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ABSTRACT 

 

AN ALGORITHM FOR THE FORWARD STEP OF ADAPTIVE REGRESSION 

SPLINES VIA MAPPING APPROACH 

 

 

Kartal Koç, Elçin 

Ph.D., Department of Statistics 

                                             Supervisor: Assoc.Prof. Dr. İnci Batmaz 

       Co-Supervisor: Assist. Prof. Dr. Cem İyigün 

 

September 2012. 129 pages 

 

 

 

In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS) 

is a well-known nonparametric regression technique to approximate the nonlinear 

relationship between a response variable and the predictors with the help of splines. 

MARS uses piecewise linear basis functions which are separated from each other with 

breaking points (knots) for function estimation. The model estimating function is 

generated in two stepwise procedures: forward selection and backward elimination. In 

the first step, a general model including too many basis functions so the knot points are 

generated; and in the second one, the least contributing basis functions to the overall fit 

are eliminated. In the conventional adaptive spline procedure, knots are selected from a 

set of distinct data points that makes the forward selection procedure computationally 

expensive and leads to high local variance. To avoid these drawbacks, it is possible to 

select the knot points from a subset of data points, which leads to data reduction. In this 

study, a new method (called S-FMARS) is proposed to select the knot points by using a 

self organizing map-based approach which transforms the original data points to a lower 

dimensional space. Thus, less number of knot points is enabled to be evaluated for 

model building in the forward selection of MARS algorithm. The results obtained from 



v 
 

simulated datasets and of six real-world datasets show that the proposed method is time 

efficient in model construction without degrading the model accuracy and prediction 

performance. In this study, the proposed approach is implemented to MARS and 

CMARS methods as an alternative to their forward step to improve them by decreasing 

their computing time.  

 

 

Keywords:  Multiple Adaptive Regression Splines (MARS), Model selection, 

Computational Efficiency, Mapping Algorithm, Self-Organizing Maps 
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ÖZ 

 

UYARLANABİLİR REGRESYON EĞRİLERİNİN İLERİYE DOĞRU SEÇME 

AŞAMASI İÇİN GÖNDERİM YAKLAŞIMI İLE YENİ BİR ALGORİTMA 

 

 

Kartal Koç, Elçin 

Doktora, İstatistik Bölümü 

                                            Tez Yöneticisi: Doç. Dr. İnci Batmaz 

       Ortak Tez Yöneticisi: Yard. Doç. Dr. Cem İyigün 

 

      Eylül 2012, 129 sayfa 

 

 

 

Çok değişkenli uyarlanabilir regresyon eğrileri (MARS), çok boyutlu veri 

modellemesinde çıktı değişkeni ile girdi değişkenleri arasındaki doğrusal olmayan 

ilişkiyi eğriler yardımıyla tahminlemede iyi bilinen bir doğrusal olmayan regresyon 

yöntemidir. Fonksiyon tahminlemesinde MARS, kırılma noktalarıyla birbirinden ayrılan 

parçalı doğrusal fonksiyonlar kullanır. Fonksiyon tahminlemesinde kullanılan model iki 

aşamalı bir yöntemle oluşturulur: İleriye doğru seçme ve geriye doğru eleme. İlk 

aşamada çok fazla temel fonksiyonun yani kırılma noktasının bulunduğu genel bir 

model oluşturulur ve ikincide genel uyuma az katkıda bulunan temel fonksiyonlar 

elenir. Klasik uyarlanabilir eğri yöntemlerinde kırılma noktaları, ileriye doğru seçme 

yöntemini sayısal olarak pahalı yapan ve bölgesel yüksek yayılıma neden olan farklı 

veri noktalar kümesinden seçilirler. Bu zorluklardan kaçınmak için kırılma noktalarını 

verinin küçültülmesine yol açan veri noktalarının altkümesinden seçmek mümkün 

olabilir. Bu çalışmada orijinal veriyi daha az boyutlu uzaya dönüştüren, kendini 

örgütleyen eşleştirmeye dayalı bir yaklaşımı kullanılarak kırılma noktalarının seçilmesi 

için yeni bir yöntem önerilmiştir. Böylece MARS algoritmasının ileriye doğru seçme 

yönteminde model oluşturmak için daha az sayıdaki kırılma noktasının kullanımına 

olanak tanınmaktadır. Benzetim yöntemiyle edilen ve altı gerçek hayat verisinden elde 
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edilen sonuçlar, önerilen yöntemin model doğruluğunu ve tahminleme performansını 

düşürmeden model kurmada zaman açısından etkili bir yöntem olduğunu 

göstermektedir. Bu çalışmada önerilen yaklaşım hesaplama zamanlarını azaltarak 

MARS ve CMARS yöntemlerini iyileştirmek için yöntemlerin ileriye doğru aşamalarına 

alternatif olarak uyarlanmıştır.  

 

 

Anahtar Kelimeler: Çok değişkenli uyarlanabilir regresyon eğrileri (MARS), Model 

seçimi, Hesap etkinliği, Eşleme Algoritması, Öz Düzenleyici Haritalar (SOM)  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Multivariate adaptive regression spline (MARS) is a powerful nonparametric 

regression method for constructing flexible models by introducing truncated linear 

functions. Due to its simplicity and effectiveness for handling high-dimensional data 

settings, MARS has recently become a popular tool for solving various classification 

and regression problems including prediction mobile radio channels (Kubin, 1999), 

credit scoring (Lee et al. 2006), detecting disease risk (York et al., 2006), 

environmental modeling (Leathwick et al., 2005, 2006), direct response modeling 

(Deichmann et al., 2002). 

 

Regression splines provide a flexible model estimate with the help of piecewise 

functions (splines), so that the nonlinearity of a model is approximated through the 

use of separate regression models defined over the distinct subintervals of the range 

of predictor variables. The intervals that define the pieces are separated by a 

sequence of knots or breaking points whose number and locations are practically 

unknown in advance. The simplest method considers knots as fixed and equally 

spaced (Keele, 2008). In this method, the total number of knots is selected first, and 

then, knots are allocated “equally-spaced” in the sense that either the distance or the 

number of distinct design points between two consecutive knot points remains the 

same throughout the whole data domain. The number of equally-spaced knots is 

increased iteratively until a satisfactory estimate is obtained. In this case, however, 

an unfortunate knot placement may lead to misleading results (Yao et al., 2008). 

Motivated by the work of Smith (1982), an adaptive approach has been proposed for 

regression splines. Friedman and Silverman (1989), Friedman (1991) and Denison et 
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al. (1998) automatically selected the number and the location of knots from a set of 

distinct design points via a model selection criterion. 

 

In adaptive regression splines, knots are selected through a two-stage algorithm 

called forward selection and backward elimination. In forward selection, knots are 

added into a model in a stepwise manner as long as a lack-of-fit (LOF) criterion is 

decreased, and then, the ones contributing less to the model are eliminated via 

backward elimination. A natural strategy of knot selection during the forward 

process is to consider every distinct data point as a candidate knot location. This 

strategy estimates the underlying data structure by evaluating every data points as 

breaking points where the regression models change their slopes. This can give 

reasonable results for low noisy settings; however, increase the local variance for 

highly noisy data. Besides, it is true for all cases (data with low and high noises) that 

the computational run time increases significantly.  

 

In this study, a new knot selection procedure is proposed for adaptive regression 

splines to make it computationally efficient without increasing the local variability. 

To decrease the computing time of adaptive regression splines, the set of points 

searched is restricted to a small subset of data points during the forward step. Hence, 

less number of data points is evaluated as candidate knot locations for the function 

estimation. Here, the way of subsetting is a critical issue. The points can be selected 

randomly or equally spaced with a partial search; however, it may result in a poor 

performance for the spline regression (Lou and Wahba, 1997) depending on the form 

of underlying true function. For example, the functions including nonhomogeneous 

smoothness may be approximated better with many unevenly distributed knots 

instead of using fixed interval of knots. In this respect, a data-driven subsetting 

reflecting the underlying data structure is offered in this study. To provide such a 

subsetting procedure, a mapping approach that uses self-organizing maps (SOM) is 

proposed. In this approach, a large set of data points can be reduced or compressed 

into smaller set of units through a nonlinear mapping. This kind of mapping 
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transforms the high-dimensional data into a low-dimensional map of units via weight 

vectors. The data vectors are mapped into a new lattice by an updating formula based 

on the distance between data and weight vectors. During the mapping procedure, the 

relative distance between data points is preserved by a topological order (grid 

structure) of the units; so that, the original data structure can be properly 

approximated by the distribution of the weight vectors. Here, the weight vectors can 

be considered as representatives or pointers of data points. In the proposed approach, 

therefore, knots are determined by considering weight vectors as the reference. The 

data points projected by the weight vectors are then used as the candidate knots in the 

function estimation. In the proposed method, candidate knots are obtained by 

considering the whole data values of the predictors, instead of searching locally on 

each predictor as in the MARS algorithm does. Once the candidate knots are 

determined as the projections of the weight vectors, knots are then selected among 

them through a forward selection method via piecewise linear functions. This 

approach is actually a modified version of the forward selection step of MARS 

algorithm; thus, the new approach is called as S-FMARS, where S stands for 

subsetting and FMARS is used for forward selection of MARS algorithm. 

 

The current thesis consists of five chapters and four appendices, and each one is 

organized in the following way. In Chapter 2, we provide a brief background on the 

spline functions and their use in regression splines. As the critical issues in 

regression splines, selection of the number and location of knot points are discussed 

through some common approaches by pointing out their associated advantages and 

disadvantages. This chapter concludes with a short overview of the adaptive 

regression splines which propose an automatic knot selection procedure and a 

summary of the usage of different versions of adaptive regression splines in the 

literature. Since the proposed approach developed over the forward step of MARS 

algorithm, the main idea behind the MARS is also given in this chapter. Two 

complementary strategies of the MARS algorithm are examined in the subsections 

named Forward Stepwise Selection and Backward Stepwise Elimination. In the 



4 
 

section of the forward selection procedure, a Minimum Span (MinSpan) approach 

proposed by Friedman (1993) for the forward step of MARS algorithm to optimize 

the knot points is discussed. The performance of the proposed approach is then 

compared with MinSpan in the subsequent sections. In the backward elimination 

section, the pruning procedure is mentioned by emphasizing different model 

selection criteria. In the same section, a modified version of MARS algorithm with 

uses as an alternative backward step, called Conic MARS (CMARS) approach is 

discussed in detail. The proposed approach is then implemented to MARS and 

CMARS in place of their forward selection step to make them computationally 

efficient. 

 

Chapter 3 introduces the proposed approach. Firstly, the motivation behind the 

proposed idea is given by discussing the computational complexity of MARS 

algorithm and evaluating the mapping idea with its appropriate properties for knot 

selection purpose. The steps of the proposed knot selection algorithm are then 

explained in detail with the help of figures and mathematical formulations. In 

addition, two important parameters of the proposed approach are studied to make the 

proposed approach more accurate and time efficient. These parameters are the grid 

size and the threshold value set for the number of data points assigned to units during 

the mapping. This chapter also presents a way of selecting the best values for the 

parameters to obtain a time efficient regression spline model without loss of 

accuracy.  

 

Chapter 4 presents a background for the application process. Firstly, the datasets for 

which the proposed approach is applied and compared with other methods are 

described. Then, the software used to implement the proposed approach and execute 

the other methods is presented. In the next section, the performance criteria and 

measures used to evaluate the performance of models produced by the proposed 

approach and other regression spline methods are described. Then, the best parameter 

values of the proposed approach are determined for the datasets under study. Once 
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the parameters of the proposed approach are determined, the performance of the 

proposed approach is evaluated and compared with the other methods through three 

comparison study. In the first comparison study, proposed approach is compared 

with the forward selection algorithm of MARS via some artificial datasets, real 

datasets and noisy setting. In the second one, based on the same datasets, the 

proposed approach is compared with a minimum-span knot selection scheme. 

Finally, the backward elimination procedure of MARS and penalized strategy of 

CMARS are combined with the proposed approach, and the performances of the 

hybrid methods are compared with the original MARS, MARS with MinSpan 

approach and CMARS methods. The corresponding findings are explained in detail 

in this chapter. 

  

Based on the findings given in Chapter 4, a comprehensive discussion, as well as the 

conclusion and further studies are presented in the last section.  

 

Appendix A presents the mathematical functions of the problems utilized in this 

thesis. While some functions have low-order nonlinear behavior, some have highly 

nonlinear form. The figures in Appendix B are the grid plots of the problems given in 

Appendix A. Related with the study performed in Chapter 4, ratio values calculated 

by both using the root mean squared error (RMSE) values of the models obtained by 

the proposed approach and the corresponding computational run times (CPU time) 

are given for different grid sizes for artificial and real datasets in Table C.1 and Table 

C.3 of Appendix C, respectively. Similar tables obtained for different threshold 

values are shown in Table C.2 for artificial datasets and in Table C.4 for real 

datasets. Besides, the graphs of “Ratio versus grid size” and “Ratio versus threshold 

values” are displayed for all artificial and real datasets. In Appendix D, performances 

of three projection methods offered to be used in the proposed approach are 

compared with respect to some performance criteria.  
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CHAPTER 2 

 

 

LITERATURE SURVEY AND BACKGROUND 

 

 

 

In statistical modeling, the relationship that may exist between a response variable y  

and a vector of predictors 
T

pxx ),...,( 1x is approximated with the following 

general type of model  

 

                                                            
,)(xfy
                                                

(1)
   

Here,  indicates the error term with zero mean, and p denotes the number of 

predictor variables.  

 

In statistical framework, the function in (1) is generally approximated by a 

parametric model assuming a linear form of the predictor variables. Different linear 

models are used in the literature depending on the nature of the response variable. If 

the response is continuous, a linear regression model is estimated using least squares 

(LS). For the discrete responses, generalized linear models (GLM) including logistic 

or Poisson regressions are estimated.  

 

In GLM, a model is specified by selecting a sampling distribution for the response 

variable and a functional form for the predictors. For example, for a linear regression 

model, the normal distribution ),( 2N with expected value and constant 

variance is chosen for the continuous response and a linear form of the predictors 

βx
T

 is determined for a given vector of predictors x  with np  dimensions. 

Here,  is an 1n  vector of linear predictions and β  is a vector of unknown 

parameters that must be estimated. In fact, the GLM generalizes the linear regression 

models. The stochastic component (response variable) can follow any distribution 
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from the exponential family, and the linear functional form of predictors is 

generalized with a link function ).( βx
Th For example, for the logistic regression, 

y  is a binary response and follows a binomial distribution. The relation between 

linear predictors βx
T  and y  is supplied by the following logistic link function 

(Hastie and Tibshirani, 1990; Keele, 2008) 

 

                                                            )1(1 ep                                                 (2) 

 

where p is the probability that 1y  for given values of ix  ( ni ,...,1 ). As in (2), 

many models which are considered as nonlinear have linear functional form of 

predictors. This is why they retain a linearity assumption. However, in practice, the 

form of the relation between variables generally is not linear, so that aforementioned 

parametric assumptions turn out to be too restrictive for many practical applications. 

In order to estimate a nonlinear functional form, a variety of transformations can be 

applied to predictor variables. Power transformations are often reasonable methods 

for representing the nonlinear functional forms. Nevertheless, they have some 

limitations. For a given univariate variable, x ; for example, they provide global 

estimates for the relationship between x and y  by assuming the relation to be 

constant over the range of .x However, the relationship between x and y  is 

generally local. Namely, the statistical relationship between two variables changes 

over the range of .x For such cases, the assumption of global estimate often 

disregards the underlying true relation. Moreover, for more complex nonlinear forms, 

global estimates like power transformations are not sufficient.  

 

In the absence of strong theory for the assumed functional form, the underlying 

relationship between predictor variables x  and the y  response is estimated from the 

data. In data-based modeling, global estimates are changed places with local 

estimates which refer to nonparametric regression models in statistics. 

Nonparametric regression allows one to estimate nonlinear fits between variables 
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with a few assumptions about the functional form of the nonlinearity. In this 

framework, the function which defines the dependency of y on x  is generalized 

from linear functions to any smooth function )(xg , and it is typically estimated 

using additive models given in (3).  

 

                                                        

.)()(
1

p

i

ii xgg x
                                               (3)  

 

Although the assumption of additivity is more restrictive than a fully multivariate 

nonparametric regression model, it is a common way of extending nonparametric 

estimation for high dimensional data (p>1) subject to the problem of curse of 

dimensionality (Hastie and Tibshirani, 1990).   

 

In (3), pgg ,...,1  are arbitrary smooth or unspecified functions which are typically 

estimated using spline functions or local averaging smoothers (Cleveland, 1993; 

Silverman, 1985). Since the underlying relation is practically inhomogeneous and the 

degree of smoothness is unknown in advance, it is common to estimate the smooth 

function ig
 by using spline functions due to their good numerical properties (de 

Boor, 1978; Schumaker, 1981; Green and Silverman, 1994). 

 

Spline functions refer to piecewise regression models defined over the intervals in 

the range of univariate .x  The intervals that define the pieces are separated from each 

other by a sequence of points, called breaking points or knots. The slopes of the 

regression models are forced to change from one interval to another over the range of 

x  at knots. Hence, a flexible model estimate is achieved by the help of many local 

fits. There are various types of splines: regression splines, cubic splines, B-splines, 

P-splines, natural splines, thin-plate splines, smoothing splines, and the ones which 

are the combinations of different types such as natural cubic B-splines.  
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In nonparametric framework, to estimate the smooth terms in regression models 

using splines, two main approaches are basically followed: smoothing splines and 

regression splines. Smoothing splines are advanced and well-known local averaging 

smoothers, and appear as a solution to an optimization problem. It tries to minimize a 

penalized residual sum of squares (PRSS) by using a roughness parameter which 

controls the smoothness of the model fit. For nonadaptable smoothers, the smoothing 

parameter is specified by the user or set by an automated procedure like cross 

validation (Hastie and Tibshirani, 1990). Smoothing splines are more complex than 

piecewise polynomial, however, they become very popular in statistics with the help 

of studies conducted by Wahba (1983, 1990), Wahba and Wold (1975), Silverman 

(1985), Green and Silverman (1994), or by Eubank (1999) who provided an excellent 

overview of smoothing spline techniques and their applications in statistics. 

 

Regression splines provide a flexible model estimate by the help of piecewise 

functions. The regions that define the pieces are separated by a sequence of knots 

(breaking points). The number and the location of knots, which are unknown in 

advance, have a critical importance in controlling the amount of smoothness and 

flexibility during the function estimation. Standard practice is to consider knots as 

fixed and place knots at evenly spaced intervals in the data. To ensure an adequate 

data for each interval to get a smooth fit, knots are placed at either quartiles or 

quintiles in the data by default (Keele, 2008). In practice, this approach may lead to 

an unfortunate knot placement resulting in misleading results. Actually, the number 

of knots is more crucial than the place of knots (Stone, 1986). The number of knots 

acts as a span parameter denoting the width of the intervals for splines, and affects 

the amount of smoothing applied to the data by controlling the number of piecewise 

fits. The spline with less number of knots provides globally smooth fit. However, the 

flexibility of the model is increased as the number of knots increases. Moreover, 

number of knots governs the trade-off between bias and variance of the estimate. 

Increasing the number of knots increases the local variability while decreasing the 

bias. This situation is called undersmoothing. On the other hand, decreasing the 
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number of knots increases the bias while decreasing the variability in the fit, which 

refers to oversmoothing. In selecting the number of knots, the cases of 

oversmoothing and undersmoothing should be taken into consideration. The main 

goal in the selection of knots, therefore, should be to produce as smooth fit as 

possible without departing from the underlying true regression function. 

 

 In this context, many efficient methods have been studied in the literature. Some 

studies consider the knot selection procedure as a model selection approach. Since 

each knot is an additional parameter being added to the model, some model selection 

criteria such as the Cp statistic (Mallows, 1973), AIC (Akaike, 1973) or GCV 

(Craven and Wahba, 1979) are recommended to select the number of knots. For knot 

selection, AIC was used by Atilgan (1988) and recommended by Eilers and Marx 

(1996). More recently, an adaptive strategy, originally proposed by Smith (1982), 

was used by Friedman and Silverman (1989), Friedman (1991), Stone et al. (1997), 

Lou and Wahba (1997) and Breiman (1993) to select the number and location of the 

knots. In these approaches, knots were selected via a stepwise procedure using a 

model selection criterion. In the first step, called forward selection, the knot that 

reduces the criterion the most is included into a model and a rich set of knots are 

allowed to be selected through this step. In the second step, called backward 

elimination, the knots contributing less to the model are removed.   

 

There are many different versions of adaptive regression splines which uses the same 

adaptive strategy. He and Ng (1996) developed a stepwise knot selection algorithm 

in the quantile regression context. This can be viewed as a variation of the algorithm 

of Stone et al. (1997). The TURBO algorithm of Friedman and Silverman (1989) and 

its subsequent generalization, the MARS algorithm (Friedman, 1991), include knot 

selection for univariate scatterplot smoothing as a special case. However, TURBO 

and MARS are tailored for multivariate smoothing and their computational overhead 

requires restriction to piecewise linear basis functions (BFs) for practical 

implementation. Denison, Mallick and Smith (1998) have developed an alternative 
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Bayesian approach to regression spline fitting. The main difference between their 

approach and the approach of Smith and Kohn (1996) is that the number of knots, 

and their locations, are not fixed in advance, but instead, are considered as random 

components of a Bayesian model. The Markov Chain Monte Carlo (MCMC) strategy 

for selecting the model involves knots being added and deleted, and therefore, a 

change in the dimension of the model. More recent contributions to additive 

modeling have been made by Lou and Wahba (Hybrid Adaptive Splines [HAS], 

1997); Stone, Hansen, Kooperberg, and Troung ([POLYMARS], 1997), Weber et al. 

(CMARS, 2012), Taylan, Weber and Beck (2007), Özmen (2010) and Özmen et al. 

(R-CMARS, 2010). HAS performs forward knot selection via GCV with a “cost” 

term, as in MARS, but replaces backward deletion by ridge regression. POLYMARS 

is a multi-response version of MARS which has been customized for computational 

efficiency. CMARS is a hybrid method as HAS. It generates forward knot selection 

via GCV and use ridge regression instead of backward deletion. Different from HAS, 

however, it solves the penalized splines by a Tikhonov regularization. Based on 

CMARS, R-CMARS is proposed as the robustification of CMARS with robust 

optimization to decrease the estimation error in CMARS. 

 

In this thesis, a new forward selection algorithm is proposed to decrease the 

computing time of adaptive regression splines. Since the proposed method has some 

common properties with the forward step of MARS algorithm. MARS is explained in 

detail in this chapter. Additionally, the proposed approach is compared with a 

MinSpan approach proposed to optimize the knots in the forward selection of MARS 

algorithm. Although the main purpose behind this idea is to decrease the local 

variability, it also decreases the computing time effectively. This is why the MinSpan 

method is examined in detail in this study.   

 

The proposed approach is developed as a new forward selection part; therefore, it can 

be followed by a backward elimination step as in MARS, or other methods using an 

alternative method for backward step like in CMARS. For all these approaches, the 
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computing time can be decreased significantly by using the proposed approach 

beforehand. In this chapter, therefore, background information on MARS and 

CMARS are given in the following subsection. 

 

 

2.1 Multivariate Adaptive Regression Splines (MARS) 

 

MARS is a popular nonparametric regression technique developed by Friedman 

(1991) particularly for approximating nonlinear relationship within the data with the 

help of splines. Splines refer to a wide class of piecewise defined functions used to 

provide local fits for estimating the underlying form of functions using the data. The 

nonlinearity between the response and predictors is then estimated by having 

different regression slopes in the corresponding intervals of each predictor. These 

intervals are distinct and separated by breaking points, called knots. MARS uses 

piecewise linear functions for local approximations which are easy to implement. 

The form of the truncated linear functions are given for a univariate variable, ,x  as 

follows (Hastie et al., 2001) 

 

                  
otherwise,0

),(
])([,

otherwise,0

),(
])([

τxxτ
τx

τxτx
τx (4) 

 

Two functions in (4) are called reflected pairs and characterized by the breaking 

points , called knots. The first expression takes the value of zero for all x  values 

less than or equal to the threshold value  and takes )-( τx  for all values greater 

than . On the other hand, the second expression results in zero for all x  values 

greater than or equal to  and gets )-( xτ otherwise. The “+” sign represents positive 

part of the function.  
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Figure 1. The form of reflected pairs of truncated linear functions. 

 

 

MARS builds a flexible model by fitting piecewise linear functions by which the 

nonlinearity of a model is approximated through linear functions in distinct intervals 

of the predictor space. The knot (breaking) points where behaviors of the function 

changes play a key role in the function approximation but the number and location of 

knots are practically unknown. In classical spline, knot points are usually predefined 

or equally spaced. In MARS, however, knots are determined by a search procedure.  

 

For a given vector of predictor variables, ,),...,,( 21

T

pxxxx  all distinct individual 

data values, ,, jix )...,1( n,i  of the corresponding predictor variable jx ),...,1( pj  

are considered as knot points, and introduced into the model via a reflected pair 

given in (4). The set of all possible reflected pairs with the corresponding knots can 

be expressed with set C  in (5).  

 

               }.}...1{,},...,{)()({ 21 ,p,jxxxτ|xτ,τxC njjjjj                         (5) 

 

MARS generates its model by using the basis functions (BFs) defined over the 

functions in the set C . In additive MARS models, every elements of C  can be 

considered as one BF. For highly nonlinear datasets requiring interaction effects, 

MARS modeling can be generalized with the BFs including tensor product of two or 
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more functions from the set .C  Therefore, the general form of BFs defined over the 

subvector of predictor variables, m
x  can be defined as follows 

 

                                 ,])([)(
1

,,),(

mK

v

m)(vm)j(vmv

m

m τx.sx                                       (6) 

 

where mK  is the number of truncated linear functions in the mth BF; m)j(vx ,  is the jth 

predictor variable corresponding to the vth truncated linear function in the mth BF; 

m)(vτ ,  represents the knot value corresponding to the predictor variable m)j(vx ,
 in the 

mth BF.  The quantities ),( mvs  take values from the set }1{ . 

 

There is a limitation in the construction of the BFs; the ones built by the 

multiplication of truncated linear functions must include distinct predictor variables. 

This prevents the occurrence of higher-order degrees of a variable which increase or 

decrease too sharply near the boundaries of the factor space. A piecewise linear 

function can approximate the higher-order powers in a more stable way.  

 

Multiplication of two BFs produces a result which is nonzero only over the factor 

space where both components are nonzero (Figure 2). Thus, the regression surface is 

obtained by using only nonzero components locally- only when they are needed. If 

polynomial BFs are used, then the multiplication of BFs would be nonzero 

everywhere and would not work as well. The BF in Figure 2 is defined as the 

multiplication of two BFs such as  

 

),()(),( 22,31,4121 xxxx
 

 

 where, },...,,{ 1,1,21,11,4 nxxxτ  and },...,,{ 2,2,22,132 nxxxτ  . 
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Figure 2. Two-way interactions BFs (Based on Hastie et al., 2001). 

 

 

The model developed by MARS is similar to the one developed in classical linear 

regression; however, BFs or their products are used instead of the original predictor 

variables. For a given vector of predictor variables, 
T

pxx ),...,( 1x
 
and the target 

variable y , the model has the form 

 

                                ,)(
1

0

M

m

m

mmccy x                                             (7) 

 

where 0c
 
is the intercept term; )( m

m x  is the mth BF with a coefficient mc ; M  is 

the number of BFs in the current model (Friedman and Silverman, 1989;  Friedman 

1991).  

 

The estimates of the coefficients ),...,( 0 mcc
 
in (7) are calculated by a )1(M - 

parameter LS fit of the response y  on the fixed BFs, ).,...,1()( Mmm

m x Since 

optimizing the (averaged) squared residuals over all BFs defined for all possible 

x2 x1 

(x
1
.x

2)
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knots is a fairly difficult task computationally, especially for large M, a stepwise 

strategy is adapted for BF selection in the MARS modeling.  

 

Stepwise strategy of MARS includes two steps: forward selection and backward 

elimination. In the forward selection, the algorithm starts with a model consisting of 

intercept term 0c  and adds a reflected pair from the set C  iteratively until the 

maximum number of terms specified by the user is reached by the model. At the end 

of this step, a large model typically overfitting the data is obtained. Then, a backward 

elimination is implemented to refine the model. In this pruning step, the BFs 

contributing less to the model are eliminated. Detailed descriptions for these two 

phases are given in the following sections.  

 

 

2.1.1. Forward Selection 

 

In classical forward stepwise regression, each predictor is added into the model via 

some model selection criteria such as Cp, AIC or F statistic. The main purpose behind 

the method is to identify a useful subset of the predictors for a better approximation. 

In adaptive regression spline, each BF is considered as a new predictor. The forward 

stepwise algorithm searches for the BFs and at each step the split that minimizes 

some lack-of-fit criterion from all possible splits on each BF is chosen. The 

algorithm deliberately overfit the data by inserting large number of BFs into the 

model. So that, all types of curvatures are tried to be estimated by adding BFs with 

the corresponding knot points where the curvature exists.  

 

The forward step has a critical role in knot selection. In general, all distinct data 

points are evaluated as a knot point through BFs and their contribution to the model 

is checked via a lack-of-fit criterion. The aim of a lack-of-fit criterion is to provide a 

data-based estimate of the future prediction error which is then minimized with 

respect to the parameters of the procedure (Friedman, 1991). In main effect models, 



17 
 

each BF built on one predictor variable with the corresponding predictor value as 

knot. Hence, each distinct data value is introduced to the model predictor wisely. In 

interaction models, tensor products of two or more distinct predictor variables are 

added to the model. In this case, breaking points are represented with a vector of the 

corresponding predictor values. Evaluating every distinct data value as a knot 

enables one to catch the curvatures truly; however, it is computationally expensive 

and increases the local variability. Especially, in highly noisy data, evaluating noises 

as knots for function estimation leads to a redundant effort, and decreases the model 

accuracy. 

 

In order to prevent the situations mentioned above to be happen, a MinSpan 

approach has been proposed to restrict the candidate knot locations (Friedman, 

1991). Its simplest version is to make every other distinct rth observation (in order of 

ascending univariate x-value) eligible for a knot placement. For noisy settings, this 

implementation can lead to decrease in the local variability. Additionally, the 

computing time is reduced by a factor of rn in the absence of ties. In conventional 

splines, the value for r is taken as fixed or calculated in such a way as to make the 

number of distinct design points between any two adjacent knots equal (Ruppert, 

2002; Ruppert et al., 2003). This method is simple and easy to implement. 

Nevertheless, the knots may not be placed at all critical locations (Yao and Lee, 

2008). Friedman and Silverman (1989) proposed a data-adaptive value (as a function 

of n) for the number of distinct design points between any two adjacent knots by 

using a coin tossing argument. The proposed value L, based on the assumption of 

having symmetric distributed error terms, is defined as the solution of (Friedman, 

1991) 

 

                                                        ,)(LP                                                          (8) 

 

where )(LP  is the probability of observing a run of length L or longer in mpn  tosses 

of a fair coin and  is a small number (e.g. 01.0 or 05.0 ). The quantity mn  is 
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the number of observations for which ,0)( m

m x  and p denotes the number of 

predictors. Hence, mpn  represents the number of potential locations for each new 

knot for each BF )( m

m x . Setting 5.2)(Lr  would give the smoother resistance 

to run of positive and negative error values with probability . The reason for using 

2.5 (or 3 to be more conservative) in the denominator is the fact that a piecewise 

linear smoother must place between two and three knots in the interval of the run to 

respond to it and not degrade the fit anywhere else.    

 

For 10mpn
 
and 1.0 , a good approximation to )(L  is 

 

                                              

,)1ln(
1

log)(
mpn

L                                    (9) 

 

so that the reasonable number of observations between knots is given by 

 

                                               

.5.2)1ln(
1

log
mpn

r                                (10) 

 

The MinSpan approach provides a local search around the current knot over a 

specific predictor variable. The approach does not consider the whole data structure; 

instead, it selects the knot predictor wisely. Its main objective is to decrease the local 

variability in function estimation but at the same time it consequently decreases the 

computing time significantly. 

 

 

2.1.2. Backward Elimination 

 

Backward stepwise is a pruning step which eliminates the redundant BFs selected in 

the forward step. Hence, the overfitting problem is aimed to be removed. To estimate 
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the model with the optimal number of BFs or knots, MARS uses a model selection 

criterion called generalized cross validation (GCV). This criterion depends on the 

idea of minimizing the average-squared residuals of the fit by considering a model 

complexity, which is the number of BFs in the model. For a given data vector 

),( iii yxz ),...,1( ni  the criterion proposed by Craven and Wahba (1979) is given 

as follows 

 

                                 
2

1

2

))(1(

))(ˆ(1
)(

nMP

fy

n
MGCV

n

i iMi x
 ,                           (11) 

 

where, iy  is the ith observed response value; )(ˆ
iMf x  is the fitted response value 

obtained for the ith observed predictor vector ),,...,1(),...,( ,1, nixx T

piiix
 
n  is the 

number of data points; M  represents the maximum number of BFs in the model.  

 

In general, )(MP is calculated by using the formula given below  

 

                                1))(( 1 TTtraceP(M) BBBB ,                                  (12) 

 

and represents the cost penalty measure of a model where there are M  BFs 

(Friedman, 1991). Here, B is the matrix of BFs with dimension .nM   

 

)(MP  in (12) represents effective number of parameters which is a penalty measure 

for complexity. There are different representations for );(MP commonly used one is: 

,)( dKrMP  where r  is the number of linearly independent BFs in the model, 

and K  is the number of knots selected in the forward process. Note that if the model 

is additive then d  is taken to be two; if the model is an interaction model then d  is 

taken to be three (Friedman, 1991; Hastie, 2001). If the value of  )(MP  is small, it 

produces a model with many BFs. Otherwise, a smaller model with less BFs is 
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obtained. This procedure continues for all number of BFs and then the best model 

that has minimum GCV is chosen. 

 

In some studies, alternative methods are proposed for the backward step of MARS 

(Lou and Wahba, 1997; Weber et al, 2012). In these studies, a penalty term is added 

to the lack-of-fit criterion. CMARS uses up all BFs generated by the forward 

algorithm of MARS, and minimize a penalized residual sum of squares (PRSS) 

value. Hence, both the accuracy and complexity of the model are tried to be 

controlled through a penalty parameter. One of the main drawbacks of CMARS 

mentioned in the paper of Weber et al. (2012) is that it is not as efficient as the 

MARS method.  To improve CMARS algorithm for reducing computational run 

time, the proposed approach is also implemented to CMARS algorithm. Beforehand, 

detailed information on CMARS is given in the following section.  

 

 

2.2. Conic MARS (CMARS) 

 

CMARS, where ""C  stands for “conic”, “convex” and “continuous”, is a modified 

version of MARS algorithm which uses a PRSS approach instead of the backward 

elimination step of MARS algorithm. By using a penalty term in addition to the lack-

of-fit criterion, PRSS can control the complexity of the model estimation. CMARS 

algorithm is built on the set of BFs selected through the forward algorithm of MARS; 

thereby, they share the same forward selection step. However, CMARS modifies the 

MARS algorithm by taking into account the nearby placement of knots. The BFs 

with knots 
T

piiii ),,,( ,2,1, τ are constructed at 
T

piiii xxx ),,,( ,2,1, x or just 

nearby the data vector .),,,( ,2,1,

T

piiii xxxx 
 
Namely, knot points may not be 

taken as one of the data points ( jiji x ,,  for all ),,2,1( ni   and ),,2,1( pj  ) 

in CMARS. The aim of this modification is to take the derivatives during 

optimization process of the PRSS with the following form: 
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where maxM is the number of BFs reached at the end of the forward algorithm; 

}21|{)( m

m

j ,...,K,jKmV  is the variable set associated with mth BF, ),(m and 

T

mmm

m

mK
ttt ),...,,(

21
t represents the variables which contribute to the mth  BF. The m

values are the nonnegative penalty parameters assigned for each BFs 

).,...,1( maxMm  Moreover, )(,

m

msrD t
α

is denoted as in (14) for ,),( 21

T
α  

21|| α , where }1,0{, 21 .

  
 

                                    
).()(

21

||

,

m

m

s

m

r

mm

msr
tt

D tt
α

α

                                       

  (14)

 
 

Here, if ,2i the derivative )(,

m

msrD t
α

vanishes, and by addressing indices ,sr

the Schwarz’s Theorem is applied. 

 

The PRSS approach bases on a tradeoff between the accuracy and complexity, and it 

is established with the help of a penalty parameters, m  in (13). In this equation, 

while the first term controls the accuracy which refers to small sum of squares 

errors, the second term controls the complexity. 

 

In equation (13), the second part of the PRSS includes multi-dimensional integrals, 

which are usually difficult to handle. Therefore, discretization techniques are 

preferred generally. The PRSS problem is simplified by applying discretization in the 

multidimensional integral in (13) as follows (see Yerlikaya, (2008) and Taylan et al. 

(2007), for more detail). 
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where T

n,..., ))()(()( 1 dψdψdψ is a matrix with dimensions of ))1(( maxMn
 
; 

2
 denotes the Euclidean norm, and the numbers 

imL  are defined as 
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Here, m

ix̂  and m

ix̂  are related to the predictor data used for discretization.  

 

The linear systems of equations, θdψy )( , can be solved approximately by using 

the PRSS. The problem is classified as ill-posed, which means irregular or unstable. 

Thus, Tikhonov regularization problem is considered for the solution of PRSS 

problem because it is the most widely used method for converting the ill-posed 

problems to well-posed (regular or stable) ones. The PRSS in (15) is rearranged as 

given in (17) to be handled as a Tikhonov regularization problem. 

 

                                    

,)(
2

2

2

2
LθθdψyPRSS                                            (17) 

 

where L is an )1()1( maxmax MM -diagonal matrix with first column 

mK
n )1(0 0L and the other columns being the vectors ML  introduced in (16). Here, 

θ  with the dimension of )1)1(( maxM
 
is a vector consisting of the parameters to 

be estimated. 

 

In (15), there is a sequence of penalty parameters 
T

M ),...,(
max1λ which makes the 

PRSS problem still far away from the Tikhonov regularization approach. To 

represent the PRSS as a Tikhonov regularization problem as in (17), a single penalty 

 

              (16) 
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parameter should be defined. This is why the same  value is assigned for each 

derivative term as  ....
max21 M  

 

The Tikhonov regularization problem tries to minimize two objective functions,

2

2||)(|| θdψy  and
 

2

2|||| Lθ   by combining them into a single functional form using a 

linear sum of the functions with a weight, . 

 

The Tikhonov regularization problem is rearranged by using conic quadratic 

programming (CQP), which uses the advantages of both continuous and convex 

optimization techniques. The form of the CQP is as given below 

 

                                         
,min

,
t

t θ
 

                                        
,)(tosubject

2
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In general form, the CQP in (18) can expressed with the following form 
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T
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Here, k represents the number of cone in the optimization problem.  

 

    (19) 
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2.3. Self Organizing Map (SOM) 

 

SOM is developed as an effective neural network technique for analysis and 

visualization of high-dimensional data (Kohonen, 1988). It adaptively transforms 

high-dimensional data into a lower dimensional discrete map of units as in Figure 3. 

Here, the discrete output space is called grid, and the nodes placed on the grid 

represent the neurons. The output neurons are generally arranged in a two-

dimensional lattice providing a neighboring relation between neurons. The neurons 

on the lattice are positioned according to a particular shape: rectangular or 

hexagonal. Therefore, different neighboring relations can be formed among neurons 

on the grid.  

 

 

 

 

Figure 3. Topology of SOM. 

 

 

Figure 3 shows the schematic diagram of the two-dimensional lattice of neurons. 

Each neuron has a specific topological position in the lattice and is represented by a 

p -dimensional weight vector, ),...,1()( ,1, ul,...,ww T

plllw , where p  is the 
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dimension of input space; u  denotes the number of neurons in the lattice, and nu . 

Each neuron is fully connected to all input values, );,...,1(),...,,( ,2,1, nixxx T

piiiix

and the corresponding weight is updated from one data realization to another.  

 

The algorithm of SOM is based on a competitive learning and is trained iteratively. It 

proceeds, first, by initializing the weight vectors of the neurons. This process can be 

done by assigning small random values to each weight vectors or by using the eigen 

values of the given data. After initialization, training process is achieved either by 

processing the input vector sequentially or as a batch. At each iteration of the 

training, one data point ),...,1( niix
 
from the original space is introduced into the 

grid, and the most similar neuron to the current data point is found by using a 

similarity measure. The closest neuron for the corresponding input vector is called 

best-matching-unit (BMU) and its weight vector is represented by p

bw , where 

b represents the BMU. The similarity between a neuron and the input vector is 

usually found by using the Euclidean distance measure between the corresponding 

weight vector and the input vector as follows (Kohonen, 1988) 

 

                     
}.||{||minarg 2

1
li

,...,ul
b wxw                                       (20) 

 

Once the BMU is found at the current iteration, t , the weight vectors of the neurons 

within the topological neighborhood of BMU
 
are updated with the rule given below 

 

              
),,...,1())()(()()()()1( )()()()( ulttthtatt bliblblbl wxww               (21) 

 

where 
p

bl )(w
 
represents the weight vector of the neuron inside the topological 

neighborhood of BMU labeled as );(bl )(blh
 
is the neighborhood function defined 

around the BMU, and )(ta  is a learning rate function. 
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The BMU locates at the center of a topological neighborhood of neurons 
)(blh  and 

this neighborhood around the BMU decays smoothly with a distance measure 
),( lbd
 

defined between the BMU, b  and the lth neuron. A typical choice of 
)(blh  is the 

Gaussian function in (22) due to the facts that it locates the BMU at centers and 

decreases monotonically as 
),( lbd , which is a necessary condition for 

convergence.  

 

                                                 .
2

exp
2

2

),(

)(

lb

bl

d
h                                                (22) 

 

Here, the parameter  is the width of the topological neighborhood which should 

shrink within discrete number of iterations. A popular width parameter is described 

by Ritter et al. (1992) as 

 

                                           ,...,2,1,0exp)(
1

0 t
t

t                                  (23) 

 

where 0  is the initial value of , 1  is a time constant parameter , and t  represents 

the iteration number. 

 

As well as the neighborhood function );()( th bl  
the learning-rate parameter should also 

be time varying to provide a convergence in equation (21). In particular, it should be 

started with an initial value, and then, decrease gradually with increasing time (i.e. 

number of iteration). A common function satisfying these requirements is the 

exponential function denoted as 
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0 t
t
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where 2  is another time constant parameter of the SOM algorithm (see Haykin 

(1999) for more details).  
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CHAPTER 3 

 

 

PROPOSED APPROACH 

 

 

 

3.1. Motivation 

 

In an adaptive regression spline, the scope is to produce a good set of BFs (with 

optimal number of knots and their locations) for approximating the output function 

f  in (1) with an efficient algorithm and feasible computation time. In MARS 

method, the greatest computational burden is in the forward selection part. During 

this process, BFs are added with a hierarchical manner into the model. The model 

starts with an intercept term, and at each successive step, a new reflected pair from 

the set C  in (5) with the corresponding knot is introduced into the model (7) using 

the form ))(( jxm

m x  and .))(( jxm

m x Here, )( m

m x
 
represents the BF in 

the form of (6) selected in the previous step including the product of different 

variables other than the current jx ),..,1( pj . Finally, the construction of model 

terminates when the number of BFs in the model reaches to a preset number, Mmax. 

 

At each forward selection step, the contribution of a newly added BF pair,  

 

             
                    ,))(())(( jj1 xτcτxc m

mM

m

mM xx                          (25) 

 

is evaluated through a LOF criterion depends on the squared error, given in (26) 

defined over M  BFs. 

                                             

,)))(ˆ(( LOFminarg 2
xy M

m,v,τ

f 

                                    

(26) 

where,  
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2

0

j1 .))((ˆ))((ˆ)(ˆ)(ˆ
M-

k

jmMmM-kkM xτcτxccf xxxx             (27) 

                         

 

Namely, if the model with the estimated coefficients )ˆ,...,ˆ( 0 Mcc  can produce the 

largest decrease in the LOF criterion, the generated model forms a basis for the 

successive steps.    

 

The forward step is an exhaustive search process of knot selection. Each distinct data 

value of each predictor variable, ),...,1;,...,1(, pjnix ji , is a candidate knot point. 

So at each step of forward selection, pnM
 
number of data points are introduced to 

the model with the pair of truncated linear functions, and evaluated through the LOF 

in (26) with a computational complexity of 2nM ; here, n  is the number of data 

points, and M
 
is the number of BFs in the model at each step (Friedman, 1993). The 

computing time associated with each iteration is therefore proportional to .32Mpn  

Finally, in order to reach a final model with maxM  BFs, the total time required for the 

forward selection is proportional to ,4

max

2Mpn  which is then reduced to 3

maxpnM
 
by 

examining the eligible parameter values in a special order (Friedman, 1991; 

Friedman, 1993).  

 

As well as maxM , the strategy of searching knots over all distinct data values, pn

makes the training of MARS computationally expensive. For a fixed number of 

observations, it is possible to decrease the computer time of the forward step by 

decreasing the number of candidate knot locations. In this study, to speed up the 

forward selection process, a new approach is proposed with changes in the knot 

selection search over all distinct data values to a much smaller set of data values. A 

subset of data points representing the original data is chosen by using a mapping 

approach similar to the one presented in Section 2.3. Here, the way of mapping is 

important because the selected points should provide a good approximation for the 
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underlying data structure. Due to its following properties (Haykin, 1999), SOM suits 

for our purpose.  

 

Property 1. Approximation of input space 

 

At each iteration of training, the weight vectors of BMU and neighboring neurons 

come close to the current data points while the weight vectors of others are left 

unchanged. In this way, different weight vectors tend to become tuned in to different 

domain of input variables. After sufficient iterations, weight vectors tend to be 

located in the input space so that an approximation to the distribution of data is 

achieved in the sense of some minimal residual error. This approximation approach 

is rooted in vector quantization method which is based on Lloyd algorithm. (see 

Gersho and Gray (1992) for more details.) 

 

Property 2. Topological ordering or self-organizing  

 

The neurons on the lattice have spatial locations, and are connected with a 

neighborhood relation. This property provides a spatial concentration for network 

movement at each iteration. After repeated iterations, a particular domain of input 

space is going to be represented with the neurons topologically close to each others.  

 

The topological order of neurons can be visualized as an elastic net of weight vectors 

(in red color) in the coordinates of original data points (in green color) shown in 

Figure 4. The lines connecting the weight vectors represent the spatial location of 

corresponding neurons on the lattice.  

 

Property 3. Density matching 

 

The density distribution of the underlying data can be matched by self-organizing 

maps. The dense regions in the input space from which the data points are drawn 



31 
 

with a high probability of occurrence are mapped onto larger domain of the space of 

neurons. In Figure 4, the neurons tend to drift where the data is dense while only a 

few neurons are located where the data is sparse.  

 

On this account, the resulting weight vectors of mapping can form a base for a data-

driven subset of data points (representing the structure of the underlying data) that 

will be used as candidate knot points 

 

 

 

 

Figure 4. Weight vectors (red points) along with original data points (green points). 

 

 

3.2. Proposed Approach  

 

In this thesis, to select the candidate knot points in a more efficient way, a mapping 

idea mentioned in Section 2.3 is proposed. Due to the good properties of SOM 
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emphasized in the previous section, the underlying data structures can be 

approximated properly with some representative weight vectors. Selecting the knot 

points by the help of these weight vectors can decrease the computing time of model 

building significantly without decreasing the accuracy.  

 

In the proposed method, called S-FMARS, each data point ),...,1(),( niyiii xz  

are considered as input data and mapped from the original data space, )1( p  into a 

grid via (p+1)-dimensional weight vectors ).,...,1()( 1,1, ul,...,ww T

plllw The main 

reason of taking into account the response values with the predictor values during the 

mapping is to preserve the relation between predictors x  and response variable y  in 

the new space. Once the weight vectors are updated according the underlying dataset, 

the weight vectors exposed to at least one data point (called taking a hit) are selected 

as the representatives of the corresponding data points. Then, piecewise-linear 

regression splines are built at the knot selected from the set of values represented by 

the selected weight vectors. For this set, the selected weight vectors can be directly 

used as a candidate knot points or used as a reference for any other points in data 

space to be evaluated as the potential knot location. For example, instead of using 

weight vectors, the original data points referred by the weight vectors can be 

considered as candidate knot point. The way of determining a point in data space by 

the help of weight vectors is named projection in this thesis. Namely, the weight 

vectors are projected from the grid to the original data space. Two ways of projection 

are studied in this study: the nearest data point and the mean of k-nearest data 

points. While the nearest data method finds the closest data vectors to the selected 

weight vectors, k-nearest data method takes the average of the k data points close to 

weight vectors. Here, k denotes the number of hits of the corresponding neuron. Due 

to its accuracy and prediction performances, weight vectors are projected onto data 

space using the nearest-data method. The results of the corresponding analyses are 

given in Appendix D.  
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The steps of the proposed approach S-FMARS are described below through an 

example given in Figure 5, and the pseudo code for the S-FMARS algorithm is 

presented in Figure 6. 

 

3.3 Algorithm 

 

1.  (Mapping). Data points ),...,1(),( niyiii xz (Figure 5.a) are mapped into 

a space of neurons by an iterative algorithm given in Section 2.3. 

2. (Selection of neurons). In Step 1, if a neuron is selected as a BMU during the 

training, it means making a hit. In this step, the neurons with at least one hit 

are selected.  

3. (Projection). The weight vectors associated with the neurons selected in Step 

2 (Figure 5.b) may not be one of the original data points. So the weight 

vectors are projected onto the original data space (Figure 5.c), where the 

projected data point is represented by ),...,1()~~~(~
,1, Ssy,x,...,x spsssz , where 

S  denotes the number of selected neurons, and .uS  

4. (Knot selection and model building via the Forward Selection). The estimated 

model is built on the truncated linear functions in which the knots are the 

values of the predictor data, sx~ , projected in Step 3. Here, every distinct 

value of the corresponding predictor variable, jsx ,
~ ),,...,1,...,1( pjS;s are 

considered as candidate knot points for BFs. The new set of truncated linear 

functions is given as 

 

            
}.},...,1{},...,1{}~{)()({ , Ss,pj,xτ|xτ,τxD js

*

j

**

j          
(28) 

 

S-FMARS constructs a model by regressing y on the BFs developed over the 

set of D  in a stepwise manner, and the significant BFs with the 

corresponding knots are selected via the lack-of-fit criterion in (26) (Figure 

5.d).  
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Figure 5. (a) Original data points. (b) Weight vectors of selected BMUs and original 

data points. (c) Projected weight vectors and original data points. (d) S-FMARS 

model for which knots are selected from the projected weight vectors. 

 

 

3.4 Parameters of S-FMARS Approach 

 

In S-FMARS approach, the set of BFs obtained after running the algorithm presented 

in Figure 6 contains less number of candidate BFs than that of the set C in (5), so that 

the computing time of forward step decreases in a significant manner. In this 

approach, it is also possible to decrease the computing time further by decreasing the 

size of set D  in (28) via two parameters called grid size and threshold value set for 

the number of hits of each neuron. However, changing the values of parameters in  

 

(a) (b) 

(c) (d) 
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         1 input: a set of data vectors ),...,1(),( niyiii xz ; a threshold value t
~

; grid  

                       size g . 

         2 lattice: a grid with a specified size and a set of weight vectors, ),...,1( ullw .                      

         3 begin for mapping 

         4     initialize each weight vector .lw  
         5     repeat  

         6                select one data vector, ).,( iii yxz
 

         7                find the BMU such that )}.,({minarg
,...,1

li
ul

b d wzw
 

8                for all weight vectors of neighboring neurons, )(blw , do 

          9
                     

))()()(()()()1( )()()()( ttthtatt bliblblbl wzww
 

         10      until the termination condition holds (until a specified number of                     

                            training epochs). 

        11 end 

12 select the BMUs whose number of hits is greater than a specified  

               threshold value, t
~

.  The corresponding weight vectors are denoted as      

               ).,...,1( Sssw  

        13 project the weight vector of the selected BMUs, ),...,1( Sssw  to the  

             data point )~,~(~
sss yxz

 
such that )}.,({minarg)~,(

,...,1
is

ni
ss dd zwzw  

        
14 begin model building with .1)(1 xB

 
        15  2M  

        16       while maxMM  
        17       for 1m to 1M  do: 

        18                    for },1)({ mKk|k,mjj
 
 

        19                        for },0)(~{ , xmjs

* B|xτ   

        20    g  

  

,)()())(()( 1

2

0

j

*

j

*

mM

*

jmM-

M

k

kk xτxτaτxaa xxx  

        21                                 LOF   .min
11

LOF(g)
M,...,aa

                         

        22                         end
         23                     end  

        24        end 

        25        end 

 

Figure 6. The algorithm of S-FMARS. 
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decreasing the computing time should be achieved carefully by considering the 

model accuracy.  

 

Since some representative knot points could be eliminated while decreasing the size 

of map, accuracy of the corresponding models may become worse. In the following 

sections, the effect of these parameters both on computing time and model accuracy 

are evaluated through a sensitivity analysis. 

 

Since some representative knot points could be eliminated while decreasing the size 

of map, accuracy of the corresponding models may become worse. In the following 

sections, the effect of these parameters both on computing time and model accuracy 

are evaluated through a sensitivity analysis. 

 

3.4.1 Grid Size 

 

In S-FMARS approach, mapping starts with a grid topology that can be hexagonal or 

a rectangular whose size is preset in advance (see Figure 7). The grid size represents 

the dimension of a lattice in terms of total number of neurons (Vasento et al., 2000). 

Cardinality of neurons has an important effect on the mapping quality; so the 

approximation capability. If the grid size is large enough, SOM builds a dense lattice 

with a large number of BMUs, and approximates the underlying data distribution 

better than the lattice with a small number of map units. However, SOM with a large 

number of BMUs produces a large subset of candidate knot points, so that it needs 

more computing time. Therefore, the size of a lattice is considered as a trade-off 

between the less computing time and a good approximation both in mapping and 

modeling.  
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Figure 7. Examples of grid structures. 

 

 

The size of the grid can be either specified by the user, or can be defined 

heuristically. In general, a heuristic for grid size ng 5  introduced by Vesanto et 

al. (2000) is used for adequate approximation of the original data points, where n 

represents the number of original data points. In this study, for each dataset, the 

effect of grid size on computing time and model accuracy are observed by running 

the S-FMARS approach for 10 different grid sizes as in Figure 8, where .ng  

The best number of grid size is then determined by observing the changes in RMSE 

and computing time in seconds. 

 

Figure 8 and Figure 9 displays the results of a sensitivity analysis constructed for the 

Dataset 2 in Table 1. The results obtained for other problems are given in Appendix 

C in the same order as in Table 1. In Figure 8, the RMSE of a model obtained after 

the run of S-FMARS approach gets smaller as the grid size for the approach gets 

larger. This is due to the fact that large grid sizes provide better approximation of the 

underlying distribution than those of the small grid sizes. However, more computing 

time is required for both mapping and modeling as the grid size gets larger (see 

Figure 9).  

 

To select the best grid size for the underlying dataset, the changes in both RMSE and 

CPU time should be evaluated carefully. As it is seen in Figure 8, the change in 

(a) Hexagonal 

grid  

(b) Rectangular grid 



38 
 

RMSE becomes stable at grid size 5g/4, while the change in CPU time significantly 

increases after the grid size g.  Therefore, to render a decision on the best grid size, a 

ratio taking into account both the model accuracy and CPU time simultaneously can 

be stated as follows, 

 

                                                   r = rmse/time.                                                      (29) 

 

 

 

Figure 8. Graph of RMSE versus grid size for Dataset 2. 

 

 

The graph of “Ratio versus grid size” (Figure 10) for the underlying dataset can 

provide an intuition about the best grid size for the S-FMARS approach. The grid 

size where the ratio does not change significantly can be determined as the best size 

for the accurate model with efficient computing time.  
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Figure 9. Graph of Time versus grid size for Dataset 2. 

 

 

 

Figure 10. Graph of Ratio versus Grid size. 
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Moreover, the best grid size can also be determined by setting a stopping value for 

the slope of the ratio. For instance, the best grid size (g) for the dataset used in this 

study can be taken as 5g, if the stopping value is set to 0.15. 

 

3.4.2. Threshold Value 

 

In S-FMARS approach, another affecting parameter on computing time is the 

number of hits. Here, the hit represents the data point coming close to a neuron by an 

updating rule as stated in Section 2.3 during mapping. In the proposed approach, 

neurons taking at least one hit (the neurons determined as BMUs) are selected, and 

their corresponding weight vectors are used as candidate knot points. On this 

account, the set of candidate knot points (set D in (28)), so the number of neurons 

selected can be controlled by a threshold value, t
~

 set for the number of hits.  

 

The number of hits owned by each neuron can be visualized via a graph of sample 

hits (see Figure 11). The number in each cell gives the frequency of data points 

mapped from the input space to the corresponding neuron. While neurons with large 

number of data points represent the dense regions of data, the ones with small 

number of data points represent the sparse regions or outliers. The neurons with zero 

data points are not BMUs of any original data point, so they are disregarded.  

 

Setting a threshold value for the number of hits can control the selection of neurons 

or weight vectors for the knot placement. A high threshold value reduces the number 

of neurons, so the candidate knots. Besides, a high threshold value leads the S-

FMARS algorithm to select the neurons representing the dense regions of data 

points. Thus, the neurons attained to sparse regions or outliers are automatically 

eliminated before the knot placement. This elimination procedure however may 

decrease the model quality although it decreases the CPU time.  
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A low threshold value leads S-FMARS algorithm to produce a large number of 

candidate knot points. Therefore, the model built after implementing the S-FMARS 

approach is generally more accurate than the models obtained after running the S-

FMARS approach processed with a high threshold value (see Figure 12). On the 

other hand, S-FMARS with low threshold requires more CPU time to build a model 

(see Figure 13). 

 

 

 

Figure 11. The sample hits of a 5x5 hexagonal grid including 25 neurons. 

 

 

When 1
~
t , more weight vectors are selected, and a large set of candidate knot 

locations is obtained. The model constructed on this set of knot points can 

approximate the underlying function more accurately as in Figure 12, and the model 

accuracy (RMSE) becomes worse as the threshold value gets larger. However, the 

computing time required for model building is high for 1
~
t , and it decreases for the 

large threshold values as presented in Figure 13.  
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The aim here is to increase the threshold value without decreasing the accuracy of 

models. On this account, to see the effect of threshold value on both model accuracy 

and computing time, the slope of ratio given in (30) is examined for six different 

threshold levels starting 1
~
t  to three standard deviations of hits ( std ) above the 

average hits ( um ) calculated as follows 

 

                                                                 
,unmu                                               

(30) 

 

where n  is the number of data points, and u  is the number of neurons in the map.  

 

As the threshold value for the number of hits gets larger, the ratio increases; hence, 

inaccurate models are obtained (see Figure 14). Therefore, the point where the ratio 

is settled and starts to increase further can be determined as the best threshold value. 

Similarly, like in grid size, a cut off value set for the slope of ratio can be used to 

determine the best threshold value of the number of hits. For the dataset in Figure 14, 

the point mu+std can be used set as the best threshold value where the slope is no 

more than 0.15. 

 

 

Figure 12. Graph of RMSE versus Threshold value. 
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Figure 13. Graph of Time versus Threshold value. 

 

 

 

 

Figure 14. Graph of Ratio versus Threshold Value. 
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CHAPTER 4 

 

 

APPLICATIONS 

 

 

 

4.1 Background on Applications 

 

The proposed algorithm given in Section 3.3 includes two main steps: mapping and 

model building. Firstly, a set of candidate knots is determined via a mapping and 

projection, and then, a regression spline model is developed by searching the knots 

over the set of data points gathered in the first step. The implementation of mapping 

idea prior to the model building is proposed to decrease the computational burden of 

adaptive regression spline mainly caused by the forward step. Together with the 

mapping and model building strategy, the proposed approach can be considered as a 

modified forward selection algorithm of MARS. The performance of the proposed 

approach, S-FMARS, is evaluated and compared with the forward selection 

algorithm of MARS and MinSpan approaches (for detailed information see Section 

2.1.1) through various applications with respect to different performance criteria. The 

proposed approach is compared with FMARS and MinSpan approach separately in 

Section 4.3 and 4.4, respectively. In addition, to control the complexity of the S-

FMARS model and to prevent the overfitting problem, the backward elimination 

strategy of MARS and the idea behind the CMARS are implemented to the proposed 

forward selection algorithm. Performance of five methods called MARS, MARS 

with MinSpan, SMARS, CMARS, S-CMARS are compared with respect to 

accuracy, complexity, stability and robustness criteria in Section 4.5. Here, SMARS 

refers to the method including the proposed forward selection algorithm and 

backward elimination step of MARS. S-CMARS denotes the modified version of 

CMARS which is built on the BFs selected by S-FMARS. 
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4.1.1 Datasets and Validation Techniques  

 

The experiments are conducted on 10 artificial and six real datasets. The list of the 

datasets with their four different features including number of data points (size), 

number of predictor variables (scale), degree of interaction (nonlinearity) and noisy 

behavior are given in Table 1. In all datasets, predictor variables and response 

variable are all taken as continuous. The first six datasets together with the Dataset 

10 are generated from the functions originally given by Jin et al. (2001), (see 

Appendix A and Appendix B for the function descriptions and the grid plots of the 

functions, respectively). Dataset 7 is the robot arm example used by Friedman 

(1993), and Dataset 8 is taken from the MATLAB user’s quide (2010). The function 

used for Dataset 9 is the sinus function and the corresponding data is generated with 

some noise. The last six datasets belong to real life problems, and are originally 

taken from the UCI repository (Frank, 2010). These datasets are selected according 

to their size, n and number of predictor variables, p. Before the construction of the 

models, all datasets are preprocessed and standardized to become comparable. 

 

 For artificial data sets, to compare and validate the performance of the methods, a 

test data is generated by the same function used for training data. In real data sets, 

however, 3-fold with three replications cross validation approach is used for model 

validation. In this approach, the original data set is randomly divided into three part 

(fold). At each time, one part is retained for testing, and other two parts are used for 

model building. Hence, three models are built at each time. This process is replicated 

three times with new partitions.  

 

4.1.2 Software 

 

The proposed approach S-FMARS is written entirely in MATLAB
R
 (Matlab, 2010) 

with the assistance of SOM Toolbox (Vesanto, 2000) and ARESLab Toolbox. 

ARESLab Toolbox is created by Jekabsons (2011) as a collection of Matlab codes 

for implementing MARS algorithm. This toolbox implements the main functionality 
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of MARS technique close to the description in the Friedman’s paper (Friedman, 

1991). It should be indicated that the model building is not accelerated using “Fast 

MARS” queuing (Friedman, 1993) together with the “fast least square update 

technique” in this code. SOM Toolbox (Vesanto, 2000) is another Matlab library 

created for self-organizing maps.  

 

To develop a CMARS model, first, the Matlab code written for S-FMARS is used to 

obtain the BFs provided from the proposed forward selection algorithm. Then, the 

code written in MATLAB (2009a, The MathWorks, U.S.A.) by Yerlikaya (2008) and 

developed further by Batmaz et al. (2010) is used to obtain CMARS models. For 

optimization process in CMARS, the MOSEK optimization software (6. MOSEK 

ApS, Denmark) is utilized.  

 

 

 

Table 1. Features of the datasets. 

Datasets Sample Size (n) # of inputs (p) Nonlinearity 
Noisy 

Behaviour 

1 1000 7 high no 

2 1000 5 low no 

3 1000 10 low no 

4 10000 2 high no 

5 10000 3 high no 

6 10000 3 low no 

7 1000 5 high no 

8 10000 2 high no 

9 100 1 low yes 

10 100 2 low yes 

Parkinsons 578 21 high - 

Red Wine 1599 11 high - 

Com.Crime 879 24 high - 

Conc. Comp. 1030 8 high - 

PM10 500 7 low - 

Auto Mpg 398 7 low - 
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4.1.3 Performance Criteria and Measures  

 

The performance of each method is measured with respect to accuracy, complexity, 

stability, robustness and efficiency criteria. To evaluate the goodness of the model 

fit, Root Mean Square Error (RMSE), Adjusted-Multiple Coefficient of 

Determination (Adj-R
2
) and GCV given in (11) are used for training data. The 

equations for RMSE and Adj-R
2
 are given in (31) and (32), respectively. RMSE 

indicates the grossly inaccurate estimates. Namely, the smaller the RMSE is, the 

better the model fits to the data. Adj-R
2
 is a penalized form of R

2
 with respect to the 

number of predictors in the model. It gives the amount of variation in response which 

is explained by the model. Thus, the higher the Adj-R
2
, the better the model is. As 

stated in Equation (11), GCV criterion takes the number of BFs in the model into 

account as well as the model accuracy. Hence, the model complexity can be 

evaluated and compared with respect to the GCV measure. 
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where iy  is the ith observed response value, iŷ  is the ith fitted response, and n 

denotes the number of observations. 
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where .0)1( pn Here, y  is the mean response, and p denotes the number of 

predictors in the model.  

 

Since the measures obtained for the training data are not sufficient to access the 

accuracy of newly predicted points, a test data is also used to verify the prediction 
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accuracy of the models. RMSE and Adj-R
2
 measures are used to examine the 

prediction performances. Furthermore, to measure the change in the performance of 

methods between the training and test datasets, a stability measure defined below is 

used 

 

                                               ,,min
TR

TE

TE

TR

MR

MR

MR

MR
.                                                (33) 

 

where TRMR and TEMR represents the performance measures (RMSE or Adj-R
2
) for 

the test and training data sets, respectively. The model whose stability measure is 

close to one represents a stable model. Furthermore, robustness of the methods under 

different data sets is also evaluated with the help of the spread of performance 

measures used.  

  

The efficiency of each method is measured by recording the computational run times 

(the CPU time) of models to make the results comparable. Both methods are tested 

on the same platform (Intel Core2 Duo CPU T7250@2.00 GHz 2.00 GB RAM). For 

each dataset, the CPU times of the models are recorded in seconds. A detailed 

analysis is performed on CPU times of methods with respect to sample size and 

number of predictor variables (refers scale of data). To achieve such kind of an 

analysis, real datasets in Table 1 are categorized into two groups as medium/large 

and small/large according to sample size and scale, respectively. Moreover, the 

differences between CPU times of methods according to sample size and scale are 

also tested statistically by a nonparametric method called Mann-Whitney Test. 

Mann-Whitney is a nonparametric version of two-sample t test used for independent 

samples when the normality assumption is violated (Lehmann, 1975). 

 

To compare the performances of two models, one-sample sign test (Gibbons and 

Chakraborti, 2003) is used in our experiments. Here, the datasets used by two models 

are considered as paired sample, which means there is a dependency between them. 
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One-sample sign test is a nonparametric test, which makes little assumptions about 

the nature of underlying distributions. Generally, it is used as an alternative to one-

sample paired t-test and Wilcoxon signed-rank test, respectively when the normality 

assumption is violated and population distribution is not assumed to be symmetric. In 

this study, one-sample sign test is interpreted for α=0.05 significance level in the 

comparison studies of two methods. To compare the performances of more than two 

models, repeated analysis of variance (RANOVA) test (Davis, 2003) is used. 

RANOVA is a statistical test used for mean comparison. The hypothesis stated for 

model comparison is as follows: 

 

H0: μ1= μ2= μ3...=μk 

versus                                                                                                                     (34)  

H1: at least one is different 

 

Here, μ stands for the expected value of a performance measure such as RMSE, 

GCV, etc. used in the comparisons. Once the test is rejected at α=0.05 significance 

level, the differences between models are tested pairwisely using Fisher’s Least 

Significant Differences (LSD) test. One-sample sign test and RANOVA teat are 

applied for training and test datasets as well as stabilities of the measures for real life 

data sets via the statistical software SPSS
TM

. These tests are not applied to artificial 

datasets since the underlying normality and variance equality assumptions are not 

satisfied. The reason for lack of normality and variance inequality is the fact that the 

measures obtained are in different orders (or scales).   

 

4.2 Selection of S-FMARS Parameters for Datasets  

 

As mentioned in Section 3.4, S-FMARS has two important parameters that has effect 

in decreasing the computational run time and increasing the model accuracy. The 

grid size is the parameter that controls the approximation quality. If the underlying 

data points are mapped into a grid with a large number of neurons, then the 
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underlying input pattern can be approximated well; otherwise, more information is 

lost during the mapping. The other parameter is the number of data points assigned to 

each neuron after mapping. If a high threshold value is set for the number of data 

points grouped around the neuron, then less number of weight vectors is selected as 

the reference for candidate knot points. That is, the set of candidate knots is restricted 

to more than the case for which the low threshold value is set. In Chapter 3.4, the 

ways of selecting the best values for these parameters are given.  

 

In this chapter, the best S-FMARS parameter values are determined for all datasets 

utilized in this study. That is, the performance of S-FMARS method with respect to 

model accuracy and time efficiency is determined as a result of a sensitivity analysis 

performed on 10 different grid size and six distinct threshold values. The design 

levels determined for the grid size and the threshold value are given in Table 2. Here, 

ng , and um  and std  represent the mean and standard deviation of data points 

assigned to neurons, respectively. 

 

 

Table 2. Design Values for Grid Size and Threshold Value. 
 

Grid Size Threshold Value 

10/g  1 

5/g  um  

2/g  um + std  

g  um +2 std  

4/5g  um +2.5 std  

2/5g  um +3 std  

g5  

 g10  

 g15  

 g20  
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The computational run time and model accuracy of the S-FMARS method is 

observed for each design value given in Table 2. As mentioned in Section 3.4.1, as 

the grid size of the lattice to which the original data points are assigned increases, the 

approximation of the underlying input pattern become well, so that model accuracy 

increases. On the other hand, the computing time of the method increases. The effect 

of the threshold value on the performance of S-FMARS method is the exact opposite 

of grid size (see Section 3.4.2). Namely, as the threshold value increases, the 

accuracy of the model and the computational run time decrease. This is due to the 

fact that less number of weight vectors is selected as a reference for the candidate 

knot points which leads the model to be built on the less number of candidate knot 

points. Hence, model accuracy and computing time decreases. This stated effects of 

grid size and threshold value on the performance of S-FMARS with respect to model 

accuracy and computing time is valid and observed for all datasets. The performance 

measures of S-FMARS calculated for the design points in Table 2 are given in 

Appendix C for all datasets.  

 

In determination of the best parameter values, the graphs including “Ratio versus 

grid size” and “Ratio versus threshold value” are used. Here, the measure of “Ratio” 

denotes the ratio between RMSE and computing time (see Equation 29). With the 

help of this measure, the change both in model accuracy and computing time can be 

observed for different parameter values. The breaking point where the lines become 

stable can be used as the best parameter values. As well as the performance table, the 

graphs of “Ratio versus grid size” and “Ratio versus threshold value” are presented 

in Appendix C for all datasets.  

 

As a result of the sensitivity analysis, the best grid sizes and threshold values of S-

FMARS method are determined for artificial datasets and real datasets, in Table 3 

and Table 4, respectively. 
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Table 3. Best Parameter Values For Artificial Datasets. 

Datasets Grid Size Threshold Value 

1 2/5g  1 

2 4/5g  um + std  

3 2/g  um + std  

4 2/g  um +2 std  

5 2/g  1 

6 2/g  1 

7 2/g  um  

8 2/5g  um + std  

 

 

 

Table 4. Best Parameter values for Real Datasets. 

Datasets Grid Size Threshold Value 

AutoMpg 2/5g  1 

ComCrime 4/5g  um  

ConcComp g5  um  

Parkinsons g5  1 

PM10 g5  1 

Redwine g5  1 

 

 

 

4.3. Comparison Study 1 

 

In this section, the performance of the proposed approach, S-FMARS is evaluated 

and compared with the forward selection algorithm of MARS, named as FMARS. 

The performances are evaluated through eight artificial data, six real data and two 

noisy data with respect to accuracy, complexity, robustness and time efficiency. 

Analyses are given under the name of artificial datasets, real dataset and noise 

analysis. 



53 
 

4.3.1. Artificial datasets 

 

This section evaluates and compares the methods for Datasets 1-8. Both method use 

the same number of interaction terms (Int.) for each data set, and allow their models 

grow up to the same preset number of BFs (Mmax), which is 100 for all cases. The 

accuracy and complexity measures of models calculated for each training data and 

the CPU time required for the corresponding models are given in Table 5, as well as 

the number of BFs found in the final model (BFfinal).  

 

The number of BF in the final model denotes the complexity of the model. For 

almost all models, two models have similar complexity. The accuracy measures 

calculated for each method seem close to each other in Table 5. For data sets three, 

four, six and eight, S-FMARS performs better than FMARS with respect to RMSE. 

For three data sets, S-FMARS overperforms FMARS with respect to complexity 

measure (GCV).  It is noted that Adj-R
2
 values of all models are very high for all 

cases. This may be due to the overfitting problem or smoothness of the underlying 

datasets, which do not include noise. The prediction performances of both methods 

and their stabilities of measures are compared via the RMSE and Adj-R
2
 measures as 

given in Table 6. It can be indicated that the prediction performance of S-FMARS is 

slightly better than that of FMARS for five datasets (see Table 6) and more stable 

than FMARS for four data sets.  

 

The models are compared with respect to time efficiency via CPU times in seconds 

given in the last column of Table 5. It is seen that S-FMARS is much more efficient 

than FMARS for all datasets. It provides at least 83 % decrease in the CPU times. In 

addition, S-FMARS achieve this reduction in time without losing much in accuracy.  
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Table 5.  Performances of FMARS and S-FMARS on the train data. 

Datasets Methods Int. BFfinal RMSE Adj-R
2
 GCV 

CPU  

Time(sec.) 

Decrease 

in time (%) 

1 
FMARS 

4 
100 1062.9* 0.977* 2013650* 6210.9 

95 
S-FMARS 100 1089.1 0.976   2114441 311.8* 

2 
FMARS 

1 
43 4271.9* 0.999 21796917* 44.1 

83  
S-FMARS 43 4359.8 0.999  22703916 7.5* 

3 
FMARS 

2 
47 24.1 0.999      740.5 1934.5 

88  
S-FMARS 47 24.0* 0.999 740.1* 231.1* 

4 
FMARS 

2 
77 0.026 0.998 0.001 16904.8 

94  
S-FMARS 81 0.025* 0.998 0.001 999.7* 

5 
FMARS 

2 
43 513.3* 0.999 269180* 9756.7 

95  
S-FMARS 45 514.2 0.999    270354 516.8* 

6 
FMARS 

2 
23 2.969 0.999     8.913 3521.9 

99  
S-FMARS 23 2.892* 0.999 8.456* 51.0* 

7 
FMARS 

4 
100 0.028* 0.992 0.001* 3311.4 

94  
S-FMARS 100 0.030 0.991*      0.002 186.7* 

8 
FMARS 

2 
81 0.166 0.998      0.029 93483.0 

99  
S-FMARS 78 0.151* 0.998 0.024* 484.7* 

Note: * indicates better performance. 

 

 

 

 

Table 6. Performances of FMARS and S-FMARS on the test data and stabilities. 

Datasets 

TEST STABILITY 

RMSE Adj-R
2
 RMSE Adj-R

2
 

FMARS 

S- 

FMARS FMARS 

S- 

FMARS FMARS 

S- 

FMARS FMARS 

S-

FMARS 

1 1120.7* 1126.7 0.959 0.959 0.948 0.967* 0.982 0.983* 

2 3849.4 3834.1* 0.999 0.999 0.901* 0.879 1.000 1.000 

3 23.0* 23.1 0.999 0.999 0.954 0.963* 1.000 1.000 

4 0.026 0.026 0.998 0.998 1.000* 0.962 1.000 1.000 

5 538.5 529.7* 0.999 0.999 0.953 0.971* 1.000 1.000 

6 2.981 2.869* 0.999 0.999 0.996* 0.992 1.000 1.000 

7 0.029 0.028* 0.986 0.986 0.966* 0.933 0.994 0.995* 

8 0.168 0.151* 0.998 0.998 0.988 1.000* 1.000 1.000 

     Note: * indicates better performance. 
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4.3.1.1 Effects of Maximum number of BFs and sample size on the CPU time 

 

The computational run time of both methods depends on the problem size (n) and a 

user-specified maximum number of BFs (Mmax). To obtain the performance of both 

methods for different n values, five different datasets with n=400, 800, 1600, 3200 

and 6400 are generated using the function in Dataset 8 (Figure 15). Additionally, 

FMARS and S-FMARS models are built for three different Mmax values 20, 40 and 

60.  

 

The results presented in Table 7 show that as n and Mmax increase, the CPU time 

required for model building drastically increases for both methods. Moreover, one-

sample sign test signifies that the accuracy and complexity measures of two models 

are not statistically different for each Mmax and n values (p-values > 0.05). 

Computing time of S-FMARS is less than that of FMARS for all sample size and 

Mmax combinations (see Table 7). Especially for large datasets, the decrease in CPU 

time is more drastic than for small ones. As it is seen in Figure 16, which displays the 

run times of methods recorded for the models with Mmax=60, the difference between 

the CPU times of two methods become noticeable as the sample size increases. 

Correspondingly, while the decrease in CPU times is 70 % for the dataset with 

smallest n and Mmax value, the decrease in CPU is 98% for the largest dataset with 

large number of Mmax.  

 

In addition, CPU times of both methods change in a similar manner according to 

different Mmax and n values (see Figure 17). As the values increase, CPU times of 

both methods also increase. However, regardless of Mmax and n values, the 

computing time required for model building in S-FMARS is drastically less than that  

of FMARS, which is figured out by different y-scales in Figure 17. At least 70 % 

decrease is achieved by S-FMARS method. 
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Figure 15. Grid plot for data set 8. 

 

 

 

Table 7. Performances of FMARS and S-FMARS for different n and Mmax. 

n Mmax 

RMSE Adj-R
2
 GCV 

CPU  

Time (sec.) 

Difference 

in time  

(%) 

F 

MARS 

S- 

FMARS 

F 

MARS 

S- 

FMARS 

F 

MARS 

S- 

FMARS 

F 

MARS 

S- 

FMARS 
 

400 

20 1.207* 1.229 0.850 0.852* 1.914* 1.985 3.7 1.1* 70  

40 0.994* 1.057 0.893* 0.891 1.767* 2.001 13.8 2.3* 83  

60 0.911* 0.935 0.905 0.915* 2.139* 2.254 35.7 4.5* 87  

800 

20 1.302 1.293* 0.829 0.835* 1.934 1.908* 8.3 1.3* 84  

40 1.053 1.046* 0.885 0.892* 1.453 1.433* 40.3 3.4* 92  

60 0.993 0.983* 0.895 0.905* 1.500 1.469* 107.9 8.5* 92  

1600 

20 1.268* 1.285 0.846* 0.843 1.715* 1.762 24.0 1.7* 93  

40 1.057* 1.072 0.891 0.891 1.272* 1.308 109.7 5.6* 95  

60 1.006* 1.011 0.900 0.903* 1.233* 1.247 308.7 14* 95  

3200 

20 1.227* 1.233 0.855 0.855 1.555* 1.570 72.5 3.5* 95  

40 1.028 1.027* 0.898 0.899* 1.126 1.124* 357.4 14.5* 96  

60 0.985 0.987 0.906 0.907* 1.069* 1.073 1088.6 35.6* 97  

6400 

20 1.274 1.266* 0.844 0.846* 1.650 1.628* 339.1 7.7* 98  

40 1.060* 1.072 0.892* 0.890 1.160* 1.187 1609.1 37.5* 98  

60 1.013* 1.014 0.901 0.901 1.077* 1.079 6228.6 114.8* 98  

Note: * indicates better performance. 
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Figure 16. CPU times versus sample sizes (n) for Mmax=60. 

 

 

 

 

Figure 17. CPU time versus sample size. 

Note: BFm represents the number of BFs in the final model built for a preset Mmax value. 
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4.3.1.2 Effect of interaction terms on the CPU time 

 

In general, interaction models require more CPU time than additive models 

(Friedman. 1993). The effect of interation terms on the computing time of FMARS 

and S-FMARS is tested on Dataset 7, which is a robot arm example used by 

Friedman (1993). This data is taken from a hypothetical robot arm free to move in 

three dimensions ),,( zyx . It includes five input variables which are taken to be the 

lengths of upper and forearm 
21,ll , respectively, and three angles 1θ , 2 , . The 

response is the distance from the origin )( 1J  to the end of the forearm ),,( zyx  

opposite to the joint )( 2J , the location of which is given by 

 

                                            ,cos)cos(cos 21211 llx  

                                          ,cos)sin(sin 21211 lly                                   (35) 

                                            .sinsin 22lz  

 

The distance (response) is then obtained by 

 

                                               .)( 2/1222 zyxd                                                (36) 

 

The best model describing the nonlinear relationship between the response and 

predictor variables of robot arm data is an interaction model. The CPU times spend 

for building models with different degree of interaction terms are observed and 

compared in Table 8, and summarized in Figure 18. As a result, as the number of 

interaction term increases, the CPU times of both methods increases 

correspondingly, but S-FMARS is much more efficient than FMARS for all cases. It 

provides approximately the same percent of decrease in CPU times for all number of 

interaction terms, which is 95%.  Moreover, the performances of S-FMARS and 

FMARS are not statistically different with respect to accuracy and complexity for 

different number of interaction terms. 
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Table 8. Performances of FMARS and S-FMARS for different interaction term 

 #   RMSE Adj-R
2
 GCV CPU Time (sec.) Decrease 

in CPU 

time (%) int. 
FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS 

1 0.160 0.157* 0.761 0.771* 0.024* 0.025 159.1 5.5* 97  

2 0.082 0.079* 0.999 0.999 0.006 0.006 814.9 39.3* 95 

3 0.064* 0.065 0.999 0.999 0.004 0.004 1323.4 61.*6 95 

4 0.063 0.062* 0.999 0.999 0.004 0.003 1448.7 73.1* 95 

5 0.063 0.062* 0.999 0.999 0.004 0.003 1670.9 70.5* 96 

   Note: * indicates better performance. 

 

 

 

 
Figure 18. CPU time versus number of interaction terms. 

 

 

4.3.2 Real Life Data 

 

Two methods are also compared on real life datasets presented in Table 1. Before the 

model construction, all datasets are preprocessed and standardized to increase the 

model performances and make them comparable. 3-fold and three times replicated 

cross validation approach is used to validate the performance of the methods. The 
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averages of nine performance measures for the corresponding models are listed in 

Table 9. Algorithms are run for different Mmax values presented in the 3
th

 column of 

Table 9. The best models obtained for Parkinsons Telemonitoring, Communities and 

Crime, AutoMpg and PM10 are additive models (with no interaction), whereas for 

Red Wine Quality and Concrete Compressive Strength datasets, respectively, two and 

three way interaction models are found to be the best for both methods.  

 

In order to decide whether or not both methods are statistically different, one-sample 

sign test is applied to the performance measures calculated for train and test data sets 

displayed in Table 9 and Table 10, respectively. The significance of differences 

between the stabilities of the measures calculated on train and test performance 

measures given in Table 10 is also checked statistically with one sample-sign test. 

Moreover, to evaluate the overall performances of methods, mean and standard 

deviation of all accuracy and complexity measures are given in Table 11 for train and 

test datasets as well as stabilities of measures. Here, standard deviation is used for 

indicating the robustness of the methods.  

 

 

Table 9. Average performances of FMARS and S-FMARS on the train data. 

Datasets Models Mmax Int. RMSE Adj-R
2
 GCV 

CPU 

Time 

(sec.) 

Decrease 

in CPU 

time (%) 

Parkinson 
FMARS 

S-FMARS 
50 - 

0.348 0.863 0.195 29.51 
90  

0.347* 0.864* 0.194* 3.09* 

Red Wine 
FMARS 

90 2 
0.619* 0.569* 0.603* 338.91 

79  
S-FMARS 0.672 0.513 0.665 72. 68* 

Com. Crime 
FMARS 

150 - 
0.365* 0.817* 0.580* 216.10 

71  
S-FMARS 0.412 0.766 0.800 62.66* 

Conc.Comp. 
FMARS 

100 3 
0.196* 0.955* 0.102 1122.53 

85  
S-FMARS 0.202 0.952 0.103* 168.51* 

AutoMpg 
FMARS 

100 - 
1.847* 0.994* 64.66* 16.75 

80  
S-FMARS 2.184 0.878 90.42 3.32* 

PM10 
FMARS 

50 - 
0.649* 0.503* 0.867* 11.11 

81  
S-FMARS 0.665 0.477 0.911 2.16* 

                    Note: * indicates better performance. 
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Table 10. Average performances of FMARS and S-FMARS on test data and 

stabilities. 

Datasets 

TEST STABILITY 

RMSE Adj-R
2
 RMSE Adj-R

2
 

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS 

Parkinson 0.640* 0.685 0.716* 0.683 0.544* 0.507 0.830* 0.791 

Red Wine 1.237 0.937* 0.213 0.251* 0.500 0.717* 0.374 0.490* 

Com. Crime 0.739 0.681* 0.520 0.569* 0.494 0.605* 0.637 0.743* 

Conc.Comp. 0.443* 0.459 0.823* 0.816 0.442* 0.440 0.862* 0.857 

Auto Mpg 5.199 2.934* 0.720 0.845* 0.355 0.744* 0.724 0.962* 

PM10 1.013 0.808* 0.262 0.369* 0.641 0.823* 0.521 0.774* 

       Note: * indicates better performance. 

 

 

 

Table 11. Overall performances of FMARS and S-FMARS methods. 

Methods 
TRAIN TEST STABILITY 

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2
 

FMARS 

0.671* 

(0.602**) 

0.784* 

(0.203) 

11.168* 

(26.207**) 

1.545 

(1.812) 

0.542 

(0.256) 

0.496 

(0.096**) 

0.658 

(0.187) 

S-FMARS 

0.747 

(0.728) 

0.742 

(0.200*) 

15.515 

(36.697) 

1.084* 

(0.920**) 

0.589 * 

(0.240**) 

0.639* 

(0.148) 

0.770* 

(0.157**) 

     Notes: * Indicates better performance with respect to mean. ** Indicate better performance with  

     respect to standard deviation in parenthesis.  

 

 

 

Depending on the results presented in Table 9, Table 10 and Table 11, the following 

conclusions can be drawn: 

 

 FMARS produces slightly accurate and less complex models than S-FMARS 

except Parkinson data. However, according to one-sample sign test, the 

accuracy of S-FMARS model is not statistically different than that of 

FMARS considering all performance measures.  

 On test data, S-FMARS performs better than FMARS for Red Wine Quality, 

Communities and Crime, Auto Mpg and PM10 datasets with respect to 
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RMSE and Adj-R
2
. For the same datasets, S-FMARS is more stable than 

FMARS (see Table 10).  

 With respect to overall performance, FMARS models are more accurate and 

robust than that of S-FMARS on training data. On test data, however, S-

CMARS performs better with respect to accuracy and is more robust than 

FMARS. S-FMARS is more stable with respect to all of the measures (see 

Table 11).  

 S-FMARS is more efficient than FMARS for all data sets. S-FMARS 

decreases the CPU time at least 71%, which is observed for Communities and 

Crime. 

 

As mentioned in Section 4.3.1.1, CPU times of methods are affected by sample size 

and number of predictor variables which gives the scale of data. To observe the 

effects of sample size and scales on CPU time, the datasets are classified according 

to these two important features given in Table 12. The levels assigned to scale 

feature are small and large. Data with less than or equal to 10 predictor variables is 

assigned as small, otherwise it is assigned as large. On the other hand, datasets 

classified into two as medium and large with respect to sample size. Small data has a 

sample size less than or equal to 600, while large data has more than 600 instances. 

The average CPU times of methods observed for each level of sample size and scale 

are given in Table 12. To evaluate the significance of differences between average 

CPU times of methods obtained for two types of data classified with respect to scale 

and sample size are tested by using a nonparametric test called Mann-Whitney test. 

This test is a nonparametric version of two-sample t test used for independent 

samples where normality assumption is violated. 

 

Depending on the results presented in Table 12, the following conclusions can be 

drawn: 

 

 



63 
 

Table 12. Average CPU times of methods for different sample size and scale 

Features of Data 
Methods 

FMARS S-FMARS 

Sample 

Size 

Medium 19.1 2.9 

Large 559.2 101.3 

Percent Difference (%) 97 97 

Scale 

Small 383.5 58.0 

Large 194.8 46.1 

Percent Difference (%) 49.2 20.4 

 

 

 

 Two methods are more efficient for medium-sized datasets than large-sized 

ones. The difference between the average CPU times of methods obtained for 

medium-sized and large-sized datasets are found significant by Mann-

Whitney test (p-values=0.0051). Additionally, S-FMARS performs better 

than FMARS method on both medium and large datasets. S-FMARS reduces 

the CPU times by 97 % from medium-sized data to large-sized ones.   

 It is interesting that the effect of scale on CPU time seems quite the opposite 

of sample size. When the number of predictor variable is increases, the CPU 

time decreases. This may be due to the fact that there is an interaction effect 

between sample size and scales. Nevertheless, CPU times of S-FMARS 

method are less than that of FMARS for both small-scaled and large-scaled 

datasets.  In addition, the difference between CPU times between two types 

of data are not statistically significant according to Mann-Whitney test (p-

values=0.4712). 

 

Due to the significant three-way interaction effects including sample size, scale and 

methods, a typical pattern for the CPU times of the methods is hard to detect. 

Nevertheless, interaction plots in Figure 19 can be helpful for determining the best 

size-scale combination for a method in relation with CPU time. To exemplify, with 

respect to CPU time, two methods are more efficient on medium-sized training 
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samples regardless of scale. However, for large sample sizes, the largest CPU times 

are observed for small-scaled datasets for both methods.   

 

 

 

 

Figure 19.Interaction plots of size and scale for the CPU times for FMARS and S-

FMARS methods. 

 

 

4.3.3. Performance on Noisy Data 

 

In this section, to see the effect of noise on performance of both methods, two 

simulation studies are carried out.  

 

4.3.3.1 Noisy Data 1 (Dataset 9) 

 

Using the sinus function two data sets are generated with and without noise with 100 

observations (see Figure 20). Two methods are fitted to them and then the accuracy 

and complexity measures are calculated (see Table 13). The performance measures 

of models obtained for noise-free data are given in the first row of Table 13. The 

other rows are related with noise data, and the measures correspond to the fits 

obtained for different Mmax values. The main reason of analyzing the performance of 

methods for different number of Mmax values on noisy data is to observe the 
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sensitivity of methods against noise. Moreover, to measure the sensitivity of the 

model fits to noisy data, noise-free data is used as a test data, and the performance 

measures are calculated using the fitted values obtained for the noisy data and the 

noise-free data points (Table 13). 

 

 

 

Figure 20. Sinus function with and without noise. 

 

 

Table 13. Performances of FMARS and S-FMARS on noisy data 1. 

 
Mmax 

BFfinal 
Datasets 

RMSE Adj-R
2
 

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS 

Noise-free data ≥20 19 19 Raw 0.012* 0.014 0.999 0.999 

Noisy data 

20 20 19 
Train 0.228* 0.243 0.881* 0.866 

Test 0.122 0.078 0.962 0.985 

30 30 19 
Train 0.216* 0.243 0.877* 0.866 

Test 0.139 0.078 0.944 0.985 

40 40 19 
Train 0.201* 0.243 0.877* 0.866 

Test 0.161 0.078 0.915 0.985 

60 60 19 
Train 0.145* 0.243 0.867* 0.866 

Test 0.212 0.078 0.782 0.985 

  Note: * indicates better performance. 
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According to the results displayed in Tables 13, the following conclusions can be 

drawn: 

 

 For noise-free data, both methods use 19 BFs in the final model although 

Mmax are set to 30. The accuracy and complexity measures of both methods 

are very close to each other (Table 13, the first row).  

 In noisy data, S-FMARS builds its best models with 19 BFs for all Mmax 

settings. However, FMARS builds more complex models as Mmax value 

increase to rise up the model accuracy. This shows that FMARS is more 

sensitive to the noise than S-FMARS and tries to model the noise.  

 Table 13 exposes that the fits obtained by FMARS is more sensitive to noise 

than S-FMARS. Although the model fits obtained by FMARS is more 

accurate on noisy data, and gets better as the Mmax value increases, its 

performance on noise-free data gets worse as the model become complex. S-

FMARS can provide a less sensitive model to noise by building a less 

complex model for noise data. The sensitivity of both fits on noisy data is 

illustrated in Figure 21. As it is seen that while FMARS prone to model the 

noise for the predictor values, especially for the interval [-2, 1] in x-axis, S-

FMARS tries to fit a noise-free data. 

 

4.3.3.2 Noisy Data 2 (Dataset 10) 

 

In this analysis, another noisy data is created using the following function:  

 

                             ,775.0)( 2121

2

2

2

1 xxxxxxf x                                       (37) 

 

where 1x  and 2x  are assumed to have Uniform (-10, 10) distribution. This data refers 

to noisy-free data. To obtain noisy data, normally distributed noise ε having zero 

mean is added to the response, )(xf . Here, the variance of the noise is assumed to be 
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1/100 of the variance of )(xf  in (37). When -5 ≤ 1x , 2x  ≤ 5, however, the variance of 

the noise is assumed to be 1254.9/100=12.55 (Jin et al., 2001).  

 

 

 

 
Figure 21.. Fitted models for sinus function with noise. 

 

 

Two training data sets are created as described above with and without noise. Similar 

to the analysis mentioned in the previous section, two methods are applied to noise 

free data with 10 maximum numbers of BFs (Mmax), and with various Mmax values to 

noisy data. Again, the reason of building FMARS and S-FMARS models with 

various Mmax values is to observe the sensitivity of methods to noise. In addition, a 

test data is generated using the function in (37) and the same measures are calculated. 

The results are given in Table 14. To observe the sensitivity of model fits, again the 

measures are recalculated for training and test data sets using the fitted values 

obtained for noisy data and noise-free data points instead of noisy ones.  
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Table 14. Performances of FMARS and S-FMARS on noisy data 2. 

Data Data sets Mmax 
BFfinal RMSE Adj-R

2
 

FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS 

Noise-free  

data 

Train 10 7 9 0.69* 0.75 0.999 0.999 

Test 10 7 9 1.06* 1.08 0.999 0.999 

Noisy data 

Train 9 9 9 7.27 7.22* 0.992  0.992  

Test 9 9 9 8.63 8.03* 0.990 0.990 

Train 10 10 10 7.14 7.07* 0.992  0.992  

Test 10 10 10 9.88 8.70* 0.987 0.990* 

Train 20 20 10 6.33* 7.07   0.993*  0.992  

Test 20 20 10 11.82 8.70* 0.976 0.990* 

Train 30 30 10 5.61* 7.07 0.993 * 0.992  

Test 30 30 10 16.92 8.70* 0.947 0.990* 

Train 60 55 10 3.93* 7.07 0.995 * 0.992  

Test 60 55 10 30.39 8.70* 0.795 0.990* 

Noisy fit  

vs  

noise-free data 

Train 9 9 9 2.67* 2.58 0.999 0.999 

Test 9 9 9 3.93 2.29* 0.999 0.999 

Train 10 10 10 2.72* 2.84 0.999 0.999 

Test 10 10 10 6.31 3.66* 0.994 0.999* 

Train 20 20 10 4.22 2.84* 0.997 0.999* 

Test 20 20 10 8.89 3.66* 0.986 0.999* 

Train 30 30 10 5.17 2.84* 0.994 0.999* 

Test 30 30 10 15.05 3.66* 0.957 0.999* 

Train 60 55 10 6.55 2.84* 0.987 0.999* 

Test 60 55 10 29.41 3.66* 0.811 0.999* 

       Note: * indicates better performance. 

 

 

 

Based on the result of analysis mentioned above, the following conclusions can be 

stated: 

 

 FMARS performs slightly better on noise-free data, and its model is less 

complex than S-FMARS.  

  On noisy data, when the Mmax value is set to large values (Mmax>10), FMARS 

performs better than S-FMARS for training data by building more complex 
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models (models with large number of BFs). However its prediction 

performance gets worse as the Mmax value increase.  

 On training data with noise, S-FMARS performs better for small Mmax values. 

But, the accuracy of models gets worse as the Mmax increase.   

 For all cases, S-FMARS overperfoms FMARS on test data.  

 S-FMARS provides a closer fit to noise-free data by the fits obtained for 

noisy data. Hence, S-FMARS fits is less sensitive to noise than FMARS. 

 

4.4. Comparison Study 2 

 

The CPU of MARS is affected from various parameters such as predefined 

maximum number of BFs (Mmax), stopping criteria defined for the difference between 

two consecutive LOF in (26), degree of interactions and the number of candidate 

knot points. This paper proposes a new approach to decrease the computational 

complexity of MARS by restricting the candidate knot points to a small subset of 

data points by a mapping approach. In the literature, some other knot restriction 

algorithms are proposed not mainly to decrease the computing time, but to decrease 

the local variability. However, these approaches still provide less computing time 

than MARS algorithm. Use of equally-spaced knot locations, use of predefined knot 

locations or setting an interval value or minimum value for the number of data points 

between two adjacent knots in the ascending order of predictor-axis (MinSpan) are 

some of these approaches. Since the MinSpan method described in Section 2.1.1 is a 

data-adaptive approach and more effective than the other methods, S-FMARS is 

compared with the MinSpan approach to demonstrate their computing efficiency and 

model accuracy. In this section, model performances and efficiencies of S-FMARS 

and MinSpan approach is compared via the performance measures mentioned in 

Chapter 4.1.3. 
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4.4.1. Artificial Datasets 

 

For each approach, the same number of interaction terms (Int.) is used in model 

building, and the models are allowed to grow up to the same preset number of BFs 

(Mmax) which is 100 for all cases. The accuracy measures of models calculated for 

training data and the corresponding CPU time required for modeling of each training 

dataset are given in Table 15, as well as the number of BFs in the final model 

(BFfinal). 

 

As mentioned in the comparison study of FMARS and S-FMARS, the number of BF 

in the final model denotes the complexity of the model. As a result of this analysis, 

again two models have similar complexity for almost all models. The accuracy 

measures calculated for each method seem close to each other in Table 15. For five 

data sets (one, four, five, six and eight), S-FMARS performs better than FMARS 

with respect to RMSE. For four data sets, S-FMARS overperforms FMARS with 

respect to complexity measure (GCV). The prediction performances of both methods 

and their stabilities of measures are compared via RMSE and Adj-R
2
 measures in 

Table 16. MinSpan performs better in Datasets two and three in terms of RMSE. For 

the other problems, however, prediction capability of models obtained with S-

FMARS approach is higher than MinSpan. Additionally, S-FMARS produces 

slightly stable models than does the MinSpan for datasets one, two and eight in terms 

of RMSE.  

 

The models are compared with respect to time efficiency via CPU times given in the 

last column of Table 15. Although MinSpan decreases the CPU time of MARS 

algorithm significantly, S-FMARS is still more efficient than MinSpan for all 

datasets. As it is seen in Table 15, the most significant decreases are observed for 

datasets six and eight, which are 90 %, while the least one is observed for dataset 

three as 17%. Moreover, the models of S-FMARS models can compete with the 

models of MinSpan with respect to accuracy. 
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Table 15. Performances of MinSpan and S-FMARS on the train data. 

Datasets Methods Int. BFm RMSE Adj-R
2
 GCV 

CPU 

 Time (sec.) 

Decrease 

in CPU 

time (%) 

1 
MinSpan 

4 
100 1173.1 0.975 2453059.2 976.7 

68  
S-FMARS 100 1089.1* 0.976* 2114441.0* 311.8* 

2 
MinSpan 

1 
45 4244.4* 0.999 21707171.5* 9.8 

23  
S-FMARS 43 4359.8 0.999 22703916.0 7.5* 

3 
MinSpan 

2 
47 23.5* 0.999 706.7* 278.5 

17  
S-FMARS 47 24.0 0.999 740.1 231.1* 

4 
MinSpan 

2 
77 0.026 0.998 0.001 2509.0 

60  
S-FMARS 81 0.025* 0.998 0.001 999.7* 

5 
MinSpan 

2 
43 515.2 0.999 271143.1 1308.7 

61  
S-FMARS 45 514.2* 0.999 270354.0* 516.8* 

6 
MinSpan 

2 
23 2.969 1.000 8.912 487.7 

90  
S-FMARS 23 2.892* 0.999 8.456* 51.0* 

7 
MinSpan 

4 
100 0.030 0.992* 0.002 3311.4 

94  
S-FMARS 100 0.030 0.991 0.002 186.7* 

8 
MinSpan 

2 
83 0.154 0.998 0.025 4784.9 

90  
S-FMARS 78 0.151* 0.998 0.024* 484.7* 

 

 

 

Table 16. Performances of MinSpan and S-FMARS on the test data and stability. 

  Performance on TEST dataset STABILITY 

Datasets 

RMSE Adj-R
2
 RMSE Adj-R

2
 

MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS 

1 1258.4 1126.7* 0.959 0.959 0.932 0.967* 0.984* 0.983 

2 3489.5* 3834.1 0.999 0.999 0.822 0.879* 1 1 

3 22.750* 23.1 0.999 0.999 0.968* 0.963 1 1 

4 0.026 0.026 0.998 0.998 1.000* 0.962 1 1 

5 539.2 529.7* 0.999 0.999 0.973* 0.971 1 1 

6 2.980 2.869* 0.999 0.999 0.996* 0.992 1 1 

7 0.028 0.028 0.986 0.986 0.933 0.933 0.994 0.995* 

8 0.154 0.151* 0.998 0.998 0.999 1.000* 1 1 

Note: * indicates better performance. 
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4.4.2. Real Datasets 

 

Two methods are also compared on real life datasets presented in Table 17. Again, 3-

fold and three times replicated cross validation approach is used to validate the 

performance of the methods and the averages of the corresponding nine performance 

measures are listed for each method in Table 17. Algorithms are run for different 

Mmax values presented in the 3
th

 column of Table 17. As it is seen that both methods 

use the same number of BFs in the final model which is equal to Mmax.  

 

In order to test whether or not the accuracy and prediction performances of two 

methods are statistically different, one-sample sign test is applied to measures 

obtained for train and test data sets in addition to the stabilities of the measures. In 

order to evaluate the overall performances of methods, mean and standard deviation 

of all accuracy and complexity measures are given in Table 19 for train and test 

datasets as well as stabilities of measures. Here, standard deviation is used for 

indicating the robustness of the methods.  

 

 

 

Table 17. Average performances of MinSpan and S-FMARS on the train data. 

Datasets Methods Mmax RMSE Adj-R
2
 GCV 

CPU 

Time (sec.) 

Decrease 

in CPU 

time (%) 

AutoMpg 
MinSpan 

100 
2.022* 0.935* 77.38* 4.9 

33  
S-FMARS 2.184 0.878 90.42 3.3* 

Com.Crime 
MinSpan 

150 
0.392* 0.842* 0.673* 133.6 

53  
S-FMARS 0.412 0.766 0.800 62.7* 

Conc.Comp. 
MinSpan 

100 
0.203 0.958* 0.101 303.6 

44  
S-FMARS 0.202* 0.952 0.100* 168.5* 

Parkinsons 
MinSpan 

50 
0.325* 0.900* 0.190* 11.5 

73  
S-FMARS 0.347 0.864 0.194 3.1* 

PM10 
MinSpan 

50 
0.653* 0.581* 0.856* 3.1 

29  
S-FMARS 0.665 0.477 0.911 2.2* 

Redwine 
MinSpan 

90 
0.637* 0.596* 0.603* 338.9 

79  
S-FMARS 0.672 0.513 0.665 72. 7* 

             Note: * indicates better performance. 
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Table 18. Average performances of MinSpan and S-FMARS on test data and 

stability. 

 

Datasets 

TEST STABILITY 

RMSE Adj-R
2
 RMSE Adj-R

2
 

MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS MinSpan S-FMARS 

Auto Mpg 2.642 2.934* 0.869* 0.845 0.765* 0.744 0.929 0.962* 

Com. Crime 0.710 0.681* 0.563 0.569* 0.552 0.731* 0.669 0.743* 

Conc.Comp. 0.500 0.459* 0.803 0.816* 0.406 0.440* 0.838 0.857* 

Parkinson 0.470 0.685 0.746* 0.683 0.692* 0.507 0.829* 0.791 

PM10 0.893 0.808* 0.286 0.369* 0.731 0.823* 0.493 0.774* 

Red Wine 0.940 0.937* 0.245 0.251* 0.677 0.717* 0.411 0.489* 

       Note: * indicates better performance. 

 

 

 

Table 19. Overall performances of MinSpan and S-FMARS methods. 

Methods 
TRAIN TEST STABILITY 

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2
 

MinSpan 
0.705* 

(0.669**) 

0.802 

(0.170**) 

13.301* 

(31.394**) 

1.026* 

(0.815**) 

0.585* 

(0.268) 

0.637 

(0.134**) 

0.695 

(0.208) 

S-FMARS 
0.747 

(0.728) 

0.742* 

(0.200) 

15.515 

(36.697) 

1.084 

(0.920) 

0.589 

(0.240**) 

0.660* 

(0.151) 

0.769* 

(0.158**) 

       Notes: * Indicates better performance with respect to mean. ** Indicate better performance with     

       respect to standard deviation. 

 

 

 

Depending on the results presented in Table 17, Table 18 and Table 19, the following 

conclusions can be drawn: 

 

 MinSpan performs better than S-FMARS for all data sets except the Concrete 

Compress data with respect to accuracy and complexity measures. However, 

according to one-sample sign test, the accuracy of S-FMARS model is not 

statistically different than that of FMARS considering all performance 

measures (p-value>0.05).  
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 On new observations, S-FMARS performs better than MinSpan for all data 

sets except Parkinsons with respect to both RMSE and Adj-R
2
.  

 The prediction performance on the test data and stability of the models results 

for both methods are displayed in Table 18. The performance of models 

obtained by S-FMARS is slightly better than the performance of models 

produced by MinSpan with respect to prediction capability and stability for 

all datasets except Parkinsons data. 

 In most of the data sets, S-FMARS is more stable than MinSpan with respect 

to all measures. 

 The overall accuracy and prediction performances of MinSpan models are 

better than S-FMARS models.  

 In the overall, S-FMARS is more stable than MinSpan with respect to all of 

the measures.  

 The differences between the CPU times of S-FMARS and Minspan are not as 

much as the differences between S-FMARS and FMARS. However, S-

FMARS is again more efficient than MinSpan for all data sets. As it is seen in 

Table 16, the most significant decrease is observed for Red Wine, which is 79 

%, while the least decrease is observed for PM10 as 29 %.  

 

To observe the effects of sample size and scales on CPU time, the average CPU 

times of methods obtained for medium/large-sized and small/large-scaled datasets 

are given in Table 20. Additionally, the significance of differences between the 

average CPU times of methods obtained for two types of data classified with respect 

to scale and sample size are tested by using Mann-Whitney test. Depending on the 

results presented in Table 20, the following conclusions can be drawn: 

 

 Two methods are more efficient for medium-sized datasets than large-sized 

ones. The difference between the average CPU times of methods obtained for 

medium-sized and large-sized datasets are found significant by Mann-

Whitney test (p=0.0051). Additionally, S-FMARS performs better than 
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FMARS method on both medium and large datasets. However, both methods 

provide approximately the same percent decrease in CPU times from 

medium-sized data to large-sized ones, which are more than 95%. 

 MinSpan is more efficient on small-scaled data than large-scaled ones, while 

it is quite opposite for S-FMARS approach. When the number of predictor 

variable is increases, the CPU time of S-FMARS decreases. This may 

indicates the existence of is an interaction effect between sample size and 

scales. Nonetheless, CPU times of S-FMARS method are less than that of 

Minspan for both small-scaled and large-scaled datasets.  In addition, the 

difference between CPU times between two types of data are not statistically 

significant according to Mann-Whitney test (p=0.4233). 

 

 

 

Table 20. Average CPU times of methods for different sample size and scale 

Features of Data 
Methods 

MinSpan F-SMARS 

Sample 

Size 

Medium 6.5 2.9 

Large 258.7 101.3 

Percent Difference (%) 98 97 

Scale 

Small 103.9 58.0 

Large 161.3 46.2 

Percent Difference (%) 35.6 20.4 

 

 

 

In order to determine the best size-scale combination for two methods in relation 

with CPU time, three-way interactions effects including sample size, scale and 

methods are displayed in Figure 22. As it is seen in Figure 22, both methods are 

more efficient on medium-sized training samples regardless of scale with respect to 

CPU time. However, for large sample sizes, the largest CPU times are observed for 
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small-scaled datasets for both methods. Moreover, the effect of scale seems more 

significant on large-sized datasets for S-FMARS method.  

 

 

 

Figure 22.Interaction plots of size and scale for the CPU times for MinSpan and S-

FMARS methods. 

 

 

4.5. Comparison Study 3 

 

As in MARS algorithm, many adaptive regression splines include a backward 

elimination step to determine the optimum number of terms in the final model so that 

the overfitting problem caused by the forward step can be prevented. The same 

strategy can also be implemented to S-FMARS. Since S-FMARS method is consist 

of forward selection strategy, a model deliberately overfitting the underlying function 

with a large number of BFs is obtained. On the other hand, S-FMARS is a time 

efficient forward selection method by which a multivariate regression spline models 

can be obtained in less time. When it is compared with the forward step of MARS 

algorithm with and without MinSpan approach, it is observed that S-FMARS method 

is much more efficient in time than the other methods. Therefore, it can be offered as 

an alternative to the forward step of adaptive regression splines in which data points 

are searched for the proper knot locations.  
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In addition to MARS algorithm, S-FMARS can also be implemented to CMARS 

algorithm to make it efficient in time. CMARS is a modified version of MARS 

algorithm in which instead of backward elimination step, a penalized residual sum of 

squares is used, and solved with CQP. However, they are based on the same forward 

selection strategy and use the same BFs for the second part. That is, CMARS applies 

its penalization strategy to the BFs obtained from the forward part of MARS. As 

stated in the study of Weber et al (2012), the only drawback of CMARS method is its 

high computational run times. In that study, performance of CMARS is compared 

with MARS algorithm and stated that CMARS is not as efficient MARS. Since 

CMARS decrease the complexity of the model by applying a penalized residual sum 

of squares and solves it by CQP, the method becomes computationally expensive. 

For this reason, S-FMARS which is proposed as a revised version of forward step of 

MARS algorithm can be implemented to improve the CMARS algorithm to reduce 

its computational run time.  

 

In this study, S-FMARS method is applied to MARS and CMARS algorithm to 

improve them by reducing their computational run times. Implementation of S-

FMARS to MARS algorithm is straight forward. The backward strategy of MARS 

algorithm is applied to the models obtained by S-FMARS (The algorithm of S-

FMARS is given in Chapter 4.3). The resulting method is called SMARS.  

 

The S-FMARS algorithm is combined with CMARS methods with the following 

steps given in Figure 23. The new method is called S-CMARS. The performances of 

the S-CMARS, SMARS are evaluated and compared with MARS, MARS with 

MinSpan approach and CMARS in the following subsections. 
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Step 1:  A S-FMARS method is constructed and the best parameter values of   

              S-FMARS methods are determined for the underlying dataset. 

Step 2: The set of BFs are obtained by applying S-FMARS method with best  

              parameter values obtained in Step 1. 

Step 3: A CMARS Model is constructed for the BFs obtained in Step 2, and the  

             optimal value of bound Z  in (18) is found. To achieve this, the curve of             

             RSS versus norm of L  in the log-log scale is obtained (see Figure 24).   

              The optimal value of this curve is the corner point which is demonstrated by  

              a red point. The selected value gives the best solution for both accuracy and  

              complexity.  

Step 4: CMARS is rerun for the optimal value of Z , and the final model is 

obtained. 

Figure 23. Algorithm of S-CMARS method. 

 

 

 

 

Figure 24. The plot of norm L  versus RSS . 

 

S1     S2         

    S2 
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4.5.1. Artificial Datasets 

 

Five adaptive regression methods are evaluated and compared for all artificial 

datasets with respect to RMSE, Adj-R
2
, GCV and CPU time calculated for training 

and test data sets. The stabilities of the measures are also calculated. The maximum 

number of BFs is set to 100 for all datasets. The same number of interaction terms is 

used for all datasets mentioned. The measures obtained for all artificial datasets are 

given in Table 21. The order of the measures calculated for each dataset is different 

for some datasets. This is because of the fact that the mean of datasets are in different 

orders. Because of this reason, the methods cannot be compared on the average. The 

performance of methods are evaluated and compared separately for each datasets. 

Depending on the results presented in Table 21 and Table 22, the following 

conclusions can be stated: 

 

 

 

Table 21. Average performances of methods on train data. 

Datasets Methods BFfinal RMSE Adj-R
2
 GCV 

CPU 

Time 

( sec.) 

1 

MARS 69 1103.8* 0.976* 1772987.9* 6022.21 

MinSpan 76 1196.5 0.972 2173914.8 2000.39 

SMARS 70 1135.5 0.975 1887498.7 317.86* 

CMARS 101 5928.1 0.293 2013650.0 6320.33 

S-CMARS 101 5617.7 0.429 2114441.3 424.55 

2 

MARS 27 4271.9 0.999* 20348729.4 75.04 

MinSpan 27 4248.1* 0.999* 20122417.8* 14.33 

SMARS 24 5975.6 0.998 39317130.7 5.54* 

CMARS 43 4271.8 0.999* 21796916.8 75.52 

S-CMARS 41 5993.2 0.998 42147837.8 7.44 

3 

MARS 35 24.1* 0.999 693.4 3210.70 

MinSpan 35 23.5 0.999 661.6* 411.79 

SMARS 33 28.1 0.999 937.1 116.71* 

CMARS 47 24.1* 0.999 740.5 3191.42 

S-CMARS 43 28.1 0.999 990.2 124.14 
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Table21. Cont. 

Datasets Methods BFfinal RMSE Adj-R
2
 GCV 

CPU 

Time 

( sec.) 

4 

MARS 49 0.023* 0.998 0.001 295.99 

MinSpan 46 0.026 0.998 0.001 84.45 

SMARS 52 0.025 0.998 0.001 33.54* 

CMARS 87 0.023* 0.998 0.001 548.58 

S-CMARS 95 0.025 0.998 0.001 67.99 

5 

MARS 32 467.6* 0.999* 257450.5 129.37 

MinSpan 27 524.1 0.999* 314813.2 30.97 

SMARS 33 467.4* 0.999* 222016.0* 184.76 

CMARS 45 1031.7 0.997 276350.1 219.45 

S-CMARS 41 1044.3 0.997 286406.0 17.33* 

6 

MARS 14 3.2 1.000* 10.6 60.14 

MinSpan 14 3.1* 1.000* 10.3* 10.06 

SMARS 15 3.4 1.000* 12.4 4.37* 

CMARS 21 176.1 0.533 11.0 60.71 

S-CMARS 21 176.7 0.529 12.8 6.50 

7 

MARS 80 0.029* 0.992* 0.001 5952.52 

MinSpan 78 0.031 0.991 0.001 1043.46 

SMARS 77 0.030 0.991 0.001 360.44 

CMARS 101 0.030 0.991 0.001 3378.96 

S-CMARS 101 0.030 0.992* 0.002 258.61* 

8 

MARS 44 0.162 0.998* 0.033* 491.63 

MinSpan 48 0.165 0.998* 0.035 95.68 

SMARS 43 0.185 0.997 0.043 30.59 

CMARS 75 0.160* 0.998* 0.039 481.90 

S-CMARS 73 0.185 0.997 0.051 28.53* 

 

 

 The number of BFs in the final model gives information about the complexity 

of the final model. For all datasets, CMARS and S-CMARS models seem to 

include the maximum number of BFs provided by the forward selection part. 

This property is stated as a disadvantage of the method in the study of Weber 

et. al. (2012), which is still valid for the S-CMARS method. However,  

MARS do no remove the BFs even if they have approximately zero 

coefficients (Yerlikaya, 2008).  
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 For training and test data sets one, five and six, MARS, MinSpan and 

SMARS perform better than CMARS and S-CMARS with respect to RMSE 

and Ajd-R
2
. Although SMARS and S-CMARS methods are based on the 

same forward selection algorithm (S-FMARS), their accuracy performances 

are also different.  

 For training and test data sets two and eight, MARS, MinSpan and SMARS 

slightly overperfoms CMARS and S-CMARS. This result attributed to the 

mapping approach; during the mapping, the underlying data structure may not 

be approximated properly. Hence, important knot points can be ignored. 

 With respect to stability, SMARS is more stable than the other methods for 

data sets one, two and three. For problem three, S-CMARS is as stable as 

SMARS method, as well as for the data set seven. While MinSpan is more 

stable than other methods for data sets four and eight, stable models are 

obtained by CMARS and MARS  for data sets five and six, respectively. 

 Run times are related to the sample size, number of predictors, number of 

interaction terms and maximum number of BFs set by the user. Since the 

same parameter values are set for all methods, efficiency of methods can be 

compared for each dataset separately. For all training datasets, the most 

efficient method is SMARS which is then followed by S-CMARS. The CPU 

time required for model building is much more less in these methods than the 

CPU times of other methods. The MinSpan approach also decreases the CPU 

time of MARS algorithm significantly.  

 

 

Table 22. Average performance of methods on test data and stabilities. 

 

Datasets 

 

Methods 

TEST STABILITY 

RMSE Adj-R
2
 RMSE Adj-R

2
 

1 

MARS 1147.4 0.978 0.962 0.998 

MinSpan 1291.3 0.973 0.927 0.999 

SMARS 1153.5 0.978 0.984 0.997 

CMARS 6526.8 0.298 0.908 0.985 

S-CMARS 6079.7 0.390 0.924 0.910 
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Table22. Cont. 

 

Datasets 

 

Methods 

TEST STABILITY 

RMSE Adj-R
2
 RMSE Adj-R

2
 

2 

MARS 3849.4 0.999 0.901 1.000 

MinSpan 3475.7 1.000 0.818 1.000 

SMARS 5722.6 0.999 0.958 1.000 

CMARS 3849.5 0.999 0.901 1.000 

S-CMARS 5703.4 0.999 0.952 1.000 

3 

MARS 23.1 0.999 0.959 1.000 

MinSpan 22.7 0.999 0.965 1.000 

SMARS 27.7 0.999 0.986 1.000 

CMARS 23.0 0.999 0.956 1.000 

S-CMARS 27.7 0.999 0.986 1.000 

4 

MARS 0.026 0.998 0.872 0.999 

MinSpan 0.027 0.998 0.984 1.000 

SMARS 0.026 0.998 0.960 1.000 

CMARS 0.026 0.998 0.866 1.000 

S-CMARS 0.027 0.998 0.943 1.000 

5 

MARS 441.1 0.999 0.943 1.000 

MinSpan 491.9 0.999 0.939 1.000 

SMARS 481.9 1.000 0.970 1.000 

CMARS 1023.7 0.997 0.992 1.000 

S-CMARS 944.6 0.998 0.905 0.999 

6 

MARS 3.3 1.000 0.957 1.000 

MinSpan 3.3 1.000 0.940 1.000 

SMARS 3.2 1.000 0.937 1.000 

CMARS 193.6 0.526 0.910 0.987 

S-CMARS 194.4 0.521 0.909 0.985 

7 

MARS 0.028 0.993 0.990 0.999 

MinSpan 0.029 0.993 0.935 0.998 

SMARS 0.029 0.993 0.957 0.998 

CMARS 0.030 0.992 0.994 0.999 

S-CMARS 0.030 0.992 1.000 1.000 

8 

MARS 0.189 0.997 0.854 0.999 

MinSpan 0.172 0.998 0.959 1.000 

SMARS 0.200 0.997 0.926 1.000 

CMARS 0.189 0.997 0.849 0.999 

S-CMARS 0.200 0.997 0.925 1.000 
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4.5.2. Real Datasets 

 

Five methods are evaluated and compared for six real datasets with different sizes 

and scales (Table 1). Different maximum number of BF is set for each data set 

(Table 23), but the same number of interaction terms is used by the methods within 

each data set. The average of measures obtained for 3-folds and three replications of 

each train datasets are given in Table 23. The results obtained for test datasets are 

given in Table 24. 

 

Since the data sets are standardized before the application, it becomes possible to 

compare the overall averages of measures calculated for each method. Then, the 

mean and standard deviation values of all accuracy measures obtained for training 

and test dataset are given in Table 25 as well as those of the stability of the measures 

for evaluating the overall performances of methods. In order to compare the 

performance of methods statistically, RANOVA is performed. The test results is 

evaluated at α=0.05 significance level. This test procedure is applied for training and 

test datasets, as well as stabilities of the measures.  

 

Depending on the results presented in Tables 23, 24 and 25, the following 

conclusions can be drawn: 

 

 Due to the number of BFs in the final model, the models built by CMARS 

and S-CMARS for training data seem more complex than the other methods. 

 The accuracy measures of methods are close to each other for training data 

sets except the Com.Crime training data. For this data set, MARS, MinSpan 

and SMARS overperforms CMARS and S-CMARS.  

 With respect to RMSE measure, CMARS performs better than the other 

methods. With respect to Adj-R
2
 and GCV values, however, MARS shows 

better performance. 
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Table 23. Average performances of methods on train data. 

Datasets Methods BFfinal 
Measures 

RMSE Adj-R
2
 GCV 

CPU 

Time (sec.) 

Com.Crime 

MARS 59 0.405* 0.824* 0.257* 250.44 

MinSpan 46 0.446 0.790 0.277 234.77 

SMARS 36 0.475 0.765 0.292 137.50* 

CMARS 151 0.527 0.665 0.588 413.35 

S-CMARS 151 0.519 0.674 0.739 196.73 

Con.Comp. 

MARS 60 0.220 0.948* 0.079* 873.97 

MinSpan 61 0.221 0.948* 0.080 338.56 

SMARS 60 0.228 0.944 0.087 156.20 

CMARS 101 0.216* 0.948* 0.107 871.18 

S-CMARS 101 0.235 0.938 0.117 153.71* 

Parkinsons 

MARS 25 0.347 0.877* 0.158* 62.24 

MinSpan 23 0.354 0.872 0.161 12.25 

SMARS 30 0.373 0.857 0.169 6.70* 

CMARS 51 0.345* 0.872 0.200 80.42 

S-CMARS 51 0.354 0.866 0.219 31.25 

AuoMpg 

MARS 26 2.157 0.917* 7.235* 24.84 

MinSpan 19 2.435 0.897 8.100 11.90 

SMARS 13 2.555 0.888 8.039 10.51* 

CMARS 101 2.154* 0.897 64.266 27.53 

S-CMARS 101 2.229 0.890 90.690 10.83 

PM10 

MARS 24 0.671 0.541* 0.602* 12.43 

MinSpan 21 0.688 0.520 0.612 3.96 

SMARS 20 0.696 0.510 0.618 3.35* 

CMARS 51 0.665* 0.522 0.853 16.28 

S-CMARS 51 0.670 0.514 0.895 6.92 

Red Wine 

MARS 43 0.678 0.531 0.567 770.12 

MinSpan 44 0.672* 0.538* 0.562* 406.91 

SMARS 37 0.686 0.521 0.563 187.31* 

CMARS 91 0.682 0.507 0.671 780.74 

S-CMARS 91 0.694 0.491 0.676 196.62 

                         Note: * indicates better performance. 
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Table 24. Average performances of methods on test data and stabilities. 

 

Datasets 

 

Methods 

TEST STABILITY 

RMSE Adj_R
2
 RMSE Adj_R

2
 

Com.Crime 

MARS 0.694 0.505 0.584 0.613 

MinSpan 0.637 0.582 0.700 0.737 

SMARS 0.637 0.584 0.746 0.764 

CMARS 0.563 0.676 0.936* 0.984 

S-CMARS 0.560* 0.678* 0.926 0.995* 

Con.Comp. 

MARS 0.347 0.877 0.633 0.925 

MinSpan 0.329* 0.892* 0.671* 0.941* 

SMARS 0.381 0.845 0.599 0.894 

CMARS 0.338 0.885 0.639 0.933 

S-CMARS 0.366 0.858 0.642 0.915 

Parkinsons 

MARS 0.481 0.745 0.721 0.849 

MinSpan 0.452* 0.780* 0.785 0.894 

SMARS 0.457 0.773 0.815* 0.903* 

CMARS 0.487 0.737 0.709 0.844 

S-CMARS 0.478 0.750 0.742 0.866 

AuoMpg 

MARS 3.311 0.780 0.651 0.850 

MinSpan 2.583 0.871* 0.943* 0.971* 

SMARS 2.725* 0.856 0.938 0.964 

CMARS 3.017 0.817 0.714 0.911 

S-CMARS 2.780 0.852 0.802 0.957 

PM10 

MARS 0.839 0.242 0.800 0.448 

MinSpan 0.847 0.229 0.813 0.440 

SMARS 0.794 0.322 0.877* 0.632 

CMARS 0.811 0.291 0.819 0.558 

S-CMARS 0.788* 0.332* 0.850 0.646* 

Red Wine 

MARS 0.908 0.161 0.746 0.302 

MinSpan 0.903 0.169 0.744 0.315 

SMARS 0.909 0.155 0.755 0.297 

CMARS 0.847* 0.267* 0.806* 0.526* 

S-CMARS 0.872 0.221 0.796 0.451 

                                Note: * indicates better performance. 
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Table 25. Overall performances of methods. 

Methods 
TRAIN TEST STABILITY 

RMSE Adj-R
2
 GCV RMSE Adj-R

2
 RMSE Adj-R

2
 

MARS 
0.746* 

(0.715**) 

0.773* 

(0.189) 

1.483* 

(2.826**) 

1.097 

(1.105) 

0.530* 

(0.308) 

0.689 

(0.080**) 

0.632 

(0.272) 

MinSpan 
0.803 

(0.820) 

0.761 

(0.187**) 

1.632 

(3.176) 

0.958* 

(0.826**) 

0.570 

(0.331) 

0.776 

(0.097) 

0.689 

(0.299) 

SMARS 
0.835 

(0.862) 

0.747 

(0.189) 

1.628 

(3.148) 

0.984 

(0.876) 

0.573 

(0.300) 

0.788* 

(0.118) 

0.718 

(0.263) 

CMARS 
0.765 

(0.704) 

0.735 

(0.196) 

11.114 

(26.040) 

1.010 

(1.002) 

0.563 

(0.282**) 

0.770 

(0.105) 

0.722 

(0.237**) 

S-CMARS 
0.784 

(0.730) 

0.729 

(0.197) 

15.556 

(36.809) 

0.974 

(0.905) 

0.569 

(0.286) 

0.793 

(0.096) 

0.733* 

(0.243) 

Notes: * Indicates better performance with respect to mean. ** Indicate better performance with 

respect to standard deviation. 

 

 

 

 CMARS and S-CMARS perform better than the other methods for 

Communities Crime test data, although their performances are worse than 

others for training data set. For the four test data, MinSpan performs better 

than the other methods with respect to RMSE and Adj-R
2
. While the 

performance of S-CMARS is better than the others for PM10 test data, 

CMARS overperforms others for Red Wine test data. 

 With respect to stabilities of RMSE values, CMARS produce more stable 

models for Communities Crime and Red Wine data. The models of SMARS 

built for Parkinsons and PM10 are more stable than the other models. For rest 

of the test data, MinSpan seems more stable. On the other hand, S-CMARS 

seems more stable for Communities Crime and PM10 with respect to Adj-R2 

values. Again, while MinSpan produce more stable models for Concrete 

Compression and AutoMpg, SMARS is more stable for Parkinsons.  

 RANOVA test results obtained for training and test data sets as well as 

stabilities of measures conclude that there are no cases where one method is 

statistically significantly better than the others with respect to RMSE, Adj-R
2
 

and GCV measures.  
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 SMARS seems the most efficient method with minimum CPU time. S-

CMARS comes the second. MinSpan is more efficient than MARS algorithm, 

but not as much as SMARS. 

 

To observe the effects of sample size and scales on CPU time, the average CPU 

times of methods obtained for the datasets classified with respect to scale and sample 

sizes as in Section 4.3.2 are given in Table 26.  

 

 

Table 26. Average CPU times of methods with respect to sample size 

Features of Data 
Methods 

MARS MinSpan SMARS CMARS S-CMARS 

Sample Size 

Medium 33.2 9.4 6.9 41.4 16.3 

Large 631.5 326.7 160.3 688.4 182.4 

Percent  

Decrease (%) 
95 97 96 94 91 

Scale 

Small 303.7 118.1 56.7 305.0 57.2 

Large 360.9 218.0 110.5 424.8 141.5 

Percent  

Decrease (%) 
16 46 49 28 60 

 

 

 

Additionally, the significance of differences between the average CPU times of 

methods obtained for two types of data classified with respect to scale and sample 

size are tested by using Mann-Whitney test. Depending on the results presented in 

Table 26, the following conclusions can be drawn: 

 

 All methods are more efficient for medium datasets than large ones. The 

difference between the average CPU times of methods obtained for medium 

and large datasets are found significant by Mann-Whitney test. Additionally, 

SMARS performs better than all other methods on both medium and large 

datasets. 



88 
 

 The most significant decrease in CPU time is observed for MinSpan approach 

between medium and large datasets.   

 The effect of scale on CPU time is not as significant as sample size. The most 

significant decrease is observed for S-CMARS method, which is 60 %.  

Although methods seem slightly efficient for small scaled data than the large 

scaled ones, the difference between CPU times between two types of data are 

not statistically significant according to Mann-Whitney test (p-value>0.05). 

 

Three-way interaction effects including sample size, scale and methods are examined 

through interaction plots displayed in Figure 25. for determining the best size-scale 

combination for a method in relation with CPU time. Figure 25 shows that all 

methods are more efficient on small scale and medium training samples with respect 

to CPU time. While the scale affects the performance of MARS, CMARS and S-

CMARS methods with respect to time efficiency, scale has no significant effect on 

CPU time of MinSpan and SMARS. In addition, for large training samples, MARS 

and CMARS are more efficient for large-scaled data than small-scaled ones.  

 

4.5.3. Performance on Noisy Data 

 

To evaluate the sensitivity of five methods on noisy data, the same data sets used in 

Section 4.3.3 are also used in this comparison study. Two data sets are generated 

with and without noise. For the first analysis, a sinus function is used. 

 

4.5.3.1. Noisy Data 1 

 

Finally, a simulation study is performed to see the effect of noise on performance of 

all methods. For this purpose, data having 100 observations are generated using the 

sinus function with and without noise. Five models are fitted to them, and both the 

accuracy and complexity measures are obtained as in Table 27. In addition, to 

measure the sensitivity of the fits to the noisy data, the performance measures are 
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recalculated using the fitted values obtained for noisy data, and noise-free data 

points. The conclusions drawn from the analysis for noisy data are given as follows: 

 

 

 

 

 

Figure 25. Interaction plots of size and scale for the CPU times for five methods. 
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 CMARS and S-CMARS built more complex models both noisy and noise-

free data. 

 CMARS and MARS methods overperform other methods on noisy data with 

respect to RMSE and Adj-R
2
 measures, respectively. They perform better on 

noise-free data as well. 

 The fit obtained by MinSpan for noisy data is able to predict the noise-free data 

well. Thus, it is less sensitive to noise than the other methods. 

 

Table 27. Average performance of methods on test noisy data. 

 
 

Methods 

Measures 

BFfinal RMSE Adj-R
2
 

Noise-free data 

MARS 11 0.012* 1.000 

MinSpan 10 0.015 0.999 

SMARS 11 0.014 1.000 

CMARS 19 0.012* 1.000 

S-CMARS 19 0.014 1.000 

Noisy data 

MARS 6 0.235 0.892* 

MinSpan 5 0.245 0.884 

SMARS 4 0.257 0.873 

CMARS 21 0.228* 0.879 

S-CMARS 19 0.243 0.866 

Noisy  

vs  

noise-free data 

MARS 6 0.084 0.984 

MinSpan 5 0.071* 0.989* 

SMARS 4 0.121 0.968 

CMARS 21 0.118 0.952 

S-CMARS 19 0.078 0.980 

                      Note: * indicates better performance 

 

 

 

4.5.3.2. Noisy Data 2 

 

A second simulation study is carried on using the function in (37), and a similar 

study is constructed for all methods as in the previous section. Namely, the 
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performances of models built by five methods are compared on noisy data with 

respect to accuracy and complexity measures (Table 28), and the sensitivity of fits on 

noisy data is revealed in Table. Additionally, a new test data is generated using the 

same function and the same measures are calculated to evaluate the prediction 

performances of fits for new observations.  

 

 

Table 28. Average performances of methods on noisy data. 

  

  

 

Methods 

Train Test 

BFfinal RMSE Adj-R
2
 RMSE Adj-R

2
 

Noise-free data 

MARS 7 0.691* 0.999 1.060 0.999 

MinSpan 7 1.012 0.999 2.964 0.999 

SMARS 8 0.754 0.999 1.081 0.999 

CMARS 7 0.692 0.999 3.579 0.999 

S-CMARS 9 0.754 0.999 1.081 0.999 

Noisy data 

MARS 8 6.961 0.992 8.398 0.989 

MinSpan 5 7.466 0.991 8.134* 0.990* 

SMARS 4 7.449 0.991 8.380 0.988 

CMARS 21 6.999 0.991 8.159 0.987 

S-CMARS 19 6.960* 0.993* 8.826 0.988 

Noisy  

vs  

noise-free data 

MARS 8 2.506 0.999 3.089 0.998 

MinSpan 5 2.666 0.999 2.646 0.999* 

SMARS 4 3.134 0.998 2.825 0.999* 

CMARS 21 2.321* 0.999 2.477* 0.998 

S-CMARS 19 2.908 0.998 3.921 0.996 

Note: * indicates better performance 

 

 

The analysis results can be summarized as follows: 

 

 MARS performs better on noise-free data with respect to accuracy and 

prediction capability. 

 S-CMARS performs better than other methods on noisy training data with 

respect to RMSE and Adj-R
2
.  
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 The prediction performance of MinSpan is better than other methods on noisy 

test data.  

 The CMARS fit obtained for noisy data can also predict the noise-free data 

better than the other methods. Hence, the sensitivity of SMARS to noisy data 

is less than the one of other methods.  
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CHAPTER 5 

 

 

CONCLUSION AND FURTHER RESEARCH 

 

 

 

In the spline smoothing, one of the critical issue is determining the proper knots, 

especially, for curves having varying shapes. In this study, we propose a two-stage 

knot selection procedure for adaptive regression splines. Firstly, a potential set of 

knots is selected by a mapping approach with the intension to locate points according 

to the data distribution. The final knot selection is then made by a stepwise model 

fitting algorithm. The combination of these two procedures, so called S-FMARS, is a 

modified forward selection step of MARS which provides a time efficient model 

building strategy for adaptive regression splines without degrading the model 

accuracy and prediction performance. 

 

In S-FMARS, two important parameters have special effects on model building and 

CPU time: grid size and threshold value set for the number of data points assigned to 

each of the map unit. As mentioned in Section 3.4, the grid size (number of neurons 

in the lattice) is as a trade-off between less computing time and a good 

approximation both in mapping and modeling. As the grid size increases, the 

approximation of underlying data structure become well, but the CPU time required 

for mapping and modeling increases. During the mapping, similar data points are 

grouped around the neurons having a neighborhood relation in the lattice. Among 

these neurons, while some units carry more data points, some others are just attained 

to one data point. The neurons assigned to less number of data points most probably 

represent outliers or sparse regions in the data space. By setting a threshold value for 

the number of data points assigned to one neuron, outliers and data points, where less 

data structure occurs can be eliminated. For better approximation and best subsetting 
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with more representative data points, a sensitivity analysis is studied for the best grid 

size and threshold value. In this sensitivity analysis, a measure (RMSE/TIME) is 

proposed to be used in the determination of best parameter values. By observing the 

change in this ratio value against different grid sizes and threshold values, the best 

grid size and the threshold value is determined.  

 

Once the parameters of the S-FMARS are found, the method can be applied to any 

datasets with continuous response. Especially for high-dimensional and large 

datasets, S-FMARS can be considered as a strong alternative to the conventional 

forward selection procedures in spline fitting. The performance of S-FMARS is 

evaluated and compared with the forward selection algorithm of MARS (FMARS) 

and also MinSpan with respect to accuracy, complexity, stability and robustness 

criteria via a set of artificial and real datasets. The analyses conclude that the 

performance of S-FMARS models is not statistically different from the models 

obtained by FMARS and MinSpan approaches with respect to all criteria. Moreover, 

it is obviously clear that the S-FMARS approach is much more efficient than the 

other methods. For noisy settings, the fit obtained by S-FMARS for noisy data can 

also approximate the noise-free data well. Hence, the S-FMARS fits seems to be less 

sensitive to noise than those of FMARS. 

 

The forward selection approach of regression splines builds a large model which 

deliberately overfits the data. This property is also valid for the proposed forward 

selection algorithm. In general approach, a backward elimination step is applied to 

prune the model comes from the forward step. In this strategy, contributions of 

model terms are evaluated through a complexity measure; MARS uses this strategy. 

In some studies, however, contributions of model terms are examined via a penalized 

term added to accuracy measure. In this strategy, parameter estimation is achieved 

through a PRSS; CMARS bases on this strategy. Based on two purposes, both the 

backward elimination strategy of MARS and the PRSS strategy of CMARS can be 

applied to S-FMARS. The first one is to eliminate the overfitting problem, and to 



95 
 

provide a complete adaptive regression spline method. The second one is to solve the 

main drawbacks of CMARS approach, which is being inefficient in time. CMARS 

construct PRSS problem as a Tikhonov regularization problem and solves it using a 

CQP, which make the method computationally expensive. In addition, the PRSS 

problem is based on the knot points selected among the data points by the forward 

step of MARS. During the knot selection process, as the number of data points is 

increased, more data points are evaluated as knot points, which leads to an increase 

in the computing time of CMARS, significantly. In this respect, S-FMARS can be a 

good alternative by selecting a representative data points to be evaluated as knots. In 

this thesis, the proposed forward selection algorithm is implemented to both the 

CMARS and MARS algorithms, which are named as S-CMARS and SMARS, 

respectively. Their performances are evaluated via many performance criteria and 

compared with MARS, MARS with MinSpan and CMARS methods. The results of 

the analysis indicate that SMARS and S-CMARS are obviously the most efficient 

two methods with respect to time. Their CPU times are significantly less than those 

of the other methods. Even CMARS is improved by the proposed forward selection 

algorithm as being more efficient than MARS. The performances of SMARS and S-

CMARS seem not to be as good as the other methods for some real datasets; 

however, the accuracy loss is small in absolute values compared to the run times. 

Moreover, RANOVA test results obtained for the real life data sets show that 

performances of SMARS and S-CMARS are not statistically significantly different 

from the other methods. Actually, for the real data sets under study, there are no 

cases where a method seems effective with respect to all performance measures. For 

artificial datasets, the performance measures of methods are evaluated within each 

data separately due to different problem scales. For some generated data the 

performance of SMARS and S-CMARS does not seem as good as the performances 

of the other methods. This may be resulted from the inadequate approximation of 

underlying data structure caused by mapping or the projection of weight vectors to 

original data points. The proper knot points could be ignored during the mapping or 

projection. To make the SMARS and S-CMARS methods more accurate, one has to 
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provide a good approximation of underlying data. Besides, for same cases, the reason 

of bad performances may not be rooted from mapping idea, but from the strategy 

behind the CMARS. Before the application of CMARS, the optimal value of the 

bound set in the optimization problem (18) should be found by investigating the 

corner points. In some cases, however, it is difficult to catch the corner points 

properly.  

 

The sensitivity of methods on noisy setting is also examined in the study. The 

analysis results show that CMARS and MinSpan seem to be less sensitive to noise 

than the other methods. MinSpan overperforms the other methods on noisy test data. 

In addition, MARS performs better than other methods on noise-free data with 

respect to accuracy and prediction capability.  

 

The models build by S-CMARS and CMARS are more complex than the models of 

other methods. As mentioned in Yerlikaya (2008), even though the BFs having 

coefficients zero or near to zero, they are remained in the final model of CMARS. 

Namely, the BFs contributing less to model are not removed. The same property is 

also valid for S-CMARS. In this respect, a bootstrapping strategy is proposed by 

Yazıcı (2011) to decrease the model complexity of CMARS. By a bootstrapping 

approach, the contribution of each BFs to the model can be determined by drawing 

bootstrap samples from the data sets, and computing the corresponding coefficients 

for each sample. Bootstrapping is a computer-intensive method due to its high 

dependence on computers. As a whole, CMARS with bootstrapping approach 

requires more CPU time. However, S-CMARS is more efficient in time than 

CMARS; so that, the bootstrapping can be implemented to S-CMARS to decrease 

the model complexity and computing time, which is left as a future work. 

 

As another future study, the mapping strategy can be studied as a feature reduction 

method of the proposed approach, S-FMARS, to decrease the model complexity 

(i.e.number of terms in model). If the predictor variables can be reduced by 
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considering their importance to model through the mapping, the knot selection 

process of spline fitting can be applied on the new set of predictor variables. So that, 

the computational complexity caused by the forward selection step can also be 

decreased.  

 

As a final conclusion, the newly developed knot selection scheme can be 

implemented to any kind of adaptive regression splines including a forward knot 

selection algorithm. This study only covers the estimation of continuous responses. 

However, the idea behind the proposed approach can also be studied as a future work 

for the responses with discrete levels such as binary, nominal or ordinal.  
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APPENDIX A 
 

 

MATHEMATICAL FORMULATIONS FOR DATA GENERATION 

 

 

 

Mathematical functions used for generation of the artificial datasets given in Table 1.  
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APPENDIX B 
 

 

GRID PLOTS OF MATHEMATICAL FUNCTIONS 

 

 

 

Grid plot of mathematical functions used for generation of the artificial datasets 

given in Table 1.  

 

 

          (a) P1( 1x , 3x ) other ix =3.                                   (b) P2( 1x , 3x ) other ix =3. 

 

 

 

              (c) P3( 1x , 2x ) other xi=4.                                               (d) P4. 
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                  (e) P5( 2x , 3x ) other ix =3.                               (f) P6( 1x , 2x ) other 3x =3. 

 

 

  

                      (g) P8 

Figure A 1. (a) Grid plot of Dataset 1 (b) Grid plot of Dataset 2 (c) Grid plot of 

Dataset 3 (d) Grid plot of Dataset 4 (e) Grid plot of Dataset 5 (f) Grid plot of Dataset 

6 (g) Grid plot of Dataset 7 
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APPENDIX C 

 

 

EFFECTS OF GRID SIZE AND THREDHOLD VAUE ON ARTIFICIAL AND 

REAL DATASETS 

 

 

 

Table C1. Ratio=RMSE/TIME value for different grid sizes in artificial datasets 

Grid Size 
Data sets 

1 2 3 4 5 6 7 8 

g/10 234.511 55.916 193.472 148.304 418.472 394.535 78.812 377.920 

g5 132.066 42.688 129.288 44.832 29.840 34.856 53.413 39.875 

g/2 53.302 12.016 12.827 11.220 8.847 11.272 14.426 12.633 

g/5 30.924 3.835 5.584 5.862 5.401 5.844 6.630 6.894 

5g/4 24.034 1.139 6.813 5.854 3.201 3.704 5.159 5.550 

5g/2 12.165 0.792 2.677 1.780 2.065 3.698 2.526 2.196 

5g 6.453 0.359 1.278 0.970 0.937 0.967 1.221 1.146 

10g 4.301 0.249 0.859 0.543 0.569 0.516 0.762 0.727 

15g 3.275 0.193 0.606 0.259 0.386 0.336 0.552 0.403 

20g 2.788 0.139 0.582 0.199 0.310 0.253 0.591 0.359 
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Figure C1. Graph of ratio versus grid size for Dataset 1. 

 

 

 

 

Figure C2. Graph of ratio versus grid size for Dataset 2. 
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Figure C3. Graph of ratio versus grid size for Dataset 3. 

 

 

 

 

Figure C4. Graph of ratio versus grid size for Dataset 4. 
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Figure C5. Graph of ratio versus grid size for Dataset 5. 

 

 

 

 

Figure C6. Graph of ratio versus grid size for Dataset 6. 
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Figure C7. Graph of ratio versus grid size for Dataset 7. 

 

 

 

 

Figure C8. Graph of ratio versus grid size for Dataset 8. 
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Table C2. Ratio=RMSE/TIME value for different grid sizes in artificial datasets 

Threshold 

Value 

Data sets 

1 2 3 4 5 6 7 

1 2.395 0.074 0.133 0.056 0.296 0.271 0.666 

um  5.422 0.198 0.416 0.072 0.591 0.611 1.519 

um + std  15.847 0.481 0.775 0.405 2.261 2.226 3.420 

um +2 std  36.043 4.831 12.125 0.689 12.162 6.464 10.962 

um +2.5 std  61.765 13.544 20.680 6.719 11.807 23.055 31.555 

um +3 std  104.437 24.196 89.023 27.050 15.872 42.770 31.504 

 

 

 

 

 

Figure C9. Graph of ratio versus threshold value for Dataset 1. 
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Figure C10. Graph of ratio versus threshold value for Dataset 2. 

 

 

 

 

Figure C11. Graph of ratio versus threshold value for Dataset 3. 
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Figure C12. Graph of ratio versus threshold value for Dataset 4. 

 

 

 

 

Figure C13. Graph of ratio versus threshold value for Dataset 5. 
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Figure C14. Graph of Ratio versus Threshold Value for Dataset 6. 

 

 

 

 

Figure C15. Graph of ratio versus threshold value for Dataset 7. 
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Figure C16. Graph of ratio versus threshold value for Dataset 8. 

 

 

 

Table C3. Ratio=RMSE/TIME value for different grid sizes in real datasets 

Grid Size 
Data Sets 

AutoMpg Com.Crime Conc.Comp Parkinsons PM10 Red Wine 

g/10 756.460 587.648 153.489 194.726 239.026 191.580 

g/5 498.185 97.102 104.352 112.206 103.290 150.800 

g/2 99.874 15.062 54.201 81.292 44.141 76.340 

g/5 15.046 11.672 25.090 42.799 27.643 47.018 

5g/4 15.423 10.908 22.397 40.047 21.555 43.890 

5g/2 10.934 7.852 13.230 24.870 14.626 31.102 

5g 8.808 5.685 7.467 15.315 9.123 22.731 

10g 6.985 4.494 5.444 9.124 6.184 16.990 

15g 6.325 4.110 4.325 6.512 4.658 13.971 

20g 5.709 3.650 3.725 5.111 4.094 12.493 
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Figure C17. Graph of ratio versus threshold value for AutoMpg. 

 

 

 

 

Figure C18. Graph of ratio versus grid size for Comm.Crime. 
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Figure C19. Graph of ratio versus grid size for Conc.Compress. 

 

 

 

 

Figure C20. Graph of ratio versus grid size for Parkinsons. 
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Figure C21. Graph of ratio versus grid size for PM10. 

 

 

 

 

Figure C22. Graph of ratio versus grid size for Red Wine. 
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Table C4. Ratio=RMSE/TIME value for different grid sizes in real datasets. 

Threshold   

Value 

Data Sets 

AutoMpg ComCrime ConcComp Parkinsons PM10 Red Wine 

1 4.530 4.896 2.988 4.875 4.705 13.215 

mu 5.821 6.239 4.896 6.880 7.101 17.186 

mu+std 13.027 8.350 9.340 11.196 8.670 29.748 

mu+2std 61.635 15.042 24.619 23.265 17.681 64.606 

mu+2.5std 94.935 95.540 53.522 32.538 
 

95.909 

 

 

 

 

 

Figure C23. Graph of ratio versus threshold value for AutoMpg. 
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Figure C24. Graph of ratio versus threshold value for Comm.Crime. 

 

 

 

 

Figure C25. Graph of ratio versus threshold value for Conc.Compress. 
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Figure C26. Graph of ratio versus threshold value for Parkinsons. 

 

 

 

 

Figure C27. Graph of ratio versus threshold value for PM10. 
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Figure C28. Graph of ratio versus threshold value for Red Wine. 
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APPENDIX D 
 

 

COMPARISON OF PROJECTION METHODS FOR ARTIFICIAL AND 

REAL DATASETS 

 

 

 

Table D1. Comparison of projection methods for artificial training data. 

Datasets Methods BFfinal RMSE Adj-R2 GCV 

1 

mean of k-nearest 101 1469.9 0.961 3851488.1 

nearest 101 1089.1* 0.979* 2114441.3* 

no projection 101 1424.5 0.963 4043347.5 

2 

mean of k-nearest 53 62532.8 0.835 4881686406.6 

nearest 41 5966.3* 0.999* 42147837.8* 

no projection 27 18941.0 0.985 400043347.5 

3 

mean of k-nearest 47 25.889 0.999 857.7 

nearest 43 28.132 0.999 990.2 

no projection 47 23.967* 0.999* 735.1* 

4 

mean of k-nearest 89 0.029 0.998 0.001 

nearest 77 0.028 0.998 0.001 

no projection 81 0.026* 0.998 0.001 

5 

mean of k-nearest 31 845.3 0.998 725504.0 

nearest 45 467.4* 0.999* 223365.1* 

no projection 41 563.2 0.999* 323648.9 

6 

mean of k-nearest 23 2.955 0.999 8.830 

nearest 23 2.892* 0.999 8.456* 

no projection 23 3.019 0.999 9.215 

7 

mean of k-nearest 101 0.032 0.991 0.002 

nearest 101 0.030* 0.992 0.002 

no projection 101 0.030* 0.992 0.002 

8 

mean of k-nearest 77 0.162 0.998 0.027 

nearest 79 0.151* 0.998 0.024* 

no projection 83 0.155 0.998 0.025 
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Table D2. Comparison of projection methods for test data and stabilities. 

Datasets Methods 
TEST STABILITY 

RMSE Adj-R2 RMSE Adj-R2 

1 

mean of k-nearest 1409.5 0.967 0.959 0.993 

nearest 1126.7* 0.979* 0.967 0.999 

no projection 1417.1 0.967 0.995* 0.996 

2 

mean of k-nearest 61228.7 0.864 0.979* 0.966 

nearest 5738.1* 0.999* 0.962 1.000 

no projection 16237.5 0.990 0.857 0.994 

3 

mean of k-nearest 25.889 0.999 1.000* 1.000 

nearest 27.724 0.999 0.986 1.000 

no projection 22.717* 0.999 0.948 1.000 

4 

mean of k-nearest 0.027 0.998 0.899* 0.999 

nearest 0.028 0.998 0.987 1.000 

no projection 0.026* 0.998 0.988 1.000 

5 

mean of k-nearest 863.6 0.998 0.979 1.000 

nearest 481.9* 0.999* 0.970 1.000 

no projection 572.3 0.999 0.984* 1.000 

6 

mean of k-nearest 2.960 0.999 0.998* 1.000 

nearest 2.869* 0.999 0.992 1.000 

no projection 3.040 0.999 0.993 1.000 

7 

mean of k-nearest 0.033 0.991 0.995* 1.000 

nearest 0.028* 0.993 0.941 0.999 

no projection 0.029 0.993 0.948 0.999 

8 

mean of k-nearest 0.163 0.998 0.998 1.000 

nearest 0.151* 0.998 1.000* 1.000 

no projection 0.156 0.998 0.996 1.000 
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Table D3. Comparison of projection methods for training data of real datasets 

Datasets Methods BFfinal RMSE Adj-R2 GCV 

AutoMpg 

mean of k-nearest 101 2.193 0.897 90.979 

nearest 101 2.184 0.891 90.420 

no projection 101 2.143* 0.902* 86.885* 

Com.Crime 

mean of k-nearest 151 0.406 0.795 0.722 

nearest 151 0.409 0.792 0.734 

no projection 151 0.401* 0.800* 0.707* 

Con.Comp 

mean of k-nearest 101 0.209 0.951 0.110 

nearest 101 0.221 0.946 0.123 

no projection 101 0.206* 0.953* 0.106* 

Parkinsons 

mean of k-nearest 51 0.335 0.883 0.202 

nearest 50 0.330* 0.887* 0.193* 

no projection 51 0.337 0.882 0.205 

PM10 

mean of k-nearest 51 0.662 0.520 0.879 

nearest 51 0.656* 0.527* 0.866* 

no projection 51 0.683 0.488 0.937 

Red Wine 

mean of k-nearest 91 0.649 0.555 0.679 

nearest 91 0.645* 0.561* 0.671* 

no projection 91 0.652 0.551 0.685 
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Table D4. Comparison of projection methods for test data and stabilities. 

Datasets Methods 
TEST STABILITY 

RMSE Adj-R2 RMSE Adj-R2 

AutoMpg 

mean of k-nearest 2.798 0.843 0.784 0.940 

nearest 2.642* 0.869* 0.827* 0.975* 

no projection 2.859 0.837 0.750 0.928 

Com.Crime 

mean of k-nearest 0.653* 0.591* 0.621* 0.743* 

nearest 0.686 0.547 0.596 0.691 

no projection 0.716 0.508 0.561 0.636 

Con.Comp 

mean of k-nearest 0.348 0.879 0.601 0.925 

nearest 0.673 0.550 0.329 0.581 

no projection 0.331* 0.891* 0.622* 0.935* 

Parkinsons 

mean of k-nearest 0.579 0.615 0.580 0.696 

nearest 0.477* 0.738* 0.692* 0.832* 

no projection 0.675 0.543 0.500 0.616 

PM10 

mean of k-nearest 0.846 0.253 0.782 0.487 

nearest 0.807* 0.320* 0.813* 0.607* 

no projection 0.850 0.246 0.804 0.503 

Red Wine 

mean of k-nearest 0.973 0.032 0.667 0.058 

nearest 0.927 0.121 0.696 0.217 

no projection 0.894* 0.184* 0.730* 0.334* 
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