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ABSTRACT 

 

 

UTILIZATION OF NEURAL NETWORKS FOR SIMULATION OF 
VEHICLE INDUCED FLOW IN TUNNEL SYSTEMS 

 

 

Koç, Gençer 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Kahraman Albayrak 

Co-Supervisor: Assist. Prof. Dr. Cüneyt Sert 

 

 

September 2012, 136 pages 

 

 

Air velocities induced by underground vehicles in complex metro systems are 

obtained using artificial neural networks. Complex tunnel shaft-systems with any 

number of tunnels and shafts and with most of the practically possible geometries 

encountered in underground structures can be simulated with the proposed method. 

A single neural network, of type feed-forward back propagation, with a single hidden 

layer is trained for modelling a single tunnel segment.  Train and tunnel parameters 

that have influence on the vehicle induced flow characteristics are used together to 

obtain non-dimensional input and target parameters. First input parameter is the 

major head loss coefficient of tunnel, ( )TunnelDL / . Blockage ratio TunnelTrain AA /  and 

train aspect ratio ( )TrainDL /  are selected to be non-dimensional input parameters to 

represent the system geometry. As the final input parameter, skin friction coefficient 

of the train, Trainf drag coefficient of the train, DC ; frontal area of the train, TrainA  and 

lateral area of the train, LateralA  are combined into a single overall drag coefficient 
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based on the train frontal area. Non-dimensional TrainAir VV / speed ratio is selected to 

be the target parameter. Using maximum air velocity predicted by the trained neural 

network together with non dimensional system parameters and time, an additional 

neural network is trained for predicting the deceleration of air in case of train 

stoppage within the tunnel system and departure of the train from the system. A 

simulation tool for predicting time dependent velocity profile of air in metro systems 

is developed with the trained neural networks. 

 

Keywords: piston effect, incompressible flow, vehicle induced flow, neural 

networks, transient air velocity 
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ÖZ 
 

 

TÜNEL SİSTEMLERİNDE ARAÇ KAYNAKLI HAVAHIZLARININ YAPAY 
SİNİR AĞLARI KULLANILARAK MODELLENMESİ 

 

 

 

Koç, Gencer 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Kahraman Albayrak 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Cüneyt Sert 

 

Eylül 2012, 136 sayfa 

 

 

Karmaşık metro sistemlerinde araç kaynaklı hava hızları yapay sinir ağları 

kullanılarak elde edilmiştir. Önerilen yöntemle, yer altı ulaşım yapılarında 

karşılaşılabilecek geometrik düzenlemelerin birçoğunun bulunduğu karmaşık 

sistemlerin modellemesi yapılabilmektedir. Tek bir tünel içerisinde hareket eden bir 

trenin modellenmesi için, bir gizli katmanı olan, ileri beslemeli, geriye yayılımlı bir 

yapay sinir ağı eğitilmiştir. Araç kaynaklı hava akışında etkisi olduğu bilinen 

parametreler, boyutsuz değişkenler elde etmek amacıyla farklı gruplar halinde bir 

araya getirilmişlerdir. Bu sayede yapay sinir ağı için boyutsuz girdi ve hedef 

parametreleri elde edilmiştir. İlk boyutsuz girdi parametresi, tünelin majör kayıp 

katsayısı olan ( )TunnelDL /  terimidir. Tren blokaj oranı TunnelTrain AA /  ve tren 

uzunluğunun hidrolik çapına oranı ( )TrainDL /  sistem geometrisini tanımlamak için 

kullanılan diğer iki boyutsuz parametredir.  Son boyutsuz girdi parametresi olarak, 

tren yüzey sürtünme katsayısı, sürükleme katsayısı, yanal alanı ve ön kesit alanı bir 

araya getirilerek elde edilen tren sürtünme katsayısı kullanılmıştır. Boyutsuz hız 
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oranı, TrainAir VV / , yapay sinir ağları için kullanılan hedef parametresi olarak 

kullanılmıştır. Yapay sinir ağı ile elde edilen en yüksek hava hızları, boyutsuz sistem 

parametreleri ve zaman değişkeni ile birlikte kullanılarak, trenin sistem içerisinde 

durması ya da sistemi terk etmesi durumunda hava hızının sönümlenmesini 

modelleyen ek bir sinir ağının eğitilmesinde kullanılmıştır. Eğitilen yapay sinir ağları 

ile, metro sistemlerinde zamana bağlı hava hızlarının elde edilmesini sağlayan bir 

simülasyon aracı geliştirilmiştir. 

 

Anahtar Kelimeler: Piston etkisi, sıkıştırılamaz akış, araç kaynaklı akış, yapay sinir 

ağları, zamana bağlı hava hızı 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1 Background 

 

 

Mass transport is one of the most attractive means when energy saving crave of the 

world is considered. Many cities are on their way to switch to underground 

transportation in order to be able to relieve the congestion due to ground vehicles and 

reduce the amount of exhaust emissions. For this purpose, huge amount of design 

and construction of metro lines are still in progress. Two important concerns about a 

metro system design are safety and the comfort level sustained during train 

operations since there are comfort limits for air velocities and pressures in closed 

occupied areas [1]. Major means that has effect on comfort level in metro systems is 

the vehicle induced air velocity and pressure. 

 

Vehicles travelling inside tunnels induce air flow, which is basically driven by the 

moving boundaries of the vehicle. This phenomenon is known as “piston effect”. 

What actually piston effect is the flow of air being pushed by the frontal and lateral 

area of the train in the direction of motion. For a stationary observer located on the 

platform of a station, piston effect can be observed as follows. 

 

• A little amount of air velocity is felt just before the train enters the station. 

• Air velocity increases to its maximum value during the deceleration of the 

train just before complete stop. 
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• Air velocity starts to decrease while the vehicle is on a halt and dwelling for 

the passengers entraining and detraining. 

• Following the acceleration for the train after its dwell, air velocity starts to 

build up again. This time the observer may expect a fresher air than before 

since the second velocity build up is majorly due to the air being sucked from 

ventilation structures and staircases. 

• As soon as the vehicle leaves the station, air velocity starts to decrease again 

until the next train induces the same sequence of events.  

 

Taking piston effect and thus abovementioned sequence of events into account at 

design stage of metro systems is mainly considered as an optimization problem in 

searching the minimum construction cost together with the operation cost. Air flow 

induced and brought to the stations by the moving trains contributes to the air 

exchange of the stations which is a desired effect. More natural ventilation means 

fewer requirements for additional ventilation and air handling equipments like air 

conditioners, fans and air handling units. 

 

On the other hand, while maximizing the amount of air flow that contributes to the 

air exchange, designers should also keep the maximum air velocity on the platform 

level under a certain value. Limit values of air velocity in occupied regions in metro 

systems are defined either by international codes and standards or local regulations.  

 

For optimizing design, proposed solution by the metro system designers is placing 

ventilation shafts at the entrance and exits of the stations. These shafts, in addition to 

their duty for emergency ventilation, serve as air flow shortcuts connecting the 

station structure to the ground level. This way, excess amount of air can be got rid of 

through these openings and air velocities on platform level can be controlled. Jia et 

al. [2] showed in their numerical simulations of flow characteristics in subway 

stations that, ventilation shafts placed before and after the station has great effect on 

augmenting the ventilation characteristics of the station while reducing the air 
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velocities encountered in the station. Ventilation shaft at the entrance of the station is 

termed as a “blast shaft” since it basically dampens the effect of positive pressure 

that builds up in train front. At the exit of the station, there installed “relief shafts” 

which are responsible for relieving the negative pressure at the train rear while train 

leaves the station. These shafts serve in a reverse manner when a train approaches 

from the opposite direction to the station. Ventilation shafts can be considered as 

similar to open surge protection structures in liquid pipelines. 

 

Although ventilation structures, at a first glance, seem to be the solution of the 

optimization problem in metro system design, it is not a straight forward procedure 

to design and implement the correct ventilation shaft structure. First of all, 

introduction of a ventilation shaft to a station may lead one of the following two 

effects; 

 

• Ventilation shaft may serve as intended and may let the required amount of 

air through. This way, maximum air velocity on the platform level induced by 

the trains can be controlled. 

• If not designed properly, ventilation shaft may decrease the system resistance 

to air flow to very low values which results in more amount of train induced 

air flow. This would result in even higher air velocities than a case without a 

ventilation shaft. 

 

So, a ventilation shaft cannot be considered as just a simple opening to atmosphere 

but requires a systematic engineering approach for being properly designed. 

 

Engineers can make necessary calculations and modifications on system design with 

some analytical means but, since metro systems are complex flow networks, it is 

almost impossible to predict the net effect of a modification on the overall system 

performance as long as the full system is not considered at a time. This optimization 

effort makes piston effect simulations crucial. 
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For the purpose of a proper system design and for sake of energy efficiency and 

optimization, during design stage of a metro system, numerous computer simulations 

for piston effect are run. Each simulation with the current state of the design provides 

possible improvement opportunities and designer can modify or change the design 

being done. 

 

Computer simulations for piston effect are done in 1D because the sizes of the flow 

domain in complex metro systems are impractically large to be modelled and solved 

in 3D CFD software. High length to hydraulic diameter ratio encountered in metro 

structures also allows one dimensional approach. 

 

Modelling in 1D requires a careful investigation of the structures in the metro 

system. Since it is impossible to incorporate all details of structures in the system to 

one dimensional model, these details should be introduced to the model through use 

of minor head loss coefficients for different flow structures. Minor head loss 

coefficients are obtained from empirical relations and tabulated data present in the 

literature.  

 

One dimensional modelling and simulations can be done using software packages 

that have the moving boundary feature. Subway Environmental Simulation (SES) 

Software is one of these software and is one of the most commonly used all around 

the world. One can use SES for both piston effect and emergency ventilation 

simulations. In most of the metro system design work around the world and in each 

and every metro project in Turkey, SES Software is the only tool that is accepted by 

the authorities. Although a few design groups have this software, it is not 

commercially available at the moment and there is not any alternative software that 

can be considered as a substitute. In this study, a tool that can be used as a 

replacement to SES is developed using artificial neural networks. 
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Artificial Neural Networks (ANN) are data driven methods which originated from 

the basics of the neurobiological systems. Early attempts on neural networks are 

from 1940’s. Although neural network approach was getting popular, revealing of 

deficiencies in neural network approach in 1969 had a negative effect on the interest 

given to this area. By the emerging of back propagation algorithm for neural network 

training and solution of some drawbacks, neural networks regained more attraction 

again [3]. 

 

Haykin [4] gives a formal definition of neural network as “a machine that is designed 

to model the way in which the brain performs a particular task or function of interest; 

the network is usually implemented by using electronic components or simulated in 

software on a digital computer”. Neural networks are supposed to acquire 

information from their environment and store them by use of weights. Major 

advantages of neural networks are their ability to “learn” and computational 

efficiency arising from their parallel nature. They are used for function 

approximation, data processing, clustering, time series prediction and regression in 

the fields of fluid mechanics, heat transfer, information technologies, control, 

computer science, economics, natural sciences and many other. Neural networks can 

be used for approximating physical phenomena by the use of field data. Laboratory 

or field measurements can be used for neural network training and effect of varying 

parameters can be approximated with neural networks. Training a neural network 

with field data is not the only way of using a neural network. Simulation data, most 

of the time produced by computer software, can also be used for neural network 

training which can be eventually considered as Meta modelling. In this thesis, neural 

networks are trained with the data produced by SES computer software. 

 

There are three fundamental types of neural networks namely, single layer feed 

forward, multilayer feed forward and recurrent. Different applications demand 

different types of neural networks in representing the actual physical phenomena. In 

this thesis, through a systematic assessment and referencing to literature, single and 
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multi layer feed forward neural networks are utilized based upon their ability to 

approximate continuous functions. 

 

Basic processing unit of a neural network operating on the input data is known as a 

neuron, structure of which is presented in Figure 1-7. The neuron receives N number 

of inputs. In a single neuron, a transfer function is applied on the weighted sum of 

these inputs to generate an output, which is expected to approximate the desired 

target. Many neurons can be connected in parallel to form a layer and many layers 

can be used in series to form a multilayer network. Transfer functions can be of 

linear, threshold or sigmoid types. For mapping a continuous function between the 

inputs and outputs, sigmoid type transfer functions are used, as done in this study.  

 

Learning of a neural network can be supervised or unsupervised. In this study, 

supervised learning, which implies presence of a teacher, is adopted. In supervised 

learning an output set is available and neural network maps a function between the 

input and output data by iteratively adjusting weights of each individual input until a 

desired accuracy of neural network generated outputs evaluated against actual 

outputs is obtained. 
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Figure 1-1 Structure of a neuron 

 

 

A neuron, presented in Figure 1-1 can be described as follows; 

• Input signal ix is connected to the neuron k is first multiplied by the 

weight kiw . One should note that the subscript i refers to the weight of the 

input signal and the subscript k refers to the neuron in question. 

• A summation function is applied to all input signals which are already 

multiplied with their corresponding weights. 

• Activation function f, which is also referred to as squashing function, is 

applied over the weighted input signal and limits the amplitude of the output 

to finite values. 

• Activation function generates the results of the neuron which will be 

compared with the target data during training. 

 

Note that, a feedback route between the outputs generated by the activation function 

and any layer of the neural network can be present in case it is known that the output 

has effect on itself or in other words the system is dynamic. For such cases, neural 
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network structures with memory or feedback are used and are referred to as recurrent 

neural networks. In this thesis, feed-forward neural networks are used after an 

assessment of the nature of the physical phenomena involved. Details of the neural 

network selection are presented in Chapter 2 of the thesis. 

 

In addition to structure of the neural network and its activation functions, learning 

algorithms used in training has also great influence on neural network performance. 

Learning of a neural network can be classified with two major types; supervised and 

unsupervised learning. 

 

In supervised learning, there exists a target data in comparison with which the error 

of the neural network generated results is calculated. With the calculated error, 

weights of the neurons are modified until the desired output can be obtained by the 

neural network. In unsupervised learning, also referred to as learning without 

teacher, there is not any output data with which the results of the neural network is 

compared during training for error calculation. In this type of learning, neural 

network basically tries to find a hidden structure within the input data. Self 

Organizing Maps (SOM) is one of the commonly used unsupervised learning 

algorithms. 

 

In the content of this thesis, supervised learning is applied in presence of input and 

target data together. Vehicle induced air velocity results from SES Software are used 

as the target data and supervised learning of the trained neural networks is managed. 
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1.2 Literature Survey 

 
 

1.2.1 Piston Effect and One Dimensional Flow 

 

 

There is a huge amount of effort on understanding and application of one 

dimensional flow both in compressible and incompressible flow regimes. To be able 

to design and operate underground transportation systems including moderate speed 

trains, high speed trains and even passenger cars and load trucks, valuable theoretical 

and experimental studies are stated in literature. One can see that, most of the studies 

cover the basics and aims solving some practical problems commonly encountered 

during operation or design of underground structures.  

 

Finding the ways of increased transportation efficiency is one of the most significant 

efforts in this field. To increase the transportation efficiency, there are great effort in 

fields of aerodynamics of vehicles and structures, while most of the train 

manufacturers still search for faster and lighter trains. Raghunathan et al. [5] states in 

their study that, current effort on speeding the high speed railway trains up ignores 

the essence of the aerodynamics which should be considered prior to developments 

of better electric motors that drive these trains. They presented the state of the art 

aerodynamics of tunnels and trains and they presented valuable indexes that correlate 

vehicle characteristics to aerodynamic forces on the vehicles. One of the parameters 

that affect the aerodynamics of tunnels is the blockage ratio of the train. Patil et al. 

[6] considered the effect of blockage ration on wake transition in case of flow past a 

cylinder. They studied the effect of wall confinement on wake characteristics like 

shear layer behaviour. With their two dimensional simulations they concluded the 

effect of blockage ration on critical Reynolds Number and Strouhal Numbers. 
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There are numerical and approximate analytical methods that can be used to predict 

air velocities induced by a metro vehicle with the given geometric and dynamic 

characteristics like frontal cross sectional area, speed of the train drag coefficient, 

etc. Jang et al. [7] conducted experimental studies on Fu-De Tunnel in Taipei City 

for determination of aerodynamic coefficients of the tunnel. They took measurements 

of air velocity inside the tunnel in various traffic conditions and obtained values for 

tunnel friction factor and drag coefficient of small and medium sized vehicles. They 

concluded that, obtained wall friction and drag coefficient values are applicable for 

most of the modern tunnel systems since Fu-De Tunnel is also one of the state of the 

art tunnels.  

 

Train induced airflow inside metro trains with ventilation shafts are studied by Yuan-

dong et al. [8] through 3D numerical simulations. They compared their results with 

experimental results obtained from the setup prepared with exactly the same 

geometrical characteristics considered in simulations. For increasing the amount of 

flow through ventilation shafts, they placed barriers at the end of the tunnel model 

and saw that more air flows through ventilation ducts. They also realized that a 

sudden change in the direction of the air flow through the ducts is observed between 

the suction and discharge action of ventilation shafts.  

 

Krasyuk et al. [9] used experimental results for verifying their analytical model for 

estimating train induced air flow. They found with their experimental studies that, 

near field effects on air flow in front of the train dampens about 35-40 times the 

diameter of the tunnel while the near field effects at the rear of the train continues as 

long as the train is in motion.   

 

Sanz-Andres et al. [10] studied on a mathematical model for vehicle induced loads 

on a flat panel in order to determine the characteristics of the loads on traffic sign 

panels due to vehicle induced flow. They represented a force coefficient dependent 
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on the size of the sign, the vehicle cross-section area and the distance of the sign to 

the middle plane of the vehicle. 

 

As a continuation of the study mentioned above, Sanz-Andreas et al. [11] proposed a 

theoretical model for the vehicle-induced load on pedestrian barriers. The aim of the 

study was to provide simple tools for transport infrastructure community. The results 

are in good agreement with the tests before passing the source. 

 

In a theoretical model based study using unsteady potential flow theory, Sanz-Andres 

et al. [12] also represented a force coefficient acting on the pedestrian which is 

induced by train movement is proportional to a single parameter which involves the 

pedestrian cross-section diameter, the vehicle cross-section area and the distance 

between the pedestrian and the vehicle. 

 

One of the most commonly used methods to determine time dependent fluid velocity 

and pressure profile in closed conduits is the Method of Characteristics (MOC). 

MOC is a time marching numerical method applied over momentum and continuity 

equations to derive ordinary differential equations that govern the variation of 

velocity and pressure [13]. Water-hammer analysis is one of the most referenced 

studies utilizing MOC [14]. Air flow induced by moving vehicles can also be solved 

using MOC applying appropriate moving boundaries on the vehicle rear and front. 

Henson et al. [15] used MOC to obtain velocity and pressure distribution inside 

tunnels and stations by considering different draught relief shaft arrangements and 

obtained time dependent velocity values on station platforms and escalator tunnels. 

They also evaluated the effect of tunnel lining roughness height on power 

consumption of high speed trains. Aradag [16] used MOC to simulate vehicle 

induced air flow in tunnel systems and considered the effect of ventilation shafts by 

the use of predetermined flow percentages that are discharged or sucked through vent 

openings. 
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MOC can also be coupled with three-dimensional CFD software. For example it can 

be used to generate proper boundary conditions to provide the moving boundary 

feature to a CFD software that lacks this capability. In such a study, Ke et al. [17] 

used MOC based SES software together with PHOENICS code to optimize the 

subway environmental control system of Hsin Chuan Route of Taipei Rapid Transit 

System. They obtained temperature change in a station for different train speeds, 

considering the effect of ventilation shaft length, area and geometry. They also 

obtained pressure values on platform screen doors and compared their results with 

empirical ones. In a similar study Galindo et al. [18] used the one-dimensional gas-

dynamics code OpenWAM and FLUENT together and utilized MOC to transfer data 

from a simplified 1D domain to a realistic 3D domain. Their main purpose was to 

reduce the computational cost of 3D simulations.  They concluded that, proposed 

coupled simulation is in agreement with analytical and experimental results. 

 

(SES software, operating on one-dimensional MOC, is considered to be one of the 

most reliable tools for piston effect simulations. SES is capable of simulating 

multiple trains travelling with non-constant velocities inside tunnels. Complicated 

underground systems can be modelled with it and results with acceptable accuracy 

can be obtained. SES owes its success to the simplification of the actual complicated, 

three-dimensional systems into one-dimensional models. Due to generally 

encountered high length-to-diameter ratios in metro tunnels, representing 3D flow 

structures as 1D can be managed by the use of experimentally obtained head loss 

coefficients. Various air flow structures like tee junctions, bends, expansions, 

contractions, etc. can be represented by their corresponding head loss coefficients in 

a one dimensional model. SES provides a wide range of possible junctions, nodes 

and connections. Despite of being successful in complex system modelling, its user 

interface is not practical for entering the data of a large metro system. For most of the 

time, pre-processing of SES is much longer than the simulation time. 
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One-dimensional MOC is not the only technique that can be used to study piston 

effect. Novak [19] used Fluent software with the sliding mesh option to perform 3D 

simulations to understand the aerodynamics of a train moving in a tunnel. He 

simulated a train motion with a speed of 200 km/h by considering the air flow to be 

compressible, unsteady and turbulent. In another 3D study Uystepruyst et al. [20] 

developed an Eulerian code and adopted sliding mesh technique to simulate pressure 

waves generated by high speed trains. Researchers also studied the piston effect by 

analytical and experimental means. Solazzo et al. [21] proposed a CFD modelling 

methodology on the contribution of wind flow and turbulence to transportation and 

dilution of pollutants emitted by vehicles in urban streets which are the results of 

both atmospheric wind and vehicular traffic. In the study explicit simulation of 

mechanical processes generating flow and turbulence is carried out. The results were 

compared with wind tunnel tests and showed a very good agreement with test results 

with some limitations on mean vertical velocity. 

 

Wang et al. [22] proposed an analytical solution procedure for calculating piston 

effect with the incompressible flow assumption inside a straight tunnel. They 

compared their results with that of SES software and concluded that proposed 

analytical method is in agreement. Lin et al. [23] conducted experimental studies in a 

typical Taipei underground station and did field measurements on flow velocities 

inside the relief shafts. Kim and Kim [24] conducted both experiments and numerical 

simulations for analyzing train induced air flow in sub-ways. They constructed a 1/20 

scale setup with a blockage ratio of 0.67 for a 39 meters long tunnel. There are also 

data driven models used for aerodynamics of railway vehicles. An example is the 

work of Howe [25], in which a genetic algorithm is used as an optimization tool to 

study high speed train motion. 

 

In this study, an alternative approach is proposed for obtaining maximum air velocity 

values attained inside underground tunnels for a single train movement. The 

approach is to utilize neural networks, which are widely used in engineering 
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applications where a set of data representing the theoretical background of the 

underlying physics is present. Many of the physical phenomena within the theory of 

fluid mechanics and heat transfer have already been captured by neural networks and 

powerful models are constructed, while no neural network solution for piston effect 

is presented in the literature.  

 

 

1.2.2 Artificial Neural networks 

 

 

ANN are data driven tools that can be used for solving most of the partial 

differentiable equations associated to physical phenomena. They have more 

generalization capability than Finite Element Methods [26]. Although there is not 

much effort on piston effect calculations with neural networks, there are number of 

neural network studies in fluid dynamics problems. In a measurement data based 

study, Adhikari and Jindhal [27] applied an experimental procedure to continuously 

record pressure drop of different non-Newtonian fluids in tube flow for neural 

network data generation. They stated that, neural network approach is superior to the 

methods that require slip correction. Kalogirou et al. [28] used multilayered neural 

networks with their experimental data on natural ventilation of a light weight test 

room. Kuan and Lien [29] used a CFD software to generate the required data for 

neural network training and evaluated the performance of heat sinks. They obtained 

reasonable agreement of neural network predicted results with those of CFD 

simulations. In another CFD related study, Stavrakakis et al. [30] used artificial 

neural networks for optimizing occupational comfort of naturally ventilated buildings 

by modifying the window sizes. They used CFD for data generation and used these 

data for neural network training. They also considered a case study through a 

prototype and concluded the successful prediction ability of the Radial Basis 

Function Network they trained. Neural networks are also used for supporting CFD 

studies for computational optimization. Pena et al. [31] considered the use of ANN 
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for reducing error between different CFD approaches to various fluid dynamics 

problems.  They simulated different cases with simplified CFD codes while they 

trained a neural network with laboratory tests or results of much advanced CFD 

models for the same cases. They used the neural network results for reducing the 

CFD error between the simplified models and advanced models. This way, they 

reduced the computational expense of CFD method in sensitivity studies. Karkoub 

and Elkamel [32] studied pressure distribution and load carrying capacity of gas 

lubricated bearings with artificial neural networks. Hu et al. [33] proposed a range 

dependent neural network for river flow time series prediction. By the proposed 

method, different neural networks are trained for different ranges of flow thus each 

neural network can be used for a narrower range increasing the accuracy of the 

networks. Pierret et al. [34] considered the two dimensional design of turbine blades 

using the database of the previous blade designs. They used back-propagation 

learning algorithm during training which propagates the error of output layer to the 

input layer for adjusting weights. Since back-propagation algorithm is slow in 

convergence, they used some improvements for speeding up the learning algorithm. 

They concluded that, design process is faster with their proposed method than using 

other Navier-Stokes solvers. They stated, more design alternatives can be considered 

with the proposed method in shorter times. Chen et al. [35], in their time series study 

using artificial neural networks, considered the interpolation of wind induced 

pressure values on the roof of a model low-rise building. In their study, they used the 

experimental data on the taps at the roof of the model and used these values for 

predicting pressure values at a further time interval. Although they stated the 

complexity of the neural network approach, they concluded that, their approach 

overcomes the problem of interpolation in case of a low resolution data. In another 

time series prediction study, Galvan-Leon et al. [36] considered use of recurrent 

neural networks instead of feed-forward neural networks. They compared the results 

of their approach with that of feed-forward networks and concluded that re-current 

neural network they proposed is superior especially when the prediction horizon is 

increased to about 4. They also stated that, for short prediction horizons, traditional 
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models are more efficient by good prediction performances and less complexity. For 

most of the time, main purposes of neural network studies are to approximate or 

predict a relationship between input and output data. Function approximation is the 

most referenced study in neural network field. In such a study, Mai-Duy et al. [37, 

38] proposed a method that utilizes radial basis function networks for approximating 

a function and its derivatives. They presented a novel method which they called 

Indirect Radial Basis Function Networks (IRBFN) which approximates the derivative 

of a function first and by integrating the solution they obtained the function itself in 

mathematical terms. This study has effect on capturing the mathematical background 

of the radial basis function networks. With results of their study they considered the 

application of their proposed method on Navier-Stokes equations. They considered 

the solution of steady, incompressible viscous flow and concluded that their 

approach is in good agreement with the analytical solutions. 

 

Gölcü [39] utilized ANN approach for predicting head-flow curves of deep well 

pumps. He used splitter blade length, number of blades and flow rate as the input 

parameters and head as the target. He obtained prediction results in agreement with 

experimental ones. He selected number of hidden neurons in the network by a 

sensitivity study on the number of neurons. As performance parameters, Mean 

Absolute Percentage Error (MAPE), Root mean Square Error (RMSE) and 

Coefficient of Variation (R2) are used in his study. 

 

Various types of neural networks are utilized for solution of engineering problems. A 

problem can be solved with different types of neural networks and the one 

performing best can be selected as the basis of the network study. In such a study 

Ghorbanian et al. [40] employed different ANN for compressor performance 

prediction purposes. They showed that, although general regression type neural 

network performs best in means of mean square error, its capability is limited to 

interpolation. They stated that, multilayer perceptron (MLP) is a better candidate 

when both interpolation and extrapolation is considered. 
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Hayati et al. [41] used multilayer artificial neural networks for predicting convection 

heat transfer coefficient for a confined cylinder between parallel plates. They used 

experimental data for neural network training and verified their neural network 

results with experimental results. They stated that, neural network predicted results 

are in agreement with the experimental results which the trained neural networks had 

not seen before. 

 

Hocevar et al. [42] in their study utilized Radial Basis Function Networks for 

estimating the tracer concentration in a turbulent wake. They used the values of the 

tracer concentration at one location as the input while the values of the same 

parameter, but at a further location in the trailing edge, are used as the target values. 

They concluded that, as the distance between the regions selected for input and target 

data increases, estimation capability of the network degrades. They suggested 

considering Reynolds and Freude Numbers as neural network parameters for 

improvement of the model. 

 

Neural networks are also used for increasing the performances of other solution 

techniques. Manevitz et al. [43] considered time series neural networks for mesh 

adaptation in finite element methods used for solving time dependent partial 

differential equations. They used neural networks to predict the gradient and 

accordingly changed the mesh quality to coarse or fine when gradients are low and 

high respectively. They showed that, with the predicted gradient values and mesh 

adaptation, numerical method substantially improved. 

 

Dibike et al. [44] employed artificial neural networks for obtaining wave equation 

starting with hydraulic data which is somehow different from most of the neural 

network applications. They wanted to use the neural network weights to obtain the 

differential equations that govern one and two dimensional waves. They concluded 

that their resulting equations are in good agreement with the actual wave equations 

with slight differences in their coefficients. They stated that neural networks are 
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actually able to possess the same semantic concept with the nature when partial 

differential equations are assumed to represent the nature exactly. 

 

Fadare et al. [45] proposed a neural network model for prediction of friction 

coefficient inside closed pipes. They used feed forward neural networks for their 

study and used relative roughness and Reynolds Number as input parameters. They 

compared their results with Colebrook’s equation. Although they tried to 

approximate a function which is implicit in target parameter, they could obtain 

results in agreement with the actual values. 

 

Another study for friction calculation is done by Bilgil and Altun [46]. They stated 

that, use of empirical formulae derived for open channel flow results in inaccurate 

predictions of flow. They used experimental data for a neural network model for 

prediction of friction and thus flow and showed that neural network model is a 

reliable tool for friction factor calculation. They compared the conventional methods 

and neural network results with experimental results and stated the superiority of 

network model. Another study on open channel flow is conducted by Sahu et al. [47] 

They considered a neural network prediction method for river discharge calculation. 

They stated that, current prediction methods for river discharge are insufficient and 

trained a neural network for this purpose. They considered a multilayer feed forward 

neural network that is trained with experimental data. They concluded that, neural 

network model performs better than the current prediction methods. 

 

Rezazadeh et al. [48] in their study considered a neural network approach for 

predicting averaged cell voltage of Photon Exchange Membrane Fuel Cell (PEMFC) 

using a multi input single output neural network which is similar to the case of this 

study. They trained a multilayer feed forward network and compared its performance 

with that of a Radial Basis Function network (RBFN). They concluded that, a 

multilayer perceptron (MLP) performs similar to RBF while it includes much less 
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neurons. Some researchers considered RBFN as an interpolation tool in their studies 

[49, 50, 51, and 52]. 

 

Sivakumar et al. [53] compared MLP performance with that of Phase-Space 

Reconstruction (PSR) for river flow forecasting and concluded that PSR performs 

considerably better than MLP for long term predictions. They attributed this result to 

the difference between the approximation methods of two approaches. MLP lacks 

good approximation with its global approximation approach while PSR considers 

local approximations with local neighbourhoods. 

 

Although ANN are commonly used for solution of many industrial problems, neural 

networks should not be considered as tools capable of solving a complete problem. 

The major disadvantage of a neural network is that it needs many other tools like 

conventional algorithms to be used in the solution of a problem [54]. 

 

Bellman et al. [55] used artificial networks as an auxiliary tool in their optimization 

study for low Reynolds Number airfoils. They used genetic algorithm for shape 

optimization and Fluent for obtaining the results of the generated airfoil shape 

iteratively. They had to use an artificial neural network since the optimization 

procedure of genetic algorithm required large number of iterations while Fluent 

would take impractically long computation time. After certain amount of Fluent runs 

they continued with the trained network for performance evaluation. 

 

Milano et al. [56] considered using non linear neural networks for predicting near 

wall turbulent flow in closed conduits. They used data generated by Direct 

Numerical Simulation (DNS) for neural network training. They also considered 

Proper Orthogonal Decomposition (POD) equivalent to a linear neural network and 

they compared the results of linear and non linear methods. They concluded that 

nonlinear neural networks performed better. 
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1.3 SES Software and Basics of One Dimensional Modelling 

 

 

Before continuing with one dimensional modelling basics and SES software, a brief 

introduction to the theory of one dimensional incompressible flow is presented. For 

moderate train speeds where Mach number is below 0.3, incompressible flow 

assumption results in an accurate solution of governing fluid flow equations. 

Continuity and tunnel axis momentum equations need to be solved for obtaining one-

dimensional velocity of air induced by an axially moving object with a known 

blockage ratio. Basic parameters influencing the flow characteristics are tunnel 

properties such as length, area and friction coefficient and train properties like drag 

coefficient, skin friction coefficient, frontal area, length, perimeter and speed. 

 

Governing equations for the simplified one dimensional model, including friction 

and assuming infinite speed of sound are given below 
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where ρ is the constant air density, p is the air pressure, t is time and u is the one-

dimensional, axial velocity. According to the first equation, even though the flow 

field is unsteady, velocity can adjust itself to any changes immediately in the whole 

flow field due to the incompressible nature of the fluid. τ represents the external 

frictional force exerted on the air flowing through the annulus between the train and 

the tunnel walls and is given in Equation (1.3) [57].      
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where tunnelf  and trainf  are the friction coefficients that prevail in the annulus 

between the train and the tunnel. Although quite simplified when compared with 

non-homentropic flow that includes the effect of compressibility and does not 

necessarily assume equal entropy of outside and inside air, incompressible flow 

assumption proved to be successful in obtaining flow velocity in tunnels (Woods and 

Pope, 1979). Having stated the theory of one dimensional incompressible flow 

briefly, SES software and basics of one dimensional modelling is presented in the 

following section. 

 

SES is an authoritative software developed for subway environmental simulation 

purposes. SES basically utilizes MOC and can be used for both simulating natural 

ventilation induced by moving vehicles and forced ventilation supplied by ventilation 

fans. Note that, SES assumes one dimensional incompressible flow with infinite 

speed of sound which gives reasonable results in velocity calculations. For comfort 

ventilation purposes, SES can be used for simulation of multiple routes, multiple 

vehicles and multiple subway environmental structures such as ventilation shafts, 

tunnels, stations, staircases, axial ventilation fans and momentum exerting jet fans on 

the flow field. As long as the whole underground system is intended to be simulated 

at a time, 3D modelling cannot be considered as a means since it is practically 

impossible to solve the whole underground system with any conventional CFD 

package. Complexity of the actual systems together with the moving boundaries of 

multiple trains encountered in metro operations makes it almost impossible to work 

within a 3D domain. On the other hand, when dimensions of the underground 

structures are investigated in detail, it is seen that most of the system components 

have a very high length to hydraulic diameter ratio which makes it possible to model 

the system in one dimensional domain. 

 

Modelling an underground system in 1D requires careful reduction of dimensions 

into one. All three dimensional systems are approximated in one dimension 

successfully with the aid of major and minor head loss coefficients of the structures. 
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Since the flow is considered one dimensional, all flow resistances associated with the 

actual structures should be incorporated into the model. Basics of 1D modelling are 

presented in this section. 

 

Basic component of an underground system represented by a single axial dimension 

is a tunnel segment which has uniform cross sectional area, roughness height and 

slope. As long as these parameters of a segment are not changed, a single line 

segment is sufficient for modelling. In case of a cross sectional area change, a new 

line segment should be defined and minor head loss coefficient arising from the area 

change should be incorporated. In Figure 1-2, schematic representation of line 

sections, segments and nodes are presented. 

 

 

 

 
 

Figure 1-2 Schematics of 1D Modelling Components [58] 
 

 

 
In Figure 1-2, one can see that, whenever flow combines or splits at any node, a new 

section and associated segments should be defined in order to reduce the whole 3D 

system into a single one dimensional flow network. 
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Figure 1-1 can be read in terms of metro system components as follows: 

• First two angled sections; connected to each other and a 3rd

 

 straight section 

represents two separated bores of tunnels connecting at a cross-over section. 

This means that, while travelling inside the metro train, a passenger will not 

be able to see the other track because they are separated by walls or two 

tunnels are completely different bores. 

• Vertical section connected at the end of the first straight section corresponds 

to a ventilation shaft, equipped with a ventilation fan or not. Then, the larger 

section after the shaft section may correspond to a station section which can 

be much more complicated in case of an actual system. 

 

Having identified the system components in 1D modelling, one should incorporate 

the corresponding head loss coefficients into the model. Minor head loss coefficients 

are commonly due to; 

 

• A junction at which two angled sections meet (Angled Junction, value of the 

minor head loss depends on the angle of the junction) 

• A junction at which two sections meet with right angle (Tee junction, value of 

the minor head loss coefficient depends on the aspect ratio of the sections) 

• A junction at which two segments with different cross sectional areas are 

connected (Abrupt Area Change or Gradual Area Change, value of the minor 

head loss coefficient depends on the area ratio in abrupt change and angle of 

transition in gradual area change) 

• Flow obstructions like short segments with abrupt area change or 

constructional details which narrow the flow passages (Square Edge Orifice 

in flow, depends on the ratio of orifice area and tunnel area) 

• Portals to atmospheric conditions (Square Edge Orifice Entrance or Exit, 

value of head loss coefficient depends on the details of tunnel entrance and 
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exit geometry, most of the time, minor head loss for exit is taken as unity and 

for entrance, the value is taken as 0.34) 

 

All minor head loss coefficients are obtained from the literature and are obtained 

experimentally. In SES and proposed method, these minor head loss coefficients are 

used. Figure 1-2 and 1-3, directly adopted from SES User Manual; present the minor 

head loss coefficients for different cases. 

 

 

 

 
 

Figure 1-3 Minor Head Loss Coefficients due to Area Changes [58] 
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Figure 1-4 Minor Head Loss Coefficients due to Bends and Elbows [58] 
 

 

Reduction of a 3D structure to 1D through definitions of sections, segments and 

application of minor head loss coefficients is presented by a sample structure below. 

Note that, this structure is an extremely simple ventilation shaft which corresponds to 

a very minor part of an actual system. Presented structure is adopted from SES User 

manual and is an L-shaped ventilation shaft. In Figure 1-4, 3D view of the shaft is 

presented. 
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Figure 1-5 3D Shaft Model to be modelled in 1D [58] 
 

 

In Table 1-1, geometric details of the shaft segments are presented. 1D modelling 

and application of head loss coefficients are done based on these geometric data. 

 

 

Table 1-1 Geometric Details of Ventilation Shaft 

 

 Height [m] Width [m] Area [m] 

SEGMENT 1 4.6 3 13.9 

SEGMENT 2 9.1 3 27.9 

SEGMENT 3 4.6 3 13.9 
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When there is a sudden turn within a segment, then, head loss coefficients due to this 

turn should be applied both at the forward and backward boundaries of the segment. 

Head loss coefficients due to turns should be added to the head loss coefficients due 

to the area changes. 

 

In Figure 1-5, all head loss coefficients applied to the 3 segments of the ventilation 

shaft are given. Note that, head loss coefficients due to area change and due to turns 

are presented separately. 

 

 

 

 
 

Figure 1-6 Head Loss Coefficients for the Ventilation Shaft [58] 

 

Finally, one can represent the three dimensional ventilation shaft in a one 

dimensional model as seen in Figure 1-6. Note that, in one dimensional modelling, 

all head loss coefficients acting in the direction of flow are summed up to obtain the 

total head loss coefficient. One needs not to apply these coefficients at the very 

location of turns, bends, area changes or etc. 
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Figure 1-7 Representation of Ventilation Shaft in 1D model [58] 

 

 

1.4 Motivation 

 

 

Metro and road tunnels are among the most important investments of human on 

efficient transportation of passengers and goods. For this reason, there is huge 

amount of effort in design and optimization of tunnels and underground 

transportation systems all around the world. Before construction, simulation of 

designs in computer environment to check their performances is the most important 

stage of system design. Although hundreds of road tunnels and metro systems are 

designed every year, there is a short list of simulation tools that can be used during 

design stage. SES is one of these software tools and can be considered as a standard 

for most of the countries. In most of the projects in Europe and each and every 

project in Turkey, SES is referenced to be the simulation tool in technical 

specifications documents prepared by the authorities while it is not commercially 

available any more.  

 

Although SES is sufficient in computational means, this software requires a huge 

amount of pre-processing time and data input. Because of too much time required by 

SES, in many projects, only a few number of alternative designs can be considered 
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and simulated due to time constraints of the projects. To have much more time for 

design and optimization purposes, a simulation tool which can be configured and 

used for a complex system is proposed. By the proposed tool, modelling time is 

reduced to a much less value which enables user to change the system design within 

minutes and consider more number of design alternatives when compared to SES. In 

addition, proposed method is superior to SES when some of the technical limits of 

SES are considered. Although SES cannot simulate more than 75 trains at a time, 

proposed tool can be used for any practical number of trains in a simulation. This 

improvement makes the proposed tool a much better candidate to be used in road 

tunnel projects since hundreds of vehicles must be simulated in road tunnels. Another 

limitation of SES is on the drag coefficient of the vehicles. 1.5 is the maximum value 

that can be used in SES but in most of the tunnel projects, a sensitivity study 

considering different values of system parameters are required and engineers may 

consider much higher drag coefficients. Developed tool is also capable of using 

higher drag coefficient values than SES limits. 

 

Developed tool uses artificial neural networks as the processing units and some 

analytical means for modelling and simulation purposes. Artificial neural networks 

used in this study are trained with data generated by SES software. Based on a data 

driven method, developed tool is also a good candidate for laboratory and field 

measurement studies. It is developed in such a way that, results of any test and 

measurement study on piston effect phenomena can be easily included into the tool 

through training new neural networks or modifying the weights of the current 

networks. Inclusion of field data would improve the performance of the neural 

networks. 

 

Finally, tabulated nature of most of the international standards on safety and comfort 

like ASHREA, PIARC etc. makes them good candidates of neural network 

applications. These standards can be included into the tool for obtaining more 

sophisticated design software including both piston effect prediction and emission 
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calculations. Developed tool, improved with this additional capability, will be a 

reliable substitute for SES.  

 

 

1.5 Outline of the Thesis 

 

 

In this thesis, a hybrid method utilizing artificial neural networks and analytical 

means is presented. Organization of the thesis is as follows; 

 

• Success of artificial neural networks strongly depends on the characteristics 

of the data and the content of the data set. In order to include maximum 

possible knowledge about the phenomena into the model, training data set 

and associated variables should be selected with care. In first part of the 

second chapter, selection of input and target data and preparation of these 

data for neural network training is presented. Preparation of non-dimensional 

variables from the dimensional system parameters and equivalent system 

approach developed for non-dimensionalizing purposes is presented. 

 

• In the second part, before training the neural network for velocity prediction, 

an approximate analytical solution for the problem is proposed. With the 

derived analytical relation between velocity ratio and non-dimensional input 

parameters, type of the neural network is selected to be a feed-forward since 

the resulting relation is an explicit expression which implies no necessity for 

a recurrent structure in the neural network. 

 

• In third part of the second chapter, a neural network of type feed forward 

back propagation is trained with the prepared non-dimensional data. 

MATLAB’s Neural Network Toolbox is used for neural network training and 

testing. It is important to note that, neural network type is of great importance 
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since the characteristics and governing equations of the physics involved in 

the theory determine the suitable network structure. Cybenko’s well known 

theorem is referenced in this part, which is also supported by an analytical 

approximate solution in the 2nd section of the 2nd

 

 chapter. User is also 

provided with the results of training and test performances of different 

models namely Radial Basis Function networks (RBFN), Multivariate 

Adaptive Regression Splines (MARS), Polynomial Regression, and Kriging. 

By the comparison of the performances of alternative tools, selection of feed 

forward neural networks is justified. 

• The essence of the thesis is basically revealed in the 3rd section of the 2nd

 

 

chapter for the first time. Neural networks are strong tools for function 

approximation as long as there is enough data representing the actual system 

and the network is trained with the most general case. On the other hand, 

geometric nature of underground systems is so complicated that it is 

practically impossible to define a general underground transportation network 

structure. What is ideally proposed is that, a neural network would be trained 

for a limited domain and would still be capable of solving for a domain which 

is completely different from the one the network trained for. A single train 

inside a single tunnel is selected as the reference domain for neural network 

training. And with aerodynamically equivalent systems defined, trained 

neural network is used for solving multi-shaft tunnel systems. 

• With the promising results of trained neural network together with analytical 

means proposed, in the 4th section of the 2nd chapter, appropriateness of the 

selected neural network type for the very purpose of the study is questioned. 

In this section, an approximate analytical solution for maximum induced air 

velocity inside a single tunnel is obtained. Main purpose is to check whether 

the analytical approximate solution meets the characteristics of the selected 

neural network type in terms of transfer function. It is seen that, approximate 
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solution is an explicit relation between the selected input variables and the 

maximum air velocity which implies no need for a memory of neural 

network. Feed forward neural network is considered as appropriate for the 

purpose of the study. 

 

•  In 5th section of the 2nd

 

 chapter, an additional neural network is trained. This 

additional network is responsible for obtaining the time average of the air 

velocity. Knowledge of average velocity in addition to the maximum velocity 

gives more detail about the profile of the velocity. Air velocity profile in the 

first region within which the velocity builds up to its maximum or steady 

state value is assumed to be linear. This assumption together with the 

predicted maximum and average velocities lead to the prediction of 

approximate time at which the air velocity profile attains its steady state 

value. 

• In the 6th

 

 section, a brief explanation on the effect of initial velocity inside a 

tunnel is given. Since the neural networks are trained to predict average and 

maximum air velocities in tunnels with zero initial velocity, it requires 

accounting for the initial momentum inside the tunnel in simulations. 

• In the 7th section of 2nd chapter, an additional neural network is trained for 

predicting time dependent velocity profile of air in case of train departure 

from the system. First, an analytic relation basically derived from the force 

balance on the fluid column inside the tunnel is obtained. With the obtained 

relation, non-dimensional friction and non-dimensional time is defined and 

used as neural network inputs. Trained neural network is capable of 

predicting air velocity for given system parameters at any instant of time 

within the interval of air flow dampening. Trained neural network is different 

than the previously trained network in such a way that it considers time as an 
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input. Same approach, with modifications, forms the basis for simulating train 

stoppage inside the tunnel or a station. 

 

• Having trained a neural network that predicts the time dependent air velocity 

profile in case of train departure, same neural network is used for predicting 

time dependent air velocity in case of train stoppage inside the system. 

Previously trained neural network is used without any modification in its 

structure but only the input data is modified to include the effect of vehicle 

form drag and skin friction.  

 

• To complete the proposed model, it is necessary to include the effect of 

multiple trains into the model. In metro systems, there always is more than a 

single train so effect of multiple trains is investigated by the aid of sensitivity 

studies done with SES. Proposed method for multiple train simulations is 

presented in the 9th

 

 section of Chapter 2. 

• In Chapter 3, developed tool in Simulink environment using artificial neural 

networks and analytical means is described in detail. All components of the 

simulation tool are explained with their corresponding graphical user input 

dialogs. A sample case is then prepared in a step by step fashion for guiding 

the reader throughout the modelling process. Screen captures for steps of the 

sample case and all necessary connections are also presented. 

 

• In Chapter 4, all proposed methods are questioned through 3 case studies. In 

the first case study, applicability of the proposed method for multi-shaft 

tunnel systems is questioned. Obtained results proved to be in good 

agreement with the reference values obtained by SES. 2nd case study is for 

examining the model for multiple trains. 3rd and the final case study is a 

complete simulation of an actual metro system in Ankara. In this case, 

“Hastane” station is simulated with the neural network model and results are 
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compared with field measurements and SES simulations of the same station. 

Results show that, proposed model can be used for very complicated 

underground transportation structures as a design and analysis tool. 

 

• Finally, an overall evaluation and conclusions for the thesis and studies 

conducted in the thesis are presented in conclusions part. Possible further 

studies and extensions of this thesis are also considered in the last section. 
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CHAPTER 2 

 

 

2 NEURAL NETWORK MODEL 

 

 

 

Proposed method for simulating time dependent air velocity variation in complex 

metro systems using neural networks starts with the simplest case of a single train in 

a single tunnel. Although the study aims developing a tool that can be used for 

complex underground systems, it is practically impossible to train a neural network 

for the most general underground system configuration. Underground transportation 

systems can vary in configuration within a very wide range of possible alternatives. 

For this reason, a very simple case of a single tunnel is used for neural network 

training. Then, using analytical means and circuit analogy of the fluid flow, trained 

neural networks are used for predicting air velocities in complex metro systems. 

 

Three different neural networks are trained for approximating the time dependent 

velocity profile in three regions. Figure 2-1 represents the procedure followed for 

neural network modelling. 
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Multiple trains travelling inside a metro system with multiple stations, tunnels and 
ventilation shafts are to be simulated. 
 

 

There is not a single pattern for station, tunnel and shaft configurations. So, initially, 
simplest case of single train inside a single tunnel is adopted. 
 

 

SES simulations of single train-single tunnel case with different values of system 
parameters are run. Corresponding time dependent air velocity variation values are 
obtained. 
 

 

Instead of training a single neural network for whole time domain, 3 different regions are 
considered. For each region, a single neural network is trained. Second region data is used 
for training a neural network for maximum air velocity prediction. First region is used 
together with second region for prediction of time average of air velocity for the first two 
regions. Finally, a time dependent neural network is trained for the last region which 
physically corresponds to the train departure or stoppage. 
 

 

 
Figure 2-1 Neural Network Modelling Approach 

 

36 
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2.1 
 

 

Before constructing a neural network model for a train traveling at a constant speed 

through a tunnel, non-dimensional groups that can be used as the input and target 

parameters need to be selected. Maximum air velocity,

Preparation of Input and Target Data for Neural Network Training 

airV  , that will be generated in 

the tunnel by the train's motion is the main output. airV is affected by the parameters 

shown in the first 10 rows of Table 2-1. Most of these parameters are geometric, such 

as the length, hydraulic diameter and cross-sectional area of the tunnel and the train, 

as well as the lateral area of the train. There is also the friction factor for the concrete 

wall of the tunnel, which is taken to be constant at 0.02 for low speed underground 

transportation. Finally there are two drag coefficients; DC is the form drag coefficient 

based on the frontal area of the train and trainf  is the skin friction coefficient based on 

the lateral area of the train. 

 

In order to reduce the complexity of the problem and increase the computational 

efficiency of the neural network model that will be developed, five non-dimensional 

parameters are formed, four of which will be used as inputs and one will be the 

target. First input parameter is the friction head loss coefficient in the tunnel, 

represented by ( )tunnelDfL / . Note that, minor head loss coefficients due to abrupt and 

gradual area changes and entrances and exits of tunnels are also included during 

neural network training, but are not represented explicitly and rather included in the 

( )tunnelDfL /  term. By this approach, any head loss structure in the tunnel can be 

introduced to the neural network during simulations without any modifications of the 

network. Blockage ratio, tunneltrain AA  and trainDL )( are selected to be non-

dimensional input parameters to represent the systems geometry. As the fourth input 

parameter, trainf , DC , trainA and lateralA  are combined into a single overall drag 

coefficient based on the train frontal area thorugh the relation 
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( ) trainlateraltraintrainDoverallD AAfACC /_ += . Non-dimensional speed ratio, trainair VV is 

selected to be the only target parameter. 

 

Neural network is trained with these 4 input and a single output parameter that are all 

non-dimensional. Using the ratio of air speed to train speed as the target parameter 

instead of using these speeds as two separate parameters leads to two major 

advantages.  

 

• First one is the reduced number of parameters and consistency in working 

with non-dimensional parameters.  

 

• Second and the more important advantage is the fact that the speed ratio 

results generated by the neural network can be used for any train speed to 

calculate the induced air speed. It would not require any additional runs for 

different train speeds as long as the 4 non-dimensional input parameters are 

not changed.  

 

The idea that proposes 4 non-dimensional input parameters to be sufficient for 

complete characterization of the train-tunnel system is questioned with a sensitivity 

study. A total of 9 simulations are performed with SES software to obtain the 

maximum velocities induced by a train moving at a speed of 40.2 m/s. As shown in 

Table 2-1, values of various input parameters in these 9 runs are selected so that 3 

sets, each including 3 simulations with different dimensional, but equal non-

dimensional input parameters are formed. 
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Table 2-1 Input of equivalent systems with respect to 4 non-dimensional input 
parameters 

 

 EQUIVALENT  

SET 1 

EQUIVALENT  

SET 2 

EQUIVALENT  

SET 3 

 1 2 3 4 5 6 7 8 9 

tunnelf  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

tunnelL  5182 7315 3682 23165 10973 15109 366 184 259 

tunnelD  3.9 5.5 2.7 6.4 3.0 4.2 6.5 2.7 3.9 

tunnelA  15 30 7.5 41 9 17.5 29.7 7.5 15 

trainA  7.3 14.4 3.6 16.8 3.6 7.3 14.4 3.6 7.3 

trainD
 

2.7 3.8 1.9 4.1 1.9 2.7 3.8 1.9 2.7 

trainL  21.6 30.5 15.2 30.5 14.5 19.8 61.0 30.5 43.3 

lateralA  236.7 470.1 117.8 495.8 111.7 210.6 470.1 117.8 236.7 

trainf  0.012 0.012 0.036 0.012 0.058 0.036 0.012 0.030 0.024 

DC  0.87 0.25 1.36 0.25 0.96 0.35 0.99 0.75 0.8 

 Non-dimensional parameters 

tunnelD
fL








 
26.8 26.8 26.8 72.3 72.3 72.3 1.34 1.34 1.34 

tunnel

train

A
A

 
0.5 0.5 0.5 0.4 0.4 0.4 0.5 0.5 0.5 

trainD
L








 
7.9 7.9 7.9 7.5 7.5 7.5 15.8 15.8 15.8 

overallDC  1.8 1.8 1.8 1.8 1.8 1.8 1.2 1.2 1.2 
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SES results obtained for each case are given in Table 2-2. As seen, for each set, 

equivalency of non-dimensional input parameters is enough to obtain the same air-to-

train speed ratio within acceptable error limits. It is possible to conclude that the 

proposed 4 non-dimensional input parameters are sufficient to define 

aerodynamically unique configurations. 

 

 

Table 2-2 Results for equivalent systems with respect to 4 non-dimensional input 

 

Equivalent 
Set 1 2 3 

Simulation 
No. 1 2 3 4 5 6 7 8 9 

airV  (m/s) 5.9 6.1 5.9 3.2 2.9 3.1 18.4 19.8 19.5 

trainair VV  0.147 0.152 0.147 0.080 0.072 0.077 0.457 0.492 0.482 
 

 

 

2.2 On the Selection of Feed Forward Neural Networks 

 

 

Before neural network training, type of the neural network that is appropriate for the 

purpose of the study is determined through an analytical approximate solution. Main 

idea behind the current effort is to check whether a recurrent type of neural network 

is necessary or a feed forward neural network can be used as the solver. Although 

this approximate solution does not give the numerical values of velocity ratio, it is 

obtained for observing the characteristics of the equation that relates the selected 

non-dimensional parameters to velocity ratio. 

 

Using appropriate boundary conditions, a relation between the previously selected 

non dimensional numbers and velocity ratio is obtained. Since the flow is assumed to 
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be one dimensional due to the high length to hydraulic diameter ratios encountered in 

metro systems, and assuming incompressible flow of air with Mach number values 

less than 0.3, equations (1.1) and (1.2) can be used as the governing differential 

equations of the flow. 

 

In search of the maximum air velocity to train velocity ratio, with a method that 

utilizes maximum air velocity in Equation (1.2) and considers the instant at which 

the velocity profile attains its maximum value, i.e. time derivative of air velocity 

tends to zero, following series of derivations  are obtained. 

 

0
max

=
∂
∂

Ut
u ,     (2.1) 

 

With Equation (2.1), Equation (1.2) takes the form; 

 

( )[ ] 0
2

11
maxmaxmaxmax =−−+−

∂
∂

trtrtrtrainTuntunnel
An

SVUVUfSUUf
Ax

p
ρ

 , (2.2) 

 

For sake of simplicity, to be expanded at the very end, some parameters are grouped 

and renamed with appropriate expressions. 

Inverse of hydraulic diameters, 'D ,are defined with respect to annular area between 

the train and the tunnel and are expressed as follows; 

 

( ) 







=

−

An

Tun
tunnel A

SD
2

1' ,      (2.3) 

( ) 







=

−

An

Tr
train A

SD
2

1' ,      (2.4) 
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In equations (2.3) and (2.4), hydraulic diameters of tunnel and train are re-defined 

using the parameters apparent in the governing equations. Since the main idea is to 

capture a relationship between the non dimensional numbers that are being subject to 

neural network training, definitions of hydraulic diameters do not necessarily meet 

the actual definition for hydraulic diameter. 

 

With above definitions, integrating Equation (2.2) with respect to x, flow axis, 

pressure distribution along the tunnel axis can be obtained in terms of parameters 

presented in equations (2.3) and (2.4) together with unknown air velocity and known 

train velocity. 

 

Integrating (2.2) with respect to x gives 

 

( ) CVU
D

xfU
D

xfP tr
train

train
tunnel

tunnel +−−= 2
max'

2
max' ρρ .   (2.5) 

 

Note that, absolute value in the 3rd

atmP

 term in Equation (15) results in a negative sign 

since both the air and train velocities are in the same direction latter being greater. 

 

Constant C is obtained substituting the inlet boundary condition of  in Equation 

(2.5). Final form of the pressure distribution takes the following form 

 

( )2max'
2
max' tr

train
train

tunnel
tunnelatm VU

D
xfU

D
xfPP −−+= ρρ .   (2.6) 

 

Solving the problem for a single tunnel makes it possible to further apply a second 

boundary condition at exit. Note that, dealing with metro tunnels makes it quite 

independent of ambient pressure since no large stack heights of tunnels are 

encountered due to technical limitations of metro trains travelling on metallic wheels. 
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Applying exit ambient pressure of atmP  at exit of tunnel (i.e. tunnelLx = ), Equation 

(2.6) can further be simplified in selected variables. 

( )2max'
2
max'0 tr

train

tunnel
train

tunnel

tunnel
tunnel VU

D
LfU

D
Lf −−= ρρ .   (2.7) 

 

Before concluding the derivation, defining inverse of velocity ratio as the following: 

 

max

1

U
Vtr=−β .     (2.8) 

 

And defining loss coefficients as follows; 

'
tunnel

tunnel
tunneltun D

LfK ρ= ,      (2.9) 

'
train

tunnel
traintr D

LfK ρ= .             (2.10) 

 

Equation (2.7) can further be simplified to give equation 

 

tr

tun

K
K

−=− −11 β .      (2.11) 

 

Rearranging Equation (2.11) with all the predefined parameters, following relation 

between air velocity to train velocity ratio and non dimensional numbers can be 

obtained as 

 
1

'

'

1

−



















+=

train

tunnel
train

tunnel

tunnel
tunnel

D
Lf

D
Lf

β .                 (2.12) 
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Note that, in Equation (2.12), tunnel length to train hydraulic diameter ratio seems to 

come into picture instead of train length to train hydraulic diameter ratio. But one 

should note that, above simplified approximate solution assumes a train length equal 

to that of the tunnel which results in only the skin friction of the train lateral area. 

Assuming a train length shorter than the tunnel length would require the inclusion of 

both skin friction and frontal drag coefficient of the train. Then Equation (2.12) can 

be expressed as the following; 

 
1

'

'

1

−



















+
+=

D
train

train
train

tunnel

tunnel
tunnel

C
D
Lf

D
Lf

β .     (2.13) 

 

It is now better to use an overall drag coefficient instead of D
train

train
train C

D
Lf +'  term in 

Equation (26). Note that this term is nothing but the overall drag coefficient adopted 

during neural network training process. Then, Equation (2.13) takes the following 

form. 

 
1

_

'

1

−



















+=
overallD

train

tunnel
tunnel

C
D
Lf

β .     (2.14) 

 

Overall drag coefficient on the other hand, is dependent on the geometrical features 

of both tunnel and the train. It is, from the experimental studies, known that, overall 

drag on a vehicle travelling inside a tunnel depends on the blockage ratio, σ, of the 

train in tunnel and the length to hydraulic diameter of the vehicle. 
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From the experimentally obtained family of curves representing the relation between 

drag coefficients, length to diameter ratio and blockage ratio, sample figures are 

considered and presented in Table 2-3 and 2-4. 

 

 

Table 2-3 Effect of Length to Hydraulic Diameter on Drag Coefficient for Constant 

Blockage Ratio of 0.7 

 

( )trainDL /  60 30 15 5 

DC  250 140 86 45 
 

 

 

Table 2-4 Effect of Blockage Ratio on Drag Coefficient for Length to Diameter 

Ratio of 60 

 
σ  0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

DC  250 93 37.5 18.5 10 6 4 3 

 

 

 

Using data in Table 2-3 and 2-4, curves are fitted for '/ traintrain DL  and σ versus drag 

coefficient. Obtained plots show that, a linear relationship between length to 

diameter ratio and drag coefficient is observed while a 5th degree polynomial fits the 

data in Table 2-4 with a Coefficient of Determination (R2) of unity. By these results, 

Equation (2.14) is re-expressed as in Equation (2.15). 
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( )

1

'
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'

1

−


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








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
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+=

train

train

tunnel

tunnel
tunnel

D
LP

D
Lf

σ
β .    (2.15) 

 

Although exact polynomials for different length to diameter ratios are not expressed, 

main objective of obtaining a relation between non-dimensional groups is 

accomplished herein. Obtained approximate solution shows that, velocity ratio can 

be expressed with an explicit equation of non-dimensional input parameters not 

requiring an iterative solution, thus needs no memory in neural network to be 

selected. This derivation concludes that feed-forward neural networks, not like 

recurrent neural networks possessing memory, can be used for the purpose of this 

study. 

 

 

2.3 
 

 

To simulate a realistic underground transportation system, multiple tunnels with 

multiple trains, shafts, stations, etc. need to be considered. In the current effort, a 

simplified case with a train travelling at a constant velocity in a single tunnel without 

ventilation shafts is studied. Neural network trained for single tunnel then will be 

used for simulating any practical number of ventilation shafts and corresponding 

tunnels in between them. It is possible to train different neural networks for different 

number of ventilation shafts, but this is not practical. Instead, as seen in Table 2-5, a 

single neural network is trained for a simple train-tunnel configuration without any 

shafts. After training the neural network for a tunnel-only case it is used for cases 

including any number of blast shafts by defining an equivalent single train-tunnel 

system using simple analytical calculations. 

 

Training Neural Network for Predicting Maximum Induced Air Velocity 
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Table 2-5  Neural Network Training and Its Capabilities 

 

Neural network is trained with 

 

A single tunnel with the 

following parameters 

    Tunnel length 

    Tunnel area 

    Tunnel perimeter 

    Tunnel wall friction factor 

Neural network can solve maximum air velocity for 

 

Multiple tunnels and shafts 

with the following parameters 

    Tunnel length 

    Tunnel area 

    Tunnel perimeter 

    Tunnel wall friction factor 
 

    Shaft length 

    Shaft area 

    Shaft perimeter 

    Shaft wall friction factor 

 

 

 

Neural network calculations are performed with MATLAB's neural network toolbox. 

Feed forward type neural network with a single hidden layer is selected based on the 

theoretical fact proposed by Cybenko [59] and the approximate analytical solution 

derived in the previous section of this chapter. Approximate solution shows that, 

        
  

Multiple tunnels separated 
with shafts 

 Single tunnel 
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velocity ratio is an explicit function of the selected non-dimensional input parameters 

and can be predicted by feed-forward type neural network. Number of neurons in the 

hidden layer can be selected using the heuristic given with the following inequality 

suggested by Weigend et al [60] as 

 

                                  [ ] NPNINHNP 31101.1 ≤+≤                                      (2.16) 

 

where NP is the training sample size, NH is the number of neurons present in the 

hidden layer and NI  is the number of neurons in the input layer, which is inherently 

equal to the number of input parameters. In training the neural network 400 input 

samples are created with SES software by using different values for the 4 non-

dimensional input parameters discussed in the previous section. Input parameter 

values are selected carefully by considering practical upper and lower limits of 

dimensional parameters typically encountered in real-world applications. 

Using 400=NP and 4=NI , inequality (2.16) provides the following interval for the 

number of hidden neurons 

                                                          248.8 ≤≤ NH                                         (2.17) 

Different NH values in the above interval are used for training the neural network 

and the results are presented in Table 2-6. MSE stands for the Mean Square Error 

and 2R  is the Coefficient of Determination, both of which are calculated by 

MATLAB Neural Network Toolbox during training and with the equations 2.18 and 

2.19 for test runs. 

 

( )∑
=

−=
n

i
ii yy

n
MSE

1

2ˆ1
 ,                                           (2.18) 

 

where iy  is the ith iŷ observed target value,  is the ith predicted target, and n denotes 

the number of observations. 
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where, y  is the mean response. 

 
 
 

Table 2-6 Results of sensitivity study on number neurons in hidden layer for 400 

training runs and 112 test runs 

 

Number of neurons in 
hidden layer (NH) 

 
Training runs Test runs 

 epoch MSE 2R  MSE 2R  
12 122 0.0083 0.999 7.9 ×10 0.988 -5 
16 53 0.0066 0.999 6.3 ×  10 0.991 -5 
20 71 0.0096 0.999 8.2 ×  10 0.989 -5 
24 179 0.0046 0.999 9.0 ×  10 0.987 -5 

 

 

 

In neural networks training, trainbr function of MATLAB is used which utilizes 

Levenberg-Marquardt optimization for updating the weights of the neural network. 

Training sample is divided into three groups for training, validation and testing the 

neural network. Percentage of data divided for training, validation and test are the 

default values of neural network Toolbox with the values of 70%, 15% and 15% 

respectively. In neural network training, early stopping, which is a method for 

preventing over-fitting, is also automatically applied by neural network toolbox. As 

the performance function MSE is used. In addition to the 400 inputs, although 

MATLAB Neural Network Toolbox makes test runs with a predefined percent of 

input data during training, an additional 112 test cases are created to test the 

performance of the neural network. Performance for these test runs with different 

number of hidden layer neurons is presented in Table 2-6. Performance parameters 
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presented are obtained by running simulations with the trained neural network and 

comparing the results with those provided by SES software. After examining the 

results given in Table 2-6, a neural network with 16 neurons in its hidden layer is 

selected to be the most appropriate one and the results presented in the rest of this 

study are obtained with this selection. 

 

In addition to feed forward neural networks, Radial Basis Function Neural Networks 

(RBFNN) with equal number of neurons with input data, Multivariate Adaptive 

Regression Splines (MARS), Polynomial regression and Kriging models are also 

considered. RBFNN with exact fit can be considered as a means for data 

interpolation and stated as unsuccessful for extrapolation in literature [49]. MARS is 

a statistical non-parametric regression model which approximates the non-linear 

relationship that may exist between the input variables and the target [61]. 

Polynomial regression is a common statistical model which approximates the relation 

between input and target using 2nd order terms and second order interactions of input 

parameters. Kriging method is also a powerful interpolation tool with a wide range of 

correlation functions with a disadvantage of considerable long model construction 

[62]. In Table 2-7, performances of feed forward network with 16 hidden neurons, 

RBFNN, Polynomial Regression, Kriging and MARS are presented. One can see 

that, feed forward network prediction possesses the best performance parameters 

among the considered. One should also note that, although training performance of 

Kriging and RBFNN models are extremely high (exact fit), their performance 

strongly degrade for test data which models have not seen before. This result can also 

be interpreted as feed forward neural networks are the best selection among the 

considered modelling approaches for the very purpose of this study. 

 

 

 

 

 



51 
 
 
 

Table 2-7 Comparison of Performances for Different Models 
 

Number of neurons in 
hidden layer (NH) 

Training runs Test runs 

 MSE 2R  MSE 2R  
FFNN (16 Hidden Neurons) 5.7 ×  10 0.999 -3 6.3 ×  10 0.991 -5 
RBFN (exact fit) 1.1 ×  10 1 -21 7.8 ×  10 0.851 -4 
MARS 3.4 ×  10 0.991 -4 1.7 ×  10 0.673 -3 
Polynomial Regression 5.0 ×  10 0.980 -4 5.8 ×  10 0.813 -4 

Kriging 8.5 ×  10 1 -26 6.1 ×  10 0.389 -3 
 

 

 

Velocity ratio results of 112 test runs with feed forward neural network with 16 

hidden neurons in comparison with the actual SES results are presented in Figure 2-

1. Abscissa in Figure 2-1 corresponds to the sample number while ordinate is the 

velocity ratio results obtained by SES and trained neural network. One can see that, 

trained neural network is capable of estimating the velocity ratio for test runs that it 

has not seen before. It is possible to conclude that trained neural network is capable 

of providing acceptable velocity ratio estimates in an interval of 0.07 – 0.37, which 

are the practically encountered values in metro systems around the world. 

 



52 
 
 
 

 
 

Figure 2-2 Neural network and SES results for the runs on 112 test samples 
 

 

2.4 Extension of Developed Model for Complex Systems 

 

 

After training and testing the neural network based on a single tunnel, developed 

method is extended for use in complex systems. As a starting point, the system 

shown in Figure 2-2 with a ventilation shaft is studied. Although the trained neural 

network is capable of predicting induced air velocity for a single tunnel, an approach 

utilizing equivalent head loss coefficients for a tunnel segment and connected 

ventilation shaft is proposed to obtain the maximum induced air velocity in the 

tunnels with ventilation shafts. For this purpose, following procedure is applied. 
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Figure 2-3 Schematics of two tunnel segments separated by a ventilation shaft 

 

 

• While the train is travelling inside the first tunnel, i.e. before the shaft, an 

equivalent head loss coefficient is obtained for the shaft and the 2nd

 

 tunnel 

considering the fact that they are parallel conduits located between the same two 

pressure potentials. This equivalent head loss coefficient is given in Equation 

2.20.  

DfLAK )1( 2= .    (2.20) 

 

A  is the cross sectional area of the tunnel segment in which the train is 

travelling. Both the shaft and the 2nd

DfL /

 tunnel are located between the pressure of 

tunnel-shaft intersection point and outside atmospheric pressure. Figure 2-3 (a) 

is the representation of the proposed method. Summing the equivalent head loss 

obtained for the part inside the red rectangle in Figure 2-3 (a) with the head loss 

coefficient of the first tunnel in which the train is travelling, a modified value 

of term is seeded to neural network instead of modifying the structure of 

 

shaftshaft

shaftshaft

fS
AL

,

,
 

fS  

22

22

,

,

tunneltunnel

tunneltunnel

fS
AL

 
11

11

,

,

tunneltunnel

tunneltunnel

fS
AL

 

Tunnel 1 Tunnel 2 



54 
 
 
 

the neural network. This approach is also extended to be used for multiple 

tunnels and ventilation shafts with a similar methodology. 

 

• Same approach is applied to obtain an equivalent head loss coefficient for the 1st 

tunnel and the shaft while the train is travelling through the 2nd

 

 tunnel as seen in 

Figure 2-3 (b). 

• Having obtained the equivalent head loss coefficient eqK  for one of the tunnels 

and the shaft, trained neural network is used with the sum of K  values (which 

are the 1st DfL / non-dimensional parameter for neural network ( ) ) of the tunnel 

through which the train is travelling and that of the equivalent system formed by 

shaft and the remaining part of the tunnel.  

 

K  value for the equivalent system represented by the region within the indicated 

boarders of Figure 2-3 is obtained as follows 

 

                                        tsT QQQ += ,                                                 (2.21) 

                                  222
ttssTeq QKQKQK == ,                                     (2.22) 

 

where tQ is the flow rate inside the 2nd tunnel when the train is travelling inside the 

1st tunnel and it is the flow rate inside the 1st tunnel when the train is travelling inside 

the 2nd
sK tunnel. is the head loss coefficient of the shaft. tK is the head loss 

coefficient for the 2nd tunnel when the train is travelling inside the 1st tunnel and it is 

the loss coefficient of the 1st tunnel when the train is travelling inside the 2nd

TQ

 tunnel. 

is the total flow rate inside the tunnel and shaft combination for which the 

equivalent loss coefficient is being calculated for. Equation (2.22) is derived using 

the fact that the tunnel segment without the train in it and the ventilation shaft are 

parallel conduits placed between the atmospheric pressure at their exit and pressure 
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at the intersection node. Hence, head loss in the ventilation shaft is equal to the head 

loss in the tunnel segment that is parallel to the shaft. 

 

 
(a) 

 
(b) 

 

Figure 2-4 Introduction of effect of ventilation shaft to the model while the train is 

moving inside the 1st (a) and the 2nd (b) tunnels 
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Equation (2.21) is used in Equation (2.22) to obtain 

 

                                                222)( ttsstseq QKQKQQK ==+ ,                            (2.23) 

 

which is solved to obtain the following equivalent resistance 

     

t

s

t

s

s
eq

K
K

K
K
KK

++
=

21
.                                      (2.24) 

 

This approach is used for 4 different cases with parameters shown in Table 2-8. 

 

 

Table 2-8 Parameters of 4 cases with ventilation shaft 

 

  
Case 1 Case 2 Case 3 Case 4 

1tunnelL  m  950 2200 2200 950 

2tunnelL  m  2200 950 2200 2200 

1tunnelA  
2m  50 34 34 50 

2tunnelA  2m  34 50 34 34 

shaftL  m  45 45 45 45 

shaftA  
2m  12 12 12 12 

smK  - 1 4 5 1 

trainL  m  120 80 202 44 

trainA  
2m  9 9 9 15 

DC  for train front - 0.14 0.44 0.14 1.1 

trainf  - 0.023 0.023 0.023 0.023 
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Four cases given in Table 2-8 are simulated by the previously trained neural network 

combined with the equivalent head loss coefficient approach as well as the SES 

software. A new parameter shown as smK in this table represents minor head loss 

associated with the shaft. It is used to study shafts with different geometries such as 

contraction and expansion details or different grill structures. smK  of a shaft is 

combined with the major head loss of the shaft to create sK that was used in Equation 

(2.22). In all cases given in Table 2-8, a constant train speed of 140 km/h is used. 

Table 2-9 provides the results obtained. It is seen that the neural network trained for 

a no-shaft case can predict maximum air velocities before and after the shaft with 

deviations less than or equal to 10 % based on the results of SES software. It is also 

observed that increasing the number of shafts and making the tunnel system more 

complicated does not change the practicality of the proposed approach and the 10 % 

accuracy mentioned above does not degrade. 

 

 

Table 2-9 Velocity ratio results for cases with ventilation shaft 

 

Tunnel segment before the shaft 

 Case 1 Case 2 Case 3 Case 4 
SES 0.107 0.174 0.206 0.169 
Neural Network 0.104 0.189 0.189 0.169 
% error 3 9 8 0 

Tunnel segment after the shaft 

 Case 1 Case 2 Case 3 Case 4 
SES 0.206 0.147 0.246 0.301 
Neural Network 0.201 0.137 0.221 0.293 
% error 2 7 10 3 
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Prediction capability of the Neural network Model is further questioned in 3rd

2.5 Training Neural Networks for Predicting Average Air Velocity 

 chapter 

of the thesis. Additional runs for different configurations of tunnel systems ranging 

between a multiple shaft system and a complex station structure is considered in 

detail.  

 

 

 

 

Trained neural network cannot be directly used for determining time dependent 

velocity profile since it has only the capability of deriving the maximum air velocity 

from the non-dimensional input parameters used for training. However, some 

analytical methods can help obtaining the time dependent velocity profile of the air 

in presence of the maximum air velocity magnitude obtained by the neural network. 

Different intervals of velocity profile are defined in Figure 2-4 and approximations 

for these intervals are explained in detail. 

 

 

 
 

Figure 2-5 Typical Time Dependent Velocity Profile in a Tunnel 



59 
 
 
 

A neural network of the same characteristics with that of responsible for calculating 

maximum velocity is trained for obtaining average velocity of the air throughout the 

vehicle trip. By using the predicted average velocity, velocity profile at the 1st 

Region of the V-t graph in Figure 2-4 is approximated. Average velocity is used to 

obtain the time required for air to attain its maximum velocity, magnitude of which is 

predicted by the neural network. Figure 2-6 represents the proposed approach for 

velocity profile approximation in the 1st Region. 

 

 

 
Figure 2-6 Approximation of 1st
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Using Average velocity and maximum velocity together with the area under the 

trapezoid, time of flattening of the curve is obtained using following geometrical 

relation;  

.    (2.25) 
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Equation (2.25) can easily be obtained using geometrical relations. In Equation 

(2.25), flatt  is the time at which the velocity profile gets steady, maxt  is the time at 

which the velocity is known to reach its maximum by the aid of neural network, averv  

is the average velocity which is also obtained using neural networks and maxv  is 

again a result of neural network predicted within about  %90 accuracy. 
 

 

 

2.6 Effect of Initial Air Velocity in a Tunnel on the Induced Air Flow 

 

Trained neural networks are capable of predicting maximum and average air 

velocities in case the initial air velocity inside the tunnel is zero and train enters the 

tunnel with a constant speed which is not always the case. When train is travelling 

inside a tunnel, induced air flow is split at a ventilation shaft junction, part of it 

flowing through the ventilation shaft while the remaining part flows into the next 

tunnel. To be able to predict air flow rate in the next tunnel, initial flow should be 

taken into account. For this purpose, superposition of initial momentum in the tunnel 

and the momentum induced by the train and calculated by neural network are 

considered. With the obtained final momentum, air flow rate in the tunnel with an 

initial velocity is calculated. 

 

 

2.7 Time Dependent Air Velocity Profile In Case of Vehicle Departure 

 

 

For predicting the time dependent air velocity profile in 2nd

( )tunnelkDfL +/

 region, a new neural 

network of type feed-forward back propagation is trained with 2 non-dimensional 

inputs. First input is the non-dimensional friction of the system, , and 

the second one is the non-dimensional time defined as AirVtv /max . For selection of 
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non-dimensional input parameters, an analytical approximate solution is obtained.  

Approximate analytical solution considers the air inside the tunnel as a rigid body 

and utilizes friction forces which act in the opposing direction to initial air flow. 

 

Method basically utilizes free body diagram of the air column occupying the tunnel 

interior and moving with an initial speed of maximum air velocity induced by the 

vehicle. 

Newton’s Law of motion is applied over the fluid column keeping the 

incompressible nature of the flow; 
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Integrating Equation (2.26) between initial velocity V0
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Re-expressing Equation (2.28) in non-dimensional form, Equation (2.29) is obtained. 

Non-dimensional terms appearing in Equation (2.29) are used for neural network 

training. 
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Corresponding Non-dimensional Friction and Non-dimensional Time are defined 

below. 

 

tunnel

tunnel
tunneltunnel D

L
fkNDF +=̂

    

(2.30) 

tunnelL
tv

NDT
2

ˆ max=

    

(2.31) 

 

where NDF and NDT are abbreviations for Non-dimensional Friction and Non-

dimensional Time respectively. 

 

There are 625 non-dimensional friction values in training data together with 7 non-

dimensional time parameters making a training data set of 4375 samples. For neural 

network training, 4000 of the data set is used. Large number of samples results in a 

considerable high number of hidden neurons in a single hidden layer network so a 

deeper neural network with 2 hidden layers is considered. First hidden layer has 8 

hidden neurons while the second hidden layer has 10 neurons in the selected neural 

network. Additional neural networks are trained and their performances are 

compared in Table 2-10. Results of the selected neural network together with SES 

results are presented in Figure 2-6. In Figure 2-6, abscissa corresponds to the sample 

number while ordinate is the velocity ratio results obtained by SES and trained neural 

network 

 

Note that, although recurrent neural networks are better candidates for times series 

prediction, since proposed method does not provide any information about the 

velocity values for earlier time instants, it is impossible to use such a network. On the 

other hand, proposed neural network considers time variable as one of its input 

parameters. A total of 7 time instants are considered during training data generation. 

Time dependent velocity values at the instants of 20, 40, 60, 80, 100, 200 and 300th 

seconds of flow and at the 0th second are used in non-dimensional form as target 
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values. Note that, for the neural network trained for time dependent dampening of air 

velocity, non-dimensional target velocity is defined as the ratio of maximum induced 

air velocity to the time dependent air velocity. Non-dimensional velocity is expressed 

as AirVv /max . 

 

 

 

 
 

Figure 2-7 Results of Trained Neural Network for Test Cases 
 

 

Obtained results with R2 and MSE values of 0.002 and 1 respectively show that the 

trained neural network which considers time as one of its inputs is in agreement with 

SES results. Same neural network is also used for predicting time dependent air 

velocity in case of train stoppage. In Table 2-10, results of sensitivity study on 

number of hidden neurons are presented. With the obtained performance parameters, 

neural network with 8 and 10 neurons its hidden layers is selected because of its best 
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level of performance. One can also refer to Table 2-11 for comparison of 

performances of single and two hidden layer networks.  

 

 

Table 2-10 Results of Sensitivity Study on Number of Neurons in Hidden Layers for 

4000 Training Runs 

 
Number of neurons in hidden layers (NH) Training runs 
1st 2 Hidden Layer nd MSE  Hidden Layer 2R  

8 4 0.310 1 
8 10 0.002 1 
12 10 0.056 1 
24 10 6 0.999 

 

 

Table 2-11 Results of Sensitivity Study on Number of Neurons in Hidden Layer for 

Single Layer Network 

 

Number of neurons in 
hidden layer (NH) 

Training runs 

 MSE 2R  
150 15.6 0.999 
200 28.1 0.999 
300 6.1 0.999 

 

 

 

2.8 Time Dependent Air Velocity Profile In Case of Vehicle Stoppage 

 

 

Dampening of air velocity inside the tunnel in case of a sudden train stoppage is 

treated with a similar approach with that of the case train leaves the tunnel. In case of 

the train stoppage, on the other hand, an additional friction term, including the effect 

of form drag and skin friction of the vehicle is included. Rigid column of air inside 
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the tunnel with an initial air velocity is assumed and the time dependent deceleration 

of air velocity under the effect of friction forces is obtained analytically.  

 

With the addition of major and minor head loss terms due to the vehicle, Equation 

(2.26) takes the following form; 
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Integrating Equation (2.32) between initial velocity maxv and any arbitrary velocity, 
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Result of Equation (2.33) is used for obtaining non-dimensional groups that should 

be used as input to the neural network trained for train departure. As long as the non-

dimensional friction and non-dimensional time are expressed in terms of variables 

apparent in Equation (2.33), trained neural network is capable of predicting time 

dependent velocity profile of air in case of sudden train stoppage.  Corresponding 

non-dimensional friction and non-dimensional time are defined below. 
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and 
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where NDF and NDT are abbreviations for Non-dimensional Friction and Non-

dimensional Time respectively. 

 

 

2.9 Effect of Multiple Trains on Induced Air Velocity 

 

 

Implementation of effect of multiple trains is straightforward since all input data 

regarding to tunnel and the train are used in non-dimensional form. To simulate any 

number of consecutive trains, trainDL )(  and DC  terms are to be increased with a 

factor equal to the number of trains travelling inside the tunnel. In addition, since the 

theoretical model assumes incompressible flow of air with infinite speed of sound, 

headway between the consecutive trains does not alter the magnitude of maximum 

induced velocity. A sensitivity study on headway is done with SES Software and 

results of different headways are compared in magnitude of the maximum induced 

air velocities. Velocity vs. Time graph for different headways is presented in Figure 

2-7. 
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Figure 2-8 Effect of Headway on Maximum Air Velocity Induced by 2 Trains 
 

 

Figure 2-8 shows that, entrance of another train into the tunnel causes a rise in the 

value of the maximum air velocity induced by the previous train. There is a non-

linear relation between the induced air velocity and the number of trains. This 

relation is successfully predicted by the neural network trained for maximum air 

velocity.  

 

 

2.10 Summary of the Modelling Approach 

 

 

Neural network model for predicting time dependent air velocity variation inside 

complex metro systems is described with its constituents. First effort is on the 
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preparation of the neural network training data. For introducing the metro system to a 

simulation model that is based the on values of the system parameters, non-

dimensional parameters are formed. These non-dimensional parameters 

are ( )tunnelDfL / , tunneltrain AA , trainDL )( and ( ) trainlateraltraintrainDoverallD AAfACC /_ +=  

which correspond to the major head loss coefficient of the tunnel, blockage ratio of 

the vehicle in the tunnel, aspect ratio of the train and the overall drag coefficient of 

the train. These parameters are obtained for a single tunnel-train couple and further 

means are utilized for extending the model to be used in complex system 

configurations. With the selected non-dimensional parameters, 3 neural networks are 

trained. All three neural networks are trained for a single tunnel in which a train 

travels with constant speed. During neural network training, for the neural networks 

that produce static outputs for maximum and time averaged induced air velocities, 

single hidden layer feed forward networks are used. Number of hidden neurons are 

selected using the heuristics present in the literature. On the other hand, for the 

neural network that is trained for predicting time dependent air velocity decay period, 

heuristics proposed unpractically high number of hidden neurons so a deeper 

network structure is adopted. For the decay period, a neural network for 2 hidden 

layers is trained and results proved to be as successful as the single hidden layer 

network. 

 

Neural network for maximum air velocity prediction is used together with the neural 

network that is responsible for predicting the time average of air velocity to obtain 

the first two regions of velocity vs. time graph given in Figure 2-4. 

 

Trained neural networks are used for developing a tool that can predict time 

dependent air velocity variation inside complex metro system. For this purpose, 

circuit analogy of the fluid flow is used. All the system structures except for the 

tunnel or station in which there is a train, are treated as parallel and series conduits 

depending on their relative positions. By this approach, equivalent head loss 

coefficients based on the flow rates are obtained for the remaining parts and these 
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equivalent head loss coefficient are used for modifying the input of the neural 

networks. With the modified inputs, neural networks produced time dependent air 

velocity variation for the whole system instead of producing it for the single tunnel. 

With equivalent system approach, multiple trains can also be simulated with a similar 

treatment.  

 

All neural networks and analytical means are used together for developing a 

simulation tool in MATLAB Simulink Environment. User can drag and drop the 

desired system component onto a Simulink project and can configure the system 

parameters through the graphical user interfaces prepared for the Simulink blocks. 

Details of the developed tool are presented in Chapter 3 while the capabilities of the 

developed tool are tested with case studies in Chapter 4. 
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CHAPTER 3 

 

 

3 SIMULATION TOOL 

 

 

 

3.1 General 

  

 

A simulation tool is developed using the following basic components; 

• Neural network that predicts the maximum air velocity in a single tunnel 

• Neural network that predicts the average air velocity in a single tunnel 

• Neural network that predicts the time dependent air velocity for train exit or 

stoppage in a single tunnel 

• Analytical methods that consider circuit analogy for fluid flow and equivalent 

head loss coefficient calculations 

Developed simulation tool is a Simulink library with components of train, tunnel, 

station and ventilation shafts. User can model and simulate an underground system 

within the Simulink environment using the model blocks. User can read maximum 

and average air velocities of air, maximum amount of induced flow rate, total head 

loss coefficient and time dependent air velocity during decay from the output ports of 

the blocks. In case further data is intended to be read, user can modify the blocks to 

introduce additional ports for parameters of interest. Details of blocks and the 

procedure for modelling a sample system are presented in this chapter. 
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3.2 Model Blocks 

 

 

There are 5 model blocks in the developed tool. First block is the Train Block which 

sends information to Tunnel and Station Blocks about the trains geometrical and 

dynamic properties. Second block is the Tunnel Block and this is the main block for 

the developed tool. Station and Ventilation Shaft Blocks are inherited from this block 

model. Station Block is the third block and is inherited from the Tunnel Block with 

some modifications on the block parameters. Connection ports of a Station Block are 

similar to those of Tunnel Block. Ventilation Shaft Block is aerodynamically similar 

to Tunnel and Station Blocks while it does not utilize any neural networks but only 

sends information about its minor and major head loss coefficients to the system. 

Final block for the developed tool is the Connector Block which is not a system 

component but is an essential block for signal routing. Connector Block is 

responsible for carrying information about the system between the system 

components. Connector Block serves the function of extending neural networks’ use 

to complex metro systems. Details of these blocks are presented in the following 

sections of this chapter. 

 

 

a. Train Block 

 

 

User should include a train to the Simulink model to be able to run a simulation. A 

train is basically the means of drag on the air column inside the tunnels and stations 

and defined by 2 non-dimensional parameters selected for neural network training. 

Although trains are defined by their non-dimensional parameter sets, user should 

input values of dimensional parameters regarding to the train from the user input 

dialogs developed in Simulink environment. In Figure 3-1, user input dialog for a 

train is presented. 
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Figure 3-1 User Input Dialog for Train 

 

 

User should input the length of the train, drag coefficient associated to train frontal 

area, train speed and frontal area of the train through the user input dialog. Train 

Block should be connected to all the Tunnel and Station Blocks in the model to make 

sure that it travels throughout the system. Train Block has only one output port to be 

connected to the “train input” ports of Tunnel and Station Blocks.  

 

 

b. Tunnel Block 

 

 

Tunnel Block is one of the main blocks of the developed simulation tool. In Tunnel 

Block, 3 artificial neural networks operate as the processing units. These neural 

networks are responsible for predicting the maximum air velocity, time average of 

the air velocity for the time interval within which the train is inside the tunnel and the 

time dependent variation of air velocity after the train leaves the tunnel system. 

Tunnel Block can be connected to another Tunnel Block or Station Block with or 
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without a ventilation shaft connected to it. As long as there is not any ventilation 

shafts in the system, Tunnel Block can be directly connected to the following and 

previous tunnels and stations without using any Connector Block, which carries 

information of the system between the blocks. Details of the Connector Block are 

also described in the following sections of this chapter. 

 

Tunnel Blocks accept signal of information about the train, head loss coefficient of 

the whole system behind that particular tunnel block (K from Previous Port) and 

head loss coefficient of the whole system after that particular block (K from Next 

Port) through its input ports. This information is routed and non-dimensionalized 

inside the block and fed into the neural networks. Non-dimensional output of the 

neural networks is then converted into the air velocity values using the train speed. 

Tunnel parameters are input by the user through the user input dialog presented in 

Figure 3-2. 

 

 

 
 

Figure 3-2 User Input Dialog for Tunnel 
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User should input tunnel length and hydraulic diameter together with constant head 

loss coefficient of the tunnel walls and forward head loss coefficient of the tunnel 

that can be obtained from Figure 1-2 and Figure 1-3. Although the system parameters 

are to be input in SI units, user can provide the software with any other unit system 

as long as the units are configured consistently. 

 

 

c. Station Block 

 

 

Station Block is another main block in the tool and is inherited from the Tunnel 

Block. In addition to the parameters that are similar with Tunnel Block parameters, 

in Station Block, user should input duration of train dwell, headway between 

consecutive trains and maximum allowable train speed inside the station during train 

entrance and exit. Station Block accepts the values of head loss coefficients of the 

system before and after itself through its “K_PT” and “K_NT” ports respectively. 

This block also accepts initial flow rate induced by the train in the previous tunnel 

through its “Q_0” port. It sends total head loss coefficient values through its “K to 

Previous” and “K to Next” Ports. In this block, there are also 3 artificial neural 

networks which are similar to those in Tunnel Block. Station Block can be connected 

to Tunnel Blocks directly as long as there is not any ventilation shaft between the 

tunnel and station. User can model a station with multiple staircases using Station 

Blocks and Ventilation Shaft Blocks together. For instance, to model a station with 2 

staircases, user should use 3 Station Blocks which are separated by 2 Ventilation 

Shaft Blocks. One should note that, effect of concourse levels of stations can also be 

included into the model by introducing the total head loss coefficient of concourse 

level to the Ventilation Shaft Block. Station Block parameters are input through the 

user dialog presented in Figure 3-3. 
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Figure 3-3 User Input Dialog for Station 
 
 
 

d. Ventilation Shaft Block 

 

 

Ventilation Shaft Block is another block which does not utilize artificial neural 

networks like Train Block. Ventilation Shaft Block is basically used for simulating a 

ventilation shaft installed in the tunnels or simulating staircases inside the stations. 

Ventilation Shaft Block basically calculates the total amount of flow resistance 

through the block itself and sends information to the model about the total flow 

resistance between the atmospheric exit port of the ventilation shaft and the 
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intersection point between the shaft and the tunnel or station. Ventilation Shaft Block 

accepts input data from the user input dialog presented in Figure 3-4.  

 

 

 

 
 

Figure 3-4 User Input Dialog for Ventilation Shafts and Stairs 

 

 

a. Connector Block 

 

 

Connector Block is used for carrying information between shaft-tunnel or shaft-

station interface. When user includes a ventilation shaft at any location, then this 

ventilation shaft should be a used together with 2 connector blocks. First connector 

block is used for sending information about all the tunnels, stations and shafts 

located after that location to the previous tunnel or station and the second one is used 

for sending information about all tunnels, stations and shafts before that location to 

the next tunnel or station.  Connector Block uses its “K_Sh”, “K_Tun”, “Q_NT”, 

“fL/D, A(NT)” and “fL/D, A(NT)” ports for carrying information between 
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ventilation shaft and connected tunnels and station. Connector Block is the 

implementation of analytical method which is proposed for extending the use trained 

artificial neural networks to complex underground systems. In the next section of this 

chapter, guidelines for using the developed tool are presented through a sample 

tunnel-shaft-station system.  

 

 

3.3 Modelling Tutorial 

 

 

In this section, user guidelines for the developed tool are presented through a sample 

case study in which a metro station of a light rail transit system (LRTS) with 

connecting tunnel on the left side is considered. This sample case considers that 

vehicle leaves the system from the right hand side of the station through open tracks. 

A ventilation shaft is installed on the left hand side of the station for piston effect 

reduction. Modelling and simulation is described in a step by step fashion. 

 

 

3.4 Overview of the Problem to be Solved   
 

 

A tunnel-shaft-station model shown in Figure 3-5 is considered for the sample case. 

Train enters the tunnel system from the left portal of the tunnel with a constant speed 

of 20 m/s and enters the station with a decreased velocity of 8 m/s. After vehicle 

stops at the platform level for detraining and entraining of passengers, it restarts its 

motion after 20 seconds. Maximum train velocity at the exit of the station is set to 8 

m/s. Geometrical data about the system components are given in Table 3-1 and Train 

data is presented in Table 3-2. 
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Table 3-1  Geometrical Properties of the LRTS 

 

 TUNNEL STATION 
Length [m] 900 120 
Area [m2 21 ] 100 
Perimeter [m] 18.4 40 
Friction Coefficient 0.03 0.01 
Minor Head Loss Coefficient 0.98 1 

 

 

Table 3-2  Properties of the Train 

 

Train Length [m] 120 
Train Frontal Area [m2 18 ] 
Train Frontal Drag Coefficient 0.75 
Train Skin Friction Coefficient 0.023 

 
 
 

 
 

Figure 3-5 Schematic Representation of the Sample Case 

 

 

Preparation of the Simulink model for the case study using the developed model 

library is described below. 

 

• Place the Model Library named “PISTON” in the working directory of 

MATLAB. Note that model library can be used only if Simulink is 

installed together with MATLAB Software. 

TUNNEL 

SH
A

FT STATION 
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• Start Simulink and create a new empty model. 

• Launch the model library called “PISTON”. Model library includes all 

model blocks of tunnel, station, train, ventilation shaft and connector 

together with some of the most commonly used Simulink blocks. 

Screen shot of the library is given in Figure 3-6. 

• Drag a single tunnel, station, train and ventilation block into the created 

empty model. Also drag and drop 2 connector blocks to be used for 

connecting tunnel, shaft and station to each other. (see Figure 3-8) 

 

 

 

 
 

Figure 3-6 PISTON Model Library 
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Figure 3-7 Components for the Sample Case 

 

 

• User should connect the blocks through their proper connection ports. 

Although there are a number of input and output ports, not all of the 

ports have to be connected. Some of the ports are only reserved for 

monitoring some important variables and are not necessarily be 

connected during simulation. Mandatory ports and connections are 

presented for each pair of blocks in Figure 3-8 to Figure 3-13.  
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Figure 3-8 Connection of Tunnel and First Connector Block 

 

 

 
 

Figure 3-9 Connection of Shaft and First Connector Block 
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Figure 3-10 Connection of First Connector Block and Station 

 

 

 
 

Figure 3-11 All Connections of the Second Connector Block 
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Figure 3-12 Connections of Train 

 
 
 

 
 

Figure 3-13 Whole System Model for Sample Case 

 

 

 

1. After the model is prepared, run the model and the results of time 

dependent air velocity values are recorded in MATLAB workspace. User 

can use these results for plotting options within MATLAB or can use a 
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spreadsheet application for data processing and plotting purposes. Obtained 

results for the case study are presented in Figure 3-14. 

 

 

 
 

Figure 3-14 Results of the Sample Case 

 

 

Model block for any component can be modified when additional features are 

intended to be included. Additional neural networks, responsible for predicting time 

dependent pressure variation, time dependent drag force on the train or other 

parameters of interest can be included to the model easily since the tool is developed 

in such a way that user can insert a neural network directly in to the blocks without 

any additional effort. 
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CHAPTER 4 

 

 

4 CASE STUDIES 

 

 

 

Developed simulation tool which uses neural networks and analytical methods are 

tested through case studies. 3 case studies, each questioning different capabilities of 

the developed tool are considered. In the 1st case study, simulation model is used for 

simulation of a tunnel system equipped with 2 ventilation shafts. In the 2nd case, 

multiple vehicles travelling with a predefined headway are simulated. In the 3rd

 

 and 

final case study, all capabilities of the developed simulation tool are tested through 

simulation of an actual metro station. Results obtained with the proposed method are 

compared with field measurements. In Table 4-1, details of 3 case studies are 

summarized. 
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Table 4-1 Summary of Case Studies 
 

 

 

 Case 1 Case 2 Case 3 

D
E

SC
R

IP
T

IO
N

 

Proposed method is tested for a 

configuration of tunnel-shaft-

tunnel-shaft-tunnel. All deflection 

points on the velocity vs. time 

graph, corresponding to train 

crossing from the shaft portals are 

obtained. Results of proposed 

method are compared with SES 

Software results. 

Proposed method is tested for 2 and 3 

consecutive train conditions. In both 

conditions the tunnel system is composed 

of 2 tunnels and a ventilation shaft located 

at the intersection of these tunnels. 

Maximum and time average air velocities 

induced by multiple trains are obtained for 

both 2 and 3 train conditions. Results are 

presented in comparison with SES results.  

A complex metro station together with 

its connecting tunnels is simulated using 

the proposed method. Time dependent 

velocity variation of the air at the 

narrowest region of the station is 

obtained. Results are compared with 

SES Software results and field 

measurement data of the station.  

O
U

T
PU

T
 Graphical results of velocity 

values in comparison with SES 

Tabulated results of maximum and average 

velocity values in comparison with SES 

Graphical results of time dependent 

velocity variation of air in comparison 

with SES 

 

 

 

86 



87 
 
 
 

4.1 Prediction of Deflection Points of Velocity in a Multi-Shaft System 

 

 

The proposed method is tested for a tunnel system of 2250 meters total length with 2 

equally spaced identical vent shafts as shown in Figure 4-1. Tables 4-2 and 4-3 

provide the tunnel and train related data of this case. Following is a summary of what 

happens as the train is moving in this tunnel. 

 

• At t=0 a train with a constant speed of 40 m/s enters the first tunnel from the 

left portal. 

• At about t=19 seconds, the train reaches the 1st shaft intersection, causing the 

maximum air velocity in the 1st tunnel. In the meantime, air flow occurs in the 

2nd and 3rd

• At about t=38 seconds, the train arrives at the 2

 tunnels. 
nd shaft intersection causing the 

maximum air velocity in the 2nd tunnel. At this point, there is also air flow 

both in 1st and 3rd

• At about t=57 seconds, train leaves the tunnel system, inducing the maximum 

air velocity in the 3

 tunnels. 

rd

• Train has a length of 44 meters, which corresponds to about 1 second for 

complete passage of it from the inlet and exit portals and this 1 second interval 

is not considered in this study. 

 tunnel. 

 

To understand the problem better, time dependent velocity variation in the 2nd tunnel 

predicted by the SES software is given in Figure 4-2. It is important to note that in 

this study the neural network is trained only to determine the maximum air velocities 

induced in the tunnels, which are shown in Figure 4-2. 
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Figure 4-1 Schematics of the simulated case 
 

 

Table 4-2 Tunnel and Shaft Data for the Simulated Case 
 

 Tunnel 1 Shaft 1 Tunnel 2 Shaft 2 Tunnel 3 
Length [m] 750 45 750 45 750 
Area [m2 22 ] 12 22 12 22 
Minor Head Loss Coefficient 0.34 3 0 3 1 
Friction Factor 0.02 0.02 0.02 0.02 0.02 

 

 

Table 4-3 Train Data for the Simulated Case 
 

Train Length [m] 44 
Train Frontal Area [m2 12 ] 

Train Speed [m/s] 40 
Skin Friction Coefficient 0.023 
Frontal Drag Coefficient 1.1 
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Figure 4-2 Instants of Time Dependent Velocity Profile 
 

 

Neural Network simulation results for maximum velocities in comparison with SES 

results are presented in Figure 4-3 with the corresponding percent errors given in 

Table 4-4. As seen, the effect of the train movement in the furthest tunnel (i.e. air 

velocity in the 3rd tunnel while the train is in the 1st tunnel and air velocity in the 1st 

tunnel while the vehicle is in the 3rd tunnel) can be predicted with the least accuracy. 

This result is attributed to the possibility that SES uses friction and minor head loss 

coefficients dependent of the Reynolds numbers while the current study considers 

friction and head loss coefficient to be constant. On the other hand, air velocity in a 

tunnel, while the vehicle is in that particular tunnel, is obtained by the neural network 

in agreement with SES software. Here it is important to note that; user manual of 

SES software itself claims to predict air velocities with an accuracy of 10%. 
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(a) 

 
(b) 

 
(c) 

Figure 4-3 SES Results for air velocity in 1st (a), 2nd (b) and 3rd (c) tunnels and the 
maximum values predicted by the proposed technique 
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Table 4-4 Percent Error in Maximum Air Velocity 

 

 % Error In Maximum Air Velocity 
Instant Tunnel 1 Tunnel 2 Tunnel 3 

Train leaves the 1st 5.3  tunnel 5.2 17.6 
Train leaves the 2nd 4.2  tunnel 4.8 0.0 
Train leaves the 3rd 18.1  tunnel 0.9 3.5 

 

 

 

Following are the important conclusions that can be derived from this study 

 

• Maximum air velocity induced by the moving vehicles inside the tunnel, 

while the vehicle is inside that particular tunnel, can be obtained by the 

proposed method in agreement with the SES software. 

   

• Although trained for a single tunnel, with the proposed equivalent system 

approach, trained neural network can also be used to solve a multi tunnel-

shaft configuration. 

 

• In Table 4-4, it can be seen that, 3rd column of the 1st row and 1st column 

of the 3rd row corresponds to the effect of the moving vehicle inside a 

tunnel on the furthermost tunnel segment and the error in results predicted 

are greater than the proposed maximum error of about 10%. These values 

are not directly the results of the neural networks but are calculated by 

analytical means assuming constant friction factor. On the other hand, SES 

uses friction factor dependent on the Reynolds Number and thus the total 

friction factor changes as the velocity increases until it attains its constant 

value. As a further development of the model, an analytical model that 

iteratively calculates the total head loss coefficient of the system 

components like shafts and tunnels can be considered as a future study.  
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4.2 Prediction of Maximum Air Velocity Induced by Multiple Trains 

 

 

In this study, proposed method is tested for multiple trains travelling inside a tunnel 

system at the same time. Same tunnel system composed of 2 tunnels and a ventilation 

shaft in between is considered for 2 different train conditions. In first train condition, 

2 trains with headway of 10 seconds are simulated. In the second condition, 3 trains 

with headway of 10 seconds are simulated and maximum and average air velocities 

induced by these trains are obtained. Maximum and average velocity results are 

presented in Table 4-5 and Table 4-6. 

 

 

Table 4-5 Maximum Air Velocity Results - Multiple Trains 

 

Tunnel 1 (before the shaft) 
 Condition 1 (2 Trains) Condition 2 (3Trains) 

SES 9.7 11.4 
Neural Network 9.1 10.4 
% error 6 9 

Tunnel 2 (after the shaft) 
 Condition 1 (2 Trains) Condition 2 (3Trains) 
SES 8.3 9.4 
Neural Network 7.6 8.9 
% error 8 5 
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Table 4-6 Average Air Velocity Results - Multiple Trains 

 

Tunnel 1 (before the shaft) 
 Condition 1 (2 Trains) Condition 2 (3Trains) 

SES 5.6 6.1 
Neural Network 5.0 5.6 
% error 10 9 

Tunnel 2 (after the shaft) 
 Condition 1 (2 Trains) Condition 2 (3Trains) 
SES 7.1 7.9 
Neural Network 7.2 8.1 
% error 2 3 

 

 

 

Table 4-5 and 4-6 show that, results obtained by the proposed approach for 

simulating effect of multiple trains are in agreement with SES results. 

 

 

4.3 Prediction of Unsteady Velocity Profile in a Complex Metro Station  
 

 

In this study, “Hastane” Station of Ankara Metro System is simulated using the 

proposed method. “Hastane” Station has a typical architecture and is surrounded with 

two tunnels which connect the station to its neighbouring stations, “Demetevler” and 

“Macunköy”. In “Macunköy” side, connection tunnel is about 1045 meters and meets 

the ground before the vehicle reaches to “Macunköy” Station. On the other hand, in 

“Demetevler” side, tunnel is about 825 meters and connects directly to “Demetevler” 

Station without opening to atmosphere. All stations are equipped with ventilation 

shafts, used for both piston effect reduction and emergency ventilation purposes. 

Satellite view of the system is presented in Figure 4-4, 4-5 and 4-6. 
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Figure 4-4 “Macunköy” Station and Connection Tunnel Entrance [63] 
 

 

 
 

Figure 4-5 Connection Tunnel between “Macunköy” and “Hastane” Station [63] 

 

 

 
 

Figure 4-6 “Hastane” Station and Surrounding Tunnels [63] 
 
 
“Hastane” Station is a 2 floor station consisting of a platform and a concourse level. 

Platform level is connected to Concourse level through 2 staircases. Concourse level 

HASTANE STATION and CONNECTION 
 

CONNECTION TUNNEL  

MACUNKÖY 
 

OPEN RAIL 

CONNECTION TUNNEL STARTS 
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has also 2 staircases which connect the whole station structure to ground level. A 

schematic representation of the station is presented in Figure 4-7 and geometric 

details of the system are given in Table 4-7. 

 

 

 

 
 

Figure 4-7 Schematics for Top and Section Views of “Hastane” Station 

 

 

 

 

 

 

 

 

 

 

 

Ground Level 

Platform Level 

Concourse  
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Table 4-7 Geometric details of “Hastane” Station and its surrounding tunnels 

 

 Section Segment Length (m) Area (m2) Tunnel Type 
Macunköy 

Side Tunnel 
1 11 1039 18.9 Bored 
1 12 5.5 25.2 Cut-Cover 

 Vent shaft 110       

HASTANE 
STATION 

20 201 5.5 25.2 Cut-Cover 
20 202 11 27.4 Station 
3 31 39 71 Station 
4 41 10 29.4 Station 
6 61 10 71 Station 
7 71 6.5 27.4 Station 
9 91 3.5 71 Station 
10 101 10 29.4 Station 
12 121 40 71 Station 
13 131 10 27.4 Station 
13 132 5.5 25.2 Cut-Cover 

 Vent shaft 220       

Demetevler 
Side Tunnel 

21 211 5.5 25.2 Cut-Cover 
21 212 400 18.9 Bored 
21 213 417 18.9 Bored 

 

 

 

Field measurements for air velocities induced by trains in “Hastane” Station in 

Ankara [27] are used in this case study. Velocity values are obtained in the cross 

section given in Figure 4-8. 
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Figure 4-8 Schematics for Measurement Position (Section A-A) and Additional Run 
Location (Section B-B) 

 

 

In Figure 4-9, time dependent velocity profile measured in Section A-A is 

presented together with the results obtained by SES simulations for the same 

location. 

 

 

 

 
 

Figure 4-9 Time dependent Velocity Profile for Section A-A 

A 

A 

B 

B 
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A Simulink model, presented in Figure 4-10, is constructed using the developed 

prediction tool. In Table 4-8, data for the train used in SES and neural network 

simulations is presented. One should note that, introducing same system to SES 

software costs an input text file of about 2500 words. Although simulation times are 

comparable, proposed method is much superior then SES when system modelling is 

considered. 

 

 

Table 4-8 Data for the Train 
 

Train Length [m] 180 

Train Frontal Area [m 13.6 2 

Maximum Velocity of the Train [m/s] 20 

Frontal Drag Coefficient of the Train 0.475 

Skin Friction Coefficient of the Train 0.023 

Maximum Train Entrance Velocity to Station [m/s] 11 

Maximum Train Exit Velocity from Station [m/s] 15 

 

 

 

In the simulations, 2 consecutive trains with headway of 300 seconds are considered 

and induced air velocity by these 2 trains is obtained. 

 

In the model, wall friction factor is taken as constant since flow is expected to be 

turbulent in most of the cases. For rough concrete, an approximate value of 0.02 is 

assumed. In addition to friction factor, all minor head loss coefficients associated 
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with the geometry of the system, together with drag and skin friction coefficients are 

also taken as independent of velocity since expected air velocities are within a 

narrow range of the same order. 
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Figure 4-10 Simulink Model for Case Study 3
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Staircases and ventilation shafts are modelled as if they were both ventilation shafts 

since they both correspond to openings to atmosphere through some minor head loss 

coefficients due to change in areas of flow passages inside these structures. 

 

For staircases, approximated as ventilation shafts, flow passages are composed of the 

concourse level corridors, doors, glass panels and staircases that connect the 

concourse level to ground level. Although concourse level could also be modelled 

within the system, it is approximated as a lumped loss and included in the minor 

head loss coefficient of the staircase model. Same approach is also adopted in SES 

model of the system in the reference study. 

 

There is another approximation in the model which assumes the stoppage of the train 

as sudden. Although the actual vehicle stops at the station platform with a constant 

deceleration, approximate model assumes the sudden stoppage of the vehicle. 

Consequences of this assumption are discussed in the results and conclusions part in 

detail with the aid of graphical results presented in comparison with SES results and 

field measurements. 

 

Proposed method is used for approximating the periodic velocity profile induced by 

consecutive trains arriving at and leaving the station with a predetermined headway 

of about 300 seconds. Before presenting the results predicted by the approximate 

method, in Figure 4-11, important instants of vehicle movements are presented.  
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Figure 4-11 Critical instants of train movements on induced air velocity profile 

 

 

Proposed method is used for predicting all peaks presented in Figure 4-11 together 

with the time dependent velocity profile within the intervals of train stoppage inside 

the station and departure of train from the station. 

 

In Figure 4-12, results predicted by neural network model are presented in 

comparison with the SES results and field measurements. 
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Figure 4-12 Air Velocity Profile at A-A Section Predicted by the Model 
 

 

In Figure 4-12, it is shown that, important instants at which the vehicle arrives at the 

station, stops, restarts its motion and leaves the station are predicted in agreement 

with SES results. One should note that Figure 4-12 is a segment of a longer time 

period consisting of peaks induced by multiple trains. This is the reason for field 

measurement and SES results not starting from zero velocity at the origin. In Table 

4-9, values of time dependent air velocity predicted by neural networks are presented 

together with SES results. One can see that, for time instants at which the effect of 

train acceleration and deceleration are dominant, developed tool cannot predict 

results with acceptable accuracy. In addition, difference between the dampening of 

air velocities in case of sudden stoppage of the vehicle and the vehicles leaving the 

station are also observed. One can see that, air velocity is predicted with the time 

dependent neural network to fall to lower values after the vehicle stops in the station 

when compared to SES results. This is because the model assumes sudden stoppage 

of the vehicle while the SES model includes the effect of deceleration of the vehicle. 
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Table 4-9 Air Velocity Results for Section A-A 

 

Time SES NN % error 
0 0.74 0.15 80 
20 2.3 1 57 
40 3.2 1.9 41 
60 2.98 3 -1 
80 4.95 5 -1 
100 0.49 0.12 76 
140 1.6 1.8 -13 
160 1.3 1.2 8 
180 0.98 0.9 8 
200 0.82 0.8 2 
220 0.7 0.6 14 
260 0.59 0.5 15 
280 0.5 0.4 20 
300 0.81 0.4 51 

 

 

 

Note that, in Table 4-9, time instants of 0, 20, 40, 60, 100, 280 and 300 are the points 

at which the train acceleration and deceleration is most dominant. Developed tool 

can be further improved to predict these instants by inclusion of train acceleration 

and deceleration characteristics. One should also note that, developed tool predicts 

38/h air exchange for the station while SES predicts 35/h which corresponds to a 

percent error of about 8%. Predicted air exchange rate is within the acceptable error 

range. 

 

When both SES and proposed method are considered in comparison with the field 

measurements, they both lack in estimating the fluctuations in air velocity but one 

should note that, SES and proposed method are used for obtaining average time 

dependent velocity in the cross section and do not include 3D effects. In addition, 

measurement data is taken from a single point which does not possibly represent the 
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actual average flow rate and velocity. Another major difference is the duration of 

peaks in vehicle entrance, which is longer in actual field data while SES and 

proposed method’s results show an instantaneous rise in the air velocity. This is 

probably because of the other means like wind and operation of ventilation 

equipment during field measurements. Results can still be considered as sufficient 

when important parameters like maximum air velocity and total amount of air 

brought to station by piston effect are considered. 

 

For further discussion on the proposed method in comparison with SES results, an 

additional location in the station is investigated. Although there is not measurement 

data at that location, results of SES software and proposed method are compared for 

the Section B-B presented in Figure 4-8.  

 

In the location depicted as Section B-B in Figure 4-8, it is expected that the flow 

velocity should be greater than the previous location. A part of the flow escapes from 

the first staircase which is on the left hand side of the station resulting in less flow 

rate at the cross section at which the second staircase is located. In Figure 4-13, 

results of proposed method are presented together with SES results for the same 

location. 
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Figure 4-13 Air Velocity Profile at B-B Section Predicted by PISTON Model 
 

 

Time dependent velocity profile of air at section B-B is presented in Figure 4-13. It is 

seen that, effect of flow split in 1st stair on flow velocity at section B-B is apparent 

although a small amount of flow escapes from the 1st

 
 

 stair. Success of proposed 

method should be attributed to the success of trained neural networks. Training data 

set is carefully prepared considering the commonly encountered values of system 

parameters and this led to successful prediction of air velocity in an actual metro 

station. 

 

In Figure 4-13, one can also see the effect of sudden stoppage assumption made for 

the vehicle. While the air velocity decreases down to 0.5 m/s in SES results, neural 

network trained with time dependency predicts this minimum value as approximately 

zero. This difference in minimum velocity has influence on the value of next peak 

since it corresponds to less initial momentum for the next peak. Table 4-10 presents 

the values for time dependent air velocity predicted at Section B-B. 
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Table 4-10 Air Velocity Results for Section B-B 
 

Time SES NN % error 
0 0.24 0.05 79 
20 2.2 1 55 
40 3.3 2 39 
60 3.1 3 3 
80 5 5 0 
120 0.5 0 100 
130 6.4 5.9 8 
140 2.3 2 13 
160 1.1 1 9 
180 0.7 0.5 29 
200 0.55 0.36 35 
220 0.49 0.28 43 
260 0.44 0.2 55 
280 0.41 0.18 56 
300 0.37 0.15 59 

 

 

 

Note that, in Table 4-10, at time instants of 0 to 60th seconds and after 120th second, 

velocity values cannot be predicted with expected accuracy. These instants also 

correspond to the time intervals at which the train acceleration and deceleration is 

dominant. Longer travel times result in longer steady motion of air and can be 

predicted by the proposed tool better. In addition, air exchange rate predicted for the 

segment is predicted to be 16/h while SES calculates the same parameter as 19/h. 

About 15% error in air exchange rate is still beyond the acceptable range but can be 

further improved with inclusion of train acceleration feature to the model. 

 

First region of the velocity profile deviates from the SES results strongly because of 

the changing velocity of the vehicle. On the other hand, although the profile is not as 

successful, predicted maximum value is in agreement with SES results. 
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Time dependent air velocity profile in “Hastane” Station of Ankara City Metro 

System is obtained using the simulation tool developed with neural networks and 

analytical methods. Results of proposed method are compared with SES simulation 

results and field measurements for the same station. Following conclusions are 

drawn. 

 

• Proposed method is capable of predicting the important instants like the peaks 

of the velocity profile. These peaks are important since the peak velocity 

magnitude in the platform level is restricted by a value in most of the metro 

systems around the world. 

 

• Although there are limits on maximum allowed air velocities on platform 

level, for most of the time it is not practically possible to keep maximum air 

velocity under the limiting values. In such cases, the duration of the peak is 

supposed to be less than about 10 seconds which is considered to be 

acceptable in local operations. Proposed method is capable of predicting the 

duration of the peaks so can be used for practical design purposes. 

 

• Another important parameter in underground station design is air exchange 

rate of the platform level. As long as fresh air can be supplied into the station 

by piston effect of the vehicles, less additional air handling unit is required 

which is an economic optimization of the system. In calculation of the air 

exchange of platform, only the fresh air being sucked from the staircases and 

ventilation shafts are considered while the air brought by the train from inside 

the tunnel does not contribute to the exchange rate. In this manner, time 

interval between A-B in Figure 4-11 is not taken into account since it 

corresponds to the air brought from inside the tunnel. On the other hand, the 

interval between C and D corresponds to the time interval within which the 

vehicle restarts its operation after its dwell and sucks air from shaft, staircases 

and tunnels. So this interval is important in obtaining air exchange rate of the 
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station and is obtained with the proposed method in good agreement with 

SES results. 

 

• Velocity profile predicted by proposed method can further be improved by 

inclusion of acceleration and deceleration of train to the model. By a varying 

vehicle velocity, time interval between A and B, and B and C would be 

predicted much better. 

 
• Simulink model of proposed method is superior to SES when pre-processing 

time is considered. User can built the whole model within minutes while SES 

requires quite a long pre-processing and data input time about 4 to 5 hours for 

an experienced user. 

 

• Proposed method can be used for preliminary design purposes. Required 

modifications of the system parameters can be predicted prior to execution 

design of the metro system optimizing the system and reducing the time of 

rework.
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CHAPTER 5 

 

 

5 CONCLUSION 

 

 

 

A data driven method for approximating time dependent vehicle induced velocity 

profile is proposed and verification studies for the proposed method is conducted. 

Artificial Neural Networks are used as the data driven method, together with 

analytical methods for obtaining the critical instants and intervals of time dependent 

air velocity profile in underground systems. 

 

Proposed method basically utilizes feed-forward back propagation neural networks 

for predicting maximum and average air velocities and the time dependent velocity 

profile of air in the intervals where train leaves the tunnel or stops and dwells in 

underground metro systems. In the model metro trains are assumed to be the only 

means that induce air flow inside the tunnels and stations, implying piston effect 

only. In addition to neural networks, analytical methods for obtaining time dependent 

profile of air velocity are also used. 

 

In neural network training, non-dimensional parameters, which are generated with 

system variables like area, length, friction coefficient, etc., are used. Use of non-

dimensional groups obtained with the system parameters, instead of dimensional 

parameters resulted in a simplified neural network structure. This also results in a 

reduced number of input parameters and a more efficient training. Considering train 

length, area, drag coefficient and speed, together with tunnel length, area and friction 

coefficient, it would cost 47 (16,384) runs to use 4 different values for each 

parameter. On the other hand, the use of 4 non-dimensional groups would only 
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require a total of 44 (256) runs. Reduction in the number of runs has a dramatic effect 

in reducing the computation time for network training. 

 

Proposed method is verified through 3 case studies which consider 3 different 

systems as cases. The first case study is done for questioning the proposed method in 

its generalization capability for systems about which the trained neural networks are 

not aware of. Neural network are used for predicting maximum induced air velocity 

in a multi-shaft, multi-tunnel system although they are trained for just a single tunnel. 

Results of the first case study show that, trained neural network for maximum 

velocity, produces results in agreement with the authoritative software, SES. 10% 

error is adopted as the success criteria for the neural networks, since this value is 

within the range of the accuracy of the SES Software itself. Note that, success of 

neural network in predicting maximum air velocities induced by the trains can be 

considered as a major contribution to application of neural networks in moving 

boundary problems. A detailed discussion about the issue is presented in discussion 

section of this chapter. 

 

Proposed method, which has proven to be successful in predicting maximum air 

velocity for multiple tunnels, is further tested for being applicable in multi-vehicle 

systems which are the actual case in most of the metro systems. The second case 

study basically focuses on the effect of multiple trains simultaneously on operation in 

the same tunnel-shaft system. 2 train groups, one with 3 consecutive trains and the 

other with 2, are simulated with the proposed method. Instead of applying a major 

modification to the neural network, a slightly modified input data, in which the train 

length to diameter ratio and the frontal drag coefficient are factored with the number 

of the trains, is used. As a result, neural networks with the modified input data 

produce maximum and average velocities in agreement with SES software. Note that, 

simulating the effect of multiple trains on induced air velocities became a straight 

forward procedure just because the neural networks are trained with non-dimensional 

parameters instead of dimensional ones. 
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As a third and the last case study, proposed method, utilizing all analytical methods 

and 3 neural networks responsible for approximating maximum and average induced 

air velocities and the time dependent velocity of air in case of train stoppage or 

departure, are used for simulation of  an actual metro system. In the third case, 

“Hastane” Station of Ankara City Metro System is simulated. This case is a complete 

verification study since it involves the utilization of all proposed methods within the 

scope of this study. Results obtained by the proposed method are compared with the 

field measurement data which contributes to the study considerably. In addition, 

same case is also modelled with SES software and all results are considered in 

comparison with each other. Results of the 3rd

• Proposed method is capable of predicting the important instants like the peaks 

of the velocity profile. Note that, for a preliminary study in metro system 

design stage, amplitudes of the peaks are sufficient for taking precautions 

about geometric configuration of ventilation shafts. 

 case study, which can also be 

considered the ultimate outcome of the thesis, can be summarized as follows; 

 

 

• In addition to the amplitudes of the peaks, duration of the velocity peaks is 

also approximated with good accuracy when compared with SES. Duration of 

peaks is of great importance in cases where the limiting maximum air 

velocities cannot be achieved with practical modifications of the system 

design. 

 

• Amplitudes of the peaks, together with their corresponding durations 

contribute to the design of a metro system by defining the part of the flow 

rate occurring within the tunnels and the station. Air exchange of a station is 

the second major design parameter which has great influence on the station 

comfort and operation cost of the system. As long as fresh air can be supplied 

into the station by piston effect of the vehicles, less additional air handling 

unit is required which is an economic optimization of the system. In 
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calculation of the air exchange of platform, only the fresh air being sucked 

from the staircases and ventilation shafts are considered while the air brought 

by the train from inside the tunnel does not contribute to the exchange rate. In 

proposed method, artificial neural networks predict the maximum air velocity 

which is used as the initial condition of air dampening period. Third neural 

network, considering time as one of its inputs, can be used for calculating the 

amount of fresh air brought by the result of piston effect. Results obtained by 

the proposed method show that, predicted dampening periods are also in 

agreement with SES results. 

 

• Velocity profile predicted by proposed method can further be improved by 

inclusion of acceleration and deceleration of train to the model. Sudden 

stoppage assumption for the vehicle result in a faster dampening of air 

velocity which also effects the maximum value of the next peak induced by 

the train during its departure from the station. By inclusion of the acceleration 

and deceleration capability of the trains into the model, air velocity 

dampening periods can be predicted with much more accuracy. 

 

• SES software requires a tedious pre-processing. Developed Simulink model 

of proposed method is superior to SES when pre-processing time is 

considered. User can built the whole model within minutes while SES it takes 

about 4 to 5 hours for an experienced user to model the system in SES. 

 

• With the practical use of it, proposed method can be used for preliminary 

design purposes. Sensitivity studies on system parameters can be done 

quickly and precautions about the comfort criteria of an underground system 

project can be taken by the aid of the developed Simulink model.  

 

• Although there is not any systematic approach for selection of neural network 

type and network architecture configuration, some heuristics are usually 
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helpful in neural network studies. In this study, in addition to Cybenko’s well 

known theorem, an approximate analytical solution for vehicle induced air 

velocity is obtained. Obtained relation is questioned in its characteristics to 

see whether the neural network to be used should or should not have a 

memory in its structure. Obtained approximate relation shows that, induced 

air velocity can be expressed explicitly with the input parameters so no 

memory is required, thus there is no need to use a recurrent neural network. 

 

• Number of neurons in hidden layer has effect on the performance of the 

neural network. Higher number of hidden neurons does not necessarily mean 

a better neural network performance so a trial and error procedure is most of 

the time is mandatory. On the other hand, in order to start with a reasonable 

assumption on the hidden layer neurons, some heuristics can be used. In this 

study, a heuristic, stated by Weigend et al., which defines an interval within 

which the number of hidden layers should fall, is used. Having obtained the 

interval, different number of hidden layers that fall within this interval is 

considered and the statistically best performing number is selected. 

 

• Coefficient of determination, Mean Square Error and percent Error are used 

as the performance parameters to evaluate the goodness of model 

approximation. These are commonly used performance measures in 

prediction of continuous variables. Training and test runs show that, MSE 

value does not exceed 10-3 while the least value of R2

 

 is 0.987 which both 

implies a high level of goodness of the approximation. 

Artificial neural networks are commonly used in solving engineering problems 

almost to any level of complexity as long as there is enough data about the physical 

problem in hand. Most of the time, these data are obtained through field 

measurements where the exact relationship between the variables are not known. In 
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addition, many of the relations that are currently based on empirical studies are also 

good candidates to be considered by the aid of neural networks. 

 

Most of the literature referenced to during this study show that, application of neural 

networks from selection to training and execution, is not still a systematic approach 

and includes quite an amount of trial error and heuristics. This is an expected result 

when the nature of the neural networks and their application areas considered. In this 

study, in addition to the preliminary trial and error effort, an approximate analytical 

solution for induced air velocity is proposed and obtained relation of the parameters 

formed the basis for the neural network selection. 

 

In this study, instead of using field measurement data for neural network training, a 

reliable and authoritative tool, SES Software, is used for data generation and testing. 

Having such a tool available, neural network training and tests are much simpler 

when compared to the studies those are very limited in data to be used. This turns out 

to be an advantage in a neural network based study. 

 

Technical Contribution of the Dissertation 

 

The ultimate purpose of the study was to solve the time dependent velocity profile in 

metro tunnels and station with neural network approach which inherently possesses 3 

major contribution to the literature; 

 

- Despite of the overwhelming effort on solution of engineering problems with 

neural networks, no significant effort is present for solving one dimensional 

air flow inside metro tunnels. 

- A novel method is proposed for solving the dependent variable of velocity, 

without solving the pressure, which are strongly coupled through momentum 

equation. 
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- Neural networks, most of the time trained for a definite solution domain, are 

not forced or elaborated for being used for a different solution domain. This 

study forces the neural network for operating in an environment with which it 

is not familiar. 

- A simulation tool is developed which can be considered as a substitute for 

SES Software. In addition, developed tool can be further improved in 

contrary to SES with its data driven nature. Field data for pressure, 

temperature and velocity can be used for training new neural networks and a 

sophisticated simulation tool can be obtained. 

 

First contribution mentioned above is apparent when literature is traced with the 

relevant theories of one dimensional flow and neural networks. The difficulty of 

conducting experimental studies in operating metro systems results in a very limited 

amount of field data which is the major constituent of a neural network approach. In 

addition, in case these limited data is used for training purposes, it is almost 

impossible to conduct test runs for the trained neural networks. These difficulties, 

most probably, are the reasons for not having enough effort in this discipline. 

 

Second contribution, to the field of fluid mechanics, can be considered as another 

major output of the study. Note that, most of the numerical and graphical solution 

schemes, including MOC, consider both pressure and velocity. In this study on the 

other hand, velocity is solved without needing to solve the pressure field inside the 

domain. Having already obtained the velocity field, it is now much easier to continue 

with the time dependent pressure, which can be considered as a future work. 

 

When considered from a neural network point of view, the third contribution stated 

above can be considered as one of the key outputs of the study. Neural networks are 

commonly used for fixed domain of definition and solution. For most of the time, the 

environment for which the neural networks are trained for does not change while 

only the values of parameters that define the environment change. In such a case, 
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neural network trained for the solution is expected to approximate the results for 

input data it has not seen before. On the other hand, in the very case of this study, a 

neural network is trained for a single tunnel domain with selected parameters that are 

believed to be sufficient to define the single tunnel environment. By the proposed 

analytical solutions and methods, the neural network trained for a single tunnel is 

equipped with the capability of generating solution for a completely different domain 

including practically any additional component like staircases, stations, ventilation 

shafts and multiple tunnels. 

 

Proposed method is a data driven model so it can further be improved by field 

measurement data. A laboratory set-up such as shallow water approximation of 

incompressible flow of air can be used for collecting data and neural networks can be 

trained with real data instead of data produced by SES. By experimental results, 

proposed method can be improved further to get more superior than SES by 

introduction of more data about physical phenomena. In addition, pressure 

measurements can be done on an actual system or laboratory setup and results can be 

used for improving the model with the capability of pressure approximation. 

 

Another further study, considering road vehicle tunnels, can be also considered as a 

valuable extension of this study. In road vehicles, there is always a huge amount of 

piston effect together with high rate of exhaust emissions of vehicles which are 

determined by empirical data. Tabular characteristics of emission calculations and 

piston effect make road vehicle simulations an appropriate candidate for proposed 

method in this thesis. 

 

Standalone software with a practical user interface can be developed using the model 

proposed in this study. Inclusion of neural networks that are trained with 

experimental data and field measurements can further develop the capabilities of the 

proposed approach. Pressure prediction and inclusion of energy equation for solution 

of piston effect in high gradient highway tunnels can also be considered as future 
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extension of this thesis which has broad application areas for the last decade 

especially in Turkey.    

Compressible flow of air in high speed train tunnels is another field of research that 

can be supported with the experience gained during this study. Assuming 

compressible flow for air in metro tunnels and stations is also a improvement to the 

current effort since this assumption would yield much accurate results in case the 

heat transfer through vehicle auxiliaries like resistor grids and climate systems 

dominate the ambient conditions. 

 

 

 

 

 

 

 

 

 



119 
 
 
 

119 

REFERENCES 
 

 

 

[1] Subway Environmental Design Handbook, V.I. Principles and Applications, 

2nd

[2] Jia, L., Huang, P., Yang, L., Numerical Simulation of Flow Characteristics in 

a Subway Station, Heat Transfer-Asian Research, Vol.38(5), 2009 

 Ed., U.S. Department of Transportation, 1972 

[3] Kröse, B., Smagt, P.V.D., Lecture Notes on An Introduction to Neural 

Networks, 8th

[4] Haykin S., Neural Networks, Prentice Hall International, Inc., New Jersey, 

1999. 

 Ed., University of Amsterdam, 1996 

[5] Raghunatan, R.S., Kim, H.-D. Kim, Setoguchi, T., Aerodynamics of High-

Speed Railway Train, Progress in Aerospace Sciences, Vol.38, pp. 469-514, 

2002 

[6] Patil, P.P., Tiwari, S., Effect of Blockage Ratio on Wake Transition for Flow 

Past Square Cylinder, Journal of Fluid Dynamics Research, Vol.40, pp.753-

778, 2008 

[7] Jang, H-M., Chen, F., On the Determination of Aerodynamic Coefficients ph 

Highway Tunnels, Journal of Wind Engineering and Industrial Aerodynamics, 

Vol.90, pp. 869-896, 2002 

[8] Yuan-dong, H., Wei, G., A Numerical Study of the Train Induced Unsteady 

Airflow in a Subway Tunnel with Natural Ventilation Ducts Using the 

Dynamic Layering Method, Journal of Hydrodynamics, Vol.22(2), pp. 164-

172, 2010 

[9] Krasyuk, A.M., Lugin, I.V., Investigation of the Dynamics of Air Flows 

Generated by the Disturbing Action of Trains in the Metro, Journal of Mining 

Science, Vol.43, No.6, 2007 



120 
 
 
 

120 

[10] Sanz-Andres, A., Santiago-Prowald, J., Baker, C., Quinn, A., Vehicle-induced 

Loads on Traffic Sign Panels, Journal of Wind Engineering and Industrial 

Aerodynamics Vol.91, pp.925–942, 2003 

[11] Sanz-Andres, A., Laveron, A., Baker, C., Quinn, A., Vehicle-induced Loads 

on Pedestrian Barriers, Journal of Wind Engineering and Industrial 

Aerodynamics Vol.92, pp.413–426, 2004 

[12] Sanz-Andres, A., Laveron, A., Cuerva, A., Baker, C., Vehicle-induced Loads 

on Pedestrians, Journal of Wind Engineering and Industrial Aerodynamics 

Vol. 92, pp.185–198, 2004 

[13] Wylie, E.B. and Streeter, V.L., Fluid Transients, McGraw Hill Book Co., 

New York, 1978. 

[14] Afshar, M.H., Rohani, M., Water Hammer Simulation by Implicit Method of 

Characteristics, Int. J. of Pressure Vessels and Piping, Vol.85, pp.851-859, 

2008. 

[15] Henson, D.A., Lowndes, J.F.L., Practical Applications of a Method of 

Assessing the Ventilation and Draught Relief Requirements for Underground 

Railways, Second International Symposium on the Aerodynamics and 

Ventilation of Vehicle Tunnels, Cambridge, 1976. 

[16] Aradağ, S., Underground Transportation System Ventilation by Train Piston 

Effect, M. Sc. Thesis, Mechanical Engineering Department, Middle East 

Technical University, Ankara, Turkey, July 2002. 

[17] Ke, M., Cheng, T., Wang, W., Numerical Simulation for Optimizing the 

Design of Subway Environmental Control System, Journal of Building and 

Environment, Vol.37, pp.1139-1152, 2001. 

[18] Gilando, J., Tiseira, A., Fajardo, P., Navarro, R., Coupling Methodology of 

1D Finite Difference and 3D Finite Volume CFD Codes Based on the Method 

of Characteristics, Journal of Mathematical and Computer Modeling, Vol.54, 

pp.1738-1746, 2011. 

[19] Novak, J., Single Train Passing Through a Tunnel, European Conference on 

Computational Fluid Dynamics, pp.350-368, 2006. 



121 
 
 
 

121 

[20] Uystepruyst, D., William-Louis, M., Creuse, E., Nicaise, S., Monnoyer, F., 

Efficient 3D Numerical Prediction of the Pressure Wave Generated by High-

speed Trains Entering Tunnel, Fournal of Computers and Fluids, Vol.47, 

pp.165-177, 2011. 

[21] Solazzo, E., Cai, X., Vardoulakis, S.,  Modelling wind flow and vehicle-

induced turbulence in urban streets, Atmospheric Environment, Vol.42, 

pp.4918-4931, 2008 

[22] Wang, F., Yin, Z., Kaiyuan, H., A Study on Subway Tunnel ventilation for 

Piston Effect, ICCPT,  pp. 910-921, 2009. 

[23] Lin, C-J., Chauh Y.K., Liu, C-W., A study on underground tunnel ventilation 

for piston effects influenced by draught relief shaft in subway system, Applied 

Thermal Engineering, Vol.28, pp.372-379, 2008. 

[24] Kim, J.Y., Kim, K.Y., Experimental and Numerical Analyses of Train-

induced UnsteadyTunnel Flow in Subway, Tunnelling and Underground 

Space Technology, Vol.22, pp.166-172, 2007. 

[25] Howe, M.S., The Genetically Optimized Tunnel Entrance Hood, Journal of 

Fluids and Structures, Vol.23, pp. 1231-1250, 2007. 

[26] Kumar, M., yadav, N., Multilayer Perceptrons and Radial Basis Function 

Neural Network Methods for the Solution of Differentiable Equations: A 

Survey, Journal of Computers and Mathematics with Applications, Vol.62, 

pp. 3796-3811, 2011. 

[27] Adhikari, B., Jindal, V.K., Artificial Neural Networks: A New Tool for 

Prediction of Pressure Drop of Non-Newtonian Fluid Food through Tubes, 

Journal of Food Engineering, Vol.46,  pp. 43-51, 2000. 

[28] Kalogirou, S.A., Eftekhari, M.M., Pinnock D.J., Artificial Neural Networks in 

Predicting Airflow in a Naturally Ventilated Test Room, Building Services 

Engineering Research and Technologies, Vol.22, pp. 83-93, 2001. 

[29] Kuan, Y., Lien, H., The Integration of the Neural Network and 

Computational Fluid Dynamics for the Heat Sink Design, Lecture Notes in 

Computer Science, Vol. 3498/2005, pp. 974-975, 2005. 



122 
 
 
 

122 

[30] Stavrakakis, G.M., Karadimou, D.P., Zervas, P.L., Sarimveis, H., Markatos, 

N.C., Selection of Window Sizes for Optimizing Occupational Comfort and 

Hygiene Based on Computationla Fluid Dynamics and Neural Networks, 

Journal of Building and Environment, Vol.46, pp. 298-314, 2011. 

[31] Pena, F.L., Casas, V.D., Gosset, A., Duro, R.J., A Surrogate Method Based 

on the Enhncement of Flow Fidelity Computational Fluid Dynamics 

Approximations by Artificial Neural Networks, Journal of Computers and 

Fluids, Vol.58, pp. 112-119, 2012. 

[32] Karkoub, M., Elkamel A., Modelling Pressure Distribution in a Rectangular 

Gas Bearing Using Neural Networks, Tribology International, Vol. 30 (2), 

pp. 139-150, 1997. 

[33] Hu, T.S., Lam, K.C., River Flow Time Series Prediction with a Range 

Dependent Neural Network, Hydrological Sciences Journal, Vol.46(5), pp. 

729-745, 2001. 

[34] Pierret, S., Van den Braembussche, A., Turbomachinery Blade Design Using 

a Navier – Stokes Solver and Artificial Neural Network, Transections of the 

ASME, Vol.121, 1999. 

[35] Chen, Y., Kopp, G.A., Surry, D., Interpolation of Wind-induced Pressure 

Time Series with an Artificial Neural Network, Journal of Wind Engineering 

and Industrial Aerodynamics, Vol.90, pp. 589-615, 2002. 

[36] Leon-Galvan, I.M., Nogal-Quintana, E., Alonso-Weber, J.M., Neural 

recurrent modelling for multi-step time series prediction, International 

Conference on Computational Intelligence for Modelling, Control and 

Automation, pp. 63-68, 1999, Austria. 

[37] Mai-Duy, N., Tran-Cong, T., Approximation of function and its derivatives 

using radial basis function networks, Applied Mathematical Modelling, 

Vol.27, pp. 197-220, 2003. 

[38] Mai-Duy, N., Tran-Cong, T., Numerical Solution of Navier-Stokes Equations 

Using Multiquadric Radial Basis Function Networks, International Journal of 

Numerical Methods in Fluids, 2003. 



123 
 
 
 

123 

[39] Gölcü, M., Neural network Analysis of Head-Flow Curves in Deep Well 

Pumps, Energy Conversion and Management, Vol.47, pp.992-1003, 2006. 

[40] Ghorbanian, K., Gholamrezaei, M., An Artificial Neural  Network Approach 

to Compressor Performance Prediction, Journal of Applied Energy, Vol.86, 

pp.1210-1221, 2009. 

[41] Hayati, M., Yousefi, T., Ashjee, M., Hamidi, A., Shirvany, Y., Application of 

Artificial Neural networks for Prediction of Natural Convection Heat 

Transfer from a Confined Horizontal Elliptic Tube, World Academy of 

Science, Engineering and Technology, Vol. 28, 2007. 

[42] Hocevar, M., Sirok, B., Grabec, I., A Turbulent-Wake Estimation Using 

Radial Basis Function Neural Networks, Flow, Turbulance and Combustion, 

Vol.74, pp. 291-308, 2005. 

[43] Manevitz, L., Bitar, A., Givoli, D., Neural network Time Series Prediction of 

Finite-Element Mesh Adaptation, Journal of neurocomputing, Vol.63, pp.447-

463, 2005. 

[44] Dibike, Y.B., Minns, A.W., Abbott, M.B., Application of Artificial Neural 

Networks to Generation of Wave Equations from Hydraulic Data, Journal of 

Hydraulic Research, Vol.37(1), pp.81-97, 1999. 

[45] Fadare, D.A., Ofidhe, U.I., Artificial Neural Network Model for Prediction of 

Friction factor in Pipe Flow, Journal of Applied Sciences Research, Vol.5, 

pp. 662-670, 2009. 

[46] Bilgil, A., Altun, H., Investigation of Flow Resistance in Smooth Open 

Channels Using Artificial Neural Networks, Journal of Flow Measurement 

and Instrumentation, Vol.19, pp.404-408, 2008. 

[47] Sahu, M., Khatua, K.K., Mahapatra, S.S., A Neural network Approach for 

Prediction of Discharge in Straight Compund Open Channel Flow, Journal of 

Flow Measurement and Instrumentation, Vol.22, pp.438-446, 2011. 

[48] Rezazadeh, A., Sedighizadeh, M., Askarzadeh, A., Abranje, S., Multi Input 

Single Output Neural network Modelling and Identification of Photon 



124 
 
 
 

124 

Exchange Membrane Fuel Cell, International Journal of Engineering and 

Applied Sciences, Vol.2, pp. 1-15, 2010. 

[49] Luntta, E., Halttunen, J., Neural Network Approach to Ultrasonic Flow 

Measurements, Journal of Flow Measurement and Instrumentation, Vol.10, 

pp. 35-43, 1999. 

[50] Wright, G.B., Radial Basis Function Interpolation: Numerical and Analytical 

Development, PhD. Thesis, Department of Applied Mathematics, University 

of Colorado, 2003. 

[51] Baxter, B.J.C., The Interpolation Theory of Radial Basis Functions, PhD. 

Thesis, Cambridge University, August 1992. 

[52] Heryudono, A.R.H., Driscoll, T.A., Radial Basis Function Interpolation on 

Irregular Domain through Conformal Transplanting, Journal of Scientific 

Computing, Vol.44, pp.286-300, 2010. 

[53] Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G., River Flow 

Forecasting: Use of Phase-Space Reconstruction and Artificial Neural 

Networks Approaches, Journal of Hydrology, Vol.265, pp.225-245, 2002. 

[54] Awodele, O., Jegede, O., Neural Networks and Its Application in 

Engineering, Proceedings of Information Science & IT Education 

Conference, 2009. 

[55] Bellman, M., Straccia, J., Morgan, M., Maschmeyer, K., Agarwal, R., 

Improving Genetic Algorithm Efficiency with an Artificial Neural Network for 

Optimization of Low Reynolds Number Airfoils, 47th

[56] Milano, M., Koumoutsakos, P., Neural Network Modelling for Near Wall 

Turbulent Flow, Journal of Computational Physics, Vol.182, pp. 1-26, 2002. 

 AIAA Aerospace 

Sciences Meeting Including The New Horizons Forum and Aerospace 

Exposition, Orlando, Florida, 2009. 

[57] Woods, W.A., Pope, C.W., On the Range of Validity of Simplified One 

Dimensional Theories for Calculating Unsteady Flows in Railway Tunnels, 

Third International Symposium on the Aerodynamics and Ventilation of 

Vehicle Tunnels, pp. A.2.1-A.2.36, 1979. 



125 
 
 
 

125 

[58] SES User’s Manual 4th

[59] Weigend, A.S., Gershenfeld, N.A., Time Series Prediction: Forecasting the 

Future and Understanding the Past, Proceedings of the NATO Advanced 

Research Workshop on Comparative Time Series Analysis, Santa Fe, 1992. 

 Ed., U.S. Department of Transportation, 1998. 

[60] Ceylan, Ö.C., An Experimental and Theoretical Study on Piston Effect in 

Underground Transportation Systems, M. Sc. Thesis, Mechanical 

Engineering Department, Middle East Technical University, Ankara, Turkey, 

August 2008. 

[61] Friedman, J.H., Multivariate Adaptive Regression Splines, The Annals of 

Statistics, Vol.19, pp. 1-67, 1991. 

[62] Jin, R., Chen, W., Simpson, T.W., Comparative Studies of Metamodelling 

Techniques Under Multiple Modelling Criteria, Structural and 

Multidisciplinary Optimization, Vol.23, pp.1-13, 2001. 

[63] Google Maps, “Hastane Metro İstasyonu, Ankara” Map., 

https://maps.google.com/maps/myplaces?ll=39.968918,32.783778&spn=0.00

3967,0.007966&ctz=180&t=f&z=18&ecpose=39.96872007,32.78377831,13

70.47,0.001,2.642,0, Date of Access, 07.10.2012 

 

https://maps.google.com/maps/myplaces?ll=39.968918,32.783778&spn=0.003967,0.007966&ctz=180&t=f&z=18&ecpose=39.96872007,32.78377831,1370.47,0.001,2.642,0�
https://maps.google.com/maps/myplaces?ll=39.968918,32.783778&spn=0.003967,0.007966&ctz=180&t=f&z=18&ecpose=39.96872007,32.78377831,1370.47,0.001,2.642,0�
https://maps.google.com/maps/myplaces?ll=39.968918,32.783778&spn=0.003967,0.007966&ctz=180&t=f&z=18&ecpose=39.96872007,32.78377831,1370.47,0.001,2.642,0�


126 
 
 
 

126 

APPENDIX-A 
 

 

COMMON ACTIVATION FUNCTIONS FOR NEURAL NETWORKS 
 

 

 

Depending on the nature of the problem and data set in hand, various types of 

activation functions can be used in neural networks. Activation functions are also 

known as squashing functions and produce the layer output. Following are the details 

of the activation functions; 

 

 Threshold Function: This type of activation functions are commonly used for 

classification problems. It basically returns an output of 1 if the induced local field, 

i.e. the weighted sum of input data is nonnegative or 0 if otherwise. In engineering, 

threshold function is referred to as Heaviside Function. In equation (A.1), definition 

of the threshold function is given. 

 

( )








<
≥

=
00
01

vif
vif

vf     (A.1) 

 

Where induced local field, v is expressed as ∑
=

+=
k

j
kjkjk bxwv

1

. Note that, induced 

local field of the neuron also includes a bias term kb for the most general case. Graph 

of the Threshold function is presented in Figure A.1. 
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Figure A.1 Threshold Function 

 

 

Piecewise-Linear Function 

This type of activation function is also referred to as saturating linear function, 

output of which can take the value of -1 or 1 beyond its saturation limits, and a 

proportional value at the linear region. In equation (A.2), mathematical definition of 

the piecewise linear activation functions is presented. 

  






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−≤

−>>+

+≥

=

2
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2
1

2
1,

2
1,1

)(

v

vv

v
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In Figure (A.2), a piecewise linear function with bipolar saturation regions is 

presented. 
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Figure A.2 Piecewise Linear Function 

 

 

Sigmoid Function 

This type of activation function is basically an s-shaped continuous differentiable 

function, which is most commonly used for construction of neural networks. Sigmoid 

type of activation functions are especially used for approximating continuous 

functions and are used also in the method proposed in this thesis. An example of a 

sigmoid function is hyperbolic tangent function which is ( ) ( )vvf tanh= . Plot of the 

hyperbolic tangent function is given in Figure A.3. 

 

 

 

 
 

Figure A.3 Tangent Hyperbolic Function 
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APPENDIX-B 
 

 

WEIGHTS OF THE NEURAL NETWORKS 
 

 

 

Details of the neural networks trained for maximum, average and time dependent air 

velocities are given in Table B-1, B-2 and B-3. Weight and Bias values are given for 

the following form of expression for network output; 

 

( ) 2112 BBxwwy ++Ψ=     (B.1) 

 

Where  

ℜ∈
ℜ∈

ℜ∈

ℜ∈

×

×

×

2

116
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161
2

416
1

B
B
w
w

 

X is the non dimensional input vector for neural network and given by: 
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Ψ  is the activation function of the neural network.  
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Table B-1 Weights for Maximum Velocity Neural Network 

 

W W1 
B

2 
B1 2 

0.14162 -0.18763 0.02181 -0.07926 
-0.17155 0.17834 0.01612 0.00106 
-0.03126 0.10428 0.01743 0.08480 
-0.05311 -0.21922 -0.19329 1.31460 
-0.13471 -0.44658 -0.62567 0.10938 
0.00871 0.03219 0.20801 -0.34388 
2.34920 0.02248 -0.24805 -0.46006 
0.12306 -0.31731 0.00881 -0.23019 
0.07064 0.82605 -1.55990 -1.20910 
-0.06381 0.17898 0.00143 0.12481 
0.16722 -0.16271 -0.04630 0.04671 
-0.04432 0.13459 0.01504 0.11126 
-0.00611 0.02264 0.00631 0.02368 
-0.09815 0.27626 -0.00824 0.18920 
0.16932 0.44636 0.33281 0.31589 
-0.12894 -0.02064 -0.40731 0.45773 

 

-0.39140 
0.38603 
0.15404 
0.59503 
1.38510 
0.56297 
-1.58170 
-0.53898 
-1.70250 
0.28032 
-0.29985 
0.21520 
0.03357 
0.44404 
0.88990 
-0.94168 

 

0.035128 
0.037123 
-0.02661 

-1.0675 
0.1843 

0.32139 
3.2824 

0.34692 
-2.0757 

-0.10684 
-0.07762 
-0.06969 
-0.00105 
-0.26264 
-0.64311 
-0.60482 

 

-0.19025 
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Table B-2 Weights for Average Velocity Neural Network 

 

W W1 
B

2 
B1 2 

-1,69350 0,10122 -0,17481 0,01085 
0,42787 1,0417 -0,84182 -0,60184 

-0,81062 -0,35500 0,74827 0,76015 
0,86823 -0,57529 0,65278 -0,19720 

-0,08211 0,51328 -0,09275 -0,62488 
-1,40160 0,10782 0,31887 0,69368 
0,21901 -0,55167 -0,50790 -0,20075 

-0,19885 0,46191 -0,99940 0,21555 
0,39391 0,06040 0,06851 -0,08645 

-1,18350 -0,35343 -0,18113 -0,14101 
-0,21725 -0,15465 0,15169 0,13707 
0,28402 0,10913 0,03146 -0,01458 
0,73828 0,77322 -0,72149 0,04143 
7,84260 0,06401 -0,13662 0,01794 
0,18677 0,83063 0,12257 0,26427 

-0,34880 -0,18521 0,03000 0,04891 
 

-1.35680 
1.05420 
-0.64710 
-1.29450 
-0.92347 
0.82679 
0.80429 
-1.31598 
-0.71545 
-1.44490 
-0.36106 
-0.63177 
-1.16890 
3.03920 
0.89465 
0.72795 

 

-1.14390 
1.01770 
0.14145 
0.96629 
0.58577 

-0.13661 
-0.21847 
-0.58329 
0.64689 
1.32650 
0.11785 
0.41497 
0.89293 
9.16290 
0.55744 

-0.59038 
 

1.2443 
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Table B-3 Weights for Time Dependent Air Velocity Neural Network 

 

W W1 
W

2 3 

  

-3.488 -7.471 
-0.340 0.974 
1.407 1.347 
1.595 3.229 
-3.329 0.795 
0.307 2.796 
-0.110 3.258 
-0.892 -1.042 

 

        

-6.759 2.512 0.480 0.281 -2.671 0.626 -0.025 -2.171 
0.858 0.912 -0.959 -0.829 -3.422 0.131 0.119 -2.176 
0.550 2.532 -0.290 -0.890 0.600 2.424 -4.289 1.183 
-0.851 2.084 1.870 0.317 -2.641 4.169 4.302 -4.018 
-0.202 -0.247 1.006 -0.166 0.145 -2.112 0.304 -0.704 
0.398 0.096 0.440 0.577 -0.895 0.809 1.064 -1.047 
0.634 0.999 -0.188 -0.937 0.108 -3.145 -0.638 -1.448 
0.529 -0.317 0.278 -0.403 0.188 -0.681 -0.622 0.035 
-0.076 -0.160 -0.415 0.002 -0.270 -1.141 0.945 -0.858 

 

3.96040 
2.31850 
-0.48225 
9.89350 
-3.45520 
2.35230 
1.09990 
-3.54390 
1.81200 
-6.91860 

 

B B1 
B

2 3 

3.967 
-0.613 
0.130 
-1.671 
-3.241 
3.085 

32.611 
-1.433 

 

-1.496 
-1.483 
1.134 
-0.232 
0.833 
-0.316 
0.837 
0.812 
-0.613 
2.204 
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