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Metallic nanoparticles (NPs) with various elemental composition, size, shape and 

physical or chemical properties has become active field of research. Among all the 

metal NPs noble metal ones are receiving much attention due to their special optical 

properties which make them useful for different applications. Noble metal NPs have 

bright colors resulting from strong surface plasmon resonance absorption usually in 

the visible region. The colors are size and shape dependent and provide the tuning of 

optical properties. The optical properties of NPs are also strongly depending on the 

nature of the NPs surface which plays a crucial role on chemical sensing. Therefore, 

surface modification of NPs has become increasingly important. In this study, gold 

NPs were prepared in aqueous phase by seed-mediated growth method. To enhance 

the optical properties, surface functionalization was performed by coating NPs with 

silver. The coating process was achieved by chemical reduction of silver ions on NPs 
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surface. Thickness of silver layer on the NPs were attempted to be controlled by the 

amount of silver salt added into NPs solution. Coating process of different types of 

gold NPs (rod, octahedral, star) was done by the same procedure. Moreover, this 

attempt yielded control over silver layer thickness on sphere, rod and octahedral 

shaped gold NPs, but not on branched NPs. The structure, composition and 

spectroscopic properties of Au-Ag core shell NPs were characterized by UV-Vis 

spectroscopy, Field Emission Transmission Electron Microscope (FE-TEM) and 

Energy-dispersive X-ray (EDX) studies, Scanning Electron Microscope (SEM), and 

X-Ray Photoelectron Spectroscopy (XPS). The analysis showed that all NPs studied 

were successfully coated with silver and promising for further explorations in 

sensing and imaging applications. 

Keywords: Gold NPs, Core-shell NPs 
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Ekim 2012, 85 sayfa 

 

 

Çeşitli elemental kompozisyona, boyuta, şekle ve fiziksel veya kimyasal özelliklere 

sahip metalik nanoparçacıklar aktif bir araştırma alan haline gelmiştir. Metal arasında 

soy metal nanoparçacıklar değişik optik özellikleri  nedeniyle çok ilgi çekmektedir. 

Soy metal nanoparçacıklar genellikle görünür bölgede güçlü bir yüzey plazmon 

rezonans doğurma özelliğinden dolayı parlak bir renge sahiptir. Bu renkler boyut ve 

şekle bağlıdır ve optik özellikleri ayarlamada büyük katkıda bulunur. Bunların yanı 

sıra, metal nanoparçacıkların fonksiyonel özelliklerinin arttırılması bakımından, 

yüzey niteliğine bağlı bulunmaktadır. Bu nedenle, nanoparçacıkların yüzey 

modifikasyonu her geçen gün artarak önem kazanmaktadır. Bu çalışmada, 

nanoparçacıkların tohum-aracılı büyüme yöntemi ile sulu fazda  hazırlanmıştır. Optik 

özellikleri geliştirmek için, yüzey gümüş nanoparçacıklarla kaplayarak 
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fonksiyonlandırma yapıldı. Kaplama işlemi nanoparçacıklar yüzeyinde gümüş 

iyonları kimyasal indirgeme ile elde edilmiştir. Nanoparçacıklar üzerindeki gümüş 

tabaka kalınlığı eklenen gümüş tuz miktarıyla control edilmiştir. Farklı şekildeki altın 

nanoparçacıkların kaplama işlemi aynı prosedürle yapılmıştır. Dallı nanoparçaçıklar 

dışında, küre, çubuk ve oktahedral şekilli altın nanoparçacıkları için gümüş 

tabakasıyla kaplama prosedürü ve tabaka kalınlığı kontrolü başarıyla yapılmıştır. 

Au@Ag çekirdek kabuk nanoparçacıkların yapısı, bileşimi ve spektroskopik 

özellikleri Elektron Mikroskop (SEM) UV-Vis Spektroskopi, Alan Emisyonu 

Transmisyon Elektron Mikroskobu (FE-TEM) ve Enerji Dağılımlı X-ışını (EDX), ve 

X-ışınları Fotoelektron Spektroskopisi (XPS) çalışmaları ile karakterize edildi. Altın 

nanoparçacıkları başarıyla gümüş tozuyla kaplandı ve algılama/görüntüleme 

uygulamalarında daha fazla araştırma için ümit olduğunu gösterdi.  

 

Anahtar kelimeler: altın nanoparçacıklar, çekirdek kabuk nanoparçacıklar 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 

The word “nanotechnology” covers the brilliant properties of matter and devices on 

the 1-100 nm scale. In a way, the nanomaterials are very old and used since ancient 

time. For instance, nanoparticles (NPs) have been used in art for more than 2000 

years as dyes in ceramics and paintings because of their beautiful colors [2]. In mid-

1800s Michael Faraday prepared brightly colored gold NPs solutions and they are 

still being displayed in Royal Institution’s Faraday Museum in London [3]. Then, 

Richard Feynman set the stage for the nanotechnology revolution in his famous 

lecture “there is plenty of room at the bottom”, in which he predicted the inevitable 

miniaturization of devices into nanometer size with enhanced performances [4].  

 

The advent of new analysis techniques lead to development of new, innovative 

synthesis methods and discovery of new NPs with better understanding. Now there 

are numerous ways (i.e. chemical, physical, physicochemical and biological) of 

synthesizing NPs in different media. Among these methods, chemical methods have 

the longest history and are the most commonly utilized ones. Synthesis of 10-20 nm 

gold NPs by Turkevich [5] and Frens [6] in 1951 with a simple, effective solution 

based method opened up the ways of synthesizing new NPs by just chemical 

reduction in solution [7]. 

 

Among all the metal NPs noble metal ones are especially exciting due to their special 

optoelectronic properties and applications associated with those properties [8-12]. 

Noble metal NPs have beautiful colors resulting from strong surface plasmon 

resonance absorption usually in the visible region [8, 10, 11, 13-17].  The colors of 
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the NPs vary with their size and shape. Therefore, optical properties of NPs can be 

tuned by modifying their sizes and shapes [10, 11, 14, 15, 18-20]. Noble metal NPs 

with anisotropic morphologies yield strong electromagnetic field at the tips of the 

NPs with sharp features [1, 21-24]. This electromagnetic field processed at the metal 

surface/tip where molecules absorbed. By this way, the molecules can be detected in 

trace amounts. The special optical properties of anisotropic shaped noble metal NPs 

lead them to various uses in sensing and imaging techniques such as Surface 

Enhanced Raman Scattering (SERS) spectroscopy [8, 11, 13, 14, 19-22, 25-35]. 

Surface of the metal NPs play an important role on enhancing particles’ 

functionalities and controlling the properties (e.g. reactivity, stability, electronic 

structures, etc.) to fit to a particular application [9, 25, 36]. Therefore, possibilities of 

chemical modification of the NPs surface lead to development of new research 

avenues where the functionalized particles can be used in construction of super 

lattices, targeted drug delivery, therapeutic agents in cancer imaging and etc. [14, 37-

39]. Functionalization of NPs surface can be achieved by coating with various 

materials such as polymers, biofunctional molecules, or with different metal to obtain 

core-shell NPs system [40-45]. One of the very attractive core-shell NPs system is 

gold core and silver shell. Gold colloids has the advantage of easier preparation with 

higher degree of homogeneity compared to silver colloids. However, their optical 

properties are not as superior as the ones of silver. Therefore, coating gold NPs with 

silver is a very promising practice to have a NPs system with high structural 

homogeneity and enhanced optical properties.  

 

In this study, gold NPs with various structural morphologies (i.e. sphere, rod, 

octahedral, branched) were coated with silver. The used method has the various 

advantages such as being simple, reproducible, and affordable. The synthesized 

Au@Ag core-shell NPs are believed to be promising addition to growing class of 

hybrid systems.  
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Moreover, the optical properties of anisotropic gold and silver NPs rely on their 

aspect ratio and they are tunable throughout the visible, near infrared and infrared 

regions of the spectrum. In addition to that, the plasmon resonance absorption of 

anisotropic shapes is even stronger causing increased detection sensitivity. Finally, 

strength of absorption in isotropic materials is hardly depend on its size which cause 

limitation in sensing application. However, in the case of anisotropic materials all 

properties are strongly dependent on their size and shape [59]. This is one reason of 

why this work was focused on anisotropic shape of noble metal NPs. 

 

 In solution phase, thermodynamic and kinetic parameters are responsible for the 

final shapes of noble metal nanocrystals. Thermodynamic parameters consist of 

temperature and reduction potential, while kinetic parameters consist of reactant 

concentration, diffusion, solubility, and reaction rate [46]. Anisotropic material 

growth in kinetic manner, since it identifies preferential and directional growth. 

Preferential absorption of capping molecules to specific facets can force or enhance 

the crystal growth in some direction. This is how various types of NPs are produced. 

By modifying and controlling these parameters nucleation and growth stages can be 

controlled.  Finally, desired shape can be obtained [46].  

 

The preparation of different types of noble metal NPs such as silver and gold has 

received more attention. Creating the desired size, shape and monodispersity of NPs 

is required continuous working on it. Therefore, developing and refining of new 

synthetic techniques is an important task.  By better understanding of NPs behavior, 

lead to use of these NPs in more applications. Thus, the preparation of NPs is 

continuous to be an active area of research.  

 

1.2 Optical properties  of noble metal NPs 

 

The most magnificent example showing the beautiful colors of noble metal NPs 

Lycurgus Cup from the 4th century AD. Analysis has revealed that the cup glass 

contains small amounts of silver and gold (~ 70 nm).  The cup looks green in the 

reflected light and appears red when a light is shone from inside (Fig 1.6). This is 
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many NPs shapes. This lack leads to a barrier to understanding their spectra 

quantitatively and to taking further information about their near field properties. In 

order to solve Maxwell`s equations   numerically a various types of methods have 

been developed. For example, T-matrix method, the discrete dipole approximation 

(DDA), and finite difference time domain method (FDTD) [65].  

 

1.3  Synthesis of noble metal NPs 

 

Interesting properties and tiny volumes of NPs have made them desirable in many 

scientific and technological areas. Due to many properties of NPs differ with size, 

shape, crystal structure, surface chemistry and chemical composition; synthesis 

methodologies that can produce new NPs require continuous working. These tunable 

amazing properties trigger researchers to produce various types of NPs through 

physical and chemical methods of synthesis. With exploring new synthesis methods, 

new nanomaterials with unique properties have been generated. Thus, they pave the 

way to new scientific studies and technological application.  

 

NPs can be produced by “top down” and “bottom up” basic approaches in solid, 

liquid, solution or gaseous state. In the top down approach, NPs are achieved by the 

lowering materials from large scale to nanometer range. In this approach, a physical 

and lithographic principle of micro and nanotechnology is used. NPs producing by 

top down approach are carried out in expensive tools, which are hardly possible to 

use in industrial application. Therefore, bottom up method is used to fabricate NPs in 

high yield and structural purity by differing size, shape structure, composition and 

surface chemistry. The bottom up approach includes assembly of atomic, ionic, 

molecular units to produce structures of nanometer range scale. Various processes in 

chemical synthesis method are implemented by “bottom up” approach.  The “bottom 

up” approach principle is to design and produce any size and morphology via atom 

by atom deposition. This method also named as “chemical colloidal”[66].  The main 

advantage of these methods is versatility, affordability and easiness in technological 

implementation. Due to their colloidal composition, they are preferable in integrating 

NPs in complex system and devices. Therefore, chemical colloidal methods are 
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mostly used in preparation of a wide variety of NPs and composites of different 

materials such as metals, alloys, intermetallics, semiconductors and ceramics.  

Chemical colloidal synthesis method also widely used to prepare metal NPs, 

especially noble metal NPs. Chemical colloidal synthesis of these particles involves 

different methods. For instance, chemical reduction of metal salts, photochemical 

and electrochemical methods, thermal decomposition of metallic composition in 

aqueous or organic solvents in the presence of different additives such as surfactants, 

ligands, polymers and so on [66]. 

 

In the case of colloidal synthesis, the nucleation process determines the shapes of 

metal NPs. There are two types of nucleation process: homogeneous and 

heterogeneous. In homogeneous nucleation, nucleation and growth take place in one 

step. Whereas, heterogonous nucleation consists of two steps. The seed and growth 

solution prepared separately. As prepared seed particles is introduced to growth 

medium to facilitate the reduction of metal ions. Due to nucleation and growth step 

carried out in separate stages, it paves the way to introduce seed particles of one 

metal into a growth solution of a different metal. Moreover, by choosing right seed 

particles for overgrowth solution various shapes and sizes of NPs can be produced, 

which could not be achieved by homogeneous nucleation routes [67].  

 

The growth mechanism can be affected by different additives and parameters. The 

particle is arrested and size can be controlled.  The NPs shape can be controlled by 

charging of the NPs and passivation of the NPs surface by adsorption of suitable 

species. Charging of the NPs is a well known contribution to the stability of particles.  

Here, net charges and/or an electric double layer surrounding the particle cause to the 

stabilization. The second way stabilizing NPs is the intentional use of appropriate 

capping agents. The capping agents have a physical and chemical similarity with the 

surface layer of nanostructures. They form a protective layer that makes the NPs 

surface unreactive against agglomeration or precursor incorporation [68].  Since 

capping agents selectively adsorb to specific crystal planes, shape control can be 

achieved. There are different types of molecules that can facilitate shape control. 

They are polymers, biomolecules, and small molecules such as adsorbed gas and 
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atomic species such as different metal ions. The most frequently used surfactant 

molecules for synthesizing metal NPs are cetyltrimethilammonium bromide (CTAB), 

sodium dodecylsulfate (SDS), or bis(2-ethylhexyl) sulfosuccinate (AOT) are used. 

These surfactants possess hydrophilic head group and hydrophobic tail. Depending 

on the concentration of cosurfactants surfactants readily self assemble into spherical 

or rodlike micelles in water. However, it is difficult to explain the exact role of the 

surfactants. Recent works reveal that surfactants could behave as growth directing 

adsorbates on metal surfaces. Consequently, selective adsorption of surfactants 

assigns future shape of nanostructures [67]. The most frequently used methods for 

synthesizing metal NPs are explained below. 

 
 
1.3.1 Polyol process 

 
The polyol process was first developed by Fievet et.al [46]. The main principle of 

this method is heating polyol solutions with a polymeric capping agent and metal 

precursor. In general, during this process Polyvinylpyrrolidone (PVP) is used to 

stabilize and control shape of nanocrystals. In order to crystallographycally control 

the synthesis of noble metal NPs, the polyol process has turned to diversified method 

[69, 70]. In the polyol synthesis crystal facet control rely on different parameters 

such as adding surfactants, polymers, small molecules, and atomic species. To 

promote the formation of preferable facets of noble metal NPs, these additives 

especially absorb to specific crystal facets. In general, in the polyol process ethylene 

glycol, 1,5-pentanediol, and di(ethylene glycol) are used as the solvent and reducing 

agent [50, 71]. Moreover, the shape of platinum nanocrystals could be controlled by 

adding silver nitrate [72].  

 

1.3.2 Electrochemical process 
 

The electrochemical method, was first used by Reetz and Helbig to produce metal 

NPs [73].  In this method, chemical reaction occurs in an electrolyte solution under 

an applied voltage. In the case of metal NPs nanoporous membrane templates are 

used. The pores of membrane templates are used for deposition of electrochemically 

reduced metal ions. NPs can be removed from the template by physicochemical way 
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[66]. By using this method synthesis of single crystalline gold nanorods can be 

achieved [49]. For the first time the dependence of optical properties of gold 

nanorods to aspect ratio was observed. The morphology and size of NPs can be 

controlled by changing the electrodeposition parameters (e.g. potential, number of 

coulombs passed, deposition time, temperature, surfactants, etc.) [66]. In the past 

decade, the electrochemical method also has been used to the crystallographic 

control of noble metal NPs. By altering the reaction parameters of the 

electrochemical methods shapes and crystal facets of nanocrystals can be controlled 

[74].  

 

 
1.3.3 Photochemical process 

 

The metal salts can be reduced to metal nanocrystals under effects of light. The final 

aspect ratio of metal nanorods could be detected by the amount of silver ions. 

Moreover, by using light metal nanocrystals shape can be transformed from one 

crystal facet to another. For example, Mirkin et al. has converted large amount of 

silver nanospheres  into triangular nanoprisms by photoinduced methods [75].  In this 

method, preferable size (30-120 nm) of nanoprisms could be synthesized by using 

dual-beam illumination of silver NPs. The process is preceded by surface plasmon 

excitation. The shape of nanoprisms can also be induced by altering the pH of the 

growth solutions. The careful selection of some parameters such as stabilizing agents 

and structural direction agents could promote control of the silver nanocrystals 

structure during the light driven conversion process. The photochemical method also 

is very sensitive to growth kinetics [46]. Au@Ag and Ag@Au core shell NPs 

synthesized by Henglein et al. using γ-irradiation process [66].  Moreover, UV-Vis 

irradiation also used for shape controlled synthesis of Au, Ag, and Pt NPs.  
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1.3.4 Seed mediated method 
 

In the past ten years, seed-mediated process has been used as most appropriate 

colloidal method for controlled synthesis of noble metal NPs [25]. The method is a 

widely used method for synthesizing different types of anisotropic NPs such as rod, 

stars, triangles, flowers and so on. This method derived from Zsigmondy’s ‘nuclear’ 

method, which involved two step process [76].  Thus, seed-mediated process also 

involves two steps.  In the first step, `seed NPs` are prepared by reduction process. 

Here, metal salt is reduced by strong reducing agent in the presence of stabilizing 

agents. In general, sodium borohydrade is preferred as reducing agent.  In the second 

step, `seed NPs` grow into the desired shape in the presence of surfactant or shaping 

agent and mild reducing agent.  The metal salt in the growth solution will be reduced 

on the surface of the seed NPs. The surfactant molecules serve as templates to yield 

NPs of desired morphology. The amount of the `seed NPs` can affect the final size of 

the NPs synthesized.  Addition of  different molecules or ions can change the growth 

direction of the NPs and cause to differently shaped NPs [59]. For instance, the 

addition of small amount of iodide ion to the gold nanorod solution change shape 

into triangular nanoparisms [77].  In this process, iodide ion absorption cause to 

changing crystal growth along the Au (111) direction. Chloride ions also cause to 

drastic change in the morphology of the rod. The effectively absorbed halide ions 

alter the morphology from rod to rice shape. Another factor that influences size and 

shape of nanostructures is concentration of surfactant molecules. For instance, 

Millstone et al [78] reveal the dependence of surfactant concentration on the 

morphology determination. In this study, nanoprisms formed only when saturated 

CTAB solution was used. It indicates the concentration dependence on the 

morphology of the NPs. The main advantages of this method are no need for 

specialized equipment, and high yield of NPs can be obtained by solution based 

processing and assembly can be readily implemented [67]. 

 

 

 

 

 



17 
 

1.3.4.1 Seed mediated synthesis and mechanism for gold nanospheres formation 

 

Spherical gold NPs are one of the more easily synthesized one. Citrate reduction of 

gold (III) NPs (HAuCl4) in water, which was introduced by Turkevich [5] is the most 

popular methods using for a long time (Table 1.1) [6].  

Table 1.1 Preparation of spherical gold NPs 

 

The seed-mediated method is the mostly used method for preparation of spherical 

NPs.  This method, based on reduction of corresponding metal salts and using seeds 

for further growth process. For example, gold nanospheres in the size range between 

3-15 nm were successfully prepared in high yields using a seed mediated growth 

method [79].  The chemical synthesis of metal particles by reduction of the 

corresponding metal salts is an easy task. The only main requirement is the mixing of 

reagents at well defined conditions [80]. Synthesis of monodisperse spherical gold 

NPs is very important, because in the most cases they are used as seeds for formation 

of anisotropic metal NPs. In this case, their role is very important since they dictate 

the final structure of the NPs.  

 

1.3.4.2  Seed mediated method synthesis and mechanism for gold nanorod 

formation 

 

Gold/silver nanorods are subject of numerous studies due to their special optical 

properties. It is important to synthesize them with controllable aspect ratio [81]. Mie 

group were first used seeded-mediated growth method for shape controlled growth of 

Size Synthesis method Stabilizing 

agent 

Distinctive property 

10 to 150 nm Turkevich/ 

Frens 

Citrate Surface Plasmon band~520 

to 580 nm (Au) 

1.5 to 15 nm Brust/modified 

Brust 

Alkane- 

thiols  

Surface Plasmon band 

~520 nm 
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some morphological changes step by step. They become first peanuts, then truncated 

octahedral and finally evolving into faceted spheres. 

 

1.3.4.4  Seed-mediated synthesis and mechanism for branched gold NPs 
 

Branched NPs attract great interest due to their sharp edges and the correspondingly 

high localization of any surface plasmon modes [15].  Now, it is possible to routinely 

produce branched nanostructures such as nanoflowers, nanostars, and nanodendrites, 

for various metals including   Au, Ag, Pt, Pd, Rh, and their alloys. One of the main 

difficulties in preparation branched gold nanostructures is that noble metal 

nanocrystals usually show a highly symmetric, face-centered cubic (fcc) structure. 

 

Again the seed-mediated method is one of the most preferred and useful synthesis 

types for the preparation of branched structures. Table 1.2 reveal synthesis of 

different types of branched NPs by seed mediated method. 
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Table 1.2 Reaction conditions for preparation branched NPs by seed-mediated 

growth method.  

 

Metallic 

precursor 

Reducing 

agent 

Capping 

molecules 

Additives Size 

Monodis-

peristy 

Branching 

control 

HAuCl4 Mild reducing 

agents 

(ascorbic 

acid, 

hydroxylamine 

sulfate, 

and DMF) 

CTAB, 

CTAC 

 

 

SDS, citrate, 

PVP, 

and gelatin 

AgNO3, 

NaOH 

High 

(70–300 

nm) 

 

 

High 

(40–

150nm) 

 

Moderate 

— high 

(multipods

1–6 arms) 

Low 

(multi- 

branched) 

[Ag(NH3)2]+ 

[PdCl4 2-] 

Ascorbic acid PVP, citrate 

CTAB 

No 

additives 

Cu(OAc)2 

High 

(80 nm) 

 

K2PtCl6, 

PtCl2, 

and RhCl3 

Polyol PVP, 

oleylamine 

No 

additives 

Moderate 

(200 nm) 

High 

 

One of the most popular methods for synthesizing gold branched NPs has been 

inspired by the well-known growth process used in the synthesis of gold nanorods 

[90]. Sau et al. [92] offered the synthesis of branched NPs by changing the seed to 

gold salt ratio. Moreover, the volume of the reducing agent also was changed to 

increase the rate of gold ion reduction and thus pave the way to branched particles.  

 
Wu et al.  showed that addition of AgNO3 at different stages of nanocrystals growth 

allows a higher degree of control on the shape of gold nanostars synthesized by 

seeded-growth of pentatwinned NPs seeds [96].  Moreover, they also show the 

influence of bromide ion by replacing CTAB with its chloride equivalent (CTAC). 

The authors not only control the final nanostar morphology, but also increase the 

yield of branched NPs. Even though the detailed mechanism of reaction corporation 
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1.3.5 Comparison of seed-mediated growth method with other methods 

 

Among these four methods (polyol, electrochemical, photochemical methods and the 

seed mediated methods) seed mediated methods of preparing noble metal NPs is 

more preferred one. Firstly, in polyol methods, where polyol acts as reducing agent, 

relatively high temperature is used. As a result of this high temperature metals are 

oxidized to different aldehyde and ketone species which then cause a problem in 

removing them from NPs [67]. However, in seed mediated methods reaction can be 

completed in short amount of time temperature. Secondly, metal reduction in polyol 

process is much slower. For instance, in photochemical reaction metal reduction can 

take up to days for reaction consumption which is time consumable.  In seed 

mediated method reaction can be completed in short of time. Thirdly, in 

electrochemical process two electrotype electrochemical cell is needed for 

preparation of NPs. However, in seed mediated method no specialized set up is 

necessary. Hence, in this study, seed mediated method was used since more 

investigated an easy one.  

 

1.4  Functionalization of NMNPs 
 

Functionalization of NPs surfaces is need for stabilizing them in solution or for 

improving  the properties [100]. Recently, there have been a great demand for their 

functionalization of noble metal NPs with different components such as acids, 

biocompatible polymers, enzymes, proteins and also with another metal NPs. Thus, 

biocompatibility, sensing  and targeting specificity are increased [101, 102]. Noble 

metal NPs surface can be functionalized with various materials such as polymers or 

biomolecules (DNA, antibody, biotin and etc.).  Functionalization can also be 

achieved by coating one metal NP with another to obtain core-shell NPs system. 
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core Au shell, and random alloyed particles. However, at that time detailed analyses 

of these bimetallic NPs were not possible.  Only the difference of UV-Vis spectra 

between bimetallic NPs and physical mixtures were discussed. Today, due to new era 

of spectroscopic diagnostic tools, it is possible to obtain detailed analyses of these 

bimetallic NPs. There has been a great amount of studies on preparation of bimetallic 

NPs.  For instance, the well controlled Au@Ag core shell nanorods were prepared by 

tuning pH and temperature of the solution [106]. In this study, structure of the core 

shell was characterized properly using spectroscopic tools such as HRTEM, TEM, 

and SEM characterization.  The core and shell of the composition can be easily 

observed.  

 

There is  a great interest on Ag NPs with anisotropic morphologies due to their 

superior optical properties [107].  However, synthesizing of anisotropic silver NPs in 

an uniform shape has proven as challenging task. The uniformities of silver 

anisotropic NPs were not as good as gold NPs [71]. Therefore, in order to prepare 

anisotropic shaped silver NPs, new approaches have been followed. Recently, 

researchers try to solve this problem by deposition silver on gold NPs. Thus, 

structural morphologies are conserved with added enhanced optical properties. 
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CHAPTER 2 

 

 

                                 EXPERIMENTAL 
 
 
 

2.1  CHEMICALS  

 

Hexadecyltrimethylammoniumbromide (CTAB) (98%), sodium borohydride (99%), 

L-ascorbic acid, hydrogen tetrachloroaurate (III) trihydrate (HAuCl4·3H2O, >99.9%), 

silver nitrate, silver trifluoroacetate, poly(sodium 4-styrenesulfonate) (average 

Mw~70,000), silver acetylacetonate (98%), sodium chloride, and 

hexadecylpyridinium chloride monohydrate were obtained from Sigma-Aldrich.  All 

reactions have been done at room temperature.  

 

2.2  Noble metal NPs characterization methods 

 

The gold and Au@Ag core-shell NPs were characterized in T 80+ UV-Vis 

spectrophotometer, PG Instruments Ltd. Products of seed-mediated method were 

analyzed by scanning elelectron microscopy (SEM) (QUANTA 400F Field emission 

SEM) operated between 10-30 kV voltages. High-resolution transmission electron 

microscopy (HRTEM) was acquired using a JEOL TEM 2010F which was operated 

at 200 kV. PHI-5000 Versaprobe, equipped with aluminum Kα at 1486.92 eV x-ray 

source was used to perform x-ray photoelectron spectroscopy (XPS) analyses. 
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2.3 Preparation of gold nanorods 

2.3.1 Seed Solution 

 

CTAB solution (3.76 mL, 0.20 M) and HAuCl4  solution (1.25 mL, 0.002 M) were 

mixed with 2.74 mL of ultra pure water, then mixed homogeneously. The color of 

mixed solution quickly changed from light yellow to orange. To this solution,       

0.90 mL of ice-cold 0.01 M NaBH4 was added by vigorous stirring. The stirred 

solution was kept at 25 °C for 2 h. 

 

2.3.2   Growth Solution. 

 

HAuCl4  solution (400 µL, 0.01 M), CTAB (4.75 mL, 0.20 M) and  AgNO3 (60 µL, 

0.01 M) solutions were added to 4.15 mL ultra pure water. After gentle mixing 640 

µL of 0.01 M ascorbic acid was added.  Finally, the 2 h aged 31.25 µL seed solution 

were added to this growth solution. Then, the mixed solution left undisturbed for          

24 h at room temperature. In order to use this solution in TEM observation excess of 

CTAB was removed by centrifugation. The gold nanorod solution is centrifuged for 

20 min at speed of 9000 rpm. This procedure was repeated for two times.  
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added and after gentle mixing the color of this solution changed from brown-yellow 

to colorless.  The growth process completed 3 h after addition of 10 µL of indiluted 

10 nm gold colloid seed (Ted Pella).  

 

2.4.2 Preparation of branched gold NPs with surfactant stabilized seeds 

The growth solution was prepared by the same way as mentioned above. Here, the 

seed solution was prepared in laboratory condition. Briefly, to 7.5 mL of  0.1 M 

CTAB solution  0.250 mL of 10 mM HAuCl4 solution was added. Next, freshly 

prepared ice cold 0.6 mL of ice cold NaBH4 was added resulting in light brown seed 

solution. Then, 10 µL of this seed solution was added to as prepared growth solution. 

To this mixture, 0.032 mL of 0,1 M ascorbic acid was added and color of the solution 

changed to colorless. Finally, 0.025 mL of 0.1 M NaOH was added by gentle mixing 

and stored for 2 h at room temperature. 

 

2.5 Preparation of gold octahedral single crystalline NPs 

Single crystalline octahedral NPs were prepared by seed mediated method. Gold 

nanocrystals, capped by cetylpyridinium chloride (CPC), with diameters of 41.3 nm 

were prepared and used as the seeds in the seed-mediated growth method. 

 
2.5.1 Seed solution 
 
2.5.1.1 Preparation of CTAB capped gold seeds (~1.5 nm) 
 

The gold seed solution was first prepared by the addition of 125 µL of aliquot       

0.01 M HAuCl4 solution to 5 mL of 0.1 M CTAB solution at 30 °C by gentle mixing. 

Then, to this solution 0.3 mL of 0.01 M ice cold NaBH4 solution was added, which 

resulted in the formation of a brownish yellow solution. The solution was stirred, and 

then was kept at 30 °C for future use. 

 

2.5.1.2 Preparation of gold nanorods for octahedral growth 

 

As prepared ~1.5 nm CTAB capped gold seeds were used in preparation of gold 

nanorods. Briefly, the gold nanorod solution was made by adding  2 mL of 0.01 M 
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HAuCl4 solution, 240 μL of 0.01 M AgNO3 solution, 320 μL of freshly prepared 0.1 

M ascorbic acid solution, and 48 μL of the ~1.5 nm CTAB-capped gold seed solution 

to 40 mL of 0.01 M CTAB solution at 30 °C. After each addition the solution was 

accurately mixed and was left undisturbed for 2 h. 

 

2.5.1.3 Preparation of the CPC capped gold seeds from gold nanorods by 

secondary overgrowth of gold nanorods 

 

30 mL of the as synthesized gold nanorod solution was centrifuged for 20 min at 

speed of 9000 rpm to precipitate the particles and redispersed in water. After second 

centrifugation (9000 rpm, 20 min) the solution was redispersed in 30 mL of 0.01 M  

CTAB solution at 40°C. Finally, in secondary growth additional HAuCl4 (1.5 mL, 

0.01 M), and ascorbic acid (0.3 mL, 0.1 M) solutions were added and accurately 

mixed.  After this, combination was allowed to react at 40 °C for 1 h. 

 

2.5.1.4 Preparation of CPC capped gold seeds 
 
In order to prepare CPC capped gold seeds as prepared the overgrown gold nanorods 

were transferred to near spherical NPs [108].  Briefly, the overgrown gold nanorod 

solution was centrifuged at 9000 rpm for 20 min and redispersed in 30 mL of 0.01 M 

CTAB solution. Then, 0.6 mL of 0.01 M HAuCl4 solution was added at    40 °C by 

gentle mixing and aged for 12 h. In the last step, this solution was washed three times 

with 0.1 M of CPC solution by centrifugation at 9000 rpm for 20 min. Finally, the 

combination was redispersed in 30 mL of 0.1 M CPC solution and used as CPC 

capped seeds. 

 

2.5.2 Seed-mediated growth of gold octahedral nanocrystals  
 
In order to prepare the octahedral gold nanocrystals as prepared CPC capped gold 

NPs was used as seeds. In typical procedure, to 5 mL of 0.01 M CPC solution at      

30 °C, 100 μL of HAuCl4 solution and 13 μL of 0.1M ascorbic acid solution were 

added by accurate mixing after each addition. Finally, 200 μL of the CPC-capped 

seed solution was added and the solution kept at room temperature for 2 h. In order 
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2.6.2 Preparation of 8 nm gold nanospheres 
 
In the second step, for the preparation of 8 nm gold nanospheres the reactants were 

mixed in the following order: 

 CTAB (45 mL, 0.08 M) 

 HAuCl4 (1.125 mL, 0.01 M) 

 Ascorbic acid solution (0.25 mL, 0.1 M)  

Then, the citrate stabilized 3.5 nm seed solution (5 mL) was added and stirred 

vigorously for 10 min. 

 

2.6.3 Preparation of 15 nm gold nanospheres 
 
 
In the third step, as prepared 8 nm gold nanospheres were used as seeds for the 

growth of 15 nm gold nanospheres. The growth solution was the same as in 8 nm 

gold nanospheres: 

 CTAB (45 mL, 0.08 M) 

 HAuCl4 (1.125 mL, 0.01 M) 

 Ascorbic acid solution (0.25 mL, 0.1 M)  

The 8 nm gold seed solution was introduced with vigorous stirring, for 10 min. Then, 

the solution was kept at room at least for 3 h before use.  

 
2.7 Preparation of sphere, rod, octahedral,  and star  Au@Ag core-shell          

 composition 

Coating process of different types of gold NPs (rod, octahedral, star)  was done by 

the same procedure. As prepared gold NPs was  coated with different volume of 

silver salts. Briefly, 1 mL of gold NPs  solution (rod, octahedral, star) was 

centrifused (at 9000 rpm  for 20 min for two times)  and washed with DI water.  In 

order to coat Au nanorod solution with polymer, 100 µL  of 0.01 M NaCl solution 

and 200 µL of sodium polystyrene sulfonate (PSS), which was diluted in 0.01 M 

NaCl solution, was added to this solution. Following, this solution was transferred 

into 50 mL glass bottles with screw cap and stirred for 30 min. After stirring the gold 

solution was centrifuged at 7000 rpm for 6 min and re-suspended in 1 mL of DI 
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CHAPTER  3 

 

 

RESULT AND DISCUSSION 
 
 
 

Silver coated gold NPs are very distinctly interesting since they provide the 

advantage of having both structural purity and enhanced optical properties in one 

NPs system. Gold NPs are relatively easier to synthesize with better control over 

morphology compared to silver ones. On the other hand, silver has superior optical 

properties than gold. Therefore, the combination of these properties in one NPs 

system makes these particles very attractive for sensing applications such as SERS.  

Numerous reports on silver coated gold NPs with various morphologies can be found 

in literature [106, 109-112]. Different methodologies have been developed to obtain 

Au@Ag core-shell NPs system for each different NPs shape [106, 109-114]. Among 

all NPs morphologies, the ones with rod-shapes are the mostly studied for silver 

coating. [106, 109-111].  Okuno et al. [106] were able to obtain uniformly coated 

Au@Ag core-shell nanorods with control over the shell thickness. However, they 

have used very expensive molecule, hexadecyltrimethylammonium chloride 

(CTAC), as a surfactant. Moreover, the procedure involves high reaction temperature 

and long experimental time in order to control shell layer of Au@Ag core-shell 

composition.  

Tsuji et al. reported silver coating on octahedral shaped gold NPs by microwave 

polyol method [115]. The process involves heating of the reaction mixture by 

microwave radiation and the procedure take place in organic solvent (Ethylene 

glycol). The gold nanostructures with planar morphologies (i.e. cuboctahedron and 

hexagonal) were also frequently studied for silver coating [113-116]. However, no 

report on silver coated branched NPs, yet. The major drawbacks of the reported 

methods of silver coating are requirement of expensive stabilizing chemicals (i.e. 
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biomolecules, DNA, antibody etc.), high temperature reactions, complex and long 

experimental procedures. Also, uniform silver layer on gold could not be achieved in 

most cases and one method might not be utilized for different NPs shapes. 

In this study, a facile way of silver coating on gold NPs was developed. The surface 

of Au NPs with four different morphologies; rod, branched, octahedral, sphere were 

successfully coated with silver. The main advantages of the method are:  

 Simple (no need for complicated setup) 

 Affordable 

 Synthesis in aqueous medium 

 Room temperature process 

 Reproducible 

 Implementation to different NPs morphologies 

 

Au NPs were synthesized based on a method called “seed-mediated growth method” 

[23, 79, 117, 118]. Silver coated gold NPs were synthesized by first coating NPs with 

a polymer (polystyrene sulfonate (PSS)) then by addition of a silver salt (silver 

trifluoroacetate) to the polymer-coated, gold NPs solution. Finally, addition of NaOH 

to this solution results in the formation of a silver layer on the gold NPs. The as-

prepared gold NPs are positively charged due to bilayer of surfactant molecule (i.e. 

CTAB, CPC). Coating them with a single layer of a negatively charged polymer 

promote electrostatic binding of positively charged silver ions which are further 

reduced to form a bound silver layer.  Thickness of silver layer on the NPs were 

attempted to be controlled by the amount of silver salt added into NPs solution. This 

attempt yielded control over silver layer thickness on sphere, rod and octahedral 

shaped gold NPs, but not on branched NPs. 

The Au@Ag core-shell NPs systems have been fully characterized by a combination 

of UV-Vis spectroscopy, Field Emission Transmission Electron Microscope (FE-

TEM) and Energy-Dispersive X-ray (EDX) studies, Scanning Electron Microscop 

(SEM), and X-Ray Photoelectron Spectroscopy (XPS). The results for each NPs 

system were discussed in following sections. 
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nanorods with presumably different thickness of silver layer. The spectrum 

demonstrates one absorption band instead of two bands after silver coating. The 

bands of gold nanorods almost disappear into baseline when NPs were coated with 

the addition of 0.1 mL silver salt. As the silver salt amount was increased only one 

absorption band was observed in lower wavelength (around 400 nm) [110].  This 

observation evident the formation of silver layer on gold NPs as the absorption bands 

characteristic to silver NPs appear around 400 nm [119]. The observed spectral 

change (blue shift) is most likely due to variation in the dielectric function, overall 

aspect ratio and formation of interface between gold NPs and silver layer after silver 

coating [120, 121]. 
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Figure 3.4 demonstrate TEM images of Ag coated Au nanorods prepared with 

different amount of silver salt. The TEM analysis of several NPs from various 

preparations demonstrated that the entire NPs surface has been covered. The light 

colored layer corresponds to the silver shell and the dark part to the gold core. This 

difference in their transparency is due to electron density difference between gold 

and silver parts [122]. TEM analysis also demonstrated that shell thickness can be 

controlled by altering the amount of silver salt added. As the amount of silver salt 

solution increased, silver layer thickness was increased and morphology of the NPs 

changes.  Rod shape was still conserved when 0.1 and 0.25 mL silver salt was added. 

However, the NPs had ellipsoid and pentagon-like shape as 0.5 and 1.0 mL silver salt 

was added, respectively. This shows formation of new silver NPs by utilizing gold 

nanorod as seed at excess amount of silver salt addition. 
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CONCLUSION 

 

 

Different morphologies of gold NPs (sphere, octahedral, nanorod and branched) were 

prepared using seed-mediated method and coated with silver to obtain core-shell 

composition. Gold colloids have the advantage of easier preparation with higher 

degree of homogeneity compared to silver colloids. On the other hand, silver has 

superior optical properties than gold. In order to have the advantage of both metal 

(gold and silver), core-shell NPs systems as Au@Ag were prepared. The 

combination of these properties in one NPs system makes these particles very 

attractive for sensing applications such as SERS. 

 

Au NPs were synthesized based on a method called “seed-mediated growth method”. 

Silver coated gold NPs were synthesized by first coating NPs with a polymer 

(polystyrene sulfonate (PSS)) then by addition of a silver salt (silver trifluoroacetate) 

to the polymer-coated, gold NPs solution. Finally, addition of NaOH to this solution 

results in the formation of a silver layer on the gold NPs. The as-prepared gold NPs 

are positively charged due to bilayer of surfactant molecule (i.e. CTAB, CPC). 

Coating them with a single layer of a negatively charged polymer promote 

electrostatic binding of positively charged silver ions which are further reduced to 

form a bound silver layer.  

 

The change in the optical properties for all shapes (sphere, octahedral, nanorod and 

branched) were observed by UV-Vis spectroscopy method. The TEM analysis 

demonstrated that shell thickness can be controlled by altering the amount of silver 

salt added. As the amount of silver salt solution increased, silver layer thickness was 

increased. Thus, all NPs optical properties varied and were successfully controlled 

for further explorations in sensing and imaging applications.  Moreover, EDS scans 

from various syntheses also verified that silver was successfully coated on gold 

nanorods. 
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The main advantages of the procedure developed in this study are being a facile way 

of silver coating on gold NPs and utility of same method to coat four different 

morphologies; rod, branched, octahedral, sphere. There is no need for special set up 

for preparation of core-shell NPs system with the procedure used. Also, the 

experiments are done in aqueous medium and at room temperature.  
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