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ABSTRACT

ON VERIFICATION OF RESTRICTED EXTENDED AFFINE EQUIVALENCE OF
VECTORIAL BOOLEAN FUNCTIONS

Sınak, Ahmet

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh ÖZBUDAK

Co-Supervisor : Dr. Oğuz Yayla

SEPTEMBER 2012, 66 pages

Vectorial Boolean functions are used as S-boxes in cryptosystems. To design inequivalent

vectorial Boolean functions resistant to known attacks is one of the challenges in cryptogra-

phy. Verifying whether two vectorial Boolean functions are equivalent or not is the final step

in this challenge. Hence, finding a fast technique for determining whether two given vectorial

Boolean functions are equivalent is an important problem. A special class of the equivalence

called restricted extended affine (REA) equivalence is studied in this thesis. We study the ver-

ification complexity of REA-equivalence of two vectorial Boolean functions for some types,

namely types I to VI. We first review the verification of the REA-equivalence types I to IV

given in the recent work of Budaghyan and Kazymyrov (2012). Furthermore, we present the

complexities of the verification of REA-equivalence types I and IV in the case basic simul-

taneous Gaussian elimination method is used. Next, we present two new REA-equivalence

types V and VI with their complexities. Finally, we give the algorithms of each type I to VI

with their MAGMA codes.
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ÖZ

VEKTÖR BOOLE FONKSİYONLARININ KISITLI GENİŞLETİLMİŞ AFİN DENKLİĞİ
ÜZERİNE

Sınak, Ahmet

M.S., Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ortak Tez Yöneticisi : Dr. Oğuz Yayla

EYLÜL 2012, 66 sayfa

Vektör Boole fonksiyonları kriptosistemlerde S-kutularıdır. Kriptografik ataklara dayanıklı

denk olmayan vektör Boole fonksiyonları tasarlamak kriptografide önemli amaçlardan biri-

sidir. İki vektör Boole fonsiyonların birbiri ile denk olup olmadığını anlamak bu amacın

son basamağıdır. Dolayısıyla, vektör Boole fonksiyonlarının denkliğine bakmak için hızlı

bir yöntem bulmak önemli bir problemdir. Denkliğin bir sınıfı olan kısıtlı genişletilmiş afin

(KGA)-denkliği bu tezde çalışılmıştır. KGA-denkliğinin I ile VI arasındaki çeşitleri için

iki vektör Boole fonksiyonların birbiri ile denk olup olmadığını anlamanın karmaşıklığını

çalıştık. Öncelikle, yakın zamandaki Budaghyan ve Kazymyrov (2012)’un çalışmasındaki

KGA-denkliğinin I ile IV arasındaki çeşitlerini inceledik. Ayrıca, KGA-denkliğinin I ve IV

çeşitleri için temel eş-zamanlı Gauss eleme yöntemi kullanılmasıyla oluşan karmaşıklıkları

sunduk. Sonra, KGA-denkliğinin iki yeni çeşidi V ve VI’yı karmaşıklıkları ile birlikte verdik.

Son olarak, KGA-denkliğinin I ile VI arasındaki çeşitleri için algoritmaları MAGMA kodları

ile birlikte sunduk.

vi



Anahtar Kelimeler: Vektör Boole fonksiyonlar, KGA-denkliği, AB-fonksiyonlar, APN-fonksiyonlar,
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this thesis, the verification of equivalence of vectorial Boolean functions is studied. In

particular, the special case of Extended Affine (EA)-equivalence, called Restricted Extended

Affine (REA)-equivalence of vectorial Boolean functions is considered. Boolean functions

play an important role in providing high-level security for modern ciphers. They are mainly

used in cryptography as non-linear combining in stream ciphers and as substitution boxes (S-

boxes) in block ciphers. The most important contribution of these functions is high resistance

to the differential and linear cryptanalysis, which are the main attacks on modern ciphers.

The verification and generation of vectorial boolean functions with optimal characteristics,

which are resistant to attacks, are two important problems in cryptography. The purpose

of this thesis is to contribute to solving the verification problem of s-boxes in block ciphers.

Sometimes equivalence classes of Boolean functions are helpful for cryptographers to achieve

necessary properties without losing others (i.e. δ-uniformity, nonlinearity, etc). Therefore, it

is required to check several functions for equivalence. For instance, once one finds a new

vectorial boolean function, it is necessary to verify whether it is equivalent to already known

ones which are used in block ciphers as substitution boxes (see [17]). We present some

fundamental work related to vectorial Boolean functions and their equivalences in Chapter 2.

The complexity of exhaustive search for checking EA-equivalence of two functions from Fn
2

to itself equals to O(23n2+2n) (see [7]). When n = 6, the complexity is 2120 which makes it

impossible to compute with the help of existing tools. The restricted form of EA-equivalence

needs to be defined because of this high cost. Thus, REA-equivalence was studied in [2] and
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[7]. Alex Biryukov et al.[2] showed that if given functions are permutations of Fn
2, the com-

plexity of determining REA-equivalence equals to O(n22n) for the case of linear equivalence,

and O(n222n) for affine equivalence. In addition, L. Budaghyan and Kazymyrov [7] showed

that some types of REA-equivalence can be verified for arbitrary functions. These types and

two new types of REA-equivalence are studied in Chapter 5 in this thesis.

1.2 Overview of the thesis and of our contributions

We deal with the complexities of verification procedures of REA-equivalence types. There

are four motivations of this thesis. The first one is to expose the verification procedures of

REA-equivalence types given in [7]. The verification procedures of these types are analyzed

in Section 5.1. Our procedures are supported with examples. Next motivation is to resolve

the complexities of the verification procedures. In the calculation of the complexities, we

count the number of polynomial evaluations and the explicit number of field operations mod-

ulo 2. The detailed complexities of verification for these types are given in Table 5.17. Third

one is to obtain new REA-equivalence types. The verification procedures of two new types,

namely types V and VI, are constructed in Section 5.2. The detailed complexities of verifi-

cation for these types are given in Table 5.18. Finally, we introduce the pseudocodes of the

verification procedures of REA-equivalence types. We also implement these pseudocodes in

mathematical software package MAGMA [8]. The thesis is organized as follows:

• Chapter 2 introduces basic definitions, equivalence algorithms for vectorial Boolean

functions and their properties.

• Chapter 3 presents previous work in [7] connected with our studies.

• Chapter 4 describes a basic method, namely the simultaneous Gaussian elimination

method, to verify some REA-equivalence types.

• Chapter 5 provides verification procedures of REA-equivalence types with their com-

plexities and pseudocodes.

• Chapter 6 gives a brief summary of this thesis.

• Finally, Appendix gives the MAGMA codes of the algorithms of verification of REA-

equivalence types.

2



CHAPTER 2

PRELIMINARIES

In this chapter, we present fundamental definitions and results used in the subsequent chapters.

For further explanations, applications and previous work, please see [10, 7, 9, 12, 2] and

references there in.

Throughout this thesis, field additions modulo 2 (in F2) will be denoted by ⊕ (XOR), and

field multiplications modulo 2 (in F2) will be denoted by � (AND). However, the additions of

elements of the finite fields F2n will be denoted by + despite the fact that they are performed

in characteristic 2. Since Fn
2 can often be identified with F2n , we shall also denote by + the

addition of vectors of Fn
2 when n > 1.

2.1 Vectorial Boolean Functions

This section presents the vectorial boolean function theory from the point of view of cryp-

tography. First, the definition of vectorial Boolean functions is given. Second, the techniques

of their representation and transformation are defined. Finally, the fundamental properties of

vectorial Boolean functions and concepts related to cryptography are summarized.

Definition 2.1.1 Let n and m be two positive integers. The functions from Fn
2 to Fm

2 are called

(n,m)-functions. Such function F being given, the Boolean functions f1, · · · , fm defined at

every x ∈ Fn
2, by F(x) = ( f1(x), · · · , fm(x)), are called the coordinate functions of F. When the

numbers m and n are not specified, (n,m)-functions are called multi-output Boolean functions,

vectorial Boolean functions or S-boxes.

3



The family of (n,m)-functions obviously includes the (single-output) Boolean functions which

correspond to the case m = 1

2.2 Representation of Vectorial Boolean Functions

There are two different ways of representing vectorial Boolean functions.

2.2.1 Algebraic Normal Form

The notion of algebraic normal form of Boolean functions can easily be extended to vectorial

Boolean functions. Each coordinate function of such a function F is uniquely represented as

a polynomial on n variables, with coefficients in F2 and in which every variable appears in

each monomial with degree 0 or 1. Therefore, the function F itself is uniquely represented as

a polynomial of the same form with coefficients in Fm
2 :

F(x) =
∑

I∈P(N)

aI

∏
i∈I

xi

 =
∑

I∈P(N)

aI xI ,

where P(N) denotes the power set of N = {1, · · · , n}, and aI belongs to Fm
2 . This poly-

nomial is called the algebraic normal form (ANF) of F. Keeping the i-th coordinate of

each coefficient in this expression gives back the ANF of the i-th coordinate function of

F. The algebraic degree of the function is by definition the global degree of its ANF:

d◦F = max {|I||aI , (0, · · · , 0); I ∈ P(N)}

2.2.2 Univariate Polynomial Representation

A second representation of the (n,m)-functions exists when m = n. If we identify vector space

Fn
2 with the finite field F2n , a function F : F2n → F2n is then uniquely represented as univariate

polynomial over F2n of degree at most 2n − 1:

F(x) =

2n−1∑
j=0

δ jx j, δ j ∈ F2n . (2.1)

If m is a divisor of n, then any (n,m)-function F can also be viewed as a function from

F2n to itself, since F2m is a subfield of F2n [10]. Hence, the function admits a univariate

polynomial representation. Note that this unique polynomial can be represented in the form

4



trn/m
(∑2n−1

j=0 δ jx j
)
, where trn/m (x) = x + x2m

+ x22m
+ x23m

+ · · · + x2n−m
is the trace function

from F2n to F2m . It is possible to read the algebraic degree of F from the univariate polynomial

representation. Let us denote by w2( j) the number of nonzero coefficients js in the binary

expansion
∑n−1

s=0 js2s of j, i.e. w2( j) =
∑n−1

s=0 js. The number w2( j) is called the 2-weight

of j. Then, the function F has algebraic degree max j=0,··· ,2n−1|δ j,0w2( j). Indeed, according

to the above equalities, the algebraic degree of F is clearly bounded above by this number.

Moreover, it can not be strictly smaller, because the number 2n
∑d

i=0 (n
i) of those (n, n)-functions

of algebraic degrees at most d equals to the number of those univariate polynomials
2n−1∑
j=0

δ jx j, δ j ∈ F2n ,

such that max j=0,··· ,2n−1|δ j,0w2( j) ≤ d.

In particular, F is F2-linear if and only if F is a linearized polynomial over F2n :

F(x) =

n−1∑
j=0

δ jx2 j
, δ j ∈ F2n .

Function L : F2n −→ F2m is called linear mapping if it satisfies L(x + y) = L(x) + L(y) for

x, y ∈ Fn
2. The sum of a linear function and a constant is called an affine function. Any affine

function A : F2n −→ F2m can be represented in matrix form

A(x) = M · x + V, (2.2)

where m × n matrix M ∈ Fm×n
2 and m × 1 vector V ∈ Fm

2 . All operations are performed in F2.

Thus, the equation (2.2) can be rewritten as

a1

a2
...

am


=



m1,1 m1,2 . . . m1,n

m2,1 m2,2 . . . m2,n
...

...
. . .

...

mm,1 mm,2 . . . mm,n


·



x1

x2
...

xn


+



v1

v2
...

vm


with ai, vi, xl,m j,k ∈ F2 for all i, j ∈ {1, · · · ,m} and k, l ∈ {1, · · · , n}.

Example 2.2.1 A vectorial Boolean function F : F3
2 → F

3
2 given as

F(x3, x2, x1) = (x3 + 1, x1 + x1x3, x1 + x2 + x1x3 + x2x3)

is represented in the ANF, its algebraic degree is 2 and Univariate polynomial form of F:

F(x) = x6 + x3 + x + 1, x ∈ F3
2,

max {w2(6),w2(3),w2(1),w2(0)} ≤ d = 2.
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2.3 Differentially δ-uniform

For any positive integers n and m, a function F : F2n −→ F2m is called differentially δ-uniform

[18] if for every a ∈ Fn
2\{0} and every b ∈ Fm

2 , the equation F(x) + F(x + a) = b admits at

most δ solutions. Vectorial Boolean functions used as S -boxes in block ciphers must have

low differential uniformity to allow high resistance to differential cryptanalysis (see [1]).

2.4 The Walsh Transform

We shall define the Walsh transform of an (n,m)-function F or the function which maps any

ordered pair (u, v) ∈ Fn
2×F

m
2 to the value at u of the Walsh transform of the component function

v · F, that is,

λ(u, v) =
∑
x∈Fn

2

(−1)v·F(x)⊕u·x,

where · denotes inner products in Fm
2 and Fn

2 , respectively. The set

{
λ(u, v)|(u, v) ∈ Fn

2 × F
m
2 , v , 0

}
(2.3)

is called the Walsh spectrum of F and the set ΛF =
{
|λ(u, v)| |(u, v) ∈ Fn

2 × F
m
2 , v , 0

}
is called

the extended Walsh spectrum of F.

2.5 AB and APN Functions

Definition 2.5.1 [9] The function F : F2n −→ F2n is said to be almost perfect nonlinear

(APN) if the equation

F(x) + F(x + a) = b (2.4)

have no more than two solutions in Fn
2 for all a ∈ Fn

2\{0}, b ∈ Fn
2.

Clearly, the equation (2.4) must have either 0 or 2 solutions. The notion of APN function is

closely connected to the notion of almost bent (AB) function which can be described in terms

of the Walsh transform of a function [11].
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Definition 2.5.2 [9] The function F : F2n −→ F2n is said to be an almost bent (AB) function

if the Walsh spectrum of F given by (2.3) equals to
{
0,±2

n+1
2
}
.

AB functions exist only when n is odd. Definition 2.5.2 does not depend on a particular choice

of the inner product in Fn
2. If we identify Fn

2 with F2n , we can take x · y = tr(xy) in (2.3), where

tr is the trace function from F2n to F2.

2.5.1 Properties of Stability

Let us recall the properties of stability of APN functions given by Nyberg [18] and give some

others. Every AB function is an APN function but the converse is not true in general. See

[10] for a comprehensive survey on APN and AB functions.

Proposition 2.5.3 [9] The right and the left compositions of an APN (resp. AB) function by

an affine permutation are APN (resp. AB). The inverse of an APN (resp. AB) permutation is

APN (resp. AB).

Proposition 2.5.4 [9] Let F(x) be an APN function (resp. an AB function) from Fn
2 to itself,

and A(x) be an affine function. Then the function F(x) + A(x) also is an APN (resp. AB).

Finding the vectorial Boolean functions over finite fields which satisfy nonlinearity conditions

is one of the main problems in cryptography. Once found, the second problem occurs in deter-

mining whether they are equivalent or not in some sense to any of the functions already known

[15]. In this thesis, our main question is whether two vectorial Boolean functions are equiva-

lent or not. Some definitions of equivalence relations for vectorial Boolean functions will be

given in Section 2.6 . Several notions of equivalence exist in [14], but the most useful equiv-

alences for Boolean functions appear to be the Carlet-Charpin-Zinoviev (CCZ)-equivalence

and the extended affine (EA)-equivalence. The restricted form of EA-equivalence, called

REA-equivalence, is studied in this thesis.
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2.6 Equivalences

Equivalence classes provide a powerful tool in verification of vectorial Boolean functions.

However, the research has not been yet fully exploited in this area. More studies are needed

to fully characterize equivalence classes in relation to their cryptographic properties, as well

as to determine the number of equivalence classes for functions with more than six input

variables. Another important problem in this area is to find a fast technique for determining

whether two functions with more than six input variables are equivalent or not.

Definition 2.6.1 [2] Let F,G : F2n −→ F2n be vectorial boolean functions. The functions

F,G are called linear equivalent (LE) if there exist two invertible linear functions L1 and L2

of F2n such that

F(x) = L1 ◦G ◦ L2(x).

Definition 2.6.2 [2] Let F,G : F2n −→ F2n be vectorial Boolean functions. The functions

F,G are called affine equivalent (AE) if there exist two affine permutations A1 and A2 of F2n

such that

F(x) = A1 ◦G ◦ A2(x).

Definition 2.6.3 [7] Let F,G : F2n −→ F2m be vectorial Boolean functions. The functions

F,G are called extended affine equivalent (EA-equivalent) if there exist an affine permutation

A1 of F2m , an affine permutation A2 of F2n and a linear function L3 from F2n to F2m such that

F(x) = A1 ◦G ◦ A2(x) + L3(x).

Clearly, Affine functions A1 and A2 can be represented as A1(x) = L1(x) + V1 and A2(x) =

L2(x) + V2 for some linear functions L1 and L2, and for some vectors V1 ∈ F
m×1
2 , V2 ∈ F

n×1
2 .

Moreover, L1, L2, L3 can be represented as L1(x) = M1 · x, L2(x) = M2 · x, L3(x) = M3 · x for

some matrices M1 ∈ F
m×m
2 , M2 ∈ F

n×n
2 , M3 ∈ F

m×n
2 , respectively.

Remark 2.6.4 EA-equivalence is represented in the matrix form as follows

F(x) = M1 ·G(M2 · x + V2) + M3 · x + V1

where V1 ∈ F
m×1
2 , V2 ∈ F

n×1
2 , M1 ∈ F

m×m
2 , M2 ∈ F

n×n
2 and M3 ∈ F

m×n
2 .
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The complexity of verification of EA-equivalence is extremely high. Therefore, L. Budaghyan

and Kazymyrov [7] define the restricted form of EA-equivalence, called restricted extended

affine-equivalence.

Definition 2.6.5 [7] Let F,G : F2n −→ F2m be vectorial Boolean functions. The functions

F,G are called restricted EA-equivalent (REA-equivalent) if at least one of the following

holds

• L1 or L2 is the identity map,

• L3 is the zero or the identity map,

• V1 or V2 is the zero vector.

Linear and affine equivalences are particular cases of the REA-equivalence. Some REA-

equivalence algorithms are presented in the Table 2.1.

Table 2.1: Some types of REA-equivalence

L1(x) L2(x) L3(x) V1 V2 Types REA-equivalence Source
0 0 0 LE F(x) = M1 ·G(M2 · x) [2]
0 AE F(x) = M1 ·G(M2 · x + V2) + V1 [2]

x 0 0 I F(x) = M1 ·G(x) + V1 [7]
x 0 0 II F(x) = G(M2 · x + V2) [7]
x x 0 III F(x) = G(x) + M3 · x + V1 [7]

x 0 IV F(x) = M1 ·G(x) + M3 · x + V1 [7]
x 0 V F(x) = G(M2 · x) + M3 · x + V1 New
x 0 0 VI F(x) = G(M2 · x) + V1 New

The verification procedures for REA-equivalence types in [7] will be exposed in Chapter 5.

We will also illustrate the verification procedures for new types, namely types V and VI, in

Chapter 5.

The extended version of EA-equivalence, which is first defined in [4] is given below.

Proposition 2.6.6 [9] Let F be an APN (resp. AB) function on Fn
2 and L1, L2 be two linear

functions from Fn
2 × F

n
2 to Fn

2. Assume that (L1, L2) is a permutation on Fn
2 × F

n
2 such that

the function F2(x) = L2(F(x), x) is a permutation on Fn
2. Then, the function F1 ◦ F−1

2 , where

F1(x) = L1(F(x), x) is APN (resp. AB).
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Remark 2.6.7 For a function F from Fn
2 to itself, we denote GF the graph of the function F

by

GF :=
{
(x, F(x))|x ∈ Fn

2

}
⊂ F2n

2 .

The property of stability of APN and AB functions given in Proposition 2.6.6 leads to the

definition of the following equivalence relation of functions.

Definition 2.6.8 [4] (CCZ-Equivalence) Two functions F, F
′

: Fn
2 → F

n
2 are called Carlet-

Charpin-Zinoviev(CCZ)-equivalent if there exists a linear (affine) permutation L : F2n
2 −→

F2n
2 such that L(GF) = GF′ .

We shall consider only the case of linear functions, but all statements related to the CCZ-

equivalence can be easily extended for the case of affine functions, as well. A linear function

L : F2n
2 −→ F

2n
2 can be considered as a pair of linear functions L1, L2 : F2n

2 × F
n
2 such that

L(x, y) = (L1(x, y), L2(x, y)) for all x, y ∈ Fn
2. Then for a function F : Fn

2 −→ F
n
2 we have

L(x, F(x)) = (F1(x), F2(x)), where

F1(x) = L1(x, F(x)),

F2(x) = L2(x, F(x)).

Hence, the set L(GF) =
{
(F1(x), F2(x))|x ∈ Fn

2

}
is the graph of a function F

′

if and only if

the function F1 is a permutation. If L and F1 are permutations then L(GF) = GF′ , where

F
′

= F2 ◦ F−1
1 and the functions F and F

′

are CCZ-equivalent.

CCZ-equivalence is the most general known equivalence [4, 9] which partitions the set of

functions into classes with the same nonlinearity and differential uniformity. Since CCZ-

equivalent functions have the same differential uniformity and the same nonlinearity, the

resistance of a function to linear and differential attacks is CCZ-invariant. CCZ-equivalent

functions have also the same weakness/strength with respect to algebraic attacks.

Remark 2.6.9 Every function CCZ-equivalent to an APN (resp. AB) function is also APN

(resp. AB).

Theorem 2.6.10 ([6, Theorem 1]) Two Boolean functions (i.e. the case of m = 1) of Fn
2 are

CCZ-equivalent if and only if they are EA-equivalent.
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Theorem 2.6.11 ([6, Theorem 3]) Let n ≥ 5 and k > 1 be the smallest divisor of n. Then

for any m ≥ k, the CCZ-equivalence of (n,m)-functions is strictly more general than their

EA-equivalence.

Hence, EA-equivalent functions are CCZ-equivalent and also if a function F is a permutation,

then F is CCZ-equivalent to F−1 [9]. However, CCZ-equivalent functions are not necessarily

EA-equivalent even if these functions are inverse of each other [4]. Since EA-equivalent

functions have the same differential uniformity and the same nonlinearity, the resistance of a

function to linear and differential attacks is EA-invariant. EA-equivalence classes of functions

over Fn
2 preserve APN and AB properties desirable for S-box functions in block cipher [15].

They lead to infinite classes of AB and APN polynomials, which are EA-inequivalent to

power functions. The algebraic degree of a function (if it is not affine) is invariant under

EA-equivalence but, in general, it is not preserved by CCZ-equivalence. It is obvious that the

properties which are EA-invariant is also REA-invariant.

Remark 2.6.12 AE and LE are special cases of REA-equivalence. Similarly, REA-equivalence

is a special case of EA-equivalence. On the other hand, CCZ-equivalence is a more gen-

eral form of EA-equivalence. (i.e. LE and AE-equivalences =⇒ REA-equivalence =⇒ EA-

equivalence =⇒ CCZ-equivalence, for any two vectorial Boolean functions.)

Definition 2.6.13 [6, Definition 1] Two (n,m)-functions F and F
′

are called Extended CCZ-

equivalent if the indicators of their graphs GF =
{
(x, F(x)); x ∈ Fn

2

}
and G

′

F =
{
(x, F

′

(x)); x ∈ Fn
2

}
are CCZ-equivalent.

Corollary 2.6.14 [6, Corollary 3] Let F and F
′

be two (n,m)-functions. Then, F and F
′

are

ECCZ-equivalent if and only if they are CCZ-equivalent.

Example 2.6.15 [16, Example 5] There are 7 CCZ classes of functions F : F3
2 −→ F

3
2, each

of which is a single EA class. When F : F4
2 −→ F

4
2, we consider functions with low differential

uniformity δ = 2, 4, 8. The two EA classes of APN functions which form a single CCZ-class

are already known.

Example 2.6.16 [5, Proposition 3] The functions F(x) = x3 + tr(x9) is CCZ-equivalent to

function G(x) = x3 + tr(x9) + (x2 + x)tr(x3 + x9) on Fn
2 when n = 3.
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The functions F(x) = x + x2 + x3 + x4 and G(x) = x3 + x4 can be easily computed over Fn
2 for

n = 3. When these functions are checked for REA-equivalence of type III, it is seen that they

are REA-equivalent and in the same equivalence class. However, they are REA-inequivalent

for REA-equivalence of type VI.

Example 2.6.17 [5, Theorem 3] The function F(x) = x3 + tr(x9) is CCZ-inequivalent to

function G(x) = x9 on Fn
2 when n = 7.

The function F can be easily computed over Fn
2 for n = 7, F(x) = x3 + x9 + x17 + x18 + x34 +

x36 + x68 + x72. When these functions are checked for REA-equivalences of types I, II, III, IV, V,

VI, it is seen that they are REA-inequivalent for all types. Because they are CCZ-inequivalent.
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CHAPTER 3

PREVIOUS WORK

In this chapter, the previous work [7] related to solving the system of equations is presented.

Let F : Fn
2 → F

m
2 and G : Fn

2 → F
n
2 be two vectorial Boolean functions. The aim of this chapter

is to present basic methods to find an m×n matrix M satisfying the equation F(x) = M ·G(x).

The trivial method is the exhaustive search method, that is checking the equation F(x) =

M ·G(x) for all matrices M ∈ Fm×n
2 and for all x ∈ Fn

2. Consequently, the total complexity of

obtaining the m × n matrix M satisfying the equation F(x) = M · G(x) by exhaustive search

method ( as given in [7]) equals to

O(2nm+n),

where O(2nm) and O(2n) are complexities of checking for all matrices M ∈ Fm×n
2 and for all

x ∈ Fn
2, respectively. Apart from the trivial method, there also exist some other methods to

find M satisfying the equation F(x) = M ·G(x). One of them is the natural method which is

based on solving the system of equations. Any system of m equations with n variables can be

solved for n ≤ 32 with the complexity u = O(max {n,m}2) (see [7] for details), which gives

the complexity of finding m by n matrix M. The values of F(x) and G(x) for all x ∈ Fn
2 should

be first calculated. Then the matrix representation of the equation F(x) = M · G(x), where

M is unknown, F(x)i is the i-th component of F(x) for i = 1, 2, . . . ,m and G(x) j is the j-th

component of G(x) for j = 1, 2, . . . , n, is as follows:



F(x)1

F(x)2
...

F(x)m


=



m1,1 m1,2 . . . m1,n

m2,1 m2,2 . . . m2,n
...

...
. . .

...

mm,1 mm,2 . . . mm,n


·



G(x)1

G(x)2
...

G(x)n


(3.1)

13



To find M, it is required to solve 2n equations with n variables for each row of the matrix M.

Thus, the i-th row of the matrix M can be found by solving the system of equations given

below:

F(x1)i = mi,1G(x1)1 + mi,2G(x1)2 + · · · + mi,nG(x1)n

F(x2)i = mi,1G(x2)1 + mi,2G(x2)2 + · · · + mi,nG(x2)n
...

F(x2n)i = mi,1G(x2n)1 + mi,2G(x2n)2 + · · · + mi,nG(x2n)n

(3.2)

The matrix representation of the equations in (3.2) for the i-th row of M is as follows:

F(x1)i

F(x2)i
...

F(x2n)i


=



G(x1)1 G(x1)2 . . . G(x1)n

G(x2)1 G(x2)2 . . . G(x2)n
...

...
. . .

...

G(x2n)1 G(x2n)2 . . . G(x2n)n


·



mi,1

mi,2
...

mi,n


. (3.3)

The system in (3.3) is defined as F(x)i = G(x) · Mi such that F(x)i is the i-th component of

F(x) and Mi is the i-th row of M, for all i ∈ {1, · · · ,m}, x j ∈ F
n
2 for all j ∈ {1, · · · , 2n}. For

simplicity, denoted the system (3.3)in (3.3) Fi = G · Mi, where G ∈ F2n×n
2 is the coefficients

matrix of the system. The augmented matrix [G|Fi] of the system (3.3) for the i-th row of M

is as follows for all i ∈ {1, · · · ,m}:

Aug =



G(x1)1 G(x1)2 . . . G(x1)n

G(x2)1 G(x2)2 . . . G(x2)n
...

...
. . .

...

G(x2n)1 G(x2n)2 . . . G(x2n)n

F(x1)i

F(x2)i
...

F(x2n)i


(3.4)

Budaghyan and Kazymyrov [7, Proposition 2] use the Williams method [21] to reach that the

system in (3.4) can be solved with the complexity of

O(max
{
2n, n

}2) = O(22n).

It is obvious that the i-th row of M can be found by solving the system of equations (3.2). It is

required to solve m-system of 2n equations in n unknowns to find the matrix M. Consequently,

the complexity of finding M (as given in [7]) equals to

O(m · max
{
2n, n

}2) = O(m22n). (3.5)

Apparently, this complexity is extremely high. In order to reduce this high value, basic Gaus-

sian elimination method is used simultaneously to solve (3.4) for all i ∈ {1, · · · ,m} in Chapter

4.
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CHAPTER 4

SIMULTANEOUS GAUSSIAN ELIMINATION METHOD

The main aim is to find the m × n matrix M satisfying the equation

F(x) = M ·G(x). (4.1)

The system of equations (3.2) can also be solved by simultaneous application of the Gaussian

elimination method for all i ∈ {1, · · · ,m}. The purpose of applying this method is to realize

the better complexity of finding the matrix M. We first present the consecutive application of

the Gaussian elimination method. Next, we will consider simultaneous Gaussian elimination

method to solve the equation [G|Fi] in (3.4) for all i ∈ {1, · · · ,m} .

4.1 Consecutive Gaussian Elimination Method

We now give the basic details of the algorithm to solve the system of equations [G|Fi] in (3.4)

by Gaussian elimination method. Given the system of equations we reduce their augmented

matrix to reduced row echelon form. We can obtain a matrix G′ ∈ F2n×n
2 , where G′ is in re-

duced row echelon form, from matrix G ∈ F2n×n
2 by a sequence of elementary row operations.

There are three main steps of elementary row operations. We note that all operations are over

F2.

Step I: Swap two rows: Ri ←→ R j

Use Step I if a row does not have any non zero entry in the corresponding column, it

requires to change other row having non zero entry in this column.

Step II: Multiply a row by a non zero scalar: λ · Ri such that λ , 0.

Use Step II so that the first nonzero entry of a row is 1.

15



Step III: Add a scalar multiple of one row to a different row: λ ·Ri + R j such that λ , 0.

Use Step III so that all nonzero entries in the columns containing the leading nonzero

entry are zero.

We note that it is unnecessary to apply Step II in Algorithm 1 since the augmented matrix is

over F2, i.e. the nonzero entry of a row is 1.

Algorithm 1 Gaussian elimination method over GF(2).
Require: G

Ensure: Row Reduced Ech(G)

1: If the first row don’t have leading nonzero entry in the first column, any row having leading

nonzero entry in the first column is interchanged with the first row by applying step I.

2: Step III must be applied to the first row so that all nonzero entries except leading nonzero entry

in first column are 0. There may be at most (2n − 1) entries except leading nonzero entry in

this column. So, we apply at most (2n − 1) times Step III, each of which is applied to entries of

corresponding column.

3: Apply again the steps 1 and 2 to the i-th row of G for i = 2, · · · , n.

4: return Row Reduced Ech(G)

Thus, the complexity of Algorithm 1 is as follows: Step I can be applied many times with

complexity zero. Step III can be applied at most n(2n − 1) times. There are (2n − 1)(t − i + 1)

field additions modulo 2 for the i-th row of G for i = 1, 2, . . . , n, where the value t is the

number of columns in the augmented matrix. Consequently, the number of field additions

modulo 2 is

(2n − 1) [t + (t − 1) + · · · + (t − (n − 1))] = (2n − 1) [(t − n + 1) + · · · + t]

= (2n − 1)
[

t(t+1)
2 −

(t−n)(t−n+1)
2 )

]
= 2n( n(2t+1)−n2

2 ) − ( n(2t+1)−n2

2 ).

(4.2)

As there are n + 1 columns of the system in (3.4), the required number of field additions

modulo 2 is

2n(
n2 + 3n

2
) −

n2 + 3n
2

(4.3)

to solve the system by applying Gaussian elimination method presented in Algorithm 1. For

each row of M, we need to repeat the process of solving the system of equations consecutively.

As a result, the required number of field additions modulo 2 to find M in (3.1) is

m(2n(
n2 + 3n

2
) −

n2 + 3n
2

). (4.4)
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4.2 Simultaneous Gaussian Elimination Method

We continue with the presentation of the simultaneous application of Gaussian elimination

method for finding the m×n matrix M satisfying the equation F(x) = M ·G(x) if it exists. The

main point is that the same coefficient matrix G is used in all systems (3.3) for each row of the

matrix M. Thus, we solve m-systems of 2n-equations in n unknowns to find the matrix M in a

unique augmented matrix so that the complexity of finding the matrix M can be reduced. We

call this as simultaneous Gaussian elimination method. The augmented matrix of m-systems

for all rows of M is [G|F1|F2| . . . |Fm], equivalently

Aug =



G′(x1)1 G′(x1)2 . . . G′(x1)n

G′(x2)1 G′(x2)2 . . . G′(x2)n
...

...
. . .

...

G′(x2n)1 G′(x2n)2 . . . G′(x2n)n

F′(x1)1

F′(x2)1
...

F′(x2n)1

. . .

. . .

. . .

. . .

F′(x1)m

F′(x2)m
...

F′(x2n)m


. (4.5)

One can easily solve the system of equation in (4.5) by applying Algorithm 1. One obtain the

complexity of the simultaneous application of Gaussian elimination method by substituting

t = m + n into (4.2). Hence, we obtain the following result.

Lemma 4.2.1 The complexity of solving the system in (4.5), that is m-systems of 2n equations

in n unknowns, with simultaneous Gaussian elimination method is

2n(
2mn + n2 + n

2
) −

2mn + n2 + n
2

(4.6)

field additions modulo 2, which gives the complexity of finding the m by n matrix M in the

equation (4.1).

Remark 4.2.2 Although we used the basic Gaussian elimination method simultaneously to

solve the m-systems of 2n equations in n unknowns, the corresponding complexity (4.6) is not

consistent with the complexity (3.5) of solving the same systems of equations as given in [7].

That is, it seems that (4.6) is better than (3.5). We also note that the complexity (4.6) is better

than the complexity (4.4).

We now give a handy result that is used in our procedures.

Proposition 4.2.3 [7] Any linear function L : Fn
2 → F

m
2 can be converted to a matrix with n

evaluations of L.
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Proof. The aim is to find an m × n matrix M satisfying

L(x) = M · x

Suppose rowsM(i) and colsM( j) are the i-th row and the j-th column of matrix M for i ∈

{0, 1, · · · ,m − 1} and j ∈ {0, 1, · · · , n − 1}, respectively.

M =
[
mi,j

]
0≤i≤m−1,0≤j≤n−1

=



m0,0 m0,1 . . . m0,n−1

m1,0 m1,1 . . . m1,n−1
...

...
. . .

...

mm−1,0 mm−1,1 . . . mm−1,n−1


Each element of the set U =

{
2 j|0 ≤ j ≤ n − 1

}
is equivalent to a vector having the value 1 in

the j-th position and zeros elsewhere;

20 =



1

0

0
...

0


, 21 =



0

1

0
...

0


, · · · , 2n−1 =



0

0
...

0

1


.

It is clear that the set U is the subset of Fn
2. The linear transformation L can then be computed

for all x ∈ U;

L(2j) = M · 2j =



m0,0 m0,1 . . . m0,n−1

m1,0 m1,1 . . . m1,n−1
...

...
. . .

...

mm−1,0 mm−1,1 . . . mm−1,n−1


·



0
...

1

0
...


(4.7)

=



m0, j

m1, j

· · ·

mm−1, j


= colsM( j), j ∈ {0, 1, · · · , n − 1} .

Obviously, every column, except the j-th column, becomes zero when multiplying the matrix

M with the vector 2 j. In deed, L(2 j) = M j give us colsM( j) as in (4.7). To find all columns

of M, it is necessary to compute n values of L(2 j) for all 2 j ∈ U. Consequently, the m by n

matrix M can be found by n evaluations of L. �
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CHAPTER 5

REA-EQUIVALENCE TYPES

In this chapter, the verification procedures of some REA-equivalence types are presented with

their complexities. Some of them in the Tables 5.1 were studied by Budaghyan and Kazymy-

row [7]. We now expose the verification procedures of these types with their complexities. In

addition, our verification procedures are more extensive than the procedures given in [7].

Table 5.1: The types of REA-equivalence in [7]

Types REA-equivalence
I F(x) = M1 ·G(x) + V1

II F(x) = G(M2 · x + V2)
III F(x) = G(x) + M3 · x + V1

IV F(x) = M1 ·G(x) + M3 · x + V1

We note that the required number of field operations for the multiplication of the matrix

M ∈ Fm×n
2 with vector V ∈ Fn×1

2 given by M · V is

mn − m XORs, mn ANDs. (5.1)

We also note that the required number of field operations for the addition of the vectors M,V ∈

Fm×1
2 given by M + V is

m XORs. (5.2)
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5.1 Verification of REA-Equivalence Types

The complexities of REA-equivalence algorithms are explicitly calculated in terms of the

number of polynomial evaluations, the number of field additions modulo 2 (XORs) and the

number of field multiplications modulo 2 (ANDs).

We note that every vectorial Boolean function can be written in the form

H(x) = H′(x) + H(0) (5.3)

where H′(x) has terms of algebraic degree at least 1.

Remark 5.1.1 We define kF,v for any given function F : Fn
2 −→ F

m
2 and any given set V ⊆

img(F) as

kF,v :=
∣∣∣∣{y ∈ Fn

2|F(y) = v
}∣∣∣∣ , (5.4)

for v ∈ V.

Proposition 5.1.2 Let F,G : Fn
2 → Fm

2 be vectorial Boolean functions and G be defined

by (5.3). Then the complexity of checking F and G for REA-equivalence of type I (F(x) =

M1 ·G(x) + V1) is

i. 2km2 XORs, 2km2 ANDs and 2n+1 + 2 evaluations in case the set V = {2i|0 ≤ i ≤

m − 1} ⊆ img(G′), where k =
∏
v∈V

kG′,v.

ii. 2n( m2(2k+1)+m
2 ) +

m2(2k−1)−m
2 XORs, 2km2 ANDs and 2n+1 + 2 evaluations in case G is

arbitrary, where k =
∏

v∈img(G′)

kG′,v.

Proof. Using (5.3), REA-equivalence of type I can be written in the following form

F′(x) + F(0) = M1 ·G′(x) + M1 ·G(0) + V1,

and it gives us the following equations F(0) = M1 ·G(0) + V1,

F′(x) = M1 ·G′(x).
(5.5)

20



To begin with, it is necessary to find M1 from the second equation in (5.5). There exist two

different cases for the function G′. If the set V = {2i|0 ≤ i ≤ m − 1} ⊆ img(G′), then there

exists at least one x ∈ Fn
2 such that G′(x) = 2i for all 2i ∈ V . If not, we interchange F

and G for REA-equivalence. To find those values of x ∈ Fn
2, we need to compute the values

G′(x) for all x ∈ Fn
2 whose complexity is 2n evaluations of G′. Then, we compute the values

F′(x) for those values of x ∈ Fn
2 in order to find matrix M1 whose complexity is at most 2n

evaluations of F′. As a result, the i-th column of M1 can be found by means of the values

F′(x) = M1 ·2i = M1i = colsM1(i) such that G′(x) = 2i for all i = 0, · · · ,m−1 as in Proposition

4.2.3,

F′(x) = M1 · 2i =



m1,i

m2,i
...

mm,i


= M1i .

If there are more than one x such that G′(x) = 2i, then there may be more than one i-th column

of matrix M1 any i = 0, · · · ,m − 1. On the basis of this, there may be more than one matrices

M1 which can satisfy the equation F′(x) = M1 · G′(x). The number of possible matrices M1

is the value k which is the product of the size of the inverse image of elements 2i in the set

img(G′) for all i ∈ {0, · · · ,m − 1}. For a given matrix M1, one can easily compute V1 from

the first equation in (5.5). At this point, one needs 2 evaluations of F(0) and G(0). Secondly,

the required number of field operations of matrix-vector product M1m×m ·G(0)m×1 as in (5.1)

is m2 − m XORs, m2 ANDs. Finally, the required number of field operations of m-bit vectors

XORs M1 ·G(0) ⊕ F(0) is m XORs. Therefore, the complexity of finding V1 is m2 XORs, m2

ANDs and 2 evaluations. Moreover, we need to verify whether or not the matrices M1 and V1

satisfy the equation

F(x) = M1 ·G(x) + V1 (5.6)

as well as finding these matrices. For this purpose, the equation in (5.6) must be checked for

each given M1 and V1 (see Section 5.3) whose complexity is m2 XORs and m2 ANDs. For each

matrix M1, we need to repeat the process of finding V1 and checking the equation in (5.6) in

order to verify whether they are REA-equivalent or not. The number of this repetition is at

most k which is the number of possible matrices M1. If the equation (5.6) is satisfied some

M1 and V1, two functions F and G are REA-equivalent of type I. If the equation (5.6) can

not be satisfied any M1 and V1, they are REA-inequivalent of type I. Consequently, the total
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complexity of verification for REA-equivalence of F and G is k(2m2) XORs, k(2m2) ANDs

and 2n+1 + 2 evaluations. This completes the proof of part (i).

The next step is the proof of part (ii). Let now G be arbitrary and F′(x)i be the i-th bit of

F′(x). Denote img(G′) the image set of G′ and uG′ = |img(G′)|. Let also NG′ be any subset

of Fn
2 which satisfies |NG′ | = |{G′(a)|a ∈ NG′}| = uG′ . To begin with, we need to compute the

values of F′(x) and G′(x) for all x ∈ Fn
2 whose complexity is 2n+1 evaluations as in part (i).

To find the matrix M1, we can construct the system of equations as in (3.2) for each row of

M. To construct the system of equations, uG
′ many x ∈ NG′ out of 2n must be used. To find

i-th row of M for all i ∈ {1, . . . ,m}, the system of equation can be constructed as follows for

all x j ∈ NG′ , 1 ≤ j ≤ uG′ .

F′(x1)i = mi,1G′(x1)1 ⊕ mi,2G′(x1)2 ⊕ · · · ⊕ mi,mG′(x1)m

F′(x2)i = mi,1G′(x2)1 ⊕ mi,2G′(x2)2 ⊕ · · · ⊕ mi,mG′(x2)m
...

F′(xuG′ )i = mi,1G′(xuG′ )1 ⊕ mi,2G′(xuG′ )2 ⊕ · · · ⊕ mi,mG′(xuG′ )m

(5.7)

To find M1 it is necessary to solve the system (5.7) for all i ∈ {1, . . . ,m}. The matrix repre-

sentation of the system of equations for all i ∈ {1, . . . ,m} is as follows:



F′(x1)i

F′(x2)i
...

F′(xuG′ )i


=



G′(x1)1 G′(x1)2 . . . G′(x1)m

G′(x2)1 G′(x2)2 . . . G′(x2)m
...

...
. . .

...

G′(xuG′ )1 G′(xuG′ )2 . . . G′(xuG′ )m


·



mi,1

mi,2
...

mi,m


, (5.8)

equivalently, F′i = G′ · M1i where G′ is the coefficients matrix of the system. The sys-

tems [G′|F′i] can be solved in a unique augmented matrix for all i ∈ {1, · · · ,m} similar to

(4.5). Therefore, the augmented matrix of the system (5.8) for all rows of M1 is [G′|NG′] =

[G′|F1
′|F2

′| . . . |Fm
′], or equivalently

Aug =


G′(x1)1 G′(x1)2 . . . G′(x1)m

G′(x2)1 G′(x2)2 . . . G′(x2)m

...
...

. . .
...

G′(xuG′ )1 G′(xuG′ )2 . . . G′(xuG′ )m

F′(x1)1

F′(x2)1

...

F′(xuG′ )1

. . .

. . .

. . .

. . .

F′(x1)m

F′(x2)m

...

F′(xuG′ )m


. (5.9)
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On the other hand, if G is not one-to-one function, it is required to find all sets NG′ satisfying

|NG′ | = |{G′(a)|a ∈ NG′}| = uG′ to find all possible matrices M1. Because, for distinct sets

NG′ , there may be distinct matrices M1. If the size of the inverse image of any element in

the set img(G′) is known, then so is the number of the sets NG′ . The number of the sets

NG′ is the value k which is the product of the size of the inverse image of all elements in

the set img(G′). Accordingly, there exist k distinct augmented matrices which have the same

coefficient matrix as in (5.9). That is, there exist exactly k distinct systems
[
G′|Nl

G′
]

for all

l ∈ {1, · · · , k}. Furthermore, there may be distinct matrices M1 corresponding to each set Nl
G′

if the system
[
G′|Nl

G′
]

is consistent for each l. Thus, the number of all matrices M1 is less

than or equals to k. The systems
[
G′|Nl

G′
]

can be solved in a unique augmented matrix since

the same coefficient matrix G′ is used in these systems for all l ∈ {1, · · · , k}. The augmented

matrix of the k distinct systems for all NG′ sets is[
G′|N1

G′ |N
2
G′ | . . . |N

k
G′

]
, (5.10)

which can be solved by simultaneous application of the Gaussian elimination method. There-

fore, the complexity of solving the system (5.10) with simultaneous Gaussian elimination

method is 2n( m2(2k+1)+m
2 ) − m2(2k+1)+m

2 XORs. One can easily obtain this value by substituting

t = km + m into (4.2). This complexity together with 2n+1 evaluations give the complexity

of finding the possible matrices M1. Similar to part (i), the total complexity of computing

V1 and checking process for all possible matrices M1 is k(2m2) XORs k(2m2) ANDs and 2

evaluations. Therefore, the total complexity of verification for REA-equivalence of F and G

is 2n( m2(2k+1)+m
2 ) +

m2(2k−1)−m
2 XORs, k(2m2) ANDs and 2n+1 + 2 evaluations. �

The total complexity of type I is demonstrated for 6 ≤ m = n ≤ 9 and k = 1 in the Table 5.2.

Table 5.2: The complexity of type I

k = 1 part(i) part(ii)
n = m #XOR #AND #Evaluation #XOR #AND #Evaluation

6 72 72 130 3663 72 130
7 98 98 258 9877 98 258
8 128 128 514 25628 128 514
9 162 162 1026 64548 162 1026

Remark 5.1.3 The reason why we use only the elements of the set NG′ in Fn
2 to construct the

equation system in (5.7) is the following: if we use x0 ∈ NG′ and x1 < NG′ ( i.e. G′(x0) =
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G′(x1)), there exist two cases: If F′(x0) , F′(x1), the system is inconsistent.

If F′(x0) = F′(x1), some row operations would be unnecessary.

These two cases are undesirable cases.

Example 5.1.4 Let F,G : F3
2 −→ F

3
2 be vectorial boolean functions and F(x) = (x1x2⊕x2x3⊕

1, x1x2 ⊕ x3 ⊕ 1, x3 ⊕ x1x2) and G(x) = (x1x3 ⊕ x1x2, x1x2 ⊕ x2 ⊕ 1, x1x3 ⊕ x3 ⊕ 1), where

x = (x3, x2, x1) ∈ F3
2. Functions F and G are REA-inequivalent of type I.

Proof. REA-equivalence of type I can be written in the following form

F(0) = M1 ·G(0) + V1

F′(x) = M1 ·G′(x),

where F′(x) = (x1x2 ⊕ x2x3, x1x2 ⊕ x3, x3 ⊕ x1x2), G′(x) = (x1x3 ⊕ x1x2, x1x2 ⊕ x2, x1x3 ⊕ x3),

F(0) = (1, 1, 0) and G(0) = (0, 1, 1). We first check whether part (i) of type I is satisfied or

not. For this purpose, we calculate G′(x) and F′(x) for all x ∈ Fn
2 in the Table 5.3.

Table 5.3: Calculating the F′ and G′ in Example 5.1.4

x = (x3, x2, x1) F′(x) G′(x) 2i

(0,0,0) (0,0,0) (0,0,0)
(0,0,1) (0,0,0) (0,0,0)
(0,1,0) (0,0,0) (0,1,0) 21

(0,1,1) (1,1,1) (1,0,0) 20

(1,0,0) (0,1,1) (0,0,1) 22

(1,0,1) (0,1,1) (1,0,0) 20

(1,1,0) (1,1,1) (0,1,1)
(1,1,1) (0,0,0) (0,0,0)

It is easy to see in the Table 5.3 that G′ satisfies part (i) since 2i ∈ img(G′) for i = 0, 1, 2. As

a result, the possible matrices M1 can be found by means of F′(x) = M1 · 2i = colsM1(i) such

that G′(x) = 2i for i = 0, 1, 2. So, there exist 2 distinct possible matrices M1:
1 0 0

1 0 1

1 0 1

 ,


0 0 0

1 0 1

1 0 1

 .
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We continue with finding V1 for matrix M1 =


1 0 0

1 0 1

1 0 1

 . The values 0 and M1 are substi-

tuted into the equation F(0) = M1 · G(0) + V1 to find V1. It is easy to see that V1 = F(0) +

M1 ·G(0) = (1, 0, 1). Finally, we need to check whether the equation F(x) = M1 ·G(x) + V1

for given M1,V1 holds. For this purpose, we define K(x) := M1 ·G(x) + V1 and substitute the

values M1,V1 into K(x),

K(x) :=


1 0 0

1 0 1

1 0 1




x1x3 ⊕ x1x2

x1x2 ⊕ x2 ⊕ 1

x1x3 ⊕ x3 ⊕ 1

 +


1

0

1


= (x1x3 ⊕ x1x2 ⊕ 1, x3 ⊕ x1x2 ⊕ 1, x3 ⊕ x1x2).

Since K(x) , F(x), F is REA-inequivalent to G for this matrix M1. We can not say that F is

REA-inequivalent to G for type I before we also check the other matrix M1 =


0 0 0

1 0 1

1 0 1

 .
The process of finding V1 and checking operation are repeated for this matrix M1. Similarly,

it is easily seen that K(x) , F(x). The function F is REA-inequivalent to G for this matrix

M1. Thus, we say that F is REA-inequivalent to G for type I. �

Example 5.1.5 Let F,G : F3
2 −→ F

3
2 be vectorial boolean functions and F(x) = (x2 ⊕ x3 ⊕

1, x2 ⊕ 1, x1x3) and G(x) = (x1 ⊕ x2 ⊕ 1, x2, x1x3 ⊕ 1), where x = (x3, x2, x1) ∈ F3
2. Functions

F and G are REA-inequivalent of type I.

Proof. REA-equivalence of type I can be written in the following form

F(0) = M1 ·G(0) + V1

F′(x) = M1 ·G′(x),

where F′(x) = (x2 ⊕ x3, x2, x1x3) and G′(x) = (x1 ⊕ x2, x2, x1x3), F(0) = (1, 1, 0) and G(0) =

(1, 0, 1). First, it should be checked whether part (i) is satisfied or not. For this purpose, we

calculate G′(x) and F′(x) for all x ∈ Fn
2 in the Table 5.4. It is obvious that G′ does not satisfy

part (i) since 2i < img(G′) for i = 2 as it is seen in the Table 5.4. The functions F and G

should be interchanged if one of them does not satisfy part (i). Similarly, F′ does not satisfy

part (i) since 2i < img(F′) for i = 2. So, it is required to use part (ii). We first constitute the
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Table 5.4: Calculating the F′ and G′ in Example 5.1.5

x = (x3, x2, x1) F′(x) 2i G′(x) 2i

(0,0,0) (0,0,0) (0,0,0)
(0,0,1) (0,0,0) (1,0,0) 20

(0,1,0) (1,1,0) (1,1,0)
(0,1,1) (1,1,0) (0,1,0) 21

(1,0,0) (1,0,0) 20 (0,0,0)
(1,0,1) (1,0,1) (1,0,1)
(1,1,0) (0,1,0) 21 (1,1,0)
(1,1,1) (0,1,1) (0,1,1)

sets NG′ ⊆ F
3
2 by taking into account the elements of img(G′).

S − boxG′ = [0, 0, 3, 3, 1, 5, 2, 6]

img(G′) = [1, 2, 5, 6, 0, 3] = {(1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0), (1, 1, 0)}

N1
G′ = [4, 6, 5, 7, 0, 2] = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0), (0, 1, 0)}

N2
G′ = [4, 6, 5, 7, 0, 3] = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 0), (1, 1, 0)}

N3
G′ = [4, 6, 5, 7, 1, 2] = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 0, 0), (0, 1, 0)}

N4
G′ = [4, 6, 5, 7, 1, 3] = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1), (1, 0, 0), (1, 1, 0)}

There exist 4 distinct NG′ sets. Hence, the system of equations can be constructed by using

the sets NG′ . The augmented matrix of the systems is
[
G′|N1

G′ |N
2
G′ |N

3
G′ |N

4
G′

]
:

Aug =



1 0 0

0 1 0

1 0 1

0 1 1

0 0 0

1 1 0

0 0 0

1 1 0

1 0 1

0 1 1

0 0 0

1 1 0

0 0 0

1 1 0

1 0 1

0 1 1

1 0 0

0 1 0

0 0 0

1 1 0

1 0 1

0 1 1

0 0 0

1 1 0

0 0 0

1 1 0

1 0 1

0 1 1

1 0 0

0 1 0


.

The augmented matrix can be reduced to row reduced echelon form by using simultaneous
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Gaussian elimination method:

Aug′ =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 0 0

1 0 0

1 0 0

0 0 0

1 1 0

1 0 1

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 0 0

1 0 0

1 0 0


. (5.11)

Hence, it is easy to see that there exists a unique matrix M1 =


0 0 0

1 1 0

1 0 1

 from (5.11). We

continue with finding V1 for matrix M1. It is easy to see that V1 = F(0) + M1 ·G(0) = (1, 0, 0).

Finally, we need to check whether the equation F(x) = M1 ·G(x) + V1 for given M1,V1 holds.

We define K(x) := M1 ·G(x) + V1 and substitute the values M1,V1 into K(x),

K(x) :=


0 0 0

1 1 0

1 0 1

 ·


x1 ⊕ x2 ⊕ 1

x2

x1x3 ⊕ 1

 +


1

0

0

 = (1, x1 + 1, x1 ⊕ x2 ⊕ x1x3).

Since K(x) , F(x), F is REA-inequivalent to G for type I. �

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalence of type I in Algorithm 2.

Proposition 5.1.6 Let F,G : Fn
2 → F

n
2 be vectorial Boolean functions and G be a permu-

tation. Then the complexity of checking F and G for REA-equivalence of type II (F(x) =

G(M2 · x + V2)) is n2 XORs, n2 ANDs and n + 3 evaluations.

Proof. The equation F(x) = G(M2 · x + V2) can be written as G−1(F(x)) = M2 · x + V2

since G is a permutation. The value G−1(F(x)) can be easily computed whose complexity is

2 evaluations. Denote H(x) = G−1(F(x)). Using (5.3), the equation H(x) = M2 · x + V2 can

be rewritten as follows

H(x) = H′(x) + H(0) = M2 · x + V2
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Algorithm 2 REA-equivalence of Type I, F(x) = M1 ·G(x) + V1

Require: F(x) = F′(x) + F(0),G(x) = G′(x) + G(0).

Ensure: True if F is REA-equivalent to G.

1: for i := 0 to m − 1 do

2: Find K[i+1] =
{
y ∈ F2n |G′(y) = 2i

}
3: end for

4: for z in K = Car < K[1],K[2], . . . ,K[m] > do

5: for i := 1 to m do

6: Set Column(M1, i, F′(z[i]))

7: end for

8: V1 = M1 ∗G(0) + F(0)

9: if F(x)! = M1 ∗G(x) + V1 then

10: goto next z

11: end if

12: return True

13: end for

14: return False

and it gives the system of equations H′(x) = M2 · x,

H(0) = V2.
(5.12)

The column vector V2 can be found easily from the second equation of the system (5.12) by

computing the value H(0) with 1 evaluation. Moreover, the method and the complexity of

finding n by n matrix M2 from the first equation of the system (5.12) are similar to finding

the matrix corresponding to the linear function as in Proposition 4.2.3. For x = 2i find M2 by

H′(2i) = M2 · 2i = colsM2(i) for all i ∈ {0, 1, . . . , n − 1} with n evaluations of the function H′.

Therefore, the complexity of finding matrix M2 is n evaluations. In addition, the equation

H(x) = M2 · x + V2

must be checked for given M2 and V2 whose complexity is n2 XORs, n2 ANDs. Consequently,

the total complexity of verification for REA-equivalence of F and G is n2 XORs, n2 ANDs

and n + 3 evaluations. �

The total complexity of type II is demonstrated for 6 ≤ m = n ≤ 9 in the Table 5.5.

Example 5.1.7 Let F,G : F2
2 −→ F

2
2 be vectorial Boolean functions and F(x) = (x1x2⊕1, x1)
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Table 5.5: The complexity of type II

n = m #XOR #AND #Evaluation
6 36 36 9
7 49 49 10
8 64 64 11
9 81 81 12

and G(x) = (x1⊕x2, x2⊕1), where x = (x2, x1) ∈ F2
2. Functions F and G are REA-inequivalent

of type II.

Proof. The inverse function H(x) = G−1(F(x)) = (x1 ⊕ 1, x1 ⊕ x1x2) can be computed since

G is a permutation. The equation H(x) = M2 · x + V2 can be rewritten as follows

H′(x) = M2 · x

H(0) = V2

(5.13)

where H′(x) = (x1, x1 ⊕ x1x2), H(0) = (1, 0). The values 20 =

 1

0

 and 21 =

 0

1

 are

substituted into H′(x) since H′(2i) = M2 · 2i = colsM2(i) for i = 0, 1 as in Proposition 4.2.3.

H′(20) = H′(1, 0) = (0, 0) =

 0

0

 = M21 = colsM2(1),

H′(21) = H′(0, 1) = (1, 1) =

 1

1

 = M22 = colsM2(2).

Thus, the 2 × 2 matrix M2 =

 0 1

0 1

 is obtained. Finally, we need to check whether the

equation H(x) = M2 · x+V2 for M2 and V2 holds. We define K(x) := M2 · x+V2 and substitute

M2 and V2 into K(x):

K(x) = M2 · x + V2 =

 0 1

0 1

 ·
 x2

x1

 +

 1

0

 =

 x1

x1

 +

 1

0

 = (x1 ⊕ 1, x1) .

Since K(x) , H(x), The function F is REA-inequivalent to G for type II. �

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalence of type II in Algorithm 3.

29



Algorithm 3 REA-equivalence of Type II, F(x) = G(M2 · x + V2)
Require: H(x) := G−1(F(x)), H(x) = H′(x) + H(0).

Ensure: True if F is REA-equivalent to G.

1: for i := 0 to n − 1 do

2: Set Column(M2, i + 1,H′(2i))

3: end for

4: V2 = H(0)

5: if F(x) = G(M2 ∗ x + V2) then

6: return True

7: end if

8: return False

Proposition 5.1.8 Let F,G : Fn
2 → F

m
2 be vectorial Boolean functions. Then the complexity

of checking F and G for REA-equivalence of type III (F(x) = G(x) + M3 · x + V1) is mn + m

XORs, mn ANDs and n + 1 evaluations.

Proof. Denote H(x) = F(x) + G(x) whose complexity is m XORs. Then REA-equivalence

of type III, F(x) = G(x) + M3 · x + V1, takes the form

H(x) = M3 · x + V1. (5.14)

Using (5.3), the equation (5.14) can be rewritten as follows: H′(x) = M3 · x,

H(0) = V1.
(5.15)

We have the same situation as in Proposition 5.1.6. Thus, the column vector V1 can be found

easily by means of the value H(0) = V1 with 1 evaluation. For x = 2i find M3 by H′(2i) =

M3 · 2i = colsM3(i) for all i ∈ {0, 1, . . . , n − 1} with n evaluations of the function H′. In

additions, the equation

H(x) = M3 · x + V1

must be checked for given M3 and V1 whose complexity is mn XORs and mn ANDs. Conse-

quently, the total complexity of verification for the equivalence of F and G is mn + m XORs,

mn ANDs and n + 1 evaluations. �

The total complexity of type III is demonstrated for 6 ≤ m = n ≤ 9 in the Table 5.6.
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Table 5.6: The complexity of type III

n = m #XOR #AND #Evaluation
6 42 36 7
7 56 49 8
8 72 64 9
9 90 81 10

Example 5.1.9 Let F,G : F3
2 −→ F

3
2 be vectorial Boolean functions and F(x) = (x1 ⊕ 1, x2 ⊕

x3, x1 ⊕ x3) and G(x) = (x2, x1 ⊕ x2, x3 ⊕ 1), where x = (x3, x2, x1) ∈ F3
2. Functions F and G

are REA-equivalent of type III.

Proof. When we write H(x) = F(x) + G(x), then REA-equivalence of type III takes the

form H(x) = (x1 + x2 + 1, x1 + x3, x1 + 1). The equation H(x) = M3 · x + V1 can be rewritten

as follows

H′(x) = M3 · x

H(0) = V1,

where H′(x) = (x1 ⊕ x2, x1 ⊕ x3, x1) and H(0) = (1, 0, 1). The columns of M3:

H′(20) = H′(1, 0, 0) = (0, 1, 0) =


0

1

0

 = M31 = colsM3(1),

H′(21) = H′(0, 1, 0) = (1, 0, 0) =


1

0

0

 = M32 = colsM3(2),

H′(22) = H′(0, 0, 1) = (1, 1, 1) =


1

1

1

 = M33 = colsM3(3).
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Thus, the 3 × 3 matrix M3 =


0 1 1

1 0 1

0 0 1

 is observed. Finally, it is easily seen that

K(x) := M3 · x + V1 =


0 1 1

1 0 1

0 0 1

 ·


x3

x2

x1

 +


1

0

1


=


x1 ⊕ x2 + 1

x1 ⊕ x3

x1 + 1

 = (x1 ⊕ x2 ⊕ 1, x1 ⊕ x3, x1 ⊕ 1) .

Hence, F is REA-equivalent to G for type III since K(x) = H(x). �

Example 5.1.10 Let F,G : F3
2 −→ F

3
2 be vectorial Boolean functions and F(x) = (x3 ⊕

1, x2x1, x1) and G(x) = (x3 ⊕ x2, x2, x3x1), where x = (x3, x2, x1) ∈ F3
2. Functions F and G are

REA-inequivalent of type III.

Proof. Compute H(x) := F(x) + G(x) = (x2 + 1, x2 ⊕ x1x2, x1 ⊕ x3x1). The equation

H(x) = M3 · x + V1 can be rewritten as follows

H′(x) = M3 · x

H(0) = V1,

where H′(x) = (x2, x2 ⊕ x2x1, x1 ⊕ x3x1) and H(0) = (1, 0, 0).

To find columns of M3, the values 20 =


1

0

0

, 21 =


0

1

0

, 22 =


0

0

1

 are substituted into

H′(x):
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Algorithm 4 REA-equivalence of Type III, F(x) = G(x) + M3 · x + V1

Require: H(x) := F(x) + G(x), H(x) = H′(x) + H(0)

Ensure: True if F is REA-equivalent to G

1: for i := 0 to n − 1 do

2: Set Column(M3, i + 1,H′(2i))

3: end for

4: V1 = K(0)

5: if F(x) = G(x) + M3 ∗ x + V1 then

6: return True

7: end if

8: return False

H′(20) = H′(1, 0, 0) = (0, 0, 0) =


0

0

0

 = M31 = colsM3(1),

H′(21) = H′(0, 1, 0) = (1, 1, 0) =


1

1

0

 = M32 = colsM3(2),

H′(22) = H′(0, 0, 1) = (0, 0, 1) =


0

0

1

 = M33 = colsM3(3).

Thus, the 3 × 3 matrix M3 =


0 1 0

0 1 0

0 0 1

 is obtained. For the check operation, we define

K(x) := M3 · x + V1 for given M3 and V1, and calculate

K(x) =


0 1 0

0 1 0

0 0 1

 ·


x3

x2

x1

 +


1

0

0

 =


x2

x2

x1

 +


1

0

0

 = (x2 ⊕ 1, x2, x1) .

The function F is REA-inequivalent to G for type III since K(x) , H(x). �

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalence of type III in Algorithm 4.
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We note that every vectorial Boolean function can be written in the form

H(x) = H′(x) + LH(x) + H(0), (5.16)

where H′ has terms of algebraic degree at least 2 and LH is a linear function.

Proposition 5.1.11 Let F,G : Fn
2 → F

m
2 be vectorial Boolean functions and G be defined by

(5.16). Then the complexity of checking F and G for REA-equivalence of type IV (F(x) =

M1 ·G(x) + M3 · x + V1) is

i. k(nm2 + 2m2 + mn) XORs, k(nm2 + 2m2 + mn) ANDs and 2n+1 + 2n + 2 evaluations in

case the set V = {2i|0 ≤ i ≤ m − 1} ⊆ img(G′), where k =
∏
v∈V

kG′,v.

ii. 2n( m2(2k+1)+m
2 )+

k(2m2n+2mn+2m2)−m2−m
2 XORs, k(nm2 +2m2 +mn) ANDs and 2n+1 +2n+2

evaluations in case G is arbitrary, where k =
∏

v∈img(G′)

kG′,v.

Proof. Using (5.16), REA-equivalence of type IV can be rewritten as follows

F′(x) + LF(x) + F(0) = M1 ·G′(x) + M1 · LG(x) + M3 · x + M1 ·G(0) + V1 (5.17)

and the system of equations can be obtained from (5.17):
F′(x) = M1 ·G′(x),

LF(x) = M1 · LG(x) + M3 · x,

F(0) = M1 ·G(0) + V1.

(5.18)

To begin with, it is required to find the matrix M1 from the first equation of the system (5.18)

before finding M3, V1. The first equation of the system leads to two different cases for the

function G′ considered in Proposition 5.1.2. First, we prove part (i). The method and the

complexity of finding m by m matrix M1 are the same as part (i) in Proposition 5.1.2. Thus, the

complexity of finding the possible matrices M1 is 2n+1 evaluations. The number of possible

matrices M1 is the value k which is the product of the size of the inverse image of elements

2i in the set img(G′) for all i ∈ {0, · · · ,m − 1}. For each given matrix M1, the matrix M3

and the vector V1 can be found from the second and third equation of the system (5.18),

respectively. For x = 2i find M3 by LF(2i) + M1 · LG(2i) = M3 · 2i = colsM3(i) for all

i ∈ {0, 1, . . . , n − 1}whose complexity is n(m2−m)+mn XORs, nm2 ANDs and 2n evaluations.

Moreover,V1 = F(0) + M1 · G(0) can be computed for x = 0 with complexity is m2 XORs,
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m2 ANDs and 2 evaluations. We need to verify whether or not the matrices M1, M3 and V1

satisfy the equation

F(x) = M1 ·G(x) + M3 · x + V1, (5.19)

as well as finding these matrices. For this purpose, the equation in (5.19) must be also checked

for given M1, M3 and V1 (see Section 5.3) whose complexity is (m2 +mn−2m)+2m XORs and

m2 + mn ANDs. For each M1, we need to repeat the process of finding V1, M3 and checking

the equation (5.19) in order to verify whether they are REA-equivalent or not. The number of

this repetition is at most k which is the number of possible matrices M1. If the equation (5.19)

is satisfied some M1, M3 and V1, then we say that the functions F and G are REA-equivalent

of type IV. If the equation (5.19) can not be satisfied any M1, M3 and V1, they are REA-

inequivalent of type IV. Consequently, the total complexity of verification for the equivalence

of F and G is k(nm2 +2m2 +mn) XORs, k(nm2 +2m2 +mn) ANDs and 2n+1 +2n+2 evaluations.

Next, the proof of part (ii) is given. The method and the complexity of finding m by m matrix

M1 are the same as part (ii) in Proposition 5.1.2. Hence, the complexity of finding M1 is

2n( m2(2k+1)+m
2 )− m2(2k+1)+m

2 XORs and 2n+1 evaluations, where the value k is the number of the

set NG′ . For each given matrix M1, one can easily compute M3 and V1 from the second and

the third equation of the system (5.18) as in part(i), respectively. Moreover, we need to verify

whether or not the matrices M1, M3 and V1 satisfy the equation (5.19) as well as finding these

matrices. Similar to part (i), the total complexity of computing M3, V1 and checking process

for all possible matrices M1 is k(nm2 + 2m2 + mn) XORs, k(nm2 + 2m2 + mn) ANDs and 2n + 2

evaluations. Consequently, the total complexity of verification for the equivalence of F and G

is 2n( m2(2k+1)+m
2 ) +

k(2m2n+2mn+2m2)−m2−m
2 XORs, k(nm2 + 2m2 + mn) ANDs and 2n+1 + 2n + 2

evaluations, where the value k is the product of the size of the inverse image of all elements

in the set img(G′). �

The total complexity of type IV is demonstrated for 6 ≤ m = n ≤ 9 and k = 1 in the Table

5.7.

Corollary 5.1.12 Let n = m and G be a permutation. Then the complexity of checking F and

G for REA-equivalence are 2n2 XORs, 2n2 ANDs and 2n + n + 2 evaluations for type I, and

n3 + 3n2 XORs, n3 + 3n2 ANDs and 2n + 3n + 2 evaluations for type IV.

Proof. The function G′ satisfies part (i) of Proposition 5.1.11 and the value k is equals to 1
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Table 5.7: The complexity of type IV

k = 1 part(i) part(ii)
n = m #XOR #AND #Evaluation #XOR #AND #Evaluation

6 324 324 142 3915 324 142
7 490 490 272 10269 490 272
8 704 704 530 26204 704 530
9 972 972 1044 65358 972 1044

since G is a permutation. Hence, the proof follows from part (i) in Proposition 5.1.11 and in

Proposition 5.1.2 �

Example 5.1.13 Let F,G : F3
2 −→ F

3
2 be vectorial boolean functions and F(x) = (x1⊕x2⊕x3⊕

x1x2⊕1, x2⊕x1x3⊕x2x3, x1⊕x2x3⊕1) and G(x) = (x1⊕x2⊕x3⊕x1x2, x1⊕x3x2⊕1, x1⊕x2⊕x3x1),

where x = (x3, x2, x1) ∈ F3
2. Functions F and G are REA-equivalent of type IV.

Proof. REA-equivalence of type IV can be rewritten as

F′(x) = M1 ·G′(x)

LF(x) = M1 · LG(x) + M3 · x

F(0) = M1 ·G(0) + V1,

where F′(x) = (x1x2, x1x3 ⊕ x2x3, x2x3), G′(x) = (x1x2, x2x3, x3x1), LF(x) = (x1 ⊕ x2 ⊕

x3, x2, x1), LG(x) = (x1 ⊕ x2 ⊕ x3, x1, x1 ⊕ x2), F(0) = (1, 0, 1) and G(0) = (0, 1, 0). First, it

is verified whether G satisfy part(i) or not. We calculate G′(x) and F′(x) for all x ∈ Fn
2 in the

Table 5.8. It is easy to see that G′ satisfies part (i) since 2i ∈ img(G′) for all i = 0, 1, 2. There

Table 5.8: Calculating the F′ and G′ in Example 5.1.13

x = (x3, x2, x1) F′(x) G′(x) 2i

(0,0,0) (0,0,0) (0,0,0)
(0,0,1) (0,0,0) (0,0,0)
(0,1,0) (0,0,0) (0,0,0)
(0,1,1) (1,0,0) (1,0,0) 20

(1,0,0) (0,0,0) (0,0,0)
(1,0,1) (0,1,0) (0,0,1) 22

(1,1,0) (0,1,1) (0,1,0) 21

(1,1,1) (1,0,1) (1,1,1)
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exists only one matrix M1 =


1 0 0

0 1 1

0 1 0

 . We continue with finding the matrix M3 for the

matrix M1. The values x = 2i and M1 are substituted into LF(x) + M1 · LG(x) = M3 · x in order

to find the i-th column of M3 for i = 0, 1, 2. For i = 0,

LF(1, 0, 0) + M1 · LG(1, 0, 0) =


1

0

0

 +


1 0 0

0 1 1

0 1 0

 ·


1

0

0

 =


0

0

0


Similarly, for i = 1, LF(0, 1, 0) + M1 · LG(0, 1, 0) = (0, 0, 0) and for i = 2, LF(0, 0, 1) + M1 ·

LG(0, 0, 1) = (0, 0, 0). Hence, the 3 by 3 matrix M3 is as follows:
0 0 0

0 0 0

0 0 0

 .
It is easy to see that V1 = F(0) + M1 · G(0) = (1, 1, 0). Finally, we need to check whether

the equation F(x) = M1 · G(x) + M3 · x + V1 for given M1,M3 and V1 holds. We define

K(x) := M1 ·G(x) + M3 · x + V1 and substitute the values M1,M3 and V1 into K(x),

K(x) :=


1 0 0

0 1 1

0 1 0




x1 ⊕ x2 ⊕ x3 ⊕ x1x2

x1 ⊕ x3x2 ⊕ 1

x1 ⊕ x2 ⊕ x3x1

 ⊕


0 0 0

0 0 0

0 0 0




x3

x2

x1

 +


1

1

0


= (x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ 1, x2 ⊕ x1x3 ⊕ x2x3, x1 ⊕ x2x3 ⊕ 1).

The function F is REA-equivalent to G for type IV since F(x) = K(x).

We note that the univariate polynomial representation of these functions in Example 5.1.13

are as follows: F(x) = x3 + a2 + 1 and G(x) = x6 + a where a is a primitive element of F3
2.

When these functions are applied to REA-equivalence of types I, IV, V, VI in MAGMA codes

given in the Appendix, it is seen that they are REA-equivalent for these types. �

Example 5.1.14 Let F,G : F4
2 −→ F

3
2 be vectorial boolean functions and F(x) = (x1 ⊕ x2 ⊕

x3⊕x1x3⊕1, x1⊕x3⊕x4⊕x3x4, x1⊕x4⊕x1x3⊕1) and G(x) = (x3⊕x1x3⊕x3x4, x1⊕x2⊕x3x4⊕

1, x1 ⊕ x4 ⊕ x1x3), where x = (x4, x3, x2, x1) ∈ F4
2. Functions F and G are REA-inequivalent

of type IV.
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Proof. REA-equivalence of type IV can be rewritten as

F′(x) = M1 ·G′(x),

LF(x) = M1 · LG(x) + M3 · x,

F(0) = M1 ·G(0) + V1,

where F′(x) = (x1x3, x3x4, x1x3), G′(x) = (x1x3⊕ x3x4, x3x4, x1x3), LF(x) = (x1⊕ x2⊕ x3, x1⊕

x3 ⊕ x4, x1 ⊕ x4), LG(x) = (x3, x1 ⊕ x2, x1 ⊕ x4), F(0) = (1, 0, 1) and G(0) = (0, 1, 0). It is

required to check whether part (i) is satisfied or not. The values F′(x) and G′(x) are calculated

for all x ∈ F4
2 in the Table 5.9.

Table 5.9: Calculating the F′ and G′ in Example 5.1.14

x = (x4, x3, x2, x1) F′(x) 2i G′(x)
(0,0,0,0) (0,0,0) (0,0,0)
(0,0,0,1) (0,0,0) (0,0,0)
(0,0,1,0) (0,0,0) (0,0,0)
(0,0,1,1) (0,0,0) (0,0,0)
(0,1,0,0) (0,0,0) (0,0,0)
(0,1,0,1) (1,0,1) (1,0,1)
(0,1,1,0) (0,0,0) (0,0,0)
(0,1,1,1) (1,0,1) (1,0,1)
(1,0,0,0) (0,0,0) (0,0,0)
(1,0,0,1) (0,0,0) (0,0,0)
(1,0,1,0) (0,0,0) (0,0,0)
(1,0,1,1) (0,0,0) (0,0,0)
(1,1,0,0) (0,1,0) 21 (1,1,0)
(1,1,0,1) (1,1,1) (0,1,1)
(1,1,1,0) (0,1,0) 21 (1,1,0)
(1,1,1,1) (1,1,1) (0,1,1)

Part (i) can not be satisfied since 2i < img(G′) = {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)} for i =

0, 1, 2 and 2i < img(F′) = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)} for i = 0, 2 as it is seen in the

Table 5.9. We continue with using part (ii). We first constitute the sets NG′ by using the

elements of img(G′). There are 80 distinct sets NG′ , but there exists a unique value F′(x) for

all sets NG′ , see Table 5.9. It is enough to use only one set NG′ . The augmented matrix of the
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systems is
[
G′|NG′

]
:

Aug =



1 0 1

1 1 0

0 0 0

0 0 0

1 0 1

0 1 0

0 0 0

0 0 0


.

It is easy to see that there are 8 possible matrices those are solutions to the above augmented

system. One of them is

M1 =


1 1 0

0 1 0

1 1 0

 .
Similar to previous example, M3 and V1 can be obtained corresponding to M1:

M3 =


0 0 0 0

1 1 1 0

1 1 1 0

 , V1 =


0

1

0

 .
These matrices satisfy the equation F(x) = M1 · G(x) + M3 · x + V1. Thus, F and G are

REA-equivalent of type IV. �

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalent of type IV in Algorithm 5.

5.2 Verification of New Types of REA-equivalence

We introduce two new types of REA-equivalence in the Table 5.10. The verification pro-

cedures of these types, namely types V and VI, with their complexities and algorithms are

presented in this section.

Table 5.10: New types of REA-equivalence

Types REA-equivalence
V F(x) = G(M2 · x) + M3 · x + V1

VI F(x) = G(M2 · x) + V1
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Algorithm 5 REA-equivalence of Type IV, F(x) = M1 ·G(x) + M3 · x + V1

Require: F(x) = F′(x) + LF(x) + F(0),G(x) = G′(x) + LG(x) + G(0)

Ensure: True if F is REA-equivalent to G

1: for i := 0 to m − 1 do

2: Find K[i+1] =
{
y ∈ F2n |G′(y) = 2i

}
3: end for

4: for z in K = Car < K[1],K[2], . . . ,K[m] > do

5: for i := 1 to m do

6: Set Column(M1, i, F′(z[i]))

7: end for

8: V1 = M1 ∗G(0) + F(0)

9: for i := 0 to n − 1 do

10: Set Column(M3, i + 1, LF(2i) + M1 ∗ LG(2i))

11: end for

12: if F(x)! = M1 ∗G(x) + M3 ∗ x + V1 then

13: goto next z

14: end if

15: return True

16: end for

17: return False

Proposition 5.2.1 Let F,G : Fn
2 → F

m
2 be vectorial Boolean functions and F, G be defined

by (5.16). Then the complexity of checking F and G for REA-equivalence of type V (F(x) =

G(M2 ·x)+M3 ·x+V1) is k(n2+2mn+m−n)+m XORs, k(n2+mn) ANDs and 2n+2n+2+k(n+1)

evaluations in case V = {F′(2i)|0 ≤ i ≤ n − 1} ⊆ img(G′), where k =
∏
v∈V

kG′,v.

Proof. Using (5.16), REA-equivalence of type V can be rewritten as follows

F′(x) + LF(x) + F(0) = G′(M2 · x) + LG(M2 · x) + M3 · x + G(0) + V1. (5.20)

The system of equations obtained from (5.20) is as follows
F′(x) = G′(M2 · x)

LF(x) = LG(M2 · x) + M3 · x

F(0) = G(0) + V1.

(5.21)

It is obvious that one can easily compute V1 from the equation V1 = F(0) + G(0) whose

complexity is m XORs and 2 evaluations. When the matrix M2 is achieved from the first
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equation, the matrix M3 can be computed easily from the second equation of the system

(5.21). To begin with, it is necessary to find M2 from the equation F′(x) = G′(M2 · x). It

is clear that the set U =
{
2i|0 ≤ i ≤ n − 1

}
is a subset of Fn

2. To find the i-th column of M2,

colsM2(i) = M2i = M2 ·2i, it is necessary first to multiply M2 with 2i next to solve the equation

G′(M2i) = F′(2i) (5.22)

for all 2i ∈ U. To solve the equation (5.22), we need to compute the values F′(2i) for all

2i ∈ U and G′(y) for all y ∈ Fn
2 whose complexity is 2n + n evaluations. Thus, the possible

i-th column of M2 are found by means of y = M2i which satisfy the equation (5.22) for all

i ∈ {0, 1, · · · , n − 1}. The number of possible matrices M2 is the value k which is the product

of the number of elements y ∈ Fn
2 which satisfy the equation G′(y) = F′(2i) for all 2i ∈ U. For

each given matrix M2, one can easily compute M3 from the second equation of the system

(5.21) by means of LF(2i) = LG(M2i) + M3i for all 2i ∈ U. The complexity of finding the

matrix M3 is 2n evaluations and mn XORs. We need to verify whether or not the matrices M2,

M3 and V1 satisfy the equation of type V as well as finding these matrices. For this purpose,

the equation

F(x) = G(M2 · x) + M3 · x + V1 (5.23)

must be checked for given M2 M3 and V1 (see Section 5.3) whose complexity is (n2 +mn−m−

n) + 2m XORs, n2 + mn ANDs and 1 evaluation. For each given matrix M2, we need to repeat

the process of finding M3 and checking the equation in (5.23) in order to verify whether they

are REA-equivalent or not. The number of this repetition is at most k which is the number of

possible matrices M2. If the equation (5.23) is satisfied some M2, M3 and V1, the functions F

and G are REA-equivalent of type V. If it does not satisfy any M2, M3 and V1, they are REA-

inequivalent of type V. Consequently, the total complexity of verification for equivalence of

F and G is k(n2 + 2mn + m − n) + m XORs, k(n2 + mn) ANDs and 2n + 2n + 2 + k(n + 1)

evaluations. �

The total complexity of type V is demonstrated for 6 ≤ m = n ≤ 9 and k = 1 in the Table

5.11.

Example 5.2.2 Let F,G : F2
2 −→ F

3
2 be vectorial boolean functions and F(x) = (x2, x1 ⊕

x2, x1 ⊕ 1) and G(x) = (x1x2 ⊕ 1, x1, x2), where x = (x2, x1) ∈ F2
2. Functions F and G are

REA-equivalent of type V.
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Table 5.11: The complexity of type V

n = m #XOR #AND #Evaluation
6 114 72 85
7 154 98 152
8 200 128 283
9 252 162 542

Proof. REA-equivalence of type V can be rewritten as follows:

F′(x) = G′(M2 · x)

LF(x) = LG(M2 · x) + M3 · x

F(0) = G(0) + V1,

where F′(x2, x1) = (0, 0, 0), G′(x2, x1) = (x1x2, 0, 0), LF(x2, x1) = (x2, x1⊕x2, x1), LG(x2, x1) =

(0, x1, x2), F(0) = (0, 0, 1) and G(0) = (1, 0, 0). To find the i-th column M2i of matrix M2, we

first compute the values F′(2i) and find y ∈ F2
2 satisfying G′(y) = F(2i) for i = 0, 1. For this

purpose, we calculate F′(x) and G′(x) for all x ∈ F2
2 in the Table 5.12.

Table 5.12: Calculating the F′ and G′ in Example 5.2.2

2i x = (x2, x1) F′(x) G′(x) LF(x) LG(x)
(0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

21 (0,1) (0,0,0) (0,0,0) (0,1,1) (0,1,0)
20 (1,0) (0,0,0) (0,0,0) (1,1,0) (0,0,1)

(1,1) (0,0,0) (1,0,0) (1,0,1) (0,1,1)

The possible first columns of M2 are (0, 0), (0, 1), (1, 0) and the possible second columns of

M2 are also the same values (0, 0), (0, 1), (1, 0) in the Table 5.12. Hence, there exist 9 distinct

possible matrices M2:

 0 0

0 0

 ,
 0 0

0 1

 ,
 0 1

0 0

 ,
 0 0

1 0

 ,
 0 0

1 1

 , 0 1

1 0

 ,
 1 0

0 0

 ,
 1 0

0 1

 ,
 1 1

0 0

 .
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We continue with finding M3 for the matrix M2 =

 0 1

1 0

. The values x = 2i and M2 are

substituted into LF(x) + LG(M2 · x) = M3 · x to find M3i as in Proposition (4.2.3):

LF(1, 0) + LG


 0 1

1 0

 ·
 1

0


 = (1, 0, 0)

LF(0, 1) + LG


 0 1

1 0

 ·
 0

1


 = (0, 1, 0).

Hence, the 3 by 2 matrix M3 is


1 0

0 1

0 0

 . It is easy to see that V1 = F(0) + G(0) = (1, 0, 1).

Finally, we need to check whether the equation F(x) = G(M2 · x) + M3 · x + V1 for given

M2,M3,V1 holds. We define K(x) := G(M2 · x) + M3 · x + V1 and substitute the values

M2,M3,V1 into K(x),

K(x) := G


 0 1

1 0

 ·
 x2

x1


 +


1 0

0 1

0 0

 ·
 x2

x1

 +


1

0

1

 = (x2 ⊕ x1x2, x1 ⊕ x2, x1 ⊕ 1).

Since K(x) , F(x), the functions F is REA-inequivalent to G for this matrix M2. However,

we can not say that F is REA-inequivalent to G for type V since there exist 9 distinct cases for

type V. Another matrix M2 is used to find the matrix M3. Similarly, the matrix M3 =


1 0

1 1

1 0


is found for the other matrix M2 =

 1 1

0 0

 by using the same method. Finally, we need to

check whether the equation F(x) = G(M2 · x) + M3 · x + V1 for given M2,M3,V1 holds. When

the values M2,M3,V1 are substituted into K(x),

K(x) := G


 1 1

0 0

 ·
 x2

x1


 +


1 0

1 1

1 0

 ·
 x2

x1

 +


1

0

1

 = (x2, x1 ⊕ x2, x1 ⊕ 1).

Therefore, the function F is REA-equivalent to G for type V since F(x) = K(x). �

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalent of type V in Algorithm 6.
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Algorithm 6 REA-equivalence of Type V, F(x) = G(M2 · x) + M3 · x + V1

Require: F(x) = F′(x) + LF(x) + F(0),G(x) = G′(x) + LG(x) + G(0)

Ensure: True if F is REA-equivalent to G

1: for i := 0 to n − 1 do

2: Find K[i+1] =
{
y ∈ F2n |G′(y) := F′(2i)

}
3: end for

4: for z in K = Car < K[1],K[2], . . . ,K[n] > do

5: for i := 1 to n do

6: Set Column(M2, i, z[i])

7: end for

8: V1 = F(0) + G(0)

9: for i := 0 to n − 1 do

10: Set Column(M3, i + 1, LF(2i) + LG(M2 ∗ 2i))

11: end for

12: if F(x)! = G(M2 ∗ x) + M3 ∗ x + V1 then

13: goto next z

14: end if

15: return True

16: end for

17: return False

Proposition 5.2.3 Let F,G : Fn
2 → F

m
2 be vectorial Boolean functions and F,G be defined

by (5.3). Then the complexity of checking F and G for REA-equivalence of type VI (F(x) =

G(M2 · x) + V1) is k(n2 − n + m) + m XORs, kn2 ANDs and 2n + n + 2 + k evaluations in case

V = {F′(2i)|0 ≤ i ≤ n − 1} ⊆ img(G′), where k =
∏
v∈V

kG′,v.

Proof. Using (5.3), REA-equivalent of type VI can be rewritten as F′(x) + F(0) = G′(M2 ·

x) + G(0) + V1 and it gives the following form F′(x) = G′(M2 · x)

F(0) = G(0) + V1.
(5.24)

It is obvious that one can easily compute V1 from the second equation of (5.24) as in Proposi-

tion 5.1.6 whose complexity is m XORs and 2 evaluations. The first equation in (5.24) can be

solved by the same method as in Proposition 5.2.1 to find M2. Thus, the possible matrices M2

can be found whose complexity 2n + n evaluations. The number of possible matrices M2 is k.

For each given matrix M2, we need to verify whether or not the matrices M2 and V1 satisfy
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the equation of type VI as well as finding these matrices. For this purpose, the equation

F(x) = G(M2 · x) + V1

must be also checked for given matrices M2 and V1 (see Section 5.3) whose complexity is

k(n2 − n + m) XORs, kn2 ANDs and k evaluations for all possible matrices M2. Consequently,

the total complexity of verification for equivalence of F and G is k(n2 − n + m) + m XORs, kn2

ANDs and 2n + n + 2 + k evaluations. �

The total complexity of type VI is demonstrated for 6 ≤ m = n ≤ 9 and k = 1 in the Table

5.13.

Table 5.13: The complexity of type VI

n = m #XOR #AND #Evaluation
6 42 36 73
7 56 49 138
8 72 64 267
9 90 81 524

We should say that two vectorial Boolean functions F,G : Fn
2 → F

n
2 can be checked whether

they are REA-equivalent of types V and VI in case G is a permutation. However, if G is not a

permutation, these functions may not be applied to these types.

Corollary 5.2.4 Let m = n and G be a permutation. Then the complexity of checking F and

G for REA-equivalence is 3n2 + n XORs, 2n2 ANDs and 2n + 3n + 3 evaluations for type V,

and n2 + n XORs, n2 ANDs and 2n + n + 3 evaluations for type VI.

Proof. Since G is a permutation, the value k equals to 1. Hence, the proof follows from

part (i) in Proposition 5.2.1 and 5.2.3, respectively. �

Example 5.2.5 Let F,G : F3
2 −→ F3

2 be vectorial boolean functions and F(x) = (x1 ⊕

x2, x3, x2 ⊕ 1) and G(x) = (x1, x3 ⊕ 1, x2), where x = (x3, x2, x1) ∈ F3
2. Functions F and

G are REA-equivalent of type VI (F(x) = G(M2 · x) + V1).
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Proof. REA-equivalence of type VI can be rewritten as follows

F′(x) = G′(M2 · x)

F(0) = G(0) + V1,

where F′(x3, x2, x1) = (x1 ⊕ x2, x3, x2), G′(x3, x2, x1) = (x1, x3, x2), F(0) = (0, 0, 1) and

G(0) = (0, 1, 0). To find M2i , we first need to compute the values F′(2i) and find x ∈ F3
2 which

satisfy G′(x) = F′(2i) for i = 0, 1, 2. For this purpose, we calculate the values F′(x) and G′(x)

for all x ∈ F3
2 in the Table 5.14. Hence, it can be easily seen in the Table 5.14 that there exists

Table 5.14: Calculating the F′ and G′ in Example 5.2.5

x = (x3, x2, x1) F′(x) F(2i) G′(x)
(0,0,0) (0,0,0) (0,0,0)
(0,0,1) (1,0,0) F(22) (1,0,0)
(0,1,0) (1,0,1) F(21) (0,0,1)
(0,1,1) (0,0,1) (1,0,1)
(1,0,0) (0,1,0) F(20) (0,1,0)
(1,0,1) (1,1,0) (1,1,0)
(1,1,0) (1,1,1) (0,1,1)
(1,1,1) (0,1,1) (1,1,1)

only one matrix M2 =


1 0 0

0 1 0

0 1 1

.
It is easy to see that V1 = F(0) + G(0) = (0, 1, 1). Finally, we need to check whether the

equation F(x) = G(M2 · x) + V1 for given M2,V1 holds. We define K(x) := G(M2 · x) + V1

and substitute the values M2,V1 into K(x);

K(x) := G




1 0 0

0 1 0

0 1 1

 ·


x3

x2

x1


 +


0

1

1

 = (x2 ⊕ x1, x3, x2 ⊕ 1).

Therefore, the function F is REA-equivalent to G for type VI since F(x) = K(x). �

Remark 5.2.6 We note that the functions in Example 5.2.2 can not be verified for REA-

equivalence of type VI since the functions do not satisfy the assumptions of Proposition 5.2.3.

Moreover, we should say that the complexity of verification for REA-equivalence of type V for

functions in Example 5.2.5 is extremely higher than the complexity of verification for REA-

equivalence of type VI for the same functions. For instance, if one checks functions given in
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Algorithm 7 REA-equivalence of Type VI, F(x) = G(M2 · x) + V1

Require: F(x) = F′(x) + F(0),G(x) = G′(x) + G(0)

Ensure: True if F is REA-equivalent to G

1: for i := 0 to n − 1 do

2: Find K[i+1] =
{
y ∈ F2n |G′(y) := F′(2i)

}
3: end for

4: for z in K = Car < K[1],K[2], . . . ,K[n] > do

5: for i := 1 to n do

6: Set Column(M2, i, z[i])

7: end for

8: V1 = F(0) + G(0)

9: if F(x)! = G(M2 ∗ x) + V1 then

10: goto next z

11: end if

12: return True

13: end for

14: return False

Example 5.2.5 for REA-equivalence of type VI, then it is obtained that k = 1; on the other

hand, if one checks the same functions for REA-equivalence of type V, then it is obtained that

k = 224. These results show that type VI is a particular case of type V, but sometimes type VI

may have significantly low complexity compared to type V.

We present the pseudocode of verification procedure of two vectorial Boolean functions F

and G for REA-equivalence of type VI in Algorithm 7.

5.3 Summary of Complexities

To verify whether F and G are REA-equivalent or not, Examples 5.1.4, 5.1.5, 5.1.7, 5.1.10

and 5.1.14 given in this chapter clearly show that finding the matrices M and V seems to

be not enough. In additions to that, it is necessary to check whether the matrices M and V

satisfy the equation of the corresponding type even if the matrices M and V are unique. On

the other hand, the authors in [7] give the complexity of just finding the matrices M and V

without checking the equation except for part (i) of types I and IV. Furthermore, Example

5.2.2 illustrates that checking REA-equivalence of any two functions for only one x ∈ Fn
2
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which satisfies G′(x) = F′(2i) for any i = 0, 1, 2 is not enough. Thus, there may exist another

matrix M for which F and G are REA-equivalent for Types I, IV, V and VI. On the other hand,

the authors in [7] follow a procedure without taking into account that the matrix M may be

more than one. We will further investigate this difference.

Linear and affine equivalences when F and G are two permutations are studied in [2]. We

present the results of [2] in the Table 5.15.

Table 5.15: The complexities of the linear and affine equivalences in [2]

REA-equivalence Complexity F, G
Linear Equivalence F(x) = M1 ·G(M2 · x) O(n22n) Permutations
Affine Equivalence F(x) = M1 ·G(M2 · x + V2) + V1 O(n222n) Permutations

Some REA-equivalence types when G is arbitrary or under some condition on G are studied

in [7]. We expose the complexities of these REA-equivalence types. The complexities of

REA-equivalence types in [7] are given in the Table 5.16. We also present our results for

these REA-equivalence types in the Table 5.17.

Table 5.16: The complexities of REA-equivalence types in [7]

Types REA-equivalence Complexity G
I F(x) = M1 ·G(x) + V1 O(2n+1) {2i|0 ≤ i ≤ m − 1} ⊆ img(G′)
I F(x) = M1 ·G(x) + V1 O(m22n) Arbitrary
II F(x) = G(M2 · x + V2) O(n) Permutation
III F(x) = G(x) + M3 · x + V1 O(n) Arbitrary
IV F(x) = M1 ·G(x) + M3 · x + V1 O(2n+1) {2i|0 ≤ i ≤ m − 1} ⊆ img(G′)
IV F(x) = M1 ·G(x) + M3 · x + V1 O(m22n) Arbitrary

Moreover, we study two new REA-equivalence types when G is under some condition with

their complexities. The complexities for new REA-equivalence types are presented in the

Table 5.18.
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Table 5.17: Our complexities of REA-equivalence types in [7]

Complexity in case G Arbitrary
Type REA-equivalence #XOR #AND #Evaluation

I F(x) = M1 ·G(x) + V1 2n( m2(2k+1)+m
2 ) +

m2(2k−1)−m
2 2km2 2n+1 + 2

III F(x) = G(x) + M3 · x + V1 mn + m mn n + 1

IV F(x) = M1 ·G(x) + M3 · x + V1 2n( m2(2k+1)+m
2 ) +

k(2m2n+2mn+2m2)−m2−m
2 k(nm2 + 2m2 + mn) 2n+1 + 2n + 2

Complexity in case {2i|0 ≤ i ≤ m − 1} ⊆ img(G′)
Type REA-equivalence #XOR #AND #Evaluation

I F(x) = M1 ·G(x) + V1 2km2 2km2 2n+1 + 2
IV F(x) = M1 ·G(x) + M3 · x + V1 k(nm2 + 2m2 + mn) k(nm2 + 2m2 + mn) 2n+1 + 2n + 2

Complexity in case G Permutation
Type REA-equivalence #XOR #AND #Evaluation

I F(x) = M1 ·G(x) + V1 2n2 2n2 2n + n + 2
II F(x) = G(M2 · x + V2) n2 n2 n + 3
IV F(x) = M1 ·G(x) + M3 · x + V1 n3 + 3n2 n3 + 3n2 2n + 3n + 2

Table 5.18: The complexities of two new types of REA-equivalence

Complexity in case {F′(2i)|0 ≤ i ≤ n − 1} ⊆ img(G′)
Type REA-equivalence #XOR #AND #Evaluation

V F(x) = G(M2 · x) + M3 · x + V1 k(n2 + 2mn + m − n) + m k(n2 + mn) 2n + 2n + 2 + k(n + 1)
VI F(x) = G(M2 · x) + V1 k(n2 − n + m) + m kn2 2n + n + 2 + k

Complexity in case G Permutation
Type REA-equivalence #XOR #AND #Evaluation

V F(x) = G(M2 · x) + M3 · x + V1 3n2 + n 2n2 2n + 3n + 3
VI F(x) = G(M2 · x) + V1 n2 + n n2 2n + n + 3

We study the complexities of verification of some types of REA-equivalence. To do that, we

count the explicit number of field operations, ⊕ and �, and polynomial evaluation. Polyno-

mial evaluation of vectorial boolean functions can be computed by table look-up operation,

where the tables consist of values of the functions. Hence, the polynomial evaluations of

vectorial boolean functions are table look-up operations and, each table look-up operation is

considered as 1 field operation. Similarly, each XOR and AND operations are considered as

1 field operation. These are meaningful as we are in F2. Thus, we add the number of XOR,

AND and table look-up operations. This enables us to see the total number of operations of

checking process for REA-equivalence. We present the total complexity of REA-equivalence
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types in the Table 5.19 and 5.20.

Table 5.19: Our total complexities of REA-equivalence types in [7]

Type REA-equivalence Complexity in case G Arbitrary

I F(x) = M1 ·G(x) + V1 2n( m2(2k+1)+m+4
2 ) +

m2(6k−1)−m+4
2

III F(x) = G(x) + M3 · x + V1 2mn + m + n + 1

IV F(x) = M1 ·G(x) + M3 · x + V1 2n( m2(2k+1)+m+4
2 ) +

k(4m2n+4mn+6m2)+4n−m2−m+4
2

{2i|0 ≤ i ≤ m − 1} ⊆ img(G′)
Type REA-equivalence Complexity

I F(x) = M1 ·G(x) + V1 2n+1 + 4km2 + 2
IV F(x) = M1 ·G(x) + M3 · x + V1 2n+1 + 2k(nm2 + 2m2 + mn) + 2n + 2

Type REA-equivalence Complexity in case G Permutation
I F(x) = M1 ·G(x) + V1 2n + 4n2 + n + 2
II F(x) = G(M2 · x + V2) 2n2 + n + 3
IV F(x) = M1 ·G(x) + M3 · x + V1 2n + 2n3 + 6n2 + 3n + 2

Table 5.20: Our total complexities of two new types of REA-equivalence

{F′(2i)|0 ≤ i ≤ n − 1} ⊆ img(G′)
Type REA-equivalence complexity

V F(x) = G(M2 · x) + M3 · x + V1 2n + k(2n2 + 3mn + m + 1) + m + 2n + 2
VI F(x) = G(M2 · x) + V1 2n + k(2n2 + m − n + 1) + m + n + 2

Type REA-equivalence complexity in case G Permutation
V F(x) = G(M2 · x) + M3 · x + V1 2n + 5n2 + 4n + 3
VI F(x) = G(M2 · x) + V1 2n + 2n2 + 2n + 3

We note that if we add one of the matrices V1, V2 to REA-equivalence types, the complexity of

corresponding type then will increase in 2m, 2n times, respectively. Because all operations in

checking procedure for REA-equivalence will be repeated for each value V1 ∈ F
m
2 or V2 ∈ F

n
2.
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CHAPTER 6

CONCLUSION

This thesis studies restricted cases of Extended Affine (EA)-equivalence, called Restricted

Extended Affine (REA)-equivalence. Firstly, we analyze in Section 5.1 the verification pro-

cedures of REA-equivalence types given in [7]. We also show the verification procedures

with some examples. We expose the complexities of checking procedures for these types.

We count explicitly the number of operations which are XOR, AND and polynomial evalua-

tion in the verification procedures. We have shown our complexities particularly in the Table

5.17 for these types. Secondly, we introduce two new types of REA-equivalence in Section

5.2. We construct the verification procedures of these types, namely types V and VI, with

their complexities. Finally, we have presented the pseudocodes of the verification procedures

for REA -equivalence types studied in this thesis. We also implement these algorithms for

REA-equivalence in MAGMA [8].

As a result, this thesis provides the fast technique for determining whether two vectorial

Boolean functions with more than six variables are equivalent or not. When one constructs

a new s-box, one can also check whether it is equivalent to already known ones in block

cipher by using our MAGMA codes presented in the Appendix. Since CCZ-equivalence and

EA-equivalence have extremely high complexity, this research can be useful for verification

of s-boxes in block cipher. This study will contribute to the cryptography in terms of the

verification of vectorial Boolean functions.
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APPENDIX A

MAGMA CODES

We begin with a common function, named as SetColumn, of each types.

SetColumn:=function(M,i,V)

M1:=M;

for j in [1..Nrows(M)] do

M1[j,i]:=V[j];

end for;

return M1;

end function;

A.1 REA-equivalence of Type I

We present the source code of F and G for REA-equivalence of Type I in the form

F(x) = M1 ·G(x) + V1 in MAGMA.

REA_TypeI:=function(F,G,P,n,m,a)

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

Fm<t>:=FiniteField(2ˆm);

Fn<a>:=FiniteField(2ˆn);

F_0:=Evaluate(F,Fn!0);

F_1:=F-F_0;

G_0:=Evaluate(G,Fn!0);

G_1:=G-G_0;
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inverse_2_is:=[];

for i:=0 to m-1 do

zero_vector_m:=Eltseq(Fm!0);

zero_vector_m[i+1]:=GF(2)!1;

two_i_m:=zero_vector_m;

ysayac:=1;

inverse_2_is[i+1]:=[];

for y in Fn do

if Eltseq(Fn!Evaluate(G_1,y)) eq two_i_m then

inverse_2_is[i+1][ysayac] := y;

ysayac +:= 1;

end if;

end for;

end for;

car_inverses:=car<inverse_2_is[1],inverse_2_is[2]>;

for i in [3..m] do

car_inverses:=car<car_inverses,inverse_2_is[i]>;

end for;

car_inverses:=Flat(car_inverses);

printf"car_inverses: %o\n",car_inverses;

for z in car_inverses do

M_1:=Matrix(GF(2),m,m,[]);

for i in [1..m] do

M_1:=SetColumn(M_1,i,Eltseq(Evaluate(F_1,Fn!z[i]),GF(2)));

end for;

V_1:=Matrix(GF(2),m,1,[]);

C:=M_1*Matrix(m,1,Eltseq(G_0,GF(2)));

D:=Matrix(m,1,Eltseq(F_0,GF(2)));

V_1:=C+D;

check_y:=0;

for y in Fn do

E:=Matrix(m,1,Eltseq(Evaluate(F,y),GF(2)));

L:=M_1*Matrix(m,1,Eltseq(Evaluate(G,y),GF(2)));
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if E ne L+V_1 then

break y;

end if;

check_y+:=1;

end for;

printf"check_y: %o\n",check_y;

if check_y eq 2ˆn then

print M_1,V_1;

return true;

end if;

end for;

return false;

end function;

n:=9;

m:=9;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

F:=x+xˆ4+xˆ8+a*xˆ8+aˆ2*xˆ4+aˆ3*xˆ8+aˆ3*x+aˆ3*xˆ2+aˆ3*xˆ4;

G:=x+a*x+a*xˆ4+a*xˆ8+aˆ2*xˆ4+aˆ2*xˆ8+aˆ3*xˆ2+aˆ3*xˆ4;

REA_TypeI(F,G,P,n,m,a);

A.2 REA-equivalence of Type II

We present the source code of F and G for REA-equivalence of Type II in the form

F(x) = G(M2 · x + V2) in MAGMA.

REA_TypeII:=function(F,G,P,n,a)

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

Fn<a>:=FiniteField(2ˆn);

y:=[];

z:=[];

for i:=1 to 2ˆn-1 do
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y[i]:=aˆi;

z[i]:=Evaluate(G,y[i]);

end for;

y[2ˆn]:=GF(2ˆn)!0;

z[2ˆn]:=Evaluate(G,y[2ˆn]);

G_inverse:=Interpolation(z,y);

H:=Evaluate(G_inverse,F);

H_0:=Evaluate(H,Fn!0);

H_1:=H-H_0;

H:=H_1+H_0;

M_2:=Matrix(GF(2),n,n,[]);

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

M_2:=SetColumn(M_2,i+1,Eltseq(Evaluate(H_1,Fn!two_i_n),GF(2)));

end for;

V_2:=Matrix(GF(2),n,1,[]);

V_2:=Matrix(n,1,Eltseq(H_0,GF(2)));

check_y:=0;

for y in Fn do

E:=Matrix(n,1,Eltseq(Evaluate(H,y),GF(2)));

T:=M_2*Matrix(n,1,Eltseq(y,GF(2)));

if E ne T+V_2 then

break y;

end if;

check_y+:=1;

end for;

if check_y eq 2ˆn then

print M_2,V_2;

return true;

end if;

return false;
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end function;

n:=8;

m:=8;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

F:=xˆ2+aˆ5+1;

G:=xˆ2+a;

REA_TypeII(F,G,P,n,a);

A.3 REA-equivalence of Type III

We present the source code of F and G for REA-equivalence of Type III in the form

F(x) = G(x) + M3 · x + V1 in MAGMA.

REA_TypeIII:=function(F,G,P,n,m,a)

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

Fm<t>:=FiniteField(2ˆm);

Fn<a>:=FiniteField(2ˆn);

K:=F+G;

K_0:=Evaluate(K,Fn!0);

K_1:=K-K_0;

K:=K_1+K_0;

M_3:=Matrix(GF(2),m,n,[]);

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

M_3:=SetColumn(M_3,i+1,Eltseq(Evaluate(K_1,Fn!two_i_n),GF(2)));

end for;

V_1:=Matrix(GF(2),m,1,[]);

V_1:=Matrix(m,1,Eltseq(K_0,GF(2)));

58



check_y:=0;

for y in Fn do

E:=Matrix(m,1,Eltseq(Evaluate(F,y),GF(2)));

L:=Matrix(m,1,Eltseq(Evaluate(G,y),GF(2)));

T:=M_3*Matrix(m,1,Eltseq(y,GF(2)));

if E ne L+T+V_1 then

break y;

end if;

check_y+:=1;

end for;

printf"check_y: %o\n",check_y;

if check_y eq 2ˆn then

print M_3,V_1;

return true;

end if;

return false;

end function;

n:=10;

m:=10;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

F:=xˆ3;

G:=xˆ9;

REA_TypeIII(F,G,P,n,m,a);

A.4 REA-equivalence of Type IV

We present the source code of F and G for REA-equivalence of Type IV in the form

F(x) = M1 ·G(x) + M3 · x + V1 in MAGMA.

REA_TypeIV:=function(F,G,P,n,m,a)

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));
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Fm<t>:=FiniteField(2ˆm);

Fn<a>:=FiniteField(2ˆn);

F_0:=Evaluate(F,Fn!0);

L_F:=F mod xˆ2;

L_F:=L_F-F_0;

F_1:=F-L_F-F_0;

G_0:=Evaluate(G,Fn!0);

L_G:=G mod xˆ2;

L_G:=L_G-G_0;

G_1:=G-L_G-G_0;

inverse_2_is:=[];

for i:=0 to m-1 do

zero_vector_m:=Eltseq(Fm!0);

zero_vector_m[i+1] := GF(2)!1;

two_i_m:=zero_vector_m;

ysayac := 1;

inverse_2_is[i+1] := [];

for y in Fn do

if Eltseq(Fn!Evaluate(G_1,y)) eq two_i_m then

inverse_2_is[i+1][ysayac] := y;

ysayac +:= 1;

end if;

end for;

end for;

car_inverses:=car<inverse_2_is[1],inverse_2_is[2]>;

for i in [3..m] do

car_inverses:=car<car_inverses,inverse_2_is[i]>;

end for;

car_inverses:=Flat(car_inverses);

printf"car_inverses: %o\n",car_inverses;

for z in car_inverses do

M_1:=Matrix(GF(2),m,m,[]);

for i in [1..m] do
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M_1:=SetColumn(M_1,i,Eltseq(Evaluate(F_1,Fn!z[i]),GF(2)));

end for;

V_1:=Matrix(GF(2),m,1,[]);

C:=M_1*Matrix(m,1,Eltseq(G_0,GF(2)));

D:=Matrix(m,1,Eltseq(F_0,GF(2)));

V_1:=C+D;

M_3:=Matrix(GF(2),m,n,[]);

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

B:=Matrix(m,1,Eltseq(Evaluate(L_F,Fn!two_i_n),GF(2)));

A:=M_1*Matrix(m,1,Eltseq(Evaluate(L_G,Fn!two_i_n),GF(2)));

M_3:=SetColumn(M_3,i+1,Eltseq(B+A));

end for;

check_y:=0;

for y in Fn do

E:=Matrix(m,1,Eltseq(Evaluate(F,y),GF(2)));

L:=M_1*Matrix(m,1,Eltseq(Evaluate(G,y),GF(2)));

T:=M_3*Matrix(m,1,Eltseq(y,GF(2)));

if E ne L+T+V_1 then

break y;

end if;

check_y+:=1;

end for;

printf"check_y: %o\n",check_y;

if check_y eq 2ˆn then

print M_1,M_3,V_1;

return true;

end if;

end for;

return false;
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end function;

n:=3;

m:=3;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

G:=xˆ6+a*xˆ5+aˆ5*xˆ4+a*xˆ4+xˆ4+aˆ4*xˆ3+aˆ6*xˆ2+aˆ2*x+aˆ3;

F:=xˆ6+1;

REA_TypeIV(F,G,P,n,m,a);

A.5 REA-equivalence of Type V

We present the source code of F and G for REA-equivalence of Type V in the form

F(x) = G(M2 · x) + M3 · x + V1 in MAGMA.

REA_TypeV:=function(F,G,P,n,m,a)

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

Fm<t>:=FiniteField(2ˆm);

Fn<a>:=FiniteField(2ˆn);

F_0:=Evaluate(F,Fn!0);

L_F:=F mod xˆ2;

L_F:=L_F-F_0;

F_1:=F-L_F-F_0;

G_0:=Evaluate(G,Fn!0);

L_G:=G mod xˆ2;

L_G:=L_G-G_0;

G_1:=G-L_G-G_0;

inverse_f_2_is:=[];

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

ysayac := 1;
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inverse_f_2_is[i+1]:=[];

for y in Fn do

if Evaluate(F_1,Fn!two_i_n) eq Evaluate(G_1,y) then

inverse_f_2_is[i+1][ysayac] := y;

ysayac +:= 1;

end if;

end for;

end for;

car_inverses:=car<inverse_f_2_is[1],inverse_f_2_is[2]>;

for i in [3..n] do

car_inverses:=car<car_inverses,inverse_f_2_is[i]>;

end for;

car_inverses:=Flat(car_inverses);

printf"car_inverses: %o\n",car_inverses;

for z in car_inverses do

printf"z: %o\n",z;

M_2:=Matrix(GF(2),n,n,[]);

for i in [1..n] do

M_2:=SetColumn(M_2,i,Eltseq(z[i],GF(2)));

end for;

V_1:=Matrix(GF(2),m,1,[]);

C:=Matrix(m,1,Eltseq(G_0,GF(2)));

D:=Matrix(m,1,Eltseq(F_0,GF(2)));

V_1:=C+D;

M_3:=Matrix(GF(2),m,n,[]);

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

two_i_n_v:=M_2*Matrix(n,1,two_i_n);

M_3:=SetColumn(M_3,i+1,Eltseq(Evaluate(L_F,Fn!two_i_n)

+Evaluate(L_G,Fn!Eltseq(two_i_n_v)),GF(2)));

end for;
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check_y:=0;

for y in Fn do

E:=Matrix(m,1,Eltseq(Evaluate(F,y),GF(2)));

matrix_y:=M_2*Matrix(GF(2),n,1,Eltseq(y));

L:=Matrix(m,1,Eltseq(Evaluate(G,Fn!Eltseq(matrix_y)),GF(2)));

T:=M_3*Matrix(n,1,Eltseq(y,GF(2)));

if E ne L+T+V_1 then

break y;

end if;

check_y+:=1;

end for;

printf"check_y: %o\n",check_y;

if check_y eq 2ˆn then

print M_2,M_3,V_1;

return true;

end if;

end for;

return false;

end function;

n:=9;

m:=9;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

F:=xˆ3+aˆ12*xˆ2+aˆ13*x+a;

G:=xˆ3+aˆ12*xˆ2+aˆ13*x+aˆ12;

REA_TypeV(F,G,P,n,m,a);

A.6 REA-equivalence of Type VI

We present the source code of F and G for REA-equivalence of Type VI in the form

F(x) = G(M2 · x) + V1 in MAGMA.

REA_TypeVI:=function(F,G,P,n,m,a)
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P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

Fm<t>:=FiniteField(2ˆm);

Fn<a>:=FiniteField(2ˆn);

F_0:=Evaluate(F,Fn!0);

F_1:=F-F_0;

G_0:=Evaluate(G,Fn!0);

G_1:=G-G_0;

inverse_f_2_is:=[];

for i:=0 to n-1 do

zero_vector_n:=Eltseq(Fn!0);

zero_vector_n[i+1] := GF(2)!1;

two_i_n:=zero_vector_n;

ysayac := 1;

inverse_f_2_is[i+1] := [];

for y in Fn do

if Evaluate(F_1,Fn!two_i_n) eq Evaluate(G_1,y) then

inverse_f_2_is[i+1][ysayac] := y;

ysayac +:= 1;

end if;

end for;

end for;

car_inverses:=car<inverse_f_2_is[1],inverse_f_2_is[2]>;

for i in [3..n] do

car_inverses:=car<car_inverses,inverse_f_2_is[i]>;

end for;

car_inverses:=Flat(car_inverses);

printf"car_inverses: %o\n",car_inverses;

for z in car_inverses do

printf"z: %o\n",z;

M_2:=Matrix(GF(2),n,n,[]);

for i in [1..n] do

M_2:=SetColumn(M_2,i,Eltseq(z[i],GF(2)));
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end for;

V_1:=Matrix(GF(2),m,1,[]);

C:=Matrix(m,1,Eltseq(G_0,GF(2)));

D:=Matrix(m,1,Eltseq(F_0,GF(2)));

V_1:=C+D;

check_y:=0;

for y in Fn do

E:=Matrix(m,1,Eltseq(Evaluate(F,y),GF(2)));

matrix_y:=M_2*Matrix(GF(2),n,1,Eltseq(y));

L:=Matrix(m,1,Eltseq(Evaluate(G,Fn!Eltseq(matrix_y)),GF(2)));

if E ne L+V_1 then

break y;

end if;

check_y+:=1;

end for;

printf"check_y: %o\n",check_y;

if check_y eq 2ˆn then

print M_2,V_1;

return true;

end if;

end for;

return false;

end function;

n:=4;

m:=4;

P<x>:=PolynomialRing(GF(2ˆn));

a:=PrimitiveElement(GF(2ˆn));

F:=xˆ3;

G:=xˆ9;

REA_TypeVI(F,G,P,n,m,a);
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