo is known as Non-Coherent MTI or externally
Coherent MTI [5]. This type of MTI is simpler than coherent MTI; but it requires the presence
of clutter for detecting the moving targets. Due to clutter dependence, Non-Coherent MTI
implemented as a mode and can be switched on or off depending on the presence or absence
of strong clutter reference. [5].

MTI Radars used in airborne applications named as Airborne MTI or AMTI. Operation
principle of this type is similar to the Coherent MTI ; however, compensation for the moving
radar platform is necessary. The Doppler shift of the received echos change depending on the
relative motion of the moving radar platform and target. After the compensation of relative
motion between platforms, moving targets can be detected by suppressing the stationary
clutter.

Adaptive MTI Radar is another type of MTI radar that adapts itself to the clutter. According
to change in clutter characteristics, the coefficients of the MTI filter are changed on time
basis. Adaptation to the clutter can be achieved by different estimation techniques for clutter
covariance matrix [8].
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Different from other MTI techniques, Area MTI radar does not use Doppler shift directly and
compares the envelope-detected outputs of successive scans to detect the targets that move in
range or azimuth between scans [5].

2.1.1 Operation of a Coherent MTI Radar

The operation of a Coherent MTI Radar is based upon discrimination of the radar return by
comparing the phases of all echoes with reference (coherent) phase. Simplified structure of a
Coherent MTI Radar is illustrated in Figure 2.1.

ii

Delay
T

∑

−

+

MTI FILTER

×

PHASE DETECTOR

RF OSCILLATOR

Bipolar Video

TRANSMITTERDUPLEXER

ANTENNA

MOVING TARGET

Figure 2.1: Simplified Block Diagram of A Coherent MTI System [2]

Here RF oscillator is used in the transmitter and also as reference for the received echos for
phase comparison [2]. Duplexer is used for switching between transmission and reception
operations. A radar return usually contains two components; target component and clutter
component [9]. Clutter component signal arises due to stationary background objects and has
much stronger than the target component signal, in general. Discrimination of the target and
clutter components made by comparing successive received echos in terms of phase properties
and filtering the stationary background clutter. The phase change due to target motion results
in a component changing from pulse to pulse, whereas the clutter component stays the same.
This provides a way to discriminate the clutter and target components by evaluating the phases
of successive return echos. Phase comparison is implemented by delaying the previous echo
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and subtracting from the current one. In frequency domain, the operation of the MTI filter
corresponds to the attenuation of frequencies associated with the clutter spectrum without
a significant (hopefully) reduction of the Doppler frequencies of moving targets. This shows
that MTI filter is a highpass filter.

Figure 2.2 shows the operation of MTI. An examination of Figure 2.2 reveals that the magni-
tude response of the received echos stays same from pulse to pulse mostly. By looking at the
successively received returns, it is not easy to extract the moving targets components from
clutter component. However it is seen that, by subtracting the successive returns with MTI
filter, the moving target component can be easily differentiated from the clutter. This result
can be seen from the last sub plot given in Figure 2.2.
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Figure 2.2: MTI Processing of Received Echos from Successive Transmitted Pulses

2.2 MTI Filtering

Different types of MTI filters are developed and have been used through the radar history.
These filters are designed according to hardware specifications and the operation constraints
of the radar system. A typical MTI filter has a highpass filter characteristics that is designed
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for rejecting zero or small Doppler frequencies and passing higher frequencies corresponding
to the moving targets. MTI filters can be classified in three main categories as follows.

2.2.1 Delay Line Cancellers

The delay line canceller is an analog technique used in the first MTI signal processor design.
The operation is based on subtracting two consecutive radar returns. The structure of single
delay line canceller can be given in Figure 2.3.

x(t) ii y(t)

Delay
T

∑

−

+

Figure 2.3: Filter Structure of the Single Delay Line Canceller

Time domain difference equation of the single delay line canceller with pulse repetition interval
(PRI) T is given in (2.1)

y(t) = x(t)− x(t− T ) (2.1)

The frequency response characteristics of the single delay line canceller can be written by
taking the Fourier Transform (F) of the time domain difference equation as in (2.2)

F{y(t)} = F{x(t)− x(t− T )}
Y (f) = X(f)(1− e−j2πfT )

Hsdlc(f) =
Y (f)

X(f)
= e−j2πfT/2(ej2πfT/2 − e−j2πfT/2)

= 2j sin(2πfT/2)e−j2πfT/2

= 2j sin(πfT )e−jπfT (2.2)

The magnitude of the frequency response of the single delay line canceller with the pulse
repetition interval of T is given in (2.3) and plotted in Figure 2.4.

|Hsdlc| = 2 sin (πfT ) (2.3)

Single delay line canceller rejects the stationary clutter which has zero Doppler shift. When
the clutter has spread in the spectrum, then the performance of the single delay line canceller
decreases and the clutter residue resides at the filter output, especially at small Doppler
frequencies. When slow moving targets are present, then the detection performance of these
targets are affected by the clutter residue. In other words, insufficient clutter attenuation
decreases the performance of the single delay line canceller. Due to this reason, the single
delay line canceller is not sufficient for the rejection of clutter with large spread in spectrum.
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Figure 2.4: Magnitude Response of Single Delay Line Canceller

As a solution to this problem, the usage of cascaded single delay line cancellers are proposed.
By cascading two single delay line cancellers the double delay line canceller is formed. Figure
2.5 shows the filter structure of the double delay line canceller.

x(t) ii

Delay
T

∑

−

+

Delay
T

∑

−

+

y(t)ii

Figure 2.5: Filter Structure of the Double Delay Line Canceller

The magnitude response of the double delay line canceller can be calculated using the single
delay line canceller response as in (2.4) and pointed out in Figure 2.6 together with the single
delay line canceller magnitude response for the purpose of comparison.

|Hddlc(f)| = |Hsdlc(f)|2 = (2|sin(πfT )|)2 = 4 sin (πfT )
2 (2.4)

As seen from Figure 2.6, the double delay line canceller performance is greater in terms of the
attenuation of non-zero spread clutter spectrum. By increasing the number of cascaded single
delay line cancellers, an improved response in terms of attenuating finite width clutter can be
obtained. Figure 2.7 indicates the response of cascaded single cancellers. The responses of the
cascaded single cancellers can be calculated by taking the Nth power of the single delay line
canceller response as in (2.5). Here N represents the number of single delay line cancellers
that are cascaded.

|HNdlc(f)| = (2|sin(πfT )|)N (2.5)
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Figure 2.6: Magnitude Response Comparison of Single and Double Delay Line Cancellers
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Figure 2.7: Magnitude Response Comparison of Cascaded Single Delay Line Cancellers

2.2.2 FIR Type MTI Filters

Finite-Impulse-Response (FIR) filters can be used for MTI processing if the filter weights are
chosen in order to obtain a highpass filter characteristics. General structure of the FIR filters
for uniform pulse repetition interval are given in Figure 2.8.

One of the simplest and widely used uniform FIR type MTI filter is the Binomial MTI filter
whose coefficients are formed by binomial numbers. This method corresponds to the cascade
of single delay line cancellers. As an example, the double delay line canceller can be arranged
as FIR type in Figure 2.9.

These cascade arrangements of the single delay line cancellers as transversal filter structure is
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∑
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Figure 2.8: General Structure of a Uniform FIR Filter

called as N-pulse cancellers since N pulse is processed for N − 1 cascaded single cancellers.
For example, a double delay line canceller named as 3-pulse canceller can be represented as
an FIR filter as in Figure 2.9.

x(t)
Delay
T

Delay
T

1 × −2 × 1 ×

∑

y(t)

Figure 2.9: Double Delay Line Canceller Representation as a Transversal Filter Structure

For cascaded single delay line cancellers, z-transform of the time domain difference equation
can be written as

HNdlc(z) = (1− z−1)N (2.6)

If the equation (2.6) is expanded, the coefficients are the binomial numbers with alternating
signs. Corresponding filter weights of the N-pulse cancellers can be calculated using the
following equation:

wi = (−1)i−1
N !

(N − i+ 1)!(i− 1)!
, i = 1, 2, . . . , N + 1 (2.7)

For the first 5-pulse canceller structures, filter weights are given in Table 2.1. Usage of the
binomial coefficients lead to naming of N-pulse Cancellers asMTI Filter with Binomial Weights
in the literature.
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Table 2.1: Filter Weights for First 5 N-pulse Cancellers

N-pulse Canceller Filter Weights

2-pulse [1,-1]

3-pulse [1,-2,1]

4-pulse [1,-3,3,-1]

5-pulse [1,-4,6,-4,1]

Besides Binomial MTI filter, different techniques and designs are proposed in the literature
for adjusting the coefficients of the FIR type MTI filters [10], [6], [11]. Most of the studies seek
the optimum MTI filter for clutter rejection and propose different optimization techniques like
quadratic programming for calculating the filter weights [10]. The constraints of these designs
are based on minimization of output clutter and attenuation of stationary clutter.

2.2.3 Recursive MTI Filters

Recursive filters are also used as an MTI signal processor. They are utilized to shape the
stopband response. Recursive filters have the feedback coefficients and feedforward coefficients.
An example direct-form structure is given in Figure 2.10. Using recursive filters, stopband
of the filter can be shaped more easily due to additional degrees of freedom that comes from
feedback coefficients. However, these filters have poor transient response. This type of filters
can be designed using classical z-transform theory and pole-zero analysis [3], [12]. Z-domain
transfer function of a recursive filter is given in (2.8). As an example, magnitude responses of
three different shaped MTI filters are given in Figure 2.11.

H(z) =
β0 + β1z

−1 + β2z
−2 + . . .+ βMz

−M

1 + α1z−1 + α2z−1 + . . .+ αNz−N
(2.8)

After the examination of three types of MTI filters, we present the design criteria for the MTI
filters. There are different figures of merit for the performance comparison of the MTI filters.
These are stated as MTI Improvement Factor, subclutter visibility, MTI gain, MTI response,
clutter attenuation, clutter visibility factor and cancellation ratio in [4]. The most commonly
used and accepted measure is the MTI Improvement factor whose definition includes the effect
of clutter attenuation and MTI gain.

2.3 MTI Improvement Factor

MTI Improvement Factor is a performance measure for the clutter attenuation. It is defined
as “the signal-to-clutter power ratio at the output of the MTI filter to the signal-to-clutter
power ratio at the input, averaged uniformly over all target velocities of interest.” [7]. It can
be expressed as
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Figure 2.10: IIR Filter Structure

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2
Magnitude Response

Frequency - Hz

N
or
m
al
iz
ed

M
ag
ni
tu
de

Butterworth
Triple Binomial
Chebyshev

Figure 2.11: Magnitude Response of Different Types of Shaped MTI Filters [3]

Improvement Factor = IF =
(SCR)out
(SCR)in

(2.9)

where SCRout and SCRin represent average signal-to-clutter ratio at the output and input of
the MTI filter respectively. Improvement factor can be thought of average SCR improvement
of the MTI filter, not at a particular frequency. The improvement factor can be further
described as follows. If the received signal is
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r = s(θ) + c (2.10)

where r, s(θ) and c are N × 1 column vectors that represent the received signal, clutter
component and signal component of the received echo respectively. θ is phase change in PRI
seconds corresponding to Doppler effect. Average power at the input can be written as the
addition of signal and clutter power if the signal and clutter are assumed to be zero mean and
uncorrelated. It is given by

Pi = E{||s(θ) + c||2}
= E{s(θ)Hs(θ)}+ E{cHc} (2.11)

where the first and second terms represent signal and clutter powers at the input respectively.

After filtering the input signal with an FIR MTI filter with N × 1 coefficient vector α, power
of the filtered signal can be written as follows:

Po = E{||αH [s(θ) + c]||2}
= E{αHs(θ)sH(θ)α}+ E{αHccHα} (2.12)

Similar to the input power case, the first and second terms represent the signal and clutter
powers at the output of the MTI filter respectively.

Using (2.11) and (2.12), SCRin and SCRout can be written as follows

SCRout =
E{αHs(θ)sH(θ)α}

E{αHccHα} (2.13)

SCRin =
E{s(θ)Hs(θ)}

E{cHc} (2.14)

By putting SCR equations in (2.9), improvement factor can be rewritten as in (2.15)

IF (θ) =
E{αHs(θ)sH(θ)α}

E{s(θ)Hs(θ)}
× E{cHc}

E{αHccHα}

=
αHRsα

αHRcα
(2.15)

where Rc and Rs are normalized clutter and signal covariance matrices respectively.

By using the obtained improvement factor equation, MTI improvement factor for the coherent
MTI case with FIR type filter can be expressed as in (2.16) by assuming uniform distribution
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for Doppler frequencies of the signal.

IF =

∫ 2π

0

IF (θ)dθ =

N−1∑

j=0

α2
j

N−1∑

j=0

N−1∑

k=0

αjαkρ(j, k)

(2.16)

where αj , αk’s are the MTI’s real weights, ρ(j, k) is the correlation coefficient of clutter returns
between the j’th and k’th pulses. and N is the number of pulses processed by the MTI.

As seen from the improvement factor relation, the improvement factor depends upon filter
coefficients and clutter covariance matrix. Hsiao [13] shows that optimal MTI filter depends
upon clutter covariance matrix and weights of the optimal MTI are given by the elements of
the eigenvector that corresponds to the minimum eigenvalue of the clutter covariance matrix.

2.4 Blind Speed Problem

One of the main disadvantages of the usage of uniform interpulse duration in digital MTI
filters is that moving targets with Doppler frequencies that are integer multiples of the PRF
will be cancelled together with clutter because of periodic sampling of Doppler frequency. The
nulls that result from the periodic sampling characteristics of the system are given by:

fd =
n

PRI
= n× PRF (2.17)

The speeds correspond to these undetected Doppler frequencies are named as blind speeds ([9])
and can be calculated as in (2.18) .

Vblind = n× λ/2× PRF =
n× c× PRF

2f
(2.18)

where λ is wavelength and PRF is pulse repetition frequency and f is the operating frequency.
As an example, an X-Band radar that has 500 µs uniform PRI exhibits blind speeds at
300 m/s, 600 m/s, 900 m/s, . . . .

Table 2.2 illustrates widely used frequency bands. For high frequency bands, first blind speeds
can have smaller values, typically not sufficient to detect possible targets of interest for these
bands. Therefore it is essential to increase the value of first blind speed for the designated
radar frequency bands.

Considering the blind speed equation (2.18), four methods are proposed in order to increase
the first blind speed of a radar system [5]. These methods can be stated as

• Usage of lower center frequencies for operation frequency of radar system

• Increasing the pulse repetition frequency

• Usage of multiple pulse repetition intervals
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Table 2.2: First Blind Speeds for Different Radar Bands [1]

PRF (Hz) 10000 1000 250

Maximum Range (km) 15.00 150.00 600.00

Band

Frequency US UK ECM First Blind Speeds (m/s)

600 MHz UHF UHF C 2500.00 250.00 62.5

1300 MHz L L D 1153.85 115.38 28.85

3000 MHz S S E..F 500.00 50.00 12.50

5500 MHz C C G 272.73 27.27 6.82

10000 MHz X X I 150.00 15.00 3.75

16000 MHz Ku J J 93.75 9.38 2.34

30000 MHz Ka Q K 50.00 5.00 1.25

• Usage of multiple frequencies for operation frequency of radar system

Suggested solutions can be used together or individually. However each one of the solutions
have some negative effects on the operation of the radar system.

Operation with a lower center frequencies results in a decrease in range and angle resolutions
of the radar. Lower frequency band is used in civil applications. Therefore, lowering the
frequency is not a desirable choice for many of radar systems. Increasing the pulse repetition
frequency decreases the unambiguous range and causes range ambiguities. Usage of more than
one PRF’s increases first blind speed of the radar system whereas multiple-time-around clutter
echoes will fold into different ranges. Operating the radar at more than one frequency causes
stress on transmitter and is not desirable within the usual frequency bands allocated [5].

Widely used solution to blind speed problem in MTI filters is the usage of non-uniform (stag-
gered) PRI [9]. With this method the first blind speed is increased with respect to a uniform
PRI MTI system. Two main staggering approaches utilized generally: pulse to pulse and block
to block staggering. Pulse to pulse staggering is performed by changing the interpulse period
from pulse to pulse. This method is suitable for MTI processing and resistant to electronic
jamming. On the other hand, block-to-block staggering is utilized by changing the interpulse
period after transmitting a group of pulses with same PRI and used widely in pulse-Doppler
radars.

2.5 Staggered PRI Design

Staggered PRI design is based upon defining the interpulse durations according to range and
velocity specifications of the radar system. IfN interpulse durations denoted as T1, T2, T3, . . . TN
is taken into account, the period of the stagger pattern is given by

Tp =

N∑

i=1

Ti (2.19)
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Each interpulse duration can be expressed as multiple of greatest common factor of the set of
interpulse durations.

Ti = kiTgcd (2.20)

Here ki’s are integers that define the stagger ratio of the corresponding interpulse durations
and Tgcd is the greatest common divisor of the time durations set.

The coefficient ki define the improvement of the first blind speed of the staggered system
which is given by average interpulse duration

Tav =
1

N

N∑

i=1

kiTgcd (2.21)

As an example, for a 2-PRI system with T1 = 3T and T2 = 5T , the frequency response of the
staggered system with T1 and T2 is compared with non-staggered system with uniform PRI
of 4T is shown in Figure 2.12.
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Figure 2.12: Magnitude Response Comparison of MTI Filter with Uniform and Staggered PRI

As it is seen from Figure 2.12, by using two different PRI values, first blind speed of the
staggered system increased 4 times with respect to non-staggered system with PRI of 4T .

Usage of PRI staggering improves blind speed, but because of the non-uniform sampling the
frequency response fluctuates in the passband which results in degradation in the improvement
factor. It is important to provide a flat passband response for an equally probable target
detection over the velocity band of interest. In addition, adjustment of interpulse durations is
important in terms of minimum unambiguous range and dwell time. Therefore, it is necessary
to optimize the stagger periods according to the other specifications.

Different stagger patterns are given in the literature. One of the simplest techniques is adding
integer values to the desired multiple of the first blind speed [2]. For example, for a four and
five-period stagger schemes -3,2,-1,3 and -6,5,-4,4,1 integer groups are used respectively. If a
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14 times and 57 times blind speed increase is desired, the corresponding stagger ratios will be
11 : 16 : 13 : 17 and 51 : 62 : 53 : 61 : 58.

It is also discussed to use stagger periods according to analytical patterns. Interpulse durations
can be changed according to linear, sinusoidal, symmetric, wobulated and random manner
[14], [15]. Small deviations from the average interpulse period are also implemented [16].
As a different approach, choosing the stagger intervals according to frequency response of
non-uniform transversal filter is discussed in [17].

Other solutions for stagger optimization pursue analytical methods through of searching and
obtaining the best possible stagger scheme with respect to different constraints [18], [19], [20],
[21], [22]. To this aim, an algorithmic solution can be described as follows.

• Define a cost function

• Define an initial stagger scheme

• Calculate cost function

• Change stagger intervals

• Recalculate the cost function

• If the cost function improved, choose new stagger values

Along with the stagger interval adjustment, coefficients of the MTI filter that process staggered
pulses must be optimized in terms of satisfactory clutter attenuation and system performance.
The goal of the MTI filter design is to provide maximum amount of clutter suppression concur-
rently with the least amount desired signal suppression (flat passband). Design of staggered
MTI filter can be implemented in terms of two general cases. After the selection of the
interpulse durations according to range-velocity constraints, coefficients of the non-uniform
filter can be selected to satisfy the required clutter attenuation and improvement factor as
studied in [11], [18], [6], [23], [24]. Alternatively, optimization of the stagger intervals and fil-
ter coefficients are carried out together by considering range-velocity and clutter attenuation
constraints [19], [25], [20].
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CHAPTER 3

NON-UNIFORM MTI FILTER DESIGN

In this chapter staggered MTI filter designs are studied from the perspective of filter design
with non-uniform samples. First, properties and constraints of the non-uniform FIR filter
design is presented. Second, designed filters for non-uniform MTI processing explained in
detail with defined performance measures. Finally, a comparison of designed filters with the
selected designs is given in terms of the performance measures.

3.1 Non-uniform FIR Filter Design

Non-uniform sampling and filtering have been frequently used in several applications in the
processing of acoustic, image and radio frequency signals [26], [27], [28], [29], [30], [31], [32],
[33], [34]. The studies mostly focus on decreasing the total sampling time, reconstruction
of the non-uniformly sampled signals, and improving the system performance. Most of the
studies focus on FIR type implementations ([29], [27], [28], [31], [32]), but IIR type designs
are also considered ([30], [35]).

The general filter structure of the discrete non-uniform FIR type filter is illustrated in Fig-
ure 3.1. The output signal is obtained by summation of the linear combination of the non-
uniformly sampled input signal. The impulse response of this transversal filter is expressed by
the following relation

h(t) =

N−1∑

n=0

αnδ(t− tn) (3.1)

where αn are the filter coefficients and tn are the sampling times given by

tn =





n−1∑

i=0

Ti, n ≥ 1

0, n = 0

(3.2)

where Ti’s are the interpulse periods.

The corresponding frequency response of the filter is given by

H(f) =

N−1∑

i=0

αie
−j2πfti (3.3)
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Figure 3.1: Non-uniform FIR Filter Structure

where f is the frequency of interest.

In this section, the design of non-uniform FIR filter is considered in terms of optimizing
the staggered MTI filter frequency response. Design of staggered PRI MTI filter mainly
relies on defining the frequency domain constraints and finding the optimal values for the
interpulse periods Ti and filter coefficients αi. The adjustments of these parameters are done
by considering the ideal MTI filter response in Figure 3.2.
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Figure 3.2: Regions for the MTI Filter Design

In Figure 3.2 Doppler spectrum of interest is divided into frequency regions [36]. Clutter
Region indicates the region where clutter exist. This region starts from DC and goes up to
the cutoff frequency of the designed filter and forms the stopband. Transition Region identifies
the steepness of the filter to be designed and has no importance on the design. Velocity region
is the region bounded by Doppler frequency of the interested targets and forms the passband
of the filter to be designed.

The design criteria of the staggered MTI filter based upon defining the constraints in these

22



regions and there is often a compromise between these performance metrics [5]. Possible
objectives of the MTI filter design can be listed as follows;

• All targets in the velocity interval of interest be equally detectable

• Clutter at the output of the filter be minimum

• Required MTI improvement factor for the clutter attenuation be satisfied

• The deepest null in the passband should not be excessive

• Passband ripple should be minimized and kept uniform

The described objectives above form the design constraints for the staggered MTI filter. In
essence, the given objectives of the MTI filter can be condensed to

• Minimizing the passband ripple in velocity region

• Maximizing stopband attenuation in clutter region

It should be clear that both objectives can not be achieved simultaneously and a practical
solution has to operate at a trade-off between these objectives. In order to obtain a flexible
solution to these objectives; least square, convex and min-max filter design approaches are
studied. Before the examination of these filter design methods, we would like to present a
number of criterion that would be useful in the performance comparison of different designs.

3.2 Performance Measures of Staggered MTI Filter

Based on the stated constraints the design performance of the staggered MTI filter can be
compared using the following criterion:

Mean Stopband Attenuation (MSA): This criteria indicates the clutter attenuation per-
formance in clutter region. As the name implies it is the average of the SCR in the stopband
region which is bounded by cutoff frequency fc. It is given by

MSA =
1

fc

∫ fc

0

|H(f)|2df (3.4)

Stopband Attenuation @fc (SA): This is the value of filter magnitude response at the
cutoff frequency fc. Since the frequency values smaller than fc (0 ≤ f ≤ fc) are typically at-
tenuated more than the value at the cutoff frequency, this value can be considered to represent
the worst case signal attenuation in the stopband. It is given by

SA = |H(fc)|2 (3.5)

Maximum Deviation (MD): This parameter indicates the maximum deviation from the
ideal flat response in the velocity region. This value is commonly seen at near transition region
and referred as the depth of the first null. It is given by

MD = max |Hd(f)−H(f)|2 (3.6)
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Mean Passband Error (MPE): This criteria is to measure the flatness of the filter in the
velocity region. It is the average of the difference between ideal and designed filter responses
in the passband and given by the following equation

MPE =

∫ fp

ft

|Hd(f)−H(f)|2df (3.7)

whereHd(f) andH(f) are the frequency responses of the ideal and designed filters respectively.
The limits of the integral are the lowest and highest frequency in the passband.

Schematic representation of the stated parameters is given in the Figure 3.3
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Figure 3.3: Performance Measures of the Staggered PRF MTI Filter Design

It must be noted that in order to compare the frequency response of different filters a normal-
ization is necessary for quantifying the rejection capabilities of the filters. Unity noise gain
assumption is used for normalization of the responses and the filter weights are normalized as
in (3.8) before the comparison of the filter responses.

αin =
αi√√√√
N−1∑

i=0

α2
i

(3.8)

Doppler frequency interval is normalized by maximum pulse repetition frequency in order to
consider more general cases for specified stagger intervals, since maximum pulse repetition
frequency determines the unambiguous range. Normalization with maximum pulse repetition
frequency illustrates the increase with respect to minimum unambiguous range value and is
convenient for the performance comparison with the studies in the literature.

It is also important to note that maximum desired passband frequency fp must be smaller
than Fmax−fc for proper optimization that consider the periodicity of the frequency response
of the staggered MTI filter. Here Fmax represents the normalized first blind speed of MTI
system with staggered PRI.
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Based on the above criteria three main design approaches are studied in terms of optimizing
the filter coefficients for the given interpulse periods. First a least square (LS) approach is
examined, to obtain the filter coefficients that gives the near desired response in the sense of
minimum squared average error. Second, a convex optimization method (CVX) is studied.
Later, a min-max (Min-max) approach design is implemented. The details of these filter design
approaches are explained in the following sections.

3.3 Least Square Design

The approach depends on minimizing the error between the desired filter and the designed
filter. The standard cost function for a least square sense designed filter is given by (3.9)

Jcost =

∫ fd

0

|Hd(f)−Hls(f)|2df (3.9)

where Hd(f) and Hls(f) indicates the frequency responses of the desired and least square
sense designed filter respectively.

Hd(f) is the ideal highpass filter whose frequency domain definition given by (3.10) and plotted
in Figure 3.4

Hd(f) =

{
0 if 0 ≤ f ≤ fc,
1 if fc ≤ f ≤ fp,

(3.10)

Here fc is the cutoff frequency used for adjusting the notch of the filter according to attenuation
bandwidth and fp is the bound for passband interval of Doppler frequency.
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n
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Hd(f)

0 fc ft fp

Figure 3.4: Frequency Response of Desired Highpass Filter

For non-uniform MTI filter, least square minimization problem can be stated as

minimize ||Hd(f)−Hls(f, αi)||

subject to
N−1∑

i=0

αi = 0, x ∈ <
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Here the
∑N−1
i=0 αi = 0 constraint used to suppress the DC value and ||.|| is the Euclidean

norm. It must be noted that with the inclusion of a linear constraint, least square design turns
into a constraint least square design. By putting the equations in place, the cost function of
the least square equation can be written as in (3.11). It must be noted that to simplify the
presentation only the positive frequency band is used.

Jcost(α, λ) =

∫ fd

0

|Hd(f)−
N−1∑

i=0

αie
−j2πfti |2df + λ

(
N−1∑

i=0

αi

)
(3.11)

The constraint equation is incorporated into the design via Lagrangian Multiplier λ. In order
to minimize this cost function it is required that

∂Jcost
∂αi

= 0 (3.12)

By taking the partial derivatives of the cost function with respect to filter coefficients, we can
get the following equation

∂Jcost
∂αi

=

∫ fd

0

(
Hd(f)−

N−1∑

n=0

αne
−jπftn

)
ej2πftidf +Nλ (3.13)

By equating, the partial derivatives given in (3.13) to zero for i = {0, 1, . . . , N}, we can get
the following linear equation system:

Aα = Hd + λ1 (3.14)

Here Hd is a N × 1 column vector with the k’th entry

Hd(k) =

∫ fd

fc

ej2πftkdf (3.15)

and A is a N ×N matrix with the i’th row and j’th column entry

A(i, j) =

∫ fd

0

e−j2πf(tj−ti)df (3.16)

1 is the N × 1 column vector with entries of 1

1 = [11 12 . . . 1N ]T (3.17)

Finally, the vector α in (3.14) is the vector of unknowns, that is the MTI filter coefficients.

In order to establish a trade-off between the objectives of clutter attenuation and passband
ripple; we introduce a weight W to control the contribution of stopband error to the cost
function. The weight W changes the cost given in (3.18) as follows

JWcost =W
∫ fc

0

|Hd(f)−Hls(f)|2df +

∫ fd

ft

|Hd(f)−Hls(f)|2df + λ(

N−1∑

i=0

αi) (3.18)
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Optimization with the weighted cost function results in the following equation for the filter
coefficients

(W×Astop + Apass)α = Hd + λ1 (3.19)

In the last equation, we have

Astop(i, j) =

∫ fc

0

e−j2πf(tj−ti)df (3.20)

and

Apass(i, j) =

∫ fp

ft

e−j2πf(tj−ti)df (3.21)

It should be clear that by increasing W, the contribution of the stopband error to the cost
function is increased and therefore, the optimized filter provides more clutter suppression for
higher W values.

In order to find the least square MTI filter coefficients, Lagrangian Multiplier λ must be
written in terms of other variables. By rewriting (3.19)

α = (W×Astop + Apass)
−1(Hd + λ1) (3.22)

Since 1Tα = 0, Lagrangian Multiplier λ found as

1Tα = 1T(W×Astop + Apass)
−1Hd + 1T(W×Astop + Apass)

−1λ1 = 0 (3.23)

λ =
1T(W×Astop + Apass)

−1Hd

1T(W×Astop + Apass)−11
(3.24)

As an example, frequency responses of least square design for different weight factors W
with the specified stagger ratio of 25 : 30 : 27 : 31 (which is taken from [5]) is plotted in
Figure 3.5. As it is seen from the figure, an increase in the weight factor W results in a
bigger attenuation in the clutter region and bigger mean square error in the velocity region
as expected. However the MD value does not depend upon weight factor linearly. This can
be seen from the performance criterion given for different weight factors in Table 3.1. For
W = 103, MD takes the value of 25.4 dB whereas it is 19.569 dB when W equals to 106.
Since maximum deviation of the response is important in terms of detection performance, W
value must be selected according to minimum deviation after providing the required stopband
attenuation.

In order to see the effect of weight factor on the design parameters for a wider range, change
of performance parameters with respect to W values is plotted in Figure 3.6. The results
indicate that the MSA and SA show monotonic property and reach a final value as weight
factor increases. This means that for the specified stagger ratio, attenuation property of the
LS design is bounded. In other words, since the LS design mainly focuses on minimizing
the passband error, the attenuation capability is limited whereas it can be increased to some
degree by increasing the weight factor W.
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Similarly,MPE reaches a final value asW increases, however it is not monotonously decreasing.
Therefore, when smaller stopband attenuation is satisfactory for the system requirements,
small W values can be selected for smaller average passband error.

As can be seen from the last sub figure in Figure 3.6, MD is the most sensitive criteria. As
W increases, MD fluctuates and poses a number of minimum values. For higher stopband
attenuation values, it reaches a constant value similar to other performance measures.

After evaluating the responses of the each performance measure, it is reasonable to choose W
according to MD value.
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Figure 3.5: Frequency Response of Least Square Design with Different W Values

Table 3.1: Performance Measures of Least Square Design for Different W Values

W MSA (dB) SA (dB) MPE (dB) MD (dB)

1000 -33.719 -24.884 -0.659 25.409

10000 -49.168 -40.470 -0.699 26.771

100000 -61.080 -46.445 -0.699 24.476

1e+06 -66.713 -50.030 -0.691 19.569
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Figure 3.6: Effect of W on MSA, SA, MPE and MD for Least Square Design
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3.4 Convex Design

In convex filter design, staggered MTI filter design formulated as a convex optimization prob-
lem. A convex optimization problem can be stated as [37]

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

where the functions f0, . . . , fm : Rn → R are convex.

Convex design of non-uniform MTI filter starts with the formulation of design constraints
as a convex optimization problem. Design constraints are based upon same approach as in
least square sense design which is the minimization of the passband error and maximization
of the stopband attenuation. Similar to the least square design, the passband ripple and the
stopband attenuation goals are linked with the weight factorW. Using the stated constraints,
the optimization problem of the convex design can be stated as follows

minimize δ

subject to |H(f, αi)| ≤ δ, f ∈ [0, fc], αi ∈ R, i ∈ N0

|H(f, αi)− 1| ≤ Wδ, f ∈ [ft, fd], αi ∈ R, i ∈ N0

N−1∑

i=0

αi = 0, α ∈ R

The optimization variables are the filter weights αi’s, N is the filter order,ft, fd is the lower
and upper bound of normalized passband frequency respectively and fc is the upper bound of
normalized stopband frequency. It must be noted that weight factor W affects the passband
ripple directly, different from the least square design. In the least square design, the weight
factor affects the clutter attenuation.

Using (3.3) and representing the stopband and passband separately, the convex optimization
problem equation can be rewritten as

minimize δ

subject to |Astopα| ≤ δ, f ∈ [0, fc], αi ∈ R, i ∈ N0

|Apassα− 1| ≤ Wδ, f ∈ [ft, fd], αi ∈ R, i ∈ N0

N−1∑

i=0

αi = 0, α ∈ R

where

Astop(i, j) =

∫ fc

0

e−j2πf(tj−ti)df (3.25)

and

Apass(i, j) =

∫ fp

ft

e−j2πf(tj−ti)df (3.26)
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One must be careful in choosing the weight factor to minimize the passband error due to the
constraint of |Apassα− 1|, since if Apassα happens to a negative value, a large passband
error can form. (This problem is remedied with min-max design presented later.)

The convex optimization problem solved by using CVX library, which is a MATLAB package
developed for implementation of disciplined convex programming problems. It is possible to
solve constrained minimization and maximization problems using CVX library. Part of the
MATLAB code that uses the CVX library in the convex design of staggered MTI filter given
as follows.

cvx_begin
variable x(N)
variable delta
minimize delta

subject to
ones(1,N)*x==0
abs(Astop*x) <= delta
abs(Apass*x - 1) <= weight*delta

cvx_end

Figure 3.7 indicates the frequency response of the designed non-uniform MTI filter for different
weight factorsW and Table 3.2 gives the related performance criteria of the design. The effect
of weight factor on the performance measures are plotted in Figure 3.8.

Stagger ratio used for the convex design is 11 : 16 : 13 : 17 (taken from [5]). As seen from the
Figure 3.7, the effect of W on the stopband attenuation is similar to the least square design.
The increase inW provides better attenuation in stopband whereas the maximum deviation in
the passband increases also. In order to obtain a more general opinion related to the effect of
weight factor, Figure 3.8 must be examined. It shows that the increase inW results in different
effects on the performance measures. When the weight factor takes values between 104 and
107, all the parameters change abruptly. However, four separate regions can be observed by
examining the stopband attenuation value. Stopband attenuation value takes different values
that stay constant for different W intervals. Mean passband error nearly shows a decreasing
pattern whereas maximum deviation does not have a predictable behaviour.

Looking at the effect of weight factor on performance measures, it is reasonable to choose the
weight factor similar to the least square design case. Once the required stopband attenuation
is specified, the weight factor that gives the satisfactory stopband attenuation with smaller
maximum deviation can be selected.
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Figure 3.7: Frequency Response of Convex Design with Different W Values

Table 3.2: Performance Measures of Convex Design for Different W Values

W MSA (dB) SA (dB) MPE (dB) MD (dB)

10000 -14.540 -8.659 -0.614 17.464

100000 -15.470 -9.584 -0.664 18.310

1e+06 -77.987 -58.366 -0.612 25.309

1e+07 -79.187 -61.712 -0.635 26.876
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Figure 3.8: Effect of W on MSA, SA, MPE and MD for Convex Design
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3.5 Min-Max Design

In this section, we examine the min-max filter design method for non-uniform MTI filter
design. The min-max filter design aims to select the filter coefficients to minimize the maximum
deviation from the desired response in the passband. This method is different than the two
previous methods. The earlier methods have a single optima which is the global one while this
one has many local maximas. Therefore, this method requires a good initial filter coefficient
set for a satisfactory performance. It is therefore necessary to experiment with different initial
filter weights to determine the parameters that satisfy the required specifications. From the
constraints perspective, this filter design also based on the minimization of the maximum
passband ripple and maximization of the stopband attenuation. The optimization problem of
the min-max design can be stated as follows

minimize δ

subject to |Hmm(f, αi)| ≤ δ, f ∈ [0, fc], αi ∈ R, i ∈ N0

|1− |Hmm(f, αi)|| ≤ Wδ, f ∈ [ft, fp], αi ∈ R, i ∈ N0

N−1∑

n=0

αn = 0, α ∈ R

(3.27)

Here Hmm(f, αi) is the frequency response of the min-max filter and the variable δ shows the
maximum deviation from the desired characteristics (for W = 1). The goal in this design
is to minimize the maximum deviation from the desired highpass characteristic. The first
and second constraints enforce the magnitude deviation be smaller than δ (for W = 1) in the
designated bands. The third constraint guarantees that the min-max design has a null at DC
frequency.

Different from the LS design, there is no closed form mathematical relation from which the
optimal min-max filter coefficients can be retrieved. The optimization has to be done numer-
ically. The numerical implementation of the optimization problem requires the discretization
of frequency band into a dense set of frequency points. Therefore, the constraints given in
(3.27) are not evaluated for a continuum of points; but for a finitely many number of points.

Similar to the convex design, a weight factor W is introduced to establish a trade-off between
clutter attenuation and passband ripple objectives. It should also be noted that the min-max
problem examined here is focused on minimizing the maximum deviation of the magnitude
response from the desired response.

Figure 3.9 indicates the obtained frequency response for different weight factors and Table 3.3
gives the related performance measures of the design. The effect of weight factor, is given in
Figure 3.10.

In these figures, the initial filter coefficients are kept constant and binomial coefficients are
used in order to see the effect of the weight factor W individually. The stagger ratio of
12 : 16 : 13 : 18 is used (taken from [38]). When the Figure 3.9 is examined, W indicates the
same effects as in least square and the convex designs. Larger values of W result in increase
in stopband attenuation and passband ripple. However, different from the previous designs,
maximum deviation does not have a monotonous increase or decrease characteristic. To get a
more general idea, it is necessary to examine the effect of W in a much wider interval. Figure
3.10 indicates the effect of W on the performance parameters. Examination of the figure

35



indicates that stopband attenuation parameters show a continuous increase whereas passband
ripple fluctuates rapidly. In order to select the weight factor that gives a reasonable response
in terms of stopband attenuation and passband ripple, smaller maximum deviation value must
be selected for specified stopband attenuation.

It is important to remember that Figures 3.9 and 3.10 are plotted by using the same initial filter
coefficients. Since the min-max optimization problem has local optima, it is necessary to see
the effect of the initial filter coefficients on the response of the min-max sensed designed non-
uniform MTI filter. Therefore, min-max design is evaluated with different initial coefficient
sets which are selected randomly. Obtained results are presented in Figure 3.11, 3.12 and
Table 3.4
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Figure 3.9: Frequency Response of Min-Max Design with Different W Values

Table 3.3: Performance Measures of Min-Max Design for Different W Values

W MSA (dB) SA (dB) MPE (dB) MD (dB)

260 -55.042 -50.697 -6.285 28.071

790 -63.927 -60.375 -0.577 17.535

3510 -78.101 -73.861 -7.224 25.245

5590 -78.861 -76.513 -14.918 31.869
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Figure 3.10: Effect of W on MSA, SA, MPE and MD for Min-max Design for Same Initial
Coefficients
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Figure 3.11 indicates the response of min-max filter with four different initial coefficient sets
and same weight factor. It is seen that several values in terms of stopband attenuation and
passband ripple are obtained. This indicates the importance of the effect of the initial filter
coefficients on the min-max design. Importance of the selection of the initial filter coefficients
are derived from the nature of the min-max design, since the min-max design algorithm seeks
the minimum deviation near the initial filter coefficient values. To see the effects of the initial
filter coefficient on the performance measures, 300 different initial conditions are evaluated
and the corresponding performance parameters are plotted in Figure 3.12.

Min-max design requires more computation compared to the previous least square and convex
design methods. Initial filter coefficients and the weight factor must be selected appropriately
in order to obtain the required response in terms of stopband attenuation and the passband
ripple. The taken approach for the min-max design of non-uniform MTI filter requires two
phases. First, the weight factor is determined according to the required stopband attenuation
by using the binomial coefficients as the initial filter coefficients. After the weight factor selec-
tion, different initial conditions for specified number of iterations are tried and the coefficients
that give the minimum deviation in the passband are selected. Using this approach four filters
are designed and obtained results are presented in Figure 3.13. Stopband attenuation bound
for these four filters are selected as 45 dB, 45 dB, 60 dB and 70 dB respectively. Obtained
performance parameters are given in Table 3.5. Using this approach, it is possible to obtain
desired stopband attenuation with improved maximum deviation by determining the initial
filter coefficients and weight factor.
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Figure 3.11: Frequency Response of Min-Max Design for Different Initial Conditions with the
Same W Values

Table 3.4: Performance Measures for Min-max Design for Different Initial Filter Coefficients
with Same W Values

Initial Coefficient Vector (i.c.v) MSA (dB) SA (dB) MPE (dB) MD (dB)

ξ = [-0.53 -0.26 1.72 -1.09 0.16] -32.044 -23.682 -0.566 14.132

ζ = [0.57 0.14 2.22 -0.52 -2.42] -29.156 -20.073 -0.561 11.315

υ = [0.52 1.20 -1.12 0.74 -1.34] -71.135 -66.891 -0.614 18.262

ι = [0.18 0.04 0.53 -0.89 0.15] -59.852 -53.433 -0.616 20.107
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Figure 3.12: Effect of Initial Filter Coefficients on Performance Measures of Min-Max Design
for Same W Values
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Figure 3.13: Min-Max Design for Different Stopband Attenuation Requirement with Different
Initial Conditions and W Values

Table 3.5: Performance Measures of Min-Max Design for Different Stopband Attenuation
Requirement with Different Initial Conditions and W Values

Initial Coefficient Vector (i.c.v) MSA (dB) SA (dB) MPE (dB) MD (dB)

ξ = [-1.92 0.63 0.75 0.21 0.33] -46.910 -42.645 -0.691 15.978

ζ = [-0.94 -0.65 0.28 -1.13 2.44] -47.361 -44.824 -0.671 24.601

υ = [0.96 -0.34 -0.17 0.62 -1.06] -64.175 -61.705 -0.613 17.565

ι = [-1.52 -1.07 -3.07 0.52 5.14] -71.357 -67.105 -0.614 18.488
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3.6 Numerical Comparison with Selected Filter Designs

To this point designed filters are compared individually with different weight factors and initial
coefficient sets. In this section filter designs will be compared among themselves and also with
the similar filters in the literature.

3.6.1 Binomial Filter

As explained in previous chapter, Binomial filter is a filter that is derived by cascading single
cancellers. These are simple FIR filters whose coefficients are selected as binomial numbers
with alternating signs that are given by

wi = (−1)i−1
N !

(N − i+ 1)!(i− 1)!
, i = 1, 2, . . . , N + 1 (3.28)

where N is the order of the filter.

Binomial filters are widely used filters for performance comparison of MTI filters in the liter-
ature.

3.6.2 Prinsen’s Filter

Prinsen developed a simple algorithm for staggered PRF MTI filters [11]. Design is based on
the requirement for the maximally flat stopband characteristic at zero frequency. The filter
design also a generalization to the Binomial filter. FIR filter equation for the MTI design is
given in (3.29).

y(f) =

N−1∑

n=1

wne
j2πftn (3.29)

where w0, ..., wN−1 are filter coefficients and t0, ..., tN−1 are the sampling times.

Theory of the design relies on making the first M coefficients of the Taylor series expansion
of the filter response near zero frequency to be zero.

The Taylor expansion of y(f) around f = 0 is given in following equations.

y(f) = y(0) +
y′(0)

1!
f +

y′′(0)

2!
f2 + . . . (3.30)

y(k)(0) = (j2π)k
N−1∑

n=0

tknwn, k = 0, 1, 2, . . . (3.31)

Maximally flat stopband and a non-trivial solution requires that the first N − 1 coefficients of
y(k)(0), k = 0, . . . ,M − 1 in (3.31) to be zero. Matrix form of the N − 1 equations are given
as

Tw = −w0u1 (3.32)
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where

T =




1 1 . . . 1

t1 t2 . . . tN−1
...

...
. . .

...
tN−21 tN−22 . . . tN−2N−1



, w =




w1

w2

. . .

wN−2


 , u1 =




1

0

. . .

0




T matrix is a Vandermonde matrix and T−1 exists since ti 6= tj for i 6= j. Simplified form of
the equation is given in (3.33).

wi = −w0

N−1∏

n=1
n 6=i

tn
tn − ti

i = 1, . . . , N − 1 (3.33)

Designed filters are compared with Binomial and Prinsen’s MTI filters under four different
cases.

In the first case, the stopband attenuation (SA) is fixed. In Figure 3.14, the desired stopband
attenuation value is selected as -60 dB. This means that, the magnitude of the filter responses
is designed to better than 60 dB at the cutoff frequency fc. By examining the performance
measures given in Table 3.6, one can see that LS design does not provide the required attenu-
ation. This is due to the stopband performance of the LS design. 56.228 dB is the maximum
attenuation that LS design can achieve for the used stagger ratio. It must also be noted that
the LS design has the smallest mean passband error.

If the performance of the CVX design is focused, it has good stopband attenuation and reason-
able values in terms of passband ripple. The performance in stopband is related to the choice
of the weight factor. By choosing a different weight factor better values could be obtained for
passband ripple with decreased stopband attenuation performance.

The desired min-max design achieves least deviation value and provides required stopband
attenuation. Response of Prinsen’s filter is also satisfactory. Since it is designed for maximally
flat stopband response, it gives better attenuation values. However the passband performance
is not very satisfactory and it has large deviations from the ideal response. It has the worst
maximum deviation compared to other filter designs.

In the second case, cutoff frequency fc is reduced. Figure 3.15 indicates this case. As observed,
all the responses are improved in terms of stopband attenuation and passband ripple. It
should be noted that, the response of LS design is improved, but it does not provide same
suppression level of other designs except the Binomial filter. It is also eye catching that,
maximum deviation of the CVX design is improved nearly 10 dB compared to the previous
case.

In the third case, a bigger cutoff frequency is examined. Figure 3.16 shows the response of
filters when the cutoff frequency fc is selected as 0.08. Expectedly, stopband attenuation
performances of the filters are decreased. However passband performances do not worsen .
On the contrary, better maximum deviation is obtained with min-max design.

The final case considers the response to the bigger velocity band. Figure 3.17 indicates the
response of the filters when the passband bound is increased to ten times of the maximum
PRF value. As compared with the Figure 3.14, Min-Max and CVX designs present better
responses. However response of LS filter in terms of maximum deviation is degraded with
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respect to the first case. Therefore, it can be concluded that the usage of wider velocity band
exhibits different effects on the performance of the filter designs.
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Figure 3.14: Comparison of Designed Filters with Binomial and Prinsen’s Filter with Same
Stopband Attenuation Requirement

Table 3.6: Performance Measures for Comparison of Designed Filters with Binomial and
Prinsen’s Filter with Same Stopband Attenuation Requirement

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -65.918 -56.228 -1.128 22.974

Cvx -84.256 -68.740 -0.807 31.856

Min-Max -71.762 -68.536 -0.796 19.944

Prinsen -81.606 -67.280 -0.800 34.047

Binom -45.688 -40.175 -0.798 24.773

46



0 1 2 3 4 5 6 7 8 9 10
−100

−80

−60

−40

−20

0

Comparison of Designs, SR=14:16:17:19:16, fc = 0.03, ft = 0.5, fp = 8

fdoppler / PRFmax

M
ag
ni
tu
de

(d
B
)

Ls
Cvx
Minmax
Prinsen
Binom

0 0.01 0.02 0.03 0.04 0.05 0.06
−100

−80

−60

−40

−20

0
Zoomed Stopband Response

fdoppler / PRFmax

M
ag
ni
tu
de

(d
B
)

Ls
Cvx
Minmax
Prinsen
Binom

Figure 3.15: Comparison of Designed Filters with Binomial and Prinsen’s Filter with Smaller
Cutoff Frequency

Table 3.7: Performance Measures for Comparison of Designed Filters with Binomial and
Prinsen’s Filter with Smaller Cutoff Frequency

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -68.928 -60.051 -0.768 20.098

Cvx -102.017 -87.380 -0.806 25.971

Min-Max -77.504 -83.057 -0.863 22.698

Prinsen -98.145 -86.868 -0.800 34.047

Binom -49.776 -43.951 -0.798 24.773
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Figure 3.16: Comparison of Designed Filters with Binomial and Prinsen’s Filter with Bigger
Cutoff Frequency

Table 3.8: Performance Measures for Comparison of Designed Filters with Binomial and
Prinsen’s Filter with Bigger Cutoff Frequency

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -62.313 -52.694 -0.762 24.395

Cvx -64.628 -57.884 -0.803 31.225

Min-Max -52.152 -47.638 -0.782 15.648

Prinsen -61.969 -46.941 -0.800 34.047

Binom -41.948 -35.948 -0.798 24.773
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Figure 3.17: Comparison of Designed Filters with Binomial and Prinsen Filter’s with Larger
Velocity Band

Table 3.9: Performance Measures for Comparison of Designed Filters with Binomial and
Prinsen’s Filter with Larger Velocity Band

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -65.499 -54.759 -1.032 23.855

Cvx -76.607 -66.319 -0.913 19.634

Min-Max -68.512 -63.361 -0.833 15.187

Prinsen -80.774 -66.461 -0.891 34.104

Binom -45.538 -40.038 -0.901 24.773
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CHAPTER 4

CLUTTER SUPPRESSION PERFORMANCE OF
FILTER DESIGNS

In this chapter clutter is taken into account for designing optimal staggered MTI filters. First,
definition of the clutter and properties of the clutter covariance matrix are given. Second,
optimal filters are studied for different types of clutter PSD’s. Later, performances of the
filter designs are compared according to MTI improvement factor and a modified min-max
design is presented. Finally, time varying filter concept is explained and obtained results are
discussed.

4.1 Characteristics of Clutter

Clutter is defined as non-wanted interference from land, sea or weather. Return from these,
can block the target component of the radar echo signal. Therefore, it is important to reject
clutter in radar signal processor units. In most cases the rejection of the clutter is used as a
performance index such as clutter attenuation and subclutter visibility.

For MTI filter performance analysis, the effect of clutter is put into consideration by using
clutter covariance matrix or clutter power spectrum density (PSD). Transformation between
these metrics are carried out with Fourier transformation.

Widely used model for the clutter PSD is Gaussian Model with zero mean Doppler frequency
([3]):

C(f) =
Pc√
2πσg

exp

(−f2
2σ2

g

)
(4.1)

Here Pc is the clutter power, f is the Doppler frequency and σg is the standard deviation of
the clutter spectrum. An example of Gaussian Clutter model for several σg values are given
in Figure 4.1.

Using the power spectral model, the elements of the normalized clutter covariance matrix can
be found by

Rij =

∫ ∞

−∞
C(f)ej2πf(ti−tj)df

= e−2π
2σ2

g(ti−tj)
2

(4.2)
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Figure 4.1: Gaussian Clutter Power Spectrum Density Model

Calculation of the optimal MTI filters is based upon clutter covariance matrix. Hsiao [13]
shows that elements of the eigenvector that corresponds to the minimum eigenvalue of the
clutter covariance matrix, are the coefficients of the optimum MTI filter.

Another optimum filter design comes from the matched filtering concept. The weights are cal-
culated for each transmitted signal component in the sense of matching the received waveform.
Optimal filter weights for each transmitted pulse are given by

wopt = R−1s (4.3)

Here wopt is the coefficient vector of optimum filter weights and s is the signal vector. Figure
4.2 illustrates the performance comparison of optimal filters with different clutter PSD values.
Here, optimal filter-2 represents the eigenfilter method of Hsiao’s (the filter corresponds to
eigenvector of Rc with the smallest eigenvalue), whereas optimal filter-1 illustrates the match
filter type optimal filter. The first sub figure is plotted with a Gaussian clutter PSD and the
second sub figure is plotted with a Gaussian clutter PSD model with a large Doppler spread.
For the first case, optimal filters show the same performance, whereas in the second case
optimal filter-1 shows better response for all Doppler frequencies. It must be noted that the
optimal filter-1 is unique for each frequency as seen from (4.3), whereas the optimal filter-2 is
the same for all frequencies.
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Figure 4.2: Comparison of Optimum MTI Filters with Different Clutter PSD’s
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4.2 Comparison of Designed Filters with Optimal MTI Filter

In the previous section, designed filters are compared in terms of magnitude response. In this
section, the filters are compared in terms of MTI improvement factors. MTI improvement
factor of the corresponding FIR filter designs can be calculated as follows;

IF =
wHRsw

wHRcw
(4.4)

where the variables w, Rc and Rs represent weight vector, clutter covariance matrix and
signal covariance matrix respectively.

The comparisons related to improvement factor in the following figures and chapters, the effect
of Doppler spread of clutter is investigated. The used clutter models and corresponding values
of parameters are given in Table 4.1.

Table 4.1: Used Clutter Models and Related Values of Parameters

Antenna Type Stationary Antenna Rotary Antenna

Clutter Models Gaussian Clutter Gaussian Clutter

Doppler Spread (fdoppler/PRFmax) 0.02-0.08 0.02-0.08

SNR (dB) 10 10

CNR (dB) 50 50

Azimuth Beamwidth (◦) - 1.7

Antenna Rotation Period (rpm) - 40

For the sake of comparison, the frequency responses of the designs are presented first. Figure
4.3 indicates the frequency responses of the designed filters with Prinsen’s filter for the stagger
ratio of 36 : 45 : 39 : 48 : 42. Table 4.2 presents the performance measures. If the figure is
examined, it is seen that the responses of the filters show similar passband characteristic except
from the maximum deviation value and stopband responses.

In Figure 4.4 improvement factor for each filter in Figure 4.3 is plotted with the assumption of
the Gaussian clutter PSD. It is seen that all the filters have almost identical improvement factor
values in the passband. These values are given in Table 4.3. By comparing the improvement
factors and performance measures, it is possible to conclude that mean stopband attenuation
(MSA) criteria is closely linked to the improvement factor performance of the filters.

In Figure 4.5 improvement factors for all filters are plotted with different type of clutter model.
In this case a Gaussian clutter with larger spread is used. For this case, the optimal filter
response shows different characteristic compared to other filters. All the other filters achieve
very similar improvement factors whereas the performance of them differs from the optimal
filter considerably. Prinsen’s filter and designed filters according to the performance measures
do not provide an improvement factor close to the optimal case.

The decrease in the improvement factor values and associated performance measures constitute
the possibility of designing another type of non-uniform MTI filter with better improvement
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factor. The idea is investigated in the following subsection and another design method is
developed by modifying the min-max design according to MTI improvement factor of optimal
filter.
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Figure 4.3: Frequency Response Comparison of Designed Filters with Prinsen’s Filter

Table 4.2: Performance Measures for Comparison of Designed Filters with Prinsen’s Filter

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -72.682 -82.032 -0.532 22.603

Cvx -69.843 -69.549 -0.529 25.691

Minmax -75.708 -62.296 -0.533 22.670

Prinsen -67.130 -53.172 -0.525 36.056
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Figure 4.4: Improvement Factor Comparison of Designed Filters with Prinsen’s Filter with
Gaussian Clutter PSD

Table 4.3: Improvement Factor Values for Comparison of Designed Filters with Prinsen’s
Filter with Gaussian Clutter PSD

Optimum Ls Cvx Minmax Prinsen

Improvement Factor (dB) 66.555 63.275 63.463 61.975 58.120
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Figure 4.5: Improvement Factor Comparison of Designed Filters with Prinsen’s Filter with
Gaussian Clutter PSD with Larger Doppler Spread

Table 4.4: Improvement Factor Values for Comparison of Designed Filters with Prinsen’s
Filter with Gaussian Clutter PSD with Larger Doppler Spread

Optimum Ls Cvx Minmax Prinsen

Improvement Factor (dB) 45.159 39.362 39.702 38.849 37.667
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4.3 Min-Max Filter Design with Optimum Improvement Factor

In this section min-max filter design is modified for the purpose of obtaining a non-uniform
MTI filter based on the MTI improvement factor of the optimum filter. First, a frequency
interval is taken and the improvement factor of the optimum filter is calculated for each
frequency value in the frequency interval of interest. Later, filter coefficients are optimized to
provide the nearest improvement factor to optimum filter’s using a min-max sense approach.

The optimization equation of the corresponding design is given in (4.5)

min
wd,f

(Iopt − Id) = min
wd,f

(
wH

optRswopt

wH
optRxwopt

− wH
d Rswd

wH
d Rxwd

)
(4.5)

where

• Iopt : Optimum filter interference improvement factor

• Id : Designed filter interference improvement factor

• wopt : Optimum filter coefficient vector

• wd : Designed filter coefficient vector

• Rx : Interference covariance matrix (Rx = Rc + Rn = Rc + σ2
nI)

• Rs : Signal covariance matrix (Rs = E{s(θ)sH(θ)})

The steps of near optimum filter design algorithm can be listed as follows

• Determine interpulse periods

• Calculate optimum filter improvement factor for each frequency value in the frequency
interval of interest

• Determine initial value of filter coefficients for the near optimum filter design

• Calculate the filter coefficients that give the most near value to the optimum filter
improvement factor

Min-max filter design with the optimum improvement factor is compared with previously de-
signed filters for two cases. Figure 4.6 indicates the magnitude of the frequency responses of
the filters. All the filters show same passband response whereas they have different stopband
attenuation values. The new approach of min-max design named as, MinMax-IF, shows dif-
ferent behavior compared to others since it is designed according to improvement factor of
optimum filter. Other filters provide better response when the performance measures in Table
4.5 are compared. The different behaviour is due to the value of the cutoff frequency of the
Minmax-IF design. Since the weights are adjusted according to the optimum improvement
factor, corresponding cutoff frequency value can be different than the other filters.

Figure 4.7 indicates the comparison of the improvement factors for the Gaussian clutter power
spectral density. MinMax-IF design has better improvement factor value compared to other
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filters. In Figure 4.8, the comparison of the improvement factors for the case of Gaussian
clutter with larger spread is illustrated. For this case Minmax-IF filter has better improvement
factor compared to others for this case also. As seen from the obtained results, this filter
gives improved response compared to others. One of the disadvantage of this design is the
requirement of the optimal filter coefficients that depends upon the clutter covariance matrix.
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Figure 4.6: Frequency Response Comparison of Minmax-IF Filter with Other Filter Designs

Table 4.5: Performance Measures of the Comparison of Minmax-IF Filter with Other Filter
Designs

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -82.962 -71.403 -0.860 25.820

Cvx -85.065 -70.810 -0.868 26.340

Minmax -81.992 -80.121 -0.866 23.588

Minmax-IF -67.136 -69.674 -0.909 42.753

Prinsen -83.291 -68.616 -0.891 33.425
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Figure 4.7: Improvement Factor Comparison of Designed Filters with Gaussian Clutter

Table 4.6: Improvement Factor Values for Comparison of Designed Filters with Gaussian
Clutter

Optimum Ls Cvx Minmax Minmax-IF Prinsen

IF (dB) 65.969 57.155 57.126 58.137 61.929 57.469
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Figure 4.8: Improvement Factor Comparison of Designed Filters with Gaussian Clutter with
Larger Doppler Spread

Table 4.7: Improvement Factor Values for Comparison of Designed Filters with Gaussian
Clutter with Larger Doppler Spread

Optimum Ls Cvx Minmax Minmax-IF Prinsen

IF (dB) 37.193 30.051 30.055 30.309 32.785 30.092
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4.4 Multiple Filter Design with Time Varying Coefficients

Multiple filter design is the use of time varying weights for the processing of successively
transmitted pulses. Shrader [2] states that "The improvement factor limitation caused by
pulse to pulse staggering can be avoided by the use of time varying weights in the canceller
forward paths instead of binomial weights." Following multiple filter discussion considers this
case and compares the responses with respect to time constant weights.

Multiple filter design can be described as the usage of more than one set of filter coefficients
for the processing of transmitted pulses. In the previous chapters a single filter with N + 1

filter weights are used for processing of one period with N staggers. Usage of multiple filters
means the processing of received pulses with more than one filters. Structure of the multiple
filter processing is indicated in Figure 4.9.

Lets assume thatN+L pulses are transmitted for the MTI operation, when the stagger pattern
includes N stagger periods. In time invariant single filter case, an MTI filter is designed with
N + 1 coefficients and transmitted pulses are processed successively using this filter. In time
varying weights case, multiple MTI filters are designed with N + 1 coefficients. That is pulses
from 1 to N are processed by the first filter, 2 to N + 1 are processed by the second filter
and so on. Processing of N +L pulses with multiple filters can be thought as summing of the
power outputs of the filters in order to obtain the total response of the multiple filter system.
For L number of filters the total power output can be written as

|H(f)|2 = |H1(f)|2 + |H2(f)|2 + |H3(f)|2 + . . .+ |HL(f)|2 (4.6)

where |Hi(f)|2 represents the power output of each filter in multiple filter system. When the
filter responses put in (4.6), following equation can be obtained.
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Figure 4.9: Processing of Received Pulses with Multiple Filter Structure with Time Varying
Coefficients
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|H(f)|2 = |
N∑

i=1

αi exp (−j2πfti)|2 + |
N+1∑

i=2

βi exp (−j2πfti)|2 + . . .

. . .+ |
L∑

i=L−N+1

γi exp (−j2πfti)|2 (4.7)

where N is the number of staggers, L is the number of pulses processed, αi’s are filter weights
of the first filter, βi’s are the filter weights of second filter, . . . , and γi’s are the filter weights
of Lth filter.

The main idea for the multiple filtering is the adaptation of the MTI filters for the specific
stagger intervals. For example, lets consider the case when the stagger ratio of 8 : 9 : 10 is used
and 7 pulses are transmitted with staggers 8 : 9 : 10 : 8 : 9 : 10. That is 8 : 9 : 10 sequence
is repeated twice. According to the single filter approach, an MTI filter with 4 weights is
designed with 8 : 9 : 10 stagger pattern. Let’s assume that these weights are α1, α2, α3 and
α4. Then, these are used as follows for the processing of 7 pulses. The group of successive
staggers of 8 : 9 : 10, 9 : 10 : 8, 10 : 8 : 9, and 8 : 9 : 10 are processed by this filter. When
the multiple filtering approach is used, 4 MTI filters are designed based on stagger sets of
8 : 9 : 10, 9 : 10 : 8 and 10 : 8 : 9 and 8 : 9 : 10. First MTI filter with weight vector α is used
to process 8 : 9 : 10, second MTI filter with weight vector β is used to process 9 : 10 : 8, third
MTI filter with weight vector γ is used to process 10 : 8 : 9 and fourth MTI filter with weight
vector η is used to process 8 : 9 : 10. The matrix representation that gives the output of each
MTI filter is indicated in (4.8)




O1

O2

O3

O4


 =




α1 α2 α3 α4 0 0 0

0 β1 β2 β3 β4 0 0

0 0 γ1 γ2 γ3 γ4 0

0 0 0 η1 η2 η3 η4







P1

P2

P3

P4

P5

P6

P7




(4.8)

where P1 to P7 are the input pulses and O1 to O4 are MTI filter outputs. O1 is the output
of MTI using the first 4 pulses. These pulses are seperated by T1, T2, T3 seconds as shown in
top part of Figure 4.9. O2 is the output using the successive 4 pulses starting from 2nd pulse.
These pulses are separated by T2, T3, T4 seconds.

Assuming the target has a Doppler of frequency of fd, then Pk in equation (4.8) becomes
as Pk = ej2πfdtk , as before. Then O1 =

∑N
k=1 αke

j2πfdtk , O2 =
∑N+1
k=2 βk−1e

j2πfdtk , O3 =∑N+2
k=3 γk−2e

j2πfdtk and O4 =
∑N+3
k=4 ηk−3e

j2πfdtk .

To investigate the performance of multiple filtering, firstly non-uniform filter designs are im-
plemented as time invariant filters. Figure 4.10 indicates the single filters for the stagger ratio
of 16 : 20 : 17 : 22. Response of the designed filters is similar to each other and they exhibit
60 dB average stopband attenuation and 20 dB maximum deviation in the passband. Table
4.8 indicates the performance measures.

Figure 4.11 illustrates the improvement factors of the designed filters in Figure 4.10. All the
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filters achieve similar improvement factors. These are given in Table 4.9. Up to this point,
there is no difference with respect to the earlier comparisons. Now these designed filters will
be used for multiple filtering.

Figure 4.12 indicates the power response of the multiple filters when the designed filters in
Figure 4.10 are used for to set-up of multiple filtering. Figure 4.13 indicates the improvement
factor for multiple filters. The stagger ratio utilized is 16 : 20 : 17 : 22 : 16 : 20 : 17. It is seen
from the figure that, all the filters exhibit same response. Table 4.10 shows the performance
parameters and they are nearly same for all the filters. It must be noted here that filters have
better frequency responses for the stagger ratio of 16 : 20 : 17 : 22. However when they are
used for stagger ratios 20 : 17 : 22 : 16, 17 : 22 : 16 : 20 and 22 : 16 : 20 : 17, the response
become worse and all the filters show the same power response. The effect can be seen more
clearly if the filter responses are examined individually. Figure 4.14 and 4.15 indicate the
filter responses for passband and stopband for each stagger pattern cases. As it is seen, the
performance of the filters is satisfactory for the first sub plot. However, the performance of
the filters decrease in terms of stopband attenuation for other sub-plots. Table 4.12, 4.13,
4.14 and 4.15 indicate the performance parameters for single filters with stagger ratios of
16 : 20 : 17 : 22, 20 : 17 : 22 : 16, 17 : 22 : 16 : 20 and 22 : 16 : 20 : 17 respectively.

Figure 4.16 and 4.17 indicate the passband and stopband of the filters designed for each
specific stagger ratios. It is seen from the Tables 4.16, 4.17, 4.18 and 4.19 that better stopband
attenuation values are obtained (nearly 60 dB) when the time varying filters are designed for
each stagger pattern.

Figure 4.18 and 4.19 indicate power response and improvement factors of multiple filters with
time varying coefficients for the stagger ratio of 16 : 20 : 17 : 22 : 16 : 20 : 17. As it is observed,
stopband attenuation of the multiple filters is greater than time invariant coefficient filters. In
other words, if a single MTI filter is designed for each sub-stagger group and used in multiple
filter structure, stopband attenuation performance do not degrade as compared to the single
time invariant MTI filter.

67



0 2 4 6 8 10 12
−80

−60

−40

−20

0

20
Comparison of Designs, SR=16:20:17:22, fc = 0.05, ft = 0.5, fp = 10

fdoppler / PRFmax

M
ag
ni
tu
de

(d
B
)

Ls
Cvx
Min-Max
Prinsen
Binom

0 0.02 0.04 0.06 0.08 0.1 0.12
−80

−60

−40

−20

0
Zoomed Stopband Response

fdoppler / PRFmax

M
ag
ni
tu
de

(d
B
)

Ls
Cvx
Min-Max
Prinsen
Binom

Figure 4.10: Frequency Response of Designed Filters for Stagger Ratio 16:20:17:22 (Single
Filter)

Table 4.8: Performance Measures of Designed Filters for Stagger Ratio 16:20:17:22

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -65.480 -64.418 -0.023 22.601

Cvx -65.520 -57.212 -0.020 19.102

Min-Max -65.004 -63.755 -0.009 19.804

Prinsen -63.915 -54.892 -0.016 31.950

Binom -34.498 -30.181 -0.013 28.499
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Figure 4.11: Improvement Factor Plots of Designed Filters for Stagger Ratio 16:20:17:22
(Single Filter)

Table 4.9: Improvement Factor Values of Designed Filters for Stagger Ratio 16:20:17:22

Optimum Ls Cvx Minmax Prinsen Binom

IF (dB) 45.769 40.487 40.061 40.530 39.921 30.329
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Figure 4.12: Total Power Response of Designed Time Invariant Single Filters for Stagger Ratio
16:20:17:22:16:20:17 (Multiple Filter)

Table 4.10: Performance Measures of Total Power Response of Designed Filters for Stagger
Ratio 16:20:17:22:16:20:17

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -30.399 -26.089 -0.025 8.422

Cvx -30.437 -26.097 -0.024 8.337

Min-Max -30.440 -25.920 -0.024 8.027

Prinsen -30.449 -26.031 -0.024 8.191

Binom -32.598 -28.116 -0.024 8.191

70



0 2 4 6 8 10 12
0

20

40

60

80

100
Improvement Factor vs Normalized Freq., Stagger Ratio 16:20:17:22:16:20:17

Normalized Frequency (fdoppler / PRFmax)

IF
(d
B
)

Opt
Ls
Cvx
Minmax
Prinsen
Binom

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60
Zoomed Stopband Response

Normalized Frequency (fdoppler / PRFmax)

IF
(d
B
)

Opt
Ls
Cvx
Minmax
Prinsen
Binom

Figure 4.13: Improvement Factor Plots of Designed Time Invariant Single Filters for Stagger
Ratio 16:20:17:22:16:20:17 (Multiple Filter)

Table 4.11: Improvement Factor Values of Designed Single Filters for Stagger Ratio
16:20:17:22:16:20:17

Optimum Ls Cvx Minmax Prinsen Binom

IF (dB) 70.800 31.799 31.837 31.840 31.864 32.070
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Figure 4.14: Passband Response of Designed Single Filters for Stagger Ratios 16:20:17:22,
20:17:22:16, 17:22:16:20, 22:16:20:17
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Figure 4.15: Stopband Response of Designed Single Filters for Stagger Ratios 16:20:17:22,
20:17:22:16, 17:22:16:20, 22:16:20:17
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Table 4.12: Performance Measures of Designed Filters for Stagger Ratio 16:20:17:22

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -65.480 -64.418 -0.023 22.601

Cvx -65.520 -57.212 -0.020 19.102

Min-Max -65.004 -63.755 -0.009 19.804

Prinsen -63.915 -54.892 -0.016 31.950

Binom -34.498 -30.181 -0.013 28.499

Table 4.13: Performance Measures of Designed Filters for Stagger Ratio 20:17:22:16

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -27.455 -23.170 0.009 31.521

Cvx -27.426 -23.102 0.009 37.258

Min-Max -27.098 -22.558 0.003 23.187

Prinsen -27.290 -22.868 0.007 32.223

Binom -32.134 -27.602 0.004 29.589

Table 4.14: Performance Measures of Designed Filters for Stagger Ratio 17:22:16:20

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -41.224 -35.736 -0.031 21.172

Cvx -41.054 -35.675 -0.032 26.559

Min-Max -41.495 -36.941 -0.039 19.923

Prinsen -41.051 -35.948 -0.035 25.847

Binom -31.211 -26.658 -0.038 18.769

Table 4.15: Performance Measures of Designed Filters for Stagger Ratio 22:16:20:17

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -41.224 -35.736 -0.031 21.172

Cvx -41.054 -35.675 -0.032 26.559

Min-Max -41.495 -36.941 -0.039 19.923

Prinsen -41.051 -35.948 -0.035 25.847

Binom -31.211 -26.658 -0.038 18.769
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Figure 4.16: Passband Response of Designed Filters for Stagger Ratios 16:20:17:22,
20:17:22:16, 17:22:16:20, 22:16:20:17
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Figure 4.17: Stopband Response of Designed Filters for Stagger Ratios 16:20:17:22,
20:17:22:16, 17:22:16:20, 22:16:20:17
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Table 4.16: Performance Measures of Designed Filters for Stagger Ratio 16:20:17:22

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -65.480 -64.418 -0.023 22.601

Cvx -65.520 -57.212 -0.020 19.102

Min-Max -65.004 -63.755 -0.009 19.804

Prinsen -63.915 -54.892 -0.016 31.950

Binom -34.498 -30.181 -0.013 28.499

Table 4.17: Performance Measures of Designed Filters for Stagger Ratio 20:17:22:16

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -62.002 -59.908 0.008 21.895

Cvx -73.857 -64.717 0.001 23.140

Min-Max -61.981 -64.872 -0.003 15.921

Prinsen -63.141 -54.137 0.001 26.344

Binom -32.134 -27.602 0.004 29.589

Table 4.18: Performance Measures of Designed Filters for Stagger Ratio 17:22:16:20

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -59.469 -57.416 -0.029 18.961

Cvx -65.220 -56.106 -0.038 20.367

Min-Max -70.287 -63.068 -0.037 18.191

Prinsen -63.020 -54.227 -0.038 20.395

Binom -31.211 -26.658 -0.038 18.769

Table 4.19: Performance Measures of Designed Filters for Stagger Ratio 22:16:20:17

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -59.469 -57.416 -0.029 18.961

Cvx -65.220 -56.106 -0.038 20.367

Min-Max -70.287 -63.068 -0.037 18.191

Prinsen -63.020 -54.227 -0.038 20.395

Binom -31.211 -26.658 -0.038 18.769
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Figure 4.18: Total Power Response of Designed Multiple Filters used for Stagger Ratio
16:20:17:22:16:20:17 (Multiple Filter)

Table 4.20: Performance Measures of Designed Multiple Filters used for Stagger Ratio
16:20:17:22:16:20:17

Designs MSA (dB) SA (dB) MPE (dB) MD (dB)

Ls -61.905 -60.008 -0.022 7.767

Cvx -62.623 -54.198 -0.024 8.478

Min-Max -62.772 -61.397 -0.024 8.205

Prinsen -63.421 -54.519 -0.025 8.080

Binom -32.598 -28.116 -0.024 8.191
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Figure 4.19: Improvement Factor Plots of Designed Multiple Filters used for Stagger Ratio
16:20:17:22:16:20:17

Table 4.21: Improvement Factor Values of Designed Multiple Filters used for Stagger Ratio
16:20:17:22:16:20:17

Optimum Ls Cvx Minmax Prinsen Binom

IF (dB) 70.800 53.764 48.180 52.179 54.390 32.070
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CHAPTER 5

COMPARISON OF FILTER DESIGNS WITH
SELECTED STUDIES

In this chapter comparison of the design methods with four specific non-uniform MTI filter
designs are presented. For each case, summary of the design approach is given and a com-
parison between the proposed designs in this study are made according to the improvement
factor performance and the magnitude of the frequency response of the filter’s.

The specific reference designs taken from literature are [19], [20], [25] and [6]. Each design has
its own notation, different pulse intervals and design approach. In order to present comparisons
with these designs, interpulse durations are converted into stagger ratios. The constraints,
frequency boundaries and the clutter models are kept same and expressed with the parameters
used in this work.

5.1 Hsiao’s Design

One of the first studies related to stagger MTI filter design is Hsiao’s non-uniform MTI filter
design [19]. In his study, the optimization procedure based on the maximum attenuation in
the stopband and minimum ripple in the passband. Different from the proposed designs in this
work, maximum attenuation and the minimum ripple objectives are considered separately. To
obtain maximum stopband attenuation, the coefficients of the filter are calculated using the
clutter covariance matrix and solving the eigenvalue problem given in (5.1).

∑

j

αjρij − λαi = 0 i = 0, . . . , N, j = 0, . . . , N (5.1)

Here, αi’s are the filter coefficients, λ is eigenvalues of the clutter covariance matrix, N is the
number of pulses and ρij are the elements of the clutter covariance matrix. The solution is
finding the eigenvector associated with the minimum eigenvalue λ.

For minimum passband ripple, selection of the stagger intervals is considered. Selection of
intervals is based on the calculation of the mean squared deviation in the passband and
selecting the stagger intervals that result in the minimum mean squared deviation. The mean
squared deviation is stated as

ε2 =
1

fr/2− fu

∫ fr/2

fu


∑

i 6=j

∑
αiαj cos 2π(Ti − Tj)



2

df (5.2)
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Here, fr is the first blind Doppler frequency, fu is the upper bound of the stopband, αi’s are
the filter coefficients and T ’s are the sampling times. To get minimum ripple in the passband
this error function must be minimized. In least square sense this can be achieved as

∂ε2(Ti)

∂Ti
= 0 i = 0, . . . , N (5.3)

Approximate solution to this problem is stated and a search technique is presented for stag-
ger selection which provides locally optimal solutions with the given constraints. Presented
technique considers the calculation of the mean squared deviation in the passband iteratively
and selecting the stagger intervals that gives the minimum mean squared deviation.

In the study, normalized interpulse periods are given as (1.1, 1.1, 1.0, 1.2, 1.4, 1.1). PSD of
the clutter is assumed to have uniform distribution that is given by

C(f) =





1

fu − fl
fl ≤ f ≤ fu,

0 otherwise
(5.4)

Frequency response and the improvement factor comparison for Hsiao’s design are given in
Figure 5.1 and 5.2 respectively. Performance measures and the improvement factors are given
in Table 5.1 and 5.2. Comparison of the filters shows that, improvement in the SA, MPE

and MD parameters are achieved, whereas MSA of Hsiao is greater from all other designs.
Also the improvement factor of Hsiao is greater from all other designs. There are several
reasons for the obtained results. The first reason is the design methodology of Hsiao. In the
design, two independent optimizations are carried out for stopband and passband improve-
ments. Best values for attenuation and mean squared deviation are selected in the context
of adjusting the filter coefficients and the stagger intervals. One of the other reasons is the
usage of uniformly distributed clutter PSD model. For defined frequency bands, solution of
the minimum eigenvalue problem gives the best response in the mean stopband attenuation
value. Another reason is related to the objectives of the proposed methods. If the response of
each design is considered individually, objectives are achieved whereas Hsiao’s improvement
factor does not attained. For example, minimum mean stopband error is achieved with LS
design and improvement in maximum deviation is obtained with respect to Hsiao’s design.
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Figure 5.1: Magnitude Response Comparison of Designed Filters with Hsiao’s Filter

Table 5.1: Performance Measures for Magnitude Response Comparison of Designed Filters
with Hsiao’s Filter

MSA (dB) SA (dB) MPE (dB) MD (dB)

Hsiao -44.326 -31.686 -0.684 21.377

Ls -40.940 -30.994 -0.699 22.316

Cvx -43.347 -28.027 -0.669 17.587

Minmax -41.155 -37.148 -0.686 17.951

Minmax-IF -42.282 -33.348 -0.682 17.714
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Figure 5.2: Improvement Factor Plots of Designed Filters with Hsiao’s Filter

Table 5.2: Improvement Factor Values of Designed Filters with Hsiao’s Filter

Optimum Hsiao Ls Cvx Minmax Minmax-IF

IF (dB) 40.462 40.041 37.306 37.840 37.259 38.335
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5.2 Jacomini’s Design

In this design also minimum ripple in the passband and maximum clutter attenuation in the
stopband criteria are considered [20]. Different from the Hsiao’s design optimization problem
stated differently. The equation to be minimized is given as

PT = PC +WPr (5.5)

where PC is the output clutter power and Pr is the power obtained by summation of the
squared filter magnitude in passband. These values are given by

PC =

∫ 2πfl

0

FC(w)H(w)dw (5.6)

Pr =

∫ fu

fl

Hp(w)dw (5.7)

W is the design parameter used to determine the relative importance between the passband
ripple and stopband clutter attenuation.

Since the optimization problem is a non-linear problem, the design aims to find a local solu-
tion. Two solution methods are used namely Gradient Method and Quadratic Method. Both
methods tries to minimize the value of PT to obtain better performance.

Normalized sampling durations for the selected filter are given as (0.0, 0.279, 0.483, 0.633,
0.808, 1.047). Corresponding normalized interpulse durations are calculated as (0.279, 0.204,
0.150, 0.175, 0.239) by subtracting consecutive sampling durations. Similar to the Hsiao’s
case, uniformly distributed clutter PSD is used. Frequency response and improvement fac-
tor comparison are given in Figure 5.3 and 5.4 respectively. Performance measures and the
improvement factors are given in Table 5.3 and 5.4.

If the responses of the filters are examined, the first notable result is the similarity between
the performances of the Jacomini’s and the least square filter. This result is expected since
the cost functions of the designs consider the same objectives with a weight factor. Despite
the difference between the underlying analytical formulations, boundaries on the constraints
lead to similar results.

If MSA, SA and MPE are considered, CVX and Min-max designs achieve better responses
compared to the Jacomini’s and least square filter, whereas they do not improve the MD

value.

Another notable difference is seen in the improvement factor performances of the filters. Min-
max design with optimum filter improvement factor achieves the best improvement factor
compared to other designs. This is due to use of smaller cutoff frequency, uniform clutter PSD
model and suitable stagger periods.
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Figure 5.3: Magnitude Response Comparison of Designed Filters with Jacomini’s Filter

Table 5.3: Performance Measures for Magnitude Response Comparison of Designed Filters
with Jacomini’s Filter

MSA (dB) SA (dB) MPE (dB) MD (dB)

Jacomini -49.075 -38.247 -0.014 10.879

Ls -49.167 -39.605 -0.026 10.409

Cvx -51.915 -61.130 -0.252 13.840

Minmax -53.506 -47.909 -0.251 12.645

Minmax-IF -64.008 -49.876 -0.205 22.598
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Figure 5.4: Improvement Factor Plots of Designed Filters with Jacomini’s Filter

Table 5.4: Improvement Factor Values of Designed Filters with Jacomini’s Filter

Optimum Jacomini Ls Cvx Minmax Minmax-IF

IF (dB) 63.123 44.660 44.575 47.193 48.447 57.257
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5.3 Ewell’s Design

In [25], Ewell designed Constrained Improvement Processors named as CIPs. Design con-
straints of these are different from previous cases. The improvement factor to be satisfied is
specified firstly and then ripples in passband is minimized according to the improvement factor
constraint. Two categories of designs are presented. First approach considers the optimization
of filter weights for a fixed stagger pattern whereas stagger periods are also optimized along
with the filter coefficients in the second approach.

The power response of the processors is given by

G(f) =

N∑

i=1

X2
i +

N−1∑

k=1

N−k∑

i=1

2XiXi+k × cos {2πf [k −∆(i) + ∆(i+ k)]} (5.8)

Here, X’s are filter coefficients, ∆’s are normalized interpulse duration differences and N is
the number of pulses.

Mean square error of the design is defined in [25] as

mse =
1

f ′

∫ f ′

0

[1−G(f)]2df (5.9)

Here, f ′ is the highest interested normalized frequency. Design of the processors is based on
placing the G(f) into mse equation and solving for the minimum mean-square deviation of
the frequency response according to specified MTI improvement.

For comparison, CIP design with %20 variation is taken with stagger ratio of 8 : 9 : 10.
Gaussian clutter PSD is used with σ = 0.01. Frequency response and improvement factor
comparison are given in Figure 5.5 and 5.6 respectively. Performance measures and the im-
provement factors are given in Table 5.5 and 5.6.

Different observations can be obtained from the performance of the filters. It must be noted
that the constraint of the Ewell’s design is different from the proposed designs. As seen from
the results, nearly 60 dB attenuation is possible to achieve with the proposed designs whereas
the Ewell’s filter is constrained to 30 dB attenuation. Since the maximum attenuation is
constrained to these value, minimum ripple in the passband is obtained. However, CVX and
Min-max designs achieve close performance to the Ewell’s, in terms of passband performance.
In addition, these designs accomplish better stopband attenuation performance (20-45 dB
further attenuation).

The limitation on the performance of Ewell’s filter is clearly seen from Figure 5.6. Minmax-IF
method accomplishes the best improvement factor between all designs (75.435 dB). Other
proposed designs also achieve better improvement factors. Ewell’s filter improvement factor
is the smallest one since it is constrained to 30 dB.
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Figure 5.5: Magnitude Response Comparison of Designed Filters with Ewell’s Filter

Table 5.5: Performance Measures for Magnitude Response Comparison of Designed Filters
with Ewell’s Filter

MSA (dB) SA (dB) MPE (dB) MD (dB)

Ewell -32.534 -30.088 -0.370 9.020

Ls -58.974 -50.102 -0.857 14.515

Cvx -63.390 -55.077 -0.456 10.430

Minmax -60.927 -51.876 -0.388 10.503

Minmax-IF -81.470 -76.458 -0.620 35.194
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Figure 5.6: Improvement Factor Plots of Designed Filters with Ewell’s Filter

Table 5.6: Improvement Factor Values of Designed Filters with Ewell’s Filter

Optimum Ewell Ls Cvx Minmax Minmax-IF

IF (dB) 76.936 28.780 43.061 48.711 45.450 75.435
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5.4 Zuyin’s Design

In [6], Zuyin proposes a new analytical method for the non-uniform MTI filter design. Design
criteria of the proposed approach are similar to the previous designs. Interpulse durations
are selected according to minimum passband ripple and the filter coefficients are selected to
increase the clutter suppression capability.

The design focuses on the approximation of the offered filter transfer functions into transversal
type of transfer functions of MTI filters. The suggested filters called as prototype highpass
filters whose transfer function is given by

H∗N−1(jw) =
jwTl

jwTl + 1
(5.10)

Zuyin states that “When N received pulse signals are used for the MTI processing, it is possible
to get the approximated transfer function of transversal MTI filters through rational fractions"
[6]. Corresponding approximation is given by

H∗N−1(jw) =

N−1∑

n=0

αne
−jwtn (5.11)

For numerical comparison, taken stagger intervals are given by (0.838T, 1.135T, 0.892T,
1.108T, 1.027T). These values are rewritten as a stagger ratio of 838 : 1135 : 892 : 1108 : 1027.
Frequency response and improvement factor comparison are given in Figure 5.7 and 5.8 re-
spectively. Performance measures and the improvement factors are given in Table 5.7 and
5.8.

To consider the improvement in passband ripple, mean stopband attenuation of the proposed
designs are selected close to the Zuyin’s (∼66 dB). In this comparison, improvement capability
of the designs in passband ripple is seen clearly. If Table 5.7 is examined, MPE values of
the designs are close to each other whereas the MD values are improved by 2 dB to 10
dB compared to the Zuyin’s. The improvement in SA and MD values also provides better
improvement factors as seen from Table 5.8.
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Figure 5.7: Magnitude Response Comparison of Designed Filters with Zuyin’s Filter

Table 5.7: Performance Measures for Magnitude Response Comparison of Designed Filters
with Zuyin’s Filter

MSA (dB) SA (dB) MPE (dB) MD (dB)

Zuyin -66.987 -51.426 -1.154 37.362

Ls -66.888 -56.710 -1.108 38.047

Cvx -66.547 -55.745 -1.152 39.402

Minmax -66.386 -62.051 -1.175 46.620

Minmax-IF -57.013 -58.791 -1.201 45.407
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Figure 5.8: Improvement Factor Plots of Designed Filters with Zuyin’s Filter

Table 5.8: Improvement Factor Values of Designed Filters with Zuyin’s Filter

Optimum Zuyin Ls Cvx Minmax Minmax-IF

IF (dB) 56.887 48.701 49.525 50.375 54.297 51.071
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CHAPTER 6

CONCLUSION

6.1 Results and Conclusion

In this work, we apply classical filter design frameworks to the staggered PRI MTI filter
and present the results with comparisons. The goal of the MTI filter design is providing
maximum clutter attenuation in stopband and minimum ripple in passband. The presented
design techniques are based upon these goals. The weighted least square, convex and min-
max techniques are utilized to design filters with non-uniform sampling. It has been shown
that with a proper selection of the weight parameter, a good compromise between clutter
attenuation and flat passband response can be attained.

Two additional approaches are considered in order to increase the signal-to-clutter ratio im-
provement. First approach implements the modified min-max design by considering the op-
timum filter’s improvement factor. This methodology has an advantage to improve the per-
formance when the clutter power spectrum density corresponds to a scan radar clutter power
spectrum density. This design can be used when other designs do not provide the required
MTI improvement factor. Second approach focuses on the implementation of the designed
filters as multiple filters that have time varying coefficients. Multiple filter structure is exam-
ined in detail and related performance comparison with the filters with time constant weights
are made.

Here, it must be noted that, usage of optimal MTI filters can provide better clutter attenuation
and passband performance compared to the designed filters. Also the analysis and implemen-
tations of these are well established for uniform and non-uniform PRF cases. However, these
optimal filters have different disadvantages. For example, the optimal filter that is based on
eigen filter method, focuses on maximizing clutter attenuation and improvement factor. Since
the maximum deviation in passband is not considered, higher ripples can form that forms
extra blind speeds. The other optimal filter, that is based on match filtering, considers the
best achievable response in return for higher processing power. Also there can be conditions
that do not require highest improvement factor. At the beginning of this study, these cases
are considered and a flexible solution for different scenarios are thought. Therefore, possible
novelty of this work is the flexibility of the design parameters and the usage of different meth-
ods for the solution of the staggered PRI MTI filtering. Reasonable values can be obtained
for the given stagger ratios without the need of optimization of the stagger periods.

Obtained results throughout the thesis work illustrate the effectiveness of the design tech-
niques. Most of the time, required constraints can be achieved with the designs and better
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responses are obtained generally for different performance measures as compared to the designs
in the literature.

6.2 Future Work

We will plan to widen the MTI filter design into pulse-Doppler radars by changing the highpass
filtering characteristics into bandpass characteristics and design filters for the staggered pulse-
Doppler Radars. In addition, these type of bandpass filtering can be implemented in non-
uniform Airborne MTI Radars.

By improving run time of the algorithms, it is possible to implement staggered MTI filters in
an adaptive manner with the estimation of the clutter covariance matrix. Since the designs
present flexible solutions to different cutoff frequency and velocity band requirements.

It is our another plan to implement the techniques in a real time radar simulator by employing
the hardware implementations of the proposed non-uniform MTI filter designs.
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APPENDIX A

FILTER WEIGHTS FOR COMPARISON WITH
SELECTED STUDIES

Table A.1: Staggered MTI Filter Weights for Comparison with Hsiao’s Study

W Normalized Filter Coefficients

Hsiao - 0.0809, -0.3011, 0.5846, -0.6173, 0.3796, -0.1795, 0.0600

Ls 48800 0.1003, -0.3418, 0.6104, -0.6036, 0.3382, -0.1424, 0.0390

Cvx 3.031e14 -0.0616, 0.2717, -0.5692, 0.6293, -0.4009, 0.1939, -0.0633

MinMax 7510 0.0793, -0.2969, 0.5753, -0.6174, 0.3872, -0.1967, 0.0693

MinMax-IF - -0.0760, 0.2924, -0.5753, 0.6204, -0.3886, 0.1936, -0.0665

Table A.2: Staggered MTI Filter Weights for Comparison with Jacomini’s Study

W Normalized Filter Coefficients

Jacomini - 0.0625, -0.3517, 0.7363, -0.5658, 0.0975, 0.0244

Ls 148500 0.0760, -0.3731, 0.7290, -0.5562, 0.1188, 0.0054

Cvx 1000 0.0093, -0.1388, 0.5435, -0.7270, 0.3887, -0.0756

MinMax 10000 0.0018, -0.1200, 0.5317, -0.7355, 0.3956, -0.0737

MinMax-IF - -0.0347, 0.2386, -0.6404, 0.6747, -0.2743, 0.0362
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Table A.3: Staggered MTI Filter Weights for Comparison with Ewell’s Study

W Normalized Filter Coefficients

Ewell - 0.3547, -0.8649, 0.2982, 0.1930

Ls 65790 0.5899, -0.6651, -0.2840, 0.3592

Cvx 18740000 0.4913, -0.8301, 0.2476, 0.0913

MinMax 6000 -0.2166, -0.1616, 0.8431, -0.4649

MinMax-IF - 0.2733, -0.7196, 0.6155, -0.1692,

Table A.4: Staggered MTI Filter Weights for Comparison with Zuyin’s Study

W Normalized Filter Coefficients

Zuyin - 0.0828, -0.3096, 0.6440, -0.6355, 0.2748, -0.0564

Ls 4055000 0.1305, -0.4080, 0.6774, -0.5640, 0.1961, -0.0320

Cvx 1000 -0.0728, 0.2819, -0.6228, 0.6533, -0.3093, 0.0698

MinMax 10000 0.0833, -0.2957, 0.6182, -0.6454, 0.3175, -0.0780

MinMax-IF - -0.1282, 0.3837, -0.6489, 0.5886, -0.2554, 0.0601
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