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ABSTRACT 

 

ACCELERATION OF MOLECULAR DYNAMICS SIMULATION FOR 

TERSOFF2 POTENTIAL THROUGH RECONFIGURABLE HARDWARE 

 

Vargün, Bilgin 

                              Msc. Department of Micro and Nanotechnology  

         Supervisor       : Prof. Dr. Şakir Erkoç 

         Co-Supervisor : Dr. Selim Eminoğlu  

 

 

    September 2012, 72 pages 

 

 

 

In nanotechnology, Carbon Nanotubes systems are studied with Molecular Dynamics 

Simulation software programs investigating the properties of molecular structure. 

Computational loads are very complex in these kinds of software programs. 

Especially in three body simulations, it takes a couple of weeks for small number of 

atoms. Researchers use supercomputers to study more complex systems. In recent 

years, by the development of sophisticated Field Programmable Gate Array (FPGA) 

Technology, researchers design special purpose co-processor to accelerate their 

simulations. Ongoing researches show that using application specific digital circuits 

will have better performance with respect to an ordinary computer.   

 

In this thesis, a new special co-processor, called TERSOFF2, is designed and 

implemented. Resulting design is a low cost, low power and high performance 

computing solution. It can solve same computation problem 1000 times faster. 

Moreover, an optimized digital mathematical elementary functions library is 

designed and implemented through thesis study. All of the work about digital circuits 
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and architecture of co-processor will be given in the related chapter. Performance 

achievements will be at the end of thesis.  

 

 

Keywords: Molecular Dynamics, FPGA, Tersoff2, Hardware Co-processor 
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ÖZ 

 

TERSOFF2 POTANSİYELİNİN MOLECÜLER DİNAMİK BENZETİMİNİN 

PROGRAMLANABİLEN ÖZEL SAYISAL DEVRE DONANIMLARIYLA 

HIZLANDIRILMASI 

 

Vargün, Bilgin 

                              Yüksek Lisans, Mikro ve Nanoteknoloji Bölümü 

         Tez Yöneticisi: Prof. Dr. Şakir Erkoç 

        Ortak Tez Yöneticisi: Dr. Selim Eminoğlu  

          

 

 

Eylül 2012, 72 sayfa 

 

 

 

Nanoteknoloji alanında, Karbon nanotüp sistemlerinin moleküler yapılarının ve 

özelliklerinin araştırılmasında moleküler dinamik benzetim programları kullanıl-

maktadır. Bu tip programların içerisinde hesaplama yükü çok yüksek yapılar 

bulunmaktadır. Özellikle üçlü yapıların benzeşim hesapları bir kaç yüz atom için 

haftalar almaktadır. Bu durumda kalan araştırmacılar daha fazla ato ma sahip 

sistemleri araştırırken süper bilgisayarları kullanmaktadırlar. Son yıllarda program-

lanabilen sayısal devre teknolojisindeki önemli gelişmeler sayesinde araştırmacılar 

özel sayısal devrelerden oluşmuş çözümler geliştirerek hesaplamalarını hızland ır-

maktadırlar. Devam eden araştırmalar bu tarz devrelerin normal bilgisayarlara göre 

daha iyi başarım gösterdiğini söylemektedir.  

 

Bu tez çalışmasında TERSOFF2 adında özel bir sayısal işlemci geliştirilmiştir. 

Tasarlanmış yapının düşük maliyetli, düşük güç tüketimli ve yüksek başarımlı oldu-
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ğu görülmüştür. Aynı bilimsel hesaplama için, yüzlerce kat hızlanma sağlanmıştır. 

Bu tez çalışması yapılırken moleküler dinamik benzeşim problemleri için iyileştiril-

miş matematik temel fonksiyonlarının sayısal devre kütüphanesi tasarlanmış ve 

üretilmiştir. Bunlarla alakalı detaylı bilgiler tezin ilgili bölümlerinde verilecektir. 

Geliştirilen sayısal işlemcinin başarımı tezin sonunda gösterilecektir.  

 

 

 

Anahtar Kelimeler: Moleküler Dinamik, FPGA, Tersoff2, Özel İşlemciler 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1MOLECULAR DYNAMICS SIMULATIONS 

 

Molecular Dynamics (MD), which based on Newtonian Mechanics, is a technique 

for analysis and design of molecular system. In physics, chemistry and biology 

researchers utilize special simulation techniques to solve dynamics of the molecular 

systems. Detailed information about the theory of MD is given in [1], [2].  

 

This method is used with Empirical Potential Functions for Many-Body system given 

in [1]. System potential is based on Bonn-Oppenheim approximation and for N 

related particle total energy is; 

                                         𝐸 = ∅1+∅2+∅3+∅1+…∅𝑛               (1.1)    

If we subtract the non interacting particle’s energy ∅1 , the total energy of interacting 

particles with respect to their position is; 

                                        ∅ = ∅2 +∅3 + ⋯∅𝑛       (1.2) 

Where; 

                                        ∅2 =  𝑈2 𝑟𝑖 , 𝑟𝑗 𝑖<𝑗 ,      (1.3) 

                                        ∅3 =  𝑈3 𝑟𝑖 , 𝑟𝑗 , 𝑟𝑘 𝑖<𝑗 <𝑘                (1.4)   

𝑈2 in 1.3 and 𝑈3 in 1.4 represent two, three body interactions [1].  

 

According to [1], [2] MD Simulation with respect to its potential can be done with 

following procedure in Figure 1. 

1. Empirical Many Body Potential has to be computed,  

2. The force 1.5 on each atom in the system have to be computed from 

derivative of 1.2  

 𝐹 = −∇.∅                        (1.5) 
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3. From 1.5 the new velocities and positions have to be computed with respect 

to time difference between MD steps. 

4. The velocity redistribution has to be controlled over system with respect to its 

thermal stability conditions. 

5.  All steps have to be recomputed for each MD steps until system reaches 

desired time limit.  

 

Figure 1: Basic structure of MD calculations.  

 

With this brief introduction, we must state the computation problem. When we look 

at the computation structure we have 𝑁2 computation complexity for two body 

interaction system and 𝑁3 computation complexity for three body interaction system. 

Since most of the potentials has complex and difficult computation functions, 

simulations take very long times (weeks and months).  

Starting State: Find 
Potential Energy 

Calculate Force on 
each atom due to 

Potential

Calculate 
acceleration and 
velocity and new 

position of all atoms

Calculate the Kinetic 
Energy

Calculate the 
Temperature of the 

system

Do scaling on 
velocities of the atom 

If needed

Recycle this process 
until simulation ends
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For the problem of computation time, researchers use super computer system to get a 

reasonable simulation time cost. However, super computers are not easily reachable 

tools to use. With the recent development in FPGA technology, researchers study on 

reprogrammable hardware system to design special digital circuits. When we review 

such kind of works we understand that, there will be a promising solution for 

computation problems by FPGA technology. Most of these kinds of designs are in 

the bioinformatics area. After giving some examples on reprogrammable hardware 

accelerator for MD simulation system, we are going to explain our potential and 

design.            

 

1.2 EXAMPLES ON HARDWARE ACCELARATION OF MD 

SIMULATIONS 

Reconfigurable Molecular Dynamics Simulator: 

This design is given by Azizi, N. Kuon, I. Egier A. The suggested work is 

accelerating the non-bonded interaction by Lennard-Jones Potential [9]. 

∅𝐿𝐽  𝑟 = 4𝜖   
𝜎

𝑟
 

12

−  
𝜎

𝑟
 

6

       (1.6) 

𝐹 = −∇𝑟 ∅𝐿𝐽 𝑟        (1.7) 

In this work, a pair generator, Lennard-Jones calculator, Acceleration update, Verlet 

Update, three memory controllers and System controller modules designed. 

According to paper, they speed up computation with different precisions up to X21. 

When we investigate the paper, their work didn’t consist of double precision floating 

point structure. And they reach acceleration with a reasonable error. Better 

performance can be achieved by more sophisticated pair generator block and 

memory structure for 1.6.    

 

FPGA-Acceleration Molecular Dynamics simulations An Overview: 

This design is given by Yang, X. Shengmei, M. Yong, D [10]. The design is also 

deal with accelerating Lennard-Jones Potential [9]. 

𝑈𝐿𝐽  𝑟 = 4𝜖   
𝜎

𝑟
 

12

−  
𝜎

𝑟
 

6

        (1.8) 
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Force Calculator, Verlet Update, Pair Generator and Memory access system are 

designed. According to paper, they reach 2 times acceleration of computation. They 

also have 31 bit time resolution. A linked list method is utilized to for more efficient 

computation.  

Preliminary Investigation of Advanced Electrostatics in Molecular Dynamics on 

Reconfigurable Computers: 

This design is given by Scrofano, R. Prasanna, V.[11]. This design is accelerate 

Lennard-Jones Potential [9] and Coulomb potential.  

∅𝐿𝐽  𝑟 = 4𝜖   
𝜎

𝑟
 

12

−  
𝜎

𝑟
 

6

        (1.9) 

𝐹 = −∇𝑟 ∅𝐿𝐽 𝑟        (1.10) 

With reconfigurable computation technique, they reach almost 3 times speedup over 

software solution. Neighbor list technique is used and off-chip memories are utilized.   

 

Efficient and Accurate FPGA-based simulator for Molecular Dynamics: 

This work is done by Cho, E. and Bourgeois, A. [12]. It also investigates Lennard-

Jones Potential [9] and Coulomb potential. They propose a new architecture for 

Coulomb force named Multi Level Charge assignment method. They use high level 

programming (Simulink and SysGen) structure to generate digital circuit.  

Accelerator has X10 to X100 better performances without a loss of accuracy. 

 

FPGA-Based Three-Body Molecular Dynamics Simulator: 

In this paper [13], Pottathuparambil and Sass designed a pipelined accelerator for 

Stillinger-Weber Potential [14]. 

𝜑 =  𝑈𝑖𝑗𝑖<𝑗 +  𝑊𝑖𝑗𝑘𝑖<𝑗 <𝑘        (1.11) 

Where; 

𝑈𝑖𝑗 = 𝜀𝑥𝑓2(𝑟)         (1.12) 

𝑓2 𝑟 =  𝐴 𝐵𝑟
−𝑝 − 𝑟−𝑞  𝑒 𝑟−𝑎 

−1
       𝑟 < 𝑎

0                                                𝑟 ≥ 𝑎
      (1.13) 

𝑊𝑖𝑗𝑘 = 𝜀𝑓3(
𝑟𝑖

𝜎
,
𝑟𝑗

𝜎
,
𝑟𝑘

𝜎
)         (1.14) 

𝑓3 𝑟𝑖 , 𝑟𝑗 , 𝑟𝑘 = 𝑕 𝑟𝑖𝑗 , 𝑟𝑖𝑘 ,𝜃𝑗𝑖𝑘  + 𝑕 𝑟𝑗𝑖 , 𝑟𝑗𝑘 ,𝜃𝑖𝑗𝑘  + 𝑕 𝑟𝑘𝑖 , 𝑟𝑘𝑗 ,𝜃𝑖𝑘𝑗     (1.15) 
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𝑕 𝑟𝑖𝑗 , 𝑟𝑖𝑘 ,𝜃𝑗𝑖𝑘  = 𝜆𝑒 𝛾(𝑟𝑖𝑗 −𝑎)−1+𝛾 𝑟𝑖𝑘 −𝑎 
−1 𝑥(

1

3
+ cos𝜃𝑗𝑖𝑘 )2    (1.16) 

For benchmarking, reference computer has Dual AMD core running at 2.0 GHz. At 

the end, they have 1.5 times faster solution for the computation of Stillinger-Weber. 

The design is consist of an off-chip DDR memory system for I/O applications.  

 

FPGA-Accelerated Molecular Dynamics Simulation System: 

In this work [15] Lennard-Jones Potential 1.9 is investigated. The design includes 

Cell-List Method, Pair Generator and Lennard-Jones force calculator. Reference 

system is a PC with 2.66 GHz Pentium 4 CPU and resulting performance is 12 times 

speedup. Since designers use fixed-point number system, they have %1 error with 

their results.  

 

Accelerating molecular dynamics simulations with configurable circuits: 

In this work [16], Lennard-Jones Potential and Coulomb force are investigated. They 

have three memory architectures for Position, Velocity and Force datas. The forces 

are computed with look-up tables and linear interpolation. 

Most of the researches on Accelerating Molecular Dynamics Simulation with FPGA 

are deal with Lennard-Jones and Coulomb force [36], [37], [38,], [39], [40].     
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CHAPTER 2 

 

 

TERSOFF 2 

 

 

 

2.1TERSOFF2 EMPIRICAL MANY BODIES POTENTIAL 

 

This potential energy function is developed for silicon and carbon covalent systems 

[4]. Empirical potential of Tersoff2, which express the total energy of the atomic 

system as an explicit function of the atomic positions are very useful [4] for carbon 

nanotube systems.  With Tersoff2 many research on carbon nanotube system have 

been done for investigating different properties [18], [19], [20], [21], [22], [23], [24], 

[25], [26], [27], [28], [29]. In this thesis, the analysis of Tersoff2 is out of scope by 

means of crystal stability, phonon dispersion and other properties  [30], [31], [32], 

[33], [34], [35]. Instead of the properties of Tersoff2 we are going to analyze 

computation of it. 

Tersoff 2 has the following sets of equations; 

                                            ∅ = ∅2,3 =  𝑈𝑖𝑗 :𝑘𝑖<𝑗 :𝑘           (2.1) 

2.1 is the sum of two and three body potentials. The potential on a single atom due to 

two and three body effects is; 

                              𝑈𝑖𝑗 ;𝑘 = 𝑓𝑐 𝑟𝑖𝑗  ×  𝑓𝑅 𝑟𝑖𝑗  + 𝑏𝑖𝑗 𝑥𝑓𝐴 𝑟𝑖𝑗          (2.2) 

Where; 

 𝑓𝑐 𝑟𝑖𝑗   is the cut-off function,   

 𝑓𝑐 𝑟 =  

1,                                𝑟 < 𝑅 − 𝐷
1

2
−

1

2
𝑥 sin  

1

2
𝑥𝜋

 𝑟−𝑅 

𝐷
     𝑅− 𝐷 < 𝑟 < 𝑅 + 𝐷       

0                                   𝑟 > 𝑅 +𝐷

   (2.3) 

𝑓𝑅 𝑟𝑖𝑗   is the repulsive part of the potential in 2.2, 

                                     𝑓𝑅  𝑟 = 𝐴𝑥𝑒−𝜆1 𝑟                       (2.4)  

𝑓𝐴 𝑟𝑖𝑗   is the attractive part of the potential in 2.2, 

                                   𝑓𝐴 𝑟 = −𝐵𝑥𝑒−𝜆2𝑟                      (2.5) 

𝑏𝑖𝑗  is the three pair potential in 2.2, 
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                                   𝑏𝑖𝑗 =  1 + 𝛽𝑛𝜁𝑛 
−1

2𝑛                     (2.6)        

Where 𝜁𝑖𝑗  in 2.6;   

                           𝜁𝑖𝑗 =  𝑓𝑐 𝑟𝑖𝑘 𝑥𝑔(𝜃𝑖𝑗𝑘 )𝑥𝑒 𝜆3𝑥(𝑟𝑖𝑗 −𝑟𝑖𝑘 ) 
3

𝑘≠𝑖,𝑗             (2.7) 

Where 𝑔 𝜃  in 2.7;     

      𝑔 𝜃 = 1 +
𝑐2

𝑑2 +
𝑐2

𝑑2+ 𝑕−cos 𝜃 2                          (2.8) 

The constants values are in the Table1.  

    Table1: The constants values 

A(Ev) 1393.6 

B(eV) 346.74 

λ1(1/Å) 3.4879 

λ2(1/Å) 2.2119 

λ3(1/Å) 0 

β 1.57240E-07 

n 0.72751 

h -0.57058 

c 3.80490E+04 

d 4.3484 

R(Å) 1.95 

D(Å) 0.15 

     

 

We have to compute all of the above equations and also derivative of them because 

force on each atom due to system’s potential is; 

    𝐹 = −∇. ∅                         (2.9) 

Design of Tersoff2 processor computation kernels start with decomposition of 

computation structure. In this study, decomposition of computations starting point is 

the FORTRAN implementation of Tersoff2 potential which is written by Prof. Şakir 

Erkoç in 2000. 

We start with pseudo code of Tersoff2 and decomposition of the equations; 

The computation structure has three for loops;  
 
for   .........i......................... 

  
% Do all of the computation for all atoms 
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for............j.......................... 
  

 %Do computation due to ij two pair energy 
 
for..........k............................... 

   ________________ 
%Do computation depends on ijk three pair energy 

________________ 
  end 
  

end 
 

end 

 
 

Figure 2: Basic atomic structure. 

 
With the following pseudo code; 

 

for i=1:1:NA    %NA........................Number of Atoms 

 

    for j=1:1:NA 

        %.. find distances for all i!=j  

        % i.e. RIJ the distance between i and j atom, 

        % i.e. XIJ, YIJ, ZIJ the distance between i and j atom, 

        %Find the cut off values  
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 if (RIJ<R-D)   

              FCIJ=1/2-sin(pi*(RIJ-R)/(2*D))/2; 

              DFCIJ=-pi/(4*D)*cos(pi*(RIJ-R)/(2*D)); 

 else      

   FCIJ=1; 

              DFCIJ=0; 

  end 

 

        UIJ1=FCIJ*exp(-LAMDA1*RIJ); % Find the two pair repulsive energy  

        E2=E2+UIJ1;                 % accumulate for all i!=j 

        DUIJ1=(DFCIJ-LAMDA1*FCIJ)*exp(-LAMDA1*RIJ); % Find the derivative  

        XRIJ=XIJ/RIJ;               % find the projections 

        YRIJ=YIJ/RIJ;               % find the projections 

        ZRIJ=ZIJ/RIJ;               % find the projections 

        

        FX2=FX2+DUIJ1*XRIJ;         % Repulsive Force accumulated due to j body  

        FY2=FY2+DUIJ1*YRIJ;         % Repulsive Force accumulated due to j body   

        FZ2=FZ2+DUIJ1*ZRIJ;         % Repulsive Force accumulated due to j body           

        UIJ2=FCIJ*exp(-LAMDA2*RIJ); % Find the two pair attractive energy  

        DUIJ2=(DFCIJ-LAMDA2*FCIJ)*exp(-LAMDA2*RIJ); 

       

        FX32=DUIJ2*XRIJ;            % attractive Force accumulated due to j body on X  

        FY32=DUIJ2*YRIJ;            % attractive Force accumulated due to j body on Y  

        FZ32=DUIJ2*ZRIJ;            % attractive Force accumulated due to j body on Z  

         

        WIJK=0;       

   % Initilize Three pair computation components 

        XDWIJK=0;  

        YDWIJK=0; 

        ZDWIJK=0;  

         

        

 

 for k=1:1:NA % Do the three pair computation for k!=i,j 

            if (RIJ<R-D)   

                FCIK=1/2-sin(pi*(RIK-R)/(2*D))/2; 

                DFCIK=-pi/(4*D)*cos(pi*(RIK-R)/(2*D)); 

            else      

                FCIK=1; 

                DFCIK=0;  
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           end 

 

            XRIK=XIK/RIK; 

            YRIK=YIK/RIK; 

            ZRIK=ZIK/RIK; 

         

            CTIJK=(RIJ2+RIK2-RJK2)/(2*RIJ*RIK); % compute the cosine between ijk 

            GTETA=1+ĉ 2/d^2-c^2/(d^2+(h-CTIJK)^2); % g (teta ) defined in terosff2 

  

            WIJK=WIJK+FCIK*GTIJK; % accumulation three pair energy 

             

            DGTIJ=c^2*(h-CTIJK)/(d^2+(h-CTIJK)^2)^2* 

(1/RIK-RIK/RIJ2+RJK2/(RIJ*RIJ*RIK)); 

            DGTIK=c^2*(h-CTIJK)/(d^2+(h-CTIJK)^2)^2* 

(1/RIJ-RIJ/RIJ2+RJK2/(RIK*RIK*RIJ)); 

            DWIJ=FCIK*DGTIJ;   

            DWIK=DFCIK*GTIJK+FCIK*DGTIK; 

            XDWIJK=XDWIJK+DWIJ*XRIJ+DWIK*XRIK; 

            YDWIJK=YDWIJK+DWIJ*YRIJ+DWIK*YRIK; 

            ZDWIJK=ZDWIJK+DWIJ*ZRIJ+DWIK*ZRIK; 

        End 

 

         WIJKN=WIJK^n; 

         WIJKN1=WIJK^(n-1);    

         PARAN=(1+BETAN*WIJKN)^US; 

         PARAN1=(1+BETAN*WIJKN)^US1; 

         FX3=FX3+FX32* 

PARAN-0.5*BETAN*UIJ2*PARAN1*WIJKN1*XDWIJK; 

         FY3=FY3+FY32* 

PARAN-0.5*BETAN*UIJ2*PARAN1*WIJKN1*YDWIJK; 

         

FZ3=FZ3+FZ32* 

PARAN-0.5*BETAN*UIJ2*PARAN1*WIJKN1*ZDWIJK; 

         E3=E3+UIJ2*PARAN; 

    end 

     FX=-A*FX2+B*FX3; 

     FY=-A*FY2+B*FY3; 

     FZ=-A*FZ2+B*FZ3; 

end 

EPOT=(A*E2-B*E3)/2; 
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To have a clear view on computations we can use the following logical way;  

1. First of all, we calculate the distances rij, rij2, xij,yij,zij… 

2. Find the cut off result (fcr) 

3. Find repulsive two pair energy component uij1 and accumulate it.  

4. Find attractive two pair energy uij2.  

5. Find derivative of uij1, uij2 and projection parameters 

6. Find cut off value fcr for ik pair.  

7. Find projections for ik. 

8. Find cosine of angle between ijk and g (Ɵ). 

9. Find derivative of g(Ɵ). 

10. Find three pair energy and accumulate it.  

11. Find derivative of three pair energy and accumulate it.  

12. Find force from F2 and F3. 

13. Find potential energy from E2 and E3.  

14. Do same procedure for all atoms in the system. 

15. At the end compute kinetic energy and temperature  

16.  Calculate the scaling factor and do scaling for every two MD step.  

17. Return the beginning of code until the simulation end.  

When we analysis the code we see following properties; 

 Computation has 𝑁3  computation complexity due to 3 for loops.  

 It will take very long time when we increase the atom number.  

 Computations include very complex mathematical process.  

 Computation has operations which consists of 3, 4, 5 operands. 

To overcome these problems we can use pipelining, parallel computation and special 

digital circuit techniques. In this work, we follow some rules to get maximum 

computation performance. 

1. Use pipeline structure to overcome the complexity problem.  

2. At the end get a linear architecture to get minimum computation over cost in 

bigger atomic system. 
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3. Decompose all of the mathematical expression in two operant structure and 

design fully pipelined, single result per cycle for complex mathematical 

functions. 

4. Design efficient memory architecture to achieve best timing performance.  

 

2.2 TERSOFF2 PROCESSOR MAIN FINITE STATE MACHINE 

 

 

 

 Figure 3: Main FSM diagram for Tersoff2 processor.  

 

In Tersoff2 the main FSM design controls the all architecture. In real 

implementation, there are more states for design simplicity. For example, uploading 

state includes more than 20 states for each part of Cartesian coordinates. i.e. xi 

downloading, xj downloading…. 

1-FSM Initial State:  
Download the Cartesian 
coordinates and initial 

velocities from host 
device

2-FSM TERSOFF2: 
Calculate Force and 

Energy Terms 

3-FSM:Do Verlet Update

4-FSM:Calculate 
Temperature and Scaling 

factor for each 2 MD 
step

5-FSM:Scale velocity of 
atoms

6-FSM:For every 128 MD 
step return to Host 
device for uploading 

resulting positions and 
energy parameters
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In Verlet Updating state, when we finish the all updating sequence we do not step the 

Temperature and Scaling Factor state, instead we return the force and energy state 

for every two MD steps. Moreover, we directly turn to Force and energy state unless 

we reach the 128 MD step. 

Host device can be any system that includes Ethernet ports. The interface of 

TERSOFF2 processor is Ethernet hardware instance of utilized FPGA. 
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CHAPTER 3 

 

 

LIBRARY 

 

 

 

3.1 MOLECULAR DYNAMICS ELEMENTARY FUNCTIONS LIBRARY 

In Tersoff2 potential, we have to deal with some basic elementary mathematical 

functions such as; exponential, power, square root, and reciprocal of square root with 

double precision floating point. In this library the elementary functions are optimized 

for molecular dynamics and FPGA technology. In the case of computation 

optimization we have to change the structure of computation in accordance with 

digital circuit and we have to change elementary functions with respect to FPGA 

resource technology. The optimizations will be explained in detail in the library 

instances. All of library implemented in Verilog HDL. All of the functions are in 

double precision floating point arithmetic. Library is consisting of elementary 

functions and complex functions which are related to Tersoff2.  A brief explanation is 

given with following part. This library consists of following elementary functions; 

 

Exponential Function:  

This function is designed with respect to [5]. In this paper, pipelined, well suited 

architecture for exponential computation is proposed.  

 

Square Root Inverse Square Root Function:  

This function is optimized for produce sqrt(x) and 1/sqrt(x) at the same time and it is 

designed with respect to [6]. In this paper fully pipelined independent sqrt and 1/sqrt 

function proposed, in the thesis study this paper work is optimized and modified for 

double result. This structure is proposed during thesis study.  

 

Power Function:                                                                                                        

This function is combination of log(x) and exp(x). Since power function result is 



15 
 

used both in potential and force computations, it is optimized for generate ∝𝜕  and 

∝𝜕−1 at the same time. This structure is proposed during thesis study.  

 

Logarithm Function:  

In fact, we do not need logarithm function Tesoff2 computation, to compute double 

precision power we need logarithm. This function is designed with respect to [7]. In 

this paper, pipelined, well suited architecture for logarithm computation is p roposed. 

 

Log adder Function:  

Tersoff2 co-processor is fully pipelined digital circuit. In accumulation parts, we 

need very big adders to accumulate energy portions of the system. Unfortunately, 

adder trees are very big structures to design. As a solution for this problem given in 

thesis work, is a special asymmetric log adder tree.  This structure is proposed during 

thesis study. 

The complex functions due to Tersoff2 are; 

 

Radius computation function:  

This function is designed and implemented for computing distance between two 

atoms. With the help of well known Cartesian distance formula; 

    𝑟𝑖𝑗 =    𝑥𝑖 − 𝑥𝑗 
2

+  𝑦𝑖 −𝑦𝑗 
2

+  𝑧𝑖 − 𝑧𝑗 
2
            (3.1) 

It also includes of Cartesian computation and sqrt(x) and 1/sqrt(x) functions. This 

structure is proposed during thesis study. 

 

Cache Structure for Tersoff2:  

This library instance is the memory architecture designed for molecular dynamics. 

This part is designed for feeding, loading and serving elements for computation 

functions. It has the ability of feeding all computation pairs at the same time. This 

structure is proposed during thesis study.  
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Carbon Pair Generator Function:  

This instance is designed for address decoding service for cache structure. It serves 

consecutive pairs for every cycle. This structure is proposed during thesis study.  

 

Verlet Update Function:  

Verlet computation is a very important part of position and velocity update of 

computed potential. It is fully pipelined. This structure is proposed during thesis 

study.  

 

Thermostat Function:  

Since the thermal stability of carbon nanotube system is investigated; a controller is 

designed and implemented in this study.  

 

Intelligent Reset Function:  

Since Tersoff2 potential function has two and three particle potential computation in 

every atomic computation stage there has to be a circuit which is going to clear the 

accumulation parts. This structure is proposed during thesis study.  

 

Cosine Function: 

 In Tersoff2, there is a three particle potential computation, so we need to calculate 

the cosine of the angle between three atoms. It is a well known identity in cosine 

theory in a triangle form; 

                                               𝐶𝑜𝑠 ∅ =
 𝑟𝑖𝑗

2+𝑟𝑖𝑘
2−𝑟𝑗𝑘

2 

 2×𝑟𝑖𝑗 ×𝑟𝑖𝑘  
             (3.2) 

 

Projection Function: 

In Tersoff2, we need to find Force vectors in x, y and z bases. These are called Fx, 

Fy, Fz in the design. To find these vectors, three division circuits have to be utilized. 

This solution is going to consume lots of resources. Instead of that solution we can 

use multiplication of reciprocal of square root result because, multiplication 

consumes much less resources. This structure is proposed during thesis study.  
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In the following part, each of the library instance and main part of processor is going 

to be explained.    

 

3.2 MOLECULAR DYNAMICS SIMULATION LIBRARY AND TERSOFF2 

CO-PROCESSOR ARCHITECTURE 

In this part, elementary functions and architecture of Tersoff2 is going to be 

explained. 

Following List of Symbols are used through this part.  

  In general, this symbol indicates addition family. In each schematic, there 

will be a note to explain type of addition i.e. double float, fixed, signed, unsigned.  

  In general, this symbol indicates subtraction family. In each schematic, there 

will be a note to explain type of subtraction i.e. double float, fixed, signed, unsigned.  

 In general, this symbol indicates multiplication family. In each schematic, 

there will be a note to explain type of multiplication i.e. double float, fixed, signed, 

unsigned. 

 In general, this symbol indicates division family. In each schematic, there 

will be a note to explain type of division i.e. double float, fixed, signed, unsigned.  

 In general, this symbol indicates comparison family. In each schematic, there 

will be a note to explain type of comparison i.e. double float, fixed, signed, unsigned.  

 In general, this symbol indicates square root family. In each schematic, 

there will be a note to explain type of square root i.e. double float, fixed, signed, 

unsigned. 

 In general, this symbol indicates inverse square root family. In each 

schematic, there will be a note to explain type of inverse square root i.e. double float, 

fixed, signed, unsigned. 
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 In general, this symbol indicates block ram family. In each schematic, 

there will be a note to explain type of block ram i.e. dual port, single port, prom with 

different port sizes. 

 In the design, there are lots of constants whose are used in the 

computations.  

 In general, this symbol indicates FIFO family. In each schematic, there 

will be a note to explain type of FIFO. 

 

3.2.1ELEMENTARY MATHEMATICS LIBRARY DESIGN 

 

3.2.1.a Exponential Function: 

  

                        Figure 4: Black box input output diagram of exponential module.  

To design and implement this library instance, Jamro and Wielgosz [5] architecture 

is used due to it’s pipelined structure.  First, there is a mathematical explanation of 

solution is given then the circuit schematics and the resources which are used 

explained.  

In the computation of Tersoff2 double precision floating point exponential is used, so 

we need to implement it with these properties;  
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a- Result per clock cycle is 1,      

b- Fully pipelined architecture,  

c- Result within one iteration.  

We start with the well known mathematical identities: 

   𝑒𝑥 = 2𝑥.log 2 𝑒 = 2𝑥 𝑖 . 𝑒 𝑥−𝑥 𝑖 .log 2 𝑒               (3.3)                                                                                                                                  

                                    𝑒𝑥+𝑦 = 𝑒𝑥 . 𝑒𝑦                                             (3.4) 

𝑥𝑖 in 3.3 is the integer part of 𝑥 and 

 𝑥𝑖 = 𝑥. log2 𝑒             (3.5)   

𝑥𝑓   is the fractional part of 𝑥.  

                                          𝑥𝑓 = 𝑥 − 𝑥𝑖 . log2 𝑒
−1        (3.6)  

This fractional part in 3.5 can be decomposed in to four parts for turning exponential 

computation into four multiplications. 

i.e.       𝑥𝑓 = 𝑥𝑚 . 𝑥𝑑 .𝑥𝑙 . 𝑥𝑡       (3.7) 

where;  

                   𝑥𝑚 = 𝑥𝑓 𝑚𝑜𝑠𝑡  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  9 𝑏𝑖𝑡𝑠 [1:9]        (3.8) 

  𝑥𝑑 = 𝑥𝑓 𝑚𝑖𝑑𝑑𝑙𝑒  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  9 𝑏𝑖𝑡𝑠 [10:18]    (3.9) 

 𝑥𝑙 = 𝑥𝑓 𝑙𝑒𝑎𝑠𝑡  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  9 𝑏𝑖𝑡𝑠 [19:27]        (3.10)  

  𝑥𝑡 = 𝑥𝑓 𝑟𝑒𝑠𝑡  𝑜𝑓   𝑙𝑒𝑎𝑠𝑡  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  [28:51]      (3.11)  

Then 

 𝑒𝑥 = 2𝑥 𝑖 . 𝑒𝑥𝑚 . 𝑒𝑥𝑑 . 𝑒𝑥 𝑙 .  1 + 𝑥𝑡      (3.12)  

Remember that 

 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+⋯ , −∞ < 𝑥 < ∞….         (3.13) 

Taylor expansion series will be replaced for 3.10 and only first two terms of 3.12 are 

enough to have right precision. Then we need stored pre-computed results of 𝑒𝑥𝑚 , 

𝑒𝑥𝑑 , 𝑒 𝑥 𝑙 and three small multipliers to get result. This architecture is designed with 

Verilog HDL and implemented in ISE 14.2 for V7485T device. In the [5], their 

design consumes 71 dsp units and operates at 166 MHz at most, while in this thesis 

work it consumes 48 units and operates at 400 MHz. 
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             Figure 5: Schematic exponential computation diagram. 

  

 3.2.1.b Square Root  Inverse Square Root Function: 

                              

Figure 6: Black box input output diagram of square root and inverse square 

root module. 
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In Tersoff2 computation problem we need double precision floating point in two 

stages. The first one is atomic distance calculation and the second one is projection 

part. Since these two parts are consecutive parts a new computation method is 

proposed and designed in this thesis work “Generate both square and inverse square 

root result at the same time”. The main idea of each result is based on Pineiro works 

[6]. Like the other instances, we need same properties with this computation: a-

Result per clock cycle is 1, b-Fully pipelined architecture, c-Result within one 

iteration. 

 

We begin with mathematical explanation; to find the solution in single iteration, 

force us to start a lucky iteration point. As explained in [6] this can be achieved by 

single precision initial guess. For single precision result of square root [6] utilize 

second order minimax approximation with Remez algorithm.  

For single precision initial point, decompose fractional part into following order to 

find the pre-computed coefficient of approximation. 

                                              𝑋1 =  1. 𝑥1𝑥2𝑥3…𝑥𝑚1                       (3.14) 

                                   𝑋2 =  .𝑥𝑚1+1𝑥𝑚1+2𝑥𝑚1+3 …𝑥𝑚2 × 2−𝑚1   (3.15) 

                                   𝑋3 =  .𝑥𝑚2+1𝑥𝑚2+2𝑥𝑚2+3 …𝑥𝑚3 × 2−𝑚3   (3.16) 

m1 and m2 are the border bits of the separation.  

 

When we sent these bits to coefficients lookup tables we can get the input vector set 

of first initial guess from Remez algorithm [6]. Then we can compute the following 

polynomial to reach single precision square root solution.  

                                                   𝑅𝑠 = 𝐶0 + 𝐶1.𝑋2 + 𝐶2. 𝑋2
2          (3.17) 

 

Up to this point we use small multipliers and adders and lookup tables. Second 

computation stage of square root and inverse square root problem will be solved with 

Goldschmidt algorithm [8]. For floating point computations the mantissa part is in 

the range of [1, 2). The detailed analysis of method is out of this thesis work.  

 



22 
 

                              

 

Figure 7: Abstract initial single precision Rs computation diagram. 

 

The computation of Goldschmidt procedure for square root and inverse square root 

are: 

 First compute the Goldschmidt coefficient for square root and inverse square 

root. 

               𝐺𝑠 𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑋. 𝑅𝑠        (3.18)   

   𝐺𝑠 𝑖𝑛𝑣𝑒𝑟𝑠𝑒  𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑅𝑠         (3.19) 

 Second find the bound of solution to guarantee the result.  

   𝑉𝑠 = 1− 𝑅𝑠. 𝐺𝑠      (3.20) 

 Finally, compute the following equation to get the final result.  

                                   𝑍 = 𝐺𝑠.  1 +
𝑉𝑠

2
                        (3.21) 
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In the [6] proposed architecture does not compute both function at the same time. It 

utilizes same resources for each function. In this thesis work this structure is 

modified to get both results at the same time.  

 

   

Figure 8: Starting with single precision Rs and modified Goldschmidt structure the 

both result can be obtained at the same time.  

 

Starting coefficient for inverse square root is 𝑅𝑠. Replacement 𝐺𝑠    with 𝑅𝑠 in the 

Final step will give us the inverse square root solution. To handle both equations at 

the same time we have to use parallel resources.  

    𝑍𝑠𝑞𝑟𝑡 = 𝐺𝑠.  1 +
𝑉𝑠

2
                      (3.22)    

             𝑍𝑖𝑛𝑣𝑒𝑟𝑠𝑒  𝑠𝑞𝑟𝑡 = 𝑅𝑠 .  1 +
𝑉𝑠

2
        (3.23)  
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By using small number of resources, in this work we make improvement on result. 

This architecture is designed with Verilog HDL and implemented in ISE 14.2 for 

V7485T device.  In this thesis work it consumes 61 DSP units and operates at 400 

MHz. 

 

3.2.1.c Power Function: 

             

  Figure 9: Double precision floating point black box diagram. 

In Tersoff2 potential, we have double precision power computations. For 𝛼𝛽  both of 

base 𝛼 and power 𝛽 are double precision floating points. There is not a direct 

computation in floating point for power, we use following well known mathematical 

identity to compute power function. 

                                                𝛼𝛽 = 𝑒 log 𝑒 𝛼
𝛽

     (3.24) 

Then, this identity is equal to; 

    𝛼𝛽 = 𝑒𝛽.log 𝑒 𝛼     (3.25) 

Since we have exponential and logarithm functions separately, we can compute 

power function with following procedure;  
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 First calculate the natural logarithm of base 𝛼, 

 Then, do floating point multiplication with power 𝛽, 

 Finally, compute the exponential of result.  

With this structure we can compute double precision floating point power function.  

In Tersoff2, we have to compute derivative of potential. We have one more power 

computation for derivative. Since derivative for power computations are one less 

power of same base, we can integrate both power computation to reduce resource 

consumption in the following way; 

 

Figure 10: We can reduce power computation resources by eliminating the second 

natural logarithm module.  

We need to compute both of 𝛼𝛽 , 𝛼𝛽−1 . Our power computation strategy starts with 

taking natural logarithm of base 𝛼. Since, starting point of power computation of 

both terms are same. Then we don’t need to us one more logarithm function.  With 

this strategy we can reduce the resource consumption % 25.  
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3.2.1.d Log adder Function: 

In floating point computations, accumulation takes lots of resources. Assume we 

need to take 8 pairs of terms, to do these additions we need to construct following 

circuit; 

                  

Figure 11: Accumulation of 8 terms with 7 adders in 3 stage addition.  

This technique will consume too much resource in FPGA. Instead of this we can 

utilize log adder technique to reduce resource consumption.  

      

Figure 12: Accumulation of 8 terms with 3 adders and 2 simple delay units. 

 

3.2.1.e Logarithm Function: 

For double precision floating point logarithm function, this library follows [7] 

methodology. It is based on Taylor approximation. The procedure for computation is;  
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1-Reduction; deduce Y in n bits to A for producing simpler design 

where;−2−𝑘 < 𝐴 < 2𝑘  and k is 14 bit for double precision. For a given f(A) 

the function logarithm is computed. 

2-Evaluation; compute approximate value of B from given approximate 

function. 

3-Postprocessing; since we reduce Y to A, we have to update the result B 

which is generated in step 2. 

  

 Figure 13: Approximation architecture of logarithm function. 

Where ; 

𝐴 = 𝑌𝑥𝑅− 1      (3.26) 

R in 3.26 is 15 bits approximation of 1/Y. 

 

In Evaluation step, we use following approximation; 

                                  ln 1 + 𝐴 ≅ 𝐴−
1

2
𝐴2

2𝑧4 −𝐴2𝐴3𝑧
5 +

1

3
𝐴2

3𝑧6    (3.27) 

Where  

                                     𝑧 = 2−14                              (3.28)   

The design of 3.27 is consist of small multipliers and a big adder.  

For post processing step; 
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𝐺 𝑌 = 𝐵 − ln𝑅                  (3.29) 

We consume a large prom for pre-computed –ln(R) in 3.29 and small multipliers for 

computing logarithm function. 

 

 Figure 14: Schematic diagram of logarithm function.  

The design consumes 8 X 36 K bits block rams and 60 DSP units and can operate up 

to 400MHz. 

 

3.2.2 COMPLEX MATHEMATICS LIBRARY DESIGN  

 

3.2.2.a Radius Computation Function: 

Tersoff2 starts with computing the Radius computation function. In Cartesian 

coordinates system; the distance can be computed from well known identity; 

                             𝑟𝑖𝑗 =    𝑥𝑖 − 𝑥𝑗 
2

+  𝑦𝑖 −𝑦𝑗 
2

+  𝑧𝑖 − 𝑧𝑗 
2
     (3.30) 

The strategy to compute distance  𝑟𝑖𝑗 ; 

 First find the distance between each bases i.e. 𝑥𝑖𝑗  , 𝑦𝑖𝑗  , 𝑧𝑖𝑗  
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 Then find the square of them, 

 Add the three terms, 

 Finally send the resulting value to square root and inverse square root 

module. 

 

Figure 15: The radius square black box diagram with square root black box diagram.  

 

In this design in every clock cycle we can feed all terms of Cartesian coordinates of 

three neighbor atoms. After a determined latency, distance square feed through 

SQRTDEV module and we can find both distance and reciprocal distance of three 

pair atomic system.  
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Figure 16: Schematic for computing distance and inverse distance.  

In this design, all of the computation elements are double precision floating points. 

The symbol D indicates the synchronization elements. In the first stage of computa-

tion we get the distances between for two atoms in the x, y, z bases ; 

 𝑥𝑖𝑗 = 𝑥𝑖− 𝑥𝑗    (3.31) 

𝑦𝑖𝑗 = 𝑦𝑖 −𝑦𝑗     (3.32)  

 𝑧𝑖𝑗 = 𝑧𝑖− 𝑧𝑗    (3.33) 

In the second stage we multiple terms 3.31, 3.32, 3.33 with themselves to get square 

of terms. 

                                                   𝑥𝑖𝑗
2 = 𝑥𝑖𝑗 × 𝑥𝑖𝑗           (3.34) 

                                                   𝑦𝑖𝑗
2 = 𝑦𝑖𝑗 × 𝑦𝑖𝑗           (3.35) 
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    𝑧𝑖𝑗
2 = 𝑧𝑖𝑗 × 𝑧𝑖𝑗            (3.36) 

In third and fourth stage we add 3.34, 3.35 and 3.36. 

 𝑟𝑖𝑗
2 = 𝑥𝑖𝑗

2 + 𝑦𝑖𝑗
2 + 𝑧𝑖𝑗

2        (3.37) 

In the final stage we take the square root and the inverse square root to get distance 

and inverse distance. 

 

3.2.2.b Cache Structure for Tersoff2: 

In Tersoff2, to get high performance result special memory structure for computation 

kernels has to be designed. Having fully pipelined digital circuits does not mean we 

get the best performance at the end, without an optimized memory cache structure. 

So we need to classify how to design and locate the single cycle reachable memory 

elements. 

For calculating distances we need to reach 𝑥𝑖 ,𝑥𝑗 , 𝑥𝑘 ,𝑦𝑖 ,𝑦𝑗 , 𝑦𝑘 , 𝑧𝑖 , 𝑧𝑗 , 𝑧𝑘 at the same 

cycle, moreover we need  𝑣𝑥𝑖 ,𝑣𝑦𝑖 , 𝑣𝑧𝑖 ,𝐹𝑥𝑖 , 𝐹𝑦𝑖 , 𝐹𝑧𝑖      for Verlet update module to 

compute new velocity and force values. By definition each of these terms are 64 bits.  

Following memory design is going answer all of constraints that we need. First, by 

using three dual-port block rams we construct the basic memory element instances.  

 

                Figure 17: Schematic for basic memory for xi, xj and xk.  
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Second, use three modules of basic memory elements to construct single coordinate 

data bank. If we connect to same address information to all of address input port of 

databanks we can get single cycle 9 X 64 bits memory cache.  

 

 

 Figure 18: Black Box Diagram for coordinate’s memory structure. 

 

In each computation cycle, with this architecture we can feed all of the Cartesian 

terms to radius module and best performance going to be achieved.  

 

Moreover, in this design we use neighbor list concept, we also need some memory 

blocks to store neighbor information for each atom. By using neighbor list method 

we do not need to calculate every atom cutoff range. We are going to use Neighbor 

list for each atom to reach the neighbors. After gathering all of the memory 

structures, following cache architecture is designed.  
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  Figure 19: Black Box Diagram for neighbor list module.  
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Figure 20: Black Box Diagram for all of the memory blocks.  

 

With this architecture, following memory stream strategy followed.  

First, after selecting current atom neighbor list of it, send them to Carbon pair 

generator. Second, after generating related atom address in the carbon pair generator 

module, appropriate addresses of three neighbor atom selects the memory location 

and sends the Cartesian coordinates to radius (distance) module. Third, after 

calculating the energy and force results, new values of velocity and forces with old 

ones send to Verlet update module. Finally, new computed values transferred to 

appropriate locations. 

Cache structure of tersoff2 consumes; Neighbor List 18 block-rams (18 K bits), 

Databanks 3 X 23 block-rams (36 K bits). With consumption of these resources we 

can reach best performance due to single cycle memory feed system.  
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3.2.2.c Carbon Pair Generator Function: 

 

In the selection atoms, there is a need to having intelligent pair selection system. In 

this processor design we follow the design rule of pipelining. Since all other parts of 

processor are pipelined, to have best performance we need pairs at every cycle 

otherwise, pipelined design is going to be useless.  

For this constraint, this design includes a carbon pair generator system.  

 

  Figure 21: Black Box Diagram for carbon pair generator. 

 

The module gets the Neighbor List and generates appropriate address in single cycle 

with a determined latency. Module consumes 400 registers to accomplish this 

constraint. 
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3.2.2.d Verlet Update Function: 

After calculating the energy and force of each atom, we need to update position and 

velocity of each atom in the system. 

  

 Figure 22: Black Box Diagram for Verlet Update.  

 

New position is equal to; 

                                   𝑟𝑛+1 = 𝑟𝑛 + 𝑕 × 𝑣𝑛 + (1/2× 𝑚) × 𝑕2 × 𝐹𝑛       (3.38) 

New velocity is equal to; 

                                  𝑣𝑛+1 = 𝑣𝑛 +  
𝑕

2𝑚
 × (𝐹𝑛+1 + 𝐹𝑛)                      (3.39) 

Where;  

𝑟𝑛+1 is the next MD step location of the atom, 

𝑟𝑛  is the current location of the atom, 

𝑕 is the time constant, 𝑚 is the mass constant, 

𝑣𝑛  is the current MD step velocity,  

𝑣𝑛+1  is the next MD step velocity, 

𝐹𝑛  is the current MD step force, 

𝐹𝑛 +1 is the next MD step force. 

These equations are computed for all of three Cartesian axes.  
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Figure 23: Schematic diagram of main Verlet computation for one Cartesian axe.  

 

Since we need this circuit for all axes, resulting structure is in Figure 24. 

 

            Figure 24: Black box diagram of three axis Verlet update.  
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This circuit generates velocity and position updates at every clock cycle with fully 

pipelined mode. Design consumes 117 DSP bocks. Each computation symbol 

represents a floating point unit and can operate up to 500 MHz.  

 

3.2.2.e Thermostat Function: 

In tersoff2 computation, there is a thermal control of the system. After completing a 

MD step, system’s kinetic energy is calculated and according to following equations 

its temperature is found. In every 2 MD step according to temperature of the system, 

a velocity scaling factor is calculated and velocities of the atoms are recomputed with 

this scaling factor. This process ensures the thermal stability of the system.  

 

Figure 25: Black box diagram of Thermostat.  

                                 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
𝑅𝑀×𝑝𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝑒𝑛𝑒𝑟𝑔𝑦

3×𝑁𝐴×𝐵𝐾
      (3.40) 

  RM, NA and BK are constants.  

                                  𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑇𝐸

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
          (3.41) 

TE is the target temperature has to be scaled.  

In Thermostat Function this strategy is followed; 

First calculate the system kinetic energy by accumulating kinetic energy of each 

atom 

                                                𝑉𝑇 = 𝑣𝑥
2 +𝑣𝑦

2 +𝑣𝑧
2    (3.42) 

                                               𝑝𝐾𝑖𝑛𝑒𝑡𝑖𝑐𝐸𝑛𝑒𝑟𝑔𝑦 =  𝑉  (3.43) 

 𝐾𝑖𝑛𝑒𝑡𝑖𝑐𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑅𝑀 𝑥 𝑝𝐾𝑖𝑛𝑒𝑡𝑖𝑐𝐸𝑛𝑒𝑟𝑔𝑦   (3.44)  
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Then find the temperature of the system. Finally, calculate the Scaling Factor and 

rescale the velocity with this factor.  

In this thesis work, thermostat part is the most problematic part of all design. 

Because, there is a division and square root for only one term. This processor uses 

the power of pipelining and parallelism. For one operation like Temperature 

calculation or scaling factor calculation, these properties are not going to be used. At 

the end, all system has to wait the scaling factor computation. This result is 

inevitable.  This design consumes 100 DSP units. It can operate up to 400 MHz.  

 

 Figure 26: Schematic diagram for Thermostat.  
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3.2.2.f  Intelligent Reset Function: 

                 

Figure 27: The black box representation of intelligent reset circuit.  

This part of the design is a special reset circuit for Accumulators. Since system 

generates forces consecutively, we have to clear accumulation modules for 

consistency. It utilizes simple shift registers and generates reset flags through all 

processor when it is needed. It consumes only 30 registers and can operate up to 700 

MHz.    

    

3.2.2.g Cosine Function: 

In thesoff2, we have to find the cosine of the angle between three neighbor atoms. 

We can utilize well known mathematical identity; 

                    𝐶𝑜𝑠 ∅ =
 𝑟𝑖𝑗

2+𝑟𝑖𝑘
2−𝑟𝑗𝑘

2 

 2×𝑟𝑖𝑗 ×𝑟𝑖𝑘  
    (3.45) 

 

  Figure 28: the black box diagram of cosine angle module.  

There are two divisions in this calculation if we rearrange this equation we can get a 

more efficient circuit for digital design.  
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                       cos∅ =  𝑟𝑖𝑗
2 + 𝑟𝑖𝑘

2 − 𝑟𝑗𝑘
2 𝑥

1

2𝑥 𝑟𝑖𝑗
𝑥

1

𝑟𝑖𝑘
     (3.46) 

In the square root and inverse square root module, we have already found  
1

𝑟𝑖𝑘
   and 

1

𝑟𝑖𝑗
 . 

As a result, we don’t have to use division which will consume lots of system 

resources. Note that, we don’t divide by 2 with division; instead of this we subtract 1 

from the exponent part of floating point.  

                  

  Figure 29: Abstract diagram of cosine angle module.  

To calculate the Cosine of the Angle, design uses following strategy; 

First, buffer 𝑟𝑖𝑗
2 and calculate 

 𝑟𝑖𝑘
2 − 𝑟𝑗𝑘

2   (3.47) 

At the same time do the multiplication  
1

𝑟𝑖𝑗
𝑥

1

𝑟𝑖𝑘
  and buffer the result.  

Second, do addition 

                                                𝑟𝑖𝑗
2 + 𝑟𝑖𝑘

2 − 𝑟𝑗𝑘
2  (3.48) 

Finally, after finishing addition, multiply first and second stage outputs with 

deducting exponent of the result.  

This module consumes 24 DSP units and can operate 330 MHz. It is fully pipelined.  



42 
 

 

Figure 30: Schematic diagram of cosine angle module. 

 

3.2.2.h Projection Function: 

We have to find projection of force onto Cartesian system in all MD calculations. In 

theory we have to use 3 division modules to get the right result. The projection can 

be done by following equations; 

                                      𝑋𝑅𝑖𝑗 =
𝑋𝑖𝑗

𝑅𝑖𝑗
, 𝑌𝑅𝑖𝑗 =

𝑌𝑖𝑗

𝑅𝑖𝑗
, 𝑍𝑅𝑖𝑗 =

𝑍𝑖𝑗

𝑅𝑖𝑗
      (3.49) 

However, we generate inverse square root of  𝑅𝑖𝑗  when we calculate the distance 

between two atoms. So, in the design multiplication is going to be used instead of 

divisions in the following manner.  

                        𝑋𝑅𝑖𝑗 = 𝑋𝑖𝑗 𝑥
1

𝑅𝑖𝑗
, 𝑌𝑅𝑖𝑗 = 𝑌𝑖𝑗 𝑥

1

𝑅𝑖𝑗
, 𝑍𝑅𝑖𝑗 = 𝑍𝑖𝑗 𝑥

1

𝑅𝑖𝑗
  (3.50) 

Since there are two locations where projection exists, in the processor design we use 

6 multiplications instead of 6 divisions to get great benefit by means of resource 

usage.  
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Figure 31: Schematic diagram of Projection module.  

 

3.2.2.i Handshaking Strategy: 

All of the modules have handshaking ability to save time consistency. This ability is 

location free. Each module has nd new data input flag and rdy result ready flag. A 

new input supplied to any module has also informed with nd input. Also, it generates 

rdy signal when its result is ready. 

 

3.2.2.j Synchronization strategy:    

In this thesis work, designed modules have different latency, in other words different 

functions generate results in different times. To be consistent in calculations, we 

have to synchronize the result of modules and buffer the result until when it is 

needed for another module. Moreover, some results are needed by different time and 

different modules. So, sometimes we need to replicate results in different locations. 

Two elements of Synchronization: 
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1. Shift registers: For time less than 32 cycles we can utilize shift registers to 

synchronization. We can use these elements to delay in pipelined fashion.  

2. FIFOs: For time bigger than 32 cycles we need to buffer results in a FIFO 

until it is ready to serve in other equations.  
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CHAPTER 4 

 

 

TERSOFF2 HARDWARE ACCELERATION KERNEL 

 

For the beginning, we give a hierarchical design structure of main computation 

kernel. This kernel is the main computation part of Tersoff2 processor and it includes 

all of the computation that we need for energy and force calculations.  

 

      

Figure 32: the black box representation of Kernel of Tersoff2  

Tersoff2 kernel has Cartesian coordinates input ports and Force and Energy output 

ports this structure is fed by coordinate module for single cycle operation. It 

generates force components and potential components at every process cycle at the 

same time. We introduce kernel structure with lower level modules.  

Kernel has the following hierarchical architectural structure; 

 Tersoff2KernelDevice 

o Clarify-Device 
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o Coordinate-Device 

 Radius-Dev 

 SQRT-Device 

 Global Buffer Device 

o Energy- Pair-Device 

 FCRIJ-Device 

 EXP-Device 

 UIJK-Device 

 DERIVATIVEFORCE-Device 

 Global Buffer Device 

o GTETA-Device 

 FLEVEL-Device 

 SLEVEL-Device 

 TLEVEL1-Device 

 TLEVEL2-Device 

 Global Buffer Device 

o ProjectionIJ-Device 

o ProjectionIK-Device 

o TwoPairsSummation-Device 

 Accumulation-Device 

 FX2-Device 

 FY2-Device 

 FZ2-device 

 Global Buffer Device 

o ThreePairsSummation-Device 

 FCRIK-device 

 WIJKm-Device 

 DWIJm-Device 

 DWIKm-Device 

 XDWIJK-Device 

 YDWIJK-Device 
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 ZDWIJK-Device 

o PowerSystem 

 POWER-Device 

 PARAN-Device 

o ForceThreePairs-Device 

o ForceM-Device 

 FORCEX-Device 

 FORCEY-Device 

 FORCEZ-Device 

o EnergyM-Device  

 

4.1KERNEL.Clerify:  

This module is explained in the library.  

 

4.2KERNEL.Coordinate:  

This module consists of radius module and square root and inverse square root 

module. Fundamental duty of this module is supplying related distance vectors to 

other modules. It generates rij, one_rij, rik, one_rik, rij2, rjk2, rik2, xij, yij, zij, xik, 

yik, zik.  

   

   Figure 33: Coordinate module diagram. 
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4.3Kernel.Energy-Pair: 

        

Figure 34: Energy Pair module diagram. 

This module generates the main potential calculations for uij1, uij2 duij1 and duij2. It 

consists of cut-off function and exponential function.  

The computation strategy is; 

First, find the cut off function and derivative of cut- off function  

if (𝑅𝐼𝐽 < 𝑅 − 𝐷)       

 𝑓𝑐𝑟 =
1

2
𝑥(1 − 𝑠𝑖𝑛(

𝜋𝑥(𝑅𝐼𝐽−𝑅)

2𝐷
) (4.1) 

  dfcr= −
𝜋

4𝐷
𝑥𝑐𝑜𝑠(

𝜋𝑥(𝑅𝐼𝐽 −𝑅)

2𝐷
)  (4.2) 

 else      

             𝑓𝑐𝑟 = 1 

             𝑑𝑓𝑐𝑟 = 0 

         End 

Since, we discard the atoms which are not in the range of R+D, we check  

R-D condition. This module checks it and store the result in to a buffer. At same time 

the computation of sin (𝜃) and cos (𝜃) argument is calculated. We use single 

CORDIC module to generate sin (𝜃) and cos (𝜃) of arguments. We transform 

floating points to fixed point because, CORDIC [41] accepts only fixed point 
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numbers. Finally, selection according to R-D condition is done by multiplexers and 

we have both fcr and dfcr at the same time.  

                      

 
  Figure 35:  Schematic diagram for FCR cut off function.  

 

Then, find exponential decays and their derivatives simultaneously,  

𝑈𝐼𝐽1 = 𝐹𝐶𝐼𝐽𝑥𝑒 −𝜆1𝑥𝑅𝐼𝐽         (4.3) 

𝑈𝐼𝐽2 = 𝐹𝐶𝐼𝐽𝑥𝑒 −𝜆2𝑥𝑅𝐼𝐽         (4.4) 

𝐷𝑈𝐼𝐽1 = (𝐷𝐹𝐶𝐼𝐽 − 𝜆1𝑥𝐹𝐶𝐼𝐽)𝑥𝑒
 −𝜆1𝑥𝑅𝐼𝐽         (4.5)     

𝐷𝑈𝐼𝐽2 = (𝐷𝐹𝐶𝐼𝐽 − 𝜆2𝑥𝐹𝐶𝐼𝐽)𝑥𝑒
 −𝜆2𝑥𝑅𝐼𝐽       (4.6) 
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Figure 36: Schematic diagram of single energy pairs.  

 

The exponential function explained in the library.  

Derivative_Force function solves following equation in pipelined mode; 

𝐷𝑈𝐼𝐽1 = (𝐷𝐹𝐶𝐼𝐽 − 𝜆1𝑥𝐹𝐶𝐼𝐽)𝑥𝑒
 −𝜆1𝑥𝑅𝐼𝐽       (4.7) 

𝐷𝑈𝐼𝐽2 = (𝐷𝐹𝐶𝐼𝐽 − 𝜆2𝑥𝐹𝐶𝐼𝐽)𝑥𝑒
 −𝜆2𝑥𝑅𝐼𝐽       (4.8) 

There are subtraction and multiplication of floating point cores in it. It 

simultaneously generates derivative of potentials 4.4 and 4.5.  

 

In this digital circuit, first we calculate cut-off function 4.1, derivative of cut-off 

function 4.2, rijx(−𝜆1) and rijx(−𝜆2)  values simultaneously. Then, we calculate exp 

(rijx(−𝜆1)), exp (rijx(−𝜆2)) in parallel while buffering dfcr term in 4.2. By 

following schematic flow finally, we compute 4.7, 4.8, 4.3 and 4.2 at the same time. 

At the end, send all of the result at the same time. 
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 Figure 37: Schematic diagram for energy pairs and their derivatives.  
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 Figure 38: Schematic diagram of DerivativeForce module.  

 

4.4 Kernel.GTETA function: 

 

Figure 39: The black box representation of GTETA device.  

This module is responsible to generate cosine of angle between ijk and three pairs 

sub parameters of g(𝜃) and dg(𝜃). It solves following equations simultaneously.  
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𝐶𝑇𝐼𝐽𝐾 =
 𝑅𝐼𝐽2 +𝑅𝐼𝐾2−𝑅𝐽𝐾 2  

 2𝑥𝑅𝐼𝐽𝑥𝑅𝐼𝐾  
                                      (4.8) 

𝑔 𝜃 = 1 +
𝑐2

𝑑2 −
𝑐2

 𝑑2 + 𝑕−𝐶𝑇𝐼𝐽𝐾 2 
       (4.9) 

𝐷𝐺𝑇𝐼𝐽 =
𝑐2 𝑥 𝑕−𝐶𝑇𝐼𝐽𝐾 

 𝑑2+ 𝐶𝑇𝐼𝐽𝐾 2 2 𝑥(
1

𝑅𝐼𝐾
−

𝑅𝐼𝐾

𝑅𝐼𝐽2 +
𝑅𝐽𝐾2

𝑅𝐼𝐽𝑥𝑅𝐼𝐽𝑥𝑅𝐼𝐾
)    (4.10) 

𝐷𝐺𝑇𝐼𝐾 =
𝑐2 𝑥 𝑕−𝐶𝑇𝐼𝐽𝐾 

 𝑑2 + 𝐶𝑇𝐼𝐽𝐾 2 2 𝑥(
1

𝑅𝐼𝐽
−

𝑅𝐼𝐽

𝑅𝐼𝐽 2 +
𝑅𝐽𝐾2

𝑅𝐼𝐽𝑥𝑅𝐼𝐾𝑥𝑅 𝐼𝐾
)   (4.11) 

 

The Cosine function explained in the library.  

 

The module start to calculate the distance vector related parts at the same time with 

Cosine function to reduce computation time. When the result of Cosine function is 

ready, the related computations of it are calculated. Finally, all of gtijk, dgtij and 

dgtik are generated. 

 

  Figure 40: Schematic diagram of GTETA function.  



54 
 

4.5 Kernel.Projection:  

This function is explained in the library.  

 

4.6 Kernel.TwoPairsSummation: 

    

Figure 41: The back box representation of Twopairssummation module  

This module is responsible for generating two pair force calculation and energy 

accumulation for repulsive part of Tersoff2 in the following equations. It takes uij1, 

duij1, duij2, xrij, yrij, zrij and generates E2, FX2, FY2, FZ2, FX3, FY3, FZ3.  

It accumulates UIJ1 for ij pairs.  

𝐸2 = 𝐸2 + 𝑈𝐼𝐽1        (4.12) 

       

It accumulates force from duij1;           

𝐹𝑋2 = 𝐹𝑋2 + 𝐷𝑈𝐼𝐽1𝑥𝑋𝑅𝐼𝐽     (4.13)       

𝐹𝑌2 = 𝐹𝑌2 +𝐷𝑈𝐼𝐽1𝑥𝑌𝑅𝐼𝐽     (4.14)       

𝐹𝑍2 = 𝐹𝑍2 +𝐷𝑈𝐼𝐽1𝑥𝑍𝑅𝐼𝐽     (4.15)       

It generates force from duij2;    

𝐹𝑋32 = 𝐷𝑈𝐼𝐽2𝑥𝑋𝑅𝐼𝐽       (4.16) 

𝐹𝑌32 = 𝐷𝑈𝐼𝐽2𝑥𝑌𝑅𝐼𝐽       (4.17) 

𝐹𝑍32 = 𝐷𝑈𝐼𝐽2𝑥𝑍𝑅𝐼𝐽       (4.18) 
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Figure 42: Schematic diagram of Twopairssummation module. 
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Figure 43: Schematic diagram of Force from two pair energy. 

The dpmult instances are floating point multiplications. ACC function is simple 

accumulation device. G_BUFF devices for synchronization of the function process 

times. 

 

4.7 Kernel.ThreePairsSummation:  

 

Figure 44: The black box diagram of ThreePairssummation Device.  
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This is responsible to generate three pair potential sub parameters WIJK, XDWIJK, 

YDWIJK, ZDWIJK from projections and dgtij, dgtik, gtijk. It consists of cut off 

function, log adders, multiplications and adders.  It computes following equations;  

𝑊𝐼𝐽𝐾 = 𝑊𝐼𝐽𝐾 + 𝐹𝐶𝐼𝐾𝑥𝐺𝑇𝐼𝐽𝐾                                     (4.19) 

𝐷𝑊𝐼𝐽 = 𝐹𝐶𝐼𝐾𝑥𝐷𝐺𝑇𝐼𝐽                                                    (4.20) 

𝐷𝑊𝐼𝐾 = 𝐷𝐹𝐶𝐼𝐾𝑥𝐺𝑇𝐼𝐽𝐾+ 𝐹𝐶𝐼𝐾𝑥𝐷𝐺𝑇𝐼𝐾                    (4.21)      

𝑋𝐷𝑊𝐼𝐽𝐾 = 𝑋𝐷𝑊𝐼𝐽𝐾 + 𝐷𝑊𝐼𝐽𝑥𝑋𝑅𝐼𝐽 + 𝐷𝑊𝐼𝐾𝑥𝑋𝑅𝐼𝐾     (4.22) 

𝑌𝐷𝑊𝐼𝐽𝐾 = 𝑌𝐷𝑊𝐼𝐽𝐾 +𝐷𝑊𝐼𝐽𝑥𝑌𝑅𝐼𝐽 + 𝐷𝑊𝐼𝐾𝑥𝑌𝑅𝐼𝐾 (4.23) 

𝑍𝐷𝑊𝐼𝐽𝐾 = 𝑍𝐷𝑊𝐼𝐽𝐾 +𝐷𝑊𝐼𝐽𝑥𝑍𝑅𝐼𝐽 +𝐷𝑊𝐼𝐾𝑥𝑍𝑅𝐼𝐾         (4.24) 

 

                

    Figure 45: schematic diagram of ThreepairsSummation Device.  
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The device DWIJKm is responsible for solve; 

𝑋𝐷𝑊𝐼𝐽𝐾 = 𝑋𝐷𝑊𝐼𝐽𝐾 + 𝐷𝑊𝐼𝐽𝑥𝑋𝑅𝐼𝐽 + 𝐷𝑊𝐼𝐾𝑥𝑋𝑅𝐼𝐾                      (4.25) 

and replicated three times for computing YDWIJK,  ZDWIJK.Log adder function is 

used for accumulation of this term. 

 

  Figure 46: Schematic diagram of DWIJKm Device.  

 

4.8 Kernel.PowerSystem:  

 

Figure 47: The black box diagram for powersystem module.  
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Powersystem module is responsible to generate following equations. In the design, 

we use logarithm function and exponential function to find the results.  

𝑊𝐼𝐽𝐾𝑁 = 𝑊𝐼𝐽𝐾𝑁𝑛                                      (4.26) 

𝑊𝐼𝐽𝐾𝑁 = 𝑊𝐼𝐽𝐾𝑁𝑛−1                (4.27) 

𝑃𝐴𝑅𝐴𝑁 = (1 + 𝛽𝑛𝑥𝑊𝐼𝐽𝐾𝑁)𝑚                    (4.28) 

𝑃𝐴𝑅𝐴𝑁1 = (1 + 𝛽𝑛 𝑥𝑊𝐼𝐽𝐾𝑁)𝑚−1     (4.29)   

                                

Figure 48: Schematic diagram for power calculation.  

 

In the library, power function explained. We replicate this module to find PARAN, 

and PARAN1 terms. It consumes 290 DSP units and can operate up to 330 MHz.  
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Figure 49: Detailed Schematic diagram for WIJKn, WIJKn1, PARAN and PARAN1 

power calculation. 
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4.9 Kernel.ForceThreePairs: 

          

Figure 50: The black box diagram for Forcethreepairs device.  

 

This module is responsible for calculating following equations; 

𝐹𝑥3 = 𝐹𝑥3 + 𝐹𝑥32𝑥𝑃𝐴𝑅𝐴𝑁 − 0.5𝑥𝛽𝑛𝑥𝑈𝑖𝑗 2 ∗ 𝑃𝐴𝑅𝐴𝑁1𝑥𝑊𝐼𝐽𝐾𝑁1𝑥𝑋𝐷𝑊𝐼𝐽𝐾  (4.30) 

𝐹𝑦3 = 𝐹𝑦3 + 𝐹𝑦32 𝑥𝑃𝐴𝑅𝐴𝑁 − 0.5𝑥𝛽𝑛𝑥𝑈𝑖𝑗 2 ∗ 𝑃𝐴𝑅𝐴𝑁1𝑥𝑊𝐼𝐽𝐾𝑁1𝑥𝑌𝐷𝑊𝐼𝐽𝐾   (4.31) 

𝐹𝑧3 = 𝐹𝑧3 +𝐹𝑧32 𝑥𝑃𝐴𝑅𝐴𝑁 − 0.5𝑥𝛽𝑛 𝑥𝑈𝑖𝑗 2 ∗ 𝑃𝐴𝑅𝐴𝑁1𝑥𝑊𝐼𝐽𝐾𝑁1𝑥𝑍𝐷𝑊𝐼𝐽𝐾    (4.32) 

𝐸3 = 𝐸3 + 𝑈𝑖𝑗 2𝑥𝑃𝐴𝑅𝐴𝑁                                                                                                 (4.33) 

At the first look each equation has an accumulation part and 6 terms of 

multiplication. There isn’t any mathematical function that can calculate 6 

multiplications. So, we decompose 6 of them and do the multiplications with two 

operands in parallel. This design consumes 111 DSP units and can operate up to 330 

MHz.  
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 Figure 51: Schematic diagram for  Forcethreepairs device.  

 

Decomposition of such kind of equation; 

𝐹𝑥3 = 𝐹𝑥3 + 𝐹𝑥32𝑥𝑃𝐴𝑅𝐴𝑁 − 0.5𝑥𝛽𝑛𝑥𝑈𝑖𝑗 2 ∗ 𝑃𝐴𝑅𝐴𝑁1𝑥𝑊𝐼𝐽𝐾𝑁1𝑥𝑋𝐷𝑊𝐼𝐽𝐾  (4.34) 

First, do the multiplications 0.5*BETAN*UIJ2 and  PARAN1*WIJKN1 in parallel then, 

distribute this term over XDWIJK, YDWIJK, ZDWIJK with three multiplication 

structure. And finally, accumulate them with simple accumulation device.  
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 4.10 Kernel.ForceM: 

 

 Figure 52: The Black box diagram ForcetM device.  

 

This module is responsible for calculation of following equations; 

𝐹𝑥 = 𝐵𝑥𝐹𝑥3 − 𝐴𝑥𝐹𝑥2        (4.35) 

𝐹𝑦 = 𝐵𝑥𝐹𝑦3 − 𝐴𝑥𝐹𝑦2        (4.36) 

𝐹𝑧 = 𝐵𝑥𝐹𝑧3 −𝐴𝑥𝐹𝑧2        (4.37)  

 

In the design, we calculate three equations in parallel. All of the structure consumes 

60 DSP units and can operate up to 330 MHz. First, we do the multiplications in 

parallel. Finally, we subtract the following equations to get results.  
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                             Figure 53: Schematic diagram ForcetM device.  
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4.11 Kernel.EnergyM: 

This module is responsible for calculating following equation; 

𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
1

2
𝑥(𝐴𝑥𝐸2 − 𝐵𝑥𝐸3)  (4.38) 

This equation can be computed with same strategy in Kernel.ForceM device. 

We don’t need to calculate division by 2 with real resources. We can change A and B  

into A/2 and B/2 since they are constants.  
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

In this work, we reach almost X1000 acceleration with respect to an ordinary 

computer in terms of computation time. According to simulation of digital circuit, 

computation of a single MD step energy and force calculation is less than 40 us at 

200 MHz clock frequency and the resulting abstract circuit diagram in Figure 54.  

 

   Figure 54: Tersoff2 Main Architecture. 

 

In related chapters, we show that the entire sub modules of the Tersoff2 co-processor 

are pipelined. When we integrate the sub modules we can reach a fully pipelined 

architecture. This architecture has best time performance with special memory 
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structure. When we run the Tersoff on a PC, it will take lots of time cycles to get a 

single atom’s force and energy. Moreover, we have to wait for next atom until 

previous atom is done. In the contrary, we are going to have the atom’s force and 

energy in one cycle and we don’t have to wait for next atom with our design in 

Figure 55.     

 

                    Figure 55: Speedup due to pipelined architecture of Tersoff2  

       

This performance is achieved by fully pipelined architecture with special memory 

architecture. Detailed timing performance is in Figure 56.  

 

 Figure 56: Computation time comparison between reference system and three 

Tersoff2 systems with three different communication channels.  
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According to profiler, CPU usage for printing data, takes 14-15 minutes and total 

Tersoff2 computation takes 35 s. 

The total computation time is the sum of tersoff2 computation and the data i/o time  

in Figure 57. 

 

For 1.000.000 MD step, Tersoff2 computation timing cost; 

𝑇𝑖𝑚𝑒 = 35 𝑢𝑠 𝑥 1000000 

𝑇𝑖𝑚𝑒 = 35 𝑠 

 For different communication channel we will have different communication time 

cost.  

 

  Figure 57: Tersoff time budget. 

 

The resulting device power consumption is less than 50 W. The complete implement-

tation is consumes %70 percentage of V7485T. The circuit can handle 4000 atomic 

system and it can be expanded to 10000 atomic systems. The number of atoms that 

can be simulated is limited due to limited memory resources of device which we use.  
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