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ABSTRACT

REPEATED-ROOT CYLIC CODES AND MATRIX PRODUCT CODES

Özadam, Hakan

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

December 2012, 82 pages

We study the Hamming distance and the structure of repeated-root cyclic codes, and their

generalizations to constacyclic and polycyclic codes, over finite fields and Galois rings. We

develop a method to compute the Hamming distance of these codes. Our computation gives

the Hamming distance of constacyclic codes of length nps in many cases. In particular, we de-

termine the Hamming distance of all constacyclic, and therefore cyclic and negacyclic, codes

of lengths ps and 2ps over a finite field of characteristic p. It turns out that the generating sets

for the ambient space obtained by torsional degrees and strong Groebner basis for the ambient

space are essentially the same and one can be obtained from the other.

In the second part of the thesis, we study matrix product codes. We show that using nested

constituent codes and a non-constant matrix in the construction of matrix product codes with

polynomial units is a crucial part of the construction. We prove a lower bound on the Ham-

ming distance of matrix product codes with polynomial units when the constituent codes are

nested. This generalizes the technique used to construct the record-breaking examples of Her-

nando and Ruano. Contrary to a similar construction previously introduced, this bound is not

sharp and need not hold when the constituent codes are not nested. We give a comparison of
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this construction with a previous one. We also construct new binary codes having the same

parameters, of the examples of Hernando and Ruano, but non-equivalent to them.

Keywords: Coding Theory, Linear Codes, Cyclic Codes, Constacyclic Codes, Repeated-Root

Cyclic Codes, Optimal Codes, Matrix Product Codes, Code Construction
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ÖZ

ÇOK KATLI DÖNGÜSEL KODLAR VE MATRİS ÇARPIM KODLARI

Özadam, Hakan

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Ferruh Özbudak

Aralık 2012 , 82 sayfa

Bu çalışmada Galois halkaları ve sonlu cisimler üzerinde tanımlanan çok katlı döngüsel ve

sabit döngüsel kodları ve polidöngüsel kodların yapılarını ve Hamming mesafelerini inceledik.

Bu kodların Hamming mesafesini bulmak için bir yöntem geliştirdik. Bu yöntemi kulla-

narak, uzunluğu nps olan pek çok sabit döngüsel kodun Hamming mesafesini bulabildiğimizi

gördük. Hesaplamalarımız sonucunda karakteristiği p’nin kuvveti olan bir alfabe üzerinde

tanımlı, uzunlukları ps veya 2ps olan bütün döngüsel ve negatif döngüsel kodların Hamm-

ming mesafesini elde ettik. Çalıştığımız kodların ambiyant uzaylarını üretmek için literatürde

birbirinden bağımsız olarak yayımlanmış iki çalışmada kullanılan torsiyonal dereceler ve

Gröbner tabanları tekniklerinin aslında aynı üreteç kümeyi verdiklerini gözlemledik. Ayrıca

görünürde farklı bu iki üreteç kümenin birbirlerinden nasıl elde edileceğini gösterdik.

Tezin ikinci kısmında ise matris çarpım kodlarını inceledik. Polinom birimli matris çarpma

yönteminde, iç içe geçmiş kodlar kullanmanın ve sadece sabitlerden oluşmayan bir matrisin

kullanılmasının nasıl bir fark yaratacağını ortaya koyduk. Kullanılan kodlar iç içe geçmiş

olduklarında, üretilen yeni kodun Hamming mesafesi için bir alt sınır bulduk. Bu şekilde

Hernando ve Ruano’nun çalışmasındaki en iyi parametrelere sahip bir takım kodları üreten
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yöntemi genelleştirmiş olduk. Önceden sunulan başka bir yöntemin aksine, kullanılan kodlar

iç içe geçmemiş olduklarında bulduğumuz bu alt sınıra ulaşılamayacağını ve ayrıca bu alt

sınırın geçerli olmayabileceğini de gözlemledik. Bunların yanında, Hernando ve Ruano’nun

çalışmasında sunulan kodlarla aynı parametrelere sahip fakat bu kodlara denk olmayan yeni

lineer kodlar elde ettik.

Anahtar Kelimeler: Kodlama Teorisi, Lineer kodlar, Döngüsel Kodlar, Sabit Döngüsel Kodlar,

Çok Katlı Döngüsel Kodlar, Optimal Kodlar, Matris Çarpım Kodları, Kod Oluşturma
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PREFACE

This thesis consists of two projects on coding theory. In the first project, we study repeated-

root cyclic, constacyclic and polycyclic codes. This part is based on the publications [47, 48,

49] of the author. The other project is on the construction of linear codes having best known

parameters. The related results are compiled in [13] and submitted for publication.

Linear codes have many applications in computer science such as source coding, cryptogra-

phy, secret sharing, computer networks, distributed storage and etc. Linear codes are chosen

over nonlinear codes as their structure allows efficient encoding / decoding algorithms and

easier study of their features like minimum Hamming distance. One very important class

of linear codes is cyclic codes. They have an additional algebraic structure and this makes

them more interesting for theoretical and practical purposes. Cyclic codes can be grouped

into two sub-classes: simple-root cyclic codes and repeated-root cyclic codes. Simple-root

cyclic codes are those with codeword length coprime to the characteristic of the alphabet.

Repeated-root cyclic codes are those with codeword length having a common prime divisor

with the characteristic of the alphabet. Most of the studies in the literature on cyclic codes

are focused on the simple-root case. However, coding theory has unprecedented applications

in various areas of computer science which are not just limited to reliable communication.

For this reason, repeated-root cyclic codes also deserve attention. In this thesis, we study the

Hamming distance and the structure of repeated-root cyclic codes, and their generalizations

to constacyclic and polycyclic codes, over finite fields and Galois rings. We consider consta-

cyclic codes of length nps over an alphabet whose characteristic is a power of p. We develop

a method to compute the Hamming distance of these codes. Our computations give the Ham-

ming distance of constacyclic codes of length nps in many cases. In particular, we determine

the Hamming distance of all constacyclic, and therefore cyclic and negacyclic, codes of length

ps and 2ps over a finite field of characteristic p. We also study the structure of the ambient

space of these codes over Galois rings. There are two approaches to this in the literature.

One approach is studying the ambient space via Groebner basis. The other is based on using

torsional degrees in order to find nice generating sets. We unify these two approaches and

observe that the two sets are essentially the same and one can be obtained from the other. Us-
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ing this, we give a method to find the Hamming distance of polycyclic codes if the Hamming

distance of the residue code is known.

In the second part of the thesis, we study the construction of codes having best known parame-

ters using matrix product codes with polynomial units. We show that using nested constituent

codes and a non-constant matrix in the construction of matrix product codes with polyno-

mial units, which were recently introduced in [4], is a crucial part of the construction. We

prove a lower bound on the Hamming distance of matrix product codes with polynomial units

when the constituent codes are nested. This generalizes the technique used to construct the

record-breaking examples of [27]. Contrary to a similar construction previously introduced,

this bound is not sharp and need not hold when the constituent codes are not nested. We

give a comparison of this construction with a previous one. We also construct new binary

codes having the same parameters, of the examples of [27], but non-equivalent to them. The

codes in our examples have less codewords with the minimum Hamming weight of the code

compared to the examples of [27].

In Chapter 1, we give some background on algebra and coding theory. We study polycyclic

and repeated-root constacyclic codes in Chapter 2 and Chapter 3. First we study the structure

of the ambient space of these codes in Chapter 2. Next we compute their Hamming distance

in Chapter 3. Chapter 4 is about methods to construct linear codes having good parameters.
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CHAPTER 1

Preliminaries

1.1 Algebraic Background

Linear codes have important advantages over nonlinear codes. For example there are much

more efficient encoding and decoding algorithms for linear codes compared to nonlinear ones.

We can also study their features such as Hamming distance and weight distribution systemat-

ically whereas brute force is needed for most of the nonlinear codes. The superiority of linear

codes comes from their algebraic structure. Linear codes can be viewed as vector spaces over

finite fields or modules over Galois rings. Moreover, cyclic codes can be viewed as ideals of a

quotient ring. In this chapter, we briefly give the necessary algebraic background to study the

algebraic structure of linear codes. We begin with groups, rings, fields, modules and vector

spaces and continue with finite fields and Galois rings. Then we define linear and cyclic codes

and state some of their properties.

Though groups and rings are not commutative in general, we will be working with commu-

tative ones in this thesis. So, throughout we will assume that the groups and rings we are

dealing with are all commutative. We will give the definitions and properties built on them

based on this assumption. A more general and detailed treatment of the topic can be found in

textbooks on Algebra such as [22, 30, 35].

1.1.1 Groups

Let S be a nonempty set. A binary operation ? is a function from S × S to S . It is said to be

associative if (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ S . A group G is a set equipped with an

1



associative binary operation ? satisfying the following two properties.

• There is an element e ∈ G such that a ? e = e ? a for all a ∈ G.

• For every a ∈ G, there is an element a−1 ∈ G such that a ? a−1 = a−1 ? a = e. The

element a−1 is called the inverse of a.

The group G is called commutative if a ? b = b ? a for all a, b ∈ G. Commutative groups are

also called abelian groups. Most of the groups we will be working with are commutative.

Let (G, ?) be a group and H ⊂ G be a subset of G. If H is itself a group under the binary

operation inherited from G, then H is called a subgroup of G. In other words, H is a subgroup

of G if H is closed under ? and H has the identity element.

1.1.2 Rings

Let G be a group with two binary operations + and ×, called addition and multiplication

respectively. The tuple (G,+) is called an additive group and (G,×) is called a multiplicative

group.

Let R be a set with two binary operations +,× defined on it. The set R is called a ring if the

following hold.

• (R,+) is a commutative group.

• The multiplication operation × is associative.

• The two binary operations are distributive over each other. More explicitly, for every

a, b, c ∈ R, we have (a + b) × c = (a × c) + (b × c) and a × (b + c) = (a × b) + (a × c).

The ring R is called commutative if the multiplication operation × is commutative. The ring

R is said to be with unity if there is an element 1R such that 1R × a = a × 1R = a for all a ∈ R.

By convention, we denote the identity element of the additive group by 0R. Throughout, if

the binary operation symbol is omitted, it is assumed to be multiplication. Namely we simply

write ab to denote a × b.
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Let F be a commutative ring with unity, say 1F . Then F is called a field if every nonzero

element has a multiplicative inverse. In other words, for every a ∈ F with a , 0F , there is

a−1 ∈ F with a−1 , 0 such that aa−1 = a−1a = 1F .

Let R be a commutative ring. Let I be a subset of R. Then I is called an ideal of R if I is

itself a ring under the binary operations inherited from R and I is closed under multiplication

by the elements of R. More explicitly, I ⊂ R is called an ideal of R if I is a ring and for

each a ∈ I and r ∈ R, we have ra ∈ R. We also write I C R to indicate that I is an ideal

of R. Let r1, . . . , rn ∈ R. An ideal J ⊂ R is said to be generated by the set {a1, . . . , an} if

J = {r1a1 + · · · + rnan : r1, . . . , rn ∈ R}. We denote it by J = 〈a1, . . . , an〉. If J is generated

by one element, i.e. J = 〈a〉, then J is said to be a principal ideal.

R is called a chain ring if all its ideals are linearly ordered with respect to set inclusion.

An ideal P ( R is called a prime ideal of R if rs ∈ P implies r ∈ P or s ∈ P for every r, s ∈ R.

An ideal I C R is called a primary ideal if for all uv ∈ I, we have un ∈ I or v ∈ I for some

positive integer n.

An ideal M ( R is called a maximal ideal of R if the only ideals containing M are M and R.

The Jacobson Radical of R is the intersection of all maximal ideals of R. A ring is called a

local ring if it has only one maximal ideal.

The socle of R, denoted by soc(R), is the sum of all ideals of R containing only themselves

and the zero ideal.

Let R and S be two rings. A ring homomorphism is a map ϕ : R → S that preserves addition

and multiplication. That is ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y) for every x, y ∈ R.

The map ϕ is called ring isomorphism if ϕ is a bijection.

Let R be a ring and a, b ∈ R.

• a is called a unit if there is c ∈ R such that ac = 1.

• a is called a zero divisor if a is nonzero and there is a nonzero element w ∈ R such that

aw = 0.

• a is called nilpotent if there is a positive integer n such that an = 0. The least positive

3



integer m with am = 0 is called the nilpotency index of a.

• a and b be are called coprime if there exist α, β ∈ R such that αa + βb = 1.

• a is called prime if 〈a〉 is a proper prime ideal of R.

• a is called irreducible if a = αβ, then α is a unit or β is a unit.

• a is called primary if 〈a〉 is a primary ideal.

Let R[x] = {anxn + an−1xn−1 + · · · + a1x + a0 : a0, . . . , an ∈ R, n ∈ Z+ ∪ {0}} be the ring of

polynomials in one variable over the ring R. Let f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ R[x].

The term anxn is called the leading term of f (x) and an is called the leading coefficient of f (x).

The polynomial f (x) is called monic if an = 1. The term a0 is called the constant term of f (x).

1.1.3 Fields

A field is a commutative ring with unity such that every nonzero element has an inverse with

respect to multiplication. In other words, a field F is a commutative ring with unity with the

binary operations + and × such that (F,×) is a commutative group. A subset E of F is called

a subfield if F is a field itself. The field F is called an extension of E.

Let R be a ring and I be its ideal. We denote the set of the equivalence classes of I by R/I. If

I is a maximal ideal then R/I is a field and it is called the residue field of I.

Let F and K be two fields. A field homomorphism is a map ψ : F → K that preserves addition

and multiplication. The map ψ is called a field isomorphism if ψ is a bijection.

1.1.4 Modules & Vector Spaces

Let R be a commutative ring with unity. A module over R is a set M having the following

properties.

• There is a binary operation + on M such that (M,+) is a commutative group.

• There is a map from R × M to M. For r ∈ R and m ∈ M, we denote the image of (r,m)

by rm. For all r, s ∈ R and m, n ∈ M, this map has the following properties.

4



� (r + s)m = rm + sm.

� (rs)m = r(sm).

� r(m + n) = rm + rn.

� 1Rm = m.

Let N ⊂ M. Then N is called a submodule of M if N is itself an R-module.

Let F be a field. A set V is called a Vector Space over F if V is a module over F.

Let M be a an R-module and S ⊂ M. The set S is said to be linearly independent if for every

r1, . . . , rn ∈ R and s1, . . . , sn ∈ S , r1s1 + r2s2 + · · · + rnsn = 0 implies r1 = r2 = · · · = rn = 0.

1.1.5 Finite Fields

Linear codes are constructed using a finite alphabet which is customarily a Finite Field. In

this subsection, we cover the basics of finite fields and fix our notation. We refer to [36] as a

standard text on finite fields.

The simplest finite fields are integers modulo a prime number p. They are denoted by Zp or

Fp. All other finite fields are constructed by adjoining a root of an irreducible polynomial to

them. Here we briefly explain this construction. A more detailed treatment of this topic can

be found in the second chapter of [36].

It is well-known that for every positive integer n, we can find an irreducible polynomial of

degree n over a Finite Field. It is also well-known that every polynomial over a finite field

can be factored linearly over an appropriate extension. So, every polynomial over Fp has a

root over some extension of Fp. Let f (x) = anxn + · · · + a1x + a0 ∈ Fp[x] be an irreducible

polynomial over Fp. Let α be a root of f (x). Then it can be shown that the smallest field

containing Fp and α, denoted by Fp(α), has pn elements. Clearly, Fp ⊂ Fpn , so Fpn is an

extension of Fp. All finite fields can be constructed this way. If we pick another root of

f (x), say β, then we get essentially the same field. Namely, the fields Fp(α) and Fp(β) are

isomorphic. So, in this sense, there is a unique Finite Field having pn elements. It is common

practice to denote the finite field having q elements by Fq, where q = pn. Hence

Fq � Fp(α) � Fp(β) �
Fp[x]
〈 f (x)〉

.
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So, for each prime power q there is a unique Finite Field having q elements, namely Fq.

Conversely, the cardinality of any finite field field is a power of a prime number.

We denote the multiplicative group of Fq by F∗q. Clearly, F∗q = Fq \ {0}. The multiplicative

group of Fq is cyclic, that is F∗q = {ξ, ξ2, . . . , ξq−1} for some ξ ∈ F∗q.

1.1.6 Galois Rings

The theory of Galois rings has similarities with finite fields. For a rigorous treatment of this

topic, we refer to [40] as a standard text. We begin with preliminaries and define Galois rings

and then mention some of their properties.

Throughout this subsection, R denotes a finite commutative ring with unity.

A polynomial f (x) ∈ R[x] is called regular if f (x) is not a zero divisor.

If R is a local ring with the maximal ideal M, then F = R/M is a field and F is called the

residue field of R. There is a natural homomorphism µ, called the canonical projection, from

R to F given by r 7→ r + F. This map extends to a homomorphism of the polynomial rings

R[x] and F[x]. For this we define, abusing notation,

µ : R[x] → F[x]

anxn + · · · + a1x + a0 7→ µ(an)xn + · · · + µ(a1)x + µ(a0)

We denote µ( f (x)) by f̄ (x). Note also that µ maps the ideals of R[x] to the ideals of F[x] and

we denote the canonical projection of the ideal I by Ī.

If µ( f (x)) is irreducible over the residue field F, then f (x) is called basic irreducible.

Recall that finite fields can be described as extensions of Fp, where an extension is obtained

by the quotient ring Fp[x]/〈g(x)〉 where g(x) is an irreducible polynomial. Similarly, Galois

rings can be described as finite extensions of Zpa . Let f (x) ∈ Zpa[x] be a basic irreducible

polynomial of degree m, i.e., µ( f (x)) is irreducible over Fp. Then the Galois Ring of char-

acteristic pa having pam elements, denoted by GR(pa,m) is the quotient ring Zpa[x]/〈 f (x)〉.

Clearly, GR(p,m) = Fpm and GR(pa, 1) = Zpa .
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It is well-known that the Galois ring GR(pa,m) is a local ring with the maximal ideal 〈p〉.

Moreover GR(pa,m) is a finite chain ring and its ideals are 〈pi〉 where i ∈ {0, 1, . . . , a}. A

characterization of finite chain rings is as follows.

Lemma 1.1.1 ([20, Proposition 2.1]) Let R be a finite commutative ring. The following are

equivalent.

1. R is a chain ring.

2. R is a local principal ideal ring.

3. R is a local ring and the maximal ideal of R is principal.

Furthermore, if R is a finite commutative chain ring with the maximal ideal 〈ν〉, then the ideals

of R are exactly 〈νi〉 where i ∈ {0, 1, . . . , t} and t is the nilpotency index of ν.

The residue field of GR(pa,m) is Fpm . Let ζ be a generator of the multiplicative group Fpm \{0}.

The fact that Zpa[ζ] � GR(pa,m) is a classical result of finite ring theory. We can express an

element z ∈ GR(pa,m) as z =
∑pm−2

j=0 v jζ
j where v j ∈ Zpa . Let Tm = {0, 1, ζ, . . . , ζ pm−2}. The

set Tm is called the Teichmüller set. Alternatively, we can uniquely express z ∈ GR(pa,m) as

z = z0 + pz1 + · · · + pa−1za−1, zi ∈ Tm,

which is called the p-adic expansion of z.

By the characterization given in [40, Theorem XIII.2], f (x) is regular if and only if one of its

coefficients is a unit in GR(pa,m). As the following theorem says, regular polynomials over

Galois rings can be factored uniquely.

Theorem 1.1.2 ([40, Theorem XIII.11]) Let f (x) ∈ GR(pa,m)[x] be a regular polynomial.

Then f (x) = δg1(x) · · · gr(x) where δ is a unit and g1(x), . . . , gr(x) are regular primary coprime

polynomials. Moreover, this factorization is unique up to reordering terms and multiplication

by units.

Now we recall the division algorithm in Fpm[x] and GR(pa,m)[x]. Since Fpm[x] is a Euclidean

domain, for any v(x) and 0 , g(x) ∈ Fpm[x], there exist unique polynomials y(x), r(x) ∈ Fpm[x]
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such that

v(x) = g(x)y(x) + r(x)

where either 0 ≤ deg(r(x)) < deg(g(x)) or r(x) = 0. We define v(x) mod g(x) as r(x), and we

use the notation v(x) ≡ r(x) mod g(x) in the usual sense.

There is also a division algorithm for polynomials in GR(pa,m)[x] (see, for example, [40, Ex-

ercise XIII.6] or [4, Proposition 3.4.4]). Let f (x) ∈ GR(pa,m)[x] and let h(x) ∈ GR(pa,m)[x]

be a regular polynomial. Then there exist polynomials z(x), b(x) ∈ GR(pa,m)[x] such that

f (x) = z(x)h(x) + b(x)

and deg(b(x)) < deg(h(x)) or b(x) = 0.

1.2 Basics of Coding Theory

Traditionally, linear codes are defined and studied over finite fields. In mid 1990’s, linear

codes over finite commutative rings, and in particular, over Galois rings, became popular after

the seminal paper [25] of Hammons et. al. Yet in the literature, there exist studies on codes

over noncommutative rings such as [1]. In this thesis, we study codes over Galois rings and

finite fields. So, throughout, we assume that linear codes are defined over commutative rings.

A rigorous and in-depth treatment of coding theory can be found in the books [3, 28, 38].

1.2.1 Linear Codes

Let R be a finite commutative ring. A linear code C of length n over R is an R-submodule

of Rn. If the alphabet is a finite field, i.e. R = Fq, then C is a subspace of the vector space

Fn
q. The elements of C are called codewords. We can view a codeword c ∈ C as an n-tuple

c = (c1, c2, . . . , cn) where ci ∈ R for 1 ≤ i ≤ n.

Let v = (v1, . . . , vn),w = (w1, . . . ,wn) ∈ C be two codewords. The Hamming distance between

v and w is defined as dH(v,w) = |{i : vi , wi}|. In other words, the Hamming distance

between two codewords is the number of different entries in v and w having the same index.

The Hamming weight of v is defined as the number of nonzero entries of v, i.e., wH(v) = |{i :

vi , 0}|.
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The minimum Hamming distance, or, simply the Hamming distance, dH(C) of a linear

code C is the minimum of all distances between distinct codewords of C. That is dH(C) =

min{dH(v,w) : v,w ∈ C and v , w}. For a linear code C, it can easily be shown, that dH(C)

is equal to the minimum of the Hamming weights of its nonzero codewords. In other words

dH(C) = min{wH(v) : v ∈ C and v , 0}.

Let C be a linear code over Fq. The number of elements of a basis of C is called its dimension.

If C is a linear code C of length n, dimension k and Hamming distance d, then C is referred

to as an [n, k, d] code. The integers n, k, d are called the parameters of C.

Let C be an [n, k, d] code over Fq. Let B = {w1,w2, . . . ,wk} be a basis for C and wi =

(wi1,wi2, . . . ,win), for all 1 ≤ i ≤ k. We define

G =



w11 w12 . . . w1n

w21 w22 . . . w2n
...

...
...

...

wk1 wk2 . . . wkn


.

The matrix G is called a Generator Matrix for C. So, the linear combinations of the rows of

G are exactly the elements of C. Note that, in general, C has more than one generator matrix.

On the other hand, a generator matrix uniquely defines a linear code.

1.2.2 Cyclic Codes

Cyclic Codes are obtained by imposing an additional algebraic structure on linear codes. This

additional structure allows us to use more algebra to study the structure and the Hamming

distance of these codes.

Let w = (w0,w1, . . . ,wn) ∈ GR(pa,m)n. The cyclic shift of w is defined to be

(wn−1,w0,w1, . . . ,wn−2) ∈ GR(pa,m). Let C be a linear code of length n over GR(pa,m). C is

called a cyclic code if C is closed under cyclic shifts. In other words, C is cyclic if

(w0,w1, . . . ,wn) ∈ C ⇒ (wn−1,w0,w1, . . . ,wn−2) ∈ C.

In order to see the algebraic structure of cyclic codes, we identify the codeword

w = (w0,w1, . . . ,wn−1), over GR(pa,m), with the polynomial w(x) = w0 + w1x + · · · +

wn−1xn−1 ∈ GR(pa,m)[x]. Recall that all of the equivalence classes of GR(pa,m)[x]
〈xn−1〉 can be
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represented by polynomials of degree less than or equal to n−1. So, there is a one-to-one cor-

respondence between the elements of the quotient ring GR(pa,m)[x]
〈xn−1〉 and n-tuples over GR(pa,m)

given by

(w0,w1, . . . ,wn−1)↔ w0 + w1x + · · · + wn−1xn−1.

Then, with respect to the above identification, the cyclic shift of w is obtained by multiplying

the corresponding polynomial by x modulo xn − 1. Namely, for w = (w0,w1, . . . ,wn−1),

xw(x) ≡ wn−1 + w0x + w1x2 + · · · + wn−2xn−1 mod (xn − 1).

This motivates us to consider the codewords of a cyclic code C of length n over GR(pa,m) as

the elements of the quotient ring

S =
GR(pa,m)[x]
〈xn − 1〉

.

It is not hard to show that there is a one-to-one correspondence between the ideals of S and

cyclic codes of length n over GR(pa,m) in the following sense. Let C be a cyclic code of

length n over GR(pa,m). Let I be the set obtained by expressing all codewords of C as

polynomials. Then I is and ideal of S. Conversely, if J is an ideal of S, then we obtain a

cyclic code of length n over GR(pa,m) when we view the elements of J as codewords in the

above sense.

A natural generalization of cyclic codes is the so-called constacyclic codes. The λ-shift of the

codeword (w0,w1, . . . ,wn−1) is defined to be (λwn−1,w0,w1, · · · ,wn−2). If a linear code C is

closed under λ-shifts, then C is called a λ-cyclic code and in general, such codes are called

constacyclic codes. It is also well-known that λ-cyclic codes, of length n, over GR(pa,m)

correspond to the ideals of the quotient ring

Sc =
GR(pa,m)[x]
〈xn − λ〉

.

Clearly, when λ = 1, the ideals of Sc are cyclic codes. When λ = −1, the ideals of Sc are

called negacyclic codes.

Constacyclic codes can be grouped into two classes. If the codeword length, namely n, is

coprime to the characteristic of the alphabet, then the ideals of Sc are called simple-root

constacyclic codes, i.e., if the greatest common divisor of n and p is 1, then the ideals of

Sc are called simple-root cyclic codes. If the codeword length and the characteristic of the

alphabet are not coprime, i.e., if p divides n, then such constacyclic codes are called repeated-

root constacyclic codes.
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1.2.3 Polycyclic Codes

Constacyclic codes are defined to be the ideals of the quotient ring GR(pa,m)[x]
〈xn−λ〉 . Constacyclic

codes can be generalized by considering a regular polynomial as the generator of the ideal in

the denominator of this quotient ring.

Let f (x) be a regular polynomial of degree n over GR(pa,m)[x]. The ideals of the quotient

ring

R =
GR(pa,m)[x]
〈 f (x)〉

are called polycyclic codes. The elements of R are cosets of the equivalence class induced by

f (x). Each coset is identified uniquely with a polynomial of degree less than deg( f (x)). So,

throughout, we identify the elements of R with polynomials of degree less than deg( f (x)). Let

w(x) = w0 + w1x + · · · + wn−1xn−1 ∈ R. As described in the previous subsection, we identify

w(x) with (w0,w1, . . . ,wn−1) ∈ (GR(pa,m))n. Then the ideals of R are linear codes of length

n over GR(pa,m). Such codes are called Polycyclic Codes. The ring R is called the ambient

space.

When GR(pa,m) is a field, i.e., when a = 1, the ring R is a principal ideal ring and it is ideals

are generated by the divisors of f (x). When GR(pa,m) is not a field, i.e., when a > 1, the

ideals of R is not necessarily generated by one polynomial. We study these ideals in Section

2 in detail.

Let R̄ =
Fpm [x]
〈 f̄ (x)〉 . The map µ, defined above, extends to an onto ring homomorphism as µ :

R → R̄ where µ(g(x)) = ḡ(x). Also, for c = (c0, c1 . . . , cn−1) ∈ GR(pa,m)n, we define

µ(c) = c̄ = (c̄0, c̄1, . . . , c̄n−1). Let r ∈ R and w ∈ R̄. We define the scalar multiplication by

rw (mod p) where we consider the multiplication in R. This makes R̄ an R-module.

Let C be a linear code over GR(pa,m). We define C̄ = {µ(c) : c ∈ C}. The following lemma

tells us that the Hamming distance of nontrivial codes is greater than 2 and dH(C) = dH(C̄).

Lemma 1.2.1 Let {0} , C C R be a constacyclic code of length greater than 1 over GR(pa,m)

with C , {0} and C , 〈1〉, and let C̄ C R̄ be its canonical projection. Then dH(C) = dH(C̄) as

the R-modules pa−1R and R̄ are isomorphic. Moreover dH(C̄), dH(C) ≥ 2.

Proof. The isomorphism is established by sending f (x) ∈ R̄ to pa−1 f (x) ∈ pa−1R. The bound
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dH(C̄), dH(C) ≥ 2 follows from the facts that dH(C) = dH(C̄) and a proper ideal can not

contain a unit. �
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CHAPTER 2

The Ambient Space of Polycyclic Codes

Polycyclic codes are defined to be the ideals of the ring

R =
GR(pa,m)[x]
〈 f (x)〉

,

where f (x) ∈ GR(pa,m)[x] is a regular polynomial. In this section, we study the ideal struc-

ture of the ambient space R.

First, in Section 2.1, we assume f (x) to be primary. Then we use the results there to study the

general case in Section 2.2 where f (x) is not necessarily primary. In Section 2.3, we observe

that finer results can be obtained in characteristic p2.

2.1 Structure of the Ambient Space: Primary Case

Let f (x) ∈ GR(pa,m)[x] be a regular primary polynomial which is not a unit. Let

R =
GR(pa,m)[x]
〈 f (x)〉

.

First we show that R is a local ring and determine its maximal ideal, we determine the socle

of R, for a ≥ 1, we give necessary and sufficient conditions for R to be a chain ring in Lemma

2.1.4. Then, using the notion of torsional code and torsional degree, we determine a unique

generating set for any ideal ofR in Theorem 2.1.11. Next we observe, in Corollary 2.1.13, that

such a generating set is a strong Groebner basis and if we remove the redundant generators,

we obtain a generating set in standard form which is a minimal strong Groebner basis. Finally,

we show that the torsional degrees of a polycyclic code can immediately be obtained from a

generating set in standard form.
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By [40, Theorem XIII.6], f (x) = v f ∗(x) where v is a unit and f ∗(x) is monic and regular. Since

〈 f (x)〉 = 〈v f ∗(x)〉 and because of our interest in R, assume f (x) is monic. By Proposition [40,

XIII.12], f (x) = δ(x)h(x)t + pβ(x) for some δ(x), h(x), β(x) ∈ GR(pa,m)[x] where δ(x) is a

unit and h(x) is a basic irreducible polynomial. Since δ(x) is a unit, by [40, Theorem XIII.2],

δ(x) = δ0 + pδ′(x) for some δ0 ∈ GR(pa,m) that is a unit and some δ′(x) ∈ GR(pa,m)[x]. Also,

since h(x) is basic, h(x) = h(x) + pα(x) for some α(x) ∈ GR(pa,m)[x]. So, f (x) = δ0h(x)t and

f (x) = δ0h(x)t + pβ′(x) for some β′(x) ∈ GR(pa,m)[x].

Assume f (x) = δh(x)t + pβ(x) where δ ∈ GR(pa,m) is a unit and h(x) is a basic irreducible

polynomial such that h(x) = h(x). By the fact that f (x) is monic, we know that t deg h(x) >

deg β(x). Furthermore, without loss of generality, we may assume h(x) is monic. By this

assumption, δ = 1 since f (x) is monic. Hence, f (x) is a monic regular primary polynomial

such that f (x) = h(x)t + pβ(x) where h(x) is a monic basic irreducible polynomial such that

h̄(x) = h(x).

We show that 〈p, h(x)〉 is the unique maximal ideal of R.

Lemma 2.1.1 The ring R is local with maximal ideal J(R) = 〈p + 〈 f 〉, h(x) + 〈 f 〉〉.

Proof. As discussed in page 262 of [40], any maximal ideal in GR(pa,m)[x] is of the form

〈p, g(x)〉 where g(x) is a basic irreducible polynomial. Assume f (x) ∈ 〈p, g(x)〉 where g(x) ∈

GR(pa,m)[x] is a basic irreducible polynomial. Then for some a(x), b(x) ∈ GR(pa,m)[x]

f (x) = a(x)p + b(x)g(x),

f̄ (x) = b̄(x)ḡ(x),

h̄(x)t = b̄(x)ḡ(x).

This shows that h̄(x)|ḡ(x) which implies ḡ(x)|h̄(x) and g(x) = h(x) + pc(x) for some c(x) ∈

GR(pa,m)[x]. So, 〈p, g(x)〉 = 〈p, h(x)〉meaning 〈p, h(x)〉 is the only maximal ideal containing

f (x). Hence, 〈p + 〈 f 〉, h(x) + 〈 f 〉〉 is the unique maximal ideal of R. �

In the case of finite fields, R is a chain ring.

Lemma 2.1.2 The quotient ring GR(p,m)[x]
〈 f (x)〉 is a chain ring with exactly the following ideals

GR(p,m)[x]
〈 f (x)〉

= 〈h(x)0 + 〈 f 〉〉 ) 〈h(x)1 + 〈 f 〉〉 ) · · · ) 〈h(x)t + 〈 f 〉〉 = 0.
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Proof. By Lemma 2.1.1, GR(p,m)[x]
〈 f (x)〉 is local with J

(
GR(p,m)[x]
〈 f (x)〉

)
= 〈h(x)+〈 f 〉〉. By Lemma 1.1.1,

the result follows. �

Now we determine the socle of R and show that it is simple.

Lemma 2.1.3 The ring R has simple socle with soc (R) = 〈pa−1h(x)t−1 + 〈 f 〉〉.

Proof. Let g(x) + 〈 f 〉 ∈ R. Let ` be the largest integer such that p`(g(x) + 〈 f 〉) , 0. By

Lemma 2.1.1, J(R̄) = 〈h(x) + 〈 f 〉〉. By Lemma 1.2.1 and Lemma 2.1.2 and the fact that

p`(g(x) + 〈 f 〉) ∈ 〈pa−1 + 〈 f 〉〉, it can be shown that 〈pa−1h(x)t−1 + 〈 f 〉〉 ⊂ 〈g(x) + 〈 f 〉〉. So

〈pa−1h(x)t−1 + 〈 f 〉〉 is contained in any principal ideal. Since J(R) annihilates 〈pa−1h(x)t−1 +

〈 f 〉〉, soc(R) = 〈pa−1h(x)t−1 + 〈 f 〉〉. It is clearly simple. �

Lemma 2.1.2 tells us when the alphabet is a finite field, then R is a chain ring. However,

R is not a chain ring in general. As a counter example, consider Z4[x]
〈x2−1〉 . We have x2 − 1 =

(x + 1)2 − 2(x + 1). Clearly, (x + 1) < 〈2〉 in Z4[x]
〈x2−1〉 . Assume 2 ∈ 〈x + 1〉. Then 2 =

g1(x)(x + 1) + g2(x)(x2 − 1) ∈ Z4[x]. Evaluating at x = −1, we get 2 = 0 in Z4. This is

a contradiction. Thus we have shown 〈2〉 1 〈x + 1〉 and 〈x + 1〉 1 〈2〉. By Lemma 2.1.1,

J
(
Z4[x]
〈x2−1〉

)
= 〈2, x + 1〉. Since J

(
Z4[x]
〈x2−1〉

)
is 2-generated, by Lemma 1.1.1 Z4[x]

〈x2−1〉 is not a chain

ring.

The next theorem shows exactly when R is a chain ring based on the parameters a, t, h(x) and

β(x) of f (x).

Theorem 2.1.4 The ring R is a chain ring if and only if any one of the conditions is met

1. a = 1

2. t = 1

3. β(x) < 〈p, h(x)〉.

Proof. Assume a = 1. By Lemma 2.1.2, R is a chain ring.

Assume t = 1 then h(x) = f (x) − pβ(x) ∈ 〈p, f (x)〉. So, h(x) + 〈 f 〉 ∈ 〈p + 〈 f 〉〉. By Lemma

2.1.1, J (R) = 〈p + 〈 f 〉〉. Hence, by Lemma 1.1.1, R is a chain ring.
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Assume β(x) < 〈p, h(x)〉. Then β(x) + 〈 f 〉 < J (R) which implies β(x) + 〈 f 〉 is a unit in

R. So, 〈p + 〈 f 〉〉 = 〈h(x)t + 〈 f 〉〉 which implies p + 〈 f 〉 ∈ 〈h(x) + 〈 f 〉〉. By Lemma 2.1.1,

J (R) = 〈h(x) + 〈 f 〉〉. Hence, by Lemma 1.1.1, R is a chain ring.

Now assume a > 1, t > 1 and β(x) ∈ 〈p, h(x)〉. We want to show that R is not a chain ring

so assume the contrary. This implies 〈p + 〈 f 〉〉 ⊂ 〈h(x) + 〈 f 〉〉 or 〈h(x) + 〈 f 〉〉 ⊂ 〈p + 〈 f 〉〉.

So, p ∈ 〈h(x), f (x)〉 or h(x) ∈ 〈p, f (x)〉. First, assume p ∈ 〈h(x), f (x)〉 which implies β(x) ∈

〈p, h(x)〉 = 〈p, h(x), f (x)〉 = 〈h(x), f (x)〉. So,

f (x) = h(x)t + pβ(x) = h(x)t + p(γ(x)h(x) + α(x) f (x))

for some γ(x), α(x) ∈ GR(pa,m)[x] and

f (x)(1 − pα(x)) = h(x)
(
h(x)t−1 + pγ(x)

)
.

Since (1 − pα(x)) is invertible in GR(pa,m)[x], f (x) ∈ 〈h(x)〉. So, p ∈ 〈h(x), f (x)〉 = 〈h(x)〉.

Since a > 1, p , 0. This is a contradiction since p cannot be a nonzero multiple of h(x).

Next, assume h(x) ∈ 〈p, f (x)〉. Then,

h(x)t = [γ(x)p + α(x) f (x)]t = f (x) − pβ(x)

for some γ(x), α(x) ∈ GR(pa,m)[x]. This implies,

[
α(x) f (x)

]t
= f (x).

Since t > 1, by comparing degrees we see this is a contradiction. Hence, R is not a chain.

�

Below are two examples that show the distinctions between the particular cases in Theorem

2.1.4.

Example 2.1.5 Let a > 1, p = 2, s > 0 and f (x) = x2s
+ 1. Then

x2s
+ 1 = (x + 1 − 1)2s

+ 1

= (x + 1)2s
−

(
2s

2s − 1

)
(x + 1)2s−1 + · · · −

(
2s

1

)
(x + 1) + 1 + 1

= (x + 1)2s
+ 2β(x)

where β(x) = (x+1)q(x)+1 for some q(x) ∈ R. In [14] it was shown that GR(pa,m)[x]
〈 f (x)〉 is a chain

ring with the maximal ideal 〈x + 1〉.
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Example 2.1.6 Let a > 1, p = 2, s > 0 and f (x) = x2s
− 1. Then

x2s
− 1 = (x + 1 − 1)2s

− 1

= (x + 1)2s
−

(
2s

2s − 1

)
(x + 1)2s−1 + · · · −

(
2s

1

)
(x + 1) + 1 − 1

= (x + 1)2s
+ 2β(x)

where (x + 1)|β(x). In [37] it was shown that GR(pa,m)[x]
〈 f (x)〉 is local with the maximal ideal

〈2, (x + 1)〉 and is not a chain ring.

Theorem 2.1.4 shows that R is not a principal ideal ring in general. Through the next series

of results we will show the existence of a particular generating set which turns out to be a

minimal strong Groebner basis (see Definition 2.1.12).

Let g(x) ∈ GR(pa,m)[x] and n be the largest integer such that deg(g(x)) ≥ n deg(h(x)). By the

division algorithm, we can find qn(x), r1(x) ∈ GR(pa,m)[x] such that

g(x) = qn(x)h(x)n + r1(x),

where r1(x) = 0 or deg(r1(x)) < n deg(h(x)). Note that deg(qn(x)) < deg(h(x)). Next we can

find qn−1(x), r2(x) ∈ GR(pa,m)[x] such that

r1(x) = qn−1(x)h(x)n−1 + r2(x)

where r2(x) = 0 or deg(r2(x)) < (n − 1) deg(h(x)). Note that deg(qn−1(x)) < deg(h(x)). We

can continue this process until we have qn(x), qn−1(x), . . . , q0(x) ∈ GR(pa,m)[x] where

g(x) = qn(x)h(x)n + · · · + q1(x)h(x) + q0(x)

where for 0 ≤ i ≤ n, either deg(qi(x)) < deg(h(x)) or qi(x) = 0. With some manipulation g(x)

can be represented in the following form

g(x) = p j0h(x)i0α0(x) + · · · + p jr h(x)irαr(x) (2.1)

where 0 ≤ r ≤ a − 1 and

• αi(x) < 〈p, h(x)〉

• 0 ≤ j0 < · · · < jr ≤ a − 1

• i0 > · · · > ir ≥ 0.
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Since f (x) is regular and monic, g(x) can be divided by f (x) initially. Then it is not hard to

see that for some q(x) ∈ GR(pa,m)[x]

g(x) = q(x) f (x) + p j0h(x)i0α0(x) + · · · + p jr h(x)irαr(x)

where r, αi(x), je and i` are as above with t > i0.

In [21] and [33], a unique generating set for an ideal of GR(pa,m)[x]
〈xps
−1〉 was developed. The poly-

nomial xps
− 1 is of the type f (x) is. Notice xps

− 1 = (x − 1)ps
+ pβ(x). We will now find a

similar generating set for an ideal of R.

Definition 2.1.7 (cf. [21, Definition 6.1]) Let C C R. For 0 ≤ i ≤ a − 1, define

Tori(C) = {µ(v) : piv ∈ C}.

Tori(C) is called the ith torsion code of C. Tor0(C) = µ(C) is usually called the residue code

of C. Note that for a code C over GR(pa,m), we have Tori(C) ⊂ Tori+1(C).

Lemma 2.1.8 Let C C R. Then

Tori(C) = 〈h(x)Ti + 〈 f 〉〉 ⊂
GR(p,m)[x]
〈 f (x)〉

for some 0 ≤ Ti ≤ t.

Proof. Since C C R, Tori(C) C GR(p,m)[x]
〈 f̄ (x)〉 . The claim follows by Lemma 2.1.2. �

Definition 2.1.9 In Lemma 2.1.8, Ti is the ith torsional degree of C which we denote by Ti(C).

The torsional degrees form a non-increasing sequence, i.e., t ≥ T0(C) ≥ · · · ≥ Ta−1(C) ≥ 0.

For any ξ(x)+〈 f 〉 ∈ R, we can divide ξ(x) by f (x), as f (x) is regular, and get ξ(x) = q(x) f (x)+

r(x) such that either r(x) = 0 or deg(r(x)) < deg( f (x)). So ξ(x)+〈 f 〉 = r(x)+〈 f 〉. This implies

that R = {a(x)+ 〈 f 〉 : a(x) ∈ GR(pa,m)[x], deg(a(x)) < deg( f (x))}. Throughout the remainder

for this section, the elements of R will be represented as polynomials of degree less than

deg( f (x)).

Definitions 2.1.7 and 2.1.9 and Lemma 2.1.8 are expansions to polycyclic codes of the ideas

first presented in Section 6 of [21] in the context of cyclic codes. The following theorem is a

generalization of Theorem 6.5 of [21].
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Theorem 2.1.10 Let C C R. Then C = 〈F0(x), pF1(x), . . . , pa−1Fa−1(x)〉 where Fi(x) = 0 if

Ti(C) = t, and Fi(x) = h(x)Ti(C) + pγi(x) for some γi(x) ∈ GR(pa,m)[x], if Ti(C) < t.

Proof. Denote Ti(C) by Ti. If C = 0, we are done. So assume C , 0. Let r be the

smallest nonnegative integer such that Tr < t. For every 0 ≤ i ≤ r − 1, set Fi(x) = 0. For

r ≤ i ≤ a − 1, pick Fi(x) ∈ GR(pa,m)[x] such that piFi(x) ∈ C and µ(Fi(x)) = h(x)Ti .

So, Fi(x) = h(x)Ti + pγi(x) for some γi(x) ∈ R. Note that such an Fi(x) exists because

Tori(C) = 〈h(x)Ti〉 C GR(p,m)[x]
〈 f (x)〉 . Let g(x) ∈ C. As was shown earlier (see Equation (2.1)),

g(x) = p j0(h(x)i0σ j0(x) + pβ0(x)) (2.2)

for some σ j0(x), β0(x) ∈ GR(pa,m)[x] where i0 < t and σ j0(x) , 0. Let σ0(x) = · · · =

σ j0−1(x) = 0. Let

g1(x) = g(x) − p j0h(x)i0−T j0σ j0(x)F j0(x).

Note that since Tor j0(C) = 〈h(x)T j0 〉, it follows by (2.2) and the fact that σ j0(x) is a unit in
GR(pa,m)[x]
〈 f (x)〉 that i0 ≥ T j0 . Since T j0 < t, we have

g1(x) = p j0(h(x)i0σ j0(x) + pβ0(x)) − p j0h(x)i0−T j0σ j0(x)[h(x)T j0 + pγ j0(x)]

= p j0+1β0(x) − p j0+1h(x)i0−T j0σ j0(x)γ j0(x).

So, g1(x) ∈ 〈p j0+1〉 ∩ C. If g1(x) = 0, let σ j0+1(x) = · · · = σa−1(x) = 0 and we are done. If

not, then, as was done with g(x), we can view g1(x) as

g1(x) = p j1(h(x)i1σ j1(x) + pβ1(x))

for some σ j1(x), β1(x) ∈ GR(pa,m)[x] where i1 < t, j0 < j1 and σ j1(x) , 0. Let σ j0+1(x) =

· · · = σ j1−1(x) = 0. Let

g2(x) = g1(x) − p j1h(x)i1−T j1σ j1(x)F j1(x).

Since T j1 < t, we have

g2(x) = p j1(h(x)i1σ j1(x) + pβ1(x)) − p j1h(x)i1−T j1σ1(x)[h(x)T j1 + pγ j1(x)]

= p j1+2β1(x) − p j1+1h(x)i1−T j1σ1(x)γ j1(x).

So g2(x) ∈ 〈p j1+1〉 ∩ C. If g2(x) = 0, then let σ j1+1(x) = · · · = σa−1(x) = 0. Note that since

j0 < j1 < a, this is a finite process. So

g(x) =

a−1∑
i=0

pih(x)i−Tiσi(x)Fi(x) ∈ 〈F0(x), pF1(x), . . . , pa−1Fa−1〉.
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Hence C ⊂ 〈F0(x), pF1(x), . . . , pa−1Fa−1(x)〉. Since piFi(x) ∈ C, for all 0 ≤ i ≤ a − 1, we

have the equality

C = 〈F0(x), pF1(x), . . . , pa−1Fa−1(x)〉.

�

As was stated in [33], Theorem 6.5 of [21] does not provide a unique set of generators. Neither

does our generalization in Theorem 2.1.10. We now show, as in [33], that there does exist a

unique set of generators given some extra constraints. Although this is a generalization of

Theorem 2.5 in [33], the proof here only differs from that one in a few details. However, we

present the proof in its entirety here for the sake of completeness.

We would like to point out that there is a little inaccuracy in the statement of Theorem 2.5 in

[33]. Let Tm[u] be the set of polynomials in u whose coefficients are in Tm. The h j,`(u) in

their theorem is said to be an element of Tm[u] which is not necessarily true. What is true is

that h j,`(u) is either 0 or a unit and that

h j,`(u) =

T`+ j−1∑
k=0

ck, j,`(u − 1)k

with ck, j,` ∈ Tm and c0, j,` , 0. It should also be pointed out that h j,`(u) is a unit precisely

because (u − 1) is nilpotent (which is not stated but fairly easy to show) and c0, j,` is a unit.

Theorem 2.1.11 Let C C R. Then there exist f0(x), f1(x), . . . , fa−1(x) ∈ R such that

C = 〈 f0(x), p f1(x), . . . , pa−1 fa−1(x)〉

where fi(x) = 0, if Ti(C) = t otherwise

fi(x) = h(x)Ti(C) +

a−1−i∑
j=1

p jh(x)ti, jαi, j(x)

where ti, j deg(h(x)) + deg(αi, j(x)) < Ti+ j(C) deg(h(x)) and each αi, j(x) < 〈p, h(x)〉 \ {0}.

Furthermore, the set { f0(x), p f1(x), . . . , pa−1 fa−1(x)} is the unique generating set with these

properties.

Proof. Denote Ti(C) by Ti. When C = 0, the result holds. Assume C , 0. By Theorem

2.1.10, C = 〈F0(x), pF1(x), . . . , pa−1Fa−1(x)〉 where Fi(x) = 0 when Ti = t, otherwise Fi(x) =
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h(x)Ti + pγi(x) for some γi(x) ∈ GR(pa,m)[x]. The torsional degrees of C form the non-

increasing sequence t ≥ T0 ≥ · · · ≥ Ta−1 ≥ 0. Since C , {0} there is a least positive integer r

such that t > Tr ≥ · · · ≥ Ta−1 ≥ 0. For 0 ≤ i ≤ r−1, Fi(x) = 0. Let fi(x) = 0 for 0 ≤ i ≤ r−1.

For r ≤ i ≤ a − 1, Fi(x) , 0. Since we are considering piFi(x) and Fi(x) can be put in the

form as shown in equation (2.1), without loss of generality we can write

Fi(x) = h(x)Ti +

a−1−i∑
j=1

p j
t−1∑
k=0

h(x)kqi, j,k(x)

where qi, j,k(x) =
∑deg h−1

l=0 bi, j,k,lxl with bi, j,k,l ∈ Tm.

Let

fa−1(x) = Fa−1(x) = h(x)Ta−1 .

Now,

Fa−2(x) = h(x)Ta−2 + p
t−1∑
k=0

h(x)kqa−2,1,k(x)

= h(x)Ta−2

+p

Ta−1−1∑
k=0

h(x)kqa−2,1,k(x) + h(x)Ta−1

t−1∑
k=Ta−1

h(x)k−Ta−1qa−2,1,k(x)

 .
Let

fa−2(x) = Fa−2(x) − p fa−1(x)
t−1∑

k=Ta−1

h(x)k−Ta−1qa−2,1,k(x)

= Fa−2(x) − ph(x)Ta−1

t−1∑
k=Ta−1

h(x)k−Ta−1qa−2,1,k(x)

= h(x)Ta−2 + p
Ta−1−1∑

k=0

h(x)kqa−2,1,k(x)

= h(x)Ta−2 + ph(x)ta−2,1

Ta−1−1∑
k=ta−2,1

h(x)k−ta−2,1qa−2,1,k(x)

where ta−2,1 is the smallest k such that qa−2,1,k(x) , 0 if such a k exists, otherwise∑Ta−1−1
k=ta−2,1

h(x)k−ta−2,a−1qa−2,1,k(x) = 0 and ta−2,1 can be arbitrary. It is easy to see that

C = 〈F0(x), pF1(x), . . . , pa−3Fa−3(x), pa−2 fa−2(x), pa−1 fa−1(x)〉

and that fa−2(x) and fa−1(x) satisfy the conditions in the theorem.

We proceed by induction. Assume fi+1(x), . . . , fa−1(x) satisfy the conditions of the theorem

and that

C = 〈F0(x), pF1(x), . . . , piFi(x), pi+1 fi+1(x), . . . , pa−1 fa−1(x)〉.
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After subtracting appropriate multiples of pi+1 fi+1(x), . . . , pa−1 fa−1(x) from Fi(x) we can find

an element fi(x) such that

fi(x) = h(x)Ti +

a−1−i∑
j=1

p j
Ti+ j−1∑

k=0

h(x)kgi, j,k(x)

= h(x)Ti +

a−1−i∑
j=1

p jh(x)ti, j
Ti+ j−1∑
k=ti, j

h(x)k−ti, jgi, j,k(x)

where gi, j,k(x) =
∑deg h−1

l=0 ci, j,k,lxl for some ci, j,k,l ∈ Tm and for fixed j, ti, j is the smallest

k such that gi, j,k(x) , 0 if such a k exists, otherwise
∑Ti+ j−1

k=ti, j
h(x)k−ti, jgi, j,k(x) = 0 and ti, j

can be arbitrary. Let αi, j(x) =
∑Ti+ j−1

k=ti, j
h(x)k−ti, jgi, j,k(x). If αi, j(x) , 0, αi, j(x) is a unit since

αi, j(x) < 〈p, h(x)〉. It is easy to see that

C = 〈F0(x), pF1(x), . . . , pi−1Fi−1(x), pi fi(x), . . . , pa−1 fa−1(x)〉

and fi(x), . . . , fa−1(x) satisfy the conditions in the theorem. Hence, we have f0(x), . . . , fa−1(x)

such that

C = 〈 f0(x), p f1(x), . . . , pa−1 fa−1(x)〉.

Now we show the uniqueness of such a generating set. Assume that f
′

0(x), · · · , f
′

a−1(x) also

satisfy the conditions in the theorem. Say

fi(x) = h(x)Ti +

a−1−i∑
j=1

p j
Ti+ j−1∑

k=0

h(x)kgi, j,k(x)

and

f
′

i (x) = h(x)Ti +

a−1−i∑
j=1

p j
Ti+ j−1∑

k=0

h(x)kg
′

i, j,k(x)

where gi, j,k(x), g′i, j,k(x) ∈ Tm[x] of degree less than h(x). Assume fi(x) − f
′

i (x) , 0. Then

for some j, k, gi, j,k(x) − g
′

i, j,k(x) , 0. Let j0 be the smallest j in the above sum such that

gi, j,k(x) − g
′

i, j,k(x) , 0. Then

pi( fi(x) − f
′

i (x)) = pi+ j0
a−1−i∑
j= j0

p j− j0
Ti+ j−1∑

k=0

h(x)k(gi, j,k(x) − g
′

i, j,k(x)).

Since the difference of two distinct elements of Tm is not divisible by p, for all j, k in the

above sum, either gi, j,k(x) − g
′

i, j,k(x) is 0 or not divisible by p. By the assumption on j0 then,

pi( fi(x) − f
′

i (x)) ∈ C
⋂
〈pi+ j0〉 \ 〈pi+ j0+1〉. Since this is a nonzero element of C with degree

less than Ti+ j0 deg(h), this contradicts the definition of Ti+ j0 . Hence fi(x) = f
′

i (x). �
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Now, in Corollary 2.1.13, we show that if we remove the redundant generators in Theorem

2.1.11, then we obtain a result similar to [53, Theorem 4.1]. There they prove it in a slightly

different setting namely GR(pa,m) is replaced by an arbitrary finite chain ring and f (x) is

either xn − 1 or xn + 1 (i.e., cyclic and negacyclic codes over a finite chain ring). We will also

prove this result later in the case that f (x) is an arbitrary regular polynomial.

Definition 2.1.12 (adapted from [45, Definition 4.1]) Let G = {p j0 f j0(x), . . . , p jr f jr (x)} ⊂

R, for some 0 ≤ r ≤ a − 1, such that

1. 0 ≤ j0 < · · · < jr ≤ a − 1 ,

2. t > k j0 > · · · > k jr ≥ 0 ,

3. f ji(x) = h(x)k ji +
∑a−1− ji
`=1 p`h(x)t ji ,`α ji,`(x) where

t ji,` deg(h(x)) + deg(α ji,`(x)) < k ji deg(h(x)) and each α ji,`(x) < 〈p, h(x)〉 \ {0},

4. p ji+1 f ji(x) ∈ 〈p ji+1 f ji+1(x), . . . , p jr f jr (x)〉,

5. p j0 f (x) ∈ 〈p j0 f j0(x), . . . , p jr f jr (x)〉 in GR(pa,m)[x].

The set G is called a generating set in standard form. Moreover, by [43, Theorem 5.4], the set

G is a minimal strong Groebner basis.

Corollary 2.1.13 Let C C R. There exists a generating set in standard form for C.

Proof. Let { f0(x), . . . , pa−1 fa−1(x)} be a generating set for C as in Theorem 2.1.11. Let j0 =

min{i| fi(x) , 0} and set ki = Ti(C). Then

C = 〈p j0 f j0(x), . . . , pa−1 fa−1(x)〉.

Assume there exist Torsional degrees of C, Ti,Ti+1, such that Ti = Ti+1 for some i ≥ j0. It

should be clear that pi+1 fi+1(x) ∈ 〈pi fi(x), pi+2 fi+2(x), . . . , pa−1 fa−1(x)〉. So after removing

these unnecessary generators we have, for some r such that 1 ≤ r ≤ a − 1,

C = 〈p j0 f j0(x), . . . , p jr f jr (x)〉.

Then the properties (1)-(4) of Definition 2.1.12 are satisfied.
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Now, assume p j0 f (x) < 〈p j0 f0(x), . . . , p jr fr(x)〉 in GR(pa,m)[x]. We consider

g j0(x) = p j0 f (x) − h(x)t−T j0 p j0 f j0(x)

= pk0h(x)zk0αzk0
(x) + · · · + pkeh(x)zkeαzke

(x) (2.3)

where the representation (2.3) is as in (2.1). Note that g j0(x) ∈ C when we consider g j0(x) as

an element of R. If k0 < jr, say jq−1 ≤ k0 < jq for some q ≤ r, then zk0 ≥ T jq−1 otherwise we

get a contradiction to the torsional degree. Now, for an appropriate polynomial, say υ(x), we

get

g jq−1 = g j0(x) − υ(x)p jq−1 f jq−1(x)

= p`0h(x)y`0αy`0 (x) + · · · + p`e′ h(x)
y`

e′ αy`
e′

(x) (2.4)

where the representation (2.4) is as in (2.1) and `0 > k0. Continuing like this, we obtain a

non-zero polynomial g(x) ∈ 〈p jr〉 such that

p j0 f (x) =

r∑
i=0

p ji fi(x)βi(x) + g(x),

where deg g(x) < deg fr(x). Now, in R

g(x) = −

r∑
i=0

p ji fi(x)βi(x).

So, g(x) ∈ C. But, T jr deg h(x) > deg g(x) which is a contradiction to the torsional degree.

Hence (5) of Definition 2.1.12 holds. �

Corollary 2.1.14 Let C C R. Then C is at most min{a, t}-generated.

Proof. Follows from the facts that the number of distinct torsional degrees that are degrees

of generators in the generating set in Corollary 2.1.13 is less than t and that the number of

generators there does not exceed a. �

Now we observe a relation between the generating sets introduced in [33, Theorem 2.5] and

generating sets in standard form for cyclic codes studied in [43].

Remark 2.1.15 By [43, Theorem 3.2] and Corollary 2.1.13, a generating set as in Theorem

2.1.11 (and in particular, in [33, Theorem 2.5]) for C CR is actually a strong Groebner basis

(see [46, Definition 3.8] for a definition). Moreover, given a generating set G as in Theorem
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2.1.11, if we remove the redundant elements from G, as described in the proof of Corollary

2.1.13, we obtain a generating set as in Corollary 2.1.13, i.e., a generating set in standard

form which is a minimal strong Groebner basis, for C.

Our final result of this section shows that if one can produce a generating set in standard form,

the torsional degrees can easily be found.

Theorem 2.1.16 Let {p j0 f j0(x), . . . , p jr f jr (x)} be a generating set in standard form for C CR

where f ji(x) = h(x)k ji + pβ ji(x) for some β ji(x) ∈ R. Then for e < j0, Te(C) = t; for

ji ≤ e < ji+1, Te(C) = k ji and for e ≥ jr, Te(C) = k jr .

Proof. For e < j0, Tore(C) = 0 so Te(C) = t. Clearly, T ji(C) ≤ k ji and T j0(C) = k j0 .

Now, let ji ≤ e < ji+1 for some i. There exists a polynomial fe(x) = h(x)Te(C) + pρ(x)

where deg(ρ(x)) < deg(h(x))Te(C) such that pe fe(x) ∈ C. In the following we are working in

GR(pa,m)[x]. Since e ≥ j0, we have

pe fe(x) ∈ 〈p j0 f j0(x), . . . , p jr f jr (x), p j0 f (x)〉.

By 2.1.12(5),

pe fe(x) ∈ 〈p j0 f j0(x), . . . , p jr f jr (x)〉.

We know Te(C) ≤ k ji . Assume Te(C) < k ji . By the properties in 2.1.12(2) and 2.1.12(3),

deg f j0(x) > · · · > deg f ji(x) > deg fe(x) which implies

pe fe(x) ∈ 〈p ji+1 f ji+1(x), . . . , p jr f jr (x)〉.

This is a contradiction since by the property 2.1.12(1), e < ji+1 < · · · < jr ≤ a − 1 which

implies

pe fe(x) < 〈p ji+1 f ji+1(x), . . . , p jr f jr (x)〉.

So, Te(C) = k ji . For e ≥ jr, the proof is similar. �

Remark 2.1.17 Remark 2.1.15 and Theorem 2.1.16 imply that we can go back and forth

between a generating set as in Theorem 2.1.11 and a generating set in standard form. Given

a generating set as in Theorem 2.1.11, we can obtain a generating set in standard form as

explained in Remark 2.1.15. Conversely, suppose that we are given a generating set G =
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{p j0 f j0(x), . . . , p jr f jr (x)} in standard form. We know, by Theorem 2.1.16, that f ji(x) = h(x)T ji +

pβ ji(x). Define Fe(x) = 0 for 0 ≤ e < j0, Fe(x) = pe f ji(x) for ji ≤ e < ji+1 and Fe(x) =

p jr f jr (x) for jr ≤ e < a. Then, by Theorem 2.1.16, the set

G
′

= {F0(x), pF1(x), . . . , pa−1Fa−1(x)}

is as in Theorem 2.1.10. Now applying the operations in the proof of Theorem 2.1.11 to G
′

,

we obtain a generating set as in Theorem 2.1.11.

2.2 Structure of the Ambient Space: General Case

In this section, we study the structure of the code ambient for polycyclic codes over a Ga-

lois ring which is the ring GR(pa,m)[x]
〈 f (x)〉 where f (x) is a regular monic polynomial. Through-

out this section assume that f (x) ∈ GR(pa,m)[x] is regular. By Theorem 1.1.2, f (x) =

δ(x) f1(x) · · · fs(x) where δ(x) ∈ GR(pa,m)[x] is a unit and { fi(x) ∈ GR(pa,m)[x]}si=1 is a

set of regular primary co-prime polynomials that are not units. By the fact that δ(x) is a unit,

we may assume without loss of generality that fi(x) = hi(x)ti + pβi(x) where hi(x) is a monic

basic irreducible polynomial such that hi(x) = hi(x). We know that ti deg hi(x) > deg βi(x).

Since we are interested in GR(pa,m)[x]
〈 f (x)〉 and 〈 f (x)〉 = 〈δ(x)−1 f (x)〉, we assume δ(x) = 1, so

f (x) = f1(x) · · · fs(x). Additionally, throughout this section let R =
GR(pa,m)[x]
〈 f (x)〉 and let

f̂i(x) =
∏s

j=1, j,i f j(x) for 1 ≤ i ≤ s.

Theorem 2.2.1 For R, we have the following

1. R =
⊕s

i=1〈 f̂i(x) + 〈 f 〉〉 and 〈 f̂i(x) + 〈 f 〉〉 � GR(pa,m)[x]
〈 fi(x)〉 ,

2. Any maximal ideal of R is of the form 〈p f̂i(x) + fi(x) + 〈 f 〉, hi f̂i(x) + fi(x) + 〈 f 〉〉 =

〈p + 〈 f 〉, hi(x) + 〈 f 〉〉 for some 1 ≤ i ≤ s,

3. J (R) =
⋂s

i=1〈p + 〈 f 〉, hi(x) + 〈 f 〉〉 = 〈p + 〈 f 〉,
∏s

i=1 hi(x) + 〈 f 〉〉,

4. soc (R) =
⊕s

i=1〈p
a−1hi(x)ti−1 f̂i(x) + 〈 f 〉〉 = 〈pa−1 ∏s

i=1 hi(x)ti−1 + 〈 f 〉〉.

Proof.

(1) This has been proved above.
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(2) Let êi(x) be as above. Define Ri =
GR(pa,m)[x]
〈 fi(x)〉 . We showed that R =

⊕s
i=1〈 f̂i(x) + 〈 f 〉〉 and

〈êi(x) + 〈 f 〉〉 = 〈 f̂i(x) + 〈 f 〉〉 � Ri. The map

φi : Ri → 〈êi〉

g(x) + 〈 fi〉 7→ g(x)êi(x) + 〈 f 〉

is a ring isomorphism as êi(x) + 〈 f 〉 is idempotent. Therefore the map

φ :
s⊕

i=1

Ri → R

φ(g1(x) + 〈 fi〉, . . . , gs(x) + 〈 fs〉) 7→
s∑

i=1

gi(x)êi(x) + 〈 f 〉

is also a ring isomorphism. The maximal ideals of R are M1, . . . ,Ms and

φ−1(Mi) = R1 ⊕ · · · ⊕ Ri−1 ⊕ mi ⊕ Ri+1 ⊕ · · · Rs (2.5)

where mi is the maximal ideal ofRi. By Lemma 2.1.1, we know that mi = 〈p+〈 fi〉, hi(x)+〈 fi〉〉.

Using φ and (2.5), we see that Mi = 〈pêi(x) +
∑

i, j ê j(x) + 〈 f 〉, hi(x)êi(x) +
∑

i, j ê j(x) + 〈 f 〉〉.

Since êi(x)’s and f̂i(x)’s differ by units, this also implies Mi = 〈p f̂i(x) + fi(x) + 〈 f 〉, hi f̂i(x) +

fi(x) + 〈 f 〉〉. By (2.5), we get that p = p
∑s

i=1 êi(x), hi(x) = hi(x)
∑s

i=1 êi(x) ∈ Mi. So

〈p, hi(x)〉 ⊂ 〈pêi(x) +
∑

i, j ê j(x), hi(x)êi(x) +
∑

i, j ê j(x)〉. Since fi(x) and ê j(x) are coprime

modulo f for every i , j, we have 〈ê j(x) + 〈 f 〉〉 = 〈 fi(x)ê j(x) + 〈 f 〉〉. So 〈 fi(x) + 〈 f 〉〉 =

〈 fi(x)
∑s

j=1 ê j(x)+〈 f 〉〉 = 〈
∑

i, j ê j(x)+〈 f 〉〉. Since fi(x) = hi(x)ti +pβi(x) ∈ 〈p+〈 f 〉, hi(x)+〈 f 〉〉,

we get pêi(x) +
∑

i, j ê j(x) + 〈 f 〉, pêi(x) +
∑

i, j ê j(x) + 〈 f 〉 ∈ 〈p + 〈 f 〉, hi(x) + 〈 f 〉〉. Hence

〈p + 〈 f 〉, hi(x) + 〈 f 〉〉 = 〈pêi(x) +
∑
i, j

ê j(x) + 〈 f 〉, hi(x)êi(x) +
∑
i, j

ê j(x) + 〈 f 〉〉 = Mi.

(3) Since fi(x) and f j(x) are coprime for every i , j, the polynomials hi(x) and h j(x) are also

coprime. So
⋂s

i=1〈hi(x) + 〈 f 〉〉 = 〈
∏s

i=1 hi(x) + 〈 f 〉〉 and the claim follows.
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(4) It is not hard to see that h j(x)t j−1 is a unit in Ri for all i , j. As a result of this,∏
i, j h j(x)t j−1 is a unit in R j. So

s⊕
i=1

〈pa−1hi(x)ti−1 f̂i(x) + 〈 f 〉〉 =

s⊕
i=1

〈pa−1hi(x)ti−1êi(x) + 〈 f 〉〉

=

s⊕
i=1

〈pa−1hi(x)ti−1
∏
i, j

ht j−1
j (x)êi(x) + 〈 f 〉〉

= 〈pa−1
s∏

i=1

hi(x)ti−1êi(x) + 〈 f 〉〉

= 〈pa−1
s∏

i=1

hi(x)ti−1 f̂i(x) + 〈 f 〉〉.

�

Theorem 2.2.2 The following are equivalent:

1. R is not a principal ideal ring.

2. a > 1 and there exists a factor from a primary co-prime factorization of f (x), g(x),

where g(x) = h(x)t + pβ(x) and h(x) is basic irreducible, t > 1 and β(x) ∈ 〈p, h(x)〉.

3. a > 1, f̄ (x) is not square free and if f̄ ′(x) is the square free part of f̄ (x), and we write

f (x) = f ′(x)α(x) + pγ(x) then γ̄(x) = 0 or ᾱ(x) and γ̄(x) are not co-prime.

Proof. (1)⇐⇒ (2) By Theorem 1.1.2, there exists a primary coprime decomposition of g(x).

Then the result follows from Theorems 2.2.1 and 2.1.4.

(2)⇒(3) Since t > 1, f̄ (x) is not square free. This also shows h(x)| f̄ ′(x) and h(x)|ᾱ(x). Since

β(x) ∈ 〈p, h(x)〉, we have β̄(x) ∈ 〈h〉. This implies h(x)|(g(x) (mod p2)). Since g(x)| f (x), we

see that h(x)|γ̄(x). So, ᾱ(x) and γ̄(x) are not co-prime.

(3)⇒(2) Since f̄ (x) is not square free and ᾱ(x) and γ̄(x) are not co-prime there exists a basic

irreducible polynomial h(x) such that h(x)t| f̄ (x) for some t > 1 and h(x)|γ̄(x). So there exists

a factor g(x) of f (x) such that g(x) = h(x)t + pβ(x) for some β(x). Since h(x)|γ̄(x), we have

that h(x)|β̄(x). Hence, β(x) ∈ 〈p, h(x)〉. �

Remark 2.2.3 The equivalence in Theorem 2.2.2 of (1) and (3) was presented in [53] with

an alternative proof.
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Lemma 2.2.4 Let R be a ring with direct sum decomposition R = ⊕n
i=1Ri and Ii be and ideal

of Ri for 1 ≤ i ≤ n. Assume, for any positive integer i, that Ii C Ri is at most k-generated. Let

I = ⊕n
i=1Ii. Then I C R is at most k-generated.

Proof. Let I C R. Then I = ⊕n
i=1Ii for Ii ∈ Ri. Then Ii is generated by some fi1, . . . , fik ∈ Ri.

Let g j = f1 j + · · · + fn j for 1 ≤ j ≤ k. Then 〈 f1 j, . . . , fn j〉 = 〈g j〉 and hence I = 〈g1, . . . , gk〉. �

Now we generalize Proposition 2.1.13 to the case where f (x) is an arbitrary regular polyno-

mial.

Theorem 2.2.5 Let C C R. Then

C = 〈p j0g0(x), . . . , p jr gr(x)〉

where 0 ≤ r ≤ a − 1 and

1. 0 ≤ j0 < · · · < jr ≤ a − 1

2. gi(x) monic for i = 0, . . . , r,

3. deg f (x) > deg g0(x) > · · · > deg gr(x),

4. p ji+1gi(x) ∈ 〈p ji+1gi+1(x), . . . , p jr gr(x)〉

5. p j0 f (x) ∈ 〈p j0g0(x), . . . , p jr gr(x)〉 in GR(pa,m)[x].

Proof. Follows from Proposition 2.1.13, Theorem 2.2.1 and Lemma 2.2.4. �

The structure of the ambient space of cyclic codes over finite chain rings was studied in [44],

[46], [45] and [53]. For any ideal of the ambient space, the authors of those papers came up

with a special generating set called strong Groebner basis (SGB). They showed that SGB can

be used to determine the Hamming distance of the corresponding code. It is easy to see that

their results also hold for the ideals of R. So we have the following result.

Theorem 2.2.6 Let C C R where C = 〈p j0g j0(x), . . . , p jr g jr (x)〉 is as in Theorem 2.2.5. Then

dH(C) = dH(〈pa−1g jr (x)〉) = dH(〈g jr (x)〉).
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Proof. For v(x) ∈ C, if pkv(x) , 0 then wH(v(x)) ≥ wH(pkv(x)). Let c(x) ∈ C such that

dH(I) = wH(c(x)). Let ` be the largest integer such that p`c(x) , 0. Hence, p`c(x) ∈

C
⋂
〈pa−1〉 = 〈pa−1g jr〉. Also wH(c(x)) = wH(pkc(x)) by the minimality of c(x). Hence,

dH(〈pa−1g jr (x)〉) = wH(pc(x)) = dH(C). The equality dH(〈pa−1g jr (x)〉) = dH(〈g jr (x)〉) fol-

lows from Lemma 1.2.1. �

2.3 Structure and the Hamming Distance in Characteristic p2

In Section 2.1 and Section 2.2, we study polycyclic codes over a Galois ring of characteristic

pa where a can be any positive integer. In this section, we observe that our results can be

refined if we work in characteristic p2. This leads to a generalization of the results given in

[31] where the authors study cyclic codes over GR(4, 1). As a result of this, we determine the

structure and the Hamming distance of the cyclic codes of length ps over GR(p2,m)

Throughout this section, we work in characteristic p2 and we assume f (x) ∈ GR(p2,m)[x] is

a regular primary polynomial and let R2 =
GR(p2,m)[x]
〈 f (x)〉 .

Recently, the Hamming distance of cyclic codes of length 2s over GR(4, 1) has been deter-

mined in [31]. Applying the results of Section 2.1, we extend this result in two ways. First,

we consider the problem for a more general class of linear codes which are called polycyclic

codes. We show how to obtain the torsional degrees of polycyclic codes over a Galois ring of

characteristic p2. This gives us the Hamming distance if the Hamming distance of the residue

code is known. Second, we generalize this result of [31] to cyclic codes of length ps over any

Galois ring of characteristic p2. We explicitly determine the Hamming distance of all cyclic

codes of length ps over GR(p2, n).

First, in Lemma 2.3.1, we classify all polycyclic codes in characteristic ps where f (x) is a

regular primary polynomial. This also gives us a classification of all cyclic codes of length

ps. Then, in Lemma 2.3.2 and Lemma 2.3.3, we determine the torsional degrees of polycyclic

codes. Using this together with some observations on the polynomial xps
− 1, we determine

the Hamming distance of all cyclic codes of length ps in characteristic p2 in Lemma 2.3.8.

As was explained in Section 2.1, without loss of generality, we can assume that f (x) is monic,

f (x) = h(x)t + pβ(x) where β(x) ∈ GR(p2,m)[x] and either β(x) = 0 or deg β(x) < t deg h(x).
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Also, we may assume h(x) is a monic basic irreducible polynomial. Moreover, if β(x) , 0

we can express β(x) as β(x) = h(x)vβ′(x) such that β′(x) =
∑t−1−v

j=0 γ j(x)h j(x) where v < t,

γ0(x) , 0,γ0(x) < 〈p〉, γ j(x) ∈ GR(p2,m)[x] and deg(γ j(x)) < deg(h(x)) (see the explanation

in Section 2.1). Since we are working in characteristic p2 we may also assume that γ j(x) ∈

Tm[x]. This can be seen by noting that pγ j(x) = pγ j(x).

Assume C C R2. Since C is finite we have that C = 〈 f1(x), . . . , fn(x)〉 for fi(x) ∈ R2 where

deg( fi(x)) < deg( f (x)), i.e. C is finitely generated. Without loss of generality we can assume

that if p - fi(x) then fi(x) is monic and if p| fi(x) that the leading coefficient of fi(x) is p. We

consider two cases here, when C * 〈p〉 and C ⊆ 〈p〉. First assume C * 〈p〉. In this case,

it can be shown by looking at the representation (2.1) that if p - fi(x) then fi(x) = h(x)ki +

ph(x)`iδi(x) and that if p| fi(x), fi(x) = ph(x)`iδi(x), where δi(x) is a unit with `i deg(h(x)) +

deg(δi(x)) < ki deg(h(x)) where at least one generator is not divisible by p. Let ki = ∞ if not

defined. Let j be such that k j = min{ki}
n
i=1. Let gi(x) = fi(x) − f j(x)h(x)ki−k j if p - fi(x) and

gi(x) = fi(x) if p| fi(x). Now, we see that C = 〈g1(x), . . . , g j−1(x), f j(x), g j+1(x), . . . , gn(x)〉.

Notice gi(x) ∈ R2 ∩ 〈p〉 for i , j. Again, without loss of generality we may assume for i , j

that gi(x) = ph(x)`
′
i . Let j′ be such that ` j′ = min{`′i }

n
i=1. So, gi(x) − g j′(x)h(x)`

′
i−`
′
j = 0.

Hence, C = 〈 f j(x), g j′(x)〉. Finally, if k j ≤ ` j′ then f j(x)|g j′(x) and C = 〈 f j(x)〉. Now, assume

C ⊆ 〈p〉. Then fi(x) = ph(x)`iδi(x) is a unit. Without loss of generality, we can assume that

fi(x) = ph(x)`i . As above let j be such that ` j = min{`i}
n
i=1. So, fi(x) − f j(x)h(x)`k−` j = 0.

Hence, C = 〈 f j(x)〉. From this discussion we get the following lemma.

Lemma 2.3.1 Let C C R2. Then C can be expressed in one of the following forms.

1. 〈0〉,

2. 〈1〉,

3. 〈ph(x)n〉,

4. 〈h(x)k〉,

5. 〈h(x)k + ph(x)`δ(x)〉,

6. 〈h(x)k, ph(x)n〉,

7. 〈h(x)k + ph(x)`δ(x), ph(x)n〉
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where in any case k, `, n < t, ` < n < k and δ(x) =
∑k−1−`

j=0 η j(x)h(x) j, where η j(x) ∈ Tm[x],

η0(x) , 0 and deg(η j(x)) < deg(h(x)).

Proof. The only thing that needs justification is the fact that δ(x) =
∑k−1−`

j=0 η j(x)h(x) j where

η j(x) ∈ Tm[x], η0(x) , 0 and deg(η j(x)) < deg(h(x)). By the discussion before this lemma,

δ(x) is a unit so, δ(x) < 〈p, h(x)〉. By the discussion in Section 2.1, δ(x) =
∑k−1−`

j=0 η j(x)h(x) j

where η j(x) ∈ GR(p2,m)[x], η0(x) , 0 and deg(η j(x)) < deg(h(x)). Finally, η j(x) ∈ Tm[x]

since we are working in characteristic p2 which means pη j(x) = pη j(x). �

The results of Section 2.1 assume the torsional degrees of a code are known. The next three

lemmas will focus on finding the torsional degrees of a code so we can apply the results

of Section 2.1 with the ultimate goal of this section being the determination of the Ham-

ming distance of a code. For the following, recall form the beginning of this section that

t, v, h(x), β(x), β′(x), γ j(x) are parameters of f (x).

Lemma 2.3.2 Let C C R2 and n < t. If C = 〈ph(x)n〉 then T0(C) = t and T1(C) = n.

Proof. The result on T0(C) is obvious. Since every codeword is divisible by p and h(x)n,

clearly T1(C) = n. �

Lemma 2.3.3 Assume β(x) = 0. Let CCR2, k, `, n < t, n < k, δ(x) < 〈p, h(x)〉 and deg(δ(x)) <

(k − `) deg(h(x)).

1. If C = 〈h(x)k〉 then T0(C) = k and T1(C) = k.

2. If C = 〈h(x)k + ph(x)`δ(x)〉 then T0(C) = k and T1(C) = min(k, t − k + `).

3. If C = 〈h(x)k, ph(x)n〉 then T0(C) = k and T1(C) = min(k, n).

4. If C = 〈h(x)k + ph(x)`δ(x), ph(x)n〉 then T0(C) = k and T1(C) = min(k, t − k + `, n).

Proof. The results on T0(C) are obvious. We concentrate on T1(C).

(1) The only way to create a codeword divisible by p is to multiply the generator by p or by a

large enough power of h(x). Since h(x)t = f (x) = 0 in R2, h(x)kh(x)t−k = h(x)t = f (x) = 0.
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Multiplying by any smaller multiple of h(x) will not produce a polynomial divisible by p.

Hence any codeword divisible by p is divisible by ph(x)k and so T1(C) = k.

(2) Noting that (h(x)k + ph(x)`δ(x))h(x)t−k = h(x)t + ph(x)t−k+`δ(x) = ph(x)t−k+`δ(x) and

p
(
h(x)k + ph(x)`δ(x)

)
= p(h(x))k we see that T1(C) = min(k, t − k + `) following similar

arguments as in (1).

(3) This can be argued similar to (1).

(4) This can be argued similar to (2). �

Lemma 2.3.4 Assume β(x) , 0. Let C C R2, k, `, n < t, n < k and δ(x) =
∑k−1−`

j=0 η j(x)h(x) j,

where η j(x) ∈ Tm[x], η0(x) , 0 and deg(η j(x)) < deg(h(x)).

1. If C = 〈h(x)k〉 then T0(C) = k and T1(C) = min(k, v).

2. If C = 〈h(x)k + ph(x)`δ(x)〉 then T0(C) = k and

T1(C) =

 min(k, v, t − k + `), if v , t − k + `

min(k, v + z), if v = t − k + `

where z = min
(
{ j|γ j(x) , η j(x)} ∪ {t}

)
.

3. If C = 〈h(x)k, ph(x)n〉 then T0(C) = k and T1(C) = min(k, v, n).

4. If C = 〈h(x)k + ph(x)`δ(x), ph(x)n〉 then T0(C) = k and

T1(C) =

 min(k, v, t − k + `, n), if v , t − k + `

min(k, v + z, n), if v = t − k + `

where z = min
(
{ j|γ j(x) , η j(x)} ∪ {t}

)
.

Proof. The results on T0(C) are obvious. We concentrate on T1(C).

(1) The only way to create a codeword divisible by p is to multiply the generator by p or by

a large enough power of h(x). Now, h(x)t−kh(x)k = h(x)t = −ph(x)vβ′(x). We know β′(x) is a

unit since γ0(x) , 0 so, T1(C) = min(k, v).
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(2) First,

h(x)t−k
(
h(x)k + ph(x)`δ(x)

)
= h(x)t + ph(x)t−k+`δ(x)

= −ph(x)vβ′(x) + ph(x)t−k+`δ(x).

If v < t − k + ` then

−ph(x)vβ′(x) + ph(x)t−k+`δ(x)

= −ph(x)v

γ0(x) +

t−1−v∑
j=1

γ j(x)h j(x) − h(x)t−k+`−v
k−1−`∑

j=0

η j(x)h(x) j

 .
In this case T1(C) = min(k, v). If v > t − k + ` then

−ph(x)vβ′(x) + ph(x)t−k+`δ(x)

= ph(x)t−k+`

η0(x) +

k−1−`∑
j=1

η j(x)h(x) j − h(x)v−(t−k+`)
t−1−v∑

j=0

γ j(x)h j(x)

 .
In this case T1(C) = min(k, t−k+`). Next, consider the case v = t − k + `. Here, if β′(x) = δ(x)

then −ph(x)vβ′(x) + ph(x)t−k+`δ(x) = 0 so T1(C) = k. Finally, if β′(x) , δ(x) then for some

0 ≤ j′ < t, γ j′(x) , η j′(x). Since γ j(x), η j(x) ∈ Tm[x] we have that γz(x)−ηz(x) is not divisible

by p and is therefore a unit. Then

−ph(x)vβ′(x) + ph(x)t−k+`δ(x)

= −ph(x)v+z

γz(x) − ηz(x) +

t−1−v∑
j=z+1

γ j(x)h j−z(x) −
k−1−`∑
j=z+1

η j(x)h j−z(x)

 .
Since z ≤ t − 1 − v, in this final case, T1(C) = min(k, v + z).

(3) This can be argued similar to (1).

(4) This can be argued similar to (2). �

Now that the torsional degrees of any code can be computed, the techniques in Section 2.1

can be applied to produce a generating set as in Theorem 2.1.11 or Definition 2.1.12. Our

goal here is to show how the hamming distance can be computed. Notice in Section 2.1 that

ultimately Ta−1(C) will determine the Hamming distance of C, i.e., dH(C) = dH
(
〈h(x)T1(C)〉

)
.

In the remaining part of this section, we study cyclic codes of length ps over GR(p2,m)

and show how to determine their Hamming distances. To do so we apply the results from

the beginning of this section. The following two lemmas are immediate consequences of

Kummer’s Theorem (see [23] for the statement) which we will need for our calculations.
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Lemma 2.3.5 Let k < pe and let ` be the largest integer such that p`|k. Then pe−`|
(

pe

k

)
.

Lemma 2.3.6 Let 0 < i < p. We have
( ps

ips−1

)
= pu ∈ GR(p2,m), where p - u.

To apply the results of this section, we need to show that the ambient ring is of the correct

type. To do so, we only need to show that an appropriate polynomial is used for the generator

of the ideal being factored out . For cyclic codes of length ps, this polynomial is xps
− 1 of

course. We now show why this is an appropriate polynomial. By Lemma 2.3.5 and Lemma

2.3.6 and the fact that we are working in GR(p2,m),

xps
− 1 = ((x − 1) + 1)ps

− 1

= (x − 1)ps
+

(
ps

ps − 1

)
(x − 1)ps−1 + · · · +

(
ps

1

)
(x − 1)

= (x − 1)ps
+

(
ps

(p − 1)ps−1

)
(x − 1)(p−1)ps−1

+ · · · +

(
ps

ps−1

)
(x − 1)ps−1

= (x − 1)ps
+ p(x − 1)ps−1

p−2∑
i=0

( ps

(i+1)ps−1

)
p

(x − 1)ips−1

We want to show that we can express xps
− 1 in the form needed to use the results form

this section. Let t = ps, v = ps−1, h(x) = x − 1 and β′(x) =
∑p−2

i=0 γips−1(x − 1)ips−1
where

γips−1 =
( ps

(i+1)ps−1)
p (mod p) for 0 ≤ i < p − 1 and γ j = 0 for all other j. Note, γ j ∈ Tm. This

shows that xps
− 1 is the type of polynomial we need.

The following is a special case of Lemma 2.3.1.

Lemma 2.3.7 Let C C GR(p2,m)[x]
〈xps
−1〉 . Then C can be expressed in one of the following forms.

1. 〈0〉,

2. 〈1〉,

3. 〈p(x − 1)n〉,

4. 〈(x − 1)k〉,

5. 〈(x − 1)k + p(x − 1)`δ(x)〉,
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6. 〈(x − 1)k, p(x − 1)n〉,

7. 〈(x − 1)k + p(x − 1)`δ(x), p(x − 1)n〉,

where in any case k, `, n < ps, n < k and δ(x) =
∑k−1−`

j=0 η j(x− 1) j, where η j ∈ Tm and η0 , 0.

Now, restating Lemma 2.3.2 and Lemma 2.3.4 for cyclic codes of length ps and using the fact

that dH(C) = dH(〈(x − 1)T1(C)〉), we determine the Hamming distance of all cyclic codes of

length ps over GR(p2,m) in the following lemma. Note that 〈(x − 1)T1(C)〉 is a cyclic code of

length ps over Fpm and its Hamming distance is given in Theorem 3.2.6.

Lemma 2.3.8 Let C C GR(p2,m)[x]
〈xps
−1〉 , k, `, n < ps, n < k and δ(x) =

∑k−1−`
j=0 η j(x − 1) j, where

η j ∈ Tm and η0 , 0. Then dH(C) = dH(〈(x − 1)T1(C)〉) where T0(C) and T1(C) are as follows.

1. If C = 〈(x − 1)k〉 then T0(C) = k and T1(C) = min(k, ps−1).

2. If C = 〈(x − 1)k + p(x − 1)`δ(x)〉 then T0(C) = k and

T1(C) =

 min(k, ps−1, ps − k + `), if ps−1 , ps − k + `

min(k, ps−1 + z), if ps−1 = ps − k + `

where z = min
(
{ j|γ j , η j} ∪ {ps}

)
.

3. If C = 〈(x − 1)k, p(x − 1)n〉 then T0(C) = k and T1(C) = min(k, ps−1, n).

4. If C = 〈(x − 1)k + p(x − 1)`δ(x), p(x − 1)n〉 then T0(C) = k and

T1(C) =

 min(k, ps−1, ps − k + `, n), if ps−1 , ps − k + `

min(k, ps−1 + z, n), if ps−1 = ps − k + `

where z = min
(
{ j|γ j , η j} ∪ {ps}

)
.

5. If C = 〈p(x − 1)n〉 then T0(C) = ps and T1(C) = n.
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CHAPTER 3

Repeated-Root Constacyclic Codes

We apply our results in Chapter 2 to study repeated-root constacyclic codes over Galois rings.

First, we develop some computational tools to determine the Hamming distance in Section

3.1. Next, we study constacyclic codes of length nps over the Galois ring GR(pa,m) in Section

3.2. We determine their ideal structure and compute their Hamming distance. Then, in Section

3.3, we study constacyclic codes of length 2nps over GR(pa,m).

3.1 On the Hamming Weight of (xn + γ)N

We develop some tools, that we use in Section 3.2 and Section 3.3, to compute the Hamming

distance of some constacyclic codes over finite fields.

We begin with partitioning the set {1, 2, . . . , ps − 1} into three subsets. These subsets arise

naturally from the technicalities of our computations as described in Section 3.2 and Section

3.3. If i is an integer satisfying 1 ≤ i ≤ (p − 1)ps−1, then there exists a uniquely determined

integer β such that 0 ≤ β ≤ p − 2 and

βps−1 + 1 ≤ i ≤ (β + 1)ps−1.

Moreover since

ps − ps−1 < ps − ps−2 < · · · < ps − ps−s = ps − 1,

for an integer i satisfying (p− 1)ps−1 + 1 = ps − ps−1 + 1 ≤ i ≤ ps − 1, there exists a uniquely

determined integer k such that 1 ≤ k ≤ s − 1 and

ps − ps−k + 1 ≤ i ≤ ps − ps−k−1. (3.1)
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Besides if i is an integer as above and k is the integer satisfying 1 ≤ k ≤ s − 1 and (3.1), then

we have

ps − ps−k < ps − ps−k + ps−k−1 < ps − ps−k + 2ps−k−1 < · · ·

< ps − ps−k + (p − 1)ps−k−1

and ps− ps−k +(p−1)ps−k−1 = ps− ps−k−1. So for such integers i and k, there exists a uniquely

determined integer τ with 1 ≤ τ ≤ p − 1 such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1.

Thus

{1, 2, . . . , ps−1} t

p−2⊔
β=1

{i : βps−1 + 1 ≤ i ≤ (β + 1)ps−1}

t

s−1⊔
k=1

p−1⊔
τ=1

{i : ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1}

(3.2)

gives us a partition of the set {1, 2, . . . , ps − 1}.

Throughout this section q denotes a power of p. Let N be a positive integer and γ ∈ Fq \ {0}.

Our computations in Section 3.2 and Section 3.3 are based on expressing the Hamming weight

of an arbitrary nonzero codeword in terms of wH((xη + γ)N). In [39], the Hamming weight of

the polynomial (xη + γ)N is given as described below. Let e, η,N and 0 ≤ b0, b1, . . . , be−1 ≤

p−1 be positive integers such that N < pe and let γ ∈ Fq\{0}. Let N = be−1 pe−1+· · ·+b1 p+b0,

0 ≤ bi < p, be the p-adic expansion of N. Then, by [39, Lemma 1], we have

wH((x + γ)N) =

e−1∏
d=0

(bd + 1). (3.3)

As suggested in [39], identifying x with xη in (3.3), we obtain

wH((xη + γ)N) =

e−1∏
d=0

(bd + 1). (3.4)

The following two lemmas are consequences of (3.4) and we will use them in our computa-

tions frequently.

Lemma 3.1.1 Let m, η, 1 ≤ β ≤ p−2 be positive integers and γ ∈ Fq\{0}. If m < ps−βps−1−1,

then wH((xη + γ)m+βps−1+1) ≥ β + 2.
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Proof. Since

m < ps − βps−1 − 1 = (p − β − 1)ps−1 + (p − 1)ps−2 + · · · + (p − 1)p + p − 1,

either

m = Lps−1 + (p − 1)ps−2 + · · · + (p − 1)p + p − 1 or

m = as−1 ps−1 + · · · + a1 p + a0

holds, where 0 ≤ L ≤ p − β − 2, 0 ≤ a0, a1, . . . , as−2 ≤ p − 1 and 0 ≤ as−1 ≤ p − β − 1 are

integers such that a` < p− 1 for some 0 ≤ ` < s− 1. According to the p-adic expansion of m,

we consider the following two cases.

First, we assume that m = Lps−1 + (p− 1)ps−2 + · · ·+ (p− 1)p + p− 1. Then m + βps−1 + 1 =

(L + β + 1)ps−1. So using (3.4), we get wH((xη + γ)m+βps−1+1) = L + β + 2 ≥ β + 2.

Second, we assume that m = as−1 ps−1+· · ·+a1 p+a0. Then the p-adic expansion of m+βps−1+

1 is of the form m + βps−1 + 1 = bs−1 ps−1 + · · · + b1 p + b0 where 0 ≤ b0, b1, . . . , bs−2 ≤ p − 1

and

bs−1 = as−1 + β. (3.5)

Let k be the least nonnegative integer with ak < p − 1. Then it follows that

0 < bk ≤ p − 1. (3.6)

So, using (3.4), (3.5) and (3.6), we get

wH((xη + γ)m+βps−1+1) ≥ (β + as−1 + 1)(bk + 1) ≥ (β + 1)2 > β + 2.

�

Lemma 3.1.2 Let m, η, 1 ≤ τ ≤ p − 1, 1 ≤ k ≤ s − 1 be positive integers and γ ∈ Fq \ {0}. If

m < ps−k − (τ − 1)ps−k−1 − 1, then wH((x2η + γ)m+ps−ps−k+(τ−1)ps−k−1+1) ≥ (τ + 1)pk.

Proof. Since

m < ps−k − (τ − 1)ps−k−1 − 1

= (p − τ + 1)ps−k−1 − 1

= (p − τ)ps−k−1 + (p − 1)ps−k−2 + · · · + (p − 1)p + p − 1,
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either

m = Lps−k−1 + (p − 1)ps−k−2 + · · · + (p − 1)p + p − 1 or

m = as−k−1 ps−k−1 + · · · + a1 p + a0

holds, where 0 ≤ L ≤ p − τ − 1, 0 ≤ a0, a1, . . . , as−k−2 ≤ p − 1 and 0 ≤ as−k−1 ≤ p − τ are

some integers such that 0 ≤ a` < p − 1 for some 0 ≤ ` < s − k − 1. According to the p-adic

expansion of m, we consider the following two cases.

First, we assume that m = Lps−k−1 + (p − 1)ps−k−2 + · · · + (p − 1)p + p − 1. Then the p-adic

expansion of m + ps − ps−k + (τ − 1)ps−k−1 + 1 is of the form

m + ps − ps−k + (τ − 1)ps−k−1 + 1 = (p − 1)ps−1 + · · · + (p − 1)ps−k + (L + τ)ps−k−1.

So, using (3.4), we get wH((xη + γ)m+ps−ps−k+(τ−1)ps−k−1+1) ≥ (τ + 1)pk.

Second, we assume that m = as−k−1 ps−k−1 + · · · + a1 p + a0. Then the p-adic expansion of

m + ps − ps−k + (τ − 1)ps−k−1 + 1 is of the form

m + ps − ps−k + (τ − 1)ps−k−1 + 1 = (p − 1)ps−1 + · · · + (p − 1)ps−k

+bs−k−1 ps−k−1 + · · · + b1 p + b0

where 0 ≤ b0, b1, . . . , bs−k−1 ≤ p − 1 are integers. It is easy to see that

bs−k−1 = as−k−1 + τ − 1. (3.7)

Let `0 be the least nonnegative integer with 0 ≤ a`0 < p − 1. Then

0 < b`0 ≤ p − 1. (3.8)

Using (3.7), (3.8) and (3.4), we get

wH((xη + γ)m+ps−ps−k(τ−1)ps−k−1+1) ≥ pk(bs−k−1 + 1)(b`0 + 1)

≥ 2τpk

≥ (τ + 1)pk.

�

In [39], the authors have shown that the polynomial (xη + γ)N has the so-called “weight

retaining property” (see [39, Theorem 1.1]). As a result of this, they gave a lower bound for
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the Hamming weight of the polynomial g(x)(xη + γ)N where g(x) is any element of Fq[x]. Let

η,N, γ and g(x) be as above. Then, by [39, Theorem 1.3 and Theorem 6.3], the Hamming

weight of g(x)(xη + γ)N satisfies

wH(g(x)(xη + γ)N) ≥ wH(g(x)
(
mod xη + γ

)
) · wH((xη + γ)N). (3.9)

Now we examine the Hamming weight of the polynomials (xη + γ1)ps
(xη + γ2)i, over Fq[x],

where 0 < i < ps. Let 0 < i < ps be an integer and γ1, γ2 ∈ Fq \ {0}. Let

(xη + γ2)i = aixηi + ai−1xη(i−1) + · · · + a0γ
i
2

where a0, a1, . . . , ai are the binomial coefficients. Note that

(xη + γ1)ps
(xη + γ2)i = (xηps

+ γ
ps

1 )(aixηi + ai−1xη(i−1)γ2 + · · · + a0γ
i
2)

= aixη(i+ps) + ai−1xη(i−1+ps)γ2 + · · · + a0xηps
γi

2

+aiγ
ps

1 xηi + ai−1γ
ps

1 xη(i−1) + · · · + a0γ
ps

1 γ
i
2.

Therefore wH((xη + γ1)ps
(xη + γ2)i) = 2wH((xη + γ2)i).

3.2 Constacyclic Codes of Length nps

Let η and s be positive integers. Let γ, λ ∈ Fpm \ {0} such that γps
= −λ. All λ-cyclic codes,

of length ηps, over Fpm correspond to the ideals of the finite ring

R =
Fpm[x]
〈xηps

− λ〉
.

Suppose that xη+γ is irreducible over Fpm . Then the monic divisors of xηps
−λ = (xη+γ)ps

are

exactly the elements of the set {(xη + γ)i : 0 ≤ i ≤ ps}. So if xη + λ is irreducible over Fpm ,

then the λ-cyclic codes, of length ηps, over Fpm , are of the form 〈(xη + γ)i〉 where 0 ≤ i ≤ ps.

In this section, we determine the Hamming distance of all λ-cyclic codes of length ηps over

Fpm and GR(pa,m). In Theorem 3.2.6, we determine the Hamming distance of 〈(xη + γ)i〉.

As a particular case, we obtain the Hamming distance of negacyclic codes of length 2ps over

Fpm where x2 + 1 is irreducible over Fpm[x]. Using Theorem 3.2.6 together with the results of

Section 2.1 and Section 2.2, we determine the Hamming distance of a cyclic code of length

ps over GR(pa,m).
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Let C = 〈(xη+γ)i〉where 0 ≤ i ≤ ps is an integer and xη+γ ∈ Fpm[x] is irreducible. Obviously

if i = 0, then C = R, i.e., C is the whole space Fηps

pm , and if i = ps, then C = {0}. For the

remaining values of i, we consider the partition of the set {1, 2, . . . , ps − 1} given in (3.2).

If 0 < i ≤ ps−1, then dH(C) is 2 as shown in Lemma 3.2.1.

For ps−1 < i < ps, we first find a lower bound on the Hamming weight of an arbitrary nonzero

codeword of C in Lemma 3.2.2 and Lemma 3.2.4. Next in Corollary 3.2.3 and Corollary 3.2.5,

we show that there exist codewords in C, achieving these previously found lower bounds. This

gives us the Hamming distance of C.

We summarize our results on R in Theorem 3.2.6. We observe that Theorem 3.2.6 gives the

Hamming distance of negacyclic codes, of length 2ps, over Fpm where p ≡ 3 (mod 4) and

m is an odd number. We close this section by describing how to determine the Hamming

distance of certain polycyclic codes, and in particular constacyclic codes, of length ηps over

GR(pa,m).

Lemma 3.2.1 Let 1 ≤ i ≤ ps−1 be an integer and let C = 〈(xη + γ)i〉. Then dH(C) = 2.

Proof. The claim follows from Lemma 1.2.1 and the fact that

(xη + γ)ps−1−i(xη + γ)i = (xη + γ)ps−1
= xηps−1

+ γps−1
∈ C.

�

Let C = 〈(xη + γ)i〉 for some integer 0 < i < ps. For any 0 , c(x) ∈ C, there exists

0 , f (x) ∈ Fq[x] such that c(x) ≡ f (x)(xη+γ)i
(
mod (xη + γ)ps)

. Dividing f (x) by (xη+γ)ps−i,

we get f (x) = q(x)(xη + γ)ps−i + r(x), where q(x), r(x) ∈ Fq[x] and 0 ≤ deg(r(x)) < ηps − ηi

or r(x) = 0 . We observe that

c(x) ≡ f (x)(xη + γ)i

≡ (q(x)(xη + γ)ps−i + r(x))(xη + γ)i

≡ q(x)(xη + γ)ps
+ r(x)(xη + γ)i

≡ r(x)(xη + γ)i
(
mod (xη + γ)ps)

.

Consequently, for any 0 , c(x) ∈ C, there exists 0 , r(x) ∈ Fpm[x] with deg(r(x)) < ηps − ηi

such that c(x) = r(x)(xη + γ)i, where we consider this equality in Fpm[x]. Therefore the
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Hamming weight of c ∈ C is equal to the nonzero coefficients of r(x)(xη + γ)i ∈ Fq[x], i.e.,

wH(c) = wH(r(x)(xη + γ)i).

In the following lemma, we give a lower bound on dH(C) when ps−1 < i.

Lemma 3.2.2 Let 1 ≤ β ≤ p − 2 be an integer and let C = 〈(xη + γ)βps−1+1〉. Then dH(C) ≥

β + 2.

Proof. Let 0 , c(x) ∈ C, then there exists 0 , f (x) ∈ Fq[x] such that

c(x) ≡ f (x)(xη + γ)βps−1+1
(
mod (xη + γ)ps)

.

We may assume that deg( f (x)) < ηps − ηβps−1 − η = (p− β)ηps−1 − η. We choose m to be the

largest nonnegative integer with (xη + γ)m| f (x). Clearly deg( f (x)) < (p − β)ηps−1 − η implies

m < (p − β)ps−1 − 1. So, by Lemma 3.1.1, we get

wH((xη + γ)m+βps−1+1) ≥ β + 2. (3.10)

For f (x) = g(x)(xη + γ)m, we have g(x) (mod xη + γ) , 0 by our choice of m, so

wH(g(x)
(
mod (xη + γ)

)
) > 0. (3.11)

Now using (3.10), (3.11) and (3.9), we obtain

wH(c(x)) = wH(g(x)(xη + γ)m+βps−1+1)

≥ wH(g(x)
(
mod (xη + γ)

)
)wH((xη + γ)m)

≥ β + 2.

�

Next we show that the lower bound given in Lemma 3.2.2 is achieved when ps−1 < i ≤

(p − 1)ps−1 and this gives us the exact value of dH(C).

Corollary 3.2.3 Let 1 ≤ β ≤ p − 2, βps−1 + 1 ≤ i ≤ (β + 1)ps−1 be integers and let C =

〈(xη + γ)i〉. Then dH(C) = β + 2.

Proof. Lemma 3.2.2 and C ⊂ 〈(xη + γ)βps−1+1〉 imply dH(C) ≥ β + 2. We know, by (3.4),

that wH((xη + γ)(β+1)ps−1
) = β + 2. Clearly (xη + γ)(β+1)ps−1

∈ C as (β + 1)ps−1 ≥ i. Thus

dH(C) ≤ β + 2. Hence dH(C) = β + 2.
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�

Having covered the range ps−1 < i ≤ (p− 1)ps−1, now we give a lower bound on dH(C) when

(p − 1)ps−1 < i < ps in the following lemma.

Lemma 3.2.4 Let 1 ≤ τ ≤ p−1, 1 ≤ k ≤ s−1 be integers and let C = 〈(xη+γ)ps−ps−k+(τ−1)ps−k−1+1〉.

Then dH(C) ≥ (τ + 1)pk.

Proof. Let 0 , c(x) ∈ C, then there is 0 , f (x) ∈ Fpm[x] such that

c(x) ≡ f (x)(xη + γ)ps−ps−k+(τ−1)ps−k−1+1
(
mod (xη + γ)ps)

.

We may assume that

deg( f (x)) < ηps−k − η(τ − 1)ps−k−1 − η. (3.12)

Let m be the largest nonnegative integer with (xη + γ)m| f (x). Then there exists g(x) ∈ Fpm[x]

such that f (x) = g(x)(xη + γ)m. By (3.12), we have m < ps−k − (τ − 1)ps−k−1 − 1. So, by

Lemma 3.1.2, we get

wH((xη + γ)m+ps−ps−k+(τ−1)ps−k−1+1) ≥ pk(τ + 1). (3.13)

The maximality of m implies xη + γ - g(x) and therefore g(x) (mod xη + γ) , 0. So we have

wH(g(x)
(
mod (xη + γ)

)
) > 0. (3.14)

Now using (3.9), (3.13) and (3.14), we obtain

wH(c(x)) = wH(g(x)(xη + γ)m+ps−ps−k+(τ−1)ps−k−1+1)

≥ wH(g(x)
(
mod (xη + γ)

)
)wH((xη + γ)ps−ps−k+(τ−1)ps−k−1+1+m)

≥ pk(τ + 1).

This completes the proof. �

For (p−1)ps−1 < i < ps, we determine dH(C) in Corollary 3.2.5 where we show the existence

of a codeword that achieves the lower bound given in Lemma 3.2.4.

Corollary 3.2.5 Let 1 ≤ τ ≤ p − 1, 1 ≤ k ≤ s − 1 and i be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1.

Let C = 〈(xη + γ)i〉. Then dH(C) = (τ + 1)pk.
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Proof. Lemma 3.2.4 and C ⊂ 〈(xη + γ)ps−ps−k+(τ−1)ps−k−1+1〉 implies dH(C) ≥ (τ + 1)pk. We

know, by (3.4), that wH((xη + γ)ps−ps−k+τps−k−1
) = (τ + 1)pk. Clearly (xη + γ)ps−ps−k+τps−k−1

∈ C

as ps − ps−k + τps−k−1 ≥ i. So dH(C) ≤ (τ + 1)pk. Thus we have shown dH(C) = (τ + 1)pk. �

We summarize our results in the following theorem.

Theorem 3.2.6 Let p be a prime number, Fpm a finite field of characteristic p, γ ∈ Fq \ {0}

and η be a positive integer. Suppose that xη+γ ∈ Fq[x] is irreducible. Then the λ-cyclic codes

over Fq, of length ηps, are of the form C[i] = 〈(xη + γ)i〉, where 0 ≤ i ≤ ps and λ = −γps
.

If i = 0, then C is the whole space Fηps

pm and if i = ps, then C is the zero space {0}. For the

remaining values of i, if p = 2, then

dH(C[i]) =



1, if i = 0,

2, if 1 ≤ i ≤ 2s−1,

2k+1, if 2s − 2s−k + 1 ≤ i ≤ 2s − 2s−k + τ2s−k−1,

where 1 ≤ k ≤ s − 1,

if p is odd, then

dH(C[i]) =



2, if 1 ≤ i ≤ ps−1,

β + 2, if βps−1 + 1 ≤ i ≤ (β + 1)ps−1, where 1 ≤ β ≤ p − 2,

(τ + 1)pk, if ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1,

where 1 ≤ τ ≤ p − 1 and 1 ≤ k ≤ s − 1.

Remark 3.2.7 If we replace η with 1 and γ with −1 in Theorem 3.2.6, then we obtain the

main results of [16] and [47]. Namely, we obtain [16, Theorem 4.11] and [47, Theorem 3.4].

Theorem 3.2.6 is still useful when the polynomial xη + γ is reducible over the alphabet Fpm .

Remark 3.2.8 Note that 〈(xη + γ)i〉, 0 ≤ i ≤ ps are ideals of R independent of the fact that

xη + γ is irreducible. So our results from Lemma 3.2.1 to Corollary 3.2.5 hold even when the

polynomial xη+γ is reducible over Fpm . But then, the cases considered above do not cover all

the λ-cyclic codes of length ps. In other words, if xη + γ is reducible, then there are λ-cyclic

codes other than 〈(xη + γ)i〉, 0 ≤ i ≤ ps and their Hamming distance is not determined here.

Now we will apply Theorem 3.2.6 to a particular case. Namely, we will consider the nega-

cyclic codes over Fpm of length 2ps where p is an odd prime. In order to apply Theorem 3.2.6,
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the polynomial x2 + 1 must be irreducible over Fpm . A complete irreducibility criterion for

x2 + 1 is given in the following lemma.

Lemma 3.2.9 Let p be an odd prime and m be a positive integer. The polynomial x2 + 1 ∈

Fpm[x] is irreducible if and only if p = 4k + 3 for some k ∈ N and m is odd.

Proof. Follows from the order of the multiplicative group of Fpm . �

Let C be a negacyclic code of length 2ps over Fpm . If x2 + 1 is irreducible over Fpm , then the

Hamming distance of C is given in the following theorem.

Theorem 3.2.10 Let p = 4k + 3 be a prime for some k ∈ N and let m ∈ N be an odd number.

Then the negacyclic codes over Fpm , of length 2ps, are of the form C[i] = 〈(x2 + 1)i〉, where

0 ≤ i ≤ ps, and

dH(C[i]) =



2, if 1 ≤ i ≤ ps−1,

β + 2, if βps−1 + 1 ≤ i ≤ (β + 1)ps−1, where 1 ≤ β ≤ p − 2,

(τ + 1)pk, if ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1,

where 1 ≤ τ ≤ p − 1 and 1 ≤ k ≤ s − 1.

For the other values of p and m, x2 + 1 is reducible over Fpm and in this case, we determine

the minimum Hamming distance of C in Section 3.3.

Now we describe how to determine the Hamming distance of certain polycyclic codes of

length ηps over GR(pa,m) and, in particular, this gives us the Hamming distance of certain

constacyclic codes of length ηps. Let γ0, λ0 ∈ GR(pa,m) be units such that γ0 = γ, λ0 = λ

and γps

0 = −λ0. According to our assumption in the beginning of this section, we have that

xη + γ0 is irreducible.

Let f (x) = (xη + γ0)ps
+ pβ(x) ∈ GR(pa,m)[x] with deg(β(x)) < ηps. Note that f (x) in this

form is a primary regular polynomial so the techniques of Section 2.1 can be applied.

Let R0 =
GR(pa,m)[x]
〈 f (x)〉 . Let C = 〈p j0g0(x), . . . , p jr gr(x)〉 C R0 where the generators are as in

Theorem 2.2.5. As was done in (2.1), we can express gr(x) in the canonical form

gr(x) = p0(xη + γ0)e0α0(x) + · · · + pa−1(xη + γ0)ea−1αa−1(x)
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where each αi(x) is either a unit or 0. For 0 , gr(x), we have α0(x) , 0 since p - gr(x).

Therefore α0(x) is a unit. So, by Theorem 2.2.6, we deduce that dH(C) = dH(〈gr(x)〉) =

dH(〈(xη + γ)e0〉). Now dH(〈(xη + γ)e0〉) can be determined using Theorem 3.2.6.

Remark 3.2.11 Let γ, γ0, λ, λ0 be as above. The λ0-cyclic codes of length ηps over GR(pa,m)

are the ideals of the ring GR(pa,m)[x]
〈xηps

−λ0〉
. Since xηps

− λ0 = (xη + γ0)ps
+ pβ

′

(x), for some β(x) ∈

GR(pa,m)[x] with deg(β
′

(x)) < ηps, we can determine the Hamming distance of the λ0-cyclic

codes of length ηps over GR(pa,m) as described above.

3.3 Constacyclic Codes of Length 2nps

We assume that p is an odd prime number, η and s are positive integers, Fpm is a finite field of

characteristic p and λ, ξ, ψ ∈ Fpm \ {0} throughout this section.

Suppose that ψps
= λ and x2η − ψ factors into two irreducible polynomials over Fpm as

x2η − ψ = (xη − ξ)(xη + ξ). (3.15)

In this section, we compute the Hamming distance of λ-cyclic codes, of length 2ηps, over

Fpm where (3.15) is satisfied. Next, we determine the Hamming distance of certain polycyclic

codes, and in particular certain constacyclic codes, of length ηps over GR(pa,m). We know

that λ-cyclic codes of length 2ηps over Fpm correspond to the ideals of the finite ring

R =
Fpm[x]
〈x2ηps

− λ〉
.

Note that, by Proposition 2.2.1, we have R = 〈xηps
+ ξps

〉 ⊕ 〈xηps
− ξps

〉 and 〈xηps
+ ξps

〉 �

Fpm [x]
〈xηps

−ξps
〉
, 〈xηps

− ξps
〉 �

Fpm [x]
〈xηps

+ξps
〉
. Moreover, by Proposition 2.2.1, the maximal ideals of R

are 〈xη − ξ〉 and 〈xη + ξ〉. Since the monic polynomials dividing x2ηps
− λ are exactly the

elements of the set {(xη − ξ)i(xη + ξ) j : 0 ≤ i, j ≤ ps}, the λ-cyclic codes, of length 2ηps,

over Fpm are of the form 〈(xη − ξ)i(xη + ξ) j〉, where 0 ≤ i, j ≤ ps are integers.

Let C = 〈(xη − ξ)i(xη + ξ) j〉. If (i, j) = (0, 0), then C = R. If (i, j) = (ps, ps), then C = {0}.

For the remaining values of (i, j), we consider the partition of the set {1, 2, . . . , ps − 1} given

in (3.2).

In order to simplify and improve the presentation of our results, from Lemma 3.3.4 till Corol-

lary 3.3.21, we consider only the cases where i ≥ j explicitly. We do so because the cases
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where j > i can be treated similarly as the corresponding case of i > j.

Now we give an overview of the results in this section. If i = 0, or j = 0, or 0 ≤ i, j ≤ ps−1,

then the Hamming distance of C can easily found to be 2 as shown in Lemma 3.3.1 and

Lemma 3.3.2.

If 0 < j ≤ ps−1 and ps−1 + 1 ≤ i ≤ ps, then dH(C) is computed in Lemma 3.3.4, Corollary

3.3.5, Lemma 3.3.6 and Corollary 3.3.7.

If ps−1 + 1 ≤ j ≤ i ≤ (p − 1)ps−1, then dH(C) is computed in Lemma 3.3.8 and Corollary

3.3.9.

If ps−1 + 1 ≤ j ≤ (p − 1)ps−1 < i ≤ ps − 1, then dH(C) is computed in Lemma 3.3.10 and

Corollary 3.3.11.

If (p − 1)ps−1 + 1 ≤ j ≤ i ≤ ps − 1, then dH(C) is computed in Lemma 3.3.12, Corollary

3.3.13, Lemma 3.3.14 and Corollary 3.3.15.

Finally if i = ps and 0 < j < ps−1, then dH(C) is computed from Lemma 3.3.16 till Corollary

3.3.21.

At the end of this section, we summarize our results in Theorem 3.3.22.

We begin our computations with the case where i = 0 or j = 0.

Lemma 3.3.1 Let 0 < i, j ≤ ps be integers, let C = 〈(xη − ξ)i〉 and D = 〈(xη + ξ) j〉. Then

dH(C) = dH(D) = 2.

Proof. Since

(xη − ξ)ps−i(xη − ξ)i = xηps
− ξps

∈ C and

(xη + ξ)ps− j(xη + ξ) j = xηps
+ ξps

∈ D,

we have dH(C), dH(D) ≤ 2. On the other hand, dH(C), dH(D) ≥ 2 by Lemma 1.2.1. Hence

dH(C) = dH(D) = 2. �

Lemma 3.3.2 Let C = 〈(xη−ξ)i(xη+ξ) j〉, for some integers 0 ≤ i, j ≤ ps−1 with (i, j) , (0, 0).

Then dH(C) = 2.
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Proof. By Lemma 1.2.1, we have dH(C) ≥ 2 and

(xη − ξ)i(xη + ξ) j(xη − ξ)ps−1−i(xη + ξ)ps−1− j = x2ηps−1
− ξ2ps−1

∈ C

implies that dH(C) ≤ 2. Hence dH(C) = 2. �

Let C = 〈(xη − ξ)i(xη + ξ) j〉 for some integers 0 ≤ i, j ≤ ps with (0, 0) , (i, j) , (ps, ps).

Let 0 , c(x) ∈ C, then there exists 0 , f (x) ∈ Fpm[x] such that c(x) ≡ f (x)(xη − ξ)i(xη +

ξ) j
(
mod x2ηps

− λ
)
. Dividing f (x) by (xη − ξ)ps−i(xη + ξ)ps− j, we get

f (x) = q(x)(xη − ξ)ps−i(xη + ξ)ps− j + r(x),

where q(x), r(x) ∈ Fq[x] and, either r(x) = 0 or deg(r(x)) < 2ηps − ηi − η j. Since

c(x) ≡ f (x)(xη − ξ)i(xη + ξ) j

≡ (q(x)(xη − ξ)ps−i(xη + ξ)ps− j + r(x))(xη − ξ)i(xη + ξ) j

≡ q(x)(xη − ξ)ps
(xη + ξ)ps

+ r(x)(xη − ξ)i(xη + ξ) j

≡ r(x)(xη − ξ)i(xη + ξ) j
(
mod (x2ηps

− λ)
)
,

we may assume, without loss of generality, that deg( f (x)) < 2ηps − ηi − η j. Moreover

wH(r(x)(xη − ξ)i(xη + ξ) j) = wH(c) as deg(r(x)(xη − ξ)i(xη + ξ) j) < 2ηps.

Let i0 and j0 be the largest integers with (xη − ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Then there exists

g(x) ∈ Fpm[x] such that f (x) = (xη − ξ)i0(xη + ξ) j0g(x) and (xη − ξ) - g(x), (xη + ξ) - g(x).

Clearly deg( f (x)) < 2ηps − ηi − η j implies i0 + j0 < 2ps − i − j. Therefore i0 < ps − i or

j0 < ps − j must hold.

So if i0 ≥ ps − i, then j0 < ps − j. For such cases, the following lemma will be used in our

computations.

Lemma 3.3.3 Let i, j, i0, j0 be nonnegative integers such that i ≥ j, i0 ≥ ps−i and j0 < ps− j.

Let c(x) = (xη − ξ)i0+i(xη + ξ) j0+ jg(x) with xη − ξ - g(x) and xη + ξ - g(x). Then wH(c(x)) ≥

2wH((x2η − ξ2) j0+ j).

Proof. Since i0 ≥ ps − i and − j0 ≥ −ps + j + 1, we have i0 − j0 ≥ j − i + 1 or equivalently

i0 − j0 + i − j ≥ 1. So c(x) = (x2η − ξ2) j0+ j(xη − ξ)i0− j0+i− jg(x). Dividing (xη − ξ)i0− j0+i− jg(x)

by x2η − ξ2, we get

(xη − ξ)i0− j0+i− jg(x) = (x2η − ξ2)q(x) + r(x) (3.16)
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for some q(x), r(x) ∈ Fq[x] with r(x) = 0 or deg(r(x)) < 2η. Let θ1 and θ2 be any roots of

xη − ξ and xη + ξ, respectively, in some extension of Fpm . Obviously θ1 and θ2 are roots of

(x2η − ξ2)q(x). First we observe that r(θ1) = 0 as θ1 is a root of LHS of (3.16). Second we

observe that r(θ2) , 0 as θ2 is not a root of LHS of (3.16). So it follows that r(x) is a nonzero

and nonconstant polynomial implying wH(r(x)) ≥ 2. Therefore

wH((xη − ξ)i0− j0+i− jg(x)
(
mod (x2η − ξ2)

)
) = wH(r(x)) ≥ 2. (3.17)

Using (3.9) and (3.17), we obtain

wH(c(x)) = wH((x2η − ξ2) j0+ j(xη − ξ)i0− j0+i− jg(x))

≥ wH((x2η − ξ2) j0+ j)wH((xη − ξ)i0− j0+i− jg(x)
(
mod (x2η − ξ2)

)
)

≥ 2wH((x2η − ξ2) j0+ j).

�

Now we have the machinery to obtain the Hamming distance of C for the ranges ps−1 < i ≤ ps

and 0 < j ≤ ps.

In what follows, for a particular range of i and j, we first give a lower bound on dH(C) in the

related lemma. Then in the next corollary, we determine dH(C) by showing the existence of a

codeword that achieves the previously found lower bound.

We compute dH(C) when 0 < j ≤ ps−1 < i ≤ 2ps−1 in the following lemma and corollary.

Lemma 3.3.4 Let C = 〈(xη − ξ)ps−1+1(xη + ξ)〉. Then dH(C) ≥ 3.

Proof. Pick 0 , c(x) ∈ C where c(x) ≡ f (x)(xη − ξ)ps−1+1(xη + ξ)
(
mod (x2ηps

− λ)
)

for some

0 , f (x) ∈ Fpm[x] with deg( f (x)) < 2ηps − ηps−1 − 2η. Let i0 and j0 be the largest integers

with (xη − ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Then f (x) is of the form f (x) = (xη − ξ)i0(xη + ξ) j0g(x)

for some g(x) ∈ Fpm[x] with xη − ξ - g(x) and xη + ξ - g(x). Note that i0 < ps − ps−1 − 1 or

j0 < ps − 1 holds.

If i0 < ps − ps−1 − 1, then, by Lemma 3.1.1,

wH((xη − ξ)i0+ps−1+1) ≥ 3. (3.18)

Moreover the inequality

wH(g(x)(xη + ξ) j0+1 (
mod (xη − ξ)

)
) > 0 (3.19)
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holds since xη − ξ - g(x). Now using (3.9), (3.18) and (3.19), we obtain

wH(c(x)) = wH( f (x)(xη − ξ)ps−1+1(xη + ξ))

= wH((xη − ξ)i0+ps−1+1(xη + ξ) j0+1g(x))

≥ wH((xη − ξ)i0+ps−1+1)wH((xη + ξ) j0+1g(x) (mod (xη − ξ)))

≥ 3.

(3.20)

If i0 ≥ ps − ps−1 − 1, then j0 < ps − 1. Clearly wH((x2η − ξ2) j0+ j) ≥ 2. So, by Lemma 3.3.3,

we have

wH(c(x)) ≥ 2wH((x2η − ξ2) j0+ j) ≥ 4. (3.21)

Now combining (3.20) and (3.21), we obtain wH(c(x)) ≥ 3, and hence dH(C) ≥ 3. �

Corollary 3.3.5 Let i, j be integers with 2ps−1 ≥ i > ps−1 ≥ j > 0 and let C = 〈(xη − ξ)i(xη +

ξ) j〉. Then dH(C) = 3.

Proof. Since C ⊂ 〈(xη − ξ)ps−1+1(xη + ξ)〉, we know, by Lemma 3.3.4, that dH(C) ≥ 3. For

(xη − ξ)2ps−1
(xη + ξ)2ps−1

∈ C, we have

(xη − ξ)2ps−1
(xη + ξ)2ps−1

= (x2η − ξ2)2ps−1
= x4ηps−1

− 2ξ2ps−1
x2ηps−1

+ ξ4ps−1
.

So dH(C) ≤ 3 and hence dH(C) = 3. �

For 2ps−1 < i < ps and 0 < j ≤ ps−1, dH(C) is computed in the following lemma and

corollary.

Lemma 3.3.6 Let C = 〈(xη − ξ)2ps−1+1(xη + ξ)〉. Then dH(C) ≥ 4.

Proof. Pick 0 , c(x) ∈ C where c(x) ≡ f (x)(xη − ξ)2ps−1+1(xη + ξ)
(
mod (x2ηps

− λ)
)

for some

0 , f (x) ∈ Fpm[x] with deg( f (x)) < 2ηps − 2ηps−1 − 2η. Let i0 and j0 be the largest integers

with (xη − ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Then f (x) is of the form f (x) = (xη − ξ)i0(xη + ξ) j0g(x)

for some g(x) ∈ Fpm[x] with xη − ξ - g(x) and xη + ξ - g(x). Note that i0 < ps − 2ps−1 − 1 or

j0 < ps − 1 holds since deg( f (x)) < 2ηps − 2ηps−1 − 2η.
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If i0 < ps − 2ps−1 − 1, then, by Lemma 3.1.1, we have

wH((xη − ξ)i0+2ps−1+1) ≥ 4. (3.22)

Since xη − ξ - g(x),

wH(g(x)(xη + ξ) j0+1 (
mod (xη − ξ)

)
) > 0 (3.23)

holds. Now using (3.22), (3.23) and (3.9), we obtain

wH(c(x)) = wH( f (x)(xη − ξ)2ps−1+1(xη + ξ))

= wH((xη − ξ)i0+2ps−1+1(xη + ξ) j0+1g(x))

≥ wH((xη + ξ) j0+1g(x)
(
mod (xη − ξ)

)
)wH((xη − ξ)i0+2ps−1+1)

≥ 4.

If i0 ≥ ps − 2ps−1 − 1, then j0 < ps − 1. Clearly wH((x2η − ξ2) j0+1) ≥ 2. So, by Lemma 3.3.3,

we have wH(c(x)) ≥ 2wH((x2η − ξ2) j0+1) ≥ 4. Hence dH(C) ≥ 4. �

Corollary 3.3.7 Let 2ps−1 < i < ps and 0 < j ≤ ps−1 be integers, and let C = 〈(xη − ξ)i(xη +

ξ) j〉. Then dH(C) = 4.

Proof. Since C ⊂ 〈(xη − ξ)2ps−1+1(xη + ξ)〉, we know, by Lemma 3.3.6, that dH(C) ≥ 4. For

(xη − ξ)ps
(xη + ξ)ps−1

∈ C, we have wH((xη − ξ)ps
(xη + ξ)ps−1

) = 4. Thus dH(C) ≤ 4 and hence

dH(C) = 4. �

Next we consider the cases where ps−1 < j ≤ i ≤ ps. We begin with computing dH(C) when

ps−1 < j ≤ i ≤ (p − 1)ps−1 in the following lemma and corollary.

Lemma 3.3.8 Let 1 ≤ β
′

≤ β ≤ p − 2 be integers and C = 〈(xη − ξ)βps−1+1(xη + ξ)β
′
ps−1+1〉.

Then dH(C) ≥ min{β + 2, 2(β
′

+ 2)}.

Proof. Let 0 , c(x) ∈ C. Then there exists 0 , f (x) ∈ Fpm[x] such that c(x) ≡ f (x)(xη −

ξ)βps−1+1(xη + ξ)β
′
ps−1+1

(
mod (x2ηps

− λ)
)
. We may assume that deg( f (x)) < 2ηps − ηβps−1 −

ηβ
′

ps−1 − 2η. We consider the cases β = β
′

and β < β
′

separately.
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First, we assume that β = β
′

. Then C = 〈(xη − ξ)βps−1+1(xη + ξ)β
′
ps−1+1〉 = 〈(x2η − ξ2)βps−1+1〉.

Let m be the largest nonnegative integer with (x2η − ξ2)m| f (x). We have m < ps − βps−1 − 1

as deg( f (x)) < 2ηps − 2ηβps−1 − 2η. So, by Lemma 3.1.1, we get

wH((x2η − ξ2)βps−1+1+m) ≥ β + 2. (3.24)

Clearly f (x) is of the form f (x) = (x2η−ξ2)mg(x) for some g(x) ∈ Fpm[x] where x2η−ξ2 - g(x).

So g(x)
(
mod (x2η − ξ2)

)
, 0 and therefore

wH(g(x)
(
mod (x2η − ξ2)

)
) > 0. (3.25)

So if β = β
′

, then using (3.24), (3.25) and (3.9), we get

wH(c(x)) = wH((x2η − ξ2)m+βps−1+1g(x))

≥ wH(g(x)
(
mod (x2η − ξ2)

)
)wH((x2η − ξ2)m+βps−1+1)

≥ β + 2.

Second, we assume that β
′

< β. For c(x) ≡ f (x)(xη−ξ)βps−1+1(xη+ξ)β
′
ps−1+1

(
mod (x2ηps

− λ)
)
,

let i0 and j0 be the largest integers with (xη − ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Since deg( f (x)) <

2ηps−ηβps−1−ηβ
′

ps−1−2η, we have i0+ j0 < 2ps−βps−1−β
′

ps−1−2. Thus i0 < ps−βps−1−1

or j0 < ps − β
′

ps−1 − 1 holds.

If i0 < ps − βps−1 − 1, then, by Lemma 3.1.1, we have

wH((xη − ξ)i0+βps−1+1) ≥ β + 2. (3.26)

Note that (xη + ξ) j0+β
′
ps−1+1g(x) (mod (xη − ξ)) , 0 since xη − ξ - (xη + ξ) j0+β

′
ps−1+1g(x).

Therefore

wH((xη + ξ) j0+β
′
ps−1+1g(x)

(
mod (xη − ξ)

)
) > 0. (3.27)

Using (3.9), (3.26) and (3.27), we obtain

wH(c(x)) = wH((xη − ξ)i0+βps−1+1(xη + ξ) j0+β
′
ps−1+1g(x))

≥ wH((xη + ξ) j0+β
′
ps−1+1g(x) (mod (xη − ξ)))wH((xη − ξ)i0+βps−1+1)

≥ β + 2.

(3.28)

If i0 ≥ ps − βps−1 − 1, then j0 < ps − β
′

ps−1 − 1. By Lemma 3.3.3, we get

wH(c(x)) ≥ 2wH((x2η − ξ2) j0+β
′
ps−1+1). (3.29)
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For wH((x2η − ξ2) j0+β
′
ps−1+1), we use Lemma 3.1.1 and get

wH((x2η − ξ2) j0+β
′
ps−1+1) ≥ β

′

+ 2. (3.30)

Combining (3.29) and (3.30), we obtain

wH(c(x)) ≥ 2(β
′

+ 2). (3.31)

So if β
′

< β, then, by (3.28) and (3.31), we get that wH(c(x)) ≥ min{β + 2, 2(β
′

+ 2)}. In both

cases, namely β = β
′

and β
′

< β, we have shown that dH(C) ≥ min{β + 2, 2(β
′

+ 2)}. �

Corollary 3.3.9 Let j ≤ i, 1 ≤ β
′

≤ β ≤ p − 2 be integers such that

βps−1 + 1 ≤ i ≤ (β + 1)ps−1 and

β
′

ps−1 + 1 ≤ j ≤ (β
′

+ 1)ps−1.

Let C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) = min{β + 2, 2(β
′

+ 2)}.

Proof. We know, by Lemma 3.3.8, that dH(C) ≥ min{β + 2, 2(β
′

+ 2)}. So it suffices to show

dH(C) ≤ min{β + 2, 2(β
′

+ 2)}.

First, (β + 1)ps−1 ≥ i, j implies that (xη − ξ)(β+1)ps−1
(xη + ξ)(β+1)ps−1

= (x2η − ξ2)(β+1)ps−1
∈ C.

By (3.4), we get wH((x2η − ξ2)(β+1)ps−1
) = β + 2. Therefore

dH(C) ≤ β + 2. (3.32)

Second, we consider (xη − ξ)ps
(xη + ξ)(β

′
+1)ps−1

∈ C. Using (3.4) and the fact that ps >

(β
′

+ 1)ps−1, we get

wH((xη − ξ)ps
(xη + ξ)(β

′
+1)ps−1

) = 2wH((xη + ξ)(β
′
+1)ps−1

) = 2(β
′

+ 2).

So

dH(C) ≤ 2(β
′

+ 2). (3.33)

Combining (3.32) and (3.33), we deduce that dH(C) ≤ min{β + 2, 2(β
′

+ 2)}. Therefore

dH(C) = min{β + 2, 2(β
′

+ 2)}. �

The following lemma and corollary deal with the case where ps−1 < j ≤ (p−1)ps−1 < i < ps.
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Lemma 3.3.10 Let 1 ≤ τ ≤ p − 1, 1 ≤ β ≤ p − 2, 1 ≤ k ≤ s − 1 be integers and C =

〈(xη − ξ)ps−ps−k+(τ−1)ps−k−1+1(xη + ξ)βps−1+1〉. Then dH(C) ≥ 2(β + 2).

Proof. Let 0 , c(x) ∈ C. Then there exists 0 , f (x) ∈ Fq[x] such that c(x) ≡ (xη −

ξ)ps−ps−k+(τ−1)ps−k−1+1(xη + ξ)βps−1+1 f (x)
(
mod (x2ηps

− λ)
)

and deg( f (x)) < ηps + ηps−k −

η(τ − 1)ps−k−1 − ηβps−1 − 2η. Let i0 and j0 be the largest integers with (xη − ξ)i0 | f (x) and

(xη + ξ) j0 | f (x). Then f (x) is of the form f (x) = (xη − ξ)i0(xη + ξ) j0g(x) for some g(x) ∈ Fpm[x]

such that xη−ξ - g(x) and xη+ξ - g(x). Clearly i0 + j0 < ps + ps−k− (τ−1)ps−k−1−βps−1−2.

So i0 < ps−k − (τ − 1)ps−k−1 − 1 or j0 < ps − βps−1 − 1 holds.

If i0 < ps−k − (τ − 1)ps−k−1 − 1, then, by Lemma 3.3.3, we have

wH((xη − ξ)i0+ps−ps−k+(τ−1)ps−k−1+1) ≥ (τ + 1)pk. (3.34)

Since xη − ξ - g(x),

wH((xη + ξ) j0+βps−1+1g(x)
(
mod (xη − ξ)

)
) > 0. (3.35)

Using (3.34), (3.35) and (3.9), we obtain

wH(c(x)) = wH((xη − ξ)i0+ps−ps−k+(τ−1)ps−k−1+1(xη + ξ) j0+βps−1+1g(x))

≥ wH((xη + ξ) j0+βps−1+1g(x)
(
mod (xη − ξ)

)
)wH((xη − ξ)i0+ps−ps−k+(τ−1)ps−k−1+1)

≥ (τ + 1)pk

≥ 2p

≥ 2(β + 2).

If i0 ≥ ps−k − (τ − 1)ps−k−1 − 1, then j0 < ps − βps−1 − 1. So, by Lemma 3.3.3, we get

wH(c(x)) ≥ 2wH((x2η − ξ2) j0+βps−1+1). (3.36)

For wH((x2η − ξ2) j0+βps−1+1), we use Lemma 3.1.1 and get

wH((x2η − ξ2) j0+βps−1+1) = β + 2. (3.37)

Combining (3.36) and (3.37), we obtain wH(c(x)) ≥ 2(β + 2). So dH(C) ≥ 2(β + 2). �

Corollary 3.3.11 Let i, j, 1 ≤ τ ≤ p−1, 1 ≤ β ≤ p−2 and 1 ≤ k ≤ s−1 be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and

βps−1 + 1 ≤ j ≤ (β + 1)ps−1.

Let C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) = 2(β + 2).
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Proof. Since 〈(xη − ξ)pps−ps−k+(τ−1)ps−k−1+1(xη + ξ)βps−1+1〉 ⊃ C, we know, by Lemma 3.3.10,

that dH(C) ≥ 2(β + 2). So it suffices to show dH(C) ≤ 2(β + 2). We consider (xη − ξ)ps
(xη +

ξ)(β+1)ps−1
∈ C. Note that wH((xη − ξ)(β+1)ps−1

) = β + 2 by (3.4). So, using the fact that

ps > (β + 1)ps−1, we obtain wH((xη − ξ)ps
(xη + ξ)(β+1)ps−1

) = 2(β + 2). So dH(C) ≤ 2(β + 2),

and hence dH(C) = 2(β + 2). �

From Lemma 3.3.12 till Corollary 3.3.15, we compute dH(C) when (p − 1)ps−1 < j ≤ i < ps.

Lemma 3.3.12 Let 1 ≤ k ≤ s − 1, 1 ≤ τ
′

≤ τ ≤ p − 1,

i = ps − ps−k + (τ − 1)ps−k−1 + 1 and

j = ps − ps−k + (τ
′

− 1)ps−k−1 + 1

be integers and C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) ≥ min{2(τ
′

+ 1)pk, (τ + 1)pk}.

Proof. Let 0 , c(x) ∈ C. Then there exists 0 , f (x) ∈ Fpm[x] such that c(x) ≡ f (x)(xη −

ξ)i(xη + ξ) j
(
mod (x2ηps

− λ)
)

and deg( f (x)) < 2ηps − iη − jη. Let i0 and j0 be the largest

integers with (xη− ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Then f (x) is of the form f (x) = (xη− ξ)i0(xη +

ξ) j0g(x) for some g(x) ∈ Fpm[x] with xη−ξ - g(x) and xη+ξ - g(x). Clearly i0 + j0 < 2ps− i− j

and therefore i0 < ps − i or j0 < ps − j holds.

If i0 < ps − i, then by Lemma 3.1.2, we have

wH((xη − ξ)i0+i) ≥ (τ + 1)pk. (3.38)

Since xη − ξ - g(x), we have g(x)(xη + ξ) j0+ j . 0 (mod (xη − ξ)) and therefore

wH(g(x)(xη + ξ) j+ j0 (
mod (xη − ξ)

)
) > 0. (3.39)

Using (3.38), (3.39) and (3.9), we obtain

wH(c(x)) = wH((xη − ξ)i+i0(xη + ξ) j+ j0g(x))

≥ wH(g(x)(xη + ξ) j+ j0 (mod (xη − ξ)))wH((xη − ξ)i+i0)

≥ (τ + 1)pk.

(3.40)

If i0 ≥ ps − i, then j0 < ps − j. So, by Lemma 3.3.3, we have

wH(c(x)) ≥ 2wH((x2η − ξ2) j0+ j). (3.41)
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For wH((x2η − ξ2) j0+ j), we use Lemma 3.1.2 and get

wH((x2η − ξ2) j0+ j) ≥ (τ
′

+ 1)pk. (3.42)

Combining (3.41) and (3.42), we obtain

wH(c(x)) ≥ 2(τ
′

+ 1)pk. (3.43)

Now, using (3.40) and (3.43), we deduce that wH(c(x)) ≥ min{2(τ
′

+ 1)pk, (τ + 1)pk}. Hence

dH(C) ≥ min{2(τ
′

+ 1)pk, (τ + 1)pk}. �

Corollary 3.3.13 Let j ≤ i, 1 ≤ k ≤ s − 1, 1 ≤ τ
′

≤ τ ≤ p − 1 be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and

ps − ps−k + (τ
′

− 1)ps−k−1 + 1 ≤ j ≤ ps − ps−k + τ
′

ps−k−1.

Let C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) = min{2(τ
′

+ 1)pk, (τ + 1)pk}.

Proof. Since 〈(xη−ξ)ps−ps−k+(τ−1)ps−k−1+1(xη+ξ)ps−ps−k+(τ
′
−1)ps−k−1+1〉 ⊃ C, we have, by Lemma

3.3.12, that dH(C) ≥ min{2(τ
′

+ 1)pk, (τ + 1)pk}. So it suffices to show dH(C) ≤ min{2(τ
′

+

1)pk, (τ + 1)pk}.

First, we consider (xη − ξ)ps
(xη + ξ)ps−ps−k+τ

′
ps−k−1

∈ C. Since

wH((xη + ξ)ps−ps−1+τ
′
ps−k−1

) = (τ
′

+ 1)pk,

we have wH((xη − ξ)ps
(xη + ξ)ps−ps−1+(τ

′
−1)ps−k−1

) = 2(τ
′

+ 1)pk. So

dH(C) ≤ 2(τ
′

+ 1)pk (3.44)

Second, we consider (x2η − ξ2)ps−ps−k+(τ−1)ps−k−1+1 ∈ C. By Lemma 3.4, we get

wH((x2η − ξ2)ps−ps−k+(τ−1)ps−k−1+1) = (τ + 1)pk.

Thus

dH(C) ≤ (τ + 1)pk. (3.45)

Now combining (3.44) and (3.45), we deduce that dH(C) ≤ min{2(τ
′

+1)pk, (τ+1)pk}. Hence

dH(C) = min{2(τ
′

+ 1)pk, (τ + 1)pk}. �
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Lemma 3.3.14 Let 1 ≤ k
′

< k ≤ s − 1, 1 ≤ τ
′

, τ < p − 1,

i = ps − ps−k + (τ − 1)ps−k−1 + 1 and

j = ps − ps−k
′

+ (τ
′

− 1)ps−k
′
−1 + 1

be integers and C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) ≥ 2(τ
′

+ 1)pk
′

.

Proof. Let 0 , c(x) ∈ C. Then there exists 0 , f (x) ∈ Fpm[x] such that c(x) ≡ (xη − ξ)i(xη +

ξ) j f (x)
(
mod (x2ηps

− λ)
)

and deg( f (x)) < 2ηps − iη− jη. Let i0 and j0 be the largest integers

with (xη − ξ)i0 | f (x) and (xη + ξ) j0 | f (x). Then f (x) is of the form f (x) = (xη − ξ)i0(xη + ξ) j0g(x)

for some g(x) ∈ Fpm[x] with xη − ξ - g(x) and xη + ξ - g(x). Clearly i0 + j0 < 2ps − i − j. So

i0 < ps − i or j0 < ps − j holds.

If i0 < ps − i, then, by Lemma 3.1.2, we have

wH((xη − ξ)i+i0) ≥ (τ + 1)pk ≥ 2(τ
′

+ 1)pk
′

. (3.46)

Since xη − ξ - g(x), we have (xη + ξ) j0+ jg(x) (mod (xη − ξ)) , 0 and therefore

wH((xη + ξ) j0+ jg(x)
(
mod (xη − ξ)

)
) > 0. (3.47)

Using (3.46), (3.47) and (3.9), we obtain

wH(c(x)) = wH((xη − ξ)i0+i(xη + ξ) j0+ jg(x))

≥ wH((xη + ξ) j0+ jg(x)
(
mod (xη − ξ)

)
)wH((xη − ξ)i0+i)

≥ 2(τ
′

+ 1)pk
′

.

If i0 ≥ ps − i, then j0 < ps − j. So, by Lemma 3.3.3, we have

wH(c(x)) ≥ 2wH((x2η − ξ2) j0+ j). (3.48)

For wH((x2η − ξ2) j0+ j), we use Lemma 3.1.2 and get

wH((x2η − ξ2) j0+ j) ≥ (τ
′

+ 1)pk
′

. (3.49)

Now combining (3.48) and (3.49), we obtain wH(c(x)) ≥ 2(τ
′

+ 1)pk
′

. Hence dH(C) ≥ 2(τ
′

+

1)pk
′

. �
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Corollary 3.3.15 Let i, j, 1 ≤ k
′

< k ≤ s − 1, 1 ≤ τ
′

, τ ≤ p − 1 be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ i ≤ ps − ps−k + τps−k−1 and

ps − ps−k
′

+ (τ
′

− 1)ps−k
′
−1 + 1 ≤ j ≤ ps − ps−k

′

+ τ
′

ps−k
′
−1.

Let C = 〈(xη − ξ)i(xη + ξ) j〉. Then dH(C) = 2(τ
′

+ 1)pk
′

.

Proof. Since 〈(xη − ξ)ps−ps−k+(τ−1)ps−k−1+1(xη + ξ)ps−ps−k
′

+(τ
′
−1)ps−k

′
−1+1〉 ⊃ C, we know, by

Lemma 3.3.14, that dH(C) ≥ 2(τ
′

+ 1)pk
′

. So it suffices to show dH(C) ≤ 2(τ
′

+ 1)pk
′

. We

consider (xη − ξ)ps
(xη + ξ)ps−ps−k

′

+τ
′
ps−k

′
−1
∈ C. By (3.4), we have

wH((xη + ξ)ps−ps−k
′

+τ
′
ps−k

′
−1

) = (τ
′

+ 1)pk
′

.

Moreover since (xη − ξ)ps
= xηps

− ξps
and ps > ps − ps−k

′

+ τ
′

ps−k
′
−1, we get

wH((xη − ξ)ps
(xη + ξ)ps−ps−k

′

+τ
′
ps−k

′
−1

) = 2(τ
′

+ 1)pk
′

.

So dH(C) ≤ 2(τ
′

+ 1)pk
′

and therefore dH(C) = 2(τ
′

+ 1)pk
′

. �

Finally it remains to consider the cases where i = ps and 0 < j < ps.

Lemma 3.3.16 Let C = 〈(xη − ξ)ps
(xη + ξ)〉. Then dH(C) ≥ 4.

Proof. Pick 0 , c(x) ∈ C. Then there exists 0 , f (x) ∈ Fpm[x] such that c(x) ≡ f (x)(xη −

ξ)ps
(xη + ξ)

(
mod (x2ηps

− λ)
)

and deg( f (x)) < 2ηps − ηps − η = ηps − η. Let i0 and j0 be the

largest nonnegative integers such that (xη−ξ)i0 | f (x) and (xη+ξ) j0 | f (x). Clearly i0 + j0 < ps−1

as deg( f (x)) < ηps − η. So, since i0 ≥ ps − ps = 0 and j0 < ps − 1, by Lemma 3.3.3, we get

wH(c(x)) ≥ 2wH((x2η−ξ2) j0+1). Obviously wH((x2η−ξ2) j0+1) ≥ 2 and therefore wH(c(x)) ≥ 4.

Hence dH(C) ≥ 4. �

Corollary 3.3.17 Let 0 < j ≤ ps−1 be an integer and C = 〈(xη − ξ)ps
(xη + ξ) j〉. Then

dH(C) = 4.

Proof. Since 〈(xη − ξ)ps
(xη + ξ)〉 ⊃ C, we know, by Lemma 3.3.16, that dH(C) ≥ 4. So it

suffices to show dH(C) ≤ 4. We consider (xη−ξ)ps
(xη+ξ)ps−1

∈ C. Clearly wH((xη−ξ)ps
(xη+

ξ)ps−1
) = 4. So dH(C) ≤ 4 and hence dH(C) = 4. �
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For i = ps and ps−1 < j < ps, the Hamming distance of C is computed in the following

lemmas and corollaries. Their proofs are similar to those of Lemma 3.3.16 and Corollary

3.3.16.

Lemma 3.3.18 Let 1 ≤ β ≤ p − 2 be an integer and C = 〈(xη − ξ)ps
(xη + ξ)βps−1+1〉. Then

dH(C) ≥ 2(β + 2).

Corollary 3.3.19 Let 1 ≤ β ≤ p − 2, βps−1 + 1 ≤ j ≤ (β + 1)ps−1 be integers. Let C =

〈(xη − ξ)ps
(xη + ξ) j〉. Then dH(C) = 2(β + 2).

Lemma 3.3.20 Let 1 ≤ τ ≤ p − 1, 1 ≤ k ≤ s − 1, j be integers and C = 〈(xη − ξ)ps
(xη +

ξ)ps−ps−k+(τ−1)ps−k−1+1〉. Then dH(C) ≥ 2(τ + 1)pk.

Corollary 3.3.21 Let 1 ≤ τ ≤ p − 1, 1 ≤ k ≤ s − 1, j be integers such that

ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ j ≤ ps − ps−k + τps−k−1.

Let C = 〈(xη − ξ)ps
(xη + ξ) j〉. Then dH(C) = 2(τ + 1)pk.

We summarize our results in the following theorem.

Theorem 3.3.22 Let p be an odd prime, a, s, n be arbitrary positive integers. Let λ, ξ, ψ ∈

Fpm \ {0} such that λ = ψps
. Suppose that the polynomial x2η − ψ factors into two irreducible

polynomials as x2η − ψ = (xη − ξ)(xη + ξ). Then all λ-cyclic codes, of length 2ηps, over Fpm

are of the form 〈(xη − ξ)i(xη + ξ) j〉 ⊂ Fpm[x]/〈x2ηps
− λ〉, where 0 ≤ i, j ≤ ps are integers.

Let C = 〈(xη − ξ)i(xη + ξ) j〉 ⊂ Fpm[x]/〈x2ηps
− λ〉. If (i, j) = (0, 0), then C is the whole space

F
2ηps

pm , and if (i, j) = (ps, ps), then C is the zero space {0}. For the remaining values of (i, j),

the Hamming distance of C is given in Table 3.1.

Remark 3.3.23 There are some symmetries in most of the cases, so we made the following

simplification in Table 3.1. For the cases with *, i.e., the cases except 2 and 7, we gave the

Hamming distance of C when i ≥ j. The corresponding case with j ≥ i has the same Hamming

distance. For example in 1*, the corresponding case is i = 0 and 0 ≤ j ≤ ps, and the

Hamming distance is 2. Similarly in 6*, the corresponding case is βps−1 + 1 ≤ i ≤ (β+ 1)ps−1

and ps − ps−k + (τ − 1)ps−k−1 + 1 ≤ j ≤ ps − ps−k + τps−k−1, and the Hamming distance is

2(β + 2).
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Table 3.1: The Hamming distance of all non-trivial constacyclic codes, of the form 〈(xη −
ξ)i(xη + ξ) j〉, of length 2ηps over Fpm . The polynomials xη − ξ and xη + ξ are assumed to be
irreducible. The parameters 1 ≤ β

′

≤ β ≤ p−2, 1 ≤ τ(2) < τ(1) ≤ p−1, 1 ≤ τ, τ(3), τ(4) ≤ p−1
, 1 ≤ k ≤ s − 1, 1 ≤ k

′′

< k
′

≤ s − 1 below are integers. For the cases with *, i.e., the cases
except 2 and 7, see Remark 3.3.23

Case i j dH(C)
1* 0 < i ≤ ps j = 0 2
2 0 ≤ i ≤ ps−1 0 ≤ j ≤ ps−1 2
3* ps−1 < i ≤ 2ps−1 0 < j ≤ ps−1 3
4* 2ps−1 < i ≤ ps 0 < j ≤ ps−1 4

5* βps−1 + 1 ≤ i ≤ (β + 1)ps−1 β
′

ps−1 + 1 ≤ j ≤ (β
′

+ 1)ps−1 min{β + 2,
2(β

′

+ 2)}

6*
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k + τps−k−1 βps−1 + 1 ≤ j ≤ (β + 1)ps−1 2(β + 2)

7
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k + τps−k−1
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k + τps−k−1 (τ + 1)pk

8*
ps − ps−k + (τ(1) − 1)ps−k−1

+1 ≤ i ≤ ps − ps−k

+τ(1) ps−k−1

ps − ps−k + (τ(2) − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k

+τ(2) ps−k−1

min{
2(τ(2) + 1)pk,
(τ(1) + 1)pk}

9*
ps − ps−k

′

+ (τ(3) − 1)ps−k
′
−1

+1 ≤ i ≤ ps − ps−k
′

+τ(3) ps−k
′
−1

ps − ps−k
′′

+ (τ(4) − 1)ps−k
′′
−1

+1 ≤ j ≤ ps − ps−k
′′

+τ(4) ps−k
′′
−1

2(τ(4) + 1)pk
′′

10* i = ps βps−1 + 1 ≤ j ≤ (β + 1)ps−1 2(β + 2)

11* i = ps
ps − ps−k + (τ − 1)ps−k−1

+1 ≤ j ≤ ps − ps−k

+τps−k−1
2(τ + 1)pk
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The results in Table 3.1 still hold when the polynomials xη + ξ and xη − ξ are reducible except

the fact that the cases in Table 3.1 do not cover all the λ-cyclic codes of length 2ηps over Fpm .

Remark 3.3.24 Note that 〈(xη − ξ)i(xη + ξ) j〉, 0 ≤ i, j ≤ ps are ideals of R independent of the

fact that xη− ξ and xη− ξ are irreducible over Fpm . So the above results from Lemma 3.3.4 till

Corollary 3.3.21 hold even when the polynomials xη − ξ and xη + ξ are reducible. But in this

case, there are more λ-cyclic codes than the ones of the form 〈(xη − ξ)i(xη + ξ) j〉, 0 ≤ i, j ≤ ps

and their Hamming distance is not given in this paper.

In the last part of this section, we determine the Hamming distance of some polycyclic codes

of length 2ηps over GR(pa,m) whose canonical images are as above. In particular, this gives

us the Hamming distance of certain constacyclic codes of length 2ηps over GR(pa,m). Let

λ0, ξ0 ∈ GR(pa,m) be units and λ0 = λ, ξ0 = ξ. So ξ2ps

0 = λ0 and, xη − ξ0 and xη + ξ0 are

irreducible. The polynomial x2ηps
− λ0 factors into two coprime polynomials as

x2ηps
− λ0 = x2ηps

− ξ
2ps

0 = (xηps
− ξ

ps

0 )(xηps
+ ξ

ps

0 ).

Let f1(x) = (xη − ξ0)ps
+ pβ1(x) and f2(x) = (xη − ξ0)ps

+ pβ2(x) with deg(β1(x)), deg(β2(x)) <

ηps. Let f (x) = f1(x) f2(x) and R0 =
GR(pa,m)[x]
〈 f (x)〉 . Note that f1(x) and f2(x) are primary regular

polynomials and therefore we can use the arguments of Section 2.2.

By Proposition 2.2.1, we get R0 = 〈 f1(x)〉 ⊕ 〈 f2(x)〉. Additionally, by Proposition 2.2.1, we

know that 〈 f1(x)〉 � GR(pa,m)[x]
〈 f2(x)〉 and 〈 f2(x)〉 � GR(pa,m)[x]

〈 f1(x)〉 are local rings and the maximal ideals

of R0 are 〈p, xη + ξ0〉 and 〈p, xη − ξ0〉.

Now given g(x) ∈ R0, we will see how to determine 〈g(x)〉 ⊂ R. Since

〈g(x)〉 = 〈(xη − ξ) j0(xη + ξ) j1〉,

we have ḡ(x) = (xη − ξ̄) j0(xη + ξ̄) j1u(x) where u(x) is a unit in R. In order to determine j0, we

consider the substitution xi = (xη − ξ0 + ξ0)di x`i for every i ≥ η, we get

g(x) = aLxL + · · · + aηxη + aη−1xη−1 + · · · + a0

= (xη − ξ0)dLhdL(x) + (xη − ξ0)dL−1hdL−1(x) + · · · + h0(x)

where hi(x) are polynomials such that deg(hi(x)) < η for dL ≥ i ≥ 0. Then j0 is the least

integer with the property p - h j0(x). Similarly, via the substitution xi = (xη + ξ0 − ξ0)di x`i for

every i ≥ η, the integer j1 can be determined.
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Let C = 〈g1(x), . . . , gr(x)〉 C R0 be a polycyclic code, where the generators are as in Theorem

2.2.5. By Theorem 2.2.6, we have dH(C) = dH(〈gr(x)〉). The canonical image 〈gr(x)〉 of

〈gr(x)〉 can be determined as described above. Say 〈gr(x)〉 = 〈(xη − ξ)î(xη + ξ) ĵ〉 for some

0 ≤ î, ĵ ≤ ps. Then dH(〈(xη − ξ)î(xη + ξ) ĵ〉) can be determined using Theorem 3.3.22.

Remark 3.3.25 Note that xηps
−ξ

ps

0 = (xη−ξ0)ps
+ pβ̂1(x) and xηps

+ξ
ps

0 = (xη+ξ0)ps
+ pβ̂2(x)

for some β̂1(x), β̂2(x) ∈ R0. In the above setup, if we take f1(x) = (xη − ξ0)ps
+ pβ̂1(x) and

f2(x) = (xη + ξ0)ps
+ pβ̂2(x), then we obtain the Hamming distance of λ-cyclic codes of length

2ηps over GR(pa,m).
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CHAPTER 4

Matrix Product Codes

Constructing linear codes having the best possible parameters is one of the most important

areas in coding theory. In this chapter, we study a method that has been proven to be effective

in finding codes over finite fields with best known parameters.

In [27], Hernando and Ruano introduced a new method, which is called matrix product codes

with polynomial units, to construct linear codes over finite fields having best known parame-

ters. We show that using nested constituent codes and a non-constant matrix in their construc-

tion is crucial. We prove a lower bound on the Hamming distance of matrix product codes

with polynomial units when the constituent codes are nested. This generalizes the technique

used to construct the record-breaking examples of [27]. Contrary to a similar construction

previously introduced, this bound is not sharp and need not hold when the constituent codes

are not nested. We give a comparison of this construction with a similar method introduced

in [50]. We also construct new binary codes having the same parameters, as the examples of

[27], but non-equivalent to them.

4.1 Motivation: The Main Problem of Coding Theory

Recall that, a linear code C of length n, dimension k and Hamming distance d is called an

(n, k, d) code. The integers n, k, d are called the parameters of the linear code.

One of the most common applications of Coding Theory is channel coding for reliable com-

munication. This makes it possible for two parties to communicate over a noisy channel. Here

we describe the model very briefly. Textbooks in coding theory such as [3, 28, 38] provide

more detailed information.
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An (n, k, d) linear code C over Fq, with a generator matrix G, can be used to achieve reliable

communication over a noisy channel as follows. A message m is represented by a vector of

length k. Then m is encoded into a codeword c ∈ C by c = mG. The codeword c is sent over

the channel and it can be decoded back to m on the receiver’s side. This system can correct

errors as many as bd−1
2 c in each message. Obviously, this adds a redundancy of n − k letters

to the message m. However it is this redundancy that makes the message immune up to bd−1
2 c

errors. The more Hamming distance C has, the more errors it can correct. But, for a fixed n,

increasing d forces k to decrease. Less k means more redundancy which means less efficient

use of the communication channel. So there is a trade-off between k and d. Thus, there is the

problem of finding the best possible values of the parameters for a linear linear code over a

fixed alphabet. This problem is called the main problem of Coding Theory. More explicitly,

the problem is, given Fq, n, k, finding the largest possible value of d such that there is an

(n, k, d) linear code over Fq. The current state-of-the-art can be found at [24].

In the above sense, linear codes having the best possible parameters are called optimal codes.

As can be seen in [24], there are still cases where construction of an optimal code is unknown.

The obvious approach to cover these gaps is exhaustive search. However, for large values of n,

there are too many cases which makes it infeasible to search the whole space. So, various code

construction methods have been introduced to tackle this problem. Some of these methods

guarantee a lower bound for the Hamming distance of the resulting code. Consequently,

beginning the search with a large lower bound narrows down the search space and sometimes

gives linear codes that have best parameters than the previously known ones. In the following

two sections, we study two such code construction methods.

4.2 Matrix Product Codes

Matrix Product Codes have been introduced by Özbudak and Stichtenoth in [50]. They

showed that many optimal codes can be found with their method. Via method, short linear

codes are combined to produce longer linear codes. Below, we explain their construction.

Let C be a linear code of length m and dimension k over Fq. Let W1,W2, . . . ,Wk be linear

codes over Fq with the same length n. Suppose that each Wi has dimension ei. The codes

W1,W2, . . . ,Wk are called the constituent codes. Fix a basis c(1), c(2), . . . , c(k) for C. Let
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G ∈ Fk×n
q be the matrix whose ith row is the codeword c(i) for all 1 ≤ i ≤ k. So, clearly, G is a

generator matrix of C. Let

C j = span{c(1), c(2), . . . , c(k)} ⊂ Fm
q .

Clearly, C j is a linear code of length m and has dimension k. Now, we define M to be the set

of all n × k matrices over Fq whose jth column is a codeword of W j for all 1 le j ≤ k. Then M

is a linear subspace of dimension e1 + e2 + · · · + ek.

Let W be the linear code of length mn and dimension e1 + e2 + · · · + ek over Fq defined as

W = {A ·G : A ∈ M}.

It has been shown in [50] that

dH(W) ≥ min{dH(Wi)d(Ci) : 1 ≤ i ≤ k}.

4.3 Matrix Product Codes with Polynomial Units

In [27], Hernando and Ruano introduced a method to construct longer linear codes using

shorter ones. This method is similar to matrix product codes. Using their method, they found

several linear codes having best known parameters hence improving the entries of code tables

at [24]. In this section we explain their construction.

Let C1, . . . ,Cs ⊂ R be cyclic codes of length m over Fq. Let s and ` be positive integers such

that s ≤ ` and let A = (ai j) ∈ Rs×` be an s × ` matrix having full rank. Then

C = [C1 · · ·Cs]A = {[c1, . . . , cs]A : ci ∈ Ci}

is called a matrix product code with polynomial units. Let 1 ≤ i ≤ s and let Ci be an [m, ki, di]

cyclic code with the generator polynomial fi(x). Then C is a linear code of length `m over Fq

and the dimension of C is k1 + · · · + ks (cf. [27, Proposition 1]).

Let R be a commutative ring with 1 and let W ⊂ Rn be an R-module, i.e., W is a linear code

of length n over R. The Hamming weight of w = (w1, · · · ,wn) ∈ W is defined as

WH(w) = |{i : wi , 0}|. (4.1)

The Hamming distance of W is defined as

DH(W) = min{WH(w) : w ∈ W \ {0}}. (4.2)
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Throughout the paper when V is a linear code over Fq, its Hamming distance, denoted by

dH(V), and the Hamming weight of the codeword v ∈ V , denoted by wH(v), are used in the

usual sense (see [38, Chapter 1]). In particular, if W is a module over R and w ∈ W, then W is

also a linear code over Fq and, WH(w) in (4.1) and DH(W) in (4.2) are different from wH(w)

and dH(W), respectively.

The matrices used in the above construction can be grouped into two classes. This plays an

important role on the Hamming distance of the resulting codes.

Definition 4.3.1 Let A = (ai j) ∈ Rs×`. It is clear that there exist uniquely determined

a(0)
i j , a

(1)
i j , . . . , a

(m−1)
i j ∈ Fq such that

ai j = a(0)
i j + a(1)

i j x + · · · + a(m−1)
i j xm−1.

Throughout the paper we say that A is constant if a(1)
i j = a(2)

i j = · · · = a(m−1)
i j = 0 for all entries

ai j ∈ R of A. Similarly, A is non-constant if there exists at least one entry ai j ∈ R such that

ai j , a(0)
i j .

4.4 Construction of Good Codes via Nested Codes

In [27], using the above construction, some linear codes whose parameters are better than the

previously known ones were constructed (see the examples in Section 4.5 for details). This

construction is based on choosing nested codes C1 and C2 as the constituent codes and using

an appropriate 2 × 2 matrix. We consider a generalization of this construction in Theorem

4.4.3 to the case of s×` matrices and we show that the resulting codes satisfy the bound given

in [27, Proposition 2]. In Remark 4.4.4, we observe that this bound is not sharp. Moreover

we notice, in Remark 4.4.5, that when the constituent codes are not nested, this bound does

not hold in general.

The main result of this section is Theorem 4.4.3 and, for its proof, we need the following

preliminaries.

The following fact is well-known when R is a field. However when R is a commutative ring

with 1, we could not find a direct reference for its proof in algebra textbooks. Therefore we

provide a short proof using some results from [35]. This fact is fundamentally used in the

proof of Lemma 4.4.2.
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Proposition 4.4.1 Let R be a commutative ring with 1. Let M be a square matrix over R.

Then M is invertible if and only if M has full rank.

Proof. Say M is an n × n matrix. Note that we can view M as a linear map from Rn to Rn,

say with respect to the standard basis. M has full rank if and only if M is an isomorphism. By

[35, Proposition 4.18], M is an isomorphism if and only if the determinant of M is a unit in R.

By [35, Proposition 4.16], the determinant of M is a unit in R if and only if M is invertible.

Hence M has full rank if and only if M is invertible. �

Lemma 4.4.2 Let A = (ai j) ∈ Rs×` be a matrix of full rank. Let CRi be the R-module spanned

by the first i rows of A. We denote the Hamming distance of CRi by Di, whose definition is

given in (4.2). Suppose that Di = ` − i + 1. Let Ci ⊂ R be cyclic codes of length m with

C1 ⊃ C2 ⊃ · · · ⊃ Cs and consider codewords ci ∈ Ci for 1 ≤ i ≤ s. Let w = (w1,w2, . . . ,w`) =

(c1, c2, . . . , cs)A. If w has r entries, which are 0, i.e., w j1 = w j2 = · · · = w jr = 0 for some

integers j1, . . . , jr, then ci ∈ Cr+1 for every i ∈ {1, . . . , s}.

Proof. It suffices to show that ci ∈ Cr+1 for all i ∈ {1, 2, . . . , r} as ci ∈ Cr+1 for all i > r.

Assume that w j1 = w j2 = · · · = w jr = 0. Writing this as a system of linear equations, we get

c1a1 j1 + c2a2 j1 + · · · + csas j1 = 0

c1a1 j2 + c2a2 j2 + · · · + csas j2 = 0
...

...
...

c1a1 jr + c2a2 jr + · · · + csas jr = 0.

(4.3)

Let i, e ∈ {1, . . . , r} and let G = (ai je) ∈ R
r×r. Keeping ciai je’s, for i ≤ r, on the left hand side

of (4.3) and putting the rest at the right hand side, we write these equalities in matrix form as

(c1, c2, . . . , cr)G = (κ1, κ2, . . . , κr), (4.4)

where κe = −(cr+1ar+1 je + cr+2ar+2 je + · · · + csas je) ∈ Cr+1 for all r + 1 ≤ e ≤ s.

Now we show that G has maximum row rank. If that was not the case, i.e., if its rows were

linearly dependent, there would be α = (α1, α2, . . . , αr) ∈ Rr \ {(0, 0, . . . , 0)} such that αG =

(0, 0, . . . , 0). Then β = (α1, . . . , αr, 0 . . . , 0)A ∈ CRr would have at least r zeros contradicting

the assumption that Dr = ` − r + 1.
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By Proposition 4.4.1, G is invertible since G has full rank. Therefore, using (4.4), we get

(c1, c2, . . . , cr) = (κ1, κ2, . . . , κr)G−1 ∈ Cr+1 × . . . ×Cr+1

and the claim follows. �

Recall that the constituent codes C1, . . . ,Cs are [n, ki, di] cyclic codes. Now we show that

when the constituent codes C1, . . . ,Cs are nested then the Hamming distance of the resulting

matrix product code can always be bounded from below by some number depending on Ci

and the matrix A. This also justifies and generalizes the construction method of the examples

of [27] in which record-breaking binary codes are given.

Theorem 4.4.3 Let A,Ci,Di be as in Lemma 4.4.2 and let di = dH(Ci). Let C = [C1 · · ·Cs]A.

Then we have

dH(C) ≥ min{d1D1, . . . , dsDs}. (4.5)

Proof. Let w = (w1, . . . ,w`) = (c1, . . . , cs)A ∈ C \ {0}. Suppose that wi , 0 for all i. Then,

since wi ∈ C1 for all i, we have wH(w) ≥ d1D1. If some of the wi’s are 0, say r of them, then by

Lemma 4.4.2, we get ci ∈ Cr+1 for all 1 ≤ i ≤ s. This implies that wi ∈ Cr+1 for all 1 ≤ i ≤ s.

Therefore, for each of the s − r entries wi, which are nonzero, we have wH(wi) ≥ dr+1. Thus

wH(w) ≥ (s − r)dr+1 ≥ min{sd1, (s − 1)d2, . . . , (s − i + 1)di, . . . , ds}. �

Remark 4.4.4 Suppose that the constituent codes are nested. The bound (4.5) is shown to

be sharp, in [26, Theorem 1], for matrix product codes introduced in [50]. However it is not

sharp when A is non-constant. To see this, let A, C1, C2 be as in Example 1 of Section 4.5.

The Hamming distance of C1 is d1 = 11 and the Hamming distance of C2 is d2 = 47. Clearly,

D1 = 2 and D2 = 1 (see the statement of Lemma 4.4.2 for the definition of D1 and D2). The

Hamming distance of C = [C1 C2]A is 27. Note that 27 > min{D1d1,D2d2} = 22.

Remark 4.4.5 The bound (4.5) need not hold true when the constituent codes C1, . . . ,Cs

are not nested. As a demonstration, we consider the following example. Let C1 = 〈x +

1〉 ⊂ GR(pa,m)[x] and C2 = 〈x6 + x5 + x4 + x3 + x2 + x + 1〉 ⊂ GR(pa,m)[x]. Obviously

d1 = dH(C1) = 2 and C2 = {0, x6 + x5 + x4 + x3 + x2 + x + 1}. So d2 = dH(C2) = 7. Let

A =

 1 1 + x2 + x4

0 1

 ∈ (GR(pa,m)[x])2×2. Clearly A has full rank over GR(pa,m)[x]. Let
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R1 and R2 be the first and the second rows of A, respectively. Let CR1 = span{R1} and CR2 =

span{R1,R2}. Note that CR1 and CR2 are regarded as linear codes over the ring GR(pa,m)[x].

Clearly D1 = DH(CR1) = 2 and D2 = DH(CR2) = 1. Let C = [C1 C2] · A. Now we consider

x + 1 ∈ C1 and x6 + x5 + x4 + x3 + x2 + x + 1 ∈ C2. Then

c = [x + 1, x6 + x5 + x4 + x3 + x2 + x + 1] · A = [x + 1, x6] ∈ C.

So dH(C) ≤ wH(c) = 3. On the other hand, we have min{D1 · d1,D2 · d2} = 4.

4.5 Three Examples and Construction of Non-Equivalent Good Codes

In this section, we show that the matrix product codes with polynomial units construction

allows us to construct non-equivalent good codes. For this, we examine the three examples

of [27] in detail. There are essentially three different constructions given in [27] and the rest

of the codes are derived from the third code by puncturing, shortening or extending it. For

each of these three constructions, we observe that, by changing one entry in the matrix A, we

can obtain codes with the same Hamming distance but having a different weight distribution.

In particular, for each example of [27], we present another example with weight distribution

having less number of codewords of minimum weight than the ones in [27]. Next, we deduce

that using non-constant matrices is a very important part of the construction of [27].

Below, we consider the three examples given in [27, page 366] where

A =

 1 g

0 1

 and Â =

 1 ĝ

0 1

 , (4.6)

C1 = 〈 f1(x)〉 and C2 = 〈 f2(x)〉,

C = [C1 C2]A and Ĉ = [C1 C2]Â

and g, ĝ ∈ R are units. In the examples, C denotes the linear code given in the examples of

[27] and Ĉ denotes the new linear code that we found by changing g(x) to ĝ(x). The weight

distributions of C and Ĉ are given in the Appendix.

Example 1:

• C1,C2 ⊂
F2[x]
〈x47+1〉

• f1(x) = x23 + x22 + x21 + x20 + x18 + x17 + x16 + x14 + x13 + x11 + x10 + x9 + x5 + x4 + 1
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• f2(x) = (x47 + 1)/(x + 1)

• g(x) = x20 + x19 + x13 + x12 + x11 + x9 + x7 + x4 + x3 + x2 + 1

• ĝ(x) = x45 + x42 + x41 + x37 + x35 + x31 + x29 + x27 + x25 + x20 + x19 + x14 + x11 + x9 +

x7 + x4 + x3 + x2 + x

C and Ĉ are [94, 25, 27] codes. C has 1222 codewords of Hamming weight 27 and Ĉ has only

611 codewords of Hamming weight 27.

Example 2:

• f1(x) = x25 + x23 + x22 + x21 + x20 + x18 + x16 + x11 + x10 + x8 + x7 + x6 + x5 + x4 + x + 1

• f2(x) = (x51 + 1)/(x2 + x + 1)

• g(x) = x20 + x15 + x14 + x10 + x9 + x7 + 1

• ĝ = x47 + x45 + x44 + x40 + x38 + x36 + x35 + x34 + x31 + x29 + x22 + x21 + x17 + x16 +

x15 + x10 + x7 + x6 + x5 + x4 + x3 + x2 + x

C and Ĉ are [102, 28, 28] codes. C has 1173 codewords of Hamming weight 28 and Ĉ has

only 663 codewords of Hamming weight 28.

Example 3:

• f1(x) = x24 + x23 + x21 + x19 + x18 + x15 + x14 + x13 + x12 + x11 + x9 + x8 + x6 + x4 + 1

• f2(x) = (x51 + 1)/(x2 + x + 1)

• g(x) = x50 + x49 + x48 + x46 + x44 + x43 + x42 + x41 + x38 + x37 + x36 + x34 +

x32 + x29 + x27 + x25 + x24 + x19 + x17 + x15 + x13 + x12 + x10 + x8 + x5 + x + 1

• ĝ = x48 +x39 +x35 +x30 +x28 +x25 +x23 +x22 +x21 +x17 +x14 +x13 +x12 +x8 +x6 +x3 +x2
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C and Ĉ are [102, 29, 28] codes. C has 2142 codewords of Hamming weight 28 and Ĉ has

only 1836 codewords of Hamming weight 28.

Now considering the above examples, we show that using constant matrices is crucial. We

take the same constituent codes and instead of the matrix A, as defined in (4.6), which is non-

constant, we consider all constant invertible 2 × 2 matrices (i.e., matrices having full rank)

over F2, which are

A1 =

 0 1

1 0

 , A2 =

 0 1

1 1

 , A3 =

 1 0

0 1

 ,

A4 =

 1 0

1 1

 , A5 =

 1 1

1 0

 , A6 =

 1 1

0 1

 .
Using MAGMA, we found that the Hamming distances of the resulting product codes are

much less than the Hamming distances of the original codes given in the examples. We

present our results in Table 4.1. The actual examples of [27] are given in the first row.

Table 4.1: Examples of codes with constant matrices and the actual examples of [27]. C1 and
C2 are as in the examples of [27] and the matrices Ai are as above. A stands for the matrix
used in the examples of [27].

Example 1
Matrix dH(C)

A 27
A1 11
A2 11
A3 11
A4 11
A5 22
A6 22

Example 2
Matrix dH(C)

A 28
A1 10
A2 10
A3 10
A4 10
A5 20
A6 20

Example 3
Matrix dH(C)

A 28
A1 9
A2 9
A3 9
A4 9
A5 18
A6 18

4.6 Comparison with Other Methods

We compare the constructions of [27] and [50] in the following remarks.

Remark 4.6.1 The construction introduced in [27] is essentially different from the construc-

tion in [50] in the sense that given the same constituent codes, we can not obtain the code
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produced by the method of [27] via the construction given in [50] in general. To see this,

let C,C1,C2, A be as in Example 1 in Section 4.5. In what follows, we will show that it is

impossible to obtain a linear code equivalent to C using the construction of [50]. Namely, we

claim that there is no matrix M, over F2, such that

D =




c1

0 c2
0

...
...

c1
m−1 c2

m−1

 M : ci = (ci
0, . . . , c

i
m−1) ∈ Ci


and C are equivalent linear codes. If such a matrix exists, then M must be a 2 × 2 matrix as

the codeword length of D must be 94. Let M1 be the linear code generated by the first row of

M1 and let M2 be the linear code generated by the two rows of M. We have dH(M2) = 1, since

M has full rank, and dH(M1) = 1 or dH(M1) = 2. Since the constituent codes are nested, i.e.,

C1 ⊃ C2, using [26, Theorem 1], we get dH(D) = 11, if dH(M1) = 1, and dH(D) = 22, if

dH(M1) = 2. This implies that C and D can not be equivalent because dH(C) = 27.

Remark 4.6.2 When the matrix A = (ai j) ∈ Rs×`, used in the construction of matrix product

codes with polynomial units, is a constant matrix, the constructions introduced in [50] and

[27] are essentially the same. More precisely, with the conventions of Section 4.3, consider

C = [C1 · · ·Cs]A where A is constant. Now, using the method of [50], we will construct

another code C
′

and we will show that C and C
′

are equivalent. Let

C
′

=




v1

0 v2
0 . . . vs

0
...

...
...

v1
m−1 v2

m−1 . . . vs
m−1

 A : (vi
0, . . . , v

i
m−1) ∈ Ci


.

Let ci = ci
0 + ci

1x + · · · + ci
m−1xm−1 ∈ Ci and let

w = [c1, . . . , cs]



a11 a12 . . . a1`

a21 a22 . . . a2`
...

...
...

as1 as2 . . . as`


= [(c1

0a11 + c2
0a21 + · · · + cs

0as1) + · · · + (c1
m−1a11 + c2

m−1a21 + · · · + cs
m−1as1)xm−1,

. . . , (c1
0a1` + c2

0a2` + · · · + cs
0as`) + · · · + (c1

m−1a1` + c2
m−1a2` + · · · + cs

m−1as`)xm−1] ∈ C.
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Let

w
′

=



c1
0 c2

0 . . . cs
0

c1
1 c2

1 . . . cs
1

...
...

...

c1
m−1 c2

m−1 . . . cs
m−1





a11 a12 . . . a1`

a21 a22 . . . a2`
...

...
...

as1 as2 . . . as`


∈ C

′

.

It is not hard to see that w and w
′

correspond to the same codeword under an appropriate

permutation. Via this permutation, we deduce that C contains a linear code equivalent to

C
′

. Since the lengths and dimensions of C and C
′

are equal, it follows that C and C
′

are

equivalent codes.

As a demonstration of Remark 4.6.2 we refer the reader to Table 4.1. The codes in Table 4.1

constructed via the matrices Ai’s are essentially the same as the ones in [7, 50] and therefore

the distance bound (4.5) is sharp for them. Consequently, their Hamming distances are not as

good as the ones constructed by A

The construction introduced in [27], in certain cases, not only yields a linear code with better

parameters but also allows us to get other linear codes having different weight distributions.

We have also seen that choosing non-constant matrices is a very important part of the con-

struction, which distinguishes it from existing methods. This construction turns out to be a

very interesting and promising way of combining cyclic codes to produce longer linear codes.
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Solé. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans.
Inform. Theory, 40(2):301–319, 1994.

[26] Fernando Hernando, Kristine Lally, and Diego Ruano. Construction and decoding of
matrix-product codes from nested codes. Appl. Algebra Engrg. Comm. Comput., 20(5-
6):497–507, 2009.

[27] Fernando Hernando and Diego Ruano. New linear codes from matrix-product codes
with polynomial units. Advances in mathematics of communications, 4(3):363–367,
August 2010.

[28] W. Cary Huffman and Vera Pless. Fundamentals of error-correcting codes. Cambridge
University Press, 2003.

[29] Claude Shannon. A mathematical theory of communication. Bell System Tech.. J. 27,
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APPENDIX A

APPENDIX

A.1 Weight Distribution of the Examples in Section 4.5

The weight distribution of a linear code D consists of pairs of non-negative integers of the

form (δ, γ) which means that D has exactly γ codewords of Hamming weight δ.

Example 1: The weight distribution of C is

[ (0, 1), (27, 1222), (28, 940), (30, 6251), (31, 21244), (32, 22372), (34, 73696), (35, 259534), (36,

212252), (38, 497260), (39, 1422032), (40, 975156), (42, 1621876), (43, 3926380), (44, 2278372),

(46, 2700432), (47, 5516392), (48, 2700432), (50, 2278372), (51, 3926380), (52, 1621876), (54,

975156), (55, 1422032), (56, 497260), (58, 212252), (59, 259534), (60, 73696), (62, 22372), (63,

21244), (64, 6251), (66, 940), (67, 1222), (94, 1) ].

The weight distribution of Ĉ is

[ (0, 1), (27, 611), (28, 1316), (30, 5499), (31, 23406), (32, 23876), (34, 74824), (35, 257607), (36,

203980), (38, 498012), (39, 1420904), (40, 983428), (42, 1624132), (43, 3928918), (44, 2282884),

(46, 2690656), (47, 5514324), (48, 2690656), (50, 2282884), (51, 3928918), (52, 1624132), (54,

983428), (55, 1420904), (56, 498012), (58, 203980), (59, 257607), (60, 74824), (62, 23876), (63,

23406), (64, 5499), (66, 1316), (67, 611), (94, 1) ].

Example 2:

The weight distribution of C is
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[ (0, 1), (28, 1173), (30, 6477), (32, 34221), (34, 140358), (36, 496859), (38, 1552083), (40, 3892626),

(42, 8812069), (44, 16080351), (46, 26517807), (48, 34884646), (50, 42113556), (52, 40867014),

(54, 36031670), (56, 25656876), (58, 16567962), (60, 8568731), (62, 4026195), (64, 1493892), (66,

510238), (68, 138423), (70, 35343), (72, 5610), (74, 969), (76, 153), (78, 153) ]

The weight distribution of Ĉ is

[ (0, 1), (28, 663), (30, 7497), (32, 31365), (34, 142857), (36, 489872), (38, 1564017), (40, 3890127),

(42, 8851424), (44, 16068162), (46, 26380566), (48, 34975154), (50, 42145890), (52, 40848552),

(54, 36118574), (56, 25570890), (58, 16541952), (60, 8588995), (62, 4021809), (64, 1510008), (66,

507501), (68, 141024), (70, 31569), (72, 5559), (74, 1224), (76, 204) ]

Example 3:

The weight distribution of C is

[ (0, 1), (28, 2142), (30, 12342), (32, 67167), (34, 273171), (36, 1012707), (38, 3061122), (40,

7939578), (42, 17388858), (44, 32577984), (46, 52116696), (48, 70966806), (50, 83016882), (52,

83016882), (54, 70966806), (56, 52116696), (58, 32577984), (60, 17388858), (62, 7939578), (64,

3061122), (66, 1012707), (68, 273171), (70, 67167), (72, 12342), (74, 2142), (102, 1) ]

The weight distribution of Ĉ is

[ (0, 1), (28, 1836), (30, 13668), (32, 64107), (34, 284493), (36, 990437), (38, 3071526), (40,

7927848), (42, 17439552), (44, 32594508), (46, 51956556), (48, 71099542), (50, 82991382), (52,

82991382), (54, 71099542), (56, 51956556), (58, 32594508), (60, 17439552), (62, 7927848), (64,

3071526), (66, 990437), (68, 284493), (70, 64107), (72, 13668), (74, 1836), (102, 1) ]
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