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ABSTRACT 

ANALYSIS OF GAS PRICES FOR TURKEY FROM 2003-2011 

 

KIRIBAKI WILBERFORCE 

MSc., Department of Statistics 

Supervisor: Assist. Prof. Dr. Ceylan Yozgatlıgil 

Co-Supervisor: Assist. Prof. Dr. Zeynep Kalaylıoğlu 

December 2012, 62 pages 

This study aimed to construct a forecasting model for gas prices in Turkey using 

Univariate time series analysis. The best model was developed after assessing the 

forecasting performances for both Seasonal Autoregressive Integrated Moving 

Average (SARIMA) model and Exponential Smoothing (ES) model.  Firstly, we 

fitted different combinations of both ARIMA and SARIMA models (from which the 

best model was chosen) by using the monthly oil prices from January 2003 to 

December 2011.  The ES model was automatically fitted next for forecasting 

performance comparison purposes. We then extracted the forecasted monthly values 

for 2012 for both models and compared their forecast performances. The ARIMA 

(1,1,0) model gave the best fit for the gas price series for Turkey. The results 

depicted that the ARIMA model forecasts work effectively and reliably, and is a 

useful tool for forecasting future Turkish gas prices. It can be used by governments, 

investors and other gas users to predict and address negative impacts that gas shocks 

creates.      

KEY WORDS: Univariate time series, Gas prices, Forecasting, Accuracy measures, 

Box-Jenkins Approach, ARIMA, SARIMA and Exponential Smoothing (ES) 

models. 
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ÖZ 

 

TÜRKİYE  BENZİN  FİYATLARININ  2003-2011 YILLARI  ARASINDAKİ  

ANALİZİ 

KIRIBAKI WILBERFORCE 

Yüksek Lisans, İstatistik Bölümü 

Tez yöneticisi: Yrd. Doç. Dr. Ceylan Yozgatlıgil 

Ortak Tez yöneticisi: Yrd. Doç. Dr. Zeynep Kalaylıoğlu 

 

Aralik 2012, 62 sayfa 

 

Bu çalışmanın amacı, tek değişkenli zaman serileri kullanarak Türkiye benzin fiyatı 

tahmin modeli oluşturmaktır. En iyi model, Otoregresif Tamamlanmış Hareketli 

Ortalama (OTHO) ve üssel Düzleştirme (ÜD) tahmin modellerinin başarımlarını 

karşılaştırarak geliştirildi. Öncelikle, 2003 Ocak ayından 2011 Aralık ayına uzanan 

süre içerisinde elde edilen aylık benzin fiyatlarından oluşan verilerin modellenmesi 

için, OTHO modelinin farklı kombinasyonlarını inceledik. Ardından tahmin 

performanslarını karşılaştırmak için ÜD modelini kurduk. Daha sonra, her iki modeli 

de kullanarak, 2012 yılı tahminlerini elde ettik ve tahmin performanslarını 

karşılaştırdık. OTHO(1,1,0) modelinin Türkiye benzin fiyatları serisi için en uygun 

model olduğu ortaya çıktı. Sonuçlar, OTHO modelinin etkin ve güvenilir tahminler 

yaptığını ve Türkiye benzin fiyatları serisinin tahmininde kullanılabileceğini 

gösterdi. 
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CHAPTER 1     

 

INTRODUCTION 

 
 

 

Gas price is a vital economic development indicators directing all the economies in the 

world. According to Brahim Fezzani and Dilyara Nartova (2011), global gas production 

is approximately close to 37%. The gas price changes are linked with major 

developments and are always considered as a cause for inflation and recessions in the 

world economy. The rise in gas prices both in 1974 and 1979 were crucial impacts in 

producing a retardation in the world economy during the period in which inflation was 

rising.  The previous rises in  gas prices have led concern although they have not been 

on such a large scale as in the 1970‟s where we also live in a smaller inflation world, and 

many think that gas price surges could change this.  A slight  change in gas prices can 

lead to either positive or negative effect on most of the economic indicators. The impacts 

of gas prices on the  economy differ from country to country. That is, for the gas 

importing economies, gas price rise and economic development are expected to be 

negatively related while all other factors remaining constant, the behavior is expected be 

positive for gas exporting economies. In other words, the economic significance of gas 

comes not only from the sheer size of the market, but also from the crucial, almost 

strategic, role it plays in the economies of both gas-exporting and gas-importing 

economies. The gas prices take the revenues to gas-exporting countries in a large 

amount of which, gas exports stand above 20% of its gross domestic product (GDP) 
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(Narmit Shama, 1998). On the other hand, effects of gas imports have a significant 

impacts on the development initiatives of the developing economies. The energy price 

changes are always seen as leading to adverse macroeconomic impacts on total product 

and employment worldwide. This behaviour of gas price changes, to a certain extent, 

impacts the economic growth of a country. For example, the study by Scerri and Reut 

(2009), claims that shocks in gas prices have also impact on the estimated budget. The 

estimates of revenue from taxation change in favour of gas generating companies 

whereas it would depicts a decrease on the consumer side. In addition to that, the nature 

of profit allocation also varies across industrial sector and also the household 

expenditure would give varying pattern with changes in gas prices. Turkey, being one of 

the developing and gas-importing countries in the world, with 68% of total primary 

energy consumption reported in 2002 and gas standing at 40% of her primary energy 

consumption in 2002 (state planning organisation, 2004) is thought to be affected by 

these changes in gas prices. In other words, the variations in gas prices are expected to 

have significant impacts on its economy as well. Researchers have employed different 

linear and nonlinear methodology to capture the magnitude and direction of the gas 

price-macroeconomy relationship but have mostly limited their studies to advanced 

economies. In this study, a Univariate time series technique is employed for the analysis 

and fitting of the model for a developing economy of Turkey. Specifically a non-

seasonal and Seasonal Autoregressive Integrated Moving Average (SARIMA) model are 

used. We use the Autoregressive Integrated Moving Average (ARIMA) models because 

of some reasons. According to Pankratz (1983), Box-Jenkins technique gave the 

appropriate prediction which accounted for 74% of the series that he examined in his 

research using this approach. The technique has three major advantages over its other 
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existing related methods. Firstly, the ideas related with these Univariate Box-Jenkins 

(UBJ) models are obtained from a fundamental class of probability concepts and 

mathematical statistics. However, some of the historical popular univariate methods are 

generated using a unique approach. The second reason is that ARIMA models come 

from a family of models instead of a single model. Box and Jenkins came up with 

appropriate procedures (to be discussed in the methodology section) that help the 

analysts to select at least one appropriate models out of a given combinations of possible 

models within this family. Thirdly, the ARIMA or SARIMA model gives the minimum 

univariate forecast errors. That is, no other standard univariate series model can produce 

lower mean squared forecast error of the forecasts. Thus, because of these highlighted 

abilities of the model over the others, we decided to employ the method. Another 

method used in this study is the Exponential smoothing (ES) method. It is used to 

statistically model time series data for smoothing purpose or prediction. The aim of 

using this method is to minimize irregularities in time series data set. That is, it provides 

a true picture behind the behavior of the series. The technique also gives an effective 

means of forecasting future values of the time series. It is preferred over the other simple 

moving average forecast because its model is fit automatically. It also places relatively 

more weight on the recent observations to changes occurring in the recent past than its 

counterparts. The ES model also uses a smoothing parameter which is continuous 

variable, so it can easily be optimized by using this parameter algorithm to minimize the 

mean square error encountered within the series under investigation. However, despite 

of all the above mentioned advantages it has over the others, it also suffers from 

drawbacks. For instance, the smoothing parameters of these fitted models do not 

undergo statistical significance checks and diagnostic tests for their parameters as well 
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as adequacy. Because of this, ES models are considered statistically as ad hoc models. 

Thus, this study aims to achieve three main objectives as listed below; 

 To Model the monthly gas prices for Turkey‟s economy. 

 To make forecasts and assess the performance of the tools employed in this 

analysis. The best model will then be chosen based on these results. 

 To contribute to the literature of gas price modeling within the country as well 

as helping the investors and policy makers execute their businesses and 

government plans more effectively.  

Modeling gas price is a very important issue for both policymakers and agents in 

financial markets. In fact, the study sees relevant and timely in view of the limited 

empirical analysis on the modeling of gas prices for Turkey‟s economy. The findings 

will guide the decision makers in coming up with economic growth energy sector 

policies that favour both individual and public owned investments. To the best of my 

knowledge, there is no study that have been carried out on Turkey that models gas prices 

on its economy using this approach. The remaining chapters of this study are structured 

as follows: Chapter 2 presents the related literature review survey. Chapter 3 presents 

methodology used. Chapter 4 introduces the data description, source and analysis. 

Finally, Chapter 5 presents the conclusion and future research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The gas product has a key role to play in the economic growth of the world. This has 

attracted the attention of many scholars to examine the correlation between economic 

growth and oil price shocks and modeling of the latter variable. In doing so, a great 

number of technical literature review have been carried out on the subject in question. 

However, the literature on modeling of gas prices is still scarce. Some of the literature 

reviews being mentioned in the different studies are as follows; 

The fluctuation of oil prices was investigated in comparison with volatility of other 

commodities by a number of authors Pindyck (1999) and Regnier (2007). For example, 

Pindyck (1999) investigated oil, coal, and natural gas over a long horizon and found that 

oil depicted the highest degree of volatility. In a more general perspective, Regnier 

(2007) proves that gas price change is somehow high compared to the changes of other 

goods. Huang et al. (1996) analyses the relationship between the oil price volatility and 

stock prices. They find that daily changes in oil price volatility do affect the daily stock 

prices of oil companies, but there is a minimum impact on the broad stock market. 

On the other hand, some researchers have studied that the correlation between oil prices 

and inflations are time-varying. For instance, in considering the way-through from gas 

changes to core inflation, Hooker (2002) singles out a structural variation in the 

correlation at 1981Q1 (quarter 1) based on the series from 1962-2000. He notes that, 

monetary policy did not itself become less accommodative of gas volatility, but may 
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have enhanced the creation of a situation where inflation is invisible to price changes in 

general. Similarly, Roubini and Setser (2004) illustrate that the effects of inflation as a 

result of changes in gas prices was high in the 70s, pointing out that any policy reaction 

aimed at increasing gas prices bases on a combination of influences like the size of 

inflation anticipated, the general inflation size and the amount of household leverage. 

Others, such as  Barsky and Kilian (2004), claim that the impact is not large and that gas 

changes only is not enough to detect the US stagflation that occurred in the 1970s. 

Hamilton (1983, 1996, 2005, 2009) has shown analytical evidence proposing that gas 

price changes have been part of the major causes of recessions in the U.S. Hooker 

(1999) re-examined the gas price-inflation relationship in a Philips-curve framework. 

His findings reveal that since 1980, gas price fluctuation appeared to be affecting 

inflation mainly through their contribution in the price index, with minimum or no pass-

through into core measures.  However, gas price changes enhanced significantly to core 

inflation before 1980. 

Malik (2007) studied the effect of increased gas prices on economic growth with other 

macroeconomic variables such as deficit spending, public debt, expected inflation and 

investment spending for Pakistan‟s economy. The finding reveals a nonlinear 

relationship within the gas prices and economic development. That is, the rise in gas 

prices is necessary for economic development but after threshold level it tends to impact 

the country adversely. Similarly, using panel Pedroni‟s cointegration methodology, 

Parida and Sahoo (2007) examined whether export caused hypothesis for four south 

Asian countries (India, Sri lanka, Pakistan and Bangladesh) for the period of 1980-2002. 

The hypothesis test was based on manufacturing exports together with other indicators 
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such as human capital and capital formation. The results indicate that there is a long run 

growth relationship between export and GDP. 

Rasche and Tatom (1981), Darby (1982), Burbidge and Harrison (1984), and Gisser and 

Goodwin (1986) studied the economic significance of gas price shocks on the 

macroeconomy for the gas importing countries. Their studies based on neoclassical 

theory, found a negative linear correlation between gas prices and main activity for the 

gas importing countries.  On the other hand, Hamilton‟s (1983) research found a robust 

correlation between gas price rises and resulting economic downturns for majority of the 

post-World War II recessions in the US economy. In another important study, Hamilton 

(1996) uses Net Oil Price Increase (NOPI) to assess whether there is a linear relationship 

between GDP growth and gas prices. His study results reveal that there is no statistical 

evidence between the two variables in question for the smaller sample period of 1973 to 

1973. However, a significant statistical evidence for the whole sample covering the 

periods 1948 to 1994 is reported.  

Using a two research design step process (that is, obtaining cointegration and causality 

as the first and second steps, respectively), Amano and Van Norden (1998) obtain a 

significant cointergration between gas prices and exchange rates for Germany, US and 

Japan in their examination of whether gas price leads real changes in the real exchange 

rates for the three countries mentioned in their study. On the other hand, no significant 

evidence of the reverse is obtained for the causality. That is, no empirical evidence is 

reported that real exchange rate leads to volatilities in gas prices. In a related study and 

methodological approach, Chaudhuri and Daniel (1998) reported the same findings for 

16 OECD countries as Amano and Van Norden (1998) did. That is, they find that there 



8 
 

is cointegration between gas prices and exchange rates and that variations in the US 

dollar real exchange rate are due to changes in the real price of gas. Meanwhile, the 

same conclusion is reached at when other approaches are utilized. For example, Akram 

(2004) uses equilibrium corrections model technique in assessing whether there is a 

nonlinear relationship between gas prices and Norwegian exchange rate. The study 

reveals that changes in the gas price leads to a significant non-linear negative variation 

in the exchange rates for the country. Another differing study approach based on both 

supply and demand variables to determine the real exchange rate is carried out by 

Bergvall (2004). In his study, he applies intertemporal optimizing model and variance 

decomposition to depict that terms-of-trade shocks are the most influential for Denmark 

and Norway while demand shocks are the most influential for Sweden and Finland. In 

addition, the author also reports that as the gas prices increase, the exchange rates for 

Finland, Denmark and Sweden decrease. Meanwhile, the exchange rates for Norway 

appreciate since it is an oil exporting country. 

In most early studies, standard deviation of price differences is mainly applied as a tool 

of volatility of goods prices (Ferderer, 1996; Fleming and Ostdiek, 1999). On the other 

hand, in the recent studies dealing with volatility measuring and modeling have 

significantly increased with more sophisticated techniques. These include the general 

conditional heteroskedastic models (GARCH) and their modifications such as Threshold 

Generalized Autoregressive Conditional heteroscedasticity (TGARCH) and Exponential 

Generalized Autoregressive Conditional heteroscedasticity (EGARCH). In another 

recent study, Jimenez-Rodriguez and Sanchez (2004) analyzed the empirical impacts of 

gas price changes on the main economic activities for seven selected OECD economies, 

Norway and the Euro area at large. They applied a vector autoregressive (VAR) method 
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using both linear and nonlinear models. The study finds that oil price rises have a bigger 

impact on gross domestic product (GDP) growth than gas price falls. The study also 

reveals that for the gas importing country, the increase in the gas prices have a 

significant non positive effects on its economic activities. In contrast for the gas 

exporting economies, the impact is uncertain. In another similar study done by Eltony 

and Al-Awadi (2001), a linear gas price changes is reported as crucial in explaining the 

changes in macroeconomic variables in Kuwait. Their findings depict the significance of 

gas price shocks in government expenditures, which are the main determinant for the 

country‟s economic activity. 

Raguindin and Reyes (2005) assessed the impacts of oil price shocks on Philippine‟s 

economy from 1981 to 2003. Their research findings response functions for the linear 

transformation of gas prices suggest that gas price change causes delayed decrease in the 

real GDP of the Philippines. However, when a non-linear VAR model is used, a 

reduction in the oil price plays a greater role for the changes in each variable compared 

to oil price rise.  

Anashasy et al. (2005) studied the impacts of gas price changes on Venezuela‟s 

economic performance for the years 1950 to 2001.  The study used a general to a 

particular modeling (VAR and Vector Error Correction Model ) approach to examine the 

correlation between gas prices, governmental revenues, governmental consumption 

spending, GDP and investment. The findings of their study revealed two significant long 

run relations which are consistent with economic growth and fiscal balance and that the 

relationship is vital not only for the long run performance but even for the short term 

changes as well.  
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Berument and Ceylan (2005) investigated how gas price changes impacts the output 

growth for the chosen sample of gas importing and gas exporting economies from the 

Middle East and North Africa. In their study, a structural VAR model is applied based 

on explicitly world gas prices and the actual GDP for the period 1960 to 2003.  Their 

study findings suggests a positive and statistically significant effect of the world gas 

price on the GDP of Algeria, Iran, Jordan, Iraq, Kuwait, Oman, Qatar, Syria, Tunisia and 

United Arab Emirates. On the other hand, no significant impact on oil price shock was 

found for Egypt, Lebanon, Bahrain, morocco and Yemen. In another similar study on the 

impacts of gas price changes on inflation, output, real exchange rate and money supply 

in Nigeria, was done by Olomola and Adejumo (2006). They used VAR technique in the 

analysis of the quarterly data from 1970 to 2003. The results of their study revealed that 

gas price changes have no significant effect on both output and inflation. However, the 

changes are found to have a significant influence in determining the real exchange rate 

and long run money supply. They (authors) deduced that this could end up squeezing the 

trade sector. Narayan, Narayan et al. (2008), on the other hand, examined the 

relationship between oil prices and the Fijian dollar-US dollar exchange rate using daily 

data for the period of 2000-2006 via GARCH and EGARCH model. The main result of 

their study suggests that an increase in oil prices causes an appreciation of the Fijian 

dollar. Another study on oil price shocks in a global perspective done by Rasmussen, 

Tobias N. and Augustin Roitman (2011), examined the relationship between the cyclical 

component of gas prices and the cyclical components of GDP, imports, and exports. The 

findings indicate that these relationships have, worldwide, always been non negative and 

rising for the past 40 years. This shows that periods corresponding to increased gas 

prices have generally coincided with good times for the world economy, more so in the 
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recent years. On the other hand, to assess the effect of high gas price changes on 

economic activity, the study focus on the 12 episodes since 1970 in which gas prices 

reached three-year highs. The findings show no evidence as well of a widespread 

contemporaneous negative impact on economic output across gas-importing economies, 

but instead value and volume rises in both imports and exports.  

Edelstein and Kilian (2007), Herrera and Pesavento (2007) and Blanchard and Gali 

(2007), find a decreased effect of oil price shocks on real GDP and inflation over time 

for the US economy. Baumeister and Peersman (2008), on the other hand, have 

indicated that such comparisons over time are seriously affected since the global oil 

market has been characterized by another remarkable structural variation since the mid-

eighties.  

Other researchers investigated whether there is a long-run correlation between gas price 

changes and real exchange rates. For instance, Chen and Chen (2007), investigated the 

long-run equilibrium relationship between real gas prices and real exchange rates using 

monthly data for the G7 economies during 1972M1, 2005M10. The finding of their 

investigation is that a co-integrating relationship exist between actual gas prices and real 

exchange rates. Similarly, Lardic and Mignon (2006) examine the long-run equilibrium 

relationship between gas prices and GDP in twelve European countries using quarterly 

series. The results of their findings show that the relationship between gas price and 

GDP is asymmetric. That is, increasing gas prices retard aggregate economic activity 

more than decreasing gas prices stimulate it. Their findings also show that, while the 

standard co-integration between the variables is rejected, there is asymmetric co-

integration between gas prices and GDP in most of the European countries. 
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CHAPTER 3 

 

METHODOLOGY 

 

In this section, the methodology used in this thesis is presented. We briefly introduce the 

main models applied to model gas price series, discuss their main properties, some of 

their modifications and statistical tools applied to time series modeling. 

3.1  Univariate Time Series Model 

3.1.1  Autoregressive Integrated Moving Average (ARIMA) Model 

Developing an ARIMA model requires an appropriate sample size. Box and Jenkins 

proposed that at least 50 data points of the series should be the smallest sample size to be 

used. Some analysts hardly use a smaller sample size and they usually interpret the 

results with caution. On the other hand, a large sample size is suitable and needed while 

dealing with seasonal series. Box-Jenkins technique gave better predictions 

corresponding to 74% of the series examined in the study done by Pankratz (1983). 

Many regular ARIMA model consists of three parts namely; p, d, and q. Here p is the 

number of the autoregressive parameters, d is the number of differencing parameters and 

q is the number of moving average parameters. A generalized ARIMA model takes the 

structure (Bruce et al, 2005; and John and David, 2003): 
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                                                                                                                                                  (1) 

where; 

   t: is the period,    : is the number of observed series for each period 

     : for i = 1, 2,...,p are the AR parameters 

               : for j = 1, 2,...,q are the MA parameters 

               : is the change term at period t 

We can obtain the parameters    and     - for a constant values of p and q, in the 

expression (2) below after identifying the model. 

   ̂                                              

                                                         (2)  

There are two stages of identifying a possible Box-Jenkins model. The first is converting 

the data when due into a stationary series and secondly, obtaining the possible fit by 

looking at the nature or behaviour of the Autocorrelations (ACF) and Partial 

Autocorrelations (PACF).  A stationary time series is where there is no trend existing in 

the series. That is, it fluctuates around non varying mean. Box and Jenkins propose the 

number of lag to be at most (n/4) autocorrelations. The autocorrelation coefficient 

measures the correlation between a given combination of series and lagged series of 

observed series.  The autocorrelation between     and       measures the correlation 

between pair (   ,      ),     ,     ),..,     ,     ) 
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Also, the sample autocorrelation coefficient    which is an estimate of    is given as 

follows 

                                                        = 
∑     ̅        ̅ 

∑     ̅  
            (3) 

with 

       The value of stationary gas prices series  

       : The value of gas price for k period ahead of t. 

   ̅:  The mean of stationary time series 

 

The approximated PACF and ACF are used to select at least one possible models for 

series under investigation. The idea of partial autocorrelation analysis is that we want to 

measure how  ̂  and  ̂    are related. The appropriate partial autocorrelation estimate is 

given by equation  

     ̂       

 

 

   ̂  = 
   ∑  ̂         

   
   

  ∑  ̂       
   
   

 k = 2,3,...         (4) 

 

              ̂    ̂       ̂   ̂                 (5) 

 

       Where,     k = 3, 4,..; j = 1,2,..,k-1 
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3.1.2 Seasonal ARIMA Model 

The shape of the ACF and PACF in a seasonal model can be determined. That is, the 

multiplicative seasonal ARIMA model (p,d,q)x(P,D,Q   is generalized and taken as an 

extension of the ARIMA technique to the series in which patterns repeat seasonally over 

time. Here, the parameters (p,d,q) denote non-seasonal part while (P,D,Q   represent the 

seasonal part. s denotes the seasonal period, which is 12 for monthly data set in our 

study (i.e. s = 12). After obtaining a stationary series, the ACF cuts off quickly. It is then 

possible to select possible model by analyzing the behaviour of both ACF and PACF. 

For a combined model, both acf and pacf decays exponentially after lags p and q. If we 

consider our time series to be generated according to 

                                ,                     (6) 

 

 then we can obtain  

    Cov(         = Cov(                     )                                        (7) 

       = 0. 

However that  

          Cov(          = Cov(                      )                                 (8) 

                                                   =     
  

 

This kind of series becomes stationary and with a white noise at lag 12. 
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When we Generalize the expressions noted before in section 3.1.1, we can now define a 

seasonal MA(Q) model of order Q with seasonal period s by 

 

                                                         (9) 

 

with seasonal MA characteristic polynomial   

           
      

         
  .                          (10) 

It is evident that such a series is always stationary and that the ACF will be nonzero only 

at the seasonal lags of s, 2s, 3s,...,Qs. Specifically, 

     = 
                           

    
    

      
                 (11)  

   for k =1,2,...,Q 

 

A model is invertible, if the roots of        all are greater than 1 in absolute value. 

We can also define the seasonal AR(p) model of order p and seasonal period s by 

                                                  (12) 

 

with seasonal characteristic polynomial 

             
      

        
                    (13) 
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In this case,    is independent of            ...,and, for stationarity, the roots of     = 

0 have to be greater than 1 in absolute value. It is important to note that equation (12) is 

a special case for AR(p) model of order p = ps with nonzero ɸ-coefficients only at the 

seasonal lags s, 2s, 3s,...,ps. 

3.1.3 Multiplicative Seasonal ARIMA models 

Multiplicative seasonality is a case where the size of the seasonal fluctuations deviates 

based on the general series level. It is obtained by mixing the seasonal and nonseasonal 

ARIMA models. The resulting model is said to be parsimonious and contains 

autocorrelation for seasonal lags and also for low lags neighboring the series. 

Alternatively, the generalized multiplicative seasonal ARMA (p,q)x(P,Q     model with 

seasonal period s is defined as a model with AR characteristic polynomial          

and MA characteristic polynomial         , where 

                                                    
       

  

                                               
      

        
                   (14)

   

   and 

 

                                                        
       

  

                                                     
      

        
                              (15) 

 



18 
 

3.1.4 Nonstationary Seasonal ARIMA models 

The most needed measure in modeling nonstationary seasonal processes is the seasonal 

difference. This seasonal difference whose period is s for {     is denoted by Δs   and 

given  as  

                                   Δs   =                                                 (16) 

 

Defining a nonstationary seasonal model 

A series    is said to be a multiplicative seasonal ARIMA model with regular orders p,d, 

and q, seasonal orders P,D, and Q, and seasonal period s if the differenced series 

        =     
                      (17) 

Satisfies an ARIMA(p,q)x(P,Q   model with seasonal period s. Then we say that      is 

an ARIMA(p,d,q)x(P,D,Q   model with seasonal period s. These kind of models are 

large and flexible from which selection of the best model for a specific series can be 

done. It is said to be statistically adequate to fit various series using these models and 

they usually have small number of parameters. Hence, in this thesis, we shall employ the 

models to analyze the data set. 

 

 

3.2 Model Estimation 

 

Box and Jenkins suggest a practical four-step procedure for determining the model. The 

four-step UBJ procedure is given as follows:  
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Step 1:  Pre-requisite Transformation  

If the series display futures that violates the stationarity assumption, then it is important 

to transform the series first in order to satisfy the stationarity assumption. Once the 

appropriate transformation is applied and autocorrelation function seem to be 

nonstationary, then differencing should be taken. In this study, the prerequisite test for 

stationarity and seasonality of the series was carried out in which a first regular 

difference (d) as well as natural logarithm (ln) transformation was taken. This power 

was suggested by Box-Cox transformation. After obtaining the stationarity of the series, 

both ACF and PACF of the stationary series are used to determine the order p and q of 

the ARIMA model. 

Step 2: Identification 

At this point, we now have six parameters p, d, q, P, D and Q to identify the likely 

model. The identification is done in two stages. The first stage is to identify a 

combination of d and D required to produce stationarity. For the seasonal data set, the 

autocorrelogram will have spikes at the seasonal frequency. For example, monthly series 

have high autocorrelations at lags 12, 24, 36, 48 and so on in that order. 

Examining these will indicate the need for seasonal differencing. In case there is need 

for seasonal differencing, then the autocorrelogram has to be re-estimated for the 

seasonally differenced series. Identification of d is done in similar way to the 

nonseasonal case. An extension of the Dickey-Fuller tests due to Hylleberg, Engle, 

Granger and Yoo (see Canova & Hansen, 1995; Hylleberg et al, 1990; Beaulieu & 

Miron, 1993) exists and may be used. The second stage is that after selecting d and D, 

we tentatively identify p, q, and Q from the ACF and PACF functions as mentioned in 
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Step 1 ( pre-requisite transformation). P and Q are identified by looking at the 

correlation and partial autocorrelation at lags s, 2s, 3s,....(multiples of the seasonal 

frequency). Meanwhile, in identifying p and q we ignore the seasonal spikes and proceed 

as in the nonseasonal case.  

( 0, d, 2 )x( 0, D, 2   

( 1, d, 1 )x( 1, D, 1   

Step 3: Estimation and selection of the model 

At the Estimation step, we obtain precise estimates of the coefficients of the model 

chosen at the identification step. We fit this model to the available data series to obtain 

estimates of ɸ1 and C in equation (1). After estimation, the best model is selected by use 

of information criteria. In this criteria, different competing models of a given series may 

be ranked according to their values of a chosen information criterion. These criterion 

include; 

  AIC – Akaike information criterion 

AIC: This is  a measure of the goodness-of-fit for the fitted model: 

                           AIC = -2log(L) + 2k        (18) 

 

where L denotes the maximized value of the likelihood function for the estimated model, 

k represents the number of parameters in the statistical model. The component 2k is a 

penalty for large number parameters in the model. A model with the smallest value of 

the AIC is better than the others.  
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BIC – Bayes information criterion 

BIC is a criterion for model selection among a class of parametric models. It is given as  

                             BIC = -2log(L) + klog(n),        (19) 

where L is the maximized value of the likelihood function for the estimated model, k is 

the number of the parameters in the model, n is the sample size. For any two estimated 

models, the model with the lowest value of BIC is preferred over the other.  

This step gives some warning signals regarding the appropriateness of the model. In 

particular, if the estimated coefficients fail to meet all the conditions, then we reject the 

model. 

Step 4: Model diagnosis  

After selecting our model, and having estimated its parameters, the adequacy of the 

fitted model is assessed by examining if the errors are statistically adequate. That is, if 

the residuals are white noise; we accept the model, else we reject and go back to Step 1 

and remodel until the appropriate fit is found. The outputs at this stage can depict how 

we can improve on our model. R has the function tsdiag ( ), which gives a diagnostic 

plot of the estimated model. There are a number of diagnostic measures available for 

ensuring that the ARIMA model is statistically adequate. The first measure is to first plot 

the standardized residuals. This must indicate that residuals are stationary. That is, they 

(residuals) should have zero mean with no autocorrelation. The second check is to 

simply plot the autocorrelogram of the residuals of the fitted model. The nature of the 

residuals of the model should resemble a white noise process if the model is 

appropriately specified. That is, a plot of autocorrelation should immediately die out 
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from one lag on. In that case, any significant autocorrelations may results in model 

specification. Thirdly, a statistically adequate model should have random shocks,    that 

are statistically independent. The residual autocorrelations    (k = 1, 2, ...,l) have to be 

uncorrelated and normally distributed as N(0, 1/n). The selected model will be examined 

for autocorrelation in residuals. Generally, it is testing the null hypothesis, that there is 

no residual autocorrelation, against the alternative hypothesis where there is at least one 

nonzero autocorrelation. That is,  

  H0 :    = 0 and k = 1, 2, 3, ..., K 

             H0 :    ≠ 0 for at least one k = 1, 2, 3, ..., K 

To ensure these assumptions, one can adopt a diagnostic chi-square test, known as the 

Ljung-Box test, on the autocorrelations of the residuals in order to test for adequacy in 

the model. This test statistic is given as, 

         ∑         
     

   ̂ ~    
                               (20) 

where n is the number of the observation used to fit the model and l is the number of 

autocorrelations included in the test. Also,   
   ̂  is the squared sample autocorrelation. 

The    statistic approximately follows the chi-squared distribution. Thus, if    is large, 

and statistically significant from zero, reject the null hypothesis; hence, it indicates that 

the residuals of the estimated model are autocorrelated. 

The fourth tool is that the analyst must check whether the standardized residuals are 

normally distributed, based on the third and fourth moments, by measuring the 

difference of the skewness and kurtosis of the series with those from the normal 

distribution.  
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3.3. Forecasts for the models 

The main goal of constructing a model for a time series is to make future predictions for 

a given series. It also plays a significant role in assessing the forecasts accuracy. In this 

section, two methods are used in forecasting. That is, ARIMA or SARIMA and 

Exponential smoothing methods. The analysis were carried out in R. 

3.3.1 ARIMA forecasts 

The ultimate test of an ARIMA model is its power or ability to forecast with the use of 

functions mentioned above. In order to obtain a forecast with a minimal errors, there are 

seven futures of a good ARIMA model taken into account (Prankratz, 1983). First, a 

good model is parsimonious. That is, it has the smallest number of coefficients which 

explain the data set. This provides a strong orientation in the model building.  Secondly, 

a good autoregressive (AR) model must be stationary. That is, the time series should 

have a constant mean and variance. Thirdly, the moving average (MA) of the model 

should be invertible. Fourth, a good model should have high quality estimates of its 

coefficients (AR and MA). That is, the coefficients must be statistically significant and 

different from zero. Fifth , the residuals of a good model should be independent. Sixth, a 

good model should be normally distributed. Having obtained the appropriate fitted 

model, the results of the forecast errors will be determined and examined. Lastly, good 

fitted model has sufficiently optimal forecast errors, which satisfactorily forecasts the 

future and fit the past series normally as well. That is, it gives acceptable forecast 

results.  
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From the existing theory of the series up to time t, namely,   ,   , ...,    ,  , we can 

forecast the value of       that will happen h time units ahead. In this case, time t is the 

forecast origin and h is the lead time forecast. This forecast is denoted and estimated as  

                          ̂ (l) = E(       ,   , ...,  )                                        (21) 

 

3.3.1.1 Measuring the Forecast accuracy for SARIMA model 

Some goodness-of-fit measures are obtained using accuracy ( ) code in R. These 

measures of forecast accuracy are based on the differences between predicted values of 

the dependent variable at time t and the actual value of the dependent variable at the 

same period (time t). There are number of forecasting accuracy measures, some of which 

are based on an average of the errors between the actual and predicted values at time t. 

The forecasting error is represented as: 

                                                =        ̂                          (22) 

     =     +          +... +          

                           =∑   
   
           

The expectation of the forecast is zero i.e.., E(       = 0 and this means that the 

prediction is unbiased. 

 

The Variance of the forecast error is obtained as 

Var(           ∑   
   
               

 ∑   
    

                                (23) 
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Measuring Forecasting accuracy 

A fundamental challenge while predicting is how to determine prediction error and 

appropriate technique for a series under study. The term accuracy refer to how best the 

model fits a given series, Makridakis and wheelwright (1989). All the forecast accuracy 

measures used, are obtained as follows; 

 

 Mean error 

       
 

 
∑   
 
                                      (24) 

 Mean Square Error 

                    MSE = 
 

 
∑   ̂    
 
                           (25) 

 Root Mean Square Error 

                     RMSE = √
 

 
∑   ̂    
 
                                                         (26) 

 

 Mean percentage Error 

                    MPE =
 

 
∑

  ̂     

 ̂ 

 
                         (27) 

 Mean Absolute Error 

              MAE = 
 

 
∑    ̂      
 
                                                     (28) 
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 Mean Absolute Percentage Error is also calculated as 

 

              MAPE = 
 

 
∑

   ̂      

 ̂ 

 
                    (29) 

where n stands for the retained out-of-sample observations for the forecast appraisal. 

MAPE is sometimes preferred measure than MSE as it gives less error. However, it is 

less preferable to RMSE. 

3.3.1.2. Exponential Smoothing method and Prediction 

The term exponential originates from the fact that weights decay exponentially. It is 

extended to the “Holt-Winters”-procedure so as to handle series containing both trend 

and seasonal irregularities. Because of this, three smoothing parameters are needed. 

These are alpha (α for the level), beta (  for the trend) and gamma (  for the seasonal 

variations). The ts-library in R contains the function Holt-Winters (y, alpha, beta and 

gamma), which enables the analysis to follow the Holt-Winters steps for a given series 

y. At this point, the three parameters can be identified with the optional α,   and  . 

Specific terms are eliminated by considering the corresponding value of the parameter as 

zero. For example, the seasonal term is removed by taking gamma as zero. Similarly, the 

smoothing parameters are obtained automatically. Exponential smoothing is a powerful 

forecasting tool which is characterized by its simplicity and nonparametric properties.  

According to Hyndman et al. (2002) and Hyndman et al. (2005b) have shown that all 

exponential smoothing methods (including non-linear methods) are optimal forecasts 

from innovations state space. Exponential smoothing techniques were originally 
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classified by pegels‟ (1969) taxonomy. This method was later extended by Gardner 

(1985), modified by Hyndman et al. (2002), and extended again by Taylor (2003), 

giving a total of fifteen methods as shown in table 3.1 (below). 

 

Table 3. 1 Exponential smoothing methods 

 

 

Trend 

Component 

   Seasonal Component 

N                 A                           M 

(None)   (Additive)       

(Multiplicative)       

N          (None) 

A          (Additive) 

          (Additive damped) 

M        (Multiplicative) 

        (Multiplicative 

damped) 

 N,N             N,A                       N,M 

A,N              A,A                       A,M 

   ,N             ,A                        ,M 

 M,N             M,A                        

M,M 

   ,N             ,A                    

   ,M 

 

When a time series Yt is decomposed, it is then split up into four non-observed 

components. A certain relation is assumed between these four components. The 

decomposition is either of the additive type (A) or the multiplicative type (M)
2
.  

The multiplicative model is defined by: 

      Yt= Tt x Ct x St x It .         (30) 

and the additive model is defined as  
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      Yt= Tt + Ct + St + It .         (31) 

where; 

T is the trend, C is the cycle, S is the seasonal component and I is the irregular 

component. 

The two models differ in that, in the additive model (A), the seasonal variation is 

independent of the absolute level of the time series, but it takes approximately the same 

magnitude each time. While in the multiplicative model, the seasonal variation takes the 

same relative magnitude each time. This means that the seasonal variation equals a 

certain percentage of the level of the time series. The amplitude of the seasonal factor 

changes with the level of the time series. 

Some of these methods in the above Table 3.1 are well known under other names. For 

instance, cell (N,N) explains the simple exponential smoothing (SES) method, cell (A,N) 

describes Holt‟s linear method, and cell (   ,N ) describes the damped trend method. 

The additive Holt-Winters‟ method is given by cell (A,A) and the multiplicative Holt-

Winters‟ method is given by cell (A,M). The remaining cells correspond to less 

commonly used but analogous methods. The simplest exponential smoothing method is 

the single smoothing (SES) method where only one parameter needs to be estimated. 

Holt‟s method uses two different parameters and allows forecasting for series with trend. 

Holt-Winters‟ method involves three smoothing parameters to smooth the data, the 

trend, and the seasonal index. In this study, we use exponential smoothing (SES) method 

described in subsection 3.3.2 that follows. It entirely relies upon only the past history of 

the series as in the question. 
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3.3.2 Exponential Smoothing method 

The exponential smoothing method is applied to minimize or smooth random behaviors 

existing a given series. It provides a true characteristics of the series. The technique can 

as well give appropriate ways of forecasting future values. ES  is a well-known method 

which estimates smoothed series. It allocates exponentially reducing weights for the 

earlier series. The predicted value is generated by the following equation: 

 

 

                              = α   + (1 α)                                    (32) 

where  

       = forecast for the next period 

   α = smoothing factor (constant) 

                                           

                 = old forecast for period t 

The forecast     is based on weighting the most recent observations    with a weight α 

and weighting the most recent forecast    with a weight of 1 α. 

If we expand equation (32), then we shall have the following 

 

        = α   + (1 α)    



30 
 

                      = α  + (1 α)[( α                

                                 = α  + α(              
      

 

If this substitution process is repeated by replacing      by its components and so on, 

then the result is  

     = α  + α(               
     +       

     +...+                                   (33) 

 

Here,      is the weighted moving average of all previous series. The exponential 

smoothing equation can be rewritten as follows: 

 

                   + α(                                                          (34) 

Exponential smoothing forecast (      is the old forecast    ) plus an adjustment for the 

error (   =       that occurred in the last forecast. The value of smoothing constant α 

must be between 0 and 1. This means that α  cannot be equal to 0 or 1. On the other 

hand, if stable predictions with smoothed random variation is desired, then a small value 

of α is used. Similarly, if a rapid response to real change in the pattern of observations is 

desired, a large value of α is appropriate. Thus, to estimate α, forecasts are computed for 

α equal to 0.1, 0.2, 0.3, ..., 0.9. Values of α near  one have less of a smoothing impact 

and allocates higher weight to recent changes in the observed series, while values of α 

near zero have more smoothing impact and are less responsive to recent changes.  It is 
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important to know that there is no formally correct criterion for selecting α. However, 

statistician‟s judgment is applied to select the best factor. Alternatively, a statistical 

procedure may be adopted to minimize the size of alpha. For example, the method of 

least squares might be used to determine the value of alpha for which the sum of the 

quantities is minimized. The sum of squared forecast error is computed for each of the α 

level. The mean square error (MSE) is computed as in equation (25) or simply given as 

                  MSE = 
   

   
                     (35) 

                  where SSE = ∑   
  

    

The value of α with the smallest MSE is chosen for use in producing the best future 

forecasts. Other performance measures that can be used include MAD (Mean Absolute 

deviation) – measures the accuracy of fitted time series value. It expresses accuracy in 

the same units as data, which helps conceptualize the amount of error. MAPE (Mean 

Absolute Percent Error) – measures the accuracy of the fitted time series values. It 

expresses accuracy as a percentage. For all the three measures, smaller values generally 

indicate a better fitting model. 
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CHAPTER 4 

 

EMPIRICAL ANALYSIS 

 

This chapter covers the empirical modeling of Turkish oil prices. There are three basic 

reasons which play active roles in selecting this univariate variable. First, considerable 

shocks in gas prices always have great effect on the economy. For instance, most US 

post World War II recessions were triggered by sharp increases in crude oil prices, 

(Hamilton, 1983). Scerri and Reut (2009) document that changes in oil prices have 

impacts on budgetary estimates. Rasche and Tatom (1981), Darby (1982), Burbidge and 

Harrison (1984), and Gisser and Goodwin (1986) discuss the economic importance of 

gas price shocks on the macroeconomy for the oil importing countries. They report a 

negative linear relationship between oil prices and real activity for these countries. 

Furthermore, Pindyck (1999) demonstrates that large oil price changes increase 

uncertainty about the future of prices and thus leads to delays in business investments. 

Second, these Turkish series under investigation have not been studied before by using 

Univariate time series methodology. Observing this fact has triggered our interest to 

model this variable. Lastly, the oil price shocks play an important role for pricing 

derivatives and financial tools. Hence, modeling gas prices in order to analyze its 

behaviour is a crucial issue for both policy makers and agents in the financial markets.  

For the first step of the empirical analysis, a time series plot, Box-Cox power 

transformation, first order regular differencing and unit root tests for stationarity were 
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considered. These tests included  Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 

(Kwiatkowski, Phillips et al., 1992) and Augmented Dickey Fuller (ADF) (Dickey and 

Fuller,1979).  According to the results, KPSS or ADF are constructed for the series 

which provided significant empirical evidence for stationarity of the ARIMA model. 

ARIMA model was performed by using the methodology suggested by Box and Jenkins 

(1970). In order to obtain the appropriate or best model, we also constructed ACF and 

PACF plots to determine the possible models. Akaike information Criteria (AIC) 

(Akaike, 1974) and significance of parameters of the estimated models are examined for 

comparison purposes. Finally, diagnostic checks for zero mean, uncorrelated error terms, 

Normality and homoscedasticity tests are performed for the fitted model. To detect the 

residual correlations, the Box-Ljung test (1978) and Box-pierce test (1970) are 

employed. For the normality test, we use both well-known Jargque-Bera (1980) and 

Shapiro-Wilk normality tests. On the other hand, Breusch-Pagan (1979) test is used to 

detect the presence of homoscedasticity. The  exponential smoothing models are also 

fitted automatically using the automatic smoothing code and the best one is selected 

based on the value of α with the smallest RMSE and ME.  Other measures that can be 

used in the selection of the best model are MAD, MAPE and LAD. All these measures 

mentioned here, are familiar in the literature. Makridakis (1993) pointed out that MAPE 

may not be appropriate in certain situation, such as budgeting, where the average 

percentage errors may not properly summarize accounting results and profits. Accuracy 

measures based on mean square error (MSE) criterion, especially MSE itself, have been 

used widely for long time in evaluating forecasts for single series. In fact, Carbone and 

Armstrong (1982) found that RMSE had the most preferred measure of forecast 
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accuracy. These are used to determine which of the values of α being considered have 

the lowest value of the selected performance measure. This chapter is divided into five 

sections as shown in Figure 1, below. The first section covers the data source and 

description part. It mainly shows the visual analysis and statistical descriptions of the 

series. The second section gives the results from the unit root tests. These results cover 

the standard unit root tests. The third section deals with model identification and 

estimation. The fourth subsection assesses the diagnostic checks for the fitted model and 

finally, section five gives the forecasts for both SARIMA and ES models.  

4.1. 

Data source and description 

 

4.2. 

Testing for unit roots and stationarity 

 

4.3. 

Model Identification and Estimation 

 

4.4. 

Diagnostic checking 

 

4.5. 

Forecasting and evaluation 

Figure 1: SARIMA modelling procedure 
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4.1. Data source and description 

The data set was extracted from Turkish Statistical Institute. All the series are monthly 

gas prices data set from January 2003 to December 2011. Petrol series were considered. 

The statistical tool used in this study to analyze the data set is R. To obtain the general 

overview for the data set, we first plot the time series (Ts) plot of the original data set to 

assess the nature and behaviour of the series. According to Figure 2 below, the series 

shows that there is a possibility of stochastic trend to be existing in the gas price series. 

The process mean is not constant. The process variance does not indicate presence of 

heteroscedasticity and seasonality is not visible. 

 

Figure 2: Time series plot of the gas prices in Turkey from January 2003 to December 

2011 

 

As next step of the analysis, a Box-Cox transformation is used to find out whether there 

is need for transformation of the series. The results from the Box-Cox transformation 

graph in Figure 3 below, indicate that  ̂ = 0.002. This is very close to zero and taking 

natural logarithm (ln) render to be an ideal step in the analysis.  
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Figure 3. Box-Cox transformation plot 

 

After taking the suggested transformation above, the transformed Ts plot in Figure 4 

below seem to be depicting a stationary process. We can use the KPSS test to assess 

whether there is level stationary or trend in the series. We can do this by using KPSS 

tests in section 4.2, that follows. 

 

Figure 4. Time series plot  of the transformed series 
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4.2 Phillips-Perron Unit Root Test and Visual Results 

This section is divided into two subsections according to the types of unit root tests used 

in modeling the gas prices as described below. Subsection one presents the results 

observed from the standard unit root tests for stationarity and trend presence. These tests 

include Augmented Dickey Fuller (ADF) test and Kwiatkowski, Phillips, Schmidt and 

Shin (KPSS) test. On the other hand, subsection two uses visual plots (ACF and PACF) 

to reveal the nature and behaviour of the series. The two detection criteria in both 

subsections are applied on the transformed series of the model as well as for the 

differenced one when taken. The motive here is to ascertain whether stationarity is 

attained after transformation or it can only be obtained after differencing. The 

examination on these issues follows in the next subsections. 

 

4.2.1. Results from the unit root tests for the transformed series 

After taking the proposed transformation, two unit root tests are employed to describe 

the nature of the data set. These two tests are KPSS and ADF. The KPSS test is used in 

two ways. Firstly, it is used to test the null hypothesis that the series is level stationary 

against the alternative that it is nonstationary. Secondly, it is applied to test the null 

hypothesis that there is trend stationary against the alternative that there is difference 

stationary series. In the first test, the results obtained show that  KPSS Level = 3.3282, 

Truncation lag parameter = 2, p-value = 0.01. According to these results, the series is 

nonstationary since the p-value is less than the significance level (0.05). In the second 

use of this test, the results indicate that KPSS Trend = 0.3435, truncation lag parameter 

= 2 and p-value = 0.01. Here the p-value is reported to be less than the significance level 
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meaning that we reject H0 and conclude that the series is difference stationary. It means 

that there is a stochastic trend in the model. As a result of this, it is necessary to apply 

the ADF test for further investigation on the above findings. When the test is applied, the 

results of the output are reported to be; Dickey-Fuller = -11.8602, Lag order = 4 and p-

value = 0.4287. Since the p-value is greater than the significance level (0.05), we fail to 

reject H0 and conclude that the series is not stationary. By looking at the two different 

tests; namely stationary and unit root tests, we can say that the series is difference 

stationary. This can also be investigated graphically in subsection 4.2.2 that follows. 

 

4.2.2. ACF and PACF plots for the transformed series 

The ACF plot in Figure 5 below exhibits slow exponential decay behaviour. This could 

be an indicator of non-stationary process. On the other hand, the PACF plot in the same 

figure has all its spikes insignificant except one at lag-1.  

 
 

Figure 5: ACF and PACF plot of the transformed series 
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By looking at the results reported and observed from the two subsections (4.2.1 & 4.2.2) 

above, we conclude that the series is difference stationary. This means that we should 

take the first order regular difference. The results of taking this action are reported in 

section 4.2.3 below. 

 

4.2.3. Results from time series plot for the differenced model 

After differencing, the trend seem to be removed from the series and the process mean 

looks to be constant as shown in Figure 6 below. This means that the series is stationary 

after first order regular difference is taken on the gas series. However, to ascertain this 

finding, we need to carry out more analysis before estimating the parameters. That is, we 

need to carry out the same tests and visual plots applied above  to confirm whether there 

is stationary in the series after differencing. 

 
Figure 6. Time series plot of the transformed and differenced series 
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4.2.4. Results from Unit Root Test after differencing 

After taking the first order regular difference, the results from both KPSS  and ADF tests 

suggest that the model is stationary now. That is, in the KPSS test we are testing the null 

hypothesis that the series is level stationary against the alternative that it is not 

stationary. The results show that KPSS Level = 0.0576, Truncation lag parameter = 2 

and p-value = 0.1. Based on these results, we fail to reject H0 that the series are level 

stationary since its p-values is greater than the significance level. On the other hand, in 

the ADF test for the null hypothesis that the model is not stationary against the 

alternative that it is stationary, show that; Dickey-Fuller = -82.1174, Lag order = 4 and 

p-value = 0.01. This means we reject H0 and conclude that the series is stationary. The 

two tests are in agreement with visual observation in the differenced TS plot in Figure 6, 

above. We can thus say that taking the first order regular difference is enough to make 

the process stationary.  A further visual look at the ACF and PACF plots in Figure 7 

below justifies our findings. That is, from the ACF plot, there are two significant spikes. 

Two significant spikes at lag-1 and at lag-6 are seen. This is the sign of MA(2) process. 

On the other hand, when we look at the PACF plot, there are two significant spikes at 

lag-1 and the second one at lag-12. This is a sign of AR(3) and AR(12) process.  
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Figure 7. Acf & pacf plots of the transformed and differenced series 

 

From Figure 7 above, we can summarize the observations for p, d, q and 

P, D, Q as follows: 

 Two significant spikes at lag-2 and lag-8 in the ACF plot. Our MA 

order is 2 ( Q=2). 

 Cut off after lag 3 in ACF.  Our MA order, q=2 

 Lag p=6 

 One regular difference was taken meaning that d=1 

 One seasonal difference, D=0 

 Monthly data, s=12 

Thus, we can suggest our possible models for the series as 

SARIMA(1,1,1)(1,0,0)[12],  SARIMA(1,1,0)(1,0,0)[12], 

SARIMA(0,1,1)(1,0,0)[12],  ARIMA(1,1,1),  ARIMA(1,1,0), 

ARIMA(0,1,1),  ARIMA(1,1,6),  ARIMA(0,1,6). 
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4.3. Model Identification and Estimation 

This section is divided into two subsections. First subsection 4.3.1, discusses the model 

estimation and selection for ARIMA or SARIMA model, and subsection 4.3.2  deals 

with the estimation of the ES model.  

4.3.1 SARIMA and ARIMA Model Estimation and Selection 

After the model has been identified, we use conditional-sum-of-squares to determine the 

starting values of the parameters, then do the maximum likelihood estimate for the 

suggested models. The process for choosing these models depends on choosing the 

model with the smallest AIC and BIC. The models are given in Table 4.1 below with 

their corresponding values of AIC and BIC. 

  Table 4.1: Final output for the top five SARIMA and ARIMA models 

Model AIC BIC 

SARIMA(1,1,1)(         -459.86 -449.17 

(SARIMA1,1,0)(         -460.56 -452.54 

SARIMA(0,1,1)(         -458.06 -450.04 

ARIMA(0,1,1) -460.05 -460.05 

ARIMA(1,1,0) -462.55 -462.55 

ARIMA(1,1,6) -456.52 -435.14 

 

Among those suggested possible models, comparing their AIC and BIC as shown in 

Table 4.1 above, the appropriate model is found to be ARIMA(1,1,0) with its AIC = -

462.55. From our fitted model, using the method of maximum likelihood, the estimated 
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parameters (AR1) of the model with its corresponding standard error (s.e.) are given as 

0.3221 and 0.0925, respectively. Also  ̂ =0.0007613. Based on these results, we 

conclude that all the coefficients of the ARIMA(1,1,0) model are significantly different 

from zero and the estimated values satisfy the stability condition. Meanwhile, in time 

series modeling, the selection of the best model fit to the data is directly related to 

whether residuals analysis is performed well. One of the assumptions of ARIMA model 

is that, for a good model, the residuals must follow a white noise process. That is, the 

residuals have zero mean, constant variance and also uncorrelated. Details of the 

assumptions are discussed under section 4.4 (diagnostic checks) in this chapter. 

 

4.3.2 Exponential smoothing Model Estimation and Selection 

The Exponential smoothing method is used to fit the model as per the procedures 

discussed in Chapter 3, subsections 3.3.2. The present note gives an interesting 

Exponential Modeling fit of the gas prices of Turkey. The fit is found to be well enough 

with a smoothing factor of   ̂ = 0.9999 as shown below.  

This model will be used together with ARIMA model in forecasting and then their 

results will be compared.  

Exponential Smoothing 

ETS(M,Ad,N)  

Smoothing parameters: 

  alpha = 0.9999  

  beta  = 0.3157  

   phi   = 0.8  
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  sigma:  0.0275 

  AIC         AICc       BIC  

 -36.87265 -36.28441 -23.46199 

 

4.4. Diagnostic checks for the model 

In this section, we deal with a rigorous assessment of the diagnostic tests for the selected 

ARIMA model. The fitted model from the Exponential smoothing method will not be 

assessed here. It will be assessed at the forecasting stage. Thus, only ARIMA model will 

be checked in this section. A number of diagnostic tools have been availed for ensuring 

that the model is statistically adequate. All these tools have been discussed in Chapter 3, 

section 3.2., step4.  This section will be divided according to diagnostic checks as 

follows; 

 

4.4.1 Checking for zero mean and white noise 

From Figure 8 below, we can say that the residuals are stationary. That is, they 

approximately have zero mean. This is in line with the first assumption made in step 4 of 

section 3.2. On the other hand, all the spikes seem to be insignificant for both ACF and 

PACF. Only one spike in the PACF plot is slightly observed as above the white noise 

band at lag 12. However, if neglected, then we can say that we have a white noise 

process. 
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Figure 8: Plot of standardized residuals, ACF and PACF plots of standardized residuals 

 

 

Figure 9: Diagnostic plots of standardized residuals 
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In Figure 9 above, all the residuals lie between -2 and +3 bands while the second plot of 

ACF depicts a white noise process. In the third plot of the p-value shows lack of 

correlation between its lags. 

 

4.4.2. Testing for Uncorrelated error terms   

In this section, we use two tests. The first test is the Box-Ljung test and the second test is 

the Box-Pierce test. The results from the first test are reported as χ-squared = 15.4648, df 

= 15 and p-value = 0.4185 while those from the second test are χ-squared = 13.9235, df 

= 15 and p-value = 0.5313. According to these results, the p-values are greater than the 

alpha level. We thus, fail to H0 which means that there is no serial correlation. This is in 

line with the findings observed from p-value plot in Figure 9 above. 

 

4.4.3. Testing for Normality of errors 

From the QQ-plot and histogram of residuals below (Figure 10), we can say that the 

residuals come from a normal distribution. The data points are spread out near straight 

line although there are some points which depart from this line. We should analyze the 

test results for normality assumption in a more robust way. 
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Figure 10: Histogram and QQ plot of standardized residuals 

 

We can use two known tests to further investigate the normality assumption. These two 

tests are Jargue Berra test and Shapiro-Wilk normality test. They are both employed to 

test the null hypothesis that the error terms are normally distributed against the 

alternative that the error terms are not normally distributed. The results from the analysis 

reports Jargue Bera test as  χ-squared = 4.0718, df = 2, p-value = 0.1306 while those for 

Shapiro-Wilk test  as W = 0.9772, p-value = 0.06017. According to these results, the p-

values from each test are greater than the alpha value. We thus fail to reject H0 which 

means that the error terms are normally distributed. 

 

4.4.4. Testing for homoscedasticity of the residuals 

From the ACF and PACF plots in Figure 11 below, the squared residuals lie within the 

95% White Noise bands except at high lags where one spike in each plot are seen as 

significant. However, we can ignore it,  each plot has one above the limits each at lag 26 

but this can be ignored and conclude that there is no heteroscedasticity.  
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Figure 11: ACF and PACF plots of squared standardized residuals 

 

4.5.  Forecasts 

In this section, two forecast estimates  and forecast accuracy will be made as mentioned 

in Section 3.3 for the two methods employed in the analysis and their results will be 

compared in order to assess their forecasting performances. The first forecast are 

obtained from the ARIMA fitted model and the second one are made using the 

exponential smoothing model. These forecast estimates and measures of accuracy are 

computed by employing formulae 24-29 as given in Chapter 3, under Section 3.3. 

In Figure 12 below, the red line is the plot of the original values and the black dots are 

the estimated values. When we look at the position of the dotted black lines, we can 

conclude that our model is suitable for our data because they  are very close to each 

other. In order to make forecast check, we forecasted monthly gas prices for 2012. Table 

4.2 presents the model forecasts and the corresponding standard errors. However, these 

forecasts are not of the original form of the series under analysis. They are for 

transformed and we need to retransform these forecasts in order to return to origin 
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values by simply taking the exponential of the forecasted values. The results are 

presented in Table 4.3 below. On the other hand Table 4.4 below, reports the results for 

the accuracy measure for the ARIMA model. These results will be used in assessing the 

appropriate fitted model by comparing them. The model which will have the minimum 

values will stand to be the best. 

 

4.5.1 ARIMA Forecasts 

 

Figure 12. Plot of the estimated and forecasted values 
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Table 4.2. ARIMA Forecasts and their standard errors per month (in 2012) 

 

Month $pred $se Months $pred $se 

Jan 1.447    0.045   Jul 1.448   0.107   

Feb 1.447   0.059   Aug 1.447   0.114    

Mar 1.448   0.071   Sep 1.447     0.121     

Apr 1.447   0.081 Oct 1.447    0.127    

May 1.447   0.091    Nov 1.447   0.133   

Jun 1.447   0.099    Dec 1.447 0.139 

 

 

Table 4.3. Forecast results of ARIMA after Retransformation 

 

 Month Forecasts Month Forecasts 

Jan 4.250518 Jul 4.250412 

Feb 4.250445 Aug 4.250412 

Mar 4.250422 Sep 4.250412 

Apr 4.250415 Oct 4.250412 

May 4.250413 Nov 4.250412 

Jun 4.250412 Dec 4.250412 

 

Table 4.4 Measure of goodness-of-fit for the ARIMA model 

 

ME RMSE MAE MPE MAPE MASE 

0.0053 0.0272 0.0206 0.5224 2.038 0.954 
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4.5.2 Exponential Smoothing Forecasts 

Table 4.5.  Predicted values by ES 

 

 

Table 4.5 above, displays the results of the forecasted gas prices obtained by the 

smoothing method. The predicted value results (point forecasts) seem to be close 

to those obtained by ARIMA model in Table 4.3.

Month Point forecast Lo80 Hi80 Lo95 Hi95 

Jan  4.238759 4.089465 4.388052 4.010434 4.467084 

Feb 4.228567 3.951015 4.506118 3.804088 4.653045 

Mar 4.220413 3.837416 4.603411 3.634669 4.806158 

Apr 4.213890 3.734745 4.693036 3.481101 4.946680 

May 4.208672 3.639524 4.777820 3.338236 5.079109 

Jun 4.204498 3.550261 4.858734 3.203930 5.205065 

Jul 4.201158 3.466091 4.936224 3.076971 5.325345 

Aug 4.198486 3.386403 5.010569 2956512 5.440460 

Sep 4.196349 3.310712 5.081985 2.841885 5.550812 

Oct 4.194639 3.238611 5.150667 2.732520 5.656757 

Nov 4.193271 3.169744 5.216797 2.627922 5.758619 

Dec 4.192176 3.103800 5.280552 2.527649 5.856703 
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4.5.2.1   Exponential Smoothing Forecasts 

Figure 13 depicts  the predicted and forecasted values using automatic exponential 

smoothing model obtained in subsection 4.3.2.  

 

Figure 13. Plot of predicted and forecasted values using ES 

 

Measuring the goodness-of-fit for the exponential model 

Table 4.6 shows the results for the goodness of fit for the exponential smoothing model. 

The ME and RMSE are reported to be 0.008 and 0.0809 respectively. 

Table 4.6. Measure of goodness-of-fit for ES model 

 

    ME RMSE MAE MPE MAPE MASE 

0.008 0.0809 0.0598 0.2937 2.0536 0.9431 
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4.6 Comparison of ARIMA and ES forecasts  

 

Table 4.7. Forecasts of gas prices (in Turkey) for 2012 using ARIMA and ES models 

 

Months Original gas prices ARIMA ES 

Jan 4.3657 4.250518 4.238759 

Feb 4.3953 4.250445 4.228567 

Mar 4.5639 4.250422 4.220413 

Apr 4.6789 4.250415 4.213890 

May 4.3547 4.250413 4.208672 

Jun 4.2383 4.250412 4.204498 

Jul 4.3085 4.250412 4.201158 

Aug 4.4861 4.250412 4.198486 

Sep 4.6023 4.250412 4.196349 

Oct 4.8053 4.250412 4.194639 

Nov  4.250412 4.193271 

Dec  4.250412 4.192176 

 

Table 4.7 presents the forecasts obtained using the two best models from each approach. 

The results from the ES seem to be close to those of  ARIMA model. This means that 

simple methods like exponential smoothing sometimes give as good results as a complex 

model like ARIMA. They all give results which are close to the original series. 

However, the ARIMA model sees to be better in closeness to the original gas price 

series. We can also look at the accuracy measures for both methods in Table 4.8 below 

and assess their forecasting performances. Here the results obtained by the ARIMA and 

ES forecasting models for monthly gas prices in Turkey are compared with respect to 
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RMSE. From this table (Table 4.8) , it indicates that the ARIMA model is the best to 

forecast the future values, because it has the minimum measures of forecasting errors for 

RMSE which is used in our study.  This measure is chosen since it is preferred over the 

others according to Carbone and Armstrong (1982). It is believed to produce more 

reliable results and it is widely used to choose the best forecasting models.  

Table 4.8. Accuracy measures for both SARIMA and ES Forecasts 

 

Methods/measures ME RMSE MAE MPE MAPE MASE 

ARIMA 0.0053 0.0272 0.0206 0.5224 2.0383 0.9537 

ES 0.0088 0.0809 0.0598 0.2937 2.0536 0.9431 
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CHAPTER 5 

 

CONCLUSION AND FUTURE RESEARCH 

 

 

 

 

This research study- is an attempt to choose the most appropriate model among the 

various estimated combinations of the Univariate time series models. That is,  ARIMA 

model as well as ES models which pose high power for forecasting Turkish gas prices. 

We have come up with procedure guideline for ARIMA modeling which includes the 

following steps: data source and description; testing for unit roots and stationarity; 

model identification and estimation; diagnostic checks, and finally forecasting ability.  

The traditional Box-Jenkins and ES approaches were mainly employed in the analysis 

and forecasting of the future values. Specifically, ARIMA and ES methods are used 

since time series can be expressed in terms of historical data (AR part) plus present and 

lagged values of a „white noise‟ error term (MA part). The main goal of this research 

was to determine the most appropriate model among these two for the purpose of 

forecasting in the real world circumstances, holding the cost of model construction. A 

general procedure for Univariate forecasting is to undergo all the testing stages of 

ARIMA process. These models are theoretically justified and they can give deviating 

results from those of the alternative approaches like multivariate modeling. This study is 

based on the monthly gas price data, which has been used to determine the various 
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possible estimated ARIMA and ES models from which the best ones were selected. The 

forecasts from the two methods are reported to give results which are slightly deviated 

from each. In other words, the simple methods like ES sometimes give results as good as 

a complex model like ARIMA. The results from the two methods are close to the 

original series. However, the ARIMA was reported to be better in closeness to the 

original gas price series. Also, based on the accuracy measures, the ARIMA model was 

reported to have better forecasts than the ES since it has the minimum measures of 

forecasting errors for RMSE which is used in our study. Therefore, we can conclude that 

the forecasting of the Turkish monthly gas prices with ARIMA (1,1,0) is more efficient 

than the ES method. 

The main contribution of this research is in evaluating the forecast performance of the 

various time series models used in a comprehensive and systematic way. Empirical 

results in this study will also pave the way for future research. The limitations of this 

study is that model is very effective in the short term forecasts than in the long run 

forecast. Also other external factors (such as demand and supply, government 

regulations, natural disasters) may have influenced the monthly variations in the gas 

prices other than its internal structure. As a further study, we suggest that analysis with 

explanatory variables, with linear and nonlinear models should be investigated to 

explore other factors that could be affecting gas prices. Causality analysis may give the 

factors affecting the gas prices in Turkey.  
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