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ABSTRACT 

 

 

INVESTIGATION OF THE EFFECTS OF REUSE ON SOFTWARE QUALITY IN AN 

INDUSTRIAL SETTING 

 

 

 

Deniz, Berkhan 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Semih Bilgen 

 

January 2013, 54 pages 

 

 

Software reuse is a powerful tool in order to reduce development and maintenance time and cost. 

Any software life cycle product can be reused, not only fragments of source code. A high degree of 

reuse correlates with a low defect density. In the literature, many theoretical and empirical 

researches have examined the relationship of software reuse and quality. In this thesis, the effects of 

reuse on software quality are investigated in an industrial setting. Throughout this study, we worked 

with Turkey’s leading defense industry company: Aselsan’s software engineering department. We 

aimed to explore their real-life software projects and interpret reuse and quality relations for their 

projects. With this intention, we defined four different hypotheses to determine reuse and quality 

relations; and in order to confirm these hypotheses; we designed three separate case studies. In 

these case studies, we collected and calculated reuse and quality metrics i.e. Object-oriented quality 

metrics, reuse rates and performance measures of individual modules, fault-proneness of software 

components, and productivity rates of different products. Finally, by analyzing these measurements, 

we developed suggestions to further benefit from reuse in Aselsan through systematic 

improvements to the reuse infrastructure and process. Similar case studies have been reported in the 

literature, however, in Turkey, there are not many case studies using real-life project data, 

particularly in the defense industry. 

 

Keywords: Software reuse, Quality metrics, Embedded software, Fault-proneness, Empirical study. 
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ÖZ 

 

 

YENİDEN KULLANIMIN YAZILIM KALİTESİNE ETKİLERİNİN ENDÜSTRİYEL BİR 

ÇERÇEVEDE İNCELENMESİ 

 

 

 

Deniz, Berkhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Semih Bilgen 

 

Ocak 2013, 54 Sayfa 

 

 

Yazılım yeniden kullanımı, geliştirme ve bakım zamanını ve maliyetini azaltmak için güçlü bir 

araçtır. Yalnızca kaynak kod parçaları değil; herhangi bir yazılım yaşam döngüsü ürünü, yeniden 

kullanılabilir. Yüksek derecede yeniden kullanım, düşük yazılım hata oranı ile ilişkilidir. 

Literatürde birçok teorik ve deneysel araştırma yazılım yeniden kullanımı ile yazılım kalitesi 

ilişkisini incelemiştir. Bu tezde, yazılım kalitesine yazılım yeniden kullanımının etkileri endüstriyel 

bir ortamda incelenmiştir. Bu çalışma boyunca, Türkiye'nin önde gelen savunma sanayi firması 

Aselsan'ın Yazılım Mühendisliği Bölümü  ile çalıştık. Bu çalışmada, gerçek yazılım projelerinin 

incelenmesi ve bu projelerde yazılım yeniden kullanımı ve yazılım kalitesi ilişkilerinin 

yorumlanması amaçlanmıştır. Bu niyetle, yeniden kullanım ve kalite ilişkilerini belirlemek 

amacıyla, dört farklı hipotez tanımlanmıştır ve bu hipotezleri doğrulamak amacıyla, üç ayrı vaka 

çalışması tasarlanmıştır. Bu vaka çalışmalarında, nesne odaklı kalite ölçümleri, farklı modüllerin 

yeniden kullanım ve performans ölçümleri, yazılım bileşenlerinin hata yatkınlığı ve farklı ürünlerin 

üretkenlik oranları gibi metrikler toplanmış ve ölçülmüştür. Son olarak, bu ölçümler analiz edilerek, 

yeniden kullanım altyapı ve süreçlerinde sistematik iyileştirmeler yapılması yoluyla, Aselsan’ın 

yazılım yeniden kullanımından daha fazla yararlanması için öneriler geliştirilmiştir. Literatürde 

benzer vaka çalışmaları rapor edilmiştir; ancak Türkiye'de, gerçek proje verileri kullanılarak 

yapılmış, özellikle savunma sanayisi alanında, çok fazla vaka çalışması bulunmamaktadır. 

 

Anahtar Kelimeler: Yazılım yeniden kullanımı, Kalite metrikleri, Gömülü yazılım, Hata 

yatkınlığı, Deneysel çalışma. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

 

Software reuse is a powerful tool to reduce development and maintenance time and cost. Any 

software life cycle product can be reused, not only fragments of source code. This means that 

developers can reuse requirements documents, system specifications, design structures, and any 

other development artifact [1]. As software assets are reused, the accumulated defect fixes result in 

higher quality [2]. Therefore, a high degree of reuse correlates with a low defect density. 

 

Since software reuse and its effects on software quality are key concepts of software development, 

measurement and comparison of software reuse and software quality are also essential in the 

software life cycle.  

 

Using reused and non-reused source line of codes is the most used software reuse measurement 

type; however additionally the number of function-points, number of uses-cases or set of 

requirements can be used to measure software reuse [3, 4]. Number of reused components in 

component-based software development is also another metric to evaluate software reuse. 

 

Similar to software reuse measurement, there is no single standard method for software quality 

measurement. ISO/IEC 9126 standard [5] is the most commonly used guide for software quality 

measurement. In this standard, the quality framework for external and internal quality is defined. 

Software quality attributes are categorized into six characteristics (functionality, reliability, 

usability, efficiency, maintainability and portability), which are further subdivided into sub-

characteristics which can be measured by internal or external metrics. Fault Detection metric of the 

Reliability characteristic of the model is the most reported quality metrics in the literature. This 

metric is about how many faults were detected in the software product [6]. The number of defects 

per non-comment source line value is suggested for measuring these metrics. In addition to defects 

density, rework effort -using Stability sub-characteristic’s Change Impact metrics of the model- is 

also used for measuring quality [7]. 

 

Additionally, object-oriented (OO) software metrics, in order to determine the quality of object 

oriented software, are used for measuring quality. These metrics can be used in many ways: making 

system level predictions, early identification of high-risk software components, and the 

establishment of preventative design and programming guidelines [8]. Chidamber and Kemerer's 

metrics suite for object-oriented design [9] is one of the most rigorous studies in OO metrics 

investigation. 

 

In the literature, many studies and experiments have been reported on software reuse and software 

quality using historical data on defects in order to assess impacts of reuse on quality in object-

oriented systems [6, 10, 11]. Most of these studies have shown the strong correlation between 

software reuse and software quality even though these works have differences in measurement 

types, experimental approaches, and etc. 

 

In this thesis, we investigated real-life software projects of Turkey’s leading defense industry 

company – Aselsan, in order to observe reuse and quality relations of these projects. With this 

intention, we designed three separate case studies and collected and calculated metrics i.e. Object-

oriented quality metrics, reuse rates and performance of individual modules, fault-proneness of 

components, and productivity rates of the products. Then by analyzing these metrics, we reached 
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some useful conclusions: based on these case studies, we also develop suggestions to further benefit 

from reuse through systematic improvements to the reuse infrastructure and process. In literature, 

similar case studies have been reported; however, in Turkey, there are not many case studies using 

real-life project data, particularly in the defense industry. 

 

The remaining chapters of the study are organized as follows:   

 

In Chapter 2, the background information about reuse types, the methods of measuring reuse and 

quality and ISO/IEC 9126 quality model are presented. Furthermore, object-oriented software 

quality metrics are introduced. Also, previous works on the effects of software reuse on software 

quality are summarized. 

 

In Chapter 3, the experimental work is explained. The research hypotheses are presented. The 

designed case studies and the collected reuse and quality metrics are introduced. Then, the collected 

data is analyzed, and the research hypotheses are verified. Finally, suggestions to improve the reuse 

infrastructure in Aselsan are formulated based on the reported case studies. 

 

Chapter 4 concludes the thesis. The work done and the obtained results are summarized. The 

achievements and difficulties of this study are reviewed; further suggestions for future studies are 

offered.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

 

In this chapter, the relationship of software reuse and software quality is summarized. First, reuse 

types and reuse measurement methods are described. Then, quality measurement methods are 

covered: ISO/IEC 9126 quality standard is described, metrics derived from this standard are listed, 

and the critical literature on the standard is summarized. Additionally, object-oriented software 

quality metrics are explained: Theoretical and empirical analyses of the selected metrics are 

provided. Finally, effects of software reuse on software quality are summarized for both general 

purpose software and embedded software; furthermore relationship of performance requirements of 

embedded software systems and software reuse is investigated. 

 

2.1 REUSE TYPES 

 

Software reuse refers to the usage of the same software artifact in multiple instances [2]. Software 

reuse can be applied not only to source code but also to any software life cycle product, process and 

information. This means developers can utilize reuse via most software related entities such as 

requirements, system specifications, design reports, and processes such as domain engineering for 

product lines, and any other development products as well [1, 3]. 

 

In [12], four types of reuse are classified as: “data reuse, architecture reuse, design reuse and   

program reuse”. Apart from them, ten possible reuse approaches of software projects are listed as 

follows: “architectures, source code, data, designs, documentation, estimation templates, human 

interfaces, plans, requirements, and test cases” [1]. The first aspect of source code level reuse is the 

function-level reuse which is for structural languages [2]. Whereas, object-oriented systems support 

further reuse options in contrast to structural languages. In OO software development, modules can 

be reused through references, inheritances, any types of templates, object-oriented frameworks or 

components [7, 11].  

 

There are two main reuse categories: Components-based reuse and transformation-based reuse [13]. 

Developers choose appropriate components, modify them if necessary and reuse in the first 

category. Open source software components, commercial-off-the-shelf components, software 

architecture modules, and product-line components are some examples of reusable components [6].  

 

In the second category, an automated engine produces outputs by transforming appropriate inputs. 

In transformation-based reuse, the user focuses on specifying an input definition. In order to 

provide this description, developer reuses the mechanisms of earlier software development efforts, 

thus reuses processes [12]. Most reuse-engines are samples of transformation-based reuse. 

 

Many software developers create components which share similar functionality or develop 

components with slight variations. For this reason, documentation of these components has many 

similarities too. Hence, documentation of software artifacts can also be reused in a systematic way 

[14]. 

 

In this review, unless otherwise stated, what we mean by the term reuse is reuse of any software life 

cycle product, but not only source code level reuse. 
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2.2 MEASURING REUSE 

 

Source code level reuse is differentiated as “reused verbatim” or “with slight modification, i.e. less 

than 25% of lines changed” [1]. Similarly, authors categorize components according to their origins 

as modules or components reused verbatim, with minor (less than 25%) or major (more than 25%) 

modifications, or newly developed [11]. Verbatim reuse is reusing an artifact “as-is” in a black-box 

style. 

 

Reuse ratio or rate is the percentage of compiled units reused verbatim or with minor modifications 

and in literature the most suggested metric for reuse size measurements is non-comment source line 

of code (SLOC) [1, 11, 15]. Reuse rate is the size of reused assets divided by the software size: 

Reused SLOC over total SLOC. 

 

Researchers justify the procedure of source code for reuse measurement by the fact that reuse of 

assets other than source code is hard to be computed and measuring source code also includes these 

other assets’ reuses [11].  

 

In framework-based development, reuse rate is measured with the rate of the magnitude of what is 

reused from the framework and the whole product dimensions delivered in a single application. In 

this measurement, sizes are defined in Object Oriented Function Points (OOFP). Because of the 

practical problems of SLOC measurements for framework-based development, this metric is 

excluded. Another reason is that this metric is not appropriate for productivity measurements of 

framework-based development. Furthermore, researchers suggest OOFPs since this metric is more 

straightforward to implement [3].  

  

For component-based software (CBS) or lifecycle products other than source code, “size” is not an 

available metric as it is for standard systems. Therefore, researchers suggest “the number of use 

cases” (i.e. Business tasks) as an alternate means of size measurements [4]. For the other lifecycle 

products, we can also use the number of reused products as an indicator of reuse size. 

 

2.3 MEASURING QUALITY 

 

In this section, quality measurement methods are reviewed. First, ISO/IEC 9126 quality standard is 

described. Then, object-oriented software quality metrics are explained: Theoretical and empirical 

analyses of the selected metrics are provided. 

 

2.3.1     ISO/IEC 9126 QUALITY MODEL 

 

ISO/IEC 9126 describes the quality model which is based on six characteristics and 27 sub-

characteristics of software product quality and additionally one or more metrics to evaluate each of 

its sub-characteristics. ISO/IEC 9126 Quality Model consists of four parts: 

 Part 1: Quality model [5], 

 Part 2: External metrics [16], 

 Part 3: Internal metrics [17], 

 Part 4: Quality in use metrics [18]. 

 

Part1 explains the standard specifications of the quality model. Part2 describes the external metrics; 

similarly Part3 describes the internal metrics and finally Part4 determines quality in-use metrics 

about assessing the software product. 

 

Evaluation of software products in order to ensure software quality needs is one of the critical 

processes in the software development life cycle.  Software product quality can be evaluated by 

measuring internal attributes (metrics inside code), or by measuring external attributes (the behavior 

of the code or system), or by measuring quality in use attributes.  The objective of the standard is to 

keep the desired effect for the product in the context of use [5]. 
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User quality requirements and quality in use requirements specify “external quality requirements” 

which indicate the level of quality from the external view [16]. External metrics examine these 

requirements. Internal quality requirements are based on external quality requirements. Internal 

quality metrics derived from internal quality requirements determine the quality amount of 

temporary products [17]. The total understanding of internal and external quality is used to predict 

the estimated “quality in use” for the software product during the development process [18]. 

Quality in use is the user’s expression of quality and is measured from the usage of software in the 

user context instead of the software itself. 

 

The quality model categorizes the software quality into six characteristics for both external and 

internal qualities: Functionality, reliability, usability, efficiency, maintainability and portability. 

Then, these characteristics are additionally divided into sub-characteristics as shown in Table 2.1. 

Internal and external metrics measure these sub-characteristics [5]. 

 

Table 2.1 – Characteristics and sub-characteristics of ISO/IEC 9126 quality model [5] 

 

Functionalit

y 

Reliability Usability Efficiency Maintainabil

ity 

Portability 

Suitability Maturity Understandabili

ty 

Time 

behavior 

Analysability Adaptability 

Accuracy Fault 

tolerance 

Learnability Resource 

utilization 

Changeability Installability 

Interoperabilit

y 

Recoverabilit

y 

Operability Efficiency 

compliance 

Stability Co-

existance 

Security Reliability 

compliance 

Attractiveness  Testability Replaceabili

ty 

Functionality 

compliance 

 Usability 

compliance 

 Maintainabilit

y compliance 

Portability 

compliance 

 

The latest quality model released by ISO/IEC is Software product Quality Requirements and 

Evaluation (SQuaRE). This model covers the software quality requirements with a systems 

perspective. New standard includes a mechanical parts section including mechanics, hydraulics, 

electronics, and human processes, etc. Hence, the new system-description investigates a wide range 

of applications [19]. ISO/IEC 25023 Measurement of the system and software product quality 

model of SQuaRE collects and replaces ISO/IEC 9126-2 and ISO/IEC 9126-3 revised [20].  

 

In this review, we preferred to refer ISO/IEC 9126 Quality model; as in the relevant literature, this 

model is still dominant. 

 

In many other works, different quality measurement methods are suggested using the ISO/IEC 9126 

Quality model’s characteristics and sub-characteristics. In the rest of this section, we will introduce 

these quality measures. 

 

Fault detection metric of the Reliability characteristic of the standard is the most reported quality 

metrics in the literature. This metric focuses on the total number of defects detected in the software 

product [4, 6]. Defects per non-comment source line of codes value is suggested for measuring this 



   

 6 

metric. Any types of errors (Compile, errors, and logic errors) are counted in these measurements 

[1, 2]. 

 

In [15], the following metrics are used for measuring quality:  

 Defect rate (It is the number of errors per SLOC),  

 The total number of changes (improvement or repair) in the software product during the 

maintenance period (It is an example of Changeability sub-characteristic of the 

Maintainability characteristic of the Quality model [6]). 

 

In addition to defect rate, which is put forward by previous works, “rework effort” (an example of 

Stability sub-characteristic’s Change Impact metrics) is also used for measuring the quality [7]. The 

entire work spent for correcting problems is defined as a rework effort [11]. 

 

Isolation and ease of fixing of problems and strength of errors are used as quality indicators by 

utilizing Maturity and Recoverability characteristics of the ISO Quality model [11]. Additionally, 

other indicators of software quality are defined: metrics related to software changes i.e. The change 

density (number of changes per SLOC) and the modified code ratio between software releases by 

utilizing Changeability characteristic of ISO/IEC 9126 Quality model [3]. 

 

Another software quality metric is defined as the difference between development effort and rework 

effort needed to fix defects detected by the acceptance tests (Maintenance characteristic of ISO/IEC 

9126 standard). Furthermore, fault-proneness is designed and used as a quality metric (Fault 

tolerance metrics of ISO/IEC 9126 standard). Fault-proneness is the probability of defect detection 

in a software system as a function of structural characteristics of the system [21]. 

 

Table 2.2 shows the list of the software quality metrics which we covered in this section with the 

related ISO/IEC 9126 standard characteristics and sub-characteristics. 

 

Table 2.2 – Software quality metrics with the related ISO/IEC 9126 standard characteristics and 

sub-characteristics 

 

Metric ISO/IEC 9126 

characteristic 

ISO/IEC 9126  

sub-characteristic 

Fault-proneness/ Defect rate [7, 15] Reliability Fault tolerance 

Total number of defects [1, 2, 4, 6] Reliability Fault tolerance 

Total number of changes [6, 15] Maintainability Changeability 

Change density [3] Maintainability Changeability 

Modified code ratio [3] Maintainability Changeability 

Rework effort [7, 11] Maintainability Stability 

Difference between development effort and rework 

effort needed to fix defects [21] 

Maintainability Stability 

Isolation and ease of repair of problems [11] Reliability Maturity, 

Recoverability 

Strength of errors [11] Reliability Maturity, 

Recoverability 

 

In each of the studies above, there are several metrics to determine the software quality. Data 

provided from problem reports are one of the few measures of quality applied to most metrics [22]. 

Therefore, it is quite essential for a company to collect all recorded problems of the software and 

other parts of the system in “problem reports”. 
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2.3.2  CRITIQUE OF THE ISO/IEC 9126 QUALITY MODEL 

 

There is an excessive amount of criticism about ISO/IEC 9126 standard in the literature, although it 

is a world-wide standard for measuring software product quality.  

 

In some cases, usage of the ISO/IEC quality model makes quality requirements’ management hard. 

Because, although quantification of some quality requirements is easier; for many other 

requirements, quantification is difficult, expensive, and sometimes even impossible [23]. In order to 

use the standard, the developer needs to compute the associated characteristics, sub-characteristics, 

and metrics; which makes life extremely difficult for the developer. Therefore, the cost of 

quantifying a quality requirement can be limited by quantifying only some selected metrics. 

 

The standard is not always easy to understand. In a reported experiment, it was found that in the 

ISO/IEC 9126 quality standard, some characteristics are too abstract to follow, some metrics have 

more than one meaning, and also some others have overlapping meanings with other metrics [21].  

 

The size of the standard is another problem which makes it difficult to use. In order to use the 

complete standard, it is essential to detail quality requirements for a software product to the 

characteristics, sub-characteristics, and metrics levels of the standard [19]. However, in most cases, 

usage of the standard as a checklist, in order to ensure that all necessary quality requirements are 

included, is sufficient.  

 

ISO/IEC 9126 standard does not give any instructions about how to decide on metrics, how to 

obtain them directly, or how to give priority to measures [24]. According to the discussion in [25], 

most of the quality metrics of the standard cannot be measured directly. For this reason, the user 

should take the necessary quality characteristics of the standard specific to their area and evaluate 

them.  

 

The definitions of quality characteristics, sub-characteristics, and metrics in a distinct field may not 

match with the related definitions in the standard [26]. In order to obtain a satisfactory outcome, the 

user should perform the process of matching the definitions of the characteristics in their domain 

and the corresponding definitions in the standard.  

 

Categorization of characteristics in the ISO/IEC 9126 quality model has some fundamental 

problems. Not recognizing maintainability and reliability characteristics as being originated from 

design is a serious problem. Apart from that, the standard does not consider some key attributes of 

design feature such as validity and modularity [24]. 

 

The characteristics and sub-characteristics of the model are not internally consistent. In an 

experiment designed in order to determine correlations of the sub-characteristics of the standard, 

the researchers found that the standard consists of some high-correlated sub-characteristics [27]. 

 

Table 2.3 – Key problems of the ISO/IEC 9126 quality model 

 

Makes quality requirements management hard [23] 

Not easy to understand [21] 

Does not give any instructions about how to use it [24] 

Most of the quality metrics of the standard cannot be measured directly [25] 

The definitions of the metrics in the standard may not match with the related 

definitions in a particular domain [26] 

Categorization of the standards has structural problems [24] 

The characteristics and sub-characteristics are not always consistent [27] 

 

The key problems of the standard are summarized in Table 2.3. In spite of these complaints, 

ISO/IEC 9126 standard is still the de facto standard for measuring the quality attributes of a 
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software product. The users can overcome the challenges of the standard by selecting some 

necessary metrics and measuring only them in their projects. 

 

 

2.3.3  OBJECT-ORIENTED SOFTWARE QUALITY METRICS 

 

Above, we discussed the use of metrics in order to determine the quality of the software using 

ISO/IEC 9126 quality standard. The standard suggests both internal and external metrics for 

measuring quality, and various other metrics derived using this model. However, since the standard 

measures a software product via a large number of aspects; it does not provide specific code-based 

metrics; hence using this standard does not make sense for code-based measurements. Therefore, 

we decided to use another model for code-based metrics. Below, we will discuss object-oriented 

software quality metrics. 

 

2.3.3.1 ADVANTAGES OF CODE-BASED METRICS 

 

Software developers and managers can use code-based metrics for different purposes: system level 

forecasting, prior determination of unsafe components through early measures, and the 

development of safety design and programming instructions [8, 28]. Furthermore, selecting 

appropriate metrics from all the alternative metrics support the software developers and managers 

to identify the quality and structure of the software design and code [29]. In a previously published 

research, whether a software module would be fault-prone was successfully predicted by linking 

metrics and earlier software data [29]. Likewise, component defects were predicted using object-

oriented metrics obtained from design, code, and requirements [30]. Other authors empirically 

investigated the usability of object-oriented metrics in forecasting fault-proneness while 

considering the severity of defects [31]. 

 

Furthermore, object oriented metrics support software developers and managers conduct 

assessments of the necessary development and testing efforts [32]. Moreover, developers analyze 

and collect metrics in order to validate the software design quality, and hence, help developers 

improve software quality and productivity [33]. Likewise, metrics are essential especially when the 

developers decide on a new technology because metrics material provides rapid response in the new 

feature for software designers and managers [34]. Hence, if metrics are properly used, the costs of 

the implementation and maintenance reduce, and software product’s quality improves significantly. 

The advantages of software metrics are summarized in Table 2.4. 

 

Table 2.4 – Summary of advantages of software metrics 

 

System level forecasting [8, 28] 

Prior identification of unsafe components [29] 

Development of safety design and programming instructions [8, 28] 

Identify the quality and structure of the software design and code [29] 

Prediction of fault-proneness [29-31] 

Prediction of development and testing efforts [32] 

Validation of the software design quality [33] 

Improve software quality and productivity [33] 

Rapid response when a new technology is adopted [34] 

Reduction of implementation and maintenance cost [34] 
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2.3.3.2 THEORETICAL AND EMPIRICAL ANALYSIS OF THE OBJECT-ORIENTED 

METRICS 
 

There are different OO metrics defined in the literature. However, Chidamber and Kemerer's 

metrics suite for OO design, is the deepest research in OO metrics investigation. These metrics are 

known as CK metrics, and by far, these are the most popular OO metrics [8].  

 

Chidamber and Kemerer have defined six metrics for the OO design [9]:  

 Coupling between objects (CBO),  

 Depth of Inheritance Tree (DIT),  

 Lack of Cohesion in Methods (LCOM), 

 Number of children (NOC),  

 Response for a Class (RFC),  

 Weighted Methods per Class (WMC). 

 

In literature, the CK metrics have been widely argued,  investigated and supported (e.g. [8, 28, 31-

36]). 

 

Definitions of the discussed metrics 
 

In this part, we are going to discuss traditional metrics and object-oriented metrics and try to 

discover which metrics help developers measure design and code quality, and more specifically, 

which metrics are appropriate for predicting fault-prone software modules. Unless otherwise 

referenced, the metrics definitions in this section are taken from [32] which constitutes one of the 

most cited sources in the literature on the subject. 

 

Traditional metrics 

 

Traditional metrics are used in functional development and they also can be easily applied to 

object–oriented programming [35]. There are various traditional metrics. Complexity and size (i.e. 

Source Lines of Code - SLOC) are the suggested traditional metrics to use in OO design which we 

discuss in this part. 

 

Source Lines of Code (SLOC) 

 

It is the sum of counts of non-commented source lines of code in each class. It does not include 

lines of code in any associated super or sub-classes. 

 

Theoretical foundations of SLOC 

 

When software components exceed a certain size, fault-proneness increases rapidly [8]. Moreover, 

developers and maintainers use SLOC in order to determine understandability of code. 

 

Object-oriented metrics 

 

We will discuss CK metrics as object-oriented metrics. All CK metrics are defined at the class 

level. We selected class metrics, although there are other metrics defined on different program 

entities, e.g. Method, package, program; because the natural unit of object-oriented software 

systems is class and most metrics have been defined and measured on class level, and class level 

metrics express the concepts of inheritance, coupling, and cohesion [28]. 

 

Cohesion is the strength of co-working of the methods in a class to give a clear in-class 

characteristic. Cohesion improves encapsulation; therefore object-oriented designs improve 

cohesion. 
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Coupling is the strength of relations between two software modules. Classes are coupled when 

another class’ methods are called, or attributes are used. 

 

Inheritance is a relationship between classes in order to reuse previously defined objects, attributes, 

and operators.  

 

Coupling between Objects (CBO) 

 

It is the total count of the classes to which a class is coupled. It is measured by counting all non-

inheritance related classes on which a class depends.  

 

Theoretical foundations of CBO 

 

Redundant coupling affects modular design negatively and restricts reuse of the class; because 

when a class becomes more independent, its reuse in other applications becomes easier [34]. 

Changes in different parts of the design affect unpredicted parts of the design if the coupling 

increases in a class; therefore, maintenance of the class gets harder. A process gets complicated 

when there is redundant coupling; since it becomes hard to recognize, change or improve. 

Reduction in complexity of systems is possible if systems are designed with the least possible 

coupling between classes. This situation results in modularity and encapsulation enhancement. 

Consequently, CBO indicates classes which are less predictable, less reusable and harder to 

maintain. Additionally, coupling is also suitable for deciding on testing complexity of the design. 

 

Depth of Inheritance Tree (DIT) 

 

The depth of a class inside the inheritance chain is the highest step count from the class itself to the 

root of the tree.  

 

Theoretical foundations of DIT  

 

As DIT of a class increases, the number methods the class is expected to inherit also increases; 

therefore predicting its behavior becomes more complex [34]. Deeper trees cause more design 

complexity since they include more methods and classes; on the other hand deeper trees are more 

promising for reuse of the inherited methods. Henceforth, higher percentages for DIT show a higher 

degree of reuse; however increased complexity. 

 

Lack of Cohesion in Methods (LCOM) 

 

It is the total number of methods in a class which have no common attributes, minus the number of 

methods which have common attributes [8]. 

 

Theoretical foundations of LCOM  

 

LCOM measures the unlikeness of methods in a class. A highly cohesive module stands alone; 

since high cohesion is an indication of good class separation. Furthermore, low cohesion increases 

complexity; and high cohesion is an indicator of simplicity and high reusability.  

 

Number of Children (NOC) 

 

It is the number of subclasses of a class in the inheritance chain.  

 

Theoretical foundations of NOC  

 

NOC indicates the possible effect of a class on the software design and the whole system. As NOC 

children increases, the risk of improper abstraction of the parent class also increases. On the other 
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hand, as this metric increases, the reuse level increases since inheritance is a reuse type. 

Additionally, a class with an excessive number of children needs more testing [34]. 

 

Response for a Class (RFC) 

 

It is the total count of all methods which are called 1) as a reaction to a message received from a 

class or 2) by other methods of the class. 

 

Theoretical foundations of RFC  

 

This metric analyzes the sum of the complexity of a class through the number of methods and the 

amount of communication with other classes. As RFC increases, the complexity of the class also 

increases. Additionally, as RFC increases, the testing and debugging effort required also rises [34]. 

Therefore, classes with high RFC are more complex and less predictable.   

 

Weighted Methods per Class (WMC) 

 

It is a standard complexity metric. It is a weighted-count of the methods implemented within a 

class. Some authors weight the count with cyclomatic complexity; however others do not weight 

the count [8]. In this study, we will use cyclomatic complexity; since WMC simply becomes the 

number of methods if the count is not weighted. 

 

Theoretical foundations of WMC  

 

The total count of methods and the complexity of these methods help to predict the total time and 

effort needed to develop and maintain the class[34]. Furthermore, as the number of methods in a 

class increases, the possible impact of it on its children also accumulates. Classes with a greater 

number of methods are more likely to be application-specific i.e. The possibility of reuse reduces.  

 

After the descriptions above, we provide the table below (Table 2.5). In this table, we tabulate the 

related object-oriented concepts for each CK metric. 

 

Table 2.5 – CK metrics and object-oriented Concepts 

 

Metric 

acronym 

OO Concept  

(*: Primary concept) 

CBO Coupling*/Complexity 

DIT Inheritance*/Complexity 

LCOM Cohesion*/Complexity 

NOC Inheritance 

RFC Complexity*/Coupling 

WMC Complexity 

 

2.3.3.3 EMPIRICAL LITERATURE ON CK METRICS AND SOFTWARE QUALITY 

 

The effects of CK metrics on software quality, especially fault-proneness, have been widely argued 

in the literature. Many field experiments have been reported on these metrics. In this part, some of 

these studies will be reviewed, the relationship between the software quality (i.e. Fault-proneness, 

modified code ratio, productivity and rework effort) and the CK metrics will be discovered, and the 

results will be tabulated.  

 

In [31], the researchers made an analysis based on a public data set. They analyzed the data set by 

measuring the CK metrics and additionally the SLOC metric. Additionally, they compared their 
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results with fault severity. They have concluded most of these metrics are statistically correlated to 

fault-proneness of classes across fault severity: WMC, RFC, CBO, LCOM and SLOC are related to 

fault-proneness across all severity; however DIT and NOC are not related to fault-proneness. 

 

Subramanyam and Krishnan conducted a literature survey on empirical analysis of CK metrics [33]. 

In this analysis, effects of CK metrics on software quality were displayed using previously 

published studies. In this analysis, the practitioners and  the researchers employed fault-proneness, 

modified code ratio, productivity and rework effort as indicators of software quality. 

 

Another review about empirical results on CK metrics is conducted in [31]. Similar to work done in 

[33], the researchers also made a literature review. However, in this study, only fault-proneness was 

compared among the reviewed empirical results. The CK metrics and additionally the SLOC metric 

were employed in this study. 

 

The empirical results of [31], and [33] were tabulated below in Table 2.6. We categorized the data 

based on the metric types, and effects of these metrics on fault-proneness, modified code ratio, 

productivity, and rework effort are indicated using a plus (“+”) or a minus (“-”). A plus means the 

metric is correlated with the depicted quality metric; however a minus means the metric is not 

correlated with the depicted quality metric. The space (“ ”) means the reviewed study has not 

measured the related metric for that quality metric. In this table, each column under a quality metric 

indicates an individual empirical study reviewed in [31], or [33]. 

 

Table 2.6 – Summary of empirical results in [31] and [33] on CK metrics and software quality 

 

 
 

The results tabulated in Table 2.6 signify that, in most of the studies, the measured metrics correlate 

with software quality. Using the data in Table 2.6, we calculated the correlation percentages of 

these metrics and tabulated them in Table 2.7. This table indicates that all measured metrics are 

correlated with fault-proneness. Modified code ratio, productivity, and rework effort metrics are 

measured in a limited number of studies; therefore we were unable to derive a strong result as in the 

fault-proneness case. 

 

In Table 2.8, we tabulated the correlation of OO concepts with respect to the only strongly 

correlated quality metric which we have found in the above analysis, i.e. Fault-proneness. As 

shown below, we have observed that OO concepts of coupling and complexity are strongly 

correlated with fault-proneness. 
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Table 2.7 – Correlation percentages of the metrics with software quality (derived from the 

empirical data in [31] and [33]) 

 

 
 

Table 2.8 – Correlation of OO concepts with fault-proneness (derived from the empirical data in 

[31] and [33]) 
 

 
 

2.4 EFFECTS OF REUSE ON QUALITY 
 

In this section, a literature review will be presented on the effects of reuse on software quality. 

First, the reuse effects on general software will be introduced, and then reuse effects on embedded 

software specifically will be summarized.  

 

Increase of software products’ quality usually arises when they are reused; because of the reason 

that as software artifacts are reused, the collection of the defect corrections in sequential versions 

brings about a higher quality [2]. A high degree of reuse is found to be correlated with a low defect 

rate, and reduced development effort when the earlier industrial measurements are interpreted [1]. 

Another industrial research has displayed a similar relationship between reuse and quality: The 

subjective quality values assigned by software developers (i.e. Quality ratings) are found to be 

correlated with reuse level and reuse frequency of the software product [15]. 

 

Practitioners have reported results of an experiment employing the earlier software product details 

of a large telecom system built by a global company in [6]. In this experiment, a dozen of product 

releases are examined, and the following data were collected: Number of all detected defects, size 

of the components, and size of modified software. The conclusions of the study are reported as: 

Number of 

correlated studies / 

Total studies

%  

Correlated 

study

Number of 

correlated studies / 

Total studies

%  

Correlated 

study

Number of 

correlated studies / 

Total studies

%  

Correlated 

study

CBO 14/15 93,33 1/2 50,00 1/1 100,00

DIT 8/14 57,14 1/1 100,00 0/1 0,00

LCOM 5/7 71,43 1/1 100,00 1/1 100,00

NOC 8/10 80,00 1/2 50,00 0/1 0,00

RFC 14/14 100,00 2/2 100,00 0/1 0,00

WMC 13/14 92,86 1/1 100,00 0/1 0,00

SLOC 9/9 100,00 NA NA NA NA

Metric 

acronym

Fault-proneness Modified code ratio Productivity and rework effort

Effects on

Metrics

Number of 

correlated studies / 

Total studies

%  Correlated study

Coupling CBO, RFC 28/29 96,55

Complexity
CBO, DIT, LCOM, 

RFC, WMC
54/64 84,38

Cohesion LCOM 5/7 71,43

Inheritance DIT, NOC 16/28 57,14

Effects on fault-proneness

OO Concept
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 The defects detected in the reused components are given higher priority. Therefore, defect 

rates of reused components are found to be lower than of the non-reused components, 

 Non-reused components are found to be more defect-prone than reused components, 

 The number of modifications in reused components is found to be lower, when compared 

to the non-reused components, although having different requirements for various 

products.  

 

In a literature review which is about the effects of reuse on software quality for various 

components; it is reported that, systematic reuse (either verbatim reuse or reuse with insignificant 

changes or reuse with new code) is related to a convincing reduction in defect rate [11].  

 

In [3], an industrial experiment which is about software production using frameworks (An effective 

reuse approach), is presented. In this research, rework efforts of two software production are 

compared: A classical production and a framework-based production. The practitioners report that 

products developed with frameworks have higher quality than the products developed traditionally, 

due to the learning effect.  

 

The summary of what we mention about the reasons of quality improvements when the components 

are reused, are summarized below in Table 2.9. 

 

Table 2.9 – Several reasons of the quality rise when components are reused 
 

Components to be reused are designed more carefully [11] 

Components to be reused are better tested [11] 

The defects detected in the reused components are given higher priority [6] 

The collection of the defect corrections in sequential versions [2] 

Experienced software developers due to repetition of similar works [3] 

 

2.4.1  REUSE AND QUALITY IN REAL-TIME EMBEDDED SOFTWARE SYSTEMS 
 

In this sub-section, the reuse and quality relations of embedded software systems will be 

summarized.  

 

For embedded software, quality features do not only include functional requirements; but also 

include performance, reliability, safety, and maintainability requirements [37]. Additionally, 

embedded software systems require more complex functional and quality requirements as a result 

of their embedded nature; since embedded systems work in critical and sometimes dangerous 

environments. In addition, it is essential for these systems to predict, determine and integrate their 

quality demands as early as possible in the software development life cycle, and additionally it is 

important to capture detected defects against predicted defects; in order to reduce the cost impacts 

of the shortcomings of these requirements [38]. Therefore, these systems call for new software 

development methods [37]; such as: 

 Model-driven development, 

 Numerical modeling for performance and security analyses, 

 Automatic design and code checking, 

 Automatic testing, 

 Static code analyses of performance, security, and memory. 

 

Employing design patterns and frameworks are another way of systematic reuse for embedded 

software development. New models are suggested in the literature based on design patterns 

including analyses, and documentation [39]. Measurements of productivity and quality are achieved 

from the collected data through reuse of the patterns during the software development. Practitioners 

reported in a case study that correct usage of components and design patterns improves effort, time, 

and costs of embedded software projects [39]. 
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2.4.1.1 PERFORMANCE REQUIREMENTS OF EMBEDDED SYSTEMS 
 

In embedded systems, performance requirements arise from the demand of the effective 

employment of the hardware resources. Consequently, performance constraints are more critical 

and more influential in embedded systems than in other general purpose software systems such as 

IT systems. However, large abstraction layers, common platforms, and virtualization methods 

require many resources [40]. Therefore, these techniques are not suitable for most embedded 

systems. 

 

The key metrics used in embedded software systems are physical metrics: memory, performance, 

power, energy, and size [41, 42]. Furthermore, real-time systems should satisfy non-functional 

requirements such as timeliness, and reliability [43]. 

 

Above, in the “Measuring Quality” section, we summarized the use of code-based metrics for 

measuring software quality. In addition, relationship of software quality and the OO concepts are 

also discovered. However, while traditional software quality relates to these OO concepts such as 

abstraction, reuse, coherence, and coupling; these concepts generally oppose to physical metrics of 

embedded systems such as performance, and memory [44].  

 

Quality metrics, when employed successfully in general purpose software systems, are known to 

improve software quality, because of the progresses in the reuse and total effort [44]. However, the 

case is not the same for the embedded systems since embedded systems do not benefit from these 

improvements due to the strict performance constraints [41]. Nonetheless, some losses in reuse or 

maintainability cannot be avoided to gain a better performance for embedded systems [42].  

 

It is shown that object-oriented programming can considerably increase both execution time and 

resource consumption in embedded software systems. Although OO design improves 

maintainability and portability requirements of the embedded software, it costs performance, 

memory, and size [45]. Nevertheless, in the literature, researchers employed OO metrics together 

with physical metrics, during the design phase of the software development; in order to achieve 

balance between these metrics [44]. It is reported that by using the software quality metrics, it is 

possible to improve performance metrics of embedded software with a small decrease in code reuse 

[41]. 

 

While many other studies contradict, it is reported in [46] that, reuse improves performance in 

terms of memory and speed by employing the product-line approach. However, most of the 

improvement is due to recovering the previous design and making optimizations on it. 

 

Consequently, in order to employ and maintain reuse in embedded software systems, the techniques 

suggested for general purpose software systems such as object-oriented design, OO concepts, and 

abstraction should be implemented. However, there are some drawbacks which are summarized in 

Table 2.10. The major one is the loss in performance metrics. 

 

Table 2.10 – Summary of the drawbacks of OO programming in embedded software 

 

Abstraction layers, common platforms, and virtualization methods require many resources [40] 

OO concepts generally oppose physical metrics of embedded software [44] 

Object-oriented programming can considerably increase both execution time and resource 

consumption in embedded software [45] 

OO design costs performance, memory, and size [45] 
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CHAPTER 3 

 

 

RESEARCH CONTENTS 

 

 

 

 

 

In this chapter, firstly the research hypotheses of the study are stated. Then, the software teams and 

the related projects, which we have taken measurements from, in Aselsan Defense System 

Technologies Group (SST) - Software Engineering Department (YMM), are explained. Then, the 

case studies, which are designed in order to investigate reuse and quality relationships in each team, 

are presented. Finally, the research hypotheses are verified by discussing the measurements and 

some suggestions regarding the reuse infrastructure and process, to enhance the benefits of software 

reuse in Aselsan are formulated. 

 

3.1 RESEARCH HYPOTHESES 

 

In this thesis work, we examined the software reuse and quality connections in Aselsan SST-YMM. 

For this study, we defined four different hypotheses (Table 3.1) and in order to confirm these 

hypotheses; we designed three different case studies for each team in Aselsan.  

 

In the first study, object-oriented quality metrics and physical metrics of an embedded system 

developed in Aselsan SST-YMM were compared with changing reuse rates. Reused SLOC over 

total SLOC is used for reuse rate. OO metrics are selected from CK metrics, and number of cycles 

is the only physical metric measured. 

 

Table 3.1 – The hypotheses defined 

 

Hypothesis 1 – Code-based Quality: 

The quality of software products is improved as reuse rates of the products increase. 

  

Hypothesis 2 – Performance of Embedded Software:  

Performance of the embedded software products decays as reuse rate of the products 

increase. 

  

Hypothesis 3 – Fault-proneness:  

The number of defects detected in components decreases as these components are reused in 

various products. 

  

Hypothesis 4 – Productivity:  

The productivity rates of products increase as the reuse rates of these products increase. 

 

In the second study, we investigated a software product line (SPL) in Aselsan SST-YMM and 

compared changing defect counts in common-components as components are reused in various 

products. Moreover, the productivity rates of these consecutive products are measured. As a 

measure of productivity, number of requirements over total effort is used. 
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In the third study, we investigated another SPL in Aselsan SST-YMM and compared changing 

productivity rates for different products as reuse rates of these products rise. Similar to the first 

study, reused SLOC over total SLOC is used for reuse rate. Additionally, productivity was defined 

as SLOC over total effort. Furthermore, the performance of a critical scenario is measured, before 

and after employing the product line approach and the impact of reuse on performance for this case 

is noticed. CPU usage and delay in the scenario are the performance metrics used in this study. 

 

The summary of the case studies and the metrics employed is displayed in Table 3.2. 

 

Table 3.2 – Case studies and the corresponding metrics employed 

 

 
 

3.1.1   JUSTIFICATION OF THE HYPOTHESES 

 

Hypothesis 1: 

 

In the literature, it was argued that code-based metrics are strongly related to predicting fault-

proneness of software products (see “Theoretical And Empirical Analysis Of The Object-Oriented 

Metrics” sub-section in Chapter 2). Hence, there is a positive correlation between these metrics and 

software quality; since fault-proneness is a measure of software quality (see “Measuring Quality” 

section in Chapter 2).  

 

Hypothesis 2: 

 

Drawbacks of object-oriented programming in embedded software are widely discussed in the 

literature. In order to employ and maintain systematical reuse in embedded software systems, the 

object-oriented concepts, such as abstraction, coherence, and coupling, should be extensively 

employed in these systems. However, these concepts weaken physical metrics of embedded 

systems such as performance, and memory (see “Reuse and quality in real-time embedded software 

systems” sub-section in Chapter 2).  

 

Hypothesis 3: 

 

As promoted in the literature fault-proneness is a widely used measure of software quality (see 

“Measuring Quality” section in Chapter 2). Moreover, the product line approach is expected to 

produce a reduction in fault-proneness in response to an increase in the reuse of components. 

Additionally, the previous studies show that as components are reused in more products, the defect 

counts for these components decays noticeably (see “Effects Of Reuse On Quality” section in 

Chapter 2).  

 

Hypothesis 4: 

 

In the literature, it is suggested that, the product line approach and, therefore, the systematic reuse, 

cause increase in productivity in response to increase in reuse rate due to reduction in the design 

effort and fault-proneness (see “Measuring Quality” section in Chapter 2). Additionally, the 

increase in the software quality causes a reduction in rework effort, which is correlated to 

productivity. 

Metrics / 

Case Study

Code-based 

Quality

Fault-

proneness
Performance Productivity

Case Study 1 a a

Case Study 2 a a

Case Study 3 a a
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Consequently, as analyzed above, verification of these hypotheses is appropriate in order to 

investigate reuse and quality relationship in an industrial setting. 

 

3.2 GENERAL INFORMATION ABOUT THE SOFTWARE TEAMS 

 

Throughout this study, we worked with three different software teams.  

 

The first team provided us with code-based measurements from their software. We compared three 

modules used in their software in terms of object-oriented software metrics and performance 

metrics with changing reuse rates.  

 

We obtained defect counts of various components in different products from the second team and 

compared defect counts as the components reused in consecutive products. Furthermore, we 

acquired total efforts of these products and compared productivity rates regarding the percentages 

of the reused and non-reused requirements. 

 

The third team provided us with productivity rates of various products they developed and we 

compared these rates with changing reuse-rates. Additionally, we obtained performance metrics of 

a critical scenario before and after application of the product-line approach. 

 

These teams were selected due to their accessibility and the possibility of communication with them 

arising from the author’s employment. As all projects undertaken in Aselsan have a confidential 

nature, not many other teams would be approachable and would be able to provide the 

measurements necessary for the present study. All interviews and data reported in this thesis have 

been authorized by Aselsan’s responsible staff. 

 

3.2.1 AIR DEFENSE WEAPON SYSTEMS TEAM    
 

Air Defense Weapon Systems (HSSS) team develops real-time embedded software for various air 

defense weapon systems produced in Aselsan SST-YMM. The team creates software in C++ 

language. 

 

HSSS team develops software for systems which have many common unit interfaces and common 

features [47]. However, the systems often have different unit interfaces, different features, and even 

work on different processors. HSSS team owns a pool of reconfigurable components which they 

developed for various systems. They reconfigure the necessary components and reuse them through 

this pool. 

 

HSSS team has a reference layered architecture which is shown in Figure 3.1. 
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Figure 3.1 – HSSS Reference Layered Architecture 

 

Processor card and operating system independence layer provides the ability for the HSSS team to 

work on different real-time operating system (RTOS) versions and also operating systems other 

than RTOS such as Windows operating systems. In this layer, common interfaces are developed for 

various operating systems and processors. 

 

The hardware units’ independence layer provides common interfaces for different brands and 

models of hardware units i.e. Same interfaces for different camera types used in HSSS projects. 

 

3.2.2  TECHNICAL FIRE SUPPORT SYSTEMS TEAM  
 

Tactical Fire Support Systems (TADES) team develops command and control software for 

technical fire support systems using TADES Software Product Line[48]. The team creates software 

in .NET environment. 

 

TADES SPL is a composition-oriented SPL. In TADES SPL, there are two types of components: 

common platform components and product specific components. Common platform components 

are reused in various projects, and product specific components are developed for every single 

product. A product developed via TADES SPL has various numbers of common platform 

components and product specific components in it.  

 

Members of the team are owners of one or more components in TADES SPL. In this SPL, 

component owners define a component as a composition of abilities which have properties in 

common.  

 

Before developing a product using this SPL; the product owner chooses the components with 

appropriate versions, which will be in this product, out of the common platform components. The 

configurations of these common components are set. Then the product-specific components are 

defined, and owners of these components are assigned. If any of these components are thought to be 

generic enough to be reused in other products, then moved into the common platform. 

 

All common-components have their own, separate software requirements specification (SRS) 

documents. Product specific requirements are written in product-level SRS documents. In product-

level SRS documents, there exist no common-components related requirements, but a reference to 

these documents. 
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3.2.3  FIRE CONTROL SYSTEMS TEAM  
 

Fire Control Systems team develops real time embedded software for fire control systems using 

Fire Control Systems Reference Architecture (SSRM) Software Product Line. The team creates 

software in C++ language. 

 

SSRM SPL uses Feature Oriented Reuse Method (FORM) and also is a composition-oriented SPL. 

The capabilities, which can be included in the product line or excluded from the product line, are 

modeled as separate components. In SSRM SPL, there are various common-platform components 

reused in different products and also there are product-specific components. 

 

The components in SSRM SPL are grouped as follows [49]: 

 Missions, 

 Capabilities, 

 Software manager,  

 External interface, 

 System environment, 

 Operating environment. 

 

3.3 CASE STUDY 1: AN EXPERIMENT FOR COMPARING OO SOFTWARE QUALITY 

METRICS AND EMBEDDED SOFTWARE PERFORMANCE METRICS WITH 

CHANGING REUSE RATE 
 

Below, in the first sub-section, the software modules used in case study 1 are explained. Then, the 

OO software quality metrics and performance metrics used in this study are discussed. In the last 

sub-section, how the corresponding metrics are measured is explained, and these measurements are 

tabulated. 

 

3.3.1 SOFTWARE MODULES USED 

 

In this study, three different software modules are investigated. All modules are implemented, using 

C++, by HSSS team.  

 

The first module is the User Command and Control Interface of an embedded system (Figure 3.2). 

This module opens up a TCP/IP socket interface and the external users of the system connect and 

control the system through this interface. 

 

 
 

Figure 3.2 – Class diagram of the 1st  module 

 

UserInterface_Compatible

«Abstraction_Comm»

ICommInput

«Interface»

11

ICommOutput

«Interface»

IUserInterface

«Interface»
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This module is responsible for getting commands through socket, parsing them, and entering this 

command into the rest of the system. This module also sends updates and requests to external users; 

it formats messages in bytes level and sends through the socket.  

 

In order to obtain socket updates, this module (UserInterface_Compatible) inherits ICommOutput 

interface; in order to send messages through socket this module has an association with 

ICommInput interface and in order to receive commands from the system it inherits IUserInterface 

interface. The sequence diagrams for the message receiving and sending scenarios are shown in 

Figure 3.3 and Figure 3.4, respectively. 

 

 
 

Figure 3.3 – Sequence diagram of the user command scenario of the 1st module 

 

Since message taking and sending include parsing and formatting in bytes level, it is time-

consuming adding a new message to the command interface. In order to do this message 

management easier, a new reuse engine was developed and used by the developers in HSSS team. 

This engine creates a middleware for all parsing and formatting parts of the socket interface. The 

user of this tool just decides on the interface functions, and the auto-created middleware is inserted 

into the main code. 

 

This reuse engine is an example of transformation-based reuse (see “Reuse Types” section in 

Chapter 2) since this engine reuses all the process needed for message sending, receiving, and 

parsing. The developed middleware can be used without any changes in many different systems. 

Additionally, this engine can also be used by the test engineers and reduces test efforts. 

Furthermore, the documentary outputs of this engine can be used for documentation purposes as an 

example for documentation reuse. 

 

User Comm
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UserInterface

_Compatible

MsgBufferUpdated()MsgBufferUpdated()

Command()

SystemController

Command()
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parsed

through 

ICommOutput
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Figure 3.4 – Sequence diagram of the system update scenario of the 1st module 

 

The second module does the same work as the first module, but is implemented using the above-

mentioned reuse engine (Figure 3.5). 

 

 
 

Figure 3.5 – Class diagram of the 2nd  module 

 

In Figure 3.5, the classes in UI_Package are the products of the reuse engine. For every message, a 

sub-class is created under Ulak_AppCommandServices (like Ulak_AppCommandService1 in 

Figure 3.6), and these classes inherit ICommOutput interface in order to get socket messages and 

have associations with ICommInput interface in order to send socket messages and inherit 

IAVTCommandOut interface in order to communicate with the outer system through 

ApplicationCmdInterface_Ulak class. ApplicationCmdInterface_Ulak class inherits 

IAVTCommandIn and IUserInterface interfaces in order to communicate with the system and the 

reused classes. 
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Figure 3.6 – Sequence diagram of the user command scenario of the 2nd module 

 

In Figure 3.6 and Figure 3.7, the sequence diagrams of the message receiving and sending scenarios 

of the second module are shown, respectively. Ulak_AppCommandService1 is a product of the 

reuse engine. For every message in the interfaces, there is a dedicated class like 

Ulak_AppCommandService1, and these different classes are auto-generated. 

 

The third module is also a product of the reuse engine; however, its developers are different from 

the second one. It does a similar work as the second one, but it is a small module: It has fewer 

messages than the second one. 
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Figure 3.7 – Sequence diagram of the system update scenario of the 2
nd

 module 

 

3.3.2  CHOOSING OO METRICS FOR THE EXPERIMENT 
 

In Chapter 2 (Theoretical And Empirical Analysis Of The Object-Oriented Metrics sub-section), the 

theoretical and empirical results on popular CK metrics are shown. Moreover, the role of the 

measures defined in the CK metric suite in explaining the object-oriented software quality at a class 

level is identified. Therefore, CK metrics are appropriate for this experiment. Because, we want to 

compare the software quality of the modules, and we have seen that the CK metrics are suitable for 

measuring the software quality.  

 

In addition to CK metrics, we decided to employ additional complexity metrics in the experiment. 

In the OO environment, definite design concepts such as inheritance, coupling, and cohesion have 

been argued to embrace complexity [33]. Also, complexity metrics have been shown to correlate 

with defect density in a number of case studies [29]. Hence, we selected additional complexity 

metrics from [44], to strengthen the study. 

 

3.3.2.1 ADDITIONAL COMPLEXITY METRICS 
 

McCabe Cyclomatic Complexity (McCabeCC) 

 

It counts the number of flows in a part of the code. A high value of this metric means the software 

is complex or at least it has many different flows. It has also been shown that McCabe’s cyclomatic 

complexity is correlated with defects and maintenance changes in a software system [33]. 

 

Nested Block Depth (NBD) 

 

It is the extent of nested blocks of code. More nested blocks lead to worse readability and more 

complex solutions. 
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Percent Branch Statements (% Branches) 

 

Statements that create a break in the sequential execution of statements are counted separately. 

These are the following: if, else, for, while, break, continue, goto, switch, case, default, and return. 

 

3.3.3  PHYSICAL METRICS USED IN THE EXPERIMENT 
 

In Chapter 2, some physical properties of embedded software products to be measured in embedded 

system design are mentioned such as performance, memory, energy, power, size, and weight etc. In 

the experiment, the only available physical metric for evaluation is the number of cycles for the 

same work to be done for each module. Therefore, we used this metric to investigate the change of 

performance metrics for embedded systems with changing reuse rates. 

 

3.3.4  MEASUREMENT OF METRICS 
 

The necessary metrics were measured with the help of the developers in HSSS team. The reuse 

rates of the modules were calculated by using reused non-comment line of codes, and total non-

comment line of codes. The calculated reuse rates are shown in Table 3.3. 

 

Table 3.3 – Calculated reuse rates 

 

Metrics Type Module 1 Module 2 Module 3 

% Reuse rate 0 81 52 

 

In this work, the source and header files are created for the modules from the UML models. Then, 

we conducted a free Internet search in order to select a metrics tool. We selected the following free 

static analysis tools for C++ programs: SourceMonitor [50], and CCCC (C and C++ Code Counter) 

[51].  

 

SourceMonitor is a freeware program which identifies the relative complexity of the software 

modules. It measures metrics for source code written in C++, C, C#, Java, Delphi, or Visual Basic. 

Using SourceMonitor, we measured the following metrics: LCOM, SLOC, McCabeCC, NBD and 

% Branches. 

 

CCCC is an open source command-line tool. It analyzes C++ and Java files and generates reports 

on various metrics, including Lines of Code and metrics proposed by Chidamber and Kemerer. 

Using CCCC, we measured the following CK metrics: CBO, DIT, NOC, and WMC. 

 

Using both metrics tools, we were unable to measure RFC; therefore, we skipped this metric from 

the analysis. The measured OO metrics are given in Table 3.4. 

 

Table 3.4 – Extracted software quality metrics 

 

Metrics Type Module 1 Module 2 Module 3 

Coupling Between Objects (CBO) 2,311111 1,944444 2,166667 

Depth of Inheritance Tree (DIT) 0,333333 0,651166 0,066667 

Number of Children (NOC) 0,422222 0,686047 0,133333 

Weighted Methods per Class (WMC) 4,777778 2,166667 2,9 

Lack of Cohesion of Methods (LCOM) 0,0820 0,0495 0,0823 

Source Lines of Code (SLOC) 2819 4117 765 

McCabe Cyclomatic Complexity (McCabeCC) 2,49 1,30 1,59 

Nested Block Depth (NBD) 1,71 0,84 1,10 

% Branches 18,2 7,4 8,9 
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Extracted physical metrics for the modules is given in Table 3.5. The only performance metric 

calculated is the number of cycles (NoCycles) for the modules to receive the command from the 

system and send the corresponding data. We calculated this metric by using the associated static 

BSP function which is for taking time measurements. 

 

Table 3.5 – Extracted physical metrics 

 

Physical Metrics Module 1 Module 2 Module 3 

NoCycles 7914 9756 9648 

 

3.3.5  DISCUSSION OF THE MEASUREMENTS 
 

Metrics based results cannot be compared when different metrics tools are used [28] since for 

different metrics tools, there will be differences in calculation techniques, assumptions in 

measurements etc. However, comparing the results of different software modules using the same 

metric tools makes sense and we employed this method. 

 

Below, we group the measured metrics according to their primary OO concepts i.e. Size, 

inheritance, coupling, and complexity, and compare these metrics with respect to increasing reuse 

rates. In order to be able to draw figures with increasing reuse rates, we put the modules in 1,3, and 

2 orders. 

 

Figure 3.8 shows the change of size metrics with changing reuse rate. Although, there is a 

correlation between the reuse engine outputs, i.e. Module 2 and 3, it is clear that, the size metrics 

are uncorrelated with the reuse rate when module 1 is also taken into account. 

 

 
 

Figure 3.8 – Comparing size metric and reuse rate 

 

In Figure 3.9, we see the comparison of inheritance metrics (DIT and NOC) with changing reuse 

rates. From the figure, it is easy to notice the connection between the inheritance metrics and size 

metrics. Similarly, we do not detect a correlation between reuse rates and inheritance metrics, 

although there is a connection between modules 2 and 3. 
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Figure 3.9 – Comparing inheritance metrics and reuse rate 

 

In Figure 3.10, we see the comparison of coupling metric (CBO) with reuse rate. In this figure, we 

can observe that there is an improvement (reduction of metric) in terms of coupling as reuse rate 

increases. The change of the architecture for reuse and introducing interface classes in the system 

make the system less coupled. 

 

 
 

Figure 3.10 – Comparing coupling metric and reuse rate 

 

We expect to observe the strongest association with changing reuse out of all quality metrics in 

complexity metrics. Therefore, we measured additional complexity metrics. In this case, the use of 

a reuse engine causes the reduction in complexity. In Figure 3.11, we notice a reduction in all 

complexity metrics (WMC, McCabeCC, NBD, and % branches) with increasing reuse rate. 
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Figure 3.11 – Comparing complexity metrics and reuse rate 

 

Figure 3.12 shows the comparison of cohesion metric (LCOM) and reuse rates. According to the 

measurements, there is not a valid connection between cohesion and changing reuse. It is mainly 

because of the reason that the non-reuse module is also a cohesive one. 

 

 
 

Figure 3.12 – Comparing cohesion metric and reuse rate 

 

Figure 3.13 shows the variation of performance metric (NoCycles) with different reuse rates. As 

expected, the number of cycles increases with increasing reuse. In the first module, after the 

command is received from the system, it is sent through related socket directly; however in second 

and third modules the system architecture changed in order to reuse the middleware and now 

between sending and receiving, a middleware is introduced which increases the number of cycles. 
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Here, between non-reuse case and reuse cases, we expected and observed a difference in the 

number of cycles; but the rise of cycles in different non-zero reuse cases is not clear; which is 

expected, since the reuse mechanisms are the same in modules 2 and 3.   

 

 
 

Figure 3.13 – Comparing performance metric and reuse rate 

 

3.4 CASE STUDY 2: CHANGE OF DEFECT COUNTS AND PRODUCTIVITY BY 

REUSING COMPONENTS 
 

In this part, the measurements done in case study 2 are explained. These measurements include 

defect counts of the components developed by TADES team, which are reused in different products 

and the productivity rates of these products. 

 

Defect counts are obtained from the problem reporting system used in Aselsan SST. As a result of 

company politics, all defects detected during system integration and acceptance testing and also 

those reported by customers are kept in the problem reporting system i.e. Defects during software 

development process are not included in these measurements.  

 

Measurements about requirement counts are acquired from the requirements management tool used 

in Aselsan SST. 

 

Total efforts of the products are measured by the business management software used in Aselsan 

SST. However, due to the commercial confidentiality, we do not provide exact measures of the 

efforts in this study. 

 

About the specifications of TADES SPL’s various products, and about the properties of the 

common and product-specific components in these products, we worked with one of the 

configuration managers of TADES SPL. 

 

3.4.1  MEASUREMENT OF METRICS 
 

In this work, three different products are explored. All products have at least one product specific 

component, and other components are common platform components. The three products were 

developed sequentially with six months between the completions of each one.  
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We classified the components which we analyzed as “new” and “reused” components. New 

components are not used in earlier products, and reused components are used previously in other 

products. Table 3.6 and Figure 3.14 show the new and reused component counts in the products 

analyzed. 

 

Table 3.6 – New and reused component counts in three different products 

 

Product No / 

Component count 

New Reused 

Product 1 19 0 

Product 2 3 16 

Product 3 6 15 

 

 
 

Figure 3.14 – New and reused component counts in three different products 

 

Table 3.7 and Table 3.8 display new and total requirement counts in all components for each 

product, respectively. Table 3.9 displays total effort in man-hour for each product. 

 

Table 3.7 – New requirement counts in all components for each product 

 

Product No / 

New 

Requirements  

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Product 1 291 383 216 167 301 304 126 220 - - 275 - 

Product 2 4 10 0 0 4 11 21 32 - - - 141 

Product 3 0 0 1 0 0 0 1 27 211 177 14 - 
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Table 3.8 – Total requirement counts in all components for each product 

 

Product No / 

Total 

Requirements  

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Product 1 291 383 216 167 301 304 126 220 - - 275 - 

Product 2 295 393 216 167 305 315 147 252 - - - 141 

Product 3 295 393 217 167 305 315 148 279 211 177 289 - 

 

 

Table 3.9 – Total effort for each product 

 

Product No  Total Effort 

(man-hour)  

Product 1 2,75 * N 

Product 2 1,5 * N 

Product 3 N 

 

Defect counts of the components used in three different products are shown in Table 3.10. 

Components 1-8 are common in all three products; component 11 is partly common; and 

components 9, 10, and 12 are new components (i.e. They are used in corresponding products for the 

first time). All 12 components are common-platform components. 

 

Table 3.10 –Defect counts of the components in three different products 

 

Product No / 

Component 

Type 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Product 1 87 35 54 20 63 100 24 48 - - 55 - 

Product 2 2 5 1 0 0 6 0 3 - - - 27 

Product 3 0 0 1 0 0 0 1 0 24 34 7 - 

 

3.4.2  DISCUSSION OF THE MEASUREMENTS 
 

3.4.2.1 DEFECT-COUNTS VS REUSE RATE 
 

In this section, evolution of software quality in different products is analyzed when common 

components are reused. In this work, software quality is measured using defect counts of the 

components as suggested and used in many studies in the literature (see Chapter 2 – Measuring 

Quality sectıon). 

 

Table 3.11 shows reused requirement percentages (calculated as shown in formula 3.1) in all 

components for each product. According to this table, in product 2 the average of the reused 

requirements rate for common components (i.e. Components 1-8) is 95.5 %, and the same rate in 

product 3 is 94.3 %. 

 

                          (3.1) 
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Table 3.11 – Reused requirement percentages in all components for each product 

 

Product No / % 

Reused 

Requirements  

C1 C2 C3 C4 C5 C6 C7 C8 C

9 

C

10 

C1

1 

C

12 

Product 1 0 0 0 0 0 0 0 0 - - 0 - 

Product 2 98,64 97,4

6 

100 100 98,69 96,51 85,71 87,3 - - - 0 

Product 3 98,64 97,4

6 

99,54 100 98,69 96,51 85,14 78,85 0 0 95,

2 

- 

 

Distribution of defect counts of the common components in all three products is shown in Figure 

3.15, Figure 3.16, Figure 3.17, and Figure 3.18: 

 Figure 3.15 shows defect counts of the common components for each product, 

 Figure 3.16 shows the average of the defect counts of the common components for each 

product (average was calculated by adding all defect counts up and dividing by eight for 

each product), 

 Figure 3.17 shows defect percentages of the common components for each product, 

 Figure 3.18 shows average defect percentages of the common components for each 

product (average was calculated simply by adding all defect percentages up and dividing 

by eight for each product). 

 

According to these figures, the average defect amount in the first product is more than 50, less than 

3 in the following product and less than 1 in the third product. More than 95 % of the total defects 

are detected in the first product. There are various reasons for this improvement: the reused 

components are less modified than non-reused ones; therefore, they are more stable than those. 

Additionally, the reused components are designed more intensely; since defects in them affect 

different products. Furthermore, the employment of the common components in various products 

causes them to become faultless, and finished components. 

 

 
 

Figure 3.15 – Defect counts of the common components (C1-C8) 
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Figure 3.16 – Average defect counts of the common components (C1-C8) 

 

 
 

Figure 3.17 – Defect percentages of the common components (C1-C8) 
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Figure 3.18 – Average defect percentages of the common components (C1-C8) 

 

In Figure 3.19, defect counts of the product-specific components (i.e. Components 9, 10, and 12), 

and the average defect counts of common components are shown. For all three components, defect 

counts are more than 20. Since, these components are not reused; we observe a similar distribution 

as the defect counts of the common components in the first product they are used. 

 

 
 

Figure 3.19 – Defect counts of the product-specific components  

(C9, C10, and C12) 

 

Defect amount of component 11 is shown in Figure 3.20. This component is partially-common in 

products 1 and 3 (see Table 3.7 and Table 3.8). In product 1, more than 50 defects are detected, and 

in product 3 almost 10 defects are detected. The defect distribution of this component is similar to 

common components’ distribution of products 1 and 2. 
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Figure 3.20 – Defect counts of the partially-common component (C11) 

 

3.4.2.2 PRODUCTIVITY RATES IN DIFFERENT PRODUCTS 
 

In this sub-section, we will compare productivity rates of the three products. The productivity will 

be calculated as shown in formula 3.2. 

 

                                                                      (3.2)  

 

First, productivity rates are calculated using the number of new requirements (Table 3.12). 

 

 

Table 3.12 – Productivity rates using new requirements 

 

Product No  New 

Requirements  

Productivity (requirements 

/ man-hour*N)  

Product 1 2283 830,2 

Product 2 223 148,7 

Product 3 431 431 

 

Then, productivity rates using the total number of requirements are calculated (Table 3.13). 

 

Table 3.13 – Productivity rates using total requirements 

 

Product No  Total 

Requirements  

Productivity (requirements / 

man-hour*N)  

Product 1 2283 830,2 

Product 2 2231 1487,3 

Product 3 2796 2796 

 

In Figure 3.21, the comparisons of the productivity rates are displayed. The comparison of the 

productivity rates with total requirements indicates that as the components are reused in different 

products, the productivity rates increase remarkably, which is not surprising. The second 

comparison, the comparison of the productivity rates with new requirements exhibits a sharp 

reduction between the first and second products; and a noteworthy expansion between the second 
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and third products. We interpret the first case as a conclusion of the development by employing a 

product-line. Since the reused components are already developed in previous products, the 

productivity rates increase significantly. Furthermore, the first reduction in the second case is 

explained as an adaptation period of the development with the product line. Although there are 

developed-products, ready to be used, it is still time-consuming to gather up these components and 

integrate them with the recently developed components. Finally,  the expansion between the second 

and third products in the second case is resolved as an evidence of being trained in development 

with the product line. It is seriously expected that, in the coming products, the productivity rates 

using the new requirements will exceed the productivity rate of the first product. 

 

 
 

Figure 3.21 – Comparison of productivity rates of each product using new requirements and total 

requirements 

 

3.5 CASE STUDY 3: CHANGE OF PRODUCTIVITY AND PERFORMANCE WITH 

INCREASING REUSE RATES IN SSRM SPL 
 

In this section, we will show changing productivity rates as reuse rates vary for different products 

developed sequentially using SSRM SPL. In addition, the performance measurements of a critical 

scenario in this domain will be measured and compared before and after the SSRM SPL is 

employed. 

 

3.5.1  MEASUREMENT OF PRODUCTIVITY METRICS 
 

Reuse rates are calculated using reused non-comment line of codes and total non-comment line of 

codes. Productivity rates are calculated using total non-comment line of codes and total effort to 

develop the so called product (see formula 3.3). Total efforts are measured by the business 

management software used in Aselsan SST. However, due to commercial confidentiality, we do not 

provide total efforts and total source line of code metrics in this study. For making these 

measurements, we worked with one of the configuration managers of the SSRM SPL team.  

 

                                                                      (3.3) 

 

In Table 3.14, reuse and productivity rates for the products developed using SSRM SPL are given. 
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Table 3.14 – Reuse and productivity rates for products in SSRM SPL 

 

Product 

No  

% Reuse 

Rate  

Productivity  

(SLOC / man-hour)  

Product 1 35,73 54,22 

Product 2 39,25 54,92 

Product 3 48,86 43,38 

Product 4 48,9 68,39 

 

3.5.2  DISCUSSION OF THE PRODUCTIVITY MEASUREMENTS 
 

In Figure 3.22, the comparison of reuse and productivity rates of the products is displayed. Reuse 

rates increase from product 1 to product 4; however productivity change does not have the 

equivalent attitude. Productivity rates increase slightly between the first two products, and then 

productivity rate decreases from product 2 to product 3. However, between the last two products, 

productivity rate extends noticeably. When we discussed this situation with the SSRM SPL team, 

we found out the following factors: 

 There was a serious waste of time during the development of the non-reused (new) parts in 

product 3, 

 Most of the developers of the product 3 were unfamiliar with software development by 

employing the product-line. 

 

We can conclude that utilization of some normalizing factors i.e. Code complexity for the non-

reused parts and experience of the developers, in measuring productivity rates can be useful. 

Furthermore, during the initial products, it is not surprising to observe productivity decays; since it 

is time consuming to get used to the product line in a software development team. 

 

3.5.3  MEASUREMENT OF PERFORMANCE METRICS 
 

In Case Study 3, in order to compare the performance before and after employing the product line, 

one of the most critical scenarios in the system, the automatic video tracking scenario is 

investigated. The performance metrics used are time delay and CPU usage in this scenario. These 

metrics are measured using the provided embedded operating system functions. 

 

In this scenario, in order to achieve the critical mission, three different systems work together as 

displayed in Figure 3.23. 
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Figure 3.22 – Comparison of Reuse and Productivity for products in SSRM SPL 

 

 
 

Figure 3.23 – Automatic target tracking scenario 

 

Video Tracker (VT) system detects, and tracks the selected targets. The target data is sent from VT 

to Fire Control System periodically; then this system adds platform offsets into target data and 

generates the platform data. Finally, this platform data is sent to the Servo Controller System and 

then the Servo Controller System drives the servo motors using the platform data. This scenario is 

called the Automatic Video Tracking (AVT) scenario. 

 

Before employing the SSRM SPL, the classes implementing the AVT scenario in Fire Control 

System are displayed in Figure 3.24. 
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Figure 3.24 – Class diagram of Fire Control System AVT scenario before SSRM SPL 

 

 
 

Figure 3.25 – Sequence diagram of Fire Control System AVT scenario before SSRM SPL 

 

The AVT scenario sequence diagram before employing the SSRM SPL is shown above in Figure 

3.25.  

 

The delay from reception of the track data from VT System to the transmission of the platform data 

to the Servo Controller System and the CPU usage during the scenario are measured. Measurements 

are shown below in Table 3.15. 

 

Table 3.15 – Measurements of the AVT scenario before SSRM SPL 

 

Minimum 

Delay (ms) 

Maximum 

Delay (ms) 

Average 

Delay (ms) 

% CPU 

Usage 

0,85 1,05 0,9 72,3 
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During the development process of the product line, the team transformed the AVT scenario into a 

mission [49]. In order to isolate the VTController and ServoController classes from the 

AVTMissionController, they introduced two more layers into the scenario as shown below in 

Figure 3.26. The team introduced the TargetManager and ServoManager classes in order to support 

other target sources and platform controllers. 

 

 
 

Figure 3.26 – Class diagram of the AVT mission 

 

Since VT System provides target data periodically, there were two options in TargetManager: 

Either it would receive periodic updates from VTController (push strategy), or it would get target 

data from VTController periodically (pull strategy). In order to keep the abstraction level high, the 

team decided on “pull strategy”. The sequence diagram of the AVT mission implemented with pull 

strategy is displayed in Figure 3.27. 

 

 
 

Figure 3.27 – Sequence diagram of the AVT mission with pull strategy 
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The delay from reception of the track data from VT System to the transmission of the platform data 

to the Servo Controller System and the CPU usage during the scenario are measured. Measurements 

are shown below in Table 3.16. 

 

 

 

 

Table 3.16 – Measurements of the AVT mission with pull strategy 

 

Minimum 

Delay (ms) 

Maximum 

Delay (ms) 

Average 

Delay (ms) 

% CPU 

Usage 

2,12 35,0 20,0 81,5 

 

The average delay due to pull strategy was 20 ms, which is sufficient for some systems; however 

for systems which have high performance requirements, this delay was unacceptable. Therefore, the 

team implemented the “push strategy” for taking updates from VTController. 

 

 
 

Figure 3.28 – Sequence diagram of the AVT mission with push strategy 

 

The sequence diagram of the AVT mission implemented with pull strategy is shown in Figure 3.28. 

 

The delay from reception of the track data from VT System to the transmission of the platform data 

to the Servo Controller System and the CPU usage during the scenario are measured. Measurements 

are shown below in Table 3.17. 

 

Table 3.17 – Measurements of the AVT mission with push strategy 

 

Minimum 

Delay (ms) 

Maximum 

Delay (ms) 

Average 

Delay (ms) 

% CPU 

Usage 

2,12 5,5 3,2 79,9 

 

3.5.4  DISCUSSION OF THE PERFORMANCE MEASUREMENTS 
 

Above, we explained three different implementation methods of the AVT scenario. The first 

method was before the team developed the SSRM SPL. In the second and third methods, there are 
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two additional layers which are due to the product line employment and in order to increase the 

reuse of the scenario software. 

 

The AVT scenario delay is measured for three cases (see Table 3.15, Table 3.16, and Table 3.17), 

and comparison of the average delay and CPU usage are shown in Figure 3.29. According to these 

comparisons, we can conclude that while transforming the software into more reusable, and more 

abstract from the interfaces; we lose from the performance. Therefore, the developers should decide 

on the limit of this trade-off. Sometimes, the performance requirements allow these improvements; 

however sometimes performance requirements are too heavy. The second method was the most 

appropriate one in terms of reusability, however the developers had to perform and apply the third 

method. It was also more reusable compared to the first method, and it was acceptable when the 

performance requirements were considered. 

 

 
 

Figure 3.29 – Comparison of average delays and CPU usages of three different implementations 

of AVT scenario 

 

3.6 VERIFICATION OF THE HYPOTHESES 
 

In this section, the results of the measurements in the case studies will be analyzed, and it will be 

stated whether or not the hypotheses are verified. 

 

3.6.1  HYPOTHESIS 1 (CASE STUDY 1) 
 

Code-based Quality: The quality of software products is improved as reuse rates of the products 

increase. 

 

The motivation in formulating Hypothesis 1 was the fact that we expected to observe a correlation 

between changing reuse rates and OO metrics. In the literature, it was argued that OO metrics are 

strongly related to predicting fault-proneness of software products, and similarly in the literature, 

the most suggested measure of software quality is the number of  defect rates in a software product.  

 

Therefore, in order to say that Hypothesis 1 is true, we have to display a correlation between 

changing reuse rates and OO metrics. 
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In this work, an experiment was designed in order to compare the software quality metrics with 

changing reuse rates. We have found a strong correlation between complexity metrics and reuse 

rate. Between coupling metrics and reuse rate, we have observed a positive relationship. With other 

quality metrics, we did not observe a strong relation. We observed that size metrics and inheritance 

metrics have similar attitudes. In Table 3.18, the results of the experiment are shown: “-” means the 

so called metric is not correlated to changing reuse rate, and “+” means there is a correlation 

observed between the so called metric and changing reuse rate. 

 

Now, we can answer if Hypothesis 1 is true or false. The results show that some CK metrics and 

size metrics do not correlate with changing reuse rate: SLOC, DIT, NOC, and LCOM. However, 

the results also show that Coupling and Complexity CK metrics and the additional complexity 

metrics show a strong correlation with the changing reuse rate (see Figure 3.30). 

 

Table 3.18 – Summary of the results of the OO metrics of the experiment 

 

Metric acronym Primary OO Concept Results 

SLOC Class - 

DIT Inheritance - 

NOC Inheritance - 

CBO Coupling + 

WMC Complexity + 

McCabeCC Complexity + 

NBD Complexity + 

% Branches Complexity + 

LCOM Cohesion - 

 

 
 

Figure 3.30 – Reduction of complexity and coupling metrics with respect to increasing reuse rate 

 

As analyzed above, the complexity and coupling metrics are correlated to reuse rates which is 

consistent with the “Theoretical and empirical analysis of the object-oriented metrics” section of 

Chapter 2, where it was empirically displayed that the most related metrics with fault-proneness are 

the coupling and complexity metrics.  
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Consequently, the improvements in coupling and complexity metrics are appropriate to claim an 

increase in software quality. Therefore, we can conclude that Hypothesis 1 is verified. 

 

 

 

3.6.2  HYPOTHESIS 2 (CASE STUDY 1, CASE STUDY 3) 
 

Performance of Embedded Software: Performance of the embedded software products decays as 

reuse rate of the products increase. 

 

In the experiment designed in case study 1, we measured and compared the performance of a 

message receiving and transmitting scenario in three different embedded software modules. We 

find a strong negative correlation between performance and reuse rate; which is consistent with the 

related arguments in the literature.  

 

In case study 3, we measured and compared the performance metrics of a critical scenario of an 

embedded software system before and after employing a product-line approach. We observed that, 

the case before the product line approach was the best regarding the performance, and as the 

software turned into more reusable and more abstract from other parts of the software, the 

performance of the software decayed. 

 

Consequently, the measurements from two different case studies display that Hypothesis 2 is 

verified (see Figure 3.31). 

 

 
 

Figure 3.31 – Worsening of performance metrics as reusability increases in case studies 1 and 3 

 

3.6.3  HYPOTHESIS 3 (CASE STUDY 2) 
 

Fault-proneness: The number of defects detected in components decreases as these components 

are reused in various products. 

 

In case study 2, measurements are taken from a product line which is used in subsequent products.  
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When the components are not reused, namely not used in earlier products, we observe a large 

number of defects in these components. Furthermore, we find that the decrease in the defect counts 

is independent of the product types. When the component is firstly used in product 3, again we 

detect a similar distribution as if the component is firstly used in product 2. 

 

To conclude, as components are reused in several products, we observed that their defect counts 

decrease significantly and so their fault-proneness. Therefore, we can conclude that hypothesis 3 

has been verified in this study. 

 

3.6.4  HYPOTHESIS 4 (CASE STUDY 2, CASE STUDY 3) 
 

Productivity: The productivity rates of products increase, as the reuse rates of these products 

increase. 

 

In case study 2, productivity rates of the three products developed using the SPL approach are 

presented. Productivity rates are measured using the number of requirements using the requirements 

count and total effort. The results showed that, if the productivity is measured using the total 

number of requirements in the deployed product, the productivity rates improve significantly. 

Additionally, productivity is measured also by using the new requirements. In that case, we 

observed a reduction in productivity between the first and second products; and an increase in 

productivity between the second and third products. This situation is interpreted as an adaptation 

period of the product line approach. 

 

In case study 3, we compared productivity rates of products implemented by another product line 

approach with increasing reuse rates. In this measurement, we also observed a positive correlation 

with reuse and productivity rates. However, the change of the members of the team during the 

development of product 3 caused a reduction in the productivity rate of this product. This situation 

is interpreted, similarly in case study 2, as an adaptation period of the product line. 

 

Hence, we concluded that, if the effects of the adaptation period of the product line approach are 

ignored, the productivity rates improve significantly as the rate of reuse increases in a product line. 

Therefore, hypothesis 4 has been verified. 

 

3.7 SUGGESTIONS TO FURTHER BENEFIT FROM THIS STUDY 
 

In this section, discussions made in the measurements collection and hypotheses verification 

sections will be reviewed. By means of those analyses, suggestions regarding the reuse 

infrastructure and process, to improve benefits of reuse in Aselsan will be formulated. 

 

3.7.1  USE OF REFERENCE METRICS 
 

Measurements taken from a recently developed middleware technology used in Aselsan, were used 

for verification of Hypothesis 1. In these measurements, the evolution of code-based metrics with 

respect to changing reuse rates is examined, and improvements in both coupling and complexity 

metrics are observed. This study shows the importance of application of code-based metrics in 

software development since the goals of the so called middleware technology are remarkably 

verified by these measurements. Hence, software developers should incorporate these metrics into 

their software development processes, and before and after serious decisions on design, technology 

or infrastructure; the change of these metrics should be investigated.  

 

Therefore, in order to succeed in the employment of these metrics, the software developers should 

select reference metrics specific to their software domain and periodically monitor the changes of 

these metrics. 
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3.7.2  AUTOMATED DETECTION OF ARCHITECTURAL EFFECTS 
 

In order to verify Hypothesis 2, the changes of performance metrics of two different embedded 

systems were examined before and after introducing a reuse infrastructure in the software 

development process. In the first system, the above-mentioned middleware was introduced, and 

performance measurements are taken. Furthermore, in the lesser case, the performance of a critical 

scenario of an embedded software was measured after introducing the software product line. These 

measurements showed the negative impacts of object-oriented programming and OO concepts, 

therefore the reuse infrastructure, in the performance of an embedded software. However, it is well 

known that performance is critical for real time embedded systems. Hence, if the performance of 

the embedded software turns out to be below the system limitations as a result of the architectural 

improvements, then the developers should modify the architecture. In the second case, we observed 

the above-described situation. The performance of the software was insufficient for the system, 

after the employment of the architectural improvements due to the product line approach, therefore; 

the team had to update the architecture and violate some OO concepts. Henceforth, the real time 

embedded software developers should monitor the performance requirements after employing 

extensive architectural modifications; furthermore, they must update the modifications if the 

performance of the software eventually becomes unacceptable for the system.  

 

Thereupon, the embedded software developers should develop methods in order to automate the 

process of detecting the architectural modifications which include the chance of worsening the 

software performance below system requirements. 

 

3.7.3  RECORDING SOFTWARE DEVELOPMENT PROCESS DEFECTS 
 

The defect counts of the components in consecutive products, developed by a product line 

approach, were measured in order to verify Hypothesis 3. Post-release defects were collected from 

the problem reporting system used in Aselsan; since the defects detected during the software 

development process are not stored in this system. This study was sufficient to show that as the 

components are reused in different products, defect counts of these components decay noticeably. 

However, we were incapable of analyzing the defects detected during the software development 

process since these defects are not recorded anywhere. Additionally, the severities of the defects 

were not indicated after they are corrected. Therefore, while analyzing the improvements of the 

components, it was impossible to assess their severity.  

 

Hence, in order to improve the management of defects, and investigate the defects intensely; the 

severity of the defects should also be provided after being corrected. Additionally, the defects 

detected during the software development process should also be recorded; since the defects of the 

components during the development process is a key metric in order to improve the reuse 

infrastructure of a product line. 

 

3.7.4  ASSOCIATION OF DEFECTS WITH DESIGN CONCEPTS 
 

In the problem reporting system used in Aselsan, the defects were associated with the components, 

but they were not associated with the corresponding design concepts such as class, and method. 

Hence, the reasons of the defects were not thoroughly analyzed. Henceforth, in case study 3, while 

measuring the productivity achieved in developing the products, we were incapable of measuring 

the defect counts of the components reused in these products; since the defects were recorded in the 

problem reporting system associated with the products, but not components.  

 

Consequently, in order to improve the management of defects, and investigate the defects intensely; 

the software developers should identify each defect with corresponding component, and the design 

concept. 
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3.7.5  RECORDING REWORK EFFORTS AND EFFORTS ASSOCIATED WITH REUSE 
 

Productivity rates were measured and compared in order to verify Hypothesis 4. The total efforts of 

the products were measured by the business management software used in Aselsan. In case studies 

2 and 3, the efforts of the products, developed by a product line method were collected. However, 

there was no infrastructure in order to record the rework efforts, efforts associated with reuse, post-

release efforts, or maintenance efforts.  

 

Therefore, in order to be able to measure and analyze these metrics, with changing reuse rates; 

these metrics should be recorded, and for this purpose the relevant infrasture should be developed. 

 

3.7.6  EXPLICIT ACCOUNTING FOR CODE REUSE 
 

During analysis of the productivity rates of the products, it was found that lack of the experience of 

the developer team was a significant factor of the declines in productivity; since, the employment of 

product lines requires an extra effort such as an adaptation period. Henceforth, during effort 

estimations of the products developed by a product line approach; the experiences of the 

developers, about the product line, should also be considered. Finally, the developers should also 

estimate and record efforts separately for reused and non-reused components, in order to analyze 

the impacts of reuse on the productivity rates deeply. 
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CHAPTER 4 

 

 

DISCUSSION AND CONCLUSION 

 

 

 

 

 

Prior to this study, several studies have been conducted on software reuse and software quality 

ranging from theoretical to experimental studies. These studies have shown strong evidences in the 

relationship of software reuse and software quality; although, in these studies, the measurement 

methods of the software reuse and software quality had differences. In some studies, source line of 

code is used to calculate reuse; however in others the number of requirements is used. For 

measuring software quality, mostly fault-proneness of components is used; but also when the study 

is not an empirical one, the researchers used specific code-based metrics to calculate and compare 

the quality of different software products.  

 

In this study, we did both theoretical and empirical studies. We worked with Turkey’s leading 

defense industry company: Aselsan’s software engineering department. We aimed to examine their 

software projects and follow reuse and quality relations for these projects, and formulate 

suggestions in order to improve their reuse infrastructure and process. For this purpose, we carried 

out three separate case studies to investigate reuse and quality relations. 

 

In the first case, we compared the code-based quality metrics of three software modules while two 

of these modules are produced by a reuse engine. In this study, we observed that complexity and 

coupling metrics improved, however the performance decayed as reuse rate increased. 

 

In second and third cases, we investigated two different product lines which are actively used in 

many projects in Aselsan.  

 

We were able to compare post-release defect counts of the components reused in consequent 

products i.e. Fault-proneness of the components as they are reused in various products, in the first 

product line. Furthermore, the productivity of the discussed products is also discussed, as the 

common components reused in these consecutive products. In this study, we observed that fault-

proneness of the components decreased and the productivity rates extended as the components are 

reused in other products. 

 

In the second product line, we compared productivity rates of several products as reuse rates of 

these products increased; and observed that as reuse rates of the products increased, the productivity 

rates also improved. Moreover, the worsening of the performance metrics in this product line was 

also observed as the reusability increased, similar to the first case. 

 

As we expressed above, we accomplished three different case studies and measured and compared 

different concepts in all three cases i.e. OO quality metrics, productivity rate, defect counts, 

performance. We were not able to obtain all these measures in all cases. For instance, in the first 

study, the team was still developing the modules which we measured OO metrics and compared. 

Therefore, the modules were not tested, and there were no defect rates which we could collect. In 

the second case, we were able to obtain defect counts for each single component because the team 

designed their product line in such a way that each component was being tested separately and; 

therefore, the defect counts were specific to the components. However, the second product line was 

not designed in this way; therefore it was almost impossible to associate a defect and a component. 

Defects were entered into the problem reporting tool for each product but not for each component. 
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Therefore, in the third case, we could not collect defect counts of the components and use in the 

discussions. On the other hand, we were unable to obtain code-based metrics for the cases 2 and 3; 

for this reason, we used code metrics only in case 1. In short, we designed the case studies this way 

because we were able to obtain only these measurements. 

 

In future studies, it would be a significant improvement if all types of measurements could be 

collected i.e. Code-based metrics, defect counts (separate for each component) and productivity; 

and if these metrics could be compared with changing reuse rates.  

 

In this study, we were able to collect defect counts after the software development process i.e. post-

release; because defects found after testing and reported by customers are kept in problem reporting 

system. However, it would be an improvement to consider defect counts found during the 

development process together with the code-based metrics. Whereas, defects found by developers 

are immediately solved and not recorded anywhere, therefore it seems to be practically difficult to 

make this improvement. 

 

Additionally, it would be better to consider not only the number of defects, but also their severity. 

Although there is an additional field for problem severity in the problem reporting system used in 

Aselsan, we were able to reach only the defect counts. Furthermore, in our measurements, we 

observed that, in the problem reporting system, the defects were associated with the components in 

the best case. However, in order to make deeper analyses of the defects, they should also be 

associated with the design concepts. 

 

In prior studies, it was shown that complexity and coupling metrics can successfully predict post-

release defects. Maybe in future studies, we can explain exactly which metrics are appropriate for 

projects of Aselsan, by matching code-based metrics and post-release defects. Moreover, building 

an infrastructure in order to periodically monitor these metrics would be a serious improvement in 

the software development process. 

 

Furthermore, measuring and recording rework efforts, efforts associated with reuse, post-release 

efforts, and maintenance efforts, in addition to development efforts, will also be a significant 

enhancement in the software development process, since analyses of these measures with changing 

reuse rates will be achievable. 

 

Consequently, in this thesis, we have compared some software measurements such as OO quality 

metrics, fault-proneness, performance, and productivity with changing reuse rates in a leading 

defense industry company of Turkey. Up to the present time, similar case studies have been 

conducted elsewhere including mostly telecommunication companies; however in Turkey, there are 

not many case studies especially done in the defense industry. Because of that, this study is 

expected to constitute a promising start. 
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	Figure 3.1 – HSSS Reference Layered Architecture
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	The hardware units’ independence layer provides common interfaces for different brands and models of hardware units i.e. Same interfaces for different camera types used in HSSS projects.
	3.2.2  TECHNICAL FIRE SUPPORT SYSTEMS TEAM
	Tactical Fire Support Systems (TADES) team develops command and control software for technical fire support systems using TADES Software Product Line[48]. The team creates software in .NET environment.
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	3.3.1 SOFTWARE MODULES USED
	In this study, three different software modules are investigated. All modules are implemented, using C++, by HSSS team.
	The first module is the User Command and Control Interface of an embedded system (Figure 3.2). This module opens up a TCP/IP socket interface and the external users of the system connect and control the system through this interface.
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	In order to obtain socket updates, this module (UserInterface_Compatible) inherits ICommOutput interface; in order to send messages through socket this module has an association with ICommInput interface and in order to receive commands from the syste...
	Figure 3.3 – Sequence diagram of the user command scenario of the 1st module
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	3.3.4  MEASUREMENT OF METRICS
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	3.4.2.2 PRODUCTIVITY RATES IN DIFFERENT PRODUCTS
	In this sub-section, we will compare productivity rates of the three products. The productivity will be calculated as shown in formula 3.2.
	(3.2)
	First, productivity rates are calculated using the number of new requirements (Table 3.12).
	Table 3.12 – Productivity rates using new requirements
	Then, productivity rates using the total number of requirements are calculated (Table 3.13).
	Table 3.13 – Productivity rates using total requirements
	In Figure 3.21, the comparisons of the productivity rates are displayed. The comparison of the productivity rates with total requirements indicates that as the components are reused in different products, the productivity rates increase remarkably, wh...
	and third products. We interpret the first case as a conclusion of the development by employing a product-line. Since the reused components are already developed in previous products, the productivity rates increase significantly. Furthermore, the fir...
	Figure 3.21 – Comparison of productivity rates of each product using new requirements and total requirements
	3.5 CASE STUDY 3: CHANGE OF PRODUCTIVITY AND PERFORMANCE WITH INCREASING REUSE RATES IN SSRM SPL
	In this section, we will show changing productivity rates as reuse rates vary for different products developed sequentially using SSRM SPL. In addition, the performance measurements of a critical scenario in this domain will be measured and compared b...
	3.5.1  MEASUREMENT OF PRODUCTIVITY METRICS
	Reuse rates are calculated using reused non-comment line of codes and total non-comment line of codes. Productivity rates are calculated using total non-comment line of codes and total effort to develop the so called product (see formula 3.3). Total e...
	(3.3)
	In Table 3.14, reuse and productivity rates for the products developed using SSRM SPL are given.
	Table 3.14 – Reuse and productivity rates for products in SSRM SPL
	3.5.2  DISCUSSION OF THE PRODUCTIVITY MEASUREMENTS
	In Figure 3.22, the comparison of reuse and productivity rates of the products is displayed. Reuse rates increase from product 1 to product 4; however productivity change does not have the equivalent attitude. Productivity rates increase slightly betw...
	 There was a serious waste of time during the development of the non-reused (new) parts in product 3,
	 Most of the developers of the product 3 were unfamiliar with software development by employing the product-line.
	We can conclude that utilization of some normalizing factors i.e. Code complexity for the non-reused parts and experience of the developers, in measuring productivity rates can be useful. Furthermore, during the initial products, it is not surprising ...
	3.5.3  MEASUREMENT OF PERFORMANCE METRICS
	In Case Study 3, in order to compare the performance before and after employing the product line, one of the most critical scenarios in the system, the automatic video tracking scenario is investigated. The performance metrics used are time delay and ...
	In this scenario, in order to achieve the critical mission, three different systems work together as displayed in Figure 3.23.
	Figure 3.22 – Comparison of Reuse and Productivity for products in SSRM SPL
	Figure 3.23 – Automatic target tracking scenario
	Video Tracker (VT) system detects, and tracks the selected targets. The target data is sent from VT to Fire Control System periodically; then this system adds platform offsets into target data and generates the platform data. Finally, this platform da...
	Before employing the SSRM SPL, the classes implementing the AVT scenario in Fire Control System are displayed in Figure 3.24.
	Figure 3.24 – Class diagram of Fire Control System AVT scenario before SSRM SPL
	Figure 3.25 – Sequence diagram of Fire Control System AVT scenario before SSRM SPL
	The AVT scenario sequence diagram before employing the SSRM SPL is shown above in Figure 3.25.
	The delay from reception of the track data from VT System to the transmission of the platform data to the Servo Controller System and the CPU usage during the scenario are measured. Measurements are shown below in Table 3.15.
	Table 3.15 – Measurements of the AVT scenario before SSRM SPL
	During the development process of the product line, the team transformed the AVT scenario into a mission [49]. In order to isolate the VTController and ServoController classes from the AVTMissionController, they introduced two more layers into the sce...
	Figure 3.26 – Class diagram of the AVT mission
	Since VT System provides target data periodically, there were two options in TargetManager: Either it would receive periodic updates from VTController (push strategy), or it would get target data from VTController periodically (pull strategy). In orde...
	Figure 3.27 – Sequence diagram of the AVT mission with pull strategy
	The delay from reception of the track data from VT System to the transmission of the platform data to the Servo Controller System and the CPU usage during the scenario are measured. Measurements are shown below in Table 3.16.
	Table 3.16 – Measurements of the AVT mission with pull strategy
	The average delay due to pull strategy was 20 ms, which is sufficient for some systems; however for systems which have high performance requirements, this delay was unacceptable. Therefore, the team implemented the “push strategy” for taking updates f...
	Figure 3.28 – Sequence diagram of the AVT mission with push strategy
	The sequence diagram of the AVT mission implemented with pull strategy is shown in Figure 3.28.
	The delay from reception of the track data from VT System to the transmission of the platform data to the Servo Controller System and the CPU usage during the scenario are measured. Measurements are shown below in Table 3.17.
	Table 3.17 – Measurements of the AVT mission with push strategy
	3.5.4  DISCUSSION OF THE PERFORMANCE MEASUREMENTS
	Above, we explained three different implementation methods of the AVT scenario. The first method was before the team developed the SSRM SPL. In the second and third methods, there are
	two additional layers which are due to the product line employment and in order to increase the reuse of the scenario software.
	The AVT scenario delay is measured for three cases (see Table 3.15, Table 3.16, and Table 3.17), and comparison of the average delay and CPU usage are shown in Figure 3.29. According to these comparisons, we can conclude that while transforming the so...
	Figure 3.29 – Comparison of average delays and CPU usages of three different implementations of AVT scenario
	3.6 VERIFICATION OF THE HYPOTHESES
	In this section, the results of the measurements in the case studies will be analyzed, and it will be stated whether or not the hypotheses are verified.
	3.6.1  HYPOTHESIS 1 (CASE STUDY 1)
	Code-based Quality: The quality of software products is improved as reuse rates of the products increase.
	The motivation in formulating Hypothesis 1 was the fact that we expected to observe a correlation between changing reuse rates and OO metrics. In the literature, it was argued that OO metrics are strongly related to predicting fault-proneness of softw...
	Therefore, in order to say that Hypothesis 1 is true, we have to display a correlation between changing reuse rates and OO metrics.
	In this work, an experiment was designed in order to compare the software quality metrics with changing reuse rates. We have found a strong correlation between complexity metrics and reuse rate. Between coupling metrics and reuse rate, we have observe...
	Now, we can answer if Hypothesis 1 is true or false. The results show that some CK metrics and size metrics do not correlate with changing reuse rate: SLOC, DIT, NOC, and LCOM. However, the results also show that Coupling and Complexity CK metrics and...
	Table 3.18 – Summary of the results of the OO metrics of the experiment
	Figure 3.30 – Reduction of complexity and coupling metrics with respect to increasing reuse rate
	As analyzed above, the complexity and coupling metrics are correlated to reuse rates which is consistent with the “Theoretical and empirical analysis of the object-oriented metrics” section of Chapter 2, where it was empirically displayed that the mos...
	Consequently, the improvements in coupling and complexity metrics are appropriate to claim an increase in software quality. Therefore, we can conclude that Hypothesis 1 is verified.
	3.6.2  HYPOTHESIS 2 (CASE STUDY 1, CASE STUDY 3)
	Performance of Embedded Software: Performance of the embedded software products decays as reuse rate of the products increase.
	In the experiment designed in case study 1, we measured and compared the performance of a message receiving and transmitting scenario in three different embedded software modules. We find a strong negative correlation between performance and reuse rat...
	In case study 3, we measured and compared the performance metrics of a critical scenario of an embedded software system before and after employing a product-line approach. We observed that, the case before the product line approach was the best regard...
	Consequently, the measurements from two different case studies display that Hypothesis 2 is verified (see Figure 3.31).
	Figure 3.31 – Worsening of performance metrics as reusability increases in case studies 1 and 3
	3.6.3  HYPOTHESIS 3 (CASE STUDY 2)
	Fault-proneness: The number of defects detected in components decreases as these components are reused in various products.
	In case study 2, measurements are taken from a product line which is used in subsequent products.
	When the components are not reused, namely not used in earlier products, we observe a large number of defects in these components. Furthermore, we find that the decrease in the defect counts is independent of the product types. When the component is f...
	To conclude, as components are reused in several products, we observed that their defect counts decrease significantly and so their fault-proneness. Therefore, we can conclude that hypothesis 3 has been verified in this study.
	3.6.4  HYPOTHESIS 4 (CASE STUDY 2, CASE STUDY 3)
	Productivity: The productivity rates of products increase, as the reuse rates of these products increase.
	In case study 2, productivity rates of the three products developed using the SPL approach are presented. Productivity rates are measured using the number of requirements using the requirements count and total effort. The results showed that, if the p...
	In case study 3, we compared productivity rates of products implemented by another product line approach with increasing reuse rates. In this measurement, we also observed a positive correlation with reuse and productivity rates. However, the change o...
	Hence, we concluded that, if the effects of the adaptation period of the product line approach are ignored, the productivity rates improve significantly as the rate of reuse increases in a product line. Therefore, hypothesis 4 has been verified.
	3.7 SUGGESTIONS TO FURTHER BENEFIT FROM THIS STUDY
	In this section, discussions made in the measurements collection and hypotheses verification sections will be reviewed. By means of those analyses, suggestions regarding the reuse infrastructure and process, to improve benefits of reuse in Aselsan wil...
	3.7.1  USE OF REFERENCE METRICS
	Measurements taken from a recently developed middleware technology used in Aselsan, were used for verification of Hypothesis 1. In these measurements, the evolution of code-based metrics with respect to changing reuse rates is examined, and improvemen...
	Therefore, in order to succeed in the employment of these metrics, the software developers should select reference metrics specific to their software domain and periodically monitor the changes of these metrics.
	3.7.2  AUTOMATED DETECTION OF ARCHITECTURAL EFFECTS
	In order to verify Hypothesis 2, the changes of performance metrics of two different embedded systems were examined before and after introducing a reuse infrastructure in the software development process. In the first system, the above-mentioned middl...
	Thereupon, the embedded software developers should develop methods in order to automate the process of detecting the architectural modifications which include the chance of worsening the software performance below system requirements.
	3.7.3  RECORDING SOFTWARE DEVELOPMENT PROCESS DEFECTS
	The defect counts of the components in consecutive products, developed by a product line approach, were measured in order to verify Hypothesis 3. Post-release defects were collected from the problem reporting system used in Aselsan; since the defects ...
	Hence, in order to improve the management of defects, and investigate the defects intensely; the severity of the defects should also be provided after being corrected. Additionally, the defects detected during the software development process should a...
	3.7.4  ASSOCIATION OF DEFECTS WITH DESIGN CONCEPTS
	In the problem reporting system used in Aselsan, the defects were associated with the components, but they were not associated with the corresponding design concepts such as class, and method. Hence, the reasons of the defects were not thoroughly anal...
	Consequently, in order to improve the management of defects, and investigate the defects intensely; the software developers should identify each defect with corresponding component, and the design concept.
	3.7.5  RECORDING REWORK EFFORTS AND EFFORTS ASSOCIATED WITH REUSE
	Productivity rates were measured and compared in order to verify Hypothesis 4. The total efforts of the products were measured by the business management software used in Aselsan. In case studies 2 and 3, the efforts of the products, developed by a pr...
	Therefore, in order to be able to measure and analyze these metrics, with changing reuse rates; these metrics should be recorded, and for this purpose the relevant infrasture should be developed.
	3.7.6  EXPLICIT ACCOUNTING FOR CODE REUSE

	DISCUSSION AND CONCLUSION
	Prior to this study, several studies have been conducted on software reuse and software quality ranging from theoretical to experimental studies. These studies have shown strong evidences in the relationship of software reuse and software quality; alt...
	In this study, we did both theoretical and empirical studies. We worked with Turkey’s leading defense industry company: Aselsan’s software engineering department. We aimed to examine their software projects and follow reuse and quality relations for t...
	In the first case, we compared the code-based quality metrics of three software modules while two of these modules are produced by a reuse engine. In this study, we observed that complexity and coupling metrics improved, however the performance decaye...
	In second and third cases, we investigated two different product lines which are actively used in many projects in Aselsan.
	We were able to compare post-release defect counts of the components reused in consequent products i.e. Fault-proneness of the components as they are reused in various products, in the first product line. Furthermore, the productivity of the discussed...
	In the second product line, we compared productivity rates of several products as reuse rates of these products increased; and observed that as reuse rates of the products increased, the productivity rates also improved. Moreover, the worsening of the...
	As we expressed above, we accomplished three different case studies and measured and compared different concepts in all three cases i.e. OO quality metrics, productivity rate, defect counts, performance. We were not able to obtain all these measures i...
	Therefore, in the third case, we could not collect defect counts of the components and use in the discussions. On the other hand, we were unable to obtain code-based metrics for the cases 2 and 3; for this reason, we used code metrics only in case 1. ...
	In future studies, it would be a significant improvement if all types of measurements could be collected i.e. Code-based metrics, defect counts (separate for each component) and productivity; and if these metrics could be compared with changing reuse ...
	In this study, we were able to collect defect counts after the software development process i.e. post-release; because defects found after testing and reported by customers are kept in problem reporting system. However, it would be an improvement to c...
	Additionally, it would be better to consider not only the number of defects, but also their severity. Although there is an additional field for problem severity in the problem reporting system used in Aselsan, we were able to reach only the defect cou...
	In prior studies, it was shown that complexity and coupling metrics can successfully predict post-release defects. Maybe in future studies, we can explain exactly which metrics are appropriate for projects of Aselsan, by matching code-based metrics an...
	Furthermore, measuring and recording rework efforts, efforts associated with reuse, post-release efforts, and maintenance efforts, in addition to development efforts, will also be a significant enhancement in the software development process, since an...
	Consequently, in this thesis, we have compared some software measurements such as OO quality metrics, fault-proneness, performance, and productivity with changing reuse rates in a leading defense industry company of Turkey. Up to the present time, sim...
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