
DECENTRALIZED COORDINATION AND CONTROL IN ROBOTIC SWARMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANDAÇ TÖRE ŞAMİLOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MECHANICAL ENGINEERING

SEPTEMBER 2012

Approval of the thesis:

DECENTRALIZED COORDINATION AND CONTROL IN ROBOTIC SWARMS

submitted by ANDAÇ TÖRE ŞAMİLOĞLU in partial fulfillment of the requirements for the
degree of
Doctor of Philosophy in Mechanical Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan ÖZGEN
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Süha ORAL
Head of Department, Mechanical Engineering

Assist. Prof. Dr. A. Buğra KOKU
Supervisor, Mechanical Engineering Department, METU

Examining Committee Members:

Prof. Dr. Y. Samim ÜNLÜSOY
Mechanical Engineering, METU

Asst. Prof. Dr. A. Buğra KOKU
Mechanical Engineering, METU

Prof. Dr. Veysel GAZİ
Electrical and Electronics Engineering, İstanbul Kemerburgaz Univ.

Prof.Dr. Reşit SOYLU
Mechanical Engineering, METU

Prof. Dr. Osman PARLAKTUNA
Electrical and Electronics Engineering, Osman Gazi Univ.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ANDAÇ TÖRE ŞAMİLOĞLU

Signature :

iii

ABSTRACT

DECENTRALIZED COORDINATION AND CONTROL IN ROBOTIC SWARMS

ŞAMİLOĞLU, ANDAÇ TÖRE

Ph.D., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. A. Buğra KOKU

September 2012, 273 pages

In this thesis study the coordination and control strategies for leaderless, decentralized robotic

swarms are developed. The mathematical models of the collective motion of agents are de-

rived by mimicry of swarm of organisms like schools of fish, herds of quadrupeds, flocks of

flying birds. There are three main parts of this study (i) mathematical modelling, (ii) analyt-

ical analysis (iii) experimental and simulation based validations of the results. These works

are performed on the (i) Fundamental agreement behaviors of swarms, (ii) The flocking and

distribution behaviors of swarms, (iii) The orientation agreements of swarms, (iv) Circling

behaviour, (v) Line formation, (vi) The control strategies and stabilization of formations, (vii)

Switching between the formations of swarm of robots. The development of suitable control

strategies and stability analysis are performed by the utilization of non-linear and discrete time

control theories. The developed strategies can be applied on swarm of robots in the applica-

tions of terrestrial, space and oceanic exploration, military surveillance and rescue missions,

and other automated collaborative operations.

Keywords: Robotic Swarms, Decentralized Control, Autonomous robots, Circling Behavior,

Line Formation

iv

ÖZ

ROBOT SÜRÜLERİNDE MERKEZDEN BAĞIMSIZ KOORDİNASYON VE KONTROL

ŞAMİLOĞLU, ANDAÇ TÖRE

Doktora, Makine Mühendisliğ Bölümü

Tez Yöneticisi : Y. Doç Dr. A. Buğra KOKU

Eylül 2012, 273 sayfa

Bu tez çalışmasında merkezden bağımsız robot sürülerinde koordinasyon ve kontrolcü strate-

jileri geliştirilmiştir. Robot sürülerinin kollektif davranış dinamiklerinin matemetiksel mod-

elleri doğada karşılaşılan robot sürülerindeki (kuş, balık, bizon sürüleri gibi) davranışların

taklidiyle oluşturulmuştur. Bu çalışmanın 3 ana evresi vardır. Bunlar, (i) matematiksel mod-

elleme ve analitik analiz, (ii) benzetim tabanlı doğrulamalar ve (iii) deneysel doğrulamalardır.

Bu evreler robot sürülerinde (i) temel uzlaşma problemleri, (ii) toplanma ve dağılma di-

namikleri (iii) ortak yön belirleme stratejileri, (iv) dairesel hareket davranışları, (v) doğrusal

geometri oluşturma, (vi) geometrik oluşımların doğrusal olmayan konrolcüleri ve kararlılık

analizi, (vii) bu stratejiler arasındaki geçişler üzerine uygulanmıştır. Bu davranışların kararlılık

analizi ve uygun kontrolcülerin tasarımı doğrusal olmayan kontrol, ayrık kontrol vb. teori-

leri kullanarak yapılmıştır. Geliştirilen tüm kontrol stratejileri alan tarama, askeri gözetleme,

arama-kurtarma uygulamaları gibi koordinasyon gerektiren robot uygulamalarına uyarlan-

abilirdir.

Anahtar Kelimeler: Robot Sürüleri, Merkezden Bağımsız kontrol, Otonom Robotlar, Dairesel

Hareket, Doğrusal Geometri Oluşumu

v

To My Love Fulya, and My Family

vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Asst. Prof. Dr. A. Buğra Koku and Prof.

Dr. Veysel Gazi for their instructive guidance, advice, criticism, encouragements and insight

throughout the research. I would also like to thank them for their model academic and ethical

attitude, which will guide me through the rest of my carrier and my life.

I am deeply grateful also to my family who supported and encouraged me through all my life.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation of the Thesis Study . 3

1.2 Literature Survey . 4

1.2.1 Mathematical Models . 5

1.2.2 Swarm Coordination and Control Problems 10

1.2.3 Modeling, Coordination, and Control Approaches 13

1.3 Scope of the Thesis Study . 17

2 Asynchronous Cyclic Pursuit . 19

2.1 Asynchronous High-Level Model 20

2.2 Convergence Under Total Synchronism 23

2.3 Convergence Analysis of the Asynchronous Model 26

2.4 Simulation Examples . 28

2.5 Experimental Examples . 30

2.6 Conclusions . 31

3 Orientation Agreement Problem . 33

3.1 Introduction . 33

3.2 High Level Dynamics . 35

viii

3.3 Strategies for Orientation Agreement. 39

3.3.1 Strategy 1 (Averaging) 39

3.3.2 Strategy 2 (Relative Angles) 40

3.3.3 Strategy 3 (Vector Sum) 41

3.4 Turn Angle Restrictions . 42

3.5 Simulation Results . 43

3.5.1 Effect of α for Unbounded Region 46

3.5.1.1 Effect of α for Unbounded Region in Syn-
chronous model 46

3.5.1.2 Effect of α for Unbounded Region in Asyn-
chronous model 47

3.5.2 Effect of α for Bounded Region 50

3.5.2.1 Effect of α for Bounded Region in Synchronous
model . 50

3.5.2.2 Effect of α for Bounded Region in Asynchronous
model . 52

3.6 Discussions . 54

3.7 Conclusions . 66

4 Controllers for Tracking, Circling, and Line Following 71

4.1 Introduction . 71

4.2 Mathematical Model . 71

4.3 Targeting and Circling Around a Target 74

4.3.1 Constant Speed Controllers 75

4.3.1.1 Stability Analysis via Lyapunov Functions . . 79

4.3.2 Speed and Angular Velocity Controllers 81

4.3.2.1 Stability via Linearization 82

4.3.2.2 Stability Analysis via Lyapunov Functions . . 84

4.3.3 Angular Velocity Controllers 87

4.3.3.1 Proportional Angular Velocity Controller . . . 87

4.3.3.2 Nonlinear Angular Velocity Controller 88

4.3.4 Speed Controllers . 89

4.3.4.1 Constant Speed Controller 89

ix

4.3.4.2 Linear Speed Controller - Type I 90

4.3.4.3 Linear Speed Controller - Type II 92

4.3.4.4 Quadratic Speed Controller 95

4.3.4.5 Stability via Lyapunov Functions 97

4.3.5 Simulation Results . 105

4.3.5.1 Target Tracking 106

4.3.5.2 Circling Around the Target 108

4.4 Switching Gradient Method for Circling Around a Target 110

4.4.1 Stability Analysis via Lyapunov Functions 114

4.4.2 Simulation Results . 116

4.5 Switching Gradient Method for Line Formation 117

4.5.1 Stability Analysis via Lyapunov Functions 120

4.5.2 Simulation Results . 122

4.6 Conclusion . 122

5 Circling Controllers Developed by Feedback Linearization 126

5.1 Introduction . 126

5.2 Mathematical Model . 130

5.2.1 Stationary Target . 131

5.2.2 Non-Stationary Target 132

5.3 Circling Around a Target . 133

5.3.1 Circling - SISO Case - Stationary Target 134

5.3.2 Circling - SISO - Stationary Target - Simulation Results . 138

5.3.3 Circling - MIMO - Stationary Target Case 140

5.3.4 Circling - MIMO - Stationary Target - Simulation Results . 147

5.3.5 Circling - MIMO - Non-Stationary Target Case 149

5.3.6 Circling - MIMO - Non-Stationary Target - Simulation Re-
sults . 157

5.3.7 Application of Controllers to Multi-agent Systems 159

5.3.7.1 Multi-Agent System with SISO - Stationary
Target Following Controller 161

x

5.3.7.2 Multi-Agent System with MIMO - Stationary
Target Following Controller 162

5.3.7.3 Multi-Agent System with MIMO - Non-Stationary
Target Following Controller 167

5.3.7.4 Multi-Agent System with MIMO - Non-Stationary
Target Following Controller - Simulations . . 182

5.3.8 Concluding Remarks . 182

6 Line Following Controllers Developed by Feedback Linearization 186

6.1 Introduction . 186

6.2 Following a line passing through a Target with a specified slope . . . 187

6.2.1 Line Following - SISO - Stationary Target Case 188

6.2.2 Line Following - SISO - Stationary Target - Simulation
Results . 193

6.2.3 Line Following - MIMO - Stationary Target 197

6.2.4 Line Following - MIMO - Stationary Target - Simulation
Results . 203

6.2.5 Line Following - MIMO - Non-Stationary Target Case . . 207

6.2.6 Line Following - MIMO - Non-Stationary Target - Simu-
lation Results . 214

6.2.7 Application of Controllers to Multi-agent Systems 218

6.2.7.1 Line Formation of Multi-Agent System with
SISO - Stationary Target Controller 218

6.2.7.2 Line Formation of Multi-Agent System with
MIMO - Stationary Target Controller 219

6.2.7.3 Line Formation of Multi-Agent System with
MIMO - Non-Stationary Target Controller . . 222

6.2.7.4 Multi-Agent System with MIMO - Non-Stationary
Target Following Controller - Simulations . . 236

6.2.8 Discussion and Future Directions 237

6.2.9 Concluding Remarks . 242

7 Conclusion . 244

APPENDICES

A Experimental Set-up For Multi-Robot Applications 249

A.1 Introduction . 249

xi

A.2 The Set-Up Structure . 251

A.3 Image Processing Setup/Methods 253

A.3.1 Determining Robot Locations 253

A.3.2 Determining the Robot Orientations 255

A.3.3 Determining Robot ID’s 256

A.4 Transmitting Position and Orientation Information 258

A.5 Concluding Remarks . 259

REFERENCES . 260

VITA . 271

xii

LIST OF TABLES

TABLES

Table 3.1 Pseudocode for Calculating Θ . 41

Table 3.2 Pseudocode of Simulation Steps . 45

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Finite State Machine Model . 21

Figure 2.2 (a) Gershgorin disc with center at 1 − p and radius p. (b) Gershgorin discs

for p = 0.25, 0.50, 0.75, and 1.00. 25

Figure 2.3 (a) Simulation results for synchronous convergence. (b) Simulation results

for asynchronous convergence. 29

Figure 2.4 Convergence performance of synchronous and asynchronous pursuits. . . . 30

Figure 2.5 Path of 5 E-puck robots in cyclic pursuit obtained in the set-up. 31

Figure 2.6 Cyclic Pursuit of 5 robots. 31

Figure 3.1 Finite State Machine Model . 36

Figure 3.2 Possible arrangements of orientation of an agent and its neighbor’s orientation 40

Figure 3.3 Orientation rule of Strategy 3 for only one neighbor (j) of agent i. 42

Figure 3.4 ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

synchronous case and unbounded region. 47

Figure 3.5 eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

synchronous case and unbounded region. 48

Figure 3.6 The number of clusters at t = T for strategies 1 (bold solid line), 2 (solid

line), 3(dash-dot line) for synchronous case and unbounded region. 49

Figure 3.7 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 1 - Synchronous case - Unbounded region). 50

Figure 3.8 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 2 - Synchronous case - Unbounded region). 51

xiv

Figure 3.9 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 3 - Synchronous case - Unbounded region). 52

Figure 3.10 ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

asynchronous case and unbounded region. 53

Figure 3.11 eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

asynchronous case and unbounded region. 54

Figure 3.12 the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid

line), 3(dash-dot line) for asynchronous case and unbounded region. 55

Figure 3.13 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 1 - Asynchronous case - Unbounded region). 56

Figure 3.14 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 2 - Asynchronous case - Unbounded region). 57

Figure 3.15 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 3 - Asynchronous case - Unbounded region). 58

Figure 3.16 ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

synchronous case and bounded region. 59

Figure 3.17 eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

synchronous case and bounded region. 60

Figure 3.18 the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid

line), 3(dash-dot line) for synchronous case and bounded region. 61

Figure 3.19 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 1 - Synchronous case - Bounded region). 62

Figure 3.20 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 2 - Synchronous case - Bounded region). 63

xv

Figure 3.21 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 3 - Synchronous case - Bounded region). 64

Figure 3.22 ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

asynchronous case and bounded region. 65

Figure 3.23 eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for

asynchronous case and bounded region. 66

Figure 3.24 the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid

line), 3(dash-dot line) for asynchronous case and bounded region. 67

Figure 3.25 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 1 - Asynchronous case - Bounded region). 68

Figure 3.26 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 2 - Asynchronous case - Bounded region). 69

Figure 3.27 Total of rate of change of orientations of agents at each step for α = 1o

(upper subplot) and α = 180o (lower subplot) for an arbitrary initial condition

(Strategy 3 - Asynchronous case - Bounded region). 70

Figure 4.1 System model in polar coordinates. 73

Figure 4.2 System model for relative coordinates. 74

Figure 4.3 θ̇ − ψ̇ versus θ − ψ for several v values. 78

Figure 4.4 θ̇ − ψ̇ versus θ − ψ and the distance d for constant v = rαπ/2 where r is the

radius of the circle on which the robot travels. 80

Figure 4.5 θ̇ − ψ̇ versus θ − ψ and the distance d for constant v = rαπ/2 where r is the

radius of the circle on which the robot travels. 85

Figure 4.6 θ̇ − ψ̇ versus θ − ψ for several v values. 86

Figure 4.7 Phase Portrait for Constant Speed and Proportional Angular Velocity Con-

trollers. 91

Figure 4.8 Simulation result for Constant Speed and Proportional Angular Velocity

Controllers. 91

xvi

Figure 4.9 Phase Portrait for Linear Speed and Proportional Angular Velocity Con-

trollers, A < απ/2. 93

Figure 4.10 Phase Portrait for Linear Speed and Proportional Angular Velocity Con-

trollers, A > απ/2. 93

Figure 4.11 Simulation result for Linear Speed and Proportional Angular Velocity Con-

trollers, A < απ/2. 94

Figure 4.12 Phase Portrait for Linear Speed and Proportional Angular Velocity Con-

trollers. 95

Figure 4.13 Simulation result for Linear Speed and Proportional Angular Velocity Con-

trollers. 96

Figure 4.14 Quadratic Speed Function and its derivative with respect to distance. . . . 96

Figure 4.15 Phase Portrait for Linear Speed and Proportional Angular Velocity Con-

trollers. 98

Figure 4.16 Simulation result for Quadratic Speed and Proportional Angular Velocity

Controllers. 98

Figure 4.17 Simulation result for Quadratic Speed and Proportional Angular Velocity

Controllers. 99

Figure 4.18 Lie Derivative for Speed function v : constant 101

Figure 4.19 Lie Derivative at d = deq for Speed function v : constant 101

Figure 4.20 Lie Derivative at γ = 90o for Speed function v : constant 102

Figure 4.21 Lie Derivative for Speed function v(d) = Ad + B 103

Figure 4.22 Lie Derivative at d = deq for Speed function v(d) = Ad + B 103

Figure 4.23 Lie Derivative at γ = 90o for Speed function v(d) = Ad + B 104

Figure 4.24 Lie Derivative for Speed function v(d) = Ad − B 104

Figure 4.25 Lie Derivative at d = deq for Speed function v(d) = Ad − B 105

Figure 4.26 Lie Derivative at γ = 90o for Speed function v(d) = Ad − B 105

Figure 4.27 Lie Derivative for Speed function v(d) = (d −C)2 106

Figure 4.28 Lie Derivative at d = deq for Speed function v(d) = (d −C)2 107

Figure 4.29 Lie Derivative at γ = 90o for Speed function v(d) = (d −C)2 107

Figure 4.30 Trajectories of the robot for different initial positions and orientations. . . . 108

xvii

Figure 4.31 Distance between robot and target for different initial positions and orien-

tations. 109

Figure 4.32 Trajectories of the robot for different initial orientations. 109

Figure 4.33 Distance between robot and target for different initial orientations. 110

Figure 4.34 Path of the Target. 110

Figure 4.35 Robot trajectory tracking a dynamic target. 111

Figure 4.36 Distance of the robot from the dynamic target. 111

Figure 4.37 Robot trajectories circling around a static target at [20, 20]. 112

Figure 4.38 Distance between robot and static target at [20, 20] for circling around the

target strategy. 112

Figure 4.39 Robot trajectory circling around a dynamic target. 112

Figure 4.40 Distance between target and robot circling around a dynamic target. 113

Figure 4.41 θ̇ − ṗsi versus θ − ψ for several v values. 115

Figure 4.42 θ̇ − ψ̇ versus θ − ψ and the distance d for constant v = rαπ/2 where r is the

radius of the circle on which the robot travels. 115

Figure 4.43 Robot trajectories circling around a static target at [20, 20]. 117

Figure 4.44 Distance between robot and static target at [20, 20] for circling around the

target strategy. 118

Figure 4.45 Robot trajectories circling around a static target at [20, 20] for different

initial angles. 118

Figure 4.46 Robot trajectory circling around a dynamic target. 119

Figure 4.47 Distance between target and robot circling around a dynamic target. 119

Figure 4.48 Robot trajectories converging to line passing through a static target at [20, 20].123

Figure 4.49 Distance between robot and line for different initial positions. 123

Figure 4.50 Robot trajectories converging to line passing through a static target at

[20, 20] for different initial orientations. 124

Figure 4.51 Distance between robot and line for different initial orientations. 124

Figure 5.1 System model in polar coordinates. 131

Figure 5.2 System model for relative coordinates. 132

xviii

Figure 5.3 System model with non-stationary target in relative coordinates. 133

Figure 5.4 A sample phase plane of Circling-SISO system. 138

Figure 5.5 The change of the distance between robot and target, and the angle differ-

ence γ with respect to time. Overdamped response for circling behavior. 139

Figure 5.6 The path of the robot. Overdamped response for circling behavior. 139

Figure 5.7 The change of the distance between robot and target, and the angle differ-

ence γ with respect to time. Underdamped response for circling behavior. 140

Figure 5.8 The path of the robot. Underdamped response for circling behavior. 141

Figure 5.9 The change of the distance between robot and target, and the angle differ-

ence γ with respect to time. Overdamped response for circling behavior. 148

Figure 5.10 The path of the robot. Overdamped response for circling behavior. 148

Figure 5.11 The change of the distance between robot and target, and the angle differ-

ence γ with respect to time. Underdamped response for circling behavior. 149

Figure 5.12 The path of the robot. Underdamped response for circling behavior. 150

Figure 5.13 The distance between agent and target d with respect to time. Overdamped

response for circling behavior with non-stationary target follower controller. . . . 158

Figure 5.14 Velocities of agent and target. Overdamped response for circling behavior

with non-stationary target follower controller. 158

Figure 5.15 Path of the agent and target. Agent path: solid blue, target path: dashed

black. 159

Figure 5.16 The distance between agents and target d. The responses of non-stationary

and stationary target follower controllers. 160

Figure 5.17 Velocities of agents with non-stationary and stationary target follower con-

trollers. 160

Figure 5.18 Path of the agents and target. Non-stationary controller path: solid blue,

stationary controller path: dash-dotted red, target path: dashed black. 161

Figure 5.19 Distance (a) and path (b) of parallel motion of 2 agents with Circling SISO-

Stationary Targeting controllers. 162

Figure 5.20 Distance (a) and path (b) of coinciding motion of 2 agents with Circling

SISO-Stationary Targeting controllers. 163

xix

Figure 5.21 Distance (a) and path (b) of regular circling motion of 2 agents with Cir-

cling SISO-Stationary Targeting controllers. 163

Figure 5.22 Distance (a) and path (b) of regular circling motion of 3 agents with Cir-

cling SISO-Stationary Targeting controllers. 164

Figure 5.23 Axis of rotation . 165

Figure 5.24 Distance (a) and velocities (b) of orbital circling motion of 2 agents with

Circling MIMO-Stationary Targeting controllers. 165

Figure 5.25 Path of the agents and center for orbital circling with MIMO-Stationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 166

Figure 5.26 Distance (a) and velocities (b) of regular circling motion of 2 agents with

Circling MIMO-Stationary Targeting controllers. 166

Figure 5.27 Path of the 2 agents and center for regular circling with MIMO-Stationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 167

Figure 5.28 Distance (a) and velocities (b) of regular circling motion of 3 agents with

Circling MIMO-Stationary Targeting controllers. 167

Figure 5.29 Path of the 3 agents and center for regular circling with MIMO-Stationary

Targeting controllers. Agent paths: dashed colored, center path: dashed black. . . 168

Figure 5.30 Distance (a) and velocities (b) of regular circling motion of 10 agents with

Circling MIMO-Stationary Targeting controllers. 168

Figure 5.31 Path of the 10 agents and center for regular circling with MIMO-Stationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 169

Figure 5.32 Two agents moving with the equilibrium of controller when K = 1. 170

Figure 5.33 Agent positions and velocity vectors at equilibrium. Samples for 2 and 3

number of agents. 179

Figure 5.34 Distance (a) and velocities (b) of regular circling motion of 2 agents with

Circling MIMO-NonStationary Targeting controllers. 182

xx

Figure 5.35 Path of the 2 agents and center for regular circling with MIMO-NonStationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 183

Figure 5.36 Distance (a) and velocities (b) of regular circling motion of 3 agents with

Circling MIMO-NonStationary Targeting controllers. 183

Figure 5.37 Path of the 3 agents and center for regular circling with MIMO-NonStationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 184

Figure 5.38 Distance (a) and velocities (b) of regular circling motion of 10 agents with

Circling MIMO-NonStationary Targeting controllers. 184

Figure 5.39 Path of the 10 agents and center for regular circling with MIMO-NonStationary

Targeting controllers. Agent paths: dashed blue and dashed red, center path:

dashed black. 185

Figure 6.1 Relative Coordinate Frame. Origin is target. Circle represents the vehicle.

The line to be followed is the one with the slope β. 189

Figure 6.2 The change of the distance between robot and target (d), and robot and line

(h) with respect to time. Overdamped response for line following behavior. 194

Figure 6.3 The change of the angles θ and ψ with respect to time. Overdamped re-

sponse for line following behavior. 194

Figure 6.4 The path of the robot. Overdamped response for line following behavior. . 195

Figure 6.5 The change of the distance between robot and target (d), and robot and line

(h) with respect to time. Underdamped response for line following behavior. . . . 195

Figure 6.6 The change of the angles θ and ψ with respect to time. Underdamped

response for line following behavior. 196

Figure 6.7 The path of the robot. Underdamped response for line following behavior. . 196

Figure 6.8 The path of the robot following the slope β + π. 197

Figure 6.9 The change of the distance between robot and target (d), and robot and line

(h) with respect to time. Overdamped response for line following behavior. 204

Figure 6.10 The change of the angles θ and ψ with respect to time. Overdamped re-

sponse for line following behavior. 204

xxi

Figure 6.11 The path of the robot. Overdamped response for line following behavior. . 205

Figure 6.12 The change of the distance between robot and target (d), and robot and line

(h) with respect to time. Underdamped response for line following behavior. . . . 205

Figure 6.13 The change of the angles θ and ψ with respect to time. Underdamped

response for line following behavior. 206

Figure 6.14 The path of the robot. Underdamped response for line following behavior. . 206

Figure 6.15 The path of the robot following the slope β + π. 207

Figure 6.16 The distance between agents and target d. The responses of non-stationary

and stationary line following controllers. 216

Figure 6.17 Error of ψ (eψ = β − ψ) for non-stationary and stationary line following

controllers. 216

Figure 6.18 Velocities of target and agents with non-stationary and stationary line fol-

lowing controllers. 217

Figure 6.19 Path of the agents and target. Non-stationary controller path: dash-dotted

blue, stationary controller path: dashed red, target path: solid black. 217

Figure 6.20 Distance h (a) and error of eψ (b) of 5 agents with line following SISO

controller . 219

Figure 6.21 Path of 5 agents with line following SISO controller. Arrow heads: agents,

Cross: center of swarm. 220

Figure 6.22 The relation between target and center of swarm. 220

Figure 6.23 Distance h (a) and error eψ (b) of 5 agents with line following MIMO

controller for stationary target. 221

Figure 6.24 Velocities of agents and center of swarm (a), and path of 5 agents (b) with

line following MIMO controller for stationary target. 222

Figure 6.25 Line formation of agents at equilibrium. 225

Figure 6.26 Distance h (a) and error eψ (b) of 5 agents with line following MIMO

controller for stationary target. 237

Figure 6.27 Velocities of agents and center of swarm (a), and path of 5 agents (b) with

line following MIMO controller for non-stationary target. 237

xxii

Figure 6.28 Distance h (a) and error eψ (b) of 5 agents traveling on a hexagon with line

following controller. 238

Figure 6.29 Velocities of agents and center of swarm (a), and path of 5 agents (b) 5

agents traveling on a hexagon with line following controller. 238

Figure 6.30 Distance d (a) and distance h (b) of 5 agents switching between line fol-

lowing and circling behaviors. 239

Figure 6.31 Error eψ (a) and velocities of agents and center of swarm (b), of 5 agents

switching between line following and circling behaviors. 240

Figure 6.32 Path of 5 agents switching between line following and circling behaviors. . 240

Figure 6.33 Distance h (a) and velocities (b) of 5 agents traveling on parallel paths. . . 242

Figure 6.34 Error eψ (a) and orientation θ (b), of 5 agents traveling on parallel paths.. . 242

Figure 6.35 Path of 5 agents traveling on parallel paths.. 243

Figure A.1 Experimental setup consisting of an arena, robots, PC and overhead camera. 251

Figure A.2 (a)A sample robot hat used to find the position, orientation and identity of

robot. (Dimensions are in mm). (b) Three robots in the arena. The colored dots

and the boundaries that other robots should stay out of are shown. 254

Figure A.3 (a) The colored dots that are used to find the position and orientation of a

robot. (b)Speeds of a differential drive robot. 256

Figure A.4 (a) Robot Identities. (b) Vectors from P1 to P2 and P1 to P3 for two dif-

ferent cases: P1 is on the left for the left figure and P1 is on the right for the right

figure. 257

xxiii

CHAPTER 1

INTRODUCTION

The collective motion of organisms like schools of fish, herds of quadrupeds, flocks of flying

birds, and groups of migrating bacteria, molds, ants, or pedestrians is an interesting area stud-

ied by many biologists, physicists, and even engineers in recent years. The coordinated be-

havior of such animal groups results in complex and meaningful emergent or self-organizing

behavior with only local interactions of relatively simple or “dumb” individuals (or agents as

we call them in this study). Life sciences like theoretical biology and animal ethology can

benefit from the ideas or principles derived from the operation of natural multi-agent systems.

The developed ideas and principles may also be utilized in many engineering fields including

swarm robotics [1, 2], optimization [3, 4, 5, 6, 7], self-organizing distributed sensor networks

[8], decentralized/distributed coordination and control of groups of unmanned air, space, land

and underwater vehicles, or even problems of social sciences including organization theory,

economics, and cognitive psychology. Hence, for several decades many scientists from dif-

ferent fields have been trying to understand, model, and mimic/reproduce the behavior seen

in natural swarms.

In general, a multi-agent dynamic system can be defined as a network of a number of agents.

The agents are loosely coupled dynamics units like robots, vehicles, dynamic sensors, etc.

The main purpose of using multi-agent systems is to collectively achieve goals that are diffi-

cult to reach by an individual agent. If the main dynamic action of interest is motion, some-

times, the term swarm or formation are used in place of multi-agent system. Recent robotics

research has been focusing on multi-agent systems or basically groups of autonomous mobile

agents. Such systems are of interest for several reasons: (i) Tasks may be too complex or

sometimes impossible for a single agent to achieve; (ii) Performance of the system may be

1

improved by using multiple agents; (iii) The agents of a multi-agent system may be easier to

build, cheaper, more flexible, and more fault tolerant than a single agent designed for each

separate complex task; (iv) The constructive, synthetic logic developed for cooperative mo-

bile robotics can also be beneficial in the problems of other sciences; especially for social

sciences including organization theory, economics, cognitive psychology or life sciences like

theoretical biology and animal ethology.

The amount of researches about multi-robot or swarm-robot systems have increased impor-

tantly. Ever-developing technology made these kinds of systems realizable and this is the

main reason of increasing researches in this area. The main advantages of these kinds of

systems that are formed by autonomous robots are their robust, cheap and flexible properties.

Their flexibility comes from the possibility of re-distributing the tasks among them in order

to adapt different situations and/or missions or negate the absence of some individuals. Sim-

ilarly robustness comes from the possibility of re-organization of the individuals to negate

the absence of lost individual and to complete the mission. The robots used in this kind of

systems are not so complicated. They are simpler and cheaper than the robots which do all the

job individually since the tasks are distributed between these simple robots. Also the failure

probability of these simple robots is less than the more complex robots. This characteristic

strengthens the robustness property of multi-robot systems. Also the production costs of these

simple robots are lower with respect to the complex multitasking robots.

Another important property of swarm robotic systems is emergence. The collective behavior

of these systems emerges through the local interactions between the agents and the environ-

ment. Usually, the modeling and the design process of local interactions to result in a desired

emergent behavior is difficult and not has been studied too much in the literature. It remains

an important open problem.

The information (i.e. sensing, control, and communication) exchange between agents is an

important element of a swarm system. The dynamic interactions among the agents need to be

considered for formations where the individual agent dynamics are coupled.

2

1.1 Motivation of the Thesis Study

The thesis study here focus on the decentralized geometric formation of the multi-agent sys-

tems. The geometric formation of the agents is mostly required in area exploration and

surveillance missions. During these missions the agents are supposed to form special geo-

metric shapes, i.e. distribution evenly over an area, spreading over a line and move in parallel

directions, circling around a target. These formations may be static (agents are stationary

at a geometric form) or dynamic (agents are moving preserving a special geometry). The

main problem in these formations is the emergence property of multi-agent systems. Since

the initial conditions, number of agents in the swarm, uncertainties, under modeled dynamics

etc. may not be predictable, the resulting formations are emergent. Therefore, the controllers

of each individual agent should be independent of pre-specified or re-specified paths and the

identity of the other agents in the swarm. The global or local interaction strategies between

agents should not change with respect to the type, identity or number of the agents to preserve

the robustness and flexibility properties of multi-agent systems mentioned above. Therefore,

the controllers developed in this study do not utilize pre-generated paths of agents, they only

use absolute or relative position, orientation and the time derivatives of these variables in

the manipulation input calculations. Using these agent motion parameters, the controllers

designed achieved

• Orientation agreement behavior,

• Circling around static and dynamic target behaviors,

• Following line passing through specified point and with a specified orientation behavior,

• Area surveillance with parallel motion behavior,

• Switching between the above controller strategies

In the development of these controllers we utilized linear and nonlinear control theories. The

controller designs mostly utilize PID, Lyapunov functions, and feedback linearization tech-

niques. There are no controllers even for single agents in the literature similar to the ones

developed in this thesis study. Therefore, especially for circling and line following behaviors

we had to first develop single agent controllers to circle around a target and follow a line.

Then, we apply these controllers to multi-agent systems with some minor modifications.

3

Furthermore, the multi-agent systems are usually asynchronous systems. There are time de-

lays in the sensing, computing and motion states and the time delays may differ in between

agents. Therefore, the controllers should be robust to this asynchronism. The first part of

this thesis study focus on the asynchronism property of multi-agent systems. One of the

most simple geometric formation problems, cyclic pursuit is examined with an asynchronous

model.

The controllers developed in the study are mostly applicable to the formation problems of

unmanned air, space, land and underwater vehicles. The agents are considered to travel in

2-D space and only the kinematic models are utilized in the derivations. The kinetics of the

agents are not considered since all the controllers developed for the proof of concept. All

controllers are validated by computer simulations. Additionally, an experimental set-up is

utilized in the validation of some of the controllers running on mobile ground robots.

In the following sections we first investigate the studies in the literature. Then, we will present

the scope of the thesis in the last section.

1.2 Literature Survey

The output of multi-agent systems research has implications on many fields of (engineering)

applications such as terrestrial, space and oceanic exploration, military surveillance and res-

cue missions, and other automated collaborative operations. The desired approach in solving

such engineering problems is achieving the global objective or emergent behavior by simple

local rules/interactions. However, determination of agent level simple interaction rules that

yields the desired global behavior is a challenging problem that has not been solved yet. On

this subject one of the earliest famous study was performed by Reynolds [9]. He introduced a

model and wrote a program called boids (or bird-oids) that simulates a flock of birds in flight.

He showed that, if followed by the simulated agents, three simple rules can result in realistic

behavior similar to the one observed in bird flocks. The behavior-based techniques used by

Reynolds were also studied by Balch and Arkin [10]. They designed reactive behaviors to im-

plement multivehicle formations in combination with rules for collision avoidance and other

navigational goals.

Among the first relevant works by biologists are the studies by Breder [11], Warburton and

4

Lazarus [12], Okubo and Grunbaum [13, 14, 15], and Parrish [16] for swarm aggregations and

coordination. Inspired by these works, a recent series of studies [17, 18, 19, 20, 21, 22, 23, 24]

has provided rigorous stability and convergence analysis of swarm aggregations. One of

the early literature surveys on the topic of multi-agent (multi-robot) systems is the study of

Mataric [2] in 1995. There are also some recent books [3, 25] that may be useful references

about the swarms in nature and engineering applications that inspire from these swarms. The

references in [26, 27, 28, 29] are some relevant books and special issues of journals that in-

clude the recent studies on the swarm-robotics. In [30] the advantages and some applications

of swarm-robotics are presented and principal definitions of some properties of these systems

are stated. The studies [1, 2] provide comprehensive reviews of multi-agent systems studies.

One very recent survey that considers multi-agent systems from the perspective of control

engineering can be found in [31]. In the following sections the mathematical models, the

swarm coordination and control problems, and some approaches to modeling and control of

swarm issues in the literature are investigated based on the work in [31].

1.2.1 Mathematical Models

Some of the mathematical models for agent/vehicle dynamics considered in the swarm sys-

tems literature are presented here. A swarm consisting of N individuals/agents moving in an

n-dimensional Euclidean space are considered in the following. xi ∈ Rn denotes the state vec-

tor and ui ∈ Rm,m ≤ n denotes the control input of agent i. The state vector xi may denote (a

collection of) the position, orientation, synchronization frequency, information to be agreed

upon.

Higher-Level Model

This model is the simplest mathematical model in the literature considering just the kinematics

of the agents and does not deal with the lower level dynamics of agents. Thefore, it may be

called also as higher-level or single integrator model. The agent motions in this model are

given by

ẋi = ui, i = 1, . . . ,N, (1.1)

5

where xi is the state of agent Ai, and ui is its control input. The dot represents the time

derivative of states. The state xi may be composed of the position pi, and/or the orientation

angle and/or synchronization frequency θi, and/or other variables.

This model is useful in studying the higher level control strategies and algorithms to obtain

“proof of concept” type results for swarm behaviors. Usually, in the path planning control

problems the higher level agent models are preferred; the trajectories generated using this

model can be used as reference trajectories for the actual agents to track. The tracking con-

trollers are considered in the lower level dealing with agent dynamics. However, still the

effects of the actual agent dynamics should also be investigated in the models obtained by

eEquation (1.1). In this thesis study, all the controllers are designed regarding the higher level

agent models. Therefore, the results are “proof of concept” type results for swarm behavior.

The lower level dynamics are left as future works of this study.

The model in (1.1) is a realistic simplified kinematic model for a class of omni-directional

mobile robots with so-called universal (or Swedish) wheels [32, 33, 34]. As example works

using this agent model the reader may refer to [35, 36, 37, 17, 18, 19].

Point Mass Model

Point mass model is another dynamic model commonly used in the multi-agent coordination

and control literature and also called asdouble integrator model. The agent dynamics are

given by

ṗi = vi,

v̇i =
1
mi

ui, i = 1, . . . ,N, (1.2)

where pi is the position, vi is the velocity, mi is the mass of the agent, and ui is the force input.

The state of the systems can be defined as x⊤i = [p⊤i , v
⊤
i]. This model is relevant with many

biological and engineering systems and has been considered in [38, 39, 40, 41, 20, 42, 19].

6

Fully Actuated Model

Compared to the higher-level and the point mass models, a more realistic model for agent

dynamics is the following model

Mi(pi)p̈i + fi(pi, ṗi) = ui, 1 ≤ i ≤ N, (1.3)

where pi represents the position or configuration, Mi(pi) ∈ Rn×n is the mass or inertia matrix,

fi(pi, ṗi) ∈ Rn represents the centripetal, Coriolis, gravitational effects and additive parame-

ters. In [32, 33, 34], this model is utilized for omni-directional mobile robots and for some

fully actuated manipulators. There are some more realistic studies considering the uncer-

tainties and disturbances in the force input and unknown mass/inertia matrix as well. These

uncertainties provide an opportunity for developing robust control strategies as considered,

e.g., in [24, 43].

Non-Holonomic Unicycle Model

The motion of agents in 2-dimensional space is also described by the unicycle model in the

literature. Many mobile robots used for experiments in the laboratories (e.g., robots with

differential drive) obey this model. The equations for this model are

ṗix = vi cos(θi),

ṗiy = vi sin(θi),

θ̇i = ωi,

v̇i =
1
mi

Fi,

ω̇i =
1
Ji
τi, 1 ≤ i ≤ N, (1.4)

where pix and piy are position components in the cartesian coordinates, θi is the orientation,

vi is the translational speed, and ωi is the angular speed, mi and Ji are mass and the moment

of inertia of each agent, respectively. Fi and τi are the control inputs (force and torque inputs,

respectively). In [44, 45, 36, 37, 46, 47, 48, 49], the kinematic part and the remaining parts of

7

the equations in (1.4) are utilized in multi-agent models. The studies considering the feedback

linearization techniques by adding one more integrator to the force input are [49, 50].

Dubins’ Vehicle Model

Some of the studies on connection between oscillator synchronization and collective motions

use multi-agent systems with constant translational speed [51]. This model may be written as

ṗi = e jθi

θ̇i = ui (1.5)

where pi is the position vector in complex coordinate frame (here j =
√
−1) and θi is the

orientation of this vector. The speed is normalized with magnitude v = 1. The slightly

general form of this model also called as ”Dubins’ vehicle model” is in utilized in [52, 53, 47]

and given by

ṗix = v cos(θi),

ṗiy = v sin(θi),

θ̇i = ωi, 1 ≤ i ≤ N, (1.6)

where pix and piy are the position components in cartesian coordinates. This model is useful

in studies considering the constant translational speed like unmanned aerial vehicles (UAV)

at a specified altitude [53, 54, 53, 55]. In this thesis study the line following and circling

behaviors are also investigated with constant speed agents and are applicable to UAV’s.

Self-Propelled Particle Model

The model of self-propelled particles considered by Vicsek [56] is similar in nature to the

model of Reynolds [9], except that the particles in the Vicsek’s model have constant speed. In

that work, they considered a self-propelled particle system with dynamics based on the simple

rule “at each time step a given particle driven with a constant absolute velocity assumes the

8

average direction of motion of the particles in its neighborhood of radius r with some random

perturbation added” [56], and investigated clustering, transport, and phase transition in non-

equilibrium systems. They showed that their model results in a rich, realistic dynamics despite

the simplicity of the model. The model is described as

pix(t + 1) = pix(t) + v cos(θi(t + 1)),

piy(t + 1) = piy(t) + v sin(θi(t + 1)), i = 1, ...,N, (1.7)

where pix and piy are the position components in Cartesian coordinates, v is the translational

speed, and θi is the steering angle of a particle with index i. The directions of motion are

updated at each step based on

θi(t + 1) = ωi(t), i = 1, ...,N, (1.8)

where the control input ωi(t) is calculated based on the current direction of the agent and

the direction of its neighbors with some additive noise. Note that the self-propelled particle

model in (1.7)-(1.8) is the discrete time equivalent of the Dubins’ vehicle model in (1.6).

In [57] and [58] Czirók et al. study biologically inspired, inherently non-equilibrium models

consisting of self-propelled particles. Similar to [56] the particles move on a plane with con-

stant speed and interact with their neighbors by choosing at each time step a heading equal to

the average direction of their neighbors. In [57], they showed that the far-from-equilibrium

system of self-propelled particles can be described using the framework of classical critical

phenomena and the analysis show new features when compared with the analogous equilib-

rium systems. In [58] the authors summarize some of the results of large-scale simulations

and theoretical approaches about the effects of noise and dimensionality on the scaling be-

havior of such systems. In [59] the authors introduce a generic phenomenological model for

the collective motion of bacteria on a solid agar surface taking into account nutrient diffusion,

reproduction, and sporulation of bacteria, extracellular slime deposition, chemo-regulation,

and inhomogeneous population. The model is based on a ferromagnetic-like coupling of the

velocities of self-propelled particles and is capable of describing the hydrodynamics on the

intermediate level. In [60] the authors demonstrate that a system of self-propelled particles ex-

hibits spontaneous symmetry breaking and self-organization in one dimension. They derived

9

a new continuum theory that can account for the development of the symmetry broken state.

The collective motion of organisms in the presence of fluctuations is discussed in [61]. In this

study Vicsek utilized the simple rule of motion of particles as in [56]. The author demon-

strated that there is a transition from disordered to ordered motion at the finite noise level and

particles segregate into lanes or jam into a crystalline structure in a model of pedestrians.

In [62], Savkin gives a qualitative analysis of the dynamics of a system of several mobile

robots coordinating their motion using simple local nearest neighbor rules referring to Vic-

sek’s model in [56]. The author states that under some assumptions the headings of all robots

will be eventually the same. Similar analysis was performed by Jadbabaie et. al. in [63],

where they consider both discrete and continuous models as well as leaderless and leader-

based situations and show that under certain connectivity conditions the heading of all the

agents will converge to the same value, thus providing in a sense a theoretical explanation to

the results obtained by Vicsek et. al (i.e. they considered the model by Vicsek without the

additive noise and the position dynamics). Later these results were extended by Moreau [64]

and independently by Ren and Beard [65] to more general classes of systems. A discrete

model consisting of self-propelled particles that obey simple interaction rules is studied in

[66]. The authors showed that the model can self-organize and exhibit coherent localized

solutions in one-dimensional and in two-dimensional space. Furthermore, they develop a

continuum version of their discrete model and show the agreement between these models.

1.2.2 Swarm Coordination and Control Problems

There exist a number of different swarm coordination and control tasks investigated in the

systems and control literature. The most common ones of these studies focus on aggregation

and foraging, flocking, rendezvous, formation stabilization, formation acquisition, formation

reconfiguration, formation maintenance, agreement, cohesive motion and cooperation. For

the brief explanations of these studies please refer to [31].

In this part of the literature survey we will mention some studies on aggregation and flocking

problems. Aggregation (or gathering together) is a basic behavior that many swarms in nature

exhibit. Moreover, many of the collective behaviors seen in biological swarms and some

behaviors to be possibly implemented in engineering multi-agent dynamic systems emerge in

aggregated swarms. Therefore, developing mathematical models for swarm aggregations and

10

studying the dynamics and properties of these models have been an important study subject.

Aggregation in biological swarms were initially modelled and simulated by biologists [11,

13, 12, 14]. Inspired by these works, a recent series of studies [17, 18, 19, 20, 21, 22, 23,

24] has provided rigorous stability and convergence analysis of swarm aggregations based

on artificial potential functions both with continuous-time and discrete-time formulations.

Particularly, in [17, 18] a biologically inspired n-dimensional (where n is arbitrary) continuous

time synchronous swarm model based on artificial potentials is considered and some results on

cohesive swarm aggregation have been obtained. Similar results based on artificial potentials

and virtual leaders have been independently obtained by Leonard and coworkers in [38, 39] for

agents with point mass dynamics. In [24], which has more emphasis on design than analysis

a particular control strategy for aggregation in swarms has been developed based on artificial

potential functions and sliding mode control, assuming simple integrator agent dynamics with

model uncertainties and disturbances.

Later in [67] the results in [24] were extended to a significantly more realistic and more

difficult setting with non-holonomic unicycle agent dynamics models, again using the tools of

artificial potential functions and sliding mode control, but in a slightly different way than [24].

Furthermore, in [68] the results were further exteded to include the foraging and formation

control problems (in addition to the aggregation problem considered in [67]).

The social foraging behavior in biological swarms usually require the aggregation of the

swarm. This increases the probability of success for the individuals of success for the in-

dividuals [69, 15]. The ant colony optimization method [3], and particle swarm optimization

methods are some of the resulting methods of studies on bio-mimicry of foraging.

The collective motion behavior of large number of interacting agents with a common group

objective is defined as the Flocking behavior. The work by Reynolds [9] is the first study in the

literature on flocking. This work has proposed (i) separation, (ii) alignment, and (iii) cohesion

rules to implement a flocking behavior. These rules have been used in the simulations of the

flocking behavior of animal swarms.

Initial studies on flocking from control theoretic perspective were performed by Tanner and

coworkers in [40, 41] using point mass and in [70] considering non-holonomic agents with

continuous time dynamics. On the other hand, in a recent study [42] Olfati-Saber developed

a theoretical framework for analysis and design of flocking systems with agents with point

11

mass dynamics. He considered two different types of flocking algorithms (which incorporate

Reynolds rules): free flocking, in which the agents try to move to a particular distance from

its nearest neighbors and also to stay aligned to them, and constrained flocking in which the

agents are following virtual agents while performing free flocking. The second algorithm is

in principle centralized although it can also be implemented in a decentralized fashion if all

the virtual agents for all the individuals have the same dynamics and exchange information

initially.

The flocking behavior of multi-agent systems are modeled to work synchronously in many of

the studies. On the other hand there have been some studies [71, 21, 22, 23, 72] on the asyn-

chronous modeling of multi-agent systems. The work in [71] considers the asynchronous

convergence of a linear swarm to a synchronously achievable configuration in the reconfig-

uration of patterns problems. In this study a sufficient condition for the asynchronous con-

vergence of a linear swarm to a synchronously achievable configuration is proven to exist. In

[21, 22, 23] the stability of one-dimensional and M-dimensional asynchronous swarms are

studied. They focus on asynchronous swarm models with time delays for swarm aggregation

in discrete-time settings. In [72] Beni shows that asynchronous swarms may converge in cases

in which synchronous swarms may not and that achieving an order from disordered actions is

a basic characteristic of swarms and states that ”swarms may undergo a transition from non-

convergence to convergence as their degree of partial synchronicity diminishes”. A study on

the aggregation problem is performed in [73] with agents that are anonymous, homogeneous,

memoryless, and lack communication capabilities. In a similar study in [74] the authors

showed that asynchronous autonomous agents which have limited visibility and no memory,

would gather at the same location in finite time although they are totally asynchronous in

their actions, computations, and movements, provided that they have a compass. A system-

atic analysis of probabilistic aggregation strategies in swarm robotic systems is presented in

[75], which considers four basic behaviors of the agents -obstacle avoidance, approach, repel,

and wait- for aggregation. Similarly, in [76], the effects of different evolutionary parameters

on the performance and scalability of system are studied.

The formation stabilization is the task of convergence of a group of agents that are initially

at random positions to a particular geometrical configuration. Note that, the aim is not nec-

essarily achieving a match with a pre-defined geometric pattern, instead it is the construction

of a structured formation. In the literature the studies [77, 78, 79, 46, 80, 47] deals with

12

the formation of geometric shapes. The Formation maintenance and cohesive motion control

problems deals with the maintenance of an achieved formation structure of a swarm during

any continuous motion of the swarm [78, 43, 37].

Some of the swarm coordination and control studies focus on formation reconfiguration and

switching behaviors. The studies [81, 82, 83, 84] includes the maintenance of rigidity and

persistence during certain changes or operations on the formation structure. These operations

are merging, splitting, and agent loss. Merging is combining of two formations via some

information links in between to form a single post-merged rigid formation. Splitting is the

“reverse” of merging, i.e. division of a pre-split formation into two post-split smaller forma-

tions via breaking some of the information links. And the agent loss, is the break down of

information link of one or more agents. In formation switching, the swarm changes from one

shape to another, i.e. as a reaction to environmental changes. In [85] and [86] the formation

switching problems are considered. The line following and circling behaviors of agents in

this study are also investigated in the means of formation switching. The controllers switch at

predefined time instances in order and the resulting behaviors are examined.

The development of distributed or decentralized control strategies for agreement on some

information (agent position, velocity, oscillation phase, decision variable, etc.) are called as

distributed agreement problems or distributed consensus seeking. The study [87], consists

of survey on distributed agreement problems. Agreement or consensus is achieved if the

corresponding states of all agents converge to the same value. The studies [88, 89, 90, 91, 92]

deals with the consensus seeking problem of multi-agent systems.

1.2.3 Modeling, Coordination, and Control Approaches

Most of the swarm application controllers are considered to be decentralized. The centralized

controllers (e.g., a central commander) are complex and have high computational costs, they

are sensitive to loss of agents, and communication delays. Therefore, controllers running indi-

vidually on each agent has advantages with respect to the central control schemes considering

the mentioned issues. In the literature there is a large variety of approaches and techniques

used to develop decentralized coordination and control strategies. For example, based on the

higher level model (1.1) using potential functions [17, 18, 19], the point mass dynamics (1.2)

using potential functions [80], the non-holonomic dynamics in (1.4) using Lyapunov analy-

13

sis [45, 44] and feedback linearization [49], the fully actuated uncertain dynamics in (1.3)

using potential functions and sliding mode control [24], etc. are some of these studies.

The approaches for swarm coordination and control considered in the literature based on ar-

tificial potential functions, Lyapunov analysis and other nonlinear control techniques, sliding

mode control and feedback linearization, neuro-fuzzy techniques, behavior modelling, proba-

bilistic and evolutionary methods, etc. as well as hybrid approaches combining two or more

of these techniques are examined extensively in [31]. Here, we will mention some leading

studies on these techniques.

Some of the robot navigation and control studies had utilized the artificial potential func-

tions [93, 94]. One of the first application of these functions for multi-robot systems is done

by Reif and Wang [95]. Artificial potential functions are being used for swarm aggregations,

formation stabilization and acquisition, and some other multi-agent coordination and control

tasks. For example, in [17, 18, 19] attraction/repulsion functions have been used for swarm

aggregations while in [38, 39] similar potentials have been used for control of a group of

point-mass agents. Potential functions are used for formation stabilization in [44, 80], while

they are used for generating hunting behavior in fully actuated robot troops in [35]. The po-

tential functions may represent only the inter-agent interactions as in [17, 18] or may include

also environmental effects as in [19, 39, 20, 35] or may be defined for some other purpose.

Some of the works address directly the issues of collisions between the agents, while some

do not. One approach to avoid collisions using artificial potentials may be to use unbounded

repulsion functions to guarantee collision avoidance [38, 18]. The controlled dynamics of

swarms with artificial potential functions are usually analyzed with Lyapunov methods.

Spears and Gordon [96] have addressed the problems of formation stabilization, acquisi-

tion, maintenance, formation and cohesion during motion by introducing the artificial physics

based approach which is a subclass of potential function based methods. It is a method based

on the fundamental laws of physics, particularly mechanics, such as the Newton’s laws of

motion. Furthermore, hey have analyzed the problem of chemical plume tracing [97, 98]

with simulation and implementation on real robots. In cases in which analytical analysis is

intractable they apply evolutionary methods to learn parameter settings of the system. More-

over, they’ve developed an online learning algorithm that adjusts the system parameters in

real-time in dynamic environments.

14

Another controller method in swarm systems is the sliding mode controller especially utilized

in the lower level dynamics to obey the higher level controller commands. The sliding mode

control method [99] is a method in which a switching controller with high enough gain is

applied to suppress the effects of modelling uncertainties and disturbances, and the agent

dynamics are forced to move along a stabilizing manifold called sliding manifold. The value

of the gain is computed using the known bounds on the uncertainties and disturbances. Given

the agent dynamics, using the sliding mode control technique, it is possible to design each of

the control inputs ui to enforce satisfaction of the trajectories generated by the higher-level

model [24]. The main advantage of the sliding mode approach is that it works despite the

existence of uncertainties and disturbances in the agent dynamics. This is mainly because

of the suppression and robustness properties of the sliding mode control method. On the

other hand the shortcomings of the method are the so-called chattering effect and possible

generation of high-magnitude control signals. These shortcomings may possibly be avoided

or relaxed via integration and some other filtering techniques. Application of the sliding mode

approach with complex agent dynamics models is currently being investigated by researchers.

The nonlinear dynamics of agents are also studied to be linearized by feedback linearization

techniques in the literature [49, 100]. The linearization of the system dynamics may allow

design of linear or non-linear type of controllers for e.g. agent position regulation, formation

stabilization. In this thesis study, the line following and circling behaviors are also investi-

gated considering the feedback linearization techniques.

The asymptotic stability and convergence properties in coordination and control of swarms

are usually analyzed with Lyapunov or Lyapunov-like functions ([63, 101, 42, 36, 17]). The

Lyapunov functions may also be utilized in the controller design stage, e.g. [102]. Beside

the Lyapunov-based ones, there exist some other nonlinear control and mathematical tools

i.e. separation - separation and separation - bearing controllers [45, 78, 79], the concept of

virtual leader [38, 103, 37], continuous switching [37] employed in the swarm coordination

and control literature. Furthermore, there exist a number of other studies in the literature

on applications of various nonlinear control frameworks, such as neural networks, dynamic

inversion, backstepping, adaptive control, output regulation etc. ([104, 105, 106, 27, 107]).

Another common approach for coordinating groups of robots is the behavior based approach.

One of the first studies using behavior based approach is the work by Reynolds [9]. In a

15

more recent study in [10] Balch and Arkin present and evaluate a reactive behavior based

approach for formation stabilization of line (robots traveling in a line parallel to each other),

column (robots traveling behind each other), diamond (robots traveling in a diamond shaped

formation), and wedge (robots traveling in a ”V“ shaped formation). They also integrate

the formation behaviors with other navigational behaviors such as avoiding collisions with

obstacles and other robots, reaching goals/targets, etc. The algorithms developed by authors

includes three main techniques: Unit Center Referencing, Leader Referencing, and Neighbor

Referencing. The line formation (robots traveling in a line parallel to each other) is one

of the behaviors achieved with feedback linearization techniques in polar coordinate frame

dynamics of agents, in this thesis study.

Behavior based approaches have also been used for studying aggregation strategies in swarm

robotic systems in [75] and Bahçeci and Şahin in [76]. In [75] three basic behaviors namely,

approaching, repelling, and waiting together with obstacle avoidance are defined and a finite

state machine with different probabilities for the switching between these behaviors is utilized.

The cyclic pursuit and orientation agreement behaviors in this thesis study also include the

finite state machine models for switching between similar behaviors.

Multi-agent dynamic systems in general act in asynchronous manner since they are naturally

distributed systems. It is difficult to implement synchronous motion in multi-agent systems.

In fact analysis of asynchronous systems is more difficult with respect to the synchronous

ones. Therefore, many of the models and approaches in the literature consists synchronous

models and controllers. For example the flocking behavior of multi-agent systems are mod-

eled to work synchronously in many of the studies. On the other hand there have been some

studies [71, 21, 22, 23, 72] on the asynchronous modeling of multi-agent systems as well. The

work in [71] considers the asynchronous convergence of a linear swarm to a synchronously

achievable configuration in the reconfiguration of patterns problems. In this study a sufficient

condition for the asynchronous convergence of a linear swarm to a synchronously achiev-

able configuration is proven to exist. In [21, 22, 23] the stability of one-dimensional and

M-dimensional asynchronous swarms are studied. In [72] Beni shows that asynchronous

swarms may converge in cases in which synchronous swarms may not and that achieving

an order from disordered actions is a basic characteristic of swarms and states that ”swarms

may undergo a transition from non-convergence to convergence as their degree of partial syn-

chronicity diminishes”. A study on the aggregation problem is performed in [73] with agents

16

that are anonymous, homogeneous, memoryless, and lack communication capabilities. In a

similar study in [74] the authors showed that asynchronous autonomous agents which have

limited visibility and no memory, would gather at the same location in finite time provided

that they have a compass. In [23], authors consider asynchronous swarms in one-dimensional

space with different rules for inter-individual interactions, and using results on contractive

mappings developed for parallel and distributed computation in computer networks in [92],

show that swarm stability or convergence to a comfortable position will be obtained under

assumptions of the sector boundedness of the attraction/repulsion function and total asyn-

chronism in the motion of the agents. Similar approach is taken also in [108] for showing

convergence of asynchronous cyclic pursuit. Some part of this study is also presented in this

thesis. Some other recent empirical studies on the flocking behavior of asynchronous multi-

agent systems are the works in [109, 110]. In [109], the effects of the level of asynchronism

and size of neighborhood on the clustering performance of a swarm of self-propelled particles

are studied. In [110], on the other hand, rotation angle restrictions (a type of non-holonomic

constraint) are imposed on the self-propelled particles and their effect on the performance

of the system is investigated. In the chapters considering the cyclic pursuit and orientation

agreement problems, the asynchronism in the multi-agent dynamic models are also investi-

gated with analytical and simulation based methods.

Lastly, there are probabilistic approaches in the swarm behavior modeling literature. An

example work on this approach from the biological literature is in [111] where a general con-

tinuous model for animal group size distribution is presented. Also an interesting comparative

study is in [112], where authors compare four different approaches to modeling the dynamics

of spatially distributed systems by using three different examples, each with different realistic

biological assumptions. They show that the solutions of all the models do not always agree,

and argue in favor of the discrete models. The studies [113, 114, 115] from the swarm robotics

literature considers probabilistic models in aggregation behaviors of swarms.

1.3 Scope of the Thesis Study

In this thesis study, the agent dynamics are modeled as higher level dynamics (kinematics)

simply described in (1.4). The controllers are developed for the proof of concept and they do

not include the agent kinetic models. Agents are traveling in 2-D space in all of the models in

17

the study. This is preferred for their application on mobile ground vehicles.

The study starts with one of the most simple swarm behavior, cyclic pursuit (Chapter 2). The

agent i follows the next indexed agent i + 1, and the last agent (n’th agent), follows the first

one (i’th agent). The contribution of the study is the examination of asynchronism between

agents. The study resulted in the proof of convergence of the swarm behavior under finite

asynchronism. Furthermore, some simulation and experimental results are presented.

In the next Chapter (3), the orientation agreement problem is studied. Three different agree-

ment strategies are developed and compared in this Chapter. The analytical and simulation

based results are presented and discussed.

The proportional controllers for the speed and angular velocity of the agents for achieving

approaching and circling behavior around a static target and approaching to the line passing

through the target with a pre-specified orientation are developed in Chapter 4. The Lyapunov

stability analysis are performed for the proposed controllers and the results are validated by

simulations.

The circling and line following behaviors are investigated; furthermore, in Chapters 5 and 6.

The controllers are first developed for single agents with feedback linearization techniques.

Then, they are redesigned for multi-agent systems. The chapters include SISO, MIMO and

Multi-agent system controllers and their validations via simulations.

The discussions and future directions belonging to each chapter are given at the end of chap-

ters.

In the appendix, we present the experimental set-up developed for the practical application of

controller strategies. The set-up structure (E-puck robots, camera, software etc.) is presented

in this part of the study.

18

CHAPTER 2

Asynchronous Cyclic Pursuit

In this part of the thesis study, we focus on the problem of a multi-agent system performing

cyclic pursuit with asynchrony in motion and sensing. Cyclic pursuit behavior had been

studied in detail in the literature. However, these studies mostly focus on the assumption that

the agents are somehow synchronized.

The very first scientist worked on the mathematics of pursuit curves was the French scientist

Bouguer (c. 1732) [116]. In 1877, Lucas asked what trajectories would be generated if three

dogs, initially placed at the vertices of an equilateral triangle, were to run one after the other?

Brocard showed that each dog’s pursuit curve would be that of a logarithmic spiral and that

the dogs would meet at a common point (Brocard point) [116]. Klamkin and Newman [117]

showed that, three bugs in cyclic pursuit which are not initially collinear, will meet at a point

and this meeting will be mutual. Behroozi and Gagnon [118] later on proved that if all the

bugs have the same speed and a nonmutual capture occurs, then this capture should be a head

on collision. Richardson [119] showed that for the n-bugs problem, the head on collision is

possible even for non-collinear initial positions but the probability of this collision is zero

if the initial positions of the bugs are determined due to a smooth probability distribution.

Similarly, Bruckstein, Cohen, and Efrat [120] considered a deterministic continuous pursuit

in cyclic order and with preassigned varying speeds.

A study on the aggregation problem is performed in [73] with agents that are anonymous,

homogeneous, memoryless, and lack communication capabilities. In a similar study in [74]

the authors showed that asynchronous autonomous agents which have limited visibility and

no memory, would gather at the same location in finite time although they are totally asyn-

chronous in their actions, computations, and movements, provided that they have a com-

19

pass. A systematic analysis of probabilistic aggregation strategies in swarm robotic systems

is presented in [75], which considers four basic behaviors of the agents -obstacle avoidance,

approach, repel, and wait- for aggregation. Similarly, in [76], the effects of different evolu-

tionary parameters on the performance and scalability of system are studied.

A particular version of pursuit problem is studied in [121] for a system of n wheeled vehicles

which are subject to a single nonholonomic constraint. The study provides a full stability

analysis for the special case when n = 2 and how the global behavior of the system can be

shaped through appropriate controller gain assignments. The same authors showed in [122]

that the equilibrium formations of the system are generalized regular polygons and studied

the local stability of these equilibrium polygons. The authors extend their work by study-

ing the stability of equilibrium formations for multiple unicycle systems in cyclic pursuit in

[123] and provide a complete local stability analysis for the general case n ≥ 2. The study

of Lin, Broucke, and Francis [124] is similar to these in means of the convergence of agents

under certain conditions. The problem of gathering to a point is studied by several researchers

within different contexts and under different names such as synchronization, consensus seek-

ing, rendezvous, and others [64, 63, 125, 126, 127].

In our study we use a finite state machine to describe the sequence of behaviors of each

agent and a discrete asynchronous mathematical model on a higher-level. After presenting

the proof of convergence for synchronous cyclic pursuit model, we analyze the properties of

the asynchronous model. Finally, we provide some numerical simulations to illustrate the

results of the study.

2.1 Asynchronous High-Level Model

Consider the architecture shown in Figure 2.1 which consists of three behaviors: wait, sense

and compute, and move. During the sense and compute behavior the ith agent gets (measures

or receives by other means) the relative position of the i + 1th agent and computes its own

next desired position or way-point. During the move behavior the ith agent moves towards the

computed way-point. During the wait behavior, the agent doesn’t move or basically stays in

place. These behaviors are arbitrated by using a finite state machine (FSM) in an infinite loop

and in the sequence shown in Figure 2.1.

20

Since here we are concerned with cyclic pursuit the computed next positon of the ith agent is

always towards the sensed position of the i + 1th agent and during the move state the agent

moves towards this way-point. We assume that each agent has a low level control which

guarantees that the agent reaches the computed way-point in a finite time. We are not con-

cerned with the low level dynamics and how the low-level control is implemented. Therefore,

the analysis below is applicable for many systems with variety of different low-level vehicle

dynamics including heterogenous swarms/systems (i.e. swarms consisting of more than one

type of agents). Moreover, we ignore the issue of collisions between the agents. The resulting

sequence of behaviors can be summarized as: Move towards the pursued agent. Wait for a

predetermined time interval. Then sense the location of the next agent and move again to-

wards that agent. In this system we assume that the agents are ordered from 1 to n. Agent i

Figure 2.1: Finite State Machine Model

pursues agent i + 1 modulo n. In other words, the last (nth) agent pursues the first one. The

agents are assumed to move in 2-D space and the position of the agents is given by

zi(t) = [xi(t), yi(t)]T ∈ R2, i = 1, 2, ..., n (2.1)

Note, however, that this is not a critical assumption and the results developed will be valid

also for zi(t) ∈ Rm (m = 1, 2, ...) for a finite positive integer m.

Recall that during the sense and compute behavior the ith agent gets the position of the i +

1th agent and then computes its own next desired position or way point. However, during

these sensing and computing processes of the ith agent the i + 1th agent may be in its move

state and therefore, the measured position of the next agent may be outdated. Moreover,

the measurement of the position of the next agent may itself incure some delay. Whether

ultrasonic, infrared or other type of sensors are used the propagation delay of the signals

may lead to measurement of old (outdated) positions. Similarly delay will be also present

even if the positions are obtained by inter-agent communication or by other means such as

global positioning system. Therefore, the modeling of the dynamics of agents in cyclic pursuit

21

should be designed including the position sensing delays. Referring to this phenomena we

introduce the variables τi+1(t) which satisfy 0 ≤ τi+1(t) ≤ t in order to represent the delay in

the position measurements. In other words, we assume that at time t agent i knows zi+1(τi+1(t))

instead of the actual zi+1(t) about the position of agent i + 1. In other words, zi+1(τi+1(t)) is

the perceived position of agent i + 1 by agent i at time t. Also since each agent operates

on its own local clock following the state machine cycle on Figure 2.1 without a need for

synchronization with the other agents, we introduce a set of time indices T i, i = 1, 2, ..., n, at

which the agent i updates its way-point zi. It is assumed that at the other instances the agent i

does not perform way-point calculation (it might be in one of other states/behaviors at these

time instants). With these in mind the “high-level” dynamics of each agent can be represented

as

zi(t + 1) = (1 − p)zi(t) + p zi+1(τi+1(t)), t ∈ T i (2.2)

zi(t + 1) = zi(t), t < T i

where p is the gain satisfying 0 ≤ p ≤ 1 and as mentioned above the variables τi+1(t), i =

1, . . . , n, are used to represent the time index of the position information of the i + 1th agent.

These variables satisfy 0 ≤ τi+1(t) ≤ t for all t ∈ T i and for all i. If agent i has not yet obtained

any information about the i+ 1th agent’s position and still has the initial position information,

then τi+1(t) = 0 whereas τi+1(t) = t means that agent i has the current position information

of the i + 1th agent. The difference between the current time t and the value of the variable

τi+1(t) is the delay occurring due to the sensory, computing and/or communication processes

or other reasons.

In equation (2.2), the elements of the set T i ⊂ {0, 1, 2, ...} are the indices of the sequence of

ordered physical times T = {t0, t1, t2, . . .} similar to the times of events in discrete-event sys-

tems where ti < ti+1 are the time instants at which the events in the system occur. The times ti

do not need to be equally spaced, i.e., the intervals ti+1 − ti do not have to be equal. Referring

to the FSM model in Figure 2.1 during the time interval between two subsequent indices of T i

the agent performs its move, wait, and sense and compute behaviors. As expected the comple-

tion of the sequence of the behaviors may take different time intervals for different agents and

for the same agent at different steps. For instance the distance of the way-point of the agents

may change at each step and so the move states may last for different amounts of times. Since

behaviors of agents last for different time intervals, each agent has its own time set, T i and

these time sets are independent. However, it is possible to have T i ∩ T j , ∅ for i , j which

22

means that sometimes two or more agents may update their state simultaneously. Note that

the set T i is needed only for analysis purposes and in order to implement the iteration in (2.2)

it is not required for the agents to know it. Similarly, the agents do not need to know neither

the sets T i nor the set of physical times T . Therefore, there is no need for a global clock or

means for synchronization for implementing equation (2.2) and each agent can operate based

on its internal logic and using only its local clock without a need for synchronization. Before

analyzing the convergence performance of this proposed asynchronous model, we will focus

on the synchronous case in the following section, after which the asynchronous case will be

analyzed in detail.

2.2 Convergence Under Total Synchronism

In this section we assume that the agents are synchronized and analyze the systems behavior

based on this assumption. From practical point of view synchronism is hard to implement

in swarm of individual agents with decentralized control since each agent has different du-

ration of states. Still we analyze the convergence of the synchronous case because later in

the following section we will use the results from this section to establish the stability of the

asynchronous case. We start with the assumption of no delay in the position information. In

particular we assume that τi+1(t) = t for all i and that T i = T = {0, 1, ...} for all i. In other

words, all of the agents will move at the same time instants and each one knows the current

position information of the agent it pursues. With respect to this assumption the dynamics of

the model become

zi(t + 1) = (1 − p)zi(t) + p zi+1(t) (2.3)

Writing these equations in matrix form we obtain.

z(t + 1) = Az(t) (2.4)

where z(t) = [z1(t) z2(t) . . . zn(t)]T ∈ Rn×2 and

A =



1 − p p 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . p

p 0 . . . 0 1 − p


23

The stability of equation (2.4) depends on the eigenvalues of A. All eigenvalues of the state

matrix A should lie within the unit circle. To show that this is the case we will use a result

from matrix theory. In particular, we will use Gerchgorin’s Theorem [128] which we present

below for the convenience of the reader.

Gershgorin’s Theorem Let An×n = [ai j], and let

Ri(A) ≡
n∑

j=1, j,i

|ai j|, 1 ≤ i ≤ n (2.5)

denote the deleted absolute row sums of A. Then, all the eigenvalues of A are located in the

union of n discs
n∪

i=1

{z ∈ C : |z − aii| ≤ Ri(A)} ≡ G(A)

where C denotes the complex plane.

Therefore, for an n × n square matrix A, n circles can be drawn with centers at the diagonal

elements of A, i.e., aii, i = 1; 2; ...; n and with radius of each of the circles equal to the sum

of the absolute values of the other elements in the same row, that is,
∑
j,i

|ai j|. Such circles are

called Gershgorin’s discs. Then all the eigenvalues of A lie in the region formed by the union

of all the n discs. From Gershgorin’s Theorem we know that all the eigenvalues of the matrix

A in (2.4) are located within discs centered at (1 − p) and having radius p. Then as seen in

Figure 2.2a the vector of points, s in the smaller circle can be formed as s = (1 − p) + αe jθ

where α ≤ p is the distance of the eigenvalue to the Gershgorin’s disc center. Then it can be

shown that |s| = (1 − p)2 + α2 + 2(1 − p)α cos(θ). Moreover, since α ≤ p we have

(1 − p)2 + α2 + 2(1 − p)α cos(θ) ≤ (1 − p)2 + p2 + 2(1 − p)p cos(θ)

and if p ≤ 1 then (1− p)2 + p2 + 2(1− p)p cos(θ) ≤ 1 and (1− p)2 +α2 + 2(1− p)α cos(θ) ≤ 1

or basically |s| ≤ 1 is satisfied. Therefore, the eigenvalues of matrix A are within the unit

circle if p ≤ 1. The circles that enclose the location of eigenvalues for the values of p =

0.25, 0.50, 0.75, and 1.00 are plotted in Figure 2.2b. Note that the circle for p = 1 is indeed

the unit circle.

Another issue to note here is that one of the eigenvalues of the matrix A is always on the unit

circle at λ = 1 and the convergence point of the system depends on that eigenvalue. We can

simply show that for the n × n state matrix A in (2.4) the characteristic polynomial is

24

−1 0 1

−1

0

1

Re

Im

p = 1

p = 0.75

p = 0.5
p = 0.25

(a) (b)

Figure 2.2: (a) Gershgorin disc with center at 1 − p and radius p. (b) Gershgorin discs for
p = 0.25, 0.50, 0.75, and 1.00.

P = (1 − p − λ)n + pn(−1)n−1. Note that one of the roots of this characteristic polynomial is

always λ = (1 − p) + p = 1 (as stated above) while all the other eigenvalues are within the

unit circle. The eigenvector corresponding to this eigenvalue is α = [1 1 . . . 1]T . Now, the

solution of (2.4) can be written as

z(t) = (λ1)tα1c1 + (λ2)tα2c2 + . . . + (λn)tαncn (2.6)

where λi are the eigenvalues of A and αi are the corresponding eigenvectors and ci are arbitrary

constants which depend on the initial conditions. (Actually, since zi(t) ∈ R2, ci = [c1i, c2i] ∈

R2 are constant row vectors). Let λ1 = 1 be the eigenvalue on the unit circle while |λi| <

1 , ∀i = 2, . . . , n are the other eigenvalues. Then the solution in (2.6) will converge to:

lim
t→∞

z(t) = α1c1 = [cT
1 cT

1 . . . cT
1]T

which means that all agents will reach to the same point, c1 ∈ R2 as t → ∞.

Now based on the above convergence result of the synchronous system we will define a se-

quence of (contracting) sets which will be useful later on in the proof of the asynchronous

case. Let us define

Y(t) = {y ∈ R2|m(t) ≤ y ≤ M(t)} ⊂ R2 (2.7)

where m(t) = mini=1,...,n{zi(t)} and M(t) = maxi=1,...,n{zi(t)} where the inequality sign and the

25

minimum and maximum operators are operated elementwise. Note that the sequence m(t) is

non-decreasing and the sequence M(t) is non-increasing. In other words, we have m(t + 1) ≥

m(t) and M(t + 1) ≤ M(t) for all t. Moreover, one can show that there exists a finite µ > 0

such that m(t + µ) > m(t) and M(t + µ) < M(t) for all t. In fact it is guaranteed that a decrease

in M(t) and an increase in m(t) occurs in a few time steps. We will do the below analysis as

if m(t) ∈ R and M(t) ∈ R but similar analysis will hold also for the m(t) ∈ R2 and M(t) ∈ R2

case.

If M(t) and m(t) are not equal, (in other words, agents have not converged yet to a common

point) then M(t) > m(t). Let IM(t) = {i|zi(t) = M(t)} and Im(t) = {i|zi(t) = m(t)} denote

the sets of agents located at time t at the maximum and the minimum, respectively. Also,

denote with #(M) = |IM(t)| and #(m) = |Im(t)| the number of agents in these sets. Note that at

least one of the agents in IM(t) and Im(t) is pursuing an agent outside of its corresponding set.

Therefore, #(M) and #(m) both decrease at each step. This guarantees that M(t) will decrease

in at most #(M) − 1 steps and m(t) will increase in at most #(m) − 1 steps from time t. The

worst case occurs when half of the agents are at the maximum and the remaining half are at

the minimum. Then both M(t) and m(t) do not change for n/2 − 1 steps. This implies that the

interval between M(t) and m(t) contracts in at most µ = n/2 time units. Then it is clear that

Y(t + µ) ⊂ Y(t). Defining Z(k) = Y(kµ) as the sequence of contracting sets and in the light of

the preceding convergence analysis, we may write

c1 = Z ⊂ . . . Z(k + 1) ⊂ Z(k) ⊂ . . . ⊂ Z(0)

Now for every k let us define Z̄(k) such that

Z̄(k) = Z(k) × Z(k) × . . . × Z(k)︸ ︷︷ ︸
n

⊂ Rn×2 (2.8)

and note that α1c1 = Z̄ ⊂ . . . Z̄(k + 1) ⊂ Z̄(k) ⊂ . . . ⊂ Z̄(0) is satisfied. We will use these

definitions in the next section.

2.3 Convergence Analysis of the Asynchronous Model

In this section, we analyze the convergence properties of the asynchronous system. As men-

tioned before here each agent performs the behaviors at totally different time instants. For-

mally zi’s are updated at t ∈ T i where T i for each agent are independent. Moreover, the sens-

ing/measurement process may incur delays. We start with an assumption which establishes a

26

bound on the maximum possible time delay as well as guarantees uniformity in the updates

of the agents. The analysis here is based the results on parallel and distributed computation in

[92].

Assumption 1 There exists a positive integer B such that

(a) For every i and every t ≥ 0, at least one of the elements of the set {t, t + 1, . . . , t + B − 1}

belongs to T i.

(b) There holds t − B < τi+1(t) ≤ t ∀i t ≥ 0, t ∈ T i

Assumption 1 is a fairly realistic assumption since in any practical system the measure-

ment/communication delays must be bounded. If an agent is unable to receive information

for an unbounded amount of time from its neighbor which it tries to pursue, then it may not

be able to follow/pursue it and the pursuit behavior looses its meaning. Similarly, in order

for the system to work properly every agent should be able to move to its next way-point and

complete the cycle in Figure 2.1 in a finite amount of time. Note, however, that the agents do

not need to know the value of B.

Theorem 2.3.1 For the multi-agent system in cyclic pursuit described by the equation in (2.2)

under Assumption 1 as t → ∞ the positions of all the agents will converge to a common point

or basically

lim
t→∞

zi(t) = c ∀i = 1 . . . n (2.9)

where c is some constant.

Proof. Given time tk ∈ T such that zi(t) ∈ Z(k) for all i = 1, 2, ..., n and t ≥ tk, we will show

that there exists a time tk+1 such that zi(t) ∈ Z(k+1) for all i = 1, 2, ..., n and t ≥ tk+1. Therefore,

let us assume that there exists a time tk ∈ T such that zi(t) ∈ Z(k) for all i = 1, 2, ..., n and t ≥ tk

. Consider agent i; from the asynchrony we know that there may be time delay in sensing the

position of agent i + 1 by agent i. Therefore, even though zi+1(tk) ∈ Z(k), it might be the case

that, zi+1(τi+1(tk)) < Z(k). However, by Assumption 1, the delay in the position information

update is bounded by B steps. Therefore, at time tk we have

tk − B < τi+1(tk) ≤ tk ∀i tk ≥ 0, tk ∈ T

Furthermore, for all t ≥ t1 = tk + B and for each agent i = 1, 2, ..., n it is guaranteed that

tk < τi+1(t) ≤ t ∀ t ≥ t1,

27

implying that

zi+1(τi+1(t)) ∈ Z(k) ∀ t ≥ t1

Recall also from Assumption 1 that the update of the positions of each agent is subject to the

delay which is at most B steps. Then at time t2 = t1 + B = tk + 2B, all the agents will have

updated their position information. If the agent is at maximum and not pursuing an agent at

maximum, then zi(t2) will decrease and if the agent is at minimum and not pursuing an agent at

minimum, then zi(t2) will increase. Therefore, if there are at most one agent at each maximum

and minimum, then from the result for the synchronous case in the preceding section, the

position set will contract, implying Z(t2) ⊂ Z(k). However, recall the worst condition of

agent topology in the synchronous convergence problem; the position sets were to converge

in at most µ = n/2 amount of steps. Applying this worst condition for the synchronous case

together with the discussion above, we find that the position sets are guaranteed to contract

in at most 2µB steps. Let us define tk+1 = tk + 2µB = tk + nB. Then it is guaranteed that

zi(t) ∈ Z(k + 1) ⊂ Z(k) for all t ≥ tk+1 = tk + 2µB. Since at the initial state we have

zi(0) ∈ Z(0) ∀i = 1, 2, ..., n the induction is complete. Then using the result above we have

c = Z ⊂ ... ⊂ Z(k + 1) ⊂ Z(k) ⊂ ... ⊂ Z(0)

which implies the convergence of agents to a common point, c ∈ R2. �

2.4 Simulation Examples

We simulated the cyclic pursuit for 5 agents. We performed simulation for both the syn-

chronous and asynchronous cases in order to see the differences between the two cases and in

particular the effects of asynchronism. The initial positions of agents are

S = {(7, 2), (−4, 6), (−9,−4), (−2,−7), (4,−6)}

The gain p for the updates is selected to be p = 0.05. In the synchronous case the agents con-

verge to Z f = [−0.8750,−1.8365] after sufficiently long simulation interval. The trajectories

of the agents are shown on Figure 2.3a. For the asynchronous case we used the same initial

positions of agents and gain (p) value. In order to achieve asynchronism in simulation and

also to simulate the delays in sensing and processing we integrated a probability mechanism

that decides whether to update the position information of the i+1th agent in the system. In the

28

following simulation sample the probability of update is chosen to be % 20. The result of the

simulation for this case is on Figure 2.3b. The agents converge to Z f = [−0.2565,−1.9317].

The convergence point in this case is different from the synchronous case, since the asynchro-

nism in the actions of agents leads to pursuing of next agent with old position information and

take the move action with some delay. This results in, a different sequence of contradicting

sets and therefore, different final position.

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

1

2

3

4

5

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

1

2

3

4

5

(a) (b)

Figure 2.3: (a) Simulation results for synchronous convergence. (b) Simulation results for
asynchronous convergence.

Moreover, in order to measure or compare the performance of these two systems we plotted

the sum of the distances between the agent positions

e(t) =
n∑

i=1

n∑
j=1, j,i

||zi(t) − z j(t)||2

in Figure 2.4 for both synchronous and asynchronous cyclic pursuits. It is seen that the syn-

chronous cyclic pursuit converges faster than the asynchronous one. This is an expected result

when we consider the delays in actions and position sensing of agents during asynchronous

pursuit. Although not shown in Figure 2.4 e(t) converges to zero in the asynchronous case as

well.

Note that in the implementation here the value of the probability of update and sensing dictates

the value of B. As this probability decreases the value of B increases and this decreases the

speed of convergence.

29

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

time steps

e(
t)

Synchronous
Asynchronous

Figure 2.4: Convergence performance of synchronous and asynchronous pursuits.

2.5 Experimental Examples

Here we present the experimental result obtained using the set-up described in Appendix

A. The experiment is performed for testing and verification of the problem of cyclic pursuit

of a swarm of agents. We assumed that the agent dynamics are arbitrated by a finite state

machine (FSM) with a sequence of the behaviors: Move towards the pursued agent; Wait for a

predetermined time interval; then sense the location of the next agent and move again towards

that agent. As a difference from this procedure, in the experimental application the agents

were programmed so that they do not stop at the wait state, they continue to travel at the last

velocity and orientation. In the simulations we assumed that each agent has a low-level control

which guarantees that the agent reaches the computed way-point in a finite time. However,

for the experimental application we had to implement such a low-level controller which will

guarantee that the robot moves between two subsequent way points and had opportunity to

observe low-level dynamics in the resulting behaviors as well.

In Figures 2.5 and 2.6 the results obtained for the cyclic pursuit of 5 E-puck robots in our

set-up are shown. Comparing the Figures 2.3b and 2.5, we observe that the analytical and

simulation based results are also verified by the experimental results. The frames at 1, 100,

150, and 195 time steps are shown in Figure 2.6. The robots are spread away at the beginning

of the simulation. Each robot follows its leader and travels on spiral like path shown in

Figure 2.6. At the end they converge to each other. Note that in these video frames there are

additional virtual geometries drawn on and between the robots virtually. The lines show the

connection between the follower and the leader. The colored dots on the robots show the left,

30

right, and heading points of the robot hats as mentioned in Section A.3.

100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

x [pixels]

y
[p

ix
el

s]

Path of 5 robots in Cyclic Pursuit

Figure 2.5: Path of 5 E-puck robots in cyclic pursuit obtained in the set-up.

Figure 2.6: Cyclic Pursuit of 5 robots.

2.6 Conclusions

In this study we showed the convergence of the positions of n agents in cyclic pursuit with

asynchronous dynamics to a common point. We assumed that the agents perform fundamen-

tal behaviors modeled by a finite state machine consisting of wait, sense and compute, and

move states. To reach the proof of convergence of asynchronous pursuit we started with the

convergence of synchronous cyclic pursuit. Then using the result for the synchronous case

we showed that the asynchronous system will converge as well, despite the asynchronism and

the time delays.

31

It is claimed that if convergence to a point is feasible, then more general formations are

achievable as well [124]. However, it is not clear whether its possible or not to achieve

convergence to any geometric formation using cyclic pursuit under asynchronism and time

delays and this needs to be investigated further.

32

CHAPTER 3

Orientation Agreement Problem

3.1 Introduction

In this study, we compare three different orientation agreement strategies of multi-agent/particle

systems under different conditions. Since in nature and in robotic applications the autonomous

agents mostly act asynchronously, a model based on asynchronous actions of agents would

be more realistic and implementable. Hence, in this study (based on our previous works [109,

129]) we will develop an asynchronous version of the model developed by Vicsek [56] (with-

out the additive noise) and investigate the effects of asynchronism in the coordination of agents

striving to travel with a common heading. We consider 3 different orientation rules (rules

of dynamics to achieve a common heading) and compare the behavior of the self-propelled

particle systems for these three different rules. Furthermore, we consider the effect of restrict-

ing the maximum turning angle of the particles and perform simulations for bounded and

unbounded regions. We perform extensive simulations with many different initial conditions.

Moreover, in the discussions section we provide some analytical explanations for the obtained

simulation results.

Recently there have been some articles on extending the works in [63, 64, 65] to systems with

time delays or systems operating asynchronously [130, 131, 132, 133, 134]. In [130] Angeli

and Bliman provide an extension of the result by Moreau [64] by relaxing the convexity as-

sumption and allowing for a known and bounded time-delay. In [132], besides discussing the

some available results in the literature, some new results for systems/protocols with delays are

presented as well. Asynchronous motion is not considered in [130, 132]. In [131] the recent

results on synchronous consensus protocols are summarized, asynchronous protocols are dis-

33

cussed briefly, some open questions are posed , and some simulation based preliminary results

on asynchronous protocols using a custom Java based simulator are shown. The more recent

study in [133] presents some new results on the asynchronous agreement problem. No time

delays are considered in [133]. The study in [134] considers the problem of asynchronous

agreement of systems also incurring time delays and extends the results in [63, 64, 65].

Despite the fact that almost all of the above articles claim that they consider the Vicsek’s

model, in reality they consider only part of the dynamics of the model considered by Vic-

sek. The model considered is, in general, a linear averaging (or sometimes nonlinear con-

vex/contracting) agreement model that does not include the agent position dynamics which are

present in the Vicsek’s model. Then the articles investigate the agreement properties in the dy-

namics of that partial model under some artificial connectivity assumptions. However, in the

model by Vicsek the connectivity is an emergent property which depends also on the position

dynamics of the agents. Different from the studies in [62, 63, 64, 65, 130, 131, 132, 133, 134],

in this study we include also the position dynamics of the agents and study the performance

of the system for three different agreement strategies for synchronous and asynchronous cases

incurring also time delays. In addition, we impose also turn angle restrictions (a type of non-

holonomic constraint) on the agents and investigate the performance for different levels of

restrictions. For comparing the performances of the strategies we define several performance

metrics, which include not only orientation agreement of the agents but also their clustering

properties of the system. To the best of our knowledge, no study similar to this one has been

performed so far in the literature.

To summarize, we investigate the behavior of multi-agent systems utilizing three strategies

with different combinations of the following properties: (i) the multi-agent systems may be

synchronous or asynchronous, (ii) they may travel in bounded or unbounded regions and (iii)

the mobile agents may have turning speed restrictions. The agents/particles are assumed to

move with constant speed and update their orientation of motion based on three different

strategies. Based on these strategies simulations are performed and the effects on the cluster-

ing performance are investigated.

34

3.2 High Level Dynamics

We consider a multi-agent system consisting of n so called self-propelled or self-driven parti-

cles each of which, similar to the model by Vicsek [56], moves based on the dynamics

xi(t + 1) = xi(t) + v cos(θi(t + 1)) (3.1)

yi(t + 1) = yi(t) + v sin(θi(t + 1)) i = 1, ..., n (3.2)

where xi(t), yi(t) ∈ R denote the cartesian position coordinates of agent i and θi(t) ∈ R denotes

its orientation angle at time t. We assume that v is constant and equal for all agents. In other

words, we assume that all the agents move with the same constant speed in possibly different

directions (determined by their orientation angles θi). Moreover, we assume that an agent has

limited sensing capabilities and can “see” or “sense” the other agents that are within a circle

of radius δ from it and call these agents its neighbors. Furthermore, it is assumed that an

agent updates its orientation based on its current orientation and the orientation of its current

neighbors. In particular, we will utilize three different orientation rules using which the agents

will adjust their headings.

Many studies in the literature assume that the agents move synchronously and have perfect

information about the orientations of their neighbors. In other words, it is assumed that

the agents move simultaneously/synchronously and at each step they know the current posi-

tions/orientations of their neighbors. However, in real swarms this is hardly possible. Imple-

menting such dynamics will require a global clock to be shared by all the agents. Therefore,

an asynchronous model is more realistic in which each agent can move and reorient itself

independently. Moreover, usually there might be time delays in the communication/sensing

between the agents. Including such delays in the multi-agent systems will result in a more

realistic approaches. In order to achieve such a realistic model we use a higher-level asyn-

chronous model similar to the one used in [109].

For the asynchronous high level model we will refer to the study in [108] which considers

the cyclic pursuit problem with asynchronous high level dynamics. In that study a finite state

machine (FSM) is proposed for high level model. The architecture consists of three behaviors:

wait, sense and compute, and move. In our model here the agents always move in the last

updated direction with constant speed and a finite state machine works for the orientation

dynamics. Therefore, the behavior considered here can be described with the sense-compute-

35

turn and move straight states (Figure 3.1).

Figure 3.1: Finite State Machine Model

During the sense-compute-turn behavior the ith agent gets (measures or receives by other

means) the orientations of neighbor agents and computes its own next desired orientation

and turns to the computed orientation. During the move straight behavior, the agent doesn’t

turn and basically moves along its last updated orientation. These behaviors are arbitrated

by using a finite state machine, in an infinite loop as shown in Figure 3.1. As soon as the

sense-compute-turn state completed agents immediately pass to the move straight state (with

the probability of 1). However, move straight state is followed by the sense-compute-turn

state depending on some probabilistic measure or reasoning. Let the following state of move

straight state is sense-compute-turn state with probability of psct and again move straight state

with probability of 1 − psct.

We assume that each agent has a low level control which guarantees that the agent turns to

the computed orientation with the specified angular speed. We are not concerned with the

low level dynamics and how the low-level control is implemented. Therefore, the analysis

below is applicable for many systems with variety of different low-level vehicle dynamics

including heterogenous swarms/systems (i.e. swarms consisting of more than one type of

agents). Moreover, in the current study we ignore the issue of collisions between the agents.

The resulting sequence of behaviors can be summarized as:

• Turn to the computed orientation.

• Wait for a predetermined time interval.

36

• Sense the orientations of the neighbor agents and turn again in the computed orientation.

Recall that during the sense-compute-turn behavior the ith agent gets the orientations of the

neighbor agents and then computes its next desired orientation. However, during these sensing

and computing processes of the ith agent the neighbor agents may be in their sense-compute-

turn state and therefore, the measured orientations of the neighbor agents may be outdated.

Moreover, the measurement of the orientations of the neighbor agents may itself incure some

delays. Whether any type of sensors or even communication are used the propagation delay

of the signals may lead to measurement of old (outdated) orientations. Similarly delay will be

also present even if the orientations are obtained by inter-agent communication. Therefore,

the modeling of the dynamics of agents working for a common orientation problem should

be designed taking into account the orientation sensing delays. Referring to this phenomena

we introduce the variables τi
j(t) which satisfy 0 ≤ τi

j(t) ≤ t in order to represent the delay

in the orientation measurements. In other words, we assume that at time t agent i knows

θ j(τi
j(t)) instead of the actual θ j(t) about the orientation of agent j. In other words, θ j(τi

j(t))

is the perceived orientation of agent j by agent i at time t. Also since each agent operates

on its local clock following the state machine cycle on Figure 3.1 without a need for syn-

chronization with the other agents, we introduce a set of time indices T i, i = 1, 2, ..., n, at

which the agent i updates its orientation θi where the sets T i are independent subsets of the

set {0, 1, 2, ...}. It is assumed that at the other instances the agent i does not perform orienta-

tion calculation (it might be in one of the other states/behaviors at these time instants). Note

that in the synchronous model τi
j(t) = t and T i = {0, 1, 2, ...} for all t > 0 and i = 1, 2, ..., n

and j = 1, 2, ..., n. In other words, in the synchronous case all the agents have the exact and

current orientation information of their neighbors and perform updates at all time instants

simultaneously/synchronously.

We believe that the asynchronous model is more realistic (compared to the studies performed

earlier with synchronism assumption) since in real world applications (such as robots coor-

dinating to achieve a common orientation) or animal flocks (such as schooling behavior of

fishes) usually there is no synchrony between agents and time delays are also possible. In our

model we utilize the study on the relation between the synchronism and asynchronism in the

parallel computing systems in [92].

The asynchronism between the agents (i.e. robots, fish) may be at different levels due to the

37

characteristics of each agent itself or some environmental disturbance. In some multi-agent

systems the asynchrony may be negligible (leading to a synchronism assumption) and the

behavior of these systems may be computable or predictable. On the other hand, in some

systems asynchronism may drastically change the performance of the system. In these kind

of systems the behaviors of agents may be difficult to predict. Nevertheless, unbounded or

excessively long delays in the information flow or acting of the agents may result in the vi-

olation of “agent interaction” concept of multi-agent systems. In other words, it might be

difficult to view the systems experiencing unbounded or excessively long delays or systems

with agents some of which do not act for unbounded amount of time as a single multi-agent

system. This is because an agent that never performs sensing or never acts cannot be con-

sidered as a member of the group. Therefore, the level of asynchronism should be limited

in such a way that the agents still can interact and form a single multi-agent system. Hence,

here we state an assumption (as utilized in the study [108]) which establishes a bound on the

maximum possible time delay as well as guarantees uniformity in the updates of the agents.

Assumption 2 There exists a positive integer B such that

(a) For every i and every t ≥ 0, at least one of the elements of the set {t, t + 1, . . . , t + B − 1}

belongs to T i.

(b) There holds t − B < τi
j(t) ≤ t ∀i t ≥ 0, t ∈ T i

This assumption basically states that (i) every agent performs update or change in its orien-

tation in at most B time steps; (ii) the delay in sensing the orientations of the neighbors of

the agent is bounded as well by at most B time steps. This assumption in a sense restricts the

level of asynchronism in the multi-agent system. Assumption 1 is taken from [92] where it is

utilized for parallel and distributed computing systems. Systems satisfying Assumption 2 are

being referred to as partially asynchronous systems in the parallel and distribution computa-

tion literature [92].

Let

Ni(t) = { j : | j , i, (xi(t) − x j(t))2 + (yi(t) − y j(t))2 ≤ δ2}

denote the actual set of neighbors of agent i at time t and |Ni(t)| denote the number of agents

in the set Ni(t).

For the asynchronous system considering also the time delays in sensing/communication the

38

set of neighbors of agent i at time t considering the time delays can be described as

Ni(t) = { j : | j , i, (xi(t) − x j(τi
j(t)))

2 + (yi(t) − y j(τi
j(t)))

2 ≤ δ2}

where τi
j(t) represents the last instant at which agent i obtained the orientation information of

agent j during the last sense-compute-turn state. Note that during the delays in the information

gathering and computing states the neighbor agent j may leave the neighborhood region or

any other agent may enter this region.

Below we describe three different strategies for the orientation computation of the agents.

3.3 Strategies for Orientation Agreement.

3.3.1 Strategy 1 (Averaging)

This strategy is based on the averaging of orientations of neighbor agents. The new orientation

of agent i at step t + 1 is determined by the following equation.

θi(t + 1) =
1

1 + |Ni(t)|

θi(t) +
∑

j∈Ni(t)

θ j(τi
j(t))

 , t ∈ T i, (3.3a)

θi(t + 1) = θi(t), t < T i, (3.3b)

As mentioned above, we assume that at time t agent i knows θ j(τi
j(t)) instead of the actual

θ j(t) about the orientation of agent j. In other words, θ j(τi
j(t)) is the perceived orientation

of agent j by agent i at time t. Consequently, if agent i has not yet obtained any information

about the jth agent’s orientation and still has the initial orientation information, then τi
j(t) = 0

whereas τi
j(t) = t means that agent i has the current orientation information of the jth agent.

The difference between the current time t and the value of the variable τi
j(t) i.e., (t − τi

j(t)) is

the delay occurring due to the sensory, computing and/or communication processes or other

reasons. Note from Assumption 1 that t − τi
j(t) > B should be satisfied.

One drawback with the rule in (3.3a) is that it may sometimes result in directions of motion

that are not very intuitive. For example, assume that there are two agents with directions

of motion +5o and +355o. Based on the rule in (3.3a) on the next step both the agents will

turn to 180o (i.e. they will flip direction) while the intuitive direction is 0o for both. Here

we assumed that the orientation angles are defined between 0o and 360o. The situation will

39

not change if they are defined between −180o and +180o since the same problem will occur

around 180o this time. The reasons for such behavior are discussed more detailed in the

Discussions section.

3.3.2 Strategy 2 (Relative Angles)

In this strategy the agents determine their new orientations by considering the orientation

differences between themselves and their neighbors or basically the relative orientations. The

next orientation of agents is found by the following equation.

θi(t + 1) = θi(t) +
Θ

1 + |Ni(t)|
t ∈ T i (3.4a)

θi(t + 1) = θi(t), t < T i, (3.4b)

where Θ is the total of differences between the orientation of the agent itself and the orienta-

tions of its neighbor agents. The orientation of an agent itself and its neighbor’s orientation

may appear in four different arrangements (Figure 3.2). Therefore,Θ is calculated considering

the four different cases with the following pseudo code.

Figure 3.2: Possible arrangements of orientation of an agent and its neighbor’s orientation

40

Table 3.1: Pseudocode for Calculating Θ

Θ = 0
FOR j ∈ Ni(t)

∆ = θ j(τi
j(t)) − θi(t)

IF ∆ ≤ π OR ∆ ≥ −π (CASE 1 OR 3)
Θ = Θ + ∆

ELSE IF ∆ > π (CASE 2)
Θ = Θ + ∆ − 2π

ELSE IF ∆ < −π (CASE 4)
Θ = Θ + ∆ + 2π

END
END

where θi(t) ∈ [0, 2π) ∀i, t. This pseudo-code is also equivalent to the equation

Θ =
∑

j∈Ni(t)

mod(θ j(t) − θi(t) + π, 2π) − π, (3.5)

The rule in (3.4a) is more intuitive compared to rule (3.3a) since it considers the relative

orientations and always chooses the smaller angle. However, it may also have problems in

cases of some symmetries. For example if three agents are oriented such that the orientation

difference between each pair is 120o, they will continue their motion with their previous

orientations and will not achieve orientation agreement. The details of such behavior are also

discussed in the Discussions section.

3.3.3 Strategy 3 (Vector Sum)

Strategy 3 is based on the vectorial sum of unit vectors that lie along the orientations of agents.

Let ri denote the unit vector in the direction of motion of agent i. Then the orientation rule

becomes

θi(t + 1) = angle

ri(t) +
∑

j∈Ni(τ j(t))

r j(τi
j(t))

 , t ∈ T i (3.6a)

θi(t + 1) = θi(t), t < T i, (3.6b)

41

where angle(υ) is the function that returns the angle of any given vector υ. In implementations

it can be computed by using the atan2(Py, Px) function where Px and Py are the components

of the computed vector on the right hand side of (3.6a) along the x and y directions, respec-

tively.

For instance in Figure 3.3 we see the calculation of new orientation, θi(t + 1) of ith agent with

only one neighbor (j).

Figure 3.3: Orientation rule of Strategy 3 for only one neighbor (j) of agent i.

Rule (3.6a) is another intuitive rule that is used in determining the agent directions. However,

as was the case with rule (3.4a) it may be difficult to decide the next orientation using rule

(3.6a) in some cases with symmetry. However, these cases have very low probability in a

swarm of many agents. In implementation if such a case occurs one may choose the turning

direction randomly until the symmetry is broken. The limitations of Strategy 2 and 3 in cases

of symmetries and the drawback of Strategy 1 explained in section 3.3.1 are investigated in

more detail in the Discussions section.

3.4 Turn Angle Restrictions

As discussed above in this study we assume that the agents update their orientation based on

their own orientation and the orientation of their neighbors. In this section additionally we

assume that there is a restriction on the maximum possible turning angle of the agents due

to mechanical or physical reasons. Therefore, the dynamics of the orientation angles of the

42

agents are given by

θi(t + 1) = θi(t) + min (abs(ϕi(t)), α) × sign (ϕi(t)) , t ∈ T i, (3.7a)

θi(t + 1) = θi(t), t < T i (3.7b)

where α is the maximum possible turn angle per step and ϕi(t) is the desired turn angle which

is computed at time t by using one of the three strategies given above. Due to (3.7a), during

an update ith agent can turn at most the angle α in the direction of ϕi(t) (clockwise or counter

clockwise).

Adding the turn angle restrictions we can rearrange the rules of the previous three strategies

for computing ϕi(t) as

For Strategy 1

ϕi(t) =
1

1 + |Ni(t)|

θi(t) +
∑

j∈Ni(t)

θ j(τi
j(t))

 − θi(t), t ∈ T i (3.8)

For Strategy 2

ϕi(t) =
Θ

1 + |Ni(t)|
t ∈ T i (3.9)

where Θ is calculated by the pseudo code given in section 3.3.2.

For Strategy 3

ϕi(t) = angle

ri(t) +
∑

j∈Ni(τ j(t))

r j(τi
j(t))

 − θi(t), t ∈ T i (3.10)

We would like to emphasize here that having turn angle restrictions is a very realistic assump-

tion since most real agents will have such constraints. However, such restrictions have not

been considered in the literature so far.

3.5 Simulation Results

We simulated the motion of n = 50 agents. Initially the agents are located in a square region

of size 100 × 100 units and the constant speed of all of the agents is set to 1 unit/step. The

simulations are performed for T time steps (T = 500 for unbounded region and T = 1000 for

bounded region). The agents perform updates depending on a stochastic function of B. The

43

probability of update of an agent is distributed along the interval t ∈ (t − B, t] such that it is

1/(B−Ω+1) where Ω is the number of steps that the agent has not performed an update since

the last update. In other words, if the agent has just performed an update in the previous step

the probability that it will perform an update again is 1/B, whereas if it has not performed

an update for 3 < B steps then its probability of update is 1/(B − 2) If the agent has not

performed an update for B time steps then its probability of update becomes 1. At each time

step at which the agent does not perform an update the value of Ω is incremented by 1 and

at each time step the agent performs an update the value of Ω is reset to zero. Note that this

implementation is not a real discrete event based asynchronous system. Instead it mimics such

systems and is sufficient for illustrating/verifying the performance of the asynchronous system

discussed in this study. The initial positions and orientations of agents are generated randomly

and for each simulation the same initial conditions are utilized. We provide 20 simulation

results performed for different initial conditions generated randomly and present the mean

and variance of the results. The algorithm performing these steps is presented in table 3.5. In

order to measure the performance of the system we used the following performance metrics

ed(t) =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

||zi(t) − z j(t)||, t ≥ 1

eθ(t) =
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

||θi(t) − θ j(t)||, t ≥ 1

ėθ(t) =
1
n

n∑
i=1

||θi(t) − θi(t − 1)||, t ≥ 2

where zi(t) = [xi(t), yi(t)]T is the position vector of agent i. Basically ed(t) is the average

distance between the agents, and eθ(t) is the average of orientation differences between the

agents, and ėθ(t) is the average rate of change of orientation of the agents at time t. The fourth

performance metric is the number of clusters formed by the agents. A cluster is defined as the

group of agents which are connected to (meaning are neighbors of) each other either directly

or indirectly through other agent. (Note that agents i and j belong to the same cluster at time

t if ||zi(t) − z j(t)|| ≤ δ). As ed(t) gets lower, the agents get closer to each other which implies

that the multi-agent system performs better in clustering. The metric, number of clusters is

also a performance criterion in determining the success of clustering of agents. Note that

as the number of clusters decrease or size of clusters increase (resulting in lower ed(t)) the

number of agents traveling with the same heading increases. Therefore, if the performance in

clustering is better, then the performance in orientation agreement is also better. On the other

44

Table 3.2: Pseudocode of Simulation Steps

Draw the initial positions and orientations of agents
randomly from a uniform distribution
FOR i=1:n DO

set Ωi = 1; (Ωi is the number of steps
that agent i has not performed an update.
At the beginning Ωi is one for every agent.)

END
FOR t=1:T DO (T = number of simulation steps)
FOR i=1:n (n = number of agents) DO

prbOfUpdate=1/(B-Ωi+1);
c = randint(1,100); (Generate random integer from

uniform distribution to compare with prbOfUpdate)
IF (c≤prbOfUpdate*100) (performing update)
FOR j=1:n DO

τ = randint(t-B,t)
(τ is the random step drawn between last
step orientation updated and current step
Consider τ as the last step that agent i
received/measured the orientation of agent j)

IF agent j is neighbor of agent i
Use θ j(τ) in the computation of the new
orientation
(based on formula for the current strategy)

END
END
Ωi = 1; Set to one since the agent is updated

ELSE (No update will be performed)
Ωi = Ωi + 1; (increment number of steps

that no update performed)
No change in agent i’s orientation

END
END

END

45

hand, as eθ(t) gets lower, the agents are heading in closer orientations which means they have

better performance in orientation agreement. The agents have more steady headings if ėθ(t)

converges to zero.

We have conducted simulations in order to determine the effects of asynchronism and time de-

lays on the cluster formation by varying α (turn angle restrictions) in unbounded and bounded

regions.

3.5.1 Effect of α for Unbounded Region

Here, we compare the effects of α and asynchronism on the performances of the three orien-

tation strategies. δ is set to 20 units. Note that in all simulations B = 0 corresponds to the

synchronous case and B = 10 corresponds to an asynchronous case.

3.5.1.1 Effect of α for Unbounded Region in Synchronous model

In Figures 3.4 and 3.5 we plotted ed(t) and eθ(t) at the end of simulations (t = T = 500) versus

α values. It is seen that as the α value increases (which means that the restriction on the turn-

ing angle decreases) the values of both ed(T) and eθ(T) decrease in all strategies. The total

distance between agents is smaller for higher α values. This is an expected result when we

consider the fact that as the restriction gets weaker, the agents perform better turning motion

and therefore, they aggregate better. On the other hand, the decrease in the sum of orientation

differences eθ(T) implies that the number of agents moving with different headings decrease

and also the difference between the heading of clusters decreases, since the orientation ad-

justment becomes easier at lower turning restrictions. In Figure 3.6 we see the clustering

performance of the three strategies with varying α. As seen all strategies get better as the

turning angle restrictions get smaller.

In all Figures 3.4, 3.5, and 3.6 the first strategy has the best performance for all α values. The

second and third strategies are close to each other.

The total of rate of change of orientations of all agents at each step, ėθ(t) is plotted in Figures

3.7, 3.8, and 3.9 for strategies 1, 2, and 3, respectively. In all three figures the results for

α = 1o shows lower values than the ones for α = 180o because as α gets lower the maximum

46

0 20 40 60 80 100 120 140 160 180
350

400

450

500

550

600

Mean of Total Distance Between Agents (e
d
(T))

e d(T
)

[m
]

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

50

100

Standart Deviation of Total Distance Between Agents

α [deg]

σ

Figure 3.4: ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for syn-
chronous case and unbounded region.

possible rate of change of orientations of each agent gets lower as well. The agents having

lower α values cannot form large clusters as stated above. Therefore, they continue their

motion in relatively small clusters (there are many of them) which are spreading away. As

the clusters get out of neighborhood range of each other with different orientations then there

exits no possibility for them to change their orientations to travel with the same heading.

Therefore, in all figures, after some amount of steps ėθ(t) settles to zero implying that no

change of orientations of clusters or agents occur. Note that in Figure 3.7 for α = 1o there are

some peaks around 140th, 270th and 440th steps that means some small clusters come across.

3.5.1.2 Effect of α for Unbounded Region in Asynchronous model

Here, we present the results of simulations of the three strategies for the asynchronous case.

In Figure 3.10 and 3.11 we plotted ed(t) and eθ(t) at the end of simulations (t = T = 500)

47

0 20 40 60 80 100 120 140 160 180
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Mean of Sum of Orientation Differences (ebarθ)

e θ(T
)

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

Standart Deviation of Sum of Orientation Differences

α [deg]

σ

Figure 3.5: eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for syn-
chronous case and unbounded region.

versus α values. Like the results for the synchronous case as the α value increases the values

of both ed(T) and eθ(T) decrease in all strategies. Comparing with the synchronous case, we

can conclude that in the asynchronous case all strategies have worse performances. This is an

expected result when we consider the delays in the sense and computing states (which results

in lack of valid information about the orientations of its neighbor agents) of the agents and the

fact that the agents may not perform orientation update at each time step. These two reasons

make the performances worse. In Figure 3.12 we see the clustering performance of the three

strategies with varying α for the asynchronous agents. As seen all strategies perform better

as the turning angle restrictions get weaker. However, like the worse performances in ed(t)

and eθ(t) with respect to the synchronous case, the number of clusters for a specific α value is

worse (higher) too, for the asynchronous dynamics.

Like the synchronous case all plots in Figures 3.10, 3.11, and 3.12 show that the first strategy

48

0 20 40 60 80 100 120 140 160 180

12

14

16

18

20

22

24

26

28

30

Mean of Number of clusters at the End of Simulation

of

 C
lu

st
er

s

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Standart Deviation of Number of clusters at the End of Simulation

α [deg]

σ

Figure 3.6: The number of clusters at t = T for strategies 1 (bold solid line), 2 (solid line),
3(dash-dot line) for synchronous case and unbounded region.

again has the best performance for all α values. The performances of the second and the third

strategies are close to each other.

The asynchronous results for ėθ(t) are plotted in Figures 3.13, 3.14, and 3.15 for strategies

1, 2, and 3, respectively. As in the synchronous case all three figures show that results for

α = 1o have lower values than the ones for α = 180o due to lower maximum possible turning

angle values at each step. In all figures the amount of steps that ėθ(t) settles to zero is higher

with respect to synchronous case. Again note that since the clusters are spread away as time

passes the possibility of orientation adjustment with respect to neighbor clusters diminishes.

Therefore, the fluctuation amounts are diminishing in time. There are some out of order peaks

at the different steps that may be caused by the asynchronism in the dynamics or some clusters

come across with each other.

49

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

0.1

0.15
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.7: Total of rate of change of orientations of agents at each step for α = 1o (upper sub-
plot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 1 - Synchronous
case - Unbounded region).

3.5.2 Effect of α for Bounded Region

The simulation parameters and initial conditions used in this section are the same with those

used in the previous sections except that in this case we restrict the arena in which the agents

move. They move in a 100 by 100 square region. When an agent faces any boundary it

continues to its motion with the orientation that is the reflection of its previous orientation

just like a light beam reflects on a mirror. In the following sections again we present the

simulation results for synchronous and asynchronous cases.

3.5.2.1 Effect of α for Bounded Region in Synchronous model

The plots of ed(t) and eθ(t) are presented in Figures 3.16 and 3.17, respectively. As in the pre-

vious results we see that as the α value increases the values of both ed(T) and eθ(T) decrease

50

0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−20

−15

−10

−5

0

5

10
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.8: Total of rate of change of orientations of agents at each step for α = 1o (upper sub-
plot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 2 - Synchronous
case - Unbounded region).

in all strategies. In Figure 3.18 we see the clustering performance of the three strategies with

varying α. As seen all strategies get better in clustering as the turning angle restrictions get

smaller.

The first strategy has again best performance as seen in Figures 3.16, 3.17, and 3.18. The sec-

ond and third strategies perform close to each other. As expected, since the region is bounded

the performances of this case are better than performances of its unbounded counterpart.

Figures 3.19, 3.20, and 3.21 are the plots of the ėθ(t) for synchronous and bounded case. The

amounts of rate of changes of the orientations of the agents are very high compared to the

unbounded region results. In the unbounded region the agents settle down to some orientation

and continue with this orientation for the rest of the simulation. However, if the region is

bounded the agents have to turn (to the reflection angle) when they come across with the

boundaries. Therefore, we see some sharp peaks in the plots that resulted from the reflection

51

0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.9: Total of rate of change of orientations of agents at each step for α = 1o (upper sub-
plot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 3 - Synchronous
case - Unbounded region).

of clusters from walls. Note that during this process some of the agents come across with the

boundaries before their neighbors that they travel with the same orientations. Since the leader

agents turn to a reflection orientation, orientation strategies of all neighbor agents calculate

new orientations -different from the one they all settled down. Hence, we see that for the high

restriction of turn angles -low α value- the new orientation agreement of a cluster of agents

may take more time.

3.5.2.2 Effect of α for Bounded Region in Asynchronous model

The results of the asynchronous version of the previous bounded region simulation is pre-

sented in Figures 3.22, 3.23, and 3.24. As seen the results are similar in terms of getting bet-

ter as the turning angle restrictions weakens. Comparing the synchronous and asynchronous

results, again we find that the asynchronism leads to worse performance. Here the second and

52

0 20 40 60 80 100 120 140 160 180
400

450

500

550

600

Mean of Total Distance Between Agents (e
d
(T))

e d(T
)

[m
]

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

Standart Deviation of Total Distance Between Agents

α [deg]

σ

Figure 3.10: ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for asyn-
chronous case and unbounded region.

third strategies performs close to each other and worse than the first strategy again. More-

over, as expected since the region is bounded the performances of this case are better than

performances of its unbounded counterpart.

The last three Figures 3.25, 3.26, and 3.27 are the plots of the ėθ(t) for asynchronous and

bounded case for strategies 1, 2, and 3, respectively. As seen from the figures for α = 1 the

agreement of orientations of agents is not achieved at all. Every agent changes its orientation

due to its orientation strategy and/or facing of boundaries. The agents having α = 180o

performs better than agents α = 1o in this case but they have still worse performance compared

to the agents with synchronism assumption.

53

0 20 40 60 80 100 120 140 160 180

0.9

1

1.1

1.2

1.3

1.4

1.5

Mean of Sum of Orientation Differences (ebarθ)

e θ(T
)

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

Standart Deviation of Sum of Orientation Differences

α [deg]

σ

Figure 3.11: eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for asyn-
chronous case and unbounded region.

3.6 Discussions

In this study the initial conditions of the agents are set randomly with uniform probability in

the interval [0, 2π) since the initial orientations of agents are required not to be biased towards

any direction. In other words, the probability of an agent i starting with orientation θi1(0) ∈

[0, 2π) is equal to the probability of agent i starting with any other orientation θi2(0) ∈ [0, 2π).

Therefore, the probability distribution function of the initial orientations of the agents in the

simulations is given by

f (θ|0, 2π) =


1

2π , i f 0 ≤ θ < 2π

0, otherwise
(3.11)

Depending on the initial conditions (orientations and positions), the agents may show different

behavior for each of the three strategies. Note that, the group of agents in the neighborhood

of agent i, is in fact a sample set of the population distributed uniformly. Considering the

54

0 20 40 60 80 100 120 140 160 180

20

25

30

35

40

Mean of Number of clusters at the End of Simulation

of

 C
lu

st
er

s

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Standart Deviation of Number of clusters at the End of Simulation

α [deg]

σ

Figure 3.12: the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid line),
3(dash-dot line) for asynchronous case and unbounded region.

asynchronism of updates, the orientations of the set of agents that agent i is utilizing their

orientations in performing its orientation update is also a sample set of a uniformly distributed

set.

The following analysis is valid for only t ≥ 1. However, it is sufficient to illustrate the general

tendencies of the strategies considered in this study.

In Strategy 1 (the averaging strategy), the agent in any cluster will update its orientation

according to

θi(t + 1) =
1
N

N∑
j=1

θ j(t), (3.12a)

where N is the number of the agents in the neighborhood of agent i including itself (Note that,

N is different from |Ni(t)| which we used in previous sections. In fact N includes the number

of neighbors and agent itself such that N = |Ni(t)| + 1). Recall that, the orientations of agents

55

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

0.1

0.15
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

4
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.13: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 1 - Asyn-
chronous case - Unbounded region).

at t = 1 in any neighborhood are in fact in a sample set of the uniform distribution we stated

above. Therefore, the expected value of the outcome of the averaging rule is the mean of the

uniform distribution. In other words, the expected value of the updated orientations for t = 1

(initial step) is

E[θi(t + 1)] = µ =
2π + 0

2
= π (3.13)

This shows that the agents utilizing the first strategy will tend to orient themselves towards

or basically to agree upon an orientation close to π where the orientations of agents are dis-

tributed uniformly in the previous state (t = 1 in this case). In other words, the agents cal-

culating their new orientation based on the averaging strategy (Strategy 1) will have a bias

towards the angle π. This fact will not change even if the topology is not fully connected or

synchronous or there are time delays or turn angle restrictions in the system. This is because

taking convex combinations between a set of values (and that is what exactly the averaging

rule does) cannot lead to values outside the initial set. Therefore, for any subgroup in the

56

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

0.1
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

15
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.14: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 2 - Asyn-
chronous case - Unbounded region).

swarm the bias will be towards the initial average orientations of the group and as the number

of the members in the group increases or the groups join or disjoin this average will tend to

be closer to π. In fact we have noticed in the simulations that the flocks for the first strategy

always tend towards the left of the screen (which is the expected result based on the discus-

sions above). The reason for the drawback/shortcoming of flipping directions in this strategy

(mentioned before) is exactly due to this tendency towards π. Note also that the averaging

strategy uses global orientations. In other words, for its implementation all the agents need

to have means to measure global orientations (e.g., each of them needs to have a compass)

and they have to agree a priori on a global reference frame (i.e., the compasses have to be

calibrated properly). We believe that this is the main reason for the better performance (faster

convergence) of the first strategy. The swarm under this strategy seems as a guided swarm

with global bias and the model of Strategy 1 might be suitable for such applications. However,

for many minimalist multi-agent applications it may not be possible to have global informa-

57

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

0.1
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

15
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.15: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 3 - Asyn-
chronous case - Unbounded region).

tion (i.e., a global reference frame agreed upon a priori). Therefore, for such applications it

may not be possible to implement Strategy 1 even though it converges faster.

We would like to also emphasize that if the orientations of agents were drawn from a uniform

distribution of angles which is between (−π, π] (instead of the set [0, 2π)) then the expected

value of the updated orientations would be µ = π+ (−π)/2 = 0. This means that the agents are

guided towards 0 of the global reference frame and the qualitative behavior does not change.

In Strategy 2, the agents will update their orientations according to

θi(t + 1) = θi(t) +
1
|Ni(t)|

|Ni(t)|∑
j=1

mod(θ j(t) − θi(t) + π, 2π) − π, (3.14)

where |Ni(t)| is the number of agents in the neighborhood of agent i (not including agent itself).

In equation (3.14), the part
∑|Ni(t)|

j=1 mod(θ j(t) − θi(t) + π, 2π) − π is in a sense the estimation of

function u(θ − θi(t)) = mod(θ − θi(t) + π, 2π) − π. For simplicity lets call Θ = θ − θi(t). Then

58

0 20 40 60 80 100 120 140 160 180

0

5

10

15

20

25

30

35

40

Mean of Total Distance Between Agents (e
d
(T))

e d(T
)

[m
]

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

10

20

Standart Deviation of Total Distance Between Agents

α [deg]

σ

Figure 3.16: ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for syn-
chronous case and bounded region.

u(Θ) = mod(Θ + π, 2π) − π. The expected value of u(Θ) is

E[u(Θ)] =
∫ ∞

−∞
u(Θ)

1
2π

dΘ (3.15a)

where given the fact that the (absolute) orientation angles are uniformly distributed in the

interval [0, 2π) (initial - t = 1 - orientations in this case) one can show that the probability

density function of Θ is given by

f (Θ| − θi(t), 2π − θi(t)) =


1

2π , i f − θi(t) ≤ θ < 2π − θi(t)

0, otherwise
(3.16)

The function u(Θ) is a piecewise continuous function

u(Θ) =



Θ + 2π, i f − 2π ≤ Θ < −π

Θ, i f − π ≤ Θ < π

Θ − 2π, i f π ≤ Θ < 2π

0, otherwise

(3.17)

59

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

1.2

Mean of Sum of Orientation Differences (ebarθ)

e θ(T
)

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

Standart Deviation of Sum of Orientation Differences

α [deg]

σ

Figure 3.17: eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for syn-
chronous case and bounded region.

Therefore, the expected value of u(Θ) is given by

E[u(Θ)] =
∫ −π

−2π
(Θ + 2π)

1
2π

dΘ (3.18a)

+

∫ π

−π
Θ

1
2π

dΘ (3.18b)

+

∫ 2π

π
(Θ − 2π)

1
2π

dΘ (3.18c)

One can simply show that

E[u(Θ)] = 0 (3.19)

Therefore, for the case with fully connected topology and synchronous motion, the expected

60

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Mean of Number of clusters at the End of Simulation

of

 C
lu

st
er

s

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

1

2

Standart Deviation of Number of clusters at the End of Simulation

α [deg]

σ

Figure 3.18: the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid line),
3(dash-dot line) for synchronous case and bounded region.

value of θi(t + 1) becomes

E[θi(t + 1)] = E[θi(t)] + E[u(Θ)] (3.20a)

= θi(t) + E[u(Θ)] (3.20b)

= θi(t) (3.20c)

which implies that agent i utilizing the second strategy will be tending to preserve its previous

orientation. Since agent i was chosen arbitrarily, the same will hold for all the agents, which,

on the other hand, implies that there is no global reference or bias towards which all the agents

tend to converge. This observation explains why the agents perform worse in Strategy 2

compared to Strategy 1. Note that even though Strategy 2 performs worse than Strategy 1,

it might be more suitable for many multi-agent applications. This is because first of all it

does not require agreement on a global coordinate system between the agents. Second, in

real applications in Strategy 1 the agents have to pass their global orientations to each other

61

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−300

−200

−100

0

100

200

300

400
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.19: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 1 - Syn-
chronous case - Bounded region).

by means of some kind of inter-agent communication. In contrast, in Strategy 2 the agents

can determine themselves the relative orientations (in their local reference frame) of their

neighbors by means of local sensing (without a need for inter-agent communication). In fact,

even though Strategy 1 has been inspired by natural phenomena such as the global motion of

schools of fish, flocks of birds, or swarms of bacteria or synchronization of the flushing of

fireflies [63] and has been used to explain such phenomena, it is difficult to imagine that such

natural systems operate based on global information (such as Strategy 1) and operation based

on local (relative) information (such as Strategy 2) seems more realistic or natural.

For the third strategy, the next orientation is calculated as

θi(t + 1) = angle

 N∑
j=1

r j(t)

 (3.21)

where N is the number of the agents in the neighborhood of agent i including itself and as

one can recall that r j(t) denotes the unit vector in the direction of θ j(t). Therefore, the x and y

62

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−300

−200

−100

0

100

200
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.20: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 2 - Syn-
chronous case - Bounded region).

components of unit vector r j(t) become

x j(t) = cos(θ j(t)) (3.22a)

y j(t) = sin(θ j(t)) (3.22b)

Substituting these into equation (3.21), the next orientation of agents is calculated as

θi(t + 1) = angle

 N∑
j=1

[
x j(t) y j(t)

] (3.23a)

= angle


 N∑

j=1

(x j(t))
N∑

j=1

(y j(t))


 (3.23b)

= angle


 N∑

j=1

(cos(θ j(t)))
N∑

j=1

(sin(θ j(t)))


 (3.23c)

or

θi(t + 1) = angle


 1
N

N∑
j=1

(cos(θ j(t)))
1
N

N∑
j=1

(sin(θ j(t)))


 (3.24)

63

0 100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

60
Total Orientation Speeds (B=0, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−100

−50

0

50

100
Total Orientation Speeds (B=0, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.21: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 3 - Syn-
chronous case - Bounded region).

where 1
N

∑N
j=1(cos(θ j(t))) and 1

N
∑N

j=1(sin(θ j(t))) are the estimations of means of cos(θ j(t))

and sin(θ j(t)), respectively. The expected x = cos(θi(t + 1)) and y = sin(θi(t + 1)) values of

next orientation becomes

E[x] = E[cos(θi(t + 1))] = E

 1
N

N∑
j=1

(cos(θ j(t)))

 (3.25a)

E[y] = E[sin(θi(t + 1))] = E

 1
N

N∑
j=1

(sin(θ j(t)))

 (3.25b)

To find the estimations of means of the sinusoidal functions of θ j(t) we will utilize the follow-

ing relation [135, 136]. If θ is uniform in the interval [0, 2π), the probability distribution of

α = a sin(θ + γ) is given by

f (α) =
1

π
√

a2 − α2
, −a < y < a (3.26)

Therefore, the probability distributions of y = sin(θ j(t)) and x = cos(θ j(t)) = sin(θ j(t) + π/2)

64

0 20 40 60 80 100 120 140 160 180

5

10

15

20

25

30

35

40

45

50

Mean of Total Distance Between Agents (e
d
(T))

e d(T
)

[m
]

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

10

20

Standart Deviation of Total Distance Between Agents

α [deg]

σ

Figure 3.22: ed(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for asyn-
chronous case and bounded region.

are found as

f (x) =
1

π
√

1 − x2
, −1 < x < 1 (3.27a)

f (y) =
1

π
√

1 − y2
, −1 < y < 1 (3.27b)

The estimation of x is

E[x] =
∫ 1

−1
x

1

π
√

1 − x2
dx (3.28a)

=
1

2π

√
1 − x2 |1−1 (3.28b)

= 0 (3.28c)

The same result can be found for the estimation of y as well. Hence, the expected results of

means of x and y are 0. This result states that there is no particular expected output for the

next orientation since there is no solution for θ satisfying sin(θ) = 0 and cos(θ) = 0. In other

65

0 20 40 60 80 100 120 140 160 180

0.5

1

1.5

Mean of Sum of Orientation Differences (ebarθ)

e θ(T
)

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6
Standart Deviation of Sum of Orientation Differences

α [deg]

σ

Figure 3.23: eθ(T) for strategies 1 (bold solid line), 2 (solid line), 3(dash-dot line) for asyn-
chronous case and bounded region.

words angle([0, 0]) = ∅. This result shows that there is no guided initial direction or bias for

the agents using Strategy 3. In this sense Strategy 3 is similar to Strategy 2. Therefore, as was

the case in Strategy 2, it is natural to expect that Strategy 3 as well is worse than Strategy 1

(which has a bias as towards π as one can recall). Hence, most of the comments for Strategy 2

hold for Strategy 3 as well.

3.7 Conclusions

In this study, we compared the performances of three different orientation agreement strate-

gies. We analyzed the behavior of multi-agent systems utilizing these strategies with different

combinations of the following properties: (i) the multi-agent systems are synchronous or

asynchronous, (ii) they travel in bounded or unbounded regions and (iii) the mobile agents

have various amount of turning speed restrictions. The agents try to orient themselves in the

66

0 20 40 60 80 100 120 140 160 180

2

4

6

8

10

12

14

16

18

Mean of Number of clusters at the End of Simulation

of

 C
lu

st
er

s

st1
st2
st3

0 20 40 60 80 100 120 140 160 180
0

1

2

3

Standart Deviation of Number of clusters at the End of Simulation

α [deg]

σ

Figure 3.24: the number of clusters at t = T for strategies 1 (bold solid line), 2 (solid line),
3(dash-dot line) for asynchronous case and bounded region.

same direction depending on three different interaction rules while at the same time mov-

ing with constant speed. We performed each simulation for various turn angle restrictions

to observe the effects of non-holonomic dynamics. The agents exhibit best performance in

orientation agreement in the case in which they are synchronous, holonomic and using Strat-

egy 1 and in bounded region. In general for all simulations Strategy 1 has the best agreement

performance. As discussed in the Discussion section we believe that this is mainly due to the

fact that in Strategy 1 the agents are guided (i.e. have a bias) towards angle π. We showed

that if the initial orientations of agents are drawn from a uniform distribution between [0, 2π)

the orientation updates of agents will be guided towards the angle π of global reference frame

for Strategy 1. In contrast, the orientation updates of agents utilizing Strategy 2 and 3 are

not guided towards any direction. Each of these strategies have advantages and disadvantages

(as discussed in the Discussion section). While Strategy 1 performs best in orientation agree-

ment, for implementation it needs agreement on a global reference frame and measurement

67

0 100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10

15

20
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−60

−40

−20

0

20

40

60
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.25: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 1 - Asyn-
chronous case - Bounded region).

of the angles with respect to that frame, whereas Strategy 2 can be implemented using only

relative information. For guided orientation agreement problems Strategy 1 would be a good

choice. On the other hand, for the cases where global reference frame should not result in

bias in orientations of swarms the second and third strategies are better to be utilized.

68

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−80

−60

−40

−20

0

20

40
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.26: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 2 - Asyn-
chronous case - Bounded region).

.

69

0 100 200 300 400 500 600 700 800 900 1000
−20

−10

0

10

20

30
Total Orientation Speeds (B=10, α = 1)

ed
ot

θ(t
)

[d
eg

/s
]

0 100 200 300 400 500 600 700 800 900 1000
−30

−20

−10

0

10

20

30
Total Orientation Speeds (B=10, α = 180)

ed
ot

θ(t
)

[d
eg

/s
]

time [s]

Figure 3.27: Total of rate of change of orientations of agents at each step for α = 1o (upper
subplot) and α = 180o (lower subplot) for an arbitrary initial condition (Strategy 3 - Asyn-
chronous case - Bounded region).

.

70

CHAPTER 4

Controllers for Tracking, Circling, and Line Following

4.1 Introduction

The trajectory generation and trajectory control methods for autonomous navigation of mo-

bile robots have been studied in the literature. The studies in the literature mostly utilize

a pre-generated path for tracking of mobile robots. By using these paths many researchers

achieved the robots to follow straight lines, circular or randomly generated paths. In this

study we propose new stable methods for a mobile robot to track a circular path of which

the center -considered as the target- is given. The radius of the circular path can be adjusted

by the controller parameters. We first analyze a target tracking method in relation with the

circling behavior of a mobile robot. It is shown that by using the same proportional controller

methods in determining the speed and angular velocity of robots the target tracking and cir-

cling around a target strategies can be achieved. A robot may have a target tracking behavior

until a specified distance to the target and then switch to the circling around the target behav-

ior without any external inputs. In the following sections, the mathematical background and

stability analysis are presented. The results of the analytical derivations are validated in the

next simulation study section. We lastly present the conclusions on the results of this part of

the thesis study.

4.2 Mathematical Model

Here we consider the problem of target tracking with a non-holonomic agent with dynamics

which obey the unicycle model with 3 degrees of freedom including the two translational and

71

one rotational freedom which are given by

ż1 = v cos(θ) (4.1a)

ż2 = v sin(θ) (4.1b)

θ̇ = u (4.1c)

where v is the translational speed of the agent, θ is the orientation of the agent, and u is the

controller for the angular speed of the agent. We assume that in the system there are one single

robot and a target (see Figure 4.1). We will use a gradient vector ∇G which is a function of

the agent and target positions. Moreover, we assume that if the distance between the agent

and the target is larger than a predefined desired distance the gradient ∇G points from the

agent towards the target, whereas if it is smaller than the desired distance ∇G points from

the target towards the agent. It might represent the negative gradient of an artificial potential

function which might be being utilized for attraction/repulsion purposes. In particular, the

requirements on ∇G can easily be achieved with distance based potential functions such as

considered in [17, 19, 18]. We will use a controller in which the translational speed and

angular velocity of the agent are functions of the gradient vector in the form

u = u(θ, γ) (4.2a)

v = v(∇G) (4.2b)

where γ = angle(∇G) is the angle of the gradient vector ∇G. With appropriate transformation

the dynamics of the system can be transformed into polar coordinates as (see Figure 4.1)

ṙ = v cos(θ − ϕ) (4.3a)

ϕ̇ =
1
r

v sin(θ − ϕ) (4.3b)

θ̇ = u(θ, γ) (4.3c)

where r is the distance from the origin to the position of the agent r =
√

x2 + y2 and ϕ is the

angle of the vector along r, ϕ = atan2(y, x) and θ is the steering angle (orientation) of the

agent as mentioned above.

For the time being we assume that the robot obtains the position of the target perfectly (exact

values with synchronous timing i.e., no time delay in sensing) and the target is stationary.

Consequently, the gradient vector is calculated without any errors and time delays and the

change of the gradient vector just depends on the motion the robot. Furthermore, since we

72

Figure 4.1: System model in polar coordinates.

are interested in the relative position of the robot with respect to the target, we will utilize the

dynamics in relative coordinates. The reference coordinate frame (x1-x2 frame) has the origin

on the target with parallel coordinate axes to the global coordinate frame axes. The relative

coordinates are plotted in Figure 4.2 and can be described with the equations.

ẋ1 = v cos(θ) (4.4a)

ẋ2 = v sin(θ) (4.4b)

θ̇ = u(θ, γ) (4.4c)

Again with the coordinate transformation d =
√

x2
1 + x2

2 and ϕ = atan2(x2, x1) and under

the assumption that the target is stationary the dynamics of the robot in the polar coordinates

relative to the target is obtained as

ḋ = v cos(θ − ψ) (4.5a)

ψ̇ =
1
d

v sin(θ − ψ) (4.5b)

θ̇ = u(θ, γ) (4.5c)

73

Figure 4.2: System model for relative coordinates.

4.3 Targeting and Circling Around a Target

Let us assume that the distance between the target and the agent is larger than the desired dis-

tance. As was mentioned before, for that case we design the controller such that the gradient

vector points towards the target from the robot, i.e., in the opposite direction of the
−→
d vector

in Figure 4.2. The angle of the gradient vector becomes

γ = angle(∇G) = ψ + π (4.6)

On the other hand, for the case where the robot is close to the target more than the desired

distance, the gradient angle is directed in the same direction as the
−→
d vector, and therefore,

the angle of the gradient vector is γ = angle(∇G) = ψ. We will just examine the first case

where the gradient vector is in the opposite direction of the
−→
d vector.

The angular velocity controller is selected as a proportional controller that directs the robot

towards the gradient vector. However, at this point the question is from which side to turn

towards the desired direction of motion. We choose the direction of the smaller relative angle

for that purpose. In other words, the error is defined as the smaller relative angle difference

74

for the P controller so that the robot rotates towards the smaller relative angle to attain the

direction of the gradient vector. Therefore, we utilize for the controller function u(θ, γ)

u(θ, γ) = −α [
mod(θ − γ + π, 2π) − π] (4.7)

where α > 0 is the proportional controller coefficient. Equation (4.7) includes the modulo

operator for selecting the smaller angle difference between the direction of the robot and

the gradient vector. Now substituting equations (4.6) and (4.7) into (4.5) we get the system

dynamics

ḋ = v cos(θ − ψ) (4.8a)

ψ̇ =
1
d

v sin(θ − ψ) (4.8b)

θ̇ = −α [
mod(θ − ψ, 2π) − π] (4.8c)

4.3.1 Constant Speed Controllers

If the speed v is a positive constant then the equilibrium of the system can be found as follow-

ing: equilibrium occurs at points where ḋ = 0, ψ̇ = 0, and θ̇ = 0 are satisfied simultaneously.

Then from ḋ = 0 we have

v cos(θ − ψ) = 0 =⇒ v = 0 or θ − ψ = π

2
+ kπ (4.9)

for k = 0,∓1,∓2. Similarly, from ψ̇ = 0 we have

1
d

v sin(θ − ψ) = 0 =⇒ v = 0 or θ − ψ = kπ (4.10)

for k = 0,∓1,∓2. Also, from θ̇ = 0 one can obtain

− α [
mod(θ − ψ, 2π) − π] = 0 =⇒ θ − ψ = (2k + 1)π (4.11)

for k = 0,∓1,∓2. Then from the common solution of the equations (4.9), (4.10), (4.11) one

can determine the set of equilibrium points E of the system as

E = {v ∈ R+, 0 < θ, ψ < 2π|v = 0, θ − ψ = (2k + 1)π} (4.12)

where k = 0,∓1,∓2.... Moreover, in addition to the set of equilibrium points in (4.12) in the

simulation studies of this system we observed periodic trajectories, which might be due to a

limit cycle. Therefore, we will define a limit cycle at for ḋ = 0 and θ̇ − ψ̇ = 0, and v , 0

75

the system may exhibit periodic behavior. Solving the system dynamics under the above

constraints one obtains the solutions for these equations as

ḋ = v cos(θ − ψ) = 0 =⇒ θ − ψ = π

2
+ kπ f or k = 0,∓1,∓2 (4.13)

and

θ̇ − ψ̇ = −α [mod(θ − ψ, 2π) − π] − 1
d

v sin(θ − ψ) = 0 (4.14)

Solving equations (4.13) and (4.14) simultaneously, we get two independent solutions. The

first solution is at θ − ψ = π/2 at which (4.14) gives

−α [mod(π/2, 2π) − π] − 1
d

v sin(π/2) = 0 (4.15a)

=⇒ −α−π
2
=

1
d

v (4.15b)

=⇒ d =
v

απ/2
. (4.15c)

Similarly the second solution is at θ − ψ = 3π/2, at which (4.14) becomes

−α [mod(3π/2, 2π) − π] − 1
d

v sin(3π/2) = 0 (4.16a)

=⇒ −απ
2
= −1

d
v (4.16b)

=⇒ d =
v

απ/2
. (4.16c)

This results in the set of solutions(
θ − ψ = π

2
, d =

2v
απ

)
and

(
θ − ψ = 3π

2
, d =

2v
απ

)
.

From the above solutions the periodic solution (or the limit cycle) can be defined as

L = {v ∈ R, 0 < θ, ψ < 2π|d = v
απ/2

, θ − ψ = π

2
+ kπ} (4.17)

where k = 0,∓1,∓2.

Note that for the case where the gradient vector points in the direction of the
−→
d vector and the

robot is closer to the target than a pre-defined desired distance, the equilibrium set becomes

E′ = {v ∈ R+, 0 < θ, ψ < 2π|v = 0, θ − ψ = 2kπ} f or k = 0,∓1,∓2 (4.18)

Also note that, there is no limit cycle set for this case. It is interesting to note that in both

cases at equilibrium the steering angle (the orientation) of the robot points in the direction of

the gradient while translational speed is zero.

76

Now we will examine the stability of the equilibrium set E and the limit cycle L. Therefore,

the time derivatives of the distance between the robot and the target, d, (Equation (4.8a)) and

the time derivatives of the difference between the orientation of the robot and the orientation

of the distance vector
−→
d which is

θ̇ − ψ̇ = −α [mod(θ − ψ, 2π) − π] − 1
d

v sin(θ − ψ) (4.19)

will be examined for different values of controller parameters.

The roots of θ̇ − ψ̇ = 0 can be found by solving the nonlinear equation (4.19), numerically.

Depending on the values of the controller parameter α, the distance between the robot and the

target d, and the speed of the robot v, two different cases are possible. The equation may have

a single root or three different roots. In Figure 4.3 the plot of θ̇ − ψ̇ versus θ − ψ is presented

for different values of v. For small values of v there is only one root and for larger values of v

there are three roots (the points intersecting the x-axis). The number of roots of the function

changes when the slope of the function at θ−ψ = π changes from negative to positive. Solving

for the slope at θ − ψ = π we obtain

d(θ̇ − ψ̇)
d(θ − ψ)

=
d

d(θ − ψ)

[
−α [mod(θ − ψ, 2π) − π] − 1

d
v sin(θ − ψ)

]
(4.20a)

= −α − 1
d

v cos(θ − ψ) (4.20b)

d(θ̇ − ψ̇)
d(θ − ψ)

|θ−ψ=π = −α − 1
d

v cos(π) = 0 ⇒ v = αd (4.20c)

Therefore, for v ≤ αd the only root is at θ − ψ = π. This point is a stable root since the slope

is negative at this point. Note that at θ − ψ = π, provided that the other conditions are also

satisfied the system is at the equilibrium set E defined in (4.12). The angular velocity of the

robot is θ̇ = −α [mod(θ − ψ, 2π) − π] = 0 and the other state variables are ḋ = v cos(θ − ψ) =

−v, ψ̇ = 1
d v sin(θ − ψ) = 0 at θ − ψ = π. Therefore, if v is a positive variable which can

easily be guaranteed the robot travels towards the target on a straight line. And if a controller

is designed such that the speed v is set to zero at a specified distance from the target then it

stops at that distance after having a straight line motion.

On the other hand, if v > αd then there are two more symmetric roots on the left and right of

π. For this case the slope of the function is positive for θ−ψ = π and therefore, it is an unstable

root. The slope is negative for the other two roots showing that they are stable roots. Note

that for v = αdπ/2 the stable roots are θ − ψ = π/2 and θ −ψ = 3π/2 which is in fact the limit

cycle defined in (4.17). For better understanding of the relations between the state variables

77

0 pi/2 pi 3*pi/2 2*pi
−pi

0

pi

θ − ψ

θ do
t −

 ψ
do

t

v < α * d

v = α * d

v = α*π*d/2

v > α*π*d/2

Figure 4.3: θ̇ − ψ̇ versus θ − ψ for several v values.

and therefore, the system behavior, we should consider the change of θ̇ − ψ̇ with respect to

both distance between the agent and the target and the relative angle difference θ − ψ. Hence,

a 3-dimensional plot of state variables θ̇ − ψ̇ versus θ − ψ and the distance d is presented in

Figure 4.4.

The speed of the robot is kept constant at v = r̄απ/2 for generating this figure. Here, r̄ is

the radius of the periodic motion when the system converges to the limit cycle. The roots or

the points where the surface intersects the zero-plane are plotted with thick black curves. The

straight lines (blue ones) are the lines at θ − ψ = π/2 and θ − ψ = 3π/2 for better comparison.

Now let us consider the case in which the robot is at a distance of 100 [units] from the target.

The figure shows that, provided that the distance d = 100 [units] is kept constant, the state

variables will converge to the stable equilibrium point θ − ψ = π where the orientation angle

of the robot is equal to the orientation of the gradient vector. Also note that the state variables

θ̇ and ψ̇ are zero at this equilibrium. However, as the robot gets closer to the target, i.e., as

d decreases the equilibrium point θ − ψ = π becomes unstable. Therefore, if it is desired for

the robot to move towards the target and stay at a predefined distance to it, one may prefer

to choose the controller parameters (α and v) such that the robot stops before it reaches the

region where θ−ψ = π root is unstable. This strategy may be utilized for just tracking a target

from a specified distance. In other words, one may choose the parameters such that v ≤ αd is

always satisfied.

If the controller is designed/adapted for the robot to trace a circle around the target (circling in

78

short) then the controller parameters should be selected for the robot to continue through the

region where the equilibrium point θ − ψ = π is unstable and the other two symmetric roots

are stable. In that region depending on the initial condition the difference θ − ψ will converge

to one of the roots on the left or right of π which will result in circling the target at either

CW1 or CCW2 direction. Note that the behavior of circling around a target might be a desired

behavior for some UAV3 applications This is because UAV’s cannot hover or travel below

some pre-specified speeds and in order to trace some ground vehicles/targets which might be

moving with much slower velocities they might need to circle above the target.

Let us first consider that θ − ψ converges to a point where π/2 < θ − ψ < π. Here we mean a

point on the black curve since there we have θ̇− ψ̇ = 0. At this point the time derivative of the

state variable ḋ = v cos(θ − ψ) is negative. Therefore, the robot will continue to get closer to

the target until θ−ψ = π/2. In contrast, if it converges to a point (on the black curve) between

0 < θ−ψ < π/2, then ḋ = v cos(θ−ψ) is positive in this case. Therefore, the roots θ−ψ = π/2

and ḋ = 0 are a set of stable points of this system as mentioned for the limit cycle above in

equation (4.17). For this limit cycle set the robot is circling in the CCW direction around the

target. The same conclusion can be derived similarly for the other root on the right of π. For

that case the state variables will converge to the set at which θ−ψ = 3π/2 and ḋ = 0 which in

fact represents the CW circling of the robot around the target.

Note that in the above derivations we assumed that the gradient vector is directed towards the

target from the robot. Therefore, we utilized equation (4.6) in the analysis. However, some

gradient vectors are designed to direct in the opposite direction when the robot is too close to

the target especially for collision avoidance with a similar analysis. One can easily show that

in that case the system will converge to the stable set E′ that force the robot to get away from

the target in the same direction with this new gradient vector. The derivation for that case is

straightforward and therefore, left out.

4.3.1.1 Stability Analysis via Lyapunov Functions

Here, we will find a Lyapunov function candidate that shows the stability of the above system.

Before we present the Lyapunov function we should present the second derivatives of the

1 CW: clockwise
2 CCW: counter clockwise
3 Unmanned Air Vehicle

79

Figure 4.4: θ̇ − ψ̇ versus θ − ψ and the distance d for constant v = rαπ/2 where r is the radius
of the circle on which the robot travels.

system variables to be utilized in the time derivative of the Lyapunov function. Consider the

system dynamics in (4.5). Under the assumption that the linear speed v is constant the second

derivatives with respect to time of the variables are

d̈ = −v sin(θ − ψ)(θ̇ − ψ̇)

= −dψ̇(θ̇ − ψ̇) (4.21a)

ψ̈ = − ḋ
d2 v sin(θ − ψ) +

1
d

v cos(θ − ψ)(θ̇ − ψ̇)

= − ḋ
d
ψ̇ +

ḋ
d

(θ̇ − ψ̇)

=
ḋ
d

(θ̇ − 2ψ̇) (4.21b)

θ̈ = −α(θ̇ − ψ̇) (4.21c)

The Lyapunov function candidate is

V(ḋ, θ̇, ψ̇) =
1
2

ḋ2 +
1
2

[d(θ̇ − ψ̇)]2 (4.22)

where D = {ḋ, θ̇, ψ̇ ∈ R}. V(ḋ, θ̇, ψ̇) is positive definite in D. Then the Lie derivative of the

Lyapunov function becomes

V̇ = ḋd̈ + [d(θ̇ − ψ̇)][ḋ(θ̇ − ψ̇) + d(θ̈ − ψ̈)] (4.23)

which substituting the second derivatives in (4.21) becomes

V̇ = ḋ
(
−dψ̇(θ̇ − ψ̇)

)
+

(
d(θ̇ − ψ̇)

) (
ḋ(θ̇ − ψ̇) + d

[
−α(θ̇ − ψ̇) − ḋ

d
(θ̇ − 2ψ̇)

])
(4.24)

80

Then, rearranging

V̇ = −dḋψ̇(θ̇ − ψ̇) + d(θ̇ − ψ̇)
(
ḋ(θ̇ − ψ̇) − αd(θ̇ − ψ̇) − ḋ(θ̇ − 2ψ̇)

)
(4.25a)

= −dḋψ̇(θ̇ − ψ̇) + d(θ̇ − ψ̇)
(
ḋ(θ̇ − ψ̇ − θ̇ + 2ψ̇) − αd(θ̇ − ψ̇)

)
(4.25b)

= −dḋψ̇(θ̇ − ψ̇) + d(θ̇ − ψ̇)
(
ḋψ̇ − αd(θ̇ − ψ̇)

)
(4.25c)

= −dḋψ̇(θ̇ − ψ̇) +
(
dḋψ̇(θ̇ − ψ̇) − αd2(θ̇ − ψ̇)2

)
(4.25d)

= −αd2(θ̇ − ψ̇)2 ≤ 0 (4.25e)

The Lie derivative of the Lyapunov function, V̇ is negative semi-definite within set D. The

stability should be investigated by the use of Lasalle’s principle.

4.3.2 Speed and Angular Velocity Controllers

For most of the mobile robotic applications and UGV/UAV applications the translational and

angular velocity of the agents are adjusted with respect to the relative distance and relative

angles between the agents or targets. The speed and angular velocity can be adjusted by many

controller methods like PID and nonlinear controllers, having the relative distance and relative

orientation as the controller parameters.

In this section we will examine the system behavior assuming that the speed v is a function

of relative distance, v = v(d) and the angular velocity is a function of relative distance θ̇ =

f (θ − ψ). Then the system dynamics can be expressed as

ḋ = v(d) cos(θ − ψ) (4.26a)

ψ̇ =
1
d

v(d) sin(θ − ψ) (4.26b)

θ̇ = g(θ − ψ) (4.26c)

For simplicity of analysis we lump the states θ and ψ as γ = θ − ψ. Then the two state system

model becomes

ḋ = v(d) cos(γ) (4.27a)

γ̇ = g(γ) − 1
d

v(d) sin(γ) (4.27b)

Utilizing appropriate controllers, the system is expected to converge targeting and circling

behaviors. These behaviors can be expressed by the following equilibrium sets

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.28)

81

L1 = {d ∈ R+, 0 < γ < 2π|v(deq) = deq g(π/2), γ =
π

2
} (4.29)

L2 = {d ∈ R+, 0 < γ < 2π|v(deq) = −deq g(3π/2), γ =
3π
2
} (4.30)

where E stands for the targeting behavior and L1 and L2 stands for the circling in CW and

CCW directions, respectively.

We can examine the stability of these points by linearization methods.

4.3.2.1 Stability via Linearization

Here, we will examine the stability of the system at the equilibriums E, and L1 and L2 by

linearizing around these points. Let

ḋ = f1(d, γ) = v(d) cos(γ) (4.31a)

γ̇ = f2(d, γ) = g(γ) − 1
d

v(d) sin(γ) (4.31b)

The Jacobian matrix is

∂ f
∂x
=


∂ f1
∂d

∂ f1
∂γ

∂ f2
∂d

∂ f2
∂γ

 (4.32)

∂ f
∂x
=

 v′ cos(γ) −v sin(γ)
1
d2 v sin(γ) − 1

d v′ sin(γ) g′(γ) − 1
d v(d) cos(γ)

 (4.33)

The value of the linearized coefficient matrix at equilibrium L1 = {d ∈ R+, 0 < γ < 2π|v(d) =

d g(π/2), γ = π
2 } is

A =
∂ f
∂x

∣∣∣∣∣
L1

=

 0 −d g(π/2)
1
d2 d g(π/2) − 1

d v′ g′(π/2)

 (4.34)

A =

 0 −d g(π/2)
1
d (g(π/2) − v′) g′(π/2)

 (4.35)

The eigenvalues of this Jacobian matrix A are

|A − Iλ| =

∣∣∣∣∣∣∣∣∣
−λ −d g(π/2)

1
d (g(π/2) − v′) g′(π/2) − λ

∣∣∣∣∣∣∣∣∣ = λ(λ − g′(π/2)) + d g(π/2)
1
d

(
g(π/2) − v′

)
(4.36)

|A − Iλ| = λ2 − g′(π/2)λ + g(π/2)
(
g(π/2) − v′

)
= 0 (4.37)

82

solving the quadratic equation

λ1,2 =
g′(π/2) ∓

√
g′(π/2)2 − 4g(π/2) (g(π/2) − v′)

2
(4.38)

The system is stable around L1 if real(λ1,2) < 0. This requires two conditions: g′(π/2) < 0

and

− 4g(π/2)
(
g(π/2) − v′

)
< 0 (4.39)

g(π/2)
(
g(π/2) − v′

)
> 0 (4.40)

If g(π/2) > 0 then g(π/2) > v′ and if g(π/2) < 0 then g(π/2) < v′. Hence, the speed and

angular velocity function satisfying v′ < g(π/2) and g′(π/2) < 0 at γ = π
2 would result in the

stability at L1.

The same solution is applied for set L2 = {d ∈ R+, 0 < γ < 2π|v(d) = −d g(3π/2), γ = 3π
2 }.

Then the Jacobian matrix is

A =
∂ f
∂x

∣∣∣∣∣
L2

=

 0 d g(3π/2)

− 1
d2 d g(3π/2) + 1

d v′ g′(3π/2)

 (4.41)

A =

 0 d g(3π/2)

− 1
d (g(3π/2) − v′) g′(3π/2)

 (4.42)

The eigenvalues of this Jacobian matrix are

|A − Iλ| =

∣∣∣∣∣∣∣∣∣
−λ d g(3π/2)

− 1
d (g(3π/2) − v′) g′(3π/2) − λ

∣∣∣∣∣∣∣∣∣ = λ(λ−g′(3π/2))+d g(3π/2)
1
d

(
g(3π/2) − v′

)
(4.43)

|A − Iλ| = λ2 − g′(3π/2)λ + g(3π/2)
(
g(3π/2) − v′

)
= 0 (4.44)

solving the quadratic equation

λ1,2 =
g′(3π/2) ∓

√
g′(3π/2)2 − 4g(3π/2) (g(3π/2) − v′)

2
(4.45)

The system is stable around L2 if real(λ1,2) < 0. The required conditions are

g′(3π/2) < 0 (4.46)

and

− 4g(3π/2)
(
g(3π/2) − v′

)
< 0 (4.47)

g(3π/2)
(
g(3π/2) − v′

)
> 0 (4.48)

83

Similar to the previous results, if g(3π/2) > 0 then g(3π/2) > v′ and if g(3π/2) < 0 then

g(3π/2) < v′.

So, the speed and angular velocity function satisfying v′ < g(3π/2) and g′(3π/2) < 0 at γ = 3π
2

would result in the stability at L2.

Similarly for the equilibrium set E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} the Jacobian

matrix A is

A =
∂ f
∂x

∣∣∣∣∣
E
=

 −v′ 0

0 g′(π)

 (4.49)

The eigenvalues of this state coefficient matrix A are

|A − Iλ| =

∣∣∣∣∣∣∣∣∣
−v′ − λ 0

0 g′(π) − λ

∣∣∣∣∣∣∣∣∣ =
(
v′ + λ

) (
λ − g′(π)

)
= 0 (4.50)

|A − Iλ| = (
λ + v′

) (
λ − g′(π)

)
= 0 (4.51)

solving the quadratic equation

λ1 = −v′ (4.52)

λ2 = g′(π) (4.53)

The system is stable around E if real(λ1,2) < 0. The conditions to be satisfied for the stability

are v′ > 0 and g′(π) < 0

Then the speed function satisfying v′(d) > 0 and g′(π) < 0 while v(d) = 0 at γ = π would

result in the stability at E.

4.3.2.2 Stability Analysis via Lyapunov Functions

The dynamics of the system is highly nonlinear. And as derived in section 4.3.2 the system

has bifurcation at certain points. Therefore, the dynamics will be examined for two cases.

The first is the stability to the set E which in fact the targeting behavior of the system. The

second is the case where the dynamics converges to the circling behaviors described by the

sets L1 and L2.

For the targeting behavior the state γ converges to the point γ = π. The differential equation

of this state can be represented as the summation of two periodic functions with periods 2π.

For the targeting case the summation of these periodic functions results in a new periodic

84

Figure 4.5: θ̇ − ψ̇ versus θ − ψ and the distance d for constant v = rαπ/2 where r is the radius
of the circle on which the robot travels.

function with period 2π. By the fourier transforms of the functions one can find that the time

derivative of the state faces with two different types of functions due to the bifurcation. As

seen in the Figure 4.6 there occurs different roots due to the relation between α, v, and d. We

will examine the stability of these two different cases. The bifurcation can be seen on the

Figure 4.5 clearly.

In the first case these is just one root at γ = π and the function is an odd periodic function.

Therefore, the function will be approximated by the first fourier transform term such that

γ̇ = K sin(γ) (4.54)

where K is a positive constant. The equilibrium point is γ = π. The Lyapunov function

candidate for this system is

V =
1
2

(γ − π)2 (4.55)

The Lie derivative of this function is

V̇ = (γ − π)γ̇ = K (γ − π) sin(γ) ≤ 0 (4.56)

Therefore, the system is locally asymptotically stable at the equilibrium point γ = π.

The second function occurring due to the bifurcation has three equilibrium points. The first

85

0 pi/2 pi 3*pi/2 2*pi
−pi

0

pi

θ − ψ

θ do
t −

 ψ
do

t

v < α * d

v = α * d

v = α*π*d/2

v > α*π*d/2

Figure 4.6: θ̇ − ψ̇ versus θ − ψ for several v values.

fourier expansion term of these kind of functions would be the function sin(2γ). Therefore,

the stability analysis of this function would imply the results for the original functions.

γ̇ = K sin(2γ) (4.57)

where K is a positive constant. The equilibrium points are γ = π/2 and γ = 3π/2. The

Lyapunov function candidate for this system is

V =
1
2

cos2(γ) (4.58)

Note that, This Lyapunov function is zero at the equilibrium. The Lie derivative of the func-

tion becomes

V̇ = −γ̇ cos(γ) sin(γ) = −2K cos2(γ) sin2(γ) ≤ 0 (4.59)

Therefore, the system is stable at the equilibrium points γ = π/2 and γ = 3π/2.

The other state d depends on the equilibrium of point of γ. If the γ state converges to the

set E then ḋ = −v. Which means the distance between the agent and the target decreases.

If the speed function is set to zero before the bifurcation region then the agent stops at a

predetermined distance from the target. If not, the distance continues to decrease up to the

bifurcation region and therefore, the system becomes unstable at E and stable at L1 or L2 due

to the approximation angle. Therefore, agent circles around the target.

The above results show that the system will be stable at the targeting behavior and the limit

cycle behaviors.

86

4.3.3 Angular Velocity Controllers

In this section we will propose linear and nonlinear angular velocity controllers.

4.3.3.1 Proportional Angular Velocity Controller

The angular velocity controller can be selected as the simple proportional controller that con-

siders the shortest way of turn such that

θ̇ = −α [
mod(γ, 2π) − π] (4.60)

Then the system dynamics can be expressed as

ḋ = v(d) cos(γ) (4.61a)

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v(d) sin(γ) (4.61b)

The equilibrium of this system occurs at points satisfying ḋ = 0, γ̇ = 0.

For ḋ = 0 we have

ḋ = v(d) cos(γ) = 0 =⇒ v(d) = 0 or γ =
π

2
+ kπ (4.62)

for k = 0, 1. Similarly, from γ̇ = 0 we have

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v(d) sin(γ) = 0

=⇒ v(d) = 0, γ = π (4.63a)

or

=⇒ v(d) = α
π

2
d, γ =

π

2
(4.63b)

or

=⇒ v(d) = α
π

2
d, γ =

3π
2

(4.63c)

The common solution of the equations (4.62), (4.63) yields three different equilibrium sets.

The first one is

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.64)

and the second is

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

π

2
} (4.65)

87

and the last one is

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

3π
2
} (4.66)

which are consistent with the general solutions derived in the previous sections on equilibrium

points.

For the stability of these points we will consider the linearization methods. As found in the

previous sections necessary conditions for the stability at L1 is g′(π/2) < 0 which is satisfied

since g′(π/2) = −α < 0. Similarly the condition for the stability of L2 is also satisfied

g′(3π/2) = −α < 0. The condition for the stability of E is g′(π) = −α < 0 is again satisfied.

4.3.3.2 Nonlinear Angular Velocity Controller

The angular velocity controller selected in this section is a trigonometric function in (4.67)

that behaves similar to the previous angular velocity controller. This controller again results

in the shortest way of turn.

θ̇ =
√

2α cos(γ/2) (4.67)

The the system dynamics can be expressed as

ḋ = v(d) cos(γ) (4.68a)

γ̇ =
√

2α cos(γ/2) − 1
d

v(d) sin(γ) (4.68b)

The equilibrium of this system occurs at points satisfying ḋ = 0, γ̇ = 0.

For ḋ = 0 we have

ḋ = v(d) cos(γ) = 0 =⇒ v(d) = 0 or γ =
π

2
+ kπ (4.69)

for k = 0, 1. Similarly, from γ̇ = 0 we have

γ̇ =
√

2α cos(γ/2) − 1
d

v(d) sin(γ) = 0

=⇒ v(d) = 0, γ = π (4.70a)

or

=⇒ v(d) = αd, γ =
π

2
(4.70b)

or

=⇒ v(d) = αd, γ =
3π
2

(4.70c)

88

The common solution of the equations (4.69), (4.70) yields three different equilibrium sets.

The first one is

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.71)

and the second is

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = αd, γ =
π

2
} (4.72)

and the last one is

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = αd, γ =
3π
2
} (4.73)

which are appropriate to the general solutions derived in the previous sections.

For the stability of these points we will consider the linearization methods. As found in the

previous sections necessary conditions for the stability at L1 is g′(π/2) < 0 which is satisfied

since g′(π/2) = −
√

2/2α sin(π/4) = −α/2 < 0. Similarly the condition for the stability of L2

is also satisfied g′(3π/2) = −
√

2/2α sin(3π/4) = −α/2 < 0. The condition for the stability of

E is g′(π) = −
√

2/2α sin(π/2) = −α < 0 is again satisfied.

4.3.4 Speed Controllers

The speed of the agent can be controlled by many different methods. Here we will show some

simple and complicated controllers.

4.3.4.1 Constant Speed Controller

This controller is the most simple and applicable controller for mobile robots. The speed is

taken as constant resulting in

ḋ = v cos(γ) (4.74)

We will use this controller with two angular velocity controllers derived in the previous sec-

tion.

The system dynamics with the proportional angular velocity controller can be expressed as

ḋ = v cos(γ) (4.75a)

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v sin(γ) (4.75b)

89

The possible equilibrium sets are

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.76)

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

π

2
} (4.77)

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

3π
2
} (4.78)

Note that since v is a positive constant the system cannot converge to the ḋ = 0 state for the set

E. However the γ dynamics will converge to γ = π that means the agent heading is towards

the target however does not stop at a predetermined distance. For the circling behaviors the

radius of the circles are deq = v/(απ/2).

Applying the results for stability from the linearization section we get

g(π/2) = −απ/2 < 0 and v′(deq) = 0 > g(π/2) (4.79)

and

g(3π/2) = απ/2 > 0 and v′(deq) = 0 < g(3π/2) (4.80)

Then the system is stable at the equilibrium sets L1 and L2. The phase potrait of the system is

shown in Figure 4.7. As seen from the figure the two equilibrium sets L1 and L2 are locally

asymptotically stable equilibrium points.

The simulation result for this case is represented in Figure 4.8

4.3.4.2 Linear Speed Controller - Type I

The next speed controller for mobile robots is the controller that relates the speed linearly

with the distance given in the following equation.

v(d) = Ad + B (4.81)

Where A and B are positive constants. The system dynamics with the proportional angular

velocity controller can be expressed as

ḋ = v(d) cos(γ) (4.82a)

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v(d) sin(γ) (4.82b)

90

d ’ = v cos(gamma)
gamma ’ = − alpha (mod(gamma,2 pi) − pi) − 1/d v sin(gamma)

alpha = 5
v = 50

0 5 10 15 20 25 30

0

1

2

3

4

5

6

d

ga
m

m
a

Figure 4.7: Phase Portrait for Constant Speed and Proportional Angular Velocity Controllers.

−10 0 10 20 30
−10

−5

0

5

10

15

20

25

30

x

y

Trajectory of robot for Constant Speed and Proportional Angular Velocity

Figure 4.8: Simulation result for Constant Speed and Proportional Angular Velocity Con-
trollers.

91

The possible equilibrium sets are

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.83)

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

π

2
} (4.84)

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

3π
2
} (4.85)

Note that since Ad + B > 0 the system cannot converge to the ḋ = 0 state for the set E.

However the γ dynamics will converge to γ = π that means the agent heading is towards the

target however does not stop at a predetermined distance. For the circling behaviors the radius

of the circles are

Adeq + B = deqα
π

2
=⇒ deq =

B
απ2 − A

(4.86)

Applying the results for stability from the linearization section we get

g(π/2) = −απ/2 < 0 and v′(deq) = A > g(π/2) (4.87)

and

g(3π/2) = απ/2 > 0 and v′(deq) = A < g(3π/2) (4.88)

Then the system is locally stable at the equilibrium sets L1 and L2 if A < απ/2. The phase

portraits of the system for A < απ/2 and A > απ/2 are shown in Figures 4.9, 4.10. As seen

from the figure the two equilibrium sets L1 and L2 are stable equilibrium points.

The simulation result for this case is represented in Figure 4.11

4.3.4.3 Linear Speed Controller - Type II

This second type speed controller relates the speed linearly with the distance as

v(d) = Ad − B (4.89)

where A and B are positive constants. The system dynamics with the proportional angular

velocity controller can be expressed as

ḋ = v(d) cos(γ) (4.90a)

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v(d) sin(γ) (4.90b)

92

d ’ = v cos(gamma)
gamma ’ = − alpha (mod(gamma,2 pi) − pi) − 1/d v sin(gamma)

alpha = 5
v = 3 d + 10

0 5 10 15 20 25 30

0

1

2

3

4

5

6

d

ga
m

m
a

Figure 4.9: Phase Portrait for Linear Speed and Proportional Angular Velocity Controllers,
A < απ/2.

d ’ = v cos(gamma)
gamma ’ = − alpha (mod(gamma,2 pi) − pi) − 1/d v sin(gamma)

alpha = 5
v = 10 d + 10

0 5 10 15 20 25 30

0

1

2

3

4

5

6

d

ga
m

m
a

Figure 4.10: Phase Portrait for Linear Speed and Proportional Angular Velocity Controllers,
A > απ/2.

93

−15 −10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

x

y

Trajectory of robot for Constant Speed and Proportional Angular Velocity

Figure 4.11: Simulation result for Linear Speed and Proportional Angular Velocity Con-
trollers, A < απ/2.

The possible equilibrium sets are

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.91)

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

π

2
} (4.92)

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

3π
2
} (4.93)

For the equilibrium set E,

Adeq − B = 0 =⇒ deq = B/A

. The agent converges to targeting behavior and stops at the distance deq = B/A. For the

circling behaviors the radius of the circles are

Adeq − B = deqα
π

2
=⇒ deq =

B
A − απ2

(4.94)

Applying the results for stability from the linearization section we get

g(π/2) = −απ/2 < 0 and v′(deq) = A > g(π/2) (4.95)

and

g(3π/2) = απ/2 > 0 and v′(deq) = A < g(3π/2) (4.96)

94

d ’ = v cos(gamma)
gamma ’ = − alpha (mod(gamma,2 pi) − pi) − 1/d v sin(gamma)

alpha = 5
v = 4 d − 28

0 5 10 15 20 25 30

0

1

2

3

4

5

6

d

ga
m

m
a

Figure 4.12: Phase Portrait for Linear Speed and Proportional Angular Velocity Controllers.

However, note that for the circling radius we found A − απ2 > 0 which contradicts with the

above result. Then the system is not stable at the equilibrium sets L1 and L2. The phase

portrait of the system is shown in Figure 4.12. As seen from the figure the two equilibrium

sets L1 and L2 are not stable equilibrium points. The system converges to the equilibrium E.

The simulation result for this case is represented in Figure 4.13

4.3.4.4 Quadratic Speed Controller

This speed controller in this section is

v(d) = (d −C)2 (4.97)

Where C is a positive constants. A sample plot of this speed function is in Figure 4.14

The system dynamics with the proportional angular velocity controller can be expressed as

ḋ = v(d) cos(γ) (4.98a)

γ̇ = −α [
mod(γ, 2π) − π] − 1

d
v(d) sin(γ) (4.98b)

95

−15 −10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

x

y

Trajectory of robot for Constant Speed and Proportional Angular Velocity

Figure 4.13: Simulation result for Linear Speed and Proportional Angular Velocity Con-
trollers.

5 10 15 20 25 30 35
0

100

200

300

400
Distance versus Speed and α * π /2 * d line

v

Speed function

α * π /2 * d

5 10 15 20 25 30 35
−20

0

20

40
Distance versus Derivative of Speed and α * π /2 line

d [units]

v’

Derivative of Speed

α * π / 2

Figure 4.14: Quadratic Speed Function and its derivative with respect to distance.

96

The possible equilibrium sets are

E = {d ∈ R+, 0 < γ < 2π|v(d) = 0, γ = π} (4.99)

L1 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

π

2
} (4.100)

L2 = {d ∈ R+, 0 < γ < 2π|v(d) = α
π

2
d, γ =

3π
2
} (4.101)

For the equilibrium set E,

(d −C)2 = 0 =⇒ deq = C

. The agent converges to targeting behavior and stops at the distance deq = C. For the circling

behaviors the radius of the circles are

(d −C)2 = deqα
π

2
=⇒ deq1,2 =

2C + απ2 −
√

(2C + απ2)2 − 4C2

2
(4.102)

Applying the results for stability from the linearization section the equations to be satisfied

are

g(π/2) = −απ/2 < 0 and v′(deq1) > g(π/2) (4.103)

and

g(3π/2) = απ/2 > 0 and v′(deq1) < g(3π/2) (4.104)

Then the equilibrium for circling is stable at lower root deq1. And the equilibrium set E at

deq = C is also stable. The phase portrait of the system is shown in Figure 4.15. As seen from

the figure the two equilibrium sets L1 and L2 at deq1 are stable equilibrium points. The system

converges to the equilibrium E at deq = C.

The simulation result for this case is represented in Figure 4.16 and 4.17

4.3.4.5 Stability via Lyapunov Functions

In this section, we will examine a Lyapunov function candidate that supports the above results.

Before we present the Lyapunov function we should present the second derivatives of the

system variables to be utilized in the time derivative of the Lyapunov function. Consider the

system dynamics in (4.61). Under the assumption that the linear speed v is a function of

distance the second derivatives with respect to time are

d̈ = v̇ cos(γ) − vγ̇ sin(γ) (4.105a)

γ̈ = −αγ̇ − v̇
d

sin(γ) +
ḋ
d2 v sin(γ) − 1

d
vγ̇ cos(γ) (4.105b)

97

d ’ = v cos(gamma)
gamma ’ = − alpha (mod(gamma,2 pi) − pi) − 1/d v sin(gamma)

alpha = 5
v = (d − 15)2

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

d

ga
m

m
a

Figure 4.15: Phase Portrait for Linear Speed and Proportional Angular Velocity Controllers.

−20 −10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

25

30

x

y

Trajectory of robot for Constant Speed and Proportional Angular Velocity

Figure 4.16: Simulation result for Quadratic Speed and Proportional Angular Velocity Con-
trollers.

98

−15 −10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

x

y

Trajectory of robot for Constant Speed and Proportional Angular Velocity

Figure 4.17: Simulation result for Quadratic Speed and Proportional Angular Velocity Con-
trollers.

The Lyapunov function candidate is

V =
1
2

ḋ2 +
1
2

(dγ̇)2 (4.106)

where D = {ḋ, θ̇, ψ̇ ∈ R}. V(ḋ, θ̇, ψ̇) is positive definite in D. Then the Lie derivative of the

Lyapunov function becomes

V̇ = ḋd̈ + dγ̇(ḋγ̇ + dγ̈) (4.107)

which substituting the second derivatives in (4.21) becomes

V̇ = ḋ
[
v̇ cos(γ) − vγ̇ sin(γ)

]
+ dγ̇

[
ḋγ̇ + d

(
−αγ̇ − v̇

d
sin(γ) +

ḋ
d2 v sin(γ) − 1

d
vγ̇ cos(γ)

)]
(4.108)

Then, rearranging

V̇ = ḋ
[
v̇ cos(γ) − vγ̇ sin(γ)

]
+ dγ̇

[
ḋγ̇ − αdγ̇ − v̇ sin(γ) +

ḋ
d

v sin(γ) − vγ̇ cos(γ)
]

= v̇ḋ cos(γ) − vḋγ̇ sin(γ) + dγ̇
[
��̇dγ̇ − αdγ̇ − v̇ sin(γ) +

ḋ
d

v sin(γ) −��̇dγ̇
]

= v̇ḋ cos(γ) −�����vḋγ̇ sin(γ) − αd2γ̇2 − v̇dγ̇ sin(γ) +�����vḋγ̇ sin(γ)

= v̇ḋ cos(γ) − αd2γ̇2 − v̇dγ̇ sin(γ)

= −αd2γ̇2 − v̇
(
dγ̇ sin(γ) − ḋ cos(γ)

)
(4.109)

99

substituting the variables in (4.61)

V̇ = −αd2γ̇2 − v̇
(
dγ̇ sin(γ) − ḋ cos(γ)

)
= −αd2

[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

−v̇
{

d sin(γ)
[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]
− v cos2(γ)

}
= −αd2

[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

−v̇
{
−αd sin(γ)

[
mod(γ, 2π) − π] − v sin2(γ) − v cos2(γ)

}
= −αd2

[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

+v̇
{
αd sin(γ)

[
mod(γ, 2π) − π] + v

}
(4.110)

using the relation v̇ = v′ḋ where v′ is the derivative of speed with respect to distance d.

V̇ = −αd2
[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

+v′ḋ
{
αd sin(γ)

[
mod(γ, 2π) − π] + v

}
= −αd2

[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

+v′v cos(γ)
{
αd sin(γ)

[
mod(γ, 2π) − π] + v

}
(4.111)

The functions of speed satisfying the Lie derivative in (4.111) to be less than or equal to zero,

around the equilibrium sets E will result in a stable targeting behavior and the ones satisfying

same condition around set L will result in a circling behavior.

Lyapunov Analysis for Constant Speed Controller

The speed function is a positive constant for all d. Then the Lie derivative becomes

V̇ = −αd2
[
−α [

mod(γ, 2π) − π] − 1
d

v sin(γ)
]2

≤ 0

Since Lie derivative is less than or equal to zero then the equilibriums L1 and L2 are stable

equilibrium points. In Figure 4.18 the plot of Lie derivative with respect to d and γ is shown.

The cross sections of Lie derivative of Lyapunov function at γ = 90o and d = deq are shown

in the figures 4.19 and 4.20

Lyapunov Analysis for Linear Speed Controller - Type I

The speed function is

v(d) = Ad + B (4.112)

100

Figure 4.18: Lie Derivative for Speed function v : constant

0 50 100 150 200 250 300 350
−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0

V
dot

 for d=6.3662

γ

V
do

t

Figure 4.19: Lie Derivative at d = deq for Speed function v : constant

101

0 5 10 15 20
−6

−5

−4

−3

−2

−1

0
x 10

4 V
dot

 for γ =90

d

V
do

t

Figure 4.20: Lie Derivative at γ = 90o for Speed function v : constant

In Figure 4.21 the plot of Lie derivative with respect to d and γ is shown.

The cross sections of Lie derivative of Lyapunov function at γ = 90o and d = deq are shown

in the figures 4.22 and 4.23. As seen from the figures, the Lie derivatives are negative semi-

definite. Therefore, the equilibriums are stable nodes.

Lyapunov Analysis for Linear Speed Controller - Type II

The speed function is

v(d) = Ad − B (4.113)

In Figure 4.24 the plot of Lie derivative with respect to d and γ is shown.

The cross sections of Lie derivative of Lyapunov function at γ = 90o and d = deq are shown in

the figures 4.25 and 4.26. The figures shows that the Lie derivatives are negative semi-definite.

Therefore, the equilibriums are stable nodes.

Lyapunov Analysis for Quadratic Speed Controller

The speed function is

v(d) = (d −C)2 (4.114)

In Figure 4.27 the plot of Lie derivative with respect to d and γ is shown.

The cross sections of Lie derivative of Lyapunov function at γ = 90o and d = deq are shown

in the figures 4.28 and 4.29. As seen from the figures, the Lie derivatives are negative semi-

102

Figure 4.21: Lie Derivative for Speed function v(d) = Ad + B

0 50 100 150 200 250 300 350 400
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

4 V
dot

 for d=5.1894

γ

V
do

t

Figure 4.22: Lie Derivative at d = deq for Speed function v(d) = Ad + B

103

0 5 10 15 20
−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

V
dot

 for γ =90

d

V
do

t

Figure 4.23: Lie Derivative at γ = 90o for Speed function v(d) = Ad + B

Figure 4.24: Lie Derivative for Speed function v(d) = Ad − B

104

0 50 100 150 200 250 300 350 400
−7

−6

−5

−4

−3

−2

−1

0
x 10

4 V
dot

 for d=7

γ

V
do

t

Figure 4.25: Lie Derivative at d = deq for Speed function v(d) = Ad − B

0 5 10 15 20
−12000

−10000

−8000

−6000

−4000

−2000

0

V
dot

 for γ =180

d

V
do

t

Figure 4.26: Lie Derivative at γ = 90o for Speed function v(d) = Ad − B

definite. Therefore, the equilibriums are stable nodes.

4.3.5 Simulation Results

In this section we present simulation results confirming the findings in the previous sections.

We examine a robot tracking and circling around static and dynamic targets in the following

sub-sections. Note that although we designed the controller assuming the target is stationary

we also present the performance of the controller for a dynamic target.

105

Figure 4.27: Lie Derivative for Speed function v(d) = (d −C)2

4.3.5.1 Target Tracking

The first simulation is performed for target tracking. The controller is designed to force the

robot to keep a specified distance to the target. Using the results from the previous section the

controller just adjusts the speed of the robot such that the robot traces the target at a specified

distance without circling around it. In other words, the system converges to the equilibrium

E in (4.12). The sufficient condition for the convergence to the equilibrium E is found to be

v < αd. Therefore, for the first simulation we will utilize a very simple function for the speed

that is v = αd − β < αd where β is a constant selected as β = 60.

In Figure 4.30 the trajectories of the robot for several initial positions and orientations are

presented. The small circles are the initial positions and the triangles are the final positions

of the robot. In Figure 4.31 the distances between the robot and the target is plotted for

the same simulation. As seen from the figures each trajectory reaches to the same distance

from the target, which is represented with a cross sign, and stops at that distance. For better

visualization a circle with radius equal to the desired distance is drawn around the target.

The angular velocity controller coefficient is chosen as α = 3. Therefore, the robot stops at

v = αd−β = 0⇒ d = β/α = 20[units]. Note that the angle of approach depends on the initial

106

0 50 100 150 200 250 300 350 400
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5 V
dot

 for d=15

γ

V
do

t

Figure 4.28: Lie Derivative at d = deq for Speed function v(d) = (d −C)2

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0
x 10

5 V
dot

 for γ =90

d

V
do

t

Figure 4.29: Lie Derivative at γ = 90o for Speed function v(d) = (d −C)2

position and orientation of the robot. In order to achieve different robot-to-target distance

different combination of α and β parameters can be used.

Trajectories and distance between robot and target of the robot for different initial orientations

are represented in 4.32 and 4.33.

Next, we examine the tracking performance of the controller for a dynamic target which has

the motion function of the form

Ztarget = [20; 20] + [6t; 3t − 8 sin(t)]; (4.115)

The path of the target is presented in Figure 4.34. The cross and diamond stand for the start

and final positions of the target, respectively.

107

−60 −40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

50

60

z
1

z 2

Trajectories of robot for different ICs

Figure 4.30: Trajectories of the robot for different initial positions and orientations.

The systems response, i.e., path of the robot, for this moving target is presented in Figure

4.35 where the path of the target is also plotted as the dashed curve. The distance between

the target and the robot is plotted in Figure 4.36. For this simulation α = 6 and β = 30 are

selected and therefore, the distance at which the robot follows the target is d = β/α = 5[units].

As seen from the figures the robot achieves to trace the target at a distance around 5[units],

i.e. there is small error. Note that it does not converge to 5 since the controller is designed

assuming zero target speed.

4.3.5.2 Circling Around the Target

In this part of the simulation we change the speed controller so that we have circling behavior

of the robot around the target. Again we will use the simplest speed controller for demon-

stration. We set the speed to a constant so that the set of equilibrium points E is attractive for

the robot dynamics when the robot is far from the target whereas as it gets closer to the target

the set E becomes repulsive and the limit cycle L becomes attractive. Therefore, switching

of the behavior occurs at v = αd. During v < αd the robot dynamics are converging towards

the equilibrium set E and d gets smaller. When d is small enough to satisfy v > αd then

the dynamics start to converge to the limit cycle which is the circling of the robot around the

108

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and target

Figure 4.31: Distance between robot and target for different initial positions and orientations.

0 10 20 30 40 50 60

10

15

20

25

30

35

40

45

50

55

z
1

z 2

Trajectories of robot for different ICs

Figure 4.32: Trajectories of the robot for different initial orientations.

target with the radius d = v/(απ/2).

In Figures 4.37 and 4.38 the trajectories of the robot and the distance between the robot

and the target are presented for different initial positions and orientations. The simulation

parameters are selected as α = 4, v = 40π [units/s]. All of the trajectories converge to the

circling behavior with the radius d = v/(απ/2) = 40π/4/(π/2) = 20 [units]. As can be seen

from Figure 4.37 some of the trajectories circle around the target in CW direction while some

are rotating in CCW direction. The direction of the rotation depends on the angle of approach

towards the target and is not aimed to be controlled in the scope of this study.

Next, the dynamic target presented in the previous section is again utilized to observe the

circling behavior of the robot. The controller parameters are selected to obtain a circling

109

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and Target

Figure 4.33: Distance between robot and target for different initial orientations.

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

Target Path

z
1

z 2

Figure 4.34: Path of the Target.

radius of 10 [units] (α = 5, v = 25π). The robot trajectory and the distance of the robot from

the target are presented in the Figures 4.39 and 4.40, respectively. As can be seen from the

results the robot achieves the objective of circling around the target in motion (the dashed

curve is the path of the target) with errors which are at most 5 [units]. This error is due to the

fact that the controller was designed based on the assumption of a static target. Extending of

the analytical study for dynamic targets is outside of the scope of this study.

4.4 Switching Gradient Method for Circling Around a Target

In this section, a different strategy for circling around a target is presented. For this strategy

we will develop the system response for the case where the gradient vector directs from the

target towards the robot or in the same direction of d⃗. Such cases usually occur when the robot

110

−20 0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

z
1

z 2

Trajectory of robot for dynamic target.

Figure 4.35: Robot trajectory tracking a dynamic target.

0 5 10 15
0

10

20

30

40

50

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance of the robot from target

Figure 4.36: Distance of the robot from the dynamic target.

is close to the target in order to avoid collisions. Therefore, the angle of the gradient vector is

γ = angle(∇G) = ψ (4.116)

Then the system dynamics becomes

ḋ = v cos(θ − ψ) (4.117a)

ψ̇ =
1
d

v sin(θ − ψ) (4.117b)

θ̇ = −α[mod(θ − ψ + π, 2π) − π] (4.117c)

The equilibrium of this system is at ḋ = 0, ψ̇ = 0, and θ̇ = 0. Then for ḋ = 0 we have a similar

solution of (4.9)

v cos(θ − ψ) = 0 =⇒ v = 0, θ − ψ = π

2
+ kπ f or k = 0,∓1,∓2... (4.118)

Similarly, for ψ̇ = 0

1
d

v sin(θ − ψ) = 0 =⇒ v = 0, θ − ψ = kπ f or k = 0,∓1,∓2... (4.119)

111

0 20 40

0

20

40

60

z
1

z 2

−40 −20 0 20 40

0

10

20

30

40

z
1

z 2

−20 0 20 40

−10

0

10

20

30

40

z
1

z 2

0 20 40

0

10

20

30

40

z
1

z 2

Figure 4.37: Robot trajectories circling around a static target at [20, 20].

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and target

Figure 4.38: Distance between robot and static target at [20, 20] for circling around the target
strategy.

−20 0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

x
1

x 2

Trajectory of robot

Figure 4.39: Robot trajectory circling around a dynamic target.

112

0 5 10 15
0

10

20

30

40

50

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance of the robot from target

Figure 4.40: Distance between target and robot circling around a dynamic target.

And, for θ̇ = 0 we obtain

− α [mod(θ − ψ + π, 2π) − π] = 0 =⇒ θ − ψ = 2kπ f or k = 0,∓1,∓2... (4.120)

The common solution of the equations (4.118), (4.119), (4.120) is the set E

E = {v ∈ R+, 0 < θ, ψ < 2π|v = 0, θ − ψ = 2kπ} f or k = 0,∓1,∓2... (4.121)

We will check for the existence of the limit cycle similar to the previous section. The possible

limit cycle occurs at ḋ = 0 and θ̇ − ψ̇ = 0, and v , 0. Solving the system dynamics under the

above constraints we obtain the solutions as

ḋ = v cos(θ − ψ) = 0 =⇒ θ − ψ = π

2
+ kπ f or k = 0,∓1,∓2... (4.122)

and

θ̇ − ψ̇ = −α [mod(θ − ψ + π, 2π) − π] − 1
d

v sin(θ − ψ) = 0 (4.123)

There are two independent solutions of ḋ = 0 which are θ − ψ = π/2 and θ − ψ = 3π/2. For

θ − ψ = π/2, (4.123) gives

−α [mod(π/2 + π, 2π) − π] − 1
d

v sin(π/2) = 0 (4.124a)

=⇒ −απ
2
=

1
d

v (4.124b)

=⇒ d = − v
απ/2

. (4.124c)

which is not a valid solution since d is a nonnegative physical measurement. Similarly for the

second solution is θ − ψ = 3π/2, (4.123) becomes

−α [mod(3π/2 + π, 2π) − π] − 1
d

v sin(3π/2) = 0 (4.125a)

=⇒ α
π

2
= −1

d
v (4.125b)

=⇒ d = − v
απ/2

. (4.125c)

113

which is again not a valid solution. Therefore, there is no periodic solution at ḋ = 0 and

θ̇ − ψ̇ = 0.

4.4.1 Stability Analysis via Lyapunov Functions

Now we will examine the stability of the equilibrium set E in (4.121). As in the previous

section we will investigate the behavior of the time derivatives of the difference between the

orientation of the robot and the orientation of the distance vector
−→
d which is

θ̇ − ψ̇ = −α [mod(θ − ψ + π, 2π) − π] − 1
d

v sin(θ − ψ) (4.126)

The numerical solution of this equation is presented for different values of v, α, and d in

Figure 4.41. As seen from the figure there is only one solution of the equation θ̇ − ψ̇ = 0

which is θ − ψ = 2kπ for k = 0,∓1,∓2.... The slope of θ̇ − ψ̇ at θ − ψ = 2kπ is negative which

means the root is a stable root. We can also reach the same result by the following analytical

solution. The derivative d(θ̇−ψ̇)
d(θ−ψ) at the root θ − ψ = 2kπ can be derived as

d(θ̇ − ψ̇)
d(θ − ψ)

=
d

d(θ − ψ)
[−α [mod(θ − ψ + π, 2π) − π] − 1

d
v sin(θ − ψ)](4.127a)

= −α − 1
d

v cos(θ − ψ) (4.127b)

d(θ̇ − ψ̇)
d(θ − ψ)

|θ−ψ=2kπ = −α − 1
d

v cos(2kπ) (4.127c)

= −α − 1
d

v < 0 (4.127d)

Since d(θ̇−ψ̇)
d(θ−ψ) |θ−ψ=2kπ < 0, the root at θ − ψ = 2kπ is a stable root.

For better understanding of the relations between the state variables and therefore, the system

behavior, we should consider the change of θ̇ − ψ̇ with respect to both distance between the

agent and the target and the relative angle difference θ − ψ. Hence, a 3-dimensional plot of

state variables θ̇ − ψ̇ versus θ − ψ and the distance d is presented in Figure 4.42. The speed

of the robot is kept constant at v = rαπ/2 for generating this figure. As seen from the figure

the only stable root for several system parameters is at θ −ψ = 2kπ. Therefore, if the gradient

vector is in the same direction of vector
−→
d then the robot motion will converge to the direction

of the gradient vector. The robot will escape from the target in the same direction of the vector

from target to robot.

114

0 pi/2 pi 3*pi/2 2*pi

−pi

0

pi

θ − ψ

θ do
t −

 ψ
do

t

v < α * d

v = α * d

v = α*π*d/2

v > α*π*d/2

Figure 4.41: θ̇ − ṗsi versus θ − ψ for several v values.

Figure 4.42: θ̇− ψ̇ versus θ−ψ and the distance d for constant v = rαπ/2 where r is the radius
of the circle on which the robot travels.

115

This strategy may be utilized for just making the robot escape from a target. However, in

this study we will utilize a combination of two strategies presented in the previous and this

section. Recall that in the previous section we showed that if the gradient vector directs from

the robot to the target and if v < αd then the robot moves towards the target by converging

to the axes between the robot and the target. In addition we showed in this section that if

the gradient vector is from the target to the robot then for any value of the robot speed, v

and proportional controller gain α the robot escapes from the target converging to the axes

between robot and target. Therefore, we propose a controller that changes the direction of the

gradient vector at a pre-specified distance from the target so that the robot circles around the

target. In the following section we present the simulation results for this controller strategy.

4.4.2 Simulation Results

In this section we present simulation results confirming the findings for circling around a

target with variable gradient strategy. Note that although we designed the controller assuming

the target is stationary we also present the performance of the controller for a dynamic target.

In this simulation the speed of the robot is taken as v = 0.3αd < αd. The controller is

designed such that the gradient vector changes direction at d = 30[units]. For larger distances

the gradient vector directs from the robot to the target so that the equilibrium set in (4.12) is a

stable point and robot gets closer to the target by converging to the axes from the robot to the

target. For smaller distances (d < 30[units]) the direction of gradient vector is from the target

to the robot so that the equilibrium set in (4.121) is a stable equilibrium and thus the robot gets

away from the target by converging to the axes from the target to the robot. Therefore, the

change in the direction of the gradient vector at d = 30[units] results in the circling behavior

of the robot around the target.

In Figures 4.43 and 4.44 the trajectories of the robot and the distance between the robot and

the target are shown for different initial positions and orientations. The simulation parameters

are selected as α = 3, v = 0.3αd. All of the trajectories converge to the circular path centered

at [x, y] = [20, 20] with radius r̄ = 30[units]. As can be seen from Figure 4.43 some of the

trajectories circle around the target in CW direction while some are rotating in CCW direction.

The direction of the rotation depends on the angle of approach towards the target and is not

aimed to be controlled in the scope of this study.

116

−80 −60 −40 −20 0 20 40 60 80 100

−40

−20

0

20

40

60

80

100

x

y

Trajectories of robot for different ICs

Figure 4.43: Robot trajectories circling around a static target at [20, 20].

In Figure 4.45 the robot trajectories for the case in which the robot is located at the same

position with different initial orientation angles are presented. As seen from the figure all

trajectories converge to the same circle but the rotations vary in CW and CCW directions

depending on the angle of approach to the target.

Next, the dynamic target presented in the previous section is again utilized to observe the

circling behavior of the robot. The controller parameters are selected to obtain a circling

radius of 10 [units] (α = 5, v = 0.6αd). The robot trajectory and the distance of the robot

from the target are presented in Figures 4.46 and 4.47, respectively. As can be seen from the

results the robot achieves the objective of circling around the target in motion (the dashed

curve is the path of the target) with errors which are at most 0.5 [units]. This error is due to

the fact that the controller was designed based on the assumption of a static target.

4.5 Switching Gradient Method for Line Formation

Here we present a controller for line formation of robots. In fact the robots get far away from

the target by converging to a predefined axes. The axes passes through the target and the

angle of the axes depends on the deviation angle β applied to the gradient vector, which is a

pre-specified controller parameter. The original gradient vector directs from the robot towards

117

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and target

Figure 4.44: Distance between robot and static target at [20, 20] for circling around the target
strategy.

5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

x
1

x 2

Trajectory of robot

Figure 4.45: Robot trajectories circling around a static target at [20, 20] for different initial
angles.

118

−20 0 20 40 60 80 100 120
−40

−20

0

20

40

60

80

x
1

x 2

Trajectory of robot

Figure 4.46: Robot trajectory circling around a dynamic target.

0 5 10 15
0

10

20

30

40

50

60

70

80

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance of the robot from target

Figure 4.47: Distance between target and robot circling around a dynamic target.

119

the target or in the opposite direction of d⃗ as in the first section. Therefore, the angle of the

modified gradient vector is

γ′ = β − angle(∇G) = β − ψ − π (4.128)

The modified dynamics of the system becomes

ḋ = v cos(θ − ψ) (4.129a)

ψ̇ =
1
d

v sin(θ − ψ) (4.129b)

θ̇ = −α[mod(θ − γ′ + π, 2π) − π] (4.129c)

= −α[mod(θ − β + ψ, 2π) − π] (4.129d)

The steady state of this system occurs at ḋ = v, ψ̇ = 0, and θ̇ = 0. Then for ḋ = v we have

v cos(θ − ψ) = v =⇒ θ − ψ = 2kπ f or k = 0,∓1,∓2... (4.130)

Similarly, for ψ̇ = 0

1
d

v sin(θ − ψ) = 0 =⇒ v = 0, θ − ψ = kπ f or k = 0,∓1,∓2... (4.131)

And, for θ̇ = 0 we obtain

− α[mod(θ − β + ψ, 2π) − π] = 0 =⇒ θ − β + ψ = (2k + 1)π f or k = 0,∓1,∓2... (4.132)

The common solution of the equations (4.130), (4.131), (4.132) is the set S

S =
{
v ∈ R+, 0 < θ, ψ < 2π∥v > 0, θ = ψ =

π + β

2

}
f or k = 0,∓1,∓2... (4.133)

Now we will examine the stability of the steady state set S in (4.133) by Lyapunov Stability

theorem.

4.5.1 Stability Analysis via Lyapunov Functions

In this section, we will examine a Lyapunov function candidate that shows the attractiveness

of the set in (4.133). Before we present the Lyapunov function we should present the sec-

ond derivatives of the system variables to be utilized in the time derivative of the Lyapunov

function. The system dynamics is repeated in the following equation

ḋ = v cos(θ − ψ) (4.134a)

ψ̇ =
1
d

v sin(θ − ψ) (4.134b)

θ̇ = −α[mod(θ − β + ψ, 2π) − π] (4.134c)

120

The second time derivatives of the variables are given by

d̈ = −v sin(θ − ψ)(θ̇ − ψ̇)

= −dψ̇(θ̇ − ψ̇) (4.135a)

ψ̈ = − ḋ
d2 v sin(θ − ψ) +

1
d

v cos(θ − ψ)(θ̇ − ψ̇)

= − ḋ
d
ψ̇ +

ḋ
d

(θ̇ − ψ̇)

=
ḋ
d

(θ̇ − 2ψ̇) (4.135b)

θ̈ = −α(θ̇ + ψ̇) (4.135c)

The Lyapunov function candidate is

V(ḋ, θ̇, ψ̇) =
1
2
α(ḋ − v)2 +

1
2
α(dψ̇)2 +

1
2

vdθ̇2 (4.136)

where D = {ḋ, θ̇, ψ̇ ∈ R}. V(ḋ, θ̇, ψ̇) is positive definite in D. Then the Lie derivative of the

Lyapunov function becomes

V̇ = α(ḋ − v)d̈ + α(dψ̇)
[
ḋψ̇ + dψ̈

]
+ v

[
1
2

ḋθ̇2 + dθ̇θ̈
]

(4.137)

Then, substituting the second derivatives in (4.135) into (4.137) one obtains

V̇ = α(ḋ − v)
[
−dψ̇(θ̇ − ψ̇)

]
+ α(dψ̇)

[
ḋψ̇ + d

ḋ
d

(θ̇ − 2ψ̇)
]
+ v

[
1
2

ḋθ̇2 + dθ̇
(
−α(θ̇ + ψ̇)

)]
(4.138)

which can be rearranged as

V̇ = −αd(ḋ − v)ψ̇(θ̇ − ψ̇) (4.139a)

+αdψ̇ḋ(θ̇ − ψ̇) + (4.139b)

+
1
2

ḋvθ̇2 − dvθ̇α(θ̇ + ψ̇) (4.139c)

and further as

V̇ = −αdḋψ̇(θ̇ − ψ̇) + αdvψ̇θ̇ − αdvψ̇2 (4.140a)

+αdḋψ̇(θ̇ − ψ̇) (4.140b)

+
1
2

ḋvθ̇2 − αdvθ̇2 − αdvψ̇θ̇ (4.140c)

After appropriate calculations we obtain

V̇ = −αdvψ̇2 − αdvθ̇2 +
1
2

ḋvθ̇2 (4.141)

121

which can be written as

V̇ = −αdvψ̇2 − vθ̇2
(
αd − 1

2
ḋ
)

(4.142)

The Lie derivative of the Lyapunov function, V̇ is negative semi-definite for αd− 1
2 ḋ > 0. Note

that ḋ is at most v since max(v cos (θ − ψ)) = v. Therefore, if αd > v/2 then V̇ is negative

semi-definite. Also note that if ḋ is negative then αd − 1
2 ḋ is positive and if ḋ is positive then

αd− 1
2 ḋ may be negative but as time passes d increases and so αd− 1

2 ḋ becomes positive. The

stability should be investigated by the use of Lasalle’s principle.

4.5.2 Simulation Results

In this section we present simulation results confirming the findings for the motion of the

robot that converges to a line.

In this simulation the speed of the robot is taken as constant v = 10[units/sec]. In Figures

4.48 and 4.49 the trajectories of the robot and the distance between the robot and the line are

given for different initial positions and orientations. The simulation parameters are selected

as α = 3, β = 3π/2. As seen from the Figure 4.48 the line that the robots are converging

to passes through the target position ([x, y] = [20, 20]) with the slope (π + β)/2 = 5π/4. In

Figure 4.49 the distance from the robot to the line is plotted with respect to time. All of the

distances for different initial positions are converging to zero. Note that the trajectories of the

robot are towards the two ends of the line. The initial position and orientation of the robot

determines to which end the robot will converge to.

In Figure 4.50 the robot trajectory located at the same position with different initial orienta-

tions are presented. β is selected to be 150 degrees. As seen from the figure all trajectories

converge to the line passing through the target with slope of (180 + β)/2 = 165 degrees. In

Figure 4.51 the distance between the robot and the line is shown. As seen all distance values

converge to zero.

4.6 Conclusion

In this study we considered the unicycle mobile robot kinematics and developed simple pro-

portional controllers for the speed and angular velocity of the robot for achieving approaching

122

−150 −100 −50 0 50 100 150

−100

−50

0

50

100

150

x
1

x 2

Trajectories of robot for different ICs

Figure 4.48: Robot trajectories converging to line passing through a static target at [20, 20].

0 5 10 15
0

5

10

15

20

25

30

35

40

45

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and line

Figure 4.49: Distance between robot and line for different initial positions.

123

−20 −10 0 10 20 30 40 50 60

0

10

20

30

40

50

60

x
1

x 2

Trajectories of robot for different Initial Orientations

Figure 4.50: Robot trajectories converging to line passing through a static target at [20, 20]
for different initial orientations.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

time [s]

D
is

ta
nc

e
[u

ni
ts

]

Distance between robot and line

Figure 4.51: Distance between robot and line for different initial orientations.

124

and circling behavior around a static target and approach to the line passing through the target

with a pre-specified orientation. For these controllers the stability of the system is investi-

gated and some conditions on the controller coefficients are derived. In this study we propose

controllers that achieve circling and line formation behavior of the mobile robot without any

pre-specified path. We also show that a mobile robot can easily achieve a switching between

the target tracking and circling around a target controller strategies. Hence, a mobile robot is

able to first approach the target and then start to circle around that target without any exter-

nal switching input or external decision mechanism. We validate the controller performances

using numerical simulations.

Although the controllers designed in this study are developed for static targets we also men-

tion their performances for dynamic targets. In this chapter we utilized just proportional

controllers and performed analytical studies on the stabilities of the controllers. Some of our

simulation based studies show that a controller that achieves divergence of a mobile robot at a

pre-specified axes passing through a given target location can also be developed with a similar

logic explained in this study. Moreover, there may be other gradient vector functions to be

utilized for the controllers, especially a gradient vector that points biased directions from the

target may also lead to interesting but useful trajectories.

125

CHAPTER 5

Circling Controllers Developed by Feedback Linearization

5.1 Introduction

Several trajectory generation and trajectory control methods for autonomous navigation of

mobile robots have been developed in the literature. Many nonlinear control theories like

Lyapunov stability theory, Lasalle’s invariance principle, feedback linearization, output reg-

ulation, backstepping, sliding mode controllers etc. have been utilized for the path tracking

problems.

One of the earlier studies on the tracking problem of autonomous mobile robots is [137].

Kanayama et.al. propose a stable tracking control rule for non-holonomic vehicles and prove

the stability of the rule through the use of a Lyapunov function in addition to the experimen-

tal validations. In [138], the authors study on the closed loop control laws for unicycle-like

vehicles. They show that the use of the simplest quadratic form as candidate Lyapunov func-

tion directly leads to the definition of very simple, smooth and effective closed loop control

laws suitable to be used for steering, path following, and navigation. In [139], the control

of a wheeled mobile robot to track a moving target with limited control inputs is studied.

Based on a proper system modeling, a Lyapunov based controller design approach is used

to determine the robot’s angular and linear velocities to achieve the asymptotic convergence

of the tracking errors. Simulation results are provided to verify the effectiveness of the pro-

posed approach. In [140] the authors propose a vehicle command system for the wheeled

autonomous mobile robots with a high capability in describing the navigation task in the real

environment and describe a feedback control method to track along the given paths by the

vehicle commands. Another study on the target tracking problem of unicycle type mobile

126

robots that utilizes Lyapunov functions in the stabilization is [141]. The study in [142], deals

with the formulation and solution of the tracking control problem with saturation constraint

for a class of unicycle-modeled mobile robots. The authors utilize the backstepping technique

and the idea from the LaSalle’s invariance principle in the solutions and show that with the

proposed control laws, the robot can globally follow any path specified by a straight line, a

circle or a path approaching the origin using a single controller. In [143], a target tracking

controller is designed with four possible moving directions of linear and angular velocities

using Lyapunov stability theory. The proposed controller is experimentally demonstrated un-

der high velocity and acceleration conditions with different control parameters. Fukao et.al.

[144] study on a method to design an adaptive tracking controller for the dynamic model of

a non-holonomic mobile robot with unknown parameters in the kinematic parts by adaptive

backstepping. In [145], a first-state contractive model predictive control algorithm is devel-

oped for the trajectory tracking, point stabilization and formation problems of nonholonomic

mobile robots. The authors also presents simulation results showing the proposed control

algorithm can generate satisfactory system responses.

Another recent study on the tracking control is [146] that utilizes the sliding-mode controllers

for wheeled-mobile robots in polar coordinates. They design two controllers that asymptot-

ically stabilize the tracking errors in position and heading direction so that they achieve the

stabilization and trajectory tracking for reference trajectories. The target tracking problem is

solved by fuzzy controller methods in [147]. The authors utilize two mobile robots where one

is the target mobile robot with infrared transmitters and the other one is the tracker mobile

robot with infrared receivers and reflective sensors. The latter is designed to track the former

mobile robot which is designed to drive in a specific trajectory. In [148] and [149], the ar-

tificial potential methods and sliding mode controllers are utilized for tracking maneuvering

targets. In [150], a control scheme that combines a kinematic controller and a sliding mode

dynamic controller with external disturbances is designed for an automatic guided vehicle to

track a desired trajectory with a specified constant velocity. The control law is obtained based

on the backstepping technique and system stability is proved using the Lyapunov stability

theory. The simulation and experimental results are presented to illustrate the effectiveness of

the proposed controller. The paper [151] describes a strategy for trajectory tracking and path-

following control of vehicles using sliding surface. In [152], the trajectory tracking control

problem for the wheeled mobile robot is solved using the sliding mode control.Four control

127

laws are modeled and the system performances are investigated. The sliding mode control

laws for the trajectory tracking problem are simulated and then implemented on a laboratory

mobile Robot. In [153], a robust tracking control of nonholonomic wheeled mobile robots

using sliding mode is proposed. The posture of a mobile robot is represented by polar coor-

dinates and the dynamic equation of the robot is feedback-linearized by the computed-torque

method. The study is supported by experimental validations.

The feedback linearization techniques are also widely utilized nonlinear controller design

methods in the path following problems of mobile robots. One of the early studies is [154]

where the authors design controllers for both unicycle-type and two-steering-wheels mobile

robots. They use the exact output feedback linearization and decoupling techniques and a Lya-

punov oriented approach in the design of controllers. The controllers are associated with a

specific parametrization of the relative path to vehicle distance and orientation and achieve the

path following convergence. In [155], authors use the dynamic feedback linearization tech-

niques in the controller design for both trajectory tracking and target point regulation problems

of wheeled mobile robots. They support their work with the experiments on a mobile robot.

Yang et.al., considers the state constraints in the control of nonholonomic car-like mobile

robots in [156]. They achieve point-to-point tracking and circular trajectory tracking in the

simulations. The controllers are designed by dynamic feedback linearization techniques and

the steering angle is constrained. In [157] the unified polar-space kinematics control approach

for set-point stabilization, trajectory tracking, and path following of an omnidirectional mo-

bile robot. The unified kinematics controller has been designed using feedback linearization

to simultaneously achieve three basic navigation problems. Computer simulations and experi-

mental results have shown that the proposed kinematics controller is capable of accomplishing

stabilization, trajectory tracking, and path following missions at slow speeds. In [158], the

point stabilization of the mobile robot is formulated by utilizing the state-space exact feed-

back linearization. The case in which the mobile robot moves to a target point without heading

angle constraints and the control of the robot to a target point with heading angle constraint

is formulated. In [159] an output-feedback tracking controller for the unicycle-type mobile

robot is considered assuming that only the measurements of the x and y position coordinates

are available. Using cascaded systems theory it is shown that local exponential stability by

means of Lyapunov is obtained for the resulting closed loop system. A verfication of these

results is demonstrated by implementation on an experimental mobile robot. In [160], the au-

128

thors are interested in solving the problem of tracking with stability of a reference trajectory,

by means of linearizing ”static” and ”dynamic” state feedback laws. They give conditions to

avoid possible singularities of the feedback laws. In [161], authors design nonlinear adaptive

control laws by Lyapunov theory and backstepping techniques. The designed control law for

path following deals with vehicle dynamics and plant parameter uncertainty. Furthermore, it

overcomes stringent initial condition constraints by controlling explicitly the rate of progres-

sion of a ”virtual target” to be tracked along the path, thus bypassing the problems that arise

when the position of the virtual target is simply defined by the projection of the actual vehicle

on that path.

In [162], the authors propose a number of guidance laws driving wheeled robots towards

stationary and moving targets. The control scheme utilizes just the distance measurements

between the vehicles and targets. The vehicles approach the targets along an equiangular

spiral trajectory and stays steady on a circular path centered at the target. The authors support

the analytical results with experimental and simulation results.

The studies in the literature mostly utilize pre-generated paths for tracking by mobile robots.

By using these paths many researchers achieved the robots to follow straight lines, circular or

randomly generated paths. In this study first the circling around stationary and non-stationary

target problems for ground and air vehicles are considered as periodic system problems and

the states in the system kinematics are forced to converge to periodical trajectories. We

propose new stable methods for mobile robots to track circular paths of which the center -

considered as the target- is given. The radius of the circular path and the angular velocity

can be adjusted by the controller parameters. We propose different controllers for three dif-

ferent cases. In the first one, the only controllable input is the angular velocity of the robot

(SISO-Stationary Target Controller). The translational speed of the robot is taken as constant.

This case can represent applications such as autonomous air vehicles (UAV) circling around a

stationary target. The only required global info is the distance to the target. In the second case

in addition to the angular velocity input the translational speed is taken as an input (MIMO-

Stationary Target Controller). So that one can adjust both the radius of the circular path and

the angular velocity by controlling these inputs. The only required global info is the distance

to the target. The last controller developed is similar to the MIMO controller but this time the

target is not stationary (MIMO-NonStationary Target Controller). The controller utilizes the

target velocity vector in the manipulations and achieves much better performance with respect

129

to the stationary target controllers.

The circling behavior is achieved without pre-specified paths to be followed by the robots.

In fact robots use the target position and velocity to achieve the mentioned behaviors. The

usage of the only target information instead of pre-specified paths is mostly beneficial in the

multi-robot applications. In multi-robot applications usually each robot is a target for the

others; therefore, the controllers that use target information is preferable with respect to pre-

generated paths since in most of the applications the paths of the robots in the swarm are

emergent paths that are hard to predict. The controllers developed for single agents to circle

around specified targets are applied to multi-agent systems. The agents in the swarm utilized

the same controllers targeting the centroid of the swarm to achieve the rotational motion on

the same circle. A minor modification is performed in the MIMO-stationary target controller

to achieve circling. The MIMO controllers worked well in doing the circling behavior of

swarms with various number of agents.

In the following sections, the mathematical background and development of the controllers

are presented. The results of the analytical derivations are validated in the simulation study

sections.

5.2 Mathematical Model

In this chapter, the control problem is constructed by the first-order kinematic model of the

unicycle vehicles since in most of the applications the control architecture of mobile robots

does not allow the user to impose acceleration or torque inputs; they rather use the speed

and position inputs. The unicycle dynamics of a mobile robot in cartesian coordinates are

the same with the ones in the previous Chapter 4 section 4.2 (see equations (4.1) and (4.3)).

However, we will present the model again for the reader to follow up easily. The kinematics

are represented as

ż1 = v cos(θ) (5.1a)

ż2 = v sin(θ) (5.1b)

θ̇ = u (5.1c)

where v is the translational speed, θ is the steering angle, and u is the controller for the angular

speed of the agent. The agent and the target are shown on Figure 5.1. With appropriate

130

Figure 5.1: System model in polar coordinates.

transformation the dynamics of the system can be transformed into polar coordinates as (see

Figure 5.1)

ṙ = v cos(θ − ϕ) (5.2a)

ϕ̇ =
1
r

v sin(θ − ϕ) (5.2b)

θ̇ = u(θ, γ) (5.2c)

where r is the distance from the origin to the position of the agent r =
√

x2 + y2 and ϕ is the

angle of the vector along r, ϕ = atan2(y, x) and θ is the steering angle (orientation) of the

agent as mentioned above.

5.2.1 Stationary Target

For the time being we assume that the robot obtains the position of the target perfectly (exact

values with synchronous timing i.e., no time delay in sensing) and the target is stationary.

Furthermore, since we are interested in the relative position of the robot with respect to the

target, we will utilize the dynamics in relative coordinates. The reference coordinate frame

131

Figure 5.2: System model for relative coordinates.

(x1-x2 frame) has the origin on the target with parallel coordinate axes to the global coordinate

frame axes. The relative coordinates are plotted in Figure 5.2 and can be described with the

equations.

ẋ1 = v cos(θ) (5.3a)

ẋ2 = v sin(θ) (5.3b)

θ̇ = u(θ, γ) (5.3c)

Again with the coordinate transformation d =
√

x2
1 + x2

2 and ϕ = atan2(x2, x1) and under

the assumption that the target is stationary the dynamics of the robot in the polar coordinates

relative to the target is obtained as

ḋ = v cos(θ − ψ) (5.4a)

ψ̇ =
1
d

v sin(θ − ψ) (5.4b)

θ̇ = u(θ, γ) (5.4c)

5.2.2 Non-Stationary Target

For many cases the vehicles will face with non-stationary targets. The kinematics of the vehi-

cles does not change in the global reference frame; however they do in the relative coordinate

132

Figure 5.3: System model with non-stationary target in relative coordinates.

frame. The kinematics of the agent relative to the non-stationary target becomes (see Figure

5.3)

ḋ = v cos(θ − ψ) − vc cos(θc − ψ) (5.5a)

ψ̇ =
1
d

[
v sin(θ − ψ) − vc sin(θc − ψ)

]
(5.5b)

θ̇ = u(θ, γ) (5.5c)

where vc and θc are the speed and angular velocity of the target, respectively.

Using the kinematics above we will solve the the feedback linearization problems for “Cir-

cling Around a Target” behavior, in the following sections.

5.3 Circling Around a Target

In this section the circling around a target problem for ground and air vehicles is considered

as a periodic system problem and the states in the system kinematics are forced to converge to

periodical trajectories. We propose a new stable method for a mobile robot to track a circular

path of which the center -considered as the target- is given. The radius of the circular path

and the angular velocity can be adjusted by the controller parameters. We propose different

controllers for two different cases. In the first one, the only controllable input is the angular

133

velocity of the robot. The translational speed of the robot is taken as constant. We consider

this case especially for the air vehicles (like UAV) circling around a target with constant speed.

In the second case in addition to the angular velocity input the translational speed is taken as

an input. So that one can adjust both the radius of the circular path and the angular velocity

by controlling these inputs. We use static feedback linearization methods in the first case

and dynamic feedback linearization in the second one. The first will be called as “Circling-

SISO” where the only controlled system state is the angular velocity of the robot (θ̇ = u).

The robot travels at constant translational speed v. The second case called as “Circling-

MIMO” is the case in which both translational and rotational speeds are inputs of the system

(v = u1 and θ̇ = u2). In the following sections we will derive the feedback linearization laws

for these cases and present some simulation results. In the following sections, the feedback

linearization results are presented. The results of the analytical derivations are validated in

the simulation study sections. We lastly present the conclusions on the results of this part and

mention some future work.

5.3.1 Circling - SISO Case - Stationary Target

In this section the circling around a target controller for the unicycle kinematics of a UGV or

UAV is developed. For this purpose we use the feedback linearization techniques. The only

controlled input is the angular velocity of the vehicles (u = θ̇). The translational velocity of

the vehicle is assumed to be constant at v. Therefore, we write the dynamics as
ḋ

ψ̇

θ̇

 =


v cos(θ − ψ)
1
d v sin(θ − ψ)

0

 +

0

0

1

 u (5.6)

For simplicity we will lump the two states θ and ψ as γ = θ − ψ. Note that, for circling

behavior only the relative dynamics (θ−ψ) is important. Then the system kinematics becomeḋγ̇
 =

 v cos(γ)

− 1
d v sin(γ)

 +
01

 u⇒ ẋ = f (x) + g(x)u (5.7)

For the circling behavior of a vehicle the equilibrium of the states are desired to be at

ḋ = v cos(γ) = 0⇒ γ =
π

2
(2k + 1) (5.8)

134

Let the radius of the circling be d = d0. At this equilibrium the other state’s steady value

becomes

γ̇ = u − 1
d

v sin(γ) = 0⇒ u = ± v
d0

(5.9)

To achieve this equilibrium, we will use the feedback linearization method to linearize the

system and then design linear system controllers.

The output of the system is selected as

y = k(x) = d (5.10)

Then the lie derivatives along the nonlinear system functions f (x) and g(x) are

Lgk(x) =
∂k
∂x

g(x) =
[
1 0

] 01
 = 0 (5.11a)

L f k(x) =
∂k
∂x

f (x) =
[
1 0

]  v cos(γ)

− 1
d v sin(γ)

 = v cos(γ) (5.11b)

LgL f k(x) =
∂L f k(x)
∂x

g(x) =
[
0 − v sin(γ)

] 01
 = −v sin(γ) (5.11c)

At equilibrium (γ = π/2)

LgL f k(x)|γ=π/2 = −v sin(π/2) = −v , 0 (5.12)

Therefore, around the equilibrium point (γ = π/2), the relative degree is 2. In fact, it is ρ = 2

in (0, π) and (−π, 0). To derive the linearizing input we first find second order Lie derivative

of k(x) along f (x) as

L f L f k(x) =
∂L f k(x)
∂x

f (x) =
[
0 − v sin(γ)

]  v cos(γ)

− 1
d v sin(γ)

 = 1
d

v2 sin2(γ) (5.13)

Then the linearizing input is calculated as

u =
1

LgL f k(x)

[
−L f L f k(x) + w

]
=

1
−v sin(γ)

[
−1

d
v2 sin2(γ) + w

]
= − w

v sin(γ)
+

1
d

v sin(γ) (5.14)

135

The normal form of the system dynamics according to the derivations above is the following

ξ1 = k(x) = d (5.15a)

ξ2 = L f k(x) = v cos(γ) (5.15b)

The time derivatives of these normal form states with the input in equation (5.14) becomes

ξ̇1 = v cos(γ) (5.16a)

ξ̇2 = −vγ̇ sin(γ)

= −v sin(γ)
[
u − 1

d
v sin(γ)

]
= −v sin(γ)

[
− w

v sin(γ)
+
�����1
d

v sin(γ) −
�����1
d

v sin(γ)
]

= w (5.16b)

The new transformed dynamics of the system becomes

ξ̇1 = ξ2 (5.17a)

ξ̇2 = w (5.17b)

Note that the desired radius of the circling behavior is d = d0. Therefore, we will shift the

first state as ξ1 = d − d0. Now, the stabilizing controller input w can be designed by many

linear system controller design methods. Here we will just derive the sufficient conditions on

the input function parameters and present some results.

The jacobian matrix of the transformed model becomes

J =

 0 1
∂w
∂ξ1

∂w
∂ξ2

 (5.18)

The characteristic polynomial of the Jacobian matrix is∣∣∣∣∣∣∣∣∣
λ − 1

− ∂w
∂ξ1

λ − ∂w
∂ξ2

∣∣∣∣∣∣∣∣∣ = λ

(
λ − ∂w

∂ξ2

)
− ∂w
∂ξ1

= λ2 − ∂w
∂ξ2

λ − ∂w
∂ξ1
= 0 (5.19)

Then the eigenvalues are

λ1,2 =

∂w
∂ξ2
±

√[
∂w
∂ξ2

]2
+ 4 ∂w

∂ξ1

2
(5.20)

For a stable system
∂w
∂ξ2

< 0 &
∂w
∂ξ1

< 0 (5.21)

136

For an underdamped response [
∂w
∂ξ2

]2

+ 4
∂w
∂ξ1

< 0⇒

∂w
∂ξ1

< −

[
∂w
∂ξ2

]2

4
(5.22)

For an overdamped response

0 <
[
∂w
∂ξ2

]2

+ 4
∂w
∂ξ1

<

[
∂w
∂ξ2

]2

⇒

−

[
∂w
∂ξ2

]2

4
<
∂w
∂ξ1

< 0 (5.23)

Let w be a linear state feedback

w = K1ξ1 + K2ξ2 (5.24)

where K1 =
∂w
∂ξ1

and K2 =
∂w
∂ξ2

. Now selecting the parameters K1 and K2 according to the

conditions above one can achieve circling behaviors.

Note that, in equation (5.14) in order for the feedback linearizing controller to be well defined,

it is required that γ = θ − ψ = kπ, k = 0, 1, 2, ... to be avoided. Physically this corresponds to

the case in which the robot is heading towards the target or heading in the opposite direction

along the
−→
d vector in Figure 5.2. Depending on the initial conditions, disturbances, unmod-

eled dynamics, controller parameters, and the value of the constant speed v the robot may

converge to the region where the controller is undefined (which is not desirable). In Figure

5.4 a sample phase plane of the system in (5.7) with linearizing input in (5.14) is shown. The

parameters for the phase plane are v = 20, K1 = −2, K2 = −1, and d0 = 20. As seen in the

figure in some neighborhood of the equilibrium d = d0 and γ = ∓π/2 the states are converging

to the equilibrium. However, when the robot is far away form the target (i.e. higher d values),

the states converge to the undefined region of the controller. Therefore, special care must be

taken to avoid the second situation. If we examine the linearized system (equation (5.17)) we

can derive the exponential time functions of the normal states as

ξ(t) = C1V1eλ1t +C2V2eλ2t (5.25)

where λi and Vi (i = 1, 2) are the eigenvalues and eigenvectors, respectively. The constants

Ci are functions of the initial conditions. Using these time dependent equations one can

examine the transient characteristics (damping ratio, maximum overshoot, rise time, settling

137

Figure 5.4: A sample phase plane of Circling-SISO system.

time, peak time etc.) of the system and consider the selection of appropriate constant speed,

and controller parameters in the design of the controller. For example, at least the conditions

ξ1 = d − d0 > −d0 and γ = arccos(ξ2/v) , ∓π should be satisfied by the equation (5.25). To

find more specific relations between these conditions and the equations one should consider

finding the maximum and minimum values of ξ1 and ξ2 by taking the time derivative of (5.25).

By solving the resulting implicit equations one may adjust the controller parameters to design

a convergent circling behavior.

5.3.2 Circling - SISO - Stationary Target - Simulation Results

In this section we will present the results of the developed controller in the previous section.

As mentioned above we may select underdamped or overdamped controller parameters. The

first example is the overdamped circling behavior. For this behavior we select the parameters

as K2 = −4 < 0 and − |K2|2 /4 < K1 = −2 < 0. In the upper part of the Figure 5.5 the change

of the distance between robot and target (d) is presented. As seen the robot approaches the

target with an overdamped response and stays steady at d = d0 = 20[units]. The lower part of

the figure shows the change of the angle difference γ. This variable reaches 90o which means

the robot is rotating around the target. The path of the robot can be followed in the Figure 5.6.

138

0 2 4 6 8 10
0

10

20

30

40

50

t

d
[u

ni
ts

]

Distance between robot and target (circling radius d
0
 = 20)

0 2 4 6 8 10
70

80

90

100

t

γ
[d

eg
]

γ = θ − ψ (90 deg => Circling)

Figure 5.5: The change of the distance between robot and target, and the angle difference γ
with respect to time. Overdamped response for circling behavior.

−40 −20 0 20
−40

−30

−20

−10

0

10

20

30

40

x

y

Trajectory of robot − Circling − SISO

Figure 5.6: The path of the robot. Overdamped response for circling behavior.

139

0 1 2 3 4 5
0

10

20

30

40

50

t
d

[u
ni

ts
]

Distance between robot and target (circling radius d
0
 = 20)

0 1 2 3 4 5
50

100

150

200

t

γ
[d

eg
]

γ = θ − ψ (90 deg => Circling)

Figure 5.7: The change of the distance between robot and target, and the angle difference γ
with respect to time. Underdamped response for circling behavior.

The underdamped response is obtained by the controller parameters K2 = −2 < 0 and K1 =

−30 < − |K2|2 /4. The upper part of Figure 5.7 shows the change of d with respect to time.

As seen the response is underdamped. The lower part of the figure presents the underdamped

response of the state γ. The path of the robot can be followed in the Figure 5.8.

5.3.3 Circling - MIMO - Stationary Target Case

In this section we will develop the feedback linearization of circling dynamics by taking speed

v and angular velocity θ̇ as the inputs. Lets call v = u1 and θ̇ = u2. Then the system dynamics

becomes

ḋ = u1 cos(θ − ψ) (5.26a)

ψ̇ =
1
d

u1 sin(θ − ψ) (5.26b)

θ̇ = u2 (5.26c)

At the circling behavior, the vehicle follows a circular path with radius d = d0. Then the

equilibrium for the distance variable becomes

ḋ = 0⇒ θ − ψ = (2k + 1)π/2 & d = d0 (5.27)

140

−40 −20 0 20
−40

−30

−20

−10

0

10

20

30

40

x

y

Trajectory of robot − Circling − SISO

Figure 5.8: The path of the robot. Underdamped response for circling behavior.

The angular velocities ψ̇ and θ̇ will be equal at a reference speed (α) while the vehicle is in

circling behavior. However, the derivations show that the static feedback linearization is not

possible for this system. Therefore, we will use the dynamic feedback linearization technique

and instead of using ψ̇ = θ̇ = u2 = α we will state that the angular acceleration ψ̈ is zero at

the circling dynamics. The equilibrium set for the circling dynamics is

d = d0 (5.28a)

ψ̇ = u2 = α⇒ ψ̈ = 0 (5.28b)

Since the ψ̈ is not present at current system dynamics we add the integrators for the input u1

and state ψ as

u1 = z1 (5.29a)

ż1 = w1 (5.29b)

ψ̇ = z2 (5.29c)

ż2 =
ḋ
d2 z1 sin(θ − ψ) +

1
d

w1 sin(θ − ψ) +
1
d

z1(θ̇ − ψ̇) cos(θ − ψ) (5.29d)

141

For the convenience let us call u2 = w2. Then the system dynamics becomes

ḋ = z1 cos(θ − ψ) (5.30a)

ż1 = w1 (5.30b)

ψ̇ = z2 (5.30c)

ż2 = −z1
2

d2 cos(θ − ψ) sin(θ − ψ) +
1
d

w1 sin(θ − ψ)

+
1
d

z1w2 cos(θ − ψ) − 1
d

z1z2 cos(θ − ψ) (5.30d)

θ̇ = w2 (5.30e)

The equations in (5.30a)-(5.30e) may be represented in matrix form as in equation (5.31).



ḋ

ż1

ψ̇

ż2

θ̇


=



z1 cos(θ − ψ)

0

z2

− z1
2

d2 cos(θ − ψ) sin(θ − ψ) − 1
d z1z2 cos(θ − ψ)

0


+



0

1

0
1
d sin(θ − ψ)

0


w1

+



0

0

0
1
d z1 cos(θ − ψ)

1


w2 (5.31)

Defining functions of x we may write

ẋ = f (x) + g1(x)w1 + g2(x)w2 (5.32)

And the outputs are selected as

y1 = k1(x) = d (5.33)

y2 = k2(x) = z2 (5.34)

so that in the resulting linearized system the state d will be forced to converge to d0 and the

state ψ̇ = z2 will be forced to converge to a constant angular velocity α (α is positive for CCW

and negative for CW rotations).

142

Now, we examine the first derivatives of the outputs

ẏ1 = ḋ = z1 cos(θ − ψ) (5.35a)

ẏ2 = ż2 = −
z1

2

d2 cos(θ − ψ) sin(θ − ψ) +
1
d

w1 sin(θ − ψ) +
1
d

z1w2 cos(θ − ψ) − 1
d

z1z2 cos(θ − ψ)

(5.35b)

in matrix form ẏ1

ẏ2

 = T1(x) + A1

w1

w2


where

T1(x) =

 z1 cos(θ − ψ)

− z1
2

d2 cos(θ − ψ) sin(θ − ψ) − 1
d z1z2 cos(θ − ψ)

 (5.36)

A1 =

 0 0
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

 (5.37)

For linearization of the system, the coefficient matrix A1 should have full rank. However, it

has rank 1. Note that, the inputs do not appear in the first input’s time derivative. Therefore,

we take the second time derivative of the first input y1

ÿ1 = ż1 cos(θ − ψ) − z1(θ̇ − ψ̇) sin(θ − ψ)

= w1 cos(θ − ψ) − z1w2 sin(θ − ψ) + z1z2 sin(θ − ψ) (5.38)

then ÿ1

ẏ2

 = T2(x) + A2

w1

w2

 (5.39)

where

T2(x) =

 z1z2 sin(θ − ψ)

− z1
2

d2 cos(θ − ψ) sin(θ − ψ) − 1
d z1z2 cos(θ − ψ)

 (5.40)

A2 =

 cos(θ − ψ) −z1 sin(θ − ψ)
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

 (5.41)

The determinant of A2 is Det(A2) = z1/d. At the steady state z1 = v , 0 and d = d0 , 0,

Det(A2) = v/d0 , 0. Therefore, matrix A2 has full rank at steady state. Note that, matrix A2

143

has full rank during transient response if z1 , 0. Now, we can derive the normal states as

ξ1
1 = k1(x) = d (5.42a)

ξ1
2 = L f k1(x) (5.42b)

ξ2
1 = k2(x) = z2 (5.42c)

where

ξ1
2 = L f k1(x) =

∂k1(x)
∂x

f (x)

= [1 0 0 0 0]



z1 cos(θ − ψ)

0

z2

− z1
2

d2 cos(θ − ψ) sin(θ − ψ) − 1
d z1z2 cos(θ − ψ)

0


= z1 cos(θ − ψ) = ξ̇1

1 (5.43)

and the time derivative of the second state is

ξ̇1
2 = w1 cos(θ − ψ) − z1w2 sin(θ − ψ) + z1z2 sin(θ − ψ) (5.44)

The feedback linearizing inputs are calculated asw1

w2

 = −A2
−1T2(x) + A2

−1

p1

p2

 (5.45)

The calculation is performed by a symbolic equation solver. The results are

w1 = z2
1

cos(ψ − θ) − cos(3ψ − 3θ)
4d

+ p1 cos(ψ − θ) − dp2 sin(ψ − θ) (5.46)

w2 = z2 +
p2 cos(ψ − θ)d + p1 sin(ψ − θ)

z1
− z1

sin(ψ − θ) + sin(3ψ − 3θ)
4d

(5.47)

Examining the linearizing inputs we observe that the required info to form these inputs are

the agent’s own speed z1, and orientation θ, the orientation ψ and length d of the vector from

target to agent, the and the speed of ψ which is z2. However, note that the inputs w1 and w2

consists just the difference ψ − θ which is the relative orientation of agent. Therefore, the

agent does not need the global orientations θ and ψ, instead it requires the relative orientation

144

ψ − θ which simplifies the data acquirement during practical applications. Note that, z2 is the

time derivative of ψ and it again depends on just the relative orientation ψ − θ.

Substituting the linearizing inputs we get ξ̇1
2 = p1 and ξ̇2

1 = p2.

The normal states are decoupled.

ξ̇1
1 = ξ1

2 (5.48a)

ξ̇1
2 = p1 (5.48b)

ξ̇2
1 = p2 (5.49)

As in the SISO case, we again shift the states as ξ1
1 = d − d0 and ξ2

1 = z2 − α. Now, we can

use any linear system controller design method to have stable systems at d = d0 and ψ̇ = α.

Consider the inputs p1 and p2 are linearly dependent on the normal states. Then the normal

state space becomes ξ̇1
1

ξ̇1
2

 =
 0 1

K1
1 K1

2


ξ1

1

ξ1
2

 (5.50)

and

ξ̇2
1 = K2

1ξ
2
1 (5.51)

Selecting the proper values for the controller parameters, one can obtain stable responses.

Note also that in this system once the linearizing controller in (5.46) and (5.47) is employed,

two of the states become unobservable. The stability of the unobservable states at the desired

behavior or basically the zero dynamics is an issue which needs to be investigated.

Since the relative degree (3) is less than the number of states (5) we will select the new states

η1 and η2 independent of input i.e. orthogonal to the function g(x).

∂η

∂x
g(x) = 0⇒


∂η1
∂d

∂η1
∂z1

∂η1
∂ψ

∂η1
∂z2

∂η1
∂θ

∂η2
∂d

∂η2
∂z1

∂η2
∂ψ

∂η2
∂z2

∂η2
∂θ





0 0

1 0

0 0
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

0 1


=

00
 (5.52)

∂η1

∂z1
+
∂η1

∂z2

1
d

sin(θ − ψ) = 0 (5.53)

145

∂η1

∂z2

1
d

z1 cos(θ − ψ) +
∂η2

∂θ
= 0 (5.54)

which means η1 should be independent of z1 and z2, and η2 should be independent of θ and z2.

We select η1 = θ − ψ − π/2 and η2 = ψ. Let us examine the zero dynamics of these variables.

The time derivative of η1 is

η̇1 = w2 − z2

=
2p2 cos(ψ − θ)d2 + 2p1 sin(ψ − θ)d − cos(ψ − θ) sin(2ψ − 2θ)z2

1

2dz1
(5.55)

We first substitute the equations in (5.48) and (5.50) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

d = ξ1
1 + d0 (5.56)

z2 = ξ2
1 + α (5.57)

θ = η1 + π/2 + η2 (5.58)

ψ = η2 (5.59)

Note that in the above equations the equilibrium is set for α > 0 and so θ−ψ = π/2. However,

the other equilibrium α < 0 and θ − ψ = 3π/2 may also be utilized in the following analysis.

Now we use the zero dynamics of the system at ξ1
1 = ξ

1
2 = ξ

2
1 = 0, then η̇1 becomes 1

η̇1 = α sin(η1)2 −
K1

2 sin(2η1)
2

(5.60)

Note that the zero dynamics of η1 is independent of η2. The stability of η1 may be examined

by linearization around the equilibrium η1 = 0. The derivative of η̇1 with respect to η1 at

η1 = 0 is
∂η̇1

∂η1
|η1=0 = −K1

2 (5.61)

This is the eigenvalue of the minimal dynamics of η1, and since it is definitely negative (K1
2 >

0) the state is locally exponentially stable. Physically this means the system is converging to

θ = ψ + π/2 that is the CCW rotation of the agent around the target.

The time derivative of second selected state η2 = ψ becomes

η̇2 = z2

= ξ2
1 + α (5.62)

1 The intermediate steps are performed with symbolic equation solver toolbox of Matlab

146

The zero dynamics becomes

η̇2 = α

Here note that this state is not converging to a constant, instead it is increasing with a velocity

of α but never diverging due to ψ = mod(ψ, 2π). The behavior is indeed a tracking problem

of the state. The orientation variable ψ tracks the constant speed rotation behavior at the

zero dynamics. This is completely consistent with the controlled dynamics of the system.

Furthermore, if we select the state as ηi = θ the zero dynamics becomes η̇i = θ̇ = ψ̇ = α. Note

that for this selection of the derived states the problem becomes a tracking of states problem

and again it is consistent with the steady state values of original states.

The last state we should examine is the speed of the agent z1. This is directly related to the

orientations and rotational speeds as in the following equation

z1 =
z2d

sin(θ − ψ)
(5.63)

At the steady state (z2 = α, d = d0, θ − ψ = π/2) it becomes

z1|eq = αd0 (5.64)

which is again consistent with the controlled dynamics of the system. This state may be

selected as one of the η states, however the linearization of the reduced system becomes

inconclusive with a zero eigenvalue.

5.3.4 Circling - MIMO - Stationary Target - Simulation Results

In this section we will present the results of the developed controller in the previous section.

As in the SISO case we can again select underdamped or overdamped controller parameters.

The first example is the overdamped circling behavior. For this behavior we select the pa-

rameters as K1
2 = −5 < 0 and −

∣∣∣K1
2

∣∣∣2 /4 < K1
1 = −4 < 0 and K2

1 = −1 < 0. In the upper

part of the Figure 5.9 the change of the distance between robot and target (d) is presented.

As seen the robot approaches the target with an overdamped response and stays steady at

d = d0 = 20[units] and α = −2 (α is positive for CCW and negative for CW rotations). The

lower part of the figure shows the change of the angle difference γ. This variable reaches 270o

which means the robot is rotating around the target in CW direction. The path of the robot

can be followed in the Figure 5.10.

147

0 2 4 6 8 10
0

10

20

30

40

50

t

d
[u

ni
ts

]

Distance between robot and target (circling radius d
0
 = 20)

0 2 4 6 8 10
0

100

200

300

t

γ
[d

eg
]

γ = θ − ψ (90 deg => Circling)

Figure 5.9: The change of the distance between robot and target, and the angle difference γ
with respect to time. Overdamped response for circling behavior.

−40 −20 0 20
−40

−30

−20

−10

0

10

20

30

40

x

y

Trajectory of robot − Circling − MIMO

Figure 5.10: The path of the robot. Overdamped response for circling behavior.

148

0 1 2 3 4 5
0

10

20

30

40

50

t
d

[u
ni

ts
]

Distance between robot and target (circling radius d
0
 = 20)

0 1 2 3 4 5
0

100

200

300

t

γ
[d

eg
]

γ = θ − ψ (90 deg => Circling)

Figure 5.11: The change of the distance between robot and target, and the angle difference γ
with respect to time. Underdamped response for circling behavior.

The underdamped response is obtained by the controller parameters K1
2 = −2 < 0 and K1

1 =

−10 < −
∣∣∣K1

2

∣∣∣2 /4 and K2
1 = −1 < 0. The upper part of Figure 5.11 shows the change of d with

respect to time. As seen the response is underdamped. The lower part of the figure presents

the underdamped response of the state γ. The path of the robot can be followed in the Figure

5.12.

5.3.5 Circling - MIMO - Non-Stationary Target Case

In this section we will develop the feedback linearization of circling dynamics around a non-

stationary target by taking speed v and angular velocity θ̇ as the inputs. Lets call v = u1 and

θ̇ = u2. Then the system dynamics becomes

ḋ = u1 cos(θ − ψ) − vc cos(θc − ψ) (5.65a)

ψ̇ =
1
d

[
u1 sin(θ − ψ) − vc sin(θc − ψ)

]
(5.65b)

θ̇ = u2 (5.65c)

At the circling behavior, the vehicle follows a circular path with radius d = d0. The angular

velocities ψ̇ and θ̇ will be equal at a reference speed (α) while the vehicle is in circling be-

havior. However, the derivations show that the static feedback linearization is not possible for

149

−40 −20 0 20
−40

−30

−20

−10

0

10

20

30

40

x

y

Trajectory of robot − Circling − MIMO

Figure 5.12: The path of the robot. Underdamped response for circling behavior.

this system. Therefore, we will use the dynamic feedback linearization technique and instead

of using ψ̇ = θ̇ = u2 = α we will state that the angular acceleration ψ̈ is zero at the circling

dynamics. The equilibrium set for the circling dynamics is

d = d0 (5.66a)

ψ̇ = u2 = α⇒ ψ̈ = 0 (5.66b)

Since the ψ̈ is not present at current system dynamics we add the integrators for the input u1

and state ψ as

u1 = z1 (5.67a)

ż1 = w1 (5.67b)

ψ̇ = z2 (5.67c)

ż2 = − ḋ
d2

[
z1 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

[
w1 sin(θ − ψ) + z1(w2 − z2) cos(θ − ψ)

−ac sin(θc − ψ) − vc(ωc − z2) cos(θc − ψ)
]

(5.67d)

150

where ac and ωc are the acceleration and angular velocity of the target, respectively. For

convenience let us call u2 = w2. Then the system dynamics becomes

ḋ = z1 cos(θ − ψ) − vc cos(θc − ψ) (5.68a)

ż1 = w1 (5.68b)

ψ̇ = z2 (5.68c)

ż2 = − 1
d2

[
z1 cos(θ − ψ) − vc cos(θc − ψ)

] [
z1 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

[
w1 sin(θ − ψ) + z1(w2 − z2) cos(θ − ψ)

−ac sin(θc − ψ) − vc(ωc − z2) cos(θc − ψ)
]

(5.68d)

θ̇ = w2 (5.68e)

The equations in (5.68a)-(5.68e) may be represented in matrix form as in equation (5.69).

ḋ

ż1

ψ̇

ż2

θ̇


=



z1 cos(θ − ψ) − vc cos(θc − ψ)

0

z2

f14

0


+



0

1

0
1
d sin(θ − ψ)

0


w1

+



0

0

0
1
d z1 cos(θ − ψ)

1


w2 (5.69)

where

f14 = − 1
d2

[
z1 cos(θ − ψ) − vc cos(θc − ψ)

] [
z1 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

[−z1z2 cos(θ − ψ) − ac sin(θc − ψ) − vc(ωc − z2) cos(θc − ψ)
]

(5.70a)

Defining functions of x instead of the vectors we write

ẋ = f (x) + g1(x)w1 + g2(x)w2 (5.71)

And the outputs are selected as

y1 = k1(x) = d (5.72)

y2 = k2(x) = z2 (5.73)

151

so that in the resulting linearized system the state d will be forced to converge to d0 and the

state ψ̇ = z2 will be forced to converge to a constant angular velocity α (α is positive for CCW

and negative for CW rotations).

Now, we examine the first derivatives of the outputs

ẏ1 = ḋ = z1 cos(θ − ψ) − vc cos(θc − ψ) (5.74a)

ẏ2 = − 1
d2

[
z1 cos(θ − ψ) − vc cos(θc − ψ)

] [
z1 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

[
w1 sin(θ − ψ) + z1(w2 − z2) cos(θ − ψ)

−ac sin(θc − ψ) − vc(ωc − z2) cos(θc − ψ)
]

(5.74b)

in matrix form ẏ1

ẏ2

 = T1(x) + A1

w1

w2


where

T1(x) =

z1 cos(θ − ψ) − vc cos(θc − ψ)

f14

 (5.75)

A1 =

 0 0
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

 (5.76)

For linearization of the system, the coefficient matrix A1 should have full rank. However, it

has rank 1. Note that, the inputs do not appear in the first input’s time derivative. Therefore,

we take the second time derivative of the first input y1

ÿ1 = ż1 cos(θ − ψ) − z1(θ̇ − ψ̇) sin(θ − ψ) − ac cos(θc − ψ) + vc(θ̇c − ψ̇) sin(θc − ψ)

= w1 cos(θ − ψ) − z1w2 sin(θ − ψ) + z1z2 sin(θ − ψ)

−ac cos(θc − ψ) + vcωc sin(θc − ψ) − vcz2 sin(θc − ψ) (5.77)

then ÿ1

ẏ2

 = T2(x) + A2

w1

w2

 (5.78)

where

T2(x) =

z1z2 sin(θ − ψ) − ac cos(θc − ψ) + vcωc sin(θc − ψ) − vcz2 sin(θc − ψ)

f14

(5.79)

A2 =

 cos(θ − ψ) −z1 sin(θ − ψ)
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

 (5.80)

152

The determinant of A2 is Det(A2) = z1/d. At the steady state z1 = v0 , 0 and d = d0 , 0,

Det(A2) = v0/d0 , 0. Therefore, matrix A2 has full rank at steady state and at transient

response as long as z1 , 0. Now, we can derive the normal states as

ξ1
1 = k1(x) = d (5.81a)

ξ1
2 = L f k1(x) (5.81b)

ξ2
1 = k2(x) = z2 (5.81c)

where

ξ1
2 = L f k1(x) =

∂k1(x)
∂x

f (x)

= [1 0 0 0 0]



z1 cos(θ − ψ) − vc cos(θc − ψ)

0

z2

f14

0


= z1 cos(θ − ψ) − vc cos(θc − ψ) = ξ̇1

1 (5.82)

The time derivative of the second state is

ξ̇1
2 = w1 cos(θ − ψ) − z1w2 sin(θ − ψ) + z1z2 sin(θ − ψ)

−ac cos(θc − ψ) + vcωc sin(θc − ψ) − vcz2 sin(θc − ψ) (5.83)

The time derivative of the last state is

ξ̇2
1 = − 1

d2

[
z1 cos(θ − ψ) − vc cos(θc − ψ)

] [
z1 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

[
w1 sin(θ − ψ) + z1(w2 − z2) cos(θ − ψ)

−ac sin(θc − ψ) − vc(ωc − z2) cos(θc − ψ)
]

(5.84)

The feedback linearizing inputs are calculated asw1

w2

 = −A2
−1T2(x) + A2

−1

p1

p2

 (5.85)

The calculation is performed by a symbolic equation solver. The results are

w1 =
1

4d

[
z2

1 cos(ψ − θ) − v2
c cos(3ψ − θ − 2θc) − z2

1 cos(3ψ − 3θ)

+v2
c cos(ψ + θ − 2θc) + 4acd cos(θ − θc) + 4dp1 cos(ψ − θ)

−2vcz1 cos(ψ − θc) + 2vcz1 cos(3ψ − 2θ − θc) − 4d2 p2 sin(ψ − θ)

+4dωcvc sin(θ − θc) − 4dvcz2 sin(θ − θc)] (5.86)

153

w2 =
1

4dz1

[
2vcz1 sin(3ψ − 2θ − θc) + 4dz1z2 + 2vcz1 sin(ψ − θc)

−v2
c sin(3ψ − θ − 2θc) − v2

c sin(ψ + θ − 2θc) − 4acd sin(θ − θc)

+4dp1sin(ψ − θ) + 4d2 p2 cos(ψ − θ) + 4dωcvc cos(θc − θ)

−4dvcz2 cos(θc − θ) − z2
1 sin(ψ − θ) − z2

1 sin(3ψ − 3θ)
]

(5.87)

Examining the linearizing inputs we observe that the required info to form these inputs are

the agent’s own speed z1, and orientation θ, the orientation ψ and length d of the vector from

target to agent, and the speed of ψ which is z2 as in the stationary target case. Additionally,

this controller needs the velocity vector (magnitude and orientation) of the dynamic target.

All these info is hard to acquire in the practical applications.

Substituting the linearizing inputs we get ξ̇1
2 = p1 and ξ̇2

1 = p2

The normal states are decoupled.

ξ̇1
1 = ξ1

2 (5.88a)

ξ̇1
2 = p1 (5.88b)

ξ̇2
1 = p2 (5.89)

As in the SISO case, we again shift the states as ξ1
1 = d − d0 and ξ2

1 = z2 − α. Now, we can

use any linear system controller design method to have stable systems at d = d0 and ψ̇ = α.

Consider the inputs p1 and p2 are linearly dependent on the normal states. Then the normal

state space becomes ξ̇1
1

ξ̇1
2

 =
 0 1

K1
1 K1

2


ξ1

1

ξ1
2

 (5.90)

and

ξ̇2
1 = K2

1ξ
2
1 (5.91)

Selecting the proper values for the controller parameters, one can obtain stable responses.

The minimal dynamics should also be investigated. Since the relative degree (3) is less than

the number of states (5) we will select a the new states η1 and η2 independent of input i.e.

154

orthogonal to the function g(x).

∂η

∂x
g(x) = 0⇒


∂η1
∂d

∂η1
∂z1

∂η1
∂ψ

∂η1
∂z2

∂η1
∂θ

∂η2
∂d

∂η2
∂z1

∂η2
∂ψ

∂η2
∂z2

∂η2
∂θ





0 0

1 0

0 0
1
d sin(θ − ψ) 1

d z1 cos(θ − ψ)

0 1


=

00
 (5.92)

∂η1

∂z1
+
∂η1

∂z2

1
d

sin(θ − ψ) = 0 (5.93)

∂η1

∂z2

1
d

z1 cos(θ − ψ) +
∂η2

∂θ
= 0 (5.94)

which means in addition to ξ1
1, ξ1

2, and ξ2
1, the state η1 should be independent of z1 and z2.

Similarly η2 should be independent of θ and z2 or it should satisfy the partial differential

equation in (5.94) . We select η1 = ψ and η2 =
z1 sin(θ−ψ)

d − z2. Let us examine the zero

dynamics of these variables.

The time derivative of η1 is

η̇1 = z2 (5.95)

We first substitute the equations in (5.48) and (5.50) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

d = ξ1
1 + d0 (5.96)

z2 = ξ2
1 + α (5.97)

θ = arccos(
ξ1

2 + vc cos(θc − ψ)
z1

) + ψ (5.98)

ψ = η1 (5.99)

Now we use the zero dynamics of the system at ξ1
1 = ξ

1
2 = ξ

2
1 = 0, then η̇1 becomes2

η̇1|eq = α (5.100)

Here note that this state is not converging to a constant, instead it is increasing with a velocity

of α but never diverging due to ψ = mod(ψ, 2π). The behavior is indeed a tracking problem

2 The intermediate steps are performed with symbolic equation solver toolbox of Matlab, and not represented
here due to the space requirements.

155

of the state. The orientation variable ψ tracks the constant speed rotation behavior at the zero

dynamics. This is completely consistent with the controlled dynamics of the system. Opposite

to the stationary target case, in the dynamic targeting system θ does not change constantly.

The change of θ with respect to time depends on the motion of the target. Furthermore, the

velocity of the agent is not tangent to the circle centered at target if target is not stationary. The

velocity of the agent converges to a vector consisting of normal and tangential components.

The normal component of agent velocity is equal to normal component of the target velocity

to make ḋ zero (normal direction is along ψ direction). The tangential component of the agent

velocity is equal to the tangential component of the target velocity plus the rotational speed

(z2d). Therefore, we can write

z1 cos(θ − ψ) = vc cos(θc − ψ) (5.101)

and

z1 sin(θ − ψ) = vc sin(θc − ψ) + z2d (5.102)

If we consider the relation between η2 =
z1 sin(θ−ψ)

d − z2 and the equations above we can simply

say that η2 should converge to vc sin(θc − ψ)/d at the equilibrium. In the analysis of the zero

dynamics of η2 it is hard to solve for this convergence. Therefore, here we use a simplifying

method and examine the dynamics of a new variable say η̄2 = η2 − vc sin(θc − ψ)/d. The time

derivative of this variable is

˙̄η2 = (ac sin(θc − ψ) − w1 sin(θ − ψ) + vc cos(θc − ψ)(ωc − z2)

−z1 cos(θ − ψ)(w2 − z2))/d − (vc cos(θc − ψ) − z1 cos(θ − ψ))

((vc sin(θc − ψ))/d2 − (z1 sin(θ − ψ))/d2) + z2((vc cos(θc − ψ))/d

−(z1 cos(θ − ψ))/d) + ((vc cos(θc − ψ) − z1 cos(θ − ψ))

(vc sin(θc − ψ) − z1 sin(θ − ψ)))/d2 − (ac sin(θc − ψ))/d

+(w1 sin(θ − ψ))/d − (ωcvc cos(θc − ψ))/d + (w2z1 cos(θ − ψ))/d (5.103)

Performing the substitutions done for η1 again in the above equation we would get

˙̄η2 = 0

which means η2 converges to vc sin(θc−ψ)/d at the equilibrium. Similar to the stationary target

case, here we have two tracking variables. The results are all consistent with the controlled

circling behavior of the agents.

156

5.3.6 Circling - MIMO - Non-Stationary Target - Simulation Results

In this section we will present the results of the developed controller for non-stationary tar-

gets. We select an overdamped controller for which the parameters are K1
2 = −20 < 0 and

−
∣∣∣K1

2

∣∣∣2 /4 < K1
1 = −50 < 0 and K2

1 = −10 < 0. The target is stationary at the beginning

of the simulation to show that the controller is successful when the target is stationary, after

a while the target starts a complex motion and stops towards the end of the simulation. The

target motion is modeled by particle kinematics similar to the agents.

ẋc = vc cos(θc) (5.104a)

ẏc = vc sin(θc) (5.104b)

v̇c = ac (5.104c)

θ̇c = ωc (5.104d)

where for this simulation the acceleration and angular velocity are selected to be partial func-

tions as

ac =

 0 t ≤ 5 & t ≥ 26

5 sin(0.3(t − 5)) 5 < t < 26
(5.105)

and

ωc =

 0 t ≤ 5 & t ≥ 26

1.5 sin(2.8(t − 5)) 5 < t < 26
(5.106)

Using the above dynamic target model, the simulation is performed for 30 seconds. The

reference inputs are d0 = 20 and α = −4 (CW rotation). In Figure 5.13 the change of the

distance between robot and target (d) is presented. As seen the robot approaches the target

with an overdamped response and stays steady at d = d0 = 20[units] through the simulation

although the target moves between t = 15s and t = 26s. The translational velocities of the

target and agent are shown in Figure 5.14. The translational speed of the agent is converging

to z1 = 80[units/s] when the target is stationary. The path of the agent can be followed in the

Figure 5.15.

For better understanding of the performance of non-stationary target following controller, we

added the results of the same simulation for the controller developed in the previous section

for stationary targets. The controller parameters are the same for both controllers. The agents

157

0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

60

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Target

Figure 5.13: The distance between agent and target d with respect to time. Overdamped
response for circling behavior with non-stationary target follower controller.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Target

Figure 5.14: Velocities of agent and target. Overdamped response for circling behavior with
non-stationary target follower controller.

158

0 50 100 150 200 250 300 350

0

50

100

150

200

x [units]

y
[u

ni
ts

]

Figure 5.15: Path of the agent and target. Agent path: solid blue, target path: dashed black.

start with the same initial conditions for better comparison. In Figure 5.16 the distances

between the agents and the target are plotted for both cases. At the begining of the simulation

both agents follow the same path since the target is stationary. When target starts to move

the controller for stationary target cannot keep the desired reference value d = d0. When the

target stops both agents again converge to the same desired distance value. The velocities of

the agents can be compared in Figure 5.17. As seen the non-stationary controller utilizes less

speed in inputs. The angular velocities are not presented here. However, we observed that the

angular velocity inputs of non-stationary target following controller are less with respect to

the stationary target follower one. The paths of both controllers are presented in the Figure

5.18.

5.3.7 Application of Controllers to Multi-agent Systems

In this section, the controllers developed for circling behaviors are applied to multi-agent

systems. The developed controllers are designed for a single agent to circle around a specified

target. If the objective is to make all agents of a swarm to circle around a specified target, then

the controllers are successful in doing so. However, in many multi-agent applications the aim

is to force agents to perform a specified task independent of external inputs like leader, target,

159

0 5 10 15 20 25 30
10

15

20

25

30

35

40

45

50

55

60

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Target

Agent with Non−Stationary Target Controller
Agent with Stationary Target Controller

Figure 5.16: The distance between agents and target d. The responses of non-stationary and
stationary target follower controllers.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Target

Target
Agent with Non−Stationary Target Controller
Agent with Stationary Target Controller

Figure 5.17: Velocities of agents with non-stationary and stationary target follower con-
trollers.

160

0 50 100 150 200 250 300 350

0

50

100

150

200

x [units]

y
[u

ni
ts

]

Figure 5.18: Path of the agents and target. Non-stationary controller path: solid blue, station-
ary controller path: dash-dotted red, target path: dashed black.

centralized controllers etc.. Therefore, in this part of the study we will develop methods for

agents to circle around centroid of the swarm. We will start with the SISO controller for a

stationary target.

5.3.7.1 Multi-Agent System with SISO - Stationary Target Following Controller

In the analysis of the controller we stated that depending on the initial conditions, distur-

bances, unmodeled dynamics, controller parameters, and the value of the constant speed v the

agents may converge to the undefined region of the controller. Regarding this, in the simula-

tions of multi-agent systems there occurred two conditions that the agents do not converge to

circling behavior.

1. The agents are located symmetrically with respect to centroid and they are moving

along parallel paths

2. The initial conditions are resulting in opposite rotational velocities

For example for two agents targeting their centroid, the first condition may occur when they

are moving along parallel paths. Note that, two agents are always located symmetrically

161

with respect to their centroid. Once the agents converge to this situation they continue their

parallel motion with stable dynamics. In Figure 5.19 the results of simulation for parallel

motion is presented (Controller parameters are p = −100ξ1
1 − 10ξ2

1. As seen from the figure

the change of distance between agents and the center of agents is same for both agents. They

follow symmetric paths and approach each other. The distance is converging to reference

input d = d0 = 20[units]. In fact the controller is successful since it achieves the only desired

output d = d0 by just regulating the angular velocities.

The simulation results for the second undesired condition is represented for two agents in

Figure 5.20. The agents rotate in opposite directions and collide at the end.

The desired circular motion for 2 and 3 number of agents are represented in Figures 5.21 and

5.22. The path and the distance between agents are plotted in these figures.

0 0.5 1 1.5 2 2.5 3
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

100 150 200 250 300 350

60

80

100

120

140

160

180

200

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 5.19: Distance (a) and path (b) of parallel motion of 2 agents with Circling SISO-
Stationary Targeting controllers.

For three agents, the second condition is occurring

5.3.7.2 Multi-Agent System with MIMO - Stationary Target Following Controller

In this section the MIMO controller designed for circling behavior with translational accel-

eration input ż1 = w1 and angular velocity input θ̇ = w2 for stationary targets is studied

for multi-agent systems. Remember that the feedback linearizing inputs are referencing the

distance d and angular velocity of the vector from target to the agent ψ̇ = z2.

162

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

14

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

−20 −10 0 10 20 30
−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 5.20: Distance (a) and path (b) of coinciding motion of 2 agents with Circling SISO-
Stationary Targeting controllers.

0 0.5 1 1.5 2 2.5 3
18

20

22

24

26

28

30

32

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

−30 −20 −10 0 10 20 30 40 50

10

20

30

40

50

60

70

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 5.21: Distance (a) and path (b) of regular circling motion of 2 agents with Circling
SISO-Stationary Targeting controllers.

In Figures 5.24 and 5.25 the simulation results are presented for 2 agents trying to circle

around their centroid. As seen from the figures the agents are not converging to the same cir-

cle. In fact the controllers are successful in reaching the reference inputs d and z2. However,

since the centroid is also rotating the agents are converging to the circles which are dependent

to this emerging rotation circle of the centroid. Therefore, the MIMO controller for the sta-

tionary target is not a good choice for the circling behavior of multi-agent system when the

agents are trying to rotate around the centroid. However, if the target of the agents to rotate

around is selected as the rotational axis of the vector from centroid to the agent (see Figure

5.23), then the simulations show that the controller achieves the desired behavior.

163

0 1 2 3 4 5 6 7
10

20

30

40

50

60

70

80

90

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

−100 −80 −60 −40 −20 0
−80

−60

−40

−20

0

20

40

60

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 5.22: Distance (a) and path (b) of regular circling motion of 3 agents with Circling
SISO-Stationary Targeting controllers.

The first required info to calculate the axis of rotation is the velocity vector of the center of

rotation which is simply the mean of the velocity vectors of all agents in the swarm calculated

as

v⃗c =
1
M

M∑
i

v⃗i (5.107)

where M is the number of agents in the swarm.

Each agent should calculate the distance Li and should use the distance to target value as

di + Li instead of just di. The geometric relation between the distance Li and the velocity

vectors is

Li =
divc sin(θc − ψ)

vi sin(θi − ψ) − vc sin(θc − ψ)
(5.108)

Note that, this new controller method brings that each agent should acquire the velocity vec-

tors of other agents to calculate the velocity vector of centroid. Remember that the controller

is indeed designed for stationary targets. And in the application of the controller for multi-

agent systems it was supposed to not require the motion parameters (velocity, acceleration,

etc.) of the center of swarm, however the modification in the controller for using distance Li

instead of di requires the speed of the center of the swarm. Therefore, in practical applica-

tions, in addition to the positions, the speeds of all of the agents should be broadcast to every

agent.

In Figures 5.26 and 5.27 the results of this new controller is presented. The same initial

conditions and controller parameters (K1
1 = −50, K2

1 = −20, K1
2 = −10) in the previous 2

164

Figure 5.23: Axis of rotation

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

Agent 1
Agent 2
Center

(a) (b)

Figure 5.24: Distance (a) and velocities (b) of orbital circling motion of 2 agents with Circling
MIMO-Stationary Targeting controllers.

agent simulation is utilized in this one. As seen from the figures the agents are converging

to the reference d = d0 = 20[units] (5.26a) and the speeds of the agents and centroid are

converging to v = 80[units/s] (5.26b). The path of the agents and the centroid is plotted in

Figure 5.27.

165

−80 −70 −60 −50 −40 −30 −20 −10

−90

−80

−70

−60

−50

−40

−30

−20

x [units]

y
[u

ni
ts

]

Figure 5.25: Path of the agents and center for orbital circling with MIMO-Stationary Targeting
controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

22

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

Agent 1
Agent 2
Center

(a) (b)

Figure 5.26: Distance (a) and velocities (b) of regular circling motion of 2 agents with Circling
MIMO-Stationary Targeting controllers.

The same controller parameters are utilized in the simulations of 3 and 10 number of agents.

The results of the simulations are presented in Figures 5.28, 5.29, 5.30, 5.31. The ones pre-

sented and the other simulations show that the selection of the axis of rotation as the target of

agents to rotate around yields always convergent dynamics.

166

−70 −60 −50 −40 −30 −20

−80

−70

−60

−50

−40

−30

x [units]

y
[u

ni
ts

]

Figure 5.27: Path of the 2 agents and center for regular circling with MIMO-Stationary Tar-
geting controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

0 2 4 6 8 10
10

20

30

40

50

60

70

80

90

100

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 2 4 6 8 10
0

50

100

150

200

250

300

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

(a) (b)

Figure 5.28: Distance (a) and velocities (b) of regular circling motion of 3 agents with Circling
MIMO-Stationary Targeting controllers.

5.3.7.3 Multi-Agent System with MIMO - Non-Stationary Target Following Controller

In this section we will develop the MIMO feedback linearization of circling dynamics around

the center of the swarm. The center of the swarm is taken to be the target of the agents.

167

−60 −40 −20 0 20

−100

−50

0

50

x [units]

y
[u

ni
ts

]

Figure 5.29: Path of the 3 agents and center for regular circling with MIMO-Stationary Tar-
geting controllers. Agent paths: dashed colored, center path: dashed black.

0 0.5 1 1.5 2 2.5 3
15

20

25

30

35

40

45

50

55

60

65

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

200

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

(a) (b)

Figure 5.30: Distance (a) and velocities (b) of regular circling motion of 10 agents with
Circling MIMO-Stationary Targeting controllers.

Therefore, the target dynamics are coupled to the agent dynamics such that

−→v c =
1
M

M∑
j=1

−→v j (5.109a)

−→a c =
1
M

M∑
j=1

−→a j (5.109b)

where vc and ac are the velocity and acceleration vectors of the center of swarm, and v j and

a j are the velocity and acceleration vectors of the jth agent. M is the number of agents in the

168

−100 −80 −60 −40 −20 0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

x [units]

y
[u

ni
ts

]

Figure 5.31: Path of the 10 agents and center for regular circling with MIMO-Stationary
Targeting controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

swarm. And note that the velocity component along the line passing through the target (center

of swarm) and the agent itself becomes

vc cos(θc − ψi) =
1
M

M∑
j=1

v j cos(θ j − ψi) (5.110a)

vc sin(θc − ψi) =
1
M

M∑
j=1

v j sin(θ j − ψi) (5.110b)

The controller that is going to be developed in this section is designed for agents to circle

around the stationary center of the swarm. The controller requires the velocity and accelera-

tion vectors of the center of the swarm. However, in the simulations it is observed that there

may occur some kind of dead center position if the controllers utilize the exact values of the

velocity and acceleration vectors of the center. In Figure 5.32 the simplest case for two agents

is shown. Two agents should move in opposite directions at any instance of circling behav-

ior around their geometric center (at the equilibrium). However, the agents are stuck in the

motion satisfying the equilibrium of the controlled system as shown in the figure. The steady

state values (ḋ = 0, z2 = αd0) for the upper right agent is

zi
1 sin(θ − ψ) − vc sin(θc − ψ) = αd0 (5.111)

zi
1 cos(θ − ψ) − vc cos(θc − ψ) = 0 (5.112)

169

and for the lower left agent

z j
1 sin(θ − ψ − π) − vc sin(θc − ψ − π) = αd0 (5.113)

z j
1 cos(θ − ψ − π) − vc cos(θc − ψ − π) = 0 (5.114)

Figure 5.32: Two agents moving with the equilibrium of controller when K = 1.

where vc =
zi

1+z j
1

2 and αd0 =
zi

1−z j
1

2 sin(θc − ψ). The controller force agent motions to converge

to these equilibriums. This condition is also valid for more than 2 number of agents in the

swarm. Therefore, the controller is designed such that it does not utilize the exact value of the

center of flock, instead it utilizes some part of the center velocity. The ratio will be called as

K and it will satisfy 0 ≤ K < 1.

The controller design will be similar to the one in MIMO-dynamic target case in section 5.3.5.

Therefore, we will use the state equation in (5.65) and obtain the following set of equations

for each agent i

ḋi = ui
1 cos(θi − ψi) − vc cos(θc − ψi) (5.115a)

ψ̇i =
1
di

[
ui

1 sin(θi − ψi) − vc sin(θc − ψi)
]

(5.115b)

θ̇i = ui
2 (5.115c)

As in the previous controllers at the circling behavior, the vehicle follows a circular path

with radius d = d0 and the angular velocities ψ̇ and θ̇ will be equal to a reference speed (α).

Again we will use the dynamic feedback linearization technique and state that the angular

170

acceleration ψ̈ is zero at the circling dynamics. The equilibrium set for each agent becomes

di = d0 (5.116a)

ψ̇i = ui
2 = α⇒ ψ̈i = 0 (5.116b)

We add the integrators for the input u1 and state ψ as in the previous designs. After the

necessary arrangements agent dynamics become

ḋi = zi
1 cos(θi − ψi) − Kvc cos(θc − ψi) (5.117a)

żi
1 = wi

1 (5.117b)

ψ̇i = zi
2 (5.117c)

żi
2 = − 1

d2
i

[
zi

1 cos(θi − ψi) − Kvc cos(θc − ψi)
] [

zi
1 sin(θi − ψi) − Kvc sin(θc − ψi)

]
+

1
di

[
wi

1 sin(θi − ψi) + zi
1(wi

2 − zi
2) cos(θi − ψi)

−Kac sin(θc − ψi) − Kvc(ωc − zi
2) cos(θc − ψi)

]
(5.117d)

θ̇i = wi
2 (5.117e)

If we extract the velocity components (Eq. (5.110)) belonging to agent i in the equation

(5.117a) we get

ḋi = zi
1 cos(θi − ψi) − K

1
M

vi cos(θi − ψi) +
M∑

j=1, j,i

v j cos(θ j − ψi)

 (5.118)

Rearranging the terms

ḋi = zi
1

(
1 − K

M

)
cos(θi − ψi) − K

1
M

M∑
j=1, j,i

v j cos(θ j − ψi) (5.119)

and defining

v⃗i
c =

1
M

M∑
j=1, j,i

v⃗ j (5.120a)

θi
c = angle(⃗vi

c) (5.120b)

which are the mean of the velocity vectors out of ith agent, and its orientation. Note that these

variables are independent of the states of ith agent. Let us define vi
c = norm(⃗vi

c). Substituting

these into state equation we may write

ḋi = zi
1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi) (5.121)

171

If we do the same arrangements for the orientation variable ψ, we get

ψ̇i =
1
di

[
zi

1

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(5.122)

Note that at the equilibrium, the velocity vector of the ith agent is opposite to the mean of the

rest of the agents.

vi
c =

1
M

zi
1 =

1
M
αd0 (5.123)

θi
c = θi + π (5.124)

substituting these into state equations the states become ḋ = 0 and ψ̇i = α.

Utilizing the above relations the agent dynamics become

ḋi = zi
1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi) (5.125a)

żi
1 = wi

1 (5.125b)

ψ̇i = zi
2 (5.125c)

żi
2 = − 1

d2
i

[
zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

]
[
zi

1

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

[
wi

1

(
1 − K

M

)
sin(θi − ψi) + zi

1

(
1 − K

M

)
(wi

2 − zi
2) cos(θi − ψi)

−Kai
c sin(θc − ψi) − Kvi

c(ωi
c − zi

2) cos(θi
c − ψi)

]
(5.125d)

θ̇i = wi
2 (5.125e)

where ai
c is the time derivative of the speed of ith agent, ai

c =
dvi

c
dt and ωi

c is the angular velocity

of the ith agent. These variables can be calculated with the following set of equations

aci
x =

1
M

M∑
j=1, j,i

w j
1 cos(θ j) − z j

1w j
2 sin(θ j) (5.126)

aci
y =

1
M

M∑
j=1, j,i

w j
1 sin(θ j) + z j

1w j
2 cos(θ j) (5.127)

Here, aci
x and aci

y are the x and y components of the mean acceleration of the agents different

from ith agent. Then, the relation of ωi
c and ai

c with the above acceleration components can

172

be written as

aci
r =

√
(aci

x)2 + (aci
y)2 (5.128)

ψi
c = atan2(acy, acx) (5.129)

aci
n = aci

r sin(ψi
c − θi

c) (5.130)

aci
t = aci

r cos(ψi
c − θi

c) (5.131)

ωi
c =

aci
n

vi
c

(5.132)

ai
c = aci

t (5.133)

The equations in (5.125) are represented in matrix form as

ḋi

żi
1

ψ̇i

żi
2

θ̇i


=



zi
1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

0

zi
2

f i
14

0


+



0

1

0
1
di

(
1 − K

M

)
sin(θi − ψi)

0


w1

+



0

0

0
1
di

zi
1

(
1 − K

M

)
cos(θi − ψi)

1


w2

(5.134)

where

f i
14 = − 1

d2
i

[
zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

]
[
zi

1

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

[
zi

1

(
1 − K

M

)
(−zi

2) cos(θi − ψi)

−Kai
c sin(θc − ψi) − Kvi

c(ωi
c − zi

2) cos(θi
c − ψi)

]
(5.135a)

Defining functions of x we write

ẋi = f (xi) + gi
1(xi)wi

1 + gi
2(xi)wi

2 (5.136)

where x = [di, z1
1, ψi, z1

2, θi]T is the state vector.

173

For linearization as in Section 5.3.5 the outputs are selected as

yi
1 = ki

1(x) = di (5.137)

yi
2 = ki

2(x) = zi
2 (5.138)

In the resulting linearized system the state di will be forced to converge to d0 and the state

ψ̇i = z2 will be forced to converge to a constant angular velocity α (α is positive for CCW and

negative for CW rotations).

Now, we examine the first derivatives of the outputs

ẏi
1 = ḋi = zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi) (5.139a)

ẏi
2 = − 1

d2
i

[
zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

]
[
zi

1

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

[
wi

1

(
1 − K

M

)
sin(θi − ψi) + zi

1

(
1 − K

M

)
(wi

2 − zi
2) cos(θi − ψi)

−Kai
c sin(θc − ψi) − Kvi

c(ωi
c − zi

2) cos(θi
c − ψi)

]
(5.139b)

in matrix form ẏi
1

ẏi
2

 = T i
1(xi) + Ai

1

wi
1

wi
2


where

T i
1(xi) =

zi
1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

f i
14

 (5.140)

Ai
1 =

 0 0
1
di

(
1 − K

M

)
sin(θi − ψi) 1

di
zi

1

(
1 − K

M

)
cos(θi − ψi)

 (5.141)

For linearization the coefficient matrix Ai
1 should have full rank. However, it has rank 1. Note

that, the inputs do not appear in the first input’s time derivative. Therefore, we take the second

time derivative of the first input yi
1

ÿi
1 = żi

1

(
1 − K

M

)
cos(θi − ψi) − zi

1

(
1 − K

M

)
(θ̇i − ψ̇i) sin(θi − ψi) − Kai

c cos(θi
c − ψi)

+Kvi
c(θ̇i

c − ψ̇i) sin(θi
c − ψi)

= wi
1

(
1 − K

M

)
cos(θi − ψi) − zi

1wi
2

(
1 − K

M

)
sin(θi − ψi) + zi

1zi
2

(
1 − K

M

)
sin(θi − ψi)

−Kai
c cos(θi

c − ψi) + Kvi
cω

i
c sin(θi

c − ψi) − Kvi
czi

2 sin(θi
c − ψi) (5.142)

174

then ÿi
1

ẏi
2

 = T i
2(x) + Ai

2

wi
1

wi
2

 (5.143)

where

T i
2(x) =

 ρi

f i
14

 (5.144)

Ai
2 =


(
1 − K

M

)
cos(θ − ψ) −z1

(
1 − K

M

)
sin(θ − ψ)

1
di

(
1 − K

M

)
sin(θi − ψi) 1

di
zi

1

(
1 − K

M

)
cos(θi − ψi)

 (5.145)

where

ρi = zi
1zi

2

(
1 − K

M

)
sin(θi − ψi) − Kai

c cos(θi
c − ψi)

+Kvi
cω

i
c sin(θi

c − ψi) − Kvi
czi

2 sin(θi
c − ψi) (5.146)

The determinant of Ai
2 is Det(Ai

2) = zi
1(K − M)2M2di. At the steady state zi

1 = αd0 , 0 and

di = d0 , 0, Det(Ai
2) = α

(
1 − K

M

)2
, 0. Therefore, matrix Ai

2 has full rank at steady state.

Now, we can derive the normal states as

ξ1
1

i
= ki

1(x) = di (5.147a)

ξ1
2

i
= L f ki

1(x) (5.147b)

ξ2
1

i
= ki

2(x) = zi
2 (5.147c)

where

ξ1
2

i
= L f ki

1(x) =
∂ki

1(x)
∂xi

f (xi)

= [1 0 0 0 0]



zi
1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

0

zi
2

f i
14

0


= zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi) = ξ̇1

1 (5.148)

The time derivative of the second state is

ξ̇1
2

i
= wi

1

(
1 − K

M

)
cos(θi − ψi) − zi

1

(
1 − K

M

)
wi

2 sin(θi − ψi) + zi
1zi

2

(
1 − K

M

)
sin(θi − ψi)

−Kai
c cos(θi

c − ψi) + Kvi
cω

i
c sin(θi

c − ψi) − Kvi
czi

2 sin(θi
c − ψi) (5.149)

175

The time derivative of the last state is

ξ̇2
1

i
= − 1

d2
i

[
zi

1

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi)

]
[
z1

(
1 − K

M

)
sin(θi − ψi) − vi

c sin(θi
c − ψi)

]
+

1
di

[
wi

1

(
1 − K

M

)
sin(θi − ψi) + zi

1

(
1 − K

M

)
(wi

2 − zi
2) cos(θi − ψi)

−Kai
c sin(θi

c − ψi) − vi
c(ωi

c − zi
2) cos(θi

c − ψi)
]

(5.150)

The feedback linearizing inputs are calculated aswi
1

wi
2

 = −Ai
2
−1

T i
2(xi) + Ai

2
−1

pi
1

pi
2

 (5.151)

The calculation is performed by a symbolic equation solver. The results are

wi
1 = −M cos(ψi − θi)/(K − M)

(
zi

2(Kvi
c sin(θi

c − ψi) + zi
1 sin(θi − ψi)(K/M − 1))

+Kai
c cos(θi

c − ψi) − Kωi
cvi

c sin(θi
c − ψi)

)
−(Mpi

1 cos(ψi − θi))/(K − M) + Mdi sin(ψi − θi)/(K − M)
(
((Kai

c sin(θi
c − ψi)

−zi
1zi

2 cos(θi − ψi)(K/M − 1) + Kvi
c cos(θi

c − ψi)(ωi
c − zi

2))/d

+((Kvi
c cos(θi

c − ψi) + zi
1 cos(θi − ψi)(K/M − 1))(Kvi

c sin(θi
c − ψi)

+zi
1 sin(θi − ψi)(K/M − 1)))/d2)

)
+(Mdpi

2 sin(ψi − θi))/(K − M) (5.152)

wi
2 = −M sin(ψi − θi)/(zi

1(K − M))(zi
2(Kvi

c sin(θi
c − ψi)

+zi
1 sin(θi − ψi)(K/M − 1)) + Kai

c cos(θi
c − ψi) − Kωi

cvi
c sin(θi

c − ψi))

−(Mpi
1 sin(ψi − θi))/(zi

1(K − M)) − (Mdpi
2 cos(ψi − θi))/(zi

1(K − M))

−(Md cos(ψi − θi)((Kai
c sin(θi

c − ψi) − zi
1zi

2 cos(θi − ψi)(K/M − 1)

+Kvi
c cos(θi

c − ψi)(ωi
c − zi

2))/d + ((Kvi
c cos(θi

c − ψi) + zi
1 cos(θi − ψi)(K/M − 1))

(Kvi
c sin(θi

c − ψi) + zi
1 sin(θi − ψi)(K/M − 1)))/d2))/(zi

1(K − M)) (5.153)

Examining the linearizing inputs the required info to calculate these inputs are the agent’s own

speed zi
1, and relative orientation θi − ψi, the relative orientation θi

c − ψi and distance di of the

vector from target to agent, and the speed of ψi which is zi
2. Additionally, this controller needs

176

the velocity vector (magnitude, and orientation, and time derivative) of the center of swarm

or of all of the agents. All these info, especially the global variables, are hard to acquire in

the practical applications. In the future studies on practical applications, we have to examine

how to use relative variables instead of the global ones.

Substituting the linearizing inputs we get ξ̇1
2

i
= pi

1 and ξ̇2
1

i
= pi

2

The normal states are decoupled.

ξ̇1
1

i
= ξ1

2
i

(5.154a)

ξ̇1
2

i
= pi

1 (5.154b)

ξ̇2
1

i
= pi

2 (5.155)

As in the previous controllers, we again shift the states as ξ1
1

i
= di − d0 and ξ2

1
i
= zi

2 −α. Now,

we can use any linear system controller design method to have stable systems at di = d0 and

ψ̇i = α.

Consider the inputs pi
1 and pi

2 are linearly dependent on the normal states. Then the normal

dynamics become ξ̇1
1

i

ξ̇1
2

i

 =
 0 1

K1
1 K1

2


ξ1

1
i

ξ1
2

i

 (5.156)

and

ξ̇2
1

i
= K2

1ξ
2
1

i
(5.157)

Selecting the proper values for the controller parameters, one may obtain stable underdamped

or overdamped responses. Utilizing the above states we can show that the center of the flock

is converging to an emergent point (depending on the initial conditions). The proof of this

convergence starts with examining the position of each agent in global coordinates

xi = xc + di cos(ψi) (5.158)

yi = yc + di sin(ψi) (5.159)

177

Summing positions of all agents

M∑
i=1

xi =

M∑
i=1

xc +

M∑
i=1

di cos(ψi) = Mxc +

M∑
i=1

di cos(ψi) (5.160)

M∑
i=1

yi =

M∑
i=1

yc +

M∑
i=1

di sin(ψi) = Myc +

M∑
i=1

di sin(ψi) (5.161)

using
M∑

i=1

xi = Mxc and
M∑

i=1

yi = Myc

M∑
i=1

di cos(ψi) = 0 (5.162)

M∑
i=1

di sin(ψi) = 0 (5.163)

The time derivative of these equations are

M∑
i=1

ḋi cos(ψi) −
M∑

i=1

diψ̇i sin(ψi) = 0 (5.164)

M∑
i=1

ḋi sin(ψi) +
M∑

i=1

diψ̇i cos(ψi) = 0 (5.165)

At the steady state of ξ values di = d0, and ḋi = 0, and ψ̇i = α for each agent. At the steady

state the above equations become

M∑
i=1

sin(ψi) = 0 (5.166)

M∑
i=1

cos(ψi) = 0 (5.167)

Therefore, at the steady state of i.e. two agents, the agents are moving in the opposite di-

rections with a distance of d0 from the center of flock. Or for three agents, the agents are

located on the corners of a equilateral triangle and moving tangent to the line passing through

center of flock and the agent. The motions of two and three number of members in a flock are

represented in Figure 5.33.

The velocity of the center of swarm can be expressed as

ẋc =
1
M

M∑
i=1

zi
1 cos(θi) (5.168)

ẏc =
1
M

M∑
i=1

zi
1 sin(θi) (5.169)

178

Figure 5.33: Agent positions and velocity vectors at equilibrium. Samples for 2 and 3 number
of agents.

at the CCW rotational equilibrium θi = ψi + π/2 and zi
1 = αd0. Substituting these into the

equations

ẋc =
1
M

M∑
i=1

αd0 cos(ψi + pi/2) (5.170)

ẏc =
1
M

M∑
i=1

αd0 sin(ψi + pi/2) (5.171)

and rearranging

ẋc =
1
M
αd0

M∑
i=1

sin(ψi) (5.172)

ẏc = − 1
M
αd0

M∑
i=1

cos(ψi) (5.173)

and using the results in equation (5.166)

ẋc = 0 (5.174)

ẏc = 0 (5.175)

Therefore, the center of flock is stationary at the steady state. Furthermore, the velocity and

orientation components in equation (5.120) can be derived at the steady state as

vi
c = zi

1/M =
αd0

M
(5.176)

θi
c = θi + π (5.177)

Therefore, at the steady state the mean velocity of the other agents (different from ith agent)

is equal to αd0/M in the opposite direction of ith agents velocity.

179

The minimal dynamics should also be investigated. Since the relative degree (3) is less than

the number of states (5) we will select the new states ηi
1 and ηi

2 independent of input i.e.

orthogonal to the function g(x).

∂ηi

∂xi
g(xi) = 0⇒


∂ηi

1
∂di

∂ηi
1

∂zi
1

∂ηi
1

∂ψi

∂ηi
1

∂zi
2

∂ηi
1

∂θi

∂ηi
2

∂di

∂ηi
2

∂zi
1

∂ηi
2

∂ψi

∂ηi
2

∂zi
2

∂ηi
2

∂θi





0 0

1 0

0 0
1
di

(
1 − K

M

)
sin(θi − ψi) 1

di

(
1 − K

M

)
zi

1 cos(θi − ψi)

0 1


=

00


(5.178)

∂ηi
1

∂zi
1

+
∂ηi

1

∂zi
2

1
di

(
1 − K

M

)
sin(θi − ψi) = 0 (5.179)

∂ηi
2

∂zi
2

1
di

zi
1

(
1 − K

M

)
cos(θi − ψi) +

∂ηi
2

∂θi
= 0 (5.180)

which means in addition to ξ1
1

i, ξ1
2

i, and ξ2
1

i, the state ηi
1 should be independent of zi

1 and

zi
2. Similarly ηi

2 should be independent of θi and zi
2 or it should satisfy the partial differential

equation in (5.180) . We select ηi
1 = θi − ψi − π/2 and ηi

2 = ψi. Let us examine the zero

dynamics of these variables.

The time derivative of ηi
1 is

η̇i
1 = θ̇i − ψ̇i = wi

2 − zi
2 (5.181)

We first substitute the equations in (5.154) and (5.156) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

di = ξ1
1

i
+ d0 (5.182)

zi
2 = ξ2

1
i
+ α (5.183)

ψi = ηi
2 (5.184)

θi = ηi
1 + η

i
2 + π/2 (5.185)

Note that in the above equations the equilibrium is set for α > 0 and so θi−ψi = π/2. However,

the other equilibrium α < 0 and θi − ψi = 3π/2 may also be utilized in the following analysis.

180

Now we use the zero dynamics of the system at ξ1
1

i
= ξ1

2
i
= ξ2

1
i
= 0. In addition we use the

results in (5.176). Then η̇i
1 becomes 3

η̇i
1 = α cos(ηi

1)2 − α + (K1
2 sin(2ηi

1)(M + KM − 1))/(2(K − M)) − (Md0 sin(ηi
1)

((z2
1 sin(2ηi

1)(M − K + KM)2)/(2M2d02)

−(αzi
1 sin(ηi

1)(K − M))/(Md0)))/(zi
1(K − M)) (5.186)

Note that the zero dynamics of ηi
1 is independent of ηi

2. The local stability of ηi
1 may be

examined by linearization around the equilibrium ηi
1 = 0. The derivative of η̇i

1 with respect to

ηi
1 at ηi

1 = 0 is
∂η̇1

i

∂ηi
1

|ηi
1=0 = −

K1
2 (M(1 + K) − K)

M − K
(5.187)

This is the eigenvalue of the minimal dynamics of ηi
1, and since it is definitely negative (K1

2 >

0, 0 ≤ K < 1, and M > K) the state is locally asymptotically stable. Physically this means the

system is converging to θi = ψi + π/2 that is the CCW rotation of the agent around the target.

The time derivative of second selected state ηi
2 = ψi becomes

η̇i
2 = zi

2

= ξ2
1

i
+ α (5.188)

The zero dynamics becomes

η̇2
i = α

Here note that this state is not converging to a constant, instead it is increasing with a velocity

of α but never diverging due to ψi = mod(ψ, 2π). The behavior is indeed a tracking problem

of the state. The orientation variable ψi tracks the constant speed rotation behavior at the

zero dynamics. This is completely consistent with the controlled dynamics of the system.

Furthermore, if we select the state as ηi = θ the zero dynamics becomes η̇i = θ̇i = ψ̇i = α.

Note that for this selection of the derived states the problem becomes a tracking of states

problem and again it is consistent with the steady state values of original states.

The last state we should examine is the speed of the agent zi
1. This is directly related to the

orientations and rotational speeds as in the following equation

zi
1 =

zi
2di + Kvi

c sin(θi − ψi)(
1 − K

M

)
sin(θi − ψi)

(5.189)

3 The intermediate steps are performed with symbolic equation solver toolbox of Matlab.

181

At the steady state (zi
2 = α, di = d0, vi

c = αd0, θi
c = θ + π, θi − ψi = π/2) it becomes

zi
1|eq = αd0 (5.190)

which is again consistent with the controlled dynamics of the system. This state may be

selected as one of the ηi states, however the linearization of the reduced system becomes

inconclusive with a zero eigenvalue.

5.3.7.4 Multi-Agent System with MIMO - Non-Stationary Target Following Controller

- Simulations

In this section the MIMO controller developed for the non-stationary targets is applied for the

Multi-agent systems. The controller parameters and the initial conditions of the simulations

presented in the following figures are the same with ones performed in stationary target con-

troller section, for better comparison. The parameter K is selected to be K = 0.8 for these

simulations. As seen from the figures 5.34, 5.35, 5.36, 5.37, 5.38, 5.39, the controllers are

successful in achieving the desired circling behaviors.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

Agent 1
Agent 2
Center

(a) (b)

Figure 5.34: Distance (a) and velocities (b) of regular circling motion of 2 agents with Circling
MIMO-NonStationary Targeting controllers.

5.3.8 Concluding Remarks

In the literature most of the studies utilize a pre-generated path for tracking setpoints, straight

lines, circular or randomly generated paths by mobile robots. In this study the circling around

182

−70 −60 −50 −40 −30 −20
−90

−80

−70

−60

−50

−40

x [units]

y
[u

ni
ts

]

Figure 5.35: Path of the 2 agents and center for regular circling with MIMO-NonStationary
Targeting controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

0 1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

Agent 1
Agent 2
Agent 3
Center

(a) (b)

Figure 5.36: Distance (a) and velocities (b) of regular circling motion of 3 agents with Circling
MIMO-NonStationary Targeting controllers.

a target problem for ground and air vehicles is considered as a periodic system problem and

the states in the system kinematics are forced to converge to periodical trajectories. Especially

we propose controllers for the circling around a target behavior of mobile robots. These con-

trollers are developed by static and dynamic feedback linearization techniques. We study two

different cases: (i) Circling-SISO:input is angular speed and translational speed is constant,

and (ii) Circling-MIMO: both angular and translational speeds are inputs. We derive the con-

ditions on the underdamped and overdamped stable responses of the systems and present the

183

−60 −40 −20 0 20 40

−100

−50

0

50

x [units]

y
[u

ni
ts

]

Figure 5.37: Path of the 3 agents and center for regular circling with MIMO-NonStationary
Targeting controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

0 0.5 1 1.5 2 2.5 3
15

20

25

30

35

40

45

50

55

60

65

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

200

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

(a) (b)

Figure 5.38: Distance (a) and velocities (b) of regular circling motion of 10 agents with
Circling MIMO-NonStationary Targeting controllers.

simulations results for each case.

The controllers developed in this study may be utilized in UGV, UAV, and UWV applications

dedicated to tracking of targets by circling around them. Furthermore, the controllers may

be adapted for the swarm of these vehicles to circle around targets without collision. The

inclusion of the vehicle dynamics to the kinematic model of this study is also a possible

future work.

184

−100 −80 −60 −40 −20 0

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

x [units]

y
[u

ni
ts

]

Figure 5.39: Path of the 10 agents and center for regular circling with MIMO-NonStationary
Targeting controllers. Agent paths: dashed blue and dashed red, center path: dashed black.

.

185

CHAPTER 6

Line Following Controllers Developed by Feedback Linearization

6.1 Introduction

As mentioned in the previous chapter on circling controller development, the studies in the lit-

erature mostly utilize pre-generated paths for tracking by mobile robots. By using these paths

many researchers achieved the robots to follow straight lines, circular or randomly generated

paths. In this chapter, controllers for the line following behavior are developed by feedback

linearization techniques. The controllers are first developed for single agents using stationary,

and non-stationary targets and using reference orientations. The agent positions are controlled

to converge to lines and travel at reference speeds on these lines. As in the circling controllers,

again we propose different controllers for three different cases. In the first one, the only con-

trollable input is the angular velocity of the robot (SISO-Stationary Target Controller). The

translational speed of the robot is taken as constant. This case can represent applications such

as autonomous air vehicles (UAV) traveling on a straight path. The only required global info

is the distance to the target. In the second case in addition to the angular velocity input the

translational speed is taken as an input (MIMO-Stationary Target Controller). The only re-

quired global info is the distance to the target. The last controller developed is similar to the

MIMO controller but this time the target is not stationary (MIMO-NonStationary Target Con-

troller). The controller utilizes the target velocity vector in the manipulations and achieves

much better performance with respect to the stationary target controllers.

The line following behavior is achieved without pre-specified paths to be followed by the

robots. In fact robots use the target position, prespecified orientation and velocity to achieve

the mentioned behaviors. The usage of the only target information instead of pre-specified

186

paths is mostly beneficial in the multi-robot applications. In multi-robot applications usually

each robot is a target for the others; therefore, the controllers that use target information is

preferable with respect to pre-generated paths since in most of the applications the paths of

the robots in the swarm are emergent paths that are hard to predict. The controllers developed

for single agents to follow a line are applied to multi-agent systems. The agents in the swarm

utilized the same controllers targeting the centroid of the swarm to achieve the line following

behavior. A minor modification in the specification of target is done for the MIMO-stationary

target controller to achieve the behavior. The MIMO Non-stationary Target Controller is

redeveloped for the multi-agent system.

In the following sections, the mathematical background and development of the controllers

are presented. The results of the analytical derivations are validated in the simulation study

sections. Lastly the discussions on the results of some modifications on the developed con-

trollers and the future directions of this thesis study are given.

The mathematical model for agents is again the first-order kinematic model of the unicycle

vehicles. The model is represented in the previous chapter in section 5.2. Using that kinematic

model we will solve the feedback linearization problems for “Line Following” behaviors, in

this chapter.

6.2 Following a line passing through a Target with a specified slope

In this section the problem to be solved is the behavior of the robot that converges to a line

passing through a target. The slope of the line is specified as a parameter in the controller.

The agent approaches the line and travels on it with the given constant linear speed. This

strategy is beneficial especially for multi-agent systems. In these systems each agent is a

target for the others. If the common controller achieves the above behavior. All agents will

align on the same line traveling in serial formation which is a very beneficial formation for

many multi-agent tasks like passing through a thin gap.

We propose different controllers for two different cases. In the first one, the only controllable

input is the angular velocity of the robot. The translational speed of the robot is taken as con-

stant. We consider this case especially for the air vehicles (like UAV) following a target with

constant speed. In the second case in addition to the angular velocity input the translational

187

speed is taken as an input. We use static feedback linearization methods in the first case and

dynamics feedback linearization in the second one. The first will be called as “Line Following

- SISO” where the only controlled system state is the angular velocity of the robot (θ̇ = u).

The robot travels at constant translational speed v. The second case called as “Line Following

- MIMO” is the case in which both translational and rotational speeds are inputs of the system

(v = u1 and θ̇ = u2). In the following sections we will derive the feedback linearization laws

for these cases and present some simulation results. In the following sections, the feedback

linearization results are presented. The results of the analytical derivations are validated in

the simulation study sections. We lastly present the conclusions on the results of this part and

mention some future work.

6.2.1 Line Following - SISO - Stationary Target Case

To achive the line following behavior we will again linearize the system by nonlinear feedback

signals. For the SISO case the only controlled input is the angular velocity of the vehicles

(u = θ̇). The linear velocity of the vehicle is assumed to be constant at v. Therefore, we write

the dynamics as 
ḋ

ψ̇

θ̇

 =


v cos(θ − ψ)
1
d v sin(θ − ψ)

0

 +

0

0

1

 u (6.1)

Since vehicle is desired to converge to a line, we will define the line with the target position

and the slope. The new state of the system is the distance between the vehicle and the line h

(Figure 6.1).

h = d sin(ψ − β) (6.2)

The time derivative of this state can be derived by simply taking the derivative of equation

(6.2) or from figure it can be easily observed that

ḣ = v sin(θ − β) (6.3)

Using this new state we can summarize the system dynamics as
ḣ

ψ̇

θ̇

 =


v sin(θ − β)
1
h v sin(ψ − β) sin(θ − ψ)

0

 +

0

0

1

 u (6.4)

188

Figure 6.1: Relative Coordinate Frame. Origin is target. Circle represents the vehicle. The
line to be followed is the one with the slope β.

which may be described as

ẋ = f (x) + g(x)u (6.5)

where x = [h, ψ, θ]T is the state vector.

The equilibrium of the states at the line following behavior can be described by the equations

ḋ = v OR ḣ = 0⇒ ψ = θ = β (6.6a)

ψ̇ = 0⇒ ψ = β (6.6b)

θ̇ = 0⇒ u = 0 (6.6c)

To achieve this equilibrium, we will use the feedback linearization method to linearize the

system and then design linear system controllers.

The output of the system is selected as

y = k(x) = h (6.7)

189

Then the lie derivatives along the nonlinear system functions f (x) and g(x) are

Lgk(x) =
∂k
∂x

g(x) =
[
1 0 0

] 
0

0

1

 = 0 (6.8a)

L f k(x) =
∂k
∂x

f (x) =
[
1 0 0

] 
v sin(θ − β)

1
h v sin(ψ − β) sin(θ − ψ)

0

 = v sin(θ − β) (6.8b)

LgL f k(x) =
∂L f k(x)
∂x

g(x) =
[
0 0 v cos(θ − β)

] 
0

0

1

 = v cos(θ − β) (6.8c)

At equilibrium (θ = β)

LgL f k(x)|θ=β = v cos(0) = v , 0 (6.9)

which is not equal to 0. Therefore, the relative degree is 2.

To calculate the linearizing feedback input we need the second order Lie derivative of k(x)

along f (x)

L f L f k(x) =
∂L f k(x)
∂x

f (x) =
[
0 0 v cos(θ − β)

] 
v sin(θ − β)

1
h v sin(ψ − β) sin(θ − ψ)

0

 = 0 (6.10)

then the linearizing input becomes

u =
1

LgL f k(x)

[
−L f L f k(x) + w

]
=

1
v cos(θ − β)

[0 + w]

=
w

v cos(θ − β)
(6.11)

The normal form of the system dynamics becomes

ξ1 = k(x) = h (6.12a)

ξ2 = L f k(x) = v sin(θ − β) (6.12b)

190

then,

ξ̇1 = v sin(θ − β) (6.13)

ξ̇2 = vθ̇ cos(θ − β)

= v
w

v cos(θ − β)
cos(θ − β)

= w (6.14)

The new transformed dynamics of the system becomes

ξ̇1 = ξ2 (6.15)

ξ̇2 = w (6.16)

Since the relative degree is less than the number of states we will select a the new state η

independent of input i.e. orthogonal to the function g(x).

∂η

∂x
g(x) = 0⇒

[
∂η
∂h

∂η
∂ψ

∂η
∂θ

] 
0

0

1

 =
∂η

∂θ
= 0 (6.17)

which means η should be independent of θ. The selected function is

η = d =
h

sin(ψ − β)
(6.18)

The time derivative of this state is

η̇ =
ḣ

sin(ψ − β)
− hψ̇ cos(ψ − β)

sin2(ψ − β)

=
v sin(θ − β)
sin(ψ − β)

− �h cos(ψ − β)

sin�2(ψ − β)

1

�h
v�����sin(ψ − β) sin(θ − ψ)

=
v sin(θ − β)
sin(ψ − β)

− v sin(θ − ψ) cos(ψ − β)
sin(ψ − β)

=
v

sin(ψ − β)
[
sin(θ − β) − sin(θ − ψ) cos(ψ − β)

]
=

v
sin(ψ − β)

[
sin(θ − β) − sin(θ − β − (ψ − β)) cos(ψ − β)

]
=

v
sin(ψ − β)

[
sin(θ − β) − (sin(θ − β) cos(ψ − β) − cos(θ − β) sin(ψ − β)) cos(ψ − β)

]
(6.19)

substituting the equalities h = ξ1, sin(θ − β) = ξ2
v , cos(θ − β) =

√
1 − ξ2

2
v2 , sin(ψ − β) = ξ1

η ,

cos(ψ − β) =

√
1 − ξ2

1
η2

η̇ =
vη
ξ1

ξ2

v
−

ξ2

v

√
1 −

ξ2
1

η2 −

√
1 −

ξ2
2

v2

ξ1

η


√

1 −
ξ2

1

η2

 (6.20)

191

The zero dynamics of the system is calculated at ξ1 = ξ2 = 0. Then the value of η at this

equilibrium becomes

η̇|ξ1=ξ2=0 = lim
ξ1=ξ2=0

vη
ξ1

ξ2

v
−

ξ2

v

√
1 −

ξ2
1

η2 −

√
1 −

ξ2
2

v2

ξ1

η


√

1 −
ξ2

1

η2


= lim

ξ1=ξ2=0

vη
ξ1

[
ξ2

v
−

(
ξ2

v
− ξ1

η

)]
= lim

ξ1=ξ2=0

vη
ξ1

[
ξ1

η

]
= v (6.21)

The new state η has its time derivative at η̇ = v which is consistent with the desired steady

state value of the original states, ḋ = η̇ = v.

Now, the stabilizing controller input w can be designed by many linear system controller

design methods. Here we will just derive the sufficient conditions on the input function pa-

rameters and present some results.

The jacobian matrix of the transformed model becomes

J =

 0 1
∂w
∂ξ1

∂w
∂ξ2

 (6.22)

The characteristic polynomial of the Jacobian matrix is∣∣∣∣∣∣∣∣∣
λ − 1

− ∂w
∂ξ1

λ − ∂w
∂ξ2

∣∣∣∣∣∣∣∣∣ = λ

(
λ − ∂w

∂ξ2

)
− ∂w
∂ξ1

= λ2 − ∂w
∂ξ2

λ − ∂w
∂ξ1
= 0 (6.23)

Then the eigenvalues are

λ1,2 =

∂w
∂ξ2
±

√[
∂w
∂ξ2

]2
+ 4 ∂w

∂ξ1

2
(6.24)

For a stable system
∂w
∂ξ2

< 0 &
∂w
∂ξ1

< 0 (6.25)

For an underdamped response [
∂w
∂ξ2

]2

+ 4
∂w
∂ξ1

< 0⇒

∂w
∂ξ1

< −

[
∂w
∂ξ2

]2

4
(6.26)

192

For an overdamped response

0 <
[
∂w
∂ξ2

]2

+ 4
∂w
∂ξ1

<

[
∂w
∂ξ2

]2

⇒

−

[
∂w
∂ξ2

]2

4
<
∂w
∂ξ1

< 0 (6.27)

Let w be a linear state feedback

w = K1ξ1 + K2ξ2 (6.28)

where K1 =
∂w
∂ξ1

and K2 =
∂w
∂ξ2

. Now selecting the parameters K1 and K2 according to the

conditions above one can achieve circling behaviors.

6.2.2 Line Following - SISO - Stationary Target - Simulation Results

In this section we present the results of the developed line following controller in the previous

section. As mentioned above we may select underdamped or overdamped controller parame-

ters. The first example is the overdamped behavior. For this behavior we select the parameters

as K2 = −8 < 0 and − |K2|2 /4 < K1 = −15 < 0. In the lower part of the Figure 6.2 the change

of the distance between robot and line (h) is presented. As seen the robot approaches the line

with an overdamped response and stays steady at h = 0. The upper part of the figure shows

the distance between robot and target (d). Robot gets far away from the target. The change of

this distance becomes steady at ḋ = v = 100[units/s]. In Figure 6.3 the change of angles ψ

and θ are presented. As seen both angles converge to the slope β = 120o.

The path of the vehicle is presented in Figure 6.4. As seen from the figure, the vehicle reaches

the line with an overdamped response and continues to follow the line with slope β = 120o.

The underdamped response is obtained by the controller parameters K2 = −4 < 0 and K1 =

−12 < − |K2|2 /4. In Figure 6.5 the change of h and d are presented. As seen the response is

underdamped. In the next Figure 6.6 the change of ψ and θ may be observed. The Figure 6.7

shows the path of the vehicle.

Note that, in the simulation results above the vehicle’s initial orientation is 80o and converges

to 120o as time passes. However, if it starts with the orientation θ = −30o, then it converges

to the line but with the opposite slope θ = β+π. The path of the vehicle for this case is shown

in Figure 6.8. This is a beneficial property of the controller since the vehicle converges to

193

0 0.5 1 1.5 2
0

100

200

300

t

d
[u

ni
ts

]

Distance between robot and target

0 0.5 1 1.5 2
−60

−40

−20

0

t

h
[u

ni
ts

]

Distance between robot and line

Figure 6.2: The change of the distance between robot and target (d), and robot and line (h)
with respect to time. Overdamped response for line following behavior.

0 0.5 1 1.5 2
0

50

100

150

200

ψ
 [d

eg
]

θ and ψ converging to β

0 0.5 1 1.5 2
0

50

100

150

200

t

θ
[d

eg
]

Figure 6.3: The change of the angles θ and ψ with respect to time. Overdamped response for
line following behavior.

194

−150 −100 −50 0 50

0

20

40

60

80

100

120

140

160

180

x

y

Trajectory of robot following line with slope β

Figure 6.4: The path of the robot. Overdamped response for line following behavior.

0 0.5 1 1.5 2
0

50

100

150

200

t

d
[u

ni
ts

]

Distance between robot and target

0 0.5 1 1.5 2
−60

−40

−20

0

20

t

h
[u

ni
ts

]

Distance between robot and line

Figure 6.5: The change of the distance between robot and target (d), and robot and line (h)
with respect to time. Underdamped response for line following behavior.

195

0 0.5 1 1.5 2
0

50

100

150

200

ψ
 [d

eg
]

θ and ψ converging to β

0 0.5 1 1.5 2
0

50

100

150

200

t

θ
[d

eg
]

Figure 6.6: The change of the angles θ and ψ with respect to time. Underdamped response for
line following behavior.

−150 −100 −50 0 50

0

20

40

60

80

100

120

140

160

180

x

y

Trajectory of robot following line with slope β

Figure 6.7: The path of the robot. Underdamped response for line following behavior.

196

−50 0 50 100 150

−160

−140

−120

−100

−80

−60

−40

−20

0

20

x

y

Trajectory of robot following line with slope β

Figure 6.8: The path of the robot following the slope β + π.

the line by using the shortest path. Recall that the aim of the controller is just achieving the

convergence of vehicle to the line passing through the target.

6.2.3 Line Following - MIMO - Stationary Target

In this section we will develop the feedback linearization of line following dynamics by taking

speed v and angular velocity θ̇ as the inputs. Lets call v = u1 and θ̇ = u2. Then the system

dynamics becomes

ḋ = u1 cos(θ − ψ) (6.29a)

ψ̇ =
1
d

u1 sin(θ − ψ) (6.29b)

θ̇ = u2 (6.29c)

In the line following behavior, the vehicle travels at a specified speed ḋ = v0 on the line

passing through the target with the specified angle β. Since the controller is going to adjust

the speed we need one more integrator for the distance variable d.

ḋ = z1 (6.30a)

ż1 = u̇1 cos(θ − ψ) − u1(θ̇ − ψ̇) sin(θ − ψ) (6.30b)

197

for input u1 we define a new integrator such that u1 = z2, then ż2 = w1.

ḋ = z1 (6.31a)

ż1 = w1 cos(θ − ψ) − z2(θ̇ − ψ̇) sin(θ − ψ) (6.31b)

ż2 = w1 (6.31c)

For the convenience of inputs let us call u2 = w2. Then, substituting the other states we get

ḋ = z1 (6.32a)

ż1 = w1 cos(θ − ψ) − w2z2 sin(θ − ψ) +
1
d

z2
2 sin2(θ − ψ)) (6.32b)

ż2 = w1 (6.32c)

ψ̇ =
1
d

z2 sin(θ − ψ) (6.32d)

θ̇ = w2 (6.32e)

or in matrix form

ḋ

ż1

ż2

ψ̇

θ̇


=



z1

1
d z2

2 sin2(θ − ψ))

0
1
d z2 sin(θ − ψ)

0


+



0

cos(θ − ψ)

1

0

0


w1 +



0

−z2 sin(θ − ψ)

0

0

1


w2 (6.33)

which can be described as

ẋ = f (x) + g1(x)w1 + g2(x)w2 (6.34)

where x = [d, z1, z2, ψ, θ]T is the state vector. The equilibrium for the line following behavior

is at z1 = z2 = v0 and θ = ψ = β. Therefore, we select the outputs as

y1 = k1(x) = ψ (6.35a)

y2 = k2(x) = z1 (6.35b)

so that in the resulting linearized system the state z1 will be forced to converge v0 and the state

ψ will be forced to converge to β.

Now, we examine the first derivatives of the outputs

ẏ1 = ψ̇ =
1
d

z2 sin(θ − ψ) (6.36a)

ẏ2 = ż1 = w1 cos(θ − ψ) − w2z2 sin(θ − ψ) +
1
d

z2
2 sin2(θ − ψ)) (6.36b)

198

which may be written in matrix form as

ẏ1

ẏ2

 =
 1

d z2 sin(θ − ψ)
1
d z2

2 sin2(θ − ψ))

 +
 0 0

cos(θ − ψ) −z2 sin(θ − ψ)


w1

w2

 (6.37)

which can also be described as

ẏ1

ẏ2

 = T1(x) + A1

w1

w2

 (6.38)

To be able to linearize the system the coefficient matrix A1 should have full rank. However, it

has rank 1. Note, that the inputs do not appear in the first input’s time derivative. Therefore,

we take the second time derivative of the first input y1

ÿ1 = − ḋ
d2 z2 sin(θ − ψ) +

1
d

ż2 sin(θ − ψ) +
1
d

z2(θ̇ − ψ̇) cos(θ − ψ)

= −z1z2

d2 sin(θ − ψ) +
1
d

w1 sin(θ − ψ) +
1
d

z2w2 cos(θ − ψ) − 1
d2 z2

2 sin(θ − ψ) cos(θ − ψ)

(6.39)

then

ÿ1

ẏ2

 =
−

z1z2
d2 sin(θ − ψ) − 1

d2 z2
2 sin(θ − ψ) cos(θ − ψ)

1
d z2

2 sin2(θ − ψ))

 +
 1

d sin(θ − ψ) 1
d z2 cos(θ − ψ)

cos(θ − ψ) −z2 sin(θ − ψ)


w1

w2


which can be summarized as

ÿ1

ẏ2

 = T2(x) + A2

w1

w2


The determinant of A2 is Det(A2) = −z2/d. At the equilibrium z2 = v0 , 0 the determinant of

A2 is bounded away from zero. Therefore, matrix A2 has full rank at steady state. Now, we

can derive the normal states as

ξ1
1 = k1(x) = ψ (6.40a)

ξ1
2 = L f k1(x) (6.40b)

ξ2
1 = k2(x) = z1 (6.40c)

199

where

ξ1
2 = L f k1(x) =

∂k1(x)
∂x

f (x)

= [0 0 0 1 0]



z1

1
d z2

2 sin2(θ − ψ))

0
1
d z2 sin(θ − ψ)

0


=

1
d

z2 sin(θ − ψ) = ξ̇1
1 (6.41)

The time derivative of the second state is

ξ̇1
2 = −z1z2

d2 sin(θ − ψ) +
1
d

w1 sin(θ − ψ)

+
1
d

z2w2 cos(θ − ψ) − 1
d2 z2

2 sin(θ − ψ) cos(θ − ψ) (6.42)

The time derivative of the third state is

ξ̇2
1 = w1 cos(θ − ψ) − w2z2 sin(θ − ψ) +

1
d

z2
2 sin2(θ − ψ)) (6.43)

Then the feedback linearizing inputs are calculated asw1

w2

 = −A2
−1T2(x) + A2

−1

p1

p2

 (6.44)

The calculations are performed by a symbolic equation solver. The results are

w1 = p2 − 2p2 sin2
(
ψ − θ

2

)
− dp1 sin(ψ − θ) + 1

d
z1z2 sin2(ψ − θ) (6.45)

w2 =
1

dz2

(
z2

2 sin(θ − ψ) − 1
2

z1z2 sin(2ψ − 2θ)
)

+
1
z2

p2sin(ψ − θ) + 1
z2

dp1 cos(ψ − θ) (6.46)

Substituting the linearizing inputs we get the normal states as ξ̇1
2 = p1 and ξ̇2

1 = p2. Note that

the normal states are decoupled.

ξ̇1
1 = ξ1

2 (6.47a)

ξ̇1
2 = p1 (6.47b)

ξ̇2
1 = p2 (6.48)

200

As in the SISO case, we again shift the states as ξ1
1 = ψ− β and ξ2

1 = z1 − v0. Now, we can use

any linear system controller design method to have stable systems at ḋ = v0 and ψ = θ = β.

Consider the inputs p1 and p2 are linearly dependent on the normal states. Then the normal

state space becomes ξ̇1
1

ξ̇1
2

 =
 0 1

K1
1 K2

1


ξ1

1

ξ1
2

 (6.49)

and

ξ̇2
1 = K1

2ξ
2
1 (6.50)

Selecting the proper values for the controller parameters, one can obtain stable responses.

Note that the minimal dynamics should also be investigated. In the simulations all the states

are observed to be stable. The stability of the unobservable states at the desired behavior or

basically the zero dynamics is an issue which needs to be investigated.

Since the relative degree (3) is less than the number of states (5) we will select a the new states

η1 and η2 independent of input i.e. orthogonal to the function g(x).

∂η

∂x
g(x) = 0⇒


∂η1
∂d

∂η1
∂z1

∂η1
∂ψ

∂η1
∂z2

∂η1
∂θ

∂η2
∂d

∂η2
∂z1

∂η2
∂ψ

∂η2
∂z2

∂η2
∂θ





0 0

cos(θ − ψ) −z2 sin(θ − ψ)

0 0

1 0

0 1


=

00
 (6.51)

∂η1

∂z2
+
∂η1

∂z1
cos(θ − ψ) = 0 (6.52)

∂η2

∂θ
+
∂η2

∂z1
z2 sin(θ − ψ) = 0 (6.53)

which means η1 should be independent of z1 and z2 in addition to ξ states, and η2 should be

independent of θ and z1. We select η1 = θ − β and η2 = d. Let us examine the zero dynamics

of these variables.

The time derivative of η1 is

η̇1 = w2

=
1

dz2

(
z2

2 sin(θ − ψ) − 1
2

z1z2 sin(2ψ − 2θ)
)

(6.54)

+
1
z2

p2sin(ψ − θ) + 1
z2

dp1 cos(ψ − θ) (6.55)

201

We first substitute the equations in (6.45) and (6.47) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

ψ = ξ1
1 + β (6.56)

z1 = ξ2
1 + v0 (6.57)

d = η2 (6.58)

θ = η1 + β (6.59)

Now we use the zero dynamics of the system at ξ1
1 = ξ

1
2 = ξ

2
1 = 0, then η̇1 becomes 1

η̇1 = −
sin(2η1)(K1

2η2 − v0)
2η2

(6.60)

Using the small angle assumption for linearization we get

η̇1 = −η1
(K1

2η2 − v0)
η2

(6.61)

Here note that η2 = d ≥ 0, since it is the physical distance between agent and target. There-

fore, the minimal dynamics of η1 is locally asymptotically stable satisfying K1
2d > v0.

The time derivative of second selected state η2 = d becomes

η̇2 = z1

= ξ2
1 + v0 (6.62)

The zero dynamics becomes

η̇2 = v0

Here note that this state is not converging to a constant, instead it is increasing with a velocity

of v0. The behavior is indeed a tracking problem of the state. The variable d tracks the

constant speed increasing behavior at the zero dynamics. This is completely consistent with

the controlled dynamics of the system.

The last state we should examine is the integrator state of the agent z2. This is directly related

to the orientations and rotational speeds as in the following equation

z2 =
1
d

[
z1 sin(θ − ψ)

]
(6.63)

1 The intermediate steps are performed with symbolic equation solver toolbox of Matlab, and not represented
here due to the space requirements.

202

At the steady state (z1 = v0, θ − ψ = 0) it becomes

z2|eq = 0 (6.64)

which is again consistent with the controlled dynamics of the system.

6.2.4 Line Following - MIMO - Stationary Target - Simulation Results

In this section we present the results of the developed line following controller in the previous

section. As mentioned above we may select underdamped or overdamped controller parame-

ters. The first example is the overdamped behavior. For this behavior we select the parameters

as K2
1 = −9 < 0 and −

∣∣∣K2
1

∣∣∣2 /4 < K1
1 = −15 < 0 and K1

2 = −10 < 0. In the lower part of

the Figure 6.9 the change of the distance between robot and line (h) is presented. As seen the

robot approaches the line with an overdamped response and stays steady at h = 0. The upper

part of the figure shows the distance between robot and target (d). Robot gets far away from

the target. The change of this distance becomes steady at ḋ = v0 = 10[units/s]. In Figure

6.10 the change of angles ψ and θ are presented. As seen both angles converge to the slope

β = 120o.

The path of the vehicle is presented in Figure 6.11. As seen from the figure, the vehicle

reaches the line with an overdamped response and continues to follow the line with slope

β = 120o.

The underdamped response is obtained by the controller parameters K2 = −5 < 0 and K1 =

−15 < − |K2|2 /4 and K1
2 = −10 < 0. In Figure 6.12 the change of h and d are presented.

As seen the response is underdamped. In the next Figure 6.13 the change of ψ and θ may be

observed. The Figure 6.14 shows the path of the vehicle.

Note that, in the simulation results above the vehicle’s initial orientation is 100o and converges

to β = 120o as time passes. The vehicle converges to β = 120o sloped line for any initial ori-

entation. If the slope is given opposite β = 120+180 = 300o then the vehicle follows the path

shown in Figure 6.8. The vehicle does not follow the shortest path, instead it always rotates

in the CCW direction to approach the line. Therefore, the future work for this controller is

to add strategies that make the vehicle follow the shortest path similar to the SISO controller

case.

203

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

t

d
[u

ni
ts

]

Distance between robot and target

0 0.5 1 1.5 2 2.5 3 3.5

−40

−30

−20

−10

0

10

t

h
[u

ni
ts

]

Distance between robot and line

Figure 6.9: The change of the distance between robot and target (d), and robot and line (h)
with respect to time. Overdamped response for line following behavior.

0 0.5 1 1.5 2 2.5 3 3.5
20

40

60

80

100

120

140

ψ
 [d

eg
]

θ and ψ converging to β

0 0.5 1 1.5 2 2.5 3 3.5
100

120

140

160

180

t

θ
[d

eg
]

Figure 6.10: The change of the angles θ and ψ with respect to time. Overdamped response for
line following behavior.

204

−60 −40 −20 0 20 40

0

10

20

30

40

50

60

70

x

y

Trajectory of robot following line with slope β

Figure 6.11: The path of the robot. Overdamped response for line following behavior.

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

t

d
[u

ni
ts

]

Distance between robot and target

0 0.5 1 1.5 2 2.5 3 3.5

−40

−30

−20

−10

0

10

t

h
[u

ni
ts

]

Distance between robot and line

Figure 6.12: The change of the distance between robot and target (d), and robot and line (h)
with respect to time. Underdamped response for line following behavior.

205

0 0.5 1 1.5 2 2.5 3 3.5
20

40

60

80

100

120

140

ψ
 [d

eg
]

θ and ψ converging to β

0 0.5 1 1.5 2 2.5 3 3.5
50

100

150

200

t

θ
[d

eg
]

Figure 6.13: The change of the angles θ and ψ with respect to time. Underdamped response
for line following behavior.

−60 −40 −20 0 20 40

0

10

20

30

40

50

60

70

x

y

Trajectory of robot following line with slope β

Figure 6.14: The path of the robot. Underdamped response for line following behavior.

206

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

x

y

Trajectory of robot following line with slope β

Figure 6.15: The path of the robot following the slope β + π.

6.2.5 Line Following - MIMO - Non-Stationary Target Case

In this section we will develop the feedback linearization of line following dynamics around

a non-stationary target by taking speed v and angular velocity θ̇ as the inputs. Lets call v = u1

and θ̇ = u2. Then the system dynamics becomes

ḋ = u1 cos(θ − ψ) − vc cos(θc − ψ) (6.65a)

ψ̇ =
1
d

[
u1 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.65b)

θ̇ = u2 (6.65c)

In the line following behavior, the vehicle travels at a specified speed ḋ = v0 on the line

passing through the target with the specified angle β. Since the controller is going to adjust

the speed we need one more integrator for the distance variable d.

ḋ = z1 (6.66a)

ż1 = u̇1 cos(θ − ψ) − u1(θ̇ − ψ̇) sin(θ − ψ)

−ac cos(θc − ψ) + vc(θ̇c − ψ̇) sin(θc − ψ) (6.66b)

207

For input u1 we define a new integrator such that u1 = z2, then ż2 = w1.

ḋ = z1 (6.67a)

ż1 = w1 cos(θ − ψ) − z2(θ̇ − ψ̇) sin(θ − ψ) − ac cos(θc − ψ) + vc(ωc − ψ̇) sin(θc − ψ)(6.67b)

ż2 = w1 (6.67c)

For the convenience of inputs let us call u2 = w2. Then, substituting the other states we get

ḋ = z1 (6.68a)

ż1 = w1 cos(θ − ψ) − w2z2 sin(θ − ψ) + z2 sin(θ − ψ)
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
−ac cos(θc − ψ) + vc sin(θc − ψ)ωc

−vc sin(θc − ψ)
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.68b)

ψ̇ =
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.68c)

ż2 = w1 (6.68d)

θ̇ = w2 (6.68e)

or in matrix form

ḋ

ż1

ψ̇

ż2

θ̇


=



z1

f12

1
d
[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
0

0


+



0

cos(θ − ψ)

0

1

0


w1 +



0

−z2 sin(θ − ψ)

0

0

1


w2 (6.69)

where

f12 = z2 sin(θ − ψ)
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
−ac cos(θc − ψ) + vc sin(θc − ψ)ωc

−vc sin(θc − ψ)
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.70a)

Defining functions of x we write

ẋ = f (x) + g1(x)w1 + g2(x)w2 (6.71)

where x = [d, z1, ψ, z2, θ]T is the state vector.

208

The equilibrium for the line following behavior is at z1 = v0 and θ = ψ = β. Therefore, we

select the outputs as

y1 = k1(x) = ψ (6.72a)

y2 = k2(x) = z1 (6.72b)

so that in the resulting linearized system the state z1 will be forced to converge v0 and the state

ψ will be forced to converge to β.

Now, we examine the first derivatives of the outputs

ẏ1 = ψ̇ =
1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.73a)

ẏ2 = ż1 = f12 + w1 cos(θ − ψ) − w2z2 sin(θ − ψ)

which may be written in matrix form as

ẏ1

ẏ2

 =
 ψ̇ = 1

d
[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
f12

 +
 0 0

cos(θ − ψ) −z2 sin(θ − ψ)


w1

w2

(6.74)

which can also be described as

ẏ1

ẏ2

 = T1(x) + A1

w1

w2

 (6.75)

To be able to linearize the system the coefficient matrix A1 should have full rank. However, it

has rank 1. Note, that the inputs do not appear in the first input’s time derivative. Therefore,

we take the second time derivative of the first input y1

209

ÿ1 = − ḋ
d2

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

ż2 sin(θ − ψ) +
1
d

z2(θ̇ − ψ̇) cos(θ − ψ)

−1
d

ac sin(θc − ψ)

−1
d

vc(ωc − ψ̇) cos(θc − ψ)

= − z1

d2

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

w1 sin(θ − ψ) +
1
d

z2w2 cos(θ − ψ)

− 1
d2 z2 cos(θ − ψ)

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
−1

d
ac sin(θc − ψ)

−1
d

vcωc cos(θc − ψ)

+
1
d2 vc cos(θc − ψ)

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.76)

then ÿ1

ẏ2

 =
 T 1

2

1
d z2

2 sin2(θ − ψ))

 +
 1

d sin(θ − ψ) 1
d z2 cos(θ − ψ)

cos(θ − ψ) −z2 sin(θ − ψ)


w1

w2


which can be summarized as ÿ1

ẏ2

 = T2(x) + A2

w1

w2


where

T 1
2 = − z1

d2

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
− 1

d2 z2 cos(θ − ψ)
[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
−1

d
ac sin(θc − ψ)

−1
d

vcωc cos(θc − ψ)

+
1
d2 vc cos(θc − ψ)

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.77)

The determinant of A2 is Det(A2) = −z2/d. Note that at the equilibrium

zeq
2 =

ḋ + vc cos(θc − ψ)
cos(θ − ψ)

∣∣∣∣∣∣
ḋ=v0 , θ=ψ=β

(6.78)

=
v0 + vc cos(θc − β)

cos(β − β)
(6.79)

= v0 + vc cos(θc − β) (6.80)

210

Satisfying both θc , β + π and vc , v0, the determinant Det(A2) = −z2/d is bounded away

from zero. Therefore, matrix A2 has full rank at steady state for the given conditions. Now,

we can derive the normal states as

ξ1
1 = k1(x) = ψ (6.81a)

ξ1
2 = L f k1(x) (6.81b)

ξ2
1 = k2(x) = z1 (6.81c)

where

ξ1
2 = L f k1(x) =

∂k1(x)
∂x

f (x)

= [0 0 1 0 0]



z1

f12

1
d
[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
0

0


=

1
d

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
= ξ̇1

1 (6.82)

The time derivative of the second state is

ξ̇1
2 = − z1

d2

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
+

1
d

w1 sin(θ − ψ) +
1
d

z2w2 cos(θ − ψ)

− 1
d2 z2 cos(θ − ψ)

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
−1

d
ac sin(θc − ψ)

−1
d

vcωc cos(θc − ψ)

+
1
d2 vc cos(θc − ψ)

[
z2 sin(θ − ψ) − vc sin(θc − ψ)

]
(6.83)

The time derivative of the third state is

ξ̇2
1 = f12 + w1 cos(θ − ψ) − w2z2 sin(θ − ψ) (6.84)

Then the feedback linearizing inputs are calculated asw1

w2

 = −A2
−1T2(x) + A2

−1

p1

p2

 (6.85)

211

The calculations are performed by a symbolic equation solver. The results are

w1 = p2 cos(ψ − θ)

− cos(ψ − θ)
[
1
d

(
v2

c sin(θc − ψ)2 − 2vcz2 sin(θ − ψ) sin(θc − ψ) + z2
2 sin(θ − ψ)2

)
−ac cos(θc − ψ) + ωcvc sin(θc − ψ)

]
−d sin(ψ − θ)

{
1
d2

[
(vc cos(θc − ψ) − z2 cos(θ − ψ)) (vc sin(θc − ψ) − z2 sin(θ − ψ))

]
+

1
d

(ac sin(θc − ψ)) − 1
d2

[
z1 (vc sin(θc − ψ) − z2 sin(θ − ψ))

]
+

1
d

(ωcvc cos(θc − ψ))
}

−dp1 sin(ψ − θ) (6.86)

w2 =
1

2dz2

{
2dp2 sin(ψ − θ) − 2z2

2 sin(ψ − θ) − v2
c sin(ψ + θ − 2θc)

−2acd sin(θ − θc) − v2
c sin(ψ − θ) + 3vcz2 sin(ψ − θc) + vcz1 sin(θ − θc)

+2d2 p1 cos(ψ − θ) + vcz1 sin(2ψ − θ − θc) − z1z2 sin(2ψ − 2θ)

+vcz2 sin(ψ − 2θ + θc) + 2domegacvc cos(θ − θc)
}

(6.87)

Substituting the linearizing inputs we get the normal states as ξ̇1
2 = p1 and ξ̇2

1 = p2. Note that

the normal states are decoupled.

ξ̇1
1 = ξ1

2 (6.88a)

ξ̇1
2 = p1 (6.88b)

ξ̇2
1 = p2 (6.89)

As in the SISO case, we again shift the states as ξ1
1 = ψ− β and ξ2

1 = z1 − v0. Now, we can use

any linear system controller design method to have stable systems at ḋ = v0 and ψ = θ = β.

Consider the inputs p1 and p2 are linearly dependent on the normal states. Then the normal

state space becomes ξ̇1
1

ξ̇1
2

 =
 0 1

K1
1 K2

1


ξ1

1

ξ1
2

 (6.90)

and

ξ̇2
1 = K1

2ξ
2
1 (6.91)

212

Selecting the proper values for the controller parameters, one can obtain stable responses.

The minimal dynamics should also be investigated. In the simulations all the states are ob-

served to be stable. Since the relative degree (3) is less than the number of states (5) we will

select a the new states η1 and η2 independent of input i.e. orthogonal to the function g(x).

∂η

∂x
g(x) = 0⇒


∂η1
∂d

∂η1
∂z1

∂η1
∂ψ

∂η1
∂z2

∂η1
∂θ

∂η2
∂d

∂η2
∂z1

∂η2
∂ψ

∂η2
∂z2

∂η2
∂θ





0 0

cos(θ − ψ) −z2 sin(θ − ψ)

0 0

1 0

0 1


=

00
 (6.92)

∂η1

∂z2
+
∂η1

∂z1
cos(θ − ψ) = 0 (6.93)

∂η2

∂θ
+
∂η2

∂z1
z2 sin(θ − ψ) = 0 (6.94)

which means in addition to ξ1
1, ξ1

2, and ξ2
1, the state η2 should be independent of z1 and z2.

Similarly η1 should be independent of θ and z1 or it should satisfy the partial differential

equation in (6.93) . We select η2 = d and η1 = z2 cos(θ − ψ) − z1. Let us examine the zero

dynamics of these variables.

The time derivative of η2 is

η̇2 = z1 (6.95)

We first substitute the equations in (6.87) and (6.88) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

ψ = ξ1
1 + β (6.96)

z1 = ξ2
1 + v0 (6.97)

d = η2 (6.98)

Now we use the zero dynamics of the system at ξ1
1 = ξ

1
2 = ξ

2
1 = 0, then η̇2 becomes 2

η̇1|eq = v0 (6.99)

Here note that this state is not converging to a constant, instead it is increasing with a speed

of v0 and diverging as t → ∞. The behavior is indeed a tracking problem of the state. The

2 The intermediate steps are performed with symbolic equation solver toolbox of Matlab

213

distance variable d tracks the constant speed travel behavior at the zero dynamics. This is

completely consistent with the controlled dynamics of the system. Opposite to the stationary

target case, in the dynamic targeting system θ does not converge to constant β. The change of

θ with respect to time depends on the motion of the target. Furthermore, the velocity of the

agent is not along the line passing through the target if target is not stationary. The velocity

of the agent converges to a vector consisting normal and tangential components. The normal

component of agent velocity is equal to normal component of the target velocity plus ḋ = v0

(normal direction is along ψ direction). The tangential component of the agent velocity is

equal to the tangential component of the target velocity. Therefore, we can write

z2 sin(θ − ψ) = vc sin(θc − ψ) (6.100)

and

z2 cos(θ − ψ) = vc cos(θc − ψ) + z1 (6.101)

If we consider the relation between η1 = z2 cos(θ − ψ) − z1 and the equations above we can

simply say that η2 should converge to vc cos(θc − ψ) at the steady state. In the analysis of

the zero dynamics of η1 it is hard to solve for this convergence. Therefore, here we use a

simplifying method and examine the dynamics of a new variable say η̄1 = η1 − vc cos(θc −ψ).

The time derivative of this variable is

˙̄η1 = (vc sin(θc − ψ) − z2 sin(θ − ψ))2/d − vc sin(θc − ψ)

(ωc + (vc sin(θc − ψ) − z2 sin(θ − ψ))/d)

+z2 sin(θ − ψ)(w2 + (vc sin(θc − ψ) − z2 sin(θ − ψ))/d)

+ωcvc sin(θc − ψ) − w2z2 sin(θ − ψ)

Performing the substitutions done for η1 again in the above equation we would get

˙̄η2 = 0

which means η̇2 equals to vc cos(θc −ψ). Here we have two tracking variables. The results are

all consistent with the controlled line following behavior of the agents.

6.2.6 Line Following - MIMO - Non-Stationary Target - Simulation Results

In this section we will present the results of the developed controller for non-stationary targets.

For better understanding of the performance of non-stationary target following controller,

214

we presented the results of the same simulation for the controller developed in the previous

section for stationary targets. The controller parameters are the same for both controllers. We

select underdamped controller parameters for both which are K1
2 = −5 < 0 and −

∣∣∣K1
2

∣∣∣2 /4 >
K1

1 = −10 and K2
1 = −1 < 0. The target is stationary at the beginning of the simulation to

show that the controllers are successfully in convergence to the reference inputs, after a while

the target starts a complex motion and stops towards the end of the simulation. The target

motion is modeled by particle kinematics similar to the agents.

ẋc = vc cos(θc) (6.102a)

ẏc = vc sin(θc) (6.102b)

v̇c = ac (6.102c)

θ̇c = ωc (6.102d)

where for this simulation the acceleration and angular velocity of the target are selected to be

partial functions as

ac =

 0 t ≤ 5 & t ≥ 26

5 sin(0.3(t − 5)) 5 < t < 26
(6.103)

ωc =

 0 t ≤ 5 & t ≥ 26

1.5 sin(0.8(t − 5)) 5 < t < 26
(6.104)

Using the above dynamic target model, the simulation is performed for 30 seconds. The

reference inputs are v0 = 5 and β = 35o. The agents with different controllers (stationary

target and non-stationary target controllers) start with the same initial conditions for better

comparison. In Figure 6.16 h, the distance between the agents and the line passing through

agent and the target are plotted. In Figure 6.17 eψ = β − ψ, the errors of the desired input are

plotted. At the begining of the simulation both agents have the same values of these states

since the target is stationary. When target starts to move the controller for stationary target

cannot keep the desired distance h = 0 and desired vector orientation, eψ , 0. When the target

stops both agents again converge to the same desired values. The velocities of the agents can

be compared in Figure 6.18. As seen the non-stationary controller utilizes more speed in

inputs. The paths of both controllers are presented in the Figure 6.19.

215

0 5 10 15 20 25 30
−70

−60

−50

−40

−30

−20

−10

0

10

Time [s]

h
[u

ni
ts

]

Distance h for stationary and non−stationary target controllers

Stationary T.C.
Non−Stationary T.C.

Figure 6.16: The distance between agents and target d. The responses of non-stationary and
stationary line following controllers.

0 5 10 15 20 25 30
−50

0

50

100

150

200

Time [s]

e ψ
 [D

eg
]

Error of ψ for stationary and non−stationary target controllers (eψ = β − ψ)

Stationary T.C.
Non−Stationary T.C.

Figure 6.17: Error of ψ (eψ = β − ψ) for non-stationary and stationary line following con-
trollers.

216

0 5 10 15 20 25 30
−50

0

50

100

150

200

250

300

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Target

Target
Stationary T.C.
Non−Stationary T.C.

Figure 6.18: Velocities of target and agents with non-stationary and stationary line following
controllers.

−50 0 50 100 150 200
x [units]

Figure 6.19: Path of the agents and target. Non-stationary controller path: dash-dotted blue,
stationary controller path: dashed red, target path: solid black.

217

6.2.7 Application of Controllers to Multi-agent Systems

In this section, the controllers developed for line following behavior are applied to multi-agent

systems. The developed controllers are designed for a single agent to follow a line passing

through a a specified target with a specified slope. If the objective is to make all agents of a

swarm to follow a line passing through a specified target with a specified slope independently,

then the controllers are successful in doing so. However, in many multi-agent applications the

aim is to force agents to perform a specified task independent of external inputs like leader,

target, centralized controllers etc.. Therefore, in this part of the study we will develop methods

for agents to perform the desired motion utilizing the centroid of the swarm. We will start with

the SISO controller developed for a stationary target.

6.2.7.1 Line Formation of Multi-Agent System with SISO - Stationary Target Con-

troller

In this section we present the simulation results of the line following behavior of multi agent

systems where they use the center of the swarm as the target point. The simulations are run

for 5 agents. The desired orientation for the agents to converge is β = 35o. The controller pa-

rameters in equation (6.28) are set to K1 = −0.1 and K2 = −0.3 which results in underdamped

response. In Figure 6.20 the change of distance from agent to the line of convergence, h (a)

and change of orientation error (eψ = β − ψ) (b) are represented. The h variable converges

to zero or in other words agents settle on the line passing through center of swarm with the

desired slope. The transient response of h is underdamped. The left hand side plot, (b) shows

that 2 of the agents are following ψ = β and the remaining 3 are ψ = β + π. As mentioned

before, the SISO controller is able to control just the distance h; therefore, the heading of the

agents depend on the initial conditions. In several simulations with random initial conditions

there occur the behaviors: All 5 agents heading ψ = β or just the reverse (ψ = β+ π) or one of

the agents is heading in the opposite direction of the other 4, and the ones similar to the one

represented here. In Figure 6.21 the paths of the agents are represented. The arrow head like

geometries and the tail like dashed curves represents the agents and paths respectively. The

cross shape is the center of the swarm. As seen from the figure the agents are converging to

the desired line passing through the center of the swarm with the desired slope.

218

0 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0

10

20

30

40

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

0 5 10 15 20 25 30
−50

0

50

100

150

200

250

300

350

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

(a) (b)

Figure 6.20: Distance h (a) and error of eψ (b) of 5 agents with line following SISO controller

6.2.7.2 Line Formation of Multi-Agent System with MIMO - Stationary Target Con-

troller

In this section the MIMO controller developed for the stationary targets is applied for the

Multi-agent systems. The agents utilize the center of the swarm, but not exactly the location

of the center as the target. Note that, the MIMO controller developed for stationary targets

aims to go away with a specified speed ḋ = z1 = v0 (Eqn. 6.30) from the target. However,

since all of the agents move to get far away from the center, the center also moves with the

agent flock. Therefore, controllers of agents increase the speed and so does the center which

results in divergence of the speed of the swarm. To avoid from this problem we will modify the

target point deriving a simple relation with the center of the swarm. Note that, the developed

controller aims the agents to converge to a line passing through the target with a specified

slope. Therefore, we define a new point on the same line which does not move along the line.

The center of the swarm changes location as the agents move. If we define such a point it

will move just along the orthogonal direction of the flock. That point may be selected as the

tangent point of circle centered at a pre-specified fixed point and the line passing through the

center of the flock with the given orientation (see Fig. 6.22)

Using the geometry in Fig. 6.22 we can derive the relations between center of swarm (xc, yc)

and the target point (xt, yt). For example selecting the fixed point as the origin of the coordi-

219

−200 −150 −100 −50 0 50 100 150 200 250 300

−100

−50

0

50

100

150

200

x [units]

Figure 6.21: Path of 5 agents with line following SISO controller. Arrow heads: agents,
Cross: center of swarm.

Center of Swarm

(x
t
,y

t
)

(x
f
,y

f
)

Agent

x
(x

c
,y

c
)

+ /2

Figure 6.22: The relation between target and center of swarm.

220

nate frame (x f = 0, y f = 0) the target position is generated as:

xt =
yc − xc tan(β)

tan(β + π/2) − tan(β)
(6.105a)

yt = xt tan(β + π/2) (6.105b)

Using the new target derived from the center of agents some simulations are performed to ob-

serve the success of controllers. Here, we present the simulations for 5 agents. The controller

parameters are selected as K1
1 = −10, K1

2 = −3, and K2
1 = −10 to obtain an underdamped

system. The reference input for orientation of line is β = 35o, and reference input for speed of

agents is v0 = 5units/s. The initial conditions are randomly generated to distribute the agents

in a 200x200 square area.

In Fig. 6.23(a) the change of the distances between agents and the line of convergence (h) for

each agent are presented. As seen from the figure all h values converge to zero with damped

oscillations. In 6.23(b) the change of eψ = β − ψ values of agents are presented. The values

converges to eψ = 0 with decaying exponential oscillations. In Fig. 6.24(a) the velocities

of agents and the center of agents are plotted. The velocities are converging to the reference

input v0 = 5units/s. On the right hand side the path of the agents are plotted. The arrow

heads represents the agents and the cross sign is the center of the swarm. The paths are the

tailing dashed curves.

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

(a) (b)

Figure 6.23: Distance h (a) and error eψ (b) of 5 agents with line following MIMO controller
for stationary target.

221

0 1 2 3 4 5
0

10

20

30

40

50

60

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

0 10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 6.24: Velocities of agents and center of swarm (a), and path of 5 agents (b) with line
following MIMO controller for stationary target.

6.2.7.3 Line Formation of Multi-Agent System with MIMO - Non-Stationary Target

Controller

In this section the MIMO controller developed for non-stationary targets is modified for the

multi-agent systems. The center of the swarm is taken to be the target of the agents (Again

shifted backwards as explained in the previous section). Therefore, the target dynamics are

coupled to the agent dynamics such that

−→v c =
1
M

M∑
j=1

−→v j (6.106a)

−→a c =
1
M

M∑
j=1

−→a j (6.106b)

where vc and ac are the velocity and acceleration vectors of the center of swarm, and v j and

a j are the velocity and acceleration vectors of the jth agent. M is the number of agents in the

swarm. And note that the velocity component along the line passing through the target (center

of swarm) and the agent itself becomes

vc cos(θc − ψi) =
1
M

M∑
j=1

v j cos(θ j − ψi) (6.107a)

vc sin(θc − ψi) =
1
M

M∑
j=1

v j sin(θ j − ψi) (6.107b)

222

Substituting these relations into the mathematical model in (6.65) we obtain the following set

of equations for each agent i

ḋi = vi cos(θi − ψi) −
1
M

M∑
j=1

v j cos(θ j − ψi) (6.108a)

ψ̇i =
1
d

vi sin(θi − ψi) −
1
M

M∑
j=1

v j sin(θ j − ψi)

 (6.108b)

θ̇i = ui (6.108c)

If we extract the velocity components belonging to agent i in the equations we get

ḋi = vi cos(θi − ψi) −
1
M

vi cos(θi − ψi) +
M∑

j=1, j,i

v j cos(θ j − ψi)

 (6.109a)

ψ̇i =
1
d

vi sin(θi − ψi) −
1
M

vi sin(θi − ψi) +
M∑

j=1, j,i

v j sin(θ j − ψi)


 (6.109b)

θ̇i = ui (6.109c)

Rearranging the terms

ḋi = vi

(
1 − 1

M

)
cos(θi − ψi) −

1
M

M∑
j=1, j,i

v j cos(θ j − ψi) (6.110a)

ψ̇i =
1
d

vi

(
1 − 1

M

)
sin(θi − ψi) −

1
M

M∑
j=1, j,i

v j sin(θ j − ψi)

 (6.110b)

θ̇i = ui (6.110c)

In this new model the terms in the summation are independent of the velocity of ith agent.

Therefore, lets simplify the equation by the following relations

v⃗i
c =

1
M

M∑
j=1, j,i

v⃗ j (6.111a)

θi
c = angle(⃗vi

c) (6.111b)

223

where −→v i
c is the vectorial summation of the velocity of all agents except ith agent, divided

by the number of agents, M. The variable θi
c is the orientation of vector v⃗i

c. Let us define

vi
c = norm(⃗vi

c). Note that these variables are independent of the states of ith agent.

The summation of the components of the velocity vectors along and orthogonal to the line

passing through center of swarm and the ith agent becomes

vi
c cos(θi

c − ψi) =
1
M

M∑
j=1, j,i

v j cos(θ j − ψi) (6.112a)

vi
c sin(θi

c − ψi) =
1
M

M∑
j=1, j,i

v j sin(θ j − ψi) (6.112b)

Substituting these into the system model

ḋi = vi

(
1 − 1

M

)
cos(θi − ψi) − vi

c cos(θi
c − ψi) (6.113a)

ψ̇i =
1
d

[
vi

(
1 − 1

M

)
sin(θi − ψi) − vi

c sin(θi
c − ψi)

]
(6.113b)

θ̇i = ui (6.113c)

For the line formation of agents, the equilibrium occurs at equal speeds and orientations of

the agents on the same line with given orientation. In other words vi = v0, θi = θ0, and ψi = β

for i = 1, 2, ..., M. Then the equilibrium states become

˙deq
i = v0

(
1 − 1

M

)
cos(θ0 − β) − M − 1

M
v0 cos(θ0 − β)

= 0 (6.114a)

ψ̇
eq
i =

1
d

[
v0

(
1 − 1

M

)
sin(θ0 − β) − M − 1

M
v0 sin(θ0 − β)

]
= 0 (6.114b)

θ̇i = 0 (6.114c)

Note that, the equilibrium is satisfied without regarding the value of θ0 and v0. If the agents

are located on the line passing through the center and moving along parallel paths oriented

with θi = θ0 then the above dynamics are at equilibrium (see Fig. 6.25). The values of θ0 and

v0 are emergent values depending on the initial conditions and controller parameters.

The aim of the controller in this section is not only to settle the agents on the line in Fig. 6.25

but also to make their path coincident with the line, (θi = ψi = β). We will define a new

224

Center of Swarm

Agent

x

i

v
i

Figure 6.25: Line formation of agents at equilibrium.

virtual reference frame where the agents are targeting not the exact center of flock, instead

they target a slower center of flock. The center of flock still depends on the positions of all

agents, however the velocity and acceleration of the new center is smaller than the exact one.

Therefore, we are going to define a new center of flock velocity by weighting the exact center

of flock velocity such that vcw = Kvc (0 < K < 1). Note here also that the agents will converge

to states where ḋ = 0 in real coordinate frames. But for this new virtual coordinate frame the

convergence occurs at ḋ = v0(1 − K).

For the virtual slower center of flock the states become

ḋi = vi cos(θi − ψi) − K
1
M

M∑
j=1

v j cos(θ j − ψi) (6.115a)

ψ̇i =
1
d

vi sin(θi − ψi) − K
1
M

M∑
j=1

v j sin(θ j − ψi)

 (6.115b)

θ̇i = ui (6.115c)

and rearranging the states

ḋi = vi

(
1 − K

M

)
cos(θi − ψi) − Kvi

c cos(θi
c − ψi) (6.116a)

ψ̇i =
1
d

[
vi

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.116b)

θ̇i = ui (6.116c)

225

In the line following behavior, the vehicle travels at a specified speed ḋ = v0(1−K) on the line

passing through the target with the specified angle β. Since the controller is going to adjust

the speed vi = ui
1 we need one more integrator for the distance variable d.

ḋi = zi
1 (6.117a)

żi
1 = u̇i

1

(
1 − K

M

)
cos(θi − ψi) − ui

1

(
1 − K

M

)
(θ̇i − ψ̇i) sin(θi − ψi)

−Kai
c cos(θi

c − ψi) + Kvi
c(θ̇i

c − ψ̇i) sin(θi
c − ψi) (6.117b)

for input ui
1 we define a new integrator such that ui

1 = zi
2, then żi

2 = wi
1.

ḋi = zi
1 (6.118a)

żi
1 = wi

1

(
1 − K

M

)
cos(θi − ψi) − zi

2

(
1 − K

M

)
(θ̇i − ψ̇i) sin(θi − ψi)

−Kai
c cos(θi

c − ψi) + Kvi
c(ωi

c − ψ̇i) sin(θi
c − ψi) (6.118b)

żi
2 = wi

1 (6.118c)

For the convenience of inputs let us call ui
2 = wi

2. Then, substituting the other states we get

ḋi = zi
1 (6.119a)

żi
1 = wi

1

(
1 − K

M

)
cos(θi − ψi) − wi

2zi
2

(
1 − K

M

)
sin(θi − ψi)

+zi
2 sin(θi − ψi)

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
−Kai

c cos(θi
c − ψi) + Kvi

c sin(θi
c − ψi)ωi

c

−Kvi
c sin(θi

c − ψi)
1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.119b)

ψ̇i =
1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.119c)

żi
2 = wi

1 (6.119d)

θ̇i = wi
2 (6.119e)

226

or in matrix form

ḋi

żi
1

ψ̇i

żi
2

θ̇i


=



zi
1

f 1
12

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvc sin(θi

c − ψi)
]

0

0



+



0(
1 − K

M

)
cos(θi − ψi)

0

1

0


w1 +



0

−zi
2

(
1 − K

M

)
sin(θi − ψi)

0

0

1


w2 (6.120)

where

f 1
12 = zi

2

(
1 − K

M

)
sin(θi − ψi)

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
−Kai

c cos(θi
c − ψi) + Kvi

c sin(θi
c − ψi)ωi

c

−Kvi
c sin(θi

c − ψi)
1
d

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.121a)

Defining functions of xi we write

ẋi = f (xi) + g1
1(xi)wi

1 + g1
2(xi)wi

2 (6.122)

where x = [di, z1
1, ψi, z1

2, θi]T is the state vector.

The equilibrium for the line following behavior is at zi
1 = v0(1−K) and θi = ψi = β. Therefore,

we select the outputs as

y1 = k1(x) = ψi (6.123a)

y2 = k2(x) = zi
1 (6.123b)

so that in the resulting linearized system the state zi
1 will be forced to converge v0(1 − K) and

the state ψi will be forced to converge to β.

Now, we examine the first derivatives of the outputs

ẏi
1 = ψ̇i =

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.124a)

ẏi
2 = żi

1 = f12 + wi
1

(
1 − K

M

)
cos(θi − ψi) − wi

2zi
2

(
1 − K

M

)
sin(θi − ψi) (6.124b)

227

which may be written in matrix form asẏi
1

ẏi
2

 =
 ψ̇i = 1

d

[
z2

(
1 − K

M

)
sin(θ − ψ) − Kvc sin(θc − ψ)

]
f i
12


+

 0 0

cos(θi − ψi) −zi
2 sin(θi − ψi)


wi

1

wi
2

 (6.125)

which can also be described as ẏi
1

ẏi
2

 = T i
1(x) + Ai

1

wi
1

wi
2

 (6.126)

To be able to linearize the system the coefficient matrix Ai
1 should have full rank. However, it

has rank 1. Note, that the inputs do not appear in the first input’s time derivative. Therefore,

we take the second time derivative of the first input yi
1

ÿi
1 = − ḋi

d2
i

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

żi
2

(
1 − K

M

)
sin(θi − ψi) +

1
di

zi
2

(
1 − K

M

)
(θ̇i − ψ̇i) cos(θi − ψi)

− 1
di

Kai
c sin(θi

c − ψi)

− 1
di

Kvi
c(ωi

c − ψ̇i) cos(θi
c − ψi)

= − z1

d2
i

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

w1

(
1 − K

M

)
sin(θi − ψi) +

1
di

zi
2w2

(
1 − K

M

)
cos(θi − ψi)

− 1
d2

i

zi
2

(
1 − K

M

)
cos(θi − ψi)

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
− 1

di
Kai

c sin(θi
c − ψi)

− 1
di

Kvi
cω

i
c cos(θi

c − ψi)

+
1
d2

i

Kvi
c cos(θi

c − ψi)
[
zi

2 sin(θi − ψi) − Kvi
c sin(θi

c − ψi)
]

(6.127)

thenÿi
1

ẏi
2

 =
 T 1

2

1
di

(zi
2)2 sin2(θi − ψi))

 +
 1

di

(
1 − K

M

)
sin(θi − ψi) 1

di
zi

2

(
1 − K

M

)
cos(θi − ψi)(

1 − K
M

)
cos(θi − ψi) −zi

2

(
1 − K

M

)
sin(θi − ψi)


w1

w2


228

which can be summarized as ÿi
1

ẏi
2

 = T i
2(x) + Ai

2

wi
1

wi
2


where

T 1
2 = − z1

d2
i

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
− 1

d2
i

zi
2

(
1 − K

M

)
cos(θi − ψi)

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
− 1

di
Kai

c sin(θi
c − ψi)

− 1
di

Kvi
cω

i
c cos(θi

c − ψi)

+
1
d2

i

Kvi
c cos(θi

c − ψi)
[
zi

2 sin(θi − ψi) − Kvi
c sin(θi

c − ψi)
]

(6.128)

The determinant of Ai
2 is Det(Ai

2) = −zi
2/di. Note that at the equilibrium

zi
2 =

ḋi + Kvi
c cos(θi

c − ψi)
cos(θi − ψi)

∣∣∣∣∣∣
ḋi=v0(1−K) , θi=ψi=β

(6.129)

=
v0(1 − K) + Kvi

c cos(θi
c − β)

cos(β − β)
(6.130)

= v0(1 − K) + Kvi
c cos(θi

c − β) (6.131)

The determinant Det(A2) = −zi
2/di is bounded away from zero. Therefore, matrix A2 has full

rank at steady state and during transient response since zi
2 , 0, for the given conditions. Now,

we can derive the normal states as

ξ1
1

i
= ki

1(xi) = ψi (6.132a)

ξ1
2

i
= L f ki

1(xi) (6.132b)

ξ2
1

i
= ki

2(xi) = zi
1 (6.132c)

where

ξ1
2

i
= L f ki

1(xi) =
∂ki

1(xi)
∂xi

f (xi)

= [0 0 1 0 0]



zi
1

f i
12

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
0

0


=

1
di

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
= ξ̇1

1 (6.133)

229

The time derivative of the second state is

ξ̇1
2

i
= − z1

d2
i

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
+

1
di

w1

(
1 − K

M

)
sin(θi − ψi) +

1
di

zi
2w2

(
1 − K

M

)
cos(θi − ψi)

− 1
d2

i

zi
2

(
1 − K

M

)
cos(θi − ψi)

[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
− 1

di
Kai

c sin(θi
c − ψi)

− 1
di

Kvi
cω

i
c cos(θi

c − ψi)

+
1
d2

i

Kvi
c cos(θi

c − ψi)
[
zi

2

(
1 − K

M

)
sin(θi − ψi) − Kvi

c sin(θi
c − ψi)

]
(6.134)

The time derivative of the third state is

ξ̇2
1

i
= f i

12 + wi
1 cos(θi − ψi) − wi

2zi
2 sin(θi − ψi) (6.135)

Then the feedback linearizing inputs are calculated as

wi
1

wi
2

 = −Ai
2
−1

T i
2(x) + Ai

2
−1

pi
1

pi
2

 (6.136)

The calculations are performed by a symbolic equation solver. The results are

wi
1 = (M cos(ψi − θi)(Kvi

c sin(θi
c − ψi)(ωi

c + (Kvi
c sin(θi

c − ψi)

+zi
2 sin(θi − ψi)(K/M − 1))/di)

−Kai
c cos(θi

c − ψi) + (zi
2 sin(θi − ψi)(Kvi

c sin(θi
c − ψi) + zi

2 sin(θi − ψi)

(K/M − 1))(K/M − 1))/di))/(K − M) − (Mpi
2 cos(ψi − θi))/(K − M)

+(Mdi pi
1 sin(ψi − θi))/(K − M)

+(Mdi sin(ψi − θi)(((Kvi
c cos(θi

c − ψi) + zi
2 cos(θi − ψi)(K/M − 1))

(Kvi
c sin(θi

c − ψi) + zi
2 sin(θi − ψi)(K/M − 1)))/d2

i − (zi
1(Kvi

c sin(θi
c − ψi)

+zi
2 sin(θi − ψi)(K/M − 1)))/d2

i + (Kai
c sin(θi

c − ψi))/di

+(Kωi
cvi

c cos(θi
c − ψi))/di))/(K − M) (6.137)

230

wi
2 = (M sin(ψi − θi)(Kvi

c sin(θi
c − ψi)(ωi

c + (Kvi
c sin(θi

c − ψi)

+zi
2 sin(θi − ψi)(K/M − 1))/di) − Kai

c cos(θi
c − ψi)

+(zi
2 sin(θi − ψi)(Kvi

c sin(θi
c − ψi)

+zi
2 sin(θi − ψi)(K/M − 1))(K/M − 1))/di))/(zi

2(K − M))

−(Mpi
2 sin(ψi − θi))/(zi

2(K − M))

−(Mdi pi
1 cos(ψi − th))/(zi

2(K − M)) − (Mdi cos(ψi − θi)(((Kvi
c cos(θi

c − ψi)

+zi
2 cos(θi − ψi)(K/M − 1))(Kvi

c sin(θi
c − ψi) + zi

2 sin(θi − ψi)(K/M − 1)))/d2
i

−(zi
1(Kvi

c sin(θi
c − ψi) + zi

2 sin(θi − ψi)(K/M − 1)))/d2
i + (Kai

c sin(θi
c − ψi))/di

+(Kωi
cvi

c cos(θi
c − ψi))/di))/(zi

2(K − M)) (6.138)

Substituting the linearizing inputs we get the normal states as ξ̇1
2

i
= p1 and ξ̇2

1
i
= pi

2. Note

that the normal states are decoupled.

ξ̇1
1

i
= ξ1

2
i

(6.139a)

ξ̇1
2

i
= pi

1 (6.139b)

ξ̇2
1

i
= pi

2 (6.140)

Similar to the previous solutions, we again shift the states as ξ1
1

i
= ψi−β and ξ2

1
i
= z1− v0(1−

K). Now, we can use any linear system controller design method to have stable systems at

ḋi = v0 and ψi = θi = β. Consider the inputs pi
1 and pi

2 are linearly dependent on the normal

states. Then the normal state space becomesξ̇1
1

i

ξ̇1
2

i

 =
 0 1

K1
1 K2

1


ξ1

1
i

ξ1
2

i

 (6.141)

and

ξ̇2
1

i
= K1

2ξ
2
1

i
(6.142)

Selecting the proper values for the controller parameters, one would obtain stable responses.

Considering the state ψ̇i = ξ
1
2

i the equilibrium is satisfied only when θi = ψi = β or θi = β+ π.

231

Note that, since the controller is using the velocity of the virtual center of flock (the slowed

down center of flock) the equilibrium does not occur for the other values of θi. Speaking

mathematically, at equilibrium the equation in (6.133) becomes

ψ̇i = ξ
1
2

i
=

1
di

[
zi

2

(
1 − K

M

)
sin(θi − β) − Kvi

c sin(θi
c − β)

]
= 0 (6.143)

Consider the agents are moving in parallel directions with a speed of zi
2 = v̄ satisfying ḋi =

v̄(1− K), as in Figure 6.25. Then mean speed of agents out of ith becomes vi
c =

M−1
M v̄ and the

orientation of this speed becomes ωi
c = θi. Substituting these into equation

0 = v̄
(
1 − K

M

)
sin(θi − β) − K

M − 1
M

v̄ sin(θi − β) (6.144)

= v̄
(
1 − K

M
− K

M − 1
M

)
sin(θi − β) (6.145)

= v̄ (1 − K) sin(θi − β) (6.146)

which is satisfied only when θi = β or θi = β + π. The first condition (θi = β) means the agent

is in the same direction of the vector from the shifted center of flock to the agent itself, and

it is getting far away (ḋ > 0) from the virtual center of flock . When θi = β + π, the agent

is getting closer to the center of flock. However the decoupled state ξ2
1 = zi

1 is controlled to

converge to a positive value v0(1− K) which means the agent is heading to get away from the

virtual center of flock. Therefore, the state θi converges to θi = ψi = β.

Utilizing the above states let us examine the motion of the shifted center of the swarm. If we

call the real distance between shifted center of swarm and each agent as d̄ we would write the

following set of equations

xi = xc + d̄i cos(ψi) (6.147)

yi = yc + d̄i sin(ψi) (6.148)

Summing positions of all agents

M∑
i=1

xi =

M∑
i=1

xc +

M∑
i=1

d̄i cos(ψi) = Mxc +

M∑
i=1

d̄i cos(ψi) (6.149)

M∑
i=1

yi =

M∑
i=1

yc +

M∑
i=1

d̄i sin(ψi) = Myc +

M∑
i=1

d̄i sin(ψi) (6.150)

232

using
M∑

i=1

xi = Mxc and
M∑

i=1

yi = Myc

M∑
i=1

d̄i cos(ψi) = 0 (6.151)

M∑
i=1

d̄i sin(ψi) = 0 (6.152)

The time derivative of these equations are

M∑
i=1

˙̄di cos(ψi) −
M∑

i=1

d̄iψ̇i sin(ψi) = 0 (6.153)

M∑
i=1

˙̄di sin(ψi) +
M∑

i=1

d̄iψ̇i cos(ψi) = 0 (6.154)

At the equilibrium of ξ states ψi = β, and ψ̇i = 0 for each agent. At the equilibrium the above

equations become

M∑
i=1

˙̄di cos(β) = 0 (6.155)

M∑
i=1

˙̄di sin(β) = 0 (6.156)

results in

M∑
i=1

˙̄di = 0 (6.157)

Recall the equilibrium of ḋi = v0(1 − K) for each agent. This is the condition when the center

of flock has a virtual speed of vcw = Kvc. If we take K = 1, in other words use the exact

speed of the center of swarm, the time derivative of real distance becomes ˙̄di = 0. This result

satisfies the above equation. Therefore, at the equilibrium the agents and the center of flock

are on the same line heading towards the same direction (θi = ψi = β).

The velocity of the center of swarm can be expressed as

ẋc =

M∑
i=1

zi
2 cos(θi) (6.158)

ẏc =

M∑
i=1

zi
2 sin(θi) (6.159)

233

at the steady state θi = ψi = β and zi
2 = v0. Then, substituting these into the equations

ẋc =

M∑
i=1

v0 cos(β) (6.160)

ẏc =

M∑
i=1

v0 sin(β) (6.161)

and rearranging

ẋc = v0

M∑
i=1

sin(β) (6.162)

ẏc = v0

M∑
i=1

cos(β) (6.163)

which means the center is moving with constant speed v0 in the direction of β. Furthermore,

the velocity and orientation components in equation (6.111) can be derived at the steady state

vi
c =

v0(M − 1)
M

(6.164)

θi
c = β (6.165)

Therefore, at steady state the mean velocity of the other agents (different from ith agent) is

equal to v0(M − 1)/M in the same direction of ith agents velocity.

The minimal dynamics should also be investigated. Since the relative degree (3) is less than

the number of states (5) we will select the new states ηi
1 and ηi

2 independent of input i.e.

orthogonal to the function gi(x).

∂ηi

∂x
gi(x) = 0⇒


∂ηi

1
∂di

∂ηi
1

∂zi
1

∂ηi
1

∂ψi

∂ηi
1

∂zi
2

∂ηi
1

∂θi

∂ηi
2

∂di

∂ηi
2

∂zi
1

∂ηi
2

∂ψi

∂ηi
2

∂zi
2

∂ηi
2

∂θi





0 0(
1 − K

M

)
cos(θi − ψi) −zi

2

(
1 − K

M

)
sin(θi − ψi)

0 0

1 0

0 1


=

00


(6.166)

∂ηi
1

∂zi
2

+
∂ηi

1

∂zi
1

(
1 − K

M

)
cos(θi − ψi) = 0 (6.167)

∂ηi
2

∂θi
+
∂ηi

2

∂zi
1

zi
2

(
1 − K

M

)
sin(θi − ψi) = 0 (6.168)

234

which means in addition to ξ1
1

i, ξ1
2

i, and ξ2
1

i, the state ηi
1 should be independent of zi

1 and zi
2.

Similarly ηi
2 should be independent of θi and zi

1. We select ηi
1 = θi − β and ηi

2 = di. Let us

examine the zero dynamics of these variables.

The time derivative of ηi
1 is

η̇i
1 = θ̇i = wi

2 (6.169)

We first substitute the equations in (6.139) and (6.141) into this equation. And then we do the

following replacement of parameters to obtain equations in reduced system domain

ψi = ξ1
1

i
+ β (6.170)

zi
1 = ξ2

1
i
+ v0(1 − K) (6.171)

θi = ηi
1 + β (6.172)

di = ηi
2 (6.173)

Now we use the zero dynamics of the system at ξ1
1

i
= ξ1

2
i
= ξ2

1
i
= 0. In addition we use the

results in (6.164). Then η̇i
1 becomes

η̇i
1 =

cos(ηi
1) sin(ηi

1)(K + M − K cos(ηi
1) + M cos(ηi

1) − 2KM) − sin(ηi
1)3(K − M)

Mηi
2

 v0

−
K1

2 sin(2ηi
1)

2
(6.174)

The stability of ηi
1 may be examined by linearization around the equilibrium ηi

1 = 0 and

ηi
2 = di = c > 0. The derivative of η̇i

1 with respect to ηi
1 at ηi

1 = 0 is

∂η̇i
1

∂ηi
1

|ηi
1=0,ηi

2=c = −K1
2 +

2v0(1 − K)
c

= 0 (6.175)

The minimal dynamics of ηi
1 is independent of ηi

2. The value in the first equation is the

eigenvalue of the minimal dynamics of ηi
1, and it is definitely negative when K1

2 > 2v0(1−K)
c .

Satisfying this condition, the state is locally asymptotically stable. Physically this means the

system is converging to θi = β that is the motion of each agent along the same line in the

direction β.

The time derivative of second selected state η2 = d becomes

η̇i
2 = zi

1

= xi21
i
+ v0(1 − K) (6.176)

235

The zero dynamics becomes

η̇i
2 = v0(1 − K) (6.177)

As in the previous controllers here note that this state is not converging to a constant, instead

it is increasing with a velocity of v0(1 − K) and diverging as t → ∞. The behavior is indeed

a tracking problem of the state. The distance variable d tracks the constant speed travel

behavior at the zero dynamics. This is completely consistent with the controlled dynamics of

the system.

The last state we should examine is the speed of the agent zi
2

zi
2 =

zi
1 + Kvi

c cos(θi
c − ψi)(

1 − K
M

)
cos(θi − ψi)

(6.178)

At the steady state (zi
1 = v0(1 − K), vi

c = v0(M − 1)/M, θi = ψi = θ
i
c = β) it becomes

zi
1 = v0 (6.179)

which is again consistent with the controlled dynamics of the system.

6.2.7.4 Multi-Agent System with MIMO - Non-Stationary Target Following Controller

- Simulations

The MIMO controller developed in the previous section for multi-agent systems is applied

to a 5 agent swarm in this section. The controller parameters are selected to be K1
1 = −10,

K2
1 = −3, and K1

2 = −3 as in the non-stationary targeting controller section. The response will

be underdamped for states ψi and zi
1. The speed ratio for the virtual center of flock is K = 0.8.

The reference inputs are β = 45o and v0 = 5 units/s. The initial conditions are same with the

non-stationary targeting controller for better comparison. In Fig. 6.26(a) the change of the

distances between agents and the line of convergence (h) for each agent are presented. As seen

from the figure all h values converge to zero with damped oscillations. In 6.26(b) the change

of eψ = β − ψ values of agents are presented. The values converges to eψ = 0 with decaying

exponential oscillations. In Fig. 6.27(a) the velocities of agents and the center of agents are

plotted. The velocities are converging to the reference input v0 = 5units/s. On the right hand

side the path of the agents are plotted. The arrow heads represents the agents and the cross

sign is the center of the swarm. The paths are the tailing dashed curves. Comparing with the

236

results, we observe that the non-stationary targeting controller has a faster convergence than

the stationary targeting controller.

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

(a) (b)

Figure 6.26: Distance h (a) and error eψ (b) of 5 agents with line following MIMO controller
for stationary target.

0 1 2 3 4 5
0

10

20

30

40

50

60

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

0 10 20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

90

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 6.27: Velocities of agents and center of swarm (a), and path of 5 agents (b) with line
following MIMO controller for non-stationary target.

6.2.8 Discussion and Future Directions

The line following and circling controllers developed in the last two chapters are working

fine in the simulations. In this section we will discuss some more simulation results of the

controllers with some modifications. Meanwhile we will direct some future studies.

The first simulation study examines the servo characteristics and targeting performance of the

line following controller. Recall that the controllers developed for multiagent systems just use

237

the center of swarm as the target. Therefore, the convergence of center of swarm is emergent

- depends on the initial conditions. However, if we modify the controllers to utilize a fixed

target in addition to the center of swarm, we observe that the center of swarm converges to the

line passing through that target. We simulated this modified controller for swarm to follow

a hexagonal path. In figures 6.28 and 6.29 the simulation results of 5 agents traveling on a

hexagon are presented. The corners and the slope of the sides of the hexagon are given as fixed

targets. The controller switches to the new target position and orientation when the center of

swarm approaches that target up to a prespecified distance (taken as 30 in these simulations).

0 50 100 150 200 250
−30

−20

−10

0

10

20

30

40

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

4

5

6

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

(a) (b)

Figure 6.28: Distance h (a) and error eψ (b) of 5 agents traveling on a hexagon with line
following controller.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

0 50 100 150 200 250 300 350

−300

−250

−200

−150

−100

−50

0

50

100

x [units]

y
[u

ni
ts

]

(a) (b)

Figure 6.29: Velocities of agents and center of swarm (a), and path of 5 agents (b) 5 agents
traveling on a hexagon with line following controller.

In Figure 6.28(a) the distances between agents and the line to be followed are given. The

distances deviate from zero when the target points and orientations change at the corners. The

238

controllers always push the state to zero with underdamped responses. And note that as the

swarm passes a corner the deviations are getting lower since the agents are getting closer. The

controllers are not designed or modified for controlling the inter agent distances. This one of

the future directions of this thesis study. In Figure 6.29(b) the error eψ = β − ψ is presented.

The responses are again underdamped due to the controller parameters. The deviations at

corners are getting lower since the agents are getting closer. The figures 6.29(a) and (b) are

the plots of velocity and the path of agents. One may observe the deviations from the hexagon

and their shrink at the corners.

0 5 10 15
0

5

10

15

20

25

30

35

40

45

Time [s]

d
[u

ni
ts

]

Distance Between Agents and Center of Agents

0 5 10 15
−40

−30

−20

−10

0

10

20

30

40

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

(a) (b)

Figure 6.30: Distance d (a) and distance h (b) of 5 agents switching between line following
and circling behaviors.

The next simulation is performed for examining the switching performance between the line

following and circling behaviors. In addition controllers for the circling behavior are modified

for targeting around a given point. As in the line following controllers in the above simula-

tions, the circling controllers are utilizing fixed points in addition to the center of swarm. The

figures 6.30, and 6.31, and 6.32 present the results of simulations for 5 agents, first follow-

ing a line and then switching to circling around a fixed point behavior. In Figure 6.30(a) the

distance between agents and the center of swarm is presented. During the line following be-

havior the distances are not converging to a common reference value but when the controller

switches to the circling behavior they do converge to the reference value d0 = 30. On the

contrary the distance h represented in Figure 6.30(b) is convergent during the line following

behavior and oscillating during the circling behavior. The error eψ = β − ψ in Figure 6.31(a)

also show a similar characteristic as h. The velocities of agents are consistent with the refer-

ence inputs (v0 = 50 for line following, and v = αd0 = 4 x 20 = 80 for circling behavior).

239

The paths of the agents are presented in Figure 6.32.

0 5 10 15
−50

0

50

100

150

200

250

300

350

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

0 5 10 15
0

20

40

60

80

100

120

140

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

(a) (b)

Figure 6.31: Error eψ (a) and velocities of agents and center of swarm (b), of 5 agents switch-
ing between line following and circling behaviors.

0 50 100 150 200 250 300
x [units]

Figure 6.32: Path of 5 agents switching between line following and circling behaviors.

The line following controllers of multi agent systems are designed for agents to follow a

prespecifed path without utilizing tracking points on the path. The controllers are fine in

achieving this. However, in many swarm applications (UGV, UAV etc.) the surveillance

missions require agents to rank side by side and move on parallel paths while each agent is

gathering information in its neighborhood. The line following controllers are modified for

240

this purpose. The equilibriums of ξ states in equation (6.132) are changed as

ξ1
1 = ψi − β (6.180a)

ξ1
2 =

1
d

[
zi

2

(
1 − K

M

)
sin(θi − ψi)

−Kvi
csin(θi

c − ψi) − v0

(
1 − K

M

)
(sin(θ0 − β) − K sin(θ0 − π/2 − β))

]
(6.180b)

ξ2
1 = zi

1 − v0

(
1 − K

M

)
(cos(θ0 − β) − K cos(θ0 − π/2 − β)); (6.180c)

where θ0 is the reference input for the orientations of agents. Using the above reference inputs,

the original states are converging to ψi = β, θi = θ0, and zi
2 = v0. The simulation results of this

new controller are presented in Figures 6.33, 6.34, and 6.35. The controller reference inputs

are switching at certain time instances. The speed reference is taken contant at v0 = 3 units/s

and the other inputs are set as

β = 45o θ0 = 90 + β f or 0 ≤ t < 10

β = 45o θ0 = 60 + β f or 10 ≤ t < 20

β = 45o θ0 = 120 + β f or 20 ≤ t < 30

β = 70o θ0 = 0 + β f or 30 ≤ t < 40

β = 70o θ0 = 90 + β f or 40 ≤ t < 50

In Figure 6.33(a) the distance variable h is plotted. The values converge to zero at the be-

ginning of the simulation. They do not change when θ0 reference input switches to a new

value, but they deviate from zero as the reference β changes. The controller is successful

in achieving the convergence of h during the simulation. The next Figure 6.33(b) shows the

velocities of the agents. The values deviate from the reference input v0 = 3 at each switch.

The daviations are more significant when β input changes. Figure 6.34(a) presents the error

eψ = β − ψ. The change in the values are similar with the ones in h. In the Figure 6.34(b) the

difference θ − ψ is plotted. This is the deviation of agent orientation from the orientation of

line of ranking. The values are deviating at each switch of reference θ0 and β. The last Figure

6.35 includes the path of the agents and the center of swarm.

The above simulation examples are given to show some future directions of this thesis study.

In addition to the above results the future studies may include improving the existent con-

trollers by considering (i) preserving inter-agent distances, (ii) neighborhood size effect and

obstacle avoidance, (iii) loss of agents in the swarm, (iv) asynchronism of the agents, (v)

241

0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

Time [s]

h
[u

ni
ts

]

Distance from agents to desired line of convergence, h

0 10 20 30 40 50
0

5

10

15

20

25

30

Time [s]

V
el

oc
ity

 [u
ni

ts
/s

]

Velocities of Agents and Center of Agents

(a) (b)

Figure 6.33: Distance h (a) and velocities (b) of 5 agents traveling on parallel paths.

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

e ψ
 [D

eg
]

Error of ψ (eψ = β − ψ)

0 10 20 30 40 50
−150

−100

−50

0

50

100

150

200

250

Time [s]

θ
−

 ψ
 [d

eg
]

Orientations of Agents WRT Line, (θ − ψ)

(a) (b)

Figure 6.34: Error eψ (a) and orientation θ (b), of 5 agents traveling on parallel paths..

discrete time models (vi) robustness to parameter uncertainties and disturbances, (vii) analyt-

ical examinations of fixed targeting modifications in controllers, (viii) application to practical

multi-agent systems i.e UAV, UGV swarms, (ix) kinetics of vehicle dynamics, (x) extension

to 3-D Space .

6.2.9 Concluding Remarks

In the literature most of the studies utilize a pre-generated path for tracking points, straight

lines, circular or randomly generated paths by mobile robots. In this Section the problem

solved is the behavior of the robot that converges to a line passing through a target. The slope

242

−40 −20 0 20 40 60

0

50

100

150

x [units]

y
[u

ni
ts

]

Figure 6.35: Path of 5 agents traveling on parallel paths..

of the line is specified as a parameter in the controller. The agent approaches the line and

travels on it with the given constant linear speed. We propose different controllers for two

different cases. In the first one, the only controllable input is the angular velocity of the robot.

The translational speed of the robot is taken as constant. In the second case in addition to

the angular velocity input the translational speed is taken as an input. We use static feedback

linearization methods in the first case and dynamics feedback linearization in the second one.

The controllers developed in this study may be utilized in UGV, UAV, and UWV applications

dedicated to tracking of targets. Furthermore, the controllers are adapted for the swarm of

these vehicles traveling in parallel formation.

243

CHAPTER 7

Conclusion

In this thesis it is aimed to develop decentralized coordination and control strategies for

robotic swarms especially consisting of unmanned air, space, land and underwater vehicles.

One main problem in robotic swarms is generating geometric formations for specific pur-

poses. The very demanding purposes are the area exploration and surveillance of the swarm

members, agents. The controllers developed to achieve these missions would better bring up

the most powerful properties of multi-agent systems which are robustness, scalability and flex-

ibility. Therefore, the controllers should be decentralized and independent of agent identity

(common for each agent). In this way, the swarm becomes robust, i.e. they may re-organize

the individuals to negate the absence of lost individual and complete the mission. Addition-

ally, the number of the agents in the swarm may change in the run time from two to hundreds

of agents (scalability property). Furthermore, the swarm becomes flexible bringing the pos-

sibility of re-distributing the tasks among them in order to adapt different situations and/or

missions or negate the absence of some individuals. Another property of the swarms is the

emergence. The initial conditions, number of agents in the swarm, uncertainties, under mod-

eled dynamics, interactions between agents etc. may be unpredictable, so that especially the

transient and steady state responses may be unpredictable or simply called as emergent. The

controllers developed for multi-agent systems should be appropriate with the emergence prop-

erty. More specifically the controllers running individually on each agent should be robust to

emergent results of the behaviors. One of the best ways of achieving this is not utilizing pre-

specified or re-specified parameters during the run time of the multi-agent systems. However,

considering the geometric formation of agents, in most of the swarm applications the agents

utilize a trajectory generation scheme updating continuously. The continuous replanning of

the trajectories requires absolute positions of agents, methods for trajectory and next set-point

244

calculation of each agent, and one of the various trajectory tracking techniques.

The main difference of the controllers developed in this thesis study is their path/trajectory

free motion control methods. All of the paths of each agent are emergent. In most of the

controllers we developed the relative position and orientation variables are utilized instead of

the absolute position, and orientation variables and their derivatives. So that there is no need

for a global or common coordinate frame. This is a better way of controller design due to

hardware limitations. In robotic applications the global position and orientation of agents are

hard to obtain variables. Because the technologies like odomery, IMU, GPS are still not much

capable in obtaining accurate, precise, and repeatable global position info due to integrating

errors and less resolution. Instead the relative position and orientation info are more available

considering the proximity sensors. On the other hand the relative parameter info would also

be gathered by each individual agent without the need to broadcast this info to other agents.

Furthermore, for each agent the reference inputs of states are the same; where in most of

other controllers developed in the literature using regeneration of paths, they differ in between

agents. Another resulting powerful property of the controllers developed here, is their success

in following dynamic targets. There is no need of the replanning of paths of each agent due

to the target motion; instead only the relative position of the agents or at most the absolute

position of the target are the required info. The mathematical models are derived for relative

polar coordinates in 2-D space and only the kinematics of the agents are considered for the

proof of concept of the controllers. The developed controllers have the capability of achieving

• Orientation agreement behavior (Chapter 3),

• Circling around static and dynamic target behaviors (Chapters 4, 5),

• Following line passing through specified point and with a specified orientation behavior

(Chapters 4, 6),

• Area surveillance with parallel motion behavior, (Chapter 6)

• Switching between the above controller strategies (Chapter 6),

The development of the controllers are performed by using both linear and nonlinear con-

trol theories. Especially, we examined the stability of the controlled systems by linearization

245

around the equilibrium points and using Lyapunov stability criteria in Chapters 4, 5, and 6.

The circling and line following behavior strategies are developed by state feedback lineariza-

tion techniques in Chapters 5, and 6. The aim of the studies in these chapters were to develop

controllers for multi-agent systems. However, since there is no study in the literature for even

single agents to circle or follow a line without path planning, we first developed the path

free controllers for single agents and then adapted them for the multi-agent systems. The

literature surveys showed that there are no similar studies and alternative controllers to be

compared with the ones we developed here.

Another focus of the study is on the asynchronism property of the multi-agent systems. The

agents in the swarms run asynchronously since they do not use a common clock. Further-

more, they face with delays in the sensing, communication, computation and manipulation

states. These delays would most probably differ in between agents. Therefore, all controllers

should be validated under these time delayed asynchronous working conditions. In this the-

sis study, we validated the cyclic pursuit controller under these conditions (Chapter 2). We

examined the stability of synchronous system by analytical methods and extended the results

for asynchronous model. We also validated the results by simulations and experiments. The

experiments are performed on a set-up designed and manufactured for mobile robotic swarm

applications. The detailed architecture (E-puck robots, camera, software etc.) of the set-up

is given in the Appendix A. The set-up arena is observed by a high quality USB camera

connected to a computer. The image processing works are done in Matlab and the results

(positions and orientations) are fed back to the behavior algorithms governing the swarm dy-

namics. The time delays due to image processing would be decreased by improvement in the

algorithms running on Matlab or a different compilation environment (i.e. OpenCV, AForge)

may be utilized to run those image processing algorithms faster.

In Chapter 3, we examined the orientation agreement problem of swarms. We analyzed the

following properties: (i) the multi-agent systems are synchronous or asynchronous, (ii) they

travel in bounded or unbounded regions and (iii) the mobile agents have various amount of

turning speed restrictions. For orientation agreement problem, we developed three different

control strategies and compared the performance of the strategies via some metrics we pro-

posed and discussed the results both numerically and analytically. The results showed that

agents exhibit best performance for orientation agreement in the case in which they are syn-

chronous, holonomic, and using Strategy 1, and in bounded region. Strategy 1 requires the

246

absolute orientation values while Strategy 2 and 3 require just the relative orientations of

agents. Therefore, in practical applications we suggest the second and third strategies to be

utilized.

We considered the unicycle mobile robot kinematics and developed simple proportional con-

trollers for the speed and angular velocity of the robot for achieving approaching and cir-

cling behavior around a static target, and settling on the line passing through a target with a

pre-specified orientation in Chapter 4. The controllers are designed for pre-specified or re-

specified path/trajectory free control of agents. One of the controllers developed for single-

agent systems achieved the behavior which first approaches a target and then start to circle

around that target without any external switching input or external decision mechanism. This

work is going to be extended for multi-agent systems as a future work. The future direc-

tions also include the redesign of the controllers for dynamic targets and utilization of PID

strategies in addition to just proportional controllers.

Similarly, in Chapters 5 and 6, we considered the unicycle mobile robot kinematics in rel-

ative polar coordinates. We derived SISO (only angular speed manipulation) and MIMO

(both angular speed and translational speed are manipulated) feedback linearization inputs

for the controllers and achieved circling around target and line following behaviors without

pre-specified or run time specified paths. For the circling behavior, the controllers are devel-

oped to force the states to converge to periodical trajectories. The resulting controllers are

validated by simulations. These controllers may be utilized in exploration and surveillance

operations of UGV, UAV, and UWV by circling around static or dynamic targets.

The line following controllers developed in Chapter 6 takes the target position and the slope

of the line as reference inputs. The static and dynamic linearization techniques resulted in

controller parameters requiring either relative or absolute position and orientation parameters

of agents. The MIMO controllers utilizing target position and its time derivatives showed best

performance in the simulations. However, it requires the global parameter values. Therefore,

we propose the MIMO controllers with static target controllers in practical application where

only the relative position and orientation variables are available. Furthermore, in this Chapter

we extended the controller strategies for multi-agent systems to circle around the center of

swarm which is forced to converge to a pre-specified point by simply adding fixed virtual

targets at those pre-specified points. Similarly, we utilized the addition of virtual fixed target

247

method in line following behavior and presented the simulation results. Also, we investigated

the servo characteristic of the controllers by changing the reference target position inputs in

the run time and obtained successful results. The swarm tracked a hexagonal path as a proof

of concept for multi-agent applications that is supposed to follow some pre-specified paths.

Note here that the controllers does not need to calculate any next set-point in following the

given paths. They just need to regulate motion states like distance between agent and center

of swarm etc. Furthermore, we investigated the switching between circling and line following

behaviors and obtained successful results. Lastly we extended the line following controller by

changing the equilibrium points and obtained a very demanding formation of agents which

is parallel motion of the agents. The controller is successful in achieving the formation of

agents on a line with a prespecified orientation and travel through any given orientation. This

behavior is very beneficial in surveillance and exploration missions of multi-agent systems.

The future directions of this thesis study includes the application of these new methods to real

robotic swarms. In addition, we plan to study on the following topics to extend the results of

this thesis in the very near future:

• Preserving inter-agent distances - avoiding collisions among themselves

• Neighborhood size effect and obstacle avoidance

• Agent loss in the run time

• Effect of asynchronism on controller performance

• Examining the discrete time models

• Robustness to parameter uncertainties and disturbances

• Analytical examinations of fixed virtual targeting modifications in controllers

• Application to practical multi-agent systems i.e UAV, UGV swarms,

• Kinetics of vehicle dynamics

• Extension to 3-D Space

248

APPENDIX A

Experimental Set-up For Multi-Robot Applications

A.1 Introduction

In this part of the thesis study we are motivated by the needs on realistic applications of

designed and simulated swarm behaviors. There are many studies on swarm robotics that are

simulation based and/or performed analytically. However, additional realistic experiments

would contribute new insights to these works. Therefore, we designed an experimental set-

up to observe the realistic behaviors of robot swarms. This set-up would also be useful for

undergraduate and postgraduate educational studies on control systems and robotics.

Many robotic swarm applications typically reject any dependency on a global system such as

global positioning. However, if available the global positions and orientations of the robots

can be used for development, debugging, and monitoring of swarm robot applications. On

the other hand, the local information that a robot may get by its own sensors can be simulated

in this set-up, i.e. the relative positions and orientations of robots in a neighborhood of a

robot can be derived from the global information and sent to the robots. Therefore, the swarm

applications utilizing only local information of robots can also be studied experimentally by

just deriving the local information from the global information. Furthermore, the collective

robotic studies which may require global information can utilize this set-up for experimental

validations. Even further, the information of the positions and orientations of robots can

be recorded for later analysis of the swarm/collective behaviors. One common method of

gathering this information is using the odometer of the robots if it is present (in most of

the relatively simple mobile robots there is no odometer). However, odometry itself is not a

reliable method and odometry errors tend to accumulate over time. Our system which utilizes

an overhead camera to determine the positions and orientations of the robots, provides a fast

249

development environment of swarm coordination and control algorithms since it relieves the

designer from dealing with low-level odometric estimation and correction. Since we should

deal with more than one robot, we also had to develop identification methods to find out which

position and orientation belongs to which robot.

There are some studies on the observation of the arena of the swarm by an overhead camera

for behavior analysis [163, 164, 165, 166]. However, these studies use overhead cameras

or marker technology for only observing, visualizing, identification, and/or recording of the

behavior/activity of the system. They do not feedback information to the robots.

On the other hand, there are some studies that utilize the overhead camera for position feed-

back to the members of swarm. Hayes and Dormiani-Tabatabaei used an overhead camera

tracking system, combined with a radio LAN among the robots and an external workstation

in [167]. They logged position data during the trials, reposition the robots between trials, and

emulated the range and bearing sensor signals. Another experimental set-up for robot swarm

applications is described in [168]. The authors develop a middleware solution called DISC-

World and describe a prototype system where the precise location information of the robots

are extracted by using an overhead camera.

The objective of this study is to build a low cost set-up that can track multiple robots at

the same time. In order to allow near-real-time operation, we setup the system such that

position and orientation estimation process time is kept as short as possible. The built setup is

independent of robots used; hence, enabling researchers using different robots may adopt this

framework. We also employed an easy to use software environment (Matlab) to facilitate the

use of the proposed setup by various researchers with a rapid learning curve. Matlab is a tool

that engineering students already learn in other courses and it has specialized functions for

image processing and controller development. Therefore, the set-up is easy to use in senior

undergraduate and graduate courses as well.

SwarmCam is a single system consisting of 120x180 cm experimental area, 6 E-puck robots

with bluetooth interface, logitech USB camera and Matlab as the main image processing

(and possibly control) development platform. The positions and orientations of the robots

are determined by a labelling system consisting of three small colored dots on the robots.

In addition their ID’s are determined by a binary coding system consisting of black colored

small dots placed on the top of the robots. The system constitutes a very useful platform for

250

hardware in the loop simulations.

A.2 The Set-Up Structure

The multi-robot experimental set-up is composed of 6 mobile robots (although higher number

is also possible), a high quality USB webcam, a high speed computer and an arena (see Figure

A.1).

Figure A.1: Experimental setup consisting of an arena, robots, PC and overhead camera.

The mobile robots in this set-up should be small enough such that high number of robots

may be utilized simultaneously in the experiments. They must have wireless communica-

tion modules like bluetooth, wifi, or zigbee for information exchange with the computer and

each other. The existence of proximity sensors (IR, US etc.) is preferred for more realistic

experiments. In some of our experiments we utilized the E-puck Robot [169]. The E-puck

robot is a small (7.0 cm diameter) mobile robot that has powerful microcontroller dsPIC30

(Microchip, PIC microcontroller), 2 stepper motors for differential drive, 8 infrared proxim-

ity sensors, bluetooth communication module, and some other sensory units. The robots are

programmed such that they set their motor speeds according to the commands supplied by

the computer via the bluetooth interface. Another option is to program the robots so that they

receive their global position (and/or possibly the relative positions of the neighboring or all

the other robots) and have their own internal decision making and control. In addition the

251

abject avoidance logic may be integrated on the robots. If the robots have enough proximity

sensors (like ultrasonic, infrared sensors) around their body they may utilize the proximity

information of objects (other robots or walls etc.) to avoid collisions.

The overhead camera placed 156 cm above the arena is directly connected to the computer via

USB. An image resolution of 640 × 480 is sufficient for this set-up considering the arena and

the robot sizes. The frames grabbed per second (fps) is not a main criteria in the selection of

the camera since the image processing unit cannot process more than 3-4 frames per second

(the actual robot detection time is 340 ms for the time being). Therefore, 15 or 30 fps of

a camera is suitable for this set-up. The optical distortions on the vertices effect the system

considerably. Therefore, a camera with high quality lens is essential. We used the webcam

QuickCam Pro9000 (Logitech Europe S.A., European Headquarters Moulin du Choc CH -

1122 Romanel-sur-Morges) for grabbing the images of the arena.

The mobile robots move in a bounded arena of size 120 × 180 cm. The aspect ratio of the

arena is designed to be appropriate with the aspect ratio of the camera images which is 4:3.

The color of the arena is selected as light gray to be able to distinguish the robot hats from the

arena easily. The arena size should be increased with the same aspect ratio for bigger robots

or larger area applications.

The image processing, agent behavior algorithms and communication are all performed by

Matlab (Mathworks Inc., Natick, MA, USA). Matlab is preferred due to its build in image

acquisition and processing toolboxes. Moreover, Matlab is a very common, easy to use, rapid

prototyping environment for engineering applications and many scientists and students are

familiar with Matlab. However, it is computationally inefficient and might be inappropriate

for applications requiring higher fps rates. Therefore, we are also considering developing a

software interface with other tools like C#, C++ to have a faster version of the set-up.

The software of the set-up consists of two main parts, robot tracker and robot controller. In

the robot tracker part the frames of the arena are grabbed and processed to determine the posi-

tion, orientation, and identification of the robots. This information set is supplied to the robot

controller part that runs functions of behavior of robots. The robot controller part transmits

the control signals of the angular and translational speeds to the robots. The resulting angular

and translational speeds of the agents are transferred to the agents via wireless communica-

tion modules (bluetooth for E-puck robots, around 10ms is consumed per robot to pass the

252

information). The set-up is designed such that one may utilize only the robot tracker part to

obtain and analyze the robot behaviors in the case of the robot controllers are embedded on

the robots.

The main delay in the system occurs due to image processing (around 340ms per detection

of robot pose, orientation, and identification). Therefore, a computer with enough memory

to store the images of the arena and high speed central processing unit would result in better

system performances (A double core 64bit CPU at 2.4 GHz with 2GB RAM is utilized in our

experiments). As mentioned above another option could be to pass the position and orien-

tation information to the robots and let their internal algorithm to calculate the values of the

control inputs. That would better model more decentralized and realistic applications.

A.3 Image Processing Setup/Methods

Depending on the application the image processing system can be used to determine the robot

ID’s, the global or relative positions, and/or absolute or relative orientations of the robots.

Determining the positions of the robots from the overhead images is very simple. However,

the problem is to determine which location belongs to which robot. Therefore, additional

methods need to be applied to distinguish the robots. In our setup robot hats are designed

to find the location, orientations and identification of robots simultaneously. A sample hat is

shown in Figure A.2(a). The hat has a diameter of 75mm which is slightly larger than the

diameter of the E-puck robots. Three circles all having the same color (bright orange) (one

placed at the front and the other two placed symmetrically at the rear) are used to find the

locations and orientations of robots and the black circles are utilized for the identification of

robots.

A.3.1 Determining Robot Locations

First the colored circles are detected in the bitmap images gathered from the camera. Note

that most of the cameras supply compressed form of the images (i.e. jpg). However, Matlab

reads/converts the images in bitmap format which includes all three color information (8 bits)

of the images in three dimensional matrices. A sample configuration of three robots are shown

in Figure A.2(b).

253

(a) (b)

Figure A.2: (a)A sample robot hat used to find the position, orientation and identity of robot.
(Dimensions are in mm). (b) Three robots in the arena. The colored dots and the boundaries
that other robots should stay out of are shown.

For distinguishing the colored circles from the rest of the objects in the image we simply use

intervals of the color values. In some applications, we also utilize the corresponding HSV

(Hue-Saturation-Value) images to find the colored circles. For example, bright purple, bright

yellow, and bright green are easy to distinguish colors in HSV format. We get a bitwise matrix

(image) by logical operations which outputs 1 for the pixel values in the intervals we set for

the Hue, Saturation, and Value (or RGB) of the colors we utilized on the hats and 0 for the

other color specifications. In equation (A.1) the logical operation is shown

A = (H < Im(:, :, 1) < H)&(S < Im(:, :, 2) < S)&(V < Im(:, :, 3) < V) (A.1)

where Im is the HSV image of the arena, Im(:,:,i) corresponds to the ith index of the HSV

image matrix (i = 1 is for Hue, i = 2 is for Saturation, and i = 3 is for Value) for all columns

and rows (”:” stands for all of pixel indexes). H and H, S and S , V and V , are the minimum

and maximum values of the HSV values of colored circles, respectively. A is the output

bitwise matrix that has several objects (let us call the clusters of true valued pixels as objects)

on it. Note that there are 8 different logical operations (6 comparison, 2 AND operations)

performed on the matrix Im, however in most of the cases we just need three or even two of

these operations which needs lower computational efforts that are usually very important in

image processing applications. The objects are labelled according to the 8th neighborhood

254

rule with the build in function of Matlab. To eliminate the noise in the binary images some

post-processing methods like erosion and dilation may be utilized on the images. The next

step is to find the centers of these objects. A simple center of geometry algorithm is run

and the positions of these center of geometries is kept in memory. Now, the problem is to

find which three points belong to the same robot. For this purpose the distances between the

points are utilized. Simply the closest three ones are said to belong to the same robot. This

approach is simple and fast but, has one drawback which is when there are robots too close to

each other some of the points on these robots may get mixed up and show nonexisting robots.

In Figure A.2b, some of the bounding circles of robots in which other robots should not travel

are shown. It might be also possible to develop a robot identification method which utilizes

the previous positions of the robots to overcome this problem; however, so far we have not

considered such an approach. Moreover, not allowing the robots to get too close to each other

is also good for collision avoidance. This should be guaranteed by the control algorithm.

Following the identification process, the positions of the three colored circles of each robot

are determined. After that, the positions of the robots are found simply by averaging these

three points of each robot.

A.3.2 Determining the Robot Orientations

Note that the colored circles are placed such that they form an isosceles triangle. The vertex

on the intersection of the equal edges is called P3 and the remaining two points on the other

ends of the equal edges are called P1 and P2 (see Figure A.3(a)). The hat is placed such

that the vector from the midpoint of the line connecting the points P1 and P2 to the point

P3 is the heading of the robot. The problem here is to determine which point is P3 (which

is also called the heading point). To determine the identification of points we again utilize

the distances between the points. The geometry (isosceles triangle) allows us to state that

the farthermost point of these three points is the heading point. The remaining two points P1

and P2 are identified depending on whether they are on the left or right of the robot. Finding

the heading point is sufficient to compute the orientation of the robot. There is no need to

determine whether remaining two points are on the left or right hand side of the robot. The

average of the points P1 and P2 gives the starting point of the orientation vector and P3 is the

end point of this vector. Lastly we compute the unit orientation vector of each robot and store

in the memory.

255

(a) (b)

Figure A.3: (a) The colored dots that are used to find the position and orientation of a robot.
(b)Speeds of a differential drive robot.

A.3.3 Determining Robot ID’s

As mentioned above for the position and orientation calculations there is no need to find

whether P1 (or P2) is on the left or right of the robot. However, it is required for the identi-

fication of the robots. The regions on the left and right of the robots are utilized to place the

black dots in the regions and use an algorithm that checks the number of black dots present

in these regions in order to identify the robots. In Figure A.4a the black dot placements are

shown for 6 different robot hats.

At most two black dots are used on the left and right sides of the robots. Here note that we

used two methods simultaneously for the identification: (i) the location of the black dots (ii)

and the number of black dots on these two regions. It would be easier to identify the robots

based only on the number of black dots without dividing the area into regions (such as one

dot = robot 1, six dots = robot 6 etc). However, in that case one needs to use as many black

dots as the number of robots (i.e., 6 dots for 6 robots). This would result in some problem due

to the size of the robots and resolution of the camera when the number of robots increases.

By adding the method of dividing regions (left and right in our case) allows us to use less

number of black dots (at most 3 for 6 robots) and larger black dots which will be represented

with more/enough number of pixels in the image. This approach is better when the number

of robots is higher. For example by using 3 dots on each left and right of the regions we

256

(a) (b)

Figure A.4: (a) Robot Identities. (b) Vectors from P1 to P2 and P1 to P3 for two different
cases: P1 is on the left for the left figure and P1 is on the right for the right figure.

can identify 16 (42 = 16) different robots or with 4 dots, 25 (52 = 25) different robots. On

the other hand, increasing the regions of interest (say top and bottom in addition to left and

right-in total 4 regions) will allow one to use less number of larger black dots with enough

spacing. Note that the larger the black dots and the larger the spacing between them would

give better images that one can process. The black dots are determined in the image matrix

similar to the colored ones mentioned in Section A.3.1. This time HSV value intervals are set

for black. The only problem left is to find the left and right regions of the robots.

For determining the regions on the left and right hand side of robots we need to first find which

of the points P1 and P2 are on the left (or right). For this purpose we will simply utilize the

cross products of the vectors from the point P1 to P2 and P3. If this cross product is negative

then P1 is on the right hand side of the robot (so P2 is on the left) and if it is positive then P1

is on the left hand side while P2 is on the right. The vectors and the global coordinate axes

are shown in Figure A.4b. Mathematically speaking

P1 is on the le f t i f sign(
−−−−→
P1P2 ×

−−−−→
P1P3) > 0 (A.2a)

P1 is on the right i f sign(
−−−−→
P1P2 ×

−−−−→
P1P3) < 0 (A.2b)

In image processing applications similar to the one discussed here, there are many factors

257

effecting the performance of the system in achieving the goals. One of the main disturbances

is the non-unique light source. Some low quality cameras may become very volatile in getting

the colored images of the objects. The color values of the objects may change tremendously

such that the values may not become stable between the pre-specified threshold values in

getting the binary matrices of objects. Therefore, we recommend cameras with auto focus,

adjusting luminance of images, and a qualified lens. Otherwise, one may have to calibrate the

system (the software) before each experiment. The resolution of the images that we grab from

the camera in our setup is 640×480. One would prefer to use higher resolutions which would

result in better object detections but with a longer processing time. Image processing time

is an important criteria affecting the response time of the system. In fact, the main cause of

delays is slow image processing in most of our applications. Therefore, a high capacity/speed

memory and processing units of computers and efficient coding (with less memory usage,

optimized image processing and appropriate variable types) would result in higher speed.

A.4 Transmitting Position and Orientation Information

The position and orientation information gathered from the overhead images of the arena can

be used for determining the new translational and angular speeds of the robots according to the

behavioral algorithms/models investigated in the particular application under consideration.

The computing unit (i.e., PC, Laptop) should pass these new speed setting information to each

robot. The bluetooth interface is utilized in this setup. Each robot is connected to the master

processing unit via bluetooth. However, the bluetooth interface can support at most 7 slaves

at the same time. Therefore, the set-up may work for at most 7 robots. For higher number of

robots alternative communication units can be: Zigbee and wifi.

The robots we utilized are differential drive robots. They have two stepper motors which can

be driven at different speeds. Therefore, speed information of each motor are transmitted via

bluetooth. The mathematical relationship between the left and right motor speeds and the

translational and angular speeds of the robots can be obtained as

V =
Vright + Vle f t

2
=

r
2

(ωR + ωL) ; ω =
Vright − Vle f t

L
=

r
L

(ωR − ωL) (A.3)

where V and ω are the translational and rotational speeds of the robot, respectively. Vle f t and

258

Vright are the left and right wheel speeds, respectively. L is the distance between the left and

right wheels. The speeds are shown in Figure A.3(b).

A.5 Concluding Remarks

The objective of this study is to develop an experimental set-up for swarm robot applications.

The small sized relatively simple mobile robots called E-puck are utilized in the set-up for

the time being. However, it can be easily used with other robot platforms as well. The arena

is observed by a high quality USB camera connected to a high speed PC. We perform the

image processing works in Matlab and feedback the positions and orientations of robots to

the behavior algorithms governing the swarm dynamics. The main delays are resulted from

the image processing computations. Further optimization of the algorithms for faster response

of the system is still possible.

We believe that this test bed is a very useful experimental facility which can be used for testing

swarm coordination and control algorithms.

259

REFERENCES

[1] Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents
and directions. Autonomous Robots 4(1) (1997) 7–23

[2] Mataric, M.J.: Issues and approaches in the design of collective autonomous agents.
Robotics and Autonomous Systems 16(2/4) (1995) 321–332

[3] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artifi-
cial Systems. Oxford Univ. Press, NY (1999)

[4] Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publisher (2001)

[5] Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. on Evolutionary Computation6(1)
(2002) 58–73

[6] Passino, K.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Systems Magazine 22(3) (2002) 52–67

[7] Liu, Y., Passino, K.M.: Biomimicry of social foraging behavior for distributed opti-
mization: Models, principles, and emergent behaviors. Journal of Optimization Theory
and Applications 115(3) (2002) 603–628

[8] Akyildiz, I.F., Su, W., Sankarasubramniam, Y., Cayirci, E.: A survey on sensor net-
works. IEEE Commununications Magazine 40(8) (2002) 102–114

[9] Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Comp.
Graph. 21(4) (1987) 25–34

[10] Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE
Trans. on Robotics and Automation14(6) (1998) 926–939

[11] Breder, C.M.: Equations descriptive of fish schools and other animal aggregations.
Ecology 35(3) (1954) 361–370

[12] Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal
groups. Journal of Theoretical Biology150 (1991) 473–488

[13] Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Advances in Biophysics 22 (1986) 1–94

[14] Grünbaum, D., Okubo, A.: Modeling social animal aggregations. In: Frontiers in The-
oretical Biology. Volume 100 of Lecture Notes in Biomathematics. Springer-Verlag,
New York (1994) 296–325

[15] Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. Evolutionary
Ecology 12 (1998) 503–522

260

[16] Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish school: An examina-
tion of emergent properties. Biol. Bull. 202 (2002) 296–305

[17] Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic
Control48(4) (2003) 692–697

[18] Gazi, V., Passino, K.M.: A class of attraction/repulsion functions for stable swarm
aggregations. Int. J. Control77(18) (2004) 1567–1579

[19] Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. on
Systems, Man, and Cybernetics: Part B 34(1) (2004) 539–557

[20] Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE
Transactions on Automatic Control 49(1) (2004) 30–44

[21] Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asyn-
chronous swarms. IEEE Trans. on Automatic Control48(10) (2003) 1848–1854

[22] Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of m-dimensional asyn-
chronous swarms with a fixed communication topology. IEEE Trans. on Automatic
Control48(1) (2003) 76–95

[23] Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous
swarm. IEEE Trans. on Systems, Man, and Cybernetics: Part B 35(4) (2005) 834–841

[24] Gazi, V.: Swarm aggregations using artificial potentials and sliding mode control.
IEEE Trans. on Robotics21(6) (2005) 1208–1214

[25] Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press, New Jersey
(2001)

[26] Dorigo, M., Sahin, E., eds.: Special Issue on Swarm Robotics. Volume 17. Au-
tonomous Robots (2004)

[27] Kumar, V.J., Leonard, N.E., Morse, A.S., eds.: Cooperative Control: 2003 Block
Island Workshop on Cooperative Control. Volume 309 of Lecture Notes in Control and
Information Sciences. Springer-Verlag (2005)

[28] Sahin, E., Spears, W.M., eds.: Swarm Robotics, A State of the Art Survey. Lecture
Notes in Computer Science 3342. Springer-Verlag, Berlin Heidelberg (2005)

[29] Sahin, E., Spears, W.M., Winfield, A.F.T., eds.: Proceedings of the SAB06 Workshop
on Swarm Robotics Swarm Robotics. Lecture Notes in Computer Science (LNCS)
4433. Springer-Verlag, Berlin Heidelberg (2007)

[30] Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In
Sahin, E., Spears, W., eds.: Swarm Robotics: State-of-the-art Survey. Lecture Notes in
Computer Science (LNCS 3342). Springer-Verlag, Berlin Heidelberg (2005) 10–20

[31] Gazi, V., Fidan, B.: Coordination and control of multi-agent dynamic systems: Models
and approaches. In Sahin, E., Spears, W.M., Winfield, A.F.T., eds.: Proceedings of the
SAB06 Workshop on Swarm Robotics Swarm Robotics. Lecture Notes in Computer
Science (LNCS) 4433. Springer-Verlag, Berlin Heidelberg (2007) 71–102

261

[32] Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navi-
gation using artificial potential fields. IEEE Trans. on Robotics and Automation11(2)
(1995) 247–254

[33] Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification
of kinematic and dynamicmodels of wheeled mobile robots. IEEE Tr. on Robotics and
Automation 12(1) (1996) 47–62

[34] Yi, B.J., Kim, W.: The kinematics for redundantly actuated omnidirectional mobile
robots. Journal of Robotic Systems 19(6) (2002) 255–267

[35] Yamaguchi, H.: A cooperative hunting behavior by mobile-robot troops. The Interna-
tional Journal of Robotics Research 18(8) (1999) 931–940

[36] Tanner, H., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. on
Robotics and Automation 20(3) (2004) 443–455

[37] Sandeep, S., Fidan, B., Yu, C.: Decentralized cohesive motion control of multi-agent
formations. In: Proc. 14th Mediterranean Conference on Control and Automation,
Ancona, Italy (2006)

[38] Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control
of groups. In: Proc. Conf. Decision Contr., Orlando, FL (2001) 2968–2973

[39] Bachmayer, R., Leonard, N.E.: Vehicle networks for gradient descent in a sampled
environment. In: Proc. Conf. Decision Contr., Las Vegas, Nevada (2002) 112–117

[40] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part i:
Fixed topology. In: Proc. Conf. Decision Contr., Maui, Hawaii (2003) 2010–2015

[41] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part ii:
Dynamic topology. In: Proc. Conf. Decision Contr., Maui, Hawaii (2003) 2016–2021

[42] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Trans. on Automatic Control51(3) (2006) 401–420

[43] Yao, J., Ordonez, R., Gazi, V.: Swarm tracking using artificial potentials and sliding
mode control. In: Proc. Conf. Decision Contr., San Diago, CA, USA (2006)

[44] Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. on
Robotics and Automation17(6) (2001) 947–951

[45] Desai, J.P., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholo-
nomic mobile robots. IEEE Trans. on Robotics and Automation17(6) (2001) 905–908

[46] Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphial conditions for
formation control of unicycles. IEEE Trans. on Automatic Control50(1) (2005) 121–
127

[47] Marshall, J., Broucke, M., Francis, B.: Formations of vehicles in cyclic pursuit. IEEE
Trans. on Automatic Control 49(11) (2004) 1963–1974

[48] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents.
In V.J. Kumar, N.L., Morse, A., eds.: Cooperative Control. Volume 309 of Lecture
Notes in Control and Information Sciences., Springer-Verlag (2005) 229–239

262

[49] Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation
maneuvers. IEEE Trans. on Robotics and Automation19(6) (2003) 933–941

[50] Gazi, V.: Stability Analysis of Swarms. PhD thesis, The Ohio State University (2002)

[51] Sepulchre, R., Palay, D., Leonard, N.E.: Collective motion and oscillator synchroniza-
tion. In Kumar, V.J., Leonard, N.E., Morse, A.S., eds.: Cooperative Control: 2003
Block Island Workshop on Cooperative Control. Volume 309 of Lecture Notes in Con-
trol and Information Sciences., Springer-Verlag (2005)

[52] Dubins, L.: On curves of minimal length with a constraint on average curvature and
with prescribed initial and terminal positions and tangents. American Journal of Math-
ematics 79 (1957) 497–516

[53] Savla, K., Bullo, F., Frazzoli, E.: On traveling salesperson problems for Dubins’
vehicle: stochastic and dynamic environments. In: Proc. 44th IEEE Conference on
Decision and Control and the European Control Conference 2005. (2005) 4530–4535

[54] Tomlin, C., Mitchell, I., Ghosh, R.: Safety verification of conflict resolution manoeu-
vres. IEEE Tr. on Intelligent Transportation Systems 2(2) (2001) 110–120

[55] Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds.
Springer Verlag, New York, NY (2004)

[56] Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Physical Review Letters 75(6) (1995)
1226–1229

[57] Czirók, A., Stanley, H.E., Vicsek, T.: Spontaneously ordered motion of self-propelled
particles. Journal of Physics A Mathematical General 30 (1997) 1375–1385

[58] Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles.
Physica A Statistical Mechanics and its Applications 281 (2000) 17–29

[59] Czirók, A., Ben-Jacob, E., Cohen, I., Vicsek, T.: Formation of complex bacterial
colonies via self-generated vortices. Physical Review E 54 (1996) 1791–1801

[60] Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles:
Kinetic phase transition in one dimension. Physical Review Letters 82(1) (1999) 209–
212

[61] Vicsek, T.: Application of statistical mechanics to collective motion in biology. Phys-
ica A Statistical Mechanics and its Applications 274 (1999) 182–189

[62] Savkin, A.V.: Coordinated collective motion of groups of autonomous mobile robots:
Analysis of vicsek’s model. IEEE Transactions on Automatic Control 49(6) (2004)
981–983

[63] Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48(6)
(2003) 988–1001

[64] Moreau, L.: Stability of multiagent systems with time-dependent communication
links. IEEE Transactions on Automatic Control 50(2) (2005) 169–182

263

[65] Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically
changing interaction topologies. IEEE Trans. on Automatic Control50(5) (2005) 655–
661

[66] Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled
particles. Physical Review E 63(17101) (2000) 1–4

[67] Gazi, V., Köksal and B. Fidan, M.I.: Aggregation in a swarm of non-holonomic agents
using artificial potentials and sliding mode control. In: Proc. European Control Conf.,
Kos, Greece (2007) 1485–1491

[68] Gazi, V., Fidan, B., Hanay, Y.S., Köksal, M.I.: Aggregation, foraging, and formation
control of swarms with non-holonomic agents using potential functions and sliding
mode techniques. Turkish Journal of Electrical Engineering and Computer Sciences
15(2) (2007) 149–168

[69] Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. In Parrish,
J.K., Hamner, W.M., eds.: Animal Groups in Three Dimensions. Cambridge Iniversity
Press (1997) 257–281

[70] Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents.
S. Morse, N. Leonard and V. Kumar (eds.), Cooperative Control, Lecture Notes in
Control and Information Sciences, Springer 309 (2002) 229–239

[71] Beni, G., Liang, P.: Pattern reconfiguration in swarms—convergence of a distributed
asynchronous and bounded iterative algorithm. IEEE Trans. on Robotics and Automa-
tion12(3) (1996) 485–490

[72] Beni, G.: Order by disordered action in swarms. In Sahin, E., Spears, W.M., eds.:
Proc. SAB 2004 International Workshop on Swarm Robotics. Lecture Notes in Com-
puter Science (LNCS 3342). Springer Verlag (2004) 153–171

[73] Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with
limited sensing capabilities. Lecture Notes in Computer Science 3172 (2004) 142–153

[74] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. Lecture Notes in Computer Science 2010
(2001) 247–258

[75] Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems.
In: Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California (2005)

[76] Bahceci, E., Sahin, E.: Evolving aggregation behaviors for swarm robotic systems:
A systematic case study. In: Proc. of the IEEE Swarm Intelligence Symposium,
Pasadena, California (2005)

[77] Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile au-
tonomous agents. IEEE Trans. on Automatic Control 49(4) (2004) 622–629

[78] Das, A., Fierro, R., Kumar, V.: Control graphs for robot networks. In Butenko, S.,
Murphey, R., Pardalos, P., eds.: Cooperative Control: Models, Applications and Algo-
rithms, Kluwer Academic (2003) 55–73

264

[79] Fierro, R., Song, P., Das, A., Kumar, V.: Cooperative control of robot formations.
In Murphey, R., Pardalos, P., eds.: Cooperative Control and Optimization, Kluwer
Academic (2002) 73–94

[80] Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehi-
cle formations using structural potential functions. In: Proc. IFAC World Congress,
Barcelona, Spain (2002)

[81] Anderson, B., Yu, C., Fidan, B., Hendrickx, J.: Control and information archi-
tectures for formations. In: Proc. IEEE Conference on Control Applications (Joint
CCA/CACSD/ISIC). (2006)

[82] Eren, T., Anderson, B., Morse, A., Whiteley, W., Belhumeur, P.: Operations on rigid
formations of autonomous agents. Communications in Information and Systems 3(4)
(2004) 223–258

[83] Yu, C., Fidan, B., Anderson, B.: Persistence acquisition and maintenance for au-
tonomous formations. In: Proc. 2nd Int. Conf. on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP). (2005) 379 – 384

[84] Yu, C., Fidan, B., Anderson, B.: Principles to control autonomous formation merging.
In: Proc. American Control Conference. (2006) 762 – 768

[85] Das, A., Fierro, R., Kumar, V., Ostrowski, J.: A vision-based formation control frame-
work. IEEE Trans. on Robotics and Automation 18(5) (2002) 813–825

[86] P. Ögren, Fiorelli, E., Leonard, N.E.: Formations with a mission: Stable coordination
of vehicle group maneuvers. In: Symposium on Mathematical Theory of Networks
and Systems. (2002)

[87] Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent
coordination. In: Proc. American Control Conf., Portland, OR, USA (2005) 1859–
1864

[88] Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. In:
Proc. Conf. Decision Contr., Maui, Hawaii, USA (2003) 1508–1513

[89] Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem - the
asynchronous case. In: Proc. Conf. Decision Contr., Atlantis, Paradise Island, Ba-
hamas (2004) 1926–1931

[90] Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with
limited sensing capabilities. In Dorigo, M., Birattari, M., Blum, C., Gambardella,
L.M., Mondada, F., Stützle, T., eds.: Proceedings of ANTS 2004 – Fourth Interna-
tional Workshop on Ant Colony Optimization and Swarm Intelligence. Volume 3172
of Lecture Notes in Computer Science., Brussels, Belgium, Springer Verlag (2004)
142–153

[91] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous
mobile robots with limited visibility. In: Proc. 18th International Symposium on The-
oretical Aspects of Computer Science (STACS 2001). Volume 2010 of Lecture Notes
in Computer Science., Dresden, Germany, Springer Verlag (2001) 247–258

265

[92] Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, Belmont, MA (1997)

[93] Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research 5(1) (1986) 90–98

[94] Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential func-
tions. IEEE Trans. on Robotics and Automation8(5) (1992) 501–518

[95] Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for
autonomous robots. Robotics and Autonomous Systems27 (1999) 171–194

[96] Spears, W.M., Gordon, D.F.: Using artificial physics to control agents. In: Proceed-
ings of the IEEE International Conference on Information, Intelligence, and Systems.
(1999) 281–288

[97] Zarzhitsky, D., Spears, D.F., Spears, W.M., Thayer, D.R.: A fluid dynamics approach
to multi-robot chemical plume tracing. In: AAMAS. (2004) 1476–1477

[98] Zarzhitsky, D., Spears, D.F., Thayer, D.R., Spears, W.M.: Agent-based chemical
plume tracing using fluid dynamics. In: FAABS. (2004) 146–160

[99] Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Verlag, Berlin,
Heidelberg (1992)

[100] Gazi, V.: Formation control of mobile robots using decentralized nonlinear servomech-
anism. In: 12’th Meditteranean Conference on Control and Automation, Kusadasi,
Turkey (2004)

[101] Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with
switching topology and time-delays. IEEE Trans. on Automatic Control49(9) (2004)
1520–1533

[102] Ögren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent
coordination. IEEE Trans. on Robotics and Automation18(5) (2002) 847–851

[103] P. Ögren, Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks:
Adaptive gradient climbing in a distributed environment. IEEE Trans. on Automatic
Control49(8) (2004) 1292–1302

[104] Wu, H., Jagannathan, S.: Adaptive neural network control and wireless sensor
network-based localization for UAV formation. In: Proc. 14th Mediterranean Con-
ference on Control and Automation, Ancona, Italy (2006)

[105] Butenko, S., Murphey, R., Pardalos, P., eds.: Cooperative Control: Models, Applica-
tions and Algorithms. Kluwer Academic (2003)

[106] Murphey, R., Pardalos, P., eds.: Cooperative Control and Optimization. Kluwer Aca-
demic (2002)

[107] Pettersen, K., ‘and H. Nijmeijer, J.G., eds.: Group Coordination and Cooperative
Control. Volume 336 of Lecture Notes in Control and Information Sciences. Springer-
Verlag (2006)

266

[108] Şamiloglu, A.T., Gazi, V., Koku, A.B.: Asynchronous cyclic pursuit. In et al., S.N.,
ed.: Proc. of 9’th Conference on Simulation of Adaptive Behavior (SAB06). Lecture
Notes in Artificial Intelligence (LNAI) 4095. Springer Verlag (2006) 667–678

[109] Şamiloglu, A.T., Gazi, V., Koku, A.B.: Effects of asynchronism and neighborhood
size on clustering in self-propelled particle systems. In Levi, A., et al., eds.: Proc. of
International Symposium on Computer and Information Sciences (ISCIS06). Lecture
Notes in Computer Science (LNCS) 4263. Springer Verlag (2006) 665–676

[110] Şamiloglu, A.T., Gazi, V., Koku, A.B.: An empirical study on the motion of self-
propelled particles with turn angle restrictions. In Şahin et al., E., ed.: Proc. of SAB06
Workshop on Swarm Robotics. Lecture Notes in Computer Science (LNCS). Springer
Verlag (2006)

[111] Gueron, S., Levin, S.A.: The dynamics of group formation. Mathematical Bio-
sciences128 (1995) 243–264

[112] Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theoretical
Population Biology46 (1994) 363–394

[113] Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation
experiments using embodied agents in teams of constant and time-varying sizes. Au-
tonomous Robots 17(2-3) (2004) 163–192

[114] Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models
for swarm robotic systems. In Sahin, E., Spears, W., eds.: Swarm Robotics: State-of-
the-art Survey. Lecture Notes in Computer Science (LNCS 3342), Berlin Heidelberg,
Springer-Verlag (2005) 143–152

[115] Soysal, O., Sahin, E.: A macroscopic model for probabilistic aggregation in swarm
robotic systems. In Şahin et al., E., ed.: Proc. of SAB06 Workshop on Swarm Robotics.
Lecture Notes in Computer Science (LNCS). Springer Verlag (2006)

[116] Bernhart, A.: Polygons of Pursuit. Scripta Mathematica (1959)

[117] Klamkin, M.S., Newman, D.J.: Cyclic pursuit or “the three bugs problem”. The
American Mathematical Monthly 78(6) (1971) 631–639

[118] Behroozi, F., Gagnon, R.: Cyclic pursuit in a plane. Journal of Mathematical Physics
20(11) (1979) 2212–2216

[119] Richardson, T.J.: Non-mutual captures in cyclic pursuit. Annals of Mathematics and
Artificial Intelligence 31 (2001) 127–146

[120] Bruckstein, A.M., Cohen, N., Efrat, A.: Ants, crickets and frogs in cyclic pursuit.
Center Intell. Syst., Technion-Israel Inst. Technol. (1991)

[121] Marshall, J.A., Broucke, M.E., Francis, B.A.: A pursuit strategy for wheeled-vehicle
formations. Proceedings of the 42nd IEEE Conference on Decision and Control (2003)
2555–2560

[122] Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit.
IEEE Transactions on automatic control 49(11) (2004) 1963–1974

267

[123] Marshall, J.A., Broucke, M.E., Francis, B.A.: Pursuit formations of unicycles. Auto-
matica 42(1) (2006) 3–12

[124] Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile au-
tonomous agents. IEEE Transactions on Automatic Control 49(4) (2004) 622–629

[125] Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically
changing interaction topologies. IEEE Trans. on Automatic Control 50(5) (2005) 655–
661

[126] Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem - the
asynchronous case. In: Proc. of Conf. Decision and Control, Atlantis, Paradise Island,
Bahamas (2004) 1926–1931

[127] Sepulchre, R., Palay, D., Leonard, N.E.: Collective motion and oscillator synchro-
nization. In V.J. Kumar, N.E. Leonard, A.M., ed.: in Proc. of the 2003 Block Island
Workshop on Cooperative Control, Springer-Verlag (2003)

[128] HORN, R.A., R.JOHNSON, C.: Matrix Analysis. Cambridge University Press (1992)

[129] Şamiloglu, A.T., Gazi, V., Koku, A.B.: Comparison of three orientation agreement
strategies in self-propelled particle systems with turn angle restrictions in synchronous
and asynchronous settings. Asian Journal of Control 10(2) (2008) 212–232

[130] Angeli, D., Bliman, P.A.: Stability of leaderless multi-agent systems. extension of a
result by moreau. arXiv:math.OC/0411338 v1 (2004)

[131] Fang, L., Antsaklis, P.J., Tzimas, A.: Asynchronous censensus protocols: Prelimi-
nary results, simultionsi and open questions. In: Proc. Conf. Decision Contr.and Proc.
European Control Conf., Sevile, Spain (2005) 2194–2199

[132] Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.: Convergence in multia-
gent coordination, consensus, and flocking. In: Proc. Conf. Decision Contr.and Proc.
European Control Conf., Sevile, Spain (2005) 2996–3000

[133] Cao, M., Morse, A.S., Anderson, B.D.O.: Agreeing asynchronously: Anouncement of
results. In: Proc. Conf. Decision Contr., San Diego, CA, USA (2006) 4301–4306

[134] Gazi, V.: Stability of a discrete-time asynchronous swarm with time-dependent com-
munication links. In: IEEE Trans. on Systems, Man, and Cybernetics: Part B. Vol-
ume 38. (2008) 267–274 to appear.

[135] Stark, H., Woods, J.W.: Probability, Random Processes, and Estimation Theory for
Engineers. Prentice Hall (1994)

[136] Papoulis, A.: Probability, Random Variables and Stochastic Processes. 3 edn.
McGraw-Hill Companies (1991)

[137] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control
method for an autonomous mobile robot. Robotics and Automation, 1990. Proceed-
ings., 1990 IEEE International Conference on (1990) 384–389 vol.1

[138] Aicardi, M. Casalino, G.B.A.B.A.: Closed loop smooth steering of unicycle like vehi-
cles. IEEE CONFERENCE ON DECISION AND CONTROL 3(33) (1994) 2455

268

[139] Huang, L., Tang, L., Box, P., Zealand, W.: (Dynamic Target Tracking Control for a
Wheeled Mobile Robots Constrained by Limited Inputs)

[140] Iida, S., Yuta, S.: Vehicle command system and trajectory control for autonomous mo-
bile robots. Intelligent Robots and Systems ’91. ’Intelligence for Mechanical Systems,
Proceedings IROS ’91. IEEE/RSJ International Workshop on (1991) 212–217 vol.1

[141] Lee, S.O., Cho, Y.J., Hwang-Bo, M., You, B.J., Oh, S.R.: A stable target-tracking con-
trol for unicycle mobile robots. Intelligent Robots and Systems, 2000. (IROS 2000).
Proceedings. 2000 IEEE/RSJ International Conference on 3 (2000) 1822–1827 vol.3

[142] Lee, T.C., Song, K.T., Lee, C.H., Teng, C.C.: Tracking control of unicycle-modeled
mobile robots using a saturation feedback controller. Control Systems Technology,
IEEE Transactions on 9(2) (2001) 305–318

[143] Shim, H.S., Sung, Y.G.: Stability and four-posture control for nonholonomic mobile
robots. Robotics and Automation, IEEE Transactions on 20(1) (2004) 148–154

[144] Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic
mobile robot. Robotics and Automation, IEEE Transactions on 16(5) (2000) 609–615

[145] Xie, F., Fierro, R.: Stabilization of Nonholonomic Robot Formations: A First-state
Contractive Model Predictive Control Approach. Journal of Computing and Informa-
tion Technology 17(1) (2009) 37–50

[146] Chwa, D.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in
polar coordinates. Control Systems Technology, IEEE Transactions on 12(4) (2004)
637–644

[147] Li, T.H., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile
robots by using infrared sensors. Fuzzy Systems, IEEE Transactions on 12(4) (2004)
491–501

[148] Koksal, M.I., Gazi, V., Fidan, B., Ordonez, R.: Tracking a maneuvering target with a
non-holonomic agent using artificial potentials and sliding mode control. 16th Mediter-
ranean Conference on Control and Automation (2008) 1174–1179

[149] Gazi, V., Ordonez, R.: Target tracking using artificial potentials and sliding mode
control. International Journal of Control 80(10) (2007) 1626–1635

[150] Hung, N., Im, J., Jeong, S., Kim, H., Kim, S.: Design of a sliding mode controller for
an automatic guided vehicle and its implementation. International Journal of Control,
Automation and Systems 8(1) (2010) 81–90

[151] Solea, R., Nunes, U.: Trajectory planning and sliding-mode control based trajectory-
tracking for cybercars. Integrated Computer-Aided Engineering 13 (2006) 1–15

[152] Solea, R., Cernega, D.: Sliding Mode Control for Trajectory Tracking Problem-
Performance Evaluation. (Artificial Neural Networks–ICANN 2009) 865–874

[153] Yang, J., Kim, J.: Sliding Mode Control for Trajectory Tracking of Nonholonomic
Wheeled Mobile Robots. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMA-
TION 15(3) (1999) 579

269

[154] Micaelli, A., Samson, C.: Trajectory tracking for unicycle-type and two-steering-
wheels mobile robots. Rapport de recherche (2097)

[155] Oriolo, G., De Luca, A., Vendittelli, M., et al.: WMR control via dynamic feedback
linearization: design, implementation, and experimental validation. IEEE Transactions
on Control Systems Technology 10(6) (2002) 835–852

[156] Yang, E., Gu, D., Mita, T., Hu, H.: Nonlinear tracking control of a car-like mobile
robot via dynamic feedback linearization. dim (100) 0

[157] Huang, H., Tsai, C.: Simultaneous tracking and stabilization of an omnidirectional
mobile robot in polar coordinates: a unified control approach. Robotica 27(03) (2008)
447–458

[158] Park, K., Chung, H., Lee, J.: Point stabilization of mobile robots via state space exact
feedback linearization. In: Proceedings of SPIE. Volume 3693. (1999) 21

[159] Noijen, S., Lambrechts, P., Nijmeijer, H.: An observer-controller combination for a
unicycle mobile robot. International Journal of Control 78(2) (2005) 81–87

[160] D’Andrea-Novel, B. Campion, G.B.G.: Control of nonholonomic wheeled mobile
robots by state feedback linearization. INTERNATIONAL JOURNAL OF ROBOTICS
RESEARCH 14(6) (1995) 543–559

[161] Soetanto, D., Lapierre, L., Pascoal, A.: Adaptive, non-singular path-following control
of dynamic wheeled robots. In: 42nd IEEE Conference on Decision and Control, 2003.
Proceedings. Volume 2. (2003)

[162] Teimoori, H., Savkin, A.: Equiangular navigation and guidance of a wheeled mobile
robot based on range-only measurements. Robotics and Autonomous Systems (2009)

[163] SwisTrack: A tracking tool for multi-unit robotic and biological research, Beijing,
China (2006)

[164] Lucas P. J. J. Noldus, Andrew J. Spink, R.A.J.T.: Computerised video tracking, move-
ment analysis and behaviour recognition in insects. Computers and Electronics in
Agriculture 35(2-3) (2002) 201–227

[165] Trifa, V., Cianci, C.M., Guinard, D.: Dynamic control of a robotic swarm using a
service-oriented architecture. In: Proceedings of International Symposium on Artifi-
cial Life and Robotics, Beppu, Japan (2008)

[166] Fiala, M.: Artag, a fiducial marker system using digital techniques. Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on 2
(2005) 590–596 vol. 2

[167] Hayes, A., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-
line optimization and demonstration with real robots. Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on 4 (2002) 3900–3905 vol.4

[168] Hawick, K.A., James, H.A.: Middleware for context sensitive mobile applications. In:
ACSW Frontiers ’03: Proceedings of the Australasian information security workshop
conference on ACSW frontiers 2003, Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2003) 133–141

270

[169] E-puck Robots: E-puck robot specifications. Available from http://www.e-puck.org
(2008)

271

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: ŞAMİLOĞLU, Andaç Töre

Nationality: Turkish (TC)

Date and Place of Birth: 2 December 1979 , Kars

Marital Status: Single

Phone (Work): +90 312 246 66 66 / 1459

Phone (Mobile): +90 530 460 39 46

E-mail: andactore@gmail.com

Address: Makine Muhendisliği, Başkent Üniversitesi, Bağlıca Kampüsü, Etimesgut/ANKARA

EDUCATION

Ph.D. (2012), METU, Mechanical Engineering, Thesis Title: “Decentralized Coordination

and Control in Robotic Swarms”

MSc. (2007), METU, Economics, Thesis Title: “Export Dynamics, Size, and Productivity of

Firms”

MSc. (2005), METU, Mechanical Engineering, Thesis Title: “Mathematical Modeling and

Simulation of Commercial Vehicle Performance”

BSc. (2003), METU, Mechanical Engineering

WORK EXPERIENCE

Instructor Baskent University 2006-Present

Research Assistant ETU-TUBITAK 2005-2009

Teaching Assistant Baskent University 2005-2006

Research Assistant METU 2003-2005

272

AWARDS & SCHOLARSHIP

The Turkish Academy of Sciences - TUBA BDHP Scholarship 2007

METU-Grad. Sch. of Nat. & App. Sc. Course Performance Award 2005

PUBLICATIONS

1) Şamiloğlu A.T., Gazi V., Koku A.B., “Comparison of three orientation agreement strate-

gies in self-propelled particle systems with turn angle restrictions in synchronous and asyn-

chronous settings,” Asian Journal of Control, vol. 10, No. 2, pp. 212-232, Mar. 2008. (SCI)

2) Cilasun, S. M., Şamiloğlu A. T., “Seleksiyon Mekanizmasının Endüstri Dinamikleri Üzerine

Etkisi: Bir Simülasyon Çalışması”, Akdeniz İ.İ.B.F. Dergisi vol. 11, No. 21, pp. 1-16, May.

2011 (ASOS, IBSS)

3) Şamiloğlu A.T., Gazi V., Koku A.B., “Asynchronous Cyclic Pursuit,” S. Nolfi et al. (edt.),

SAB06, Lecture Notes in Artificial Intelligence (LNAI) 4095, pp. 667-678, 2006.

4) Şamiloğlu A.T., Gazi V., Koku A.B., “Effects of Asynchronism and Neighborhood Size on

Clustering in Self-Propelled Particle Systems,” ISCIS06, Lecture Notes in Computer Science

(LNCS) 4263, pp. 665-676, 2006.

5) Hanay Y.S, Hünerli H.V., Köksal M.İ., Şamiloğlu A.T., Gazi V, “Formation Control with

Potential Functions and Newton’s Iteration,” European Control Conference, pp. 4584-4590,

Kos, Greece, July 2007.

6) Şamiloğlu A.T., Çayırpunar Ö., Gazi V., Koku A.B., “An Experimental Set-up For Multi-

Robot Applications,” Workshop Proceedings of SIMPAR 2008, Intl. Conf. on SIMULA-

TION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS, Venice(Italy)

2008 November, pp. 539-550.

7) Şamiloğlu A. T., Gazi V., Koku A.B., “Design of Circling Around a Target Controllers

for Mobile Robots by Feedback Linearization”, IFAC International Workshop on Periodic

Control Systems (PSYCO 2010), Vol.4, Part 1.

273

