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ABSTRACT 

A COMPARISON OF DIFFERENT RECOMMENDATION TECHNIQUES 

FOR A HYBRID MOBILE GAME RECOMMENDER SYSTEM 

 

CABIR, Hassane Natú Hassane 

M.S., Department of Computer Engineering 

Supervisor: Prof. Dr. Ferda Nur ALPASLAN 

Co-Supervisor: Dr. Ruket Cakici 

 

 

November 2012, 89 pages 

As information continues to grow at a very fast pace, our ability to access this 

information effectively does not, and we are often realize how harder is getting to 

locate an object quickly and easily. The so-called personalization technology is one 

of the best solutions to this information overload problem: by automatically learning 

the user profile, personalized information services have the potential to offer users a 

more proactive and intelligent form of information access that is designed to assist 

us in finding interesting objects. Recommender systems, which have emerged as a 

solution to minimize the problem of information overload, provide us with 

recommendations of content suited to our needs. In order to provide 

recommendations as close as possible to a user’s taste, personalized recommender 

systems require accurate user models of characteristics, preferences and needs. 

Collaborative filtering is a widely accepted technique to provide recommendations 

based on ratings of similar users, But it suffers from several issues like data sparsity 

and cold start. In one-class collaborative filtering, a special type of collaborative 

filtering methods that aims to deal with datasets that lack counter-examples, the 

challenge is even greater, since these datasets are even sparser. In this thesis, we 
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present a series of experiments conducted on a real-life customer purchase database 

from a major Turkish E-Commerce site. The sparsity problem is handled by the use 

of content-based technique combined with TFIDF weights, memory based 

collaborative filtering combined with different similarity measures and also hybrids 

approaches, and also model based collaborative filtering with the use of Singular 

Value Decomposition (SVD). Our study showed that the binary similarity measure 

and SVD outperform conventional measures in this OCCF dataset. 

 

Keywords: Recommender Systems, Personalization, User Modeling, Collaborative 

Filtering, Content Based Filtering, Information Extraction, Singular Value 

Decomposition 
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ÖZ 

MELEZ MOBİL OYUN TAVSİYE SİSTEMİ İÇİN FARKLI ÖNERİ 

TEKNİKLERİNİN KARŞILAŞTIRILMASI 

 

CABIR, Hassane Natú Hassane 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ferda Nur ALPASLAN 

Ortak Tez Yöneticisi: Dr. Ruket CAKICI 

 

 

Kasım 2012, 89 sayfa 

Bilgiler hızlı bir tempoda artmaya devam ederken bu bilgilere etkin şekilde 

erişmek  her zaman mümkün olmamaktadır.Kişiselleştirme teknolojisi denilen 

teknoloji bu bilgi bombardımanı sorununa en iyi çözümlerden biridir: otomatik 

olarak kullanıcı profilini öğrenerek bilgi servislerini daha etkin kullanıma sunma ve 

böylece bizim için ilginç olan nesneleri bulmamıza yardımcı olmak için 

tasarlanmışlardır.. Bilgi yükleme problemini en aza düşürmede çözüm olarak ortaya 

çıkan tavsiye sistemleri  ihtiyaçlarımıza uygun içerik önerisi sunar. Kullanıcı 

beğenisine mümkün olan en yakın öneriyi sağlamak amacıyla kişiselleştirilmiş 

tavsiye sistemleri için kesin karakteristik kullanıcı modeli, tercihleri ve ihtiyaçları 

gereklidir. Kolaboratif filtreleme benzer kullanıcıların değerlendirmelerine dayalı 

öneri sunmada yaygın olarak kabul edilen bir tekniktir; fakat bu teknik veri 

seyrekliği ve “cold start” gibi çeşitli problemlerden muzdariptir. Kolaboratif 

filtreleme metodlarının özel bir tipi olan karşıt örneklerden yoksun verikümeleri ile 

başa çıkmayı amaçlayan tek sınıflı kolaboratif filtreleme, bu verikümeleri seyrek 

olduğu için zorluğu daha büyüktür. Bu tez kapsamında büyük bir Türk e-ticaret 

sitesinin veritabanında gerçek müşteriler üzerinde yapılan bir dizi deney sunuyoruz. 
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TFIDF ağırlıklarıyla karıştırılmış içerik tabanlı tekniğin kullanılması, farklı 

benzerlik ölçümleri ile karıştırılmış bellek tabanlı kolaboratif filtrelemesi, melez 

yaklaşımlar ve Tekil Değer Ayrışımı’nın (TDA) model bazlı kolaboratif filtreleme 

kullanılmasıyla seyreklik problemi ele alınıyor. Bu çalışma OCCF verikümesinde 

ikili benzerlik ölçümünün ve TDA’nın  geleneksel ölçümlerden üstün olduğunu 

göstermiştir 

 

Keywords: Tavsiye Sistemleri, Kişiselleştirme, Kullanıcı Modelleme, Kolaboratif 

Filtreleme, İçerik Bazlı Filtreleme, Bilgi Çıkarımı, Tekil Değer Ayrışımı 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The internet today is a very big place, is easier than ever to produce and 

publish any kind of information, by anyone, the only requirement is to be 

connected. Another factor influencing this dramatic grow of the internet, is the 

automatic generation of information, done implicitly by web application. This 

scenario has created so much information, making it harder to process all this 

information by ourselves [1]. 

 

This feeling of being overwhelmed by so much information reaches 

everyone, sooner or later. Information is only valuable if you can access it and use 

it efficiently. In order to accomplish such a remarkable goal, Recommender 

systems (RS) were born [2]. This technology assists us to navigate through all 

these information to find what is more interesting to us.  

 

Developers and vendors use recommender systems to find out what items the 

user would be interested in without spending too much time searching. 

Recommender systems are being used in many domains, such as commercial, where 

better recommendations leads to better profit [5]. Recommender system is a multi-

disciplinary field, making use of data mining, machine learning, artificial intelligent, 

and some others according to the domain.  

 

Recommender systems are dynamic systems; they learn a user profile and 

keeps on updating it according to the user feedback [4]. They have been exploited 

for recommending a diverse range of items, for example travel destinations, 

electronic products, books, and even as friends [6, 7, 8]. When the user interacts 
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with the system, it learns his tastes and builds a profile, and later it uses this profile 

to produce the recommendations; the items that best match the user profile are 

included in the recommendation list [4]. 

 

The system learns the user’s profile with information given explicitly by the 

user or implicitly but monitoring his behavior during the interactions. These new 

acquired information are then consolidated in the respective profile and used for 

future recommendations. For many systems, it is required that it has learned the user 

profile upfront, before the recommendations can be computed [6]. A recommender 

system usually uses the ratings given to items by users to measure the degree to 

which an item is preferred by a user [10]. It is also required to have item profiles, so 

that the user’s preferences can be expressed by the item’s features [9].  

 

Recommender systems has improved since its creation, are using more 

advanced tools and techniques; this improvement is also noted in the internet and 

related technologies. These are the developments that motivate the research 

community to explore better information retrieval tools and techniques [11], 

presenting to the users satisfaction in using the system. 

 

This thesis addresses a particularly hard case that emerges from a wide range 

of real-world prediction tasks, it is called one-class collaborative filtering (OCCF), 

and in this case we try to learn from implicit feedback only, under the constraint that 

each observation is a positive example [16]. There are many occurrences OCCF, for 

example, news, bookmarks and some e-commerce systems [17]. In this type of 

dataset, the training data consists simply of binary data capturing a user’s action or 

inaction, for instance item bought in an online e-commerce website. This genre of 

dataset is extremely sparse, we only have positive examples and the negative and 

unlabeled examples are mixed together, making it impossible to make a distinction 

between them. For example, consider a user who did not buy a game called “Diablo 

III”, there is no way to tell if this game is not interesting to the user or the user was 

not aware of it. 
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Some examples of OCCF include: 

 Tracking the items a user bought in the past, to predict what items 

should be recommended next, or  

 Using the user’s bookmarks to predict which other unknown sites he 

might like. In both these cases, the observed transactions are positive 

examples only. 

 

1.2  Recommender Systems As a Research Area 

Recommender systems are known as a research area since mid-1990s, when 

the first studies became publicly available [8]. Starting from there, this technology 

prospered, new techniques and tools were developed. We still see more 

improvements year after year, due to the fact that the information is changing very 

rapidly, more customers join the system, more products are offered to customers, so 

does the recommender systems technology need to evolve its techniques and tools, 

to continue to give good results to the users in dealing with the information overload 

[14]. Examples of such applications include recommending books, CDs and other 

products at Amazon.com [12], movies by MovieLens [13].  

 

1.3  Problem Definition 

This thesis focuses on the comparison of the performance of different 

recommendation techniques when applied to OCCF games recommendation system. 

A variety of features are integrated by the system in order to minimize the so-called 

“data sparsity” problem in recommendation systems. Being One-Class Collaborative 

Filtering a special case of Collaborative filtering, in which the training data used 

consists only of positive examples, makes it extremely sparse [17] and confusing to 

interpret the missing values, if the user did not see the content or he simply did not 

find it interesting. To treat the prediction task in this OCCF dataset, a wide range of 

techniques are implemented, such as content based, memory based collaborative 
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filtering, model based collaborative filtering, and hybrid approaches combining 

different techniques aforementioned together. 

  

1.4     Structure of This Thesis 

The structure of this thesis is as follows:  

In chapter 2, recommender systems are discussed in a more detailed manner, 

giving emphasis to the formal definition of the recommendation process. 

Additionally, current approaches and theories used with the existing 

recommendation systems are discussed. 

Chapter 3 covers the related work about recommender systems; this includes 

the discussion of pure content based approach, pure collaborative filtering approach, 

and hybrid recommendation systems. And also, a wide range of recommendations 

systems applied to a diverse range of domains are presented along their advantages 

and disadvantages. 

In chapter 4, the architecture and the system components of the proposed 

recommender system are presented, with a detailed description of the prediction 

algorithm of the system.   

In chapter 5, the evaluation scheme used to test the performance of the 

proposed recommender system is explained. Additionally, the results of the 

experiments that were carried out during the evaluation process are discussed.  

In Chapter 6 conclusions and some possible future work as the extension of 

this thesis is stated. 
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CHAPTER 2 

RECOMMENDER SYSTEMS 

2.1 Definition of a Recommender System (RS) 

Recommender System (RS) is a technology which by the use of specific 

software tools and techniques produces recommendations of items considered 

interesting to a specific user [4, 6,18]. “Item” is the generic term denoting the object 

of the recommendation process.  

Recommender systems are particularly helpful for anyone lacking the 

expertise to evaluate a wide range of options to select one that satisfies him [18]. As 

an example, consider the amazon.com e-commerce web site, the use of a 

recommender system has facilitated the task of buying a product, in some categories, 

the options reach thousands of alternatives [19]. Because each user has different 

tastes, each user profile in modeled according to the interests of the user, so each 

and every user get different recommendations. 

 

Recommender systems started by observing that people often rely on 

recommendations given by others to make their own decisions [4, 20]. For example, 

friends ask friends which games they liked, which movies they liked, which 

restaurants they liked. 

In a formal way, we can define the recommendation problem as follows [8]: 

Being C the set of all users and S the set of all items; let u be a utility function 

(rating most of the times) that measures usefulness of item s to user c, i.e., u :C × S 

→ R, where R is a totally ordered set. We want to find an item s’ with the higher 

utility value, for all users. More formally: 

 

SsscucSCc ),,(maxarg',  (1) 
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In RSs, the utility function is the rating, which is given by a user to an item, 

representing how the user liked the item. Consider as an example, a user-item rating 

matrix for a movie recommendation presented in Table 1, the rating range is [1 – 5] 

and the symbol “-“ is for movies the user did not rate yet. Therefore, RS should 

calculate a prediction for unrated movies and give recommendations using those 

predictions. 

Table 1 – A sample of a rating matrix 

 Avatar 
Mission to 

mars 
John Carter Contact 

João 4 - 5 2 

Fabião 2 3 1 4 

José 1 5 - 3 

Maria - 2 4 - 

 

In Figure 1, is represented the top view of a recommendation process. Before 

the recommendation engine can produce recommendations, it needs the 

representation of user profiles along with item profiles. The recommendations can 

be represented in many ways, such as ranked lists, item thumbnails [25]. 
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Items

User profiles
RecommendationsRecommendation Engine

  

Figure 1 – Top view of a recommendation process 

 

2.1 .1  Terms and Concepts Common to Recommender Systems 

In the Recommender Systems field, there are specific terms and concepts in use, 

before going any further is better to clarify the “vocabulary” [18, 26, 27]. 

 Resources: The targets of the recommendation process; 

 

 Recommenders: Entities that produces customized recommendations to its 

users;  

 

 Descriptions: Resources designed to express opinions or keep opinions about 

resources; 

 

 Preferences: The tastes of a RS user; 

 

 Algorithms for Computing Recommendations: A set of step-by-step 

procedures making use descriptions and preferences to evaluate resources; 

 

 Recommendations: The outcome of the evaluation process for the user; 
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 User’s Interest: Represents a degree of how much a user “likes” a specific item;  

 

 Prediction: The predicted importance of an item to a user;  

 

 Rating: A measure that represents a user’s interest in a specific item;  

 

 Actual Rating: A measure representing the real interest of the user in a specific 

item. Given explicitly;  

 

 Prediction Accuracy: A measure that shows the degree the predicted rating 

conforms with the user’s actual rating; 

 

 Prediction Technique: The algorithm used by the system to calculate the 

predicted rating of an item;  

 

 Certainty: The degree of belief that a recommender has in the accuracy of a 

prediction; 

 

 Feedback: The user’s response to the recommendations and predictions made by 

the recommender; 

 

2.2 Personalization 

Recommender systems and personalization walk together. Because of the vast 

amounts of information available to us, it is harder to locate the desired item. To 

minimize this situation, researchers came out with personalized information services 

[31], services designed to learn the profile of the user, his preferences, so that later 

recommendations can be made to this user based on the his profile. Personalization 

technology combines ideas from many fields, such as profiling, information 

retrieval, artificial intelligence and user interface design, to design information 

services suitable to us [31]. The authors of [28] consider Personalization as the 
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future of the internet; it has achieved great success in industrial applications such as 

Amazon and Netflix. 

 

In [29], the authors state that the fundamental processes included in the 

personalization is to extract user data, generate a model and design mechanisms to 

update the models. A similar understanding is shared by the authors of [30], in 

which they state that the core objectives of personalization technology can be 

compiled as follows:  

 The user profile must be taken into account in order to produce 

recommendations for the user in the system; 

 The user profile should be generated with the minimum involvement from 

users; 

 The recommendations should be generated almost in real time. 

 

2.3 User Modeling 

In RSs, the very first step is to learn the user profile; it can be manual or 

automatic [33]. In the case of manually generated, some researchers has shown that 

the profile is not very accurate [32]. In the automatic generation and update of the 

user profile, machine learning is used, is a field rich in tools and algorithms to 

manage profiles, but it requires a large set of training examples. These both 

approaches can be combined, and when it does, a more complete and accurate 

profile is generated [33]. 

 Considering the previous studies about the topic, the most common approach 

to build a user profile mixes three different techniques [34].  

In the first one, the user has to fill an initial form, but because users might not 

be able or willing neither to fill large forms nor to provide personal details and 

preferences explicitly. Explicit feedback asks the user about his interests, by 

showing him items of different categories, so that he can rate them. Users are 

generally not motivated to provide their feedback if they do not receive immediate 



 10 

benefits, even when they would profit in the long-term [94]. The approach usually 

followed is to present the user with a limited number of fields and to let him decide 

which fields he is willing to fill. The second technique exploits demographic 

profiles, based on age groups for example, that give available information on the 

different categories of users, and can also be used to predict user's interests. The 

third technique dynamically updates the user profile by considering his previous 

interactions with the system. 

 

In fact, these three techniques above discussed, complement each other, 

generating a more complete user profile. Moreover, when combined, it leads to a 

less intrusive system. Explicit feedback requires a user to evaluate content and 

indicate how relevant or interesting specific content is to him/her using like/dislike 

(a binary scale) or numerical ratings. Even though explicit feedback helps us to 

capture user preferences accurately, there is a serious drawback in that users do not 

tend to provide enough feedback. Users are generally not motivated to provide their 

feedback if they do not receive immediate benefits, even when they would profit in 

the long-term [94]. 

 

2.4 Too much Information 

The creation and extension of online services had an impact on our lives. In 

one hand, it gave access to a variety of information, and on the other hand made it 

harder to find products suitable to our needs, the user is exposed to more 

information than he needs and, more importantly, is able to process.  

The successful management of information depends on finding “smart” ways 

of reducing this information overload problem.  One of the main solutions proposed 

and accepted for this problem are recommender systems, which provide automated 

and personalized suggestions of products to consumers. 
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2.5 Data and Knowledge Sources 

Data is the first input to a recommender system. This data consists of 

information about items, users and user’s transactions [36]. The items are the objects 

to be recommended. Items are characterized by their characteristics and by the rating 

given by the user. Users of a RS, as aforementioned, may have different profiles. In 

order to personalize the recommendations, RSs make use of these profiles. 

Transaction is a recorded interaction between a user and the RS and is used by the 

recommendation generation algorithm of the system. These transactions can be 

captured explicitly, given by the user, or implicitly by monitoring his behavior when 

using the system. Below we present the formal definition. 

2.5.1 Formal Domain Definition 

A detailed domain definition is useful to depict existing data in an organized 

way. The dataset can be mapped to an environment as follows: 

 

 A set P of n uniquely identifiable peers.  
 

P = { p1, p2, p3, … , pn } 

 

Each peer corresponds to a single user in the dataset. Additionally, the term 

“peer” stands for independent entities performing some actions in a system, such as 

nodes in peer-to-peer systems, software agents or intelligent web servers in other 

domains. 

 

 A set I of m uniquely identifiable items. 

 

I = { i1, i2, i3, …, in} 

 

Each item is identified separately and in our case, each item stands for a game.  

 

 A set R of k uniquely identifiable purchases. 
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R = {r1, r2, r3, …, rn} 

Each user is allowed to purchase any item. 

 

2.6 Recommendation Techniques 

In order to produce a list of interesting items to a user, RSs should first predict 

that a specific item is worth recommending for a specific user. This prediction can 

be obtained by following multiples strategies, which classifies a RS. To provide a 

classification of the different types of RSs, we will make use of the taxonomy found 

in [6] and also [37], which distinguishes between six different classes of 

recommendation approaches: Content-based, Collaborative filtering, Demographic, 

Knowledge-based, Community-based and Hybrid. Each of this classes will be 

briefly summarized. To have more details about this taxonomy please consult [6] 

and [37]. 

 

 

2.6.1 Content-based RS 

Recommender systems using this recommendation strategy, analyze a set of 

documents (features) of the items rated by the user, and then create the user profile 

based on the features of the objects rated by that user [6, 38]. The recommendation 

mechanism basically tries to match up the features of the item against the user 

profile. The best matches are included in the recommendation list.  

The high level architecture of a CBR is depicted in Figure 2. The 

recommendation process is performed in three steps, each of which is handled by a 

separate component: content analyzer (pre-processes the data to be used in 

subsequent steps), profile learner (constructs the user profile) and the filtering 

component (produces the recommendations) 
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Figure 2 - A Top Level Architecture of Content-based Systems 

 

2.6.1.1 Item profile 

The item profile is the set of features that identifies an item. It can be anything. 

As an example consider an item in an electronics shop, it will have brand, model, 

color, country of production, year of production, description, price, serial killer, and 

so on.  Thus all of these attributes define the item profile. 

2.6.1.2 User profile 

One important aspect of RSs is its capability to learn user’s preferences. In 

order to provide proper recommendations to its users, personalized recommender 

systems require user profiles [91]. On top of that, as every user can have different 

preferences, each user profile should be represented with a individual set of features 

[92].  
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2.6.1.3 Pre-processing 

 High  precision  in information retrieval (IR)  is  commonly hard to 

accomplish for  a  variety  of reasons;  one for sure is the large  number of variants 

for  any given term.  To deal with some of the issues, researchers proposed to use 

stemming algorithms to reduce terms to its root [88].  

Another pre-processing step commonly applied with stemming, is removing 

stopwords, which consists on removing the words which do not contain important 

significance and are extremely common, such as bu, sen, burada, etc.  

 

2.6.1.4 TFIDF (Term Frequency / Inverse Document Frequency) Weighting 

When working with free text in IR, it is common to use a weighting scheme 

when searching documents. TFIDF is a popular weight scheme. TFIDF is a 

combination of term frequency and inverse document frequency and is calculated 

using the Equation (2) below [89]: 

 

tf-idft,d = tft,d x idft (2) 

 

 

 

 Term frequency tft,d - number of occurrences of term t in document d. 

 

 Inverse document frequency idft – letting the total number of documents in a 

collection be N, the inverse document frequency (idf) of a term t is defined 

as follows (Equation 3): 

 

 (3) 

 

Where dft is defined as the number of documents in the collection that contains 

the term t. 
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After applying the weight scheme, each document is viewed as a vector with 

one component corresponding to each term in the dictionary, together with a weight 

for each component that is given by Equation (2). For terms that do not occur in the 

document, this weight is zero.   

 

After having a vector containing all the terms and their respective TF*IDF 

weights for each document in the collection, we can measure the similarity between 

documents by making use of any similarity measure. 

 

Consider a document containing 100 words wherein the 

word “canavar” appears 3 times, and the most frequent word appears 10 times. 

Following the previously defined formulas, the normalized term frequency 

for “canavar” is then (3 / 10) = 0.3. Now, assume we have 10 million documents 

and “canavar” appears in one thousands of these. Then, the inverse document 

frequency is calculated as log(10 000 000 / 1 000) = 4. The tf*idf score is the 

product of these quantities: 0.3 × 4 = 1.2. 

2.6.1.5 Pros and Cons 

Content-based filtering is a good strategy in some situations; in this section we 

will learn some of its strong and weak attributes. Let us start with the advantages, 

comparing to collaborative filtering [36]: 

 

 User independence – CBRs only exploit previous interactions of the active 

user to build his user profile, it does not depend on the opinions of other 

peers, as CF; 

 

 Transparency – CBRs are transparence in the sense that the explanations on 

the recommendation list can be provided by explicitly showing the content 

features that caused the recommendation; 
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 New item – CBRs can recommend not yet rated items; as a consequence, 

they do not suffer from the first-rater problem, as CF. 

 

Nonetheless, content-based systems have several shortcomings: 

 

 Limited content analysis - No CBR can provide suitable recommendations 

if the analyzed content does not contain enough information to distinguish 

items the user likes from items the user does not like. Some representations 

capture only certain aspects of the content, but there are many others that can 

cause some impact;  

 

 Over-specialization - CBRs have no inherent method for finding something 

unexpected. It only recommends items with higher degree of similarity to 

items previously rated. This is called serendipity problem. 

 

 New user - When few ratings are available in the system, as for a new user, 

the CBR will not be able to provide reliable recommendations. 

 

2.6.2 Collaborative Filtering RS 

The authors of [42] give the following definition to collaborative filtering: 

 

“Collaborative filtering (CF) is the process of filtering or evaluating items 

through the opinions of other people” 

 

Differently from CBR, collaborative filtering approaches [43, 44] are based on 

the ratings of the active user as well as those of other users in the system. 

Collaborative filtering methods can be classified in two general classes: Memory 

based and model-based [8, 45, 46].  
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The general idea of model-based approach is to model the user-item matrix 

with factors representing hidden characteristics of the users and items in the system, 

this model is then trained using the available data, and later used to predict ratings of 

items to users. Model-based approaches are numerous and include Bayesian 

Clustering [46], Latent Semantic Analysis [49], Latent Dirichlet Allocation [50], 

Maximum Entropy [51], Boltzmann Machines [52], Support Vector Machines [53], 

and Singular Value Decomposition [54]. 

 

In memory based approach, the user-item ratings stored in the system are 

directly used to make predictions. Many memory based implementations uses 

nearest neighbor algorithm, which is the de facto algorithm for memory based 

approach.  K-Nearest Neighbor (KNN from now on) is one of those algorithms that 

are very simple to understand but works incredibly well in practice. KNN can be 

implemented in two ways: user based or item-based recommendation. In the 

following sections we will summarize these two methods. 

2.6.2.1   User-Based Nearest Neighbor Algorithms 

User-based algorithms generate predictions for users based on ratings from 

similar users. We call these similar users neighbors. If a user n is similar to a user u, 

we say that n is a neighbor of u. User-based algorithms generate a prediction for an 

item i by analyzing ratings for i from users in u’s neighborhood. The prediction can 

be calculated using Equation 2. Where rni is neighbor n’s rating for item i. 

 

 (4) 

2.6.2.2 Item-Based Nearest Neighbor Algorithms 

While user-based algorithms base the predictions on similar users, item-based 

algorithms give predictions using similarities between items [63]. 
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A prediction for a user u and item i is composed of a weighted sum of the user u’s 

ratings for items most similar to i, and can be calculated using equation 3.  

 

 

 

 (5) 

 

 

Note that in Equation 5, itemSim() is a measure of item similarity, not user 

similarity.  

 

2.6.2.3    Advantages of Neighborhood Approaches 

The main advantages of memory-based methods are: 

 

 Simplicity: memory-based methods are intuitive and quite simple to implement.; 

 

 Justifiability: these methods provide a reliable justification for the computed 

predictions. In item-based recommendation, for example, the list of items rated 

by the neighbors, along with the ratings given by the user to these items, may be 

showed to the user as a justification for the recommendation. This can help the 

user to better understand the recommendation [54]; 

 

 Efficiency: Efficiency is perhaps its strongest points. Although the calculation 

of one’s neighbors is a very costly intensive task, it can be done offline, so that 

the recommendations can happen almost in real-time; 

 

2.6.2.4  One-class collaborative filtering (OCCF) 

In earlier sections, we have discussed the use of CF in RSs. We divided 

collaborative filtering algorithms into two sets based on the approach they use: 
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memory based and model based algorithms. However, any distinction was made 

taking into consideration the dataset.  

Taking into consideration the dataset, we can classify as multi-class 

collaborative filtering and one-class collaborative filtering [16]. In a multi-class 

dataset, we have positive examples as well as negative examples, but in contrast, 

one-class dataset gives us only positive examples, the negative and unknown 

examples are mixed together and we cannot tell which is what.   

 

The authors of [16] work on an OCCF dataset, containing only positive 

examples, classes are highly imbalanced, and the vast majority of data points are 

missing.  In this study, three different collaborative filtering frameworks are studied: 

Low-rank matrix approximation, probabilistic latent semantic analysis, and 

maximum-margin matrix factorization. The authors proposed two novel algorithms 

for large-scale OCCF that allow to give weight to the unknowns. The experimental 

results demonstrated their effectiveness and efficiency on different problems, 

including the Netflix Prize data [16]. 

 

Now, let us consider an OCCF example, an e-commerce shop that lets its 

customers purchase their content on it. According to bought content, the service 

makes recommendations to the user. In this case, the dataset available to the 

recommendation system is all the purchases history of all customers. A possible 

portion of the actual dataset is given in Table 4. If a user buys content, we can 

conclude that the user liked that content, and we put a “1”. However, if the user did 

not buy content, we cannot make any conclusions, either the user did not find it 

interesting or the user has not viewed the content yet. The user even may not be 

aware of the existence of such content. In other words, there is no way for the 

recommendation system to make distinction between the negative and missing 

positive entries in the dataset. After all, as can be seen in Table 2, the user-item 

matrix in such a system will consist of only positive (1’s) and missing (dashes) 

entries. A “1” in the dataset means that the user has bought the given content. On the 

other hand, a dash (-) indicates that the user has not bought the content, which 
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means that either the user did not like the content (negative example) or the user was 

not aware of that content (actual missing data). 

 

Table 2 - A sample dataset for one-class collaborative filtering. 

 Diablo 3 
Angry 

birds 

Walking 

dead 
Fruits ninja Drive2survive 

User 1 1 - - - 1 

User 2 - 1 - 1 - 

User 3 - 1 1 - 1 

User 4 1 1 - 1 - 

User 5 - - 1 1 1 

 

 

It is obvious that such a service will face a one-class classification problem 

during the recommendation step.  

The key difference between traditional collaborative filtering and one-class 

collaborative filtering methods is that later one has only positive examples in 

training set [17]. However, traditional collaborative filtering methods can be used to 

attack one-class collaborative filtering problems. By interpreting missing data as 

negative examples one can obtain a dataset in which instances belongs to two 

classes. Of course this approach will be biased as it will mark some positive 

examples as negative. In [17], the authors discuss several strategies to distinguish 

negative examples out of missing data. In their work, the authors experimentally 

compared several approaches including all missing data as negative, no missing data 

as negative and some weighting schemes to tag an instance as negative. However in 

this study, for the sake of simplicity, we will consider a “dash” as negative example, 

so our rating matrix will have values 1 and 0. 

2.6.3 Demographic RS 

Demographic RS explores the demographic profile of the user. The basic idea 

is to generate recommendations for different demographic niches. This approach is 
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followed by many web sites, by using the user’s language or country to redirect him 

to a particular web site. There is little research about this RSs [65]. 

 

2.6.4 Knowledge-based RS 

In knowledge-based approaches, the RS makes use of extra information, 

which is frequently provided, information about both the active user and the items 

inventory. As an example, consider a system in automobile shop, where users don’t 

buy cars often. This means that the purchase history is not is not enough to make a 

good recommendation, a more detailed and structured content may be available, 

including technical and quality features. Using only the purchase history would 

result in recommending only top-selling cars. 

2.6.5 Community-based RS 

This type of RSs recommends items based on the preferences of the user’s 

friends. The research in this area still in its early phase, the authors of [37, 69] report 

that, social-network based recommendations are not more accurate than those 

produced from traditional CF approaches. Others have shown that in some cases 

social-network data yields better recommendations [71] and that adding social 

network data to traditional CF improves recommendation results [70].  

 

2.6.6 Hybrid RS 

These systems are based on the combination of the above mentioned 

techniques. A hybrid system combining techniques A and B tries to use the 

advantages of A to fix the disadvantages of B. For instance, CF methods suffer from 

new-item problems, i.e., they cannot recommend items that have no ratings. This 

does not limit content-based approaches since the prediction for new items is based 

on their description (features) that are typically easily available. Given two (or 

more) basic RSs techniques, several ways have been proposed for combining them 
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to create a new hybrid system, the interested reader can consult [6] for more detailed 

descriptions. 

In following sections we will examine the hybridization designs. 

2.6.6.1 Monolithic hybridization design 

In monolithic hybrids we find a single recommender component that 

implements multiple techniques by preprocessing and combining several 

information sources. Hybridization is accomplished by a slight change of the 

algorithm behavior to explore different types of input data. Following Burke’s 

taxonomy [72], both feature combination and feature augmentation methods fall in 

this category. 

 

2.6.6.1.1 Feature combination hybrids 

A feature combination hybrid is a monolithic recommendation component that 

uses features from different data sources as input data. For instance, Basu et al. [74] 

uses this technique to combine collaborative features, user’s likes and dislikes, along 

with content features of items. The curious reader can consult reference [74] for 

more details. 

 

2.6.6.1.2 Feature augmentation hybrids 

Feature augmentation is another monolithic hybridization design that can be 

used to integrate multiple recommendation algorithms. Output from one 

recommendation technique is given to another as input. Content-boosted 

collaborative filtering is an actual example of this variant [75]. It predicts a user’s 

assumed rating based on a collaborative mechanism that includes content-based 

predictions. 
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2.6.6.2 Parallelized hybridization design 

Parallelized hybridization designs use many recommenders at the same level. 

Burke [72] classifies this category as mixed, weighted, and switching strategies.  

 

2.6.6.2.1 Mixed hybrids 

Using this strategy, the predictions from each of the recommendation 

techniques are presented together to the active user. Therefore the recommendation 

result for user u and item i is the resulting recommendations of each and every 

recommender. The items with the highest score for each recommender are presented 

to the active user, as in Burke et al. [76]. 

2.6.6.2.2 Weighted hybrids 

In a weighted hybridization strategy, each of the participating recommenders 

contributes to the overall score by some pre-defined weight. The implementation is 

quite straightforward and it is a popular strategy when hybridizing. 

2.6.6.2.3 Switching hybrids 

Switching hybrids require a mechanism to decide in which situation favor one 

recommender and not the other, depending on the user profile and/or the results of 

the recommendation. In the NewsDude system [77], the authors implemented two 

content-based variants and a collaborative method to recommend news articles. 

Initially, a CB recommender is used. If it does not find similar articles, a CF system 

is called; and lastly, a naive Bayes classifier locates articles matching the long-term 

preferences of the active user. 
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2.6.6.2.4 Pipelined hybridization design 

Pipelined hybrids make use of several recommendation techniques, in which 

the output of one serve as input for the next one; a preceding component may either 

preprocess input data to create a model that is used by the subsequent steps or 

produces a list for further processing by the next technique. 

 

2.7 Similarity measures 

CF is one of the most popular methods in recommender systems. The critical 

component of CF technique is the creation of the neighborhood. In memory based 

approach, KNN is champion, as already stated in previous sections. The success of 

this kind of classifiers depends on the application of a suitable similarity measure to 

compute the neighborhood. 

In literature there is a wide range of proposed methods for computing the 

similarity between entities. Minkowski Distance, Pearson Correlation and Cosine 

Similarity are the most popular ones. 

 

2.7.1 Euclidean distance and Minkowski distance 

The most famous example of a distance measure is the Euclidean distance, 

defined by the Equation 6: 

 (6) 

 

where n is the number of dimensions (attributes) and xk and yk are the kth 

attributes (components) of data objects x and y, respectively. 

The Minkowski Distance is a generalization of Euclidean Distance (Equation 7): 
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(7) 

 

 

where r is the degree of the distance. Depending on the value of r, the generic 

Minkowski distance is known with specific names:  

 For r = 1, the city block, (Manhattan, taxicab or L1 norm) distance;  

 For r = 2, the Euclidean distance;  

 For r→∞, the supremum (Lmax norm or L∞ norm) distance, which 

corresponds to computing the maximum difference between any dimension 

of the data objects. 

2.7.2 Cosine Similarity 

The similarity can also be defined by the angle or cosine of the angle between 

two vectors. It is widely used in text classification because two documents with 

equal word composition but different lengths can be considered identical. The cosine 

measure is given in Equation 8. 

 (8) 

 

where • indicates vector dot product and ||x|| is the norm of vector x. This similarity 

is known as the cosine similarity or the L2 Norm . 

 

 

2.7.3 Pearson Correlation 

The similarity between objects (items or users for example) can also be given 

by their correlation, which measures the strength of the association between objects. 

Given the covariance of data points Σ(x,y) , and their standard deviation σ , we 

compute the Pearson correlation using Equation 9: 
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 (9) 

 

RS have traditionally used either the cosine similarity (Equation 6) or the 

Pearson correlation (Equation 7) – or one of their many variations through, for 

instance. 

2.7.4 Jaccard Coefficient 

The Jaccard coefficient measures the ratio of the number of commonly active 

features of x1 or x2 [100]. Equation 10 gives a definition of this measure which is 

often used in retail market applications. 

J(x1,x2) = a / a + b + c (10) 

Where: 

 a represents the total number of attributes where x1 and x2 both have a 

value of 1. 

 b represents the total number of attributes where the attribute of x1 is 0 

and the attribute of x2 is 1. 

 c represents the total number of attributes where the attribute of x1 is 1 

and the attribute of x2 is 0.  

J(x1,x2) results in a number in the interval [0,1] inclusive, measuring the 

degree of similarity between x1 and x2. J(x1,x2) = 1 corresponds to objects x1,x2 that 

are identical while J(x1,x2) = 0 corresponds to objects that are very different.  

 



27 

2.8 Singular Value Decomposition - SVD 

In this section, Singular Value Decomposition is presented. SVD is a very 

efficient factorization technique used in linear algebra. In literature there are diverse 

applications areas of SVD, but we are just interest in its contribution to RSs. 

Interested reader can consult [102,103] for more clarification and examples. 

2.8.1 Definition 

SVD comes from linear algebra, from a theorem that says that a rectangular 

matrix Amxn can be represented by the product of three matrices - an orthogonal 

matrix Umxr, a diagonal matrix Srxr having all singular values of matrix A as its 

diagonal entries, and the transpose of an orthogonal matrix Vnxr [102] . This theorem 

is commonly displayed as: 

 

 (11) 

 

 

where U
T
U = I; V

T
V = I; the columns of U are orthonormal eigenvectors of AA

T
 , 

the columns of V are orthonormal eigenvectors of A
T
A, and S is a diagonal matrix 

containing the square roots of eigenvalues from U or V in descending order; r is 

rank of the matrix A. 

 

 

2.8.2 SVD and RS 

What makes SVD interesting to recommender systems, is that the matrices 

generated by performing SVD provides with the best lower rank approximations of 

the original matrix A. It is possible to reduce the r x r matrix S to have only k largest 

diagonal values to obtain a matrix Sk, k < r. If the matrices U and V are reduced 
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accordingly, then the reconstructed matrix Ak = Uk.Sk.Vk
T
 is the closest rank-k 

matrix to A [103]. Figure 3 show this process. 

 

 

Figure 3 - Dimensionality Reduction Process using SVD 

 

SVD is used in RS to first reveal the latent relationships between users and 

items to predict the usefulness of an item to a user, and then to produce a low-

dimensional representation of the original user-item matrix for calculating the 

neighborhood in this reduced space, to be used later for produce recommendations. 

The Uk matrix contains information about users and matrix Vk
T
 contains information 

about items. Using this two matrices users and items similarities can be computed.  

SVD-based recommendation algorithms produce high quality recommendations, 

but have to undergo computationally very expensive matrix factorization steps. 
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CHAPTER 3 

RELATED WORK 

In this chapter, the related work in the area of recommender systems will be 

given. To this goal, a wide range of recommender systems from different domains 

making use of pure content based, pure collaborative filtering, social graphs and 

mixed techniques will be presented. In addition to carefully analyze how the 

recommendation problem is being handled, the pros and cons of these techniques 

will be discussed. 

 

3.1 Pure collaborative filtering recommender systems 

One of the personalization technologies driving the adaptive web is 

collaborative filtering. As mentioned earlier in section 2.6.2, collaborative filtering 

(CF) is the process of filtering or evaluating items through the opinions of other 

people. Collaborative filtering techniques have been successful in predicting the 

rating for an unseen item to the user in recommendation systems.  

The study conducted by the authors of [15] claims that although COR (Pearson 

correlation) and COS (cosine similarity) have won big space among the trusted 

similarity measures, they are not very successful when the number of ratings is very 

small. The similarity calculations in scenarios like this are not reliable.  

 

In order to address this problem, the authors presented an alternative measure 

based on the following: 

 

 The measure should explore other perspectives of the data, to make it more 

effective in very sparse datasets; 
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 It should allow the implementation in existing CF systems by simply 

replacing the similarity measure of the systems; 

 

 It should show good results not only in very sparse datasets but also in dense 

datasets; 

 

The measure is composed of three factors of similarity, Proximity, Impact, and 

Popularity, and hence, was named PIP. Using the PIP measure, the similarity 

between two users ui and uj is calculated using Equation 12:  

 

 (12) 

 

where rik and rjk are the ratings of item k by user i and j, respectively, Ci,j is the set of 

co-rated items by user ui  and uj, and PIP(rik, rjk) is the PIP score for the two ratings 

rik and rjk, calculated using Equation 13, 

  

PIP(r1, r2) = Proximity(r1, r2) x Impact(r1, r2) x Popularity(r1, r2) (13) 

 

The Figure 4 below illustrates the basic ideas behind the three factors, and the 

Table 3 presents the formal description of the formulas: 
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Figure 4 - Description of the three factors of PIP using example ratings 

Table 3 presents the formal description of the formulas. 

Table 3 - Formal description of the PIP formulas 

Agreement 

For any two ratings r1 and r2, let Rmax be the maximum 

rating and Rmin the minimum in the rating scale, and let  

Rmed = (Rmax + Rmin) / 2 

A Boolean function Agreement(r1, r2) is defined as 

follows:  

 

Agreement(r1, r2) = false if (r1 > Rmed and r2 < Rmed) or 

(r1< Rmed and r2 > Rmed), and 

Agreement(r1, r2) = true otherwise 

Proximity 

A simple absolute distance between the two ratings is 

defined as: 

D(r1, r2) = |r1 - r2| if Agreement(r1, r2) is true, and 

D(r1, r2) = 2 x |r1 - r2| if Agreement(r1, r2) is false 

Then the Proximity(r1, r2) is defined as: 

Proximity(r1,r2) = {{2x(Rmax - Rmin) + 1} – D(r1,r2)}
2
 

Impact Impact Impact(r1, r2) is defined as: 
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Impact(r1, r2) = (|r1 - Rmed| + 1)(|r2 - Rmed| + 1)  

if Agreement(r1, r2) is true, and 

 

Impact(r1, r2) = 1/(|r1 - Rmed| + 1)(|r2 - Rmed| + 1) if 

Agreement(r1, r2) is false 

Popularity 

Let μk be the average rating of item k by all users, Then 

Popularity(r1, r2) is defined as:  

 

Popularity(r1, r2) = 1 +(((r1+ r2)/2)- μk )
2 

 if (r1 > μk and 

r2> μk) or (r1 < μk and r2 < μk), and 

Popularity(r1, r2) = 1 otherwise 

 

The authors of [15] after extensive evaluation concluded that the presented PIP 

measure showed superior performance for very sparse datasets. 

 

 

In the study presented by the authors of [10], they developed a web-based movie 

RS called Movies2Go that reasons with user preferences to recommend movies. It 

combines voting based ranking procedure along with properties that use syntactic 

features like actor/actress of movies together with a learning based approach that 

processes semantic features of movies like its synopsis. 

 

Their RS give three major functionalities to its users: 

 

 Stores the user profile with weights of different attributes in many 

dimensions like favorite actors, favorite actresses, favorite directors, 

preferred time period (in terms of years), relative likings of different movie 

genres like comedy, drama, action  etc. It also keeps the importance of each 

dimension as specified by the users (e.g., whether the user rates the genre 

dimension above the director dimension etc.); 

 

 The system makes recommendations to the user by a combination of voting 

and nearest neighbor algorithms based on the user profile. The user can filter 
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the results (e.g, a user may be looking only for ‘comedy’ movies directed by 

a certain director); 

 

 It employs a simple learning mechanism to learn keyword occurrences in the 

synopsis of movies that a user rates. This makes the system more suitable to 

individual needs, which provides better recommendation. 

 

The authors claim that MOVIES2GO provides satisfactory recommendations by 

using this voting system.  

Another interesting work is one done by the authors of [45]; they have enhanced 

the neighborhood-based approach leading to noticeable improvement of prediction 

accuracy, without increasing running time. First, they pre-processed the data by 

removing the so-called “global effects” to make the ratings more comparable. 

Second, they showed how to simultaneously derive weights for all neighbors, unlike 

previous approaches where each weight is computed separately.  

 

Their method does not require training many parameters or a long pre-

processing, making it very practical for large applications. They evaluated these 

methods on the Netflix dataset, where it delivered significantly better results than 

the commercial Netflix Cinematch recommender system [45]. 

 

One of the best examples of CF is without a doubt Amazon.com [12], the 

authors used recommendation algorithms to personalize the online store for each 

customer. The store radically changes based on customer profile. Clicking on the 

“Your Recommendations” link leads customers to an area where they can filter their 

recommendations by product line and subject area, rate the recommended products, 

rate their previous purchases, and see the justifications. 

 

Because existing recommendation algorithms cannot scale well 

Amazon.com’s tens of millions of customers and products, they have developed 

their own, an item based algorithm,  rather than matching the user to similar 
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customers, item based CF matches each of the user’s purchased and rated items to 

similar items, then combines those similar items into a recommendation list. To 

determine the most-similar match for a given item, the algorithm builds a similar-

items table by finding items that customers tend to purchase together [12]. 

 

 As previously discussed, the critical aspect of CF is the calculation of 

similarities; in this system, it creates the expensive similar-items table offline. 

Unlike traditional collaborative filtering, the algorithm also performs well with 

limited user data, producing high-quality recommendations based on as few as two 

or three items [12]. 

 

 

3.2 Pure content based recommender systems 

Content based approach, as previously discussed, requires only two pieces of 

information: a description of the item characteristics and a user profile that describes 

the (past) interests of a user. The recommendation task then consists of determining 

the items that match the user’s preferences best, as discussed in section 2.6.1. 

As an example, consider the RS presented by the authors of [84], PTV. PTV is a 

recommender system designed to make TV program suggestions to users based on 

their individual profile. PTV profiles created in this system contain lists of positively 

and negatively rated TV programs. In this RS, users register themselves in the PTV 

interface (Web site) and then they can access personalized programming guides 

presented as HTML or WML pages. The system incorporates user profiles, content-

based reasoning and collaborative methods to make recommendations. When 

registering a new user, the system creates a profile which stores preferences about 

programs, channels, genres, timetables, etc. Later on, a component of the system 

collects the feedback information of the users to enrich the user profile. 

Additionally, this information can be continuously improved by taking into account 

all decisions adopted by the user any time he interacts with the system. This allows a 

great reduction in the information that must be explicitly given by the user. So, in 
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this case, the first time the user turns on the system, he must inform only about a few 

characteristics to build a preliminary profile [84]. 

The study presented by the authors of [82], a CB RS. In the system, the attributes 

used for content-based recommendation are weighted, according to their level of 

importance for the users of the system. In order to define the weight of each 

attribute, is used a set of linear regression equations obtained from a social network 

graph. The main idea of this approach is to use existing recommendations by users 

to construct a social network graph with items as nodes [82]. After testing this 

approach extensively, the authors conclude that the presented approach consent with 

IMDB recommendation, and it even present good results and also shows the 

effectiveness of feature weighting [82]. 

 

3.3 Hybrid recommender systems 

As discussed in section 2.6.6, this kind of RSs are based on the combination of 

the above mentioned techniques, exploring the advantages of one to fix the 

disadvantages of the other.  

In movies/TV domain, there is the AVATAR system [83]; AVATAR is a TV RS 

that recommends contents for a user, semantically similar to those he watched 

before. AVATAR includes user profiles, content-based reasoning and collaborative 

methods, to produce the recommendations.  It also makes use of a technique which 

provides an initial user profile from the information acquired during the registration 

process and after that, the feedback information (watched programs, changes in 

preferences, etc) needed for the explicit interaction and collaboration of the user 

through specific Web pages. The system implements an ontology using the OWL 

(Web Ontology Language) language, where resources and relations typical in the 

TV domain are identified by classes, properties and specific instances. In order to 

model the preferences, a dynamic subset of TV ontology is used, built incrementally 

by adding new classes, properties and instances. Specifically, when AVATAR 

knows a new content, the system adds to the profile this instance, the class referred 
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to it, the hierarchy of super classes defined in knowledge base related to this class 

and some properties defining the main characteristics of this TV content [83]. After 

evaluated this approach, the authors were happy with the results. 

 

Another study in this category is the Machbook system [85], which is a web 

based recommendation system that has been developed by using personalization 

techniques and combining machine learning and automated reasoning. In 

Matchbook, the users are able to browse the content in order to find the right 

matches for themselves in terms of both character and appearance.  

For the machine learning part, by observing just the implicit behaviour of the 

user (i.e. visiting other user’s profiles) the interests of the user are learnt. “Add to 

Favourite List” means a positive example and “Skip to the Other User” means a 

negative example. According to these positive and negative examples, some 

hypotheses about the user’s taste are maintained by using Candidate Elimination 

Algorithm. In this manner, the users in the system are personalized so that the 

system is able to provide them with the appropriate matches [85]. As another 

machine learning algorithm, k-Nearest Neighbour Algorithm is used in order to find 

the people sharing the most common interests specified during the registration. 

To make recommendation to the user, the system finds the relation defined for 

that user and tries to match the related properties with the users in the system. After 

the matches are found by the reasoner, Naïve Bayes Classifier is applied and the 

matches are ordered according to the results calculated from the classification 

method [85]. 

3.4 Dimensionality reduction approach 

In [103], the authors explore the potential of SVD for making recommendations. 

Their study was driven to find alternatives to the weakness of Pearson nearest 

neighbor in large, sparse datasets. They started by applying SVD to produce 

matrices U, S and V, then they reduced the matrix S to dimension k, by choosing top 
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k Eigenvalues. After that they computed the square root of the reduced matrix Sk, 

giving matrix Sk
1/2

. And at the end they computed the two resultant matrices UkSk
1/2

 

and Sk
1/2

Vk
T
. 

 With the resultant matrix UkSk
1/2

, they computed the neighbourhood by 

applying cosine similarity to each and every row vector. After computing the 

neighborhood for a given customer C, they scanned through the purchase record of 

each of the k neighbours and performed a frequency count on the products they 

purchased. The product list is then sorted and most frequently purchased N items are 

returned as recommendations for the target customer. 

 

After extensive evaluation, they concluded that the SVD-based technique was 

consistently producing worse results than traditional collaborative filtering when 

using an extremely sparse e-commerce dataset. However, the SVD-based approach 

produced better results than a traditional collaborative filtering algorithm when 

using a denser dataset as MovieLens dataset. 

 

 

3.5 One Class Collaborative Filtering (OCCF) Dataset 

As referred previously, OCCF datasets contains only positive examples. All of 

the negative examples and missing positive examples are mixed together and there is 

no way of distinguishing between them. There are many strategies that tries to solve 

this problem. 

One of the strategies is to label negative examples, but this approach is very 

expensive or even close to impossible to implement, as in a e-commerce system 

such as amazon.com with millions of items, the user is only interested in a tiny small 

fraction of it, so to ask users to label negative examples among all these millions of 

choices is a non-sense. Another strategy used is to label all missing values as 

negative examples; empirical studies show that this approach works well most of the 

time, but it biases the results, because some unknown positive examples may be 

considered as negative examples. On the other hand, if we ignore all missing values 
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and use only the positive examples to feed the system, it will model only not missing 

data, all predictions processed by the system will be positive examples. Therefore, 

all missing as negative (AMN) and all missing as unknown (AMU) are two 

extremes. 

 

Taking as an example the work done by the authors of [17], they proposed two 

frameworks to tackle OCCF. They balance between AMN and AMU. The first one 

method is based on weighted low rank approximation [104, 105], giving different 

weights to the error terms of positive examples and negative examples; and the other 

consists in randomly sampling some missing values as negative examples based on 

some sampling strategies.  

 

For the first framework, the authors of [17] propose Weighted Alternating Least 

Squares (wALS). wALS is based on the Weighted Low-Rank Approximation 

(wLRA) method presented in [105]. Both wALS and wLRA methods use a matrix 

W which keeps weights in its cells. Weight of a rating represents our confidence 

level about that rating, which means that if a rating has a high weight, then we are 

highly confident that this rating is correct. Although, accommodating a weight 

matrix is the common idea of wALS and wLRA, the weight matrices used is the 

main distinguishing point between two algorithms. 

 

Similarly to SVD, wALS also uses a matrix decomposition. The goal is to find a 

matrix  such that , where  and .  is 

expected to minimize the error in Frobenius form as given by Equation (14). 

 (14) 

wALS is an improved version of wLRA. Both methods try to solve the optimization 

problem , where  is defined using Equation (15). 

  

 (15) 
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To overcome the overfitting problem of wLRA, the authors of [17] proposed a 

regularization term to Equation (15) which is shown in Equation (16). 

 (16) 

The interested user can consult [17] for more details. 

 

For the weight scheme, the authors of [17] used Uniform, User Oriented, and 

Item Oriented. The weight matrix W is very important to the performance of OCCF. 

With W=1, it is equivalent to the case AMN with the bias mentioned earlier. The 

main idea behind the correction of the bias is to let  represent the confidence 

level of the training data (R) used to build the collaborative filtering model. For 

positive examples, , whenever . For the case of missing data, most of 

the cases are probably negative examples, and the confidence level of missing 

values being negative is not as high as the positive example case, so they gave lower 

weights.  

The uniform weighting scheme considers missing values as being negative 

examples with the equal strength to all users or items, i.e., it uniformly give a weight 

 for all negative examples. The second weighting scheme, User Oriented, 

takes into consideration the number of positive examples, if it has more positive 

examples; it infers that she does not like the other items, meaning that the missing 

values are negative with higher probability. The third weighting scheme, Item 

Oriented, also takes into consideration the number of positive examples; if an item 

has fewer positive examples, the missing values for that item is negative with higher 

probability as well. All the three weighting schemes are summarized in the Table 4 

below. The parameter for the three schemes is the ration between the sum of the 

positive examples weights and the sum of the negative example weights.   
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Table 4 - Weighting schemes 

 Positive examples Negative examples 

Uniform   

User oriented   

Item oriented   

 

For the sake of simplicity, we will not discuss any further the second framework, 

negative example sampling.  

The authors (Rong Pan, et al. 2008) conducted their experiments using two 

separate dataset: yahoo news consisting of user_id – news_url pairs which consists 

of 3158 unique users and 1536 news stories; the second dataset is from a social 

bookmarking site http://del.icio.us, it contains 246,436 posts with 3000 users and 

2000 tags. These datasets were split in 80/20 ratio, in a cross-validation setup. 

To evaluate the performance of the system, the authors make use of MAP (Mean 

Average Precision) and half-life utility metrics.  MAP is mostly applied in IR. The 

authors of [17] used it to get the overall performance based on precision values at 

various recall levels on a test set. It is used to calculate the mean of average 

precisions (AP) of all users in test set, it is calculated using the Equation 17 below: 

 (17) 

Where:  

i is the position in the ranked list 

N is the number of retrieved items 

Prec(i) is the precision values 

Pref(i) is a binary flag giving 1 if the i-th item is selected or 0 otherwise 

 

Half-life utility is used to estimate the likeliness of a user choosing an item in a 

ranked list, with the assumption that the user will choose each item in the list 

consecutively with an exponential decay of possibilities, and it is calculated using 

the Equation 18 below: 

http://del.icio.us/
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 (18) 

Where: 

  is the expected utility of the ranked list for user u and  is the 

maximum achievable utility.  is defined using Equation 19 as follows: 

 (19) 

Where:  

 equals 1 if the item at position j is preferred by the user and 0 otherwise, and  

is the half-life parameter, set to 5 by the authors. 

 

To evaluate the performance of the proposed approach, the authors compared 

their results with two baselines: AMN and AMU. For the AMN strategy, several 

collaborative filtering algorithms were applied, including alternating least squares 

with the missing as negative assumption (ALS-AMAN), singular value 

decomposition (SVD), and a neighborhood-based approach including user-user 

similarity and item-item similarity algorithms. For the AMU strategy, the authors 

used a simple approach which consisted in ranking the items by their overall 

popularity; another approach tried was to convert OCCF into a one-class 

classification, such as one-class SVM. 

 

Figure 5 to 8 below evaluates the impact of the number of features (parameter 

d) on SVD and wALS. Looking at the figure, we see that for SVD, the performance 

increases and then decreases as the number of features increases. On the other hand, 

for wALS, the performance is more stable and keeps on increasing. The 

performance of wALS usually converged at around 50 features. In their 

experiments, the authors used the optimal feature count for SVD (10 for Yahoo 

news data and 16 for user-tag data) and wALS (50). 
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 Figure 5 - MAP values for yahoo news data 

 

 

Figure 6 - HLU values for yahoo news data 
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Figure 7 - MAP values for delicious data 

 

Figure 8 - HLU values for delicious data 

 

Figure 9 below compares the weighting schemes proposed by the authors (Rong 

Pan, et al. 2008): Uniform, User oriented, Item oriented. 
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Figure 9 - Comparisons of different weighting and sampling schemes 

 

Figures 10 and 11 show the performance comparisons of different methods 

based on the missing as unknown strategy (Popularity and SVM), methods based on 

the missing as negative strategy (SVD and ALS-AMAN) and their proposed 

methods (wALS, sALS). 
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Figure 10 - Impact of the ratio of negative examples and positive examples, for yahoo news 

 

 

 

Figure 11 - Impact of the ratio of negative examples and positive examples, for delicious data 
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Experimental results show that the proposed methods outperform state of the 

art algorithms on real life data sets including social bookmarking data from delicious 

and a Yahoo news dataset. 
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CHAPTER 4 

THE PROPOSED SYSTEM 

The proposed system consists of a set of configurations exploring different 

recommendation algorithms. More specifically, it deals with the data sparsity 

problem with the help of content based, collaborative filtering, and hybrid concepts. 

The collaborative filtering approach is implemented in two setups: memory 

based and model based. The memory based setup is strengthened by using the user 

based technique. As previously stated, the core component of CF is the 

neighborhood creation mechanism, which integrates the similarity measures. In this 

experiment we will be using PIP (Proximity-Impact-Popularity), Cosine, Jaccard 

similarity measures. The model based setup is based on SVD. 

 The content based part, which solely focuses on item features, is implemented 

in two steps: Pre-processing and the prediction process. The pre-process step is 

required because we are dealing with item descriptions, which is free text, to build 

the user profile and item profile so that the prediction phase can use it.  

4.1 Dataset Overview: Başarı Mobile 

Başarı Mobile is the first company who had moved the first step towards Mobile 

Entertainment Sector in Turkey by 1998. It started to give service under merger 

departments of Information Technologies and Mobile Internet Services in the 

structure of Başarı Holding. Since August 2003, BAŞARI MOBILE IT 

PRODUCTS AND SERVICES CO., keeps up its scope of activities in Value 

Added Services of Mobile Environments and Information Technologies. 

Başarı Mobile, with its dynamic working team and adaptable technological 

infrastructure, is one of the distinguished mobile content and application provider, 

reseller and carrier company in Turkey. Especially, experienced at developing 
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operator side application programming interfaces, user pattern recognition and 

mobile device adaption for the value added services and always keeps close on 

customer-satisfaction by giving aftersales support and providing rich and innovative 

content and developing personalized ways of retrieving and presenting mobile 

contents. The Company is managing, storing and serving over 15.000 multimedia 

content products in the distributed network of mobile environment. The Company’s 

WAP (Wireless Application Protocol) and web-based mobile content download 

platforms have approximately over 28.000 daily visitors and receiving about 9.000 

download requests [90]. 

 The ratings in this dataset are expressed implicitly by monitoring the purchase 

behaviour of the users. This dataset is what is considered to be OCCF, each “1” 

represent a positive example and a “-” symbol represent missing data, but for the 

sake of simplicity, in our experiments we will consider it as a negative example, 

taking a “0”. The user-item matrix looks like in the Table 4 below. 

Table 5 - User-item matrix for OCCF dataset 

 Diablo 3 
Angry 

birds 

Walking 

dead 
Fruits ninja Drive2survive 

Sitóe 1 0 0 0 1 

Fabião 0 1 0 1 0 

Teresinha 0 1 1 0 1 

Carlota 1 1 0 1 0 

Xiquisso 0 0 1 1 1 
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4.2 The Methods 

 Although we have chosen widely used algorithms, our results are mostly not 

comparable to previous research since we were unable to use a standard dataset. 

However, the behavior of the algorithms (convergence rates, running times, memory 

consumption, etc.) was as expected in our test experiments.  

 

This section covers the details of the experiments we have conducted. We start 

our discussion with the de facto standard memory-based algorithm: k-Nearest 

Neighbor and later in this chapter we will be talking about content based, and the 

model based approach exploiting using SVD properties.  

4.2.1 Collaborative filtering 

There are several algorithms proposed in academia to solve the collaborative 

filtering problem. We have chosen a popular one, KNN (K-Nearest Neighbor), to 

focus our research on the value of one-class collaborative filtering problem. 

Choosing well studied algorithms also makes us feel confident with the robustness 

of the algorithms and the results they produce. In fact, several algorithms that have 

been proposed perform well on a specific dataset while hardly tolerable to any 

dataset changes. 

 

With no doubt, k-Nearest Neighbor algorithm is the most known algorithm in 

machine learning field. This algorithm is simple to implement and produce 

acceptable results for different datasets. In its essence, k-NN searches for the k most 

similar users of a user, called neighbors. After finding the neighbors, the algorithm 

makes predictions for a user based on that user’s neighbors’ ratings. The process of 

selecting neighbors is shown in Algorithm 4.1. 

 

Require: Neighbor number k, user list U, user rating vector set V 

Ensure: User neighbor vector set N 

For user ui in U do 
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 Initialize priority queue Qi 

  i ← V[ui] 

  for user uj in U do 

   if ui ≠ uj then  

i ← V[uj] 

s←similarity( i, j) 

enqueue (Qi,uj,s) 

   end if 

  end for 

  N[ui] ← dequeue (Qi,k) 

 end for 

Algorithm 4.1- Neighbor selection process of k-NN algorithm. 

 

The similarity metric selection is the critical part of Algorithm 4.1. We already 

discussed several popular similarity metrics in Section 2.7. As we stated, Pearson 

Correlation and Cosine Similarity have been preferred by most of the previous 

researchers. However, they were dealing with multi-class datasets. Neighbor 

selection can be seen as the training phase of k-NN algorithm. Training phase can be 

extended to cover prediction calculations if the algorithm is expected to find 

predictions for all possible user-item pairs. However, generally prediction step is 

done in testing phase in which the algorithm is expected to calculate predictions 

only for test cases. The basic approach to make predictions is to equally value the 

ideas of neighbors. In other words, the final rating is the average rating of all 

neighbors. The rating can be calculated using Equation 4, presented below for 

practicality. 
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In the next section we are going to talk about neighborhood creation and the 

similarity measures applied. 

 

4.2.2 Finding Friends 

4.2.2.1 User Item Matrix 

In a RS consisting of M users and N items, there is a M × N user-item matrix R. 

Each entry rm,n = x represents the rating that user m gives to item n, where x∈ {0,1}. 

The default rm,n value, meaning that the rating is unknown, is 0. 

The user-item matrix can be decomposed into row vectors: 

 

R = [u1, . . . , uM]
T
, um = [rm,1, . . . , rm,N ]

T
, m = 1, . . . , M. 

 

The row vector um represents the ratings of user m for all of N items. 

 

Alternatively, the matrix can also be represented by its column vectors: 

 

R = [i1, . . . , iN]
T
, in = [r1,n, . . . , rM,n]

T
, n = 1, . . . , N. 

 

The column vector in represents the ratings of item m by all of M users. 

 

An example user-item matrix R is presented in Table 5: 

 

 

Table 6 - User item Matrix 

 i1 i2 i3 i4 … iN 

u1 1 0 0 0 … 1 

u2 1 0 0 1 … 0 

u3 0 1 0 0 … 0 

… … … … … … … 

u5 0 0 0 0 … 1 
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4.2.2.2 PIP Similarity Measure 

In sections 3.1 we have talked about the PIP (Proximity – Impact - Popularity) 

Similarity Measure, which was originally designed for multiclass collaborative 

filtering recommender systems. The choice of this similarity measure is because it 

showed good results in multi-class CF when using a very sparse dataset. However 

the problem we have in hands, is an application of OCCF. Below, in Table 5, 

follows the formal description of the formulas for OCCF. 

 

Table 7 - Formal description of the PIP formulas for OCCF 

Agreement 

For any two ratings r1 and r2, let Rmax be the 

maximum rating and Rmin the minimum in the rating 

scale, and let  

Rmed = (Rmax + Rmin) / 2 = (1+0)/2 = 0.5 

A Boolean function Agreement(r1, r2) is defined as 

follows:  

 

Agreement(r1, r2) = false if (r1 = 1 and r2 =0) or (r1= 0 

and r2 = 1), and 

Agreement(r1, r2) = true otherwise 

Proximity 

A simple absolute distance between the two ratings is 

defined as: 

D(r1, r2) = 0 if Agreement(r1, r2) is true, and 

D(r1, r2) = 2 if Agreement(r1, r2) is false 

Then the Proximity(r1, r2) is defined as: 

Proximity(r1,r2) = {3 – D(r1,r2)}
2
 

Impact 

Impact Impact(r1, r2) is defined as: 

Impact(r1, r2) = (|r1 - Rmed| + 1) x (|r2 - Rmed| + 1) if 

Agreement(r1, r2) is true, and 

 

Impact(r1, r2) = 1/(|r1 - Rmed| + 1)(|r2 - Rmed| + 1)if 

Agreement(r1, r2) is false 
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Popularity 

Let μk be the average rating of item k by all users, 

Then Popularity(r1, r2) is defined as:  

Popularity(r1, r2) = 1 +(((r1+ r2)/2)- μk )
2 

 if (r1 > μk 

and r2> μk) or (r1 < μk and r2 < μk), and 

Popularity(r1, r2) = 1 otherwise 

  

Consider as an example, two user vectors v1 and v2, rating six items i 

(i={1,2,3,4,5,6}) given as follows: 

 

v1 = {1,0,1,0,0,1} 

v2 = {0,1,1,0,1,1} 

 

The PIP similarity value for this two users is calculated as described in the 

pseudo-code below: 

Pipsimilarity(v1,v2,ratingMatrix) 

pipMeasure = 0.0; 

agreement=false; 

distance = 0; 

averageRating = (maxRating + minRating) / 2 = (1+0) / 2 = 0.5 

proximity=0; 

impact = 0; 

popularity = 0; 

for each item i Є itemList 

Integer ratingV1 = getRating(v1,i) 

 Integer ratingV2 = getRating(v2,i) 

If ( ratingV1 == 1 && ratingV2 == 1) 

 agreement = true; 

 else  agreement = false  

if(agreement)  

distance = 0;  

else distance = 2; 
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 proximity = (3 - distance)
2
; 

 if(agreement) 

impact = |(r1 - rmed)+1|*|(r2 - rmed)+1|; 

else impact = 1/ |(r1 - rmed)+1|*|(r2 - rmed)+1|; 

let averageRatingItem = average rating of item i by all users 

if (( ratingV1 > averageRatingItem && ratingV2 > averageRatingItem) || (ratingV1 < 

averageRatingItem && ratingV2 < averageRatingItem)) 

popularity = 1+(((ratingV1+ratingV2)/2)- averageRatingItem)
2
; 

else popularity = 1; 

pipMeasure = pipMeasure + ( proximity * impact * popularity ); 

return pipMeasure; 

Consider for example a sample dataset containing three user vectors and six 

items, as follows: 

v1 = {1,0,1,0,0,1} 

v2 = {0,1,1,0,1,1} 

v3 = {0,0,1,1,0,0} 

i = 1 

ratingV1 = 1; 

ratingV2 = 0; 

averageRatingItem = 0.33; 

agreement = false; 

distance = 2; 

proximity = ( 3 - 2)
2
 = 1 

Impact = 1 / ( | 1 - 0.5 | + 1) * ( | 0 - 0.5 | + 1) = 0.44 

Popularity = 1 

PIP = 0.44 

 

 i = 2 

ratingV1 = 0; 
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ratingV2 = 1; 

averageRatingItem = 0.33; 

agreement = false; 

distance = 2; 

proximity = ( 3 - 2)
2
 = 1 

Impact = 1 / ( | 1 - 0.5 | + 1) * ( | 0 - 0.5 | + 1) = 0.44 

Popularity = 1 

PIP = 0.44 

 

i = 3 

ratingV1 = 1; 

ratingV2 = 1; 

averageRatingItem = 1; 

agreement = true; 

distance = 0; 

proximity = ( 3 - 0)
2
 = 9 

Impact =  ( | 1 - 0.5 | + 1) * ( | 1 - 0.5 | + 1) = 2.25 

Popularity = 1 

PIP = 20.25 

 

i = 4 

ratingV1 = 0; 

ratingV2 = 0; 

averageRatingItem = 0.33; 

agreement = false; 

distance = 2; 

proximity = ( 3 - 2)
2
 = 1 

Impact = 1 / ( | 1 - 0.5 | + 1) * ( | 0 - 0.5 | + 1) = 0.44 



 56 

Popularity = 1 

PIP = 0.44 

 

i = 5 

ratingV1 = 0; 

ratingV2 = 1; 

averageRatingItem = 0.33; 

agreement = false; 

distance = 2; 

proximity = ( 3 - 2)
2
 = 1 

Impact = 1 / ( | 1 - 0.5 | + 1) * ( | 0 - 0.5 | + 1) = 0.44 

Popularity = 1 

PIP = 0.44 

 

i = 6 

ratingV1 = 1; 

ratingV2 = 1; 

averageRatingItem = 0.67; 

agreement = true; 

distance = 0; 

proximity = ( 3 - 0)
2
 = 9 

Impact = ( | 1 - 0.5 | + 1) * ( | 0 - 0.5 | + 1) = 2.25 

Popularity = 1 + (((1+1)/2) – 0.67)
2
 = 1.11 

PIP = 9 * 2.25 * 1.11 = 22.48 

PIPMeasure = 0.44 + 0.44 + 20.25 + 0.44 + 0.44 + 22.48 = 44.49 
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4.2.2.3 Jaccard Similarity measure 

In section 2.7.4, we presented the Jaccard coefficient. The choice of this 

similarity measure is that we believe that Jaccard Similarity is more suitable to one-

class collaborative filtering applications since we are dealing with binary rating 

vectors. Thus, we had used Jaccard Similarity as defined in Equation (8), presented 

below for practicality. 

J(x1,x2) = a / a + b + c  

 

 

Consider for example, two user vectors v1 and v2, rating six items i 

(i={1,2,3,4,5,6}) given as follows: 

 

v1 = {1,0,1,0,0,1} 

v2 = {0,1,1,0,1,1} 

 

The Jaccard similarity value for these two users is calculated as described in the 

pseudo-code below: 

 

Jsimilarity(v1,v2, ratingMatrix) 

p = 0; 

q = 0; 

r = 0; 

for each item i Є itemList 

if (rating (v1,i) = 1 and rating (v2,i) = 1) then p = p +1; 

if (rating (v1,i) = 1 and rating (v2,i) = 0) then q = q +1; 

if (rating (v1,i) = 0 and rating (v2,i) = 1) then r = r +1; 

return p/(p+q+r) 

 

Running the algorithm for the vectors v1 and v2 , we have p = 2, q = 1, r = 2. 

Applying these values to equation 12 we have: 

 

J(v1,v2) = 2 / 2 + 1 + 2 = 2 / 5 = 0.4. Meaning the users v1 and v2 are 40% similar 

with each other. 
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4.2.2.4 Cosine Similarity Measure 

The cosine similarity measure is defined by the cosine of the angle between two 

vectors, section 2.7.2, according to equation (6), presented below for practicality. 

 

 

 

 The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning 

exactly the same, with 0 usually indicating independence, and in-between values 

indicating intermediate similarity or dissimilarity. 

In the case of measuring the similarity of two user vectors, the cosine 

similarity will range from 0 to 1, since the given ratings are not negative. The angle 

between two user vectors cannot be greater than 90°. Consider for example the 

following user vectors: 

v1 = {1,0,1,0,0,1} 

v2 = {0,1,1,0,1,1} 

Applying the equation we have: 

v1 . v2 = (1*0) + (0*1)+(1*1)+(0*0)+(0*1)+(1*1) = 2 

||v1|| = (1
2
 + 0

2
 +1

2
 + 0

2
+0

2
+1

2
 )

1/2 
= 3

1/2
 = 1.73  

||v2|| = (0
2
 + 1

2
 +1

2
 + 0

2
+1

2
+1

2
 )

1/2 
= 4

1/2
 = 2 

COS(v1,v2) = 2 / ( 1.73 * 2 ) = 0.58 

  

 

4.2.3 Content based filtering 

This part explains in detail, how the content information of the games is included 

in the prediction process. Content-based filtering method, which is another well-

known technique in recommender systems, have been developed using learning 

procedures. These procedures require training data to identify personal preferences 
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(user profile) based on the previously purchased items and item profile of all items 

existing in the system. 

4.2.3.1 Item profile 

As the proposed system works in the game domain, its games are considered as its 

items. 

The profile of a game in the system contains the following features: 

 Game number – identification number of the game 

 Name – the name of the game 

 Description – the description of the game 

 Category – the category of the game 

 Cost – the cost of the game 

However, in the proposed system we will only use the description field; we 

believe this field characterizes better the item. 

 

4.2.3.2 User profile 

Before going into further detail, the notation and definitions required for 

understanding our approach are introduced. Let C = {c1, c2, …, cn} be the set of all 

content, T = {t1, t2, … , tm} be the set of all terms, and U = {u1, u2, …, ul} be the set 

of distinct users. The content cj is a set of terms, each of which may appear in 

multiple contents with different weights that quantify the importance of the term for 

describing the content.  

 

In our study, a weight wi,j associated with a pair (ti, cj) (i.e., a term ti of a 

content cj) is computed by making use of a TF-IDF weighting scheme [93]. To build 

a user profile, we extract the descriptions of all items rated by the user. The 

preference indicator of implicit feedback can be represented as a form of a pair (uh, 
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cj), where uh ∈ U is a user and cj ∈ C is a specific content. The pair implies that user 

uh bought content cj. In other words, the profile of a user is composed of the ratings 

given to the games along with the content information of these games. 

 

4.2.3.3 User profile generation 

Our approach to modeling user interests mainly consists of the extraction of 

the terms that constitute the description of the items and all the descriptions are 

concatenated. After this procedure, the result is pre-processed by stemming the 

words and removing stopwords [95]. After extracting terms, each interest content cj 

is represented as a vector of attribute-value pairs as follows: 

 

 

cj = {(t1,j, w1,j), (t2,j, w2,j), … , (tm,j, wm,j)} (20) 

 

 

where ti,j is the extracted term in cj and wi,j is the weight of ti in cj. wi,j is computed 

by the static TFIDF term-weighting scheme [93] and is defined in section 4.3.3.6. 

4.2.3.4 Lucene 

Apache Lucene(TM) is a high-performance, full-featured text search engine 

library written entirely in Java. It is a technology suitable for nearly any application 

that requires full-text search, especially cross-platform [87]. 

 

In our proposed system, Lucene is used only as a convenient and efficient 

means of converting documents into term vectors and for extracting statistics about 

the corpus for computing TFIDF. Lucene itself cannot be reliably used to compare 

indexed documents with the query vector, since there is no guarantee that Lucene's 

scores will hold stable across different sets of documents. 
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4.2.3.5 Preprocessing ( removing stopwords and stemming the words) 

 As stated previously, we make use of a Turkish dataset. Because of the 

agglutinative nature of the language, stemming is an essential task for indexing and 

searching documents in Turkish [97].  Turkish, has a rich morphological structure. 

Words are usually composed of a stem and of at least two or three affixes appended 

to it. This is why it is usually harder to analyze a Turkish text. Stemming is therefore 

a more essential task for indexing and information retrieval purposes in 

agglutinative languages [97]. 

For this study, we made use of a stemmer called Turkish Analyzer that integrates 

with Lucene information retrieval system. This stemmer for turkish words makes 

use of Snowball language. Snowball is a language in which stemming algorithms 

can be easily represented. [96]. Snowball has been widely used in stemming tools.  

At the end, this pre-processing step outputs two vectors for each item, one 

containing the processed terms and the corresponding weight of each term, so that 

similarity calculations can be performed. 

 

 

4.2.3.6 Overall prediction value 

In the cases where the object is a hybrid algorithm, Collaborative Filtering 

(CF) and Content based filtering (CB) for example, the overall prediction can be 

calculated using Equation (21) as follows:  

Overall_prediction = λ * CF + ( 1 – λ ) * CB (21) 

 

Where parameter λ is used to fuse information from both methods used, for 

example CF and CB, to predict the rating for the active users. 
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4.3 Singular Value Decomposition 

As earlier mentioned, what makes SVD interesting to recommender systems, is 

that the matrices generated by performing SVD provides with the best lower rank 

approximations of the original matrix A. SVD-based recommendation algorithms 

produces good results, but its matrix factorization steps is very expensive to execute. 

As an example to dimension reduction, consider the <user, game> rating matrix in 

Table 7 below: 

Table 8 - Example user/game matrix 

User/Game  Game 1  Game 2  Game 3  Game 4  Game 5  

User 1  1  5  0  5  4  

User 2  5  4  4  3  2  

User 3  0  4  0  0  5  

User 4  4  4  1  4  0  

User 5  0  4  3  5  0  

User 6  2  4  3  5  3  

 

By applying SVD decomposition to this matrix we get: 

U S VT 

0.5 0.4 -0.3 -0.4 0.3 16.5 0 0 0 0 0.3 0.6 0.3 0.6 0.3 

0.5 -0.3 0.6 0.3 0 0 6.2 0 0 0 -0 0.2 -0.4 -0.3 0.8 

0.2 0.8 0.3 0.2 -0.5 0 0 4.4 0 0 0.7 0 0.1 -0.6 0.3 

0.4 -0.3 0.1 -0.7 -0.3 0 0 0 2.9 0 -0 -0.1 0.9 -0.2 0.2 

0.4 -0.2 -0.6 0.4 -0.5 0 0 0 0 1.6 0.2 -0.7 0 0.5 0.5 

0.5 0 -0.1 0.3 0.6 

          
 

Matrices U, S, and VT are now calculated. From here we can reduce the 

dimensions to 3, tridimensional. To do this, we simply take the first three diagonal 

values from S producing SK, then reduce U and VT  accordingly to produce Uk and Vk
T. 

The end result is as follows: 
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UK SK VT
K 

0.5 0.4 -0.3 16.5 0 0 0.3 0.6 0.3 0.6 0.3 

0.5 -0.3 0.6 0 6.2 0 -0.4 0.2 -0 -0.3 0.8 

0.2 0.8 0.3 0 0 4.4 0.7 0 0.1 -0.6 0.3 

0.4 -0.3 0.1 

        0.4 -0.2 -0.6 

        0.5 0 -0.1 

        
 

Now we find the most similar users using the 3-Dimensional matrices above with 

one of the similarity calculation algorithms discussed previously. 
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CHAPTER 5 

EVALUATION 

This chapter presents the details of how the proposed system is evaluated in 

order to test its performance. First, the dataset and the metrics used for the 

experimental evaluation are introduced. Then, the results of the conducted 

experiments are stated and discussed. 

In previous chapter, we gave details of our research in which we test different 

recommendation techniques using a one-class collaborative filtering problem. As 

previously stated, one-class collaborative filtering problems are harder to solve than 

multi-class since datasets contain only positive examples. With the absence of 

counter-examples it is hard to train algorithms.  

5.1 Data Set 

The experimental evaluation of the proposed system was conducted using the 

Başarı Mobile proprietary dataset, introduced in previous sections. The first thing 

we did with the dataset was to clean it, with that we mean remove content other than 

games, and removing users who did not buy any content. After this preprocessing 

step, we end up with 817,200 ratings, 2,635 games and 126,068 users. 

The density of the user-item matrix created from this dataset is: 

 

In order to evaluate the prediction mechanism of the proposed system, cross 

validation method was used and among the various cross validation methods, the 

holdout method was preferred. Because the resource consumption is quite different 

for memory and model based techniques, we separated two subsets of the data. One 
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to be used with memory based algorithms including content-based and the other for 

model based using SVD decomposition. Following this method, the memory based 

dataset was separated into two sets, called the training set and the testing set. Thus, 

after a subset of 500 users containing at least 5 ratings was randomly extracted from 

the data set, 300, 200 and 100 of them were selected as the testing users 

respectively. And the rest 200, 300, 400 were selected as the training users. In the 

case of model-based, the subset contains 3000 users randomly extracted from the 

dataset, 500, 1000 and 1500 of them were selected as the testing users respectively. 

And the rest 2500, 2000, 1500 were selected as the training users. 

5.2 Evaluation Metrics 

In collaborative filtering applications, Precision is one of the most popular 

metrics for evaluating information retrieval systems, along with Recall [40], as 

introduced by Cleverdon in 1968 [98]. To calculate the Precision and Recall, The 

item set must be separated into two classes—relevant or not relevant. That is, if the 

rating scale is not already binary, which is exactly the case with the Başari Mobile 

dataset.  

 

Precision is defined as the ratio of relevant items selected to number of items 

selected, shown in Equation (22):  

 (22) 

 

Precision represents the probability that a selected item is relevant. 

 

Recall on the other hand, shown in Equation (23), is defined as the ratio of 

relevant items selected to total number of relevant items available. Recall represents 

the probability that a relevant item will be selected. 
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 (23) 

 

Where: 

#tp – true positives 

#fp – false positives 

#fn – false negatives 

 

In one-class collaborative filtering problems, final values obtained would be 

either a “1” or a “0”. During prediction phase, any value between the range (0, 1) is 

rounded. The effect of a predicted rating of 0.6 would be same as the effect of a 

predicted rating of 0.99. 

 

Note that our dataset contains only positive test cases. So we could not find 

out the number of false negative (#fn) and true negative (#tn) examples after any 

experiment, that is why we use Precision as our evaluation metric. 

 

 

5.3 Results of the Algorithms: CF (Memory based) and CB 

In order to test the performance of the proposed system’s prediction approach, 

the Precision values obtained for the three dataset, which were explained in detail in 

section 5.1, are summarized in the Table 8. The parameters k (number of “friends”) 

used throughout the prediction process were set to 25. The tested algorithms include 

pure collaborative filtering, pure content-based filtering and hybrid filtering: 

 Pure collaborative filtering (CF): PIP (Proximity – Impact – Popularity 

similarity measure), COS (Cosine similarity measure), Jaccard 

similarity measure; 

 

 Pure content based filtering (CB) : COS using TFIDF (Term 

Frequency / Inverse Document Frequency) weights; 
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 Hybrid approach:  PIP + CB, Jaccard + CB, COS + CB.  

 

Table 9 - The results of memory based algorithms 

Methods 

Testing Users 

100 200 300 

PIP 0.6382 0.6245 0.5813 

TFIDF 0.4075 0.483 0.4952 

COS 0.8521 0.8624 0.8174 

JACCARD 0.8525 0.8358 0.8107 

        

PIP + CB (λ = 0.8) 0.6751 0.6481 0.6124 

PIP + CB (λ = 0.4) 0.535 0.5108 0.5092 

        

JACCARD + CB ( λ = 0.8) 0.8742 0.8685 0.8215 

JACCARD + CB ( λ = 0.4) 0.635 0.5988 0.5525 

        

COS + CB ( λ = 0.8) 0.8669 0.8658 0.8199 

COS + CB ( λ = 0.4) 0.605 0.5988 0.5458 

  

The values are put into a chart in order to make it easier to understand. 

 

Figure 12 Precision values for different methods 
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As can be seen from Table 7 and the chart in Figure 5, the content based 

approach produces the worst results. Among the collaborative filtering algorithms, 

the PIP produces poor results when compared to COS and Jaccard; both COS and 

Jaccard result in very close Precision values. In the case of hybrid approaches, the 

Jaccard + CB gives best results while PIP + CB gives the worst results. 

When analyzing the obtained results displayed in Table 7 and the chart in 

Figure 5, we see that the number of training and testing users influence differently 

each method. The CB approach, which does not take advantage of the neighbors, 

produce better results with a higher number of testing users and worst when a small 

number of testing users is used. The reason for this behavior, we believe, is because 

the users like diversity, they don’t like many games of same kind. In collaborative 

filtering approach, Cosine similarity produced better results with medium size of 

testing users, but worst with a higher number of testing users. The small and 

medium size of the testing users produced very close results. On the other hand, 

when running the experiment with Jaccard, it shows us that the higher the number of 

training users, the better the accuracy results, this was the outcome we were 

expected to obtain in all collaborative filtering experiments, but due to the 

characteristics  of the dataset, the results were different. The PIP similarity measure 

produced the worst results in all datasets. 
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Figure 13 Hybrid approaches results 

Turning our eyes to hybrid approaches (Figure 6), we can detect a pattern, the 
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in OCCF problems is to assume that all missing entries are counter-examples, but 

this approach involves a high bias. 

   

 Now let us consider the impact of the λ parameter; as stated earlier, this 

parameter is used to fuse information from both collaborative prediction and content 

based prediction to predict the missing rating for the active users. It determines the 

extent to which the item similarity relies on collaborative filtering methods or 

content similarity. With λ = 1, it indicates that the similarity depends completely on 

collaborative similarity, whereas it depends completely on content similarity when 

λ=0.   

For the purpose of determining the sensitivity of λ, several experiments were 

carried out on all configurations in which the value of λ was varied from 0 to 1. The 

experimental results show that more accurate predictions can be obtained when the 

value of λ is around 0.8. Because in this way, the prediction can both exploit 

collaborative filtering and content based similarity in certain and sensible amounts, 

which shows that CF and CB approaches both have a very important and 

indispensable role for rating prediction. On the other hand, for small values of λ 

(λ<= 4), it produces poor results.  

 

5.4 Results of the Algorithms: SVD Model-based 

In this section, we are going to discuss the results of SVD algorithm on our 

datasets. We had tested the SVD algorithm on 3 datasets. Similar to memory based 

approach, we made the assumption that all the missing data is negative, which 

results in a rating matrix R such that Rij Є {0, 1}. 

The first step in this experiment was to construct the rating matrix, as in 

memory based setup, we then factor the matrix R, by using a linear algebra toolbox, 

and obtain a low-rank approximation after applying the following steps described in 

[103]: 
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 Apply the SVD decomposition to matrix R to obtain U, S and V; 

 Collapse the matrix S to dimension k; 

 Calculate the square-root of the matrix Sk, to obtain Sk
1/2

; 

 Calculate two resultant matrices: UkSk
1/2

 and Sk
1/2

Vk
T
 

 

We observe that the dimension of UkSk
1/2 

is m x k and the dimension of Sk
1/2

Vk
T
 

is k x n. This m x k matrix is the k dimensional representation of m customers. We 

then performed vector similarity (cosine similarity) to form the neighborhood in that 

reduced space. 

The important variable that may change the results of SVD is the number of 

features used in calculations. Table 9 shows the outcomes of SVD algorithm for 

different feature counts. The results are summarized in the Table 9 below: 

Table 10 - Results of model SVD-based CF 

Feature 
count 

Testing users 

500 1000 1500 

2 0.28 0.29 0.27 

5 0.55 0.56 0.53 

7 0.60 0.61 0.60 

9 0.65 0.65 0.64 

11 0.67 0.67 0.66 

13 0.70 0.71 0.70 

20 0.72 0.74 0.72 

50 0.80 0.80 0.79 

70 0.81 0.80 0.78 

100 0.84 0.85 0.83 

150 0.87 0.85 0.85 

190 0.87 0.87 0.87 

200 0.87 0.87 0.87 

220 0.87 0.86 0.86 

250 0.86 0.86 0.85 

500 0.83 0.82 0.82 

600 0.83 0.82 0.82 

700 0.83 0.81 0.80 

1000 0.81 0.80 0.80 

 

The values are put into a chart in order to make it easier to understand. 
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Figure 14 Feature count in SVD 

 

As can be seen from Table 9 and the chart in Figure 7, the first conclusion is 

that for number of dimensions lower than 9 it produces worse precision values when 

compared to traditional collaborative filtering approach.  

Taking into consideration the ration of testing/training datasets, x, we see that 
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For the conducted experiments, we have used a laptop SONY VAIO F 

SERIES with 4GB of DDR3 memory, 500GB of 7200rpm hard disc capacity, i7 

quad-core Intel CPU with 2.00GHz clock, 64-bit architecture and Windows 7 Home 

Premium 64-bit operating system. During the execution of the experiments, the CPU 

usage peaked at around 18% and memory consumption was about 82% (3.20 GB). 

The time complexity for CF methods was consistent with each other, with the 

exception of PIP similarity measure, which takes very much longer. While the CF 

methods took around 45 minutes to complete, when applied with PIP similarity 

measure, it took around 61 hours.  The CB approach was the fastest, taking around 

10 minutes. For all the methods, parallelized should be taken in consideration when 

applying in the real world system and powerful machines are a critical requirement, 

if the response time is a major concern, which it is in e-commerce services and also 

a special attention should be given to system optimization. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

Within this thesis work, an evaluation of different collaborative filtering, 

content based filtering, hybrid algorithms as well as model based approach has been 

presented.  

In order for the recommendation systems to function correctly; they need to 

learn the user’s tastes. Obviously, the most direct way to achieve this is to explicitly 

ask the user for what he/she likes/dislikes. However, users hardly cooperate in such 

a situation. Thus, the only option that remains is to look for implicit data hidden in 

the user’s behavior. This implicit data can be anything like clicking on an item, time 

spent on an item on a web page, adding the item to the shopping basket, and so on. 

The problem with such data is that they are not that informative. In most cases, this 

data will only reveal that a user is interested in something. It is hardly possible to 

find cases where a recommender system is able to conclude that a user is not 

interested in something. Lack of counter-examples makes such cases a natural 

candidate for applications that should use one-class collaborative filtering methods. 

Being able to deal with cases that counter-examples do not exist, makes one-class 

collaborative filtering applications remarkable.  

First, a brief introduction to recommender systems has been given by stating 

the current approaches and theories used in these systems. Then, the related work in 

the area has been covered by analyzing a variety of recommendation systems from 

different domains together with their advantages and disadvantages. After that, the 

architecture, and the prediction mechanism of the proposed system has been 

examined in detail. And lastly, the evaluation scheme used to test the prediction 

performance of the proposed system has been explained. In addition, the results of 

the conducted experiments have also been discussed. 
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Empirical analysis show that the binary similarity measure and singular value 

decomposition produce better results on this dataset.  

Further research issues include the exploration of this dataset by applying 

other types of product recommendation. For example, model based Singular Vector 

Decomposition or clustering approaches. 
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