


SEMANTIC CLASSIFICATION AND RETRIEVAL SYSTEM FOR ENVIRONMENTAL
SOUNDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CIGDEM OKUYUCU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2012



Approval of the thesis:

SEMANTIC CLASSIFICATION AND RETRIEVAL SYSTEM FOR ENVIRONMENTAL
SOUNDS

submitted by CIGDEM OKUYUCU in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan 6zgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazici
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazici
Supervisor, Computer Engineering Dept., METU

Assist. Prof. Dr. Mustafa Sert
Co-supervisor, Computer Engineering Dept., Baskent University

Examining Committee Members:

Assist. Prof. Dr. Murat Koyuncu
Information Systems Engineering Dept., Atilim University

Prof. Dr. Adnan Yazici
Computer Engineering Dept., METU

Assist. Prof. Dr. Mustafa Sert
Computer Engineering Dept., Bagkent University

Assist. Prof. Dr. Sinan Kalkan
Computer Engineering Dept., METU

Assist. Prof. Dr. Ahmet Oguz Akyiiz
Computer Engineering Dept., METU

Date:




I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: CIGDEM OKUYUCU

Signature

iii



ABSTRACT

SEMANTIC CLASSIFICATION AND RETRIEVAL SYSTEM FOR ENVIRONMENTAL
SOUNDS

Okuyucu, Cigdem
M.Sc., Department of Computer Engineering
Supervisor : Prof. Dr. Adnan Yazict

Co-Supervisor : Assist. Prof. Dr. Mustafa Sert

September 2012, 99 pages

The growth of multimedia content in recent years motivated the research on audio classifica-
tion and content retrieval area. In this thesis, a general environmental audio classification and
retrieval approach is proposed in which higher level semantic classes (outdoor, nature, meet-
ing and violence) are obtained from lower level acoustic classes (emergency alarm, car horn,
gun-shot, explosion, automobile, motorcycle, helicopter, wind, water, rain, applause, crowd
and laughter). In order to classify an audio sample into acoustic classes, MPEG-7 audio fea-
tures, Mel Frequency Cepstral Coefficients (MFCC) feature and Zero Crossing Rate (ZCR)
feature are used with Hidden Markov Model (HMM) and Support Vector Machine (SVM)
classifiers. Additionally, a new classification method is proposed using Genetic Algorithm
(GA) for classification of semantic classes. Query by Example (QBE) and keyword-based

query capabilities are implemented for content retrieval.

Keywords: Hidden Markov Model (HMM), Support Vector Machines (SVM), MPEG-7 Au-
dio Features, Zero Crossing Rate (ZCR), Mel Frequency Cepstral Coefficients (MFCC), Ge-
netic Algorithm (GA), Query by Example (QBE)

v



0z

CEVRESEL SESLER ICIN ANLAMSAL SINIFLANDIRMA VE GERI ERISIM SISTEMI

Okuyucu, Cigdem
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Adnan Yazict

Ortak Tez Yoneticisi : Y. Dog. Dr. Mustafa Sert
Eyliil 2012, 99 sayfa

Coklu ortam igerigindeki artis son yillarda ses siniflandirma ve geri erigim sistemleri {izerine
caligmalar1 motive etmektedir. Bu calismada, diisiik seviyedeki akustik siniflar (acil durum
alarmlari, araba kornasi, silah, patlama, otomobil, motosiklet, helikopter, riizgar, su, yagmur,
alkis, kalabalik ve giilme sesi) kullanilarak yiiksek seviyedeki anlamsal siniflarin (dig ortam,
doga, siddet ve toplant1) elde edildigi genel bir ¢evresel ses simflandirma ve geri erisim
yaklagimi onerilmigir. Bir ses 6rnegini siniflandirmak icin MPEG-7 ses Oznitelikleri, Mel
Frekans1 Kepstrum Katsayilar1 (MFCC) 6zniteligi ve Sifirt Gegme Orani (ZCR) 6zniteligi;
Sakli Markov Modelleri (HMM) ve Destek Vektér Makineleri (SVM) simiflandiricilar iizerin-
de kullanilmistir. Bunlara ek olarak, anlamsal siniflarin elde edilmesi i¢in Genetik Algoritma
(GA) kullanilarak yeni bir siniflandirma metodu 6nerilmisir. Igerik geri erisimi igin anahtar

kelime ve ses drnegiyle sorgulama (QBE) yetenekleri gelistirilmisgir.

Anahtar Kelimeler: Sakli Markov Modeli (HMM), Destek Vektor Makineleri (SVM), MPEG-
7 Ses Oznitelikleri, Sifir Gegme Oranmi (ZCR), Mel Frekans1 Kepstrum Katsayilar1 (MFCC),
Genetik Algoritma (GA)
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CHAPTER 1

INTRODUCTION

Due to the continuous growth in multimedia content in digital archives, the problem of cate-
gorization and retrieval of these archives is an emerging research area. For instance, records
of broadcast news, sports videos, television shows, radio programs, films and medical surveys
are increasing rapidly. Auditory and visual components of these records are employed to cate-
gorize, using video, image and audio classification techniques. In order to gather information

from the categorized records, content retrieval techniques are employed.

The initial step for audio classification and content retrieval research is audio classification
which is basically labelling an audio sample as belonging to a single category from a set of
predefined categories. For instance, an audio sample from a football game record can be
classified into speech and non-speech categories. The first problem of audio classification is
deciding on the intended categories. In the early studies of audio classification, an audio sam-
ple is classified into general categories such as speech, music and environmental sound [4, 5].
Speech signals and music signals have repetitive pattern characteristics and tonal characteris-
tics, respectively. However, not following an obvious pattern might be counted as the char-
acteristics of environmental sound signals. Therefore, mentioned characteristics of speech,

music and environmental sounds allow such a general categorization approach.

This general categorization can be seen as a key approach in order to obtain mixed-type or
more detailed hierarchical categorizations. For instance, an audio sample can be first classi-
fied into silence, speech, music and environmental categories and then speech parts can be
classified into emotional categories or music parts can be classified into genre categories. For
environmental sounds, the situation becomes more complicated to decide on the categories

because they do not have an obvious pattern. For example, applause and rain sounds should



be treated as different categories logically, but they are similar for human hearing and difficult

to distinguish.

Several researches have differentiating approaches for this categorization problem. In Beritel-
li’s study [6] an audio sample is classified into categories such as bus, car, construction, dump,
factory, office, pool, station, stadium and train. Muhammad [7] also proposed a categorization
like restaurant, crowded street, quiet street, shopping mall, car with open window, car with
closed window, corridor of university campus, office room, desert and park. Feki [8] cate-
gorized environmental sounds into speech, music, ring tones, train, motorcycle, explosion,
helicopter, slamming door, dog barking, bird, breeze glasses, applause, horse, cat, care, slot

machine, wind, plane, laugh and police alarm categories.

After the categorization decision problem, a second audio classification problem emerges.
This problem is exploring the best method to classify an audio sample into the intended cate-
gories. In order to handle this problem, several machine learning techniques are applied with
several audio features. Support Vector Machines (SVM), Hidden Markov Models (HMM),
Neural Networks (NN) and Gaussian Mixture Models (GMM) are commonly applied ma-
chine learning techniques with MPEG-7 audio features, Mel Frequency Cepstral Coefficents
(MFCC) feature and Zero Crossing Rate (ZCR) feature. Existing studies propose solutions to
this problem focusing on analysing the best representative audio features [7,9—11], discover-
ing the best machine learning methods [6, 12, 13] and discovering the best machine learning

and feature combination [8, 14].

In this thesis study, different combinations of MPEG-7 audio features, MFCC feature and
ZCR feature are employed on SVM and HMM classifiers in order to obtain the best repre-
sentative feature set and machine learning technique combination. An environmental audio
clip is classified into thirteen categories, namely acoustic classes such as emergency alarm,
car horn, gun-shot, explosion, automobile, motorcycle, helicopter, wind, water, rain, applause,
crowd and laughter. These categories containing considerably similar sounds are intentionally

selected in order to experiment the performance of the selected features and classifiers.

In the proposed system, an audio clip is first divided into one-second segments. Silence seg-
ments are detected and non-silence segments are classified into selected acoustic classes. This
sample audio clip containing the classified segments, is then passed through a smoothing pro-

cess to discard the classification errors. After silence detection, classification and smoothing



processes; labelled audio segments are used as input for the proposed semantic classification
in order to be classified into outdoor, nature, violence and meeting classes. A table containing
the impact values of each acoustic class on each semantic class is optimized using Genetic

Algorithm (GA) for this classification.

Content retrieval capabilities are also implemented. Temporal and keyword-based queries are
supported and related audio segments are retrieved. Queries by example audio are provided

to search for similar audio segments.

A new environmental audio classification and retrieval tool is implemented to the present
the proposed work. This tool provides a user interface to classify an audio clip and retrieve

content information from the results.

The work presented in this thesis contributes to the previously conducted studies in the fol-

lowing aspects:

e A general solution for classification and segmentation of environmental sounds is pro-
posed. This solution utilizes a bottom up approach in which underlying basic categories
are processed in order to obtain more general and complex categories. Higher level Se-

mantic classes are obtained utilizing lower level acoustic classes.

e Considerably similar categories (gun-shot, explosion; motorcycle, helicopter and auto-
mobile; rain, wind, water categories) which human perception is even insufficient to
distinguish are intentionally selected and experimented in order to explore the perfor-

mances of the selected features with SVM and HMM classifiers.

e A comparative evaluation and analysis is presented for SVM and HMM classification
performance. Additionally, a comprehensive study is presented for MPEG-7, MFCC

and ZCR audio features to discover the best representative feature combination.

e A new environmental audio classification and retrieval tool is implemented. This tool
provides an efficient environment for the user in order to classify audio samples and

retrieve the related content.

The rest of the thesis is organized a follows: In Chapter 2, related studies are mentioned and
summarized. Necessary background information about MPEG-7, MFCC and ZCR features,
brief explanations of HMM and SVM classifiers and GA are explained in Chapter 3. In



Chapter 4, the proposed system is explained in detail. Experimental results and interpretations
are given in Chapter 5. Chapter 6 is about the implementation and utilization of the proposed

classification tool. Finally the conclusions and future work are provided in Chapter 7.



CHAPTER 2

LITERATURE SURVEY

In this chapter, previous studies about audio classification are deeply explained in related
sections. The studies concentrate in audio feature and classifier selection. There are also

studies introducing new techniques for both feature extraction and classification subjects.

2.1 General Sound Classification

Xiong et al. proposed a comparison-based study for sports audio classification [15]. Audio
is classified into applause, ball-hit, cheering, music, speech and speech with music classes.
They compared two different HMMs which are Maximum Likelihood HMM (ML-HMM) and
Entropic Prior HMM (EP-HMM) with and without trimming of the model parameters. MFCC
and MPEG-7 audio features are used in the experiments. Regarding their experiment results,
combination of MPEG-7 and EP-HMM with trimming achieves a classification accuracy of
94.7%. Second best result is the combination of MFCC and ML-HMM with a classification
accuracy of 94.6%. It is also stated that all combinations provides an average classification

accuracy around of 90%.

Kim et al. introduces an MPEG-7 based audio classification technique for analysis of film
material [16]. Two recognition systems are offered in their study which are speaker recog-
nition and sound effect recognition. They experimented HMMs as classifiers using MPEG-7
ASP feature based on Audio Spectrum Basis (ASB). They conducted various tests and come
up with the result that usage of Independent Component Analysis (ICA) is providing better
results than Normalized Audio Spectrum Envelope (NASE) and Principal Component Anal-

ysis (PCA) in the speaker recognition system. An accuracy of 96% is achieved in the sound



effect recognition experiments in real time.
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Figure 2.1: Block diagram of proposed classification system of Dogan [1].

Dogan et al. presents a complete content-based audio management and retrieval system for
news broadcasts [1]. This system considers classification, segmentation, analysis and retrieval
of an audio stream. An audio stream is segmented into six different classes: silence, pure
speech, music, environmental sound, speech over music and speech over environmental sound
(Figure 2.1). In addition, various audio classification experiments are presented to exploit the
ability of MPEG-7 features and the selected classification methods (SVM and HMM). The
proposed system is composed of silence detection, classification of non-silent frames and
smoothing steps. Classification of mixed type audio data (for instance, speech over music and
speech over environmental sound) using the combination of MPEG-7 ASC, ASS and ASF
features achieves considerably high accuracy rates in news domain. The combined feature

has accuracy of 91.9% with HMM and 90.5% with SVM in classification of non-speech and



with-speech classes. For pure speech and mixed speech classification, accuracies of 89.4%

and 86.0% are achieved with SVM and HMM classifiers, respectively.

Song et al. proposed a feature extraction and audio classification method in which audio
is analysed to short-time energy ratio, ZCR, bandwidth, low short-time energy ratio, high
zero crossing rate ratio and noise rate features [17]. In their study, they introduce a new audio
classification technique for news audio based on decision tree method. Proposed classification
is applied on four classes: silence, pure speech, music and non-pure speech. Their proposed

classification method and selected features result into reasonable accuracy levels around 90%.

Audio
Human Sound Non-Human Sound
Speech Non-Speech Environment Sound

|
v v ! .

Sneeze Scream Laugh Snore

Figure 2.2: Diagram of proposed classification tree of Liao [2].

Liao et al. studied on a classification system in which audio is classified into human and non-
human sounds as a first step [2]. In the second step human sounds are classified into speech
and non-speech and then non-speech human sounds are classified into sneeze, scream, laugh
and snore sounds (Figure 2.2). For their experiments, they used two sets of acoustic features.
First set is composed of commonly used audio descriptors which are fundamental frequency,
spectral centroid (SC), spectral spread spectral flatness, entropy and two format frequencies.
Second set contains 20 MFCC features after applying Discrete Cosine Transform (DCT) on
20 log-energy values. They used Multivariate Adaptive Regression Spline (MARS) to build
the optimal model and select the most representative feature. They used SVM classifier for
feature selection and noise sensitivity experiments. The experimental results show that spec-
tral centroid, fundamental frequency, spectral spread and spectral flatness play important roles

in the classification task. In addition, these four feature also achieve better noise insensitivity



when the audio signals were in noisy environments. In order to compare the results, MFCC
based experiments are conducted. The features selected by MARS indicates that low fre-

quency components play significant role for this particular classification problem.

Lu et al. proposed an audio classification method which detects cheering events in audio ex-
tracted from videos of live sports games [18]. Four audio classes are studied: speech, music,
cheering and other. Experiments are conducted in audio streams of beach volleyball, bad-
minton, ping-pong, volleyball and hockey games. Fixed-length sliding window technique is
used for pre-segmentation from start to end. Short-Time Energy (STE), Sub-Band Energy
Distribution (SBED), Spectrum Flux (SF), Brightness and Bandwidth features are extracted
in order to used with the Gaussian Mixture Model (GMM) classifier. A new smoothing al-
gorithm called boundary-seek algorithm is proposed to overcome the shortcomings of sliding
window technique. They prepared an HMM based event detection framework with the same
feature set to compare with the sliding window based framework. Their system achieved an
average F value of 82.99% considering five kinds of sports after integration of all approaches.
In the experiments, sliding window based framework is more successful than HMM based

event detection framework.

2.2 Environmental Sound Classification

Dufaux et al. proposed an automatic sound detection and recognition system for noisy en-
vironments [12]. HMM and GMM are used for classification of impulsive sounds like door
slam, glass break, human scream, explosions, gun shots and other noises. Their system is
composed of an impulsive sound detection module and a sound recognition module. They
used a non-linear median filter to analyse the energy variations which is used in impulsive
sound detection. Experimental results indicates that HMM (recognition rate is 98.54%) per-

forms better than GMM (recognition rate is 97.32%) for the proposed recognition system.

Nishura et al. studied environmental source identification based on HMM for robust speech
recognition [13]. They categorized sounds into three categories. The first category contains
collision sounds of wood, plastic and ceramics. Second category contains sounds which oc-
curs from human activities and the third category contains sounds such as coins, telephones

and pipes. They proposed a new HMM composing speech HMMs and an HMM of cat-



egorized environmental sounds for robust environmental sound-added speech recognition.
In experimental results it is stated that their new HMM is more successful (95.8%) than

conventional-HMM (85.2%) and speech-HMM (41.2%).

Wang et al. proposed an environmental sound recognition technique using MPEG-7 audio
Low-Level Descriptors (LDD) [9]. They categorized home environmental sound into seven
categories including male speech, female speech, dog barks, cat mews, doorbell rings, knock
and laughing. Regarding the experiments, their recognition rate is 82% if they only adopt
spectrogram as the parameter. Later they improve their recognition rate about 95% by using
three MPEG-7 audio Low Level Descriptors (LDD) which are ASC, ASS and ASF descrip-

tors.

Cai et al. [10] studied the problem of highlight sound effects detection focusing on laughter,
applause and cheer sound effects, which are highlight events in sports, meeting and entertain-
ment videos. They used HMMs with MFCC, STE, ZCR, sub-band energies, brightness and
bandwidth features. They combined all mentioned features in one feature vector to introduce
satisfying results during the experiments. According to their experiments, the system reaches

approximately 90% of recall and precision values.

Dong et al. proposed a sound environment classifier for hearing aid applications which is
implemented on a low-power DSP chip [19]. The system uses an HMM-based classifier using
MFCC and delta-MFCC coefficients to highlight five sound sources which are speech, music,
car noise and babble. According to their experiments they had evaluation results higher than

95% accuracy.

Beritelli et al. proposes a pattern recognition system for background sounds like bus, car,
construction, dump, factory, office, pool, station, stadium and train sounds [6]. They used NN
as a classifier and MFCC parameters as features. The average accuracy is in a range of 75%

and 95% depending on the sound.

Shin et al. studied on a system for cough sounds to detect abnormal heath symptoms using
acoustical information [14]. They proposed a hybrid model consisting of ANN and HMM to
select cough sounds from other sounds in the environment. The input of their ANN model
is human-auditory-characteristic-based filter banks on which Energy Cepstral Coeflicients

(ECC) are employed. Ergodic HMM is trained with the output of the ANN module and a



filtered envelope of the audio signal is used to handle temporal variation of the sound signal.
Their proposed hybrid model introduced better results comparing to conventional HMM and

MFCC usage in low SNR values.

Muhammad et al. studied on an environment recognition system using selected MPEG-7
audio low level descriptors and MFCC features [7]. MPEG-7 descriptors are ranked using
Fisher’s Discriminant Ratio (FDR) and top ranked descriptors are passed through PCA to
obtain 13 features. These features are combined with MFCC features to complete the fea-
ture set. Environmental sounds like restaurant, crowded street, quiet street, shopping mall,
car with open window, car with closed window, corridor of university campus, office room,
desert and park are studied in this research. Experiments showed that they have an important
improvement in classification performance in both systems using only MFCC and MPEG-7

low level features with GMM classifier.

Giivensan et al. [20] proposed an environmental sound recognition system for house appli-
ances to create intelligent home environments. They used sounds of house appliances like
refrigerator, blender, exhaust fan, dish washer, washing machine, blow dryer and ventilation
units. ZCR, STE, Band-level energy (BLE), SC, Spectral Roll-off (SRO), SF and MFCC fea-
tures are used to feed SVM and K-Nearest Neighbor (k-NN) classifiers. Their experiments
showed that usage of SVM and MFCC features provides 98% accuracy success which is
slightly higher than k-NN with MFCC usage.

Choi et al. proposed a real-time acoustic and visual context awareness system for mobile
applications [21]. In audio part they introduced categories such as babble, car, bag, music,
noisy, office, one-talk, public, subway and water. Long window length-MFCC and GMM are

used for classification. An overall average accuracy of 98% is achieved.

Feki et al. proposes a framework for audio classification based on audio stream analysis [8].
They classified audio into classes like speech, music, ring tones, train, motorcycle, explosion,
helicopter, slamming door, dog barking, bird, breeze glasses, applause, horse, cat, care, slot
machine, wind, plane, laugh and police alarm. Their proposed system consists of three steps.
The first step is the pre-processing part where audio stream is segmented and silence segments
are detected. They used STE, low short-time energy ratio (LSTER), SF, band periodicity
(BP) and MFCC feature to determine characteristics of the audio. In the second step speech,

music and environmental sounds are automatically classified into detailed classes using NN,
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HMM and SVM. In last step, they implemented a novel framework that encapsulates binary
classifiers. The experiments show that, their proposed system has an accuracy higher than

90% for audio concept identification.

Chu et al. [11]. proposed an environmental sound classification system to understand a scene
or context surrounding an audio sensor. They classified environmental sounds into classes
like nature-daytime, vehicle, restaurant, casino, nature-nighttime, police, playground, traffic,
thundering, train, rain, stream, waves and ambulance. They focused on feature selection using
Matching Pursuit (MP) algorithm to obtain effective time-frequency features. The MP-based
feature is adopted to supplement the MFCC features to yield higher recognition accuracy for
environmental sounds. They conducted extensive experiments using GMM to demonstrate the
advantages of MP features as well as joint MFCC and MP features in environmental sound

classification.

Roma et al. present a method to search for environmental sounds in large unstructured
databases of user-submitted audio, using a general sound events taxonomy from ecological
acoustics [22]. In their study, frame level descriptors like MFCC and MPEG-7 are selected
and only mean and variance of each frame-level descriptor are used. Selected frame-level de-
scriptors chosen by feature selection process are: High frequency content, Instantaneous con-
fidence of pitch detector (yinFFT), Spectral Contrast (SC) Coeficients, Silence Rate, Spectral
Centroid, Spectral Complexity, Spectral crest, Spectral spread, Shape-based SC, Ratio of en-
ergy per band, ZCR, Inharmonicity and Tristimulus of harmonic peaks. In order to describe
the temporal evolution of the frame level features, they computed several measures of the
time series of each feature, such as the log attack time and a measure of decay and several
descriptors derived from the statistical moments. Music, speech and voice sounds are classi-
fied with SVM with an accuracy of 96.19% in the first experiment. In the second experiment,
environmental sounds are classified into rolling, scraping, deformation, impact, drip, pour,
ripple, splash, explosion and whoosh sounds. Several sets of features are generated by pro-
gressively adding derivatives, attack and decay and temporal descriptors. Proposed feature set
performs better than MFCC. In their third experiment they compare hierarchical and direct

classification methods and results of direct method outperforms the hierarchical one.
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CHAPTER 3

BACKGROUND

In this chapter, commonly used audio features and general classification methods are ex-
plained in detail in order to make the ideas in this thesis about audio classification concept
more comprehensible for the reader. In the following sections, required information about
MPEG-7 Audio Descriptors, MFCC and ZCR features; HMM and SVM classifiers and Ge-

netic Algorithm is provided.

3.1 Audio Features

Audio features are basically some values containing meaningful information extracted from
audio signals in order to compare and classify audio data. After the extraction of such infor-
mation, it is stored in a content description in a compact way. A data descriptor is generally
called a feature vector and the process for extracting such feature vectors from audio is called
feature extraction. Audio feature extraction is generally based on audio analysis of spectral

energy distribution, harmonic ratio or fundamental frequency of the audio signal.

3.1.1 MPEG-7 Audio Features

MPEG-7 standard is a widely used standard in audio classification area. It provides a large
set of audio tools to create descriptions. MPEG-7 standard provides the following main ele-

ments [3]:

o Descriptors (D) define semantics and syntax of audio feature vectors.
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e Description Schemes (DSc) define the semantics and syntax of the relationships be-

tween the components of descriptor.

e Description Definition Language (DLL) defines the syntax of description tools.

The interest of this study is the Descriptors in which semantic and syntax of feature vectors are
defined. They are low-level audio descriptors containing temporal and spectral descriptors.
These descriptors are classified into basic, basic spectral, single parameter, timbral temporal,

timbral spectral and spectral basis descriptors (see Figure 3.1).

Audio Framework

Basic Signal Parameters
AudioWaveform D AudioHarmonicity D
AudioPower D AudioFundamentalFrequency D

Basic Spectral
AudioSpectrumEnvelope D
AudioSpectrumCentroid D

AudioSpectrumSpread D
AudioSpectrumFlatness D

Timbral Temporal
LogAttackTime D
TemporalCentroid D

Timbral Spectral

HarmonicSpectralCentroid D
HarmonicSpectralDeviation D
HarmonicSpectralSpread D
HarmonicSpectral Variation D
SpectralCentroid D

SpectralBasis
AudioSpectrumBasis D
AudioSpectrumProjection D

Figure 3.1: MPEG-7 audio framework overview.

3.1.1.1 Basic Descriptors

There exists two basic descriptors, namely Audio Waveform (AWF) and Audio Power (AP)
descriptor. These are time domain descriptors of the audio content. The characteristic of the

original audio signal can be observed in AWF and AP desciptors shown in Figure 3.2).

AWF descriptor is an estimate of the signal envelope in time domain storing the minimal
and maximum samples. It is a compact and straightforward storage, display or comparison

technique of waveforms.
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Figure 3.2: MPEG-7 basic descriptors extracted from a music signal [3].

AP describes the temporary smoothed instantaneous power of the audio signal in time domain.
This descriptor provides a very simple information about signal amplitude and useful to detect

silence parts of an audio stream.

3.1.1.2 Basic Spectral Descriptors

There are four basic spectral low level descriptors based on the estimation of short-term power
spectra within overlapping time frames. The importance of these type of descriptors is the

similarity to the sensitivity of human ear.

Audio Spectrum Envelope (ASE) Descriptor is a log-frequency power spectrum that is used
to generate a reduced spectrogram of the original signal. It is the sum of the energies of
power spectrum through series of frequency bands providing a compact representation of the

spectrogram of the input signal. See Figure 3.3 (b) for the illustration of this descriptor.

Audio Spectrum Centroid (ASC) gives information about the shape of the signal, in other
words, the the center of gravity of a log-frequency power spectrum of an audio signal. It
contains perceptual sharpness information which indicates whether the power spectrum is

dominated by high or low frequencies (see Figure 3.3 (¢)). The log-frequency scaling approx-
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Figure 3.3: MPEG-7 basic spectral descriptors extracted from a music signal [3].

imates the perception of frequencies in the human hearing system.

Audio Spectrum Spread (ASS) is another measure of the spectral shape which is obtained by
taking root mean square deviation of ASC (see Figure 3.3 (d)). Spectral spread is also called
instantaneous bandwidth of an audio signal. ASS gives ideas about spectrum distribution

around centroid. It is useful in discrimination of noise-like and tonal sounds.

Audio Spectrum Flatness (ASF) reflects the flatness properties of the power spectrum of a
signal. It consists of a series of values expressing the deviation of the power spectrum of
a signal from a flat shape inside a predefined frequency band (see Figure 3.3 (e)). A large
deviation from a flat shape generally depicts tonal components. It helps discriminating white

noise and impulse signals.
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3.1.1.3 Signal Parameters Descriptors

Basic signal parameters reflect the harmonic structure of periodic sounds using frequency
resolution (see Figure3.4). There are two of these descriptors: Audio Harmonicity (AH) and

Audio Fundamental Frequency (AFF).
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Figure 3.4: MPEG-7 basic signal parameters extracted from a music signal [3].

AH descriptor is a measure of the proportion of harmonic components in the power spectrum.
It consists two measurements, namely Harmonic Ratio (HR) and Upper Limit of Harmonicity
(ULH). HR is the ratio of harmonic power to the total power and ULH is the frequency
beyond which the spectrum cannot be considered harmonic. Both HR and ULH are capable

of to distinguishing between music and noisy sounds.

AFF descriptor provides estimations of the fundamental frequency in segments where the
signal is assumed to be periodic. AFF is mainly used as an estimate for the pitch of music and

voiced speech sounds.
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3.1.1.4 Spectral Basis Descriptors

In this section Audio Spectrum Basis (ASB) and Audio Spectrum Projection (ASP) descrip-

tors are explained.

ASB and ASP descriptors are obtained from ASE and Normalized Audio Spectrum Envelope
(NASE) values of an audio signal. ASP and ASB contains rich information about the audio
content besides the trade-off between dimension and wealth of information. Therefore, ASP
and ASB are dimension-reduced versions of NASE using ICA and Single Value Decomposi-

tion (SVD).

3.1.1.5 Timbral Temporal Descriptors

The two timbral temporal descriptors Log Attack Time (LAT) and Temporal Centroid (TC)
describe temporal characteristics of sounds. They are useful for the description of musical

timbre (characteristic tone quality independent of pitch and loudness).

3.1.1.6 Timbral Spectral Descriptors

The five timbral spectral descriptors aim at describing the structure of harmonic spectra in a

linear-frequency space. They are generally used for musical sounds.

3.1.2 Mel Frequency Cepstral Coefficients

The mel-frequency cepstrum (MFC) represents the short-term power spectrum of an audio
signal, based on a linear cosine transform of a log power spectrum on a non-linear mel scale
of frequency. MFCC is derived from a type of cepstral representation of the audio signal. The
difference between the cepstrum and the mel-frequency cepstrum is equally spaced frequency
bands on the mel scale in the MFC. It approximates the response of human auditory system
more closely than the linearly-spaced frequency bands used in the normal cepstrum. In order
to obtain the MFCC vectors, Fourier Transform (FT) of the signal is taken after sampling
and windowing operations. Obtained powers of the spectrum is mapped onto the mel scale

using triangular overlapping windows. Discrete Cosine Transform (DCT) of the list of mel
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log powers are produced which provides a result spectrum where the amplitudes are MFCC

vectors. This method is illustrated in Figure 3.5.
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Figure 3.5: Extraction of MFCC vectors.

MECC feature is powerful feature for speech recognition and music genre recognition with

the powerful approximation to the human auditory system’s response.

3.1.3 Zero Crossing Rate

Zero-crossing is a commonly used term in electronics, mathematics, and image processing.
In mathematical terms, a “zero-crossing” is a point where the sign of a function changes (e.g.

from positive to negative) which is then represented by a crossing of the axis (zero value) in
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the function graph.

ZCR is the rate of sign-changes along a signal, more precisely, the rate at which the signal
changes from positive to negative or vice verse. The ZCR is computed by counting the number
of times that the audio waveform crosses the zero axis. ZCR is normalized by the length of

the input signal s(¢) with the following formula in Wang’s study [23]:

T-1
ZCR = %(21] sign(s(e) ~ sign(s(r - D]} 2 (3.1)

where T is the total number f samples in s(f) and F; is the sampling frequency. sign(x)

function can be defined as:

1 ifx>0
sign(x) = 0 ifx=0 (3.2)
-1 ifx<0

This feature has been used heavily in both speech recognition, music genre classification and

multimedia content analysis.

3.2 Classification Methods

3.2.1 Hidden Markov Model

Hidden Markov Model is an statistical method introduced by L.E. Baum and co-workers.
HMM is a Markov process with hidden states. In Markov model states are visible by the

observer and state transition probabilities are the parameters while states are hidden in HMM.

A complete HMM model can be defined as following [24]:

A= (A,B,n) (3.3)

e N, number of states in the model,

e M, number of distinct observation symbols per state, individual symbols are denoted as

V={vi,va, ..., vu}
e A = {a;;} state transition distribution where

ajj = Plgr1 =Sjlg:=8il; 1 <i,j<N. (3.4)
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e B = {b;(k)}, observation symbol probability distribution in state j, where

bik) = Plvgattlg = S;l; 1<j<N,1<k<M. (3.5)

e 1 = {m;}, initial state distribution where

m=Plgi=Si; 1 <i,j<N. (3.6)

Given appropriate values of N, M, A, B and =, HMM can be used as a generator to give an
observation sequence

0=0107---0Or 3.7

HMM has three major problems:

e Problem 1 (Evaluation Problem): Computing probability of observation sequence P(O|1),
given observation sequence O = 010 - - - Or and model A = (A, B, m). This problem is

solved using Forward algorithm (see Section 3.2.1.1).

e Problem 2 (Decoding Problem): Choosing a corresponding state sequence Q = g1q» - - -
qr, given observation sequence O = 010; - - - Or and model A. This problem is solved

using Viterbi algorithm (see Section 3.2.1.2).

e Problem 3 (Learning Problem): Adjusting model parameters 4 = (A, B, ) to maxi-
mize P(O|4). This problem is efficiently solved using Baum-Welch algorithm(see Sec-
tion 3.2.1.3).

3.2.1.1 Forward-Backward Algorithm

Consider a forward variable o;(7) defined as
(i) = P(O102 - - O, q; = Sild) (3.8)

probability of the partial observation sequence , 010; - - - O; and state S ; at time 7, given the

model A. Problem can be solved for «,(i) inductively as follows:

1) Initialization:

a1(i)) =mbi(01); 1 <i < N. 3.9
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2) Induction:

N
@1(j) = [Za,(i)aij]bj(om D); 1<t<T-1,1<j<N, (3.10)
i=1

3) Termination:

N
P(O|Y) = Z ar(i). (3.11)
i=1

In the similar manner we can assume a backward variable S,(i) define as:
B = PO+ 1)O(t +2))---Orlgr = Si, V) (3.12)

The observation sequence is thought to start from 7 + 1, given state §; at time ¢ and the model

A. If we solve the equation for S,(i) inductively:

1) Initialization

Br()=1; 1 <i<N. (3.13)

2) Induction

N
Bii) = ) aiibj(Onpi (D) t=T =1,T=2,--, 1, | Si < N. (3.14)

j=1
3.2.1.2 Viterbi Algorithm

Viterbi Algorithm finds the optimum state sequence given the observation sequence. To find
the single best state sequence, Q = {q192 - - - q;}, for given the observation sequence O =
{010, - - - Or}, we define a quantity 6 which is the highest probability along a single path, at
time t:

5t(i)=q max  Plqiqz---q; = 1,010 - O4|4] (3.15)

19255411

If we induct through Equation 3.15 we have the variable 6,41 :
Op1(1) = [mlax 6:()aijl - bj(Opr1) (3.16)

We keep track of argument maximized in (3.16), for each t and j via array i. The procedure

is shown below:

1) Initialization:

01(0) = mibi(01); 1 <i<N (3.17a)
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Y1(i) = 0. (3.17b)

2) Recursion:

6:(j) = ,m,%[&—laij]bj(@); 2<t<T,1<j<N (3.18a)
i<i<
Yj) = argmax[6-1(Daijl; 2<t<T, 1 <j<N (3.18b)
i<i<N
3) Termination:
px = max[6;-1] (3.19a)
i<i<N
qr = argmax[6;1] (3.19b)
i<i<N
4) Backtracking:
qr =¥1(q);s t=T—-1,T=2,---, 1. (3.20)

The major difference between forward calculation is the maximization over previous states in

Equation 3.17a.

3.2.1.3 Baum-Welch Algorithm

The Baum-Welch algorithm is a particular case of a generalized expectation-maximization
algorithm. It can compute maximum likelihood estimates and posterior mode estimates for
the parameters (transition and emission probabilities) of an HMM, when given only emissions

as training data.

For the procedure of re-estimation of HMM parameters, & (i, j) is defined as the probability
of being in a state S; at time ¢ and state S ; at time ¢ + 1, given the model and the observation

sequence & can be formalized:
&, J) = P(gr = Si,qu1 = SJ10, ) (3.21)

&(i, j) can be written in the form below using the forward backward variables:

at(i)aijbj(0t+ 1Be+1()))

&, ) = PO

(3.22)

Probability of being in state S; at time #, given the observation sequence and the model can be

related with (i) to &(i, j) by summing over j:

N
YD) = ) & J). (3.23)
j=1
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When y,(i) is summed over time index ¢, the expected number of transitions made from state S ;
is obtained. Similarly sum of & (i, j) over ¢ can be called as the expected number of transitions

from state S; to § ;, which is:

~

-1
v:(i) = expected number of transitions from S; (3.24a)

~
1l
—_

~

-1
&(i, j) = expected number of transitions from §; to § ; (3.24b)

~
Il
—_

Using the the formulas above, a method for re-estimation of parameters of HMM is proposed.

Formulas for ir, A and B are:

7; = expected frequency (number of times) in state S;, at time (r = 1) = ,(i) (3.25a)

expected number of transitions from state §; to state S ;

d@ij = (3.25b)

expected number of transitions from state S;

expected number of times in state j and observing symbol v

bi(k) = (3.25¢)

expected number of times in state j
Since the current model is defined as A = (A, B, 7) and use this model to compute right-hand
sides of 3.25a, 3.25b and 3.25c, the re-estimated model is defined as 1 = (A, B, 7). If A is
used in place of A iteratively and re-estimation calculation is repeated, the probability of O
being observed from the model can be improved until some limiting point is reached. Final
result of this re-estimation is called maximum likelihood estimate of the HMM. The formu-
las 3.25a, 3.25b and 3.25¢ can be derived maximizing Baum’s function over A. Maximization

of O(4, ) leads to increased likelihood:

max[Q(4, )] = max[ E P(QI0, Diog[P(0, Q111 = P(0Id) 2 P(O|). (3.26)
A A
Q

3.2.2 Support Vector Machine

Vapnik [25] introduced SVM which has the principle of separating two classes by a linear
hyper-plane. Positive and negative examples in the training set causes this hyper-plane which
can be shown in Figure 3.6. The support vectors are marked with grey squares which define
the margin of the largest separation between two classes. There exists many hyper-planes
to classify the data, but the optimal one is the hyper-plane maximizing the distance between

itself and the nearest data point, namely margin.
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Figure 3.6: An example of a separable problem in two dimensional space.

The decision function of classifying an unknown point x is defined as:

Ny

f(x) =sgn(w-x+b) = sgn( Z a;miX; - X + b) (3.27)
i=1

where (X;,y;) is the training vector having conditions i = 1,....,/, X; = {x;,...,x,} and y; €

{+1, —1}. This unknown point is expected to be optimally separated by a hyper-plane formula:
W-X+b=0;WeR"andbeR (3.28)

where W is the perpendicular vector to the hyper-plane and b is a constant. N, is the support
vector number, «; is the Lagrange multiplier and m; € {-1,+1} is a parameter describing

which class x belongs to.

When the feature distribution of data has overlapping areas, it is not possible to separate the
data in the given input space. For non-separable data like overlapping nature of audio data,
kernel methods are used to map the feature vectors into a higher dimensional space where
linear separation of the training set is possible. If kernel functions are used to construct the
optimal hyper-plane, the decision function becomes like:

N;
f(x) =sgn(w-x+b) = sgn( Z a;m; K(x;, x) + b) (3.29)

i=1
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In this thesis work, Radial Basis Kernel is used after the comparative tests with Linear Kernel.
As shown in the equation 3.30, Linear Kernel provides less complexity than Radial Basis
Kernel (See equation 3.31) but for our dataset, Radial Basis Kernel provides more satisfactory

accuracy values.

Linear Kernel:

K(x,y)=x-y (3.30)

Radial Basis Kernel:

K(x,y) = exp(=y [l x =y ") (3.31)

3.2.3 Genetic Algorithm

Genetic Algorithm (GA) provides a learning method with an analogy to biological evolu-
tion which generate solutions to optimization problems using techniques inspired by natural
evolution, such as inheritance, mutation, selection and crossover. GA addresses the problem
of searching a space of candidate hypothesis to find the best hypothesis. To reach the best

hypothesis it evolves through generations to optimize a numerical measure called fitness.

GA iteratively updates a pool of hypotheses, namely population. On each iteration, all mem-
bers of the population are evaluated according to the fitness function. A new population is
then generated by probabilistically selecting the most fit individuals (chromosomes) from the
current population. Some of these selected individuals are carried forward into the next gen-
eration and others are used as the basis for creating new offspring individuals by applying

genetic operations such as crossover and mutation.
The prototypical genetic algorithm [26] can be parameterized as:

GA(Fitness, Fitness_threshold, p, r, m), where:
Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitness_threshold: A threshold specifying the termination criterion.
p: The number of hypotheses to be included in the population.
r: The fraction of the population to be replaced by Crossover at each stop.

m: The mutation rate.
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o Initialize population: P < Generate p hypothesis at random
e Evaluate : For each h in P, compute Fitness(h)

e While

mlflx Fitness(h) < Fitness_threshold

do the following : Create a new generation, P:

1. Select : Probabilistically select (1 — r)p members of P to add P;. The probability
P,(h;) of selecting h; from P is given by

Fitness(h;)
Z‘;’:l Fitness(h;)

Py(h) = (3.32)

2. Crossover : Probabilistically select % pairs of hypotheses from P, according to
P,(h;) given above. For each pair, < hy, hy, >, produce two offspring by applying

the Crossover operator. Add all offspring to P;.

3. Mutate : Choose m percent of the members of P; with uniform probability. For

each, invert one randomly selected bits in its representation.
4. Update : P « Pq,

5. Evaluate : for each h in P, compute Fitness(h)

e Return the hypothesis from P that has the highest fitness.

Here a population has p hypotheses and on each iteration, the successor population P; is
formed by probabilistically selecting current hypotheses according to their fitness and by
adding new hypotheses. New hypotheses are created by applying a crossover operator to
pairs of most fit hypotheses and by creating single point mutations in the resulting generation

of hypotheses. This process is iterated until sufficiently fit hypotheses are discovered.

3.3 Definitions

Acoustic Class (AC): Classes based on the acoustic feature of audio. An audio sample is
classified into these classes using classifiers and audio features. Emergency alarm, car horn,
gun-shot, explosion, automobile, motorcycle, helicopter, wind, water, rain, applause, crowd

and laughter are selected as acoustic classes.
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Semantic Class (SC): Higher level classes based on the acoustic classification results. System
decides on these classes using only acoustical results. Outdoor, nature, meeting and violence

are selected as semantic classes.

Audio Segment (AS): An audio stream of 1 second length.

Segment Group (SG): Sequence of segments between two consecutive silence segments.

Precision: In classification context, precision for a class is the number of true positives divided

by the total number of elements labelled as belonging to the positive class (Equation 3.33).

True Positives
Precision = — — 3.33
True Positives + False Positives ( )

Recall: The number of true positives divided by the total number of elements that actually

belong to the positive class (Equation 3.34).

True Positi
Recall = ' .rue ositives . (3.34)
True Positives + False Negatives

F-measure: Weighted harmonic mean of precision and recall (Equation 3.35).

Precision - Recall
F-measure = I'eC.IS'IOIl cea (3.35)
Precision + Recall
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CHAPTER 4

PROPOSED METHOD

4.1 Classification Approach

Audio features and classifiers are two main concepts in audio classification research. Au-
dio features are vectors or scalars containing several descriptive measures of an audio stream.
Whereas classifiers are statistical or linear models representing specifically the intended classes.
Audio features are utilized to create these models, which is called model training. In order to
create and verify these models, audio dataset is divided into train and test sets. Train set is

used for model training and test set is used for verification.

In this study, HMM (Section 3.2.1) and SVM (Section 3.2.2) are used as classifiers with
combinations of MPEG-7 (Section 3.1.1), MFCC (Section 3.1.2) and ZCR (Section 3.1.3) as

audio features.

Proposed classification system consists four main blocks (Figure 4.1): preprocessing, model

training, acoustic and semantic classification.

In preprocessing block, a given audio clip (file) is divided into one-second segments which
will be a sequence of consequent segments. Audio features are extracted from each segment

and system labels the silence and non-silence segments of this segment sequence.

In order to build up the decision mechanism, the models are created from the train data set
after a preprocessing step within the model training block. The best representative feature and

classifier combination is utilized for model training.

In acoustic classification block, non-silence segments of the given segment sequence are clas-
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Figure 4.1: Block diagram of the proposed classification approach.
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sified into emergency alarm, car horn, gun-shot, explosion, automobile, motorcycle, heli-
copter, wind, water, rain, applause, crowd and laughter classes. In the content of this thesis
study, we named these classes as acoustic classes and this process is called acoustic classi-
fication which refers to the classification using trained models with extracted audio features.
In order to discard the classification errors, given segment sequences are passed through the

smoothing process.

Acoustically labelled segment sequence is the input for semantic classification. In semantic
classification block, this sequence is classified into higher level semantic classes, namely

outdoor, nature, violence and meeting.

4.1.1 Preprocessing

4.1.1.1 Feature Extraction

In our system, different kinds of feature sets are used in order to make comparisons in a wide
range of audio features. All features are extracted using 30 ms frames and 10 ms hop-size.

Feature sets used in the system are:

A set containing MPEG-7 ASP feature. This feature represents one frame with 21-

dimensional vector.

o A set containing MPEG-7 ASF feature. This feature represents one frame with 20-

dimensional vector.

e A set containing MPEG-7 AH feature. This feature represents one frame with scalar

value.

e A set containing MPEG-7 ASC feature. This feature represents one frame with scalar

value.

e A set containing MPEG-7 ASS feature. This feature represents one frame with scalar

value.
o A set containing ZCR feature. This feature represents one frame with scalar value.

o A set containing MFCC feature. This feature represents one frame with 13-dimensional

vector.
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A set containing a composition of MPEG-7 ASF, ASC, ASS and AH features. This

feature composition represents one frame with 23-dimensional vector.

e A set containing a composition of MPEG-7 ASF, ASC, ASS and ZCR features. This

feature composition represents one frame with 23-dimensional vector.

A set containing a composition of MFCC, MPEG-7 ASC, ASS and AH features. This

feature composition represents one frame with 16-dimensional vector.

A set containing a composition of MFCC, MPEG-7 ASC, ASS and ZCR features. This

feature composition represents one frame with 16-dimensional vector.

MPEG-7 Audio Encoder Project [27] is used for extraction of Audio MPEG-7 features.
MEFCC features are extracted using Malcolm Stanley’s Auditory Toolbox [28]. Zero Crossing

Rate feature is extracted using the formula in Section 3.1.3.

4.1.1.2 Silence Detection

The aim of this step is to detect the silent segments. Kiranyaz et al. [29] proposed an approach
for silence detection. Input audio stream is first divided into frames and then silence detection
is performed per frame in their proposed approach. In our study, similar calculations are
performed for silence detection. The minimum P,,;,,, maximum P,,,, and average P, Audio
Power (AP) values are calculated from each one-second segment. Following conditions are

checked to determine silent segments:
e P, > Minimum Audible Power Value
® Puax 2 Pmin
If the presence of non-silent segment is confirmed, then Threshold value T is calculated ac-
cording to the following equation:
T = Ppin + As(Py — Ppin), 0 < A5 < 1 4.1)

where A, is the silence coefficient, which determines the silence threshold value between
Pyin and P,,. If all samples of AP feature values for one-second segments are less than the

calculated threshold 7', then that segment is classified as silent.
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4.1.2 Model Training

SVM and HMM models are created to be able to distinguish between acoustic classes. After
the feature extraction of all files in the train data set, outputs are used to train HMM and SVM

models.

4.1.2.1 Hidden Markov Model Training

HMM models are trained for each acoustic class resulting 13 HMM models. According to
the state optimization experiment results (see Appendix D), 5-state Ergodic Hidden Markov

Model is chosen for this study.

HMM parameters are estimated by using the well-known Baum-Welch algorithm (see Sec-
tion 3.2.1.3). Taking the initial values for all the parameters, Baum-Welch finds the optimum
values for the parameters by iterative re-estimations. This problem is called “training prob-
lem” in HMM applications. Since this algorithm finds only locally optimum values, the initial
guess for the parameters is very important. For that reason K-Means Clustering algorithm is

applied to estimate these values instead of randomly assigned initial values.

After specification of complete parameter set of HMM parameters, the classification problem
becomes “evaluation problem”, in other words, given a model and a sequence of observations,
computing the probability of the observed sequence to be produced by the model. Forward-
Backward algorithm (see Section 3.2.1.1) is used to select the audio class label for the given

observation sequence.

4.1.2.2 Support Vector Machine Training

Support Vector Machine training is performed using multi-class SVMs and models are created
with one-versus-all approach. For each class, an SVM model is trained to distinguish between
itself and the rest of the classes with a weight of 12. As discussed in Section 3.2.2, Radial

Basis Kernel function is used to map data into high-dimensional feature space.
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4.1.2.3 Verification

During the verification process, audio segments are classified into thirteen classes. Probabil-
ities coming from HMM and SVM models are calculated and segments are labelled with the

class label whose model outputs the highest probability.

JAHMM [30] and LIBSVM [31] library packages are used for HMM and SVM classifications,

respectively.

Audio feature sets mentioned in Section 4.1.1.1 are used for the experiments in order to reach
the highest recall and precision values with SVM and HMM models. MPEG-7 ASF, ASS,
ASC and AH feature combination with SVM classifier (see Table A.21) is the best combina-
tion for selected environmental sound classes. All experiments are explained in the following

chapter.

4.1.3 Acoustic Classification

In this step an audio segment is classified into proposed acoustic classes. Consequent seg-

ments are smoothed in order to discard classification errors.

4.1.3.1 Classification

In HMM classification, a segment is given as an input for each HMM model. The model
providing the highest score for the given segment labels the segment with the acoustic class
label. Given the models M1, M5, ..., M, and a one-second segment containing frame sequence
S'; the probability P; (the probability of a sequence to be produced from an HMM model) is

calculated as follows (see Equation 3.11 for HmmPredict function):

P; = HmmPredict(M;,S); 0 <i <13 4.2)

Then, the maximum probability from each model M;, S pair.

Pmax = max(HmmPredict(M;,S), ..., HmmPredict(M,,,S)); 0 <i <13 4.3)

Model M; with the Pmax probability, labels sequence S .
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In SVM classification, a segment is given as input for each SVM model but processed in
a different manner. Since SVM is a binary classifier, the outputs of the models are binary,
namely positive (1) and negative (-1) values. Given the models M1, M5, ..., M,,, one-second
segment containing frame sequence S = {sy, 2, ..., S,} with size n, positive or negative value
V coming from each frame prediction, positive frame count PC; probability P; (percentage of
positive frame count over total frame count) is calculated as follows (see equation 3.11 for

SvmPredict function):

Vi = SvmPredict(M;,sj); 0<i<13,0< j<n 4.4
PCi=Vo+Vi+..+V;V;>0,0<i<13,0<j<n 4.5)
Pi=PC;/n, 0<i<13 (4.6)

Then, the maximum probability from each model M;, S pair:
Pmax = max(PCy, PCy, ..., PC;); 0 <i< 13 4.7)

Sequence S is labelled by the model M; which outputs the Pmax probability.

4.1.3.2 Smoothing

After several tests, some classification errors are observed during the audio classification. An
illustrative example is given in Figure 4.2. Coloured boxes indicates acoustically labelled
segments in a sequence. Black coloured boxes are the silent segments. Yellow, green and red
boxes indicates different acoustic labels. Then, majority of yellow boxes indicates that this
segment sequence belongs to yellow type heuristically. Therefore, system assumes that the
green and red labelled segments are classification errors. After the smoothing process this

misclassification is discarded.

In this process two observed cases are ruled out :

o Rule I: (s1 # so & so = s2) = s1 = sp. In this rule, consequent three segments are

considered at a time so, 51, 2. This rule implies that if the middle segment has different
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Figure 4.2: An illustrative example for smoothing.

class label than the other surrounding two segments and these segments have the same
class label; then consider that the middle segment is misclassified and change the label

of this segment to the label of first segment.

® Rule 2: (sog = s3 A sy # So A S| # 8 A(sy.secondlabel = sy V sy.secondlabel = 5p)) =
s1 = S0, $2 = So. In this rule, four-second sequence is considered at a time sg, 51, 52, 53
standing for the audio. This rule is applicable if middle two segments does not have
same labels with each other and the surrounding segments and surrounding segments
has same labels. In order to regard the middle segments as misclassified, the second
labels (label of the model providing the second highest score during the classification
step) should be checked. If the second labels of at least one of the middle segments
are equal to the surrounding segment labels, the middle segments are considered as

misclassification (See also examples in Appendix C).

Following the smoothing process, temporally adjoining segments are combined together if
they share the same acoustic class label. As a result, the entire audio sequence is partitioned
into homogeneous segment joints having a distinct acoustic class label. A segment joints has
attributes such start time, end time, duration, acoustic class label and acoustic classification

SCore.
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4.1.4 Semantic Classification

The result of the acoustical classification of a segment sequence is used as input in order
to distinguish between higher level classes such as outdoor, nature, violence and meeting.
This classes are called semantic classes. Given a sequence of segments, system needs some
distinctive points in order to detect the starting and ending times of the concept changes. For
that reason, silent segments are assumed to be the marker segments in order to determine
the segment groups which are the candidate segment sequences for semantic classification.
In Figure 4.3 segment groups are illustrated. Black coloured boxes are the silent segments

whereas red, green and blue coloured boxes represents the acoustically labelled segments.

Acoustic Segment AS Acoustic Segment AS: Acoustic Segment ASs

AcousticTag(AS5,)= Car Horn  AcousticTag{AS:)= Car Harn AcousticTag(ASs)= Motorcycle
Score(AS,)= B8% Score(AS;)= 76% Score({ASs)= 98%

| |CarHr:rrn Motaorcycle CarHorn Emergency Alarm CarHorn| | |

Segment Group Segment Group Segment Group

Figure 4.3: An illustrative example for segment group.

A grading technique is proposed which calculates the impacts of each acoustic class for can-
didate semantic classes. Given the segment group SG = AS¢,AS 1, ...,AS, where AS; is the
acoustically labelled segment and # is the total number of segments in a SG, Grade(S G, S C)
function returns the total impacts of each AS; for the semantic class S C. The group is labelled
by the winner semantic class which has the highest grade greater than the threshold value. The

maximum grade is calculated as follows:

Maximum Grade = max(Grade(S G, outdoor), ..., Grade(S G, violence)) 4.8)
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and Grade(S G, S C) function is defined as:

2 Impact(S C, AS j)S core(AS ;)

n

Grade(SG,SC) = 4.9

where Impact(S C,AS) function returns impact degree of AS for SC which are generated
using Genetic Algorithms (see Section 3.2.3) shown in Table 5.3. S C represents outdoor,
nature, meeting or violence semantic classes, # is the number segments in S G and S core(AS ;)

is the classification score of i’ segments coming from the classifier.

Impact table (see Table 5.3) contains the impact values of each acoustic class on each semantic
class. The values in this table are calculated with Genetic Algorithm. The impact table and
the threshold value are used as the chromosome. 50-sized population is evolved to reach the
optimal values of the chromosome using the average F-measure value as the fitness function.
After the optimization experiments the proposed semantic classification succeeded to 87%

average F-measure values shown in Table 5.5. JGAP [32] package is used for the calculations.

4.2 Retrieval Approach

The proposed classification approach provides the capability of categorizing environmental
sounds. With the growth of data set, gathering information becomes a problem. Retrieval is
the activity of obtaining relevant information from a collection of resources. In the context of
this thesis, two types of retrieval techniques are implemented to provide an easy access to the
desired information: Keyword queries and query by example. These techniques are described

in the following subsections.

4.2.1 Keyword Queries

In order to retrieve the acoustically and semantically labelled segments in classification re-
sults, the proposed system provides keyword-based querying capability of these classes. The
queries can be expressed also with a possibility degree that are associated with the classifier
result. In addition, temporal queries are supported in order to retrieve data using the duration,

start and end time information:

e Acoustic Label:
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“Find all emergency alarm segments.”

Acoustic Possibility Degree:

“Retrieve all possible segments with an acoustic possibility degree between 80% and
90%.”

Semantic Label:

“Find all outdoor segments.”

Semantic Possibility Degree:

“Retrieve all possible segments with a semantic possibility degree between 50% and
70%.”

Start and End Time:

“Find all segments between the 40"* and 50" seconds.”

Duration:

“Find all segments of length between 2 and 4 seconds.”

Keyword-based and temporal queries can be combined to form more complex queries:

Acoustic Label and Possibility Degree:

“Retrieve all possible emergency alarm segments with an acoustic possibility degree
between 80% and 90%.”

Semantic Label and Possibility Degree:

“Retrieve all possible outdoor segments with a semantic possibility degree between
50% and 70%.”

Duration, Start and End Time:

“Retrieve all segments of length between 2 and 4 seconds and between the 40" and 50"

seconds.”

Acoustic and Semantic Label, Acoustic and Semantic Possibility Degree, Duration,

Start and End Time:
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“Retrieve all possible emergency alarm segments with an acoustic possibility degree
between 80% and 90% and semantically labelled as outdoor with a semantic possibility
degree between 50% and 70%, between the 40 and 50" seconds and with a length

between 2 and 4 seconds.”

In the classification stage, the results were written into a text file. In this stage, the results are
loaded to the system from this result file and stored in a table. This table contains columns for
start and time, labels and possibility degrees for acoustic and semantic classes. Whereas the
rows contain audio parts, namely the concatenation of consequent segments which have same
acoustic class label. System filters the keywords (which are also column names) to provide
the mentioned query capabilities. For the last query example above, system retrieves the rows

from the table which ensures the following conditions:

1. acoustic class label = emergency alarm;

2. acoustic classification score > 80% and acoustic classification score < 90%;
3. semantic class label = outdoor;

4. semantic classification grade > 50% and semantic classification grade < 70%;
5. start time > 40 and end time < 50;

6. duration (end time - start time) > 2 and duration < 4.

4.2.2 Querying by Example

Query by Example (QBE) retrieval technique is basically a similarity search of the given
segment among the search space. When a query audio file is given as an input to the system
and relevant files are requested, both the query and each audio segment in the segmented audio
file are represented as feature vectors. The system calculates the similarity measurements of
the queried audio file and search space vectors and outputs a list of audio segments according

to the decreasing similarity order.

For similarity measurements, MPEG-7 ASF, ASC, ASS and AH feature combination is se-
lected as the feature vector. Similarity between two series of feature vectors is measured by

employing a correlation function [33] which computes the correlation coefficient of A,,,, and

39



B,.n, where A and B are the feature vector representations of two audio segments, m is the size

of the segment and # is the feature vector size. The correlation function is defined as follows:

Zm Zn (Amn - A_)(an - B)

O ey

(4.10)

Maximum correlation between audio search space and query audio matrices are calculated by
sliding the query audio matrix over audio search space matrix and computing the correlation
coeflicient for every window position of 30 ms. A correlation coefficient array is generated

and processed to find the window position where correlation coefficient peaks.

The system provides three different kinds of queries which are point query, k-nearest neigh-
bour query and range query. Point query is a type of query in which system retrieves the
most similar segment to the given input. In k-nearest neighbour query, the k best matches
are retrieved. For the range query, user should provide predetermined ranges in order to re-
trieve the intended content. Given an audio sample user can search for similar segments in

the segmentation results. For instance:

e Point Query
“Retrieve the most similar segment to the given audio.
“Retrieve the most similar segment to the given audio in emergency alarm segments
labelled as outdoor.”

e Range Query

“Retrieve similar segments to the given audio with similarity ratio between 80% and

90%.”

“Retrieve similar segments to the given audio with similarity ratio between 80% and

90% and labelled as emergency alarm.”

o kNN Query
“Retrieve best 6 matches similar to the given audio.”

“Retrieve best 6 matches similar to the given audio and labelled as nature.”
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CHAPTER 5

EVALUATION

5.1 Experiments for Acoustic Classes

In the proposed system, HMM and SVM classifications are tested with the following 11 fea-
ture sets : ASP, ASF, ASC, ASS, AH, ZCR, MFCC, (ASF + ASC + ASS + AH), (ASF +
ASC + ASS + ZCR), (MFCC + ASC + ASS + AH) and (MFCC + ASC + ASS + ZCR)

The data set, in Table 5.1 is used during train and test procedures of our models. 85% of

dataset is used for model training while the rest is used for testing.

Table 5.1: Overview of acoustic data set.

Duration
Emergency Alarm 23 min 39 sec
Car Horn 4 min 44 sec
Gun-shot 9 min 50 sec
Explosion 19 min 14 sec
Helicopter 7 min 24 sec
Motorcycle 9 min 57 sec
Auto-mobile 6 min 53 sec
Rain 13 min 45 sec
Wind 17 min 15 sec
Water 27 min 49 sec
Applause 10 min 30 sec
Laughter 13 min 26 sec
Crowd 9 min 45 sec
TOTAL 3 hours 4 min 11 sec
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5.1.1 Dataset Collection

Audio clips used in train and test are collected from internet [34, 35], films and videos [36].
All audio files are listened and cleaned from irrelevant parts and converted to PCM (little
endian 16 bit) 44100 Hz frequency and mono format. Audio clips with long duration are
separated into smaller clips not exceeding 15 seconds. Battle sounds has the average shortest
duration of a second because of the nature of gun-shot and explosion sounds. Other sounds
has an average length of 10 seconds. Emergency alarm set contains sounds like ambulance,
police, fire service sirens and other emergency alarms like nuclear and fire alarms. Explosion
sound set contains explosion and bomb sounds. Gun-shot sound set contains gun-shot, riffle,
fireworks, machine gun and laser gun sounds. Our data set also contains automobile, heli-
copter and motorcycle sounds including sounds of starting and stopping engine, sounds taken
from traffic, sound inside vehicle and outside vehicle. Water sounds set contains sounds like

swimming, splash, waves, ocean, sea, dropping and rowing sounds.

5.1.2 Experiments to Find Best Representative Feature Set and Classifier

In the following paragraphs, experiments to find the best representative feature set for each
classifier are explained and the classification test results are discussed. See Appendix A for

confusion matrices.

5.1.2.1 Experiments with HMM

In the experiment with ASP feature, the system success is quiet low with 36.2% average

F-measure shown Table A.1.

For ASF feature, test results can be seen in Table A.2. Since this feature depicts the flatness of
audio, it is good at differentiating between impulse-like and noise-like sounds. This feature is
certainly successful for Emergency Alarm, Wind and Helicopter acoustic classes. The average

F-measure is 55.7% which is relatively better than ASP feature but not satisfactory.

Tests results for ASC and ASS features can be observed in Table A.3 and Table A.4 respec-
tively. Since these features are one dimensional, the success is quiet low when they are used

standalone.

42



For MFCC feature, test results can be seen in Table A.5. This feature provides better F-
measure (65.3 %) than ASF (see Table A.2) feature. As seen in the results, F-measure for

each class is smoothly distributed over classes compared to ASF results.

AH and ZCR feature test results are shown in Table A.6 and Table A.7 respectively. They are

both one dimensional features and results are not satisfactory to classify selected classes.

ASF and MFCC features provides relatively better result than ASP, ASC, ASS, AH and ZCR
features. In the experiments with ASF and MFCC features the calculated F- measure values
are 55.7% and 65.3% respectively. In order to get better results, combinations are experi-
mented: (ASF + ASC + ASS + ZCR) , (ASF + ASC + ASS + AH), (MFCC + ASC + ASS
+ ZCR) and (MFCC + ASC + ASS +AH).

Combining ASF, ASC, ASS and ZCR features increased the F-measure value to 62.1% where
these features has 55.7%, 27.4%, 20.2% and 27.8% F values respectively when they are tested

stand alone. Test results are shown in Table A.8.

F-measure vs. Audio Features (HVM)
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Figure 5.1: Results of HMM classification experiments.

In the experiment with ASF, ASC, ASS and AH features the F-measure value is calculated

as 69.4% (see Table A.9) which is more successful then 62.1% (ASF+ASC+ASS+ZCR re-
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sult). When the results of two tests are examined, contribution of AH feature is better in

distinguishing Emergency Alarm, Motorcycle, Automobile, Helicopter and Laughter sounds.

Combinations of MFCC+ASC+ASS+ZCR and MFCC+ASC+ASS+AH feature sets are also
tested. Table A.10 and Table A.11 shows that MFCC+ASC+ASS+AH set has the highest
F-measure value of 70.6% among all feature sets. MFCC+ASC+ASS+ZCR combination has
relatively lower F-measure value of 63.9% then MFCC+ASC+ASS+AH combination.

In Figure 5.1 results of eleven experiments are shown. One dimensional features, ASC, ASS,
AH and ZCR, have quite lower classification success compared to higher dimensional fea-
tures. Classification performance of feature combinations is obviously higher than the stan-
dalone features. Line graph in Figure 5.2 represents the performance of each feature set on

selected classes.
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Figure 5.2: Performances of feature sets on acoustic classes using HMM classifier.

5.1.2.2 Experiments with SVM

ASF feature has 52.8% average F-measure value (see Table A.13). This feature is less suc-
cessful in HMM tests (see Table A.2). Tests with both classifiers shows that, this feature is

not satisfactory for the classification of proposed classes in case of standalone usage.

MFCC feature is the most successful feature for SVM with F-measure value of 55.9% if
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F-measure vs. Audio Features (SVhi)
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Figure 5.3: Results of SVM classification experiments.
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Figure 5.4: Performances of feature sets on acoustic classes using SVM classifier.
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it is used standalone in the experiments. For this experiment, MFCC feature provides less

F-measure value than HMM test. To compare, the results can be seen in Table A.16 and A.S5.

For ASC, ASS, AH and ZCR features, SVM model is producing worse results than HMM

does. The results for these tests can be seen in Tables A.14, A.15, A.17 and A.18, respectively.

Since audio features does not provide satisfactory results when used standalone, tests for four
feature combinations ASF+ASC+ASS+AH, ASF+ASC+ASS+ZCR, MFCC+ASC+ASS+
AH and MFCC+ASC+ASS+ZCR are repeated for SVM. ASF+ASC+ASS+AH combination
is the best representative feature set of our data set with an average F-measure value of 80.6%
(See in Table A.21). MFCC+ASC+ASS+AH combination also has considerably satisfactory
F-measure of 69.4%. The results for ASF+ASC+ASS+ZCR and MFCC+ASC+ASS+ZCR
are shown in Tables A.22 and A.20.

Experiments are summarized in with bar and line graphics in Figure 5.3 and Figure 5.4. Ex-
perimental results shows that usage of one dimensional features on HMM and SVM classifiers
provides unsatisfactory results while feature combinations provide successful results for both

classifiers.

F-Measure vs Acoustic Classes

F-Measure (%)

SV with ASF+ASCHASS+AH
alemHMM with MFCC+ASC+ASS+AH

Figure 5.5: Comparison of HMM and SVM classification performances.

In Figure 5.5, avaregae F-measures of the classifiers with their best representative features are
compared. SVM classifier with ASF+ASC+ASS+AH combination is performing better than
HMM with MFCC+ASC+ASS+AH combination.
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5.2 Experiments for Semantic Classes

5.2.1 Dataset Collection

Audio clips used in semantic classification are collected from internet videos [36]. The du-
ration of each audio is differentiating between 20 seconds and 1 minute. Outdoor sounds
contains town and city traffic, motor racing, traffic jam, sounds or cars and trucks, traffic
sound effects, police and fire engine sounds. Nature sounds in the data base are consisted of
sea cliff, wind ,rain, jungle forest and water stream sounds. For meeting class public house,
sports crowd, interior crowd, business meeting and applause sounds are collected. Scenes
from war movies and severity scenes collected from internet are used for violence sound col-

lection. Durations of data set can be seen in Table 5.2.

Table 5.2: Overview of semantic data set.

Duration
Outdoor 28 min 10 sec
Nature 27 min 45 sec
Meeting 20 min 13 sec
Violence 29 min 35 sec

TOTAL 1 hour 45 min 43 sec

5.2.2 GA Experiment

During the GA experiments the average F-measure is set as the fitness function and the thresh-
old and the impact table is set as the chromosome. The values in the impact table are defined
to be between 0.0 and 0.1 and iterations are started with a population containing 50 chromo-
somes. The optimized results are shown in Table 5.3 which reaches 87.4% average F-measure
with the optimized threshold value of 51. As seen in impact table the effects of Emergency
Alarm, Car Horn, Automobile, Motorcycle and Helicopter acoustic classes is over 0.94 for
Outdoor semantic class. For Nature semantic class Wind, Water and Rain classes have the
highest contribution, since they are the most suitable classes to exist in nature. Applause,
Crowd and Laughter acoustic classes have the highest contributions to Meeting class among

the others. Violence semantic class is impacted from Gun-shot and Explosion acoustic classes
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mostly. It can be observed that all acoustic classes have some impact on all semantic classes.
This sounds problematic because the reader may ask why helicopter has an impact value of
0.32 on Nature semantic class. The classification success of the proposed acoustic classifica-
tion is 80.6% so the classifier can misclassify the segments or the test audio is consisted of
segments which does not belong to any of the proposed acoustic classes. Confusion matrices

of the given experiments can be seen in Appendix B.

Table 5.3: Impact table for semantic classes.
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Table 5.4: Recall, precision and f-measure values for semantic classification with GA.

Recall Precision F-measure
Outdoor 77.4 % 88.9 % 82.8 %
Nature 98.5 % 82.9 % 90.1 %
Meeting 89.0 % 98.0 % 93.3 %
Violence 81.9 % 82.5 % 82.2 %
Average 86.7 % 88.0 % 87.4 %

The proposed method for semantic classification is providing high F-measure value for the
given dataset. But it is not sufficient for very short audio stream since the main concern is the

density of the acoustic classes. For that reason a comparable classification is also performed

as shown in the following section.
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5.2.3 SVM Experiment

The results of acoustic classification for each segment is used as feature vectors of the SVM
classifiers which is consisted of acoustic class id and classification accuracy. To be able to
compare different approaches, WEKA [37] tool is used for the minor scale tests. This clas-

sification provided an avarage F-measure of 72.8% which is lower than the GA experiments

result.

Table 5.5: Recall, precision and f-measure values for semantic classification with SVM.

Recall Precision F-measure
Outdoor 51.5% 80.9 % 62.8 %
Nature 94.4 % 77.0 % 84.8 %
Meeting  75.1 % 82.5 % 78.6 %
Violence 71.2 % 59.3 % 64.7 %
Average 73.4 % 74.8 % 72.8 %

In Figure 5.6 performances of GA and SVM are compared for semantic classes. The proposed

method with GA performs better than SVM for all semantic classes.
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Figure 5.6: Comparison of GA and SVM classification performances.
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5.3 Experiment for Content Retrieval

5.3.1 Dataset Collection

All audio clips used in content retrieval experiment are collected from acoustic dataset in
Table 5.1. One minute and 15 seconds of audio clips for each acoustic class are selected for
search space and query audio, respectively. In total, 13 minutes of audio clip is used for search

space whereas 3 minutes 15 seconds of audio clip is used for the tests.

For keyword-based queries, an additional experiment is not considered, since the retrieval

success of these queries are bounded with the classification results.

5.3.2 QBE Experiment

Table 5.6: Accuracy values for QBE retrieval using ASF, ASC, ASS and AH feature combi-
nation.

QBE Retrival

Accuracy
Emergency Alarm 312 %
Car Horn 55.7 %
Gun-shot 66.2 %
Explosion 61.6 %
Automobile 57.9 %
Motorcycle 60.9 %
Helicopter 41.0 %
Wind 36.3 %
Water 39.0 %
Rain 70.3 %
Applause 36.6 %
Crowd 32.6 %
Laughter 48.0 %
Average 49.0 %

QBE retrieval experiment is performed with categorization based approach using acoustically
labelled segments. For each acoustic category, the most similar five segments are retrieved
and accuracy is calculated as a ratio of number of correctly retrieved segments over number

of total retrieved segments.
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CHAPTER 6

USER INTERFACE

In order to present the capabilities of the proposed system, an environmental sound classifica-
tion application is developed in the context of this thesis study. Details of the usage are given

in the following sections.
6.1 Main Window

. Environmental Audio Classification and Retriev... g@

Segment and Query
Open Segmentation Window

Open Query by Example Window

Figure 6.1: Screenshot of the main window.

The screenshot of the main window is shown in Figure 6.1. User can choose to open segmen-

tation and query by example windows.
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6.2 Segmentation Window

This window provides the interface to classify an audio clip and to run temporal and keyword
queries. User can select the audio file from “Select Media” button shown in Figure 6.2. After
the selection, audio play window appears under the selected file box. By clicking on the
“SEGMENT” button, user starts the classification and system saves the classification results
in a file under the directory of the given audio. Results are automatically displayed in the
result table after the classification. Previous results can be loaded and displayed in the result

table using “Select Result File” button.

. Segmentation g@]

D:\workspace\ThesisCassficaionProject Index Duration Start Time End Time Acoustic Ac. Score Semantic| Semantic G... -~
PR e 1] 00:00:01:00  00:00:00:00 00:00:01:00 Sience 0.0 Sience 0.0
1 . 00:00:01:00  00:00:02:00 Laughter 57.9 Meeting 50.38
2 00:00:08:00 00:00:02:00 00:00:10:00 Crowd 73.4 Meeting 50.38
3 00:00:09:00  00:00:10:00  00:00:18:00 Applause 73.1 Meeting 50.38
D:workspace\ThesisClassficaio | || 00:00:01:00  00:00:19:00  00:00:20:00 Water 70.0 Megting 50.38
Select Acoustical Al = 5 00:00:01:00  00:00:20:00 00:00:21:00 Gun 85.0 Meeting 50.38
- 6 00:00:01:00  00:00:21:00 00:00:22:00 Sience 0.0 Sience 0.0
Select Semantical Al - 7 00:00:01;00 00:00:22:00  00:00:23:00 Gun 91.0 Violence 55.6
8 00:00:01:00  00:00:23:00 00:00:24:00 Water 86.0 Violence 55.6
Find 9 00:00:01:00  00:00:24:00  00:00:25:00 Bomb 78.0 Violence 55.6
10 00:00:03:00 00:00:25:00 00:00:28:00 Sience 0.0 Sience 0.0
[ Acoustical score between (%) 11 00:00:04:00  00:00:28:00  00:00:32:00 Motorcydle 73.5 Outdoor 63.28
12 00:00:04:00  00:00:32:00 00:00:36:00 Helicopter 74.0 Qutdoor 63.28
[_] semantical score between (%) 13 00:00:05:00  00:00:36:00 00:00:41:00 Motorcycle 74.8 Qutdoor 63.28
14 00:00:01:00  00:00:41:00  00:00:42:00 Automobile 75.0 Outdoor 63.28
["] buration between (sec) 15 00:00:01:00  00:00:42:00  00:00:43:00 Car Horn 63.0 Qutdoor 63.28
16 00:00:01:00 00:00:43:00 00:00:44:00 Emergency ... 53.0 Outdoor 63.28
[ start Time (min:sec) 17 : 00:00:44:00  00:00:48:00 Helicopter 65.8 Outdoor 63.28
18 00:00:01:00  00:00:48:00 00:00:49:00 Gun 72.0 Qutdoor 63.28
] End Time (min:sec) 19 00:00:04:00 00:00:49:00 00:00:53:00 Sience 0.0 Sience 0.0
20 00:00:01:00  00:00:53:00 00:00:54:00 Water 100.0 Nature 68.0
21 00:00:04:00  00:00:54:00  00:00:58:00 Silence 0.0 Silence 0.0
22 :00:01: 00:00:58:00  00:00:59:00 Water 98.0 Nature 66.64
23 : 00:00:59:00  00:01:03:00 Sience 0.0 Sience 63.0

24 00:01:05:00  00:01:14:12 Sience 0.0 Sience 0o ¥

e

Figure 6.2: Screenshot of segmentation window after segmentation.

Using “Select Acoustical” and “Select Semantical” drop boxes, keywords are selected for
queries of acoustic and semantic classes. In “Find” pane, acoustical and semantic scores,
duration, start and end times of the query can be set. “UPDATE” button updates the table after
the “Find” pane settings. In Figure 6.3 an example query, “Retrieve all possible emergency
alarm segments with an acoustic possibility degree between 70% and 80% and semantically
labelled as outdoor with a semantic possibility degree between 50% and 70%, between the

28" and 49" seconds and with a length between 0 and 5 seconds.”, is illustrated.
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m

[Sdect Medla]l D:\workspace\ThesisCassficaionProject ‘ Index | Duration | Start Time | End Time | Acoustic Ac. Score | Semantic| Semantic G...
11 00:00:04:00  00:00:28:00 00:00:32:00 Motorcycle 73.5 Qutdoor 63.28
12 00:00:04:00 00:00:32:00 00:00:36:00 Helicopter 74.0 Outdoor 63.28
13 00:00:05:00 00:00:36:00 00:00:41:00 Motorcycle 74.8 Outdoor 63.28
14 00:00:01:00  00:00:41:00  00:00:42:00 Automobie 75.0 Qutdoor 63.28

SekctResult e | Dr\workspace\ThesisClassiicat || ¢ 00:00:01:00  00:00:48:00 00:00:49:00 Gun 720 Outdoor 63.28
T —
S—

~Find

Acoustical score between (%) |70 Jand
Semantical score between (%) | 50 _and
Duration between (sec) [0 and
Start Time (min:sec) :
End Time (min:sec) 2

CLEAR SEGMENT>>

Figure 6.3: Screenshot of segmentation window with temporal and keyword-based query

example.

m

[ select Media | D:\workspace\ThesisCiassficaionProject | [ 1 qex | Duraton|  StatTme  End Time
= - = 1 00:01:050 00:29:050 00:30:100

Select Result Fle | | D:\workspace\ThesisClassificaio |

Semantic Class | Outdoor
Acoustic Class | Emergency Alarm
~Find

Point Query

[ range Query between (%) [ Jamd[ ]

[ K-nearest Neighbour Query [ ]

| clear | [ OUERY=> |

Figure 6.4: Screenshot of QBE window with point query example.
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6.3 Query by Example Window

This window provides the interface to run QBE queries. Point, Range and k-Nearest Neigh-
bour queries are supported in this window. User can select the audio file from “Select Media”
button shown in Figure 6.4. User should also provide a result file of the search space us-
ing “Select Result File” button. Using the drop boxes, user can limit the search space with
selected acoustical and semantic classes. Point, Range and kNN queries can be selected in
“Find” pane and results are shown in the result table. In the Figure 6.4, Figure 6.5 and Fig-

ure 6.6, examples of QBE queries are shown.

. Query by Example g@

Select Media | D:\workspace\ThesisClassificaionProject Index Duration Start Time End Time
[}D ol B 1 00:01:050 00:29:050 00:30:100
2 00:01:050 00:45:650 00:46:700

D:\workspace\ThesisClassificaio

Semantic Class Outdoor v
Acoustic Class Emergency Alarm ™
Find
[ Point Query
Range Query between (%) 40 100

[ k-nearest Neighbour Query

[ cear | [ QUERY=> |

Figure 6.5: Screenshot of QBE window with range query example.

6.4 Implementation

This application is implemented using Java programming language. FFmpeg [38] multimedia
framework is used in order to convert the given media file (wav, flv, mp3, avi formats) to the
accepted format (mono wav, 44100 kbps, pcm 16 bit little endian encoding). For feature ex-
traction, MPEG-7 Audio Encoder Project [27] is employed. When the input audio is selected

using “Select Media” button, conversation and feature extraction of the given audio is done
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. Query by Example g@

Select Media | D:\workspace\ThesisClassificaionProject Index Duration Start Time End Time

NE; QE |1 00:01:050  00:29:050  00:30:100
2 00:01:050  00:45:650  00:46:700
3 00:01:050  00:04:490  00:05:540
_ , — 4 00:01:050  00:17:170  00:18:220
Select Result Fie | | D:\workspace\ThesisCiassficaio | | o 00:01:050  00:32:840  00:33:890
Semantic Class Outdoor [+ ]
Acoustic Class Emergency Alarm | v |
Find
[ Paint Query

[ range Query between (%)

K-nearest Neighbour Query

| clear | [ OUERY=> |

Figure 6.6: Screenshot of QBE window with KNN query example.

automatically. “SEGMENT” button starts the acoustical and semantic classifications. During
the acoustic classification LIBSVM [31] is utilized. For semantic classification impact table

values are used (see Section 4.1.4).

This application has query interfaces but no specific query languages are defined. The query
should be created using the buttons and panes provided by the interface. Classification results
are loaded from the result file to the result table in application windows. For keyword and
temporal queries, system basically filters the selected options and show them in the result
table. Therefore, the keyword and temporal query performance is strongly bounded with

classification performance.
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CHAPTER 7

CONCLUSION

A novel environmental sound classification system is proposed in this study. Environmental
sounds are classified into acoustic classes and semantic classes in a two-stage approach in

which the results of acoustic classification are the inputs of the semantic classification.

In order to discover the best classification performance, 22 experiments are performed using
MPEG-7 audio features, MFCC and ZCR -in a standalone and combined manner- with HMM
and SVM classifiers. These experiments shows that the best representative feature is MPEG-
7 ASF, ASC, ASS and AH feature combination applied on SVM classifier with the average
F-measure of 80.6%. The second best classification result of 70.6% is obtained from the

experiment of MFCC, MPEG-7 ASC, ASS and AH combination with HMM classifier.

In acoustic classification stage, one-second audio segments is classified into selected acoustic
classes such as emergency alarm, car horn, gun-shot, explosion, automobile, motorcycle,
helicopter, wind, water, rain, applause, crowd and laughter. These acoustically classified
segments are used as input for the semantic classification of outdoor, nature, meeting and
violence semantic classes. Instead of model training, a new approach is proposed resulting
87.4% F-measure. To have ground truth for the proposed approach an SVM classification is
also experimented but the average F-measure is calculated as 72.8% which is far-behind the

proposed approach.

In environmental sound classification, better results are reported in [7,8,10,11,21,22]. How-
ever, relatively complex and more audio classes are considered in this study. For instance, the
following environmental sounds are considerably similar and distinguishing between them is

even difficult for human perception:
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gun-shot and explosion,

motorcycle, helicopter and automobile,

e water, rain and wind,

crowd and laughter

We believe that, as the number of considered classes increases, system becomes relatively
complex and the success of the classifier decreases. A solution to this problem is to extend

the data set for similar sound classes.

In order to retrieve relevant data from the classification results, several types of queries are
supported. User can query with keyword, temporal information and similar audio. QBE
retrieval experiment shows that accuracy for all classes is 49.0%. These capabilities are im-
plemented on the environmental audio classification and retrieval tool. This tool provides an

efficient environment for the user in order to classify audio samples and retrieve the content.

This study contributes an initial idea for two-stage classification providing satisfying results.

To improve this idea further, following items are counted as future work:

The data sets for acoustic and semantic classifications can be enhanced in order to

increase the model training success.

o New semantic classes and acoustic classes might be classified to extend the coverage

of the system.

e The experiments for acoustic classification can be repeated with other classification

techniques.

e A combination of HMM and SVM classifiers can be introduced for acoustic classifica-

tion in order to achieve better results.
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APPENDIX A

CLASSIFICATION RESULTS AND CONFUSION MATRICES
OF ACOUSTICAL EXPERIMENTS

A.1 Classification Results

Table A.1: Recall, precision and f-measure values for ASP feature with HMM classification.

ASP feature with HMM
Recall Precision FValue
Emergency Alarm 37.3 % 482 % 42.1 %

Car Horn 50.0 % 272 % 352 %
Gun-shot 36.0 % 81.3% 50.0%
Explosion 39.0 % 284 % 32.8%
Automobile 9.0 % 70% 79 %
Motorcycle 31.1 % 281 % 29.5%
Helicopter 69.4 % 317 % 43.6 %
Wind 25.0 % 298% 272 %
Water 13.1 % 302% 183 %
Rain 532 % 39.8% 45.6 %
Applause 31.6 % 191 % 23.8%
Crowd 72.5 % 432 % 542 %
Laughter 18.9 % 411% 259 %
Average 37.4 % 350% 36.2%
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Table A.2: Recall, precision and f-measure values for ASF feature with HMM classification.

ASF feature with HMM
Recall Precision FValue
Emergency Alarm 81.0 % 939% 87.0%

Car Horn 30.0 % 60.0% 40.0 %
Gun-shot 26.3 % 569 % 359 %
Explosion 28.1 % 157 % 20.2 %
Automobile 324 % 438 % 373 %
Motorcycle 45.0 % 544 % 493 %
Helicopter 64.4 % 81.7% 72.0 %
Wind 58.6 % 790% 673 %
Water 59.8 % 441 % 50.8 %
Rain 82.2 % 417% 553 %
Applause 40.0 % 60.0% 48.0 %
Crowd 90.3 % 50.0% 64.3 %
Laughter 74.3 % 55.0% 63.2%
Average 54.8 % 56.6 % 55.7 %

Table A.3: Recall, precision and f-measure values for ASC feature with HMM classification.

ASC feature with HMM
Recall Precision FValue
Emergency Alarm 43.6 % 37.9% 40.5 %

Car Horn 16.6 % 86% 113 %
Gun-shot 252 % 69.0% 37.0%
Explosion 21.8 % 108 % 145 %
Automobile 24.6 % 197 % 219 %
Motorcycle 30.3 % 389% 34.1%
Helicopter 41.5 % 326 % 36.5%
Wind 30.4 % 321% 312%
Water 4.0 % 137% 62%
Rain 33.6 % 404 % 36.7 %
Applause 23.7 % 11.1% 151 %
Crowd 83.8 % 221% 350%
Laughter 0.0 % 00% 0.0%
Average 29.2 % 259% 27.4 %
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Table A.4: Recall, precision and f-measure values for ASS feature with HMM classification.

ASS feature with HMM
Recall Precision FValue
Emergency Alarm  30.8 % 41.1% 352 %

Car Horn 33% 62% 43 %
Gun-shot 13.9 % 381% 204 %
Explosion 9.3 % 6.0% 73%
Automobile 22.0 % 136 % 16.8 %
Motorcycle 38.5 % 237% 293 %
Helicopter 17.7 % 133% 152 %
Wind 29.5 % 244 % 26.7 %
Water 5.0% 169% 7.8%
Rain 46.7 % 37.5% 41.6 %
Applause 28.8 % 133% 182 %
Crowd 11.2 % 70% 8.6 %
Laughter 14.8 % 126 % 13.6 %
Average 20.9 % 195% 20.2 %

Table A.5: Recall, precision and f-measure values for MFCC feature with HMM classifica-
tion.

MEFCC feature with HMM
Recall Precision FValue
Emergency Alarm  77.2 % 96.6 % 85.8 %

Car Horn 333 % 312% 322 %
Gun-shot 51.1 % 839 % 63.5%
Explosion 68.7 % 309% 427 %
Automobile 532 % 539% 53.5%
Motorcycle 63.1 % 80.2% 70.6 %
Helicopter 84.7 % 781 % 813 %
Wind 60.8 % 82.3% 70.0 %
Water 77.1 % 60.0% 67.5%
Rain 64.4 % 61.6% 63.0%
Applause 65.0 % 619% 63.4%
Crowd 93.5 % 517% 66.6 %
Laughter 64.8 % 695 % 67.1%
Average 65.9 % 64.8% 653 %
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Table A.6: Recall, precision and f-measure values for AH feature with HMM classification.

AH feature with HMM
Recall Precision FValue
Emergency Alarm  54.5 % 563 % 55.4%

Car Horn 40.0 % 16.2 % 23.0 %
Gun-shot 12.8 % 447 % 199 %
Explosion 17.1 % 126 % 145 %
Automobile 11.6 % 59% T7.8%
Motorcycle 13.1 % 219% 164 %
Helicopter 36.7 % 202 % 261 %
Wind 12.1 % 205% 153 %
Water 18.8 % 420% 26.0%
Rain 42.9 % 464 % 44.6 %
Applause 20.3 % 96% 13.1%
Crowd 51.6 % 155% 23.8%
Laughter 0.0 % 00% 00%
Average 255 % 240 % 2477 %

Table A.7: Recall, precision and f-measure values for ZCR feature with HMM classification.

ZCR feature with HMM
Recall Precision FValue

Emergency Alarm 47.8 % 403 % 43.7 %

Car Horn 133 % 21.0% 163 %
Gun-shot 18.1 % 65.7% 28.4 %
Explosion 4.6 % 83% 6.0%
Automobile 350 % 313% 33.1%
Motorcycle 16.3 % 145% 154 %
Helicopter 85.5 % 335% 482 %
Wind 16.5 % 253% 20.0%
Water 42.6 % 348 % 383 %
Rain 34.5 % 389% 36.6 %
Applause 13.5 % 258 % 17.7 %
Crowd 33.8 % 143 % 20.1 %
Laughter 1.3 % 6.6% 22%
Average 279 % 277 % 27.8%
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Table A.8: Recall, precision and f-measure values for ASF, ASC, ASS and ZCR feature
combination with HMM classification.

ASF+ASC+ASS+ZCR feature with HMM
Recall Precision FValue
Emergency Alarm 86.8 % 859 % 86.3 %

Car Horn 30.0 % 60.0% 40.0 %
Gun-shot 56.3 % 76.5% 64.9 %
Explosion 53.1 % 33.0% 40.7 %
Automobile 54.5 % 56.7% 55.6 %
Motorcycle 62.2 % 80.8% 70.3 %
Helicopter 85.5 % 76.5% 80.8 %
Wind 56.0 % 73.8% 63.7 %
Water 70.5 % 574 % 633 %
Rain 62.6 % 577% 60.0 %
Applause 35.0 % 512% 415 %
Crowd 93.5 % 46.0% 61.7 %
Laughter 52.7 % 60.9% 56.5%
Average 61.4 % 628 % 62.1%

Table A.9: Recall, precision and f-measure values for ASF, ASC, ASS and AH feature com-
bination with HMM classification.

ASF+ASC+ASS+AH feature with HMM
Recall Precision FValue
Emergency Alarm  94.7 % 942 % 94.4 %

Car Horn 16.7% 100.0% 28.6 %
Gun-shot 33.1 % 74.6 % 458 %
Explosion 48.4 % 301% 37.1%
Automobile 79.2 % 763 % 77.7 %
Motorcycle 75.4 % 84.4% 79.6 %
Helicopter 85.6 % 92.7% 88.9 %
Wind 66.1 % 76.0% 70.7 %
Water 70.1 % 56.9% 63.0%
Rain 77.6 % 512% 61.7%
Applause 67.8 % 579 % 62.5 %
Crowd 98.4 % 559% 713 %
Laughter 74.3 % 67.1% 70.5 %
Average 68.2 % 70.5% 69.4 %
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Table A.10: Recall, precision and f-measure values for MFCC, ASC, ASS and ZCR feature
combination with HMM classification.

MFCC+ASC+ASS+ZCR feature with HMM
Recall Precision FValue
Emergency Alarm 88.9 % 90.8% 89.8%

Car Horn 26.6 % 320% 29.0 %
Gun-shot 46.9 % 748 % 57.7 %
Explosion 70.3 % 321 % 44.1 %
Automobile 41.5 % 477 % 444 %
Motorcycle 76.2 % 720% 74.1 %
Helicopter 77.1 % 70.0 % 73.3 %
Wind 68.9 % 919% 788 %
Water 75.1 % 61.1% 67.4%
Rain 69.1 % 71.1% 70.1 %
Applause 533 % 56.1 % 547 %
Crowd 85.4 % 623 % 721 %
Laughter 55.4 % 64.0% 59.4 %
Average 64.2 % 63.5% 639 %

Table A.11: Recall, precision and f-measure values for MFCC, ASC, ASS and AH feature
combination with HMM classification.

MFCC+ASC+ASS+AH feature with HMM
Recall Precision FValue
Emergency Alarm  90.4 % 939% 92.1%

Car Horn 60.0 % 66.6 % 63.1%
Gun-shot 59.2 % 77.3% 67.0%
Explosion 67.1 % 328% 441 %
Automobile 59.7 % 73.0% 65.7 %
Motorcycle 73.7 % 81.8% 7T71.5%
Helicopter 70.3 % 728 % T71.5 %
Wind 70.4 % 81.8% 75.7 %
Water 70.5 % 69.8% 70.2%
Rain 77.5 % 66.4% 71.5%
Applause 62.7 % 596 % 61.1 %
Crowd 90.3 % 629% 741 %
Laughter 72.9 % 720 % 72.4 %
Average 71.1 % 70.0 % 70.6 %
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Table A.12: Recall, precision and f-measure values for ASP feature with SVM classification.

ASP feature with SVM
Recall Precision FValue

Emergency Alarm 36.3 % 472 % 41.0 %

Car Horn 233 % 17.0% 19.7 %
Gun-shot 27.8 % 68.0% 39.5%
Explosion 39.0 % 22.7% 28.7 %
Automobile 6.4 % 89% T75%
Motorcycle 45.9 % 259% 33.1%
Helicopter 37.2 % 280% 31.9%
Wind 4.3 % 312% 75 %
Water 57.8 % 228 % 32.8%
Rain 09% 1000% 18%
Applause 11.6 % 114% 11.5%
Crowd 8.0 % 312% 128 %
Laughter 22.9 % 485% 31.1%
Average 24.7 % 356 % 292 %

Table A.13: Recall, precision and f-measure values for ASF feature with SVM classification.

ASF feature with SVM
Recall Precision FValue
Emergency Alarm  80.0 % 98.7% 88.3 %

Car Horn 40.0 % 85.7% 54.5 %
Gun-shot 25.0 % 752 % 37.6%
Explosion 39.0 % 36.7% 37.8%
Automobile 28.5 % 59.4% 385 %
Motorcycle 295 % 53.7% 38.0 %
Helicopter 70.3 % 790 % 74.4 %
Wind 543 % 84.0% 659 %
Water 76.6 % 380% 50.8%
Rain 50.4 % 36.7% 42.5 %
Applause 8.3 % 454 % 14.0 %
Crowd 77.4 % 564 % 653 %
Laughter 16.2 % 60.0% 25.5%
Average 45.8 % 622 % 52.8%
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Table A.14: Recall, precision and f-measure values for ASC feature with SVM classification.

ASC feature with SVM
Recall Precision FValue
Emergency Alarm 48.4 % 328% 39.1%

Car Horn 333 % 54% 93 %
Gun-shot 0.0 % 00% 0.0%
Explosion 32.8 % 7.6 % 123 %
Automobile 1.2 % 27% 1.7%
Motorcycle 0.0 % 00% 0.0%
Helicopter 33.0 % 26.1 % 29.2 %
Wind 52 % 37% 43 %
Water 9.6 % 139% 11.4%
Rain 0.0 % 00% 0.0%
Applause 0.0 % 00% 0.0%
Crowd 64.5 % 158 % 254 %
Laughter 0.0 % 00% 0.0%
Average 17.5 % 83% 113 %

Table A.15: Recall, precision and f-measure values for ASS feature with SVM classification.

ASS feature with SVM
Recall Precision FValue
Emergency Alarm  26.0 % 494 % 34.1 %

Car Horn 0.0 % 00% 0.0 %
Gun-shot 7.1 % 48.7% 12.4 %
Explosion 20.3 % 79% 114 %
Automobile 44.1 % 142% 21.5%
Motorcycle 352 % 263 % 30.1 %
Helicopter 313 % 140% 193 %
Wind 0.0 % 00% 0.0 %
Water 19.7 % 140% 164 %
Rain 4.6 % 46% 4.6 %
Applause 0.0 % 00% 0.0%
Crowd 11.2 % 6.1% 80%
Laughter 0.0 % 00% 0.0 %
Average 153 % 142 % 14.8 %
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Table A.16: Recall, precision and f-measure values for MFCC feature with SVM classifica-
tion.

MFCC feature with SVM
Recall Precision FValue

Emergency Alarm  82.0 % 911 % 863 %

Car Horn 533 % 29.0% 37.6%
Gun-shot 40.9 % 70.7% 519 %
Explosion 50.0 % 278 % 35.7 %
Automobile 42.8 % 440 % 43.4 %
Motorcycle 47.5 % 753 % 58.2%
Helicopter 73.7 % 654 % 69.3 %
Wind 53.0 % 726 % 61.3 %
Water 83.7 % 488 % 61.6%
Rain 28.9 % 775% 42.1 %
Applause 20.0 % 292 % 237 %
Crowd 93.5 % 442 % 60.1 %
Laughter 513 % 575% 54.2 %
Average 55.4 % 56.4% 559 %

Table A.17: Recall, precision and f-measure values for AH feature with SVM classification.

AH feature with SVM
Recall Precision FValue
Emergency Alarm  62.5 % 642 % 63.4%

Car Horn 33% 200% 5.7 %
Gun-shot 17.3 % 304% 22.1 %
Explosion 87.5 % 55% 103 %
Automobile 9.0 % 159% 11.5%
Motorcycle 1.6 % 52% 25%
Helicopter 0.0 % N% 00%
Wind 8.6 % 277 % 132 %
Water 0.0 % 00% 0.0 %
Rain 0.0 % 00% 0.0 %
Applause 0.0 % 00% 0.0%
Crowd 0.0 % 00% 0.0 %
Laughter 0.0 % 00% 0.0%
Average 14.6 % 13.0% 13.7%
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Table A.18: Recall, precision and f-measure values for ZCR feature with SVM classification.

ZCR feature with SVM
Recall Precision FValue
Emergency Alarm 67.5 % 250% 364 %

Car Horn 36.6 % 40% 73 %
Gun-shot 13.9 % 186 % 159 %
Explosion 12.5 % 42% 63 %
Automobile 0.0 % 00% 0.0%
Motorcycle 9.0 % 104 % 9.6 %
Helicopter 0.0 % 00% 00%
Wind 0.0 % 00% 0.0 %
Water 0.0 % 00% 0.0%
Rain 0.0 % 00% 0.0%
Applause 0.0 % 00% 0.0%
Crowd 33.8 % 10.0% 15.4 %
Laughter 0.0 % 00% 0.0%
Average 13.3 % 55% 7.8%

Table A.19: Recall, precision and f-measure values for MFCC, ASC, ASS and AH feature
combination with SVM classification.

MFCC+ASC+ASS+AH feature with SVM
Recall Precision FValue
Emergency Alarm  93.0 % 925% 92.8%

Car Horn 533 % 76.1% 62.7 %
Gun-shot 554 % 76.1 % 64.1 %
Explosion 64.0 % 383% 479 %
Automobile 49.3 % 622 % 55.0%
Motorcycle 77.0 % 770 % 77.0 %
Helicopter 81.3 % 76.8% 79.0 %
Wind 67.8 % 90.6% 77.6%
Water 78.1 % 60.6 % 68.2 %
Rain 66.3 % 83.5% 739 %
Applause 37.2 % 709 % 48.8 %
Crowd 90.3 % 495% 64.0%
Laughter 72.9 % 65.0% 68.7 %
Average 68.2 % 70.7 % 69.4 %
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Table A.20: Recall, precision and f-measure values for MFCC, ASC, ASS and ZCR feature
combination with SVM classification.

MFCC+ASC+ASS+ZCR feature with SVM
Recall Precision FValue
Emergency Alarm 87.8 % 922 % 90.0 %

Car Horn 533 % 533% 533 %
Gun-shot 54.1 % 74.6 % 62.77 %
Explosion 67.1 % 333% 445 %
Automobile 532 % 476 % 50.3 %
Motorcycle 61.4 % 742 % 67.2 %
Helicopter 74.5 % 771 % 758 %
Wind 65.5 % 938% 77.1%
Water 74.1 % 61.0% 66.9 %
Rain 64.4 % 821% 722 %
Applause 26.6 % 41.0% 323 %
Crowd 93.5 % 483 % 63.7 %
Laughter 67.5 % 63.2% 653 %
Average 64.9 % 64.7% 64.8%

Table A.21: Recall, precision and f-measure values for ASF, ASC, ASS and AH feature
combination with SVM classification.

ASF+ASC+ASS+AH feature with SVM
Recall Precision FValue
Emergency Alarm  84.3 % 9.4 % 91.1 %

Car Horn 74.2 % 46.0% 56.8 %
Gun-shot 61.2 % 872% T1.8%
Explosion 79.4 % 504 % 61.7 %
Automobile 922 % 935% 92.8%
Motorcycle 87.1 % 99.1% 92.7 %
Helicopter 95.8 % 89.8% 92.7 %
Wind 75.0 % 87.0% 80.6 %
Water 81.4 % 559% 66.3 %
Rain 53.9 % 82.7% 652 %
Applause 75.0 % 934 % 833 %
Crowd 96.8 % 89.7% 93.1 %
Laughter 91.9 % 739% 81.9%
Average 80.6 % 80.6 % 80.6 %
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Table A.22: Recall, precision and f-measure values for ASF, ASC, ASS and ZCR feature
combination with SVM classification.

ASF+ASC+ASS+ZCR feature with SVM
Recall Precision F-measure
Emergency Alarm  80.0 % 95.5 % 87.1 %

Car Horn 16.6 % 83.3 % 27.7 %
Gun-shot 42.8 % 83.2 % 56.5 %
Explosion 76.5 % 34.0 % 47.1 %
Automobile 41.5 % 47.0 % 44.1 %
Motorcycle 50.8 % 75.6 % 60.7 %
Helicopter 77.1 % 91.0 % 83.4 %
Wind 60.3 % 74.4 % 66.6 %
Water 67.0 % 60.8 % 63.7 %
Rain 59.8 % 68.8 % 64.0 %
Applause 28.3 % 48.5 % 35.7 %
Crowd 83.8 % 52.5 % 64.5 %
Laughter 12.1 % 34.6 % 18.0 %
Average 53.6 % 65.3 % 58.9 %

A.2 Confusion Matrices

Confusion matrix is a specific table visualizing performance of typically supervised learning
algorithms. Each column of the matrix represents the instances in a predicted class while each
row represents the instances in an actual class. All correct guesses are located in the diagonal
of the table which are surrounded by boxes. Following 22 confusion matrices are results of

the acoustical classification experiments.
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Table A.23: Confusion matrix for ASP feature with HMM classification.

Confusion Matrix for ASP feature with HMM
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Table A.24: Confusion matrix for ASF feature with HMM classification.

Confusion Matrix for ASF feature with HMM
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Table A.27: Confusion matrix for MFCC feature with HMM classification.

Confusion Matrix for MFCC feature with HMM
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Table A.30: Confusion matrix for ASF, ASC, ASS and ZCR feature combination with HMM classification.

Confusion Matrix for ASF+ASC+ASS+ZCR feature with HMM
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Table A.31: Confusion matrix for ASF, ASC, ASS and AH feature combination with HMM classification.

Confusion Matrix for ASF+ASC+ASS+AH feature with HMM
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Table A.32: Confusion matrix for MFCC, ASC, ASS and ZCR feature combination with HMM classification.

Confusion Matrix for MFCC+ASC+ASS+ZCR feature with HMM
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Table A.33: Confusion matrix for MFCC, ASC, ASS and AH feature with HMM classification.

Confusion Matrix for MFCC+ASC+ASS+AH feature with HMM
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Table A.34: Confusion matrix for ASP feature with SVM classification.

Confusion Matrix for ASP feature with SVM
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Table A.35: Confusion matrix for ASF feature with SVM classification.

Confusion Matrix for ASF feature with SVM
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Table A.36: Confusion matrix for ASC feature with SVM classification.

Confusion Matrix for ASC feature with SVM
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Table A.38: Confusion matrix for MFCC feature with SVM classification.

Confusion Matrix for MFCC feature with SVM
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Table A.39: Confusion matrix for AH feature with SVM classification.

Confusion Matrix for AH feature with SVM
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Table A.40: Confusion matrix for ZCR feature with SVM classification.

Confusion Matrix for ZCR feature with SVM
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Table A.41: Confusion matrix for ASF, ASC, ASS and ZCR feature with SVM classification.

Confusion Matrix for ASF+ASC+ASS+ZCR feature with SVM
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Table A.42: Confusion matrix for ASF, ASC, ASS and AH feature with SVM classification.

Confusion Matrix for ASF+ASC+ASS+AH feature with SVM
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Table A.43: Confusion matrix for MFCC, ASC, ASS and ZCR feature with SVM classification.

Confusion Matrix for MFCC+ASC+ASS+ZCR feature with SVM
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Table A.44: Confusion matrix for MFCC, ASC, ASS and AH feature with SVM classification.

Confusion Matrix for MFCC+ASC+ASS+AH feature with SVM
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APPENDIX B

CONFUSION MATRICES OF SEMANTIC EXPERIMENTS

Table B.1: Confusion matrix for semantic classification experiment with GA.

Experiment with GA

O

e e £ Z

e = D —

= & o] 9

o Z. = >

Outdoor 964 92 186 2

Nature 0 (1332 0 19

Meeting 0 109 | 886 0
Violence 120 72 18 974

Table B.2: Confusion matrix for semantic classification experiment with SVM.

Experiment with SVM
O
g 0§ 2
o] =] D _
= = Q 2
S Z. = >
Outdoor 639 139 64 402
Nature 15 1276 3 57
Meeting 25 103 | 747 120
Violence 111 140 91 |844
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APPENDIX C

SMOOTHING EXAMPLES

Table C.1: An example segment sequence before smoothing.

An example segment sequence just after the acoustic classification

Classified Classification | Second Second
Acoustic Class | Score Possible Class | Possible Score
Water 0.71 Helicopter 0.55

Applause 0.82 Water 0.68

Rain 0.69 Water 0.52

Water 0.77 Automobile 0.53

Water 0.69 Helicopter 0.64

Table C.2: An example segment sequence after smoothing.

Segment sequence in Table C.1 after smoothing process

Classified Classification | Second Second
Acoustic Class | Score Possible Class | Possible Score
Water 0.71 Helicopter 0.55

Water 0.74 Water 0.68

Water 0.74 Water 0.52

Water 0.77 Automobile 0.53

Water 0.69 Helicopter 0.64
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APPENDIX D

HMM STATE COUNT OPTIMIZATION EXPERIMENT

In order to explore the best state count for HMM classification, a small group of experiment
is conducted with ASF+ASC+ASS+AH feature. The dataset for acoustic classes is used for
this experiment. 5-state HMM provides better F-measure compared to 4-state, 6-state and

7-state HMMs.

Table D.1: Classification performance of 4-state HMM.

Recall Precision FValue
Emergency Alarm  90.9 % 90.0% 90.4 %

Car Horn 20.0 % 85.7% 324 %
Gun 27.5 % 68.8% 393 %
Bomb 43.7 % 243% 312 %
Automobile 50.6 % 448 % 47.5 %
Motorcycle 57.3 % 679 % 62.2%
Helicopter 62.7 % 87.0% 729 %
Wind 66.0 % 71.6 % 68.7 %
Water 66.4 % 559% 60.7 %
Rain 71.9 % 452 % 555 %
Applause 45.7 % 500% 47.7 %
Crowd 90.3 % 440% 59.2 %
Laughter 62.1 % 489 % 54.7 %
Average 58.1 % 603 % 59.2 %
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Table D.2: Classification performance of 5-state HMM.

ASF+ASC+ASS+AH feature with HMM
Recall Precision FValue
Emergency Alarm  94.7 % 942 % 94.4 %

Car Horn 16.7%  100.0 % 28.6 %
Gun-shot 33.1 % 74.6 % 45.8 %
Explosion 48.4 % 30.1 % 37.1%
Automobile 79.2 % 763 % T77.7 %
Motorcycle 75.4 % 84.4% 79.6 %
Helicopter 85.6 % 92.7% 88.9 %
Wind 66.1 % 76.0% 70.7 %
Water 70.1 % 569 % 63.0%
Rain 77.6 % 51.2% 61.7 %
Applause 67.8 % 579 % 62.5 %
Crowd 98.4 % 559% 713 %
Laughter 74.3 % 67.1% 70.5%
Average 68.2 % 705 % 69.4 %

Table D.3: Classification performance of 6-state HMM.

Recall Precision FValue
Emergency Alarm  93.0 % 88.8% 90.9 %

Car Horn 20.0 % 75.0% 31.5%
Gun 40.0 % 67.5% 502 %
Bomb 43.7 % 271 % 33.5%
Automobile 57.1 % 543% 55.6%
Motorcycle 573 % 7717 % 66.0 %
Helicopter 67.7 % 86.0% T75.8%
Wind 65.2 % 73.5% 69.1 %
Water 73.0 % 573% 64.2 %
Rain 73.8 % 533% 61.9%
Applause 49.1 % 50.8 % 50.0 %
Crowd 91.9 % 49.1% 64.0 %
Laughter 62.1 % 613% 61.7%
Average 61.1 % 63.2% 62.1%
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Table D.4: Classification performance of 7-state HMM.

Recall Precision FValue
Emergency Alarm  89.8 % 89.8% 89.8%

Car Horn 233 % 388% 29.1 %

Gun 354 % 69.6% 47.0%

Bomb 53.1% 265% 354 %

Automobile 45.4 % 66.0% 53.8%

Motorcycle 72.1 % 752 % 73.6 %

Helicopter 80.5 % 89.6 % 84.8%

Wind 61.7 % 845% T71.3%

Water 70.5 % 569 % 63.0%

Rain 77.5 % 51.8% 62.1%

Applause 38.9 % 547 % 45.5 %

Crowd 93.5 % 495 % 64.8%

Laughter 64.8 % 558 % 60.0 %

Average 62.0 % 622 % 62.1 %
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Figure D.1: Results of state count optimization experiment.
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