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ABSTRACT

AN ALGORITHM FOR THE FORWARD STEP OF ADAPTIVE REGRESSION
SPLINES VIA MAPPING APPROACH

Kartal Kog, El¢in
Ph.D., Department of Statistics
Supervisor: Assoc.Prof. Dr. Inci Batmaz

Co-Supervisor: Assist. Prof. Dr. Cem Iyigiin

September 2012. 129 pages

In high dimensional data modeling, Multivariate Adaptive Regression Splines (MARS)
is a well-known nonparametric regression technique to approximate the nonlinear
relationship between a response variable and the predictors with the help of splines.
MARS uses piecewise linear basis functions which are separated from each other with
breaking points (knots) for function estimation. The model estimating function is
generated in two stepwise procedures: forward selection and backward elimination. In
the first step, a general model including too many basis functions so the knot points are
generated; and in the second one, the least contributing basis functions to the overall fit
are eliminated. In the conventional adaptive spline procedure, knots are selected from a
set of distinct data points that makes the forward selection procedure computationally
expensive and leads to high local variance. To avoid these drawbacks, it is possible to
select the knot points from a subset of data points, which leads to data reduction. In this
study, a new method (called S-FMARYS) is proposed to select the knot points by using a
self organizing map-based approach which transforms the original data points to a lower
dimensional space. Thus, less number of knot points is enabled to be evaluated for

model building in the forward selection of MARS algorithm. The results obtained from
iv



simulated datasets and of six real-world datasets show that the proposed method is time
efficient in model construction without degrading the model accuracy and prediction
performance. In this study, the proposed approach is implemented to MARS and
CMARS methods as an alternative to their forward step to improve them by decreasing

their computing time.

Keywords:  Multiple Adaptive Regression Splines (MARS), Model selection,
Computational Efficiency, Mapping Algorithm, Self-Organizing Maps
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UYARLANABILIR REGRESYON EGRILERININ ILERIYE DOGRU SECME
ASAMASI ICIN GONDERIM YAKLASIMI iLE YENI BiR ALGORITMA

Kartal Kog, El¢in
Doktora, Istatistik Bélimii
Tez Yoneticisi: Doc. Dr. Inci Batmaz

Ortak Tez Yéneticisi: Yard. Dog. Dr. Cem lyigiin

Eyliil 2012, 129 sayfa

Cok degiskenli uyarlanabilir regresyon egrileri (MARS), ¢ok boyutlu veri
modellemesinde ¢ikt1 degiskeni ile girdi degiskenleri arasindaki dogrusal olmayan
iligkiyi egriler yardimiyla tahminlemede iyi bilinen bir dogrusal olmayan regresyon
yontemidir. Fonksiyon tahminlemesinde MARS, kirilma noktalartyla birbirinden ayrilan
pargali dogrusal fonksiyonlar kullanir. Fonksiyon tahminlemesinde kullanilan model iki
asamali bir yontemle olusturulur: Ileriye dogru secme ve geriye dogru eleme. Ilk
asamada ¢ok fazla temel fonksiyonun yani kirilma noktasinin bulundugu genel bir
model olusturulur ve ikincide genel uyuma az katkida bulunan temel fonksiyonlar
elenir. Klasik uyarlanabilir egri yontemlerinde kirilma noktalari, ileriye dogru se¢me
yontemini sayisal olarak pahali yapan ve bolgesel yiiksek yayilima neden olan farkl
veri noktalar kiimesinden segilirler. Bu zorluklardan kaginmak i¢in kirilma noktalarini
verinin kiigiiltilmesine yol acan veri noktalarinin altkiimesinden se¢mek miimkiin
olabilir. Bu ¢alismada orijinal veriyi daha az boyutlu uzaya doniistiiren, kendini
orglitleyen eslestirmeye dayali bir yaklasimi kullanilarak kirilma noktalarinin se¢ilmesi
icin yeni bir yontem Onerilmistir. Boylece MARS algoritmasinin ileriye dogru segme
yonteminde model olusturmak i¢in daha az sayidaki kirilma noktasinin kullanimina

olanak taninmaktadir. Benzetim yontemiyle edilen ve alt1 gergek hayat verisinden elde

vi



edilen sonuglar, 6nerilen yontemin model dogrulugunu ve tahminleme performansini
distirmeden model kurmada zaman acisindan etkili bir yontem oldugunu
gostermektedir. Bu calismada oOnerilen yaklasim hesaplama zamanlarini azaltarak
MARS ve CMARS yontemlerini iyilestirmek i¢in yontemlerin ileriye dogru agsamalarina

alternatif olarak uyarlanmistir.

Anahtar Kelimeler: Cok degiskenli uyarlanabilir regresyon egrileri (MARS), Model
secimi, Hesap etkinligi, Esleme Algoritmasi, Oz Diizenleyici Haritalar (SOM)
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NOMENCLATURE

y : Response variable.

X : Univariate predictor variable.

X = (Xg ey xp)T : Vector of predictor variables.

p . Number of predictors.

N : Number of data points.

X; = (X;1,m X; )"+ ith data vector.

X, = (X0 X, ;)" Jth predictor variable.

X; ;+ ith individual data value in the jth predictor variable.
r : Knot value.

w,,(X™) : mth basis function.

x™: Variable vector for mth basis function.

W, = (W,,,..,W, ;) : Ith weight vector.

w, . Weight vector of the best matching unit (BMU).
k(b): Topological neighborhood of BMU.

h. : Neighborhood function defined around the BMU.
a(t) : Learning rate function.

M. : User-specified maximum number of basis functions.

t : Threshold value for the number of hits.
g: Grid size of lattice.

m, : Average number of hits.

std : Standard deviation of number of hits.
u : Number of neurons (units) in the lattice.

z, =(X,,Yy;) : ith data vector including ith predictor vector with ith response value.

Z, =(X,Y,): sthprojected data vector.
>~<S,j - sth individual projected data value in the jth predictor variable.
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Adj-R?
BFs
BMU
BFfinal
CMARS
CQP
CPU
FMARS
GLM
GCV
LOF
Mpmax
MARS
MinSpan
RZ
RMSE
PRSS
RSS
SOM

ABBREVIATIONS

Coefficient of determination-Adjusted
Basis functions

Best-matching unit

Number of BFs in the final model
Conic-MARS

Conic quadratic programming
Computational run time

Forward Selection step of MARS
Generalized linear models
Generalized cross validation
Lack-of-fit

Maximum number of BFs
Multivariate adaptive regression splines

Minimum span approach

Coefficient of determination

Root mean square error
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CHAPTER 1

INTRODUCTION

Multivariate adaptive regression spline (MARS) is a powerful nonparametric
regression method for constructing flexible models by introducing truncated linear
functions. Due to its simplicity and effectiveness for handling high-dimensional data
settings, MARS has recently become a popular tool for solving various classification
and regression problems including prediction mobile radio channels (Kubin, 1999),
credit scoring (Lee et al. 2006), detecting disease risk (York et al., 2006),
environmental modeling (Leathwick et al., 2005, 2006), direct response modeling
(Deichmann et al., 2002).

Regression splines provide a flexible model estimate with the help of piecewise
functions (splines), so that the nonlinearity of a model is approximated through the
use of separate regression models defined over the distinct subintervals of the range
of predictor variables. The intervals that define the pieces are separated by a
sequence of knots or breaking points whose number and locations are practically
unknown in advance. The simplest method considers knots as fixed and equally
spaced (Keele, 2008). In this method, the total number of knots is selected first, and
then, knots are allocated “equally-spaced” in the sense that either the distance or the
number of distinct design points between two consecutive knot points remains the
same throughout the whole data domain. The number of equally-spaced knots is
increased iteratively until a satisfactory estimate is obtained. In this case, however,
an unfortunate knot placement may lead to misleading results (Yao et al., 2008).
Motivated by the work of Smith (1982), an adaptive approach has been proposed for
regression splines. Friedman and Silverman (1989), Friedman (1991) and Denison et



al. (1998) automatically selected the number and the location of knots from a set of

distinct design points via a model selection criterion.

In adaptive regression splines, knots are selected through a two-stage algorithm
called forward selection and backward elimination. In forward selection, knots are
added into a model in a stepwise manner as long as a lack-of-fit (LOF) criterion is
decreased, and then, the ones contributing less to the model are eliminated via
backward elimination. A natural strategy of knot selection during the forward
process is to consider every distinct data point as a candidate knot location. This
strategy estimates the underlying data structure by evaluating every data points as
breaking points where the regression models change their slopes. This can give
reasonable results for low noisy settings; however, increase the local variance for
highly noisy data. Besides, it is true for all cases (data with low and high noises) that

the computational run time increases significantly.

In this study, a new knot selection procedure is proposed for adaptive regression
splines to make it computationally efficient without increasing the local variability.
To decrease the computing time of adaptive regression splines, the set of points
searched is restricted to a small subset of data points during the forward step. Hence,
less number of data points is evaluated as candidate knot locations for the function
estimation. Here, the way of subsetting is a critical issue. The points can be selected
randomly or equally spaced with a partial search; however, it may result in a poor
performance for the spline regression (Lou and Wahba, 1997) depending on the form
of underlying true function. For example, the functions including nonhomogeneous
smoothness may be approximated better with many unevenly distributed knots
instead of using fixed interval of knots. In this respect, a data-driven subsetting
reflecting the underlying data structure is offered in this study. To provide such a
subsetting procedure, a mapping approach that uses self-organizing maps (SOM) is
proposed. In this approach, a large set of data points can be reduced or compressed
into smaller set of units through a nonlinear mapping. This kind of mapping



transforms the high-dimensional data into a low-dimensional map of units via weight
vectors. The data vectors are mapped into a new lattice by an updating formula based
on the distance between data and weight vectors. During the mapping procedure, the
relative distance between data points is preserved by a topological order (grid
structure) of the units; so that, the original data structure can be properly
approximated by the distribution of the weight vectors. Here, the weight vectors can
be considered as representatives or pointers of data points. In the proposed approach,
therefore, knots are determined by considering weight vectors as the reference. The
data points projected by the weight vectors are then used as the candidate knots in the
function estimation. In the proposed method, candidate knots are obtained by
considering the whole data values of the predictors, instead of searching locally on
each predictor as in the MARS algorithm does. Once the candidate knots are
determined as the projections of the weight vectors, knots are then selected among
them through a forward selection method via piecewise linear functions. This
approach is actually a modified version of the forward selection step of MARS
algorithm; thus, the new approach is called as S-FMARS, where S stands for

subsetting and FMARS is used for forward selection of MARS algorithm.

The current thesis consists of five chapters and four appendices, and each one is
organized in the following way. In Chapter 2, we provide a brief background on the
spline functions and their use in regression splines. As the critical issues in
regression splines, selection of the number and location of knot points are discussed
through some common approaches by pointing out their associated advantages and
disadvantages. This chapter concludes with a short overview of the adaptive
regression splines which propose an automatic knot selection procedure and a
summary of the usage of different versions of adaptive regression splines in the
literature. Since the proposed approach developed over the forward step of MARS
algorithm, the main idea behind the MARS is also given in this chapter. Two
complementary strategies of the MARS algorithm are examined in the subsections
named Forward Stepwise Selection and Backward Stepwise Elimination. In the



section of the forward selection procedure, a Minimum Span (MinSpan) approach
proposed by Friedman (1993) for the forward step of MARS algorithm to optimize
the knot points is discussed. The performance of the proposed approach is then
compared with MinSpan in the subsequent sections. In the backward elimination
section, the pruning procedure is mentioned by emphasizing different model
selection criteria. In the same section, a modified version of MARS algorithm with
uses as an alternative backward step, called Conic MARS (CMARS) approach is
discussed in detail. The proposed approach is then implemented to MARS and
CMARS in place of their forward selection step to make them computationally

efficient.

Chapter 3 introduces the proposed approach. Firstly, the motivation behind the
proposed idea is given by discussing the computational complexity of MARS
algorithm and evaluating the mapping idea with its appropriate properties for knot
selection purpose. The steps of the proposed knot selection algorithm are then
explained in detail with the help of figures and mathematical formulations. In
addition, two important parameters of the proposed approach are studied to make the
proposed approach more accurate and time efficient. These parameters are the grid
size and the threshold value set for the number of data points assigned to units during
the mapping. This chapter also presents a way of selecting the best values for the
parameters to obtain a time efficient regression spline model without loss of

accuracy.

Chapter 4 presents a background for the application process. Firstly, the datasets for
which the proposed approach is applied and compared with other methods are
described. Then, the software used to implement the proposed approach and execute
the other methods is presented. In the next section, the performance criteria and
measures used to evaluate the performance of models produced by the proposed
approach and other regression spline methods are described. Then, the best parameter
values of the proposed approach are determined for the datasets under study. Once



the parameters of the proposed approach are determined, the performance of the
proposed approach is evaluated and compared with the other methods through three
comparison study. In the first comparison study, proposed approach is compared
with the forward selection algorithm of MARS via some artificial datasets, real
datasets and noisy setting. In the second one, based on the same datasets, the
proposed approach is compared with a minimum-span knot selection scheme.
Finally, the backward elimination procedure of MARS and penalized strategy of
CMARS are combined with the proposed approach, and the performances of the
hybrid methods are compared with the original MARS, MARS with MinSpan
approach and CMARS methods. The corresponding findings are explained in detail
in this chapter.

Based on the findings given in Chapter 4, a comprehensive discussion, as well as the

conclusion and further studies are presented in the last section.

Appendix A presents the mathematical functions of the problems utilized in this
thesis. While some functions have low-order nonlinear behavior, some have highly
nonlinear form. The figures in Appendix B are the grid plots of the problems given in
Appendix A. Related with the study performed in Chapter 4, ratio values calculated
by both using the root mean squared error (RMSE) values of the models obtained by
the proposed approach and the corresponding computational run times (CPU time)
are given for different grid sizes for artificial and real datasets in Table C.1 and Table
C.3 of Appendix C, respectively. Similar tables obtained for different threshold
values are shown in Table C.2 for artificial datasets and in Table C.4 for real
datasets. Besides, the graphs of “Ratio versus grid size” and “Ratio versus threshold
values” are displayed for all artificial and real datasets. In Appendix D, performances
of three projection methods offered to be used in the proposed approach are

compared with respect to some performance criteria.



CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

In statistical modeling, the relationship that may exist between a response variable y
and a vector of predictors x=(x1,...,xp)T is approximated with the following

general type of model

y=Ff(x)+e, (1)
Here, ¢ indicates the error term with zero mean, and p denotes the number of

predictor variables.

In statistical framework, the function in (1) is generally approximated by a
parametric model assuming a linear form of the predictor variables. Different linear
models are used in the literature depending on the nature of the response variable. If
the response is continuous, a linear regression model is estimated using least squares
(LS). For the discrete responses, generalized linear models (GLM) including logistic

or Poisson regressions are estimated.

In GLM, a model is specified by selecting a sampling distribution for the response

variable and a functional form for the predictors. For example, for a linear regression
model, the normal distribution N(x,c?) with expected value x and constant
variance is chosen for the continuous response and a linear form of the predictors
n=X'PB is determined for a given vector of predictors X with pxn dimensions.
Here, n is an nx1 vector of linear predictions and P is a vector of unknown

parameters that must be estimated. In fact, the GLM generalizes the linear regression

models. The stochastic component (response variable) can follow any distribution
6



from the exponential family, and the linear functional form of predictors is
generalized with a link function 77 = h(x" B). For example, for the logistic regression,

y is a binary response and follows a binomial distribution. The relation between

linear predictors x'p and y is supplied by the following logistic link function

(Hastie and Tibshirani, 1990; Keele, 2008)

p=Y@1+e™) (@)

where p is the probability that y =1 for given values of X; (i=1...,n). As in (2),
many models which are considered as nonlinear have linear functional form of
predictors. This is why they retain a linearity assumption. However, in practice, the
form of the relation between variables generally is not linear, so that aforementioned
parametric assumptions turn out to be too restrictive for many practical applications.
In order to estimate a nonlinear functional form, a variety of transformations can be
applied to predictor variables. Power transformations are often reasonable methods
for representing the nonlinear functional forms. Nevertheless, they have some
limitations. For a given univariate variable, X ; for example, they provide global

estimates for the relationship between x and y by assuming the relation to be
constant over the range of X. However, the relationship between x and y is

generally local. Namely, the statistical relationship between two variables changes
over the range of x. For such cases, the assumption of global estimate often
disregards the underlying true relation. Moreover, for more complex nonlinear forms,

global estimates like power transformations are not sufficient.

In the absence of strong theory for the assumed functional form, the underlying
relationship between predictor variables X and the y response is estimated from the
data. In data-based modeling, global estimates are changed places with local
estimates which refer to nonparametric regression models in statistics.

Nonparametric regression allows one to estimate nonlinear fits between variables



with a few assumptions about the functional form of the nonlinearity. In this

framework, the function which defines the dependency of y on X is generalized
from linear functions to any smooth function g(x), and it is typically estimated

using additive models given in (3).
p
g(x) ZZgi(Xi)' 3)
i=1

Although the assumption of additivity is more restrictive than a fully multivariate
nonparametric regression model, it is a common way of extending nonparametric
estimation for high dimensional data (p>1) subject to the problem of curse of

dimensionality (Hastie and Tibshirani, 1990).

In (3), 9;,--, g, are arbitrary smooth or unspecified functions which are typically

estimated using spline functions or local averaging smoothers (Cleveland, 1993;
Silverman, 1985). Since the underlying relation is practically inhomogeneous and the

degree of smoothness is unknown in advance, it is common to estimate the smooth

function g, by using spline functions due to their good numerical properties (de

Boor, 1978; Schumaker, 1981; Green and Silverman, 1994).

Spline functions refer to piecewise regression models defined over the intervals in
the range of univariate x. The intervals that define the pieces are separated from each
other by a sequence of points, called breaking points or knots. The slopes of the
regression models are forced to change from one interval to another over the range of
X at knots. Hence, a flexible model estimate is achieved by the help of many local
fits. There are various types of splines: regression splines, cubic splines, B-splines,
P-splines, natural splines, thin-plate splines, smoothing splines, and the ones which

are the combinations of different types such as natural cubic B-splines.



In nonparametric framework, to estimate the smooth terms in regression models
using splines, two main approaches are basically followed: smoothing splines and
regression splines. Smoothing splines are advanced and well-known local averaging
smoothers, and appear as a solution to an optimization problem. It tries to minimize a
penalized residual sum of squares (PRSS) by using a roughness parameter which
controls the smoothness of the model fit. For nonadaptable smoothers, the smoothing
parameter is specified by the user or set by an automated procedure like cross
validation (Hastie and Tibshirani, 1990). Smoothing splines are more complex than
piecewise polynomial, however, they become very popular in statistics with the help
of studies conducted by Wahba (1983, 1990), Wahba and Wold (1975), Silverman
(1985), Green and Silverman (1994), or by Eubank (1999) who provided an excellent

overview of smoothing spline techniques and their applications in statistics.

Regression splines provide a flexible model estimate by the help of piecewise
functions. The regions that define the pieces are separated by a sequence of knots
(breaking points). The number and the location of knots, which are unknown in
advance, have a critical importance in controlling the amount of smoothness and
flexibility during the function estimation. Standard practice is to consider knots as
fixed and place knots at evenly spaced intervals in the data. To ensure an adequate
data for each interval to get a smooth fit, knots are placed at either quartiles or
quintiles in the data by default (Keele, 2008). In practice, this approach may lead to
an unfortunate knot placement resulting in misleading results. Actually, the number
of knots is more crucial than the place of knots (Stone, 1986). The number of knots
acts as a span parameter denoting the width of the intervals for splines, and affects
the amount of smoothing applied to the data by controlling the number of piecewise
fits. The spline with less number of knots provides globally smooth fit. However, the
flexibility of the model is increased as the number of knots increases. Moreover,
number of knots governs the trade-off between bias and variance of the estimate.
Increasing the number of knots increases the local variability while decreasing the
bias. This situation is called undersmoothing. On the other hand, decreasing the



number of knots increases the bias while decreasing the variability in the fit, which
refers to oversmoothing. In selecting the number of knots, the cases of
oversmoothing and undersmoothing should be taken into consideration. The main
goal in the selection of knots, therefore, should be to produce as smooth fit as

possible without departing from the underlying true regression function.

In this context, many efficient methods have been studied in the literature. Some
studies consider the knot selection procedure as a model selection approach. Since
each knot is an additional parameter being added to the model, some model selection
criteria such as the Cp statistic (Mallows, 1973), AIC (Akaike, 1973) or GCV
(Craven and Wahba, 1979) are recommended to select the number of knots. For knot
selection, AIC was used by Atilgan (1988) and recommended by Eilers and Marx
(1996). More recently, an adaptive strategy, originally proposed by Smith (1982),
was used by Friedman and Silverman (1989), Friedman (1991), Stone et al. (1997),
Lou and Wahba (1997) and Breiman (1993) to select the number and location of the
knots. In these approaches, knots were selected via a stepwise procedure using a
model selection criterion. In the first step, called forward selection, the knot that
reduces the criterion the most is included into a model and a rich set of knots are
allowed to be selected through this step. In the second step, called backward
elimination, the knots contributing less to the model are removed.

There are many different versions of adaptive regression splines which uses the same
adaptive strategy. He and Ng (1996) developed a stepwise knot selection algorithm
in the quantile regression context. This can be viewed as a variation of the algorithm
of Stone et al. (1997). The TURBO algorithm of Friedman and Silverman (1989) and
its subsequent generalization, the MARS algorithm (Friedman, 1991), include knot
selection for univariate scatterplot smoothing as a special case. However, TURBO
and MARS are tailored for multivariate smoothing and their computational overhead
requires restriction to piecewise linear basis functions (BFs) for practical

implementation. Denison, Mallick and Smith (1998) have developed an alternative
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Bayesian approach to regression spline fitting. The main difference between their
approach and the approach of Smith and Kohn (1996) is that the number of knots,
and their locations, are not fixed in advance, but instead, are considered as random
components of a Bayesian model. The Markov Chain Monte Carlo (MCMC) strategy
for selecting the model involves knots being added and deleted, and therefore, a
change in the dimension of the model. More recent contributions to additive
modeling have been made by Lou and Wahba (Hybrid Adaptive Splines [HAS],
1997); Stone, Hansen, Kooperberg, and Troung ([POLYMARS], 1997), Weber et al.
(CMARS, 2012), Taylan, Weber and Beck (2007), Ozmen (2010) and Ozmen et al.
(R-CMARS, 2010). HAS performs forward knot selection via GCV with a “cost”
term, as in MARS, but replaces backward deletion by ridge regression. POLYMARS
Is @ multi-response version of MARS which has been customized for computational
efficiency. CMARS is a hybrid method as HAS. It generates forward knot selection
via GCV and use ridge regression instead of backward deletion. Different from HAS,
however, it solves the penalized splines by a Tikhonov regularization. Based on
CMARS, R-CMARS is proposed as the robustification of CMARS with robust
optimization to decrease the estimation error in CMARS.

In this thesis, a new forward selection algorithm is proposed to decrease the
computing time of adaptive regression splines. Since the proposed method has some
common properties with the forward step of MARS algorithm. MARS is explained in
detail in this chapter. Additionally, the proposed approach is compared with a
MinSpan approach proposed to optimize the knots in the forward selection of MARS
algorithm. Although the main purpose behind this idea is to decrease the local
variability, it also decreases the computing time effectively. This is why the MinSpan

method is examined in detail in this study.

The proposed approach is developed as a new forward selection part; therefore, it can
be followed by a backward elimination step as in MARS, or other methods using an

alternative method for backward step like in CMARS. For all these approaches, the
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computing time can be decreased significantly by using the proposed approach
beforehand. In this chapter, therefore, background information on MARS and
CMARS are given in the following subsection.

2.1 Multivariate Adaptive Regression Splines (MARS)

MARS is a popular nonparametric regression technique developed by Friedman
(1991) particularly for approximating nonlinear relationship within the data with the
help of splines. Splines refer to a wide class of piecewise defined functions used to
provide local fits for estimating the underlying form of functions using the data. The
nonlinearity between the response and predictors is then estimated by having
different regression slopes in the corresponding intervals of each predictor. These
intervals are distinct and separated by breaking points, called knots. MARS uses
piecewise linear functions for local approximations which are easy to implement.

The form of the truncated linear functions are given for a univariate variable, X, as

follows (Hastie et al., 2001)

(X—-1), X>71
0, otherwise

(t—Xx), X<t

,[—U—¢H+={ (4)

0, otherwise

KX—TH+={

Two functions in (4) are called reflected pairs and characterized by the breaking
points 7, called knots. The first expression takes the value of zero for all x values

less than or equal to the threshold value r and takes (x-z) for all values greater

thanz . On the other hand, the second expression results in zero for all x values

greater than or equal to = and gets (z - x) otherwise. The “+” sign represents positive

part of the function.
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Figure 1. The form of reflected pairs of truncated linear functions.

MARS builds a flexible model by fitting piecewise linear functions by which the
nonlinearity of a model is approximated through linear functions in distinct intervals
of the predictor space. The knot (breaking) points where behaviors of the function
changes play a key role in the function approximation but the number and location of
knots are practically unknown. In classical spline, knot points are usually predefined

or equally spaced. In MARS, however, knots are determined by a search procedure.

For a given vector of predictor variables, X = (X, X,,..., xp)T, all distinct individual

data values, X; ;, (i =1...,n) of the corresponding predictor variable x; (j=1..., p)

LA R
are considered as knot points, and introduced into the model via a reflected pair
given in (4). The set of all possible reflected pairs with the corresponding knots can

be expressed with set C in (5).

C={(x; =7)... (1= x,). |7 €0xj Xo Xy} J € LoD (5)

MARS generates its model by using the basis functions (BFs) defined over the
functions in the set C. In additive MARS models, every elements of C can be
considered as one BF. For highly nonlinear datasets requiring interaction effects,

MARS modeling can be generalized with the BFs including tensor product of two or
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more functions from the set C. Therefore, the general form of BFs defined over the

subvector of predictor variables, x™ can be defined as follows
Km
l//m (Xm) = H[S(v,m)'(xj(v,m) - T(v,m))]+ ' (6)
v=1

where K is the number of truncated linear functions in the mth BF; x is the jth

jvm
predictor variable corresponding to the vth truncated linear function in the mth BF;

T.m represents the knot value corresponding to the predictor variable x;, ., in the

mth BF. The quantities s, take values from the set{+1}.

There is a limitation in the construction of the BFs; the ones built by the
multiplication of truncated linear functions must include distinct predictor variables.
This prevents the occurrence of higher-order degrees of a variable which increase or
decrease too sharply near the boundaries of the factor space. A piecewise linear

function can approximate the higher-order powers in a more stable way.

Multiplication of two BFs produces a result which is nonzero only over the factor
space where both components are nonzero (Figure 2). Thus, the regression surface is
obtained by using only nonzero components locally- only when they are needed. If
polynomial BFs are used, then the multiplication of BFs would be nonzero
everywhere and would not work as well. The BF in Figure 2 is defined as the

multiplication of two BFs such as
WX, X,) = (% — T4,1)+(T3,2 —X,),

where, 7, €{X1, X, 100 X1} AN 75 €{X 51 X 5100y X o} -
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Figure 2. Two-way interactions BFs (Based on Hastie et al., 2001).

The model developed by MARS is similar to the one developed in classical linear

regression; however, BFs or their products are used instead of the original predictor

variables. For a given vector of predictor variables, x = (x,,..,x,)" and the target

variable y, the model has the form

y:C0+iCme(Xm)+g’ (7)

m=1

where ¢, is the intercept term;  (x™) is the mth BF with a coefficient ¢, ; M is

the number of BFs in the current model (Friedman and Silverman, 1989; Friedman

1991).

The estimates of the coefficients (c,,...,C,,) in (7) are calculated by a (M +1) -

parameter LS fit of the response y on the fixed BFs, y/, (x™) (m=1..., M).Since

optimizing the (averaged) squared residuals over all BFs defined for all possible
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knots is a fairly difficult task computationally, especially for large M, a stepwise

strategy is adapted for BF selection in the MARS modeling.

Stepwise strategy of MARS includes two steps: forward selection and backward
elimination. In the forward selection, the algorithm starts with a model consisting of

intercept term c, and adds a reflected pair from the set C iteratively until the

maximum number of terms specified by the user is reached by the model. At the end
of this step, a large model typically overfitting the data is obtained. Then, a backward
elimination is implemented to refine the model. In this pruning step, the BFs
contributing less to the model are eliminated. Detailed descriptions for these two

phases are given in the following sections.

2.1.1. Forward Selection

In classical forward stepwise regression, each predictor is added into the model via
some model selection criteria such as Cp, AIC or F statistic. The main purpose behind
the method is to identify a useful subset of the predictors for a better approximation.
In adaptive regression spline, each BF is considered as a new predictor. The forward
stepwise algorithm searches for the BFs and at each step the split that minimizes
some lack-of-fit criterion from all possible splits on each BF is chosen. The
algorithm deliberately overfit the data by inserting large number of BFs into the
model. So that, all types of curvatures are tried to be estimated by adding BFs with

the corresponding knot points where the curvature exists.

The forward step has a critical role in knot selection. In general, all distinct data
points are evaluated as a knot point through BFs and their contribution to the model
is checked via a lack-of-fit criterion. The aim of a lack-of-fit criterion is to provide a
data-based estimate of the future prediction error which is then minimized with

respect to the parameters of the procedure (Friedman, 1991). In main effect models,
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each BF built on one predictor variable with the corresponding predictor value as
knot. Hence, each distinct data value is introduced to the model predictor wisely. In
interaction models, tensor products of two or more distinct predictor variables are
added to the model. In this case, breaking points are represented with a vector of the
corresponding predictor values. Evaluating every distinct data value as a knot
enables one to catch the curvatures truly; however, it is computationally expensive
and increases the local variability. Especially, in highly noisy data, evaluating noises
as knots for function estimation leads to a redundant effort, and decreases the model

accuracy.

In order to prevent the situations mentioned above to be happen, a MinSpan
approach has been proposed to restrict the candidate knot locations (Friedman,
1991). Its simplest version is to make every other distinct rth observation (in order of
ascending univariate x-value) eligible for a knot placement. For noisy settings, this
implementation can lead to decrease in the local variability. Additionally, the

computing time is reduced by a factor of n/rin the absence of ties. In conventional

splines, the value for ris taken as fixed or calculated in such a way as to make the
number of distinct design points between any two adjacent knots equal (Ruppert,
2002; Ruppert et al., 2003). This method is simple and easy to implement.
Nevertheless, the knots may not be placed at all critical locations (Yao and Lee,
2008). Friedman and Silverman (1989) proposed a data-adaptive value (as a function
of n) for the number of distinct design points between any two adjacent knots by
using a coin tossing argument. The proposed value L, based on the assumption of
having symmetric distributed error terms, is defined as the solution of (Friedman,
1991)

P(L) =a, 8)

where P(L) is the probability of observing a run of length L or longer in pn,, tosses

of a fair coin and « is a small number (e.g. « =0.01or 0.05). The quantity n, is
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the number of observations for which y, (x™) >0, and p denotes the number of
predictors. Hence, pn, represents the number of potential locations for each new
knot for each BF y/_(x™). Setting r = L(«)/2.5 would give the smoother resistance

to run of positive and negative error values with probability « . The reason for using
2.5 (or 3 to be more conservative) in the denominator is the fact that a piecewise
linear smoother must place between two and three knots in the interval of the run to

respond to it and not degrade the fit anywhere else.

For pn, =210 and o < 0.1, a good approximation to L(«) is

L(x) = —Iog{—iln(l—a)}, 9)
pn

m

so that the reasonable number of observations between knots is given by

r=-— Iog{—lln(l—a)}/z.& (10)
PNy,

The MinSpan approach provides a local search around the current knot over a
specific predictor variable. The approach does not consider the whole data structure;
instead, it selects the knot predictor wisely. Its main objective is to decrease the local
variability in function estimation but at the same time it consequently decreases the

computing time significantly.

2.1.2. Backward Elimination

Backward stepwise is a pruning step which eliminates the redundant BFs selected in

the forward step. Hence, the overfitting problem is aimed to be removed. To estimate
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the model with the optimal number of BFs or knots, MARS uses a model selection
criterion called generalized cross validation (GCV). This criterion depends on the
idea of minimizing the average-squared residuals of the fit by considering a model
complexity, which is the number of BFs in the model. For a given data vector

z. =(x,,y;) (i=1,...,n) the criterion proposed by Craven and Wahba (1979) is given

as follows

GCV (M) =

%zizl(Yi = fu (X)) | (11)

(L-P(M)/n)?

where, y; is the ith observed response value; fM (x;) is the fitted response value
obtained for the ith observed predictor vector x; = (X; ..., xi’p)T (i=1..,n), nisthe

number of data points; M represents the maximum number of BFs in the model.

In general, P(M)is calculated by using the formula given below
P(M) =trace(B(B'B)'B") +1, (12)

and represents the cost penalty measure of a model where there are M BFs

(Friedman, 1991). Here, B is the matrix of BFs with dimension M xn.

P(M) in (12) represents effective number of parameters which is a penalty measure
for complexity. There are different representations for P(M);commonly used one is:
P(M) =r+dK, where r is the number of linearly independent BFs in the model,

and K is the number of knots selected in the forward process. Note that if the model
is additive then d is taken to be two; if the model is an interaction model then d is
taken to be three (Friedman, 1991; Hastie, 2001). If the value of P(M) is small, it

produces a model with many BFs. Otherwise, a smaller model with less BFs is
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obtained. This procedure continues for all number of BFs and then the best model

that has minimum GCV is chosen.

In some studies, alternative methods are proposed for the backward step of MARS
(Lou and Wahba, 1997; Weber et al, 2012). In these studies, a penalty term is added
to the lack-of-fit criterion. CMARS uses up all BFs generated by the forward
algorithm of MARS, and minimize a penalized residual sum of squares (PRSS)
value. Hence, both the accuracy and complexity of the model are tried to be
controlled through a penalty parameter. One of the main drawbacks of CMARS
mentioned in the paper of Weber et al. (2012) is that it is not as efficient as the
MARS method. To improve CMARS algorithm for reducing computational run
time, the proposed approach is also implemented to CMARS algorithm. Beforehand,

detailed information on CMARS is given in the following section.

2.2. Conic MARS (CMARS)

CMARS, where "C" stands for “conic”, “convex” and “continuous”, is a modified

version of MARS algorithm which uses a PRSS approach instead of the backward
elimination step of MARS algorithm. By using a penalty term in addition to the lack-
of-fit criterion, PRSS can control the complexity of the model estimation. CMARS
algorithm is built on the set of BFs selected through the forward algorithm of MARS;
thereby, they share the same forward selection step. However, CMARS modifies the
MARS algorithm by taking into account the nearby placement of knots. The BFs

with knots T, = (Ti,liri,Z""’Ti,p)T are constructed at X, :(xiyl,xiyz,...,xiyp)T or just
nearby the data vector X :()_(i,ll)_(i,zi"")_(i,p)T' Namely, knot points may not be
taken as one of the data points (z; ; # X, ; for all (i=12,...,n)and (j=12,...,p))
in CMARS. The aim of this modification is to take the derivatives during

optimization process of the PRSS with the following form:
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PRSS=Y v— (%) + 24 Y Y [2[DrwnTan, a9

i=1 m=1 |al=1 r<s
a=(cq.,a,)" r,seVv(m)

where M, is the number of BFs reached at the end of the forward algorithm;
V(m)={K<m | j=12,..,K_} is the variable set associated with mth BF, y/(m), and
t" =(t, ) represents the variables which contribute to the mth BF. The 4,

values are the nonnegative penalty parameters assigned for each BFs
m=(..,M_,). Moreover, D/, (t")is denoted as in (14) for a = (o, a,)",

|a|= o, +a,, where o, a, €{01}.

alu' m m
—l’!/(t ).

D? t") =
r,sl//m( ) aalt:na%t;n

(14)

Here, if «; =2, the derivative D/, (t")vanishes, and by addressing indices r <s,

the Schwarz’s Theorem is applied.

The PRSS approach bases on a tradeoff between the accuracy and complexity, and it

is established with the help of a penalty parameters, A, in (13). In this equation,

while the first term controls the accuracy which refers to small sum of squares

errors, the second term controls the complexity.

In equation (13), the second part of the PRSS includes multi-dimensional integrals,
which are usually difficult to handle. Therefore, discretization techniques are
preferred generally. The PRSS problem is simplified by applying discretization in the
multidimensional integral in (13) as follows (see Yerlikaya, (2008) and Taylan et al.
(2007), for more detail).

(n+1)Km

PRSS ~[ly - w(d)e|, +Z/1 2. Linfh, (15)
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where y(d) = (y(d,),..,w(d,))" is a matrix with dimensions of (nx (M, +1)) ;

||, denotes the Euclidean norm, and the numbers L, are defined as

2

Lol ST Dot ] || @
a|=1 r<s
a=(a,a,)" r,sev(m)

Here, X" and AX" are related to the predictor data used for discretization.

The linear systems of equations, y =wy(d)8, can be solved approximately by using

the PRSS. The problem is classified as ill-posed, which means irregular or unstable.
Thus, Tikhonov regularization problem is considered for the solution of PRSS
problem because it is the most widely used method for converting the ill-posed
problems to well-posed (regular or stable) ones. The PRSS in (15) is rearranged as
given in (17) to be handled as a Tikhonov regularization problem.

PRSS =y — w(@)e], + 2|Le[:, (17)

where L is an (M, +)x(M_, +1) -diagonal matrix with first column

L,=0 and the other columns being the vectors L,, introduced in (16). Here,

 Y(n+pKkm
0 with the dimension of ((M ., +1)x1) is a vector consisting of the parameters to

be estimated.

In (15), there is a sequence of penalty parameters & = (4;,..., 4y _ )" which makes the

PRSS problem still far away from the Tikhonov regularization approach. To

represent the PRSS as a Tikhonov regularization problem as in (17), a single penalty
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parameter should be defined. This is why the same A value is assigned for each

derivativetermas 4 =4, =..=4, =4

The Tikhonov regularization problem tries to minimize two objective functions,
|y —w(d)@| and || LO|> by combining them into a single functional form using a

linear sum of the functions with a weight, 4.

The Tikhonov regularization problem is rearranged by using conic quadratic
programming (CQP), which uses the advantages of both continuous and convex
optimization techniques. The form of the CQP is as given below

min t,
t,0
subject to |w(d)o-y| <t, 18)
Le|, <vZ.
In general form, the CQP in (18) can expressed with the following form
s T
mXII’]C X, (19)

subject to |D;x —di||§ <p/x-q, (i=1..k).

where,

c=(L0y )", x=(t07)", D, =(0,,¢(d)),d, =y, p, =(10...,0)", ¢, =0
D, =0y . L).d, =0} .,p,=0y ., 0, <—Z.

Here, k represents the number of cone in the optimization problem.
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2.3. Self Organizing Map (SOM)

SOM is developed as an effective neural network technique for analysis and
visualization of high-dimensional data (Kohonen, 1988). It adaptively transforms
high-dimensional data into a lower dimensional discrete map of units as in Figure 3.
Here, the discrete output space is called grid, and the nodes placed on the grid
represent the neurons. The output neurons are generally arranged in a two-
dimensional lattice providing a neighboring relation between neurons. The neurons
on the lattice are positioned according to a particular shape: rectangular or
hexagonal. Therefore, different neighboring relations can be formed among neurons

on the grid.
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Figure 3. Topology of SOM.

Figure 3 shows the schematic diagram of the two-dimensional lattice of neurons.

Each neuron has a specific topological position in the lattice and is represented by a

p -dimensional weight vector, w, =(w,'1,...,w,]p)T (I=1...,u) , where p is the
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dimension of input space; u denotes the number of neurons in the lattice, and u <n.

Each neuron is fully connected to all input values, x; = (X; 1, X; 1 X, ;)" (i =1,...,n);

and the corresponding weight is updated from one data realization to another.

The algorithm of SOM is based on a competitive learning and is trained iteratively. It
proceeds, first, by initializing the weight vectors of the neurons. This process can be
done by assigning small random values to each weight vectors or by using the eigen
values of the given data. After initialization, training process is achieved either by
processing the input vector sequentially or as a batch. At each iteration of the

training, one data point x; (i =1,...,n) from the original space is introduced into the

grid, and the most similar neuron to the current data point is found by using a
similarity measure. The closest neuron for the corresponding input vector is called
best-matching-unit (BMU) and its weight vector is represented by w, € R”, where
b represents the BMU. The similarity between a neuron and the input vector is
usually found by using the Euclidean distance measure between the corresponding

weight vector and the input vector as follows (Kohonen, 1988)

Wy, = arlg_lmin {l X; —W, ”2} (20)

Once the BMU is found at the current iteration, t, the weight vectors of the neurons

within the topological neighborhood of BMU are updated with the rule given below
Wiy (t+1) = W, (t) +a(t) hygy (1) (X (1) =Wy, (1) (I =1,...,u), (21)

where w,, € RP represents the weight vector of the neuron inside the topological

neighborhood of BMU labeled as I(b); h,,, is the neighborhood function defined

I(b)

around the BMU, and a(t) is a learning rate function.
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The BMU locates at the center of a topological neighborhood of neurons h,,, and

this neighborhood around the BMU decays smoothly with a distance measure d,

defined between the BMU, b and the Ith neuron. A typical choice of h,,, is the

1(b)
Gaussian function in (22) due to the facts that it locates the BMU at centers and

decreases monotonically as d,, —>o , which is a necessary condition for

convergence.

d2
h. =exp — -0 |
o) = &P 75 5 (22)

Here, the parameter o is the width of the topological neighborhood which should
shrink within discrete number of iterations. A popular width parameter is described
by Ritter et al. (1992) as

o(t) =0, exp(—ij t=012,..., (23)

m

where o, is the initial value of o, 7, is a time constant parameter , and t represents

the iteration number.

As well as the neighborhood function h,, (t); the learning-rate parameter should also

be time varying to provide a convergence in equation (21). In particular, it should be
started with an initial value, and then, decrease gradually with increasing time (i.e.
number of iteration). A common function satisfying these requirements is the

exponential function denoted as

a(t)=a, exp(—Lj t=012,.., (24)

7,
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where 7, is another time constant parameter of the SOM algorithm (see Haykin

(1999) for more details).
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CHAPTER 3

PROPOSED APPROACH

3.1. Motivation

In an adaptive regression spline, the scope is to produce a good set of BFs (with
optimal number of knots and their locations) for approximating the output function
f in (1) with an efficient algorithm and feasible computation time. In MARS
method, the greatest computational burden is in the forward selection part. During
this process, BFs are added with a hierarchical manner into the model. The model
starts with an intercept term, and at each successive step, a new reflected pair from
the set C in (5) with the corresponding knot is introduced into the model (7) using

the form y (X")(x; —7), andy,, (X")(r - X;),. Here, y (x™) represents the BF in

the form of (6) selected in the previous step including the product of different

variables other than the current x; (j =1,.., p) . Finally, the construction of model

terminates when the number of BFs in the model reaches to a preset number, Myax.

At each forward selection step, the contribution of a newly added BF pair,

Cra¥m (Xm)(xj _T)+ +Cw¥n (Xm)(T—Xj)+, (25)

is evaluated through a LOF criterion depends on the squared error, given in (26)
defined over M BFs.

argmin LOF ((y - fM (x)?)), (26)

m,\v,t

where,
28



B0 =3 6 (04 G V(K — 1), + G (=%, (@)

Namely, if the model with the estimated coefficients (¢,,...,¢,,) can produce the

largest decrease in the LOF criterion, the generated model forms a basis for the

successive steps.

The forward step is an exhaustive search process of knot selection. Each distinct data

value of each predictor variable, X; (i=L.,nj=1.,p), is a candidate knot point.

So at each step of forward selection, pnM number of data points are introduced to
the model with the pair of truncated linear functions, and evaluated through the LOF

in (26) with a computational complexity of nM?; here, n is the number of data

points, and M is the number of BFs in the model at each step (Friedman, 1993). The
computing time associated with each iteration is therefore proportional to pn°M .

Finally, in order to reach a final model with M, BFs, the total time required for the

4
max ?

forward selection is proportional to pn*M which is then reduced to pnM?>_ by

examining the eligible parameter values in a special order (Friedman, 1991,
Friedman, 1993).

As well as M the strategy of searching knots over all distinct data values, pn

max
makes the training of MARS computationally expensive. For a fixed number of
observations, it is possible to decrease the computer time of the forward step by
decreasing the number of candidate knot locations. In this study, to speed up the
forward selection process, a new approach is proposed with changes in the knot
selection search over all distinct data values to a much smaller set of data values. A
subset of data points representing the original data is chosen by using a mapping
approach similar to the one presented in Section 2.3. Here, the way of mapping is
important because the selected points should provide a good approximation for the
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underlying data structure. Due to its following properties (Haykin, 1999), SOM suits

for our purpose.

Property 1. Approximation of input space

At each iteration of training, the weight vectors of BMU and neighboring neurons
come close to the current data points while the weight vectors of others are left
unchanged. In this way, different weight vectors tend to become tuned in to different
domain of input variables. After sufficient iterations, weight vectors tend to be
located in the input space so that an approximation to the distribution of data is
achieved in the sense of some minimal residual error. This approximation approach
is rooted in vector guantization method which is based on Lloyd algorithm. (see
Gersho and Gray (1992) for more details.)

Property 2. Topological ordering or self-organizing

The neurons on the lattice have spatial locations, and are connected with a
neighborhood relation. This property provides a spatial concentration for network
movement at each iteration. After repeated iterations, a particular domain of input
space is going to be represented with the neurons topologically close to each others.

The topological order of neurons can be visualized as an elastic net of weight vectors
(in red color) in the coordinates of original data points (in green color) shown in
Figure 4. The lines connecting the weight vectors represent the spatial location of

corresponding neurons on the lattice.

Property 3. Density matching

The density distribution of the underlying data can be matched by self-organizing
maps. The dense regions in the input space from which the data points are drawn
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with a high probability of occurrence are mapped onto larger domain of the space of
neurons. In Figure 4, the neurons tend to drift where the data is dense while only a

few neurons are located where the data is sparse.

On this account, the resulting weight vectors of mapping can form a base for a data-
driven subset of data points (representing the structure of the underlying data) that

will be used as candidate knot points

Weight Vectors
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Figure 4. Weight vectors (red points) along with original data points (green points).

3.2. Proposed Approach

In this thesis, to select the candidate knot points in a more efficient way, a mapping

idea mentioned in Section 2.3 is proposed. Due to the good properties of SOM
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emphasized in the previous section, the underlying data structures can be
approximated properly with some representative weight vectors. Selecting the knot
points by the help of these weight vectors can decrease the computing time of model

building significantly without decreasing the accuracy.

In the proposed method, called S-FMARS, each data point z; = (X;,Y;) (i=1...,n)

are considered as input data and mapped from the original data space, R into a

grid via (p+1)-dimensional weight vectors w, = (W, ,...W, ,,;)" (I =1,...,u).The main

reason of taking into account the response values with the predictor values during the

mapping is to preserve the relation between predictors x and response variable y in

the new space. Once the weight vectors are updated according the underlying dataset,
the weight vectors exposed to at least one data point (called taking a hit) are selected
as the representatives of the corresponding data points. Then, piecewise-linear
regression splines are built at the knot selected from the set of values represented by
the selected weight vectors. For this set, the selected weight vectors can be directly
used as a candidate knot points or used as a reference for any other points in data
space to be evaluated as the potential knot location. For example, instead of using
weight vectors, the original data points referred by the weight vectors can be
considered as candidate knot point. The way of determining a point in data space by
the help of weight vectors is named projection in this thesis. Namely, the weight
vectors are projected from the grid to the original data space. Two ways of projection
are studied in this study: the nearest data point and the mean of k-nearest data
points. While the nearest data method finds the closest data vectors to the selected
weight vectors, k-nearest data method takes the average of the k data points close to
weight vectors. Here, k denotes the number of hits of the corresponding neuron. Due
to its accuracy and prediction performances, weight vectors are projected onto data
space using the nearest-data method. The results of the corresponding analyses are

given in Appendix D.
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The steps of the proposed approach S-FMARS are described below through an

example given in Figure 5, and the pseudo code for the S-FMARS algorithm is

presented in Figure 6.

3.3 Algorithm

1.

(Mapping). Data points z; = (x;,Y;) (i=1...,n) (Figure 5.a) are mapped into
a space of neurons by an iterative algorithm given in Section 2.3.

(Selection of neurons). In Step 1, if a neuron is selected as a BMU during the
training, it means making a hit. In this step, the neurons with at least one hit
are selected.

(Projection). The weight vectors associated with the neurons selected in Step
2 (Figure 5.b) may not be one of the original data points. So the weight
vectors are projected onto the original data space (Figure 5.c), where the

projected data point is represented by z, = (isyl,...,is'p,'ys) (s=1..,S), where

S denotes the number of selected neurons, and S <u.
(Knot selection and model building via the Forward Selection). The estimated
model is built on the truncated linear functions in which the knots are the

values of the predictor data, X, projected in Step 3. Here, every distinct
value of the corresponding predictor variable, X, ; (s=1...,S; j=1,.., p),are

considered as candidate knot points for BFs. The new set of truncated linear

functions is given as

D={(x,-7),,(c =x,)). 17" e{% }, i =€ p},s={L..S}}  (28)

S-FMARS constructs a model by regressing y on the BFs developed over the
set of D in a stepwise manner, and the significant BFs with the
corresponding knots are selected via the lack-of-fit criterion in (26) (Figure
5.d).
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(a) (b)

(c) (d)

Figure 5. (a) Original data points. (b) Weight vectors of selected BMUs and original
data points. (c) Projected weight vectors and original data points. (d) S-FMARS
model for which knots are selected from the projected weight vectors.

3.4 Parameters of S-FMARS Approach

In S-FMARS approach, the set of BFs obtained after running the algorithm presented
in Figure 6 contains less number of candidate BFs than that of the set C in (5), so that
the computing time of forward step decreases in a significant manner. In this
approach, it is also possible to decrease the computing time further by decreasing the
size of set D in (28) via two parameters called grid size and threshold value set for

the number of hits of each neuron. However, changing the values of parameters in
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1 input: a set of data vectors z;, =(x;,y;) (i=1...,n); athreshold value t ; grid
size @.

2 lattice: a grid with a specified size and a set of weight vectors, w, (I =1,...,u).

3 begin for mapping

4 initialize each weight vector w,.

5 repeat
6 select one data vector, z, =(x;,Y;).
7 find the BMU such that w, =argmin{d(z,,w,)}.
1=1,...u
8 for all weight vectors of neighboring neurons, w, ,, , do

W,y (E+1) = w4, (1) +a(t) hy, Oz (1) —w,, 1))
10  until the termination condition holds (until a specified number of
training epochs).
11 end
12 select the BMUs whose number of hits is greater than a specified
threshold value, t . The corresponding weight vectors are denoted as
w, (s=1..,5S).

13 project the weight vector of the selected BMUs, w, (s=1,...,S) to the
data point Z, = (X,,Y,) such that d(w,,z,) =argmin{d(w,,z,)}.

i=l,...n

14 begin model building with B, (x) =1.

15 M=2

16 while M <M,

17 for m=1to M -1 do:

18 for je{j(km)l<k<K,},

19 for ¢ e{)ﬂ('syj | B,, (xX) >0},
M-2

20 g € Zaka(X)"‘aM-lV/m(X)(X,‘ -7 ). tauy ()t =X (t —X).,
k=0

21 LOF < min LOF(Q).

-804

22 end

23 end

24 end

25 end

Figure 6. The algorithm of S-FMARS.
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decreasing the computing time should be achieved carefully by considering the

model accuracy.

Since some representative knot points could be eliminated while decreasing the size
of map, accuracy of the corresponding models may become worse. In the following
sections, the effect of these parameters both on computing time and model accuracy
are evaluated through a sensitivity analysis.

Since some representative knot points could be eliminated while decreasing the size
of map, accuracy of the corresponding models may become worse. In the following
sections, the effect of these parameters both on computing time and model accuracy

are evaluated through a sensitivity analysis.

3.4.1 Grid Size

In S-FMARS approach, mapping starts with a grid topology that can be hexagonal or
a rectangular whose size is preset in advance (see Figure 7). The grid size represents
the dimension of a lattice in terms of total number of neurons (Vasento et al., 2000).
Cardinality of neurons has an important effect on the mapping quality; so the
approximation capability. If the grid size is large enough, SOM builds a dense lattice
with a large number of BMUSs, and approximates the underlying data distribution
better than the lattice with a small number of map units. However, SOM with a large
number of BMUs produces a large subset of candidate knot points, so that it needs
more computing time. Therefore, the size of a lattice is considered as a trade-off
between the less computing time and a good approximation both in mapping and

modeling.
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Figure 7. Examples of grid structures.

The size of the grid can be either specified by the user, or can be defined
heuristically. In general, a heuristic for grid size g =5/n introduced by Vesanto et

al. (2000) is used for adequate approximation of the original data points, where n
represents the number of original data points. In this study, for each dataset, the

effect of grid size on computing time and model accuracy are observed by running
the S-FMARS approach for 10 different grid sizes as in Figure 8, where g = Jn.

The best number of grid size is then determined by observing the changes in RMSE

and computing time in seconds.

Figure 8 and Figure 9 displays the results of a sensitivity analysis constructed for the
Dataset 2 in Table 1. The results obtained for other problems are given in Appendix
C in the same order as in Table 1. In Figure 8, the RMSE of a model obtained after
the run of S-FMARS approach gets smaller as the grid size for the approach gets
larger. This is due to the fact that large grid sizes provide better approximation of the
underlying distribution than those of the small grid sizes. However, more computing
time is required for both mapping and modeling as the grid size gets larger (see
Figure 9).

To select the best grid size for the underlying dataset, the changes in both RMSE and
CPU time should be evaluated carefully. As it is seen in Figure 8, the change in
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RMSE becomes stable at grid size 5g/4, while the change in CPU time significantly
increases after the grid size g. Therefore, to render a decision on the best grid size, a
ratio taking into account both the model accuracy and CPU time simultaneously can

be stated as follows,

r = rmse/time. (29)

RMSE versus Grid Size
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Figure 8. Graph of RMSE versus grid size for Dataset 2.

The graph of “Ratio versus grid size” (Figure 10) for the underlying dataset can
provide an intuition about the best grid size for the S-FMARS approach. The grid
size where the ratio does not change significantly can be determined as the best size

for the accurate model with efficient computing time.
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Time versus Grid Size
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Figure 9. Graph of Time versus grid size for Dataset 2.
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Figure 10. Graph of Ratio versus Grid size.
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Moreover, the best grid size can also be determined by setting a stopping value for
the slope of the ratio. For instance, the best grid size (g) for the dataset used in this
study can be taken as 5g, if the stopping value is set to 0.15.

3.4.2. Threshold Value

In S-FMARS approach, another affecting parameter on computing time is the
number of hits. Here, the hit represents the data point coming close to a neuron by an
updating rule as stated in Section 2.3 during mapping. In the proposed approach,
neurons taking at least one hit (the neurons determined as BMUSs) are selected, and
their corresponding weight vectors are used as candidate knot points. On this
account, the set of candidate knot points (set D in (28)), so the number of neurons

selected can be controlled by a threshold value, t set for the number of hits.

The number of hits owned by each neuron can be visualized via a graph of sample
hits (see Figure 11). The number in each cell gives the frequency of data points
mapped from the input space to the corresponding neuron. While neurons with large
number of data points represent the dense regions of data, the ones with small
number of data points represent the sparse regions or outliers. The neurons with zero
data points are not BMUs of any original data point, so they are disregarded.

Setting a threshold value for the number of hits can control the selection of neurons
or weight vectors for the knot placement. A high threshold value reduces the number
of neurons, so the candidate knots. Besides, a high threshold value leads the S-
FMARS algorithm to select the neurons representing the dense regions of data
points. Thus, the neurons attained to sparse regions or outliers are automatically
eliminated before the knot placement. This elimination procedure however may
decrease the model quality although it decreases the CPU time.
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A low threshold value leads S-FMARS algorithm to produce a large number of
candidate knot points. Therefore, the model built after implementing the S-FMARS
approach is generally more accurate than the models obtained after running the S-
FMARS approach processed with a high threshold value (see Figure 12). On the
other hand, S-FMARS with low threshold requires more CPU time to build a model
(see Figure 13).

Hits

4
3.5 5 6 8 11 1
al
s 7 6 2 10 4
-1
3 5 5 2 0
1.5
1 8 6 0 7 20
05
0 6 5 0 7 16
=05
-1
-1 (s} 1 2 3 4 5

Figure 11. The sample hits of a 5x5 hexagonal grid including 25 neurons.

When t =1, more weight vectors are selected, and a large set of candidate knot
locations is obtained. The model constructed on this set of knot points can
approximate the underlying function more accurately as in Figure 12, and the model
accuracy (RMSE) becomes worse as the threshold value gets larger. However, the
computing time required for model building is high fort =1, and it decreases for the

large threshold values as presented in Figure 13.
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The aim here is to increase the threshold value without decreasing the accuracy of
models. On this account, to see the effect of threshold value on both model accuracy
and computing time, the slope of ratio given in (30) is examined for six different
threshold levels starting t =1 to three standard deviations of hits (std) above the

average hits (m,) calculated as follows

m, = n/u, (30)

where n is the number of data points, and u is the number of neurons in the map.

As the threshold value for the number of hits gets larger, the ratio increases; hence,
inaccurate models are obtained (see Figure 14). Therefore, the point where the ratio
is settled and starts to increase further can be determined as the best threshold value.
Similarly, like in grid size, a cut off value set for the slope of ratio can be used to
determine the best threshold value of the number of hits. For the dataset in Figure 14,
the point mu+std can be used set as the best threshold value where the slope is no

more than 0.15.

RMSE versus Threshold Value
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Figure 12. Graph of RMSE versus Threshold value.
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Figure 13. Graph of Time versus Threshold value.
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Figure 14. Graph of Ratio versus Threshold Value.
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CHAPTER 4

APPLICATIONS

4.1 Background on Applications

The proposed algorithm given in Section 3.3 includes two main steps: mapping and
model building. Firstly, a set of candidate knots is determined via a mapping and
projection, and then, a regression spline model is developed by searching the knots
over the set of data points gathered in the first step. The implementation of mapping
idea prior to the model building is proposed to decrease the computational burden of
adaptive regression spline mainly caused by the forward step. Together with the
mapping and model building strategy, the proposed approach can be considered as a
modified forward selection algorithm of MARS. The performance of the proposed
approach, S-FMARS, is evaluated and compared with the forward selection
algorithm of MARS and MinSpan approaches (for detailed information see Section
2.1.1) through various applications with respect to different performance criteria. The
proposed approach is compared with FMARS and MinSpan approach separately in
Section 4.3 and 4.4, respectively. In addition, to control the complexity of the S-
FMARS model and to prevent the overfitting problem, the backward elimination
strategy of MARS and the idea behind the CMARS are implemented to the proposed
forward selection algorithm. Performance of five methods called MARS, MARS
with MinSpan, SMARS, CMARS, S-CMARS are compared with respect to
accuracy, complexity, stability and robustness criteria in Section 4.5. Here, SMARS
refers to the method including the proposed forward selection algorithm and
backward elimination step of MARS. S-CMARS denotes the modified version of
CMARS which is built on the BFs selected by S-FMARS.
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4.1.1 Datasets and Validation Techniques

The experiments are conducted on 10 artificial and six real datasets. The list of the
datasets with their four different features including number of data points (size),
number of predictor variables (scale), degree of interaction (nonlinearity) and noisy
behavior are given in Table 1. In all datasets, predictor variables and response
variable are all taken as continuous. The first six datasets together with the Dataset
10 are generated from the functions originally given by Jin et al. (2001), (see
Appendix A and Appendix B for the function descriptions and the grid plots of the
functions, respectively). Dataset 7 is the robot arm example used by Friedman
(1993), and Dataset 8 is taken from the MATLAB user’s quide (2010). The function
used for Dataset 9 is the sinus function and the corresponding data is generated with
some noise. The last six datasets belong to real life problems, and are originally
taken from the UCI repository (Frank, 2010). These datasets are selected according
to their size, n and number of predictor variables, p. Before the construction of the
models, all datasets are preprocessed and standardized to become comparable.

For artificial data sets, to compare and validate the performance of the methods, a
test data is generated by the same function used for training data. In real data sets,
however, 3-fold with three replications cross validation approach is used for model
validation. In this approach, the original data set is randomly divided into three part
(fold). At each time, one part is retained for testing, and other two parts are used for
model building. Hence, three models are built at each time. This process is replicated

three times with new partitions.
4.1.2 Software

The proposed approach S-FMARS is written entirely in MATLABR (Matlab, 2010)
with the assistance of SOM Toolbox (Vesanto, 2000) and ARESLab Toolbox.
ARESLab Toolbox is created by Jekabsons (2011) as a collection of Matlab codes

for implementing MARS algorithm. This toolbox implements the main functionality
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of MARS technique close to the description in the Friedman’s paper (Friedman,

1991). It should be indicated that the model building is not accelerated using “Fast

MARS” queuing (Friedman, 1993) together with the “fast least square update

technique” in this code. SOM Toolbox (Vesanto, 2000) is another Matlab library

created for self-organizing maps.

To develop a CMARS model, first, the Matlab code written for S-FMARS is used to
obtain the BFs provided from the proposed forward selection algorithm. Then, the
code written in MATLAB (2009a, The MathWorks, U.S.A.) by Yerlikaya (2008) and
developed further by Batmaz et al. (2010) is used to obtain CMARS models. For
optimization process in CMARS, the MOSEK optimization software (6. MOSEK

ApS, Denmark) is utilized.

Table 1. Features of the datasets.

Datasets  Sample Size (n) # of inputs (p) Nonlinearity Bel?:g\l/s%ur

1 1000 7 high no

2 1000 5 low no

3 1000 10 low no

4 10000 2 high no

5 10000 3 high no

6 10000 3 low no

7 1000 5 high no

8 10000 2 high no

9 100 1 low yes

10 100 2 low yes
Parkinsons 578 21 high
Red Wine 1599 11 high
Com.Crime 879 24 high
Conc. Comp. 1030 8 high
PM10 500 7 low
Auto Mpg 398 low
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4.1.3 Performance Criteria and Measures

The performance of each method is measured with respect to accuracy, complexity,
stability, robustness and efficiency criteria. To evaluate the goodness of the model
fit, Root Mean Square Error (RMSE), Adjusted-Multiple Coefficient of
Determination (Adj-R? and GCV given in (11) are used for training data. The
equations for RMSE and Adj-R? are given in (31) and (32), respectively. RMSE
indicates the grossly inaccurate estimates. Namely, the smaller the RMSE is, the
better the model fits to the data. Adj-R? is a penalized form of R* with respect to the
number of predictors in the model. It gives the amount of variation in response which
is explained by the model. Thus, the higher the Adj-R?, the better the model is. As
stated in Equation (11), GCV criterion takes the number of BFs in the model into
account as well as the model accuracy. Hence, the model complexity can be

evaluated and compared with respect to the GCV measure.
_ 1< A2 |12
RMSE = *Z(yi -y . (31)
N

where vy, is the ith observed response value, y, is the ith fitted response, and n

denotes the number of observations.

Adj-R? =1-| =

n (32)
Z (Yi - y)z

Z(yi_yi)z ( n—1 ]

n-p-1

where (n— p—1) = 0.Here, y is the mean response, and p denotes the number of

predictors in the model.

Since the measures obtained for the training data are not sufficient to access the
accuracy of newly predicted points, a test data is also used to verify the prediction
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accuracy of the models. RMSE and Adj-R? measures are used to examine the
prediction performances. Furthermore, to measure the change in the performance of
methods between the training and test datasets, a stability measure defined below is

used

. |MR;; MR
min R Te | . (33)
MR MR;q

where MR, and MR, represents the performance measures (RMSE or Adj-R?) for

the test and training data sets, respectively. The model whose stability measure is
close to one represents a stable model. Furthermore, robustness of the methods under
different data sets is also evaluated with the help of the spread of performance

measures used.

The efficiency of each method is measured by recording the computational run times
(the CPU time) of models to make the results comparable. Both methods are tested
on the same platform (Intel Core2 Duo CPU T7250@2.00 GHz 2.00 GB RAM). For
each dataset, the CPU times of the models are recorded in seconds. A detailed
analysis is performed on CPU times of methods with respect to sample size and
number of predictor variables (refers scale of data). To achieve such kind of an
analysis, real datasets in Table 1 are categorized into two groups as medium/large
and small/large according to sample size and scale, respectively. Moreover, the
differences between CPU times of methods according to sample size and scale are
also tested statistically by a nonparametric method called Mann-Whitney Test.
Mann-Whitney is a nonparametric version of two-sample t test used for independent

samples when the normality assumption is violated (Lehmann, 1975).

To compare the performances of two models, one-sample sign test (Gibbons and
Chakraborti, 2003) is used in our experiments. Here, the datasets used by two models

are considered as paired sample, which means there is a dependency between them.
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One-sample sign test is a nonparametric test, which makes little assumptions about
the nature of underlying distributions. Generally, it is used as an alternative to one-
sample paired t-test and Wilcoxon signed-rank test, respectively when the normality
assumption is violated and population distribution is not assumed to be symmetric. In
this study, one-sample sign test is interpreted for a=0.05 significance level in the
comparison studies of two methods. To compare the performances of more than two
models, repeated analysis of variance (RANOVA) test (Davis, 2003) is used.
RANOVA is a statistical test used for mean comparison. The hypothesis stated for

model comparison is as follows:

Ho: 111= po= pa... =k
versus (34)

H;. at least one is different

Here, u stands for the expected value of a performance measure such as RMSE,
GCV, etc. used in the comparisons. Once the test is rejected at =0.05 significance
level, the differences between models are tested pairwisely using Fisher’s Least
Significant Differences (LSD) test. One-sample sign test and RANOVA teat are
applied for training and test datasets as well as stabilities of the measures for real life
data sets via the statistical software SPSS™. These tests are not applied to artificial
datasets since the underlying normality and variance equality assumptions are not
satisfied. The reason for lack of normality and variance inequality is the fact that the

measures obtained are in different orders (or scales).

4.2 Selection of S-FMARS Parameters for Datasets

As mentioned in Section 3.4, S-FMARS has two important parameters that has effect
in decreasing the computational run time and increasing the model accuracy. The
grid size is the parameter that controls the approximation quality. If the underlying

data points are mapped into a grid with a large number of neurons, then the
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underlying input pattern can be approximated well; otherwise, more information is
lost during the mapping. The other parameter is the number of data points assigned to
each neuron after mapping. If a high threshold value is set for the number of data
points grouped around the neuron, then less number of weight vectors is selected as
the reference for candidate knot points. That is, the set of candidate knots is restricted
to more than the case for which the low threshold value is set. In Chapter 3.4, the

ways of selecting the best values for these parameters are given.

In this chapter, the best S-FMARS parameter values are determined for all datasets
utilized in this study. That is, the performance of S-FMARS method with respect to
model accuracy and time efficiency is determined as a result of a sensitivity analysis
performed on 10 different grid size and six distinct threshold values. The design

levels determined for the grid size and the threshold value are given in Table 2. Here,
g=+/n, and m, and std represent the mean and standard deviation of data points

assigned to neurons, respectively.

Table 2. Design Values for Grid Size and Threshold Value.

Grid Size Threshold Value

g/10 1
g/5 m,
g/2 m, +std
g m,, +2 std

59/4  m,+25std
59/2 m, +3std

59

10g

15¢

209
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The computational run time and model accuracy of the S-FMARS method is
observed for each design value given in Table 2. As mentioned in Section 3.4.1, as
the grid size of the lattice to which the original data points are assigned increases, the
approximation of the underlying input pattern become well, so that model accuracy
increases. On the other hand, the computing time of the method increases. The effect
of the threshold value on the performance of S-FMARS method is the exact opposite
of grid size (see Section 3.4.2). Namely, as the threshold value increases, the
accuracy of the model and the computational run time decrease. This is due to the
fact that less number of weight vectors is selected as a reference for the candidate
knot points which leads the model to be built on the less number of candidate knot
points. Hence, model accuracy and computing time decreases. This stated effects of
grid size and threshold value on the performance of S-FMARS with respect to model
accuracy and computing time is valid and observed for all datasets. The performance
measures of S-FMARS calculated for the design points in Table 2 are given in
Appendix C for all datasets.

In determination of the best parameter values, the graphs including “Ratio versus
grid size” and “Ratio versus threshold value” are used. Here, the measure of “Ratio”
denotes the ratio between RMSE and computing time (see Equation 29). With the
help of this measure, the change both in model accuracy and computing time can be
observed for different parameter values. The breaking point where the lines become
stable can be used as the best parameter values. As well as the performance table, the
graphs of “Ratio versus grid size” and “Ratio versus threshold value” are presented

in Appendix C for all datasets.
As a result of the sensitivity analysis, the best grid sizes and threshold values of S-

FMARS method are determined for artificial datasets and real datasets, in Table 3
and Table 4, respectively.
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Table 3. Best Parameter Values For Artificial Datasets.

Datasets Grid Size Threshold Value
1 5g/2 1
59/4 m, +std

2

3 g/2 mu+std
4 g/2 m, +2std
5 g/2 1

6 g/2 1

7 g/2 m,

8 59/2 m, +std

Table 4. Best Parameter values for Real Datasets.

Datasets Grid Size Threshold Value

AutoMpg  99/2 1
ComCrime 59/4 m,
ConcComp 90 m,
Parkinsons 59 1
PM10 39
Redwine 39

4.3. Comparison Study 1

In this section, the performance of the proposed approach, S-FMARS is evaluated
and compared with the forward selection algorithm of MARS, named as FMARS.
The performances are evaluated through eight artificial data, six real data and two
noisy data with respect to accuracy, complexity, robustness and time efficiency.
Analyses are given under the name of artificial datasets, real dataset and noise

analysis.
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4.3.1. Artificial datasets

This section evaluates and compares the methods for Datasets 1-8. Both method use
the same number of interaction terms (Int.) for each data set, and allow their models
grow up to the same preset number of BFS (Mnax), Which is 100 for all cases. The
accuracy and complexity measures of models calculated for each training data and
the CPU time required for the corresponding models are given in Table 5, as well as

the number of BFs found in the final model (BFfinar).

The number of BF in the final model denotes the complexity of the model. For
almost all models, two models have similar complexity. The accuracy measures
calculated for each method seem close to each other in Table 5. For data sets three,
four, six and eight, S-FMARS performs better than FMARS with respect to RMSE.
For three data sets, S-FMARS overperforms FMARS with respect to complexity
measure (GCV). It is noted that Adj-R? values of all models are very high for all
cases. This may be due to the overfitting problem or smoothness of the underlying
datasets, which do not include noise. The prediction performances of both methods
and their stabilities of measures are compared via the RMSE and Adj-R? measures as
given in Table 6. It can be indicated that the prediction performance of S-FMARS is
slightly better than that of FMARS for five datasets (see Table 6) and more stable
than FMARS for four data sets.

The models are compared with respect to time efficiency via CPU times in seconds
given in the last column of Table 5. It is seen that S-FMARS is much more efficient
than FMARS for all datasets. It provides at least 83 % decrease in the CPU times. In

addition, S-FMARS achieve this reduction in time without losing much in accuracy.
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Table 5. Performances of FMARS and S-FMARS on the train data.

Datasets Methods  Int. BFrwm RMSE  Adj-R®  GCV Tirg;;’ec.) ir?fiﬁfﬁa(ii)
FMARS 100 1062.9* 0.977* 2013650*  6210.9 o
S-FMARS 100 1089.1 0976 2114441 311.8*
) FMARS 43 42719% 0999  21796917* 44.1 5
S-FMARS 43 43598 0999 22703916 7.5%
; FMARS 47 241 0999 7405 19345 ,
S-FMARS 47 240% 0999  740.1* 231.1*
. FMARS 77 0026 0998 0001 16904.8 o
S-FMARS 81  0.025* 0998  0.001 999.7*
- FMARS 43 5133° 0999  269180% 9756.7 o
S-FMARS 45 5142 0999 270354 516.8*
FMARS 23 2969 0999 8913 3521.9
®  SEMARs ® 23 2802* 0999  8.456% 51.0% %
, FMARS 100 0028° 0992  0001* 3311.4 o
S-FMARS 100 0030 0.991*  0.002 186.7*
FMARS 81 0166 0998  0.029 93483.0 0
S-FMARS 78 0.151* 0998  0.024* 484.7*

Note: * indicates better performance.

Table 6. Performances of FMARS and S-FMARS on the test data and stabilities.

TEST STABILITY
Datasets RMSE Adj-R? RMSE Adj-R?
S- S- S- S-
FMARS FMARS FMARS FMARS |FMARS FMARS FMARS FMARS

1 1120.7*  1126.7 0.959 0.959 0.948  0.967* 0982  0.983*
2 3849.4  3834.1*  0.999 0.999 | 0.901* 0.879  1.000  1.000
3 23.0* 23.1 0.999 0.999 0.954  0.963*  1.000  1.000
4 0.026 0.026 0.998 0.998 | 1.000* 0962  1.000  1.000
5 5385  529.7* 0.999 0.999 0.953  0.971*  1.000  1.000
6 2.981  2.869* 0.999 0.999 | 0.996* 0992  1.000  1.000
7 0.029  0.028* 0.986 0.986 | 0.966* 0933 0994  0.995*
8 0.168  0.151* 0.998 0.998 0.988  1.000*  1.000  1.000

Note: * indicates better performance.
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4.3.1.1 Effects of Maximum number of BFs and sample size on the CPU time

The computational run time of both methods depends on the problem size (n) and a
user-specified maximum number of BFs (Mnax). TO obtain the performance of both
methods for different n values, five different datasets with n=400, 800, 1600, 3200
and 6400 are generated using the function in Dataset 8 (Figure 15). Additionally,
FMARS and S-FMARS models are built for three different My« values 20, 40 and
60.

The results presented in Table 7 show that as n and Mpax increase, the CPU time
required for model building drastically increases for both methods. Moreover, one-
sample sign test signifies that the accuracy and complexity measures of two models
are not statistically different for each Mmax and n values (p-values > 0.05).
Computing time of S-FMARS is less than that of FMARS for all sample size and
Mmax cOmbinations (see Table 7). Especially for large datasets, the decrease in CPU
time is more drastic than for small ones. As it is seen in Figure 16, which displays the
run times of methods recorded for the models with M,ax=60, the difference between
the CPU times of two methods become noticeable as the sample size increases.
Correspondingly, while the decrease in CPU times is 70 % for the dataset with
smallest n and Mnax value, the decrease in CPU is 98% for the largest dataset with

large number of Myax.

In addition, CPU times of both methods change in a similar manner according to
different Mpax and n values (see Figure 17). As the values increase, CPU times of
both methods also increase. However, regardless of Mma and n values, the
computing time required for model building in S-FMARS is drastically less than that
of FMARS, which is figured out by different y-scales in Figure 17. At least 70 %
decrease is achieved by S-FMARS method.
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Figure 15. Grid plot for data set 8.

Table 7. Performances of FMARS and S-FMARS for different n and Max.

L CPU Di_ffe_rence
RMSE Adj-R GCV Time (sec.) in time
n M max (%)
F S- F S- F S- F S-
MARS FMARS MARS FMARS MARS FMARS MARS FMARS
20 1.207* 1229 0.850 0.852* 1.914* 1.985 3.7 1.1* 70
400 40 0.994* 1057 0.893* 0.891 1.767* 2.001 13.8 2.3* 83
60 0.911* 0935 0.905 0.915* 2139 2254 357 4.5% 87
20 1302 1.293* 0.829 0.835* 1934 1.908* 8.3 1.3* 84
800 40 1.053 1.046* 0.885 0.892* 1.453 1.433* 40.3 3.4* 92
60 0993 0.983* 0.895 0.905* 1500 1.469* 107.9 8.5* 92
20 1.268* 1.285 0.846* 0.843 1.715* 1762 24.0 1.7* 93
1600 40 1.057* 1072 0.891 0.891 1.272* 1308 109.7 5.6* 95
60 1.006* 1.011 0.900 0.903* 1.233* 1.247 308.7 14* 95
20 1.227* 1233 0.855 0.855 1555 1570 725 3.5* 95
3200 40 1.028 1.027* 0.898 0.899* 1.126 1.124* 3574 14.5* 96
60 0985 0987 0.906 0.907* 1.069* 1.073 1088.6 35.6* 97
20 1274 1.266* 0.844 0.846* 1650 1.628* 339.1 7.7* 98
6400 40 1.060* 1.072 0.892* 0.890 1.160* 1.187 1609.1 37.5* 98
60 1.013* 1.014 0.901 0.901 1.077* 1.079 6228.6 114.8* 98

Note: * indicates better performance.
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Figure 16. CPU times versus sample sizes (n) for Mmax=60.
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Figure 17. CPU time versus sample size.

Note: BFm represents the number of BFs in the final model built for a preset M, value.



4.3.1.2 Effect of interaction terms on the CPU time

In general, interaction models require more CPU time than additive models
(Friedman. 1993). The effect of interation terms on the computing time of FMARS
and S-FMARS is tested on Dataset 7, which is a robot arm example used by
Friedman (1993). This data is taken from a hypothetical robot arm free to move in

three dimensions (x,y,z). It includes five input variables which are taken to be the
lengths of upper and forearm I,1,, respectively, and three angles 6,, 6,, ¢. The
response is the distance from the origin (J,) to the end of the forearm (x,y,z)

opposite to the joint (J,), the location of which is given by

x=1,cosé, —1, cos(@, +6,)cosy,
y=1,sin@, —1,sin(6, + 6,) cosy, (35)

z=1,sind,sing.

The distance (response) is then obtained by

1/2

d=(x*+y*+z%)"% (36)

The best model describing the nonlinear relationship between the response and
predictor variables of robot arm data is an interaction model. The CPU times spend
for building models with different degree of interaction terms are observed and
compared in Table 8, and summarized in Figure 18. As a result, as the number of
interaction term increases, the CPU times of both methods increases
correspondingly, but S-FMARS is much more efficient than FMARS for all cases. It
provides approximately the same percent of decrease in CPU times for all number of
interaction terms, which is 95%. Moreover, the performances of S-FMARS and
FMARS are not statistically different with respect to accuracy and complexity for

different number of interaction terms.
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Table 8. Performances of FMARS and S-FMARS for different interaction term

# RMSE Adj-R? GCV CPU Time (sec.)  Decrease
it FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS FMARS S-FMARS t;”mg?;:)
1 0160 0157* 0761  0.771*  0.024*  0.025 159.1 55+ 97
2 008 0079 0999 0999  0.006  0.006 814.9 39.3* 95
3 0064* 0065 0999 0999 0004  0.004 1323.4 61.%6 95
4 0063 0062 0999 0999  0.004  0.003 1448.7 731* 95
5 0063 0062* 0999 0999 0004  0.003 1670.9 70.5* 96

Note: * indicates better performance.
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Figure 18. CPU time versus number of interaction terms.
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Two methods are also compared on real life datasets presented in Table 1. Before the

model construction, all datasets are preprocessed and standardized to increase the

model performances and make them comparable. 3-fold and three times replicated

cross validation approach is used to validate the performance of the methods. The
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averages of nine performance measures for the corresponding models are listed in
Table 9. Algorithms are run for different My values presented in the 3" column of
Table 9. The best models obtained for Parkinsons Telemonitoring, Communities and
Crime, AutoMpg and PM10 are additive models (with no interaction), whereas for
Red Wine Quality and Concrete Compressive Strength datasets, respectively, two and

three way interaction models are found to be the best for both methods.

In order to decide whether or not both methods are statistically different, one-sample
sign test is applied to the performance measures calculated for train and test data sets
displayed in Table 9 and Table 10, respectively. The significance of differences
between the stabilities of the measures calculated on train and test performance
measures given in Table 10 is also checked statistically with one sample-sign test.
Moreover, to evaluate the overall performances of methods, mean and standard
deviation of all accuracy and complexity measures are given in Table 11 for train and
test datasets as well as stabilities of measures. Here, standard deviation is used for

indicating the robustness of the methods.

Table 9. Average performances of FMARS and S-FMARS on the train data.

CPU Decrease
Datasets Models M Int. RMSE Adj-R* GCV  Time in CPU
(sec.)  time (%)

FMARS 0.348 0.863 0.195 29.51

Parkinson 50 - 90
S-FMARS 0.347* 0.864* 0.194* 3.09*
. FMARS 0.619* 0.569* 0.603* 338.91

Red Wine 90 2 79
S-FMARS 0.672 0513 0.665 72.68*
. FMARS 0.365* 0.817* 0.580* 216.10

Com. Crime 150 - 71
S-FMARS 0.412 0.766 0.800 62.66*
FMARS 0.196* 0.955* 0.102 1122.53

Conc.Comp. 100 3 85
S-FMARS 0.202 0.952 0.103* 168.51*
FMARS 1.847* 0.994* 64.66* 16.75

AutoMpg 100 - 80
S-FMARS 2.184 0.878 90.42 3.32*
FMARS 0.649* 0.503* 0.867* 11.11

PM10 50 - 81
S-FMARS 0.665 0.477 0911 2.16*

Note: * indicates better performance.
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Table 10. Average performances of FMARS and S-FMARS on test data and
stabilities.

TEST STABILITY
Datasets RMSE Adj-R? RMSE Adj-R?
FMARS S-FMARS FMARS S-FMARS |FMARS S-FMARS FMARS S-FMARS
Parkinson | 0.640* 0.685 0.716* 0.683 | 0.544* 0.507 0.830* 0.791
Red Wine | 1.237 0.937* 0.213 0.251* | 0500 0.717* 0.374  0.490*
Com. Crime | 0.739 0.681* 0520 0.569* | 0.494 0.605* 0.637 0.743*
Conc.Comp. | 0.443* 0.459  0.823* 0.816 | 0.442* 0.440 0.862* 0.857
Auto Mpg | 5.199 2.934* 0.720 0.845* | 0.355 0.744* 0.724  0.962*
PM10 1.013 0.808* 0.262 0.369* | 0.641 0.823* 0.521 0.774*
Note: * indicates better performance.

Table 11. Overall performances of FMARS and S-FMARS methods.

TRAIN TEST STABILITY

RMSE  Adj-R? GCV RMSE  Adj-R?> | RMSE  Adj-R?
0.671*  0.784*  11.168* | 1.545 0.542 0.496 0.658
EMARS | (0.602*%) (0.203) (26.207**)| (1.812)  (0.256) | (0.096**) (0.187)

0.747 0.742 15.515 1.084*  0.589 * 0.639* 0.770*
S-FMARS | (0.728) (0.200*%) (36.697) |(0.920**) (0.240**)| (0.148) (0.157**)
Notes: * Indicates better performance with respect to mean. ** Indicate better performance with
respect to standard deviation in parenthesis.

Methods

Depending on the results presented in Table 9, Table 10 and Table 11, the following

conclusions can be drawn:

e FMARS produces slightly accurate and less complex models than S-FMARS
except Parkinson data. However, according to one-sample sign test, the
accuracy of S-FMARS model is not statistically different than that of
FMARS considering all performance measures.

e On test data, S-FMARS performs better than FMARS for Red Wine Quality,
Communities and Crime, Auto Mpg and PM10 datasets with respect to

61



RMSE and Adj-R% For the same datasets, S-FMARS is more stable than
FMARS (see Table 10).

e With respect to overall performance, FMARS models are more accurate and
robust than that of S-FMARS on training data. On test data, however, S-
CMARS performs better with respect to accuracy and is more robust than
FMARS. S-FMARS is more stable with respect to all of the measures (see
Table 11).

e S-FMARS is more efficient than FMARS for all data sets. S-FMARS
decreases the CPU time at least 71%, which is observed for Communities and

Crime.

As mentioned in Section 4.3.1.1, CPU times of methods are affected by sample size
and number of predictor variables which gives the scale of data. To observe the
effects of sample size and scales on CPU time, the datasets are classified according
to these two important features given in Table 12. The levels assigned to scale
feature are small and large. Data with less than or equal to 10 predictor variables is
assigned as small, otherwise it is assigned as large. On the other hand, datasets
classified into two as medium and large with respect to sample size. Small data has a
sample size less than or equal to 600, while large data has more than 600 instances.
The average CPU times of methods observed for each level of sample size and scale
are given in Table 12. To evaluate the significance of differences between average
CPU times of methods obtained for two types of data classified with respect to scale
and sample size are tested by using a nonparametric test called Mann-Whitney test.
This test is a nonparametric version of two-sample t test used for independent

samples where normality assumption is violated.

Depending on the results presented in Table 12, the following conclusions can be

drawn:
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Table 12. Average CPU times of methods for different sample size and scale

Features of Data Methods
FMARS S-FMARS
Medium 19.1 29
S%rinzg'e Large 5502 1013
Percent Difference (%) 97 97
Small 383.5 58.0
Scale Large 194.8 46.1
Percent Difference (%) 49.2 20.4

Two methods are more efficient for medium-sized datasets than large-sized
ones. The difference between the average CPU times of methods obtained for
medium-sized and large-sized datasets are found significant by Mann-
Whitney test (p-values=0.0051). Additionally, S-FMARS performs better
than FMARS method on both medium and large datasets. S-FMARS reduces
the CPU times by 97 % from medium-sized data to large-sized ones.

It is interesting that the effect of scale on CPU time seems quite the opposite
of sample size. When the number of predictor variable is increases, the CPU
time decreases. This may be due to the fact that there is an interaction effect
between sample size and scales. Nevertheless, CPU times of S-FMARS
method are less than that of FMARS for both small-scaled and large-scaled
datasets. In addition, the difference between CPU times between two types
of data are not statistically significant according to Mann-Whitney test (p-
values=0.4712).

Due to the significant three-way interaction effects including sample size, scale and

methods, a typical pattern for the CPU times of the methods is hard to detect.

Nevertheless, interaction plots in Figure 19 can be helpful for determining the best

size-scale combination for a method in relation with CPU time. To exemplify, with

respect to CPU time, two methods are more efficient on medium-sized training

63



samples regardless of scale. However, for large sample sizes, the largest CPU times

are observed for small-scaled datasets for both methods.
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Figure 19.Interaction plots of size and scale for the CPU times for FMARS and S-
FMARS methods.

4.3.3. Performance on Noisy Data

In this section, to see the effect of noise on performance of both methods, two

simulation studies are carried out.

4.3.3.1 Noisy Data 1 (Dataset 9)

Using the sinus function two data sets are generated with and without noise with 100
observations (see Figure 20). Two methods are fitted to them and then the accuracy
and complexity measures are calculated (see Table 13). The performance measures
of models obtained for noise-free data are given in the first row of Table 13. The
other rows are related with noise data, and the measures correspond to the fits
obtained for different Mmax values. The main reason of analyzing the performance of

methods for different number of Mpa values on noisy data is to observe the
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sensitivity of methods against noise. Moreover, to measure the sensitivity of the

model fits to noisy data, noise-free data is used as a test data, and the performance

measures are calculated using the fitted values obtained for the noisy data and the

noise-free data points (Table 13).
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Figure 20. Sinus function with and without noise.
Table 13. Performances of FMARS and S-FMARS on noisy data 1.
BFinal RMSE Adj-R?
Mmax Datasets
FMARS  S-FMARS FMARS S-FMARS FMARS S-FMARS
Noise-free data >20 19 19 Raw 0.012* 0.014 0.999 0.999
Train  0.228*  0.243  0.881*  0.866
20 20 19
Test 0.122 0.078 0.962 0.985
Train  0.216*  0.243  0.877*  0.866
30 30 19
. Test 0.139 0.078 0.944 0.985
Noisy data -
Train  0.201* 0.243 0.877* 0.866
40 40 19
Test  0.161  0.078 0915  0.985
Train  0.145* 0.243 0.867* 0.866
60 60 19
Test 0212  0.078 0.782  0.985

Note: * indicates better performance.
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According to the results displayed in Tables 13, the following conclusions can be

drawn:

For noise-free data, both methods use 19 BFs in the final model although
Mmax are set to 30. The accuracy and complexity measures of both methods
are very close to each other (Table 13, the first row).

In noisy data, S-FMARS builds its best models with 19 BFs for all Mpax
settings. However, FMARS builds more complex models as Mmax Vvalue
increase to rise up the model accuracy. This shows that FMARS is more
sensitive to the noise than S-FMARS and tries to model the noise.

Table 13 exposes that the fits obtained by FMARS is more sensitive to noise
than S-FMARS. Although the model fits obtained by FMARS is more
accurate on noisy data, and gets better as the Mmax value increases, its
performance on noise-free data gets worse as the model become complex. S-
FMARS can provide a less sensitive model to noise by building a less
complex model for noise data. The sensitivity of both fits on noisy data is
illustrated in Figure 21. As it is seen that while FMARS prone to model the
noise for the predictor values, especially for the interval [-2, 1] in x-axis, S-
FMARS tries to fit a noise-free data.

4.3.3.2 Noisy Data 2 (Dataset 10)

In this analysis, another noisy data is created using the following function:

f(X) =0.5X7 + X7 =X X, = 7% — 7%, , (37)

where x; and x, are assumed to have Uniform (-10, 10) distribution. This data refers

to noisy-free data. To obtain noisy data, normally distributed noise & having zero

mean is added to the response, f(x). Here, the variance of the noise is assumed to be
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1/100 of the variance of f(x) in (37). When -5 < x;, X, <5, however, the variance of

the noise is assumed to be 1254.9/100=12.55 (Jin et al., 2001).

1 5 T T T T T T T T
-+ sin(x) with noise £
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Figure 21.. Fitted models for sinus function with noise.

Two training data sets are created as described above with and without noise. Similar
to the analysis mentioned in the previous section, two methods are applied to noise
free data with 10 maximum numbers of BFs (Mpax), and with various Mmax values to
noisy data. Again, the reason of building FMARS and S-FMARS models with
various Mnax Values is to observe the sensitivity of methods to noise. In addition, a
test data is generated using the function in (37) and the same measures are calculated.
The results are given in Table 14. To observe the sensitivity of model fits, again the
measures are recalculated for training and test data sets using the fitted values

obtained for noisy data and noise-free data points instead of noisy ones.
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Table 14. Performances of FMARS and S-FMARS on noisy data 2.

Data Data sets Max BFfia RMSE Adj R’

FMARS S-FMARS | FMARS S-FMARS FMARS S-FMARS

Noise-free ~ Train 10 7 9 0.69* 075 0999  0.999
data Test 10 7 9 1.06* 1.08 0.999 0.999
Train 9 9 727 722 0992 0992

Test 9 9 863  8.03* 0990  0.990

Train 10 10 10 714 707 0992 0992

Test 10 10 10 9.88 870 0987  0.990*

Noisy data Train 20 20 10 | 633 707  0993* 0.992
Test 20 20 10 | 11.82 870* 0976  0.990*

Tran 30 30 10 | 561*  7.07 0993*  0.992

Test 30 30 10 | 1692 870* 0947  0.990*

Tran 60 55 10 | 393* 707 0995* 0.992

Test g0 55 10 | 3039 870* 0795  0.990*

Train 2.67* 2.58 0.999 0.999

Test 393 229 0999  0.999

Train 10 10 10 | 272 284 0999  0.999

o Test 10 10 10 631  3.66*  0.994  0.999*
No'\fg/ it Train 20 20 10 422 284 0997  0.999*
noise-free data  TESt 20 20 10 880  3.66* 00986  0.999*
Tran 30 30 10 517 2.84* 0994  0.999*

Test 30 30 10 | 1505 366* 0957  0.999*

Tran 60 55 10 655  2.84* 0987  0.999*

Test 60 55 10 | 2941 366* 0811 0.999*

Note: * indicates better performance.

Based on the result of analysis mentioned above, the following conclusions can be

stated:

FMARS performs slightly better on noise-free data, and its model is less
complex than S-FMARS.
On noisy data, when the Mpa Value is set to large values (Mmax>10), FMARS

performs better than S-FMARS for training data by building more complex
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models (models with large number of BFs). However its prediction
performance gets worse as the Mpax vValue increase.

e On training data with noise, S-FMARS performs better for small M« values.
But, the accuracy of models gets worse as the Mpyax increase.

e For all cases, S-FMARS overperfoms FMARS on test data.

e S-FMARS provides a closer fit to noise-free data by the fits obtained for
noisy data. Hence, S-FMARS fits is less sensitive to noise than FMARS.

4.4. Comparison Study 2

The CPU of MARS is affected from various parameters such as predefined
maximum number of BFs (Mmax), stopping criteria defined for the difference between
two consecutive LOF in (26), degree of interactions and the number of candidate
knot points. This paper proposes a new approach to decrease the computational
complexity of MARS by restricting the candidate knot points to a small subset of
data points by a mapping approach. In the literature, some other knot restriction
algorithms are proposed not mainly to decrease the computing time, but to decrease
the local variability. However, these approaches still provide less computing time
than MARS algorithm. Use of equally-spaced knot locations, use of predefined knot
locations or setting an interval value or minimum value for the number of data points
between two adjacent knots in the ascending order of predictor-axis (MinSpan) are
some of these approaches. Since the MinSpan method described in Section 2.1.1 is a
data-adaptive approach and more effective than the other methods, S-FMARS is
compared with the MinSpan approach to demonstrate their computing efficiency and
model accuracy. In this section, model performances and efficiencies of S-FMARS
and MinSpan approach is compared via the performance measures mentioned in
Chapter 4.1.3.
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4.4.1. Artificial Datasets

For each approach, the same number of interaction terms (Int.) is used in model
building, and the models are allowed to grow up to the same preset number of BFs
(Mmax) Which is 100 for all cases. The accuracy measures of models calculated for
training data and the corresponding CPU time required for modeling of each training
dataset are given in Table 15, as well as the number of BFs in the final model
(BFfinal).

As mentioned in the comparison study of FMARS and S-FMARS, the number of BF
in the final model denotes the complexity of the model. As a result of this analysis,
again two models have similar complexity for almost all models. The accuracy
measures calculated for each method seem close to each other in Table 15. For five
data sets (one, four, five, six and eight), S-FMARS performs better than FMARS
with respect to RMSE. For four data sets, S-FMARS overperforms FMARS with
respect to complexity measure (GCV). The prediction performances of both methods
and their stabilities of measures are compared via RMSE and Adj-R? measures in
Table 16. MinSpan performs better in Datasets two and three in terms of RMSE. For
the other problems, however, prediction capability of models obtained with S-
FMARS approach is higher than MinSpan. Additionally, S-FMARS produces
slightly stable models than does the MinSpan for datasets one, two and eight in terms
of RMSE.

The models are compared with respect to time efficiency via CPU times given in the
last column of Table 15. Although MinSpan decreases the CPU time of MARS
algorithm significantly, S-FMARS is still more efficient than MinSpan for all
datasets. As it is seen in Table 15, the most significant decreases are observed for
datasets six and eight, which are 90 %, while the least one is observed for dataset
three as 17%. Moreover, the models of S-FMARS models can compete with the
models of MinSpan with respect to accuracy.
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Table 15. Performances of MinSpan and S-FMARS on the train data.

L CPU D_ecrease
Datasets  Methods Int. BFm RMSE Adj-R GCV Time (sec.) in CPU
time (%)
MinSpan 100 11731 0.975  2453059.2 976.7
S-FMARS ) 100 1089.1* 0.976* 2114441.0* 311.8* o8
MinSpan 45  4244.4* 0999 21707171.5* 9.8
2 S-FMARS ! 43  4359.8 0.999  22703916.0 7.5* 2
MinSpan 47 23.5*  0.999 706.7* 278.5
3 S-FMARS 2 47 24.0 0.999 740.1 231.1* o
MinSpan 77 0.026  0.998 0.001 2509.0
4 S-FMARS g 81  0.025* 0.998 0.001 999.7* o0
MinSpan 43 5152 0.999 271143.1 1308.7
° S-FMARS 2 45  5142* 0.999  270354.0* 516.8* o
MinSpan 23 2969  1.000 8.912 487.7
° S-FMARS g 23 2.892* 0.999 8.456* 51.0* %0
. MinSpan A 100 0.030 0.992* 0.002 33114 Y
S-FMARS 100 0.030  0.991 0.002 186.7*
MinSpan 83 0.154  0.998 0.025 4784.9
8 S-FMARS : 78  0.151* 0.998 0.024* 484.7* %0

Table 16. Performances of MinSpan and S-FMARS on the test data and stability.

Performance on TEST dataset STABILITY

RMSE Adj-R? RMSE Adj-R?

Datasets MinSpan S-FMARS MinSpan S-FMARS | MinSpan S-FMARS MinSpan S-FMARS

1 1258.4  1126.7* 0.959 0.959 0.932 0.967* 0.984* 0.983

2 3489.5*  3834.1 0.999 0.999 0.822 0.879* 1 1
3 22.750* 23.1 0.999 0.999 0.968* 0.963 1 1
4 0.026 0.026 0.998 0.998 1.000* 0.962 1 1
5 539.2 529.7* 0.999 0.999 0.973* 0.971 1 1
6 2.980 2.869* 0.999 0.999 0.996* 0.992 1 1
7 0.028 0.028 0.986 0.986 0.933 0.933 0.994 0.995*
8 0.154 0.151* 0.998 0.998 0.999 1.000* 1 1

Note: * indicates better performance.
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4.4.2. Real Datasets

Two methods are also compared on real life datasets presented in Table 17. Again, 3-
fold and three times replicated cross validation approach is used to validate the
performance of the methods and the averages of the corresponding nine performance
measures are listed for each method in Table 17. Algorithms are run for different
Mnmax Values presented in the 3" column of Table 17. As it is seen that both methods

use the same number of BFs in the final model which is equal to Mpax.

In order to test whether or not the accuracy and prediction performances of two
methods are statistically different, one-sample sign test is applied to measures
obtained for train and test data sets in addition to the stabilities of the measures. In
order to evaluate the overall performances of methods, mean and standard deviation
of all accuracy and complexity measures are given in Table 19 for train and test
datasets as well as stabilities of measures. Here, standard deviation is used for

indicating the robustness of the methods.

Table 17. Average performances of MinSpan and S-FMARS on the train data.

CPU Decrease
Datasets Methods Mmax RMSE Adj-R? GCV _. in CPU
Time (sec.) .
time (%)
MinSpan 2.022* 0.935* 77.38* 4.9
AutoMpg 100 33
S-FMARS 2.184 0.878 90.42 3.3*
. MinSpan 0.392* 0.842* 0.673* 133.6
Com.Crime 150 53
S-FMARS 0.412 0.766 0.800 62.7*
MinSpan 0.203 0.958* 0.101 303.6
Conc.Comp. 100 44
S-FMARS 0.202* 0.952 0.100* 168.5*
. MinSpan 0.325* 0.900* 0.190* 115
Parkinsons 50 73
S-FMARS 0.347 0.864 0.194 3.1*
MinSpan 0.653* 0.581* 0.856* 3.1
PM10 50 29
S-FMARS 0.665 0.477 0.911 2.2*
. MinSpan 0.637* 0.596* 0.603*  338.9
Redwine 90 79
S-FMARS 0.672 0.513 0.665 72.7*

Note: * indicates better performance.
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Table 18. Average performances of MinSpan and S-FMARS on test data and
stability.

TEST STABILITY

— —
Datasets RMSE Adj-R RMSE Adj-R

MinSpan S-FMARS MinSpan S-FMARS | MinSpan S-FMARS MinSpan S-FMARS

Auto Mpg 2.642 2.934*  0.869* 0.845 0.765* 0.744 0.929 0.962*
Com. Crime | 0.710 0.681* 0.563 0.569* 0.552 0.731* 0.669 0.743*
Conc.Comp. | 0.500 0.459* 0.803 0.816* 0.406 0.440* 0.838 0.857*

Parkinson 0.470 0.685 0.746* 0.683 0.692* 0.507 0.829* 0.791

PM10 0.893 0.808* 0.286 0.369* 0.731 0.823* 0.493 0.774*

Red Wine 0.940 0.937* 0.245 0.251* 0.677 0.717* 0.411 0.489*

Note: * indicates better performance.

Table 19. Overall performances of MinSpan and S-FMARS methods.

TRAIN TEST STABILITY
Methods ) -2 i D2
RMSE  Adj-R GCV RMSE  Adj-R RMSE  Adj-R

Minspan | 0:705* 0.802 13.301* | 1.026*  0.585* 0.637 0.695
P (0.669**) (0.170**) (31.394**)|(0.815**) (0.268) |(0.134**) (0.208)
S.EMARs | 0747 0.742* 15.515 1.084 0.589 0.660*  0.769*
(0.728)  (0.200)  (36.697) | (0.920) (0.240**)| (0.151) (0.158**)

Notes: * Indicates better performance with respect to mean. ** Indicate better performance with
respect to standard deviation.

Depending on the results presented in Table 17, Table 18 and Table 19, the following

conclusions can be drawn:

e MinSpan performs better than S-FMARS for all data sets except the Concrete
Compress data with respect to accuracy and complexity measures. However,
according to one-sample sign test, the accuracy of S-FMARS model is not
statistically different than that of FMARS considering all performance

measures (p-value>0.05).
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On new observations, S-FMARS performs better than MinSpan for all data
sets except Parkinsons with respect to both RMSE and Adj-R?.

The prediction performance on the test data and stability of the models results
for both methods are displayed in Table 18. The performance of models
obtained by S-FMARS is slightly better than the performance of models
produced by MinSpan with respect to prediction capability and stability for
all datasets except Parkinsons data.

In most of the data sets, S-FMARS is more stable than MinSpan with respect
to all measures.

The overall accuracy and prediction performances of MinSpan models are
better than S-FMARS models.

In the overall, S-FMARS is more stable than MinSpan with respect to all of
the measures.

The differences between the CPU times of S-FMARS and Minspan are not as
much as the differences between S-FMARS and FMARS. However, S-
FMARS is again more efficient than MinSpan for all data sets. As it is seen in
Table 16, the most significant decrease is observed for Red Wine, which is 79

%, while the least decrease is observed for PM10 as 29 %.

To observe the effects of sample size and scales on CPU time, the average CPU

times of methods obtained for medium/large-sized and small/large-scaled datasets

are given in Table 20. Additionally, the significance of differences between the

average CPU times of methods obtained for two types of data classified with respect

to scale and sample size are tested by using Mann-Whitney test. Depending on the

results presented in Table 20, the following conclusions can be drawn:

Two methods are more efficient for medium-sized datasets than large-sized
ones. The difference between the average CPU times of methods obtained for
medium-sized and large-sized datasets are found significant by Mann-

Whitney test (p=0.0051). Additionally, S-FMARS performs better than
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FMARS method on both medium and large datasets. However, both methods
provide approximately the same percent decrease in CPU times from
medium-sized data to large-sized ones, which are more than 95%.

e MinSpan is more efficient on small-scaled data than large-scaled ones, while
it is quite opposite for S-FMARS approach. When the number of predictor
variable is increases, the CPU time of S-FMARS decreases. This may
indicates the existence of is an interaction effect between sample size and
scales. Nonetheless, CPU times of S-FMARS method are less than that of
Minspan for both small-scaled and large-scaled datasets. In addition, the
difference between CPU times between two types of data are not statistically

significant according to Mann-Whitney test (p=0.4233).

Table 20. Average CPU times of methods for different sample size and scale

Methods
Features of Data -
MinSpan F-SMARS

Medium 6.5 2.9

Sample Large 258.7 101.3
Size

Percent Difference (%) 98 97

Small 103.9 58.0
Scale Large 161.3 46.2
Percent Difference (%) 35.6 20.4

In order to determine the best size-scale combination for two methods in relation
with CPU time, three-way interactions effects including sample size, scale and
methods are displayed in Figure 22. As it is seen in Figure 22, both methods are
more efficient on medium-sized training samples regardless of scale with respect to

CPU time. However, for large sample sizes, the largest CPU times are observed for
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small-scaled datasets for both methods. Moreover, the effect of scale seems more

significant on large-sized datasets for S-FMARS method.
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Figure 22.Interaction plots of size and scale for the CPU times for MinSpan and S-
FMARS methods.

4.5. Comparison Study 3

As in MARS algorithm, many adaptive regression splines include a backward
elimination step to determine the optimum number of terms in the final model so that
the overfitting problem caused by the forward step can be prevented. The same
strategy can also be implemented to S-FMARS. Since S-FMARS method is consist
of forward selection strategy, a model deliberately overfitting the underlying function
with a large number of BFs is obtained. On the other hand, S-FMARS is a time
efficient forward selection method by which a multivariate regression spline models
can be obtained in less time. When it is compared with the forward step of MARS
algorithm with and without MinSpan approach, it is observed that S-FMARS method
is much more efficient in time than the other methods. Therefore, it can be offered as
an alternative to the forward step of adaptive regression splines in which data points
are searched for the proper knot locations.
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In addition to MARS algorithm, S-FMARS can also be implemented to CMARS
algorithm to make it efficient in time. CMARS is a modified version of MARS
algorithm in which instead of backward elimination step, a penalized residual sum of
squares is used, and solved with CQP. However, they are based on the same forward
selection strategy and use the same BFs for the second part. That is, CMARS applies
its penalization strategy to the BFs obtained from the forward part of MARS. As
stated in the study of Weber et al (2012), the only drawback of CMARS method is its
high computational run times. In that study, performance of CMARS is compared
with MARS algorithm and stated that CMARS is not as efficient MARS. Since
CMARS decrease the complexity of the model by applying a penalized residual sum
of squares and solves it by CQP, the method becomes computationally expensive.
For this reason, S-FMARS which is proposed as a revised version of forward step of
MARS algorithm can be implemented to improve the CMARS algorithm to reduce

its computational run time.

In this study, S-FMARS method is applied to MARS and CMARS algorithm to
improve them by reducing their computational run times. Implementation of S-
FMARS to MARS algorithm is straight forward. The backward strategy of MARS
algorithm is applied to the models obtained by S-FMARS (The algorithm of S-
FMARS is given in Chapter 4.3). The resulting method is called SMARS.

The S-FMARS algorithm is combined with CMARS methods with the following
steps given in Figure 23. The new method is called S-CMARS. The performances of
the S-CMARS, SMARS are evaluated and compared with MARS, MARS with
MinSpan approach and CMARS in the following subsections.
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Step 1: A S-FMARS method is constructed and the best parameter values of
S-FMARS methods are determined for the underlying dataset.

Step 2: The set of BFs are obtained by applying S-FMARS method with best
parameter values obtained in Step 1.

Step 3: A CMARS Model is constructed for the BFs obtained in Step 2, and the
optimal value of bound +/Z in (18) is found. To achieve this, the curve of
vRSS versus norm of L& in the log-log scale is obtained (see Figure 24).

The optimal value of this curve is the corner point which is demonstrated by

a red point. The selected value gives the best solution for both accuracy and
complexity.

Step 4: CMARS is rerun for the optimal value of +/Z , and the final model is
obtained.

Figure 23. Algorithm of S-CMARS method.
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Figure 24. The plot of norm L& versus vRSS
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4.5.1. Artificial Datasets

Five adaptive regression methods are evaluated and compared for all artificial
datasets with respect to RMSE, Adj-R?, GCV and CPU time calculated for training

and test data sets. The stabilities of the measures are also calculated. The maximum

number of BFs is set to 100 for all datasets. The same number of interaction terms is

used for all datasets mentioned. The measures obtained for all artificial datasets are

given in Table 21. The order of the measures calculated for each dataset is different

for some datasets. This is because of the fact that the mean of datasets are in different

orders. Because of this reason, the methods cannot be compared on the average. The

performance of methods are evaluated and compared separately for each datasets.

Depending on the results presented in Table 21 and Table 22, the following

conclusions can be stated:

Table 21. Average performances of methods on train data.

Datasets Methods BFfi,q RMSE Adj—R2 GCV %Fr)ni
(sec.)

MARS 69 1103.8* 0.976* 1772987.9* 6022.21
MinSpan 76 11965 0.972 2173914.8 2000.39

1 SMARS 70 11355 0.975 1887498.7 317.86*
CMARS 101 59281 0.293 2013650.0 6320.33
S-CMARS 101 5617.7 0.429 21144413 424,55
MARS 27 42719 0.999* 20348729.4 75.04
MinSpan 27 4248.1* 0.999* 20122417.8* 14.33

2 SMARS 24 59756 0.998 39317130.7 5.54*
CMARS 43  4271.8 0.999* 21796916.8 75.52
S-CMARS 41 59932 0.998 42147837.8 7.44
MARS 35 24.1*  0.999 693.4 3210.70
MinSpan 35 235  0.999 661.6* 411.79

3 SMARS 33 28.1  0.999 937.1 116.71*
CMARS 47 24.1*  0.999 740.5 3191.42
S-CMARS 43 28.1  0.999 990.2 124.14
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Table21. Cont.

CPU

Datasets Methods BFgna RMSE Adj-R? GCV Time
(sec.)

MARS 49 0.023* 0.998 0.001 295.99

MinSpan 46  0.026 0.998 0.001 84.45
4 SMARS 52 0.025 0.998 0.001 33.54*
CMARS 87 0.023* 0.998 0.001 548.58
S-CMARS 95 0.025 0.998 0.001 67.99
MARS 32 467.6* 0.999* 257450.5 129.37
MinSpan 27 5241 0.999* 314813.2 30.97
5 SMARS 33 467.4* 0.999* 222016.0* 184.76
CMARS 45 10317 0.997 276350.1 219.45
S-CMARS 41 10443 0.997 286406.0 17.33*
MARS 14 3.2 1.000* 10.6 60.14
MinSpan 14 3.1* 1.000* 10.3* 10.06
6 SMARS 15 3.4  1.000* 12.4 4.37*
CMARS 21 176.1 0.533 11.0 60.71
S-CMARS 21  176.7 0.529 12.8 6.50
MARS 80 0.029* 0.992* 0.001  5952.52
MinSpan 78 0.031 0.991 0.001  1043.46
7 SMARS 77 0.030 0.991 0.001 360.44
CMARS 101 0.030 0.991 0.001  3378.96
S-CMARS 101 0.030 0.992* 0.002  258.61*
MARS 44  0.162 0.998* 0.033* 491.63
MinSpan 48  0.165 0.998*  0.035 95.68
8 SMARS 43  0.185 0.997 0.043 30.59
CMARS 75 0.160* 0.998*  0.039 481.90
S-CMARS 73 0.185 0.997 0.051 28.53*

The number of BFs in the final model gives information about the complexity
of the final model. For all datasets, CMARS and S-CMARS models seem to
include the maximum number of BFs provided by the forward selection part.
This property is stated as a disadvantage of the method in the study of Weber
et. al. (2012), which is still valid for the S-CMARS method. However,
MARS do no remove the BFs even if they have approximately zero
coefficients (Yerlikaya, 2008).
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For training and test data sets one, five and six, MARS, MinSpan and
SMARS perform better than CMARS and S-CMARS with respect to RMSE
and Ajd-R?. Although SMARS and S-CMARS methods are based on the
same forward selection algorithm (S-FMARS), their accuracy performances
are also different.

For training and test data sets two and eight, MARS, MinSpan and SMARS
slightly overperfoms CMARS and S-CMARS. This result attributed to the
mapping approach; during the mapping, the underlying data structure may not
be approximated properly. Hence, important knot points can be ignored.

With respect to stability, SMARS is more stable than the other methods for
data sets one, two and three. For problem three, S-CMARS is as stable as
SMARS method, as well as for the data set seven. While MinSpan is more
stable than other methods for data sets four and eight, stable models are
obtained by CMARS and MARS for data sets five and six, respectively.

Run times are related to the sample size, number of predictors, number of
interaction terms and maximum number of BFs set by the user. Since the
same parameter values are set for all methods, efficiency of methods can be
compared for each dataset separately. For all training datasets, the most
efficient method is SMARS which is then followed by S-CMARS. The CPU
time required for model building is much more less in these methods than the
CPU times of other methods. The MinSpan approach also decreases the CPU
time of MARS algorithm significantly.

Table 22. Average performance of methods on test data and stabilities.

TEST STABILITY

Datasets Methods RMSE Adj-R> RMSE Adj-R?
MARS 11474 0.978 0.962 0.998
MinSpan  1291.3 0.973 0.927 0.999

1 SMARS 11535 0.978 0.984 0.997
CMARS 6526.8 0.298 0.908 0.985
S-CMARS 6079.7 0.390 0.924 0.910
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Table22. Cont.

TEST STABILITY

Datasets Methods RMSE Adj-R> RMSE Adj-R?
MARS 3849.4 0.999 0.901 1.000
MinSpan 34757 1.000 0.818 1.000

2 SMARS 57226 0.999 0.958 1.000
CMARS 38495 0.999 0.901 1.000
S-CMARS 57034 0.999 0.952 1.000
MARS 23.1 0999 0.959 1.000
MinSpan 22.7 0.999 0.965 1.000

3 SMARS 27.7 0.999 0.986 1.000
CMARS 23.0 0.999 0.956 1.000
S-CMARS 27.7 0.999 0.986 1.000
MARS 0.026 0.998 0.872 0.999
MinSpan  0.027 0.998 0.984 1.000

4 SMARS 0.026 0.998 0.960 1.000
CMARS  0.026 0.998 0.866 1.000
S-CMARS 0.027 0.998 0.943 1.000
MARS 441.1 0.999 0.943 1.000
MinSpan  491.9 0.999 0.939 1.000

5 SMARS 481.9 1.000 0.970 1.000
CMARS 10237 0.997 0.992 1.000
S-CMARS 9446 0.998 0.905 0.999
MARS 3.3 1.000 0.957 1.000
MinSpan 3.3 1.000 0.940 1.000

6 SMARS 3.2 1.000 0.937 1.000
CMARS  193.6 0.526 0.910 0.987
S-CMARS 1944 0.521 0.909 0.985
MARS 0.028 0.993 0.990 0.999
MinSpan  0.029 0.993 0.935 0.998

7 SMARS 0.029 0.993 0.957 0.998
CMARS  0.030 0.992 0.994 0.999
S-CMARS 0.030 0.992 1.000 1.000
MARS 0.189 0.997 0.854 0.999
MinSpan  0.172 0.998 0.959 1.000

8 SMARS 0.200 0.997 0.926 1.000
CMARS  0.189 0.997 0.849 0.999
S-CMARS 0.200 0.997 0.925 1.000
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4.5.2. Real Datasets

Five methods are evaluated and compared for six real datasets with different sizes
and scales (Table 1). Different maximum number of BF is set for each data set
(Table 23), but the same number of interaction terms is used by the methods within
each data set. The average of measures obtained for 3-folds and three replications of
each train datasets are given in Table 23. The results obtained for test datasets are

given in Table 24.

Since the data sets are standardized before the application, it becomes possible to
compare the overall averages of measures calculated for each method. Then, the
mean and standard deviation values of all accuracy measures obtained for training
and test dataset are given in Table 25 as well as those of the stability of the measures
for evaluating the overall performances of methods. In order to compare the
performance of methods statistically, RANOVA is performed. The test results is
evaluated at «=0.05 significance level. This test procedure is applied for training and

test datasets, as well as stabilities of the measures.

Depending on the results presented in Tables 23, 24 and 25, the following

conclusions can be drawn:

e Due to the number of BFs in the final model, the models built by CMARS
and S-CMARS for training data seem more complex than the other methods.

e The accuracy measures of methods are close to each other for training data
sets except the Com.Crime training data. For this data set, MARS, MinSpan
and SMARS overperforms CMARS and S-CMARS.

e With respect to RMSE measure, CMARS performs better than the other
methods. With respect to Adj-R* and GCV values, however, MARS shows

better performance.
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Table 23. Average performances of methods on train data.

Measures

Datasets Methods  BFsia RMSE Adj-R2 Gov _CPU
Time (sec.)

MARS 59  0.405* 0.824* 0.257*  250.44

MinSpan 46  0.446 0.790 0.277  234.77
Com.Crime SMARS 36 0.475 0765 0.292 137.50*
CMARS 151 0527 0.665 0.588  413.35
S-CMARS 151 0519 0.674 0.739  196.73

MARS 60 0.220 0.948* 0.079* 873.97

MinSpan 61  0.221 0.948* 0.080  338.56
Con.Comp. SMARS 60 0.228 0.944 0.087 156.20
CMARS 101 0.216* 0.948* 0.107  871.18
S-CMARS 101 0.235 0.938 0.117 153.71*

MARS 25 0.347 0.877* 0.158*  62.24

MinSpan 23 0.354 0.872 0.161  12.25
Parkinsons  SMARS 30 0.373 0.857 0.169 6.70*
CMARS 51 0.345* 0.872 0.200  80.42
S-CMARS 51 0.354 0.866 0.219  31.25

MARS 26 2157 0.917* 7.235*  24.84

MinSpan 19 2435 0.897 8.100 11.90

AuoMpg  SMARS 13 2555 0.888 8.039  10.51*
CMARS 101 2.154* 0.897 64.266  27.53
S-CMARS 101 2229 0.890 90.690  10.83

MARS 24 0.671 0.541* 0.602*  12.43

MinSpan 21  0.688 0.520 0.612 3.96

PM10  SMARS 20 0696 0510 0.618  3.35*
CMARS 51 0.665* 0.522 0.853  16.28
S-CMARS 51 0670 0.514 0.895 6.92

MARS 43  0.678 0531 0567 770.12

MinSpan 44 0.672* 0.538* 0.562*  406.91

Red Wine  SMARS 37 0686 0521 0563 187.31*
CMARS 91 0682 0507 0.671 780.74
S-CMARS 91 0694 0491 0.676 196.62

Note: * indicates better performance.
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Table 24. Average performances of methods on test data and stabilities.

TEST STABILITY
Datasets ~ Methods RnSE Adj R? RMSE Adj R?
MARS 0.694 0.505 0.584 0.613

MinSpan  0.637 0.582 0.700 0.737
Com.Crime SMARS  0.637 0.584 0.746 0.764
CMARS  0.563 0.676 0.936* 0.984
S-CMARS 0.560* 0.678* 0.926 0.995*

MARS 0.347 0.877 0.633 0.925

MinSpan  0.329* 0.892* 0.671* 0.941*
Con.Comp. SMARS  0.381 0.845 0599 0.894
CMARS 0.338 0.885 0.639 0.933
S-CMARS 0.366 0.858 0.642 0.915

MARS 0.481 0.745 0.721 0.849

MinSpan  0.452* 0.780* 0.785 0.894

Parkinsons SMARS 0457 0.773 0.815* 0.903*
CMARS 0487 0.737 0.709 0.844
S-CMARS 0.478 0.750 0.742 0.866

MARS 3311 0.780 0.651 0.850

MinSpan ~ 2.583 0.871* 0.943* 0.971*

AuoMpg  SMARS  2.725* 0.856 0.938 0.964
CMARS  3.017 0817 0.714 0.911
S-CMARS 2.780 0.852 0.802 0.957

MARS 0.839 0.242 0.800 0.448

MinSpan  0.847 0.229 0.813 0.440

PM10 SMARS  0.794 0.322 0.877* 0.632
CMARS  0.811 0291 0.819 0.558
S-CMARS 0.788* 0.332* 0.850 0.646*

MARS 0.908 0.161 0.746 0.302

MinSpan  0.903 0.169 0.744 0.315

Red Wine SMARS  0.909 0.155 0.755 0.297
CMARS  0.847* 0.267* 0.806* 0.526*

S-CMARS 0.872 0.221 0.796 0.451

Note: * indicates better performance.
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Table 25. Overall performances of methods.

TRAIN TEST STABILITY

Methods — — —

RMSE Adj-R GCV RMSE Adj-R RMSE Adj-R

MARS 0.746* 0.773* 1.483* 1.097 0.530* 0.689 0.632

(0.715**)  (0.189) (2.826**) | (1.105) (0.308) |(0.080**) (0.272)

MinSpan 0.803 0.761 1.632 0.958* 0.570 0.776 0.689

(0.820) (0.187**) (3.176) |(0.826**) (0.331) (0.097) (0.299)

SMARS 0.835 0.747 1.628 0.984 0.573 0.788* 0.718

(0.862)  (0.189) (3.148) (0.876) (0.300) (0.118) (0.263)

CMARS 0.765 0.735 11.114 1.010 0.563 0.770 0.722
(0.704)  (0.196) (26.040) | (1.002) (0.282**) | (0.105) (0.237*%)

S-CMARS 0.784 0.729 15.556 0.974 0.569 0.793 0.733*

(0.730)  (0.197)  (36.809) | (0.905) (0.286) (0.096) (0.243)

Notes: * Indicates better performance with respect to mean. ** Indicate better performance with

respect to standard deviation.

CMARS and S-CMARS perform better than the other methods for
Communities Crime test data, although their performances are worse than
others for training data set. For the four test data, MinSpan performs better
than the other methods with respect to RMSE and Adj-R%. While the
performance of S-CMARS is better than the others for PM10 test data,
CMARS overperforms others for Red Wine test data.

With respect to stabilities of RMSE values, CMARS produce more stable
models for Communities Crime and Red Wine data. The models of SMARS
built for Parkinsons and PM10 are more stable than the other models. For rest
of the test data, MinSpan seems more stable. On the other hand, S-CMARS
seems more stable for Communities Crime and PM10 with respect to Adj-R2
values. Again, while MinSpan produce more stable models for Concrete
Compression and AutoMpg, SMARS is more stable for Parkinsons.
RANOVA test results obtained for training and test data sets as well as
stabilities of measures conclude that there are no cases where one method is
statistically significantly better than the others with respect to RMSE, Adj-R?

and GCV measures.
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e SMARS seems the most efficient method with minimum CPU time. S-
CMARS comes the second. MinSpan is more efficient than MARS algorithm,
but not as much as SMARS.

To observe the effects of sample size and scales on CPU time, the average CPU

times of methods obtained for the datasets classified with respect to scale and sample

sizes as in Section 4.3.2 are given in Table 26.

Table 26. Average CPU times of methods with respect to sample size

Methods
Features of Data -
MARS MinSpan SMARS CMARS S-CMARS
Medium 33.2 9.4 6.9 41.4 16.3
Sample Size Large 631.5 326.7 160.3 688.4 182.4
Percent
Decrease (%) 95 97 96 94 91
Small 303.7 118.1 56.7 305.0 57.2
Scale Large 3609  218.0 1105 4248 1415
Percent 16 46 49 28 60

Decrease (%)

Additionally, the significance of differences between the average CPU times of
methods obtained for two types of data classified with respect to scale and sample
size are tested by using Mann-Whitney test. Depending on the results presented in

Table 26, the following conclusions can be drawn:

e All methods are more efficient for medium datasets than large ones. The
difference between the average CPU times of methods obtained for medium
and large datasets are found significant by Mann-Whitney test. Additionally,
SMARS performs better than all other methods on both medium and large
datasets.
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e The most significant decrease in CPU time is observed for MinSpan approach
between medium and large datasets.

e The effect of scale on CPU time is not as significant as sample size. The most
significant decrease is observed for S-CMARS method, which is 60 %.
Although methods seem slightly efficient for small scaled data than the large
scaled ones, the difference between CPU times between two types of data are

not statistically significant according to Mann-Whitney test (p-value>0.05).

Three-way interaction effects including sample size, scale and methods are examined
through interaction plots displayed in Figure 25. for determining the best size-scale
combination for a method in relation with CPU time. Figure 25 shows that all
methods are more efficient on small scale and medium training samples with respect
to CPU time. While the scale affects the performance of MARS, CMARS and S-
CMARS methods with respect to time efficiency, scale has no significant effect on
CPU time of MinSpan and SMARS. In addition, for large training samples, MARS

and CMARS are more efficient for large-scaled data than small-scaled ones.

4.5.3. Performance on Noisy Data

To evaluate the sensitivity of five methods on noisy data, the same data sets used in
Section 4.3.3 are also used in this comparison study. Two data sets are generated

with and without noise. For the first analysis, a sinus function is used.

4.5.3.1. Noisy Data 1

Finally, a simulation study is performed to see the effect of noise on performance of
all methods. For this purpose, data having 100 observations are generated using the
sinus function with and without noise. Five models are fitted to them, and both the
accuracy and complexity measures are obtained as in Table 27. In addition, to
measure the sensitivity of the fits to the noisy data, the performance measures are
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recalculated using the fitted values obtained for noisy data, and noise-free data

points. The conclusions drawn from the analysis for noisy data are given as follows:
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Figure 25. Interaction plots of size and scale for the CPU times for five methods.

89




e CMARS and S-CMARS built more complex models both noisy and noise-
free data.

e CMARS and MARS methods overperform other methods on noisy data with
respect to RMSE and Adj-R? measures, respectively. They perform better on
noise-free data as well.

e The fit obtained by MinSpan for noisy data is able to predict the noise-free data

well. Thus, it is less sensitive to noise than the other methods.

Table 27. Average performance of methods on test noisy data.

Measures
Methods  BF;., RMSE  Adj-R?
MARS 11 0.012* 1.000
MinSpan 10 0.015 0.999
Noise-free data SMARS 11 0.014 1.000
CMARS 19 0.012* 1.000
S-CMARS 19 0.014 1.000
MARS 6 0.235 0.892*
MinSpan 5 0.245 0.884
Noisy data SMARS 4 0.257 0.873
CMARS 21 0.228* 0.879
S-CMARS 19 0.243 0.866
MARS 6 0.084 0.984
Noisy MinSpan 5 0.071* 0.989*
VS SMARS 4 0.121 0.968
noise-free data CMARS 21 0118  0.952
S-CMARS 19 0.078 0.980

Note: * indicates better performance

4.5.3.2. Noisy Data 2

A second simulation study is carried on using the function in (37), and a similar

study is constructed for all methods as in the previous section. Namely, the
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performances of models built by five methods are compared on noisy data with

respect to accuracy and complexity measures (Table 28), and the sensitivity of fits on

noisy data is revealed in Table. Additionally, a new test data is generated using the

same function and the same measures are calculated to evaluate the prediction

performances of fits for new observations.

Table 28. Average performances of methods on noisy data.

Train Test
Methods BFiw RMSE  Adj-R® RMSE  Adj-R®
MARS 7 0.691* 0.999 1.060 0.999
MinSpan 7 1.012 0.999 2.964 0.999
Noise-free data SMARS 8 0.754 0.999 1.081 0.999
CMARS 7 0.692 0.999 3.579 0.999
S-CMARS 9 0.754 0.999 1.081 0.999
MARS 8 6.961 0.992 8.398 0.989
MinSpan 5 7.466 0.991 8.134*  0.990*
Noisy data SMARS 4 7.449 0.991 8.380 0.988
CMARS 21 6.999 0.991 8.159 0.987
S-CMARS 19 6.960*  0.993* 8.826 0.988
MARS 8 2.506 0.999 3.089 0.998
Noisy MinSpan 5 2.666 0.999 2.646 0.999*
Vs SMARS 4 3.134 0.998 2.825 0.999*
noise-free data CMARS 21 2321* 0999 2477  0.998
S-CMARS 19 2.908 0.998 3.921 0.996

Note: * indicates better performance

The analysis results can be summarized as follows:

e MARS performs better on noise-free data with respect to accuracy and

prediction capability.

e S-CMARS performs better than other methods on noisy training data with

respect to RMSE and Adj-R>.
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e The prediction performance of MinSpan is better than other methods on noisy
test data.

e The CMARS fit obtained for noisy data can also predict the noise-free data
better than the other methods. Hence, the sensitivity of SMARS to noisy data
Is less than the one of other methods.
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CHAPTER 5

CONCLUSION AND FURTHER RESEARCH

In the spline smoothing, one of the critical issue is determining the proper knots,
especially, for curves having varying shapes. In this study, we propose a two-stage
knot selection procedure for adaptive regression splines. Firstly, a potential set of
knots is selected by a mapping approach with the intension to locate points according
to the data distribution. The final knot selection is then made by a stepwise model
fitting algorithm. The combination of these two procedures, so called S-FMARS, is a
modified forward selection step of MARS which provides a time efficient model
building strategy for adaptive regression splines without degrading the model

accuracy and prediction performance.

In S-FMARS, two important parameters have special effects on model building and
CPU time: grid size and threshold value set for the number of data points assigned to
each of the map unit. As mentioned in Section 3.4, the grid size (number of neurons
in the lattice) is as a trade-off between less computing time and a good
approximation both in mapping and modeling. As the grid size increases, the
approximation of underlying data structure become well, but the CPU time required
for mapping and modeling increases. During the mapping, similar data points are
grouped around the neurons having a neighborhood relation in the lattice. Among
these neurons, while some units carry more data points, some others are just attained
to one data point. The neurons assigned to less number of data points most probably
represent outliers or sparse regions in the data space. By setting a threshold value for
the number of data points assigned to one neuron, outliers and data points, where less
data structure occurs can be eliminated. For better approximation and best subsetting
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with more representative data points, a sensitivity analysis is studied for the best grid
size and threshold value. In this sensitivity analysis, a measure (RMSE/TIME) is
proposed to be used in the determination of best parameter values. By observing the
change in this ratio value against different grid sizes and threshold values, the best

grid size and the threshold value is determined.

Once the parameters of the S-FMARS are found, the method can be applied to any
datasets with continuous response. Especially for high-dimensional and large
datasets, S-FMARS can be considered as a strong alternative to the conventional
forward selection procedures in spline fitting. The performance of S-FMARS is
evaluated and compared with the forward selection algorithm of MARS (FMARS)
and also MinSpan with respect to accuracy, complexity, stability and robustness
criteria via a set of artificial and real datasets. The analyses conclude that the
performance of S-FMARS models is not statistically different from the models
obtained by FMARS and MinSpan approaches with respect to all criteria. Moreover,
it is obviously clear that the S-FMARS approach is much more efficient than the
other methods. For noisy settings, the fit obtained by S-FMARS for noisy data can
also approximate the noise-free data well. Hence, the S-FMARS fits seems to be less
sensitive to noise than those of FMARS.

The forward selection approach of regression splines builds a large model which
deliberately overfits the data. This property is also valid for the proposed forward
selection algorithm. In general approach, a backward elimination step is applied to
prune the model comes from the forward step. In this strategy, contributions of
model terms are evaluated through a complexity measure; MARS uses this strategy.
In some studies, however, contributions of model terms are examined via a penalized
term added to accuracy measure. In this strategy, parameter estimation is achieved
through a PRSS; CMARS bases on this strategy. Based on two purposes, both the
backward elimination strategy of MARS and the PRSS strategy of CMARS can be
applied to S-FMARS. The first one is to eliminate the overfitting problem, and to
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provide a complete adaptive regression spline method. The second one is to solve the
main drawbacks of CMARS approach, which is being inefficient in time. CMARS
construct PRSS problem as a Tikhonov regularization problem and solves it using a
CQP, which make the method computationally expensive. In addition, the PRSS
problem is based on the knot points selected among the data points by the forward
step of MARS. During the knot selection process, as the number of data points is
increased, more data points are evaluated as knot points, which leads to an increase
in the computing time of CMARS, significantly. In this respect, S-FMARS can be a
good alternative by selecting a representative data points to be evaluated as knots. In
this thesis, the proposed forward selection algorithm is implemented to both the
CMARS and MARS algorithms, which are named as S-CMARS and SMARS,
respectively. Their performances are evaluated via many performance criteria and
compared with MARS, MARS with MinSpan and CMARS methods. The results of
the analysis indicate that SMARS and S-CMARS are obviously the most efficient
two methods with respect to time. Their CPU times are significantly less than those
of the other methods. Even CMARS is improved by the proposed forward selection
algorithm as being more efficient than MARS. The performances of SMARS and S-
CMARS seem not to be as good as the other methods for some real datasets;
however, the accuracy loss is small in absolute values compared to the run times.
Moreover, RANOVA test results obtained for the real life data sets show that
performances of SMARS and S-CMARS are not statistically significantly different
from the other methods. Actually, for the real data sets under study, there are no
cases where a method seems effective with respect to all performance measures. For
artificial datasets, the performance measures of methods are evaluated within each
data separately due to different problem scales. For some generated data the
performance of SMARS and S-CMARS does not seem as good as the performances
of the other methods. This may be resulted from the inadequate approximation of
underlying data structure caused by mapping or the projection of weight vectors to
original data points. The proper knot points could be ignored during the mapping or
projection. To make the SMARS and S-CMARS methods more accurate, one has to
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provide a good approximation of underlying data. Besides, for same cases, the reason
of bad performances may not be rooted from mapping idea, but from the strategy
behind the CMARS. Before the application of CMARS, the optimal value of the
bound set in the optimization problem (18) should be found by investigating the

corner points. In some cases, however, it is difficult to catch the corner points

properly.

The sensitivity of methods on noisy setting is also examined in the study. The
analysis results show that CMARS and MinSpan seem to be less sensitive to noise
than the other methods. MinSpan overperforms the other methods on noisy test data.
In addition, MARS performs better than other methods on noise-free data with

respect to accuracy and prediction capability.

The models build by S-CMARS and CMARS are more complex than the models of
other methods. As mentioned in Yerlikaya (2008), even though the BFs having
coefficients zero or near to zero, they are remained in the final model of CMARS.
Namely, the BFs contributing less to model are not removed. The same property is
also valid for S-CMARS. In this respect, a bootstrapping strategy is proposed by
Yazict (2011) to decrease the model complexity of CMARS. By a bootstrapping
approach, the contribution of each BFs to the model can be determined by drawing
bootstrap samples from the data sets, and computing the corresponding coefficients
for each sample. Bootstrapping is a computer-intensive method due to its high
dependence on computers. As a whole, CMARS with bootstrapping approach
requires more CPU time. However, S-CMARS is more efficient in time than
CMARS; so that, the bootstrapping can be implemented to S-CMARS to decrease

the model complexity and computing time, which is left as a future work.

As another future study, the mapping strategy can be studied as a feature reduction
method of the proposed approach, S-FMARS, to decrease the model complexity
(i.e.number of terms in model). If the predictor variables can be reduced by
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considering their importance to model through the mapping, the knot selection
process of spline fitting can be applied on the new set of predictor variables. So that,
the computational complexity caused by the forward selection step can also be

decreased.

As a final conclusion, the newly developed knot selection scheme can be
implemented to any kind of adaptive regression splines including a forward knot
selection algorithm. This study only covers the estimation of continuous responses.
However, the idea behind the proposed approach can also be studied as a future work

for the responses with discrete levels such as binary, nominal or ordinal.

97



REFERENCES

Akaike, H. (1973). Information Theory and an Extension of the Maximum
Likelihood Principle, 2nd International Symposium on Information Theory (ed.
B. F. Petrov and F. Cs’aki), Academiai Kiado, Budapest.

Atilgan, T. (1988). Basis Selection for Density Estimation and Regression.
AT&T Bell Laboratories technical memorandum.

Batmaz, I., Yerlikaya-Ozkurt, F., Kartal-Kog, E., Koksal, G. and Weber, G. W.
(2010). Evaluating the CMARS Performance for Modeling Nonlinearities.
Proceedings of the 3rd Global Conference on Power Control and Optimization,
Gold Coast (Australia), 1239, 351-357.

Breiman, L. (1993). Fitting Additive Models to Regression Data. Computational
Statistics and Data Analysis, 15, 13-46.

Cleveland, W.S. (1993). Robust Locally Weigthed Regression and Smoothing
Scatterplots. Journal of the American Association, 74 (368), 829-836.

Craven, P., and Wahba, G. (1979). Smoothing Noisy Data with Spline Functions:
Estimating the Correct Degree of Smoothing by the Method of Generalized Cross
Validation. Numerische Mathematik, 31, 377-403.

Davis, C.S. (2003). Statistical Methods for the Analysis of Repeated Measures.
Springer-Verlag, New York.

de Boor, C. (1978). A Practical to Guide to Splines. Springer-Verlag, New York.

Deichmann, J., Eshghi, A., Haughton, D., Sayek, S., and Teebagy, N. (2002).
Application of Multiple Adaptive Regression Splines (MARS) in Direct
Response Modeling. Journal of Direct Marketing, 16, 15-27.

Di, W. (2006). Long Term Fixed Mortgage Rate Prediction Using Multivariate
Adaptive Regression Splines. School of Computer Engineering, Nanyang
Technological University.

98



Denison, D.G.T, Mallick, B.K. and Smith, A.F.M. (1998). Automatic Bayesian
Curve Fitting. J. Roy. Statist. Soc., 60, 333-350.

Eilers, Paul H.C., and Marx, B.D. (1996). Flexible Smoothing with B-splines and
Penalties. Statistical Science, 11, 98-102.

Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing. Marcel
Dekker, New York.

Friedman, J.H., and Silverman, B.W. (1989). Flexible Parsimonious Smoothing
and Additive Modelling. Technometrics, 31, 3-21.

Friedman, J.H. (1991). Multivariate Adaptive Regression Splines. The Annals of
Statistics, 19, 1-67.

Friedman, J.H. (1993). Fast MARS. Stanford University Department of Statistics,
Technical report 110.

Fox, J. (2002). Nonparametric Regression, An R and S-PLUS Companion to
Applied Regression. Sage, Thousand Oaks CA.

Frank, A., and Asuncion, A. (2010). UCI Machine Learning Repository. Irvine,
CA: University of California, School of Information and Computer Science.
Available at http://archive.ics.uci.edu/ml.

Gersho, A., and Gray, R.M. (1992). Vector Quantization and Signal
Compression. Kluwer ,Norwell.

Gibbons, J.D., and Chakraborti, S. (2003). Nonparametric Statistical Inference.
Marcel Dekker, New York.

Green, P.H., and Silverman, B.W. (1994). Nonparametric Regression and
Generalized Linear Models. Chapman Hall,Boca Raton, FL.

Hastie, T.J., and Tibshirani, R.J. (1990). Generalized Additive Models, Chapman
and Hall, New York.

Hastie, T.J., Tibshirani, R.J., and Friedman, J. (2001). The Elements of Statistical
Learning, Data Mining, Inference and Prediction. Springer, New York.

99


http://archive.ics.uci.edu/ml

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice-
Hall, New Jersey.

He, X. and Ng, P. (1996). COBS: Constrained Smoothing Made Easy.
Unpublished manuscript.

Jekabsons, G. (2011). ARESLab: Adaptive Regression Splines Toolbox for
Matlab/Octave. Available at http:// www.cs.rtu.lv/jekabsons/

Jin, R., Chen, W., and Simpson, T.W. (2001). Comparative Studies of
Metamodeling Techniques under Multiple Modeling Criteria. Structural and
Multidisciplinary Optimization, 23, 1-13.

Keele, L. (2008). Semiparametric Regression for the Social Sciences. John Wiley
and Sons, Chichester, UK.

Kohonen, T. (1988). Self-Organizing and Associative Memory. Springer-Verlag,
New York.

Kubin, G., (1999). Nonlinear Prediction of Mobile Radio Channels: Measurments
and Mars Model Designs, IEEE Proc. International Conference on Acoustics,
Speech, and Signal Processing, 5, 15-19, 2667-2670.

Leathwick, J.R., Rowe,D., Richardson, J., Elith, J., and Hastie, T. (2005). Using
Multivariate Adaptive Regression Splines to Predict the Distributions of New
Zealand’s Freshwater Diadromous Fish. Freshwater Biology, 50, 2034-2052.

Leathwick, J.R., Elith, J., and Hastie, T. (2006). Comparative Performance of
Generalized Additive Models and Multivariate Adaptive Regression Splines for
Statistical Modelling of Species Distributions. Ecological Modelling, 199, 188-
196.

Lee, T.S., Chiu, C.C., Chou, Y.C., and Lu, C.J. (2006). Mining the Customer
Credit using Classifcation and Regression Tree and Multivariate Adaptive
Regression Splines. Computational Statistics and Data Analysis, 50, 1113-1130.

Lehmann, Erich L. (1975); Nonparametrics: Statistical Methods Based on Ranks.

100



Lou, Z., and Wahba, G. (1997). Hybrid Adaptive Splines. Journal of the
American Statistical Association, 92, 107-116.

Mallows, C. L. (1973). Some comments on Cp, Technometrics, 15, 661-675.
Ozmen, A. (2010). Robust Conic Quadratic Programming Applied to Quality
Improvement- A Robustification of CMARS, MSc., Middle East Technical
University.

Ozmen, A., Weber, G-W., and Batmaz, i. (2010). The new robust CMARS
(RCMARS) method, 24th Mini EURO Conference-On Continuous Optimization
and Information-Based Technologies in the Financial Sector, MEC EurOPT
Selected Papers, ISI Proceedings, 362—368.

Ruppert, D. (2002). Selecting the Number of Knots for Penalized Splines.
Journal of Computational and Graphical Statistics, 11, 735-757.

Ruppert, D., Wand, M.P., and Carroll, R.J. (2003). Semiparametric Regression.
Cambridge University Press.

Schoenberg, 1. (1964a). On Interpolation by Spline Functions and its Minimum
Properties. International Series of Numerical Analysis. 5, 109-129.

Schoenberg, 1. (1964b). Spline Functions and the Problem of Graduation.
Natural Academy of Science, 52, 947-950.

Schumaker, L. L. (1981). Spline Functions: Basic Theory. John Wiley & Sons,
Inc.

Silverman, B. W. (1985). Some Aspects of the Spline Smoothing Approach to
Nonparametric Regression Curve Fitting. Journal of the Royal Statistical Society,
Series B, 47, 1-52.

Smith, P.L. (1982). Curve Fitting and Modeling with Splines using Statistical
Variable Selection Techniques. Report NASA 166034, NASA, Langley Research
Center, Hampton.

Smith, M. and Kohn, R. (1996). Nonparametric Regression Using Bayesian
Variable Selection, Journal of Econometrics, 75, 317—-343.

101



Stone, C.J., and Koo, CY. (1985). Additive Splines in Statistics. Proceeding of
the Statistical Computing section. Alexandria, VA: American Statistical
Association, 45-48.

Stone, C.J. (1986). Comment: Generalized additive models. Statistical Science,
2:312-314.

Stone, C., Hansen, M., Kooperberg, C., and Troung, Y. (1997). Polynomial
Splines and their Tensor Products in Extended Linear Modeling. Annals of
Statistics, 25, 1371-1470.

Taylan,P., Weber G-W, and Beck, A. (2007). New Approaches to Regression by
Generalized Additive Models and Continuoues Optimization for Modern
Applications in Finance, Science and Technology, Journal of Optimization. 56,
675-698.

Vesanto, J., Himberg, J., Alhoniehmi, E., and Parhankangas, J. (2000). SOM
toolbox for Matlab 5, Report A57. Available at http:// www.cis.hut.fi // projects/
somtoolbox/

Yao F., and Lee Thomas, C.M. (2008). An Improved Knot Placement Scheme for
Penalized Spline Regression. Journal of the Korean Statistical Society. 37, 259-
267.

Yerlikaya, F. (2008). A New Contribution to Nonlinear Robust Regression and
Classication with MARS and its Application to Data Mining for Quality Control
in Manufacturing. Master Thesis, Graduate School of Applied Mathematics,
Department of Scientific Computing, METU, Ankara, Turkey.

Yazici, C. (2011). A Computational Approach to Nonparametric Regression:
Bootstrapping the CMARS Method. Master Thesis, Department of Statistics,
METU, Ankara, Turkey.

York, T.P., Eaves, L.J., and Van den Oord, E.J.C.G. (2006). Multivariate
Adaptive Regression Splines: a Powerful Method for Detecting Disease-risk
Relationship Differences Among Subgroubs, Statistics in Medicine, 25, 8, 1355-
1367.

Wahba, G. (1983). Bayesian Confidence Intervals for the Cross-Validated
Smoothing Spline. Journal of the Royal Statistical Society, Series B 45 133-150.

102



Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF 59,
Regional Conference Series in Applied Mathematics.

Wahba G., and Wold, S. (1975). A Completely Automatic French Curve: Fitting
Spline Functions by Cross Validation. Commun. Statistics, 4, 1-17.

Weber, G-W., Batmaz, 1., Kéksal, G., Taylan, P., Yerlikaya-Ozkurt, F. (2012).
CMARS: A New Contribution to Nonparametric Regression with Multivariate
Adaptive Regression Splines Supported by Continuous Optimization. Inverse
Problems in Science and Engineering, 20 (3), 371-400.

Whittaker, E. T. (1923). On a New Method of Graduation. Proceedings of the
Edinburgh Mathematical Society, 41, 63-75.

Wong, C., and Kohn, R. (1996). A Bayesian Approach to Additive Semi-
Parametric Regression. Journal of Econometrics, 74, 209-235.

103



APPENDIX A

MATHEMATICAL FORMULATIONS FOR DATA GENERATION

Mathematical functions used for generation of the artificial datasets given in Table 1.

P.. f(x)=i[(ln(xi —~2))?2 +(|n(10-xi))2]—(ll[xiJ 2.1<x <9.9

P, f(X) :_lzoexp(xj)(cj +X; —In[iexp(xk)j}

cj=-6.089,-17.164,-34.054,-5.914,-24.721,-14.986,- 24.100,-10.708,
-26.662,-22.179

P,
f3(x) = X7 + X2 + XX, —14%, —16X, + (X —10)® —4(X, —5)* + (X5 —3)* +2(X; —1)°
+5%X2 +7(Xg —11)% +2(X, —10)* + (X, —7)* +45

Ps. T (X)=sin(zx, /12) cos(zx, /16)

Ps. F(X)=(X =D+ (X, —X,)* +(X, —%;)*

Pe. f(X)=5.3578547x> + 0.8356891x, X, +37.293239%, — 40792141

Ps.

f(X) =3(1L—x)* exp(—x* — (y +1)*) —10(x/5— x> — y*)exp(—x* — y?)
—1/3exp(~(x+1)* — y?) +2x
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APPENDIX B

GRID PLOTS OF MATHEMATICAL FUNCTIONS

Grid plot of mathematical functions used for generation of the artificial datasets
given in Table 1.

25003 -

25003 47

(x)

= 25003 .-

25003 J.- T NG

(b) Po(x,, X;) other x;=3.

f(x)

(c) Ps(x,, X, ) other x;=4. (d) Pg,
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f(x)

(F) Pe(x;, X, ) other x,=3.

(e) Ps(x,, x;) other x;=3.

(9) Ps
Figure A 1. (a) Grid plot of Dataset 1 (b) Grid plot of Dataset 2 (c) Grid plot of
Dataset 3 (d) Grid plot of Dataset 4 (e) Grid plot of Dataset 5 (f) Grid plot of Dataset

6 (g) Grid plot of Dataset 7
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APPENDIX C

EFFECTS OF GRID SIZE AND THREDHOLD VAUE ON ARTIFICIAL AND
REAL DATASETS

Table C1. Ratio=RMSE/TIME value for different grid sizes in artificial datasets

Data sets
2 3 4 5 6 7 8

0/10 234511 55.916 193.472 148.304 418.472 394.535 78.812 377.920

g5 132.066 42.688 129.288 44.832 29.840 34.856 53.413 39.875

g/2 53.302 12.016 12.827 11.220 8.847 11.272 14.426 12.633

g/5 30.924 3835 5584 5862 5401 5844 6.630 6.894
5g/4 24.034 1139 6.813 5854 3201 3.704 5.159 5550
59/2 12,165 0.792 2677 1780 2.065 3.698 2526 2.196

59 6.453 0.359 1278 0970 0937 0967 1.221 1.146
10g 4301 0249 0859 0543 0569 0516 0.762 0.727
15¢g 3275 0193 0606 0259 038 0.336 0.552 0.403
20g 2788 0.139 0582 0199 0310 0.253 0.591 0.359

Grid Size
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Ratio versus Grid Size
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Figure C1. Graph of ratio versus grid size for Dataset 1.
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Figure C2. Graph of ratio versus grid size for Dataset 2.
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Figure C3. Graph of ratio versus grid size for Dataset 3.
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Figure C4. Graph of ratio versus grid size for Dataset 4.
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Ratio=RMSE/TIME
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Figure C5. Graph of ratio versus grid size for Dataset 5.
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Figure C6. Graph of ratio versus grid size for Dataset 6.
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Figure C7. Graph of ratio versus grid size for Dataset 7.
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Figure C8. Graph of ratio versus grid size for Dataset 8.
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Table C2. Ratio=RMSE/TIME value for different grid sizes in artificial datasets

Threshold Data sets
Value 1 2 3 4 5 6 7
1 2.395 0.074 0.133 0.056 0296 0271 0.666
m, 5.422 0.198 0416 0.072 0591 0.611 1.519
m, +std 15.847 0.481 0.775 0.405 2.261 2226 3.420
m,+2std 35043 4831 12125 0689 12.162 6464 10.962
m, +2.55td 61765 13544 20680 6.719 11.807 23.055 31.555
m, +3Std 104437 24.196 89.023 27.050 15.872 42.770 31.504
Ratio versus Threshold Value
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Figure C9. Graph of ratio versus threshold value for Dataset 1.
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Figure C10. Graph of ratio versus threshold value for Dataset 2.
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Ratio versus Threshold Value
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Figure C12. Graph of ratio versus threshold value for Dataset 4.
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Figure C13. Graph of ratio versus threshold value for Dataset 5.

114



Ratio

RMSE/TIME

Ratio versus Threshold Value
45

2 /

35

30 /

25 /
20

15

o /

1 mu mu-+std mu+2std  mu+2.5std  mu+3std
Threshold Value

Figure C14. Graph of Ratio versus Threshold Value for Dataset 6.
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Figure C15. Graph of ratio versus threshold value for Dataset 7.
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Ratio versus Threshold Value
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Figure C16. Graph of ratio versus threshold value for Dataset 8.

Table C3. Ratio=RMSE/TIME value for different grid sizes in real datasets

Data Sets
AutoMpg Com.Crime Conc.Comp Parkinsons PM10 Red Wine
g/10 756.460 587.648 153.489 194.726  239.026 191.580
0/5 498.185 97.102 104.352 112.206  103.290 150.800

Grid Size

0/2 99.874 15.062 54.201 81.292 44,141  76.340
g/5 15.046 11.672 25.090 42.799 27.643  47.018
5g/4 15.423 10.908 22.397 40.047 21.555  43.890
5g/2 10.934 7.852 13.230 24.870 14.626  31.102
59 8.808 5.685 7.467 15.315 9.123 22.731
109 6.985 4.494 5.444 9.124 6.184 16.990
159 6.325 4.110 4.325 6.512 4.658 13.971
209 5.709 3.650 3.725 5.111 4.094 12.493
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Figure C17. Graph of ratio versus threshold value for AutoMpg.
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Figure C18. Graph of ratio versus grid size for Comm.Crime.
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Ratio=RMSE/TIME
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Figure C19. Graph of ratio versus grid size for Conc.Compress.
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Figure C20. Graph of ratio versus grid size for Parkinsons.
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Ratio versus Grid Size
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Figure C21. Graph of ratio versus grid size for PM10.
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Figure C22. Graph of ratio versus grid size for Red Wine.
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Table C4. Ratio=RMSE/TIME value for different grid sizes in real datasets.

Threshold Data Sets
Value  AutoMpg ComCrime ConcComp Parkinsons PM10 Red Wine
1 4530 4,896 2.988 4.875 4,705 13.215
m, 5.821 6.239 4.896 6.880 7.101 17.186
my+std 13.027 8.350 9.340 11.196 8.670  29.748
m,+2std 61.635 15.042 24.619 23.265 17.681 64.606
m,+2.5std  94.935 95.540 53.522 32.538 95.909
Ratio versus Threshold Value
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80 /
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Figure C23. Graph of ratio versus threshold value for AutoMpg.

120



Ratio=RMSE/TIME
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Figure C24. Graph of ratio versus threshold value for Comm.Crime.
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Figure C25. Graph of ratio versus threshold value for Conc.Compress.
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Figure C26. Graph of ratio versus threshold value for Parkinsons.
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Figure C27. Graph of ratio versus threshold value for PM10.
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Figure C28. Graph of ratio versus threshold value for Red Wine.
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APPENDIX D

COMPARISON OF PROJECTION METHODS FOR ARTIFICIAL AND
REAL DATASETS

Table D1. Comparison of projection methods for artificial training data.

Datasets Methods BFsinal RMSE Adj-R2 GCV

mean of k-nearest 101 1469.9 0.961 3851488.1

1 nearest 101 1089.1* 0.979* 2114441.3*
no projection 101 14245 0.963 4043347.5
mean of k-nearest 53 62532.8 0.835 4881686406.6

2 nearest 41 5966.3* 0.999* 42147837.8*
no projection 27 18941.0 0.985 400043347.5
mean of k-nearest 47 25.889 0.999 857.7

3 nearest 43 28.132 0.999 990.2
no projection 47 23.967* 0.999* 735.1*
mean of k-nearest 89 0.029 0.998 0.001

4 nearest 77 0.028 0.998 0.001
no projection 81 0.026* 0.998 0.001
mean of k-nearest 31 845.3 0.998 725504.0

5 nearest 45 467.4* 0.999* 223365.1*
no projection 41 563.2 0.999* 323648.9
mean of k-nearest 23 2.955 0.999 8.830

6 nearest 23 2.892* 0.999 8.456*
no projection 23 3.019 0.999 9.215
mean of k-nearest 101 0.032 0.991 0.002

7 nearest 101 0.030* 0.992 0.002
no projection 101 0.030* 0.992 0.002
mean of k-nearest 77 0.162 0.998 0.027

8 nearest 79 0.151* 0.998 0.024*
no projection 83 0.155 0.998 0.025
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Table D2. Comparison of projection methods for test data and stabilities.

TEST STABILITY
Datasets Methods - -
RMSE Adj-R2 | RMSE Adj-R2

mean of k-nearest 1409.5 0.967 0.959 0.993

1 nearest 1126.7* 0.979* 0.967 0.999
no projection 1417.1 0.967 0.995* 0.996

mean of k-nearest 61228.7 0.864 0.979* 0.966

2 nearest 5738.1* 0.999* 0.962 1.000
no projection 162375  0.990 | 0.857 0.994

mean of k-nearest 25.889 0.999 1.000* 1.000

3 nearest 27.724 0.999 0.986 1.000
no projection 22.717* 0.999 0.948 1.000

mean of k-nearest 0.027 0.998 0.899* 0.999

4 nearest 0.028 0.998 0.987 1.000
no projection 0.026* 0.998 0.988 1.000

mean of k-nearest 863.6 0.998 0.979 1.000

5 nearest 481.9* 0.999* 0.970 1.000
no projection 572.3 0.999 0.984* 1.000

mean of k-nearest 2.960 0.999 0.998* 1.000

6 nearest 2.869* 0.999 0.992 1.000
no projection 3.040 0.999 0.993 1.000

mean of k-nearest 0.033 0.991 0.995* 1.000

7 nearest 0.028* 0.993 0.941 0.999
no projection 0.029 0.993 0.948 0.999

mean of k-nearest 0.163 0.998 0.998 1.000

8 nearest 0.151* 0.998 1.000* 1.000
0.156 0.998 0.996 1.000

no projection

125



Table D3. Comparison of projection methods for training data of real datasets

Datasets Methods BFsinal RMSE Adj-R2 GCV
mean of k-nearest 101 2.193 0.897 90.979

AutoMpg  nearest 101 2.184 0.891 90.420
no projection 101 2.143* 0.902* 86.885*

mean of k-nearest 151 0.406 0.795 0.722

Com.Crime nearest 151 0.409 0.792 0.734
no projection 151 0.401* 0.800* 0.707*

mean of k-nearest 101 0.209 0.951 0.110

Con.Comp nearest 101 0.221 0.946 0.123
no projection 101 0.206* 0.953* 0.106*

mean of k-nearest 51 0.335 0.883 0.202

Parkinsons nearest 50 0.330* 0.887* 0.193*

no projection 51 0.337 0.882 0.205

mean of k-nearest 51 0.662 0.520 0.879

PM10  nearest 51 0.656* 0.527* 0.866*

no projection 51 0.683 0.488 0.937

mean of k-nearest 91 0.649 0.555 0.679

Red Wine nearest 91 0.645* 0.561* 0.671*

no projection 91 0.652 0.551 0.685
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Table D4. Comparison of projection methods for test data and stabilities.

Datasets Methods TEST - STABI LITY
RMSE Adj-R2 RMSE Adj-R2
mean of k-nearest 2.798 0.843 0.784 0.940
AutoMpg  nearest 2.642* 0.869* 0.827* 0.975*
no projection 2.859 0.837 0.750 0.928
mean of k-nearest 0.653* 0.591* 0.621* 0.743*
Com.Crime  nearest 0.686 0.547 0.596 0.691
no projection 0.716 0.508 0.561 0.636
mean of k-nearest 0.348 0.879 0.601 0.925
Con.Comp  nearest 0.673 0.550 0.329 0.581
no projection 0.331* 0.891* 0.622* 0.935*
mean of k-nearest 0.579 0.615 0.580 0.696
Parkinsons nearest 0.477* 0.738* 0.692* 0.832*
no projection 0.675 0.543 0.500 0.616
mean of k-nearest 0.846 0.253 0.782 0.487
PM10 nearest 0.807* 0.320* 0.813* 0.607*
no projection 0.850 0.246 0.804 0.503
mean of k-nearest 0.973 0.032 0.667 0.058
Red Wine  nearest 0.927 0.121 0.696 0.217
no projection 0.894* 0.184* 0.730* 0.334*
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