

A COMPARISON OF DIFFERENT RECOMMENDATION TECHNIQUES FOR

A HYBRID MOBILE GAME RECOMMENDER SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

HASSANE NATÚ HASSANE CABIR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

NOVEMBER 2012

Approval of the thesis:

A COMPARISON OF DIFFERENT RECOMMENDATION TECHNIQUES FOR

A HYBRID MOBILE GAME RECOMMENDER SYSTEM

Submitted by HASSANE NATÚ HASSANE CABIR in partial fulfillment of the

requirements for the degree of Master of Science in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen ____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı ____________________

Head of Department, Computer Engineering

Prof. Dr. Ferda Nur Alpaslan ____________________

Supervisor, Computer Engineering Dept., METU

Dr. Ruket Cakici ____________________

Co-Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Nihan Kesim Çiçekli ____________________

Computer Engineering Dept., METU

Prof. Dr. Ferda Nur Alpaslan ____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Pınar Şenkul ____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. İlkay Ulusoy ____________________

Electrical and Electronics Engineering Dept., METU

Dr. Ruket Çakici ____________________

Computer Engineering Dept., METU

 Date: 12.11.2012

http://www.ceng.metu.edu.tr/~yazici
http://www.ceng.metu.edu.tr/~karagoz

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Hassane Natú Hassane, Cabir

Signature :

 iv

ABSTRACT

A COMPARISON OF DIFFERENT RECOMMENDATION TECHNIQUES

FOR A HYBRID MOBILE GAME RECOMMENDER SYSTEM

CABIR, Hassane Natú Hassane

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Ferda Nur ALPASLAN

Co-Supervisor: Dr. Ruket Cakici

November 2012, 89 pages

As information continues to grow at a very fast pace, our ability to access this

information effectively does not, and we are often realize how harder is getting to

locate an object quickly and easily. The so-called personalization technology is one

of the best solutions to this information overload problem: by automatically learning

the user profile, personalized information services have the potential to offer users a

more proactive and intelligent form of information access that is designed to assist

us in finding interesting objects. Recommender systems, which have emerged as a

solution to minimize the problem of information overload, provide us with

recommendations of content suited to our needs. In order to provide

recommendations as close as possible to a user’s taste, personalized recommender

systems require accurate user models of characteristics, preferences and needs.

Collaborative filtering is a widely accepted technique to provide recommendations

based on ratings of similar users, But it suffers from several issues like data sparsity

and cold start. In one-class collaborative filtering, a special type of collaborative

filtering methods that aims to deal with datasets that lack counter-examples, the

challenge is even greater, since these datasets are even sparser. In this thesis, we

v

present a series of experiments conducted on a real-life customer purchase database

from a major Turkish E-Commerce site. The sparsity problem is handled by the use

of content-based technique combined with TFIDF weights, memory based

collaborative filtering combined with different similarity measures and also hybrids

approaches, and also model based collaborative filtering with the use of Singular

Value Decomposition (SVD). Our study showed that the binary similarity measure

and SVD outperform conventional measures in this OCCF dataset.

Keywords: Recommender Systems, Personalization, User Modeling, Collaborative

Filtering, Content Based Filtering, Information Extraction, Singular Value

Decomposition

 vi

ÖZ

MELEZ MOBİL OYUN TAVSİYE SİSTEMİ İÇİN FARKLI ÖNERİ

TEKNİKLERİNİN KARŞILAŞTIRILMASI

CABIR, Hassane Natú Hassane

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ferda Nur ALPASLAN

Ortak Tez Yöneticisi: Dr. Ruket CAKICI

Kasım 2012, 89 sayfa

Bilgiler hızlı bir tempoda artmaya devam ederken bu bilgilere etkin şekilde

erişmek her zaman mümkün olmamaktadır.Kişiselleştirme teknolojisi denilen

teknoloji bu bilgi bombardımanı sorununa en iyi çözümlerden biridir: otomatik

olarak kullanıcı profilini öğrenerek bilgi servislerini daha etkin kullanıma sunma ve

böylece bizim için ilginç olan nesneleri bulmamıza yardımcı olmak için

tasarlanmışlardır.. Bilgi yükleme problemini en aza düşürmede çözüm olarak ortaya

çıkan tavsiye sistemleri ihtiyaçlarımıza uygun içerik önerisi sunar. Kullanıcı

beğenisine mümkün olan en yakın öneriyi sağlamak amacıyla kişiselleştirilmiş

tavsiye sistemleri için kesin karakteristik kullanıcı modeli, tercihleri ve ihtiyaçları

gereklidir. Kolaboratif filtreleme benzer kullanıcıların değerlendirmelerine dayalı

öneri sunmada yaygın olarak kabul edilen bir tekniktir; fakat bu teknik veri

seyrekliği ve “cold start” gibi çeşitli problemlerden muzdariptir. Kolaboratif

filtreleme metodlarının özel bir tipi olan karşıt örneklerden yoksun verikümeleri ile

başa çıkmayı amaçlayan tek sınıflı kolaboratif filtreleme, bu verikümeleri seyrek

olduğu için zorluğu daha büyüktür. Bu tez kapsamında büyük bir Türk e-ticaret

sitesinin veritabanında gerçek müşteriler üzerinde yapılan bir dizi deney sunuyoruz.

vii

TFIDF ağırlıklarıyla karıştırılmış içerik tabanlı tekniğin kullanılması, farklı

benzerlik ölçümleri ile karıştırılmış bellek tabanlı kolaboratif filtrelemesi, melez

yaklaşımlar ve Tekil Değer Ayrışımı’nın (TDA) model bazlı kolaboratif filtreleme

kullanılmasıyla seyreklik problemi ele alınıyor. Bu çalışma OCCF verikümesinde

ikili benzerlik ölçümünün ve TDA’nın geleneksel ölçümlerden üstün olduğunu

göstermiştir

Keywords: Tavsiye Sistemleri, Kişiselleştirme, Kullanıcı Modelleme, Kolaboratif

Filtreleme, İçerik Bazlı Filtreleme, Bilgi Çıkarımı, Tekil Değer Ayrışımı

 viii

To my family

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Prof. Dr. Ferda Nur

Alpaslan and Dr. Ruket Çakici for their encouragement and support throughout this

study.

I am deeply grateful to my family for their love and support. Without them, this

work could never have been completed.

I am deeply indebted to ISLAMIC DEVELOPMENT BANK (IDB) for providing

me with this scholarship and to AUTORIDADE TRIBUTÁRIA DE

MOÇAMBIQUE (MOZAMBIAN REVENUE AUTORITY) for authorizing my

studies.

 x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xv

LIST OF FIGURES.. xvi

LIST OF ABBREVIATIONS ... xvii

INTRODUCTION... 1

1.1 Background ... 1

1.2 Recommender Systems As a Research Area .. 3

1.3 Problem Definition .. 3

1.4 Structure of This Thesis .. 4

RECOMMENDER SYSTEMS ... 5

2.1 Definition of a Recommender System (RS) .. 5

2.1 .1 Terms and Concepts Common to Recommender Systems 7

2.2 Personalization .. 8

2.3 User Modeling ... 9

2.4 Too much Information .. 10

xi

2.5 Data and Knowledge Sources ... 11

2.5.1 Formal Domain Definition ... 11

2.6 Recommendation Techniques ... 12

2.6.1 Content-based RS ... 12

2.6.1.1 Item profile ... 13

2.6.1.2 User profile ... 13

2.6.1.3 Pre-processing .. 14

2.6.1.4 TFIDF (Term Frequency / Inverse Document Frequency)

Weighting .. 14

2.6.1.5 Pros and Cons ... 15

2.6.2 Collaborative Filtering RS ... 16

2.6.2.1 User-Based Nearest Neighbor Algorithms 17

2.6.2.2 Item-Based Nearest Neighbor Algorithms 17

2.6.2.3 Advantages of Neighborhood Approaches 18

2.6.2.4 One-class collaborative filtering (OCCF) 18

2.6.3 Demographic RS .. 20

2.6.4 Knowledge-based RS ... 21

2.6.5 Community-based RS .. 21

2.6.6 Hybrid RS... 21

2.6.6.1 Monolithic hybridization design .. 22

2.6.6.1.1 Feature combination hybrids .. 22

 xii

2.6.6.1.2 Feature augmentation hybrids .. 22

2.6.6.2 Parallelized hybridization design ... 23

2.6.6.2.1 Mixed hybrids .. 23

2.6.6.2.2 Weighted hybrids ... 23

2.6.6.2.3 Switching hybrids... 23

2.6.6.2.4 Pipelined hybridization design ... 24

2.7 Similarity measures ... 24

2.7.1 Euclidean distance and Minkowski distance 24

2.7.2 Cosine Similarity .. 25

2.7.3 Pearson Correlation .. 25

2.7.4 Jaccard Coefficient ... 26

2.8 Singular Value Decomposition - SVD .. 27

2.8.1 Definition ... 27

2.8.2 SVD and RS ... 27

RELATED WORK ... 29

3.1 Pure collaborative filtering recommender systems 29

3.2 Pure content based recommender systems .. 34

3.3 Hybrid recommender systems ... 35

3.4 Dimensionality reduction approach .. 36

3.5 One Class Collaborative Filtering (OCCF) Dataset 37

xiii

THE PROPOSED SYSTEM ... 47

4.1 Dataset Overview: Başarı Mobile ... 47

4.2 The Methods.. 49

4.2.1 Collaborative filtering .. 49

4.2.2 Finding Friends .. 51

4.2.2.1 User Item Matrix .. 51

4.2.2.2 PIP Similarity Measure .. 52

4.2.2.3 Jaccard Similarity measure .. 57

4.2.2.4 Cosine Similarity Measure ... 58

4.2.3 Content based filtering ... 58

4.2.3.1 Item profile ... 59

4.2.3.2 User profile ... 59

4.2.3.3 User profile generation ... 60

4.2.3.4 Lucene .. 60

4.2.3.5 Preprocessing (removing stopwords and stemming the words) 61

4.2.3.6 Overall prediction value ... 61

4.3 Singular Value Decomposition ... 62

EVALUATION ... 64

5.1 Data Set ... 64

5.2 Evaluation Metrics .. 65

 xiv

5.3 Results of the Algorithms: CF (Memory based) and CB 66

5.4 Results of the Algorithms: SVD Model-based.. 70

CONCLUSION AND FUTURE WORK.. 74

REFERENCES .. 76

xv

LIST OF TABLES

Table 1 – A sample of a rating matrix ... 6

Table 2 - A sample dataset for one-class collaborative filtering. 20

Table 3 - Formal description of the PIP formulas ... 31

Table 4 - Weighting schemes .. 40

Table 5 - User-item matrix for OCCF dataset ... 48

Table 6 - User item Matrix .. 51

Table 7 - Formal description of the PIP formulas for OCCF 52

Table 8 - Example user/game matrix .. 62

Table 9 - The results of memory based algorithms ... 67

Table 10 - Results of model SVD-based CF ... 71

 xvi

LIST OF FIGURES

Figure 1 – Top view of a recommendation process .. 7

Figure 2 - A Top Level Architecture of Content-based Systems 13

Figure 3 - Dimensionality Reduction Process using SVD .. 28

Figure 4 - Description of the three factors of PIP using example ratings 31

Figure 5 - MAP values for yahoo news data ... 42

Figure 6 - HLU values for yahoo news data ... 42

Figure 7 - MAP values for delicious data ... 43

Figure 8 - HLU values for delicious data .. 43

Figure 9 - Comparisons of different weighting and sampling schemes 44

Figure 10 - Impact of the ratio of negative examples and positive examples, for

yahoo news .. 45

Figure 11 - Impact of the ratio of negative examples and positive examples, for

delicious data ... 45

Figure 14 Precision values for different methods ... 67

Figure 15 Hybrid approaches results... 69

Figure 16 Feature count in SVD ... 72

xvii

LIST OF ABBREVIATIONS

RS Recommender Systems

IR Information Retrieval

IF Information Filtering

CB Content Based

CBR Content Based Recommender

CF Collaborative Filtering

PCC Pearson Correlation Coefficient

VS Vector Similarity

CSM Cosine Similarity Measure

SG Social Graph

PIP Proximity – Impact – Popularity

PIPM Proximity – Impact – Popularity Similarity Measure

SVD Singular Value Decomposition

1

CHAPTER 1

INTRODUCTION

1.1 Background

The internet today is a very big place, is easier than ever to produce and

publish any kind of information, by anyone, the only requirement is to be

connected. Another factor influencing this dramatic grow of the internet, is the

automatic generation of information, done implicitly by web application. This

scenario has created so much information, making it harder to process all this

information by ourselves [1].

This feeling of being overwhelmed by so much information reaches

everyone, sooner or later. Information is only valuable if you can access it and use

it efficiently. In order to accomplish such a remarkable goal, Recommender

systems (RS) were born [2]. This technology assists us to navigate through all

these information to find what is more interesting to us.

Developers and vendors use recommender systems to find out what items the

user would be interested in without spending too much time searching.

Recommender systems are being used in many domains, such as commercial, where

better recommendations leads to better profit [5]. Recommender system is a multi-

disciplinary field, making use of data mining, machine learning, artificial intelligent,

and some others according to the domain.

Recommender systems are dynamic systems; they learn a user profile and

keeps on updating it according to the user feedback [4]. They have been exploited

for recommending a diverse range of items, for example travel destinations,

electronic products, books, and even as friends [6, 7, 8]. When the user interacts

 2

with the system, it learns his tastes and builds a profile, and later it uses this profile

to produce the recommendations; the items that best match the user profile are

included in the recommendation list [4].

The system learns the user’s profile with information given explicitly by the

user or implicitly but monitoring his behavior during the interactions. These new

acquired information are then consolidated in the respective profile and used for

future recommendations. For many systems, it is required that it has learned the user

profile upfront, before the recommendations can be computed [6]. A recommender

system usually uses the ratings given to items by users to measure the degree to

which an item is preferred by a user [10]. It is also required to have item profiles, so

that the user’s preferences can be expressed by the item’s features [9].

Recommender systems has improved since its creation, are using more

advanced tools and techniques; this improvement is also noted in the internet and

related technologies. These are the developments that motivate the research

community to explore better information retrieval tools and techniques [11],

presenting to the users satisfaction in using the system.

This thesis addresses a particularly hard case that emerges from a wide range

of real-world prediction tasks, it is called one-class collaborative filtering (OCCF),

and in this case we try to learn from implicit feedback only, under the constraint that

each observation is a positive example [16]. There are many occurrences OCCF, for

example, news, bookmarks and some e-commerce systems [17]. In this type of

dataset, the training data consists simply of binary data capturing a user’s action or

inaction, for instance item bought in an online e-commerce website. This genre of

dataset is extremely sparse, we only have positive examples and the negative and

unlabeled examples are mixed together, making it impossible to make a distinction

between them. For example, consider a user who did not buy a game called “Diablo

III”, there is no way to tell if this game is not interesting to the user or the user was

not aware of it.

3

Some examples of OCCF include:

 Tracking the items a user bought in the past, to predict what items

should be recommended next, or

 Using the user’s bookmarks to predict which other unknown sites he

might like. In both these cases, the observed transactions are positive

examples only.

1.2 Recommender Systems As a Research Area

Recommender systems are known as a research area since mid-1990s, when

the first studies became publicly available [8]. Starting from there, this technology

prospered, new techniques and tools were developed. We still see more

improvements year after year, due to the fact that the information is changing very

rapidly, more customers join the system, more products are offered to customers, so

does the recommender systems technology need to evolve its techniques and tools,

to continue to give good results to the users in dealing with the information overload

[14]. Examples of such applications include recommending books, CDs and other

products at Amazon.com [12], movies by MovieLens [13].

1.3 Problem Definition

This thesis focuses on the comparison of the performance of different

recommendation techniques when applied to OCCF games recommendation system.

A variety of features are integrated by the system in order to minimize the so-called

“data sparsity” problem in recommendation systems. Being One-Class Collaborative

Filtering a special case of Collaborative filtering, in which the training data used

consists only of positive examples, makes it extremely sparse [17] and confusing to

interpret the missing values, if the user did not see the content or he simply did not

find it interesting. To treat the prediction task in this OCCF dataset, a wide range of

techniques are implemented, such as content based, memory based collaborative

 4

filtering, model based collaborative filtering, and hybrid approaches combining

different techniques aforementioned together.

1.4 Structure of This Thesis

The structure of this thesis is as follows:

In chapter 2, recommender systems are discussed in a more detailed manner,

giving emphasis to the formal definition of the recommendation process.

Additionally, current approaches and theories used with the existing

recommendation systems are discussed.

Chapter 3 covers the related work about recommender systems; this includes

the discussion of pure content based approach, pure collaborative filtering approach,

and hybrid recommendation systems. And also, a wide range of recommendations

systems applied to a diverse range of domains are presented along their advantages

and disadvantages.

In chapter 4, the architecture and the system components of the proposed

recommender system are presented, with a detailed description of the prediction

algorithm of the system.

In chapter 5, the evaluation scheme used to test the performance of the

proposed recommender system is explained. Additionally, the results of the

experiments that were carried out during the evaluation process are discussed.

In Chapter 6 conclusions and some possible future work as the extension of

this thesis is stated.

5

CHAPTER 2

RECOMMENDER SYSTEMS

2.1 Definition of a Recommender System (RS)

Recommender System (RS) is a technology which by the use of specific

software tools and techniques produces recommendations of items considered

interesting to a specific user [4, 6,18]. “Item” is the generic term denoting the object

of the recommendation process.

Recommender systems are particularly helpful for anyone lacking the

expertise to evaluate a wide range of options to select one that satisfies him [18]. As

an example, consider the amazon.com e-commerce web site, the use of a

recommender system has facilitated the task of buying a product, in some categories,

the options reach thousands of alternatives [19]. Because each user has different

tastes, each user profile in modeled according to the interests of the user, so each

and every user get different recommendations.

Recommender systems started by observing that people often rely on

recommendations given by others to make their own decisions [4, 20]. For example,

friends ask friends which games they liked, which movies they liked, which

restaurants they liked.

In a formal way, we can define the recommendation problem as follows [8]:

Being C the set of all users and S the set of all items; let u be a utility function

(rating most of the times) that measures usefulness of item s to user c, i.e., u :C × S

→ R, where R is a totally ordered set. We want to find an item s’ with the higher

utility value, for all users. More formally:

SsscucSCc),,(maxarg', (1)

 6

In RSs, the utility function is the rating, which is given by a user to an item,

representing how the user liked the item. Consider as an example, a user-item rating

matrix for a movie recommendation presented in Table 1, the rating range is [1 – 5]

and the symbol “-“ is for movies the user did not rate yet. Therefore, RS should

calculate a prediction for unrated movies and give recommendations using those

predictions.

Table 1 – A sample of a rating matrix

 Avatar
Mission to

mars
John Carter Contact

João 4 - 5 2

Fabião 2 3 1 4

José 1 5 - 3

Maria - 2 4 -

In Figure 1, is represented the top view of a recommendation process. Before

the recommendation engine can produce recommendations, it needs the

representation of user profiles along with item profiles. The recommendations can

be represented in many ways, such as ranked lists, item thumbnails [25].

7

Items

User profiles
RecommendationsRecommendation Engine

Figure 1 – Top view of a recommendation process

2.1 .1 Terms and Concepts Common to Recommender Systems

In the Recommender Systems field, there are specific terms and concepts in use,

before going any further is better to clarify the “vocabulary” [18, 26, 27].

 Resources: The targets of the recommendation process;

 Recommenders: Entities that produces customized recommendations to its

users;

 Descriptions: Resources designed to express opinions or keep opinions about

resources;

 Preferences: The tastes of a RS user;

 Algorithms for Computing Recommendations: A set of step-by-step

procedures making use descriptions and preferences to evaluate resources;

 Recommendations: The outcome of the evaluation process for the user;

 8

 User’s Interest: Represents a degree of how much a user “likes” a specific item;

 Prediction: The predicted importance of an item to a user;

 Rating: A measure that represents a user’s interest in a specific item;

 Actual Rating: A measure representing the real interest of the user in a specific

item. Given explicitly;

 Prediction Accuracy: A measure that shows the degree the predicted rating

conforms with the user’s actual rating;

 Prediction Technique: The algorithm used by the system to calculate the

predicted rating of an item;

 Certainty: The degree of belief that a recommender has in the accuracy of a

prediction;

 Feedback: The user’s response to the recommendations and predictions made by

the recommender;

2.2 Personalization

Recommender systems and personalization walk together. Because of the vast

amounts of information available to us, it is harder to locate the desired item. To

minimize this situation, researchers came out with personalized information services

[31], services designed to learn the profile of the user, his preferences, so that later

recommendations can be made to this user based on the his profile. Personalization

technology combines ideas from many fields, such as profiling, information

retrieval, artificial intelligence and user interface design, to design information

services suitable to us [31]. The authors of [28] consider Personalization as the

9

future of the internet; it has achieved great success in industrial applications such as

Amazon and Netflix.

In [29], the authors state that the fundamental processes included in the

personalization is to extract user data, generate a model and design mechanisms to

update the models. A similar understanding is shared by the authors of [30], in

which they state that the core objectives of personalization technology can be

compiled as follows:

 The user profile must be taken into account in order to produce

recommendations for the user in the system;

 The user profile should be generated with the minimum involvement from

users;

 The recommendations should be generated almost in real time.

2.3 User Modeling

In RSs, the very first step is to learn the user profile; it can be manual or

automatic [33]. In the case of manually generated, some researchers has shown that

the profile is not very accurate [32]. In the automatic generation and update of the

user profile, machine learning is used, is a field rich in tools and algorithms to

manage profiles, but it requires a large set of training examples. These both

approaches can be combined, and when it does, a more complete and accurate

profile is generated [33].

 Considering the previous studies about the topic, the most common approach

to build a user profile mixes three different techniques [34].

In the first one, the user has to fill an initial form, but because users might not

be able or willing neither to fill large forms nor to provide personal details and

preferences explicitly. Explicit feedback asks the user about his interests, by

showing him items of different categories, so that he can rate them. Users are

generally not motivated to provide their feedback if they do not receive immediate

 10

benefits, even when they would profit in the long-term [94]. The approach usually

followed is to present the user with a limited number of fields and to let him decide

which fields he is willing to fill. The second technique exploits demographic

profiles, based on age groups for example, that give available information on the

different categories of users, and can also be used to predict user's interests. The

third technique dynamically updates the user profile by considering his previous

interactions with the system.

In fact, these three techniques above discussed, complement each other,

generating a more complete user profile. Moreover, when combined, it leads to a

less intrusive system. Explicit feedback requires a user to evaluate content and

indicate how relevant or interesting specific content is to him/her using like/dislike

(a binary scale) or numerical ratings. Even though explicit feedback helps us to

capture user preferences accurately, there is a serious drawback in that users do not

tend to provide enough feedback. Users are generally not motivated to provide their

feedback if they do not receive immediate benefits, even when they would profit in

the long-term [94].

2.4 Too much Information

The creation and extension of online services had an impact on our lives. In

one hand, it gave access to a variety of information, and on the other hand made it

harder to find products suitable to our needs, the user is exposed to more

information than he needs and, more importantly, is able to process.

The successful management of information depends on finding “smart” ways

of reducing this information overload problem. One of the main solutions proposed

and accepted for this problem are recommender systems, which provide automated

and personalized suggestions of products to consumers.

11

2.5 Data and Knowledge Sources

Data is the first input to a recommender system. This data consists of

information about items, users and user’s transactions [36]. The items are the objects

to be recommended. Items are characterized by their characteristics and by the rating

given by the user. Users of a RS, as aforementioned, may have different profiles. In

order to personalize the recommendations, RSs make use of these profiles.

Transaction is a recorded interaction between a user and the RS and is used by the

recommendation generation algorithm of the system. These transactions can be

captured explicitly, given by the user, or implicitly by monitoring his behavior when

using the system. Below we present the formal definition.

2.5.1 Formal Domain Definition

A detailed domain definition is useful to depict existing data in an organized

way. The dataset can be mapped to an environment as follows:

 A set P of n uniquely identifiable peers.

P = { p1, p2, p3, … , pn }

Each peer corresponds to a single user in the dataset. Additionally, the term

“peer” stands for independent entities performing some actions in a system, such as

nodes in peer-to-peer systems, software agents or intelligent web servers in other

domains.

 A set I of m uniquely identifiable items.

I = { i1, i2, i3, …, in}

Each item is identified separately and in our case, each item stands for a game.

 A set R of k uniquely identifiable purchases.

 12

R = {r1, r2, r3, …, rn}

Each user is allowed to purchase any item.

2.6 Recommendation Techniques

In order to produce a list of interesting items to a user, RSs should first predict

that a specific item is worth recommending for a specific user. This prediction can

be obtained by following multiples strategies, which classifies a RS. To provide a

classification of the different types of RSs, we will make use of the taxonomy found

in [6] and also [37], which distinguishes between six different classes of

recommendation approaches: Content-based, Collaborative filtering, Demographic,

Knowledge-based, Community-based and Hybrid. Each of this classes will be

briefly summarized. To have more details about this taxonomy please consult [6]

and [37].

2.6.1 Content-based RS

Recommender systems using this recommendation strategy, analyze a set of

documents (features) of the items rated by the user, and then create the user profile

based on the features of the objects rated by that user [6, 38]. The recommendation

mechanism basically tries to match up the features of the item against the user

profile. The best matches are included in the recommendation list.

The high level architecture of a CBR is depicted in Figure 2. The

recommendation process is performed in three steps, each of which is handled by a

separate component: content analyzer (pre-processes the data to be used in

subsequent steps), profile learner (constructs the user profile) and the filtering

component (produces the recommendations)

13

Content
Analyzer

Filtering
Component

Recommendations

useruser

Information
source

Profile
learner

Figure 2 - A Top Level Architecture of Content-based Systems

2.6.1.1 Item profile

The item profile is the set of features that identifies an item. It can be anything.

As an example consider an item in an electronics shop, it will have brand, model,

color, country of production, year of production, description, price, serial killer, and

so on. Thus all of these attributes define the item profile.

2.6.1.2 User profile

One important aspect of RSs is its capability to learn user’s preferences. In

order to provide proper recommendations to its users, personalized recommender

systems require user profiles [91]. On top of that, as every user can have different

preferences, each user profile should be represented with a individual set of features

[92].

 14

2.6.1.3 Pre-processing

 High precision in information retrieval (IR) is commonly hard to

accomplish for a variety of reasons; one for sure is the large number of variants

for any given term. To deal with some of the issues, researchers proposed to use

stemming algorithms to reduce terms to its root [88].

Another pre-processing step commonly applied with stemming, is removing

stopwords, which consists on removing the words which do not contain important

significance and are extremely common, such as bu, sen, burada, etc.

2.6.1.4 TFIDF (Term Frequency / Inverse Document Frequency) Weighting

When working with free text in IR, it is common to use a weighting scheme

when searching documents. TFIDF is a popular weight scheme. TFIDF is a

combination of term frequency and inverse document frequency and is calculated

using the Equation (2) below [89]:

tf-idft,d = tft,d x idft (2)

 Term frequency tft,d - number of occurrences of term t in document d.

 Inverse document frequency idft – letting the total number of documents in a

collection be N, the inverse document frequency (idf) of a term t is defined

as follows (Equation 3):

 (3)

Where dft is defined as the number of documents in the collection that contains

the term t.

15

After applying the weight scheme, each document is viewed as a vector with

one component corresponding to each term in the dictionary, together with a weight

for each component that is given by Equation (2). For terms that do not occur in the

document, this weight is zero.

After having a vector containing all the terms and their respective TF*IDF

weights for each document in the collection, we can measure the similarity between

documents by making use of any similarity measure.

Consider a document containing 100 words wherein the

word “canavar” appears 3 times, and the most frequent word appears 10 times.

Following the previously defined formulas, the normalized term frequency

for “canavar” is then (3 / 10) = 0.3. Now, assume we have 10 million documents

and “canavar” appears in one thousands of these. Then, the inverse document

frequency is calculated as log(10 000 000 / 1 000) = 4. The tf*idf score is the

product of these quantities: 0.3 × 4 = 1.2.

2.6.1.5 Pros and Cons

Content-based filtering is a good strategy in some situations; in this section we

will learn some of its strong and weak attributes. Let us start with the advantages,

comparing to collaborative filtering [36]:

 User independence – CBRs only exploit previous interactions of the active

user to build his user profile, it does not depend on the opinions of other

peers, as CF;

 Transparency – CBRs are transparence in the sense that the explanations on

the recommendation list can be provided by explicitly showing the content

features that caused the recommendation;

 16

 New item – CBRs can recommend not yet rated items; as a consequence,

they do not suffer from the first-rater problem, as CF.

Nonetheless, content-based systems have several shortcomings:

 Limited content analysis - No CBR can provide suitable recommendations

if the analyzed content does not contain enough information to distinguish

items the user likes from items the user does not like. Some representations

capture only certain aspects of the content, but there are many others that can

cause some impact;

 Over-specialization - CBRs have no inherent method for finding something

unexpected. It only recommends items with higher degree of similarity to

items previously rated. This is called serendipity problem.

 New user - When few ratings are available in the system, as for a new user,

the CBR will not be able to provide reliable recommendations.

2.6.2 Collaborative Filtering RS

The authors of [42] give the following definition to collaborative filtering:

“Collaborative filtering (CF) is the process of filtering or evaluating items

through the opinions of other people”

Differently from CBR, collaborative filtering approaches [43, 44] are based on

the ratings of the active user as well as those of other users in the system.

Collaborative filtering methods can be classified in two general classes: Memory

based and model-based [8, 45, 46].

17

The general idea of model-based approach is to model the user-item matrix

with factors representing hidden characteristics of the users and items in the system,

this model is then trained using the available data, and later used to predict ratings of

items to users. Model-based approaches are numerous and include Bayesian

Clustering [46], Latent Semantic Analysis [49], Latent Dirichlet Allocation [50],

Maximum Entropy [51], Boltzmann Machines [52], Support Vector Machines [53],

and Singular Value Decomposition [54].

In memory based approach, the user-item ratings stored in the system are

directly used to make predictions. Many memory based implementations uses

nearest neighbor algorithm, which is the de facto algorithm for memory based

approach. K-Nearest Neighbor (KNN from now on) is one of those algorithms that

are very simple to understand but works incredibly well in practice. KNN can be

implemented in two ways: user based or item-based recommendation. In the

following sections we will summarize these two methods.

2.6.2.1 User-Based Nearest Neighbor Algorithms

User-based algorithms generate predictions for users based on ratings from

similar users. We call these similar users neighbors. If a user n is similar to a user u,

we say that n is a neighbor of u. User-based algorithms generate a prediction for an

item i by analyzing ratings for i from users in u’s neighborhood. The prediction can

be calculated using Equation 2. Where rni is neighbor n’s rating for item i.

 (4)

2.6.2.2 Item-Based Nearest Neighbor Algorithms

While user-based algorithms base the predictions on similar users, item-based

algorithms give predictions using similarities between items [63].

 18

A prediction for a user u and item i is composed of a weighted sum of the user u’s

ratings for items most similar to i, and can be calculated using equation 3.

 (5)

Note that in Equation 5, itemSim() is a measure of item similarity, not user

similarity.

2.6.2.3 Advantages of Neighborhood Approaches

The main advantages of memory-based methods are:

 Simplicity: memory-based methods are intuitive and quite simple to implement.;

 Justifiability: these methods provide a reliable justification for the computed

predictions. In item-based recommendation, for example, the list of items rated

by the neighbors, along with the ratings given by the user to these items, may be

showed to the user as a justification for the recommendation. This can help the

user to better understand the recommendation [54];

 Efficiency: Efficiency is perhaps its strongest points. Although the calculation

of one’s neighbors is a very costly intensive task, it can be done offline, so that

the recommendations can happen almost in real-time;

2.6.2.4 One-class collaborative filtering (OCCF)

In earlier sections, we have discussed the use of CF in RSs. We divided

collaborative filtering algorithms into two sets based on the approach they use:

19

memory based and model based algorithms. However, any distinction was made

taking into consideration the dataset.

Taking into consideration the dataset, we can classify as multi-class

collaborative filtering and one-class collaborative filtering [16]. In a multi-class

dataset, we have positive examples as well as negative examples, but in contrast,

one-class dataset gives us only positive examples, the negative and unknown

examples are mixed together and we cannot tell which is what.

The authors of [16] work on an OCCF dataset, containing only positive

examples, classes are highly imbalanced, and the vast majority of data points are

missing. In this study, three different collaborative filtering frameworks are studied:

Low-rank matrix approximation, probabilistic latent semantic analysis, and

maximum-margin matrix factorization. The authors proposed two novel algorithms

for large-scale OCCF that allow to give weight to the unknowns. The experimental

results demonstrated their effectiveness and efficiency on different problems,

including the Netflix Prize data [16].

Now, let us consider an OCCF example, an e-commerce shop that lets its

customers purchase their content on it. According to bought content, the service

makes recommendations to the user. In this case, the dataset available to the

recommendation system is all the purchases history of all customers. A possible

portion of the actual dataset is given in Table 4. If a user buys content, we can

conclude that the user liked that content, and we put a “1”. However, if the user did

not buy content, we cannot make any conclusions, either the user did not find it

interesting or the user has not viewed the content yet. The user even may not be

aware of the existence of such content. In other words, there is no way for the

recommendation system to make distinction between the negative and missing

positive entries in the dataset. After all, as can be seen in Table 2, the user-item

matrix in such a system will consist of only positive (1’s) and missing (dashes)

entries. A “1” in the dataset means that the user has bought the given content. On the

other hand, a dash (-) indicates that the user has not bought the content, which

 20

means that either the user did not like the content (negative example) or the user was

not aware of that content (actual missing data).

Table 2 - A sample dataset for one-class collaborative filtering.

 Diablo 3
Angry

birds

Walking

dead
Fruits ninja Drive2survive

User 1 1 - - - 1

User 2 - 1 - 1 -

User 3 - 1 1 - 1

User 4 1 1 - 1 -

User 5 - - 1 1 1

It is obvious that such a service will face a one-class classification problem

during the recommendation step.

The key difference between traditional collaborative filtering and one-class

collaborative filtering methods is that later one has only positive examples in

training set [17]. However, traditional collaborative filtering methods can be used to

attack one-class collaborative filtering problems. By interpreting missing data as

negative examples one can obtain a dataset in which instances belongs to two

classes. Of course this approach will be biased as it will mark some positive

examples as negative. In [17], the authors discuss several strategies to distinguish

negative examples out of missing data. In their work, the authors experimentally

compared several approaches including all missing data as negative, no missing data

as negative and some weighting schemes to tag an instance as negative. However in

this study, for the sake of simplicity, we will consider a “dash” as negative example,

so our rating matrix will have values 1 and 0.

2.6.3 Demographic RS

Demographic RS explores the demographic profile of the user. The basic idea

is to generate recommendations for different demographic niches. This approach is

21

followed by many web sites, by using the user’s language or country to redirect him

to a particular web site. There is little research about this RSs [65].

2.6.4 Knowledge-based RS

In knowledge-based approaches, the RS makes use of extra information,

which is frequently provided, information about both the active user and the items

inventory. As an example, consider a system in automobile shop, where users don’t

buy cars often. This means that the purchase history is not is not enough to make a

good recommendation, a more detailed and structured content may be available,

including technical and quality features. Using only the purchase history would

result in recommending only top-selling cars.

2.6.5 Community-based RS

This type of RSs recommends items based on the preferences of the user’s

friends. The research in this area still in its early phase, the authors of [37, 69] report

that, social-network based recommendations are not more accurate than those

produced from traditional CF approaches. Others have shown that in some cases

social-network data yields better recommendations [71] and that adding social

network data to traditional CF improves recommendation results [70].

2.6.6 Hybrid RS

These systems are based on the combination of the above mentioned

techniques. A hybrid system combining techniques A and B tries to use the

advantages of A to fix the disadvantages of B. For instance, CF methods suffer from

new-item problems, i.e., they cannot recommend items that have no ratings. This

does not limit content-based approaches since the prediction for new items is based

on their description (features) that are typically easily available. Given two (or

more) basic RSs techniques, several ways have been proposed for combining them

 22

to create a new hybrid system, the interested reader can consult [6] for more detailed

descriptions.

In following sections we will examine the hybridization designs.

2.6.6.1 Monolithic hybridization design

In monolithic hybrids we find a single recommender component that

implements multiple techniques by preprocessing and combining several

information sources. Hybridization is accomplished by a slight change of the

algorithm behavior to explore different types of input data. Following Burke’s

taxonomy [72], both feature combination and feature augmentation methods fall in

this category.

2.6.6.1.1 Feature combination hybrids

A feature combination hybrid is a monolithic recommendation component that

uses features from different data sources as input data. For instance, Basu et al. [74]

uses this technique to combine collaborative features, user’s likes and dislikes, along

with content features of items. The curious reader can consult reference [74] for

more details.

2.6.6.1.2 Feature augmentation hybrids

Feature augmentation is another monolithic hybridization design that can be

used to integrate multiple recommendation algorithms. Output from one

recommendation technique is given to another as input. Content-boosted

collaborative filtering is an actual example of this variant [75]. It predicts a user’s

assumed rating based on a collaborative mechanism that includes content-based

predictions.

23

2.6.6.2 Parallelized hybridization design

Parallelized hybridization designs use many recommenders at the same level.

Burke [72] classifies this category as mixed, weighted, and switching strategies.

2.6.6.2.1 Mixed hybrids

Using this strategy, the predictions from each of the recommendation

techniques are presented together to the active user. Therefore the recommendation

result for user u and item i is the resulting recommendations of each and every

recommender. The items with the highest score for each recommender are presented

to the active user, as in Burke et al. [76].

2.6.6.2.2 Weighted hybrids

In a weighted hybridization strategy, each of the participating recommenders

contributes to the overall score by some pre-defined weight. The implementation is

quite straightforward and it is a popular strategy when hybridizing.

2.6.6.2.3 Switching hybrids

Switching hybrids require a mechanism to decide in which situation favor one

recommender and not the other, depending on the user profile and/or the results of

the recommendation. In the NewsDude system [77], the authors implemented two

content-based variants and a collaborative method to recommend news articles.

Initially, a CB recommender is used. If it does not find similar articles, a CF system

is called; and lastly, a naive Bayes classifier locates articles matching the long-term

preferences of the active user.

 24

2.6.6.2.4 Pipelined hybridization design

Pipelined hybrids make use of several recommendation techniques, in which

the output of one serve as input for the next one; a preceding component may either

preprocess input data to create a model that is used by the subsequent steps or

produces a list for further processing by the next technique.

2.7 Similarity measures

CF is one of the most popular methods in recommender systems. The critical

component of CF technique is the creation of the neighborhood. In memory based

approach, KNN is champion, as already stated in previous sections. The success of

this kind of classifiers depends on the application of a suitable similarity measure to

compute the neighborhood.

In literature there is a wide range of proposed methods for computing the

similarity between entities. Minkowski Distance, Pearson Correlation and Cosine

Similarity are the most popular ones.

2.7.1 Euclidean distance and Minkowski distance

The most famous example of a distance measure is the Euclidean distance,

defined by the Equation 6:

 (6)

where n is the number of dimensions (attributes) and xk and yk are the kth

attributes (components) of data objects x and y, respectively.

The Minkowski Distance is a generalization of Euclidean Distance (Equation 7):

25

(7)

where r is the degree of the distance. Depending on the value of r, the generic

Minkowski distance is known with specific names:

 For r = 1, the city block, (Manhattan, taxicab or L1 norm) distance;

 For r = 2, the Euclidean distance;

 For r→∞, the supremum (Lmax norm or L∞ norm) distance, which

corresponds to computing the maximum difference between any dimension

of the data objects.

2.7.2 Cosine Similarity

The similarity can also be defined by the angle or cosine of the angle between

two vectors. It is widely used in text classification because two documents with

equal word composition but different lengths can be considered identical. The cosine

measure is given in Equation 8.

 (8)

where • indicates vector dot product and ||x|| is the norm of vector x. This similarity

is known as the cosine similarity or the L2 Norm .

2.7.3 Pearson Correlation

The similarity between objects (items or users for example) can also be given

by their correlation, which measures the strength of the association between objects.

Given the covariance of data points Σ(x,y) , and their standard deviation σ , we

compute the Pearson correlation using Equation 9:

 26

 (9)

RS have traditionally used either the cosine similarity (Equation 6) or the

Pearson correlation (Equation 7) – or one of their many variations through, for

instance.

2.7.4 Jaccard Coefficient

The Jaccard coefficient measures the ratio of the number of commonly active

features of x1 or x2 [100]. Equation 10 gives a definition of this measure which is

often used in retail market applications.

J(x1,x2) = a / a + b + c (10)

Where:

 a represents the total number of attributes where x1 and x2 both have a

value of 1.

 b represents the total number of attributes where the attribute of x1 is 0

and the attribute of x2 is 1.

 c represents the total number of attributes where the attribute of x1 is 1

and the attribute of x2 is 0.

J(x1,x2) results in a number in the interval [0,1] inclusive, measuring the

degree of similarity between x1 and x2. J(x1,x2) = 1 corresponds to objects x1,x2 that

are identical while J(x1,x2) = 0 corresponds to objects that are very different.

27

2.8 Singular Value Decomposition - SVD

In this section, Singular Value Decomposition is presented. SVD is a very

efficient factorization technique used in linear algebra. In literature there are diverse

applications areas of SVD, but we are just interest in its contribution to RSs.

Interested reader can consult [102,103] for more clarification and examples.

2.8.1 Definition

SVD comes from linear algebra, from a theorem that says that a rectangular

matrix Amxn can be represented by the product of three matrices - an orthogonal

matrix Umxr, a diagonal matrix Srxr having all singular values of matrix A as its

diagonal entries, and the transpose of an orthogonal matrix Vnxr [102] . This theorem

is commonly displayed as:

 (11)

where U
T
U = I; V

T
V = I; the columns of U are orthonormal eigenvectors of AA

T
 ,

the columns of V are orthonormal eigenvectors of A
T
A, and S is a diagonal matrix

containing the square roots of eigenvalues from U or V in descending order; r is

rank of the matrix A.

2.8.2 SVD and RS

What makes SVD interesting to recommender systems, is that the matrices

generated by performing SVD provides with the best lower rank approximations of

the original matrix A. It is possible to reduce the r x r matrix S to have only k largest

diagonal values to obtain a matrix Sk, k < r. If the matrices U and V are reduced

 28

accordingly, then the reconstructed matrix Ak = Uk.Sk.Vk
T
 is the closest rank-k

matrix to A [103]. Figure 3 show this process.

Figure 3 - Dimensionality Reduction Process using SVD

SVD is used in RS to first reveal the latent relationships between users and

items to predict the usefulness of an item to a user, and then to produce a low-

dimensional representation of the original user-item matrix for calculating the

neighborhood in this reduced space, to be used later for produce recommendations.

The Uk matrix contains information about users and matrix Vk
T
 contains information

about items. Using this two matrices users and items similarities can be computed.

SVD-based recommendation algorithms produce high quality recommendations,

but have to undergo computationally very expensive matrix factorization steps.

29

CHAPTER 3

RELATED WORK

In this chapter, the related work in the area of recommender systems will be

given. To this goal, a wide range of recommender systems from different domains

making use of pure content based, pure collaborative filtering, social graphs and

mixed techniques will be presented. In addition to carefully analyze how the

recommendation problem is being handled, the pros and cons of these techniques

will be discussed.

3.1 Pure collaborative filtering recommender systems

One of the personalization technologies driving the adaptive web is

collaborative filtering. As mentioned earlier in section 2.6.2, collaborative filtering

(CF) is the process of filtering or evaluating items through the opinions of other

people. Collaborative filtering techniques have been successful in predicting the

rating for an unseen item to the user in recommendation systems.

The study conducted by the authors of [15] claims that although COR (Pearson

correlation) and COS (cosine similarity) have won big space among the trusted

similarity measures, they are not very successful when the number of ratings is very

small. The similarity calculations in scenarios like this are not reliable.

In order to address this problem, the authors presented an alternative measure

based on the following:

 The measure should explore other perspectives of the data, to make it more

effective in very sparse datasets;

 30

 It should allow the implementation in existing CF systems by simply

replacing the similarity measure of the systems;

 It should show good results not only in very sparse datasets but also in dense

datasets;

The measure is composed of three factors of similarity, Proximity, Impact, and

Popularity, and hence, was named PIP. Using the PIP measure, the similarity

between two users ui and uj is calculated using Equation 12:

 (12)

where rik and rjk are the ratings of item k by user i and j, respectively, Ci,j is the set of

co-rated items by user ui and uj, and PIP(rik, rjk) is the PIP score for the two ratings

rik and rjk, calculated using Equation 13,

PIP(r1, r2) = Proximity(r1, r2) x Impact(r1, r2) x Popularity(r1, r2) (13)

The Figure 4 below illustrates the basic ideas behind the three factors, and the

Table 3 presents the formal description of the formulas:

31

Figure 4 - Description of the three factors of PIP using example ratings

Table 3 presents the formal description of the formulas.

Table 3 - Formal description of the PIP formulas

Agreement

For any two ratings r1 and r2, let Rmax be the maximum

rating and Rmin the minimum in the rating scale, and let

Rmed = (Rmax + Rmin) / 2

A Boolean function Agreement(r1, r2) is defined as

follows:

Agreement(r1, r2) = false if (r1 > Rmed and r2 < Rmed) or

(r1< Rmed and r2 > Rmed), and

Agreement(r1, r2) = true otherwise

Proximity

A simple absolute distance between the two ratings is

defined as:

D(r1, r2) = |r1 - r2| if Agreement(r1, r2) is true, and

D(r1, r2) = 2 x |r1 - r2| if Agreement(r1, r2) is false

Then the Proximity(r1, r2) is defined as:

Proximity(r1,r2) = {{2x(Rmax - Rmin) + 1} – D(r1,r2)}
2

Impact Impact Impact(r1, r2) is defined as:

 32

Impact(r1, r2) = (|r1 - Rmed| + 1)(|r2 - Rmed| + 1)

if Agreement(r1, r2) is true, and

Impact(r1, r2) = 1/(|r1 - Rmed| + 1)(|r2 - Rmed| + 1) if

Agreement(r1, r2) is false

Popularity

Let μk be the average rating of item k by all users, Then

Popularity(r1, r2) is defined as:

Popularity(r1, r2) = 1 +(((r1+ r2)/2)- μk)
2

 if (r1 > μk and

r2> μk) or (r1 < μk and r2 < μk), and

Popularity(r1, r2) = 1 otherwise

The authors of [15] after extensive evaluation concluded that the presented PIP

measure showed superior performance for very sparse datasets.

In the study presented by the authors of [10], they developed a web-based movie

RS called Movies2Go that reasons with user preferences to recommend movies. It

combines voting based ranking procedure along with properties that use syntactic

features like actor/actress of movies together with a learning based approach that

processes semantic features of movies like its synopsis.

Their RS give three major functionalities to its users:

 Stores the user profile with weights of different attributes in many

dimensions like favorite actors, favorite actresses, favorite directors,

preferred time period (in terms of years), relative likings of different movie

genres like comedy, drama, action etc. It also keeps the importance of each

dimension as specified by the users (e.g., whether the user rates the genre

dimension above the director dimension etc.);

 The system makes recommendations to the user by a combination of voting

and nearest neighbor algorithms based on the user profile. The user can filter

33

the results (e.g, a user may be looking only for ‘comedy’ movies directed by

a certain director);

 It employs a simple learning mechanism to learn keyword occurrences in the

synopsis of movies that a user rates. This makes the system more suitable to

individual needs, which provides better recommendation.

The authors claim that MOVIES2GO provides satisfactory recommendations by

using this voting system.

Another interesting work is one done by the authors of [45]; they have enhanced

the neighborhood-based approach leading to noticeable improvement of prediction

accuracy, without increasing running time. First, they pre-processed the data by

removing the so-called “global effects” to make the ratings more comparable.

Second, they showed how to simultaneously derive weights for all neighbors, unlike

previous approaches where each weight is computed separately.

Their method does not require training many parameters or a long pre-

processing, making it very practical for large applications. They evaluated these

methods on the Netflix dataset, where it delivered significantly better results than

the commercial Netflix Cinematch recommender system [45].

One of the best examples of CF is without a doubt Amazon.com [12], the

authors used recommendation algorithms to personalize the online store for each

customer. The store radically changes based on customer profile. Clicking on the

“Your Recommendations” link leads customers to an area where they can filter their

recommendations by product line and subject area, rate the recommended products,

rate their previous purchases, and see the justifications.

Because existing recommendation algorithms cannot scale well

Amazon.com’s tens of millions of customers and products, they have developed

their own, an item based algorithm, rather than matching the user to similar

 34

customers, item based CF matches each of the user’s purchased and rated items to

similar items, then combines those similar items into a recommendation list. To

determine the most-similar match for a given item, the algorithm builds a similar-

items table by finding items that customers tend to purchase together [12].

 As previously discussed, the critical aspect of CF is the calculation of

similarities; in this system, it creates the expensive similar-items table offline.

Unlike traditional collaborative filtering, the algorithm also performs well with

limited user data, producing high-quality recommendations based on as few as two

or three items [12].

3.2 Pure content based recommender systems

Content based approach, as previously discussed, requires only two pieces of

information: a description of the item characteristics and a user profile that describes

the (past) interests of a user. The recommendation task then consists of determining

the items that match the user’s preferences best, as discussed in section 2.6.1.

As an example, consider the RS presented by the authors of [84], PTV. PTV is a

recommender system designed to make TV program suggestions to users based on

their individual profile. PTV profiles created in this system contain lists of positively

and negatively rated TV programs. In this RS, users register themselves in the PTV

interface (Web site) and then they can access personalized programming guides

presented as HTML or WML pages. The system incorporates user profiles, content-

based reasoning and collaborative methods to make recommendations. When

registering a new user, the system creates a profile which stores preferences about

programs, channels, genres, timetables, etc. Later on, a component of the system

collects the feedback information of the users to enrich the user profile.

Additionally, this information can be continuously improved by taking into account

all decisions adopted by the user any time he interacts with the system. This allows a

great reduction in the information that must be explicitly given by the user. So, in

35

this case, the first time the user turns on the system, he must inform only about a few

characteristics to build a preliminary profile [84].

The study presented by the authors of [82], a CB RS. In the system, the attributes

used for content-based recommendation are weighted, according to their level of

importance for the users of the system. In order to define the weight of each

attribute, is used a set of linear regression equations obtained from a social network

graph. The main idea of this approach is to use existing recommendations by users

to construct a social network graph with items as nodes [82]. After testing this

approach extensively, the authors conclude that the presented approach consent with

IMDB recommendation, and it even present good results and also shows the

effectiveness of feature weighting [82].

3.3 Hybrid recommender systems

As discussed in section 2.6.6, this kind of RSs are based on the combination of

the above mentioned techniques, exploring the advantages of one to fix the

disadvantages of the other.

In movies/TV domain, there is the AVATAR system [83]; AVATAR is a TV RS

that recommends contents for a user, semantically similar to those he watched

before. AVATAR includes user profiles, content-based reasoning and collaborative

methods, to produce the recommendations. It also makes use of a technique which

provides an initial user profile from the information acquired during the registration

process and after that, the feedback information (watched programs, changes in

preferences, etc) needed for the explicit interaction and collaboration of the user

through specific Web pages. The system implements an ontology using the OWL

(Web Ontology Language) language, where resources and relations typical in the

TV domain are identified by classes, properties and specific instances. In order to

model the preferences, a dynamic subset of TV ontology is used, built incrementally

by adding new classes, properties and instances. Specifically, when AVATAR

knows a new content, the system adds to the profile this instance, the class referred

 36

to it, the hierarchy of super classes defined in knowledge base related to this class

and some properties defining the main characteristics of this TV content [83]. After

evaluated this approach, the authors were happy with the results.

Another study in this category is the Machbook system [85], which is a web

based recommendation system that has been developed by using personalization

techniques and combining machine learning and automated reasoning. In

Matchbook, the users are able to browse the content in order to find the right

matches for themselves in terms of both character and appearance.

For the machine learning part, by observing just the implicit behaviour of the

user (i.e. visiting other user’s profiles) the interests of the user are learnt. “Add to

Favourite List” means a positive example and “Skip to the Other User” means a

negative example. According to these positive and negative examples, some

hypotheses about the user’s taste are maintained by using Candidate Elimination

Algorithm. In this manner, the users in the system are personalized so that the

system is able to provide them with the appropriate matches [85]. As another

machine learning algorithm, k-Nearest Neighbour Algorithm is used in order to find

the people sharing the most common interests specified during the registration.

To make recommendation to the user, the system finds the relation defined for

that user and tries to match the related properties with the users in the system. After

the matches are found by the reasoner, Naïve Bayes Classifier is applied and the

matches are ordered according to the results calculated from the classification

method [85].

3.4 Dimensionality reduction approach

In [103], the authors explore the potential of SVD for making recommendations.

Their study was driven to find alternatives to the weakness of Pearson nearest

neighbor in large, sparse datasets. They started by applying SVD to produce

matrices U, S and V, then they reduced the matrix S to dimension k, by choosing top

37

k Eigenvalues. After that they computed the square root of the reduced matrix Sk,

giving matrix Sk
1/2

. And at the end they computed the two resultant matrices UkSk
1/2

and Sk
1/2

Vk
T
.

 With the resultant matrix UkSk
1/2

, they computed the neighbourhood by

applying cosine similarity to each and every row vector. After computing the

neighborhood for a given customer C, they scanned through the purchase record of

each of the k neighbours and performed a frequency count on the products they

purchased. The product list is then sorted and most frequently purchased N items are

returned as recommendations for the target customer.

After extensive evaluation, they concluded that the SVD-based technique was

consistently producing worse results than traditional collaborative filtering when

using an extremely sparse e-commerce dataset. However, the SVD-based approach

produced better results than a traditional collaborative filtering algorithm when

using a denser dataset as MovieLens dataset.

3.5 One Class Collaborative Filtering (OCCF) Dataset

As referred previously, OCCF datasets contains only positive examples. All of

the negative examples and missing positive examples are mixed together and there is

no way of distinguishing between them. There are many strategies that tries to solve

this problem.

One of the strategies is to label negative examples, but this approach is very

expensive or even close to impossible to implement, as in a e-commerce system

such as amazon.com with millions of items, the user is only interested in a tiny small

fraction of it, so to ask users to label negative examples among all these millions of

choices is a non-sense. Another strategy used is to label all missing values as

negative examples; empirical studies show that this approach works well most of the

time, but it biases the results, because some unknown positive examples may be

considered as negative examples. On the other hand, if we ignore all missing values

 38

and use only the positive examples to feed the system, it will model only not missing

data, all predictions processed by the system will be positive examples. Therefore,

all missing as negative (AMN) and all missing as unknown (AMU) are two

extremes.

Taking as an example the work done by the authors of [17], they proposed two

frameworks to tackle OCCF. They balance between AMN and AMU. The first one

method is based on weighted low rank approximation [104, 105], giving different

weights to the error terms of positive examples and negative examples; and the other

consists in randomly sampling some missing values as negative examples based on

some sampling strategies.

For the first framework, the authors of [17] propose Weighted Alternating Least

Squares (wALS). wALS is based on the Weighted Low-Rank Approximation

(wLRA) method presented in [105]. Both wALS and wLRA methods use a matrix

W which keeps weights in its cells. Weight of a rating represents our confidence

level about that rating, which means that if a rating has a high weight, then we are

highly confident that this rating is correct. Although, accommodating a weight

matrix is the common idea of wALS and wLRA, the weight matrices used is the

main distinguishing point between two algorithms.

Similarly to SVD, wALS also uses a matrix decomposition. The goal is to find a

matrix such that , where and . is

expected to minimize the error in Frobenius form as given by Equation (14).

 (14)

wALS is an improved version of wLRA. Both methods try to solve the optimization

problem , where is defined using Equation (15).

 (15)

39

To overcome the overfitting problem of wLRA, the authors of [17] proposed a

regularization term to Equation (15) which is shown in Equation (16).

 (16)

The interested user can consult [17] for more details.

For the weight scheme, the authors of [17] used Uniform, User Oriented, and

Item Oriented. The weight matrix W is very important to the performance of OCCF.

With W=1, it is equivalent to the case AMN with the bias mentioned earlier. The

main idea behind the correction of the bias is to let represent the confidence

level of the training data (R) used to build the collaborative filtering model. For

positive examples, , whenever . For the case of missing data, most of

the cases are probably negative examples, and the confidence level of missing

values being negative is not as high as the positive example case, so they gave lower

weights.

The uniform weighting scheme considers missing values as being negative

examples with the equal strength to all users or items, i.e., it uniformly give a weight

 for all negative examples. The second weighting scheme, User Oriented,

takes into consideration the number of positive examples, if it has more positive

examples; it infers that she does not like the other items, meaning that the missing

values are negative with higher probability. The third weighting scheme, Item

Oriented, also takes into consideration the number of positive examples; if an item

has fewer positive examples, the missing values for that item is negative with higher

probability as well. All the three weighting schemes are summarized in the Table 4

below. The parameter for the three schemes is the ration between the sum of the

positive examples weights and the sum of the negative example weights.

 40

Table 4 - Weighting schemes

 Positive examples Negative examples

Uniform

User oriented

Item oriented

For the sake of simplicity, we will not discuss any further the second framework,

negative example sampling.

The authors (Rong Pan, et al. 2008) conducted their experiments using two

separate dataset: yahoo news consisting of user_id – news_url pairs which consists

of 3158 unique users and 1536 news stories; the second dataset is from a social

bookmarking site http://del.icio.us, it contains 246,436 posts with 3000 users and

2000 tags. These datasets were split in 80/20 ratio, in a cross-validation setup.

To evaluate the performance of the system, the authors make use of MAP (Mean

Average Precision) and half-life utility metrics. MAP is mostly applied in IR. The

authors of [17] used it to get the overall performance based on precision values at

various recall levels on a test set. It is used to calculate the mean of average

precisions (AP) of all users in test set, it is calculated using the Equation 17 below:

 (17)

Where:

i is the position in the ranked list

N is the number of retrieved items

Prec(i) is the precision values

Pref(i) is a binary flag giving 1 if the i-th item is selected or 0 otherwise

Half-life utility is used to estimate the likeliness of a user choosing an item in a

ranked list, with the assumption that the user will choose each item in the list

consecutively with an exponential decay of possibilities, and it is calculated using

the Equation 18 below:

http://del.icio.us/

41

 (18)

Where:

 is the expected utility of the ranked list for user u and is the

maximum achievable utility. is defined using Equation 19 as follows:

 (19)

Where:

 equals 1 if the item at position j is preferred by the user and 0 otherwise, and

is the half-life parameter, set to 5 by the authors.

To evaluate the performance of the proposed approach, the authors compared

their results with two baselines: AMN and AMU. For the AMN strategy, several

collaborative filtering algorithms were applied, including alternating least squares

with the missing as negative assumption (ALS-AMAN), singular value

decomposition (SVD), and a neighborhood-based approach including user-user

similarity and item-item similarity algorithms. For the AMU strategy, the authors

used a simple approach which consisted in ranking the items by their overall

popularity; another approach tried was to convert OCCF into a one-class

classification, such as one-class SVM.

Figure 5 to 8 below evaluates the impact of the number of features (parameter

d) on SVD and wALS. Looking at the figure, we see that for SVD, the performance

increases and then decreases as the number of features increases. On the other hand,

for wALS, the performance is more stable and keeps on increasing. The

performance of wALS usually converged at around 50 features. In their

experiments, the authors used the optimal feature count for SVD (10 for Yahoo

news data and 16 for user-tag data) and wALS (50).

 42

 Figure 5 - MAP values for yahoo news data

Figure 6 - HLU values for yahoo news data

43

Figure 7 - MAP values for delicious data

Figure 8 - HLU values for delicious data

Figure 9 below compares the weighting schemes proposed by the authors (Rong

Pan, et al. 2008): Uniform, User oriented, Item oriented.

 44

Figure 9 - Comparisons of different weighting and sampling schemes

Figures 10 and 11 show the performance comparisons of different methods

based on the missing as unknown strategy (Popularity and SVM), methods based on

the missing as negative strategy (SVD and ALS-AMAN) and their proposed

methods (wALS, sALS).

45

Figure 10 - Impact of the ratio of negative examples and positive examples, for yahoo news

Figure 11 - Impact of the ratio of negative examples and positive examples, for delicious data

 46

Experimental results show that the proposed methods outperform state of the

art algorithms on real life data sets including social bookmarking data from delicious

and a Yahoo news dataset.

47

CHAPTER 4

THE PROPOSED SYSTEM

The proposed system consists of a set of configurations exploring different

recommendation algorithms. More specifically, it deals with the data sparsity

problem with the help of content based, collaborative filtering, and hybrid concepts.

The collaborative filtering approach is implemented in two setups: memory

based and model based. The memory based setup is strengthened by using the user

based technique. As previously stated, the core component of CF is the

neighborhood creation mechanism, which integrates the similarity measures. In this

experiment we will be using PIP (Proximity-Impact-Popularity), Cosine, Jaccard

similarity measures. The model based setup is based on SVD.

 The content based part, which solely focuses on item features, is implemented

in two steps: Pre-processing and the prediction process. The pre-process step is

required because we are dealing with item descriptions, which is free text, to build

the user profile and item profile so that the prediction phase can use it.

4.1 Dataset Overview: Başarı Mobile

Başarı Mobile is the first company who had moved the first step towards Mobile

Entertainment Sector in Turkey by 1998. It started to give service under merger

departments of Information Technologies and Mobile Internet Services in the

structure of Başarı Holding. Since August 2003, BAŞARI MOBILE IT

PRODUCTS AND SERVICES CO., keeps up its scope of activities in Value

Added Services of Mobile Environments and Information Technologies.

Başarı Mobile, with its dynamic working team and adaptable technological

infrastructure, is one of the distinguished mobile content and application provider,

reseller and carrier company in Turkey. Especially, experienced at developing

 48

operator side application programming interfaces, user pattern recognition and

mobile device adaption for the value added services and always keeps close on

customer-satisfaction by giving aftersales support and providing rich and innovative

content and developing personalized ways of retrieving and presenting mobile

contents. The Company is managing, storing and serving over 15.000 multimedia

content products in the distributed network of mobile environment. The Company’s

WAP (Wireless Application Protocol) and web-based mobile content download

platforms have approximately over 28.000 daily visitors and receiving about 9.000

download requests [90].

 The ratings in this dataset are expressed implicitly by monitoring the purchase

behaviour of the users. This dataset is what is considered to be OCCF, each “1”

represent a positive example and a “-” symbol represent missing data, but for the

sake of simplicity, in our experiments we will consider it as a negative example,

taking a “0”. The user-item matrix looks like in the Table 4 below.

Table 5 - User-item matrix for OCCF dataset

 Diablo 3
Angry

birds

Walking

dead
Fruits ninja Drive2survive

Sitóe 1 0 0 0 1

Fabião 0 1 0 1 0

Teresinha 0 1 1 0 1

Carlota 1 1 0 1 0

Xiquisso 0 0 1 1 1

49

4.2 The Methods

 Although we have chosen widely used algorithms, our results are mostly not

comparable to previous research since we were unable to use a standard dataset.

However, the behavior of the algorithms (convergence rates, running times, memory

consumption, etc.) was as expected in our test experiments.

This section covers the details of the experiments we have conducted. We start

our discussion with the de facto standard memory-based algorithm: k-Nearest

Neighbor and later in this chapter we will be talking about content based, and the

model based approach exploiting using SVD properties.

4.2.1 Collaborative filtering

There are several algorithms proposed in academia to solve the collaborative

filtering problem. We have chosen a popular one, KNN (K-Nearest Neighbor), to

focus our research on the value of one-class collaborative filtering problem.

Choosing well studied algorithms also makes us feel confident with the robustness

of the algorithms and the results they produce. In fact, several algorithms that have

been proposed perform well on a specific dataset while hardly tolerable to any

dataset changes.

With no doubt, k-Nearest Neighbor algorithm is the most known algorithm in

machine learning field. This algorithm is simple to implement and produce

acceptable results for different datasets. In its essence, k-NN searches for the k most

similar users of a user, called neighbors. After finding the neighbors, the algorithm

makes predictions for a user based on that user’s neighbors’ ratings. The process of

selecting neighbors is shown in Algorithm 4.1.

Require: Neighbor number k, user list U, user rating vector set V

Ensure: User neighbor vector set N

For user ui in U do

 50

 Initialize priority queue Qi

 i ← V[ui]

 for user uj in U do

 if ui ≠ uj then

i ← V[uj]

s←similarity(i, j)

enqueue (Qi,uj,s)

 end if

 end for

 N[ui] ← dequeue (Qi,k)

 end for

Algorithm 4.1- Neighbor selection process of k-NN algorithm.

The similarity metric selection is the critical part of Algorithm 4.1. We already

discussed several popular similarity metrics in Section 2.7. As we stated, Pearson

Correlation and Cosine Similarity have been preferred by most of the previous

researchers. However, they were dealing with multi-class datasets. Neighbor

selection can be seen as the training phase of k-NN algorithm. Training phase can be

extended to cover prediction calculations if the algorithm is expected to find

predictions for all possible user-item pairs. However, generally prediction step is

done in testing phase in which the algorithm is expected to calculate predictions

only for test cases. The basic approach to make predictions is to equally value the

ideas of neighbors. In other words, the final rating is the average rating of all

neighbors. The rating can be calculated using Equation 4, presented below for

practicality.

51

In the next section we are going to talk about neighborhood creation and the

similarity measures applied.

4.2.2 Finding Friends

4.2.2.1 User Item Matrix

In a RS consisting of M users and N items, there is a M × N user-item matrix R.

Each entry rm,n = x represents the rating that user m gives to item n, where x∈ {0,1}.

The default rm,n value, meaning that the rating is unknown, is 0.

The user-item matrix can be decomposed into row vectors:

R = [u1, . . . , uM]
T
, um = [rm,1, . . . , rm,N]

T
, m = 1, . . . , M.

The row vector um represents the ratings of user m for all of N items.

Alternatively, the matrix can also be represented by its column vectors:

R = [i1, . . . , iN]
T
, in = [r1,n, . . . , rM,n]

T
, n = 1, . . . , N.

The column vector in represents the ratings of item m by all of M users.

An example user-item matrix R is presented in Table 5:

Table 6 - User item Matrix

 i1 i2 i3 i4 … iN

u1 1 0 0 0 … 1

u2 1 0 0 1 … 0

u3 0 1 0 0 … 0

… … … … … … …

u5 0 0 0 0 … 1

 52

4.2.2.2 PIP Similarity Measure

In sections 3.1 we have talked about the PIP (Proximity – Impact - Popularity)

Similarity Measure, which was originally designed for multiclass collaborative

filtering recommender systems. The choice of this similarity measure is because it

showed good results in multi-class CF when using a very sparse dataset. However

the problem we have in hands, is an application of OCCF. Below, in Table 5,

follows the formal description of the formulas for OCCF.

Table 7 - Formal description of the PIP formulas for OCCF

Agreement

For any two ratings r1 and r2, let Rmax be the

maximum rating and Rmin the minimum in the rating

scale, and let

Rmed = (Rmax + Rmin) / 2 = (1+0)/2 = 0.5

A Boolean function Agreement(r1, r2) is defined as

follows:

Agreement(r1, r2) = false if (r1 = 1 and r2 =0) or (r1= 0

and r2 = 1), and

Agreement(r1, r2) = true otherwise

Proximity

A simple absolute distance between the two ratings is

defined as:

D(r1, r2) = 0 if Agreement(r1, r2) is true, and

D(r1, r2) = 2 if Agreement(r1, r2) is false

Then the Proximity(r1, r2) is defined as:

Proximity(r1,r2) = {3 – D(r1,r2)}
2

Impact

Impact Impact(r1, r2) is defined as:

Impact(r1, r2) = (|r1 - Rmed| + 1) x (|r2 - Rmed| + 1) if

Agreement(r1, r2) is true, and

Impact(r1, r2) = 1/(|r1 - Rmed| + 1)(|r2 - Rmed| + 1)if

Agreement(r1, r2) is false

53

Popularity

Let μk be the average rating of item k by all users,

Then Popularity(r1, r2) is defined as:

Popularity(r1, r2) = 1 +(((r1+ r2)/2)- μk)
2

 if (r1 > μk

and r2> μk) or (r1 < μk and r2 < μk), and

Popularity(r1, r2) = 1 otherwise

Consider as an example, two user vectors v1 and v2, rating six items i

(i={1,2,3,4,5,6}) given as follows:

v1 = {1,0,1,0,0,1}

v2 = {0,1,1,0,1,1}

The PIP similarity value for this two users is calculated as described in the

pseudo-code below:

Pipsimilarity(v1,v2,ratingMatrix)

pipMeasure = 0.0;

agreement=false;

distance = 0;

averageRating = (maxRating + minRating) / 2 = (1+0) / 2 = 0.5

proximity=0;

impact = 0;

popularity = 0;

for each item i Є itemList

Integer ratingV1 = getRating(v1,i)

 Integer ratingV2 = getRating(v2,i)

If (ratingV1 == 1 && ratingV2 == 1)

 agreement = true;

 else agreement = false

if(agreement)

distance = 0;

else distance = 2;

 54

 proximity = (3 - distance)
2
;

 if(agreement)

impact = |(r1 - rmed)+1|*|(r2 - rmed)+1|;

else impact = 1/ |(r1 - rmed)+1|*|(r2 - rmed)+1|;

let averageRatingItem = average rating of item i by all users

if ((ratingV1 > averageRatingItem && ratingV2 > averageRatingItem) || (ratingV1 <

averageRatingItem && ratingV2 < averageRatingItem))

popularity = 1+(((ratingV1+ratingV2)/2)- averageRatingItem)
2
;

else popularity = 1;

pipMeasure = pipMeasure + (proximity * impact * popularity);

return pipMeasure;

Consider for example a sample dataset containing three user vectors and six

items, as follows:

v1 = {1,0,1,0,0,1}

v2 = {0,1,1,0,1,1}

v3 = {0,0,1,1,0,0}

i = 1

ratingV1 = 1;

ratingV2 = 0;

averageRatingItem = 0.33;

agreement = false;

distance = 2;

proximity = (3 - 2)
2
 = 1

Impact = 1 / (| 1 - 0.5 | + 1) * (| 0 - 0.5 | + 1) = 0.44

Popularity = 1

PIP = 0.44

 i = 2

ratingV1 = 0;

55

ratingV2 = 1;

averageRatingItem = 0.33;

agreement = false;

distance = 2;

proximity = (3 - 2)
2
 = 1

Impact = 1 / (| 1 - 0.5 | + 1) * (| 0 - 0.5 | + 1) = 0.44

Popularity = 1

PIP = 0.44

i = 3

ratingV1 = 1;

ratingV2 = 1;

averageRatingItem = 1;

agreement = true;

distance = 0;

proximity = (3 - 0)
2
 = 9

Impact = (| 1 - 0.5 | + 1) * (| 1 - 0.5 | + 1) = 2.25

Popularity = 1

PIP = 20.25

i = 4

ratingV1 = 0;

ratingV2 = 0;

averageRatingItem = 0.33;

agreement = false;

distance = 2;

proximity = (3 - 2)
2
 = 1

Impact = 1 / (| 1 - 0.5 | + 1) * (| 0 - 0.5 | + 1) = 0.44

 56

Popularity = 1

PIP = 0.44

i = 5

ratingV1 = 0;

ratingV2 = 1;

averageRatingItem = 0.33;

agreement = false;

distance = 2;

proximity = (3 - 2)
2
 = 1

Impact = 1 / (| 1 - 0.5 | + 1) * (| 0 - 0.5 | + 1) = 0.44

Popularity = 1

PIP = 0.44

i = 6

ratingV1 = 1;

ratingV2 = 1;

averageRatingItem = 0.67;

agreement = true;

distance = 0;

proximity = (3 - 0)
2
 = 9

Impact = (| 1 - 0.5 | + 1) * (| 0 - 0.5 | + 1) = 2.25

Popularity = 1 + (((1+1)/2) – 0.67)
2
 = 1.11

PIP = 9 * 2.25 * 1.11 = 22.48

PIPMeasure = 0.44 + 0.44 + 20.25 + 0.44 + 0.44 + 22.48 = 44.49

57

4.2.2.3 Jaccard Similarity measure

In section 2.7.4, we presented the Jaccard coefficient. The choice of this

similarity measure is that we believe that Jaccard Similarity is more suitable to one-

class collaborative filtering applications since we are dealing with binary rating

vectors. Thus, we had used Jaccard Similarity as defined in Equation (8), presented

below for practicality.

J(x1,x2) = a / a + b + c

Consider for example, two user vectors v1 and v2, rating six items i

(i={1,2,3,4,5,6}) given as follows:

v1 = {1,0,1,0,0,1}

v2 = {0,1,1,0,1,1}

The Jaccard similarity value for these two users is calculated as described in the

pseudo-code below:

Jsimilarity(v1,v2, ratingMatrix)

p = 0;

q = 0;

r = 0;

for each item i Є itemList

if (rating (v1,i) = 1 and rating (v2,i) = 1) then p = p +1;

if (rating (v1,i) = 1 and rating (v2,i) = 0) then q = q +1;

if (rating (v1,i) = 0 and rating (v2,i) = 1) then r = r +1;

return p/(p+q+r)

Running the algorithm for the vectors v1 and v2 , we have p = 2, q = 1, r = 2.

Applying these values to equation 12 we have:

J(v1,v2) = 2 / 2 + 1 + 2 = 2 / 5 = 0.4. Meaning the users v1 and v2 are 40% similar

with each other.

 58

4.2.2.4 Cosine Similarity Measure

The cosine similarity measure is defined by the cosine of the angle between two

vectors, section 2.7.2, according to equation (6), presented below for practicality.

 The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning

exactly the same, with 0 usually indicating independence, and in-between values

indicating intermediate similarity or dissimilarity.

In the case of measuring the similarity of two user vectors, the cosine

similarity will range from 0 to 1, since the given ratings are not negative. The angle

between two user vectors cannot be greater than 90°. Consider for example the

following user vectors:

v1 = {1,0,1,0,0,1}

v2 = {0,1,1,0,1,1}

Applying the equation we have:

v1 . v2 = (1*0) + (0*1)+(1*1)+(0*0)+(0*1)+(1*1) = 2

||v1|| = (1
2
 + 0

2
 +1

2
 + 0

2
+0

2
+1

2
)

1/2
= 3

1/2
 = 1.73

||v2|| = (0
2
 + 1

2
 +1

2
 + 0

2
+1

2
+1

2
)

1/2
= 4

1/2
 = 2

COS(v1,v2) = 2 / (1.73 * 2) = 0.58

4.2.3 Content based filtering

This part explains in detail, how the content information of the games is included

in the prediction process. Content-based filtering method, which is another well-

known technique in recommender systems, have been developed using learning

procedures. These procedures require training data to identify personal preferences

59

(user profile) based on the previously purchased items and item profile of all items

existing in the system.

4.2.3.1 Item profile

As the proposed system works in the game domain, its games are considered as its

items.

The profile of a game in the system contains the following features:

 Game number – identification number of the game

 Name – the name of the game

 Description – the description of the game

 Category – the category of the game

 Cost – the cost of the game

However, in the proposed system we will only use the description field; we

believe this field characterizes better the item.

4.2.3.2 User profile

Before going into further detail, the notation and definitions required for

understanding our approach are introduced. Let C = {c1, c2, …, cn} be the set of all

content, T = {t1, t2, … , tm} be the set of all terms, and U = {u1, u2, …, ul} be the set

of distinct users. The content cj is a set of terms, each of which may appear in

multiple contents with different weights that quantify the importance of the term for

describing the content.

In our study, a weight wi,j associated with a pair (ti, cj) (i.e., a term ti of a

content cj) is computed by making use of a TF-IDF weighting scheme [93]. To build

a user profile, we extract the descriptions of all items rated by the user. The

preference indicator of implicit feedback can be represented as a form of a pair (uh,

 60

cj), where uh ∈ U is a user and cj ∈ C is a specific content. The pair implies that user

uh bought content cj. In other words, the profile of a user is composed of the ratings

given to the games along with the content information of these games.

4.2.3.3 User profile generation

Our approach to modeling user interests mainly consists of the extraction of

the terms that constitute the description of the items and all the descriptions are

concatenated. After this procedure, the result is pre-processed by stemming the

words and removing stopwords [95]. After extracting terms, each interest content cj

is represented as a vector of attribute-value pairs as follows:

cj = {(t1,j, w1,j), (t2,j, w2,j), … , (tm,j, wm,j)} (20)

where ti,j is the extracted term in cj and wi,j is the weight of ti in cj. wi,j is computed

by the static TFIDF term-weighting scheme [93] and is defined in section 4.3.3.6.

4.2.3.4 Lucene

Apache Lucene(TM) is a high-performance, full-featured text search engine

library written entirely in Java. It is a technology suitable for nearly any application

that requires full-text search, especially cross-platform [87].

In our proposed system, Lucene is used only as a convenient and efficient

means of converting documents into term vectors and for extracting statistics about

the corpus for computing TFIDF. Lucene itself cannot be reliably used to compare

indexed documents with the query vector, since there is no guarantee that Lucene's

scores will hold stable across different sets of documents.

61

4.2.3.5 Preprocessing (removing stopwords and stemming the words)

 As stated previously, we make use of a Turkish dataset. Because of the

agglutinative nature of the language, stemming is an essential task for indexing and

searching documents in Turkish [97]. Turkish, has a rich morphological structure.

Words are usually composed of a stem and of at least two or three affixes appended

to it. This is why it is usually harder to analyze a Turkish text. Stemming is therefore

a more essential task for indexing and information retrieval purposes in

agglutinative languages [97].

For this study, we made use of a stemmer called Turkish Analyzer that integrates

with Lucene information retrieval system. This stemmer for turkish words makes

use of Snowball language. Snowball is a language in which stemming algorithms

can be easily represented. [96]. Snowball has been widely used in stemming tools.

At the end, this pre-processing step outputs two vectors for each item, one

containing the processed terms and the corresponding weight of each term, so that

similarity calculations can be performed.

4.2.3.6 Overall prediction value

In the cases where the object is a hybrid algorithm, Collaborative Filtering

(CF) and Content based filtering (CB) for example, the overall prediction can be

calculated using Equation (21) as follows:

Overall_prediction = λ * CF + (1 – λ) * CB (21)

Where parameter λ is used to fuse information from both methods used, for

example CF and CB, to predict the rating for the active users.

 62

4.3 Singular Value Decomposition

As earlier mentioned, what makes SVD interesting to recommender systems, is

that the matrices generated by performing SVD provides with the best lower rank

approximations of the original matrix A. SVD-based recommendation algorithms

produces good results, but its matrix factorization steps is very expensive to execute.

As an example to dimension reduction, consider the <user, game> rating matrix in

Table 7 below:

Table 8 - Example user/game matrix

User/Game Game 1 Game 2 Game 3 Game 4 Game 5

User 1 1 5 0 5 4

User 2 5 4 4 3 2

User 3 0 4 0 0 5

User 4 4 4 1 4 0

User 5 0 4 3 5 0

User 6 2 4 3 5 3

By applying SVD decomposition to this matrix we get:

U S VT

0.5 0.4 -0.3 -0.4 0.3 16.5 0 0 0 0 0.3 0.6 0.3 0.6 0.3

0.5 -0.3 0.6 0.3 0 0 6.2 0 0 0 -0 0.2 -0.4 -0.3 0.8

0.2 0.8 0.3 0.2 -0.5 0 0 4.4 0 0 0.7 0 0.1 -0.6 0.3

0.4 -0.3 0.1 -0.7 -0.3 0 0 0 2.9 0 -0 -0.1 0.9 -0.2 0.2

0.4 -0.2 -0.6 0.4 -0.5 0 0 0 0 1.6 0.2 -0.7 0 0.5 0.5

0.5 0 -0.1 0.3 0.6

Matrices U, S, and VT are now calculated. From here we can reduce the

dimensions to 3, tridimensional. To do this, we simply take the first three diagonal

values from S producing SK, then reduce U and VT accordingly to produce Uk and Vk
T.

The end result is as follows:

63

UK SK VT
K

0.5 0.4 -0.3 16.5 0 0 0.3 0.6 0.3 0.6 0.3

0.5 -0.3 0.6 0 6.2 0 -0.4 0.2 -0 -0.3 0.8

0.2 0.8 0.3 0 0 4.4 0.7 0 0.1 -0.6 0.3

0.4 -0.3 0.1

 0.4 -0.2 -0.6

 0.5 0 -0.1

Now we find the most similar users using the 3-Dimensional matrices above with

one of the similarity calculation algorithms discussed previously.

 64

CHAPTER 5

EVALUATION

This chapter presents the details of how the proposed system is evaluated in

order to test its performance. First, the dataset and the metrics used for the

experimental evaluation are introduced. Then, the results of the conducted

experiments are stated and discussed.

In previous chapter, we gave details of our research in which we test different

recommendation techniques using a one-class collaborative filtering problem. As

previously stated, one-class collaborative filtering problems are harder to solve than

multi-class since datasets contain only positive examples. With the absence of

counter-examples it is hard to train algorithms.

5.1 Data Set

The experimental evaluation of the proposed system was conducted using the

Başarı Mobile proprietary dataset, introduced in previous sections. The first thing

we did with the dataset was to clean it, with that we mean remove content other than

games, and removing users who did not buy any content. After this preprocessing

step, we end up with 817,200 ratings, 2,635 games and 126,068 users.

The density of the user-item matrix created from this dataset is:

In order to evaluate the prediction mechanism of the proposed system, cross

validation method was used and among the various cross validation methods, the

holdout method was preferred. Because the resource consumption is quite different

for memory and model based techniques, we separated two subsets of the data. One

65

to be used with memory based algorithms including content-based and the other for

model based using SVD decomposition. Following this method, the memory based

dataset was separated into two sets, called the training set and the testing set. Thus,

after a subset of 500 users containing at least 5 ratings was randomly extracted from

the data set, 300, 200 and 100 of them were selected as the testing users

respectively. And the rest 200, 300, 400 were selected as the training users. In the

case of model-based, the subset contains 3000 users randomly extracted from the

dataset, 500, 1000 and 1500 of them were selected as the testing users respectively.

And the rest 2500, 2000, 1500 were selected as the training users.

5.2 Evaluation Metrics

In collaborative filtering applications, Precision is one of the most popular

metrics for evaluating information retrieval systems, along with Recall [40], as

introduced by Cleverdon in 1968 [98]. To calculate the Precision and Recall, The

item set must be separated into two classes—relevant or not relevant. That is, if the

rating scale is not already binary, which is exactly the case with the Başari Mobile

dataset.

Precision is defined as the ratio of relevant items selected to number of items

selected, shown in Equation (22):

 (22)

Precision represents the probability that a selected item is relevant.

Recall on the other hand, shown in Equation (23), is defined as the ratio of

relevant items selected to total number of relevant items available. Recall represents

the probability that a relevant item will be selected.

 66

 (23)

Where:

#tp – true positives

#fp – false positives

#fn – false negatives

In one-class collaborative filtering problems, final values obtained would be

either a “1” or a “0”. During prediction phase, any value between the range (0, 1) is

rounded. The effect of a predicted rating of 0.6 would be same as the effect of a

predicted rating of 0.99.

Note that our dataset contains only positive test cases. So we could not find

out the number of false negative (#fn) and true negative (#tn) examples after any

experiment, that is why we use Precision as our evaluation metric.

5.3 Results of the Algorithms: CF (Memory based) and CB

In order to test the performance of the proposed system’s prediction approach,

the Precision values obtained for the three dataset, which were explained in detail in

section 5.1, are summarized in the Table 8. The parameters k (number of “friends”)

used throughout the prediction process were set to 25. The tested algorithms include

pure collaborative filtering, pure content-based filtering and hybrid filtering:

 Pure collaborative filtering (CF): PIP (Proximity – Impact – Popularity

similarity measure), COS (Cosine similarity measure), Jaccard

similarity measure;

 Pure content based filtering (CB) : COS using TFIDF (Term

Frequency / Inverse Document Frequency) weights;

67

 Hybrid approach: PIP + CB, Jaccard + CB, COS + CB.

Table 9 - The results of memory based algorithms

Methods

Testing Users

100 200 300

PIP 0.6382 0.6245 0.5813

TFIDF 0.4075 0.483 0.4952

COS 0.8521 0.8624 0.8174

JACCARD 0.8525 0.8358 0.8107

PIP + CB (λ = 0.8) 0.6751 0.6481 0.6124

PIP + CB (λ = 0.4) 0.535 0.5108 0.5092

JACCARD + CB (λ = 0.8) 0.8742 0.8685 0.8215

JACCARD + CB (λ = 0.4) 0.635 0.5988 0.5525

COS + CB (λ = 0.8) 0.8669 0.8658 0.8199

COS + CB (λ = 0.4) 0.605 0.5988 0.5458

The values are put into a chart in order to make it easier to understand.

Figure 12 Precision values for different methods

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

PIP TFIDF COS JACCARD

P
re

ci
si

o
n

 v
al

u
e

s

Methods

100 testing users

200 testing users

300 testing users

 68

As can be seen from Table 7 and the chart in Figure 5, the content based

approach produces the worst results. Among the collaborative filtering algorithms,

the PIP produces poor results when compared to COS and Jaccard; both COS and

Jaccard result in very close Precision values. In the case of hybrid approaches, the

Jaccard + CB gives best results while PIP + CB gives the worst results.

When analyzing the obtained results displayed in Table 7 and the chart in

Figure 5, we see that the number of training and testing users influence differently

each method. The CB approach, which does not take advantage of the neighbors,

produce better results with a higher number of testing users and worst when a small

number of testing users is used. The reason for this behavior, we believe, is because

the users like diversity, they don’t like many games of same kind. In collaborative

filtering approach, Cosine similarity produced better results with medium size of

testing users, but worst with a higher number of testing users. The small and

medium size of the testing users produced very close results. On the other hand,

when running the experiment with Jaccard, it shows us that the higher the number of

training users, the better the accuracy results, this was the outcome we were

expected to obtain in all collaborative filtering experiments, but due to the

characteristics of the dataset, the results were different. The PIP similarity measure

produced the worst results in all datasets.

69

Figure 13 Hybrid approaches results

Turning our eyes to hybrid approaches (Figure 6), we can detect a pattern, the

higher the training users, the higher the Precision values obtained. This behavior is

consistent in all hybrid approaches tested. We conclude that when the number of

training users is high, the system have a chance to train better.

The vast majority of previous work done in this field by researchers is found

on multi-class collaborative filtering problems and they have proposed methods

accordingly. During the course of this thesis, we realized that some of these methods

fit very well on one-class collaborative filtering problems, with some delicate

modifications.

On top of the limitations of CF, OCCF includes also the missing counter-

examples and a higher sparsity rate on the datasets. In order to overcome these

issues, we proposed the use of CB approach in combination with pure CF, making a

hybrid approach. Without the counter-examples, the conventional CF methods

would give very bad performance or even not at all. One way overcome these issues

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

P
re

ci
si

o
n

 v
al

u
e

s

Methods

100 testing users

200 testing users

300 testing users

 70

in OCCF problems is to assume that all missing entries are counter-examples, but

this approach involves a high bias.

 Now let us consider the impact of the λ parameter; as stated earlier, this

parameter is used to fuse information from both collaborative prediction and content

based prediction to predict the missing rating for the active users. It determines the

extent to which the item similarity relies on collaborative filtering methods or

content similarity. With λ = 1, it indicates that the similarity depends completely on

collaborative similarity, whereas it depends completely on content similarity when

λ=0.

For the purpose of determining the sensitivity of λ, several experiments were

carried out on all configurations in which the value of λ was varied from 0 to 1. The

experimental results show that more accurate predictions can be obtained when the

value of λ is around 0.8. Because in this way, the prediction can both exploit

collaborative filtering and content based similarity in certain and sensible amounts,

which shows that CF and CB approaches both have a very important and

indispensable role for rating prediction. On the other hand, for small values of λ

(λ<= 4), it produces poor results.

5.4 Results of the Algorithms: SVD Model-based

In this section, we are going to discuss the results of SVD algorithm on our

datasets. We had tested the SVD algorithm on 3 datasets. Similar to memory based

approach, we made the assumption that all the missing data is negative, which

results in a rating matrix R such that Rij Є {0, 1}.

The first step in this experiment was to construct the rating matrix, as in

memory based setup, we then factor the matrix R, by using a linear algebra toolbox,

and obtain a low-rank approximation after applying the following steps described in

[103]:

71

 Apply the SVD decomposition to matrix R to obtain U, S and V;

 Collapse the matrix S to dimension k;

 Calculate the square-root of the matrix Sk, to obtain Sk
1/2

;

 Calculate two resultant matrices: UkSk
1/2

 and Sk
1/2

Vk
T

We observe that the dimension of UkSk
1/2

is m x k and the dimension of Sk
1/2

Vk
T

is k x n. This m x k matrix is the k dimensional representation of m customers. We

then performed vector similarity (cosine similarity) to form the neighborhood in that

reduced space.

The important variable that may change the results of SVD is the number of

features used in calculations. Table 9 shows the outcomes of SVD algorithm for

different feature counts. The results are summarized in the Table 9 below:

Table 10 - Results of model SVD-based CF

Feature
count

Testing users

500 1000 1500

2 0.28 0.29 0.27

5 0.55 0.56 0.53

7 0.60 0.61 0.60

9 0.65 0.65 0.64

11 0.67 0.67 0.66

13 0.70 0.71 0.70

20 0.72 0.74 0.72

50 0.80 0.80 0.79

70 0.81 0.80 0.78

100 0.84 0.85 0.83

150 0.87 0.85 0.85

190 0.87 0.87 0.87

200 0.87 0.87 0.87

220 0.87 0.86 0.86

250 0.86 0.86 0.85

500 0.83 0.82 0.82

600 0.83 0.82 0.82

700 0.83 0.81 0.80

1000 0.81 0.80 0.80

The values are put into a chart in order to make it easier to understand.

 72

Figure 14 Feature count in SVD

As can be seen from Table 9 and the chart in Figure 7, the first conclusion is

that for number of dimensions lower than 9 it produces worse precision values when

compared to traditional collaborative filtering approach.

Taking into consideration the ration of testing/training datasets, x, we see that

for x < 0.5 produces better results.

Precision values of our test runs first increased and then decreased as we

increased the number of features. This behavior is consistent with the results

obtained by authors of [103]. In [103], optimal feature count is said to be around 14.

For our case, as can be seen from Table 9, 190 is the optimal feature count. For

feature count greater than 190, the precision shows a slight decrease but still high.

With the optimal feature count, SVD seems to perform as good as the best k-

NN based algorithms previously tested, CF with Jaccard. However, the results were

inconsistent when compared to the results of [103], in which, for e-commerce

dataset, the results were consistently worse than traditional collaborative filtering

approach.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

2
f

5
f

7
f

9
f

1
1

f

1
3

f

2
0

f

5
0

f

7
0

f

1
0

0
f

1
5

0
f

1
9

0
f

2
0

0
f

2
2

0
f

2
5

0
f

5
0

0
f

6
0

0
f

7
0

0
f

1
0

0
0

f

P
re

ci
si

o
n

 V
al

u
e

s

Number of Features

500 testing users

1000 testing users

1500 testing users

73

For the conducted experiments, we have used a laptop SONY VAIO F

SERIES with 4GB of DDR3 memory, 500GB of 7200rpm hard disc capacity, i7

quad-core Intel CPU with 2.00GHz clock, 64-bit architecture and Windows 7 Home

Premium 64-bit operating system. During the execution of the experiments, the CPU

usage peaked at around 18% and memory consumption was about 82% (3.20 GB).

The time complexity for CF methods was consistent with each other, with the

exception of PIP similarity measure, which takes very much longer. While the CF

methods took around 45 minutes to complete, when applied with PIP similarity

measure, it took around 61 hours. The CB approach was the fastest, taking around

10 minutes. For all the methods, parallelized should be taken in consideration when

applying in the real world system and powerful machines are a critical requirement,

if the response time is a major concern, which it is in e-commerce services and also

a special attention should be given to system optimization.

 74

CHAPTER 6

CONCLUSION AND FUTURE WORK

Within this thesis work, an evaluation of different collaborative filtering,

content based filtering, hybrid algorithms as well as model based approach has been

presented.

In order for the recommendation systems to function correctly; they need to

learn the user’s tastes. Obviously, the most direct way to achieve this is to explicitly

ask the user for what he/she likes/dislikes. However, users hardly cooperate in such

a situation. Thus, the only option that remains is to look for implicit data hidden in

the user’s behavior. This implicit data can be anything like clicking on an item, time

spent on an item on a web page, adding the item to the shopping basket, and so on.

The problem with such data is that they are not that informative. In most cases, this

data will only reveal that a user is interested in something. It is hardly possible to

find cases where a recommender system is able to conclude that a user is not

interested in something. Lack of counter-examples makes such cases a natural

candidate for applications that should use one-class collaborative filtering methods.

Being able to deal with cases that counter-examples do not exist, makes one-class

collaborative filtering applications remarkable.

First, a brief introduction to recommender systems has been given by stating

the current approaches and theories used in these systems. Then, the related work in

the area has been covered by analyzing a variety of recommendation systems from

different domains together with their advantages and disadvantages. After that, the

architecture, and the prediction mechanism of the proposed system has been

examined in detail. And lastly, the evaluation scheme used to test the prediction

performance of the proposed system has been explained. In addition, the results of

the conducted experiments have also been discussed.

75

Empirical analysis show that the binary similarity measure and singular value

decomposition produce better results on this dataset.

Further research issues include the exploration of this dataset by applying

other types of product recommendation. For example, model based Singular Vector

Decomposition or clustering approaches.

 76

 REFERENCES

[1] Toby Segaran: Programming Collective Intelligence, O’Reilly Media, Inc.,2007

[2] J. Ben Schafer, Joseph Konstan, John Riedl: Recommender Systems in e-

commerce, ACM Conference on Electronic Commerce (EC-99), 1999

[3] Sanjeev Kumar Sharma, Dr. Ugrasen Suman: Design and Implementation of

Architectural Framework of Recommender System for e-Commerce, IRACST -

International Journal of Computer Science and Information Technology &

Security (IJCSITS), Vol. 1, No. 2, December 2011

[4] Tariq Mahmood, Francesco Ricci, Mahmood, T., Ricci, F.: Improving

recommender systems with adaptive conversational strategies, ACM, 2009

[5] Anne Yun-An Chen and Dennis McLeod: Collaborative Filtering for

Information Recommendation Systems, CiteSeer
x
, 2009

[6] Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–

408. Springer Berlin / Heidelberg, 2007

[7] Anna Goy, Liliana Ardissono, and Giovanna Petrone: Personalization in E-

Commerce Applications, In: The adaptive web, Pages 485-520, Springer-

Verlag Berlin, Heidelberg, 2007

[8] Gediminas Adomavicius and Alexander Tuzhilin: Towards the Next Generation

of Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions, IEEE Transactions on Knowledge and Data Engineering, Volume 17

Issue 6, June 2005, Page 734-749

77

[9] Martin Szomszor, Ciro Cattuto, Harith Alani, Kieron O’Hara, Andrea

Baldassarri, Vittorio Loreto, Vito D.P. Servedio: Folksonomies, the Semantic

Web, and Movie Recommendation, In: 4
th

 European Semantic Web Conference,

Bridging the Gap between Semantic Web and Web 2.0, 2007

[10] Rajatish Mukherjee, Partha Sarathi Dutta, and Sandip Sen: MOVIES2GO - A

new approach to online movie recommendation, In Proceedings of IJCAI

Workshop on Intelligent Techniques for Web Personalization, Seattle, WA,

USA, August 2001

[11] Shinhyun Ahn and Chung-Kon Shi: Exploring Movie Recommendation

System Using Cultural Metadata, In Cyberworlds, 2008 International

Conference on, pp. 431 – 438, 2008

[12] Greg Linden, Brent Smith, and Jeremy York: Amazon.com Recommendations

Item-to-Item Collaborative Filtering, In Internet Computing, IEEE, pp. 76 – 80,

2003

[13] Bradley N. Miller, Istvan Albert, Shyong K. Lam, Joseph A. Konstan, John

Riedl: MovieLens Unplugged: Experiences with an Occasionally Connected

Recommender System, In IUI '03 Proceedings of the 8th international

conference on Intelligent user interfaces, Pages 263-266 , ACM New York, NY,

USA, 2003

[14] Wade, W. A grocery cart that holds bread, butter and preferences. NY Times,

Jan. 16, 2003.

http://www.nytimes.com/2003/01/16/technology/circuits/16safe.html accessed

June 19, 2012, 19:08

[15] Hyung Jun Ahn: A new similarity measure for collaborative filtering to

alleviate the new user cold-starting problem, In Information Sciences: an

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4741259
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4741259
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236
http://www.iuiconf.org/
http://www.acm.org/publications
http://www.nytimes.com/2003/01/16/technology/circuits/16safe.html

 78

International Journal, Volume 178 Issue 1, January, Pages 37-51 , Elsevier

Science Inc. New York, NY, USA, 2008

[16] Rong Pan, Martin Scholz: Mind the Gaps: Weighting the Unknown in Large-

Scale One-Class Collaborative Filtering, In KDD '09 Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data

mining, Pages 667-676, ACM New York, NY, USA, 2009

[17] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin

Scholz, Qiang Yang: One-Class Collaborative Filtering, In Data Mining, IEEE

International Conference on, 0:502–511, 2008

[18] Resnick, P., Varian, H.R.: Recommender systems. In Communications of the

ACM, Volume 40, Issue 3, pages 56–58, ACM New York, NY, USA, 1997

[19] Dietmar Jannach: Finding Preferred Query Relaxations in Content-based

Recommenders. In: 3
rd

 International IEEE Conference on Intelligent Systems,

pp. 355–360 (2006)

[20] McSherry, F., Mironov, I.: Differentially private recommender systems:

building privacy into the net. In: KDD ’09: Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining, pp.

627–636. ACM, New York, NY, USA (2009)

[21] Schwartz, B., Ward, A.: Doing Better but Feeling Worse: The Paradox of

Choice. ECCO, New York (2004)

[22] Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering

to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

[23] Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for

recommender systems. IEEE Computer 42(8), 30–37 (2009)

http://www.sigkdd.org/kdd2009/
http://www.acm.org/publications
http://www.acm.org/publications

79

[24] Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems

An Introduction. Cambridge University Press, 2010

[25] Gozde Özbal: A content boosted collaborative filtering approach for movie

recommendation based on local & global user similarity and missing data

prediction, Master Thesis, METU, September 2009

[26] Supporting people in finding information. Hybrid recommender systems and

goal-based structuring. Mark Van Setten. Telematica Instituut Fundamental

Research Series, vol. 016. Enschede, the Netherlands: Telematica Instituut, 2005

ISBN 90-75176-89-9

[27] Terveen, L., Hill, W., Beyond Recommender Systems: Helping People Help

Each Other. In Carroll, J., (Ed.), HCI in the New Millennium. Addison Wesley,

2001

[28] Zhang, Y., Koren, J.: Efficient Bayesian Hierarchical User Modeling for

Recommendation Systems, In SIGIR '07 Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in

information retrieval, Pages 47 – 54, July 2007

[29] Vázquez, E.G.: Contribuciones al Modelado del Usuario en Entornos

aptativos de Aprendizaje y Colaboración a través de Internet mediante técnicas

de Aprendizaje Automático, Phd Thesis, Universidad Complutense de Madrid,

2002

[30] ChoiceStream Technology Brief, Review of Personalization Technologies:

Collaborative Filtering vs. ChoiceStream’s Attributized Bayesian Choice

Modeling, http://www.choicestream.com, accessed July 12, 2012, 02:41

[31] Uchyigit, G., Ma, M. Y.: Personalization Techniques and Recommender

Systems, World Scientific Publishing, London, 2008

http://www.choicestream.com/

 80

[32] Boger, Z., Kuflik, T., Shapira, B. and Shoval, P. (2001). Automatic keyword

identification by artificial neural networks compared to manual identification by

users of filtering systems, Information Processing & Management, Vol. 37 (2),

pp. 187-198.

[33] Kuflik, T., Shoval, P.: Automatic Generation of Content-Based User Profiles

Compared to Rule-Based Profiles for Information Filtering, In IUI

'03 Proceedings of the 8th international conference on Intelligent user

interfaces, Page 317, ACM New York, NY, USA, 2003

[34] Abbattista F., Degemmis M., Fanizzi N., Licchelli O., Lops P., Semeraro G.,

and Zambetta, F.: Learning User Profiles for Content-Based Filtering in e-

Commerce, In CiteSeer
x
, 2002

[35] Turetken, O., Sharda, R.: Development of a fisheye-based information search

processing aid (FISPA) for managing information overload in the web

environment, In Decision Support Systems, Volume 37 Issue 3, Pages 415 –

434, Elsevier Science Publishers B. V. Amsterdam, The Netherlands, The

Netherlands, 2004

[36] Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems

Handbook, In Proceedings of Mathematik für Ingenieure, ACM, 2011

[37] Golbeck, J.: Generating Predictive Movie Recommendations from Trust in

Social Networks, In iTrust'06 Proceedings of the 4th international conference

on Trust Management, Pages 93-104 , Springer-Verlag Berlin, Heidelberg, 2006

[38] Mladenic, D., Stefan, J.: Text-Learning and Related Intelligent Agents: A

Survey, In Intelligent Systems and their Applications, IEEE, Volume: 14 , Issue: 4 ,

Page(s): 44 - 54 , 1999

[39] Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

http://www.iuiconf.org/
http://www.iuiconf.org/
http://www.acm.org/publications
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5254
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=17016

81

[40] Herlocker, L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating

Collaborative Filtering Recommender Systems. ACM Transactions on

Information Systems 22(1), 5–53 (2004)

[41] Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering

recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin /

Heidelberg (2007)

[42] Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation

applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)

[43] Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms.

ACM Transaction on Information Systems 22(1), 143–177 (2004)

[44] Last.fm: Music recommendation service (2012). http://www.last.fm. Accessed

July 15 01:28, 2012

[45] Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In: ICDM ’07: Proc. of the 2007 Seventh

IEEE Int. Conf. on Data Mining, pp. 43–52. IEEE Computer Society,

Washington, DC, USA (2007)

[46] Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive

algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on

Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998)

[47] Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.:

GroupLens: applying collaborative filtering to usenet news. Communications of

the ACM 40(3), 77–87 (1997)

http://www.last.fm/

 82

[48] Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating

choices in a virtual community of use. In: CHI ’95: Proc. of the SIGCHI Conf.

on Human Factors in Computing Systems, pp. 194–201. ACM Press/Addison-

Wesley Publishing Co., New York, NY, USA (1995)

[49] Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic

analysis. In: SIGIR ’03: Proc. of the 26th Annual Int. ACM SIGIR Conf. on

Research and Development in Information Retrieval, pp. 259–266. ACM, New

York, NY, USA (2003)

[50] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of

Machine Learning Research 3, 993–1022 (2003)

[51] Zitnick, C.L., Kanade, T.: Maximum entropy for collaborative filtering. In:

AUAI ’04: Proc. Of the 20th Conf. on Uncertainty in Artificial Intelligence, pp.

636–643. AUAI Press, Arlington, Virginia, United States (2004)

[52] Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for

collaborative filtering. In: ICML ’07: Proceedings of the 24th international

conference on Machine learning, pp. 791–798. ACM, New York, NY, USA

(2007)

[53] Grcar, M., Fortuna, B., Mladenic, D., Grobelnik, M.: k-NN versus SVM in the

collaborative filtering framework, In Data Science and Classification, p. 251—

260, 2006

[54] Bell, R., Koren, Y., Volinsky, C.: Modeling relationships at multiple scales to

improve accuracy of large recommender systems. In: KDD ’07: Proc. of the 13th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 95–

104. ACM, New York, NY, USA (2007)

83

[55] Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In: KDD’08: Proceeding of the 14th ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York, NY,

USA (2008)

[56] Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity

recommendation system. SIGKDD Exploration Newsletter 9(2), 80–83 (2007)

[57] Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J.,

Riedl, J.: Combining collaborative filtering with personal agents for better

recommendations. In: AAAI ’99/IAAI ’99: Proc. of the 16th National Conf. on

Artificial Intelligence, pp. 439–446. American Association for Artificial

Intelligence, Menlo Park, CA, USA (1999)

[58] Ramakrishnan, N., Keller, B.K., Mirza, B.J.: Privacy Risks in Recommender

Systems. IEEE Internet Computing. p. 54-62, 2001

[59] Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic

Framework For Performing Collaborative Filtering. In Proceedings of the 22nd

International Conference on Research and Development in Information Retrieval

(SIGIR '99). (1999) Berkeley,California. ACM Press p. 230-237

[60] MacQueen, J.: Some Methods for Classification and Analysis of Multivariate

Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability. (1967) p. 281-297

[61] Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika, (1967) 32(3):

p. 241-254

[62] Lam, S.K. Riedl, J.: Shilling Recommender Systems For Fun And Profit.

Proceedings of the 13th international conference on World Wide Web. (2004)

ACM Press: New York, NY, USA. p. 393-402

 84

[63] Sarwar, B., Karypis, G., Konstan, J.A., Riedl, J.: Item-Based Collaborative

Filtering Recommendation Algorithms. Proceedings of the 10th international

conference on World Wide Web. (2001) Hong Kong. ACM Press p. 285-295

[64] Fouss, F., Renders, J.M., Pirotte, A., Saerens, M.: Random-walk computation

of similarities between nodes of a graph with application to collaborative

recommendation. IEEE Transactions on Knowledge and Data Engineering 19(3),

355–369 (2007).

[65] Mahmood, T., Ricci, F.: Towards learning user-adaptive state models in a

conversational recommender system. In: A. Hinneburg (ed.) LWA 2007: Lernen

- Wissen - Adaption, Halle, September 2007, Workshop Proceedings, pp. 373–

378. Martin-Luther-University Halle-Wittenberg (2007)

[66] Bridge, D., G¨oker, M., McGinty, L., Smyth, B.: Case-based recommender

systems. The Knowledge Engineering review 20(3), 315–320 (2006)

[67] Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT

Professional 11(4), 38–44 (2009)

[68] Sinha, R.R., Swearingen, K.: Comparing recommendations made by online

systems and friends. In: DELOS Workshop: Personalisation and Recommender

Systems in Digital Libraries (2001)

[69] Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender

systems. In: Proceedings of the International Conference on Cooperative

Information Systems, CoopIS, pp. 492–508 (2004)

[70] Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative

filtering vs. social filtering. In: GROUP ’07: Proceedings of the 2007

85

international ACM conference on Supporting group work, pp. 127–136. ACM,

New York, NY, USA (2007)

[71] Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-

Koifman, S.: Personalized recommendation of social software items based on

social relations. In: RecSys ’09: Proceedings of the third ACM conference on

Recommender systems, pp. 53–60. ACM, New York, NY, USA (2009)

[72] Burke, R.: Hybrid Recommender Systems: Survey and Experiments, In User

Modeling and User-Adapted Interaction, Volume 12 Issue 4, Pages 331 –

370, Kluwer Academic Publishers Hingham, MA, USA , 2002

[73] Pazzani, M. J.: A Framework for Collaborative, Content-Based and

Demographic Filtering, In Artificial Intelligence Review - Special issue on data

mining on the Internet, Volume 13 Issue 5-6, Pages 393 - 408 , Kluwer

Academic Publishers Norwell, MA, USA, 1999

[74] C. Basu, H. Hirsh, and W. Cohen, Recommendation as classification: using

social and content-based information in recommendation, in Proceedings of the

15th National Conference on Artificial Intelligence (AAAI’98) (Madison, WI),

American Association for Artificial Intelligence, 1998, pp. 714–720.

[75] P. Melville, R. J. Mooney, and R. Nagarajan, Content-Boosted Collaborative

Filtering for Improved Recommendations, Proceedings of the 18th National

Conference on Artificial Intelligence (AAAI) (Edmonton, Alberta, Canada),

2002, pp. 187–192

[76] R. Burke, K. Hammond, and B. Young, The findme approach to assisted

browsing, IEEE Expert 4 (1997), no. 12, 32–40.

 86

[77] D. Billsus and M. Pazzani, User modeling for adaptive news access, User

Modeling and User-Adapted Interaction: The Journal of Personalization

Research 10 (2000), no. 2–3, 147–180.

[78] M. Zanker and M. Jessenitschnig, Case-studies on exploiting explicit customer

requirements in recommender systems, User Modeling and User-Adapted

Interaction 19 (2009), no. 1–2, 133–166.

[79] R. M. Bell,Y.Koren, and C.Volinsky, The BellKor solution to the Netflix

Prize, Tech.Report http://www.netflixprize.com/assets/ProgressPrize2007

KorBell.pdf,AT&TLabs Research, 2007. Accessed July 21 15:07, 2012

[80] A. S. Joydeep, E. Strehl, J. Ghosh, and R. Mooney. Impact of similarity

measures on web-page clustering. In Workshop on Artificial Intelligence for

Web Search (AAAI 2000), pages 58–64. AAAI, 2000

[81] Strehl, A., and Ghosh, J. 2000. Value-based customer grouping from large

retail data-sets. In Proceedings of the SPIE Conference on Data Mining and

Knowledge Discovery, 24-25 April 2000, Orlando, Florida , USA

[82] Souvik Debnath, Niloy Ganguly, Pabitra Mitra: Feature weighting in content

based recommendation system using social network analysis, In WWW

'08 Proceedings of the 17th international conference on World Wide Web,

Pages 1041-1042 , ACM New York, NY, USA , 2008

[83] Yolanda Blanco-Fernández, José J. Pazos-Arias, Alberto Gil-Solla, Manuel

Ramos-Cabrer, Jorge García-Duque, Rebeca P. Díaz-Redondo, Ana Fernández-

Vilas, Belén Barragáns-Martínez and Martín López-Nores: AVATAR:

Advanced Telematic Search of Audiovisual Contents by Semantic Reasoning

[84] Smyth B. and Cotter P. A personalized television listings service.

Communications of the ACM, 43(8):107.111, 2000.

http://www2008.org/
http://www2008.org/
http://www.acm.org/publications

87

[85] Gozde Ozbal, Hilal Karaman, Matchbook, A Web Based Recommendation

System For Matchmaking, International Symposium on Computer and

Information Sciences (ISCIS'08), Istanbul, Turkey, October 2008.

[86] Philip Bonhard, “Improving Recommender Systems with Social Networking”,

Proc. of Addendum of CSCW 2004, Nov. 6-10, Chicago, IL

[87] http://lucene.apache.org/core/, accessed July 03, 2012, 17:31

[88] Kantrowitz, M., Mohit, B., Mittal, V.: Stemming and its effects on TFIDF

Ranking, In SIGIR '00 Proceedings of the 23rd annual international ACM

SIGIR conference on Research and development in information retrieval,

Pages 357 - 359 , ACM New York, NY, USA, 2000

[89] Manning, C. D., Raghavan, P., Schütze, H.: An Introduction to Information

Retrieval, Cambridge University Press, 2009

[90] http://www.basarimobile.com/en/index.html, accessed August 2, 2012, 09:28

AM

[91] S. Berkovsky, T. Kuflik, F. Ricci, Cross-representation mediation of user

models, User Modeling and User-Adapted Interaction 19 (2009) 35-63

[92] A. McCallum, K. Nigam, A comparison of event models for naïve Bayes text

classification. Proceedings of AAAI-98 workshop on learning for text

categorization, 1998, pp.41-48.

[93] G. Salton, C. Buckley, Term weighting approaches in automatic text retrieval.

Information Processing and Management 24 (1988) 513-523

http://lucene.apache.org/core/
http://www.acm.org/publications
http://www.basarimobile.com/en/index.html

 88

[94] M. Montaner, B. Lopez, J. L. de la Rosa, A taxonomy of recommender agents

on the Internet, Artificial Intelligence Review 19(4) (2003) 285–330.

[95] M.J. Pazzani, A. Meyers, NSF Research Awards Abstracts 1990-2003.

http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html, (2003). Accessed August

02 17:51, 2012

[96] http://snowball.tartarus.org/texts/introduction.html, accessed August 2, 2012,

11:53AM

[97] Evren (Kapusuz) Çilden, Stemming Turkish Words Using Snowball,

December 2006,

snowball.tartarus.org/algorithms/turkish/accompanying_paper.doc, accessed

May 06 10:25, 2012

[98] Cleverdon, C. and Kean, M.: Factors Determining the Performance of

Indexing Systems. Aslib Cranfield Research Project, Cranfield, England, 1968

[99] Heng Luo, Changyong Niu, Ruimin Shen, Carsten Ullrich, “A collaborative

filtering framework based on both local user similarity and global user

similarity”, In Proceedings of 2008 European Conference on Machine Learning

and Knowledge Discovery in Databases, Part I, 2008

[100] Kok-Seng Wong, Myung Ho Kim: Privacy-preserving similarity coefficients

for binary data, In Computers & Mathematics with Applications, Elsevier, 2012

[101] BILLSUS, D. AND PAZZANI, M. J. 1998. Learning collaborative

information filters. In Proceedings of the 15th National Conference on Artificial

Intelligence (AAAI-98). C. Rich, and J. Mostow, Eds. AAAI Press, Menlo Park,

Calif., 46–53, 1998

http://snowball.tartarus.org/texts/introduction.html

89

[102] Baker,Kirk: Singular Value Decomposition Tutorial, March 29, 2005,

http://www.ling.ohio-

state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf, accessed

September 18 22:22, 2012

[103] Sarwar, Badrul M.; Karypis, George; Konstan, Joseph A.; Riedl, John T.:

Application of Dimensionality Reduction in Recommender System - A Case

Study, CiteSeer, IN ACM WEBKDD WORKSHOP, 2000

[104] K. R. Gabriel and S. Zamir. Lower rank approximation of matrices by least

squares with any choice of weights. Technometrics, 21(4):489–498, 1979.

[105] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML,

pages 720–727. AAAI Press, 2003.

http://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf
http://www.ling.ohio-state.edu/~kbaker/pubs/Singular_Value_Decomposition_Tutorial.pdf

