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ABSTRACT 

DIGITAL SURFACE MODELS FROM SPACEBORNE IMAGES 

WITHOUT GROUND CONTROL 

 

 

Ataseven, Yoldaş 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. A. Aydın Alatan 

 

September 2012, 229 pages 

 

Generation of Digital Surface Models (DSMs) from stereo satellite 

(spaceborne) images is classically performed by Ground Control Points 

(GCPs) which require site visits and precise measurement equipment. 

However, collection of GCPs is not always possible and such requirement 

limits the usage of spaceborne imagery. This study aims at developing a fast, 

fully automatic, GCP-free workflow for DSM generation. The problems 

caused by GCP-free workflow are overcome using freely-available, low-

resolution static DSMs (LR-DSM). LR-DSM is registered to the reference 

satellite image and the registered LR-DSM is used for i) correspondence 

generation and ii) initial estimate generation for 3-D reconstruction. Novel 

methods are developed for bias removal for LR-DSM registration and bias 

equalization for projection functions of satellite imaging. The LR-DSM 
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registration is also shown to be useful for computing the parameters of 

simple, piecewise empirical projective models. Recent computer vision 

approaches on stereo correspondence generation and dense depth estimation 

are tested and adopted for spaceborne DSM generation.  

The study also presents a complete, fully automatic scheme for GCP-

free DSM generation and demonstrates that GCP-free DSM generation is 

possible and can be performed in much faster time on computers. The 

resulting DSM can be used in various remote sensing applications including 

building extraction, disaster monitoring and change detection. 

 

Key words: Digital Surface Model, GCP, SRTM, Satellite, Spaceborne, Earth 

Observation, Photogrammetry. 
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ÖZ 

UYDU GÖRÜNTÜLERİNDEN YER KONTROL NOKTASIZ 

SAYISAL YÜZEY HARİTALARI 

 

 

Ataseven, Yoldaş 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan 

 

Eylül 2012, 229 sayfa 

 

Uydu görüntülerinden Sayısal Yüzey Modelleri (SYM) oluşturma; 

genellikle Yer Kontrol Noktaları (YKN) kullanılarak gerçekleştirilir. YKN 

elde edilmesi, saha ziyaretleri ve hassas ölçüm araçlarının kullanımını 

gerektirir. Ancak, YKN toplama işlemi her zaman mümkün olmamakta, 

YKN’lere bağımlılık uydu görüntülerinin kullanılabilirliğini sınırlamaktadır. 

Bu çalışmada; YKN gerektirmeyen, tam otomatik ve hızlı bir SYM oluşturma 

yöntemi geliştirilmesi amaçlanmıştır. YKN yoksunluğundan kaynaklanan 

sorunlar, ücretsiz düşük çözünürlüklü SYM’ler (DÇ-SYM) kullanılarak 

azaltılmıştır. DÇ-SYM uydu görüntüleriyle hizalanmış; hizalanmış DÇ-SYM 

kullanılarak; i) stereo nokta çiftleri oluşturma ve ii) üç boyutlu geriçatımda 

ilk tahmin oluşturma işlemleri gerçekleştirilmiştir. DÇ-SYM hizalamasında 

ve uydu görüntüleme model parametrelerindeki kaymaların YKN 
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olmaksızın giderilmesi için özel yöntemler geliştirilmiştir. Hizalanmış DÇ-

SYM’lerin basitleştirilmiş parçalı projeksiyon modelleri için parametre 

kestiriminde kullanılabileceği gösterilmiştir. Yakın dönemde geliştirilen 

bilgisayarla görme yöntemleri, uydu görüntülerine dayalı SYM 

oluşturulmasında kullanılmış, uydu görüntülemesine uygun, melez bir 

yöntem geliştirilmiştir.  

Bu çalışmada; YKN olmaksızın SYM oluşturan, tam otomatik ve 

bütünsel bir yöntem geliştirilmiş ve uygulanmış; YKN kullanılmadan SYM 

oluşturmanın mümkün olduğu ve bunun ortalama bilgisayarlar üzerinde 

kısa sürede gerçekleştirilebileceği gösterilmiştir. Üretilen SYM’ler; bina 

tespiti, doğal afet izleme, ve fark tespitine yönelik uzaktan algılama 

çalışmalarında girdi olarak kullanılabilir niteliktedir. 

 

Anahtar kelimeler: Sayısal Yüzey Modeli, Yer Kontrol Noktası, SRTM, Uydu, 

Yeryüzü Gözlemi. 
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CHAPTER 1  

INTRODUCTION 

1.1 General Overview 

Remote Sensing is the effort for extracting information on The Earth 

from aerial (airborne), satellite (spaceborne) or terrestrial data. The 

information is obtained with various imaging and signal processing 

techniques and used in a wide spectrum of application areas such as 

cartography, population studies, city planning, agriculture, land cover, 

mining, hydrology, defense, intelligence, meteorology, disaster monitoring, 

etc.  

A Digital Elevation Model (DEM) is a map in raster or vector format, 

representing the geodetic (latitude, longitude, altitude) data of a region on 

The Earth. DEMs are widely used in remote sensing applications. Two types 

of DEMs are defined: i) A Digital Terrain Model (DTM) represents the earth 

surface without land cover or buildings (e.g. cartographic maps) and ii) A 

Digital Surface Model (DSM) represents the earth surface with land cover 

and buildings (terrain information is absent for tree cover and buildings). 

DEM generation is an active research area, especially for satellite imagery. 

The area of study that covers DEM generation from satellite and aerial 

imagery is named as photogrammetry. 
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Aerial and satellite images can be obtained with different types of 

sensors. Images in different wavelengths (visual and near infrared (VNIR), 

Multispectral (MS)) or images of different imaging techniques (LIDAR, SAR) 

can be used. This study is on generating DSMs from stereo satellite images of 

the VNIR band.  

1.2 The Addressed Reader 

This text addresses the following audiences: 

i) Photogrammetry experts who focus on DEM generation. 

ii) Computer vision experts who are specialized in 3D scene 

reconstruction  

iii) Remote sensing experts who use DEMs in their studies as inputs 

and require a deeper understanding of DEM generation. 

The contents of the introduction chapter are mostly known by the 

photogrammetry society. This chapter addresses audiences (ii) and (iii). The 

remaining chapters are mostly focused on the details of the thesis study and 

they may be difficult to follow for the audience (iii). 

The author of this text is an electrical engineer with a background in 

computer vision and signal processing.  

In photogrammetry, the concepts and methods of computer vision are 

frequently used with a different terminology. However, it is observed that; 

the recently developed, efficient computer vision methods are not visited in 

the photogrammetry literature. Thus the members of the first audience group 

may find this text useful, since the problem is approached with the computer 

vision perspective.  
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1.3 Problem Statement 

Given;  

  A stereo satellite image pair  

I1(u1,v1) and I2(u2,v2), 

  and the projection relations  

u1 = F11 (φ , λ , h),   u2 = F21 (φ , λ , h), 

v1 = F12 (φ , λ , h),   v2 = F22 (φ , λ , h).  

 Find the mappings  

Φ(u1,v1), Λ(u1,v1) and H(u1,v1)  

 where, 

   u1, v1  : Row and column indexes for image 1  

   u2, v2  : Row and column indexes for image 2 

   φ  : Geodetic latitude of the observed point 

   λ       : Geodetic longitude of the observed point 

   h   : Geodetic altitude of the observed point 

Φ  : Reconstructed latitude of the observed point 

   Λ       : Reconstructed longitude of the observed point 

   H   : Reconstructed altitude of the observed point 

   

As seen in the above problem statement, the objective is to assign 

latitude, longitude and height values for the reference image only. 

Obviously, the output can be generated on a latitude-longitude grid with 

additional post-processing steps.  

Note that, apart from the computer vision convention, here we use u for 

the vertical axis and v for the horizontal axis in the image domain. Often, X, 

Y and Z are used for the normalized latitude, longitude and height, 
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respectively. Normalized image domain coordinates are also used frequently 

in the projection relations. 

Although the projection relations are shown here as explicit functions 

for simplicity, they may not be explicit in reality. In some rigorous projection 

models, the projections are implemented as procedures rather than analytical 

functions (Gupta 1995, Jacobsen 1997). 

1.4 Error Measures 

In photogrammetric DEM generation, the following reconstruction 

errors are defined for a specific point in the image: 

 

 
eφ (u1,v1)  = Φ’(u1,v1)- Φ(u1,v1), 
eλ(u1,v1)  = Λ’(u1,v1)- Λ(u1,v1), 
eh(u1,v1)  = H’(u1,v1) - H(u1,v1) 

(1.1)  

  
where, 

Φ’(u1,v1) : actual geodetic latitude (ground truth) for pixel (u1,v1), 

Λ’(u1,v1) : actual geodetic longitude (ground truth) for pixel (u1,v1), 

H’(u1,v1) : actual geodetic altitude (ground truth) for pixel (u1,v1), 

Φ(u1,v1) : reconstructed geodetic latitude for pixel (u1,v1), 

Λ(u1,v1) : reconstructed geodetic longitude for pixel (u1,v1), 

H(u1,v1) : reconstructed geodetic altitude for pixel (u1,v1). 

 

The errors are measured at Ground Control Points (GCPs) which are 

obtained from field measurements. If the generated DEM is defined on a 

latitude-longitude grid, airborne LIDAR data can also be used. 

The error expressions in the geodetic coordinate system (see Section 

1.5.5) are not ergonomic, since the errors are mostly in microdegrees and the 
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same longitude error (in degrees) corresponds to different displacement 

errors (in meters) on different latitudes. The errors are preferred to be in 

meters. 

For DEMs, two separate error definitions are of importance: the 

planimetric error (geolocation error) and the elevation error (height error). The 

planimetric error is defined as the error in the XY–plane, which is tangential to 

the reference ellipsoid at the actual latitude and longitude (i.e., the distance 

between the actual and the estimated transversal positions). The elevation 

error is defined as the difference between the actual and the estimated 

altitudes of that point (Figure 1.1).  

 

 

 

Note that the computations of plannimetric and elevation errors are 

ambiguous, since any DEM states a height value for every location. For 

instance; in Figure 1.1, for the latitude and longitude of point B, the DEM has 

a value (the height of point C).  In a more radical case, if the DEM is flat 

everywhere; the plannimetric error cannot be measured. 

A 

B 

Δh 

Δp 

Figure 1.1. Plannimetic error (Δp) and elevation error (Δh) for the simplified 
(2-D) imaging geometry. The actual world point B is reconstructed as if it 

were at A. The hypothetical tangential plane is denoted by the dashed line.  

C 
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The ambiguity is eliminated if the points of interest are on a satellite 

image. A DEM that is originated form photogrammetry states the geodetic 

coordinates (lat, lon, h) for the observed image pixels whose latitudes and 

longitudes can be determined accurately in the field. Thus, the errors are 

more sound, when they are given with a mapping from the reference image 

to the object domain. 

In the photogrammetry literature, the most frequently reported errors 

are the following: 

i) Mean absolute plannimetric error 

ii) Mean elevation error 

iii) Standard deviation of the plannimetric and elevation errors, 

iv) RMSE for plannimetric and elevation errors 

v) Minimum/Maximum elevation and plannimetric errors 

vi) Circular plannimetric error; CE90  

vii) Linear elevation error LE90  

The last two error definitions are originated from the cumulative 

distribution function of the error magnitudes. LE90 states the error value, at 

which the cumulative distribution function reaches 90%. The same is true for 

CE90. The elevation error is 1D while the plannimetric error is 2D. It is 

sufficient to take the absolute value for the elevation error, but the 

magnitude of the plannimetric error is defined using the L2 norm, which 

corresponds to the radius of the smallest circle that encloses the error vector. 

1.5 Satellite Imagery 

Satellite images (also called spaceborne images) are the images taken by 

Earth Observation Satellites (EOS). There are various types of EOSs, with 
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different properties and sensor resolutions depending on the applications 

they are used for and the technology they are built with.  

All EOS orbits lie in planes that are close to the earth’s axis of rotation. 

That is, all EOSs pass over the North and the South Poles. Since The Earth 

rotates from the West to the East, the satellites fly over different regions of 

The Earth at each tour in the orbit.  

Before proceeding further, it is necessary to introduce the basics and 

terminology of the EOSs.  

1.5.1 The Imaging Scenario 

All EOSs are equipped with a specific sensor structure named as 

“pushbroom sensor”. A pushbroom sensor is a 1-D array of sensors combined 

with proper optical structures for zooming. The image acquisition strategy is 

demonstrated in Figure 1.2 (the scenario is over-simplified and the scales are 

exaggerated for the sake of clarity). The satellite images are obtained by time-

sampling the sensor output while the satellite moves in its orbit. Due to this 

image acquisition strategy, pushbroom sensors are also named as “digital 

scanners” (Toutin 2001).  

Figure 1.2 can be explained as follows: The sensor is used as a single-

row camera which takes successive snapshots while the satellite moves in its 

orbit. The integration time and the look direction (attitude) of this single row 

camera are adjusted such that, when all of the snapshots are combined in the 

order of acquisition time, a complete image of the observed region is 

obtained. To avoid gaps on the ground, a slight overlapping is used between 

adjacent rows (Figure 1.2a), which is ignored in many studies. 

Two directions are defined in the pushbroom scanners:  

i) The along-track direction: The direction of flight in the orbit  
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ii) The cross-track direction: The direction of the sensor array which is 

perpendicular to the along-track direction. In some references, this 

direction is also referred as the across-track direction.  

The spatial resolution of the EOSs is stated using the Ground Sample 

Distance (GSD). The distance that can be observed in the cross-track direction 

(span of the sensor array on the earth surface) is defined as the swath width. 

 

 

row  
n 

row  
n+1 

row  
n+2 

(a) (b) 

ground 

(c) 

swath 

row n+2 

along track 

across track 

ground 

row n+1 row n 

Figure 1.2. Pushbroom imaging scenario: Side view (a), Top view (b), and 
oblique view (c). Each line (row) of the image is acquired at a different 
satellite position. Curved brackets represent the positions during the 

integration time for each row.  

row 
n 

row 
n+1 

row 
n+2 

Flight 
direction 

Flight 
direction 

Flight 
direction 
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The camera may be static or rotating (agile). In the rotating camera 

configuration, it is possible to take samples against the flight direction in the 

asynchronous mode (Figure 1.3). This strategy is used to obtain higher 

resolution images with some sacrifice for the scanning area per unit time 

(Poli 2012). Modern rotating cameras are also capable of scanning in the 

across-track direction, resulting in a scan in the east-west direction (Jacobsen 

2003). 

The imaging convention for the satellite images puts each scanning line 

as a row in the image. Thus, satellite images reflect perspective projection 

along the x-axis and pushbroom projection along the y-axis. 

In the remote sensing literature, for the image domain coordinates, the 

terms line and sample are frequently used for vertical (u) and horizontal (v) 

coordinates, respectively. Line and sample always take integer values. 

 

 

ground 

flight 
direction 

Figure 1.3. Imaging against the flight direction with a rotating 
camera. 
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Stereo Imaging 

Stereo imaging is performed by acquiring the image pair at two 

separate satellite locations. Two types of stereo imaging strategy can be used: 

i) Along-track (or in-track) stereo and ii) across-track stereo. In the Along-track 

stereo case, image pair is acquired in a single pass above the ground location 

(Figure 1.4). In the across-track stereo case, the image pair is acquired in two 

separate passes (Figure 1.5). 

Along-track stereo images can be taken with two different approaches: 

i) Multiple Static Cameras (Figure 1.4a): The cameras are fixed to the 

satellite body with carefully determined look directions so that the 

satellite obtains the stereo images of a scene at some fixed positions 

in the orbit. 

ii) Single Rotating Camera (Figure 1.4b): The satellite is equipped with 

a rotating camera and the electro-mechanic gear for directing the 

camera to a desired location. Thus, the camera can be aimed freely by 

adjusting its roll and pitch (the roll and pitch are defined for the 

satellite, in accordance with the flight dynamics convention).  The 

stereo imaging with the single rotating camera is performed by 

turning the camera to the same spot at different positions in the orbit. 

 

The configuration with multiple static cameras has the advantage that; 

compared to rotating camera systems, more image pairs can be collected per 

unit time. Additionally, it is not required to measure the camera orientation 

with respect to the satellite. On the other hand, the single rotating camera 

configuration allows the user to obtain images with different base-to-height 

(B/H) ratios (see Section 1.5.4). This configuration also enables both along-
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track and across-track stereo, while static cameras are designed to perform 

either across-track or along-track stereo. 

 

 

 

Across-track stereo images are obtained using adjacent orbits by 

aligning the camera to the across-track direction in the tour after the nadir 

imaging tour. Images taken at different dates can also be used as across-track 

stereo, provided that the satellite positions of the two images correspond to 

nadir aft fore nadir aft fore 

ground 

orbit 

(c) 

aft 

along track 

across track 

nadir fore 

(a) (b) 

Figure 1.4. Along-track stereo; (a) multiple static cameras, (b) rotating 
camera and (c) oblique view 

ground ground 
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sufficient B/H ratio. The minimum time difference between across-track 

stereo images is one period in the orbit, which is 90 to 100 minutes for EOSs. 

Along-track stereo is preferred to across-track stereo since the effects of 

illumination and/or scene change is minimal. 

 

 

 

1.5.2 The Collinearity Equations 

The collinearity equation is the fundamental equation for all projective 

camera systems. Given an imaging system with a focal length f, the 3-D point 

(object point) at (X, Y, Z) that is observed at pixel (u,v) lies on a line (projection 

line) which  is defined by the optical center (of the imaging system) and the 

sensor (pixel) that acquires the pixel data at (u,v). The equations describing 

this fact in mathematical form (collinearity equations) are (Toutin 2004): 

 

across 
view orbit 

nadir orbit 

Figure 1.5. Across-track stereo imaging. The EOS turns his camera in the 
across-track direction while it moves in an off-nadir orbit 
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where f is the focal length of the imaging system, (u,v) are the image plane 

coordinates, (X0, Y0, Z0) are the projection center coordinates and (X, Y, Z) are 

the object point’s coordinates. The nine parameters m11..m33 are the parameters 

of the orthogonal rotation matrix between the image coordinate system (that 

defines (u, v, k), 3rd dimension obeying the right-handed system) and the 

world coordinate system (that defines (X, Y, Z) and (X0, Y0, Z0)). 

In the traditional perspective projection (pinhole) model, the optical 

center coordinate and the image plane is fixed for all pixels (rows). Therefore, 

the rotation matrix parameters are the same for all points in the image plane, 

and a single projection matrix can be used. On the other hand, for the 

pushbroom satellite sensors, the projection center and the image plane are 

different for each scan line. Consequently, the nine parameters are different 

for different image lines. 

Collinearity equations give the image coordinates of an object point with 

known world coordinates, given the sensor position and orientation (image 

plane normal vector for the corresponding image row). However, they are 

not invertible. In other words, given the camera position and orientation, the 

world coordinates of the imaged point cannot be obtained from a single 

image (2 equations with 3 unknowns: X, Y, Z) since the object point can be 

anywhere on the projection line.  
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1.5.3 The Coplanarity Constraints 

Similar to the multiview case for the pinhole cameras, to obtain the 3D 

world coordinates of an object point, at least two images are required. 

Assuming a stationary scene, the object point can be localized by intersecting 

the corresponding projection lines of the two images. The constraint for 

determining the 3D point is called the coplanarity condition (equivalent to the 

epipolar constraint in the computer vision terminology) and obtaining the 3D 

world coordinate is called triangulation. The name “coplanarity” comes from 

the fact that the object point and two optic centers define a plane. When 

equation (1.2) is converted to the form 
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then, the intersection of the two lines are given by 
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Here, (X1, Y1, Z1) and (X2, Y2, Z2) are the camera centers for the two 

images. Note that, for the satellite imaging case, each image row is acquired 

with a different optic center and therefore, the term “optic center” refers to 

the optic center for the row that the world point is observed. 
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This simple relation does not reflect the real life situation, since the 

projection lines do not intersect in space due to various sources of noise 

(spatial sampling, projection model imperfections, errors in matching, 

limited precision, etc).  

1.5.4 Satellite Imaging Systems 

EOSs are required to provide quality images with a sub-meter GSD 

over a wide swath while they are moving in an orbit 400-700 km above the 

ground. The required accuracy levels for the DEMs and the orthophotos are 

at most 1 GSD. Thus, EOS design and data interpretation are very 

complicated tasks. 

The following remarks are useful for summarizing the satellite imaging: 

i) Design Challenges: For satellite imaging systems, the swath is 

desired to be large, and the spatial resolution is desired to be high. 

Providing the two properties at the same time is a difficult task. A 

camera providing both properties needs to have a large FOV. The 

size of the satellite (the aperture size) is limited; therefore the focal 

length will be small for a large FOV camera. This will lead to limited 

optical zooming capacities. At this point, high resolution can only be 

obtained by smaller sensor cells, but this will lead to lower SNR. The 

effects of this dilemma can be seen in Table 1.2 

In the practical systems, smaller FOVs are used to meet the 

resolution needs. Thus, in general, as the Ground Sample Distance 

(GSD) decreases (improves), the swath also decreases (Table 1.2). 

The need for high spatial resolution (~1m) in the along-track 

direction and the satellite linear velocity bounds the sampling 

interval (dwell time) (e.g. SPOT: 1.504ms) (Gupta 1995). On the other 
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hand, due to the high altitude of the satellites, the optical systems are 

required to have significant zooming capacities (high focal length) 

(Piwovar 2006). As the focal length increases, the lens attenuation of 

input light increases, and therefore, in order to have a short exposure 

time, special optical and sensor design (larger aperture, larger 

sensors, etc) is required. For instance, IKONOS satellite sensor size is; 

pan: 12μm and color: 48 μm (Piwowar 2009) while a Canon 1D Mark 

III sensor size is 7.2μm (Canon 2008) 

ii) Full coverage: Because of Earth’s rotation, the satellite passes over all 

points on the Earth. This allows a satellite to observe the entire Earth 

surface. On the other hand, an EOS cannot cover the entire Earth 

surface in a single day. An EOS completes at most 20 orbits per day 

with a limited swath (10-200km). 

iii) Extremely low temporal resolution: It is not possible for an EOS to 

observe a specific location on Earth continuously. This is possible 

only if the satellite is on the equatorial plane, at a specific altitude 

and directed to the desired location (geostationary satellites, (Clarke 

1945, Kelso 1998)). However the orbital radius for geostationary 

satellites is 35786 km (Kelso 1998), which is not feasible for high 

resolution Earth observation (see Table 3 for EOS orbit radii). The 

EOS re-visit period for a specific location on the earth surface is in 

the order of days. Due to the 1-D structure of the sensor; at each pass, 

only a single image or a few images (in-track stereo) can be obtained 

for a specific location.  Therefore, a single EOS cannot be used to 

monitor fast temporal changes in a specific location. 

iv) Base-to-Height (B/H) Ratio: Since the satellite altitude is high, for 

accurate DEM generation, the displacement (base distance) between 
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the (stereo) acquisition positions must be comparable to the satellite 

altitude (height). A B/H of 1.0 is accepted to be “good” (Toutin 2001) 

and this value is taken as a goal in camera design. 

v) Complicated models: The imaging scenario includes orbital motion 

and sensor orientation parameters, the earth’s ellipsoid model and 

the earth’s rotation. Thus, rigorous modeling of the imaging scenario 

is a complicated task (the computations in Section 2.1.2 must be 

performed for each image line).  

vi) Dependence on ephemeris accuracy: The altitudes of the EOSs (a 

few hundred kilometers) require very precise measurements of 

sensor position and orientation (attitude). For example, a 2-arc-second 

error in IKONOS sensor orientation results in at least 6.6 meters of 

displacement error on Earth’s surface (Grodecki 2003). For this reason, 

satellites are equipped with special hardware (star trackers, 

gyroscopes, encoders, GPS) for measuring the small changes in the 

satellite position and attitude. The readings (ephemeris) obtained from 

the measurement equipments are sent to the ground station for each 

image. 

vii) Computational complexity: The number of sensors (~6K-30K) in 

the 1-D array is larger than the number of sensors (~1K-4K) in a row 

of a traditional 2-D digital sensor. This strategy provides very large 

(150 to 900 megapixel) images. The operations to be performed on 

these images involve subsequent expensive processing steps, leading 

to high computational and memory complexity.  

viii) High data costs: Satellite imaging is an expensive task. Even the 

least processed data are costly. The difficulties in sensor modeling 

and the dependence on the physical sensor parameters bring further 
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expense to the processed spaceborne products (Fraser 2001, Fraser 

2002).  

1.5.5 Coordinate Systems 

The satellite position and ground points can be represented by different 

coordinate systems. For satellite dynamics computations, an Earth-centered, 

orthogonal coordinate system is used (geocentric coordinates). In the 

geocentric coordinate system, z-axis points towards the North Pole, x-axis 

points towards the 0˚ longitude, and y-axis is decided according to the right-

hand rule (points towards 90˚ East). Precise reference frames are defined by 

various versions of the International Terrestrial Reference Frame (Arias 1994, 

Boucher 1999, Altamimi 2002, Altamimi 2007, Altamimi 2011). 

On the other hand, in cartography, geodetic coordinate system (latitude, 

longitude, height) is used (GRS-80 (Moritz 1992), WGS-84 (U.S. Department of 

Defence 1997)). Geodetic coordinate systems use reference ellipsoid models 

for the surface of The Earth at sea level (see section 1.5.6), and define the 

height of any geographical point as the distance from this point to the model 

ellipsoid’s surface, in the surface normal direction (Figure 1.6).  

The point on the Earth, whose surface normal points to the satellite is 

called the nadir point. In other words, the nadir point is the Earth point that is 

closest to the satellite. The satellite’s footprint is defined using the nadir 

points. 

Note that, as seen in Figure 1.6, the surface normal does not point 

towards The Earth’s center (except on The Equator and the poles). Therefore, 

the conversion from geodetic coordinates to geocentric Cartesian coordinates 

is different from the traditional spherical-to-Cartesian conversion. For the 

same reason, geocentric and geodetic definitions of latitude are different. 
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The transformations from geocentric latitude (ψ) and longitude (η) to 

the geodetic counterparts (φ,λ) are given by (Gupta 1995): 
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where Ra is the semi-major axis and Rb is the semi-minor axis of the reference 

ellipsoid. Obviously, the geocentric pair (ψ,η) represent the spherical 
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Figure 1.6. Geodetic and geocentric coordinates of a ground 
point (a), and geocentric satellite coordinates (b) (Kelso 1996) 
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coordinates (azimuth and polar angles), with the only difference that, for the 

polar angle, the equatorial plane is taken as 0˚. Note that these two 

coordinate systems are Earth-fixed (that is, they rotate with The Earth).  

The geodetic (φ,λ,h) and geocentric (ψ,η,R) coordinates can be 

converted to Earth-centered, Earth-fixed Cartesian Coordinates (X,Y,Z) with 

(Gupta 1995) 
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Note that, the transformation from geodetic coordinates to geocentric 

Cartesian coordinates by (1.6) and (1.7) requires the geocentric coordinates, 

which can easily be obtained by using (inverting) the relations in (1.5) 

However, satellites do not rotate with The Earth. Therefore, registering 

satellite position with the geodetic coordinates is required. The details are 

presented in Section 2.1.2 (orbital parameters).  
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Earth-centered Cartesian coordinate system is rarely used for 

describing the imaging geometry since it requires extra precision for 

numerical stability. Still, in rigorous models, usage geocentric coordinates is 

inevitable. On the other hand, the Cartesian coordinate system can be used 

locally. The Universal Transverse Mercator (UTM) is a 2-D Cartesian 

coordinate system, in which the earth surface is divided into 14 regions 

which are assumed to be planar (Hager 1989). In each region; the coordinates 

are defined as 2-D Cartesian coordinates relative to the origin defined for the 

UTM region. Although UTM defines the transverse plane coordinates only, 

the height information may still be represented in this coordinate system 

relative to the UTM plane. UTM is generally used as a projection plane and is 

rarely used in photogrammetry as the object domain coordinate system. 

1.5.6 Earth Models 

Numerical description for the satellite imaging scenario through the 

projection models requires a reference Earth model. The Earth is modeled as 

an ellipsoid, which is defined by two parameters: The semi-major axis (Ra) and 

the semi-minor axis (Rb). Every Earth model defines a reference surface, in 

reference to which the coordinates of a point on the ground is described in 

the geodetic or the geocentric coordinate system (see Figure 1.6).  

Several ellipsoids are defined throughout the years. The parameter 

values for the different reference ellipsoids are given in Table 1.1. The most 

widely used reference ellipsoid model is the WGS84 model (NIMA 2000).  
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Table 1.1 Reference ellipsoid parameters for different ellipsoidal models 

Name Ra (km) Rb (km) 

Clarke 1866*  6378.2064 6356.5838 

Bessel 1841* 6377.397155 6356.078965 

International 1924* 6378.388 6356.9119 

GRS 1980* 6378.137 6356.7523141 

WGS 1984 (NIMA 2000) 6378.137 6356.7523142 

    *The Defence Mapping Agency, 1983 

1.6 Data Types 

Various types of data are used in remote sensing for different purposes. 

This section presents a general overview of the available data and their 

usage, and marks the data types that are used in photogrammetric DEM 

generation studies. 

1.6.1 Monochrome / Panchromatic Images 

Panchromatic (pan) images are the most common type of data provided 

by satellite image providers. The sensors used to obtain the pan images have 

a wider spectral response than that of the multispectral sensors (Figure 1.7 

and Figure 1.8). Resolution is generally 4 times higher than colored 

(generally VNIR) images (QUICKBIRD pan: 0.6m, colored: 2.4m (DigitalGlobe 

2008), IKONOS pan: 1m, colored: 4m (Piwovar 2006), ALOS pan (PRISM): 

2.5m, colored (AVNIR): 10m (Osawa 2004)). Pan images are the most widely 

used data in DEM extraction. 
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1.6.4 Synthetic Aperture Radar   

Synthetic Aperture Radar (SAR) is a special kind of radar, which aims 

at obtaining a reflectance image for a specific radar wavelength, by observing 

the echoes of emitted radar signals. The required large receiver antenna is 

obtained virtually by emitting a pulse train as the receiver moves, and 

combining the data gathered at different positions. Thus, a “synthetic” 

aperture is generated. SAR can provide sub-meter resolution, but the images 

have significant speckle noise, which causes difficulties in processing. 

Spaceborne SAR is also practical (e.g. ALOS PALSAR, TerraSAR-X, 

RADARSAT-2) down to 1m resolution (German Aerospace Center). One major 

advantage of SAR imaging is the ability to acquire images at night and seeing 

even through a thick cloud cover.  

For DSM generation, a specific form of SAR, namely the Inferometric 

SAR (InSAR/IfSAR) is used. InSAR can provide accuracy figures down to 

centimeters (Helz 2005). 

Spaceborne stereo SAR can be used for DSM generation with similar 

techniques for correspondence generation (Toutin 2012). However; the 

imaging geometry, the properties of the SAR images and the camera models 

for SAR are different from those of the elctro-optic couterparts, and therefore, 

SAR is beyond the scope of this study. (see Toutin 2000 for an introduction on 

SAR imaging). 

1.6.5 Ground Control Points 

A Ground Control Point is a point on the earth surface whose geodetic 

coordinates are measured very accurately and whose location in the satellite 
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image is also known. For the stereo case, the location of the GCP must be 

known in both images for being useful in stereo processing. 

GCPs are crucial in many photogrammetry studies that demand 

accuracy. The most frequent usage is in the bundle adjustment, where the 

GCPs are used as anchors to correct the errors in the projection models 

(Grodecki 2003). 

GCPs are also used in accuracy assessment for the projection models 

and generated DEMs. For proper error analysis, the GCPs are generally 

divided into training and test groups and the errors are measured only at the 

test points. 

LIDAR (often used as LADAR in the military context) aims to obtain 

the elevation directly form time of flight of the sent laser; therefore LIDAR 

imaging is a different way of DEM generation, and named as laser altimetry. 

Airborne LIDAR is frequently used as a reference for accuracy measurement 

in the recent studies on DSM generation from satellite images (Tsutsui 2007). 

1.6.6 Low Resolution Digital Surface Models 

Low Resolution Digital Surface Models (LR DSMs) are DSMs that were 

obtained by specific missions or extracted from previously recorded data. 

The most popular datasets are SRTM and ASTER GDEM; which are freely 

available, raster format datasets. 

SRTM 

The Shuttle Radar Topography Mission (SRTM) is a 11-day mission 

performed by NASA in February 2000, to obtain a digital topographic 

database of the Earth by a radar system that was flown by the U.S. Space 
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Shuttle Endeavour. The GSD of SRTM is 30m in the U.S.A. and 90m 

elsewhere. The SRTM data is distributed free of charge from the USGS server 

in 1°x1° patches on a latitude-longitude grid for the land between the 

latitudes 56° S and 60° N. Current version of the SRTM data is SRTM3. For 

more details on SRTM, see Chapter 3. 

ASTER GDEM 

ASTER Global Digital Elevation Model (ASTER GDEM) was developed 

jointly by the Ministry of Economy, Trade, and Industry (METI) of Japan and 

NASA. The DEM data are extracted from the large image database of ASTER 

images. Its properties are summarized as follows: 

The ASTER GDEM covers land surfaces between 83°N and 83°S and is 
composed of 22,600 1°-by-1° tiles.  Tiles that contain at least 0.01% 
land area are included.  The ASTER GDEM is in GeoTIFF format with 
geographic lat/long coordinates and a 1 arc-second (30 m) grid of 
elevation postings.  It is referenced to the WGS84/EGM96 geoid.  Pre-
production estimated accuracies for this global product were 20 
meters at 95 % confidence for vertical data and 30 meters at 95 % 
confidence for horizontal data (J Space Systems 2011). 

1.7 Sources of Satellite Data 

1.7.1 Military Data 

The properties of the military satellites and military spaceborne data are 

classified. Thus, the information on military data is very limited.  

USA is the leading country in military spaceborne earth observation for 

the last five decades, starting with the Corona satellites in 1959 (Perry 1973). 

USA remains to have the largest fleet (122 satellites) for earth observation 

(USGS 2012).  The USA military satellites are believed to resemble the 
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Hubble Space Telescope; which has a 2.4m aperture, 57.6m focal length and 

0.043 arcseconds resolution in the visible band (Simpson 2010, Space Telescope 

Science Institute 2011). Such imaging ability corresponds to approximately 

14cm GSD, if the camera is directed towards The Earth.  

Russia and China follow USA in military spaceborne reconnaissance 

(Space Telescope Science Institute 2011). Surprisingly, even the newly launched 

Russian satellites carry film cameras whose recordings are sent to the ground 

using canisters that are dropped from the satellites.  

European military satellites are also increasing in number. One of the 

themes in The European Commision FP7 Framework is “Space”, with a 1.4 

billion € budget. Several projects with military aspects are conducted within 

this framework (LIMES, G-MOSAIC, NEWA, SSA, EU DEM). (EU Joint Task 

Force 2010) 

1.7.2 Commercial/Civilian 

Civilian satellites provide different types of images with varying prices, 

depending on the processing level of the satellite. The raw images (given 

different names by different image providers, here we call level 0) contain the 

unprocessed information received from the satellite. This class of images 

include the effect of radiometric (non-identical sensor, atmospheric 

distortions, etc) and lens distortions, as well as the geometric distortions 

(earth curvature, satellite orbit, attitude drift, etc). Level 1 images are 

corrected (calibrated) images for radiometric distortions, without any 

processing for geometric distortions. Higher level images (geo-corrected, 

geo-referenced, ortho-rectified) can also be obtained from the image 

providers, as well as DSMs obtained from these images. Level 1 data are the 

most common inputs for photogrammetry studies. 
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Information on the orbital parameters and imaging properties of a 

subset of civilian EOSs are given in Table 1.2. More detailed information can 

be found in Jacobsen 2002, Dowman 2003, Gleyzes 2003, Baudoin 2004, Osawa 

2004, Piwovar 2006, DigitalGlobe 2008, Ghadyani 2008, Toutin 2009, Poli 2012, 

Satellite Imaging Corp. Web Site 
 

 

Table 1.2. Properties of differen EOSs 

SATELLITE 
ALOS 

PRISM/AVNIR2 
IKONOS 2 QUICKBIRD 2 SPOT 5 

Resolution 

 (m) 
2.5 Pan 

10 VNIR 

0.8 Pan 
4 VNIR 
1.0 PS* 

0.6 Pan,  
2.4 VNIR 

2.5 Pan 
10 VNIR 
20 SWIR 

Swath (km) 
70 nadir 

35 fore/aft 
11.3 16.5 60 

Image Width 

(pixels) 

28000 pan 
14000 MS  

13816  pan 
3454 VNIR 

27000 pan 
6700 VNIR 

12000 pan 
6000 MS 

Cameras +24° , 0°, -24° Up to +/- 45° Up to +/- 30° +20° ,  -20° 

Sensor 
Pan, 

 VNIR 4 band 
Pan,  

VNIR 4band 
Pan,  

VNIR 4 band 
Pan,  

MS 4 band 

Altitude (km) 691.65 680 470 822 

B/H 1.0 variable variable 0.8 

Quantization 

(bits/pixel) 
8 11 11 8 

Orbital  

inclination (°) 
98.16 98.10 98 98.7  

Orbital Period  

(min) 
98.74 98.33 93.4 101.4 

Recurrent  

period (days)** 
46 (2) 144 (3-5) 1-3.5 26 (2-3) 

Launch 2006 1999 2001 2002 

Country Japan USA USA France 

* PS: pan sharpened product obtained by increasing the resolution of the MS image using 
panchromatic data. 
** The term in the parenthesis is the sub-cycle period when the satellite passes through a 
point very close to the recurrence location  
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Table 1.2 (cont’d). Properties of different EOSs 

SATELLITE GeoEye-1 ASTER EROS B 
LANDSAT 7  

ETM+ 
IRS-P5  

Cartosat 

Resolution  

(m) 

0.41 Pan 
1.65 VNIR 

15 VNIR 
30 SWIR 
90 LWIR 

0.82 Pan,  
 4 VNIR 

15 pan 
30 VNIR 

2.5 Pan 

Swath (km) 15.2 60 16.4 185 27 / 30 

Image Width  

(pixels) 

37544 Pan 
9386 VNIR 

4000 VNIR 
2000 SWIR 
670 LWIR 

20000 Pan 
 5000 MS 

12300 Pan 
6150 VNIR 
6150 SWIR 
3050 LWIR 

12 288 Pan 

Cameras Up to +/-45° 
0° 

+27.2° 
Up to +/-45° 0° 

+20°, 
-5° 

Sensor 
Pan 

VNIR 4 band 
MS 14 band 

Pan, 
 MS 4 band 

Pan,  
MS 16 band  

Pan 

Altitude (km) 681 705 600 705 617 

B/H variable 0.6 variable N/A 0.62 

Quantization 

(bits/pixel) 
11 

8 VNIR 
8 SWIR 

12 LWIR 
10 8 10 

Orbital  

Inclination (°) 
98 98.3 97.4 98.2 98.9 

Orbital Period 

(min) 
98 99 94-96 99 97.1 

Recurrent  

period (days) 
3 16 1-3 16 5 

Launch 2008 1999 2004 1999 2005 

Country USA USA/Japan 
Cyprus / 

Israel 
USA India 

 

1.8 Summary of Related Literature  

The DEM generation process includes a number of steps (which are 

summarized in Section 1.11), each having a different subset of literature 

related to various approaches. Thus, for the sake of clarity, the related 
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literature is presented at the beginning of each chapter. Here, we provide a 

brief introduction with an organization that matches with the outline of the 

thesis work.  

The usage of photogrammetry in Digital Elevation Model generation 

has a broad literature, starting from the early 70’s (for analog cameras). With 

the improvements in the spatial resolution thanks to the digital satellite 

images, the errors that were previously neglected have gained importance 

and are dealt with more rigor (Toutin 2004).  

The most critical step in DEM generation is obtaining an accurate 

projection model. The accuracy of the reconstructed DEM is sensitive to 

errors in the projective model parameters. Thus, the photogrammetry 

literature is rich for camera calibration and accuracy assessment studies. 

Since each EOS has a unique design and imaging scenario, with the 

introduction of every new EOS, its properties are analyzed and the validity 

of each projection model is investigated for that EOS. 

For the imaging scenario, two major families of models exist: physical 

(rigorous) models and empirical models. The physical models express the 

physical reality in the imaging process, while empirical models fit pre-

defined models to measurements (image data and GCPs) (Toutin 2004).  

1.8.1 Rigorous / Physical Models 

Physical models make use of the metadata (ephemeris) provided by the 

satellite to represent the imaging geometry. 

Rigorous sensor models are based on the orbital parameters explained 

in Section 2.1.2. The most important step in rigorous modeling is to 

determine the satellite position and the orientation accurately. The actual 

(observed) ground point’s coordinates are then computed (reconstructed) 
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using the colinearity equations (Section 1.5.2) and the coplanarity conditions 

(Section 1.5.3). Therefore, the main issue in the rigorous modeling is to obtain 

an accurate physical model. Ideally, GCPs are not required when the satellite 

model parameters are obtained perfectly. In practice, ephemeris contains 

measurement errors. Thus, the accuracy of the physical model can be 

improved with GCPs. 

Various rigorous satellite models are proposed in the literature. A 

representative subset of these models is presented in Chapter 2. Broader 

literature is covered in Toutin 2001, Dowman 2003, Poli 2004a and Toutin 2004. 

1.8.2 Empirical Models 

Some image providers prefer to deliver empirical model parameters 

(polynomial coefficients) that are derived from the hidden physical model 

and provide very fine approximation to the physical models (Hartley 1997a, 

Grodecki 2001).  

Empirical models use explicit projection functions to represent the 

imaging scenario. The general form of the projection functions is given by 

divisions of polynomials that are defined in the object domain: 
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where; u and v are the vertical and horizontal coordinates in the image 

domain, X,Y,Z are the object domain (geodetic) coordinates, and Pi’s are 

polynomials. The equations in (1.9) are also referred to as the forward 

functions since they define the projective relation in the forward direction 

(from the object domain to the image domain).  
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Different choices for the four polynomials result in different empirical 

models. Note that, a model with four first order polynomials with 

P2(X,Y,Z)=P4(X,Y,Z) does not correspond to the pinhole camera model since 

X,Y,Z is defined in a geodetic coordinate system which is not Cartesian. Still, 

if the region of interest is small enough to approximate the reference 

ellipsoid as a plane in that region (where the latitude-longitude grid 

corresponds to a Cartesian grid), the pinhole model can be assumed.  

The model with four separate third order polynomials is known to 

represent the physical reality almost exactly and is known as the Rational 

Function Model (RFM) (Grodecki 2001). There are also simplified empirical 

models, such as the Linear Pushbroom Camera Model (LPCM) (Gupta 1997), 

Direct Linear Transformation (DLT) (Wang 1999, Fraser 2001) and the Affine 

Projection Model (APM) (Fraser 2001, Fraser 2004). These models are 

explained in Chapter 2. 

1.8.3 Registering LR DSMs to the Satellite Images 

LR DSMs are frequently used in remote sensing applications. The main 

usage area is orthorectification, in which the satellite images are resampled 

on a latitude-longitude or UTM grid (Leprince 2007). Another usage is in 

DEM extraction, where the LR DSM is used either as the source of the GCPs 

(Gonçalves 2008), or as the reference (ground truth) data for accuracy 

evaluation (Tsutsui 2007, Jacobsen 2008). Using an LR DSM as the ground 

truth may be questionable, especially if the accuracy of the reference LR DSM 

is close to or worse than the evaluated DEM, which is generally the case for 

modern EOSs. Regardless of the usage, an LR DSM must be registered to at 

least one of the stereo satellite image pair, if used. 



 
 

34 
 

Registration can be performed by first generating a coarse DEM or a 

sparse reconstruction from the image pair and then finding the translation to 

align these (reconstructed) sparse points to the reference LR DSM by using 

the correlation coefficient (Gonçalves 2008). Methods for registering an LR 

DSM to a single image were non-existent until this study (Ataseven 2010a). 

1.8.4 Sparse Reconstruction 

Sparse reconstruction is the phase that generates the DEM values for a 

sparse point set of the reference satellite image. Classically, two phases exist; 

i) interest point (feature) detection and ii) reconstruction. 

Images are often passed through pre-processing before feature 

detection. The main aims in preprocessing are as follows: i) suppressing the 

noise ii) enhancing the features of interest in low contrast regions (e.g. 

shadows) and iii) reducing the radiometric inequalities between the stereo 

images. The most widely cited preprocessing method is the Wallis filter, 

which is a basic non-linear filter that forces the local mean and variance to 

have certain desired values with some forcing parameter (Wallis 1974, 

Jayazeri 2008). Usually the Wallis filter output is used only for feature 

detection. Matching is achieved by the original images. 

The most common feature detector used in the photogrammetry 

literature is the Förstner detector (Förstner 1986, Förstner 1987, Jazayeri 2008), 

which is a slightly modified version of the Harris feature detector (Harris 

1988).  

Template matching is the most widely used sparse correspondence 

generation tool in the remote sensing literature. MSE, cross-correlation and 

their derivatives are used as the matching criteria in many studies (Jacobsen 

2004, Poli 2004a). There is a special emphasis on one particular algorithm, 
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namely the Iterative Least Squares (ILS), which optimizes a cost function that is 

computed using both geometric and radiometric errors (Gruen 1985). The 

computational expense of template-matching is typically reduced using a 

hierarchical matching on image pyramids (Zhang 2004a, Zhang 2005). 

Edge matching is also used for stereo correspondence generation. 

Usage of edges provides an improvement in the DSM accuracy and 

sharpness, especially in the urban regions with tall buildings, where interest 

point matching is difficult due to occlusions (Gruen 2005). Edge detection is 

generally not the critical step and is performed with one of the well-known 

algorithms. For matching, epipolar constraints and template matching 

variants are used (Zhang 2005).  Edges are more useful in aerial images rather 

than their satellite counterparts.  

For uniform regions, grid based matching can be used. With this 

approach, matching is possible even for the regions with small spatial 

intensity variance. Such an approach can be considered as enforcing the 

geometric consistency constraint rather than intensity based matching since 

the intensity distribution provides insufficient information for successful 

matches (Poli 2004a, Zhang 2005). 

Reconstruction (triangulation) with the rigorous geometric models is 

performed directly by the collinearity equations under the coplanarity 

constraint (Jacobsen 1997). 

For reconstruction using the empirical models, an optimization 

problem is defined and solved for the optimum world coordinates. The cost 

function is defined either in the image domain using the forward projection 

models or in the object domain using the inverse projection models (Di 2001, 

Tao 2002). Image domain cost functions are known to provide better 

reconstruction accuracy (Tao 2002). Classic gradient-descent schemes with 
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quite coarse initial estimates are preferred for optimization. Due to the 

analytical form of the empirical models, the gradients can be computed 

analytically (Di 2001). 

1.8.5 Dense DSM Generation 

Although the ultimate goal of the DSM generation efforts is obtaining 

dense DSMs, the efforts in photogrammetry are mainly focused on projection 

model development and obtaining sufficient accuracy in sparse control 

points. Interpolation is generally presented for completeness. Dense 

reconstruction without a preceding sparse reconstruction step is uncommon 

and studies focused on interpolation are few (Otto 1988). 

The most widely used approach for dense DSM generation is region 

growing which extends the ILS algorithm (Otto 1988). The sparse matching 

results are generally used as the seed points for region growing (Zhang 2005). 

Starting from the seed points; dense correspondences are generated in the 

neighborhood using the affine transformation of the seed point as the initial 

estimate. This method is very accurate; but extremely expensive since for 

every pixel in the image, its correspondence is searched with the ILS. Despite 

its computational complexity, region growing is the most frequently used 

technique in dense DSM generation (Otto 1988, Poli 2007); possibly since it is 

already implemented in the commercial software packages. 

1.9 Objective of the Study 

This study aims at: 

1. Developing a fully automatic, GCP-free, dense DSM generation 

scheme from high resolution stereo satellite images, 
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2. Reducing the overall computation time for DSM generation.  

Airborne imagery is excluded in the study due to the lack of data. Yet, 

the methods proposed in the thesis study are –in principle- applicable to the 

aerial imagery with proper adjustments, related to the projection functions. 

1.10 Significance of the Study 

Currently, DSM generation process requires human intervention in 

various phases. The most time and resource consuming stage is the GCP 

collection phase, which requires site visits with expensive measurement 

equipment.  GCP-free methods suffer reconstruction accuracy due to errors 

(biases) in the projection functions. 

The significance of this study is summarized as follows: 

1. A fully automatic, GCP-free DSM generation scheme is developed and 

implemented. 

2. A novel, GCP-free method for registering LR DSMs to satellite images 

is proposed. With this approach, geodetic coordinate estimates are 

generated for every pixel in the satellite image. The method can be 

used for all types of map data. 

3. A novel, GCP-free bias reduction method for the RPF model is 

developed. The method combines the registered raster map and 

sparse optical flow. 

4. It is shown that, by proper map registration, simple projective models 

gain significant accuracy improvement, even when GCPs are absent. 

Dividing the satellite images into row chunks provide further 

improvement in the accuracy. 
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5. A two-step sparse stereo pair generation procedure is developed. The 

procedure reduces computational complexity while maintaining the 

matching accuracy without any significant sacrifice in the number of 

successful matches. 

6. Two novel, sparse-to-dense interpolation methods are presented: 

i) A segmentation-based, edge-preserving algorithm 

ii) An algorithm that uses integral images and generates a smooth 

DSM 

7. The overall DSM generation time is significantly reduced compared to 

commercial applications. 

1.11 Outline of the Thesis 

The outline of the study and its relation to the thesis chapters are shown in 

Figure 1.9. More detail is presented in Chapter 3 (see Figure 3.1). 
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Figure 1.9. Outline of the workflow and its relation to the thesis chapters 
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In the following sections of the text, the following outline will be followed: 

Chapter 2: Projection models for the satellite images are explained. 

Chapter 3: The methodology used for DSM generation is introduced. 

Chapter 4: The methodology for Registration of SRTM data and satellite 

images is described.  

Chapter 5: Sparse reconstruction strategy is explained. 

Chapter 6: Dense DSM generation via interpolation with four different 

approaches is described. 

Chapter 7: Experiments are presented and the results are reported. 

Chapter 8: The thesis is concluded.  

Appendix A: Usage of the SRTM registration in estimating the parameters of 

simpler empirical models is presented. 

Appendix B: The details of RPC reconstruction are presented. 
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CHAPTER 2  

PROJECTION MODELS 

2.1 Rigorous Models 

2.1.1 Kepler’s Laws 

All satellites obey the Kepler’s Laws on orbital dynamics. Kepler’s laws 

can be summarized as:  

1st Law: All satellites move on an elliptical orbit, and The Earth’s center 

of gravity lies at one of the elliptic foci.   

2nd Law: The vector from Earth’s center to the satellite sweeps equal 

area in equal time periods. 

3rd Law: The satellite’s rotation period is given by
eGM

a
P

32
2 4π
= , where a 

is the semi-major axis of the orbital ellipse, G is the 

gravitational constant (G = 6.67428×10-11 m3 kg-1 s-2 (Mohr 

2006)), and Me is the mass of The Earth (Me = 5.9736×1024 kg 

(Yoder 1995)). 

Kepler also invented methods for conversions and methods to compute 

satellite position at a given time (which do not have explicit solutions).   
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2.1.2 Orbital Parameters 

Orbital parameters of the satellite motion are used in rigorous physical 

models of the image projection scenario. Even if simpler models can be used 

for the imaging scenario, it is required to have an understanding for the basic 

parameters of satellite motion in orbit. In Figure 2.1, a general diagram of 

satellite orbit is presented with the main orbital parameters. The parameters 

displayed on this image are defined as follows: 

Perigee: The point in the orbit where the satellite is closest to The 

Earth’s center of gravity 

True anomaly: The angle between the two rays: Earth center-perigee 

(EP), and Earth center–satellite (ES). The angle is measured 

from EP to ES, in the satellite’s movement direction.  

Ascending node (λAN): The geodetic longitude that the satellite passes 

the equatorial plane towards North. Due to Earth’s rotation, 

λAN is different for every tour (track) of the satellite. 

Descending node (λDN): The geodetic longitude that the satellite passes 

the equatorial plane towards South. Due to Earth’s rotation, 

λDN is different for every tour (track) of the satellite.  

Semi-major axis (a) : Half of the major axis length of the orbital ellipse 

(see Figure 2.2).  

Semi-minor axis (b): Half of the minor axis length of the orbital ellipse 

(see Figure 2.2). 

Orbital Eccentrity (e): A value that gives how much the orbital ellipse 

deviates from a circle.  
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Figure 2.1. A Satellite and its orbital parameters (taken from Gupta 1995). 

 

It should be noted that, due to the earth's rotation, the difference λDN - 

λAN is not equal to 180 degrees. The relations for λDN and λAN are (Gupta 

1995): 
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Here, 
kT

λ  is the perigee longitude for the kth track. T(x) is the time that is 

required for the satellite to build an angle of x degrees from the ascending 

node. T(x) is a fixed function for all tracks, since it is dependent only on the 

satellite orbit. we is the earth’s angular rotation speed (we = 7.292115×10-5  
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rad.s-l (Yoder 1995)). As seen in (2.1), both ascending and descending nodes 

for the kth track can be obtained directly from the previous track’s values. 

The relation between a, b and e is: 

 

 21 eab −=  (2.2) 

 

For determining actual satellite position in the orbit, a reference circle is 

used. The reference circle lies in the orbital plane and its radius is the semi-

major axis of the orbit. The reference circle is shown in Figure 2.2. 

 

Figure 2.2. Satellite orbit and the reference circle. (taken from Gupta 1995) 

 

In Figure 2.2, E (called the eccentric anomaly) refers to the central angle 

of the reference circle, for the point obtained by intersecting the “Earth center 

- satellite position line” (the associated vector is referred to as “satellite 
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vector”) with the reference circle. There is also an intermediate term called 

mean anomaly, denoted by M, which is used in finding satellite position.  

The EOSs sense the time they pass from the perigee and measure the 

time elapsed from the last perigee visit to the instant that the center line of 

the acquired image is taken. The procedure to determine the satellite 

position, given the elapsed time (t) from the last perigee visit is as follows: 

i) From Kepler’s 3rd law, obtain the mean angular velocity:  
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Pw e== π  (2.3) 

 

ii) Obtain mean anomaly:  

 wtM ×=  (2.4) 

iii) Solve 

 � = � − �. sin(�)  (2.5) 

 

iteratively for E (use E0 = M as initial value). Since the orbits are very 

close to circles, M and E are similar and the iteration terminates in a 

few steps (Gupta 1995) 

iv) Obtain true anomaly: 
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v) From the true anomaly and 
kANλ  for that track, obtain the geocentric, 

geo-fixed longitude.  
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 )90()90( fTwf eANf k
+×++−= ooλλ  (2.7) 

 

vi) From the true anomaly and orbital inclination (θ), obtain the 

geocentric latitude of the satellite.  This can be obtained by applying 

a rotation to the perigee vector (EP) about the axis perpendicular to 

the orbital plane, by an angle of f, and taking the resultant polar 

angle.  

vii) Convert the geocentric coordinates (angles) of the satellite to 

geodetic counterparts using (1.5).  

The obtained latitude and longitude values should give the ground 

point just below the satellite. The satellites are designed in such a way that 

their look direction is perpendicular to the ground point (nadir point) they fly 

above. Therefore, the satellite geodetic angles are the same with the ground 

point they are directed to.  

Note that this formulation is for the nadir image alone. For the aft and 

fore imaging cases, the computations are the same for the satellite position, 

whereas more complicated for the imaged point. 

2.1.3 The Geometrical Models 

The mainstream in rigorous modeling can be outlined as follows: The 

sensor model parameters are divided into two groups; exterior orientation 

parameters and error correction parameters. The exterior orientation (coarse) 

parameters define the satellite position and orientation (attitude). Error 

correction (fine) parameters are used for modeling the non-idealities 

(variations/drifts) of the imaging system and the imaging scenario. Most of 

the time, some of the used parameters are highly correlated and calibration 

may not result in actual (physical) parameters even if the generated DEMs 
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are accurate. Due to this fact, the satellite models can be generated using the 

most dominant parameters. However, these correlations are satellite 

dependent and cannot be generalized, and consequently, “a generic satellite 

model” is difficult to achieve.  Still, there are sensor models that are 

applicable to more than one satellite. 

A model was proposed by Gugan and Dowman (1988). Poli’s 

explanation on this model and the clues given in Dowman’s recent 

publications are as follows: 

Gugan and Dowman proposed a dynamic orbital parameter model 
(Gugan 1988). The satellite movement along the path is described by 
two orbital parameters (true anomaly and the right ascension of the 
ascending node), that are modeled with linear angular changes with 
time and included in the collinearity equations. The attitude variations 
are modeled by drift rates (Poli 2004a). 

 

Dowman’s model uses second order polynomials of time for modeling 

the positions of the sensor array, while it acquires successive image lines. For 

3D to 2D mapping, the rigorous collinearity equations given in (1.12) are 

used. Later, Dowman and Michalis extended the model to a generic rigorous 

sensor model (with 14 parameters for the exterior orientation of the satellite) 

that are applicable to today’s popular satellites, and reported RMS errors less 

than 2 pixels for ASTER data with 3 GCPs (Dowman 2003).  Then, with the 

same model, they reported DEM accuracy better than 10m (except steep 

regions) for SPOT HRS data. (Michalis 2004) 

Gupta and Hartley proposed an application of Levenberg-Marquardt 

algorithm (Hartley 1993) to obtain optimum satellite parameters (Gupta 1995). 

They try to minimize RMS re-projection error between the calculated and 

measured image points of 25 GCPs. The main approach is to determine a 

coarse update for satellite position and orientation, and then refine it using 
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the attitude drift parameters. Their parameter vector contains:  Semi-major 

axis a, eccentricity e, inclination i, perigee angle w, longitude of the DN, look 

angle Ψx1, look angle Ψy1, look angle Ψxn, look angle Ψyn time perigee to 

current position, and dwell time. They report sub-pixel accuracy for 90% of 

the pixels of a SPOT stereo pair (Hartley 1995). 

Poli (Poli 2003) divides the image into successive chunks of image lines, 

and models external orientation (position and attitude) change between these 

chunks (during acquisition) as a second order polynomial of time, with 

continuity constraints up to the second order derivative. The original paper 

(Poli 2003) states that the continuity constraints reduce the external 

orientation polynomials to the first order. For the error correction, Poli uses 

principal point displacement (Δxp, Δyp), focal length variation (Δf), the 

symmetric (k1,k2) and decentering (p1,p2) lens distortion, the shear factor in y 

direction (sy), and CCD line rotation in the image plane (θ) for modeling 

systematic errors. This method resulted in 8m plannimetric, and 10.4m 

elevation error (RMS) for ASTER images and 6 GCPs, but the error was 

measured only at the GCPs (Poli 2004b). The author reports that the 

experiment on SPOT HRS data resulted in planimetric errors less than 7m 

and elevation error less than 5m if 8 or more GCPs are available (Poli 2003). 

The author also reports that the error correction parameters, k1, k2, p2, sy, and 

θ are effective on the accuracy. 

Jacobsen published another model (Jacobsen 1997), which included 

parameters for external orientation, focal length, lens distortions (fish eye 

effect), earth curvature, atmospheric refraction, etc. This model is applied to 

several satellites successfully (see Poli 2004a for the references). 

The actual physical models that are generated by the satellite designers 

are rarely public. In fact, the usability of these models is questionable for the 
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end user, since these detailed models for the new generation satellites are 

extremely complicated (Grodecki 2001). Thus, the current trend in satellite 

photogrammetry is dominated by the empirical models. 

2.2 Empirical Models 

2.2.1 Rational Polynomial Function Model (RFM)  

Rational polynomial function model aims at providing an accurate 

empirical model that has a generic form. The main idea is a direct extension 

of the pinhole camera relations. For a pinhole camera, a 3D object point is 

mapped to a 2D image point by a 3x4 projection matrix with the relation: 
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where; ���P’s are the 1x4 row vectors of the projection matrix; X, Y and Z are 

the real world (object) coordinates; u and v are the image domain coordinates 

of the projection. Obviously, u and v can easily be obtained by dividing the 

product by k, which is given by ����[�	�	�]�. The inner products of the 

projection matrix rows and the position vector are in fact the first order 

polynomials of the object domain coordinates. Consequently, the image 

coordinates (u,v) can be found by the division of two first order polynomials 

of the object coordinates. 

For the pushbroom sensors case, the geometry is more complicated 

(different focal point for each image line, attitude changes, etc.) and 

therefore, higher order polynomials are required for accurate modeling. This 
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is the underlying idea of the RFM. Rational Polynomial Coefficients (RPCs) 

are simply the coefficients of the polynomials in the RFM. The most widely 

used RFM is the third order model, which is shown to represent the physical 

situation almost exactly (Hartley 1997a, Fraser 2001, Grodecki 2001, Dial 2002a, 

Hu 2004, Hosseini 2008): 
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Here, P1, P2, P3 and P4 are third order polynomials of the three variables 

X, Y and Z. Apart from the pinhole convention, X, Y and Z are not defined in 

the Cartesian coordinates. Instead, geodetic latitude, longitude and altitude 

(height) are used. For better accuracy, the geodetic and image coordinates are 

normalized to [-1 1] interval in the RFM relations (Hartley 1997a, Grodecki 

2001, Tao 2002). For notational consistency, we state the following definitions: 

 

 � = ���������� 	 , � = ���������� 	,						� =  � � �����  (2.10) 

 

In (2.10), φ0, λ0 and h0 represent the mean latitude, longitude and height 

values of the observed region, respectively. The scale factors in the 

denominators are used to map the object coordinates onto the [-1,1] interval. 

The image domain coordinates are also normalized similarly: 

 

 ! = " − "#"$%&'( 				,					) =
* − *#*$%&'(  (2.11) 

 

 This way, the projection functions are determined such that the 

projections are always in the [-1,1] interval. Thus, corresponding de-
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normalization is performed after the projection to obtain the image 

coordinates. Normalization improves the accuracy of the projection functions 

for finite numerical precision implementations. The normalization 

parameters are given together with the RPCs by the image providers. 

There is no known method to extract physical parameters from given 

RPCs, since many physical parameters are highly correlated. Image 

providers use the physical model to generate accurate RPCs through 

simulated projections (Grodecki 2001). Since the RPCs are scene-dependent, 

users need new RPCs for every new image. Obviously, in theory, 

computation of 3rd order RPF coefficients using GCPs is possible. However, a 

third order, three-parameter polynomial has 20 coefficients; and the RFM has 

4 separate polynomials. Thus, this task requires at least 40 GCPs per image. 

Furthermore, the coefficient determination problem is ill-posed. For accurate 

projection functions, well-distributed GCPs are required (Hosseini 2008). 

Thus, an effort to determine RPCs using GCPs without any physical model 

should be avoided (Jacobsen 2008). 

The main advantage of RPFs is due to their quite fine approximations to 

the physical model; the end user does not require the complicated physical 

model (Dial 2002b). 

Block Adjustment 

RPF models may be improved further by block adjustment, in which the 

errors are corrected in the image domain by correction functions with a least 

squares approach (Dial 2002a, Grodecki 2003, Gruen 2005). This is done using 

GCPs as the ground truth. For the stereo or multi-view case, additional 

image domain correspondences (without ground control data) are also useful 

(tie points).  
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In block adjustment, an error correction function is assumed (for each 

block) and its parameters are optimized to fit the GCPs and the tie points. 

It has been shown that the error in RPF can be corrected accurately by a 

bias correction in the image domain (Dial 2002a), at least for IKONOS and 

Quickbird images. This conclusion is expected to be valid for narrow FOV 

cameras, whose characteristics are close to the affine projection. The errors in 

the projection information appear to be caused by invalid information for the 

initial position and the orientation of the camera (long term error 

accumulation) and remain mostly unchanged for the short imaging period 

(i.e. short term error accumulation is small). 

Inverse Functions 

The projection functions defined by the equation (2.9) are often named 

as forward functions. There is another set of equations (inverse functions) which 

represent X and Y as functions of u, v and Z: 
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The inverse equations can be obtained easily from the forward 

equations using simulated projections and solving the matrix equation for 

the coefficients of P5, P6, P7 and P8.  The advantage of these functions is that, 

once the Z value is obtained, X and Y are instantly available for each pixel. 

Thus, the optimization problem for DEM generation reduces to 1D search (Di 

2001).  However, in the reconstruction with the inverse functions, the cost 

function is defined in the object domain and the results are not as accurate as 

the solutions for the forward functions (Tao 2002).  
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Another usage of the inverse functions is that, epipolar curves can be 

easily obtained by using (2.12) for the first image and (2.9) for the second 

image. For an interest point (u1,v1) in the first image; different X,Y values are 

obtained by changing the Z value in (2.12). For each resultant (X,Y,Z), the 

projection is computed in the second image using (2.9). Combining the 

projected points (for different Z) values in the second image, an epipolar 

curve is obtained (Wang 2010). One direct result of this strategy is that, once 

the epipolar curve is obtained, the match point (u1,v1) in the second image 

(that lies on the epipolar curve) gives the 3D reconstruction instantly, since 

the (X,Y,Z) is known everywhere on the epipolar curve. However, this 

approach is not numerically stable, since small errors in the forward 

functions affect the inverse functions and the resultant epipolar curve may 

not pass through the actual match point. Thus, for this approach to be 

successful, the rational projection functions must be corrected via block 

adjustment by using GCPs (before computing the inverse function 

parameters). 

2.2.2 Direct Linear Transformation (DLT)  

Direct linear transformation (Wang 1999, Fraser 2001) is a simpler form 

of RPFs, as first order polynomials and a single second order term, which 

accounts for the curved nature of satellite imaging (mainly due to orbit). The 

DLT equations are given as (Wang 1999):  

 

	
* = +,� + +.� + +�� + +/+0� + +,#� + +,,� + 1 

 

" = +2� + +3� + +4� + +5+0� + +,#� + +,,� + 1 + +,."* 

(2.13) 
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In these equations; u, v, X, Y and Z are the normalized coordinates as 

explained in the RFM section.  

In (2.13), DLT adds a second order term in the flight direction of the 

satellite to handle the orbital movement of the optical center. Note that the 

first equation is not the same with the pinhole case, since the X, Y and Z 

values are originated from the geodetic coordinate system, which is not 

Cartesian. It should also be noted that, triangulation with DLT is the same 

with that of the RPF model.  

DLT is reported to provide sufficient accuracy for SPOT and IKONOS 

image pairs (Wang 1999, Fraser 2001).  However, there is an inconsistency on 

the DLT formulation among authors. In the original paper by Wang, and in 

the Fraser’s work, the second order term is in the u equation. Jacobsen omits 

the second order term, and converts the unities in the denominator to 

constants, obtaining the pinhole model (but still denotes it as DLT) (Jacobsen 

2008).  

Experimental results on DLT show that, if more than 8 GCPs are used 

for parameter estimation, DLT is as accurate as higher order RPFs (Wang 

1999, Fraser 2001, Jacobsen 2008). 

2.2.3 Linear Pushbroom Camera Model (LPCM) 

On the other hand, Gupta and Hartley, who are researchers from vision 

community, proposed a simple approximation to the physical model, which 

results in generic equations (Gupta 1997). Their model assumes the following: 

- The satellites moves in a straight line with constant velocity during 

acquisition 

- The sensor attitude is fixed during acquisition 
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This model can easily be converted to a closed form projection equation: 
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Figure 2.3 Linear pushbroom camera model. Taken from Gupta 1997 

 

Here, u, v are the image coordinates and x, y, z are the (Cartesian) world 

coordinates of the observed point, k is a scale factor, Vx, Vy and Vz are 

components of the relative velocity of the satellite w.r.t. the earth surface 

beneath it, f is the focal length, pv is the position of the center pixel, R is the 

rotation matrix and T is the translation vector between the orthogonal image 

and the world coordinate axes. As the equation suggests, the LPCM has 11 

parameters. 

Gupta and Hartley further investigate the model and show that a stereo 

image pair has a fundamental matrix F, which satisfies the following relation: 
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F is a 4x4 matrix whose top-left 2x2 block equals to zero. For a point 

(u,v) in one image, this relation defines a hyperbola (epipolar curve) on the 

second image and its conjugate point lies on this curve. Obviously, equation 

(2.14) holds for any multiple of F, and therefore, F has 11 independent 

parameters which can be solved by 11 correspondences. Gupta and Hartley 

use the popular 8-point algorithm (Hartley 1995) for numerical stability. 

They also describe a linear method to determine the parameters of the 

4x3 projection matrices from F, up to an affine transformation of space, and 

end up with a matrix equation, whose solution is the desired 3D point, again 

up to an affine transformation in 3D space. Thus, with at least 4 GCPs, the 

affine transformation that maps the actual 3D points to the reconstructed 

scene can be determined. The actual coordinates can then be easily obtained 

by its inverse. 

The assumptions for LPCM neglect the effects of the orientation and 

distortion parameters used in all rigorous modeling efforts. However, the 

experimental results show that the requirement for extra care in order to 

determine the satellite parameters is questionable (Gupta 1997, Lee 2003). 

Although the results in these papers show 3 times larger errors compared to 

rigorous models, the accuracy depends mainly on the resolution, and one can 

anticipate that DEM error below 3m is possible with the resolution of 

modern satellites. Thus, this model has the potential to provide sufficient 

DEM accuracy for many applications.  
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2.2.4 Affine Projection Model (APM) 

Affine Projection Model is a highly simplified model. In fact, it is a DLT 

with unity denominators and no second order term (8 parameters):  

 

 
"	 = 	6, 	+ 	6.�	 +	6��	 +	6/	�	
*	 = 	62 	+ 	63�	 +	64�	 +	65� (2.16) 

 

There is also an extended version of the APM, namely the 3D Affine 

Transformation. 

 

 
" = 6, 	+ 6.�	 + 6��	 + 6/�	 + 60��	 + 6,#��	 + 6,��.	
*	 = 62 + 63�	 + 64�	 + 65�	 + 6,,��	 +	6,.�� + 6,/�� (2.17) 

 

The idea in APM is that, due to the high focal length of the satellite 

imaging devices, the incident light reaching the sensors are almost parallel. 

Therefore, an affine camera model can be an approximation to the satellite 

imaging system. (Fraser 2001, Fraser 2004). Fraser’s interesting results show 

that, affine model can perform close to the third order RPF model, especially 

for the scenes with small height variance. Jacobsen confirms this 

experimentally for various EOSs and also reports that for more than 8 GCPs, 

APM is as accurate as the RPF model (Jacobsen 2008).  

Reconstruction with the affine model is similar to that of the other 

methods. Hartley’s polynomial method (Hartley 1997b) is also applicable to 

the APM if (2.16) is used.  

One important step in APM is to transform the image into an affine 

version, in the perspective direction (cross-track direction) (Fraser 2001). 

 



 
 

57 
 

CHAPTER 3  

PROPOSED METHODOLOGY  

The workflow used in the thesis study is composed of pipelined 

operations (Figure 3.1). Each block in Figure 3.1 has well-defined inputs and 

outputs and can be combined with methods other than the ones that are 

presented in this text. Therefore, the contributions of the study can be 

considered as a whole or block-wise. 
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Figure 3.1. Thesis study workflow 
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Every block in the workflow is developed for a GCP-free process. 

However, the approaches presented here can well be applied, if GCPs are 

also available. In such a case, for better accuracy, RFM correction must be 

performed by the GCPs as the first step and all other blocks should use the 

GCP-corrected RFMs. 

Developing a fully automatic, GCP-free workflow is difficult, since the 

advantage of having precise projection functions is not available anymore. 

The projection functions delivered by the image providers typically have five 

to ten pixels of systematic projection error (bias), which could be corrected by 

GCPs. The disadvantages of GCP-free operation can be listed as follows: 

 

i) Accurate bundle adjustment cannot be performed 

ii) Epipolar curves cannot be used in the stereo correspondence 

generation process. Consequently, the search operation for 

correspondence match is computationally expensive. 

iii) The DEM reconstruction accuracy is below the potential of the 

imaging system. 

 

The above mentioned difficulties bring the requirement for specific 

approaches in GCP-free studies. In fact, studying without reference data 

undermines the DEM generation process in general and a GCP-free process 

is not expected to provide the accuracy figures of a GCP-enabled one. Still, 

having GCP-free workflow is valuable, when GCPs are not available or 

cannot be obtained due to different reasons.  
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3.1 SRTM Registration 

Our approach uses less accurate, but freely available LR-DSMs to obtain 

“anchors” in the building blocks. Public raster DSMs, such as ASTER GDEM 

and SRTM, have limited accuracy both in geolocation and height in general. 

However, the accuracy of the LR-DSMs obtained from space shuttles is not 

uniform everywhere. That is, for some ground locations, the LR-DSMs are 

quite accurate while for some others the accuracy is poor. For instance, SRTM 

is obtained with radar inferometry. As the analysis suggest, the elevation 

accuracy of the SRTM is very good (less than 2m) in flat regions (except for 

sand and water bodies) and worse in mountainous terrain (Rodriguez 2005).  

One advantage of LR-DSMs is the following: Since an LR-DSM (e.g. 

SRTM) gives a height function of latitude and longitude (in the form h(φ,λ) ), 

the geolocation error is ineffective for flat regions. A geolocation error 

(Δφ,Δλ) means that, for the location (φ,λ), SRTM has the height value for 

h(φ+Δφ,λ+Δλ). By definition, for the flat regions, h(φ,λ)≈h(φ+Δφ,λ+Δλ). 

Therefore, even if there is an overall geolocation bias in the SRTM, it is not 

effective for a smooth terrain. In other words, if one asks the SRTM for the 

height value at the location (φ,λ), it will return the correct value if (φ,λ) lies 

in a flat region, where the SRTM data is accurate. 

Still, SRTM cannot replace GCPs, even for the flat regions, since the 

SRTM points are not marked in the satellite images. Thus, one must 

determine a technique to utilize its accuracy by establishing a method to 

“connect” (i.e. register) the SRTM points to the satellite image pixels. 
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3.2 Sparse Correspondence Generation 

For sparse correspondence generation, in the absence of epipolar 

curves, a GCP-free approach should use a method to narrow the search 

region.  

One option is based on the following strategy: i) compute the inverse 

RFMs from the biased forward RFMs; ii) draw the erroneous epipolar curves 

using the inverse RFMs and iii) perform the search operation in a “epipolar 

strip” centered on the epipolar curve. Such an approach is flawed by the 

errors in inverse RFM computation, which is based on the solution of a 

homogeneous linear system of equations (in the form of Ax=0) obtained from 

the forward RFMs and a number of simulated projections. The image domain 

projection errors (of the biased RFMs) are included into the system matrix 

(A) vector, which is then put into the singular value decomposition for the 

solution. The error analysis of this step is not easy since the properties of the 

system matrix are dependent on the locations of the selected simulation 

points and the forward RFM coefficients, which are scene-specific. Thus, in 

the GCP-free case, if derived inverse RFMs are used, it is not possible –in 

general- to predict the accuracy of the epipolar curves that will determine the 

strip width. If a wide strip is used to assure success, the benefit of the 

epipolar curve will disappear. 

Another approach is to use a coarse DSM that is obtained from the 

triangulation of fewer correspondences which are obtained by a hierarchical 

search and performing interpolation to fill the empty pixels. This coarse DSM 

is then used to generate the initial estimates for many sparse 

correspondences. 
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The approach used in this study resembles the latter approach, but 

instead of generating a coarse DSM, LR-DSMs (which are already available) 

are utilized (i.e. SRTM registration). Generating a coarse DSM is not a better 

choice for a GCP-free study, since the biased RFMs cannot provide more 

accurate DSM than the popular LR-DSMs. In fact, since one only needs the 

initial estimates for the matching algorithms, the coarse DSM or a registered 

LR-DSM does not need to be very accurate. Using an LR-DSM has the 

advantage that, the known world coordinates are regularly sampled. Thus, 

the interpolation scheme is fairly simple. 

3.3 RFM Correction 

As mentioned earlier, LR-DSMs cannot be fully utilized as GCPs. The 

approach in this study uses an opportunity due to stereo data, by utilizing 

the stereo correspondences. We start with the biased projection functions to 

obtain a biased SRTM registration. Then a few accurate stereo 

correspondences are generated, preferably on the smooth terrain. The 

displacement vector between the initial estimate and the final match point is 

used to equalize the bias in projection functions of the two images. As 

explained in Chapter 5 and demonstrated in Chapter 7, this technique 

improves the accuracy in the reconstructed height with a small increase in 

the geolocation error. 

3.4 Sparse Triangulation 

Sparse triangulation (reconstruction) is an intermediate step of the 

workflow and the thesis study does not propose any novelty in this topic. 
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We use the formulation presented by Di 2001 and the Levenberg-

Marquardt (LM) algorithm for optimization. In the manuscript, Di stops after 

the derivation of the derivatives and leaves the selection of the optimization 

algorithm to the reader. We preferred LM, since its convergence 

characteristics can be controlled by its damping parameter. In fact, this 

parameter affects the convergence so dramatically that, if the method is used 

in commercial software, the user can be allowed to select the operating point 

in the “speed vs reliability” trade-off. 

The accuracy in the sparse triangulation step is quite critical for the final 

dense DSM. As expressed earlier, a GCP-free process is not expected to 

provide the accuracy of a GCP-enabled one. In the proposed technique in 

Chapter 4, the geolocation accuracy can be sacrificed for better elevation 

accuracy by using the output of the RFM correction block. The experiments 

show that, the sacrifice in the geolocation accuracy is small and the gain in 

the elevation accuracy is satisfactory. 

3.5 Dense DSM Generation 

After the sparse reconstruction phase, the interpolation is performed. 

The current trend in the literature uses a type of region grow algorithm, in 

which correlation-based matching is performed for each individual pixel. 

This is an old and expensive method. Our presumption is that, since this 

method is already implemented in the commercial software, the authors 

(who contribute mostly in geometrical models) use the software to be able to 

report a complete study; hence, the publications on sparse-to-dense 

conversion are very rare. 
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In this study, three different interpolation methods are proposed (see 

Chapter 5): 

i) A fast and simple method that uses integral image interpolation 

using rectangular or circular windows. 

ii) Adoption of a novel method (Çığla 2012) (usage of color-aware 

integral images of height) for sparse height, with or without pre-

interpolation with method (i) 

iii) Adoption of the Speeded-up Turbo Pixels (Çığla 2010) 

segmentation algorithm to dense DSM generation. 
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CHAPTER 4  

SRTM REGISTRATION 

4.1 Available Digital Surface Models 

4.1.1 SRTM 

The SRTM grid is a geodetic (latitude-longitude) grid and the sampling 

is accordingly. The sampling interval is 1 arcsecond in the USA and 3 

arcseconds elsewhere. Such sampling corresponds to 30m and 90m GSD on 

The Equator. The GSDs vary with the latitude, especially along the longitude 

axis. However, the GSDs are often mentioned in an ergonomic fashion, as 

30m and 90m. 

SRTM has voids in the dataset due to the nature of the imaging 

technology: 

Voids were caused by two main mechanisms: steep slopes facing 
away from the radar (shadowing) or towards the radar 
(foreshortening or layover) and smooth areas such as smooth water 
or sand which scattered too little energy back to the radar to create 
an image (Farr et al. 2007). 
 

A very detailed SRTM error analysis is presented by Rodríguez (2005). 

Here we only quote the general information: 
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Table 4.1. Height error figures for the SRTM data compared with kinematic 
GPS transects (Rodríguez 2005). 

Continent Mean 

(m) 

Standard Deviation 

(m) 

Absolute Error (LE90) 

(m) 

Africa 1.3 3.8 6.0 
Australia 1.8 3.5 6.0 
Eurasia -0.7 3.7 6.6 
North America 0.1 4.0 6.5 
New Zealand 1.4 5.9 10.0 
South America 1.7 4.1 7.5 

  

 

The CE90 for geolocation errors are given in Table 4.2. As seen in the 

error figures, SRTM is very accurate for the majority of points, especially in 

height. Although geolocation errors are relatively higher, they are mostly 

below 10m. In fact, since SRTM is a DSM that states the height value for a 

(latitude, longitude) coordinate, geolocation errors are not effective for 

smooth regions (see section 1.4). This property of the SRTM data is utilized in 

this study. 

 

Table 4.2. SRTM gelocation error figures compared with kinematic GPS 
transects (Rodríguez 2005). 

Continent Mean Abs. Geolocation Error (m) 

Africa 11.9 
Australia 7.2 
Eurasia 8.8 
North America 12.6 
Islands 9.0 
South America 9.0 

. 



 
 

66 
 

4.1.2 ASTER GDEM 

ASTER GDEM is another low resolution DSM, obtained from the large 

ASTER image database using automated algorithms. It reflects the top of the 

land cover due to the source of data (ASTER images). ASTER GDEM Version 

2 was released in October 3, 2011 (J Space Systems 2011). Validation results 

indicate that the second version provides significant accuracy improvement 

compared to its predecessor (Tachikawa 2011). 

 

Compared to SRTM data, 

i) ASTER GDEM covers a larger latitude range, 

ii) ASTER GDEM has a smaller GSD outside the USA, 

iii) ASTER GDEM data is generated from more recent data, 

iv) ASTER GDEM is generated using automated algorithms, thus it 

may have errors caused by the image content, 

v) ASTER GDEM is more reliable for mountainous regions (steep 

regions), and  

vi) ASTER GDEM has less accuracy. 

 
Despite these promising GSD of ASTER GDEM, the recent studies on 

the accuracy comparison between the SRTM and the ASTER GDEM has 

shown that the SRTM data is superior in accuracy. (Chang 2010, Frey 2011) 

The ASTER GDEM documents also state that the higher GSD of ASTER 

GDEM does not yield better resolution: 

Also, while the elevation postings in the ASTER GDEM are at 1 
arcsecond,or approximately 30 m, the detail of topographic expression 
resolvable in the ASTER GDEM appears to be between 100m and 
120m (ASTER GDEM Readme). 
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4.1.3 LIDAR / LADAR 

LIDAR data are in the form of sparse point clouds and therefore, 

LIDAR is not an actual DSM. However, airborne LIDAR has very high GSD 

and therefore, DSM on a regular grid can be obtained by interpolating the 

LIDAR data. 

Spaceborne LIDAR is practical and very accurate elevation 

measurements are obtainable. The NASA satellite ICESat provided sub-

meter elevation accuracy in its active years (Abshire 2005, Schutz 2005). 

However, with spaceborne LIDAR, only irregular and sparse ground 

samples can be obtained. Thus, the spaceborne LIDAR data can only be used 

as the reference data for DSM accuracy assessment.  

Spaceborne LIDAR on a regular grid with reasonable GSD is 

unavailable –to this day- due to technological limitations. Therefore, in 

photogrammetry studies, spaceborne LIDAR is not used as a reference for 

DSM accuracy analysis. The term “LIDAR” refers to airborne LIDAR in all 

references.  

Usage of LIDAR is advantageous due to its high resolution and 

accuracy. However, public (free), global LIDAR data are not available. Thus, 

in this study, SRTM is used. 

4.2 SRTM Registration 

For the registration of the SRTM data to a single satellite image, a 

straightforward method is developed: The LR-DSM data are projected to the 

image domain and the empty pixels are filled with quadratic interpolation.  

It is known that SRTM accuracy is unchanged when 90m SRTM data 

are upsampled by 3 to obtain 30m resolution, via bi-cubic interpolation 
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(Keeratikasikorn 2008). Therefore, we upsample the SRTM data by using bi-

cubic interpolation and perform registration for the upsampled version. 

Once the SRTM points are projected onto the image, an interpolation is 

required to fill the empty pixels. The SRTM data is regularly-sampled (1 or 3 

arcseconds). On the other hand, satellite images have higher resolution and 

do not sample the earth surface on a regular latitude-longitude grid. 1°x1° 

SRTM patches and satellite images are never aligned. In other words, the 

SRTM grid does not project to another regular grid in the image domain and 

some SRTM points will fall outside the image, especially for narrow FOV 

satellite images, such as IKONOS. Thus, an interpolation scheme is required 

that provides acceptable accuracy, and leaves no empty pixels.  

For that purpose, quadratic polynomial surface fitting is applied as 

follows: For each SRTM point ps , eight neighbours of that SRTM point are 

projected to the image domain to define a surface patch sampled at 9 points, 

together with the centre point ps (Figure 4.1). Then the projection points are 

taken as samples from quadratic polynomials (on image coordinates) that 

define a height function, a latitude function and a longitude function;  

 
        

  Fi = ai.u2 + bi.v2 + ci.u.v + di.u + ei.v + fi   , (4.1) 

 

where  

            u, v  = image row and column indexes,  

            i = 1,2,3 for height, latitude and longitude, respectively, and  

            ai, bi, ci, di, ei, fi = coefficients of the polynomial. 

 
In other words, interpolation functions are defined separately for 

latitude, longitude and height.  For numerical stability, before computing the 



 
 

69 
 

polynomial coefficients, the coordinates are defined in local coordinate 

systems by subtracting the mean of the nine points both in the image domain 

and in the object domain. Scale normalization is not performed to avoid 

unnecessary multiplications and divisions in the interpolation process.  

 

 
 

 
 
 

The 6 polynomial coefficients are solved by using nine equations by the 

singular value decomposition (SVD). The empty pixels that lie in the 

neighborhood of the center pixel (blue region in Figure 4.1) are filled by 

using the resultant polynomial. Overlapping of the neighborhoods is forced 

to avoid empty image pixels. For a pixel which lies in an overlap region, the 

interpolation value is determined using the moving average over the values 

that are computed for that pixel by different polynomials. 

Surprisingly, this straightforward method was never published in the 

literature. The studies on registering satellite data to the LR-DSMs require 

stereo data and perform triangulation to obtain at least a sparse point cloud, 

1 arc-sec 
SRTM 

1m 
IKONOS 

Figure 4.1. The nine-point SRTM grid and their projections on the satellite 
image. Interpolation is executed in the blue shaded patch 
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which will then be registered to the LR-DSM through correlation (Gonçalvez 

2008). In order to obtain an accurately reconstructed sparse point cloud; such 

approaches require very accurate projection functions, hence the GCPs. GCP-

free studies cannot use such approaches since the reconstructions will be 

erroneous by biased RPCs.  Studies on registration for a single image are 

absent except for already geo-registered images (Gonçalvez 2008).  

The most similar approach to the proposed one is presented in Richards 

2006, in which a polynomial projection function (that resembles the affine 

projection model) is assumed from the 2D map domain (latitude, longitude) 

to the image domain (the height is omitted) for the LANDSAT MS sensor 

(50m GSD) image. The parameters of the projection function are calculated 

from the GCPs that are taken from the reference map or obtained from field 

measurements. This function is then used to generate a resampled satellite 

image, which is aligned to the reference map. The resampling is performed 

with linear or bicubic interpolation to compute the image intensities for the 

registered image. Obviously, the same projection function can be used in the 

inverse direction, for addresings each image pixel to a world point (not 

mentioned or described by the authors), but the mapping is 2D (latitude, 

longitude) to 2D (row, column). Such a mapping will result in errors for 

regions with steep terrain (mountainous regions), since the polynomials of 

latitude and longitude will not suffice for representing the effect of 

irregularly distributed height.  

In this study, the world coordinates for each image pixel are required in 

both correspondence generation and reconstruction steps. The proposed 

registration approach is developed accordingly. Since the actual (3D-to-2D) 

projection functions are used during the registration process, the effects of 

terrain variations are handled automatically. 
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4.2.1 Proposed Bias Reduction Technique 

As it is presented in Chapter 7, the SRTM registration with the RPCs 

(provided by the image vendor) has a systematic bias. The two sources of the 

bias are the errors in the SRTM and the errors in the RPCs. 

The height errors in the SRTM are known to be larger in the steep areas 

and lower in the flat regions. Here, a crucial property of the SRTM is of 

importance: SRTM states the height value on a (lat,lon) grid without any 

relation to the satellite image. Thus, the geolocation error is not important for 

flat regions. This idea can be better understood by inspecting Figure 4.2. In 

this 2D example, there is a geolocation error of ΔX in the SRTM data. Similar 

to the SRTM case, the elevation error is higher in the steep region and smaller 

in the flat region. The effect of geolocation error is invisible at point C since 

the SRTM would have the same height value even if no geolocation error 

were present. 

 

 

A B C D 

Figure 4.2. The effect of terrain shape in SRTM error: The bold curve 
represents the actual terrain and the light curve represents the SRTM. 

ΔX ΔX 
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The above explanation leads to the conclusion that; if one take points 

from the flat regions in the SRTM data, the terrain information will be correct 

for these points even though SRTM has overall systematic bias in 

geolocation. Therefore, for the points from the flat regions, the bias in the 

SRTM registration is caused by the RPC bias only. 

The bias in RPC is mainly due to errors in satellite's position and look 

direction. The latitude and longitude of the satellite, as well as the look 

direction, are measured with some error. Although these errors affect 

directly the inputs of the RPCs (erroneous latitude and longitude), bias 

correction is usually achieved in the image domain by the help of correction 

terms (Δu and Δv) for both image coordinates u and v (Grodecki 2003).  

Due to the above-mentioned reasons for projection bias, performing the 

correction in the object domain may be expected to provide better results. 

Still, in this study both image and object domain correction are tested. 

From the previous experiments in the literature, it is known that the 

RPC bias is around 5 meters and not larger than 10m (for high resolution 

satellites, such as IKONOS) (Dial 2002a, 2002b). Additionally, coarse SRTM 

error figures are available for the entire SRTM coverage (Rodriguez 2005). 

Thus, one can determine a search region boundary for bias elimination 

terms. 

Considering the required high computational load for satellite images, 

bias correction is achieved using the correspondences in the stereo satellite 

images by the following relatively low complexity search scheme:  

i) The reference image is registered to the SRTM data by the method 

described in Section 2.1. 

ii) The Kanade-Lucas-Tomasi (KLT) (Bouguet 2000) optical flow 

algorithm (with backward consistency) is used to determine 200 
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reliable stereo correspondences (tie points). The initial estimates for 

the KLT are obtained by taking the uncorrected SRTM registration of 

image 1 and projection it onto image 2 (see Figure 5.3).  

iii) A quantized search is performed as follows:  

 
Let p1 = (u1, v1), p2 = (u2, v2) be any correspondence between images I1 

and I2, and P1 = (lat1, lon1 ,h1) , P2 = (lat2, lon2 ,h2) be their initial registration 

vectors (determined by the method described in Section 4.2). The following 

algorithm is proposed for determining the candidate correction vectors: 

 
For each correction vector ΔP = (Δlat , 0, 0),  

       error  = 0 

       For each stereo correspondence pair (p1,p2) 

             Take single-image registration value P1  for p1  

             P'1 =  P1 +ΔP 

             p'2   = Project( P'1 ) onto I2 

             error = error + || p2  – p'2 ||
2 

        end correspondences 

end correction vectors 

 
The correction vector with the minimum error score is taken as the bias 

correction vector’s latitude component. The same procedure is applied for 

longitude ( ΔP = (0, Δlon, 0) ) and height ( ΔP = (0, 0, Δh) ) components of the 

correction term.  

One may argue that the correction terms shall be computed 

simultaneously in a 3D search. However, this approach was tested and found 

to be useless. The main reason for that undesired performance is the ill 

conditioned nature of the inverse problem for the imaging geometry. The 

bias removal in a 3D search space appears to have the potential to result in a 
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false global minimum. Since the bias has a strong DC term for the entire 

image, this search is performed only once with a relatively smaller number of 

“good” tie points.  

It should be noted that, this scheme determines the bias term by 

projection from image-1 to image-2. One can also perform bias term 

determination in the inverse direction and use the average of the two results; 

however, such a two-way method is of little use and therefore, only one-

directional bias compensation is performed in this study. 

Although KLT is not commonly used for correspondence generation, 

after proper modifications, KLT can provide impressive results yielding 

many sub-pixel image correspondences and relatively small computational 

complexity. 

For the purpose of the bias reduction, one useful property of the KLT 

algorithm is that, it fails to find correspondences in steep regions due to 

occlusions and non-linear distortions. The same is true for the forests, where 

the observed pattern changes significantly with a change in the satellite 

position. It is observed that, the correspondences with the best match scores 

lie on bare ground in relatively flat regions; even if the flatness condition is 

not imposed (Figure 4.3 and Figure 4.4).  
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If the biases for both images are in the same direction, the benefits of 

this method are questionable for registration bias removal. At this point, it 

must be noted that, although LR-DSM registration is by itself useful in 

orthorectification and georegistration, the SRTM registration result should be 

evaluated with this regard, since this study aims at generating DSMs. As 

explained in the following sections, equal bias in the stereo pair is in fact a 

desirable property for the reconstruction accuracy in height. Thus, the 

Figure 4.3. SRTM Registration result and the locations of the selected pairs 
for bias reduction. IKONOS image, Hobart, Australia 
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residual error in the SRTM registration due to equal projection biases in both 

images is not important. 

 

 

 

  
In this study, SRTM registration is used i) for initial estimate generation 

in sparse correspondence search and ii) for obtaining the initial estimates in 

sparse reconstruction. Thus, bias reduction is not cruicial for the final 

accuracy of either step. It is presented here for completeness, considering its 

use in georegistration and orthorectification. The basic idea in SRTM bias 

reduction is also used in RPC bias equalization (Section 5.3.1). 

 

Figure 4.4. Cumulative distribution of the height variations in the vicinities of 
the selected pixels. The values are computed in 10mx10m (red) and 20mx20m 

(blue) neighborhoods. IKONOS image, Hobart, Australia. 
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CHAPTER 5  

SPARSE RECONSTRUCTION 

5.1 Related Work 

5.1.1 Sparse Matching 

Photogrammetry Literature on Sparse Matching 

The most common feature detector used in the photogrammetry 

literature is the Förstner detector (Förstner 1986, Förstner 1987, Jazayeri 2008), 

which is a modified version of the Harris feature detector (Harris 1988) that 

finds sub-pixel positions. The difference from the Harris detector is that, the 

Förstner operator checks the invertibility (or the condition number) of the 

structure tensor. Obviously, this is equivalent to checking the eigenvalues of 

the structure tensor; hence it is not different from the Harris approach. 

Compared to modern corner detectors in the computer vision literature, the 

Förstner operator is a very slow detector that generates less interest points in 

longer time (Jazayeri 2008). 

Unlike general trend in the computer vision studies, most remote 

sensing studies prefer to use an expensive matching strategy, namely the 

Iterative Least Squares (ILS). ILS tries to find the match position together with 
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the affine transformation between the match regions and the radiometric 

correction (brightness and gain) terms (Gruen 1985, Silveira 2008): 

 

 7.()., !.8 = 9. 7,(),, !,8 + : , (5.1)  

 

where α is the contrast correction term, β is the brightness correction term, 

g2(x1,y1) is the gray value at (x1,y1) in image 1 and g2(x2,y2) is  the image 2 

counterpart for the match point. x2 and y2 are given by the following affine 

transformation relation: 

 

 
). = 6. ), + ;. !, + <	
!. = =. ), + �. !, + > (5.2) 

 

ILS uses an iterative scheme for minimizing the gray level difference to 

determine the optimum affine transformation and radiometric correction 

parameters. 

Although ILS is a very powerful technique for correspondence 

generation, it forces/transforms the region of interest for matching. 

Therefore, false correspondences can be generated if the search zone is not 

constrained by using the epipolar curves and height limits. Moreover, 

satellite images provided by some image vendors (e.g. IKONOS, ALOS) are 

already radiometrically corrected (Dial 2003).   

In the stereo satellite imaging scenario, although the satellites are 

designed to image the region of interest with maximum overlap 

(intersection) for the stereo image pair, due to the non-linear image 

acquisition geometry and high base-to-height ratio, disparities in the stereo 

correspondences is large (up to a few hundred pixels). Unlike the pinhole 
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camera case, the imaging geometry in pushbroom imaging does not comply 

with the epipolar constraints. The non-linear transformation functions lead to 

epipolar curves (Kim 2000, Zhao 2008). Here, the term “epipolar” is used to 

imply an analogy with the epipolar lines. The correspondence search 

algorithms may trace the epipolar curve, provided that the projection 

information is accurate (Lee 2003). Epipolar resampling is rarely used. 

Resampling –if used- is either i)achieved locally, where the epipolar curve 

can be approximated as a straight line or ii) performed with simple 

approximations for the imaging geometry; such as parallel/orthographic 

projection (Morgan 2004). Even if the epipolar curve is used, due to the large 

image size, tracing the epipolar curve is computationally expensive because 

of the long search range (along the epipolar curve) due to large disparities. 

Additionally, the projection information is not accurate enough to 

provide usable epipolar curves. Accuracy reports of modern EOSs state that 

with the vendor provided RPCs, the projection error is 4 to 12 pixels in both 

image dimensions (Dial 2002b). Usage of GCPs reduces the error down to 

sub-pixel level and at this point, epipolar curves can be used. For a GCP-free 

study, epipolar curves are less useful, since the search along the epipolar 

curves is required to perform the search in an image strip instead of a 1-D 

curve. 

Consequently, obtaining initial estimates for the match points is a 

requirement. Various approaches are proposed for initial estimate 

generation. In the most widely used approach; i) a hierarchy based 

correspondence generation algorithm is applied for a small number of points 

(anchors), ii) these correspondences are triangulated  iii)  the results are 

interpolated to generate a coarse DSM, and  iv) the coarse DSM is then used 

to generate initial estimates for the remaining correspondences (Zhang 2005). 
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Stereo correspondence generation is generally weak in the urban 

regions, especially for tall buildings (due to occlusions) and forests (due to 

repeated patterns) (Zhang 2005). Thus, to avoid false matches, it is best to 

keep the search region small, if possible. The hierarchical methods are 

usually problematic, especially in the forest regions where even the anchor 

correspondences are difficult to obtain.  

Multiple Primitive Matching (MPM) is one of the few recent 

correspondence generation algorithms that are developed specifically for 

spaceborne and airborne images (Zhang 2005). This algorithm uses a union of 

feature points, edges and grid points in matching and applies geometric 

constraints (epipolarity and smoothness) on image pyramids. Feature points 

are obtained by thresholding the gradient vector components and matched 

with the correlation coefficient. The search range is determined in the object 

domain using the coarse DSM obtained from the higher level of the image 

pyramid. A square correlation window (window 1) is used in the reference 

image.  

In MPM, the shape of the correlation window in the second image is not 

square: Its corners are determined by projecting the object domain vertices of 

window 1 onto image 2, and assuming planar DSM in the neighborhood. The 

correlation is performed after warping the search image patch with bilinear 

interpolation. All primitives are matched by using this method, but for the 

edges, the candidate points are first eliminated by intersecting the epipolar 

curve with the edges in the search image. The match points and the resultant 

DSM are updated iteratively with probability relaxation. This is a very 

detailed and complicated method, which appears to be beneficial especially 

for the aerial images. However, it is strictly dependent on the epipolar curves 

and thus, requires very accurate projection functions, which can only be 
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obtained using GCPs. The method is used in various studies of the same 

research group (Poli 2004a, Gruen 2003, Gruen 2005, Zhang 2005, Poli 2007) 

As described above, recent computer vision techniques on feature 

extraction and descriptor based matching have not been imported to the 

photogrammetry studies on spaceborne imagery. The geometric distortions 

are handled using geometric constraints (epipolarity) or expensive warping 

techniques and radiometric inequalities are handled using pre-processing 

steps that provide limited radiometric invariance.  

Vision Literature on Sparse Matching 

Correspondence generation is a grand branch of vision research. 

Various algorithms have been developed for different applications. Covering 

the entire field of study is not aimed here. However, a general overview 

should be presented. Comprehensive review and evaluation of the local 

feature detectors and the descriptors are presented in Tuytelaars 2007 and 

Gauglitz 2011. Feature detectors used in computer vision can be divided into 

three main categories: 

i) Edge detectors: Roberts (Roberts 1963), Prewitt (Prewitt 1970), Sobel 

(Gonzalez 2002), LoG, Hough Transform (Duda 1972), Canny (Canny 

1986),  

ii) Corner detectors: Harris (Harris 1988), SUSAN (Smith 1997), FAST 

(Rosten 2003), AGAST (Mair 2010), STAR (CenSurE) (Agrawal 2008), 

and 

iii)  Blob detectors: MSER (Matas 2002), SIFT (Lowe 2004), SURF (Bay 

2008). 

Matching strategies can be grouped in two categories: 
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i) Intensity based matching: Template matching, KLT (Lucas 1981), 

Horn & Shunk (Horn 1981), Dense optical flow, and 

ii) Feature/Descriptor based matching: SIFT (Lowe 2004), SURF (Bay 

2008), DAISY (Tola 2010), ORB (Rublee 2011), BRIEF (Calonder 2010), 

BRISK (Leutenegger 2011), HoG (Dalal 2005), Local Binary Patterns 

(Ojala 1994), Haar/Gabor features (Daugman 1988). 

Classical computer workflow in correspondence generation starts with 

a feature detector in the reference image, and continues with the search for 

its correspondence in the search image.  

Feature detectors are designed to detect interest points that pose 

distinctive properties and repeat in the search image with sufficient 

probability under several distortions (illumination change, blurring, 

perspective transformation, etc.).  

For the matching criteria, local properties around the feature point are 

compared with those of the candidate points. Local properties are extracted 

from the intensity distribution, and are required to be both selective and 

robust under geometrical and radiometric distortions.  

The search region is usually constrained by i) an assumption on the 

maximum translation (disparity), ii) utilizing the epipolar line. For speed 

improvements, image pyramids are frequently used (in hierarchical 

algorithms). 

Patch size is also important in the matching process: Larger patches 

decrease the number of false matches (increase precision) while smaller 

patches increase the number of successful matches (recall). This classical 

dilemma can be solved partially by using a hierarchical approach, in which 

the effective radius of the search region and the effective patch size is 

gradually decreased. In this way, the probability of false matches is reduced 
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with large patches when the search region is large and the probability of 

success is gradually increased as the search region is being shrunk.  

Matching is always performed with a descriptor of the feature point in 

the reference image. The descriptor may be the patch of intensities around 

the point of interest, or its image (representation) in an invariant domain. 

Although the invariant domain is not always a linear subspace, descriptor 

extraction can be better understood by the analogy to dimension reduction by 

projection onto a subspace where the vectors are invariant under one or more 

distortions. Dimension reduction is performed for i) increasing the 

computational efficiency of the search, ii) gaining robustness to various 

geometric or radiometric distortions and noise. It should be noted that, 

dimension reduction operation results in loss of information (in general) and 

increases the probability of false matches. However, the feature descriptors 

are generally designed to obtain better recall, while preserving the precision 

and the gain in the number of successful matches is usually larger than the 

loss in precision.  

If matching is achieved with a descriptor that requires local operations 

in the description window, the search in the second image may be 

cumbersome when the descriptor is required to be computed for all points in 

the search region. This problem can be overcome if a detector with high 

repeatability is applied to both images and the comparisons are done only at 

the feature points. 

The recent trend in vision research is development of fast tools that are 

applicable for mobile and/or real-time applications. Most algorithms are 

developed for the video applications, in which the change between 

successive video frames is limited. Thus, speed is promoted against accuracy 

and consequently, simpler descriptors that demand for less computational 
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power and smaller memory have gained popularity. Expensive but powerful 

detectors/descriptors such as SIFT are preferred when speed or memory 

limitation is not the major concern. 

One of the fastest corner detectors in the literature is FAST (Rosten 2003, 

Rosten 2006), which generates the largest number of feature points in the 

shortest time (Jazayeri 2008, Gauglitz 2011). FAST uses a simple, pre-defined 

decision tree for deciding whether there is a corner in the point of interest. 

The tree branches are based on simple intensity comparisons in the 

neighborhood. Although FAST is fast, its repeatability is among the worst of 

the popular feature detectors (Gauglitz 2011). Nevertheless, due to the large 

number of the detected points in the images, there is always a FAST point (in 

the search image) that is very near (a few pixels away) to the actual 

correspondence point. Thus, if FAST is used with a descriptor which can 

select the nearest FAST point in the second image, the matching results can 

be used at least as very good initial estimates for a succeeding refinement 

step. 

Development and evaluation of the descriptors is an active topic in 

computer vision. In this study, the speed and the memory requirements are 

of top importance, due to very large satellite images. For example, 

comparison of two 128-dimensional SIFT feature vectors require floating 

point distance measurements in a 128 dimensional space. Such high 

dimensionality is prohibitive when the desired number of correspondences is 

in the order of millions in both (stereo) images.  

BRIEF descriptor is one of the fastest descriptors in the literature 

(Calonder 2010). Its memory requirement is also the lowest due to its 

comparison-based nature. For computing the BRIEF descriptor, a sequence of 

randomly selected points is generated from a Gaussian probability density 
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function centered at the feature point. The intensity at each point in the 

sequence is compared with that of its successor and a binary array is 

generated using the comparison results of the entire sequence. For improving 

its robustness against noise, smoothing by a Gaussian kernel is performed 

before the comparisons. It has been shown that 128 or 256 bit descriptors 

provide very good matching results (Calonder 2010). BRIEF is extremely fast 

in description (simple comparisons) and matching (Hamming distance: XOR 

+ bit count). 

Even the best descriptors provide limited matching performance. The 

recognition rate is at most 90%, even for the smallest base-to-height ratio 

image pairs (Calonder 2010). When the correspondences are generated by a 

detector-descriptor combination, the limited repeatability of the detector and 

the limited recognition rate of the descriptor result in failure for many points 

(no match or false matches). Thus, for the accuracy needs of DEM generation, 

a modified approach is required if the FAST-BRIEF pair is to be used. 

5.1.2 Sparse Reconstruction 

In classical computer vision, triangulation is a well established topic, 

due to applicability of the pinhole projection model (Hartley 1993, Hartley 

1997). Most of the time, GCPs are not used/available and the resultant 

reconstruction is given as a disparity map, rather than a depth map. 

Obviously, the disparity map can easily be converted to a depth map, 

provided the relative orientation of the cameras (rotation and translation 

between the cameras) and the camera matrices. In such a case, the obtained 

depth will be in the camera coordinate system of the reference camera. 

In photogrammetry, the reconstruction results cannot be in the camera 

coordinate system. The reconstruction is required to be in the geodetic 
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coordinates and for that reason, geometric calibration of the cameras is a 

necessity. Once the imaging model parameters are obtained, the 

reconstruction is possible through optimization for the sparse 

correspondences. For the empirical models, the derivatives are analytical, but 

for complicated rigorous models, that is not the case: the satellite position is 

computed iteratively. Therefore, for most of the time, analytical expressions 

are not at hand for the derivatives and numerical approximations are 

required. 

For linear pushbroom models, the optical center and look angle is 

different for each image line and slight errors in these parameters result in 

significant errors on the Earth surface (where the lines are expected to 

intersect), due to the high satellite altitude. The source of error that causes 

non-intersecting lines might be both matching inaccuracy and errors in the 

used satellite parameters. Unfortunately, the match point coordinates and the 

satellite parameters are highly correlated. The phenomenon is explained in 

Figure 5.1 

As it can be observed in Figure 5.1, a point may be mapped to the same 

pixel by different camera setup. Therefore, if there are errors in attitude (look 

angle), camera center position and feature matching, then the problem that 

considers these three errors becomes ill-posed. Thus, many rigorous remote 

sensing applications assume error-free feature matching (or use manual pair 

selection) in the image plane and try to obtain the satellite parameters that 

minimize the measured and calculated GCP projections, in the least squares 

sense. Once the satellite parameters are determined, they are accepted to be 

true and triangulation is performed for other image points. 

Reconstruction techniques using the empirical projection models 

resemble the computer vision counterparts. However, the impact of Hartley’s 
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strong theoretical contributions is mostly unobserved in the remote sensing 

literature. 

Although reconstruction with the inverse RFMs is possible (Di 2001), 

the coplanarity constraint (intersecting the lines in the object space) should 

not be directly used for triangulation. In the real life situation, the projection 

lines do not intersect in space due to various sources of noise (spatial 

sampling, errors in the projection model, ephemeris error, errors in 

matching, limited precision, etc).  

 

 

 

A straightforward approach is to determine the object domain point 

that these two lines are closest to each other. Another slightly different 

approach is to use the inverse RFMs to minimize the plannimetric error by 

optimizing the height parameter Z (Di 2001, Tao 2002). Both methods 

correspond minimizing a cost function that is defined in the object domain. 

Triangulation with object domain cost functions perform better as the B/H 

ratio increases. However, it provides neither affine nor projective invariance 

.(X0, Y0, Z0) .(X0’, Y0’, Z0’) 

A A 

Figure 5.1. Two different cases where point A is mapped to the same 
image pixel. 
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and is strictly ruled out by Hartley for the perspective cameras (Hartley 

1997b). In agreement with Hartley’s conclusion; it has been reported that 

image domain cost functions provide better accuracy for satellite imagery 

than do object domain cost functions (Tao 2002). Thus, the cost function 

should be defined by using the image domain errors between the match 

points and the projections of their real world coordinate estimates. 

Reconstruction with an image domain cost function is common in 

traditional multi-view applications of computer vision. When the projection 

information is perfect, this approach corresponds to refining the match point 

coordinates in the image plane until the two lines intersect in space (Hartley 

1993, Hartley 1995). For the COTS cameras, the projection functions can be 

accurately obtained through internal and external calibration techniques 

which often include ground truth (e.g., checkerboards). This is 

correspondingly achieved by GCPs in photogrammetric applications. When 

GCPs are unavailable, the errors in the projection functions are often larger 

than the errors in the stereo correspondence locations.  

Similar to the perspective case, RFMs are not one-to-one and therefore, 

at least two images are required for scene reconstruction. The reconstruction 

is achieved after adopting least squares methods by initial estimates obtained 

from a coarse reconstruction and/or a priori information on the average 

terrain height (Tao 2002). 

The basic idea in the reconstruction is similar to the pinhole camera 

case: The object (world) coordinates are optimized to minimize the projection 

errors in the image domain. If the empirical models are used, the analytical 

structure of the projection functions allow closed form relations for the 

derivatives and simple optimization techniques are applicable for the 

solution (Di 2001). However, due to the high order cost function, the gradient 
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based minimization techniques may result in wrong local minima, if the 

iterations are started with bad initial estimates. 

The closed-form solution of Hartley (Hartley 1997b) cannot be used in 

the pushbroom case due to the unavailability of epipolar geometry. Still, the 

epipolar curves can be used to perform matching and reconstruction 

simultaneously. 

One alternative approach is to perform reconstruction and 

correspondence generation at the same time by the help of inverse functions 

(Fraser 2004). This approach fixes the geolocation (X and Y) and varies the 

height value (Z). For each candidate Z, the projections on both images are 

computed and the Z value that provides the best correlation is taken as the 

reconstruction. Although the original paper does not report about the 

convergence speed, it is expected that this method converges faster with 

better initial estimates. It should be noted that this algorithm does not 

perform actual image domain search, and thus, successful reconstruction 

requires projection functions with sub-pixel accuracy.  

Tao proposes a similar approach, but starts the process from a feature 

point on the reference image (Tao 2002). In Tao’s approach, initial estimates 

are used for geolocation (X,Y) and by varying the Z value. X and Y are 

updated iteratively by the inverse functions. The Z value that yields the 

highest image domain correlation is selected with the corresponding X and Y 

values. 
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5.2 Sparse Matching 

In this study, a number of feature detectors and matching strategies are 

tested. Since the interpolation step does not include further triangulation, the 

sparse matcher must generate many accurate correspondences. 

Sparse matching is composed of two phases: i) The feature detection 

phase and ii) the matching phase. Both phases are equally important for 

speed, accuracy and the number of generated correspondences.  

If the feature detector returns many points from uniform regions, the 

sparse matching accuracy will be poor. On the other hand, if it is too 

selective, then the number of sparse correspondences will be low. Ideally, the 

feature detector is required to detect every distinguished point in the image 

in a short time. 

The matcher operates on all candidate points in the search region. If the 

matching criterion is too strict, many correctly determined correspondences 

will be eliminated; and if it the criterion is too loose, many incorrect 

correspondences will be generated. If the descriptor is too complicated, 

matching might require significant memory space and computation time. On 

the other hand; if it is too primitive, either the selectivity or robustness 

(against distortions) will be poor.  

The sparse matching strategy is developed with the above 

considerations. This phase of the study is very critical for the overall success 

and thus, various experiments have been conducted for obtaining the best 

results. The most significant approaches are presented below. 
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5.2.1 Interest Point Detection 

In this study, for interest point detection, popular corner detectors in 

the vision literature are used. Most corner detectors are originally proposed 

for the video tracking case, in which the motion of the tracked object or the 

camera is small between the video frames. On the other hand, in the satellite 

feature matching case, the disparities may be more than a thousand pixels.  

However, this is the concern in matching, not in feature detection. In fact, the 

Förstner operator which dominates in feature detection phase of many 

spaceborne DSM generation studies is itself a corner detector. Thus, fast 

corner detectors that are able to generate many interest points could be good 

choices for feature detection. 

Harris Corner Detector 

The Harris corner detector is a very popular interest point detector that 

is based on the eigenvalues of the 2x2 structure tensor in the neighborhood 

(also known as the Harris matrix). The basic idea is that, if a corner exists in 

the point of interest, then the Harris matrix will have two large, positive 

eigenvalues (Harris 1988). 

Since the Harris matrix is defined over a neighborhood, the neighbor 

pixels of an actual corner may also pass the eigenvalue check. Thus, the 

Harris corner detector is generally used with a local non-maxima elimination 

step, which forces the interest points to be separated by a minimum allowed 

distance.  

In this study, the Harris corners are used to determine the feature 

points that are fed to the KLT tracker, which is known to work well on the 

Harris features. 
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Although sub-pixel extension exists for the Harris detector, it is not 

preferred in this study due to two reasons:  

i) The KLT results are sub-pixel. KLT finds the correct matches, 

without checking the cornerness of the match point. Thus, it is 

not required to detect the exact sub-pixel locations of the 

corners. 

ii) The projection functions that are used in triangulation are not 

accurate enough to make use of sub-pixel matches. 

In this study, OpenCV implementation of the Harris corner detector is 

used with a minimum separation of 3 pixels. 

Good Features to Track (GFTT) 

The number of the feature points obtained from the Harris detector is 

not sufficient for healthy dense DSM generation. An alternative is proposed 

by Shi and Tomasi (Shi 1994) for the video tracking problem. This approach 

does not check the ratio of the eigenvalue magnitudes of the structure tensor, 

but only requires the smaller eigenvalue (λ2) to be large enough. The 

underlying idea is that, since the digital images may take finite gray levels, 

the larger eigenvalue (λ1) is bounded anyway and it is sufficient to have a 

large enough λ2 to be able to track a point through the video frames. 

Although Harris features are more reliable than the GFFT’s for the 

matching task, the requirement for a large number of correspondences makes 

GFTT a better choice for sparse matching in the spaceborne stereo case.  

In this study, the GFTT corners are used to determine the feature points 

that are fed to the KLT tracker, which is known to work well on the Harris 

features. 
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FAST Corner Detector 

The FAST corner detector is the output of a recent study, in which 

machine learning is used for pruning a decision tree that decides on the 

cornerness, based on local intensity comparisons (Rosten 2003, Rosten 2006). 

The outcome is an algorithm which is composed of nested if-statements. The 

FAST algorithm is extremely fast and has the potential to generate many 

meaningful points. In this study, OpenCV implementation of FAST-16 is 

used. 

The major problem of the FAST detector is that, it has insufficient 

repeatability for DEM generation. In other words, a FAST point detected in 

the reference image is not guaranteed to be detected in the second image. The 

repetition rate is less than 90%, even for small base-to-height ratios. Such 

repetition rate means that, if the match points in image 1 are searched among 

the FAST points of image 2, 10% of the feature points will be lost during 

matching; or worse; the matches for these points should have false disparity, 

if the matcher declares a successful match.  

5.2.2 Matching 

Kanade-Lucas-Tomasi Tracker (KLT) 

KLT is an optical flow algorithm, which is used mostly in video 

applications. Although its name indicates a tracker, KLT is a feature matcher 

rather than a classical tracker. It finds the match of an interest point using the 

conventional optical flow assumption which states that the time difference 

between the two images (of the same scene) is infinitesimal. With this 

assumption, the second image can be represented in terms of the first image 
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via Taylor expansion with spatio-temporal derivatives, neglecting the higher 

order terms. The solution of the resulting equations gives the position of the 

match point. 

KLT uses an iterative scheme to achieve the goal. Note that, KLT is not 

a search algorithm. It is an optical flow algorithm which solves the optical 

flow equation at each step. This important property makes KLT one of the 

fastest correspondence generation tools. However, as mentioned earlier, KLT 

is mostly used in object tracking rather than sparse correspondence 

generation in multi-view stereo. The reason is the availability of epipolar 

geometry, which provides sufficient speed by reducing the correspondence 

generation problem into a 1-D search. 

Of course, even in the standard video applications (where the images 

are taken with at most 40ms time difference) the infinitesimal time difference 

assumption is not valid and the actual flow vectors may not be determined 

with this assumption. This problem is solved by using either image pyramids 

and/or initial estimates. With proper initial estimates, two or three levels of 

image pyramids are sufficient to obtain successful matches. In this study, 

OpenCV implementation of pyramidal KLT is used. 

For the stereo satellite imaging case, the infinitesimal time difference 

assumption is far from reality. However, quite good initial estimates can be 

provided due to the SRTM registration and successful matches can be 

obtained with a few-level pyramids. This approach is applied and found 

successful for Harris features.  

The accuracy may be improved further by applying the backward 

consistency check. The consistency check is performed by running the KLT 

from image 2 to image 1 using the forward match results as the query points. 

The correspondence is accepted, if the backward search finds the initial 
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Harris point in image 1, and is rejected otherwise. This approach guarantees 

the matching accuracy, but the number of successful matches decrease 

dramatically, since the backward consistency check eliminates many correct 

correspondences (see the experimental results in Section 7.5.1). Therefore, it 

is not suitable in dense DSM generation.  

BRIEF 

Binary Robust Independent Elementary Features (BRIEF) is a recently 

developed descriptor, which is known for its extreme computational 

efficiency that is obtained without significant compromise in the precision-

recall figures (Calonder 2010). It is based on an ordered comparison in the 

neighborhood of the interest point. The points for comparison are selected 

randomly from a Gaussian probability density function (pdf) centered at the 

point of interest. The locations of the comparison points and their order is 

determined and saved at the beginning and all correspondences are 

generated with the same comparisons. Each point in the ordered list is 

compared with its successor and the result is put in a binary array (feature 

vector). The number of comparisons determines the length of the feature 

vector. For the matching operation, the Hamming distance between two 

feature vectors is used. The Hamming distance indicates the number of 

unequal elements. That is, it is a “element-wise XOR and count” operator. In 

this study, OpenCV implementation of the BRIEF descriptor is used. The 

selected descriptor length is 512 (64 Bytes). 

The advantage of BRIEF is that, due to the Gaussian pdf that is used in 

the selection of the compared locations, the pixels that are close to the feature 

point are selected more often than the further pixels. Thus, the descriptor 

contains information of a large template (reduces the probability of false 
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matches) while it uses more pixels in the central zone, increasing the 

matching probability.  

Template Matching 

Template Matching is the simplest, as well as the strongest matching 

algorithm. Various matching criteria (mean squared difference, cross-

correlation, correlation coefficient, etc.) can be used in template matching. 

The correlation coefficient is generally more useful, since it provides the 

ability to determine the matching threshold that is invariant to the local 

brightness.  

Although it is a classical matching strategy, in terms of accuracy, it 

outperforms almost all descriptor-based matchers (which rely on the 

repeatability of the FAST features) in satellite stereo images of the modern 

satellites, when the changes in scale and rotation are minimal. 

 The major drawback of template matching is its long execution time. In 

order to guarantee matching in the urban zones, up to 40 pixels of search 

radius is required for high resolution satellite images. Moreover, for avoiding 

false matches, the template is also required to be large. The result is high 

computational complexity, which is undesired. 

For reducing the computation time, the classical hierarchical search 

strategy is also applied: The two pyramids are generated from the stereo pair 

and in each pyramid level (upwards), the search window is halved in size, 

while the search window size is kept constant. The search window size is 

smaller than the non-hierarchical implementation.  

The reason for such implementation is as follows: Large template 

windows are required to avoid finding the matches in incorrect locations. 

However, especially in the urban zones (where the occlusions are frequent), a 
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large template is difficult to match even if the match point is visible. In the 

hierarchical implementation, it is possible to select the window size that 

allows matching in the urban zone (in the original resolution) and keep its 

size constant in higher pyramid levels. Since the effective window size will 

be doubled in each pyramid level, the false positioned matches will be 

avoided unless there are repetitive patterns in the upper levels (those are 

very rare). 

Even with the hierarchical implementation, the exhaustive nature of 

template matching brings significant execution time. 

In this study, three-layer pyramids are used with 10x10 matching 

windows in each pyramid level. OpenCV implementation of template 

matching is used for correlation coefficient computation. 

BRIEF + Template Matching 

The FAST+BRIEF combination provides fast operation due to the 

limited number match candidates, but the success rate is insufficient.  

However, it is observed that the false matches are mostly due to the 

repeatability problem of FAST and the errors are mostly small disparity 

errors. In other words, the actual match points are quite close to the 

determined match points (within 4 pixels radius). 

On the other hand, FAST+Template Matching provides accurate results, 

while the processing time is long, even for its hierarchical version.  

The complementary properties of these methods bring the idea to 

combine them. The workflow is as follows: 

i) FAST points are detected and their BRIEF descriptors are 

computed in both image 1 and image 2. 
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ii) For each FAST point in image1, its match is searched among the 

candidate FAST points in image 2 with a large enough search 

window, using BRIEF and the Hamming distance. 

iii) Around the match result obtained in (ii), template matching 

based search is performed, this time with a small (4x4) search 

window. 

This methodology provided many accurate results with good 

distribution in urban zones, rural areas and forests.  Failure is observed 

for tall buildings for which both false matches and empty (no-match) 

zones are observed (see the experimental results in Section 7.5.1). 

5.2.3 Elimination of Outliers 

FAST + BRIEF + Template Matching and GFTT-KLT provides good 

results for sparse matching. Still, there occur many false positioned matches, 

which are needed to be eliminated. 

The elimination must be performed with care to prevent deletion of 

correct matches, since insufficiency of the number of correspondences is 

worse than the existence of a minor set of “false matches”. 

Elimination by thresholding the match score should be avoided, since 

such an approach should also eliminate many correctly placed 

correspondences, especially in the high-contrast regions. Backward 

consistency check should also be avoided in all cases, since it decreases the 

number of correspondences significantly. 

The method used in study is based on neighbor consistency of the match 

points in the two images. Since most of the generated correspondences are 

correct, the successful match points will have the same neighbors in both 

images, except for the occlusion regions (tall buildings, etc). Still, due to the 
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many correspondences generated by FAST, even for the occlusion zones, the 

majority of the neighbors are preserved in the occlusion zones when the 

occlusion is not severe.  

For the elimination of the false matches, the correspondence indices are 

used. Each correspondence is given an ID; and for each feature point in 

image 1, the ID’s of the local neighbors are compared with the ID’s in the 

neighborhood of the match point (in the second image). If more than half of 

the ID’s are consistent, the correspondence is accepted.  

This operation can be performed very fast and it has no effect in the 

overall computation time. 

It should be noted that, the matching accuracy requirements of dense 

DSM generation and bias reduction/equalization steps are different: For 

correcting the SRTM registration and the RFMs, accurate matches are 

required, while for the DSM generation phase, many correspondences are 

needed. Thus, the elimination strategies for these phases are different. The 

elimination is strict for correcting the SRTM registration and the projection 

models and loose for DSM generation. 

Outliers can be eliminated further in the sparse reconstruction phase. If 

the bias in the projection functions can successfully be equalized, the re-

projection error of the reconstructed world point will be small for true 

correspondences. On the other hand, for false correspondences, the re-

projection errors are larger. Therefore, a second elimination can be 

performed in the reconstruction phase after thresholding the re-projection 

errors. Obviously, the benefits of this approach are limited, since the 

projection functions cannot be corrected completely. Still, it is observed that 

many false correspondences can be eliminated using this technique. 
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5.3 Sparse Reconstruction 

5.3.1 RPC Bias Equalization 

For modern narrow FOV satellites, the RFMs have image domain bias 

up to ten pixels. Although reconstruction with such projection information 

results in errors, the error is limited thanks to the high B/H ratio in the stereo 

imaging scenario. Nevertheless, one should improve the RFM accuracy to 

obtain better reconstruction. 

The bias is different in the stereo pair images. It was reported that it is 

sufficient to model the bias in RPCs as additive constants in both image 

dimensions [Grodecki 2003]: 

 

 S’ = S + ΔS 
L’ = L + ΔL 

(5.3) 

 

 
where S and L are the “sample” (column) the “line” (row) indexes which are 

obtained by the Rational Polynomial Functions. Correspondingly, S’ and L’ 

are bias corrected coordinates and ΔS and ΔL are the correction terms. Dial 

reports that constant image domain bias model is quite accurate, provided that 

the image cover is less than a 50km x 50km area [Dial 2002b]. The same bias 

correction model is used in this study. 

Dial and Grodecki presents a block adjustment algorithm, which uses 

GCPs in the formulation. However, in this study, a GCP-free approach is 

aimed. Therefore, the block adjustment approach is of little use. On the other 

hand, of course, the success of bias removal will be limited when only the 

SRTM data are used (without any GCP). 
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Since the ultimate aim is to generate DSMs, an improvement in the 

RPFs is evaluated with the improvement achieved in the reconstruction 

accuracy. With this consideration, an alternative approach is proposed in this 

study. In this approach, the main aim is to reduce the reconstruction error in 

height. It is known that, for a stereo image pair, if the camera projection 

functions have the identical offset in the image domain (ΔL1 = ΔL2 , ΔS1 = 

ΔS2), the reconstructed height (depth) will be error-free. On the other hand, 

the geolocation (translational) error is minimized to zero, when the offsets 

are identical in magnitude, but opposite in sign (ΔL1 = -ΔL2 , ΔS1 = -ΔS2). 

These facts are demonstrated in Figure 5.2 
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Image 1 
Image 2 

Figure 5.2. The effects of projection bias in reconstruction. The green circle is 
the ground point that is projected. The green lines represent the actual 

projections. The red lines represent the reconstruction when the projection 
models have the same image domain bias. The blue lines represent the 

reconstruction when the projection model biases are negative of each other. 
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In the photogrammetry literature, gradient-based reconstruction is used 

in general (Di 2001, Tao 2002). We prefer Hartley’s approach during 

reconstruction (Hartley 1993), in which the sparse points are reconstructed by 

using the Levenberg-Marquardt optimization. 

Although Levernberg-Marquardt optimization scheme is used for 

solving the bundle adjustment problem, it is not used in the photogrammetry 

literature for 3D reconstruction. 

 

 
 
 

 

 
 

Since the SRTM registration for image-1 is also realized with the RPCs, 

this algorithm is affected by the biases of both projections in a pipelined 

manner (Figure 5.4). 

d 

Figure 5.3. The KLT pair generation process. Pi(.) represents the projection 
function for image i. The blue arrow represents the displacement vector (d) 

from the initial estimate to the KLT output (blue dot). 
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The bias terms for both projection functions are additive in the initial 

estimate generation process. Therefore, the difference between the initial 

estimate and the KLT output (blue arrow in Figure 5.3) corresponds to the 

difference between the bias terms. The reason will be explained by the help 

of Figure 5.5. 

 

 
 
 
 
 

 

In the scenario shown in Figure 5.5, as it is a 1D case, the direction X is 

along both image domain and object (world) domain coordinates. The 

projection functions for both images have positive bias along the X direction 

(image domain bias).  

SRTM Registration Phase 

Project with 
Bias-free RPC, 

image 1 

Project with 
Bias-free RPC, 

image 2 

+ 

ΔL1, ΔS1 

SRTM 

+ 

ΔL2, ΔS2 

Biased 
Registration 

Harris feature (location) 
Take  

Lat, Lon, Height 

Lat, Lon, Height 

Initial estimates 
on image 2 

Figure 5.4. Generation of initial estimates for KLT tracker. Red boxes are 
operations and black boxes are data 
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Point A is a Harris feature point in image 1. The geodetic coordinates 

for the image pixel A are taken from the SRTM registration, and projected 

onto image 2. This projection is fed to the KLT algorithm as an initial 

estimate.  KLT algorithm corrects the initial estimate, ending in B as the 

match for A. 

SRTM registration is previously performed by projecting SRTM data 

onto image 1 using RPCs (with positive bias ΔX1). During SRTM registration, 

instead of the actual world point D, world point C is projected to A (because 

of bias ΔX1). Consequently, the SRTM registration will give the coordinates 

of C for image point A.  

 

 
 
 

For obtaining the KLT initial estimate on image 2, C is projected onto 

image 2. This time, the RPC bias for image 2 (ΔX2) is effective in the 

d 

E 

D 

C 

A 
B 

X 

ΔX2 

Image 2 

ΔX1 

Image 1 

Figure 5.5. One dimensional, orthographic version of KLT initial estimate 
generation. Vertical black line represents the actual projection line for both 
images. A is the Harris corner on image 1 and B is its match to be found by 
KLT on image 2. The blue arrow is the displacement vector from the initial 

estimate to the match point in image 2 
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projection and point C is projected to point E. Then, KLT takes E as the initial 

estimate and finds the correct match point B.  

From the previous explanation, the displacement vector from the initial 

estimate to the correct match point is obtained to be from point E to point B 

(blue vector d in Figure 5.5). It follows that: 

 

 d = -(ΔX2 - ΔX1) 
= ΔX1 - ΔX2  

(5.4) 

 

The above explanation is valid, if i) the SRTM data is error-free and ii) 

the terrain that the feature point lies on is locally (within approximately 20 

meters) flat. The assumptions (i) and (ii) are not valid for all points. 

However, the errors that these assumptions cause can be compensated for, if 

many pairs are used. The reasons are as follows: 

i) For flat regions, the SRTM height error is small. 

ii) For flat regions, the geolocation error is unimportant, since SRTM 

provides height information on a latitude-longitude grid and the 

correct geolocation should have the same height. 

iii) If many pairs are used, the majority of these points should lie on 

flat or low slope terrain (except for mountainous regions). The 

effect of the points on high slope terrain will have less effect when 

the mean or median is used. 

 
Therefore, it is reasonable to accept that the displacement vector (d) 

from the KLT initial estimate to the KLT output is the difference of the 

projection functions’ biases:  
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dL = ΔL1 - ΔL2 
dS = ΔS1 - ΔS2 

d = [ dL  dS  ]T  
(5.5) 

 

If d is the difference of the two biases, it is possible to use the idea 

demonstrated in Figure 5.2 to obtain better height accuracy. The bias in the 

two projection functions can be equalized by using the following correction 

terms: 

 

 CL,1 = -dL/2,  CL,2 = +dL/2, 
CS,1 = -dS/2,  CS,2 = +dS/2,   

(5.6) 

 
 
where, CL,1 is an additive term for the image 1 projection function (for line 

coordinates); CS,1 is an additive term for the image 1 projection function (for 

sample coordinates); CL,2 is an additive term for the image 2 projection 

function (for line coordinates); and CS,2 is an additive term for the image 2 

projection function (for sample coordinates) 

 
The resulting modified projection functions are as given in (5.7): 

 

 

L, = �,,(+6@, +AB, C�D7ℎ@8�,.(+6@, +AB, C�D7ℎ@8 + FG,, 

 

S, = �,�(+6@, +AB, C�D7ℎ@8�,/(+6@, +AB, C�D7ℎ@8 + F$,, 

 

L. = �.,(+6@, +AB, C�D7ℎ@8�..(+6@, +AB, C�D7ℎ@8 + FG,. 

 

S. = �.�(+6@, +AB, C�D7ℎ@8�./(+6@, +AB, C�D7ℎ@8 + FI,. 

  

(5.7) 
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Although this approach is useful for reconstructed height accuracy, the 

geolocation accuracy for the reconstruction is expected to be worse (see 

Figure 5.2). The biases of the two images are expected to be in the same 

direction for in-track stereo imaging, since the source of the RPC bias is 

mainly the accumulated gyroscope error, which is expected to be preserved 

between the two acquisitions. This might be the underlying reason for the 

RPC reconstruction to have more error in geolocation. 

5.3.2 RPC Reconstruction 

For reconstruction/triangulation, Di’s method (Di 2001) is used with 

Levenberg-Marquardt algorithm. In this section, we provide the derivation 

of the equations and the usage of the Levenberg-Marquardt optimization for 

a single correspondence. 

As explained in Chapter 2, the projection functions for the RPC model 

for image i are in the following form: 

 

  
),,(

),,(
,

),,(

),,(

4

3

2

1

ZYXP

ZYXP
x

ZYXP

ZYXP
y

i

i

i

i

i

i ==  (5.8) 

 

This formulation is in the normalized coordinates both for the image 

domain and the object domain. For triangulation with the unnormalized 

coordinates (φ, λ, h) and (u,v), additional de-normalization functions are at 

hand (inverses of the normalization equations in Chapter 2). Thus, in general, 

the projection relations are:  

 

 ", = >,,(J, K, ℎ8						,							*, = >,.(J, K, ℎ8 ". = >.,(J, K, ℎ8						,							*. = >..(J, K, ℎ8  (5.9) 
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Here, the subscripts of u and v represent the image index, and the 

projection functions are labeled accordingly (i.e., fij stands for the jth 

dimension of the ith image, j=1 for u and j=2 for v). We define the cost function 

as the summation of the projection errors for the stereo correspondence: 

 

 � = (", − ",L 8. + (*, − *,L8. + (". − ".L 8. + (*. − *.L 8.  (5.10) 

 

In (5.10), the primed variables are the projections of the most recent 

world coordinate estimates (that change at every iteration) and the unprimed 

variables are the image domain coordinates of the stereo correspondences, 

whose subscripts represent the image index. It should be noted that, for a 

given stereo correspondence, the unprimed variables are constants and the 

primed variables are obtained by projecting the most recent estimates for 

latitude, longitude and height (φ’, λ’, h’). 

The Levenberg-Marquardt algorithm optimizes the following cost 

function: 

 

 �(M8 =N[O − >(M8].
P

Q,
 (5.11) 

 

where, θi’s are the observations, β is the parameter vector that is to be 

determined to optimize the cost function E, and fi is the mapping function 

from the parameter domain to the observation domain. In the context of 

sparse reconstruction; θi’s are the image domain correspondence coordinates 

(m=4), the vector β contains the geodetic coordinates (φ, λ, h) to be 

determined, and f is given by (5.9) for each image dimension (i.e., we have a 

different f for each observation θi). 
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The Levenberg-Marquardt algorithm for the optimization problem 

computes (at each iteration k) the following update vector (Hartley 1993): 

 

  δk =[ J
T
J + λ diag(J

T
J) ] 

-1
 J
T 

[y - f(βk)] (5.12) 

 

where, δk is the update vector, J is the Jacobian matrix, λ is a damping 

parameter, and y is the vector of observations. In (5.12), bold letter f means 

that there is a separate observation function for each observation dimension.  

Note that the term [y - f(βk)] is in fact the error vector for iteration k. 

Therefore, in every iteration step, the Levenberg-Marquatdt algorithm is 

converting the error vector to the parameter update vector. The iteration 

stops when the error norm is smaller than a threshold.  In the context of 

triangulation, the error threshold is the acceptable total image domain 

projection errors in the two images. The computed update vector is used to 

update the parameter for the next iteration: 

 

  βk+1 = βk +δk (5.13) 

 

J is a typical Jacobian matrix and in the case of RPC reconstruction, it is 

a 4x3 matrix: 

 

  J	=
RS
SS
SS
T
				

UVWU�
UVWU�

UVWU UXW	U�	
UXWU�

UVWU UVYU�
UVYU�
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UXYU 
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\
 (5.14) 
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The relation between the image coordinates and the geodetic 

coordinates are as follows (explained in Chapter 2): First, the geodetic 

coordinates are normalized suc that all coordinates of the region of interest 

are mapped into the [-1, 1] interval. The normalization equations are: 

 

 � = ���]^^��_������ 				,					� = ���]^^��_������ 			,				� =  � ]^^��_ ����� 				.		  (5.15) 

 

Normalized coordinates are then put into the projection functions 

which have the form 

 

 ! = �,(�, �, �8�.(�, �, �8 											,									) =
��(�, �, �8�/(�, �, �8				.	 (5.16) 

 

The projection functions produce normalized outputs. To obtain the 

real image domain (pixel) values, de-normalization is required. The de-

normalization equations are: 

 

 " = "$%&'( 	× 	!	 +	"abb$(c * = *$%&'( 	× 	)	 +	*abb$(c	  (5.17) 

 

Note that, the scale and offset values of both the image domain and the 

object domain are different for different images (the stereo image pair have 

different values). These parameters are given together with the RPCs by the 

image providers. 

The partial derivatives in J are obtained through the chain rule. Here, 

we give the formulation only for the top-left entry to avoid redundancy (the 

complete formulas are presented in Appendix B): 
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 UV
U� = UV

Ud 	(UdUe 	UeU� +	UdUf 	UfU� + Ud
Ug 	 UgU�8  (5.18) 

 

The computations for  UVUd	 and UeU� are straightforward. UfU� 	and		 UgU� are 

zero, since Y and Z are not dependent on J.  UdUe , UdUe	 and UdUg are again 

determined with the simple chain rule for division: 

 

 Ud
Ue =

jkWjl mY�jkYjl mWmYY 	  (5.19) 

 

In the equation above, P1 and P2 are the polynomials in (5.16). The 

general form of the polynomials is: 

   

 �(�, �, �8 =NNNanop
�

qQ#

�

rQ#

�

Q#
��r�q (5.20) 

 

or, in open form: 

 

 

�(�, �, �8 = 6# + 6,� + 6.� + 6�� + 6/�. + 62��
+ 63�� + 64�. + 65�� + 60�. + 6,#��
+ 6,,�.� + 6,.�.� + 6,��.� + 6,/�.�
+ 6,2�.� + 6,3�� + 6,4��. + 6,0�� 

(5.21) 

 

Thus, the partial derivatives in (5.19) are analytical.  
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For completeness, here we give the formula for the top-left entry of the 

Jacobian matrix: 

 

 s",sJ = ",,$%&'(
s�,,s� �,. − s�,.s� �,,�,..

1J,,$%&'( (5.22) 

 

The rest of the Jacobian matrix entries are computed in the same way, 

with corresponding projection polynomials and scale parameters. Details are 

presented in Appendix B. 

In our implementation, the iterations converge rapidly (in 6-8 steps) 

with the Levenberg-Marquardt method and good initial estimates obtained 

from the SRTM registration.  

The value of λ is important in convergence. Large λ values make the 

algorithm behave like the steepest descent method, resulting in slow 

convergence. On the other hand, quite small λ values eliminate the effect of 

the regularization term, converting the algorithm into the Newton’s method, 

which is unstable when the Hessian is ill-conditioned.  In our experiments, 

appropriate selection of this value reduced the number of iterations from a 

few hundreds to a few (less than 10). 

For the RFMs, we use the bias equalization terms obtained from the 

method described in Section 5.3.1. Note that, the formulation is unchanged 

for bias equalized RFM, since the correction terms are constants in the image 

domain (they vanish in the derivatives). The only modification is in the 

computation of the error vector: The bias terms are added to the projections 

before error vector calculation. 

The initial estimates for the reconstruction are obtained from the SRTM 

registration for the reference image. The initial estimates can be taken from 
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bias-corrected registration or from the uncorrected (biased) version. SRTM 

bias removal is not crucial in the reconstruction phase, since the bias term 

can be handled during the optimization process, provided that the bias-

reduced RFMs are used. 

 The experimental results of the all methods in this chapter could be 

examined in Chapter 7. 
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CHAPTER 6  

DENSE DSM GENERATION 

In this study, generating dense DSM from sparse reconstruction results 

(sparse points) is approached as an interpolation problem. The reconstructed 

points are distributed irregularly on the 2-D image. The interpolation 

problem is not the usual non-uniform sampling problem, since there exists 

the visual clue (the satellite image) that can be used as the guide in 

interpolation. 

As explained in the introduction (Chapter 1), the photogrammetry 

literature on interpolation is weak. Studies that focus on the interpolation 

phase are non-existent. Therefore, in this chapter, we do not present a section 

on related work, to avoid repetition.  

Dense depth generation is an active research topic in computer vision 

and multimedia studies, but the area of study is wide and different in nature. 

The dense depth generation methods utilize the epipolar lines/curves, which 

are not available for the GCP-free case. Therefore, the methods developed in 

vision-based dense depth generation research are not applicable to this 

study.  
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6.1 Meshing 

The sparse points can be fed to a meshing algorithm, such as the 

Delaunay algorithm (Delaunay 1937, de Berg 2008) to obtain a triangular mesh 

whose vertices are the sparse points and empty pixels can be filled with 

linear interpolation using the values at the vertices. In the linear interpolation 

phase, the pixels that lie in the mesh element must be determined and special 

care must be taken for pixels that lie between two surface elements (on the 

edges of the elements). 

Interpolation with meshing is edge-blind. One needs to add a mechanism to 

account for intensity discontinuities within a mesh element to have an edge-

aware solution. Such addition is expected to bring further computational 

load to the method. Still, when the sparse points are sufficiently close, 

meshing can provide successful dense DSMs. In those regions, meshing is 

advantageous, since it avoids the blurring effect of content-aware algorithms. 

For instance, in the forest areas, many sparse points can be generated and 

meshing provides sharp DSMs while the color based interpolation 

algorithms experience problems due to color similarities.  On the other hand, 

false matches (whose effects can be reduced by color similarity approaches) 

are directly reflected to a meshing-based DSM. 

In this study, meshing is performed by the Delaunay algorithm, using 

the software named “Triangle”, which is developed by the Carnegie-Mellon 

University and provided by U.C. Berkeley Computer Science Division 

(Shewchuck 1996, Triangle web page). The software is an efficient 

implementation of 2-D Delaunay triangulation algorithm. 

The sparse points are interpolated by using the image domain x,y 

coordinates as the transversal components and the interpolated value 
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(latitude, longitude or height) as the z coordinate. For each mesh element, the 

plane passing through the 3-D coordinates of the vertices is determined and 

the z values of the pixels inside the element are computed using this plane. 

The pixels that lie in the mesh element are determined using the 2-D (image 

domain) line equations of the element’s edges (Figure 6.1). The inequalities 

are determined using the vertex locations. Infinite slope lines are avoided by 

adding small (sub-pixel) random disturbances to the vertex coordinates and 

working in a local coordinate system for each mesh element. 

 

 

6.2 Interpolation by Integral Images 

The interpolation can also be achieved by a loop on empty pixels. A 

straightforward interpolation method is to fill the empty pixels from the 

available reconstruction outputs in the neighborhood using averaging. The 

averaging weights can again be determined using intensity difference or 

y = a1 x +b1 

y = a2 x +b2 
y = a3 x +b3 

y < a1 x +b1 

y > a2 x +b2 

y > a3 x +b3 

Figure 6.1. Determination of pixels inside a mesh element 

y = a1 x +b1 y = a2 x +b2 

y = a3 x +b3 

y > a1 x +b1 

y < a2 x +b2 

y < a3 x +b3 
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geometric distance. However, determining the sparse points in the 

neighborhood is expensive, even if no weighting is used. 

We use integral images to achieve a fast interpolation. Interpolation is 

performed using circular or square windows. The method is as follows: 

i) Generate an sparse height image whose pixels are non-zero only at 

the locations of sparse points. 

ii) Generate another image whose pixels are 1 at the sparse point 

locations and zero elsewhere (sparse existence image). 

iii) Generate the integral images for the two images described in (i) 

and (ii). 

iv) Set the range for interpolation (window edge length for the 

square interpolation window and radius for the circular 

window) 

v) At each empty pixel, sum the sparse height image inside the 

interpolation window using the corresponding integral image 

vi) At each empty pixel, sum the sparse existence image inside the 

interpolation window using the corresponding integral image 

vii) At each empty pixel, divide the result of (v) to the result of (vi) to 

obtain the average height value and assign it to the pixel. 

Summation in a rectangular window using the integral image is well-

known (Figure 6.2). Interpolation is different for circular windows (Figure 

6.2). For obtaining the summation, circular window is handled row-by-row. 

To be able to use this integration strategy, the integral image is generated 

differently: In the integral image, each pixel holds the sum of the left-side 

pixels on the same row. In this way, the summation in each line of the circle 

can be computed by a single subtraction. For radius n, This method is O(n) 
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per pixel and obviously slower than the O(1) the rectangular window 

approach. 

 

 

 

Usage of integral images is an edge-blind algorithm and generates 

blurred DEMs. However, it is extremely fast and a sharp DEM can be 

generated with small windows if there are many sparse points. 

Interpolation by integral images can also be used as a pre-processing 

block for the edge-aware filtering algorithm. 

6.3 Edge-Aware Filtering 

Edge-aware filtering was developed by Çığla for dense depth 

improvement (Çığla 2012). In edge-aware filtering, directed integral images are 

generated with propagation weights that are determined according to color 

Figure 6.2 Examples for circular and rectangular windows used in integral 
image based segmentation. The center pixel is marked black. Window 

sums are computed by adding the values in black dotted pixels and 
subtracting the values in red dotted pixels 
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similarity. A directed integral image is an integral image that is generated 

using 1-D summations in a pre-defined direction. Four directions are used in 

Çığla’s method: right, left, up and down. Right and left directed integral 

images are similar to the integral image used for circular windows in Section 

6.2 (except the usage of propagation weights). The right directed integral image 

is generated from the left to the right, and the left directed integral image is 

generated from the right to the left. The upwards and downwards integral 

images are generated similarly in the vertical direction (Figure 6.3). 

Using 1-D summations provide the advantage of weighting, which 

cannot be used in classical integral images that keep the summation of 2-D 

regions. The weights are computed using the following Gaussian function: 

 

 

 t(Δv8 = ��(wx8YyY  
(6.1) 

 

 

where, ΔI is the color difference between the adjacent pixels and σ is an 

algorithm parameter which determines the sensitivity to color differences. 

Due to the limited number of values that ΔI can take, the computational 

burden of computing the exponential functions is eliminated by the help of a 

look-up table. 

 



 
 

120 
 

 

 

The equations for the resultant directed integral images are as follows 

(origin is the top-left corner): 

i) The right-directed integral image: 

 

z{(), !8 =
|}~
}��(), !8 + z{() − 1, !8��	[	�(�,�8��(��W,�8	]Y�Y , ! < 1
�(), !8 																																																											, ! = 1

�  (6.2) 

 

ii) The left-directed integral image: 

 

(a) (b) 

(c) (d) 

Figure 6.3. Generation of the the directed integral images in edge-aware 
filtering. Interpolation towards right (a), towards left (b), downwards (c) 

and upwards (d). 
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zG(), !8 =
|}~
}��(), !8 + zG() + 1, !8��	[	�(�,�8��(��W,�8	]Y�Y , ! < �
�(), !8 																																																										, ! = �

�   (6.3) 

 

iii) The downward-directed integral image: 

 

z�(), !8 =
|}~
}��(), !8 + z�(), ! − 18��	[	�(�,�8��(�,��W8	]Y�Y , ! > 1
�(), !8 																																																										, ! = 1

�   (6.4) 

 

iv) The upward-directed integral image: 

 

z�(), !8 =
|}~
}��(), !8 + z�(), ! + 18��	[�(�,�8��(�,��W8]Y�Y , ! < C
�(), !8 																																																											, ! = C

�  (6.5) 

 

In the above equations; I is the image that guides the integral image 

generation; D is the input depth map which is of the same size with I; H and 

W are the height and width for I, respectively. The propagation of the depth 

values is dependent on the previously visited pixels. Thus, one must keep 

track of the propagated weights so that proper weight normalization can be 

performed for each pixel to obtain the final value. This is achieved by 

generating a second integral image (T) from an “all ones” (Ω(), !8 = 1	∀), !) 

image by applying the same procedure with the integration of depth values 

(i.e., in the formulas above, replace D with Ω; and SL, SR, SU, SD with TL, TR, 

TU, TD). 
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The algorithm for edge-aware filtering uses a pipelined integral image 

generation process (Figure 6.4): SL, SR, TL and TR are generated from the 

original depth map, D and the “all ones” weight image, Ω. Before the vertical 

computations, the two horizontal integral images are summed to obtain the 

horizontal processing output (SH = SL+SR, TH = TL+TR). Then, SH and TH are 

used as the initial depth map and initial weight matrix in vertical processing. 

The vertical processing outputs are joined to obtain the final integral image, 

which is then divided (point-wise) by the weight integral image. 

For DSM generation, the edge aware filter is used by two different 

approaches: 

i) The sparse height and sparse existence images are fed directly to 

the edge aware filtering algorithm. 

ii) The sparse height image is converted to an initial dense DSM 

with integral image based interpolation (Section 6.2) and the 

result is fed to the edge-aware filtering algorithm. The “all ones” 

image is used for the initial weights. 

In both approaches, two problems are observed:  

i) Leakage is observed in the output. In other words, in the filtering 

output, the propagated heights are observed to pass beyond the 

edges. 

ii) Strip type artifacts are observed in low gradient regions in the 

guide (satellite) images, at least in the synthetic images. 

 

One may consider that these problems are caused by large σ, however 

the problem cannot be solved by simply decreasing the sigma value. Another 

way of resolving this issue is to use a spatial attenuation constant. The 

attenuation constant (0<α<1) is applied as a multiplier to the weight value. 
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This way, the effect of a sparse point is spatially bounded. The usage of 

attenuation constant resolves the issue for gradient regions, but the leakage 

problem remains.  

 

 

The edge-aware filter can be performed with successive passes, due to 

its high speed. Successive passes reduce the leakage by using the values at 

the leakage-free pixels which constitute the majority. 

+ 

+ 

D 

SH 

+ 

+ 

Ω 

TH 

S/T 
S T 

SH TH 

Filtered 
Output 

Figure 6.4. Workflow for the edge-aware filtering algorithm 
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The assumption in the edge-aware filtering approach is that wherever 

there is a disparity discontinuity, there is also color discontinuity (edge). 

Obviously, this assumption is not always correct; but in multimedia research, 

depth maps are generally used for 3D television applications. Changes in 

disparity are not perceived by the human eye unless there is an edge at the 

location of disparity change. Thus, invalidity of the above assumption is not 

fatal in multimedia applications. 

In DSM generation, however, this is not the case. The purpose of 

spaceborne DSM generation is to generate an accurate DEM; the problem is 

not the perception problem. Performance is always measured numerically, 

by a ground truth. 

6.4 Speeded-up Turbo Pixels (SuTP) 

SuTP was originally developed for fast image segmentation (Çığla 

2010). A turbo pixel is a set of pixels which have both spatial and radiometric 

similarity. That is, the pixels in a turbo pixel constitute a set whose elements 

are spatially connected and have small color/intensity variance. In image 

segmentation, turbo pixels are used as intermediate elements which are to be 

joined in the later phases (graph cut, etc.) of the segmentation process. 

Therefore, generation of turbo pixels is classified as an over-segmentation 

method. 

The SuTP is designed to achieve fast over-segmentation. The number of 

segments is determined at the beginning of the algorithm by defining a grid 

on the image. The grid is updated iteratively by checking the boundary 

pixels only. Each boundary pixel’s intensity/color is compared with the 

average of the two segments that the boundary divides. The pixel is joined to 
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the segment that is more similar, and the boundary is updated (or kept 

unchanged) accordingly. The algorithm runs iteratively and the number of 

iterations determines the final output: using a few iterations preserve the 

organized structure of the grid and the size of the segments, and using more 

iterations fits the segments to the edges better. 

In this study, SuTP segmentation is used in dense DSM generation as 

follows:  

i) For each SuTP segment, enclosed sparse reconstruction points 

are determined. 

ii) The average height of the enclosed sparse points is assigned to 

every pixel of the segment. 

iii) The empty segments are filled using the heights of the neighbor 

pixels/segments which are more similar in color/intensity. 

 

The SuTP output is a buffer which has the same size with the 

segmented image. Its pixels keep the indexes of the segments that they 

belong to.  

The usage of SuTP in dense DSM generation resembles the integral 

image approach; but this time, the main loop is run on the segment list rather 

than the empty pixels. Again the sparse height image and the sparse existence 

image are generated. Then, for each SuTP element (segment), the average of 

the sparse points within the segment is assigned to all segment pixels. 

This method is very suitable for dense DSM generation from sparse 

reconstruction outputs, since i) the grid-based nature prevents very wide 

segments automatically and ii) the segmentation algorithm preserves edges. 

However; problems occur if sparse points are few. In that case, there will be 

many segments which do not contain any sparse point. 
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CHAPTER 7  

EXPERIMENTAL RESULTS 

7.1 Stereo Datasets Used in the Thesis 

Stereo satellite data are not public, and freely available datasets for 

research are limited. Some of the freely available stereo image pairs are not 

accompanied by GCPs, thus accuracy assessment is not possible for the 

results on these images. The available datasets that were used in this study 

are the following: 

i) IKONOS triple images for Hobart, Australia,  

ii) WorldView-1 (WV-1) stereo, Spain: La Mola, Terrassa, Vacarisses, 

iii) CARTOSAT-1 (CS-1) stereo, Spain: Spain: La Mola, Terrassa, 

Vacarisses,  

iv) IKONOS stereo, San Diego, California, USA 

v) IKONOS stereo, Eskişehir, Turkey,  

vi) ALOS triple, Norikura, Japan (Mountainous), and 

vii) ALOS triple, Hiroshima, Japan. 

For all regions, SRTM data are available. The majority of the 

experiments are performed on IKONOS Hobart data, which provide regional 

diversity (forest, urban, rural, and industrial areas, lakes, sea and cloud 

cover), significant height range (0-1200m) and many GCPs with a good 
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distribution in geolocation and height. This dataset is provided by the ISPRS 

and is widely used in photogrammetry studies.
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images and between the adjacent columns of the same image (Figure 7.4). 

The contrast is poor and the SNR is low. On the other hand, the Hiroshima 

images have relatively better contrast and less radiometric difference for the 

stereo pair, but compression artifacts are observed in the low-contrast 

regions (Figure 7.5). 

 

  

Figure 7.4. ALOS Norikura images after Wallis filtering with the same 
parameters. The radiometric inequality between the image columns are 

visible. The contrast difference between the stereo pair is caused by 
radiometric inequalities. 
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WorldView-1 images have nadir views. The contrast is good in the 

urban regions, but poor in the forests and mountainous areas. There is a 

significant geometric disturbance and scale change between the stereo pair. 

That is, the image images have different ground sample distances. A 

radiometric inconsistency is also observed (Figure 7.6). The stereo image pair 

Figure 7.5. Compression artifacts observed in the ALOS Hiroshima stereo 
pair. The artifacts are visible in the low contrast regions (the river and 

shadows).  
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has severe occlusions and geometric differences (Figure 7.7). These problems 

are prohibitive in correspondence generation, even when epipolar curves are 

available.  

 

 

 

7.2 Ground Control Data 

Two types of ground control were available: 

i) IKONOS Hobart sequence : 122 GCPs  

ii) Spain datasets: image domain bias correction parameters, obtained 

from undisclosed GCPs.  

GCPs were not available for other datasets. 

Figure 7.6. Normalized histograms for the overlapping region of WV-1 La 
Mola images. Histograms are normalized to overcome the unequal number 

of pixels in the overlap region. 
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7.3 Accuracy of the Provided RPCs 

The image domain bias in the projection functions is classically 

measured by comparing manually marked GCPs with their projections in the 

images. GCPs are provided with the IKONOS Hobart images. The RPC bias 

of the CARTOSAT and WV-1 images are provided along with the images. 

Figure 7.7. Two patches from the WorldView-1 La Mola stereo pair. The 
original 11-bit images are converted to 8 bits by simple division. The digital 

zoom levels of the images are the same. 
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For the CARTOSAT case, the RPC correction information is provided as an 

affine transformation, rather than simple bias term. Although the 

transformation is bias-dominant, affine effects are significant in the bottom 

and right parts of the images. These error figures are presented in Table 7.1. 

However, the RPC errors for the ALOS images cannot be reported here, since 

GCPs or RPC accuracy information are not provided for the ALOS images. 

 
 

Table 7.1. The image domain error figures for the projection functions 
provied with the datasets 

  Image 1, X 
(pixels) 

Image 1, Y 
(pixels) 

Image 2, X 
(pixels) 

Image 2, Y 
(pixels) 

IKONOS 
Hobart 

μ -5.59 -4.10 -3.46 -1.65 
σ 0.798 0.748 0.879 0.794 

WV-1 
Vacarisses 

μ 0.45 -7.30 
-9.56 
-9.99* 

0.19 
0.11* 

WV-1 
Lamola 

μ 0.45 -7.30 -9.56 0.19 

WV-1 
Terrassa 

μ 0.64 -7.15 -9.99 0.11 

CS-1 
Vacarisses 

μ -55.17 -29.31 -97.05 -34.85 

CS-1 
Lamola 

μ -54.76 -28.05 -97.09 -33.03 

CS-1 
Terrassa 

μ -54.85 -27.31 -97.32 -32.11 

* The second image in the Vacarisses data is divided into two image tiles and separate 
RFMs and correction terms are provided for each tile. 



 
 

135 
 

7.4 SRTM Registration 

7.4.1 Filling Gaps in the SRTM Data 

In the SRTM data, up to 5km x 5km gaps were observed, especially in 

the mountainous areas. Obviously, such large gaps cannot be filled without 

using additional data for the region of interest. Still, smaller gaps exist and 

can be filled using the local SRTM data.  

In this study, the gaps in the SRTM were filled with an iterative 

technique, in which the empty pixels were filled gradually starting from the 

non-empty neighbors along the rows and the columns. Filling was 

performed using the slope between the nearest non-empty pixels in the row 

or the column. In each iteration step, only a limited number of pixels were 

filled in the row or column of interest to allow the other near-by gradients to 

be effective in the next iteration. 

This algorithm could successfully fill the gaps up to a few hundred 

meters and provide intermediate results for larger gaps. Gaps larger than a 

few kilometers could be filled successfully. The result for the Mount 

Norikura region is presented in Figure 7.8. Note that, SRTM registration is 

only an intermediate step and the height accuracy in the filled regions is not 

decisive in the final DSM accuracy, provided that the filled values are 

accurate enough to provide good initial estimates in the matching and the 

reconstruction phases. In fact, in the regions where the experiments were 

conducted, the SRTM data do not have such large gaps. 
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Figure 7.8. Gaps (shown red) in the SRTM and the filling result, Mount 
Norikura, Japan. The second row is the zoomed version of the first row. The 

large gap near the center of the bottom-left image is 2.7 km wide 

 

7.4.2 Registration 

SRTM registration was performed for all datasets as the first step, using 

biased RPCs that are provided with the images. The used SRTM patches and 

the coverage of the satellite images are shown in Figure 7.9 for IKONOS 

Hobart and ALOS Norikura datasets.  
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Figure 7.9. SRTM patches and image coverages for IKONOS Hobart (left), 
and ALOS Norikura (right) images 

 

The accuracy of the SRTM registration is important for i) understanding 

its potential in initial estimate generation (feature matching and sparse 

reconstruction) and ii) understanding the potential of RPC bias equalization, 

which uses the registered SRTM. The accuracy of the registration was 

measured again at the 122 GCPs of Hobart region, with and without bias 

reduction (see Section 4.2.1). The results are presented in Table 7.2 and Table 

7.3 

 

Table 7.2. Error figures for SRTM registration without bias reduction for 
IKONOS reference image, Hobart 

ValueGCP – Valueregistration Mean error σerror RMS error 

Latitude error 2.13 x 10-5 ° 1.54 x 10-5 ° 2.624 x 10-5 ° 
Longitude -5.56 x 10-5 ° 1.46 x 10-5 ° 5.751 x 10-5 ° 
Height -5.3 m 4.28 m 6.80 m 
Plannimetric error 5.28 m 1.64 m 5.28 m 
Along UTM X -4.54 m 1.15 m 4.68 m 
Along UTM Y 2.43 m 1.65 m 2.93 m 
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Table 7.3. The error figures after bias removal along each geodetic axis, for 
IKONOS reference image, Hobart. The corresponding correction terms are; 

latitude: 2.3x10-6 °, longitude: -3.4x10-5 °, height: -5.68 m 

ValueGCP – Valueregistration Mean error σerror RMS error 

Latitude error 1.90 x 10-5 ° 1.54 x 10-5 ° 2.44 x 10-5 ° 
Longitude -2.16 x 10-5 ° 1.46 x 10-5 ° 2.61 x 10-5 ° 
Height 0.38 m 4.28 m 4.28 m 
Plannimetric error 3.01 m 1.66 m 3.44 m 
Along UTM X -1.76 m 1.15 m 2.10 m 
Along UTM Y 2.17 m 1.65 m 2.72 m 

 

 

As seen in the results, the bias reduction provided 5m improvement in 

mean height error and 2m improvement in the in the mean plannimetric 

error for the Hobart region. Since the SRTM is a low resolution DSM, it 

provides better initial estimates than do the DTMs for correspondence 

generation and reconstruction. 

The registration errors were low for IKONOS and ALOS images, but for 

CARTOSAT and WorldView-1 images (which are obtained from the same 

region) the errors were very large. For the WorlView-1 images, the 

registration errors were up to 80 pixels (40m), and for the CARTOSAT 

images, they were even larger. Such large errors are caused partly by the 

errors in the projection functions and partly by the geolocation errors in the 

SRTM. Especially for the CASTOSAT-1 images, the registration is almost 

useless due to the projection errors that correspond to more than 250m error 

on the ground. For the WorldWiew-1 images, ISPRS reports at most 5m 

error, thus the only source of large registration error is the SRTM geolocation 

error. Although the reported mean absolute SRTM error for the Eurasia 

region (8.8m) is not as high, SRTM is known to have larger errors in the 
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mountainous regions. Additionally, the SRTM has 90m GSD in the Eurasia 

zone; thus in fact, 40m geolocation error is sub-pixel for the SRTM.  

 

 

 

The SRTM registration results for tested satellite images are presented 

in Figure 7.11 -Figure 7.14. The RPC data account for the black regions in the 

images, thus the registration outputs cover the entire image areas, including 

the black zones in the Norikura and Eskişehir images. 

 

 

 

 

Figure 7.10. The registration error for the WorldView-1 La Mola image with 
the corresponding registration result on the right. The red dot is the peak 

location in the registered SRTM. The correct location is the north (upper) side 
of the building. The displacement between the correct location and the 

registration peak is 80 pixels (40m). 



 

Figure 
Eskişehir (

 
 

Figure 7.11. SRTM registration results for IKONOS Hobart (
Eskişehir (second

SRTM registration results for IKONOS Hobart (
second row) and San Diego (third row) 

(enhanced for better display)
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SRTM registration results for IKONOS Hobart (
and San Diego (third row) 

(enhanced for better display)
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SRTM registration results for IKONOS Hobart (
and San Diego (third row) 

(enhanced for better display)

 

 

SRTM registration results for IKONOS Hobart (
and San Diego (third row) reference images 

(enhanced for better display) 

SRTM registration results for IKONOS Hobart (first row)
reference images 
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reference images 
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Figure 7.12. SRTM registration results fo
ALOS Hiroshima (second row) reference images (enhanced for better 

Bias reduction 

dependable (high accuracy) correspondences. However, 

guaranteed for other regions (e.g.

correspondences cannot be guaranteed. Still, in such cases, a few manually 

entered tie points will be sufficient for bias removal, provided that the tie 
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the workflow will be semi

. SRTM registration results fo
ALOS Hiroshima (second row) reference images (enhanced for better 

Bias reduction was successful in the Hobart region, 

dependable (high accuracy) correspondences. However, 

or other regions (e.g.

correspondences cannot be guaranteed. Still, in such cases, a few manually 

entered tie points will be sufficient for bias removal, provided that the tie 

points have good height and geolocation dis

the workflow will be semi-automatic.
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. SRTM registration results fo
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display)

successful in the Hobart region, 
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points have good height and geolocation dis

automatic. 
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. SRTM registration results for ALOS Norikura (first row) and 
ALOS Hiroshima (second row) reference images (enhanced for better 

display) 

successful in the Hobart region, 

dependable (high accuracy) correspondences. However, 

WorldView-1 La Mola)
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entered tie points will be sufficient for bias removal, provided that the tie 
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Figure 7.13. SRTM registration results for WorldView
(first row), Terrassa 

SRTM registration results for WorldView
Terrassa (second row) 

images (enhanced for better diplay)
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SRTM registration results for WorldView
(second row) and 

images (enhanced for better diplay)
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SRTM registration results for WorldView
and Vacarisses

images (enhanced for better diplay)

 

SRTM registration results for WorldView-1 Images: La Mola 
arisses (third row) 

images (enhanced for better diplay) 

1 Images: La Mola 
(third row) refere

 

 

 

1 Images: La Mola 
reference 
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7.14. SRTM registration results for Cartosat
row), Terrassa (second row

. SRTM registration results for Cartosat
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. SRTM registration results for Cartosat
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. SRTM registration results for Cartosat
Vacarisses (third row)

. SRTM registration results for Cartosat-1 Images:  La Mola (first 
s (third row) reference images

1 Images:  La Mola (first 
reference images

 

 

 

1 Images:  La Mola (first 
reference images 
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7.5 Sparse Reconstruction 

7.5.1 Correspondence Generation 

Numerical performance evaluation for correspondence generation is a 

difficult task for spaceborne stereo images due to the unavailability of the 

ground truth and excessive number of correspondences. For example, for the 

IKONOS stereo pair, more than 7 million pairs were generated. The best 

method for performance assessment is visual inspection for various types of 

regions. 

The accuracy of the pairs has a direct effect on the generated DSM. 

Therefore, the success in DSM generation can also be linked to the feature 

extraction process. 

In this section, various patches are selected to demonstrate the 

matching performance. The selected patches are known to be characteristic in 

spaceborne images: Forests, urban, sub-urban and industrial zones. 

Typically, the urban zones are problematic for the photogrammetry studies, 

due to the occlusions caused by tall buildings and the reflectance differences 

in the stereo pair, especially for the roofs. The forest regions also cause 

significant problems due to their repeated patterns and significant visual 

differences between the stereo image pair: very close trees with different 

heights result in different image patches in the two images due to the large 

B/H ratio.  

During the experiments, it was observed that, the RPC bias equalization 

scheme provided a significant improvement on the initial estimate locations, 

reducing the search zone down to a few pixels for points on the ground and 

the points in dense vegetation areas (such as forests). 
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KLT on Harris Features 

KLT on Harris features was used to generate very accurate sub-pixel 

matches, but the number of correspondences was not satisfactory. However, 

the results of this approach are useful in SRTM bias reduction and RPC bias 

equalization which require a moderate number of feature points. Therefore, 

the experiments on Harris-KLT combination should be examined 

considering the accuracy and the speed, not the number of generated 

correspondences. 

In Figure 7.15, samples from the best 100 KLT pairs are displayed. The 

majority of the match regions were similar to the top-left patch of the figure. 

Almost all of these patches lied on the ground in smooth regions where the 

elevation variance was very small.  

The Harris-KLT matching generated about 93,977 correspondences in 

the IKONOS Hobart image; therefore, numerical accuracy assessment with 

visual control was difficult. Instead, the assessment of the matches can be 

done on the correspondences with the best and the worst 200 match scores. 

Such an inspection showed that, the best-score 200 correspondences were all 

correct and among the worst-score 200 correspondences, 17% were false. 

Therefore, increasing the number of matches by loosening the matching 

criteria continues to generate many accurate correspondences. Still, Harris-

KLT combination could not generate sufficient number of correspondences. 

The number of feature points saturated at 1.3 million for the Hobart image. 

The 2-way (forward-backward) consistency check reduced the number 

of correspondences by 33%, eliminating many correct correspondences. 

Therefore, the consistency check was used only for generating stereo 

correspondences that were used to compute the correction terms of SRTM 

registration bias removal and RFM bias equalization. 
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The KLT worked well in open areas, but the performance in the 

occlusion zones was poor. Few correspondences could be generated in these 

areas. 

 

    

 
    

    

 
    

    

    

Figure 7.15. Sample patches for the best 100 KLT pairs 
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Figure 7.16. Results of the Harris-KLT approach in an industrial area, 
IKONOS, Hobart. The total number of correspondences is 1.3M 

 

 

 

Figure 7.17. Results of the Harris-KLT approach in an urban zone, IKONOS, 
Hobart. The total number of correspondences is 1.3M 

 

 

As it can be observed in these examples, the Harris-KLT approach 

provided accurate but few correspondences. Unfortunately, for spaceborne 

DSM generation, the accuracy is not sufficient for a correspondence 
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generation algorithm to be useful. The number and density of the 

correspondences are also important for the resultant DSMs, since using a 

small number of feature points causes loss of detail (Figure 7.17).  

KLT on GFTT  

KLT on GFTT was observed to generate many accurate 

correspondences in ALOS and IKONOS images, except for the occlusion 

zones. The results are presented in the figures below.  Although both GFTT 

and KLT work on gray level images, the correspondences are presented here 

on colored images, for better assessment. 

As seen in the figures, the Norikura data is challenging for any 

matching algorithm. KLT on GFTT was the only algorithm that succeeded in 

matching, but there were many “no-match” regions, especially in snow-

covered areas. Snow cover is a typical unresolved problem in feature 

matching for spaceborne DSM generation. 

In general, GFTT-KLT algorithm generated the largest number of 

correspondences, most of which were accurate. Thus, this algorithm is a 

good choice for the correspondence generation phase of a DSM generation 

workflow.  
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Figure 7.18. Matching results for GFTT-KLT in ALOS Hiroshima images: The 
needlegram (first row) displays 1/20 of the correspondences. The second row 

displays all of the correspondences. 
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Figure 7.19. Matching results for GFTT-KLT in ALOS Norikura images: The 
needlegram (first row) displays 1/20 of the correspondences. The second row 

displays all of the correspondences. 
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Figure 7.20. Matching results for GFTT-KLT in IKONOS San Diego images: 
The needlegram (first row) displays 1/20 of the correspondences. The second 

row displays all of the correspondences. 

 

BRIEF + Template Matching on FAST Points 

FAST-BRIEF+TM is a hybid method which benefits from the speed of 

feature-based matching and the accuracy of area-based matching. Sample 

results of the algorithm are presented in the figures below. 
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Figure 7.21.  The matching results for BRIEF+TM on FAST points in an 
industrial region (IKONOS Hobart). The first row is the needlegram for 1/20 
of the correspondences. The second row displays all of the correspondences. 
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Figure 7.22. The matching results for BRIEF+TM on FAST points in an 
industrial region (IKONOS Hobart). The first row is the needlegram for 1/20 
of the correspondences. The second row displays all of the correspondences. 
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Figure 7.23. The matching results for BRIEF+TM on FAST (IKONOS 
Eskişehir). The first row is the needlegram for 1/10 of the correspondences. 

The second row displays all of the correspondences. 
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Figure 7.24. The matching results for BRIEF+TM on FAST points in an urban 
region (IKONOS San Diego). The first row is the needlegram for 1/20 of the 

correspondences. The second row displays all of the correspondences. 

 

It is difficult to assess the matching performance in forests, even for the 

human eye. Here, we present a relatively large patch to present a clue for the 

matching performance (Figure 7.25): The FAST points are detected on grids 

to ensure uniform distribution in the image. The grid based detector uses 

non-overlapping patches, and causes the no-feature strips (5-pixel thick) in 

image 1. For image 2, FAST points are also detected by a grid-based detector, 



 
 

156 
 

again on a regular grid. However, these points are moved to the correct 

match positions by template matching, which may displace the FAST points 

up to four pixels. As it can be seen in Figure 7.25, there is a distorted grid in 

the second image. These strips are not caused by the grid-based FAST 

detector running on image 2, since it is not a regular grid. Additionally, the 

grid boundaries in image1 and image 2 do not pass over the same ground 

positions. Therefore, the preservation of the empty strips (of course with 

deformations caused by stereo imaging) is an indication of a good matching 

strategy.  

 

 
Figure 7.25. Matching results for BRIEF+TM on FAST points in forest 

(IKONOS Hobart). The first row is the needlegram for 1/200 of the 
correspondences. The second row displays all of the correspondences. 
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Typically, forests are known to be problematic in correspondence 

generation for spaceborne imagery. However, the proposed algorithm is very 

successful in these regions. The reason for such success lies in the usage of 

SRTM registration. Classical photogrammetric approaches utilize coarse 

DSMs obtained using hierarchical methods. However, the case in higher 

levels of the image pyramid is even worse for matching in the forest regions, 

thus the algorithms fail. When SRTM registration is used to constrain the 

search region, tall image pyramids are not required and the probability of 

encountering a false match with a similar appearance is reduced. Infrequent 

false matches may occur, but they are eliminated with the neighbor 

consistency check. 

Observed Problems 

The sparse matching step generates many false matches. The used 

matching strategy is designed specifically to generate an excessive amount of 

correspondences. The underlying idea in this strategy is the assumption that; 

statistically, false matches are scattered among the correct matches (which 

constitute the great majority) and thus in the interpolation step, a false match 

is expected to influence only a small area. This strategy provides relatively 

good results in the forest areas, where the density of correspondences is very 

high. 
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Figure 7.26. Grouped false matches (FAST-BRIEF+TM) due to occlusions in 
urban areas (IKONOS Hobart). A group of false matches is marked with red 
ellipses. Matching errors due to difference in the reflectance are marked with 

a white ellipse 

 

Grouped false matches are rare but existent, especially in the occluded 

areas of the urban regions (Figure 7.26). Such matches cannot be eliminated 

by neighbor features’ consistency (described in Section 5.2.3), since the 

neighbors are also false matches. This problem is unavoidable during the 

matching phase. Further elimination is performed during the reconstruction 

phase by thresholding the projection error for the reconstructed object point. 

Moreover, some of the interpolation algorithms reduce the effect of outliers. 

Eskişehir images cover mostly an urban area, where there exist adjacent 

and isolated tall buildings, which cause significant occlusions. Matching 

features on tall building rooftops require wide search regions and 

hierarchical algorithms are utilized for that purpose. However, the occlusion 

zones misguide these algorithms in higher levels of the image pyramid, 

causing false correspondences, most of which are eliminated by the 
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consistency check. The resulting correspondence image has large “no-match” 

regions or false matches in these regions. The problem cannot be resolved by 

using non-hierarchical search methods due to the large search zone: When 

small templates are used, the matching algorithm often finds a false match 

with a similar (but false) window; when the templates are large, the outcome 

resembles that of the hierarchical methods. 

 

 

Figure 7.27. Problems caused by occlusions due to isolated tall buildings for 
BRIEF+TM on FAST points (IKONOS Eskişehir). The first row is the 

needlegram for 1/20 of the correspondences. The second row displays all of 
the correspondences. 
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Figure 7.28. Problems caused by occlusions due to adjacent tall buildings for 
BRIEF+TM on FAST points (IKONOS Eskişehir). The first row is the 

needlegram for 1/20 of the correspondences. The second row displays all of 
the correspondences. 
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Figure 7.29. Problems caused by occlusions due to isolated tall buildings for 
KLT on GFTT points (IKONOS Eskişehir). The first row is the needlegram for 

1/20 of the correspondences. The second row displays all of the 
correspondences. 

 

 GFTT-KLT algorithm generates a large number of correspondences 

almost everywhere. This behavior may cause errors in the occlusions zones, 

where the majority of the correspondences are false. In these regions, the 

neighbor elimination algorithm fails to perform a successful elimination and 

false positioned correspondences are passed to the dense DSM generation 
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algorithms causing invalid results. However, this problem can be overcome 

by reducing the number of correspondences with a higher quality threshold 

for the features. 

The proposed matching algorithms fail to generate usable 

correspondences in WorldView-1 and CARTOSAT-1 images. The main 

reasons are: i) scale changes between the images, ii) significant occlusions 

and appearance changes iii) geolocation error in the SRTM data, iv) steep 

terrain and iv) radiometric inconsistency between the stereo images (see 

Section 7.1). The proposed matching strategy can overcome radiometric 

inconsistencies or appearance changes to a certain extent, and scaling can be 

corrected manually. However for the WorldView-1 and CARTOSAT-1 

images, the changes in appearance and geometric deformations are radical. 

The half-pixel geolocation error in the SRTM data causes 80 pixels of 

registration error for the WorldView-1 images and the succeeding matching 

algorithms require large search ranges, in which false matches are 

unavoidable under the above-mentioned deformations. For the CARTOSAT 

images, the provided RPCs have 150 to 250m error on the ground that causes 

significant errors in the SRTM registration. Since the region of interest has 

fast changes in terrain height, the registration accuracy is important for 

obtaining proper initial estimates. Therefore, the registration output cannot 

be used to constrain the search zone for the matching algorithm. 

7.5.2 Reconstruction 

RPC reconstruction was implemented as explained in Chapter 5 and 

Appendix B. The Levenberg-Marquardt algorithm was fed with the initial 

estimates obtained from the SRTM registration. In all cases, less than 10 

iterations were sufficient for convergence.  
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The reconstructed point was discarded from the point list, if its total re-

projection error (sum of errors in both images) was more than 3 pixels. Such 

points exist and are mostly caused by errors in matching. This elimination 

method reduced the total number of points by 10%. It was observed that 

using RPC bias equalization terms reduced the number of rejected points 

significantly. This is an expected result, since the equalized bias terms 

produces compatible projection functions. 

The modified projection functions (Section 5.3.1) were tested for the 

improvement in reconstruction accuracy in the Hobart region, on 122 GCPs. 

The results are summarized in Table 7.4. As seen in the table, the error in the 

reconstructed height was decreased by 2 meters on the average. On the other 

hand, the geolocation accuracy has degraded for about 0.65 x 10-5 degrees. 

This corresponds to 50 cm (approximately) increase in the mean geolocation 

error.  

 
Table 7.4. Reconstruction errors for original RPCs and RPCs with error 

correction terms that are generated using bias equalization, IKONOS Hobart 

 

Without RPC bias equalization With RPC bias equalization 

Latitude 
Error 

(degrees) 

Longitude 
Error 

(degrees) 

Height 
Error 

(meters) 

Latitude 
Error 

(degrees) 

Longitude 
Error 

(degrees) 

Height 
Error 

(meters) 
μ 2,44 x 10-5 -4,48 x 10-5 -3,49 2,54 x 10-5 -5,12 x 10-5 -1,46 
σ 5,53 x 10-6 8,41 x 10-6 0,77 5,53 x 10-6 8,42 x 10-6 0,771 

 

The RPC reconstruction resulted in 4.5m geolocation error for the 

biased RFMs and 5m geolocation error in the bias-equalized RFMs. As 

explained in Section 5.3.1, the main objective in bias equalization is to 

improve the height accuracy; an increase in geolocation error is expected. 

The error in geolocation is caused by the common image biases for the two 

images (Table 7.1). It should be noted that the standard deviations of the 
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reconstruction errors are small (less than 1m) and unchanged for the biased 

and bias-free RFMs. 

7.6 Dense DSM Generation 

7.6.1 Performance of the Proposed Methods 

Interpolation was performed with i) interpolation with edge-aware 

filter, ii) interpolation with meshing, iii) interpolation with segmentation and 

iv) interpolation using integral images, using the sparse reconstruction 

results for the FAST-BRIEF+Template Match and GFTT-KLT pairs.  

Accuracy assessment for the dense DSMs is not possible due to the 

unavailability of ground truth or more accurate data. This is a typical 

problem in the photogrammetry studies in which the accuracy can only be 

measured on sparse GCPs. Thus, visual inspection of the results should be 

made to observe the distinguishable objects and details, but not for accuracy 

comparison among the methods. 

The performance of the interpolation methods that use the image data 

as the interpolation guide is dependent on the following factors: 

i) The number and the distribution of sparse points,  

ii) The existence of color, 

iii) Image resolution, 

iv) Noise level, 

v) Image texture. 

Therefore, for testing the interpolation algorithms it is not required to 

present the interpolation results for all satellites. Instead, here we present the 

results on characteristic regions that vary for the factors affecting the 

interpolation performance. 
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Interpolation results for IKONOS Hobart stereo data are presented in 

Figure 7.31 to Figure 7.40. The regions are selected from urban, rural, 

industrial and forest areas (Figure 7.30) to provide diversity.  

 

 

 

 

Figure 7.30. Selected regions in the IKONOS Hobart image 
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Figure 7.31. Interpolation results for various algorithms on patch 1 

(1401x1290): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration 
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Figure 7.32. Interpolation results for various algorithms on patch 2 

(1099x1138) (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.33. Interpolation results for various algorithms on patch 3 

(1936x2041): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.34. Interpolation results for various algorithms on patch 4 

(1484x1642): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.35. Interpolation results for various algorithms on patch 5 

(2281x2083): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.36. Interpolation results for various algorithms on patch 6 

(1189x1369): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.37. Interpolation results for various algorithms on patch 7 

(1868x1791): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.38. Interpolation results for various algorithms on patch 8 

(1121x1378): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.39. Interpolation results for various algorithms on patch 9 

(1185x1079): (a) original image, (b) feature points, (c) Edge aware filter with 
20 iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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Figure 7.40. Interpolation results for various algorithms on patch 10 

(581x619): (a) original image, (b) feature points, (c) Edge aware filter with 20 
iterations, (d) Meshing, (e) Segmentation, and (f) SRTM registration  
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 The results for interpolation by integral images (rectangular windows) 

are as follows: 

 

  

  

 

Figure 7.41. Results for interpolation by integral images (rectangular 
window). 
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Figure 7.41. (cont’d.) Results for interpolation by integral images 

(rectangular window). 
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The results for interpolation by integral images (circular windows) are 

as follows: 

 

 

  

 

Figure 7.42 The results for integral image based interpolation using circular 
windows with a radius of 10 pixels. 
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Figure 7.42 (cont’d.) The results for integral image based interpolation using 
circular windows with a radius of 10 pixels. 

 

The experiments on the algorithms demonstrated that, the algorithms 

had advantages and disadvantages in different regions. The results can be 

assessed as follows: 

i) Edge-aware filtering is superior for dense urban zones, where there 

exist sharp object boundaries and the density of the sparse 

correspondences is relatively low. The algorithm can compensate for 

the insufficient number of correspondences through interpolations and 

a sharp DSM is generated. On the other hand, in the forests, where 
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there exist trees with similar colors the algorithm oversmooths the 

region. It should also be noted that, the performance of the edge-aware 

filtering algorithm is higher for color images. 

ii) Meshing is superior in forests, where the density of the sparse 

correspondences is large. The algorithm is not dependent on the image 

color characteristics, thus no blurring occurs in forests. However, the 

performance in dense urban zones is lower due to the insufficient 

number of correspondences. 

iii) SuTP-based approach is dependent on the density of the sparse 

correspondences. The algorithm’s performance is similar to meshing in 

the forests, and between meshing and the edge aware-filtering in the 

urban zones. One advantage of this algorithm is that, the regions where 

the number of correspondences is insufficient can easily be determined. 

Obviously, this is also possible with meshing (by checking the areas of 

the triangles). Still, SuTP is more informative since it utilizes the 

color/intensity information of the image. 

iv) Interpolation with the integral image approaches cannot generate 

sharp DSMs. Rather, they can generate smoothed DSMs. Although this 

can cause loss of detail, the smoothing behavior reduces the artifacts of 

false matches. The smoothness can be controlled easily by changing the 

window radius. 

7.6.2 Comparison with COTS Software 

Interpolation was also performed with a commercial software package, 

namely PCI Geomatica. PCI Geomatica has the capability of RFM 

reconstruction, bundle adjustment and dense DSM generation.  
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7.7 Execution Times 

The timing of the methods wes measured on Ubuntu Linux running on 

a PC with Quad-Core Pentium Q9550 Processor, 8GB DDR2 1300 MHz RAM. 

All tasks were run using a single core of the processor, but the quad-core 

architecture allowed dedicating a single core completely on the processing 

tasks. The processing times are presented in the following sections. 

7.7.1 SRTM Registration 

SRTM Registration timing results are presented in (Table 7.5). 
 
 
 

Table 7.5. Processing times for SRTM registration 

Dataset 
Image Size 

(pixels) 
Processing 

Time (s) 
Width Height 

IKONOS Hobart 12122 13148 81 
IKONOS Eskişehir 6968 5728 47 
IKONOS San Diego 2001 2001 37 
WordView-1 La Mola 10000 10000 88 
WorldView-1 Terrassa 10000 10000 89 
WorldView-1 Vacarisses 10000 10000 91 
CARTOSAT-1 La Mola 2066 2784 80 
CARTOSAT-1 Terrassa 2488 2782 77 
CARTOSAT-1 Vacarisses 2488 2782 77 
ALOS Norikura 4992 16000 141 
ALOS Hiroshima 4992 16000 130 
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7.7.2 Sparse Reconstruction 

Feature Detection 

In this study, matching with FAST features is performed by using the 

BRIEF descriptor and to avoid redundancy; for each feature point, the 

descriptor is computed and stored only once. Therefore, BRIEF descriptor 

computation time is included in the FAST feature detection lines of the tables 

below. 

 
Table 7.6. Feature detection times (seconds) for IKONOS images 

 IKONOS 
Hobart 

IKONOS  
Eskişehir 

IKONOS 
San Diego 

Image Size  
Height 13148 5728 2001 

Width 12122 6968 2001 

Harris 11 4 1 
FAST+BRIEF 156 17 3 
GFTT 11 4 1 

 
 

Feature detection algorithms can generate insufficient number of 

interest points for the WorldView-1 and CARTOSAT images and are 

accepted to fail. Thus, timings for these datasets are not given here.  

 

Table 7.7. Feature detection times (seconds) for ALOS images 

 ALOS  
Norikura 

ALOS 
Hiroshima 

Image Size  
Height 16000 16000 

Width 4992 4992 

Harris 8 6 
FAST+BRIEF 9 22 
GFTT 8 6 
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As seen in the tables, Harris and GFTT detectors have the same values. 

This is because the Harris features are obtained by eliminating the GFTT 

points with a higher threshold for the smaller eigenvalue of the structure 

tensor. 

Matching 

The timings of sparse matching is presented in Table 7.8 and Table 7.9. 

The “Template Match” rows present the execution times for pyramidal 

template matching and the “BRIEF” rows state the execution times for the 

BRIEF matching step of the BRIEF+TM algorithm. As it can be seen in the 

tables, for the BRIEF+TM algorithm, the main computational load is in the 

BRIEF step (which is faster than pyramidal template matching) and the 

refinement step (Template Matching) corrects the match points in a short 

time. However, when the density of the feature points is high (e.g., large 

forest regions in the Hobart scene), the number of candidate BRIEF 

descriptors in the search region is also large and many score computations 

are required. In such a case, the benefits of utilizing the BRIEF descriptor is 

questionable (regarding the execution time) since descriptor computation is 

also required (in the feature detection phase) for BRIEF.   

It must be noted that, the used OpenCV implementation of the KLT 

algorithm utilizes all CPU cores, thus the actual complexity of the algorithm 

is approximately four times larger. 
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Table 7.8. Matching times (seconds) for IKONOS images 

 IKONOS 
Hobart 

IKONOS 
Eskişehir 

IKONOS 
San Diego 

 
Num.  

of 
features Time 

Num.  
of  

features Time 

Num.  
of 

features Time 
KLT 6,329,828 197 1,200,701 45 120,227 6 
BRIEF 7,784,124 227 769,182 65 117,873 8 
Template Match 7,784,124 585 769,182 91 117,873 12 
BRIEF+TM 7,784,124 429 769,182 88 117,873 9 

 
 
 

Table 7.9. Matching times (seconds) for ALOS images 

 ALOS Norikura  ALOS Hiroshima  
 Num.  

of  
features Time 

Num.  
of  

features Time 
KLT 919,696 72 3,685.098 190 
BRIEF Failed 1,032,197 59 
Template Match Failed 1,032,197 105 
BRIEF+TM Failed 1,032,197 90 

 
 

In all cases, the sparse matching step could be performed in short time 

for all algorithms when the proposed initial estimate generation scheme was 

used. 

Reconstruction 

Reconstruction was performed on the satellite images for which the 

matching was successful. The second column in the following table presents 

the number of processed correspondences, which determines the processing 

time. As mentioned earlier, in the reconstruction phase, the correspondences 
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with high re-projection errors were eliminated. The resulting sparse points 

were approximately 10% less in number. As seen in the table, the 

reconstruction time is proportional to the number of processed 

correspondences. 

The processing times are given either for BRIEF-TM or GFTT-KLT 

pairs. Hobart points were obtained from the BRIEF-TM algorithm, The 

Eskişehir points were obtained by combining the outputs of the two 

approaches. The remaining timings are for the GFTT-KLT algorithm outputs. 

The selection of the algorithm was based on the number of correspondences 

generated, except for the Norikura case, where only GFTT-KLT could 

provide successful correspondences.  

 
 

Table 7.10. Reconstruction times (seconds) for different datasets 

Dataset 
Number of 

points 
Processing 

Time (s) 
IKONOS Hobart 7,030,256 210 

IKONOS Eskişehir 1,512,055 30 
IKONOS San Diego 120,227 4 
ALOS Norikura 919,696 30 
ALOS Hiroshima 1,417,393 44 

 

 

The difference between the number of points in Table 7.8, Table 7.9 and 

Table 7.10 is caused by the outlier elimination step, which is performed 

before the reconstruction phase. In Table 7.8 and Table 7.9, the number of 

processed feature points is given, since the execution time depends on the 

number of feature points, regardless of the number of successful matches. 
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7.7.3 Dense DSM Generation 

In this section, interpolation times for the processed datasets are given. 

Again, the WorldView-1 and CARTOSAT-1 datasets are excluded due to the 

failure in matching.  

The interpolation radius of the integral image approaches were selected 

according to the density of the sparse points. The radius (R) was 10 in all 

datasets, except for the Norikura image (R=50), for which, the density of the 

correspondences was low. The interpolation window size was not effective 

for rectangular interpolation, but in the circular interpolation case, the 

processing time increased linearly with the interpolation radius. 

 

 
Table 7.11. Interpolation times (seconds) for IKONOS images 

 IKONOS 
Hobart 

IKONOS 
Eskişehir 

IKONOS 
San Diego 

Image 
Size  

Height 13148 5728 2001 

Width 12122 6968 2001 

Edge-Aware Filter 230 61 6 
Int. Img. Rect. 56 15 0 
Int. Img. Circ. 88 30 1 
Segmentation 100 33 3 
Meshing 23 5 2 

 
 
 

For the ALOS Norikura images, insufficient number of correspondences 

was obtained due to poor image contrast and radiometric inequalities 

between the image columns. Therefore, for the integral image approaches, 

the number of iterations (passes) to fill all the pixels of the image was large. 

The interpolation radius was determined using the number of pixels in the 
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image and the number of sparse reconstruction points. As a rule of thumb, 

the interpolation radius can be selected as: � = ��/�, where R is the 

window radius, P is the number of sparse points and N is the number of 

pixels in the region of interest. If there exists large regions where DSM is not 

expected (e.g. sea), the N must be determined accordingly. 

 
 

Table 7.12. Interpolation times (seconds) for ALOS images 

 ALOS  
Norikura 

ALOS 
Hiroshima 

Image Size 
Height 16000 16000 

Width 4992 4992 

Edge-Aware Filter 124 126 
Int. Img. Rect. 30 34 
Int. Img. Circ. 617 121 
Segmentation 58 89 
Meshing 7 7 

 

 

The overall execution time for dense DSM generation with the COTS 

software depends on the image resolution and the execution times are not 

reported in the photogrammetry literature. However, it is known that the the 

entire processing workflow may take hours or days, depending on the image 

sizes and the computer hardware.  

The proposed scheme was compared with COTS software on IKONOS 

dataset for the execution time. The selected software was PCI Geomatica, 

which has the capability of bundle adjustment, RFM reconstruction, and 

dense DSM generation. The DSM generation on PCI Geomatica took 6 hours 

and 8 minutes of execution time. Sample patches of the DSM that were 

generated by PCI Geomatica are presented in Section 7.6 
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The overall execution time in this study is in the order of minutes, 

depending on the algorithm choice in each step. When the slowest 

algorithms (Harris + SRTM registration + Template Matching + Sparse 

reconstruction + Edge-aware filter) were selected on the largest-overlap 

colored stereo data (IKONOS Hobart), the processing time became 17 

minutes and 16 seconds. The execution time reduced to 7 minutes and 47 

seconds on the same data, when the fastest algorithms were selected. 
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CHAPTER 8  

CONCLUSION AND DISCUSSION 

8.1 The Significance of the Study 

In this study, a complete, GCP-free DSM generation scheme is 

developed and implemented for the first time. The results on various satellite 

images demonstrated that a flexible and accurate DSM generation scheme is 

practical in the absence of GCPs. 

The developed scheme is driven by the motivation to improve the 

knowledge on the projection model with different sources of information and 

the idea behind the solution brings a new way of thinking in various phases 

of the DSM generation workflow. 

The first contribution is in the registration of LR-DSMs to the satellite 

images. The current state-of-the-art in the literature uses precise RFMs 

obtained by using GCPs to generate a sparse point cloud and tries to register 

this point cloud with the available LR-DSM. Such a scheme is impractical in 

smooth regions and the registration error may be high, since the registration 

is generally done with correlation, which is unreliable in smooth regions due 

to the existence of noise in the sparse point cloud and the LR-DSM. With the 

proposed approach, no sparse reconstruction is required and the 

performance in the smooth regions is solid. This scheme also eliminates the 
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requirement for stereo images for registration as the need for sparse 3-D 

reconstruction is eliminated. Each satellite image can be registered with its 

projection functions simply by projecting the LR-DSM onto the image 

domain. 

The sparse correspondence generation problem is also re-visited and 

registration of the LR-DSM is utilized for initial estimate generation in the 

sparse reconstruction problem. Classically, in the photogrammetry literature, 

the search is reduced to 1-D using the epipolar curves and the search region 

is further narrowed down using a coarse DSM obtained from the higher 

levels of the image pyramid. In the absence of GCPs, the RFMs are not 

accurate enough to reduce the correspondence generation problem down to a 

1-D search and the image domain errors in both image1 and image 2 result in 

a wide “epipolar strip”, in which the search is expensive. Thus, the epipolar 

curves cannot be used to improve the computational efficiency. As an 

alternative, in this study, it is shown that the SRTM registration can provide 

very accurate initial estimates for the match points and fast sparse 

correspondence generation can be performed using the recent, descriptor-

based computer vision techniques or optical flow. It is also shown 

experimentally that many accurate correspondences can be generated in 

short time using a hybrid method (BRIEF + Template Matching) or optical 

flow (pyramidal KLT).  

This approach differs significantly from the current trend in 

photogrammetry, in which the matching is performed with an expensive 

mature method (ILS). The ILS performs affine transformation estimation and 

interpolation-based warping for each stereo correspondence. However, the 

results obtained in this study demonstrate that, the transformation between 

the patches around the match points are simple translations thanks to the 
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advanced camera control techniques used in the imaging process of modern, 

high resolution, narrow-FOV EOSs. As the resolution increases, the validity 

of the assumption that the camera motion vector is constant for the adjacent 

image rows improves and a template that is sufficient for matching is less 

affected by the orbital motion of the satellite. As a result, in many cases, an 

effort for affine parameter estimation is not required in correspondence 

generation. 

The proposed correspondence generation strategy is very successful in 

the forests, where the methods utilized in the photogrammetry literature are 

known to be problematic. Contrary to these methods, the proposed method 

can generate many accurate correspondences in the forests. The density of 

the correspondences is high enough to use meshing for obtaining a correct 

DSM. 

In this study, dense DSM is obtained through various interpolation 

schemes including meshing, segmentation, averaging (with integral images) 

and edge-aware filtering. These approaches are shown to provide successful 

results for various types of textures (forests, urban and rural regions, etc.) in 

the satellite images.  

The photogrammetry literature on the interpolation phase is shallow 

and the methods are limited to meshing and region growing. Meshing is 

used in the intermediate steps for generating a coarse DSM and region 

growing is a quite expensive technique that performs matching for all points 

in the image. In this study, it is shown that, such and expensive method is 

not required provided that the number of sparse correspondences is 

sufficient. 

Another contribution of the study is an RFM bias equalization scheme 

that uses the registered LR-DSM and accurate stereo correspondences. It is 
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shown that, with bias equalization, the reconstructed height accuracy can be 

improved from 4 m to 1.7m for IKONOS images. 

It is also shown that, in the existence of LR-DSM registration, the 

parameters of simple empirical imaging models can be computed thanks to 

the availability of ground information for every pixel in the image. The 

models obtained with this method provide projection accuracies better than 3 

pixels (rms) when they are computed for chunks of image rows. With this 

observation, the concept of piecewise empirical models is proposed. Such 

models are similar to the rigorous models, which are based on the ephemeris, 

whose sampling period is much larger than the acquisition time of a single 

row. 

8.2 Usage 

The DSM generated with a GCP-free workflow can be used in 

appropriate applications, in which the accuracy is not the major concern or 

the GCPs cannot be collected. 

EOSs work continuously and record a great amount of imagery per unit 

time. The GCP collection process cannot be performed with the same speed, 

thus a GCP-free scheme is valuable. 

There may be many applications that do not require sub-pixel accurate 

DSMs, but the additional information on the DSM (other than LR-DSMs) 

may be useful. One such application is the Google Earth. Google Earth uses 

LR-DSMs and few manually generated building models for height 

information. With the proposed DSM generation scheme, even the short 

buildings can be differentiated. Although the generated DSM is somewhat 

noisy in the urban zones, with a large map database such as Google Maps, 
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these errors can be corrected. For a very-large-coverage project like the 

Google Earth, collection of GCPs is not feasible, except for the big cities in the 

developed countries, whose LIDAR data may be available .Thus, a GCP-free 

workflow is essential for such large scale projects. 

In this study, various interpolation schemes are presented. It is 

observed that different methods are successful in different regions. For 

example; the edge-aware filter generates good results in the regions where 

the correspondences are sparsely distributed (due to occlusions, etc.) and 

meshing generates poor results in these areas since it does not use visual 

clues from the satellite image. On the other hand, in the forests, where the 

trees look alike, the edge-aware filter pays a high price for trusting in the 

color similarity and generates an “oil-painted” DSM. In forests, the blindness 

of meshing to the visual clues is awarded and a sharp DSM is obtained 

thanks to the very high density of the correspondences. One advantage of 

these methods is that, both are very fast. Thus, one can run both algorithms 

on the same stereo image pair and take the result of the better algorithm for 

each region. 

8.3 Remaining Problems 

SRTM is used as the LR-DSM. Since SRTM is a DSM, wide and tall 

buildings are observable as smoothed hills in the SRTM data. Thus for such 

regions, the matching scheme proves successful. On the other hand, the 

matching algorithms assume Lambertian surfaces, which have uniform 

reflection directivity. If that is not the case, there may be a significant 

radiometric difference in the stereo images, and the matching algorithms fail 

to find the match points or generate false correspondences. In fact, this 
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problem is not specific to tall buildings; when there is a significant change in 

the observed gray levels, the matching processes encounter difficulties. 

The proposed interpolation schemes use the sparse reconstruction 

results as the seed points in the interpolation. It is observed that, such 

interpolation schemes are dependent on the number and the distribution of 

the sparse seed points, which are weak in the occlusion zones caused by tall 

buildings or steep terrain. In these regions, the algorithms fail to detect 

visible matches or generate false correspondences. Although many outliers 

can be eliminated using neighbor consistency, the results are not error-free. 

This is a typical problem in stereo correspondence generation and various 

approaches have been proposed in both photogrammetry and computer 

vision literature. However, the majority of such approaches utilize the 

epipolar curves/lines, which are unavailable in a GCP-free study. 

Another typical problem in the urban zones is the false matches caused 

by moving objects such as cars. Detection of moving objects is difficult due to 

the large B/H ratio in the stereo imaging scenario. This problem remains 

unresolved. 

Large water bodies also cause problems in the matching process due to 

the moving waves. These regions can easily be detected in colored images, 

but the problem remains for gray level images. This problem can be solved 

by using external information on the water bodies, such as geographic maps. 

Even very low resolution maps will suffice for this task since the 

reconstruction will be good for shorelines. 



 
 

201 
 

8.4 Future Work 

The problems in the occlusion zones can be handled by using triple 

images. Such effort requires appropriate match generation and 

reconstruction scheme. The points must be categorized by the satellite 

images that they are observable. Due to the large number of 

correspondences, this must be performed automatically, which means 

automatic detection of the occlusion zones. The points that can be observed 

in the three images should be subjected to a 3-image reconstruction 

algorithm with the appropriate cost function on 3 images and a 6x3 Jacobian 

matrix. 

The problems observed in the occlusion zones must be addressed 

carefully. This problem is serious in a GCP-free workflow, since the 

occlusions cannot be detected using epipolar curves. However, the density of 

the correspondences reduces significantly, where feature matching has the 

potential to fail. With this clue, it is possible to reconsider the 

correspondences obtained in the “few-correspondence zones”. In these 

regions, various approaches can be tested for better matching performance. 

This re-work shall be performed after a previous matching step which 

handles the great majority of the correspondences. This way, more 

complicated methods can be run to match the remaining feature points, 

which are much less in number. 

Although the KLT algorithm performs sub-pixel matching, the decision 

for accepting a correspondence is based on the squared error, which is 

dependent on illumination. Thus, the correlation coefficient is more 

frequently used in the photogrammetry literature due to its illumination 

invariance. The method presented in this study does not perform sub-pixel 
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matching with the correlation coefficient. This can be achieved by fitting a 

polynomial to the correlation coefficient result in the search window, around 

the peak value. The local maxima of this polynomial can be used as the sub-

pixel match location. Still, one must be aware of the fact that, in a GCP-free 

study, the benefits of sub-pixel matching is questionable since the projection 

functions are not perfect anyway. 

The processing time of the algorithms presented here can be reduced 

further with parallel processing. Almost all of the processing phases are 

parallel in nature and thus efficient parallelization is possible. 

The approaches presented here can also be used in the studies when 

GCPs are available. Of course, bias equalization is not applicable to such 

studies, since the usage of GCPs provides much better projection accuracy. 

Still, LR-DSM registration, correspondence generation and interpolation 

steps are applicable when GCPs are available. The existence of GCPs result in 

very accurate projection models enabling the usage of epipolar curves. In 

that case, matching along the epipolar curve will probably be more efficient 

than optical flow or BRIEF+TM. Thus, the most suitable methods for a GCP-

enabled case are the interpolation and SRTM registration phases. With 

accurate RFMs, the SRTM bias removal is expected to be much more 

effective. 

The generated DSM can be improved with other sources of data such as 

road maps and information on the region (urban, forest, etc.). This is a 

remote sensing effort that uses the GCP-free DSM, rather than future work 

on DSM generation, but such work has the potential to improve the DSM 

accuracy. 
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APPENDIX A  
 

EMPIRICAL MODELS FROM SRTM 
REGISTRATION 

The empirical models require ground control data for determining the 

model parameters. Obviously, the quality of the ground control data has a 

significant effect on the model accuracy. The RPCs provided with the satellite 

images are generated from the undisclosed physical models by the image 

providers. However, studies on simpler models such as APM and DLT are 

still being published and it is shown that these simpler models are also 

appropriate for DSM generation, provided that sufficiently many GCPs are 

available (Yamakawa 2004, Jacobsen 2008). Simpler empirical models are not 

tested when less accurate ground control data are available. 

With the SRTM registration proposed in this study, all points in the 

image are assigned geodetic coordinates with some moderate accuracy. The 

accuracy is improved with bias reduction using accurate correspondences. 

After SRTM registration, moderate ground control data are available for all 

pixels in the image instead of a few sparsely distributed but accurate GCPs. 

The major problem for simple models is that, the model assumptions 

are invalidated by the orbital motion of the satellite. With the availability of 

many ground control data; it is possible to divide the satellite image into row 

chunks and fit a separate model for each row chunk to obtain a piecewise 
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projection model. Here, we investigate the achievable accuracy for such 

models. 

Two projection models are tested: The piecewise pinhole model (P-PM) 

and the piecewise DLT (P-DLT) model. For each model, different chunk sizes 

are used and the generated models are tested at the available GCPs. The 

following experiments are conducted: 

i) SRTM registration bias is manually corrected in the object domain 

and used as the ground control data to obtain the piecewise model 

parameters. This experiment is performed to observe the best 

achievable accuracy for the piecewise models when SRTM 

registration is used. 

ii) Biased SRTM registration is used as the ground control data to 

obtain the piecewise model parameters. 

iii) The result of the bias-correction step (Section 4.2.1) is used as the 

ground control data to obtain the piecewise model parameters. 

This is the best achievable accuracy for SRTM-based piecewise 

models. 

The test is performed on the IKONOS image for the Hobart area, where 

122 GCPs are available. The errors are computed only in the row chunks that 

contain GCPs. The results are presented in the tables below.  

 

Table A.1. Image domain projection errors for the piecewise models when 
the SRTM registration bias is manually removed in the object domain. All 

values are rms errors in pixels, L is the number of rows in a chunk 

L  5 50 100 1000 2000 4000 6000 

P-PM 2.3 2.17 2.23 2.1 2.16 2.13 2.45 
P-DLT 2.17 2.19 2.16 2.08 2.1 2.06 2.23 
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Table A.2. Image domain projection errors for the  piecewise models without 
bias removal for the SRTM registration. All values are rms errors in pixels, L 

is the number of rows in a chunk 

L  5 50 100 1000 2000 4000 6000 

P-PM 7.11 7.1 7.13 7.07 7.14 6.97 7.29 
P-DLT 7.06 7.11 7.11 7.05 7.1 7.06 7.16 
 

 

Table A.3. Image domain projection errors for the piecewise models when 
the SRTM registration bias is removed automatically in the object domain. 

All values are rms errors in pixels, L is the number of rows in a chunk 

L  5 50 100 1000 2000 4000 6000 

P-PM 3.01 2.92 2.96 2.88 2.94 2.87 3.19 
P-DLT 6.22 2.92 2.96 2.88 2.93 2.87 3.1 
 

 

As seen in the results, the SRTM bias reduction provides accuracy 

figures that are very close to the the best obtainable accuracy for piecewise 

models obtained by SRTM registration.  

The results also indicate that, the piecewise models can be used with 

different values of L, but using less than 50 or more than 4000 rows is not 

advised for narrow field-of view satellites, such as IKONOS. 

Of course, the image domain projection errors are larger than those of a 

GCP-based model. Still, the results show that, piecewise empirical models 

provide moderate accuracy in the absence of GCPs. These models can be 

used when the GCPs are unavailable and the accuracy needs are moderate. 

Another use of this approach is the following: The projection errors 

presented above have strong bias terms (the error is mostly bias), which can 

be corrected with a single GCP. Thus, although the DLT or the pinhole model 
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parameters cannot be computed with a single GCP, when the SRTM 

registration is available, it is possible to obtain good projection models even 

with a single GCP. 

Note that, the SRTM registration is obtained from third order RFMs, 

and if the RFMs are present, the need for simpler models is questionable. 

However, the results of piecewise empirical models are better than the 

original biased RFMs, thanks to the object domain bias correction for the 

SRTM registration. The bias-corrected SRTM cannot be used to improve the 

original third order RFMs, because the object domain bias correction terms 

undergo third order polynomials in the original RFMs and distort the cross-

terms in the polynomials. 

The piecewise empirical model is a side product of the thesis study and 

need further investigation. 
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APPENDIX B  
 

JACOBIAN IN THE RPC 
RECONSTRUCTION 

Here, we provide the complete and detailed formulas for every entry of 

the Jacobian matrix that is used in RPC reconstruction with Levenberg-

Marquardt algorithm. The Jacobian matrix is: 
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(B.1)  

 
As noted earlier, the normalization (offset and scale) parameters are 

provided together with the RPCs, by the image vendors. The object domain 

normalization maps the geodetic latitude, longitude and height to the [-1, +1] 

interval.  

 
The normalization equations for image 1 are: 
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�, = K − K,,abb$(cK,,$%&'( 	 
�, = ℎ − ℎ,,abb$(cℎ,,$%&'(  

(B.2)   

 

The object domain normalization equations for image 2 are: 

 

 

�. = J − J.,abb$(cJ.,$%&'( 	 
�. = K − K.,abb$(cK.,$%&'( 	 
�. = ℎ − ℎ.,abb$(cℎ.,$%&'(  

(B.3)   

 

The image domain de-normalization equations for image 1 and image 2 

are: 

 

 

", = !, ∗ ",,$%&'( + ",,abb$(c 
*, = ), ∗ *,,$%&'( + *,,abb$(c 
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(B.4)   

 

 

The projection functions are defined with the normalized coordinates 

and are as follows: 
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(B.5)   

 

Numerator for the rows of image 1: 

 

We don’t feel the necessity to write down all 8 polynomials separately, 

since they are all in the same form. The only difference is the values of the 

coefficients and the normalized variables for image 1 and image 2. It is 

sufficient to assign different letters to the polynomial coefficients: The 

resultant coefficient labels are given below: 

 

 

Table B.1. Labelling for the projection polynomial coefficients 

Image 1 Image 2 

Polynomial Coefficients Variables Polynomial Coefficients Variables 

P11 a0 … a19 X1 , Y1, Z1 P21 e0 … e19 X2 , Y2, Z2 

P12 b0 … b19 X1 , Y1, Z1 P22 f0 … f19 X2 , Y2, Z2 

P13 c0 … c19 X1 , Y1, Z1 P23 g0 … g19 X2 , Y2, Z2 

P14 d0 … d19 X1 , Y1, Z1 P24 h0 … h19 X2 , Y2, Z2 

 

 

�,,(�, �, �8 = 6# + 6,�, + 6.�, + 6��, + 6/�,.
+ 62�,�, + 63�,�, + 64�,. + 65�,�,
+ 60�,. + 6,#�,� + 6,,�,.�, + 6,.�,.�,
+ 6,��,.�, + 6,/�,.�, + 6,2�,.�,
+ 6,3�,� + 6,4�,�,. + 6,0�,� 
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As explained in section 5.3.2, the top-left entry of the Jacobian is 

calculated from the following relation. 

 

 
s",sJ = s",s!, 	(

s!,s�, 	
s�,sJ +	s!,s�, 	

s�,sJ, +
s!,s�, 	

s�,sJ 8 (B.7)   

 

As seen clearly in the object domain normalization equations;  

- X is independent of J and h  

- Y is independent of λ and h 

- Z is independent of J and λ  

Consequently, the following partial derivatives are zero: 

 

	s�,sK = 0	, s�,sℎ 	= 0, s�,sJ 	= 0, s�,sℎ = 0	, s�,sJ 	= 0, s�,sK = 0 

 

Thus, in (B.7), the summation in the parenthesis has only one non-zero 

term. The equation reduces to: 

 

 
s",sJ = s",s! 	s!,s�, 	

s�,sJ  (B.8)   

 

The first and the last terms of equation (B.8) are very easy to compute; 

from (B.2), (B.3) and (B.4), and they appear as constants: 
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(B.10)   

 

UdWUeW is obtained using the chain rule for the y1 function in (B.5): 

 

s!,s�, =
�,.(�,, �,, �,8 �s�,,s�, �(eW,fW,gW8 − �,,(�,, �,, �,8 �s�,.s�, �(eW,fW,gW8�,.. (�,, �,, �,8  

(B.11)   

 

From (B.6), the partial derivatives of the polynomials are easy to obtain: 

 

 

s�r(� , � , �8s� = t, + 2t/� + t2� +t63�
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(B.13)   
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Here, the subscript i shows the image index, and j is 1, 2, 3 or 4. For 

each (i, j) pair, the coefficients (ωij) are taken from Table B.1  

The resultant Jacobian matrix entries are obtained by putting equations 

(B.12), (B.13), and (B.14) into (B.11) correctly and then putting (B.9), (B.10) 

and (B.11) into (B.8). The short forms of the matrix entries are presented 

below. 

 

Table B.1. The entries in the Jacobian matrix 
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