

AN ALGORITHM FOR THE FORWARD STEP OF ADAPTIVE REGRESSION

SPLINES VIA MAPPING APPROACH

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELÇİN KARTAL KOÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

STATISTICS

SEPTEMBER 2012

Approval of the thesis:

AN ALGORITHM FOR THE FORWARD STEP OF ADAPTIVE

REGRESSION SPLINES VIA MAPPING APPROACH

Submitted by ELÇİN KARTAL KOÇ in partial fulfilment of the requirements for

the degree of Doctor of Philosophy in Department of Statistics, Middle East

Technical University by,

Prof. Dr. Canan Özgen _______________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Öztaş Ayhan _______________

Head of Department, Statistics

Assoc. Prof. Dr. İnci Batmaz

Supervisor, Statistics Department, METU _______________

Assist. Prof. Dr. Cem İyigün

Co-Supervisor, Industrial Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Gerhard Wilhelm Weber _______________

Institute of Applied Mathematics, METU

Assoc. Prof. Dr. İnci Batmaz _______________

Supervisor, Statistics Department, METU

Prof. Dr. Gülser Köksal _______________

Industrial Engineering Department, METU

Assist. Prof. Dr. Özlem İlk _______________

Statistics Department, METU

Assist. Prof. Dr. Özlem Çavuş _______________

Industrial Engineering Department, Bilkent University

 Date: 14.09.2012

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name: Elçin KARTAL KOÇ

 Signature:

iv

ABSTRACT

AN ALGORITHM FOR THE FORWARD STEP OF ADAPTIVE REGRESSION

SPLINES VIA MAPPING APPROACH

Kartal Koç, Elçin

Ph.D., Department of Statistics

 Supervisor: Assoc.Prof. Dr. İnci Batmaz

 Co-Supervisor: Assist. Prof. Dr. Cem İyigün

September 2012. 129 pages

In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS)

is a well-known nonparametric regression technique to approximate the nonlinear

relationship between a response variable and the predictors with the help of splines.

MARS uses piecewise linear basis functions which are separated from each other with

breaking points (knots) for function estimation. The model estimating function is

generated in two stepwise procedures: forward selection and backward elimination. In

the first step, a general model including too many basis functions so the knot points are

generated; and in the second one, the least contributing basis functions to the overall fit

are eliminated. In the conventional adaptive spline procedure, knots are selected from a

set of distinct data points that makes the forward selection procedure computationally

expensive and leads to high local variance. To avoid these drawbacks, it is possible to

select the knot points from a subset of data points, which leads to data reduction. In this

study, a new method (called S-FMARS) is proposed to select the knot points by using a

self organizing map-based approach which transforms the original data points to a lower

dimensional space. Thus, less number of knot points is enabled to be evaluated for

model building in the forward selection of MARS algorithm. The results obtained from

v

simulated datasets and of six real-world datasets show that the proposed method is time

efficient in model construction without degrading the model accuracy and prediction

performance. In this study, the proposed approach is implemented to MARS and

CMARS methods as an alternative to their forward step to improve them by decreasing

their computing time.

Keywords: Multiple Adaptive Regression Splines (MARS), Model selection,

Computational Efficiency, Mapping Algorithm, Self-Organizing Maps

vi

ÖZ

UYARLANABİLİR REGRESYON EĞRİLERİNİN İLERİYE DOĞRU SEÇME

AŞAMASI İÇİN GÖNDERİM YAKLAŞIMI İLE YENİ BİR ALGORİTMA

Kartal Koç, Elçin

Doktora, İstatistik Bölümü

 Tez Yöneticisi: Doç. Dr. İnci Batmaz

 Ortak Tez Yöneticisi: Yard. Doç. Dr. Cem İyigün

 Eylül 2012, 129 sayfa

Çok değişkenli uyarlanabilir regresyon eğrileri (MARS), çok boyutlu veri

modellemesinde çıktı değişkeni ile girdi değişkenleri arasındaki doğrusal olmayan

ilişkiyi eğriler yardımıyla tahminlemede iyi bilinen bir doğrusal olmayan regresyon

yöntemidir. Fonksiyon tahminlemesinde MARS, kırılma noktalarıyla birbirinden ayrılan

parçalı doğrusal fonksiyonlar kullanır. Fonksiyon tahminlemesinde kullanılan model iki

aşamalı bir yöntemle oluşturulur: İleriye doğru seçme ve geriye doğru eleme. İlk

aşamada çok fazla temel fonksiyonun yani kırılma noktasının bulunduğu genel bir

model oluşturulur ve ikincide genel uyuma az katkıda bulunan temel fonksiyonlar

elenir. Klasik uyarlanabilir eğri yöntemlerinde kırılma noktaları, ileriye doğru seçme

yöntemini sayısal olarak pahalı yapan ve bölgesel yüksek yayılıma neden olan farklı

veri noktalar kümesinden seçilirler. Bu zorluklardan kaçınmak için kırılma noktalarını

verinin küçültülmesine yol açan veri noktalarının altkümesinden seçmek mümkün

olabilir. Bu çalışmada orijinal veriyi daha az boyutlu uzaya dönüştüren, kendini

örgütleyen eşleştirmeye dayalı bir yaklaşımı kullanılarak kırılma noktalarının seçilmesi

için yeni bir yöntem önerilmiştir. Böylece MARS algoritmasının ileriye doğru seçme

yönteminde model oluşturmak için daha az sayıdaki kırılma noktasının kullanımına

olanak tanınmaktadır. Benzetim yöntemiyle edilen ve altı gerçek hayat verisinden elde

vii

edilen sonuçlar, önerilen yöntemin model doğruluğunu ve tahminleme performansını

düşürmeden model kurmada zaman açısından etkili bir yöntem olduğunu

göstermektedir. Bu çalışmada önerilen yaklaşım hesaplama zamanlarını azaltarak

MARS ve CMARS yöntemlerini iyileştirmek için yöntemlerin ileriye doğru aşamalarına

alternatif olarak uyarlanmıştır.

Anahtar Kelimeler: Çok değişkenli uyarlanabilir regresyon eğrileri (MARS), Model

seçimi, Hesap etkinliği, Eşleme Algoritması, Öz Düzenleyici Haritalar (SOM)

viii

 To My Family

ix

ACKNOWLEDGEMENTS

I would like to express my great gratitude to my advisor Assoc. Prof. Dr. İnci Batmaz.

Her great experience, guidance, support, and feedbacks have turned this study to an

invaluable learning experience for me. As well as her contributions to my academic

career, she has always been guiding me throughout my life. She has been not only my

advisor, but also companion.

I would like to offer my special thanks to Assist. Prof. Dr. Cem İyigün for giving me the

opportunity of studying with him. It would not be possible to complete this study

without his exceptional effort and invaluable contribution. He always encouraged me

and helped me to rely on myself and on my study.

I would like to thank to Prof. Dr. Gerhard-Wilhelm Weber for initiating this study. I

really appreciate his valuable ideas and contributions for this study. The support by

Prof. Dr. Gülser Köksal is also acknowledged for contributing to building a profound

content for this thesis. I am also thankful to Prof. Dr. Öztaş Ayhan for his relevant

discussions, suggestions and comments. I also would like to thank to Assist. Prof. Dr.

Özlem İlk and Assist. Prof. Dr. Özlem Çavuş for their acceptance of reviewing my

thesis study by spending their invaluable time.

I wish also, to thank to my husband, Gencer Koç, for his professional and personal

support. His analytical thinking helped me to handle some problems that I encountered

during my study in a more creative way. He always encouraged me and let me feel that

he would always stand by me.

x

I owe my special thanks to my friend Ceyda Yazıcı for her contribution to the current

thesis and for her friendship, kindness, and patience. I also want to express my thanks to

Fatma Yerlikaya Özkurt for proof reading certain parts of the thesis. She always tried to

answer my questions and contributed to this study. I also want to express my thanks to

them for the amusing time we spent. I would like to give special thanks to Könül

Bayramoğlu for her full support and help during my study.

This work was supported by The Scientific and Technical Research Council of Turkey

PhD Scholarship Program (TUBITAK Yurt İçi Yüksek Lisans Burs Program). In this

respect, I wish to thank to TUBITAK for financial support.

None of my studies would have been possible without the support of my family. Thanks

each of them for their continuous support, endless love and patience. They always

believed and encouraged me.

xi

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. vi

TABLE OF CONTENTS ... xi

NOMENCLATURE .. xiii

ABBREVIATIONS ... xiv

LIST OF TABLES .. xv

LIST OF FIGURES .. xvii

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE SURVEY AND BACKGROUND .. 6

2.1 Multivariate Adaptive Regression Splines (MARS) ... 12

2.1.1. Forward Selection ... 16

2.1.2. Backward Elimination ... 18

2.2. Conic MARS (CMARS) .. 20

2.3. Self Organizing Map (SOM) .. 24

3. PROPOSED APPROACH .. 28

3.1. Motivation .. 28

3.2. Proposed Approach .. 31

3.3 Algorithm .. 33

3.4 Parameters of S-FMARS Approach .. 34

3.4.1 Grid Size .. 36

3.4.2. Threshold Value .. 40

4. APPLICATIONS .. 44

4.1 Background on Applications ... 44

4.1.1 Datasets and Validation Techniques .. 45

4.1.2 Software ... 45

4.1.3 Performance Criteria and Measures ... 47

xii

4.2 Selection of S-FMARS Parameters for Datasets... 49

4.3. Comparison Study 1 ... 52

4.3.1. Artificial datasets .. 53

4.3.2 Real Life Data .. 59

4.3.3. Performance on Noisy Data .. 64

4.4. Comparison Study 2 ... 69

4.4.1. Artificial Datasets.. 70

4.4.2. Real Datasets ... 72

4.5. Comparison Study 3 ... 76

4.5.1. Artificial Datasets.. 79

4.5.2. Real Datasets ... 83

4.5.3. Performance on Noisy Data .. 88

5. CONCLUSION AND FURTHER RESEARCH .. 93

REFERENCES ... 98

APPENDICIES

A. MATHEMATICAL FORMULATIONS FOR DATA GENERATION 104

B. GRID PLOTS OF MATHEMATICAL FUNCTIONS .. 105

C. EFFECTS OF GRID SIZE AND THREDHOLD VAUE ON ARTIFICIAL AND

REAL DATASETS ... 107

D. COMPARISON OF PROJECTION METHODS FOR ARTIFICIAL AND REAL

DATASETS .. 124

CURRICULUM VITAE ... 128

xiii

NOMENCLATURE

y : Response variable.

x : Univariate predictor variable.
T

pxx),...,(1x : Vector of predictor variables.

p : Number of predictors.

n : Number of data points.

T

piii xx),...,(,1,x : ith data vector.

T

jnjj xx),...,(,,1x : jth predictor variable.

jix , : ith individual data value in the jth

predictor variable.

: Knot value.

)(m

m x : mth basis function.

m
x : Variable vector for mth basis function.

)(,1, plll ,...,www : lth weight vector.

bw : Weight vector of the best matching unit (BMU).

)(bk : Topological neighborhood of BMU.

)(bkh

: Neighborhood function defined around the BMU.

)(ta : Learning rate function.

maxM : User-specified maximum number of basis functions.

t
~

: Threshold value for the number of hits.

g : Grid size of lattice.

um : Average number of hits.

std : Standard deviation of number of hits.

u : Number of neurons (units) in the lattice.
),(iii yxz : ith data vector including ith

predictor vector with ith

response value.

)~,~(~
sss yxz : sth projected data vector.

jsx ,
~ : sth individual projected data value in the jth predictor variable.

xiv

ABBREVIATIONS

Adj-R
2
 Coefficient of determination-Adjusted

BFs Basis functions

BMU Best-matching unit

BFfinal Number of BFs in the final model

CMARS Conic-MARS

CQP Conic quadratic programming

CPU Computational run time

FMARS Forward Selection step of MARS

GLM Generalized linear models

GCV Generalized cross validation

LOF Lack-of-fit

Mmax Maximum number of BFs

MARS Multivariate adaptive regression splines

MinSpan Minimum span approach

R
2
 Coefficient of determination

RMSE Root mean square error

PRSS Penalized residual sum of squares

RSS Residual Sum of Squares

SOM Self-organizing maps

xv

LIST OF TABLES

TABLES

Table 1. Features of the datasets. .. 46

Table 2. Design Values for Grid Size and Threshold Value. ... 50

Table 3. Best Parameter Values For Artificial Data. .. 52

Table 4. Best Parameter values for Real Data. ... 52

Table 5. Performances of FMARS and S-FMARS on the train data. 54

Table 6. Performances of FMARS and S-FMARS on the test data and stabilities. 54

Table 7. Performances of FMARS and S-FMARS for different n and Mmax. 56

Table 8. Performances of FMARS and S-FMARS for different interaction term 59

Table 9. Average performances of FMARS and S-FMARS on the train data. 60

Table 10. Average performances of FMARS and S-FMARS on test and stabilities. 61

Table 11. Overall performances of FMARS and S-FMARS methods. 61

Table 12. Average CPU times of methods for different sample size and scale 63

Table 13. Performances of FMARS and S-FMARS on noisy data 1. 65

Table 14. Performances of FMARS and S-FMARS on noisy data 2. 68

Table 15. Performances of MinSpan and S-FMARS on the train data. 71

Table 16. Performances of MinSpan and S-FMARS on the test data and stability. 71

Table 17. Average performances of MinSpan and S-FMARS on the train data. 72

Table 18. Average performances of MinSpan and S-FMARS on test and stability. 73

Table 19. Overall performances of MinSpan and S-FMARS methods. 73

Table 20. Average CPU times of methods for different sample size and scale 75

Table 21. Average performances of methods on train data. ... 79

Table 22. Average performance of methods on test data and stabilities. 81

Table 23. Average performances of methods on train data. ... 84

xvi

Table 24. Average performances of methods on test data and stabilities. 85

Table 25. Overall performances of methods. .. 86

Table 26. Average CPU times of methods with respect to sample size 87

Table 27. Average performance of methods on test noisy data. 90

Table 28. Average performances of methods on noisy data. .. 91

Table C1. Ratio=RMSE/TIME value for different grid sizes in artificial datasets 107

Table C2. Ratio=RMSE/TIME value for different grid sizes in artificial datasets 112

Table C3. Ratio=RMSE/TIME value for different grid sizes in real datasets 116

Table C4. Ratio=RMSE/TIME value for different grid sizes in real datasets. 120

xvii

LIST OF FIGURES

FIGURES

Figure 1. The form of reflected pairs of truncated linear functions. 13

Figure 2. Two-way interactions BFs (Based on Hastie et al., 2001). 15

Figure 3. Topology of SOM. .. 24

Figure 4. Weight vectors (red points) along with original data points (green points). ... 31

Figure 5. (a) Original data points. (b) Weight vectors of selected BMUs and original

data points. (c) Projected weight vectors and original data points. (d) S-FMARS model

for which knots are selected from the projected weight vectors. 34

Figure 6. The algorithm of S-FMARS. ... 35

Figure 7. Examples of grid structures. .. 37

Figure 8. Graph of RMSE versus grid size for Dataset 2. .. 38

Figure 9. Graph of Time versus grid size for Dataset 2. ... 39

Figure 10. Graph of Ratio versus Grid size. ... 39

Figure 11. The sample hits of a 5x5 hexagonal grid including 25 neurons. 41

Figure 12. Graph of RMSE versus Threshold value. .. 42

Figure 13. Graph of Time versus Threshold value. .. 43

Figure 14. Graph of Ratio versus Threshold Value. ... 43

Figure 15. Grid plot for data set 8. .. 56

Figure 16. CPU times versus sample sizes (n) for Mmax=60. .. 57

Figure 17. CPU time versus sample size. ... 57

Figure 18. CPU time versus number of interaction terms. ... 59

Figure 19.Interaction plots of size and scale for the CPU times for FMARS and S-

FMARS methods. ... 64

Figure 20. Sinus function with and without noise. ... 65

Figure 21. Fitted models for sinus function with noise. ... 67

xviii

Figure 22.Interaction plots of size and scale for the CPU times for MinSpan and S-

FMARS methods. ... 76

Figure 23. Algorithm of S-CMARS method. ... 78

Figure 24. The plot of norm L versus RSS . .. 78

Figure 25. Interaction plots of size and scale for the CPU times for five methods. 89

Figure A 1. (a) Grid plot of Dataset 1 (b) Grid plot of Dataset 2 (c) Grid plot of Dataset

3 (d) Grid plot of Dataset 4 (e) Grid plot of Dataset 5 (f) Grid plot of Dataset 6 (g) Grid

plot of Dataset 7 .. 106

Figure C1. Graph of ratio versus grid size for Dataset 1. ... 108

Figure C2. Graph of ratio versus grid size for Dataset 2. ... 108

Figure C3. Graph of ratio versus grid size for Dataset 3. ... 109

Figure C4. Graph of ratio versus grid size for Dataset 4. ... 109

Figure C5. Graph of ratio versus grid size for Dataset 5. ... 110

Figure C6. Graph of ratio versus grid size for Dataset 6. ... 110

Figure C7. Graph of ratio versus grid size for Dataset 7. ... 111

Figure C8. Graph of ratio versus grid size for Dataset 8. ... 111

Figure C9. Graph of ratio versus threshold value for Dataset 1. 112

Figure C10. Graph of ratio versus threshold value for Dataset 2. 113

Figure C11. Graph of ratio versus threshold value for Dataset 3. 113

Figure C12. Graph of ratio versus threshold value for Dataset 4. 114

Figure C13. Graph of ratio versus threshold value for Dataset 5. 114

Figure C14. Graph of Ratio versus Threshold Value for Dataset 6. 115

Figure C15. Graph of ratio versus threshold value for Dataset 7. 115

Figure C16. Graph of ratio versus threshold value for Dataset 8. 116

Figure C17. Graph of ratio versus threshold value for AutoMpg. 117

Figure C18. Graph of ratio versus grid size for Comm.Crime. 117

Figure C19. Graph of ratio versus grid size for Conc.Compress. 118

Figure C20. Graph of ratio versus grid size for Parkinsons. ... 118

Figure C21. Graph of ratio versus grid size for PM10. .. 119

xix

Figure C22. Graph of ratio versus grid size for Red Wine. .. 119

Figure C23. Graph of ratio versus threshold value for AutoMpg. 120

Figure C24. Graph of ratio versus threshold value for Comm.Crime. 121

Figure C25. Graph of ratio versus threshold value for Conc.Compress. 121

Figure C26. Graph of ratio versus threshold value for Parkinsons. 122

Figure C27. Graph of ratio versus threshold value for PM10. 122

Figure C28. Graph of ratio versus threshold value for Red Wine. 123

1

CHAPTER 1

INTRODUCTION

Multivariate adaptive regression spline (MARS) is a powerful nonparametric

regression method for constructing flexible models by introducing truncated linear

functions. Due to its simplicity and effectiveness for handling high-dimensional data

settings, MARS has recently become a popular tool for solving various classification

and regression problems including prediction mobile radio channels (Kubin, 1999),

credit scoring (Lee et al. 2006), detecting disease risk (York et al., 2006),

environmental modeling (Leathwick et al., 2005, 2006), direct response modeling

(Deichmann et al., 2002).

Regression splines provide a flexible model estimate with the help of piecewise

functions (splines), so that the nonlinearity of a model is approximated through the

use of separate regression models defined over the distinct subintervals of the range

of predictor variables. The intervals that define the pieces are separated by a

sequence of knots or breaking points whose number and locations are practically

unknown in advance. The simplest method considers knots as fixed and equally

spaced (Keele, 2008). In this method, the total number of knots is selected first, and

then, knots are allocated “equally-spaced” in the sense that either the distance or the

number of distinct design points between two consecutive knot points remains the

same throughout the whole data domain. The number of equally-spaced knots is

increased iteratively until a satisfactory estimate is obtained. In this case, however,

an unfortunate knot placement may lead to misleading results (Yao et al., 2008).

Motivated by the work of Smith (1982), an adaptive approach has been proposed for

regression splines. Friedman and Silverman (1989), Friedman (1991) and Denison et

2

al. (1998) automatically selected the number and the location of knots from a set of

distinct design points via a model selection criterion.

In adaptive regression splines, knots are selected through a two-stage algorithm

called forward selection and backward elimination. In forward selection, knots are

added into a model in a stepwise manner as long as a lack-of-fit (LOF) criterion is

decreased, and then, the ones contributing less to the model are eliminated via

backward elimination. A natural strategy of knot selection during the forward

process is to consider every distinct data point as a candidate knot location. This

strategy estimates the underlying data structure by evaluating every data points as

breaking points where the regression models change their slopes. This can give

reasonable results for low noisy settings; however, increase the local variance for

highly noisy data. Besides, it is true for all cases (data with low and high noises) that

the computational run time increases significantly.

In this study, a new knot selection procedure is proposed for adaptive regression

splines to make it computationally efficient without increasing the local variability.

To decrease the computing time of adaptive regression splines, the set of points

searched is restricted to a small subset of data points during the forward step. Hence,

less number of data points is evaluated as candidate knot locations for the function

estimation. Here, the way of subsetting is a critical issue. The points can be selected

randomly or equally spaced with a partial search; however, it may result in a poor

performance for the spline regression (Lou and Wahba, 1997) depending on the form

of underlying true function. For example, the functions including nonhomogeneous

smoothness may be approximated better with many unevenly distributed knots

instead of using fixed interval of knots. In this respect, a data-driven subsetting

reflecting the underlying data structure is offered in this study. To provide such a

subsetting procedure, a mapping approach that uses self-organizing maps (SOM) is

proposed. In this approach, a large set of data points can be reduced or compressed

into smaller set of units through a nonlinear mapping. This kind of mapping

3

transforms the high-dimensional data into a low-dimensional map of units via weight

vectors. The data vectors are mapped into a new lattice by an updating formula based

on the distance between data and weight vectors. During the mapping procedure, the

relative distance between data points is preserved by a topological order (grid

structure) of the units; so that, the original data structure can be properly

approximated by the distribution of the weight vectors. Here, the weight vectors can

be considered as representatives or pointers of data points. In the proposed approach,

therefore, knots are determined by considering weight vectors as the reference. The

data points projected by the weight vectors are then used as the candidate knots in the

function estimation. In the proposed method, candidate knots are obtained by

considering the whole data values of the predictors, instead of searching locally on

each predictor as in the MARS algorithm does. Once the candidate knots are

determined as the projections of the weight vectors, knots are then selected among

them through a forward selection method via piecewise linear functions. This

approach is actually a modified version of the forward selection step of MARS

algorithm; thus, the new approach is called as S-FMARS, where S stands for

subsetting and FMARS is used for forward selection of MARS algorithm.

The current thesis consists of five chapters and four appendices, and each one is

organized in the following way. In Chapter 2, we provide a brief background on the

spline functions and their use in regression splines. As the critical issues in

regression splines, selection of the number and location of knot points are discussed

through some common approaches by pointing out their associated advantages and

disadvantages. This chapter concludes with a short overview of the adaptive

regression splines which propose an automatic knot selection procedure and a

summary of the usage of different versions of adaptive regression splines in the

literature. Since the proposed approach developed over the forward step of MARS

algorithm, the main idea behind the MARS is also given in this chapter. Two

complementary strategies of the MARS algorithm are examined in the subsections

named Forward Stepwise Selection and Backward Stepwise Elimination. In the

4

section of the forward selection procedure, a Minimum Span (MinSpan) approach

proposed by Friedman (1993) for the forward step of MARS algorithm to optimize

the knot points is discussed. The performance of the proposed approach is then

compared with MinSpan in the subsequent sections. In the backward elimination

section, the pruning procedure is mentioned by emphasizing different model

selection criteria. In the same section, a modified version of MARS algorithm with

uses as an alternative backward step, called Conic MARS (CMARS) approach is

discussed in detail. The proposed approach is then implemented to MARS and

CMARS in place of their forward selection step to make them computationally

efficient.

Chapter 3 introduces the proposed approach. Firstly, the motivation behind the

proposed idea is given by discussing the computational complexity of MARS

algorithm and evaluating the mapping idea with its appropriate properties for knot

selection purpose. The steps of the proposed knot selection algorithm are then

explained in detail with the help of figures and mathematical formulations. In

addition, two important parameters of the proposed approach are studied to make the

proposed approach more accurate and time efficient. These parameters are the grid

size and the threshold value set for the number of data points assigned to units during

the mapping. This chapter also presents a way of selecting the best values for the

parameters to obtain a time efficient regression spline model without loss of

accuracy.

Chapter 4 presents a background for the application process. Firstly, the datasets for

which the proposed approach is applied and compared with other methods are

described. Then, the software used to implement the proposed approach and execute

the other methods is presented. In the next section, the performance criteria and

measures used to evaluate the performance of models produced by the proposed

approach and other regression spline methods are described. Then, the best parameter

values of the proposed approach are determined for the datasets under study. Once

5

the parameters of the proposed approach are determined, the performance of the

proposed approach is evaluated and compared with the other methods through three

comparison study. In the first comparison study, proposed approach is compared

with the forward selection algorithm of MARS via some artificial datasets, real

datasets and noisy setting. In the second one, based on the same datasets, the

proposed approach is compared with a minimum-span knot selection scheme.

Finally, the backward elimination procedure of MARS and penalized strategy of

CMARS are combined with the proposed approach, and the performances of the

hybrid methods are compared with the original MARS, MARS with MinSpan

approach and CMARS methods. The corresponding findings are explained in detail

in this chapter.

Based on the findings given in Chapter 4, a comprehensive discussion, as well as the

conclusion and further studies are presented in the last section.

Appendix A presents the mathematical functions of the problems utilized in this

thesis. While some functions have low-order nonlinear behavior, some have highly

nonlinear form. The figures in Appendix B are the grid plots of the problems given in

Appendix A. Related with the study performed in Chapter 4, ratio values calculated

by both using the root mean squared error (RMSE) values of the models obtained by

the proposed approach and the corresponding computational run times (CPU time)

are given for different grid sizes for artificial and real datasets in Table C.1 and Table

C.3 of Appendix C, respectively. Similar tables obtained for different threshold

values are shown in Table C.2 for artificial datasets and in Table C.4 for real

datasets. Besides, the graphs of “Ratio versus grid size” and “Ratio versus threshold

values” are displayed for all artificial and real datasets. In Appendix D, performances

of three projection methods offered to be used in the proposed approach are

compared with respect to some performance criteria.

6

CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

In statistical modeling, the relationship that may exist between a response variable y

and a vector of predictors
T

pxx),...,(1x is approximated with the following

general type of model

,)(xfy

(1)

Here, indicates the error term with zero mean, and p denotes the number of

predictor variables.

In statistical framework, the function in (1) is generally approximated by a

parametric model assuming a linear form of the predictor variables. Different linear

models are used in the literature depending on the nature of the response variable. If

the response is continuous, a linear regression model is estimated using least squares

(LS). For the discrete responses, generalized linear models (GLM) including logistic

or Poisson regressions are estimated.

In GLM, a model is specified by selecting a sampling distribution for the response

variable and a functional form for the predictors. For example, for a linear regression

model, the normal distribution),(2N with expected value and constant

variance is chosen for the continuous response and a linear form of the predictors

βx
T

 is determined for a given vector of predictors x with np dimensions.

Here, is an 1n vector of linear predictions and β is a vector of unknown

parameters that must be estimated. In fact, the GLM generalizes the linear regression

models. The stochastic component (response variable) can follow any distribution

7

from the exponential family, and the linear functional form of predictors is

generalized with a link function).(βx
Th For example, for the logistic regression,

y is a binary response and follows a binomial distribution. The relation between

linear predictors βx
T and y is supplied by the following logistic link function

(Hastie and Tibshirani, 1990; Keele, 2008)

)1(1 ep (2)

where p is the probability that 1y for given values of ix (ni ,...,1). As in (2),

many models which are considered as nonlinear have linear functional form of

predictors. This is why they retain a linearity assumption. However, in practice, the

form of the relation between variables generally is not linear, so that aforementioned

parametric assumptions turn out to be too restrictive for many practical applications.

In order to estimate a nonlinear functional form, a variety of transformations can be

applied to predictor variables. Power transformations are often reasonable methods

for representing the nonlinear functional forms. Nevertheless, they have some

limitations. For a given univariate variable, x ; for example, they provide global

estimates for the relationship between x and y by assuming the relation to be

constant over the range of .x However, the relationship between x and y is

generally local. Namely, the statistical relationship between two variables changes

over the range of .x For such cases, the assumption of global estimate often

disregards the underlying true relation. Moreover, for more complex nonlinear forms,

global estimates like power transformations are not sufficient.

In the absence of strong theory for the assumed functional form, the underlying

relationship between predictor variables x and the y response is estimated from the

data. In data-based modeling, global estimates are changed places with local

estimates which refer to nonparametric regression models in statistics.

Nonparametric regression allows one to estimate nonlinear fits between variables

8

with a few assumptions about the functional form of the nonlinearity. In this

framework, the function which defines the dependency of y on x is generalized

from linear functions to any smooth function)(xg , and it is typically estimated

using additive models given in (3).

.)()(
1

p

i

ii xgg x
 (3)

Although the assumption of additivity is more restrictive than a fully multivariate

nonparametric regression model, it is a common way of extending nonparametric

estimation for high dimensional data (p>1) subject to the problem of curse of

dimensionality (Hastie and Tibshirani, 1990).

In (3), pgg ,...,1 are arbitrary smooth or unspecified functions which are typically

estimated using spline functions or local averaging smoothers (Cleveland, 1993;

Silverman, 1985). Since the underlying relation is practically inhomogeneous and the

degree of smoothness is unknown in advance, it is common to estimate the smooth

function ig
 by using spline functions due to their good numerical properties (de

Boor, 1978; Schumaker, 1981; Green and Silverman, 1994).

Spline functions refer to piecewise regression models defined over the intervals in

the range of univariate .x The intervals that define the pieces are separated from each

other by a sequence of points, called breaking points or knots. The slopes of the

regression models are forced to change from one interval to another over the range of

x at knots. Hence, a flexible model estimate is achieved by the help of many local

fits. There are various types of splines: regression splines, cubic splines, B-splines,

P-splines, natural splines, thin-plate splines, smoothing splines, and the ones which

are the combinations of different types such as natural cubic B-splines.

9

In nonparametric framework, to estimate the smooth terms in regression models

using splines, two main approaches are basically followed: smoothing splines and

regression splines. Smoothing splines are advanced and well-known local averaging

smoothers, and appear as a solution to an optimization problem. It tries to minimize a

penalized residual sum of squares (PRSS) by using a roughness parameter which

controls the smoothness of the model fit. For nonadaptable smoothers, the smoothing

parameter is specified by the user or set by an automated procedure like cross

validation (Hastie and Tibshirani, 1990). Smoothing splines are more complex than

piecewise polynomial, however, they become very popular in statistics with the help

of studies conducted by Wahba (1983, 1990), Wahba and Wold (1975), Silverman

(1985), Green and Silverman (1994), or by Eubank (1999) who provided an excellent

overview of smoothing spline techniques and their applications in statistics.

Regression splines provide a flexible model estimate by the help of piecewise

functions. The regions that define the pieces are separated by a sequence of knots

(breaking points). The number and the location of knots, which are unknown in

advance, have a critical importance in controlling the amount of smoothness and

flexibility during the function estimation. Standard practice is to consider knots as

fixed and place knots at evenly spaced intervals in the data. To ensure an adequate

data for each interval to get a smooth fit, knots are placed at either quartiles or

quintiles in the data by default (Keele, 2008). In practice, this approach may lead to

an unfortunate knot placement resulting in misleading results. Actually, the number

of knots is more crucial than the place of knots (Stone, 1986). The number of knots

acts as a span parameter denoting the width of the intervals for splines, and affects

the amount of smoothing applied to the data by controlling the number of piecewise

fits. The spline with less number of knots provides globally smooth fit. However, the

flexibility of the model is increased as the number of knots increases. Moreover,

number of knots governs the trade-off between bias and variance of the estimate.

Increasing the number of knots increases the local variability while decreasing the

bias. This situation is called undersmoothing. On the other hand, decreasing the

10

number of knots increases the bias while decreasing the variability in the fit, which

refers to oversmoothing. In selecting the number of knots, the cases of

oversmoothing and undersmoothing should be taken into consideration. The main

goal in the selection of knots, therefore, should be to produce as smooth fit as

possible without departing from the underlying true regression function.

 In this context, many efficient methods have been studied in the literature. Some

studies consider the knot selection procedure as a model selection approach. Since

each knot is an additional parameter being added to the model, some model selection

criteria such as the Cp statistic (Mallows, 1973), AIC (Akaike, 1973) or GCV

(Craven and Wahba, 1979) are recommended to select the number of knots. For knot

selection, AIC was used by Atilgan (1988) and recommended by Eilers and Marx

(1996). More recently, an adaptive strategy, originally proposed by Smith (1982),

was used by Friedman and Silverman (1989), Friedman (1991), Stone et al. (1997),

Lou and Wahba (1997) and Breiman (1993) to select the number and location of the

knots. In these approaches, knots were selected via a stepwise procedure using a

model selection criterion. In the first step, called forward selection, the knot that

reduces the criterion the most is included into a model and a rich set of knots are

allowed to be selected through this step. In the second step, called backward

elimination, the knots contributing less to the model are removed.

There are many different versions of adaptive regression splines which uses the same

adaptive strategy. He and Ng (1996) developed a stepwise knot selection algorithm

in the quantile regression context. This can be viewed as a variation of the algorithm

of Stone et al. (1997). The TURBO algorithm of Friedman and Silverman (1989) and

its subsequent generalization, the MARS algorithm (Friedman, 1991), include knot

selection for univariate scatterplot smoothing as a special case. However, TURBO

and MARS are tailored for multivariate smoothing and their computational overhead

requires restriction to piecewise linear basis functions (BFs) for practical

implementation. Denison, Mallick and Smith (1998) have developed an alternative

11

Bayesian approach to regression spline fitting. The main difference between their

approach and the approach of Smith and Kohn (1996) is that the number of knots,

and their locations, are not fixed in advance, but instead, are considered as random

components of a Bayesian model. The Markov Chain Monte Carlo (MCMC) strategy

for selecting the model involves knots being added and deleted, and therefore, a

change in the dimension of the model. More recent contributions to additive

modeling have been made by Lou and Wahba (Hybrid Adaptive Splines [HAS],

1997); Stone, Hansen, Kooperberg, and Troung ([POLYMARS], 1997), Weber et al.

(CMARS, 2012), Taylan, Weber and Beck (2007), Özmen (2010) and Özmen et al.

(R-CMARS, 2010). HAS performs forward knot selection via GCV with a “cost”

term, as in MARS, but replaces backward deletion by ridge regression. POLYMARS

is a multi-response version of MARS which has been customized for computational

efficiency. CMARS is a hybrid method as HAS. It generates forward knot selection

via GCV and use ridge regression instead of backward deletion. Different from HAS,

however, it solves the penalized splines by a Tikhonov regularization. Based on

CMARS, R-CMARS is proposed as the robustification of CMARS with robust

optimization to decrease the estimation error in CMARS.

In this thesis, a new forward selection algorithm is proposed to decrease the

computing time of adaptive regression splines. Since the proposed method has some

common properties with the forward step of MARS algorithm. MARS is explained in

detail in this chapter. Additionally, the proposed approach is compared with a

MinSpan approach proposed to optimize the knots in the forward selection of MARS

algorithm. Although the main purpose behind this idea is to decrease the local

variability, it also decreases the computing time effectively. This is why the MinSpan

method is examined in detail in this study.

The proposed approach is developed as a new forward selection part; therefore, it can

be followed by a backward elimination step as in MARS, or other methods using an

alternative method for backward step like in CMARS. For all these approaches, the

12

computing time can be decreased significantly by using the proposed approach

beforehand. In this chapter, therefore, background information on MARS and

CMARS are given in the following subsection.

2.1 Multivariate Adaptive Regression Splines (MARS)

MARS is a popular nonparametric regression technique developed by Friedman

(1991) particularly for approximating nonlinear relationship within the data with the

help of splines. Splines refer to a wide class of piecewise defined functions used to

provide local fits for estimating the underlying form of functions using the data. The

nonlinearity between the response and predictors is then estimated by having

different regression slopes in the corresponding intervals of each predictor. These

intervals are distinct and separated by breaking points, called knots. MARS uses

piecewise linear functions for local approximations which are easy to implement.

The form of the truncated linear functions are given for a univariate variable, ,x as

follows (Hastie et al., 2001)

otherwise,0

),(
])([,

otherwise,0

),(
])([

τxxτ
τx

τxτx
τx (4)

Two functions in (4) are called reflected pairs and characterized by the breaking

points , called knots. The first expression takes the value of zero for all x values

less than or equal to the threshold value and takes)-(τx for all values greater

than . On the other hand, the second expression results in zero for all x values

greater than or equal to and gets)-(xτ otherwise. The “+” sign represents positive

part of the function.

13

Figure 1. The form of reflected pairs of truncated linear functions.

MARS builds a flexible model by fitting piecewise linear functions by which the

nonlinearity of a model is approximated through linear functions in distinct intervals

of the predictor space. The knot (breaking) points where behaviors of the function

changes play a key role in the function approximation but the number and location of

knots are practically unknown. In classical spline, knot points are usually predefined

or equally spaced. In MARS, however, knots are determined by a search procedure.

For a given vector of predictor variables, ,),...,,(21

T

pxxxx all distinct individual

data values, ,, jix)...,1(n,i of the corresponding predictor variable jx),...,1(pj

are considered as knot points, and introduced into the model via a reflected pair

given in (4). The set of all possible reflected pairs with the corresponding knots can

be expressed with set C in (5).

 }.}...1{,},...,{)()({ 21 ,p,jxxxτ|xτ,τxC njjjjj (5)

MARS generates its model by using the basis functions (BFs) defined over the

functions in the set C . In additive MARS models, every elements of C can be

considered as one BF. For highly nonlinear datasets requiring interaction effects,

MARS modeling can be generalized with the BFs including tensor product of two or

14

more functions from the set .C Therefore, the general form of BFs defined over the

subvector of predictor variables, m
x can be defined as follows

 ,])([)(
1

,,),(

mK

v

m)(vm)j(vmv

m

m τx.sx (6)

where mK is the number of truncated linear functions in the mth BF; m)j(vx , is the jth

predictor variable corresponding to the vth truncated linear function in the mth BF;

m)(vτ , represents the knot value corresponding to the predictor variable m)j(vx ,
 in the

mth BF. The quantities),(mvs take values from the set }1{ .

There is a limitation in the construction of the BFs; the ones built by the

multiplication of truncated linear functions must include distinct predictor variables.

This prevents the occurrence of higher-order degrees of a variable which increase or

decrease too sharply near the boundaries of the factor space. A piecewise linear

function can approximate the higher-order powers in a more stable way.

Multiplication of two BFs produces a result which is nonzero only over the factor

space where both components are nonzero (Figure 2). Thus, the regression surface is

obtained by using only nonzero components locally- only when they are needed. If

polynomial BFs are used, then the multiplication of BFs would be nonzero

everywhere and would not work as well. The BF in Figure 2 is defined as the

multiplication of two BFs such as

),()(),(22,31,4121 xxxx

 where, },...,,{ 1,1,21,11,4 nxxxτ and },...,,{ 2,2,22,132 nxxxτ .

15

Figure 2. Two-way interactions BFs (Based on Hastie et al., 2001).

The model developed by MARS is similar to the one developed in classical linear

regression; however, BFs or their products are used instead of the original predictor

variables. For a given vector of predictor variables,
T

pxx),...,(1x

and the target

variable y , the model has the form

 ,)(
1

0

M

m

m

mmccy x (7)

where 0c

is the intercept term;)(m

m x is the mth BF with a coefficient mc ; M is

the number of BFs in the current model (Friedman and Silverman, 1989; Friedman

1991).

The estimates of the coefficients),...,(0 mcc

in (7) are calculated by a)1(M -

parameter LS fit of the response y on the fixed BFs,).,...,1()(Mmm

m x Since

optimizing the (averaged) squared residuals over all BFs defined for all possible

x2 x1

(x
1
.x

2)

16

knots is a fairly difficult task computationally, especially for large M, a stepwise

strategy is adapted for BF selection in the MARS modeling.

Stepwise strategy of MARS includes two steps: forward selection and backward

elimination. In the forward selection, the algorithm starts with a model consisting of

intercept term 0c and adds a reflected pair from the set C iteratively until the

maximum number of terms specified by the user is reached by the model. At the end

of this step, a large model typically overfitting the data is obtained. Then, a backward

elimination is implemented to refine the model. In this pruning step, the BFs

contributing less to the model are eliminated. Detailed descriptions for these two

phases are given in the following sections.

2.1.1. Forward Selection

In classical forward stepwise regression, each predictor is added into the model via

some model selection criteria such as Cp, AIC or F statistic. The main purpose behind

the method is to identify a useful subset of the predictors for a better approximation.

In adaptive regression spline, each BF is considered as a new predictor. The forward

stepwise algorithm searches for the BFs and at each step the split that minimizes

some lack-of-fit criterion from all possible splits on each BF is chosen. The

algorithm deliberately overfit the data by inserting large number of BFs into the

model. So that, all types of curvatures are tried to be estimated by adding BFs with

the corresponding knot points where the curvature exists.

The forward step has a critical role in knot selection. In general, all distinct data

points are evaluated as a knot point through BFs and their contribution to the model

is checked via a lack-of-fit criterion. The aim of a lack-of-fit criterion is to provide a

data-based estimate of the future prediction error which is then minimized with

respect to the parameters of the procedure (Friedman, 1991). In main effect models,

17

each BF built on one predictor variable with the corresponding predictor value as

knot. Hence, each distinct data value is introduced to the model predictor wisely. In

interaction models, tensor products of two or more distinct predictor variables are

added to the model. In this case, breaking points are represented with a vector of the

corresponding predictor values. Evaluating every distinct data value as a knot

enables one to catch the curvatures truly; however, it is computationally expensive

and increases the local variability. Especially, in highly noisy data, evaluating noises

as knots for function estimation leads to a redundant effort, and decreases the model

accuracy.

In order to prevent the situations mentioned above to be happen, a MinSpan

approach has been proposed to restrict the candidate knot locations (Friedman,

1991). Its simplest version is to make every other distinct rth observation (in order of

ascending univariate x-value) eligible for a knot placement. For noisy settings, this

implementation can lead to decrease in the local variability. Additionally, the

computing time is reduced by a factor of rn in the absence of ties. In conventional

splines, the value for r is taken as fixed or calculated in such a way as to make the

number of distinct design points between any two adjacent knots equal (Ruppert,

2002; Ruppert et al., 2003). This method is simple and easy to implement.

Nevertheless, the knots may not be placed at all critical locations (Yao and Lee,

2008). Friedman and Silverman (1989) proposed a data-adaptive value (as a function

of n) for the number of distinct design points between any two adjacent knots by

using a coin tossing argument. The proposed value L, based on the assumption of

having symmetric distributed error terms, is defined as the solution of (Friedman,

1991)

 ,)(LP (8)

where)(LP is the probability of observing a run of length L or longer in mpn tosses

of a fair coin and is a small number (e.g. 01.0 or 05.0). The quantity mn is

18

the number of observations for which ,0)(m

m x and p denotes the number of

predictors. Hence, mpn represents the number of potential locations for each new

knot for each BF)(m

m x . Setting 5.2)(Lr would give the smoother resistance

to run of positive and negative error values with probability . The reason for using

2.5 (or 3 to be more conservative) in the denominator is the fact that a piecewise

linear smoother must place between two and three knots in the interval of the run to

respond to it and not degrade the fit anywhere else.

For 10mpn

and 1.0 , a good approximation to)(L is

,)1ln(
1

log)(
mpn

L (9)

so that the reasonable number of observations between knots is given by

.5.2)1ln(
1

log
mpn

r (10)

The MinSpan approach provides a local search around the current knot over a

specific predictor variable. The approach does not consider the whole data structure;

instead, it selects the knot predictor wisely. Its main objective is to decrease the local

variability in function estimation but at the same time it consequently decreases the

computing time significantly.

2.1.2. Backward Elimination

Backward stepwise is a pruning step which eliminates the redundant BFs selected in

the forward step. Hence, the overfitting problem is aimed to be removed. To estimate

19

the model with the optimal number of BFs or knots, MARS uses a model selection

criterion called generalized cross validation (GCV). This criterion depends on the

idea of minimizing the average-squared residuals of the fit by considering a model

complexity, which is the number of BFs in the model. For a given data vector

),(iii yxz),...,1(ni the criterion proposed by Craven and Wahba (1979) is given

as follows

2

1

2

))(1(

))(ˆ(1
)(

nMP

fy

n
MGCV

n

i iMi x
 , (11)

where, iy is the ith observed response value;)(ˆ
iMf x is the fitted response value

obtained for the ith observed predictor vector),,...,1(),...,(,1, nixx T

piiix

n is the

number of data points; M represents the maximum number of BFs in the model.

In general,)(MP is calculated by using the formula given below

 1))((1 TTtraceP(M) BBBB , (12)

and represents the cost penalty measure of a model where there are M BFs

(Friedman, 1991). Here, B is the matrix of BFs with dimension .nM

)(MP in (12) represents effective number of parameters which is a penalty measure

for complexity. There are different representations for);(MP commonly used one is:

,)(dKrMP where r is the number of linearly independent BFs in the model,

and K is the number of knots selected in the forward process. Note that if the model

is additive then d is taken to be two; if the model is an interaction model then d is

taken to be three (Friedman, 1991; Hastie, 2001). If the value of)(MP is small, it

produces a model with many BFs. Otherwise, a smaller model with less BFs is

20

obtained. This procedure continues for all number of BFs and then the best model

that has minimum GCV is chosen.

In some studies, alternative methods are proposed for the backward step of MARS

(Lou and Wahba, 1997; Weber et al, 2012). In these studies, a penalty term is added

to the lack-of-fit criterion. CMARS uses up all BFs generated by the forward

algorithm of MARS, and minimize a penalized residual sum of squares (PRSS)

value. Hence, both the accuracy and complexity of the model are tried to be

controlled through a penalty parameter. One of the main drawbacks of CMARS

mentioned in the paper of Weber et al. (2012) is that it is not as efficient as the

MARS method. To improve CMARS algorithm for reducing computational run

time, the proposed approach is also implemented to CMARS algorithm. Beforehand,

detailed information on CMARS is given in the following section.

2.2. Conic MARS (CMARS)

CMARS, where ""C stands for “conic”, “convex” and “continuous”, is a modified

version of MARS algorithm which uses a PRSS approach instead of the backward

elimination step of MARS algorithm. By using a penalty term in addition to the lack-

of-fit criterion, PRSS can control the complexity of the model estimation. CMARS

algorithm is built on the set of BFs selected through the forward algorithm of MARS;

thereby, they share the same forward selection step. However, CMARS modifies the

MARS algorithm by taking into account the nearby placement of knots. The BFs

with knots
T

piiii),,,(,2,1, τ are constructed at
T

piiii xxx),,,(,2,1, x or just

nearby the data vector .),,,(,2,1,

T

piiii xxxx 

Namely, knot points may not be

taken as one of the data points (jiji x ,, for all),,2,1(ni  and),,2,1(pj )

in CMARS. The aim of this modification is to take the derivatives during

optimization process of the PRSS with the following form:

21

max

1 2

2
22 2

,

1 1 1
, ()(,)

() () ,

T

Mn
m m

i i m m r s m

i m r s
r s V m

PRSS y f D dx t t (13)

where maxM is the number of BFs reached at the end of the forward algorithm;

}21|{)(m

m

j ,...,K,jKmV is the variable set associated with mth BF,),(m and

T

mmm

m

mK
ttt),...,,(

21
t represents the variables which contribute to the mth BF. The m

values are the nonnegative penalty parameters assigned for each BFs

).,...,1(maxMm Moreover,)(,

m

msrD t
α

is denoted as in (14) for ,),(21

T
α

21|| α , where }1,0{, 21 .

).()(

21

||

,

m

m

s

m

r

mm

msr
tt

D tt
α

α

 (14)

Here, if ,2i the derivative)(,

m

msrD t
α

vanishes, and by addressing indices ,sr

the Schwarz’s Theorem is applied.

The PRSS approach bases on a tradeoff between the accuracy and complexity, and it

is established with the help of a penalty parameters, m in (13). In this equation,

while the first term controls the accuracy which refers to small sum of squares

errors, the second term controls the complexity.

In equation (13), the second part of the PRSS includes multi-dimensional integrals,

which are usually difficult to handle. Therefore, discretization techniques are

preferred generally. The PRSS problem is simplified by applying discretization in the

multidimensional integral in (13) as follows (see Yerlikaya, (2008) and Taylan et al.

(2007), for more detail).

max

1

)1(

1

222

2
,)(

M

m

n

i

mimm

mK

LPRSS θdψy

 (15)

22

where T

n,...,))()(()(1 dψdψdψ is a matrix with dimensions of))1((maxMn

;

2
 denotes the Euclidean norm, and the numbers

imL are defined as

1
2

1 2

2
2

,

1
, ()(,)

ˆ ˆ() .

T

m m

im r s m i i

r s
r s V m

L D x x

Here, m

ix̂ and m

ix̂ are related to the predictor data used for discretization.

The linear systems of equations, θdψy)(, can be solved approximately by using

the PRSS. The problem is classified as ill-posed, which means irregular or unstable.

Thus, Tikhonov regularization problem is considered for the solution of PRSS

problem because it is the most widely used method for converting the ill-posed

problems to well-posed (regular or stable) ones. The PRSS in (15) is rearranged as

given in (17) to be handled as a Tikhonov regularization problem.

,)(
2

2

2

2
LθθdψyPRSS (17)

where L is an)1()1(maxmax MM -diagonal matrix with first column

mK
n)1(0 0L and the other columns being the vectors ML introduced in (16). Here,

θ with the dimension of)1)1((maxM

is a vector consisting of the parameters to

be estimated.

In (15), there is a sequence of penalty parameters
T

M),...,(
max1λ which makes the

PRSS problem still far away from the Tikhonov regularization approach. To

represent the PRSS as a Tikhonov regularization problem as in (17), a single penalty

 (16)

23

parameter should be defined. This is why the same value is assigned for each

derivative term as
max21 M

The Tikhonov regularization problem tries to minimize two objective functions,

2

2||)(|| θdψy and

2

2|||| Lθ by combining them into a single functional form using a

linear sum of the functions with a weight, .

The Tikhonov regularization problem is rearranged by using conic quadratic

programming (CQP), which uses the advantages of both continuous and convex

optimization techniques. The form of the CQP is as given below

,min

,
t

t θ

,)(tosubject

2
tyθdψ

 (18)

.

2
ZLθ

In general form, the CQP in (18) can expressed with the following form

,min xc

T

x

.),...,1(tosubject

2

2
kiqi

T

iii xpdxD

where,

,)0,(1max

TT

M1c

,),(TTt θx)),(,(1 dψ0D n
,1 yd ,)0,...,0,1(1

T
p 01q

),,(12 max
L0D M ,12 max

T

M0d ,22 maxM0p .2 Zq

Here, k represents the number of cone in the optimization problem.

 (19)

24

2.3. Self Organizing Map (SOM)

SOM is developed as an effective neural network technique for analysis and

visualization of high-dimensional data (Kohonen, 1988). It adaptively transforms

high-dimensional data into a lower dimensional discrete map of units as in Figure 3.

Here, the discrete output space is called grid, and the nodes placed on the grid

represent the neurons. The output neurons are generally arranged in a two-

dimensional lattice providing a neighboring relation between neurons. The neurons

on the lattice are positioned according to a particular shape: rectangular or

hexagonal. Therefore, different neighboring relations can be formed among neurons

on the grid.

Figure 3. Topology of SOM.

Figure 3 shows the schematic diagram of the two-dimensional lattice of neurons.

Each neuron has a specific topological position in the lattice and is represented by a

p -dimensional weight vector,),...,1()(,1, ul,...,ww T

plllw , where p is the

25

dimension of input space; u denotes the number of neurons in the lattice, and nu .

Each neuron is fully connected to all input values,);,...,1(),...,,(,2,1, nixxx T

piiiix

and the corresponding weight is updated from one data realization to another.

The algorithm of SOM is based on a competitive learning and is trained iteratively. It

proceeds, first, by initializing the weight vectors of the neurons. This process can be

done by assigning small random values to each weight vectors or by using the eigen

values of the given data. After initialization, training process is achieved either by

processing the input vector sequentially or as a batch. At each iteration of the

training, one data point),...,1(niix

from the original space is introduced into the

grid, and the most similar neuron to the current data point is found by using a

similarity measure. The closest neuron for the corresponding input vector is called

best-matching-unit (BMU) and its weight vector is represented by p

bw , where

b represents the BMU. The similarity between a neuron and the input vector is

usually found by using the Euclidean distance measure between the corresponding

weight vector and the input vector as follows (Kohonen, 1988)

}.||{||minarg 2

1
li

,...,ul
b wxw (20)

Once the BMU is found at the current iteration, t , the weight vectors of the neurons

within the topological neighborhood of BMU

are updated with the rule given below

),,...,1())()(()()()()1()()()()(ulttthtatt bliblblbl wxww (21)

where
p

bl)(w

represents the weight vector of the neuron inside the topological

neighborhood of BMU labeled as);(bl)(blh

is the neighborhood function defined

around the BMU, and)(ta is a learning rate function.

26

The BMU locates at the center of a topological neighborhood of neurons
)(blh and

this neighborhood around the BMU decays smoothly with a distance measure
),(lbd

defined between the BMU, b and the lth neuron. A typical choice of
)(blh is the

Gaussian function in (22) due to the facts that it locates the BMU at centers and

decreases monotonically as
),(lbd , which is a necessary condition for

convergence.

 .
2

exp
2

2

),(

)(

lb

bl

d
h (22)

Here, the parameter is the width of the topological neighborhood which should

shrink within discrete number of iterations. A popular width parameter is described

by Ritter et al. (1992) as

 ,...,2,1,0exp)(
1

0 t
t

t (23)

where 0 is the initial value of , 1 is a time constant parameter , and t represents

the iteration number.

As well as the neighborhood function);()(th bl
the learning-rate parameter should also

be time varying to provide a convergence in equation (21). In particular, it should be

started with an initial value, and then, decrease gradually with increasing time (i.e.

number of iteration). A common function satisfying these requirements is the

exponential function denoted as

 ,...,2,1,0exp)(
2

0 t
t

ata (24)

27

where 2 is another time constant parameter of the SOM algorithm (see Haykin

(1999) for more details).

28

CHAPTER 3

PROPOSED APPROACH

3.1. Motivation

In an adaptive regression spline, the scope is to produce a good set of BFs (with

optimal number of knots and their locations) for approximating the output function

f in (1) with an efficient algorithm and feasible computation time. In MARS

method, the greatest computational burden is in the forward selection part. During

this process, BFs are added with a hierarchical manner into the model. The model

starts with an intercept term, and at each successive step, a new reflected pair from

the set C in (5) with the corresponding knot is introduced into the model (7) using

the form))((jxm

m x and .))((jxm

m x Here,)(m

m x

represents the BF in

the form of (6) selected in the previous step including the product of different

variables other than the current jx),..,1(pj . Finally, the construction of model

terminates when the number of BFs in the model reaches to a preset number, Mmax.

At each forward selection step, the contribution of a newly added BF pair,

 ,))(())((jj1 xτcτxc m

mM

m

mM xx (25)

is evaluated through a LOF criterion depends on the squared error, given in (26)

defined over M BFs.

,)))(ˆ((LOFminarg 2
xy M

m,v,τ

f

(26)

where,

29

2

0

j1 .))((ˆ))((ˆ)(ˆ)(ˆ
M-

k

jmMmM-kkM xτcτxccf xxxx (27)

Namely, if the model with the estimated coefficients)ˆ,...,ˆ(0 Mcc can produce the

largest decrease in the LOF criterion, the generated model forms a basis for the

successive steps.

The forward step is an exhaustive search process of knot selection. Each distinct data

value of each predictor variable,),...,1;,...,1(, pjnix ji , is a candidate knot point.

So at each step of forward selection, pnM

number of data points are introduced to

the model with the pair of truncated linear functions, and evaluated through the LOF

in (26) with a computational complexity of 2nM ; here, n is the number of data

points, and M

is the number of BFs in the model at each step (Friedman, 1993). The

computing time associated with each iteration is therefore proportional to .32Mpn

Finally, in order to reach a final model with maxM BFs, the total time required for the

forward selection is proportional to ,4

max

2Mpn which is then reduced to 3

maxpnM

by

examining the eligible parameter values in a special order (Friedman, 1991;

Friedman, 1993).

As well as maxM , the strategy of searching knots over all distinct data values, pn

makes the training of MARS computationally expensive. For a fixed number of

observations, it is possible to decrease the computer time of the forward step by

decreasing the number of candidate knot locations. In this study, to speed up the

forward selection process, a new approach is proposed with changes in the knot

selection search over all distinct data values to a much smaller set of data values. A

subset of data points representing the original data is chosen by using a mapping

approach similar to the one presented in Section 2.3. Here, the way of mapping is

important because the selected points should provide a good approximation for the

30

underlying data structure. Due to its following properties (Haykin, 1999), SOM suits

for our purpose.

Property 1. Approximation of input space

At each iteration of training, the weight vectors of BMU and neighboring neurons

come close to the current data points while the weight vectors of others are left

unchanged. In this way, different weight vectors tend to become tuned in to different

domain of input variables. After sufficient iterations, weight vectors tend to be

located in the input space so that an approximation to the distribution of data is

achieved in the sense of some minimal residual error. This approximation approach

is rooted in vector quantization method which is based on Lloyd algorithm. (see

Gersho and Gray (1992) for more details.)

Property 2. Topological ordering or self-organizing

The neurons on the lattice have spatial locations, and are connected with a

neighborhood relation. This property provides a spatial concentration for network

movement at each iteration. After repeated iterations, a particular domain of input

space is going to be represented with the neurons topologically close to each others.

The topological order of neurons can be visualized as an elastic net of weight vectors

(in red color) in the coordinates of original data points (in green color) shown in

Figure 4. The lines connecting the weight vectors represent the spatial location of

corresponding neurons on the lattice.

Property 3. Density matching

The density distribution of the underlying data can be matched by self-organizing

maps. The dense regions in the input space from which the data points are drawn

31

with a high probability of occurrence are mapped onto larger domain of the space of

neurons. In Figure 4, the neurons tend to drift where the data is dense while only a

few neurons are located where the data is sparse.

On this account, the resulting weight vectors of mapping can form a base for a data-

driven subset of data points (representing the structure of the underlying data) that

will be used as candidate knot points

Figure 4. Weight vectors (red points) along with original data points (green points).

3.2. Proposed Approach

In this thesis, to select the candidate knot points in a more efficient way, a mapping

idea mentioned in Section 2.3 is proposed. Due to the good properties of SOM

32

emphasized in the previous section, the underlying data structures can be

approximated properly with some representative weight vectors. Selecting the knot

points by the help of these weight vectors can decrease the computing time of model

building significantly without decreasing the accuracy.

In the proposed method, called S-FMARS, each data point),...,1(),(niyiii xz

are considered as input data and mapped from the original data space,)1(p into a

grid via (p+1)-dimensional weight vectors).,...,1()(1,1, ul,...,ww T

plllw The main

reason of taking into account the response values with the predictor values during the

mapping is to preserve the relation between predictors x and response variable y in

the new space. Once the weight vectors are updated according the underlying dataset,

the weight vectors exposed to at least one data point (called taking a hit) are selected

as the representatives of the corresponding data points. Then, piecewise-linear

regression splines are built at the knot selected from the set of values represented by

the selected weight vectors. For this set, the selected weight vectors can be directly

used as a candidate knot points or used as a reference for any other points in data

space to be evaluated as the potential knot location. For example, instead of using

weight vectors, the original data points referred by the weight vectors can be

considered as candidate knot point. The way of determining a point in data space by

the help of weight vectors is named projection in this thesis. Namely, the weight

vectors are projected from the grid to the original data space. Two ways of projection

are studied in this study: the nearest data point and the mean of k-nearest data

points. While the nearest data method finds the closest data vectors to the selected

weight vectors, k-nearest data method takes the average of the k data points close to

weight vectors. Here, k denotes the number of hits of the corresponding neuron. Due

to its accuracy and prediction performances, weight vectors are projected onto data

space using the nearest-data method. The results of the corresponding analyses are

given in Appendix D.

33

The steps of the proposed approach S-FMARS are described below through an

example given in Figure 5, and the pseudo code for the S-FMARS algorithm is

presented in Figure 6.

3.3 Algorithm

1. (Mapping). Data points),...,1(),(niyiii xz (Figure 5.a) are mapped into

a space of neurons by an iterative algorithm given in Section 2.3.

2. (Selection of neurons). In Step 1, if a neuron is selected as a BMU during the

training, it means making a hit. In this step, the neurons with at least one hit

are selected.

3. (Projection). The weight vectors associated with the neurons selected in Step

2 (Figure 5.b) may not be one of the original data points. So the weight

vectors are projected onto the original data space (Figure 5.c), where the

projected data point is represented by),...,1()~~~(~
,1, Ssy,x,...,x spsssz , where

S denotes the number of selected neurons, and .uS

4. (Knot selection and model building via the Forward Selection). The estimated

model is built on the truncated linear functions in which the knots are the

values of the predictor data, sx~ , projected in Step 3. Here, every distinct

value of the corresponding predictor variable, jsx ,
~),,...,1,...,1(pjS;s are

considered as candidate knot points for BFs. The new set of truncated linear

functions is given as

}.},...,1{},...,1{}~{)()({ , Ss,pj,xτ|xτ,τxD js

*

j

**

j
(28)

S-FMARS constructs a model by regressing y on the BFs developed over the

set of D in a stepwise manner, and the significant BFs with the

corresponding knots are selected via the lack-of-fit criterion in (26) (Figure

5.d).

34

Figure 5. (a) Original data points. (b) Weight vectors of selected BMUs and original

data points. (c) Projected weight vectors and original data points. (d) S-FMARS

model for which knots are selected from the projected weight vectors.

3.4 Parameters of S-FMARS Approach

In S-FMARS approach, the set of BFs obtained after running the algorithm presented

in Figure 6 contains less number of candidate BFs than that of the set C in (5), so that

the computing time of forward step decreases in a significant manner. In this

approach, it is also possible to decrease the computing time further by decreasing the

size of set D in (28) via two parameters called grid size and threshold value set for

the number of hits of each neuron. However, changing the values of parameters in

(a) (b)

(c) (d)

35

 1 input: a set of data vectors),...,1(),(niyiii xz ; a threshold value t
~

; grid

 size g .

 2 lattice: a grid with a specified size and a set of weight vectors,),...,1(ullw .

 3 begin for mapping

 4 initialize each weight vector .lw
 5 repeat

 6 select one data vector,).,(iii yxz

 7 find the BMU such that)}.,({minarg
,...,1

li
ul

b d wzw

8 for all weight vectors of neighboring neurons,)(blw , do

 9

))()()(()()()1()()()()(ttthtatt bliblblbl wzww

 10 until the termination condition holds (until a specified number of

 training epochs).

 11 end

12 select the BMUs whose number of hits is greater than a specified

 threshold value, t
~

. The corresponding weight vectors are denoted as

).,...,1(Sssw

 13 project the weight vector of the selected BMUs,),...,1(Sssw to the

 data point)~,~(~
sss yxz

such that)}.,({minarg)~,(

,...,1
is

ni
ss dd zwzw

14 begin model building with .1)(1 xB

 15 2M

 16 while maxMM
 17 for 1m to 1M do:

 18 for },1)({ mKk|k,mjj

 19 for },0)(~{ , xmjs

* B|xτ

 20 g 

,)()())(()(1

2

0

j

*

j

*

mM

*

jmM-

M

k

kk xτxτaτxaa xxx

 21 LOF  .min
11

LOF(g)
M,...,aa

 22 end
 23 end

 24 end

 25 end

Figure 6. The algorithm of S-FMARS.

36

decreasing the computing time should be achieved carefully by considering the

model accuracy.

Since some representative knot points could be eliminated while decreasing the size

of map, accuracy of the corresponding models may become worse. In the following

sections, the effect of these parameters both on computing time and model accuracy

are evaluated through a sensitivity analysis.

Since some representative knot points could be eliminated while decreasing the size

of map, accuracy of the corresponding models may become worse. In the following

sections, the effect of these parameters both on computing time and model accuracy

are evaluated through a sensitivity analysis.

3.4.1 Grid Size

In S-FMARS approach, mapping starts with a grid topology that can be hexagonal or

a rectangular whose size is preset in advance (see Figure 7). The grid size represents

the dimension of a lattice in terms of total number of neurons (Vasento et al., 2000).

Cardinality of neurons has an important effect on the mapping quality; so the

approximation capability. If the grid size is large enough, SOM builds a dense lattice

with a large number of BMUs, and approximates the underlying data distribution

better than the lattice with a small number of map units. However, SOM with a large

number of BMUs produces a large subset of candidate knot points, so that it needs

more computing time. Therefore, the size of a lattice is considered as a trade-off

between the less computing time and a good approximation both in mapping and

modeling.

37

Figure 7. Examples of grid structures.

The size of the grid can be either specified by the user, or can be defined

heuristically. In general, a heuristic for grid size ng 5 introduced by Vesanto et

al. (2000) is used for adequate approximation of the original data points, where n

represents the number of original data points. In this study, for each dataset, the

effect of grid size on computing time and model accuracy are observed by running

the S-FMARS approach for 10 different grid sizes as in Figure 8, where .ng

The best number of grid size is then determined by observing the changes in RMSE

and computing time in seconds.

Figure 8 and Figure 9 displays the results of a sensitivity analysis constructed for the

Dataset 2 in Table 1. The results obtained for other problems are given in Appendix

C in the same order as in Table 1. In Figure 8, the RMSE of a model obtained after

the run of S-FMARS approach gets smaller as the grid size for the approach gets

larger. This is due to the fact that large grid sizes provide better approximation of the

underlying distribution than those of the small grid sizes. However, more computing

time is required for both mapping and modeling as the grid size gets larger (see

Figure 9).

To select the best grid size for the underlying dataset, the changes in both RMSE and

CPU time should be evaluated carefully. As it is seen in Figure 8, the change in

(a) Hexagonal

grid

(b) Rectangular grid

38

RMSE becomes stable at grid size 5g/4, while the change in CPU time significantly

increases after the grid size g. Therefore, to render a decision on the best grid size, a

ratio taking into account both the model accuracy and CPU time simultaneously can

be stated as follows,

 r = rmse/time. (29)

Figure 8. Graph of RMSE versus grid size for Dataset 2.

The graph of “Ratio versus grid size” (Figure 10) for the underlying dataset can

provide an intuition about the best grid size for the S-FMARS approach. The grid

size where the ratio does not change significantly can be determined as the best size

for the accurate model with efficient computing time.

0

0.2

0.4

0.6

0.8

1

1.2

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
M

SE

Grid Size

RMSE versus Grid Size

39

Figure 9. Graph of Time versus grid size for Dataset 2.

Figure 10. Graph of Ratio versus Grid size.

0

0.2

0.4

0.6

0.8

1

1.2

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

Ti
m

e

Grid Size

Time versus Grid Size

0

10

20

30

40

50

60

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

40

Moreover, the best grid size can also be determined by setting a stopping value for

the slope of the ratio. For instance, the best grid size (g) for the dataset used in this

study can be taken as 5g, if the stopping value is set to 0.15.

3.4.2. Threshold Value

In S-FMARS approach, another affecting parameter on computing time is the

number of hits. Here, the hit represents the data point coming close to a neuron by an

updating rule as stated in Section 2.3 during mapping. In the proposed approach,

neurons taking at least one hit (the neurons determined as BMUs) are selected, and

their corresponding weight vectors are used as candidate knot points. On this

account, the set of candidate knot points (set D in (28)), so the number of neurons

selected can be controlled by a threshold value, t
~

 set for the number of hits.

The number of hits owned by each neuron can be visualized via a graph of sample

hits (see Figure 11). The number in each cell gives the frequency of data points

mapped from the input space to the corresponding neuron. While neurons with large

number of data points represent the dense regions of data, the ones with small

number of data points represent the sparse regions or outliers. The neurons with zero

data points are not BMUs of any original data point, so they are disregarded.

Setting a threshold value for the number of hits can control the selection of neurons

or weight vectors for the knot placement. A high threshold value reduces the number

of neurons, so the candidate knots. Besides, a high threshold value leads the S-

FMARS algorithm to select the neurons representing the dense regions of data

points. Thus, the neurons attained to sparse regions or outliers are automatically

eliminated before the knot placement. This elimination procedure however may

decrease the model quality although it decreases the CPU time.

41

A low threshold value leads S-FMARS algorithm to produce a large number of

candidate knot points. Therefore, the model built after implementing the S-FMARS

approach is generally more accurate than the models obtained after running the S-

FMARS approach processed with a high threshold value (see Figure 12). On the

other hand, S-FMARS with low threshold requires more CPU time to build a model

(see Figure 13).

Figure 11. The sample hits of a 5x5 hexagonal grid including 25 neurons.

When 1
~
t , more weight vectors are selected, and a large set of candidate knot

locations is obtained. The model constructed on this set of knot points can

approximate the underlying function more accurately as in Figure 12, and the model

accuracy (RMSE) becomes worse as the threshold value gets larger. However, the

computing time required for model building is high for 1
~
t , and it decreases for the

large threshold values as presented in Figure 13.

42

The aim here is to increase the threshold value without decreasing the accuracy of

models. On this account, to see the effect of threshold value on both model accuracy

and computing time, the slope of ratio given in (30) is examined for six different

threshold levels starting 1
~
t to three standard deviations of hits (std) above the

average hits (um) calculated as follows

,unmu

(30)

where n is the number of data points, and u is the number of neurons in the map.

As the threshold value for the number of hits gets larger, the ratio increases; hence,

inaccurate models are obtained (see Figure 14). Therefore, the point where the ratio

is settled and starts to increase further can be determined as the best threshold value.

Similarly, like in grid size, a cut off value set for the slope of ratio can be used to

determine the best threshold value of the number of hits. For the dataset in Figure 14,

the point mu+std can be used set as the best threshold value where the slope is no

more than 0.15.

Figure 12. Graph of RMSE versus Threshold value.

0

0.2

0.4

0.6

0.8

1

1.2

1 mu mu+std mu+2std mu+2.5std mu+3std

R
M

SE

Threshold Value

RMSE versus Threshold Value

43

Figure 13. Graph of Time versus Threshold value.

Figure 14. Graph of Ratio versus Threshold Value.

0

0.2

0.4

0.6

0.8

1

1.2

1 mu mu+std mu+2std mu+2.5std mu+3std

Ti
m

e

Threshold Value

Time versus Threshold Value

0

5

10

15

20

25

30

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

44

CHAPTER 4

APPLICATIONS

4.1 Background on Applications

The proposed algorithm given in Section 3.3 includes two main steps: mapping and

model building. Firstly, a set of candidate knots is determined via a mapping and

projection, and then, a regression spline model is developed by searching the knots

over the set of data points gathered in the first step. The implementation of mapping

idea prior to the model building is proposed to decrease the computational burden of

adaptive regression spline mainly caused by the forward step. Together with the

mapping and model building strategy, the proposed approach can be considered as a

modified forward selection algorithm of MARS. The performance of the proposed

approach, S-FMARS, is evaluated and compared with the forward selection

algorithm of MARS and MinSpan approaches (for detailed information see Section

2.1.1) through various applications with respect to different performance criteria. The

proposed approach is compared with FMARS and MinSpan approach separately in

Section 4.3 and 4.4, respectively. In addition, to control the complexity of the S-

FMARS model and to prevent the overfitting problem, the backward elimination

strategy of MARS and the idea behind the CMARS are implemented to the proposed

forward selection algorithm. Performance of five methods called MARS, MARS

with MinSpan, SMARS, CMARS, S-CMARS are compared with respect to

accuracy, complexity, stability and robustness criteria in Section 4.5. Here, SMARS

refers to the method including the proposed forward selection algorithm and

backward elimination step of MARS. S-CMARS denotes the modified version of

CMARS which is built on the BFs selected by S-FMARS.

45

4.1.1 Datasets and Validation Techniques

The experiments are conducted on 10 artificial and six real datasets. The list of the

datasets with their four different features including number of data points (size),

number of predictor variables (scale), degree of interaction (nonlinearity) and noisy

behavior are given in Table 1. In all datasets, predictor variables and response

variable are all taken as continuous. The first six datasets together with the Dataset

10 are generated from the functions originally given by Jin et al. (2001), (see

Appendix A and Appendix B for the function descriptions and the grid plots of the

functions, respectively). Dataset 7 is the robot arm example used by Friedman

(1993), and Dataset 8 is taken from the MATLAB user’s quide (2010). The function

used for Dataset 9 is the sinus function and the corresponding data is generated with

some noise. The last six datasets belong to real life problems, and are originally

taken from the UCI repository (Frank, 2010). These datasets are selected according

to their size, n and number of predictor variables, p. Before the construction of the

models, all datasets are preprocessed and standardized to become comparable.

 For artificial data sets, to compare and validate the performance of the methods, a

test data is generated by the same function used for training data. In real data sets,

however, 3-fold with three replications cross validation approach is used for model

validation. In this approach, the original data set is randomly divided into three part

(fold). At each time, one part is retained for testing, and other two parts are used for

model building. Hence, three models are built at each time. This process is replicated

three times with new partitions.

4.1.2 Software

The proposed approach S-FMARS is written entirely in MATLAB
R
 (Matlab, 2010)

with the assistance of SOM Toolbox (Vesanto, 2000) and ARESLab Toolbox.

ARESLab Toolbox is created by Jekabsons (2011) as a collection of Matlab codes

for implementing MARS algorithm. This toolbox implements the main functionality

46

of MARS technique close to the description in the Friedman’s paper (Friedman,

1991). It should be indicated that the model building is not accelerated using “Fast

MARS” queuing (Friedman, 1993) together with the “fast least square update

technique” in this code. SOM Toolbox (Vesanto, 2000) is another Matlab library

created for self-organizing maps.

To develop a CMARS model, first, the Matlab code written for S-FMARS is used to

obtain the BFs provided from the proposed forward selection algorithm. Then, the

code written in MATLAB (2009a, The MathWorks, U.S.A.) by Yerlikaya (2008) and

developed further by Batmaz et al. (2010) is used to obtain CMARS models. For

optimization process in CMARS, the MOSEK optimization software (6. MOSEK

ApS, Denmark) is utilized.

Table 1. Features of the datasets.

Datasets Sample Size (n) # of inputs (p) Nonlinearity
Noisy

Behaviour

1 1000 7 high no

2 1000 5 low no

3 1000 10 low no

4 10000 2 high no

5 10000 3 high no

6 10000 3 low no

7 1000 5 high no

8 10000 2 high no

9 100 1 low yes

10 100 2 low yes

Parkinsons 578 21 high -

Red Wine 1599 11 high -

Com.Crime 879 24 high -

Conc. Comp. 1030 8 high -

PM10 500 7 low -

Auto Mpg 398 7 low -

47

4.1.3 Performance Criteria and Measures

The performance of each method is measured with respect to accuracy, complexity,

stability, robustness and efficiency criteria. To evaluate the goodness of the model

fit, Root Mean Square Error (RMSE), Adjusted-Multiple Coefficient of

Determination (Adj-R
2
) and GCV given in (11) are used for training data. The

equations for RMSE and Adj-R
2
 are given in (31) and (32), respectively. RMSE

indicates the grossly inaccurate estimates. Namely, the smaller the RMSE is, the

better the model fits to the data. Adj-R
2
 is a penalized form of R

2
 with respect to the

number of predictors in the model. It gives the amount of variation in response which

is explained by the model. Thus, the higher the Adj-R
2
, the better the model is. As

stated in Equation (11), GCV criterion takes the number of BFs in the model into

account as well as the model accuracy. Hence, the model complexity can be

evaluated and compared with respect to the GCV measure.

 ,)ˆ(

1 2/1

1

2
n

i

ii yy
n

RMSE (31)

where iy is the ith observed response value, iŷ is the ith fitted response, and n

denotes the number of observations.

 ,
1

1

)(

)ˆ(

1-

1

2

1

2

2

pn

n

yy

yy

RAdj
n

i

i

n

i

ii

 (32)

where .0)1(pn Here, y is the mean response, and p denotes the number of

predictors in the model.

Since the measures obtained for the training data are not sufficient to access the

accuracy of newly predicted points, a test data is also used to verify the prediction

48

accuracy of the models. RMSE and Adj-R
2
 measures are used to examine the

prediction performances. Furthermore, to measure the change in the performance of

methods between the training and test datasets, a stability measure defined below is

used

 ,,min
TR

TE

TE

TR

MR

MR

MR

MR
. (33)

where TRMR and TEMR represents the performance measures (RMSE or Adj-R
2
) for

the test and training data sets, respectively. The model whose stability measure is

close to one represents a stable model. Furthermore, robustness of the methods under

different data sets is also evaluated with the help of the spread of performance

measures used.

The efficiency of each method is measured by recording the computational run times

(the CPU time) of models to make the results comparable. Both methods are tested

on the same platform (Intel Core2 Duo CPU T7250@2.00 GHz 2.00 GB RAM). For

each dataset, the CPU times of the models are recorded in seconds. A detailed

analysis is performed on CPU times of methods with respect to sample size and

number of predictor variables (refers scale of data). To achieve such kind of an

analysis, real datasets in Table 1 are categorized into two groups as medium/large

and small/large according to sample size and scale, respectively. Moreover, the

differences between CPU times of methods according to sample size and scale are

also tested statistically by a nonparametric method called Mann-Whitney Test.

Mann-Whitney is a nonparametric version of two-sample t test used for independent

samples when the normality assumption is violated (Lehmann, 1975).

To compare the performances of two models, one-sample sign test (Gibbons and

Chakraborti, 2003) is used in our experiments. Here, the datasets used by two models

are considered as paired sample, which means there is a dependency between them.

49

One-sample sign test is a nonparametric test, which makes little assumptions about

the nature of underlying distributions. Generally, it is used as an alternative to one-

sample paired t-test and Wilcoxon signed-rank test, respectively when the normality

assumption is violated and population distribution is not assumed to be symmetric. In

this study, one-sample sign test is interpreted for α=0.05 significance level in the

comparison studies of two methods. To compare the performances of more than two

models, repeated analysis of variance (RANOVA) test (Davis, 2003) is used.

RANOVA is a statistical test used for mean comparison. The hypothesis stated for

model comparison is as follows:

H0: μ1= μ2= μ3...=μk

versus (34)

H1: at least one is different

Here, μ stands for the expected value of a performance measure such as RMSE,

GCV, etc. used in the comparisons. Once the test is rejected at α=0.05 significance

level, the differences between models are tested pairwisely using Fisher’s Least

Significant Differences (LSD) test. One-sample sign test and RANOVA teat are

applied for training and test datasets as well as stabilities of the measures for real life

data sets via the statistical software SPSS
TM

. These tests are not applied to artificial

datasets since the underlying normality and variance equality assumptions are not

satisfied. The reason for lack of normality and variance inequality is the fact that the

measures obtained are in different orders (or scales).

4.2 Selection of S-FMARS Parameters for Datasets

As mentioned in Section 3.4, S-FMARS has two important parameters that has effect

in decreasing the computational run time and increasing the model accuracy. The

grid size is the parameter that controls the approximation quality. If the underlying

data points are mapped into a grid with a large number of neurons, then the

50

underlying input pattern can be approximated well; otherwise, more information is

lost during the mapping. The other parameter is the number of data points assigned to

each neuron after mapping. If a high threshold value is set for the number of data

points grouped around the neuron, then less number of weight vectors is selected as

the reference for candidate knot points. That is, the set of candidate knots is restricted

to more than the case for which the low threshold value is set. In Chapter 3.4, the

ways of selecting the best values for these parameters are given.

In this chapter, the best S-FMARS parameter values are determined for all datasets

utilized in this study. That is, the performance of S-FMARS method with respect to

model accuracy and time efficiency is determined as a result of a sensitivity analysis

performed on 10 different grid size and six distinct threshold values. The design

levels determined for the grid size and the threshold value are given in Table 2. Here,

ng , and um and std represent the mean and standard deviation of data points

assigned to neurons, respectively.

Table 2. Design Values for Grid Size and Threshold Value.

Grid Size Threshold Value

10/g 1

5/g um

2/g um + std

g um +2 std

4/5g um +2.5 std

2/5g um +3 std

g5

 g10

 g15

 g20

51

The computational run time and model accuracy of the S-FMARS method is

observed for each design value given in Table 2. As mentioned in Section 3.4.1, as

the grid size of the lattice to which the original data points are assigned increases, the

approximation of the underlying input pattern become well, so that model accuracy

increases. On the other hand, the computing time of the method increases. The effect

of the threshold value on the performance of S-FMARS method is the exact opposite

of grid size (see Section 3.4.2). Namely, as the threshold value increases, the

accuracy of the model and the computational run time decrease. This is due to the

fact that less number of weight vectors is selected as a reference for the candidate

knot points which leads the model to be built on the less number of candidate knot

points. Hence, model accuracy and computing time decreases. This stated effects of

grid size and threshold value on the performance of S-FMARS with respect to model

accuracy and computing time is valid and observed for all datasets. The performance

measures of S-FMARS calculated for the design points in Table 2 are given in

Appendix C for all datasets.

In determination of the best parameter values, the graphs including “Ratio versus

grid size” and “Ratio versus threshold value” are used. Here, the measure of “Ratio”

denotes the ratio between RMSE and computing time (see Equation 29). With the

help of this measure, the change both in model accuracy and computing time can be

observed for different parameter values. The breaking point where the lines become

stable can be used as the best parameter values. As well as the performance table, the

graphs of “Ratio versus grid size” and “Ratio versus threshold value” are presented

in Appendix C for all datasets.

As a result of the sensitivity analysis, the best grid sizes and threshold values of S-

FMARS method are determined for artificial datasets and real datasets, in Table 3

and Table 4, respectively.

52

Table 3. Best Parameter Values For Artificial Datasets.

Datasets Grid Size Threshold Value

1 2/5g 1

2 4/5g um + std

3 2/g um + std

4 2/g um +2 std

5 2/g 1

6 2/g 1

7 2/g um

8 2/5g um + std

Table 4. Best Parameter values for Real Datasets.

Datasets Grid Size Threshold Value

AutoMpg 2/5g 1

ComCrime 4/5g um

ConcComp g5 um

Parkinsons g5 1

PM10 g5 1

Redwine g5 1

4.3. Comparison Study 1

In this section, the performance of the proposed approach, S-FMARS is evaluated

and compared with the forward selection algorithm of MARS, named as FMARS.

The performances are evaluated through eight artificial data, six real data and two

noisy data with respect to accuracy, complexity, robustness and time efficiency.

Analyses are given under the name of artificial datasets, real dataset and noise

analysis.

53

4.3.1. Artificial datasets

This section evaluates and compares the methods for Datasets 1-8. Both method use

the same number of interaction terms (Int.) for each data set, and allow their models

grow up to the same preset number of BFs (Mmax), which is 100 for all cases. The

accuracy and complexity measures of models calculated for each training data and

the CPU time required for the corresponding models are given in Table 5, as well as

the number of BFs found in the final model (BFfinal).

The number of BF in the final model denotes the complexity of the model. For

almost all models, two models have similar complexity. The accuracy measures

calculated for each method seem close to each other in Table 5. For data sets three,

four, six and eight, S-FMARS performs better than FMARS with respect to RMSE.

For three data sets, S-FMARS overperforms FMARS with respect to complexity

measure (GCV). It is noted that Adj-R
2
 values of all models are very high for all

cases. This may be due to the overfitting problem or smoothness of the underlying

datasets, which do not include noise. The prediction performances of both methods

and their stabilities of measures are compared via the RMSE and Adj-R
2
 measures as

given in Table 6. It can be indicated that the prediction performance of S-FMARS is

slightly better than that of FMARS for five datasets (see Table 6) and more stable

than FMARS for four data sets.

The models are compared with respect to time efficiency via CPU times in seconds

given in the last column of Table 5. It is seen that S-FMARS is much more efficient

than FMARS for all datasets. It provides at least 83 % decrease in the CPU times. In

addition, S-FMARS achieve this reduction in time without losing much in accuracy.

54

Table 5. Performances of FMARS and S-FMARS on the train data.

Datasets Methods Int. BFfinal RMSE Adj-R
2
 GCV

CPU

Time(sec.)

Decrease

in time (%)

1
FMARS

4
100 1062.9* 0.977* 2013650* 6210.9

95
S-FMARS 100 1089.1 0.976 2114441 311.8*

2
FMARS

1
43 4271.9* 0.999 21796917* 44.1

83
S-FMARS 43 4359.8 0.999 22703916 7.5*

3
FMARS

2
47 24.1 0.999 740.5 1934.5

88
S-FMARS 47 24.0* 0.999 740.1* 231.1*

4
FMARS

2
77 0.026 0.998 0.001 16904.8

94
S-FMARS 81 0.025* 0.998 0.001 999.7*

5
FMARS

2
43 513.3* 0.999 269180* 9756.7

95
S-FMARS 45 514.2 0.999 270354 516.8*

6
FMARS

2
23 2.969 0.999 8.913 3521.9

99
S-FMARS 23 2.892* 0.999 8.456* 51.0*

7
FMARS

4
100 0.028* 0.992 0.001* 3311.4

94
S-FMARS 100 0.030 0.991* 0.002 186.7*

8
FMARS

2
81 0.166 0.998 0.029 93483.0

99
S-FMARS 78 0.151* 0.998 0.024* 484.7*

Note: * indicates better performance.

Table 6. Performances of FMARS and S-FMARS on the test data and stabilities.

Datasets

TEST STABILITY

RMSE Adj-R
2
 RMSE Adj-R

2

FMARS

S-

FMARS FMARS

S-

FMARS FMARS

S-

FMARS FMARS

S-

FMARS

1 1120.7* 1126.7 0.959 0.959 0.948 0.967* 0.982 0.983*

2 3849.4 3834.1* 0.999 0.999 0.901* 0.879 1.000 1.000

3 23.0* 23.1 0.999 0.999 0.954 0.963* 1.000 1.000

4 0.026 0.026 0.998 0.998 1.000* 0.962 1.000 1.000

5 538.5 529.7* 0.999 0.999 0.953 0.971* 1.000 1.000

6 2.981 2.869* 0.999 0.999 0.996* 0.992 1.000 1.000

7 0.029 0.028* 0.986 0.986 0.966* 0.933 0.994 0.995*

8 0.168 0.151* 0.998 0.998 0.988 1.000* 1.000 1.000

 Note: * indicates better performance.

55

4.3.1.1 Effects of Maximum number of BFs and sample size on the CPU time

The computational run time of both methods depends on the problem size (n) and a

user-specified maximum number of BFs (Mmax). To obtain the performance of both

methods for different n values, five different datasets with n=400, 800, 1600, 3200

and 6400 are generated using the function in Dataset 8 (Figure 15). Additionally,

FMARS and S-FMARS models are built for three different Mmax values 20, 40 and

60.

The results presented in Table 7 show that as n and Mmax increase, the CPU time

required for model building drastically increases for both methods. Moreover, one-

sample sign test signifies that the accuracy and complexity measures of two models

are not statistically different for each Mmax and n values (p-values > 0.05).

Computing time of S-FMARS is less than that of FMARS for all sample size and

Mmax combinations (see Table 7). Especially for large datasets, the decrease in CPU

time is more drastic than for small ones. As it is seen in Figure 16, which displays the

run times of methods recorded for the models with Mmax=60, the difference between

the CPU times of two methods become noticeable as the sample size increases.

Correspondingly, while the decrease in CPU times is 70 % for the dataset with

smallest n and Mmax value, the decrease in CPU is 98% for the largest dataset with

large number of Mmax.

In addition, CPU times of both methods change in a similar manner according to

different Mmax and n values (see Figure 17). As the values increase, CPU times of

both methods also increase. However, regardless of Mmax and n values, the

computing time required for model building in S-FMARS is drastically less than that

of FMARS, which is figured out by different y-scales in Figure 17. At least 70 %

decrease is achieved by S-FMARS method.

56

Figure 15. Grid plot for data set 8.

Table 7. Performances of FMARS and S-FMARS for different n and Mmax.

n Mmax

RMSE Adj-R
2
 GCV

CPU

Time (sec.)

Difference

in time

(%)

F

MARS

S-

FMARS

F

MARS

S-

FMARS

F

MARS

S-

FMARS

F

MARS

S-

FMARS

400

20 1.207* 1.229 0.850 0.852* 1.914* 1.985 3.7 1.1* 70

40 0.994* 1.057 0.893* 0.891 1.767* 2.001 13.8 2.3* 83

60 0.911* 0.935 0.905 0.915* 2.139* 2.254 35.7 4.5* 87

800

20 1.302 1.293* 0.829 0.835* 1.934 1.908* 8.3 1.3* 84

40 1.053 1.046* 0.885 0.892* 1.453 1.433* 40.3 3.4* 92

60 0.993 0.983* 0.895 0.905* 1.500 1.469* 107.9 8.5* 92

1600

20 1.268* 1.285 0.846* 0.843 1.715* 1.762 24.0 1.7* 93

40 1.057* 1.072 0.891 0.891 1.272* 1.308 109.7 5.6* 95

60 1.006* 1.011 0.900 0.903* 1.233* 1.247 308.7 14* 95

3200

20 1.227* 1.233 0.855 0.855 1.555* 1.570 72.5 3.5* 95

40 1.028 1.027* 0.898 0.899* 1.126 1.124* 357.4 14.5* 96

60 0.985 0.987 0.906 0.907* 1.069* 1.073 1088.6 35.6* 97

6400

20 1.274 1.266* 0.844 0.846* 1.650 1.628* 339.1 7.7* 98

40 1.060* 1.072 0.892* 0.890 1.160* 1.187 1609.1 37.5* 98

60 1.013* 1.014 0.901 0.901 1.077* 1.079 6228.6 114.8* 98

Note: * indicates better performance.

57

Figure 16. CPU times versus sample sizes (n) for Mmax=60.

Figure 17. CPU time versus sample size.

Note: BFm represents the number of BFs in the final model built for a preset Mmax value.

58

4.3.1.2 Effect of interaction terms on the CPU time

In general, interaction models require more CPU time than additive models

(Friedman. 1993). The effect of interation terms on the computing time of FMARS

and S-FMARS is tested on Dataset 7, which is a robot arm example used by

Friedman (1993). This data is taken from a hypothetical robot arm free to move in

three dimensions),,(zyx . It includes five input variables which are taken to be the

lengths of upper and forearm
21,ll , respectively, and three angles 1θ , 2 , . The

response is the distance from the origin)(1J to the end of the forearm),,(zyx

opposite to the joint)(2J , the location of which is given by

 ,cos)cos(cos 21211 llx

 ,cos)sin(sin 21211 lly (35)

 .sinsin 22lz

The distance (response) is then obtained by

 .)(2/1222 zyxd (36)

The best model describing the nonlinear relationship between the response and

predictor variables of robot arm data is an interaction model. The CPU times spend

for building models with different degree of interaction terms are observed and

compared in Table 8, and summarized in Figure 18. As a result, as the number of

interaction term increases, the CPU times of both methods increases

correspondingly, but S-FMARS is much more efficient than FMARS for all cases. It

provides approximately the same percent of decrease in CPU times for all number of

interaction terms, which is 95%. Moreover, the performances of S-FMARS and

FMARS are not statistically different with respect to accuracy and complexity for

different number of interaction terms.

59

Table 8. Performances of FMARS and S-FMARS for different interaction term

 # RMSE Adj-R
2
 GCV CPU Time (sec.) Decrease

in CPU

time (%) int.
FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS

1 0.160 0.157* 0.761 0.771* 0.024* 0.025 159.1 5.5* 97

2 0.082 0.079* 0.999 0.999 0.006 0.006 814.9 39.3* 95

3 0.064* 0.065 0.999 0.999 0.004 0.004 1323.4 61.*6 95

4 0.063 0.062* 0.999 0.999 0.004 0.003 1448.7 73.1* 95

5 0.063 0.062* 0.999 0.999 0.004 0.003 1670.9 70.5* 96

 Note: * indicates better performance.

Figure 18. CPU time versus number of interaction terms.

4.3.2 Real Life Data

Two methods are also compared on real life datasets presented in Table 1. Before the

model construction, all datasets are preprocessed and standardized to increase the

model performances and make them comparable. 3-fold and three times replicated

cross validation approach is used to validate the performance of the methods. The

60

averages of nine performance measures for the corresponding models are listed in

Table 9. Algorithms are run for different Mmax values presented in the 3
th

 column of

Table 9. The best models obtained for Parkinsons Telemonitoring, Communities and

Crime, AutoMpg and PM10 are additive models (with no interaction), whereas for

Red Wine Quality and Concrete Compressive Strength datasets, respectively, two and

three way interaction models are found to be the best for both methods.

In order to decide whether or not both methods are statistically different, one-sample

sign test is applied to the performance measures calculated for train and test data sets

displayed in Table 9 and Table 10, respectively. The significance of differences

between the stabilities of the measures calculated on train and test performance

measures given in Table 10 is also checked statistically with one sample-sign test.

Moreover, to evaluate the overall performances of methods, mean and standard

deviation of all accuracy and complexity measures are given in Table 11 for train and

test datasets as well as stabilities of measures. Here, standard deviation is used for

indicating the robustness of the methods.

Table 9. Average performances of FMARS and S-FMARS on the train data.

Datasets Models Mmax Int. RMSE Adj-R
2
 GCV

CPU

Time

(sec.)

Decrease

in CPU

time (%)

Parkinson
FMARS

S-FMARS
50 -

0.348 0.863 0.195 29.51
90

0.347* 0.864* 0.194* 3.09*

Red Wine
FMARS

90 2
0.619* 0.569* 0.603* 338.91

79
S-FMARS 0.672 0.513 0.665 72. 68*

Com. Crime
FMARS

150 -
0.365* 0.817* 0.580* 216.10

71
S-FMARS 0.412 0.766 0.800 62.66*

Conc.Comp.
FMARS

100 3
0.196* 0.955* 0.102 1122.53

85
S-FMARS 0.202 0.952 0.103* 168.51*

AutoMpg
FMARS

100 -
1.847* 0.994* 64.66* 16.75

80
S-FMARS 2.184 0.878 90.42 3.32*

PM10
FMARS

50 -
0.649* 0.503* 0.867* 11.11

81
S-FMARS 0.665 0.477 0.911 2.16*

 Note: * indicates better performance.

61

Table 10. Average performances of FMARS and S-FMARS on test data and

stabilities.

Datasets

TEST STABILITY

RMSE Adj-R
2
 RMSE Adj-R

2

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS

Parkinson 0.640* 0.685 0.716* 0.683 0.544* 0.507 0.830* 0.791

Red Wine 1.237 0.937* 0.213 0.251* 0.500 0.717* 0.374 0.490*

Com. Crime 0.739 0.681* 0.520 0.569* 0.494 0.605* 0.637 0.743*

Conc.Comp. 0.443* 0.459 0.823* 0.816 0.442* 0.440 0.862* 0.857

Auto Mpg 5.199 2.934* 0.720 0.845* 0.355 0.744* 0.724 0.962*

PM10 1.013 0.808* 0.262 0.369* 0.641 0.823* 0.521 0.774*

 Note: * indicates better performance.

Table 11. Overall performances of FMARS and S-FMARS methods.

Methods
TRAIN TEST STABILITY

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2

FMARS

0.671*

(0.602**)

0.784*

(0.203)

11.168*

(26.207**)

1.545

(1.812)

0.542

(0.256)

0.496

(0.096**)

0.658

(0.187)

S-FMARS

0.747

(0.728)

0.742

(0.200*)

15.515

(36.697)

1.084*

(0.920**)

0.589 *

(0.240**)

0.639*

(0.148)

0.770*

(0.157**)

 Notes: * Indicates better performance with respect to mean. ** Indicate better performance with

 respect to standard deviation in parenthesis.

Depending on the results presented in Table 9, Table 10 and Table 11, the following

conclusions can be drawn:

 FMARS produces slightly accurate and less complex models than S-FMARS

except Parkinson data. However, according to one-sample sign test, the

accuracy of S-FMARS model is not statistically different than that of

FMARS considering all performance measures.

 On test data, S-FMARS performs better than FMARS for Red Wine Quality,

Communities and Crime, Auto Mpg and PM10 datasets with respect to

62

RMSE and Adj-R
2
. For the same datasets, S-FMARS is more stable than

FMARS (see Table 10).

 With respect to overall performance, FMARS models are more accurate and

robust than that of S-FMARS on training data. On test data, however, S-

CMARS performs better with respect to accuracy and is more robust than

FMARS. S-FMARS is more stable with respect to all of the measures (see

Table 11).

 S-FMARS is more efficient than FMARS for all data sets. S-FMARS

decreases the CPU time at least 71%, which is observed for Communities and

Crime.

As mentioned in Section 4.3.1.1, CPU times of methods are affected by sample size

and number of predictor variables which gives the scale of data. To observe the

effects of sample size and scales on CPU time, the datasets are classified according

to these two important features given in Table 12. The levels assigned to scale

feature are small and large. Data with less than or equal to 10 predictor variables is

assigned as small, otherwise it is assigned as large. On the other hand, datasets

classified into two as medium and large with respect to sample size. Small data has a

sample size less than or equal to 600, while large data has more than 600 instances.

The average CPU times of methods observed for each level of sample size and scale

are given in Table 12. To evaluate the significance of differences between average

CPU times of methods obtained for two types of data classified with respect to scale

and sample size are tested by using a nonparametric test called Mann-Whitney test.

This test is a nonparametric version of two-sample t test used for independent

samples where normality assumption is violated.

Depending on the results presented in Table 12, the following conclusions can be

drawn:

63

Table 12. Average CPU times of methods for different sample size and scale

Features of Data
Methods

FMARS S-FMARS

Sample

Size

Medium 19.1 2.9

Large 559.2 101.3

Percent Difference (%) 97 97

Scale

Small 383.5 58.0

Large 194.8 46.1

Percent Difference (%) 49.2 20.4

 Two methods are more efficient for medium-sized datasets than large-sized

ones. The difference between the average CPU times of methods obtained for

medium-sized and large-sized datasets are found significant by Mann-

Whitney test (p-values=0.0051). Additionally, S-FMARS performs better

than FMARS method on both medium and large datasets. S-FMARS reduces

the CPU times by 97 % from medium-sized data to large-sized ones.

 It is interesting that the effect of scale on CPU time seems quite the opposite

of sample size. When the number of predictor variable is increases, the CPU

time decreases. This may be due to the fact that there is an interaction effect

between sample size and scales. Nevertheless, CPU times of S-FMARS

method are less than that of FMARS for both small-scaled and large-scaled

datasets. In addition, the difference between CPU times between two types

of data are not statistically significant according to Mann-Whitney test (p-

values=0.4712).

Due to the significant three-way interaction effects including sample size, scale and

methods, a typical pattern for the CPU times of the methods is hard to detect.

Nevertheless, interaction plots in Figure 19 can be helpful for determining the best

size-scale combination for a method in relation with CPU time. To exemplify, with

respect to CPU time, two methods are more efficient on medium-sized training

64

samples regardless of scale. However, for large sample sizes, the largest CPU times

are observed for small-scaled datasets for both methods.

Figure 19.Interaction plots of size and scale for the CPU times for FMARS and S-

FMARS methods.

4.3.3. Performance on Noisy Data

In this section, to see the effect of noise on performance of both methods, two

simulation studies are carried out.

4.3.3.1 Noisy Data 1 (Dataset 9)

Using the sinus function two data sets are generated with and without noise with 100

observations (see Figure 20). Two methods are fitted to them and then the accuracy

and complexity measures are calculated (see Table 13). The performance measures

of models obtained for noise-free data are given in the first row of Table 13. The

other rows are related with noise data, and the measures correspond to the fits

obtained for different Mmax values. The main reason of analyzing the performance of

methods for different number of Mmax values on noisy data is to observe the

65

sensitivity of methods against noise. Moreover, to measure the sensitivity of the

model fits to noisy data, noise-free data is used as a test data, and the performance

measures are calculated using the fitted values obtained for the noisy data and the

noise-free data points (Table 13).

Figure 20. Sinus function with and without noise.

Table 13. Performances of FMARS and S-FMARS on noisy data 1.

Mmax

BFfinal
Datasets

RMSE Adj-R
2

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS

Noise-free data ≥20 19 19 Raw 0.012* 0.014 0.999 0.999

Noisy data

20 20 19
Train 0.228* 0.243 0.881* 0.866

Test 0.122 0.078 0.962 0.985

30 30 19
Train 0.216* 0.243 0.877* 0.866

Test 0.139 0.078 0.944 0.985

40 40 19
Train 0.201* 0.243 0.877* 0.866

Test 0.161 0.078 0.915 0.985

60 60 19
Train 0.145* 0.243 0.867* 0.866

Test 0.212 0.078 0.782 0.985

 Note: * indicates better performance.

66

According to the results displayed in Tables 13, the following conclusions can be

drawn:

 For noise-free data, both methods use 19 BFs in the final model although

Mmax are set to 30. The accuracy and complexity measures of both methods

are very close to each other (Table 13, the first row).

 In noisy data, S-FMARS builds its best models with 19 BFs for all Mmax

settings. However, FMARS builds more complex models as Mmax value

increase to rise up the model accuracy. This shows that FMARS is more

sensitive to the noise than S-FMARS and tries to model the noise.

 Table 13 exposes that the fits obtained by FMARS is more sensitive to noise

than S-FMARS. Although the model fits obtained by FMARS is more

accurate on noisy data, and gets better as the Mmax value increases, its

performance on noise-free data gets worse as the model become complex. S-

FMARS can provide a less sensitive model to noise by building a less

complex model for noise data. The sensitivity of both fits on noisy data is

illustrated in Figure 21. As it is seen that while FMARS prone to model the

noise for the predictor values, especially for the interval [-2, 1] in x-axis, S-

FMARS tries to fit a noise-free data.

4.3.3.2 Noisy Data 2 (Dataset 10)

In this analysis, another noisy data is created using the following function:

 ,775.0)(2121

2

2

2

1 xxxxxxf x (37)

where 1x and 2x are assumed to have Uniform (-10, 10) distribution. This data refers

to noisy-free data. To obtain noisy data, normally distributed noise ε having zero

mean is added to the response,)(xf . Here, the variance of the noise is assumed to be

67

1/100 of the variance of)(xf in (37). When -5 ≤ 1x , 2x ≤ 5, however, the variance of

the noise is assumed to be 1254.9/100=12.55 (Jin et al., 2001).

Figure 21.. Fitted models for sinus function with noise.

Two training data sets are created as described above with and without noise. Similar

to the analysis mentioned in the previous section, two methods are applied to noise

free data with 10 maximum numbers of BFs (Mmax), and with various Mmax values to

noisy data. Again, the reason of building FMARS and S-FMARS models with

various Mmax values is to observe the sensitivity of methods to noise. In addition, a

test data is generated using the function in (37) and the same measures are calculated.

The results are given in Table 14. To observe the sensitivity of model fits, again the

measures are recalculated for training and test data sets using the fitted values

obtained for noisy data and noise-free data points instead of noisy ones.

68

Table 14. Performances of FMARS and S-FMARS on noisy data 2.

Data Data sets Mmax
BFfinal RMSE Adj-R

2

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS

Noise-free

data

Train 10 7 9 0.69* 0.75 0.999 0.999

Test 10 7 9 1.06* 1.08 0.999 0.999

Noisy data

Train 9 9 9 7.27 7.22* 0.992 0.992

Test 9 9 9 8.63 8.03* 0.990 0.990

Train 10 10 10 7.14 7.07* 0.992 0.992

Test 10 10 10 9.88 8.70* 0.987 0.990*

Train 20 20 10 6.33* 7.07 0.993* 0.992

Test 20 20 10 11.82 8.70* 0.976 0.990*

Train 30 30 10 5.61* 7.07 0.993 * 0.992

Test 30 30 10 16.92 8.70* 0.947 0.990*

Train 60 55 10 3.93* 7.07 0.995 * 0.992

Test 60 55 10 30.39 8.70* 0.795 0.990*

Noisy fit

vs

noise-free data

Train 9 9 9 2.67* 2.58 0.999 0.999

Test 9 9 9 3.93 2.29* 0.999 0.999

Train 10 10 10 2.72* 2.84 0.999 0.999

Test 10 10 10 6.31 3.66* 0.994 0.999*

Train 20 20 10 4.22 2.84* 0.997 0.999*

Test 20 20 10 8.89 3.66* 0.986 0.999*

Train 30 30 10 5.17 2.84* 0.994 0.999*

Test 30 30 10 15.05 3.66* 0.957 0.999*

Train 60 55 10 6.55 2.84* 0.987 0.999*

Test 60 55 10 29.41 3.66* 0.811 0.999*

 Note: * indicates better performance.

Based on the result of analysis mentioned above, the following conclusions can be

stated:

 FMARS performs slightly better on noise-free data, and its model is less

complex than S-FMARS.

 On noisy data, when the Mmax value is set to large values (Mmax>10), FMARS

performs better than S-FMARS for training data by building more complex

69

models (models with large number of BFs). However its prediction

performance gets worse as the Mmax value increase.

 On training data with noise, S-FMARS performs better for small Mmax values.

But, the accuracy of models gets worse as the Mmax increase.

 For all cases, S-FMARS overperfoms FMARS on test data.

 S-FMARS provides a closer fit to noise-free data by the fits obtained for

noisy data. Hence, S-FMARS fits is less sensitive to noise than FMARS.

4.4. Comparison Study 2

The CPU of MARS is affected from various parameters such as predefined

maximum number of BFs (Mmax), stopping criteria defined for the difference between

two consecutive LOF in (26), degree of interactions and the number of candidate

knot points. This paper proposes a new approach to decrease the computational

complexity of MARS by restricting the candidate knot points to a small subset of

data points by a mapping approach. In the literature, some other knot restriction

algorithms are proposed not mainly to decrease the computing time, but to decrease

the local variability. However, these approaches still provide less computing time

than MARS algorithm. Use of equally-spaced knot locations, use of predefined knot

locations or setting an interval value or minimum value for the number of data points

between two adjacent knots in the ascending order of predictor-axis (MinSpan) are

some of these approaches. Since the MinSpan method described in Section 2.1.1 is a

data-adaptive approach and more effective than the other methods, S-FMARS is

compared with the MinSpan approach to demonstrate their computing efficiency and

model accuracy. In this section, model performances and efficiencies of S-FMARS

and MinSpan approach is compared via the performance measures mentioned in

Chapter 4.1.3.

70

4.4.1. Artificial Datasets

For each approach, the same number of interaction terms (Int.) is used in model

building, and the models are allowed to grow up to the same preset number of BFs

(Mmax) which is 100 for all cases. The accuracy measures of models calculated for

training data and the corresponding CPU time required for modeling of each training

dataset are given in Table 15, as well as the number of BFs in the final model

(BFfinal).

As mentioned in the comparison study of FMARS and S-FMARS, the number of BF

in the final model denotes the complexity of the model. As a result of this analysis,

again two models have similar complexity for almost all models. The accuracy

measures calculated for each method seem close to each other in Table 15. For five

data sets (one, four, five, six and eight), S-FMARS performs better than FMARS

with respect to RMSE. For four data sets, S-FMARS overperforms FMARS with

respect to complexity measure (GCV). The prediction performances of both methods

and their stabilities of measures are compared via RMSE and Adj-R
2
 measures in

Table 16. MinSpan performs better in Datasets two and three in terms of RMSE. For

the other problems, however, prediction capability of models obtained with S-

FMARS approach is higher than MinSpan. Additionally, S-FMARS produces

slightly stable models than does the MinSpan for datasets one, two and eight in terms

of RMSE.

The models are compared with respect to time efficiency via CPU times given in the

last column of Table 15. Although MinSpan decreases the CPU time of MARS

algorithm significantly, S-FMARS is still more efficient than MinSpan for all

datasets. As it is seen in Table 15, the most significant decreases are observed for

datasets six and eight, which are 90 %, while the least one is observed for dataset

three as 17%. Moreover, the models of S-FMARS models can compete with the

models of MinSpan with respect to accuracy.

71

Table 15. Performances of MinSpan and S-FMARS on the train data.

Datasets Methods Int. BFm RMSE Adj-R
2
 GCV

CPU

 Time (sec.)

Decrease

in CPU

time (%)

1
MinSpan

4
100 1173.1 0.975 2453059.2 976.7

68
S-FMARS 100 1089.1* 0.976* 2114441.0* 311.8*

2
MinSpan

1
45 4244.4* 0.999 21707171.5* 9.8

23
S-FMARS 43 4359.8 0.999 22703916.0 7.5*

3
MinSpan

2
47 23.5* 0.999 706.7* 278.5

17
S-FMARS 47 24.0 0.999 740.1 231.1*

4
MinSpan

2
77 0.026 0.998 0.001 2509.0

60
S-FMARS 81 0.025* 0.998 0.001 999.7*

5
MinSpan

2
43 515.2 0.999 271143.1 1308.7

61
S-FMARS 45 514.2* 0.999 270354.0* 516.8*

6
MinSpan

2
23 2.969 1.000 8.912 487.7

90
S-FMARS 23 2.892* 0.999 8.456* 51.0*

7
MinSpan

4
100 0.030 0.992* 0.002 3311.4

94
S-FMARS 100 0.030 0.991 0.002 186.7*

8
MinSpan

2
83 0.154 0.998 0.025 4784.9

90
S-FMARS 78 0.151* 0.998 0.024* 484.7*

Table 16. Performances of MinSpan and S-FMARS on the test data and stability.

 Performance on TEST dataset STABILITY

Datasets

RMSE Adj-R
2
 RMSE Adj-R

2

MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS

1 1258.4 1126.7* 0.959 0.959 0.932 0.967* 0.984* 0.983

2 3489.5* 3834.1 0.999 0.999 0.822 0.879* 1 1

3 22.750* 23.1 0.999 0.999 0.968* 0.963 1 1

4 0.026 0.026 0.998 0.998 1.000* 0.962 1 1

5 539.2 529.7* 0.999 0.999 0.973* 0.971 1 1

6 2.980 2.869* 0.999 0.999 0.996* 0.992 1 1

7 0.028 0.028 0.986 0.986 0.933 0.933 0.994 0.995*

8 0.154 0.151* 0.998 0.998 0.999 1.000* 1 1

Note: * indicates better performance.

72

4.4.2. Real Datasets

Two methods are also compared on real life datasets presented in Table 17. Again, 3-

fold and three times replicated cross validation approach is used to validate the

performance of the methods and the averages of the corresponding nine performance

measures are listed for each method in Table 17. Algorithms are run for different

Mmax values presented in the 3
th

 column of Table 17. As it is seen that both methods

use the same number of BFs in the final model which is equal to Mmax.

In order to test whether or not the accuracy and prediction performances of two

methods are statistically different, one-sample sign test is applied to measures

obtained for train and test data sets in addition to the stabilities of the measures. In

order to evaluate the overall performances of methods, mean and standard deviation

of all accuracy and complexity measures are given in Table 19 for train and test

datasets as well as stabilities of measures. Here, standard deviation is used for

indicating the robustness of the methods.

Table 17. Average performances of MinSpan and S-FMARS on the train data.

Datasets Methods Mmax RMSE Adj-R
2
 GCV

CPU

Time (sec.)

Decrease

in CPU

time (%)

AutoMpg
MinSpan

100
2.022* 0.935* 77.38* 4.9

33
S-FMARS 2.184 0.878 90.42 3.3*

Com.Crime
MinSpan

150
0.392* 0.842* 0.673* 133.6

53
S-FMARS 0.412 0.766 0.800 62.7*

Conc.Comp.
MinSpan

100
0.203 0.958* 0.101 303.6

44
S-FMARS 0.202* 0.952 0.100* 168.5*

Parkinsons
MinSpan

50
0.325* 0.900* 0.190* 11.5

73
S-FMARS 0.347 0.864 0.194 3.1*

PM10
MinSpan

50
0.653* 0.581* 0.856* 3.1

29
S-FMARS 0.665 0.477 0.911 2.2*

Redwine
MinSpan

90
0.637* 0.596* 0.603* 338.9

79
S-FMARS 0.672 0.513 0.665 72. 7*

 Note: * indicates better performance.

73

Table 18. Average performances of MinSpan and S-FMARS on test data and

stability.

Datasets

TEST STABILITY

RMSE Adj-R
2
 RMSE Adj-R

2

MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS

Auto Mpg 2.642 2.934* 0.869* 0.845 0.765* 0.744 0.929 0.962*

Com. Crime 0.710 0.681* 0.563 0.569* 0.552 0.731* 0.669 0.743*

Conc.Comp. 0.500 0.459* 0.803 0.816* 0.406 0.440* 0.838 0.857*

Parkinson 0.470 0.685 0.746* 0.683 0.692* 0.507 0.829* 0.791

PM10 0.893 0.808* 0.286 0.369* 0.731 0.823* 0.493 0.774*

Red Wine 0.940 0.937* 0.245 0.251* 0.677 0.717* 0.411 0.489*

 Note: * indicates better performance.

Table 19. Overall performances of MinSpan and S-FMARS methods.

Methods
TRAIN TEST STABILITY

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2

MinSpan
0.705*

(0.669**)

0.802

(0.170**)

13.301*

(31.394**)

1.026*

(0.815**)

0.585*

(0.268)

0.637

(0.134**)

0.695

(0.208)

S-FMARS
0.747

(0.728)

0.742*

(0.200)

15.515

(36.697)

1.084

(0.920)

0.589

(0.240**)

0.660*

(0.151)

0.769*

(0.158**)

 Notes: * Indicates better performance with respect to mean. ** Indicate better performance with

 respect to standard deviation.

Depending on the results presented in Table 17, Table 18 and Table 19, the following

conclusions can be drawn:

 MinSpan performs better than S-FMARS for all data sets except the Concrete

Compress data with respect to accuracy and complexity measures. However,

according to one-sample sign test, the accuracy of S-FMARS model is not

statistically different than that of FMARS considering all performance

measures (p-value>0.05).

74

 On new observations, S-FMARS performs better than MinSpan for all data

sets except Parkinsons with respect to both RMSE and Adj-R
2
.

 The prediction performance on the test data and stability of the models results

for both methods are displayed in Table 18. The performance of models

obtained by S-FMARS is slightly better than the performance of models

produced by MinSpan with respect to prediction capability and stability for

all datasets except Parkinsons data.

 In most of the data sets, S-FMARS is more stable than MinSpan with respect

to all measures.

 The overall accuracy and prediction performances of MinSpan models are

better than S-FMARS models.

 In the overall, S-FMARS is more stable than MinSpan with respect to all of

the measures.

 The differences between the CPU times of S-FMARS and Minspan are not as

much as the differences between S-FMARS and FMARS. However, S-

FMARS is again more efficient than MinSpan for all data sets. As it is seen in

Table 16, the most significant decrease is observed for Red Wine, which is 79

%, while the least decrease is observed for PM10 as 29 %.

To observe the effects of sample size and scales on CPU time, the average CPU

times of methods obtained for medium/large-sized and small/large-scaled datasets

are given in Table 20. Additionally, the significance of differences between the

average CPU times of methods obtained for two types of data classified with respect

to scale and sample size are tested by using Mann-Whitney test. Depending on the

results presented in Table 20, the following conclusions can be drawn:

 Two methods are more efficient for medium-sized datasets than large-sized

ones. The difference between the average CPU times of methods obtained for

medium-sized and large-sized datasets are found significant by Mann-

Whitney test (p=0.0051). Additionally, S-FMARS performs better than

75

FMARS method on both medium and large datasets. However, both methods

provide approximately the same percent decrease in CPU times from

medium-sized data to large-sized ones, which are more than 95%.

 MinSpan is more efficient on small-scaled data than large-scaled ones, while

it is quite opposite for S-FMARS approach. When the number of predictor

variable is increases, the CPU time of S-FMARS decreases. This may

indicates the existence of is an interaction effect between sample size and

scales. Nonetheless, CPU times of S-FMARS method are less than that of

Minspan for both small-scaled and large-scaled datasets. In addition, the

difference between CPU times between two types of data are not statistically

significant according to Mann-Whitney test (p=0.4233).

Table 20. Average CPU times of methods for different sample size and scale

Features of Data
Methods

MinSpan F-SMARS

Sample

Size

Medium 6.5 2.9

Large 258.7 101.3

Percent Difference (%) 98 97

Scale

Small 103.9 58.0

Large 161.3 46.2

Percent Difference (%) 35.6 20.4

In order to determine the best size-scale combination for two methods in relation

with CPU time, three-way interactions effects including sample size, scale and

methods are displayed in Figure 22. As it is seen in Figure 22, both methods are

more efficient on medium-sized training samples regardless of scale with respect to

CPU time. However, for large sample sizes, the largest CPU times are observed for

76

small-scaled datasets for both methods. Moreover, the effect of scale seems more

significant on large-sized datasets for S-FMARS method.

Figure 22.Interaction plots of size and scale for the CPU times for MinSpan and S-

FMARS methods.

4.5. Comparison Study 3

As in MARS algorithm, many adaptive regression splines include a backward

elimination step to determine the optimum number of terms in the final model so that

the overfitting problem caused by the forward step can be prevented. The same

strategy can also be implemented to S-FMARS. Since S-FMARS method is consist

of forward selection strategy, a model deliberately overfitting the underlying function

with a large number of BFs is obtained. On the other hand, S-FMARS is a time

efficient forward selection method by which a multivariate regression spline models

can be obtained in less time. When it is compared with the forward step of MARS

algorithm with and without MinSpan approach, it is observed that S-FMARS method

is much more efficient in time than the other methods. Therefore, it can be offered as

an alternative to the forward step of adaptive regression splines in which data points

are searched for the proper knot locations.

77

In addition to MARS algorithm, S-FMARS can also be implemented to CMARS

algorithm to make it efficient in time. CMARS is a modified version of MARS

algorithm in which instead of backward elimination step, a penalized residual sum of

squares is used, and solved with CQP. However, they are based on the same forward

selection strategy and use the same BFs for the second part. That is, CMARS applies

its penalization strategy to the BFs obtained from the forward part of MARS. As

stated in the study of Weber et al (2012), the only drawback of CMARS method is its

high computational run times. In that study, performance of CMARS is compared

with MARS algorithm and stated that CMARS is not as efficient MARS. Since

CMARS decrease the complexity of the model by applying a penalized residual sum

of squares and solves it by CQP, the method becomes computationally expensive.

For this reason, S-FMARS which is proposed as a revised version of forward step of

MARS algorithm can be implemented to improve the CMARS algorithm to reduce

its computational run time.

In this study, S-FMARS method is applied to MARS and CMARS algorithm to

improve them by reducing their computational run times. Implementation of S-

FMARS to MARS algorithm is straight forward. The backward strategy of MARS

algorithm is applied to the models obtained by S-FMARS (The algorithm of S-

FMARS is given in Chapter 4.3). The resulting method is called SMARS.

The S-FMARS algorithm is combined with CMARS methods with the following

steps given in Figure 23. The new method is called S-CMARS. The performances of

the S-CMARS, SMARS are evaluated and compared with MARS, MARS with

MinSpan approach and CMARS in the following subsections.

78

Step 1: A S-FMARS method is constructed and the best parameter values of

 S-FMARS methods are determined for the underlying dataset.

Step 2: The set of BFs are obtained by applying S-FMARS method with best

 parameter values obtained in Step 1.

Step 3: A CMARS Model is constructed for the BFs obtained in Step 2, and the

 optimal value of bound Z in (18) is found. To achieve this, the curve of

 RSS versus norm of L in the log-log scale is obtained (see Figure 24).

 The optimal value of this curve is the corner point which is demonstrated by

 a red point. The selected value gives the best solution for both accuracy and

 complexity.

Step 4: CMARS is rerun for the optimal value of Z , and the final model is

obtained.

Figure 23. Algorithm of S-CMARS method.

Figure 24. The plot of norm L versus RSS .

S1 S2

 S2

79

4.5.1. Artificial Datasets

Five adaptive regression methods are evaluated and compared for all artificial

datasets with respect to RMSE, Adj-R
2
, GCV and CPU time calculated for training

and test data sets. The stabilities of the measures are also calculated. The maximum

number of BFs is set to 100 for all datasets. The same number of interaction terms is

used for all datasets mentioned. The measures obtained for all artificial datasets are

given in Table 21. The order of the measures calculated for each dataset is different

for some datasets. This is because of the fact that the mean of datasets are in different

orders. Because of this reason, the methods cannot be compared on the average. The

performance of methods are evaluated and compared separately for each datasets.

Depending on the results presented in Table 21 and Table 22, the following

conclusions can be stated:

Table 21. Average performances of methods on train data.

Datasets Methods BFfinal RMSE Adj-R
2
 GCV

CPU

Time

(sec.)

1

MARS 69 1103.8* 0.976* 1772987.9* 6022.21

MinSpan 76 1196.5 0.972 2173914.8 2000.39

SMARS 70 1135.5 0.975 1887498.7 317.86*

CMARS 101 5928.1 0.293 2013650.0 6320.33

S-CMARS 101 5617.7 0.429 2114441.3 424.55

2

MARS 27 4271.9 0.999* 20348729.4 75.04

MinSpan 27 4248.1* 0.999* 20122417.8* 14.33

SMARS 24 5975.6 0.998 39317130.7 5.54*

CMARS 43 4271.8 0.999* 21796916.8 75.52

S-CMARS 41 5993.2 0.998 42147837.8 7.44

3

MARS 35 24.1* 0.999 693.4 3210.70

MinSpan 35 23.5 0.999 661.6* 411.79

SMARS 33 28.1 0.999 937.1 116.71*

CMARS 47 24.1* 0.999 740.5 3191.42

S-CMARS 43 28.1 0.999 990.2 124.14

80

Table21. Cont.

Datasets Methods BFfinal RMSE Adj-R
2
 GCV

CPU

Time

(sec.)

4

MARS 49 0.023* 0.998 0.001 295.99

MinSpan 46 0.026 0.998 0.001 84.45

SMARS 52 0.025 0.998 0.001 33.54*

CMARS 87 0.023* 0.998 0.001 548.58

S-CMARS 95 0.025 0.998 0.001 67.99

5

MARS 32 467.6* 0.999* 257450.5 129.37

MinSpan 27 524.1 0.999* 314813.2 30.97

SMARS 33 467.4* 0.999* 222016.0* 184.76

CMARS 45 1031.7 0.997 276350.1 219.45

S-CMARS 41 1044.3 0.997 286406.0 17.33*

6

MARS 14 3.2 1.000* 10.6 60.14

MinSpan 14 3.1* 1.000* 10.3* 10.06

SMARS 15 3.4 1.000* 12.4 4.37*

CMARS 21 176.1 0.533 11.0 60.71

S-CMARS 21 176.7 0.529 12.8 6.50

7

MARS 80 0.029* 0.992* 0.001 5952.52

MinSpan 78 0.031 0.991 0.001 1043.46

SMARS 77 0.030 0.991 0.001 360.44

CMARS 101 0.030 0.991 0.001 3378.96

S-CMARS 101 0.030 0.992* 0.002 258.61*

8

MARS 44 0.162 0.998* 0.033* 491.63

MinSpan 48 0.165 0.998* 0.035 95.68

SMARS 43 0.185 0.997 0.043 30.59

CMARS 75 0.160* 0.998* 0.039 481.90

S-CMARS 73 0.185 0.997 0.051 28.53*

 The number of BFs in the final model gives information about the complexity

of the final model. For all datasets, CMARS and S-CMARS models seem to

include the maximum number of BFs provided by the forward selection part.

This property is stated as a disadvantage of the method in the study of Weber

et. al. (2012), which is still valid for the S-CMARS method. However,

MARS do no remove the BFs even if they have approximately zero

coefficients (Yerlikaya, 2008).

81

 For training and test data sets one, five and six, MARS, MinSpan and

SMARS perform better than CMARS and S-CMARS with respect to RMSE

and Ajd-R
2
. Although SMARS and S-CMARS methods are based on the

same forward selection algorithm (S-FMARS), their accuracy performances

are also different.

 For training and test data sets two and eight, MARS, MinSpan and SMARS

slightly overperfoms CMARS and S-CMARS. This result attributed to the

mapping approach; during the mapping, the underlying data structure may not

be approximated properly. Hence, important knot points can be ignored.

 With respect to stability, SMARS is more stable than the other methods for

data sets one, two and three. For problem three, S-CMARS is as stable as

SMARS method, as well as for the data set seven. While MinSpan is more

stable than other methods for data sets four and eight, stable models are

obtained by CMARS and MARS for data sets five and six, respectively.

 Run times are related to the sample size, number of predictors, number of

interaction terms and maximum number of BFs set by the user. Since the

same parameter values are set for all methods, efficiency of methods can be

compared for each dataset separately. For all training datasets, the most

efficient method is SMARS which is then followed by S-CMARS. The CPU

time required for model building is much more less in these methods than the

CPU times of other methods. The MinSpan approach also decreases the CPU

time of MARS algorithm significantly.

Table 22. Average performance of methods on test data and stabilities.

Datasets

Methods

TEST STABILITY

RMSE Adj-R
2
 RMSE Adj-R

2

1

MARS 1147.4 0.978 0.962 0.998

MinSpan 1291.3 0.973 0.927 0.999

SMARS 1153.5 0.978 0.984 0.997

CMARS 6526.8 0.298 0.908 0.985

S-CMARS 6079.7 0.390 0.924 0.910

82

Table22. Cont.

Datasets

Methods

TEST STABILITY

RMSE Adj-R
2
 RMSE Adj-R

2

2

MARS 3849.4 0.999 0.901 1.000

MinSpan 3475.7 1.000 0.818 1.000

SMARS 5722.6 0.999 0.958 1.000

CMARS 3849.5 0.999 0.901 1.000

S-CMARS 5703.4 0.999 0.952 1.000

3

MARS 23.1 0.999 0.959 1.000

MinSpan 22.7 0.999 0.965 1.000

SMARS 27.7 0.999 0.986 1.000

CMARS 23.0 0.999 0.956 1.000

S-CMARS 27.7 0.999 0.986 1.000

4

MARS 0.026 0.998 0.872 0.999

MinSpan 0.027 0.998 0.984 1.000

SMARS 0.026 0.998 0.960 1.000

CMARS 0.026 0.998 0.866 1.000

S-CMARS 0.027 0.998 0.943 1.000

5

MARS 441.1 0.999 0.943 1.000

MinSpan 491.9 0.999 0.939 1.000

SMARS 481.9 1.000 0.970 1.000

CMARS 1023.7 0.997 0.992 1.000

S-CMARS 944.6 0.998 0.905 0.999

6

MARS 3.3 1.000 0.957 1.000

MinSpan 3.3 1.000 0.940 1.000

SMARS 3.2 1.000 0.937 1.000

CMARS 193.6 0.526 0.910 0.987

S-CMARS 194.4 0.521 0.909 0.985

7

MARS 0.028 0.993 0.990 0.999

MinSpan 0.029 0.993 0.935 0.998

SMARS 0.029 0.993 0.957 0.998

CMARS 0.030 0.992 0.994 0.999

S-CMARS 0.030 0.992 1.000 1.000

8

MARS 0.189 0.997 0.854 0.999

MinSpan 0.172 0.998 0.959 1.000

SMARS 0.200 0.997 0.926 1.000

CMARS 0.189 0.997 0.849 0.999

S-CMARS 0.200 0.997 0.925 1.000

83

4.5.2. Real Datasets

Five methods are evaluated and compared for six real datasets with different sizes

and scales (Table 1). Different maximum number of BF is set for each data set

(Table 23), but the same number of interaction terms is used by the methods within

each data set. The average of measures obtained for 3-folds and three replications of

each train datasets are given in Table 23. The results obtained for test datasets are

given in Table 24.

Since the data sets are standardized before the application, it becomes possible to

compare the overall averages of measures calculated for each method. Then, the

mean and standard deviation values of all accuracy measures obtained for training

and test dataset are given in Table 25 as well as those of the stability of the measures

for evaluating the overall performances of methods. In order to compare the

performance of methods statistically, RANOVA is performed. The test results is

evaluated at α=0.05 significance level. This test procedure is applied for training and

test datasets, as well as stabilities of the measures.

Depending on the results presented in Tables 23, 24 and 25, the following

conclusions can be drawn:

 Due to the number of BFs in the final model, the models built by CMARS

and S-CMARS for training data seem more complex than the other methods.

 The accuracy measures of methods are close to each other for training data

sets except the Com.Crime training data. For this data set, MARS, MinSpan

and SMARS overperforms CMARS and S-CMARS.

 With respect to RMSE measure, CMARS performs better than the other

methods. With respect to Adj-R
2
 and GCV values, however, MARS shows

better performance.

84

Table 23. Average performances of methods on train data.

Datasets Methods BFfinal
Measures

RMSE Adj-R
2
 GCV

CPU

Time (sec.)

Com.Crime

MARS 59 0.405* 0.824* 0.257* 250.44

MinSpan 46 0.446 0.790 0.277 234.77

SMARS 36 0.475 0.765 0.292 137.50*

CMARS 151 0.527 0.665 0.588 413.35

S-CMARS 151 0.519 0.674 0.739 196.73

Con.Comp.

MARS 60 0.220 0.948* 0.079* 873.97

MinSpan 61 0.221 0.948* 0.080 338.56

SMARS 60 0.228 0.944 0.087 156.20

CMARS 101 0.216* 0.948* 0.107 871.18

S-CMARS 101 0.235 0.938 0.117 153.71*

Parkinsons

MARS 25 0.347 0.877* 0.158* 62.24

MinSpan 23 0.354 0.872 0.161 12.25

SMARS 30 0.373 0.857 0.169 6.70*

CMARS 51 0.345* 0.872 0.200 80.42

S-CMARS 51 0.354 0.866 0.219 31.25

AuoMpg

MARS 26 2.157 0.917* 7.235* 24.84

MinSpan 19 2.435 0.897 8.100 11.90

SMARS 13 2.555 0.888 8.039 10.51*

CMARS 101 2.154* 0.897 64.266 27.53

S-CMARS 101 2.229 0.890 90.690 10.83

PM10

MARS 24 0.671 0.541* 0.602* 12.43

MinSpan 21 0.688 0.520 0.612 3.96

SMARS 20 0.696 0.510 0.618 3.35*

CMARS 51 0.665* 0.522 0.853 16.28

S-CMARS 51 0.670 0.514 0.895 6.92

Red Wine

MARS 43 0.678 0.531 0.567 770.12

MinSpan 44 0.672* 0.538* 0.562* 406.91

SMARS 37 0.686 0.521 0.563 187.31*

CMARS 91 0.682 0.507 0.671 780.74

S-CMARS 91 0.694 0.491 0.676 196.62

 Note: * indicates better performance.

85

Table 24. Average performances of methods on test data and stabilities.

Datasets

Methods

TEST STABILITY

RMSE Adj_R
2
 RMSE Adj_R

2

Com.Crime

MARS 0.694 0.505 0.584 0.613

MinSpan 0.637 0.582 0.700 0.737

SMARS 0.637 0.584 0.746 0.764

CMARS 0.563 0.676 0.936* 0.984

S-CMARS 0.560* 0.678* 0.926 0.995*

Con.Comp.

MARS 0.347 0.877 0.633 0.925

MinSpan 0.329* 0.892* 0.671* 0.941*

SMARS 0.381 0.845 0.599 0.894

CMARS 0.338 0.885 0.639 0.933

S-CMARS 0.366 0.858 0.642 0.915

Parkinsons

MARS 0.481 0.745 0.721 0.849

MinSpan 0.452* 0.780* 0.785 0.894

SMARS 0.457 0.773 0.815* 0.903*

CMARS 0.487 0.737 0.709 0.844

S-CMARS 0.478 0.750 0.742 0.866

AuoMpg

MARS 3.311 0.780 0.651 0.850

MinSpan 2.583 0.871* 0.943* 0.971*

SMARS 2.725* 0.856 0.938 0.964

CMARS 3.017 0.817 0.714 0.911

S-CMARS 2.780 0.852 0.802 0.957

PM10

MARS 0.839 0.242 0.800 0.448

MinSpan 0.847 0.229 0.813 0.440

SMARS 0.794 0.322 0.877* 0.632

CMARS 0.811 0.291 0.819 0.558

S-CMARS 0.788* 0.332* 0.850 0.646*

Red Wine

MARS 0.908 0.161 0.746 0.302

MinSpan 0.903 0.169 0.744 0.315

SMARS 0.909 0.155 0.755 0.297

CMARS 0.847* 0.267* 0.806* 0.526*

S-CMARS 0.872 0.221 0.796 0.451

 Note: * indicates better performance.

86

Table 25. Overall performances of methods.

Methods
TRAIN TEST STABILITY

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2

MARS
0.746*

(0.715**)

0.773*

(0.189)

1.483*

(2.826**)

1.097

(1.105)

0.530*

(0.308)

0.689

(0.080**)

0.632

(0.272)

MinSpan
0.803

(0.820)

0.761

(0.187**)

1.632

(3.176)

0.958*

(0.826**)

0.570

(0.331)

0.776

(0.097)

0.689

(0.299)

SMARS
0.835

(0.862)

0.747

(0.189)

1.628

(3.148)

0.984

(0.876)

0.573

(0.300)

0.788*

(0.118)

0.718

(0.263)

CMARS
0.765

(0.704)

0.735

(0.196)

11.114

(26.040)

1.010

(1.002)

0.563

(0.282**)

0.770

(0.105)

0.722

(0.237**)

S-CMARS
0.784

(0.730)

0.729

(0.197)

15.556

(36.809)

0.974

(0.905)

0.569

(0.286)

0.793

(0.096)

0.733*

(0.243)

Notes: * Indicates better performance with respect to mean. ** Indicate better performance with

respect to standard deviation.

 CMARS and S-CMARS perform better than the other methods for

Communities Crime test data, although their performances are worse than

others for training data set. For the four test data, MinSpan performs better

than the other methods with respect to RMSE and Adj-R
2
. While the

performance of S-CMARS is better than the others for PM10 test data,

CMARS overperforms others for Red Wine test data.

 With respect to stabilities of RMSE values, CMARS produce more stable

models for Communities Crime and Red Wine data. The models of SMARS

built for Parkinsons and PM10 are more stable than the other models. For rest

of the test data, MinSpan seems more stable. On the other hand, S-CMARS

seems more stable for Communities Crime and PM10 with respect to Adj-R2

values. Again, while MinSpan produce more stable models for Concrete

Compression and AutoMpg, SMARS is more stable for Parkinsons.

 RANOVA test results obtained for training and test data sets as well as

stabilities of measures conclude that there are no cases where one method is

statistically significantly better than the others with respect to RMSE, Adj-R
2

and GCV measures.

87

 SMARS seems the most efficient method with minimum CPU time. S-

CMARS comes the second. MinSpan is more efficient than MARS algorithm,

but not as much as SMARS.

To observe the effects of sample size and scales on CPU time, the average CPU

times of methods obtained for the datasets classified with respect to scale and sample

sizes as in Section 4.3.2 are given in Table 26.

Table 26. Average CPU times of methods with respect to sample size

Features of Data
Methods

MARS MinSpan SMARS CMARS S-CMARS

Sample Size

Medium 33.2 9.4 6.9 41.4 16.3

Large 631.5 326.7 160.3 688.4 182.4

Percent

Decrease (%)
95 97 96 94 91

Scale

Small 303.7 118.1 56.7 305.0 57.2

Large 360.9 218.0 110.5 424.8 141.5

Percent

Decrease (%)
16 46 49 28 60

Additionally, the significance of differences between the average CPU times of

methods obtained for two types of data classified with respect to scale and sample

size are tested by using Mann-Whitney test. Depending on the results presented in

Table 26, the following conclusions can be drawn:

 All methods are more efficient for medium datasets than large ones. The

difference between the average CPU times of methods obtained for medium

and large datasets are found significant by Mann-Whitney test. Additionally,

SMARS performs better than all other methods on both medium and large

datasets.

88

 The most significant decrease in CPU time is observed for MinSpan approach

between medium and large datasets.

 The effect of scale on CPU time is not as significant as sample size. The most

significant decrease is observed for S-CMARS method, which is 60 %.

Although methods seem slightly efficient for small scaled data than the large

scaled ones, the difference between CPU times between two types of data are

not statistically significant according to Mann-Whitney test (p-value>0.05).

Three-way interaction effects including sample size, scale and methods are examined

through interaction plots displayed in Figure 25. for determining the best size-scale

combination for a method in relation with CPU time. Figure 25 shows that all

methods are more efficient on small scale and medium training samples with respect

to CPU time. While the scale affects the performance of MARS, CMARS and S-

CMARS methods with respect to time efficiency, scale has no significant effect on

CPU time of MinSpan and SMARS. In addition, for large training samples, MARS

and CMARS are more efficient for large-scaled data than small-scaled ones.

4.5.3. Performance on Noisy Data

To evaluate the sensitivity of five methods on noisy data, the same data sets used in

Section 4.3.3 are also used in this comparison study. Two data sets are generated

with and without noise. For the first analysis, a sinus function is used.

4.5.3.1. Noisy Data 1

Finally, a simulation study is performed to see the effect of noise on performance of

all methods. For this purpose, data having 100 observations are generated using the

sinus function with and without noise. Five models are fitted to them, and both the

accuracy and complexity measures are obtained as in Table 27. In addition, to

measure the sensitivity of the fits to the noisy data, the performance measures are

89

recalculated using the fitted values obtained for noisy data, and noise-free data

points. The conclusions drawn from the analysis for noisy data are given as follows:

Figure 25. Interaction plots of size and scale for the CPU times for five methods.

90

 CMARS and S-CMARS built more complex models both noisy and noise-

free data.

 CMARS and MARS methods overperform other methods on noisy data with

respect to RMSE and Adj-R
2
 measures, respectively. They perform better on

noise-free data as well.

 The fit obtained by MinSpan for noisy data is able to predict the noise-free data

well. Thus, it is less sensitive to noise than the other methods.

Table 27. Average performance of methods on test noisy data.

Methods

Measures

BFfinal RMSE Adj-R
2

Noise-free data

MARS 11 0.012* 1.000

MinSpan 10 0.015 0.999

SMARS 11 0.014 1.000

CMARS 19 0.012* 1.000

S-CMARS 19 0.014 1.000

Noisy data

MARS 6 0.235 0.892*

MinSpan 5 0.245 0.884

SMARS 4 0.257 0.873

CMARS 21 0.228* 0.879

S-CMARS 19 0.243 0.866

Noisy

vs

noise-free data

MARS 6 0.084 0.984

MinSpan 5 0.071* 0.989*

SMARS 4 0.121 0.968

CMARS 21 0.118 0.952

S-CMARS 19 0.078 0.980

 Note: * indicates better performance

4.5.3.2. Noisy Data 2

A second simulation study is carried on using the function in (37), and a similar

study is constructed for all methods as in the previous section. Namely, the

91

performances of models built by five methods are compared on noisy data with

respect to accuracy and complexity measures (Table 28), and the sensitivity of fits on

noisy data is revealed in Table. Additionally, a new test data is generated using the

same function and the same measures are calculated to evaluate the prediction

performances of fits for new observations.

Table 28. Average performances of methods on noisy data.

Methods

Train Test

BFfinal RMSE Adj-R
2
 RMSE Adj-R

2

Noise-free data

MARS 7 0.691* 0.999 1.060 0.999

MinSpan 7 1.012 0.999 2.964 0.999

SMARS 8 0.754 0.999 1.081 0.999

CMARS 7 0.692 0.999 3.579 0.999

S-CMARS 9 0.754 0.999 1.081 0.999

Noisy data

MARS 8 6.961 0.992 8.398 0.989

MinSpan 5 7.466 0.991 8.134* 0.990*

SMARS 4 7.449 0.991 8.380 0.988

CMARS 21 6.999 0.991 8.159 0.987

S-CMARS 19 6.960* 0.993* 8.826 0.988

Noisy

vs

noise-free data

MARS 8 2.506 0.999 3.089 0.998

MinSpan 5 2.666 0.999 2.646 0.999*

SMARS 4 3.134 0.998 2.825 0.999*

CMARS 21 2.321* 0.999 2.477* 0.998

S-CMARS 19 2.908 0.998 3.921 0.996

Note: * indicates better performance

The analysis results can be summarized as follows:

 MARS performs better on noise-free data with respect to accuracy and

prediction capability.

 S-CMARS performs better than other methods on noisy training data with

respect to RMSE and Adj-R
2
.

92

 The prediction performance of MinSpan is better than other methods on noisy

test data.

 The CMARS fit obtained for noisy data can also predict the noise-free data

better than the other methods. Hence, the sensitivity of SMARS to noisy data

is less than the one of other methods.

93

CHAPTER 5

CONCLUSION AND FURTHER RESEARCH

In the spline smoothing, one of the critical issue is determining the proper knots,

especially, for curves having varying shapes. In this study, we propose a two-stage

knot selection procedure for adaptive regression splines. Firstly, a potential set of

knots is selected by a mapping approach with the intension to locate points according

to the data distribution. The final knot selection is then made by a stepwise model

fitting algorithm. The combination of these two procedures, so called S-FMARS, is a

modified forward selection step of MARS which provides a time efficient model

building strategy for adaptive regression splines without degrading the model

accuracy and prediction performance.

In S-FMARS, two important parameters have special effects on model building and

CPU time: grid size and threshold value set for the number of data points assigned to

each of the map unit. As mentioned in Section 3.4, the grid size (number of neurons

in the lattice) is as a trade-off between less computing time and a good

approximation both in mapping and modeling. As the grid size increases, the

approximation of underlying data structure become well, but the CPU time required

for mapping and modeling increases. During the mapping, similar data points are

grouped around the neurons having a neighborhood relation in the lattice. Among

these neurons, while some units carry more data points, some others are just attained

to one data point. The neurons assigned to less number of data points most probably

represent outliers or sparse regions in the data space. By setting a threshold value for

the number of data points assigned to one neuron, outliers and data points, where less

data structure occurs can be eliminated. For better approximation and best subsetting

94

with more representative data points, a sensitivity analysis is studied for the best grid

size and threshold value. In this sensitivity analysis, a measure (RMSE/TIME) is

proposed to be used in the determination of best parameter values. By observing the

change in this ratio value against different grid sizes and threshold values, the best

grid size and the threshold value is determined.

Once the parameters of the S-FMARS are found, the method can be applied to any

datasets with continuous response. Especially for high-dimensional and large

datasets, S-FMARS can be considered as a strong alternative to the conventional

forward selection procedures in spline fitting. The performance of S-FMARS is

evaluated and compared with the forward selection algorithm of MARS (FMARS)

and also MinSpan with respect to accuracy, complexity, stability and robustness

criteria via a set of artificial and real datasets. The analyses conclude that the

performance of S-FMARS models is not statistically different from the models

obtained by FMARS and MinSpan approaches with respect to all criteria. Moreover,

it is obviously clear that the S-FMARS approach is much more efficient than the

other methods. For noisy settings, the fit obtained by S-FMARS for noisy data can

also approximate the noise-free data well. Hence, the S-FMARS fits seems to be less

sensitive to noise than those of FMARS.

The forward selection approach of regression splines builds a large model which

deliberately overfits the data. This property is also valid for the proposed forward

selection algorithm. In general approach, a backward elimination step is applied to

prune the model comes from the forward step. In this strategy, contributions of

model terms are evaluated through a complexity measure; MARS uses this strategy.

In some studies, however, contributions of model terms are examined via a penalized

term added to accuracy measure. In this strategy, parameter estimation is achieved

through a PRSS; CMARS bases on this strategy. Based on two purposes, both the

backward elimination strategy of MARS and the PRSS strategy of CMARS can be

applied to S-FMARS. The first one is to eliminate the overfitting problem, and to

95

provide a complete adaptive regression spline method. The second one is to solve the

main drawbacks of CMARS approach, which is being inefficient in time. CMARS

construct PRSS problem as a Tikhonov regularization problem and solves it using a

CQP, which make the method computationally expensive. In addition, the PRSS

problem is based on the knot points selected among the data points by the forward

step of MARS. During the knot selection process, as the number of data points is

increased, more data points are evaluated as knot points, which leads to an increase

in the computing time of CMARS, significantly. In this respect, S-FMARS can be a

good alternative by selecting a representative data points to be evaluated as knots. In

this thesis, the proposed forward selection algorithm is implemented to both the

CMARS and MARS algorithms, which are named as S-CMARS and SMARS,

respectively. Their performances are evaluated via many performance criteria and

compared with MARS, MARS with MinSpan and CMARS methods. The results of

the analysis indicate that SMARS and S-CMARS are obviously the most efficient

two methods with respect to time. Their CPU times are significantly less than those

of the other methods. Even CMARS is improved by the proposed forward selection

algorithm as being more efficient than MARS. The performances of SMARS and S-

CMARS seem not to be as good as the other methods for some real datasets;

however, the accuracy loss is small in absolute values compared to the run times.

Moreover, RANOVA test results obtained for the real life data sets show that

performances of SMARS and S-CMARS are not statistically significantly different

from the other methods. Actually, for the real data sets under study, there are no

cases where a method seems effective with respect to all performance measures. For

artificial datasets, the performance measures of methods are evaluated within each

data separately due to different problem scales. For some generated data the

performance of SMARS and S-CMARS does not seem as good as the performances

of the other methods. This may be resulted from the inadequate approximation of

underlying data structure caused by mapping or the projection of weight vectors to

original data points. The proper knot points could be ignored during the mapping or

projection. To make the SMARS and S-CMARS methods more accurate, one has to

96

provide a good approximation of underlying data. Besides, for same cases, the reason

of bad performances may not be rooted from mapping idea, but from the strategy

behind the CMARS. Before the application of CMARS, the optimal value of the

bound set in the optimization problem (18) should be found by investigating the

corner points. In some cases, however, it is difficult to catch the corner points

properly.

The sensitivity of methods on noisy setting is also examined in the study. The

analysis results show that CMARS and MinSpan seem to be less sensitive to noise

than the other methods. MinSpan overperforms the other methods on noisy test data.

In addition, MARS performs better than other methods on noise-free data with

respect to accuracy and prediction capability.

The models build by S-CMARS and CMARS are more complex than the models of

other methods. As mentioned in Yerlikaya (2008), even though the BFs having

coefficients zero or near to zero, they are remained in the final model of CMARS.

Namely, the BFs contributing less to model are not removed. The same property is

also valid for S-CMARS. In this respect, a bootstrapping strategy is proposed by

Yazıcı (2011) to decrease the model complexity of CMARS. By a bootstrapping

approach, the contribution of each BFs to the model can be determined by drawing

bootstrap samples from the data sets, and computing the corresponding coefficients

for each sample. Bootstrapping is a computer-intensive method due to its high

dependence on computers. As a whole, CMARS with bootstrapping approach

requires more CPU time. However, S-CMARS is more efficient in time than

CMARS; so that, the bootstrapping can be implemented to S-CMARS to decrease

the model complexity and computing time, which is left as a future work.

As another future study, the mapping strategy can be studied as a feature reduction

method of the proposed approach, S-FMARS, to decrease the model complexity

(i.e.number of terms in model). If the predictor variables can be reduced by

97

considering their importance to model through the mapping, the knot selection

process of spline fitting can be applied on the new set of predictor variables. So that,

the computational complexity caused by the forward selection step can also be

decreased.

As a final conclusion, the newly developed knot selection scheme can be

implemented to any kind of adaptive regression splines including a forward knot

selection algorithm. This study only covers the estimation of continuous responses.

However, the idea behind the proposed approach can also be studied as a future work

for the responses with discrete levels such as binary, nominal or ordinal.

98

REFERENCES

Akaike, H. (1973). Information Theory and an Extension of the Maximum

Likelihood Principle, 2nd International Symposium on Information Theory (ed.

B. F. Petrov and F. Cs´aki), Academiai Kiado, Budapest.

Atilgan, T. (1988). Basis Selection for Density Estimation and Regression.

AT&T Bell Laboratories technical memorandum.

Batmaz, İ., Yerlikaya-Özkurt, F., Kartal-Koç, E., Köksal, G. and Weber, G. W.

(2010). Evaluating the CMARS Performance for Modeling Nonlinearities.

Proceedings of the 3rd Global Conference on Power Control and Optimization,

Gold Coast (Australia), 1239, 351-357.

Breiman, L. (1993). Fitting Additive Models to Regression Data. Computational

Statistics and Data Analysis, 15, 13-46.

Cleveland, W.S. (1993). Robust Locally Weigthed Regression and Smoothing

Scatterplots. Journal of the American Association, 74 (368), 829-836.

Craven, P., and Wahba, G. (1979). Smoothing Noisy Data with Spline Functions:

Estimating the Correct Degree of Smoothing by the Method of Generalized Cross

Validation. Numerische Mathematik, 31, 377-403.

Davis, C.S. (2003). Statistical Methods for the Analysis of Repeated Measures.

Springer-Verlag, New York.

de Boor, C. (1978). A Practical to Guide to Splines. Springer-Verlag, New York.

Deichmann, J., Eshghi, A., Haughton, D., Sayek, S., and Teebagy, N. (2002).

Application of Multiple Adaptive Regression Splines (MARS) in Direct

Response Modeling. Journal of Direct Marketing, 16, 15–27.

Di, W. (2006). Long Term Fixed Mortgage Rate Prediction Using Multivariate

Adaptive Regression Splines. School of Computer Engineering, Nanyang

Technological University.

99

Denison, D.G.T, Mallick, B.K. and Smith, A.F.M. (1998). Automatic Bayesian

Curve Fitting. J. Roy. Statist. Soc., 60, 333–350.

Eilers, Paul H.C., and Marx, B.D. (1996). Flexible Smoothing with B-splines and

Penalties. Statistical Science, 11, 98-102.

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. Marcel

Dekker, New York.

Friedman, J.H., and Silverman, B.W. (1989). Flexible Parsimonious Smoothing

and Additive Modelling. Technometrics, 31, 3–21.

Friedman, J.H. (1991). Multivariate Adaptive Regression Splines. The Annals of

Statistics, 19, 1-67.

Friedman, J.H. (1993). Fast MARS. Stanford University Department of Statistics,

Technical report 110.

Fox, J. (2002). Nonparametric Regression, An R and S-PLUS Companion to

Applied Regression. Sage, Thousand Oaks CA.

Frank, A., and Asuncion, A. (2010). UCI Machine Learning Repository. Irvine,

CA: University of California, School of Information and Computer Science.

Available at http://archive.ics.uci.edu/ml.

Gersho, A., and Gray, R.M. (1992). Vector Quantization and Signal

Compression. Kluwer ,Norwell.

Gibbons, J.D., and Chakraborti, S. (2003). Nonparametric Statistical Inference.

Marcel Dekker, New York.

Green, P.H., and Silverman, B.W. (1994). Nonparametric Regression and

Generalized Linear Models. Chapman Hall,Boca Raton, FL.

Hastie, T.J., and Tibshirani, R.J. (1990). Generalized Additive Models, Chapman

and Hall, New York.

Hastie, T.J., Tibshirani, R.J., and Friedman, J. (2001). The Elements of Statistical

Learning, Data Mining, Inference and Prediction. Springer, New York.

http://archive.ics.uci.edu/ml

100

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice-

Hall, New Jersey.

He, X. and Ng, P. (1996). COBS: Constrained Smoothing Made Easy.

Unpublished manuscript.

Jekabsons, G. (2011). ARESLab: Adaptive Regression Splines Toolbox for

Matlab/Octave. Available at http:// www.cs.rtu.lv/jekabsons/

Jin, R., Chen, W., and Simpson, T.W. (2001). Comparative Studies of

Metamodeling Techniques under Multiple Modeling Criteria. Structural and

Multidisciplinary Optimization, 23, 1-13.

Keele, L. (2008). Semiparametric Regression for the Social Sciences. John Wiley

and Sons, Chichester, UK.

Kohonen, T. (1988). Self-Organizing and Associative Memory. Springer-Verlag,

New York.

Kubin, G., (1999). Nonlinear Prediction of Mobile Radio Channels: Measurments

and Mars Model Designs, IEEE Proc. International Conference on Acoustics,

Speech, and Signal Processing, 5, 15-19, 2667-2670.

Leathwick, J.R., Rowe,D., Richardson, J., Elith, J., and Hastie, T. (2005). Using

Multivariate Adaptive Regression Splines to Predict the Distributions of New

Zealand’s Freshwater Diadromous Fish. Freshwater Biology, 50, 2034–2052.

Leathwick, J.R., Elith, J., and Hastie, T. (2006). Comparative Performance of

Generalized Additive Models and Multivariate Adaptive Regression Splines for

Statistical Modelling of Species Distributions. Ecological Modelling, 199, 188–

196.

Lee, T.S., Chiu, C.C., Chou, Y.C., and Lu, C.J. (2006). Mining the Customer

Credit using Classifcation and Regression Tree and Multivariate Adaptive

Regression Splines. Computational Statistics and Data Analysis, 50, 1113–1130.

Lehmann, Erich L. (1975); Nonparametrics: Statistical Methods Based on Ranks.

101

Lou, Z., and Wahba, G. (1997). Hybrid Adaptive Splines. Journal of the

American Statistical Association, 92, 107–116.

Mallows, C. L. (1973). Some comments on Cp, Technometrics, 15, 661–675.

Özmen, A. (2010). Robust Conic Quadratic Programming Applied to Quality

Improvement- A Robustification of CMARS, MSc., Middle East Technical

University.

Özmen, A., Weber, G-W., and Batmaz, İ. (2010). The new robust CMARS

(RCMARS) method, 24th Mini EURO Conference-On Continuous Optimization

and Information-Based Technologies in the Financial Sector, MEC EurOPT

Selected Papers, ISI Proceedings, 362–368.

Ruppert, D. (2002). Selecting the Number of Knots for Penalized Splines.

Journal of Computational and Graphical Statistics, 11, 735-757.

Ruppert, D., Wand, M.P., and Carroll, R.J. (2003). Semiparametric Regression.

Cambridge University Press.

Schoenberg, I. (1964a). On Interpolation by Spline Functions and its Minimum

Properties. International Series of Numerical Analysis. 5, 109–129.

Schoenberg, I. (1964b). Spline Functions and the Problem of Graduation.

Natural Academy of Science, 52, 947–950.

Schumaker, L. L. (1981). Spline Functions: Basic Theory. John Wiley & Sons,

Inc.

Silverman, B. W. (1985). Some Aspects of the Spline Smoothing Approach to

Nonparametric Regression Curve Fitting. Journal of the Royal Statistical Society,

Series B, 47, 1–52.

Smith, P.L. (1982). Curve Fitting and Modeling with Splines using Statistical

Variable Selection Techniques. Report NASA 166034, NASA, Langley Research

Center, Hampton.

Smith, M. and Kohn, R. (1996). Nonparametric Regression Using Bayesian

Variable Selection, Journal of Econometrics, 75, 317–343.

102

Stone, C.J., and Koo, CY. (1985). Additive Splines in Statistics. Proceeding of

the Statistical Computing section. Alexandria, VA: American Statistical

Association, 45-48.

Stone, C.J. (1986). Comment: Generalized additive models. Statistical Science,

2:312-314.

Stone, C., Hansen, M., Kooperberg, C., and Troung, Y. (1997). Polynomial

Splines and their Tensor Products in Extended Linear Modeling. Annals of

Statistics, 25, 1371-1470.

Taylan,P., Weber G-W, and Beck, A. (2007). New Approaches to Regression by

Generalized Additive Models and Continuoues Optimization for Modern

Applications in Finance, Science and Technology, Journal of Optimization. 56,

675-698.

Vesanto, J., Himberg, J., Alhoniehmi, E., and Parhankangas, J. (2000). SOM

toolbox for Matlab 5, Report A57. Available at http:// www.cis.hut.fi // projects/

somtoolbox/

Yao F., and Lee Thomas, C.M. (2008). An Improved Knot Placement Scheme for

Penalized Spline Regression. Journal of the Korean Statistical Society. 37, 259-

267.

Yerlikaya, F. (2008). A New Contribution to Nonlinear Robust Regression and

Classication with MARS and its Application to Data Mining for Quality Control

in Manufacturing. Master Thesis, Graduate School of Applied Mathematics,

Department of Scientific Computing, METU, Ankara, Turkey.

Yazici, C. (2011). A Computational Approach to Nonparametric Regression:

Bootstrapping the CMARS Method. Master Thesis, Department of Statistics,

METU, Ankara, Turkey.

York, T.P., Eaves, L.J., and Van den Oord, E.J.C.G. (2006). Multivariate

Adaptive Regression Splines: a Powerful Method for Detecting Disease-risk

Relationship Differences Among Subgroubs, Statistics in Medicine, 25, 8, 1355-

1367.

Wahba, G. (1983). Bayesian Confidence Intervals for the Cross-Validated

Smoothing Spline. Journal of the Royal Statistical Society, Series B 45 133–150.

103

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF 59,

Regional Conference Series in Applied Mathematics.

Wahba G., and Wold, S. (1975). A Completely Automatic French Curve: Fitting

Spline Functions by Cross Validation. Commun. Statistics, 4, 1-17.

Weber, G-W., Batmaz, İ., Köksal, G., Taylan, P., Yerlikaya-Özkurt, F. (2012).

CMARS: A New Contribution to Nonparametric Regression with Multivariate

Adaptive Regression Splines Supported by Continuous Optimization. Inverse

Problems in Science and Engineering, 20 (3), 371-400.

Whittaker, E. T. (1923). On a New Method of Graduation. Proceedings of the

Edinburgh Mathematical Society, 41, 63–75.

Wong, C., and Kohn, R. (1996). A Bayesian Approach to Additive Semi-

Parametric Regression. Journal of Econometrics, 74, 209–235.

104

APPENDIX A

MATHEMATICAL FORMULATIONS FOR DATA GENERATION

Mathematical functions used for generation of the artificial datasets given in Table 1.

P1.
7

1

2
7

1

22]))10(ln())2(ln([)(
i i

iii xxxf x 9.91.2 ix

P2. ,)exp(ln)exp()(
10

1

10

1j k

kjjj xxcxf x

 22.179- 26.662,-

 10.708,- 24.100,- 14.986,- 24.721,- 5.914,- 34.054,- 164, 17.- -6.089,=cj

P3.

45)7()10(2)11(75

)1(2)3()5(4)10(1614)(

2

10

2

9

2

8

2

7

2

6

2

5

2

4

2

32121

2

2

2

1

xxxx

xxxxxxxxxxf x

P4.)16/cos()12/sin()(21 xxf x

P5.
4

32

2

21

2

1)()()1()(xxxxxf x

P6. 141.40792293239.378356891.03578547.5)(131

2

2 xxxxf x

P8.

xyx

yxyxxyxxf

2))1(exp(31

)exp()5(10))1(exp()1(3)(

22

2253222
x

105

APPENDIX B

GRID PLOTS OF MATHEMATICAL FUNCTIONS

Grid plot of mathematical functions used for generation of the artificial datasets

given in Table 1.

 (a) P1(1x , 3x) other ix =3. (b) P2(1x , 3x) other ix =3.

 (c) P3(1x , 2x) other xi=4. (d) P4.

106

 (e) P5(2x , 3x) other ix =3. (f) P6(1x , 2x) other 3x =3.

 (g) P8

Figure A 1. (a) Grid plot of Dataset 1 (b) Grid plot of Dataset 2 (c) Grid plot of

Dataset 3 (d) Grid plot of Dataset 4 (e) Grid plot of Dataset 5 (f) Grid plot of Dataset

6 (g) Grid plot of Dataset 7

107

APPENDIX C

EFFECTS OF GRID SIZE AND THREDHOLD VAUE ON ARTIFICIAL AND

REAL DATASETS

Table C1. Ratio=RMSE/TIME value for different grid sizes in artificial datasets

Grid Size
Data sets

1 2 3 4 5 6 7 8

g/10 234.511 55.916 193.472 148.304 418.472 394.535 78.812 377.920

g5 132.066 42.688 129.288 44.832 29.840 34.856 53.413 39.875

g/2 53.302 12.016 12.827 11.220 8.847 11.272 14.426 12.633

g/5 30.924 3.835 5.584 5.862 5.401 5.844 6.630 6.894

5g/4 24.034 1.139 6.813 5.854 3.201 3.704 5.159 5.550

5g/2 12.165 0.792 2.677 1.780 2.065 3.698 2.526 2.196

5g 6.453 0.359 1.278 0.970 0.937 0.967 1.221 1.146

10g 4.301 0.249 0.859 0.543 0.569 0.516 0.762 0.727

15g 3.275 0.193 0.606 0.259 0.386 0.336 0.552 0.403

20g 2.788 0.139 0.582 0.199 0.310 0.253 0.591 0.359

108

Figure C1. Graph of ratio versus grid size for Dataset 1.

Figure C2. Graph of ratio versus grid size for Dataset 2.

0

50

100

150

200

250

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0

10

20

30

40

50

60

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

109

Figure C3. Graph of ratio versus grid size for Dataset 3.

Figure C4. Graph of ratio versus grid size for Dataset 4.

0

25

50

75

100

125

150

175

200

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0

20

40

60

80

100

120

140

160

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

110

Figure C5. Graph of ratio versus grid size for Dataset 5.

Figure C6. Graph of ratio versus grid size for Dataset 6.

0

50

100

150

200

250

300

350

400

450

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0

50

100

150

200

250

300

350

400

450

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

111

Figure C7. Graph of ratio versus grid size for Dataset 7.

Figure C8. Graph of ratio versus grid size for Dataset 8.

0

10

20

30

40

50

60

70

80

90

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0

50

100

150

200

250

300

350

400

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

112

Table C2. Ratio=RMSE/TIME value for different grid sizes in artificial datasets

Threshold

Value

Data sets

1 2 3 4 5 6 7

1 2.395 0.074 0.133 0.056 0.296 0.271 0.666

um 5.422 0.198 0.416 0.072 0.591 0.611 1.519

um + std 15.847 0.481 0.775 0.405 2.261 2.226 3.420

um +2 std 36.043 4.831 12.125 0.689 12.162 6.464 10.962

um +2.5 std 61.765 13.544 20.680 6.719 11.807 23.055 31.555

um +3 std 104.437 24.196 89.023 27.050 15.872 42.770 31.504

Figure C9. Graph of ratio versus threshold value for Dataset 1.

0

20

40

60

80

100

120

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

113

Figure C10. Graph of ratio versus threshold value for Dataset 2.

Figure C11. Graph of ratio versus threshold value for Dataset 3.

0

5

10

15

20

25

30

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

0

10

20

30

40

50

60

70

80

90

100

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

114

Figure C12. Graph of ratio versus threshold value for Dataset 4.

Figure C13. Graph of ratio versus threshold value for Dataset 5.

0

5

10

15

20

25

30

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

0

2

4

6

8

10

12

14

16

18

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

115

Figure C14. Graph of Ratio versus Threshold Value for Dataset 6.

Figure C15. Graph of ratio versus threshold value for Dataset 7.

0

5

10

15

20

25

30

35

40

45

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

0

5

10

15

20

25

30

35

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

116

Figure C16. Graph of ratio versus threshold value for Dataset 8.

Table C3. Ratio=RMSE/TIME value for different grid sizes in real datasets

Grid Size
Data Sets

AutoMpg Com.Crime Conc.Comp Parkinsons PM10 Red Wine

g/10 756.460 587.648 153.489 194.726 239.026 191.580

g/5 498.185 97.102 104.352 112.206 103.290 150.800

g/2 99.874 15.062 54.201 81.292 44.141 76.340

g/5 15.046 11.672 25.090 42.799 27.643 47.018

5g/4 15.423 10.908 22.397 40.047 21.555 43.890

5g/2 10.934 7.852 13.230 24.870 14.626 31.102

5g 8.808 5.685 7.467 15.315 9.123 22.731

10g 6.985 4.494 5.444 9.124 6.184 16.990

15g 6.325 4.110 4.325 6.512 4.658 13.971

20g 5.709 3.650 3.725 5.111 4.094 12.493

0

20

40

60

80

100

120

1 mu mu+std mu+2std mu+2.5std mu+3std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

117

Figure C17. Graph of ratio versus threshold value for AutoMpg.

Figure C18. Graph of ratio versus grid size for Comm.Crime.

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

118

Figure C19. Graph of ratio versus grid size for Conc.Compress.

Figure C20. Graph of ratio versus grid size for Parkinsons.

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0.000

50.000

100.000

150.000

200.000

250.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

119

Figure C21. Graph of ratio versus grid size for PM10.

Figure C22. Graph of ratio versus grid size for Red Wine.

0.000

50.000

100.000

150.000

200.000

250.000

300.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

0.000

50.000

100.000

150.000

200.000

250.000

g/10 g/5 g/2 g 5g/4 5g/2 5g 10g 15g 20g

R
at

io
=R

M
SE

/T
IM

E

Grid Size

Ratio versus Grid Size

120

Table C4. Ratio=RMSE/TIME value for different grid sizes in real datasets.

Threshold

Value

Data Sets

AutoMpg ComCrime ConcComp Parkinsons PM10 Red Wine

1 4.530 4.896 2.988 4.875 4.705 13.215

mu 5.821 6.239 4.896 6.880 7.101 17.186

mu+std 13.027 8.350 9.340 11.196 8.670 29.748

mu+2std 61.635 15.042 24.619 23.265 17.681 64.606

mu+2.5std 94.935 95.540 53.522 32.538

95.909

Figure C23. Graph of ratio versus threshold value for AutoMpg.

0

20

40

60

80

100

1 mu mu+std mu+2std mu+2.5std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

121

Figure C24. Graph of ratio versus threshold value for Comm.Crime.

Figure C25. Graph of ratio versus threshold value for Conc.Compress.

0

20

40

60

80

100

120

1 mu mu+std mu+2std mu+2.5std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshod Value

0

10

20

30

40

50

60

1 mu mu+std mu+2std mu+2.5std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

122

Figure C26. Graph of ratio versus threshold value for Parkinsons.

Figure C27. Graph of ratio versus threshold value for PM10.

0

5

10

15

20

25

30

35

1 mu mu+std mu+2std mu+2.5std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

2

6

10

14

18

22

1 mu mu+std mu+2std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

123

Figure C28. Graph of ratio versus threshold value for Red Wine.

0

20

40

60

80

100

120

1 mu mu+std mu+2std mu+2.5std

R
at

io
=R

M
SE

/T
IM

E

Threshold Value

Ratio versus Threshold Value

124

APPENDIX D

COMPARISON OF PROJECTION METHODS FOR ARTIFICIAL AND

REAL DATASETS

Table D1. Comparison of projection methods for artificial training data.

Datasets Methods BFfinal RMSE Adj-R2 GCV

1

mean of k-nearest 101 1469.9 0.961 3851488.1

nearest 101 1089.1* 0.979* 2114441.3*

no projection 101 1424.5 0.963 4043347.5

2

mean of k-nearest 53 62532.8 0.835 4881686406.6

nearest 41 5966.3* 0.999* 42147837.8*

no projection 27 18941.0 0.985 400043347.5

3

mean of k-nearest 47 25.889 0.999 857.7

nearest 43 28.132 0.999 990.2

no projection 47 23.967* 0.999* 735.1*

4

mean of k-nearest 89 0.029 0.998 0.001

nearest 77 0.028 0.998 0.001

no projection 81 0.026* 0.998 0.001

5

mean of k-nearest 31 845.3 0.998 725504.0

nearest 45 467.4* 0.999* 223365.1*

no projection 41 563.2 0.999* 323648.9

6

mean of k-nearest 23 2.955 0.999 8.830

nearest 23 2.892* 0.999 8.456*

no projection 23 3.019 0.999 9.215

7

mean of k-nearest 101 0.032 0.991 0.002

nearest 101 0.030* 0.992 0.002

no projection 101 0.030* 0.992 0.002

8

mean of k-nearest 77 0.162 0.998 0.027

nearest 79 0.151* 0.998 0.024*

no projection 83 0.155 0.998 0.025

125

Table D2. Comparison of projection methods for test data and stabilities.

Datasets Methods
TEST STABILITY

RMSE Adj-R2 RMSE Adj-R2

1

mean of k-nearest 1409.5 0.967 0.959 0.993

nearest 1126.7* 0.979* 0.967 0.999

no projection 1417.1 0.967 0.995* 0.996

2

mean of k-nearest 61228.7 0.864 0.979* 0.966

nearest 5738.1* 0.999* 0.962 1.000

no projection 16237.5 0.990 0.857 0.994

3

mean of k-nearest 25.889 0.999 1.000* 1.000

nearest 27.724 0.999 0.986 1.000

no projection 22.717* 0.999 0.948 1.000

4

mean of k-nearest 0.027 0.998 0.899* 0.999

nearest 0.028 0.998 0.987 1.000

no projection 0.026* 0.998 0.988 1.000

5

mean of k-nearest 863.6 0.998 0.979 1.000

nearest 481.9* 0.999* 0.970 1.000

no projection 572.3 0.999 0.984* 1.000

6

mean of k-nearest 2.960 0.999 0.998* 1.000

nearest 2.869* 0.999 0.992 1.000

no projection 3.040 0.999 0.993 1.000

7

mean of k-nearest 0.033 0.991 0.995* 1.000

nearest 0.028* 0.993 0.941 0.999

no projection 0.029 0.993 0.948 0.999

8

mean of k-nearest 0.163 0.998 0.998 1.000

nearest 0.151* 0.998 1.000* 1.000

no projection 0.156 0.998 0.996 1.000

126

Table D3. Comparison of projection methods for training data of real datasets

Datasets Methods BFfinal RMSE Adj-R2 GCV

AutoMpg

mean of k-nearest 101 2.193 0.897 90.979

nearest 101 2.184 0.891 90.420

no projection 101 2.143* 0.902* 86.885*

Com.Crime

mean of k-nearest 151 0.406 0.795 0.722

nearest 151 0.409 0.792 0.734

no projection 151 0.401* 0.800* 0.707*

Con.Comp

mean of k-nearest 101 0.209 0.951 0.110

nearest 101 0.221 0.946 0.123

no projection 101 0.206* 0.953* 0.106*

Parkinsons

mean of k-nearest 51 0.335 0.883 0.202

nearest 50 0.330* 0.887* 0.193*

no projection 51 0.337 0.882 0.205

PM10

mean of k-nearest 51 0.662 0.520 0.879

nearest 51 0.656* 0.527* 0.866*

no projection 51 0.683 0.488 0.937

Red Wine

mean of k-nearest 91 0.649 0.555 0.679

nearest 91 0.645* 0.561* 0.671*

no projection 91 0.652 0.551 0.685

127

Table D4. Comparison of projection methods for test data and stabilities.

Datasets Methods
TEST STABILITY

RMSE Adj-R2 RMSE Adj-R2

AutoMpg

mean of k-nearest 2.798 0.843 0.784 0.940

nearest 2.642* 0.869* 0.827* 0.975*

no projection 2.859 0.837 0.750 0.928

Com.Crime

mean of k-nearest 0.653* 0.591* 0.621* 0.743*

nearest 0.686 0.547 0.596 0.691

no projection 0.716 0.508 0.561 0.636

Con.Comp

mean of k-nearest 0.348 0.879 0.601 0.925

nearest 0.673 0.550 0.329 0.581

no projection 0.331* 0.891* 0.622* 0.935*

Parkinsons

mean of k-nearest 0.579 0.615 0.580 0.696

nearest 0.477* 0.738* 0.692* 0.832*

no projection 0.675 0.543 0.500 0.616

PM10

mean of k-nearest 0.846 0.253 0.782 0.487

nearest 0.807* 0.320* 0.813* 0.607*

no projection 0.850 0.246 0.804 0.503

Red Wine

mean of k-nearest 0.973 0.032 0.667 0.058

nearest 0.927 0.121 0.696 0.217

no projection 0.894* 0.184* 0.730* 0.334*

128

CURRICULUM VITAE

PERSONAL INFORMATION

Surname. Name : KARTAL KOÇ. ELÇİN

Date & Place of Birth : 16.09.1980 - KAYSERİ

Nationality : Turkish (TC)

Phone : +90 312 210 2979

E- mail : kartalelcin@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.S. MIDDLE EAST TECHNICAL UNIVERSITY 2007

Department of Statistics

B.S. MIDDLE EAST TECHNICAL UNIVERSITY 2004

Department of Statistics

High School Ankara Milli Piyango Anatolian High School 1999

WORK EXPERIENCE

Year Place Enrollment

 2007-2012 Department of Statistics. METU Research and Teaching

 Assistant.

 2004-2007 S.P.A.C. METU-Technopolis. Researcher

FOREIGN LANGUAGE

English

129

PUBLICATIONS &PROCEEDINGS

 Determining the Climate Zones of Turkey by Center-Based Clustering

Methods. Nonlinear Dynamics of Complex Systems: Applications in

Physical. Biological and Financial Systems (Eds.) J.A. Tenreiro Machado.

Dumitru Baleanu. Albert Luo. Springer.

 Robust Regression Metamodeling of Complex Systems: The case of Solid

Rocket Motor Performance Metamodeling. Advances in Intelligent

Modelling and Simulation: Simulation Tools and Applications (Eds) A.

Byrski. Z.Oplatkova. Marco Carvalho. Marek Kisiel-Dorohinicki. Janusz

Kacprzyk. Springer.

 Evaluating the CMARS Performance for Modeling Nonlinearities. Batmaz, İ.,

F. Yerlikaya-Özkurt, E. Kartal-Koç, G. Köksal and G. W. Weber. Global

Conference on Power Control and Optimization PCO 2010. Queensland,

Australia, February 2-4, 2010. ISBN: 978-983-44483-1-8. CDROM.

 Classification Models Based on Tanaka’s Fuzzy Linear Regression

Approach: The Case of Customer Satisfaction Modeling. Özer. G.. G..

Köksal. İ. Batmaz. Ö. Türker-Bayrak. T. Kılıç and E. Kartal-Koç. 1
st

International Fuzzy Systems Symposium Proceeding. Ankara. October 1-2.

2009. 233-240.

 Türkiye İklim Bölgelerinin Hiyerarşik Kümeleme Yöntemi ile Belirlenmesi.

Kartal-Koc.E.. İyigun C.. Fahmi. M..F.. Yozgatlıgil C.. Purutcuoğlu V..

Batmaz I.. Köksal G.. Türkeş. M.. İstatistik Araştırma Dergisi (Journal of

Statistical Research). 08:13-25. 2010. Ankara.

PROJECTS PARTICIPATED

 Determination of Climate Zones and Development of Rainfall Prediction

Models for Turkey by Data Mining (supported by METU Research Fund.)

 Use and Development of Data Mining in Quality Improvement (supported by

TUBITAK and METU Research Fund.)

MEMBERSHIPS

 EUROPT - The Continuous Optimization Working Group of EURO

 (http://www.iam.metu.edu.tr/EUROPT/)

http://www.iam.metu.edu.tr/EUROPT/

