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ABSTRACT 

INCOMPRESSIBLE FLOW SIMULATIONS USING LEAST SQUARES 

SPECTRAL ELEMENT METHOD ON ADAPTIVELY REFINED TRIANGULAR 

GRIDS 

Akdağ, Osman 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Cüneyt Sert 

September 2012, 60 Pages 

The main purpose of this study is to develop a flow solver that employs 

triangular grids to solve two-dimensional, viscous, laminar, steady, 

incompressible flows. The flow solver is based on Least Squares Spectral 

Element Method (LSSEM). It has p-type adaptive mesh refinement/coarsening 

capability and supports p-type nonconforming element interfaces. To validate the 

developed flow solver several benchmark problems are studied and successful 

results are obtained. The performances of two different triangular nodal 

distributions, namely Lobatto distribution and Fekete distribution, are compared 

in terms of accuracy and implementation complexity. Accuracies provided by 

triangular and quadrilateral grids of equal computational size are compared. 

Adaptive mesh refinement studies are conducted using three different error 

indicators, including a novel one based on elemental mass loss. Effect of 

modifying the least-squares functional by multiplying the continuity equation by 

a weight factor is investigated in regards to mass conservation. 

Keywords: Least Squares Spectral Element Method, Triangular Lobatto Points, 

Triangular Fekete Points, Adaptive Mesh Refinement, Mass Conservation 
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ÖZ 

UYUMLU SIKLAŞTIRILABİLEN ÜÇGEN AĞLAR ÜZERİNDE EN KÜÇÜK 

KARELER SPEKTRAL ELEMAN YÖNTEMİ KULLANILARAK SIKIŞTIRILAMAZ 

AKIŞ BENZETİMLERİ YAPILMASI 

Akdağ, Osman 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Yar. Doç. Dr. Cüneyt Sert 

September 2012, 60 Sayfa 

Bu çalışmanın temel amacı, üçgen ağlar üzerinde iki boyutlu, viskoz, laminer, 

zamana bağlı olmayan, sıkıştırılamaz akışları çözen bir akış çözücüsü 

geliştirmektir. Bu akış çözücüsü En Küçük Kareler Spektral Eleman Yöntemine 

dayalıdır. Çözücü p-tipi ağ sıklaştırma/kabalaştırma yeteneğine sahiptir ve p-tipi 

ağ uyuşmazlığını desteklemektedir. Çözücüyü doğrulamak için çeşitli problemler 

çözülmüş ve başarılı sonuçlar elde edilmiştir. Lobatto dağılımı ve Fekete dağılımı 

olarak adlandırılan iki tip üçgen eleman düğüm noktası dağılımının doğruluk ve 

uygulama zorluğu bazında performans karşılaştırılması yapılmıştır. Ayrıca eşit 

sayıda bilinmeyene sahip üçgen ve dikdörtgen elemanların doğrulukları da 

karşılaştırılmıştır. Uyumlu ağ sıklaştırma çalışmaları üç farklı tip hata göstergesi 

kullanılarak yapılmıştır. Bu göstergelerden birisi ilk olarak bu çalışmada 

kullanılan, eleman üzerindeki kütle kaybına dayalı hata göstergesidir. Kütlenin 

korunumu denkleminin bir ağırlık katsayısı ile çarpılmasının metodun kütle 

korunumu performansına etkisi incelenmiştir. 

Anahtar Kelimeler: En Küçük Kareler Spektral Eleman Yöntemi, Üçgende Lobatto 

Noktaları, Üçgende Fekete Noktaları, Uyumlu Ağ Sıklaştırma, Kütle Korunumu
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CHAPTER 1 

1.INTRODUCTION 

1.1. Background and related work 

Computational Fluid Dynamics (CFD) makes use of numerical methods to solve 

governing partial differential equations of fluid flow and heat transfer problems. 

Advances in computational resources in terms of both hardware and software 

such as increase in processor speeds and storage capacities, development of 

alternative parallelization tools and new modeling and solution techniques make 

CFD a faster, more accurate and more robust tool for the simulation of 

thermofluidic transport problems. Today it is widely used in various engineering 

disciplines as a primary design and analysis tool. 

CFD solvers are based on a number of different methods, such as Finite 

Difference Method (FDM), Finite Volume Method (FVM), Finite and Spectral 

Element Methods (FEM/SEM), Boundary Element Method (BEM), Meshless 

Methods, Lagrangian description based particle methods, etc.  Among these, 

FDM, FVM and FEM are the most commonly used ones. In FDM, unknowns of a 

flow problem such as velocity or pressure are calculated on discrete points of a 

flow field by approximating the differential operators of the governing equations 

using finite difference formulae [1]. The main advantage of FDM is its simplicity 

in terms of mathematical background and computer implementation, which is 

lost for complex problem domains that typically require unstructured grids for 

space discretization. Therefore FDM studies are typically restricted to simple 

geometries such as channel flows. 

Among all others, FVM is the most commonly used technique for developing flow 

solvers. Most of today's frequently used commercial CFD software is based on 

FVM, in which the domain is divided into small regions called cells or finite 

volumes. Governing differential equations are integrated over each cell, which 

basically requires the calculation of fluxes that pass through cell boundaries [2]. 
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By the use of simple cell shapes such as triangles and quadrilaterals in 2D and 

hexahedrons and tetrahedrons in 3D, FVM can be applied to complex geometries 

easily. Other advantages of it are its local conservation property and simple, 

physics-based formulation that can easily be understood and implemented by 

engineers. 

FEM and SEM are similar to FVM in terms of discretizing the geometry into small 

cells, known as elements in FEM. Actually it is possible to show that under 

certain conditions FEM and FVM yield identical discretizations. However, their 

mathematical foundations and formulation details are quite different. In FEM 

unknowns of the problem are approximated over each element using 

interpolating polynomials (basis functions) and algebraic equations are obtained 

by using these approximations in weighted integral forms of the governing 

equations. FEM and SEM are quite similar in formulation and application. Their 

main difference is that, in FEM, relatively small sized elements with low order 

Lagrange type interpolating polynomials based on equi-spaced nodes are used 

[3], while in SEM, relatively large sized and high order elements with Legendre 

or Chebyshev polynomials are preferred [4]. 

SEM is the technique used in the current work. It can be seen as a combination 

of FEM and Spectral Method (SM). FEM uses local expansion bases over each 

element and ends up with a sparse linear algebraic system of equations for 

which there are many well-known efficient solution methods. On the other hand, 

SM uses global basis functions, which results in a fully populated equation 

system to be solved [5]. Also SM is limited to very simple rectangular or prism 

shaped geometries while FEM is very flexible in handling complex geometries. 

The most important advantage of SM is that the accuracy of the solution is 

higher than FEM for the same number of degrees of freedom. That is to say SM 

requires less storage to achieve the same accuracy as FEM. SEM utilizes the 

most powerful features of FEM and SM; the domain is divided into elements just 

as in FEM, and high order expansions are used as in SM to achieve fast spectral 

convergence. 

The current study is the continuation of a previous research conducted by 

Ozcelikkale and Sert [6,7], in which a 2D incompressible flow solver based on 

Least Squares Spectral Element Method (LSSEM) was developed. LSSEM is one 

of the several alternative variational formulations used with SEM. Actually the 

Galerkin formulation is the most commonly used one, especially for structural 



3 

 

mechanics problems. Unfortunately, the success of Galerkin formulation for 

structural mechanics cannot be achieved in convection dominated flow problems. 

When the Galerkin formulation is used for highly convective flows, unphysical 

oscillations are observed, which can only be avoided by excessive mesh 

refinement [8]. Another disadvantage of the Galerkin method is that when it is 

used to solve Navier-Stokes equations, basis functions of different orders must 

be used for velocity and pressure approximation to satisfy the Ladyzhenskaya-

Babuska-Brezzi (LBB) or the so called inf-sup condition [9,10]. Researchers tried 

to overcome these deficiencies by using modified versions of Galerkin 

formulation such as Streamline Upwind Petrov-Galerkin [11], Galerkin Least 

Squares [12] and Taylor-Galerkin [13], which brings in debatable concepts of 

upwinding and artificial dissipation. Also Galerkin formulation applied to Navier-

Stokes equations results in a non-positive definite coefficient matrix which is 

hard to solve [8]. 

Not suffering from the disadvantages mentioned above, the Least Squares (LS) 

formulation is a better alternative to Galerkin formulation for fluid mechanics 

problems [8]. It allows the use of base functions of the same order for all 

unknowns, without violating the LBB condition. Also it results in a symmetric and 

positive definite coefficient matrix, for which there are efficient solvers available 

such as the preconditioned conjugate gradient method. Furthermore, it does not 

require special formulations or treatments for different flow regimes, i.e. the 

same formulation can be used for all Mach numbers covering both 

incompressible and compressible flows. 

LS formulation has two main drawbacks [14]. When least squares FEM and SEM 

formulations are directly applied to second order differential equations, basis 

functions should be C1 continuous, i.e. both the functions and their first 

derivatives should be continuous over the problem domain. However it is difficult 

to establish C1 continuity especially for 3D problems and it creates ill-conditioned 

coefficient matrices [8,15]. To overcome this difficulty, Lynn and Arya offered 

converting high order differential equations to a set of first order ones by 

introducing new variables [16]. The first successful LS finite element formulation 

based on this idea was applied to elasto-static problems by Zienkiewicz et al. 

[17]. Applying LS formulation to first order differential equations enables the use 

of C0 continuous interpolations, which are continuous but not continuously 

differentiable. This allows the use of piecewise continuous functions, just like in 

the case of classical Galerkin FEM. Converting the second order derivatives into 
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first order ones requires the definition of new variables, which increases the 

computational size of the problem. But on the other hand these new variables 

are chosen to be of physical interest, such as vorticity for flow problems, which 

eliminates error prone post processing calculations. Depending on the choice of 

this extra variable, LS formulations are named as velocity-pressure-vorticity (U-

p-ω) formulation, velocity-pressure-stress (U-p-σ) formulation, etc. Among the 

others, U-p-ω formulation is the most commonly used one in incompressible flow 

analyses [18,19]. In the present work this formulation is employed and its 

details will be given in Chapter 2. 

The second drawback of the LS formulation is poor mass conservation especially 

for incompressible, internal flow problems with sudden contraction regions 

[14,20,21]. The reason for poor mass conservation is the minimization of the LS 

functional of the continuity equation together with all other governing equations, 

but not using the continuity equation as a constraint as it is used in the Galerkin 

formulation [21]. In the literature several cures are suggested to improve poor 

mass conservation drawback of LS formulation. Chang and Nelson used 

continuity equation as a constraint and it is enforced to be satisfied at all points 

of the discretization [20]. The main disadvantage of this method is that the 

resulting coefficient matrix is not positive definite. Pontaza tried to improve the 

weak velocity-pressure coupling with a regularized form of the continuity 

constraint [22,23] Pontaza also introduced a splitting scheme to decouple 

velocity and pressure computation and achieved good mass conservation 

properties [24]. Penalty LS formulation is also used to enhance mass 

conservation by replacing the continuity equation by the pressure with the help 

of a penalty parameter [25]. These remedies are not used in the present study 

since they all have negative side effects such as destroying the symmetric and 

positive definite property of the coefficient matrix and making the formulation 

and programming complex. However, one last remedy known as weighted 

LSFEM [14,26], which is not difficult to apply on a U-p-ω LSSEM formulation, will 

be visited in the following chapters. This idea tries to improve the mass 

conservation by simply increasing the significance of the continuity equation 

among the others by multiplying it with a weighting factor. 

Another possibility to improve mass conservation of LS formulation in an efficient 

manner is to use high order elements instead of special treatments discussed in 

the previous paragraph. It has been shown that using high order elements 

provides a considerable improvement in mass conservation performance 
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[7,15,21,27]. The current study also makes use of this approach by 

implementing LS formulation in a spectral element framework. 

Spectral element formulations for 2D fluid mechanics problems were first applied 

on quadrilateral elements [28]. In SEM, using rectangular elements has some 

advantages such as high convergence rate, high accuracy and easy construction 

of multi-dimensional expansion bases using tensor product of 1D polynomials. 

Almost all LSSEM base flow solvers existing in the literature are also limited to 

rectangular elements [29-31], including the one the current study is based on. 

However, it is not easy to discretize complex 2D geometries by the use of 

quadrilateral elements only, which brings in the necessity of using triangular 

elements. One of the main objectives of the current study is to add triangular 

element support to the code developed by Özçelikkale and Sert [7]. 

FEM and SEM formulations on triangular elements may employ two types of 

expansion bases, modal (hierarchical) or nodal. When modal expansion bases 

are used, there are no physical grid points (nodes) on the elements. A pth order 

element makes use of polynomials of all orders from one to p and the expansion 

set of an element of order p contains all polynomials of an element of order p-1. 

This is why the modal expansion is also called as hierarchical expansion. Using 

modal expansion bases may be advantageous when adaptive mesh refinement 

techniques are used [32]. Sherwin and Karniadakis used triangular modal 

expansions based on Dubiner polynomials [33] in their spectral element 

formulation [34,35]. On the other hand in a nodal expansion, all interpolating 

polynomials of an element have the same degree. An expansion polynomial of an 

element has the value 1 at its corresponding node and it is equal to 0 at all other 

nodes. This is known as the Kronecker-delta property of nodal expansion and it 

provides simplicity in implementation. Nodal triangular expansions are widely 

used in high order FEM and SEM studies [22,36-41], which is also the choice in 

the present study. 

When nodal quadrilateral elements are used in SEM, interior nodal points of a 2D 

or 3D element are simply calculated as the tensor product of 1D nodal points, 

which are commonly chosen as Gauss-Lobatto-Legendre (GLL) quadrature 

points. The expansion basis of a quadrilateral element is also calculated by the 

tensor product of the polynomials passing through 1D points. However, in 

triangular elements, finding positions of nodal points is not that straightforward. 

Because of the geometry of the triangle, a simple tensor product of a 1D 
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expansion is not possible. Therefore, several researches have been conducted to 

find the optimal nodal distribution over a triangle. One way of placing the nodes 

on a triangle is to calculate the nodes on a quadrilateral element and then 

mapping them into a triangular region as done in [36-38] But this nodal 

distribution in triangle leads to coefficient matrices of high condition numbers 

and low interpolation quality. 

There are several nodal distributions specifically optimized for triangular 

elements. One of those widely used triangular interpolation grid is composed of 

electrostatic points, introduced by Hesthaven [42]. Calculation of the position of 

the electrostatic points is based on minimization of electrostatic potential energy. 

This interpolation grid is used by Warburton et. al. to solve incompressible 

Navier-Stokes equations with a pseudo-spectral scheme [39]. Another commonly 

used triangular nodal set is Fekete points, which are calculated by maximizing 

the determinant of generalized Vandermonde matrix [43], [44], [45]. 

Coordinates of Fekete nodal points are not given by an explicit equation, but 

rather they are calculated and tabulated up to order 19 by Taylor et. al. [45]. 

They are widely used in FEM/SEM codes since they provide a high interpolation 

quality even for very high orders [23,39,41]. More recently, another triangular 

nodal distribution known as Lobatto grid, which is based on geometric issues, is 

proposed by Blyth and Pozrikidis [46]. The interpolation quality of Lobatto grid is 

competitive with those of electrostatic and Fekete points, while creating the 

Lobatto grid is much simpler [47,48]. The common property of these three 

different triangular grids is that the nodal distribution on the edges of the 

triangle is overlapping with 1D GLL points. Thus, the triangles and quadrilaterals 

can be used together without any nonconformity. Fekete and Lobatto 

interpolation grids are used and their performances are compared in the present 

study. The related details are given in Chapter 3. 

One of the main features of the code developed in the current study is solution 

based adaptive mesh refinement (AMR). AMR strategies can be classified in three 

types; h-refinement, p-refinement and r-refinement. In h-refinement technique, 

elements of high gradient regions are divided into smaller ones and the total 

number of elements is increased. In p-refinement, the number of elements is 

kept constant but the degrees of the desired elements are increased; therefore, 

the number of nodes increases. In r-refinement, however, neither the number of 

elements nor the number of nodes is changed. The r-refinement is done by 

moving the nodes to the areas where a finer mesh is required. These three 
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techniques can be used separately or they can be combined in a hybrid AMR 

strategy. 

In literature, studies that employ AMR with LS formulation are limited. Jiang and 

Carey introduced an error estimator based on elemental residual and used it for 

adaptive h-refinement in solution of Laplace equations with LSFEM formulation 

[49]. Taghaddosi et. al. utilized adaptive r-refinement in the solution of 

compresibble Euler equations with LSFEM [50]. They used an error indicator 

based on the second derivative of the flow variables. Heinrichs applied adaptive 

h-refinement on triangular grids to solve Poisson and incompressible Navier-

Stokes equations with LSSEM formulation [41]. A simple error measure based on 

the solution gradients is used in this study. Galvao et. al. used a combined 

refinement concept, hp-refinement, with an error indicator based on least 

squares functional [51]. They solved hyperbolic partial differential equations 

using LSSEM formulation. In the present study, adaptive p-refinement is 

performed using different error indicators. The first error indicator is based on 

least squares functional, which is proposed by Jiang and Carey [49]. The second 

one is based on spectral coefficients, proposed by Henderson [52]. The last error 

measure used in the present study is based on the elemental mass deficit. 

Ozcelikkale and Sert mentioned about the potential use of this error indicator but 

did not implement it [7]. In the present work it is implemented and will be 

discussed in Chapter 4. 

1.2. Thesis Outline 

In Chapter 1 the background and related works are introduced. The details about 

least squares formulation are given in Chapter 2. In chapter 3, the triangular 

nodal distributions and the expansion bases are presented. In Chapter 4, the 

details of implementation of least squares spectral element method are given. 

Chapter 5 presents the numerical results obtained by developed flow solver.  In 

the last chapter, Chapter 6, the results and findings of the study are 

summarized. 
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CHAPTER 2 

2.LEAST SQUARES FORMULATION 

In this chapter, the details of the least-squares (LS) formulation are given. For 

clarity, the formulation is first presented for a first order ordinary differential 

equation. Then it is extended to the governing equations of 2D, steady, 

incompressible flow. 

2.1. LS formulation for a first order ordinary differential equation 

A linear, first order model ODE is selected as follows 

 
 

  

  
      (2.1) 

where, u is the dependent variable (unknown), and a, c and f are known 

functions of x. For simplicity, a differential operator, L, can be defined as 

 
   

 

  
    (2.2) 

which can be used to write the ODE in the following form 

        (2.3) 

Similar to the classical Galerkin FEM, in LSFEM the unknown u is approximated 

over the elements of the computational mesh by using expansion bases (shape 

functions),  , details of which will be given in Chapter 3. The approximation is 

done as follows 

 
  

     
    

 

   

 (2.4) 
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where, u 
  is the approximated unknown over an arbitrary element e, N is the 

number of nodes of this element at which discrete unknown values are stored 

and   
 's are the coefficients to be calculated. Since the expansion bases have the 

Kronecker-delta property in nodal FEM/SEM, the coefficient,   
 , is the same as 

the approximated value of the unknown,  u 
 , at the jth node of element e. 

Therefore, equation (2.4) can also be written as 

 
  

     
    

 

   

 (2.5) 

To calculate the nodal unknowns,   
 , the differential equation needs to be 

converted into an algebraic equation over each element, steps of which are 

explained next.  

First, the approximation of the unknown given by Eqn. (2.5) is substituted into 

the differential equation and its residual, R(x), is obtained as 

 
      

   
 

  
    

    (2.6) 

which can also be written as follows 

 
         

 
   

  
 

 

   

     
    

 

   

   (2.7) 

This residual is then used into the following weighted residual statement written 

for element e 

 
              

 

  

 (2.8) 

where      are the weight functions, that need to be selected. For an element 

with N nodes , N many algebraic equations are needed to solve for N unknowns. 

Therefore, N many weight functions need to be selected. Different FEM/SEM 

formulations such as Galerkin, Least-Squares (LS), etc. differ in selecting these 

weight functions. In LS formulation, ith weight function is selected to be the 

derivative of the residual with respect to the ith nodal unknown of element e, as 

given below 
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  (2.9) 

which takes the following form for the selected model differential equation 

 
   

  

   
   

   

  
     (2.10) 

Using the notation introduced in Eqn. (2.2) ith weight function becomes  

         (2.11) 

Now, the ith algebraic equation over element e can be formed by substituting the 

ith weight function into the weighted residual statement given by Eqn. (2.8) to 

get 

 

     
   

  
          

 
   

  
 

 

   

     
    

 

   

      

 

  

 (2.12) 

 

     
   

  
       

   

  
       

 

  

   
       

   

  
        

 

  

 

   

 (2.13) 

Using the differential operator, L, Eqn. (2.13) can be put into the following 

compact form 

 

               

 

  

   
             

 

  

 

   

 (2.14) 

which can further be simplified into the following matrix form 

               (2.15) 

where     
   and    

   are the elemental stiffness matrix and elemental force 

vector, respectively, given as follows 

 
   

                

 

  

 (2.16a) 

 
  

            

 

  

 
(2.16b) 
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The integrand in the definition of the elemental stiffness matrix is 

 
            

                     
   

                     
  (2.17) 

which can also be written as 

                      (2.18) 

where,   is the following row vector of shape functions 

                   (2.19) 

To finish the formulation, elemental stiffness matrix and force vector can be 

expressed in their following final forms 

 
   

               

 

  

 (2.20a) 

 
  

           

 

  

 
(2.20b) 

These integrals need to be evaluated separately for each element of the 

computational mesh and the obtained elemental equation systems should be 

assembled into a global one, which can then be solved to obtain the discrete 

nodal unknowns. 

2.2. LS formulation for 2D, steady, incompressible flow 

The governing equations of 2D, steady, incompressible flow of a Newtonian fluid 

are the following conservation of mass and linear momentum 

       (2.21a) 

 
     

 

 
          (2.21b) 

where,   is the velocity vector and   is the pressure, which are the primary 

unknowns of the problem.   is the body force vector,   is the known constant 
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density and   is the constant kinematic viscosity. In CFD studies these two 

equations together are called Navier-Stokes (N-S) equations. 

N-S equations are second order and nonlinear and therefore the formulation 

given in Section 2.1 needs some modifications. As mentioned in Chapter 1, when 

using LS formulation, second order differential equations should be replaced with 

an equivalent first order set. This modification is done so that C0 continuous 

expansion bases, which are easy to construct, can be used. For this purpose the 

second order term     of Eqn. (2.21b) is replaced with the curl of the vorticity 

vector,    , and the definition of vorticity is added as an extra equation to Eqn. 

(2.21). This formulation is called as velocity-pressure-vorticity (U-p-ω) 

formulation. The final form of the differential equation set is given below 

       (2.22a) 

 
     

 

 
          (2.22b) 

         (2.22c) 

The first term in Eqn. (2.22b) (the convective term) is nonlinear and needs to be 

linearized, which can be done using the following iterative Newton’s linearization 

technique [8] 

                                     (2.23) 

where k+1 denotes the current iteration and k denotes the previous one. At 

convergence of this iterative procedure      will approach to    and the right and 

left hand sides of Eqn. (2.23) will be equal. Using Eqn. (2.23) in (2.22b), 

linearized form of the momentum conservation can be obtained as follows 

 
            

 

 
                 (2.24) 

where, for simplicity, no superscript is used for the velocity of the current 

iteration and zero (  ) is used for that of the previous iteration. 

Linearization iterations are stopped at a certain point where the current and 

previous velocities are close enough. The error measure used for this purpose is 

L2 norm of the velocity vector,      , where,       
    

 , and    and    are the 



13 

 

nodal velocities in x and y directions, respectively. So the convergence criteria 

for nonlinear iterations can be defined as 

       
  

 

     

                                                   (2.25) 

where            is a user selected tolerance value. 

After introducing the new variable, vorticity, and linearizing the N-S equations, 

now there are four scalar equations and four scalar unknowns for a 2D problem. 

For a flow in the xy plane, scalar unknowns are the x and y components of the 

velocity vector, pressure and z component of the vorticity vector ( ,  ,  ,  ). 

Four scalar equations in their open form are given as follows 

   

  
 

  

  
   (2.26a) 

 
  

  

  
   

  

  
  

   

  
  

   

  
 

 

 

  

  
  

  

  
      

   

  
   

   

  
 (2.26b) 

 
  

  

  
   

  

  
  

   

  
  

   

  
 

 

 

  

  
  

  

  
      

   

  
   

   

  
 (2.26c) 

 
  

  

  
 

  

  
   (2.26d) 

After this point, the formulation is similar to the one presented in Section 2.1. 

The differential operator, L, can now be defined as a 4x4 matrix 

 

  

 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

  
  

  

 

  
   

 

  
 

   

  

   

  

 

 

 

  
 

 

  

   

  
  

 

  
   

 

  
 

   

  

 

 

 

  
 

 

  

 

  
 

 

  
  

 
 
 
 
 
 
 
 
 
 
 
 

 (2.27) 

which enables us to express the differential equation set as follows 

           (2.28) 

where the unknown vector     and the right hand side vector     are given as 
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              (2.29) 

 

  

 
 
 

 
 

 

  

   

  
   

   

  

  

   

  
   

   

  
  

 
 

 
 

 (2.30) 

An element has 4N many unknowns, where N is the number of nodes of the 

element. The approximation of the elemental unknowns is done as 

 

  
  

 
 

 
  

 

  
 

  
 

  
  
 

 

         (2.31) 

where the details of     and      are given below 

 

   

     
     
     
     

 

     
     
     
     

   

     
     
     
     

  (2.32) 

        
    

    
    

      
    

    
    

        
    

    
    

     (2.33) 

Finally the elemental stiffness matrix and force vector can be obtained using 

Eqn. (2.20), but this time the differential operator defined in Eqn. (2.27) and the 

elemental shape function matrix defined in Eqn. (2.32) are used. One important 

missing detail is the selection of shape functions, which will be explained in the 

next chapter. 

As mentioned before, weighted LSSEM formulation is also used in the present 

study. In weighted LSSEM, the continuity equation in the system defined by Eqn. 

(2.26) is modified as; 

 
  

  

  
 

  

  
    (2.34) 

where   is the weight factor. The differential operator, L, is also modified 

accordingly. The effect of this modification is discussed in Chapter 5. 
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CHAPTER 3 

3.NODAL POINTS AND EXPANSIONS IN A 

TRIANGULAR ELEMENT 

In the formulation presented in Chapter 2, the details about the shape functions, 

which are the interpolating polynomials used in the approximation of unknowns, 

are not given. As mentioned in Chapter 1, there are several alternatives of 

triangular interpolation grids such as electrostatic points, Fekete points and 

Lobatto points. Computing the electrostatic points and Fekete points requires a 

considerable amount of work [42,45]. On the other hand the Lobatto grid is easy 

to construct while it is providing a comparable interpolation quality. In the 

present work Fekete points calculated by Taylor et. al. [45] and Lobatto points 

proposed by Blyth and Pozrikidis [46] are used. In this chapter, calculation 

details of the nodal point coordinates and the shape functions are explained. 

3.1. Master element concept 

In implementing FEM/SEM, for the sake of simplicity and generality, elemental 

calculations are performed on a standard element of fixed shape and size, called 

the master element. Figure 3.1 shows the 2D triangular master element in ξη 

coordinates defined over the region -1 ≤ ξ ≤ 1 and -1 ≤ η ≤ -ξ. 

 

 

 

 

Figure 3.1 Triangular master element 

(-1,-1) (1,-1) 

(-1,1) 

ξ 

η 



16 

 

3.2. Nodal points of Lobatto triangular grid 

For 1D interpolation, nodal points of an element can be selected as zeros of 

Lobatto polynomial, Lo. Lobatto polynomial is defined as the first derivative of 

Legendre polynomial, L, which is a type of Jacobi polynomials,   
 , 

. The Lobatto 

and Legendre polynomials of order n are defined as 

        
 

  
      (3.1) 

         
       (3.2) 

In the grid shown in Figure 3.2a, the nodal points on the edges of the triangle 

are chosen as zeros of Lobatto polynomial, ti, and the interior nodes are placed 

so that (ξi,ηj) = (ti,tj). The three-fold symmetry (symmetry with respect to the 

edges of the triangle) of a nodal distribution is important due to its better 

interpolation property. To test the three-fold symmetry, the nodal points on the 

master element can be transformed to an arbitrary equilateral triangle. The 

nodal points of the Lobatto grid shown in Figure 3.2a are transformed to the 

equilateral triangle shown in Figure 3.2b. For this particular master element and 

equilateral triangle, the following mapping functions are used for the 

transformation 

 
   

   

 
 

   

 
 (3.3a) 

 
   

  

 
      (3.3b) 

As can be seen in the figure, the node distribution does not satisfy the three-fold 

symmetry. 
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Figure 3.2 (a) Triangular Lobatto grid on master element for p=5. (b) 

Triangular Lobatto grid on equilateral triangle for p=5.  

Blyth and Pozrikidis [46] worked on the Lobatto nodal distribution to improve its 

three-fold symmetry. In the Lobatto grid they proposed, the nodal points on the 

edges are again zeros of the Lobatto polynomials, but the positions of interior 

nodes for an element of order p are modified as follows 

 
   

 

 
                (3.4a) 

 
   

 

 
                (3.4b) 

where, i=1,2,...,p+1, j=1,2,....,p+2-i and k=p+3-i-j. The three-fold symmetry is 

achieved by this modification. An example of the nodal set and its three-fold 

symmetry for an element of order p=5 is presented in Figure 3.3. 

 
Figure 3.3 (a) Modified triangular Lobatto grid on master element for p=5. (b) 

The same grid transferred on an equilateral triangle.  
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3.3. Nodal points of Fekete triangular grid 

The interpolation quality of a nodal set can be measured by calculating the 

Lebesgue constant. Using a nodal distribution which minimizes the Lebesgue 

constant in the triangular region is reasonable since it has high interpolation 

quality. Computing the Fekete points is based on minimizing the Lebesgue 

constant by maximizing the determinant of generalized Vandermonde matrix, 

the definition of which can be found in Section 3.4. There is not a closed form to 

calculate the coordinates of the Fekete points; special techniques must be used 

to compute them. 

Fekete points on triangle were first evaluated by Bos [43] who computed the 

coordinates of the nodal set up to order p=3. Then Chen and Babuška[44] 

extended his work and computed points up to order p=13. More recently Taylor 

et. al. [45] proposed a new algorithm and computed the Fekete points up to 

order p=19. The Fekete points computed in their study has the minimum 

Lebesgue constant. 

In the present work the nodal set computed by Taylor et. al. [45] is used.  

3.4. Triangular expansion base 

In this section, the procedure to calculate the shape functions is explained. Note 

that the same procedure is applied for both of the nodal sets. 

In a triangle of order p there are N many nodal points and N many expansion 

polynomials, where 

 
  

 

 
           (3.5) 

Since the coordinates of the nodal points are now known, shape (basis) functions 

forming the expansion base of the element can be calculated. Unfortunately the 

shape functions do not have closed form representations, but rather they are 

calculated using the orthogonal polynomials,        . The ith shape function can 

be calculated as 
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 (3.6) 

where,   
  are the unknown coefficients which are to be calculated using the 

Kronecker-delta property of the expansion base, which simply states that a 

shape function of an element takes the value 1 at its corresponding node and 

becomes 0 at all other N-1 nodes. To calculate the coefficients of Eqn. (3.6), the 

generalized Vandermonde matrix, V, should be introduced. The Vandermonde 

matrix holds the values of polynomials,   , evaluated at nodal points. It can be 

defined as 

                (3.7) 

where        are the coordinates of the ith node. In our case, the functions which 

are to be evaluated at the nodes are the orthogonal polynomials,        . When 

the Vandermonde matrix is multiplied with the coefficients   
 , the result will be a 

unit vector, ei, whose elements are all zero except the ith one. 

         (3.8) 

Indeed, the ith element of ei is calculated by applying the summation in Eqn. 

(3.6) with the orthogonal polynomials. Since the value of the ith shape function, 

       , at the ith node is 1, ith element of ei is unity. 

To be able to solve the system in Eqn. (3.8), the Vandermonde matrix must be 

well-conditioned. The condition number of the Vandermonde matrix depends on 

polynomials,        , which should be chosen as orthogonal or near-orthogonal. 

Alternative choices are possible, such as Proriol and Appell polynomials. In the 

present study, Proriol polynomials are employed since they create the desired 

well-conditioned Vandermonde matrix [46]. 

To define the Proriol polynomials on a triangular region, the triangular master 

element (-1 ≤ ξ ≤ 1 and -1 ≤ η ≤ -ξ) is mapped to the quadrilateral master 

element (-1 ≤ ξ’ ≤ 1 and -1 ≤ η’ ≤ 1) as shown in Figure 3.4. This 

transformation is done with the following mapping functions  

 
    

    

    
     (3.9a) 
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        (3.9b) 

And the inverse mapping functions are given by 

 
   

              

 
     (3.10a) 

          (3.10b) 

 

 

 

 

 

 

 

Figure 3.4 Mapping between triangular and quadrilateral master elements 

 

With this coordinate transformation, Proriol polynomials can be defined as 

 
           

     

 
 

 

  
        

      (3.11) 

where, the pair (k,l) is defined so that 0 ≤ k+l ≤ p.    is the kth order Legendre 

polynomial and   
        

 is the Jacobi polynomial of order l.  

So, the orthogonal polynomial,   , introduced in Eqn. (3.6) is defined as 

        (3.12) 

where, j is associated with any unique pair (k,l).  

(-1,-1) (1,-1) 

(-1,1) 

ξ 

η 
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3.5. Sample shape function calculation 

To make the calculation of the shape functions clear, the whole process is 

explained for a low order (p=2) triangular element with 6 nodes. Lobatto nodal 

set is used for this purpose but note that after computing the coordinates of the 

nodal points, the procedure is the same for both of the nodal distributions. The 

second order element is shown in Figure 3.5 with two different node numberings. 

In (a), the node numbering is shown as (i,j) pairs and in (b), each node has a 

single unique number, which is chosen arbitrarily. 

 

 

 

 

 

 

Figure 3.5 Node labeling in two different ways  

To obtain the shape functions, first, the nodal points must be calculated. Based 

on the triangular master element of Figure 3.1, the three Lobatto points on the 

edges of the 2nd order element are located at            . Substituting    into 

Eqn. (3.4), the following nodal coordinates for all 6 nodes can be calculated. 

Table 3.1 Nodal coordinates for a 2nd order element 

Node 

Number i 
       

1 (-1,-1) 

2 (0,-1) 

3 (1,-1) 

4 (-1,0) 

5 (0,0) 

6 (-1,1) 

 

1 2 3 

5 
4 

6 
(b) (a) 

(1,1) (1,2) (1,3) 

(2,2) 
(2,1) 

(3,1) 
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Now, define the Proriol polynomials,    , for which the (k,l) pair is defined as 

0≤k+l≤2 

      

(3.13) 

    
 

 
         

    
 

 
                     

    
 

 
       

    
 

 
               

    
 

 
           

These Proriol polynomials will be associated with the orthogonal polynomials,   , 

in an arbitrary order. In this case the Proriol polynomials can be chosen in the 

order they are given in Eqn. (3.13) 

                              (3.14) 

Now it is time to construct the Vandermonde matrix,    , which holds the value of 

the jth orthogonal polynomial,   , evaluated at the ith node. 

 

    

 
 
 
 
 
 
 
 
        

          

        

                     

                   

       
 
 
 
 
 
 
 

 (3.15) 

To find the first shape function,   , the system in Eqn. (3.8) must be solved. 

         (3.16) 
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 (3.17) 

 

   

 
 
 
 

 
 
 

 

    

     

    

   

      
 
 
 

 
 
 

 (3.18) 

Substituting   
  and    into Eqn. (3.6), the first shape function can be found as 

 
   

 

 
             (3.19) 

Calculation of the other 5 shape functions follows the same procedure, except a 

different unit vector is used in Eqn. (3.16) for each shape function. As a final 

note, the calculated first shape function satisfies the Kronecker-delta property, 

i.e. it has a value of 1 at node 1 of Table 3.1 and it is equal to zero at the other 

5 nodes of the 2nd order element. 
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CHAPTER 4 

4.IMPLEMENTATION DETAILS 

As mentioned before this study enhances the LSSEM flow solver previously 

developed by Özçelikkale [6]. Within the scope of this enhancement, the solver 

is now compatible with triangular meshes and uses an additional novel error 

indicator, which is based on elemental mass deficit, for adaptive mesh 

refinement. In this chapter, the details of the present LSSEM implementation are 

presented. 

The solver is written in C++ programming language. It solves 2D, laminar, 

steady, incompressible Navier-Stokes equations on both quadrilateral and 

triangular meshes. It can perform p-type adaptive mesh refinement and 

supports a number of different error measures. It enables the use of p-

nonconformities on neighboring element faces. 

To solve a problem with the LSSEM flow solver, the domain must be discretized 

first. In this study, mesh generation is done by using the freely available, open 

source mesh generator Mesh2d [53].After the mesh is created the solution is 

performed through the following steps; 

i. Elemental systems (elemental stiffness matrices and force vectors) are 

calculated. 

ii. Elemental systems are assembled into a global system and the global 

system is solved for nodal unknowns. 

iii. Errors are estimated based on the current solution.  

iv. If the errors are in the allowable limits, step (v) is skipped. 

v. Modifications on the grid are done according to the errors (adaptive mesh 

refinement is performed) and the previous steps are repeated with the 

new mesh. 

vi. The solution is finalized by generating a post processing file. 

The details of these steps are given in the following sections. 
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4.1. Calculations on triangular elements and solution of global system 

As stated before, elemental operations are done on a master element, which is 

introduced in Section 3.1. For this purpose, actual elements of a mesh need to 

be transformed into the master element, as illustrated in Figure 4.1. 

 

 

 

 

 

 

Figure 4.1 Triangular master element transformation 

The transformation is done by using the following mapping 

 
    

    

 
   

   

 
   

   

 
 (4.1a) 

 
    

    

 
   

   

 
   

   

 
 (4.1b) 

where          and          are the x and y coordinates of the three corners of 

the actual triangular element. To calculate the elemental stiffness matrix and the 

force vector, integrals given in Eqn. (2.16) must be evaluated. Integration over 

an arbitrary element is transformed to the master element as follows  

 
             

 

  

                

 

  
 

 (4.2) 

where,    and   
  are the triangular regions of the arbitrary element and the 

master element, respectively,     is the determinant of Jacobian matrix, defined 

as follows 

(-1,-1) (1,-1) 

(-1,1) 

ξ 

η 

x 

y 
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 (4.3) 

Integrals over the master element are evaluated using Gauss quadrature 

integration. In Gauss quadrature method, the definite integral is expressed as a 

finite weighted sum of integrand values at special quadrature points. In one 

dimension, the definite integral of      can be defined as 

 
                 

 

   

 

  

 (4.4) 

where,    are the quadrature weights,    are the quadrature points in the interval 

[-1,1], and   is the number of quadrature points. In practice, to evaluate an 

integral with limits [a,b], a coordinate transformation is required to change the 

limits of the integral as [-1,1]. 

There are several alternatives for the quadrature point set,   . One possible 

choice is the zeros of Legendre polynomial in interval [-1,1]. When these points 

are used, the quadrature technique is called as Gauss-Legendre quadrature, 

which can be classified in three types depending on the selection of the 

quadrature points. The first type is Gauss-Legendre quadrature, which uses 

interior points but excludes the end points (-1,1). The second type is Gauss-

Radau-Legendre quadrature in which the interior points and only one of the end 

points, usually     , are used. In Gauss-Lobatto-Legendre type quadrature, 

which is the last type, the interior points and both of the end points are included 

to the set of quadrature points. In FEM/SEM applications, Gauss-Lobatto-

Legendre (GLL) quadrature is the most commonly used one, since imposing the 

boundary conditions is easier when the end points are included. 

In nodal, 2D SEM applications, when quadrilateral elements are used, the 

quadrature points can be the same as the nodal points, which are GLL points. 

This is an advantage of using quadrilateral elements since it decreases the 

complexity of computation. Also the quadrature points and weights can be 

calculated using the tensor product of 1D points and weights. However, when 

triangular elements are used, the quadrature points and weights cannot be 

expressed in terms of 1D points and weights. Therefore, to perform integration 

with Gauss quadrature over a triangular region, the triangle must be 
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transformed into a quadrilateral. This transformation can be done as explained in 

Section 3.4. 

As this transformation is done, the top vertex of the triangle is transformed into 

the      edge of the quadrilateral as seen in Figure 3.4. This top vertex of the 

triangle and the top edge of the quadrilateral are called as degenerate vertex 

and degenerate line, respectively. If the integrals are evaluated by using GLL 

quadrature rule, the integrands of both stiffness matrix and force vector 

integrals must be evaluated at this degenerate line of the quadrilateral. The 

values of the shape functions at this line are known since the shape functions 

have the Kronecker-delta property. However, evaluating the derivatives of the 

shape functions at this line is problematic because when the derivative of the 

shape function is transformed to the quadrilateral there will be terms which 

include          arising from the transformation given by Eqn. (3.10a). This 

term is undefined on the      line (degenerate line). Karniadakis and Sherwin 

[54] offers not evaluating the shape function derivatives at this degenerate line 

by using GLL quadrature in    direction and Gauss-Radau-Legendre quadrature in 

   direction, which excludes the end point     . 

Indeed, all the shape functions and their derivatives have the term         (see 

Eqn. (3.12)). When the shape function derivatives are calculated explicitly, the 

term         is cancelled out with the term,         , which arises from the 

transformation. Therefore, GLL quadrature rule can be applied in both directions 

if analytical forms of shape function derivatives are constructed using the 

orthogonal polynomials, which is the technique followed in the current study. The 

process for constructing the derivatives of shape functions is the same as 

explained in Section 3.4. The only difference is that, after the unknown 

coefficients,   
 , are calculated, the following formula is used to form the 

derivatives 

         

  
    

  
        

  

 

   

 (4.5) 

  derivatives can also be calculated in the same manner. 

In the present work the order of the element and the GLL quadrature order are 

the same. The integration is not evaluated exactly but the integration error is not 

significant since it has the same order of magnitude with the interpolation error 

[34]. 
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After the elemental operations are accomplished, the elemental systems are 

assembled into a global linear system. Boundary conditions must applied before 

solving for the unknowns. In least squares formulation, the governing differential 

equations involve only first order derivatives of the unknowns (see Eqn 2.22). 

Therefore, only essential boundary conditions are used. The developed LSSEM 

flow solver uses the boundary conditions shown in Table 4.1, which are in 

compliance with the ones presented in [6].  

Table 4.1 Boundary conditions (adapted from [6]) 

Boundary type Variables at the boundary 

Wall (no slip boundary condition) u=0, v=0 

Velocity (can be used in inflow boundary) u=UD*, v=UD 

Outflow in x direction  v=0, p=UD 

Outflow in y direction  u=0, p=UD 

Symmetry with respect to x axis v=0, ω=0 

Symmetry with respect to y axis u=0, ω=0 

* UD stands for user defined. 

After applying boundary conditions, the global linear system is solved for the 

unknowns. In the present work, static condensation is used to decompose the 

large elemental system into two smaller size systems. After static condensation 

is applied, the global unknowns are solved by the iterative element by element 

(EBE) Jacobi preconditioned conjugate gradient method. The details of static 

condensation and EBE Jacobi preconditioned conjugate gradient method are 

given by Özçelikkale [6]. 

4.2. Adaptive mesh refinement, error indicators and nonconformities 

The developed LSSEM flow solver employs adaptive p-type mesh refinement and 

coarsening based on the posteriori error indicators. To do this elemental errors 

are kept in between the user defined lower and upper error bounds. 

There are three types of error indicators that the solver uses. The first one is 

based on least squares functional. This error measure is proposed by Jiang and 

Carey [49] and a modified version of it is used by Özçelikkale and Sert [7]. The 

error indicator used in [7] is defined as 
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 (4.6) 

where,        is the    norm of the unknown vector and    is the elemental least 

squares functional which is defined as 

 
                         

 

  

 (4.7) 

Once the elemental system and the approximate solution is calculated, the 

elemental least squares functional can be evaluated. The error based on the 

least squares functional is a measure of how close the approximate solution is to 

the exact solution of the governing equations. 

The other error measure used in the present work is based on the spectral 

coefficients, which is introduced by Henderson [52]. The error calculation is 

based on the idea that the calculated nodal approximate solution can also be 

represented as a modal expansion 

   
           (4.8) 

where   
  the approximate velocity in x direction,   is the nodal expansion base 

vector,   is modal expansion base vector,    is the nodal x-velocity vector and   

is the coefficient vector of the modal expansion. An error can be calculated using 

the coefficients of approximate solution’s modal expansion. When quadrilateral 

elements are employed, Legendre polynomials are used as the modal expansion 

basis, but on triangular elements Proriol polynomials are used to represent the 

approximate solution. Using the generalized Vandermonde matrix,  , which 

holds the values of Proriol polynomials evaluated at the nodal points, the 

unknowns at the nodal points can be calculated as 

       (4.9) 

So, the coefficient vector   can be found as 

         (4.10) 

Then, the error estimate is defined as 
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 (4.11) 

where     is a constant found by lumping the coefficients   . The lumping is done 

by summation of the coefficients of the highest order modal polynomials, which 

includes the necessary information for error estimation. As explained in Section 

3.4, each    is associated with a Proriol polynomial    .  For lumping, the 

coefficients,   , of the modal expansion bases,       , for which k+l=p, are 

summed. 

   
  in Eqn. (4.11) is the spectral error of x-velocity, u. The spectral error for the 

other unknowns, v, p, ω, can also be calculated with the same procedure. The 

spectral error measures how well one of the unknowns is interpolated. 

The last error indicator that the LSSEM solver uses is based on the elemental 

mass deficit. According to the observations that the mass conservation of least 

squares formulation is poor and it can be improved by increasing the order of 

elements, it is reasonable to use the elemental mass deficit as an error measure 

and increase the order of elements that suffer from high mass deficit. For this 

purpose the mass flux across the faces of the elements are calculated as 

 
         

 

  

 (4.12) 

where   is the constant density of the fluid,   is velocity vector and    represents 

the boundary of the element including the unit outward normal information. This 

integration can be performed with 1D GLL quadrature rule since the nodal points 

on the edges of the triangle coincide with 1D GLL points and the unknowns are 

readily available at these nodal points. Once the mass flux over each face of the 

element is known, the mass deficit of the element can be calculated. 

Flow chart of the used adaptive refinement strategy is given in Figure 4.2. When 

the order of an element is increased or decreased, the nodes of the faces of this 

element and its neighbor elements do not necessarily coincide and the 

interelement C0 continuity may be lost. A nonconforming face between 2nd and 

3rd order elements is shown in Figure 4.3. This nonconformity, known as p-type 

nonconformity, can be handled in different ways. In this study, Constrained 

Approximation Method is used, details of which can be found in [6,7]. 
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Figure 4.2 Flow chart of the adaptive refinement strategy (εlower and εupper are 

lower and upper error bounds respectively and ε is the elemental error estimate) 

 

 

 

 

 

Figure 4.3 A nonconforming face between 2nd and 3rd order elements
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CHAPTER 5 

5.NUMERICAL RESULTS 

In this chapter, the results for several benchmark problems are presented in 

order to validate the developed solver. The performances of two different 

triangular grids, namely Fekete and Lobatto grids, are compared. Results 

obtained by using triangular and quadrilateral meshes of the same computational 

size are also compared. Adaptive mesh refinement studies are conducted using 

three different error indicators, one of which is a novel one based on the 

elemental mass deficit. Also the effect of multiplying the continuity equation with 

a weight factor (weighted LSSEM) on the mass conservation is investigated. 

Note that the governing equations solved in this study are in dimensional form 

and the results presented in this chapter are dimensional. x and y coordinates 

have the unit m and the velocities are in m/s for all figures presented in this 

chapter. 

5.1. Kovasznay Flow 

For code verification purposes, a problem with a known analytical solution can be 

solved. In the presented study this is done by studying the steady, 2D, laminar 

flow presented by Kovasznay [55]. 

The exact solution of Kovasznay flow problem is given by 

                 (5.1a) 

 
  

 

  
            (5.1b) 

 
     

 

 
         (5.1c) 
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                (5.1d) 

where,     
               

 
  

,   is the kinematic viscosity and    is a constant 

reference pressure. The solution is done on the domain of [-0.5,1] x [-0.5,1.5] 

for the Reynolds number,      . The streamlines of the exact solution for this 

case is given in Figure 5.1, which resembles the flow behind the wake of two 

obstacles. The obstacles can be thought to be placed somewhere at the left side 

of the domain shown in Figure 5.1. These two obstacles are placed at y1=0 and 

y2=1 (the spacing between the obstacles is, M=1) for the case shown in Figure 

5.1. 

The Reynolds number for this flow is defined as; 

 
   

   

 
 (5.2) 

where    is the average x-velocity over the domain and   is the array spacing. 

For the solution given by Eqn. 3.1,      and    . 

The boundary conditions of the problem are specified using the exact solutions 

given by Eqn. 3.1. The x-velocity and y-velocity are specified at the boundaries 

of the domain and the pressure is set as   , which is the constant reference 

pressure seen in Eqn. 5.1c, at one of the nodes placed at x=0.  

The problem is solved on different grids and convergence rates are compared. 

For each grid, the orders of elements are increased systematically to observe the 

convergence characteristic of the solver. Grids used in the solution are presented 

in Figure 5.1. Solutions are performed by using both Fekete and Lobatto 

triangles on conforming Grid 1. Conforming quadrilateral elements are employed 

in Grid 2. The last grid, Grid 3, is a nonconforming one and uses Lobatto 

triangles. 
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Figure 5.1 Streamlines of Kovasznay flow and the grids used in the solution 

The first solution is performed using Lobatto triangles on Grid 1 for different 

expansion orders and the maximum norm errors,             , of all 

approximate unknowns,                 , are presented in Figure 5.2a. The 

exponential decay is observed for all errors. Also maximum norm errors of the x-

velocity,             , for Fekete triangle, Lobatto triangle and quadrilateral 

elements are compared in Figure 5.2b. The errors are all in the same order of 

magnitude and the rates of convergence for these element types are similar. In 

Figure 5.2c, the convergence rates of a conforming grid (Grid 1) and a 

nonconforming grid (Grid 3) are compared. The comparison is done using the 

maximum norm error of the x-velocity. The error is plotted against    , where 

   is the total number of nodes in the mesh. The exponential decay of the 

maximum error is also observed for nonconforming triangular mesh. Lastly, the 

elemental relative true error of x-velocity in H1 norm,     
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 (5.3) 

is compared with the elemental mass deficit,       . This comparison is done to 

see whether an error indicator based on the elemental mass deficit can be used 

for adaptive mesh refinement or not. As seen in Figure 5.2d, both the elemental 

relative true error and the elemental mass deficit have similar trends as the 

order of the elements are increased. Therefore, it can be concluded that the 

elemental mass deficit is a promising error measure for adaptive refinement. 

 

Figure 5.2 Decay of the errors in solution of Kovasznay Flow with different 

types of grids 
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5.2. Flow around a square cylinder (FASC) 

As mentioned before, least squares finite and spectral element formulations 

suffer from poor mass conservation, especially for internal flow problems with 

sudden contraction regions.  The problem of flow around an obstacle placed in a 

two dimensional channel is widely solved to test the mass conservation of these 

formulations. In the present study, steady, laminar flow around a square 

cylinder which is fixed in a two dimensional channel is solved. The purpose of 

solving this problem is to compare Lobatto and Fekete triangular grids, to 

investigate the effects of multiplying the mass conservation equation with a 

weight factor on the solution and to perform adaptive p-refinement study by 

using three different error indicators. 

The problem domain is shown in Figure 5.3. The fluid enters the channel with a 

parabolic velocity profile. At the outlet boundary y-velocity and pressure are set 

as zero. No slip boundary condition is employed at the walls of the channel and 

walls of the square obstacle. 

 

 

 

 

 

 

Figure 5.3 Definition of the domain for flow around a square cylinder 

For the channel shown in Figure 5.3, blockage ratio, B, and Reynolds number, 

Re, can be defined as 
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where      is the maximum velocity at the inlet and   is the kinematic viscosity. 

For all solutions performed in this study, the blockage ratio is fixed as       

and the entrance length is fixed as       . 

First, a set of solutions with different Reynolds numbers are performed to 

compare the results with the ones available in literature. Breuer et. al. [56] used 

different numerical methods, namely lattice-Boltzmann and finite volume, to 

solve the FASC problem for different Reynolds numbers. They also worked with 

the blockage ratio and the entrance length stated above and obtained the 

following relation 

   

 
                                 (5.5) 

where    is the length of the recirculation region that forms behind the square 

cylinder. 

In the present work, the solutions are performed for Re=10 and Re=20 with the 

mesh shown in Figure 5.4. Conforming Lobatto triangles of orders p=12 and 

p=15 are used for Re=10 and Re=20 solutions, respectively. 

 

Figure 5.4 334 element mesh used for the first solutions with Re = 10 and Re = 20 

The streamlines around the square can be seen in Figure 5.5. The recirculation 

length ratios,     , of 0.48 and 0.95 agree with the results in reference [56]. 

Also the mass flow rate at the exit section is calculated for both cases. The flow 

rate ratios,            , are found as 0.94 and 0.93 for Re=10 and Re=20, 

respectively. 

x

y

0 2 4 6 8 10 12 14 16 18 20 22 24
-2

-1

0

1

2



38 

 

 

Figure 5.5 Streamlines around the square for (a) Re=10 and (b) Re=20 

obtained with 334 element mesh and p=12 and p=15, respectively. 

Another set of solutions is performed on the mesh shown in Figure 5.6 to 

compare the performances of Lobatto and Fekete triangles and to investigate the 

effect of multiplying the continuity equation with a weighting factor. This coarser 

mesh is chosen to illustrate the huge difference in mass conservation when the 

weight factors are used. 

 
Figure 5.6 128 element mesh used for element type and mass deficit 

comparisons 

The interpolation qualities of Lobatto and Fekete nodal distributions are 

compared in [47,48] by calculating Lebesgue constant and using some test 

functions. In both studies it is shown that the interpolation qualities of these two 

triangular grids are similar up to order p=12 but for higher orders Fekete nodal 

set performs much better. In the present study, their performances in LSSEM 

application are compared. For this purpose, the FASC problem with Re=10 is 

solved on the mesh shown in Figure 5.6. For each element types, the solutions 

are performed with expansion orders p = 6, 9, 12, 15, 18. Mass flow rate at the 

exit section and the recirculation length are recorded for each run and presented 

in Table 5.1. As seen in the table, for all expansion orders the mass flux ratios 

and the recirculation lengths of two different element types are very close. 
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Table 5.1 Mass flow rates and recirculation lengths for solutions with Lobatto 

and Fekete triangles 

                  

p Lobatto Fekete Lobatto Fekete 

6 0.815 0.814 0.360 0.360 

9 0.838 0.837 0.454 0.454 

12 0.854 0.854 0.458 0.458 

15 0.868 0.868 0.460 0.460 

18 0.881 0.882 0.460 0.460 

 

Although the purpose of solving the specified case is comparing the Fekete and 

Lobatto distributions, it should be noted that the error of result obtained by 

using 18th order elements is about 12% in terms of mass conservation and 6% in 

terms of the recirculation length. This is an evidence of poor mass conservation 

of least squares formulation. 

The posteriori error estimates based on the least squares functional,    , and 

spectral coefficient,    , can be used to compare the accuracies of the results 

obtained by two different element types.  For this purpose, maximum values of 

the mentioned error estimates are compared and it is observed that their first 4 

digits are the same for all expansion orders. These observations show that the 

results obtained with both triangular element types are almost identical.  

To compare the performances of the two triangular element types, another 

parameter to look for is the convergence rate of the iterative method used for 

solving the linear system of equations. For the problem solved in this part, the 

convergence speeds of the iterative solutions are the same for both element 

types up to order p=12; however, for higher orders Fekete distributions 

converges slightly faster. When Lobatto triangles are used, roughly 1.2 times 

more iterations are required to reach the same iteration error with the one 

obtained in Fekete triangle solutions. It is worth to note that, this comparison is 

also done by solving Kovasznay flow, which has a smoother solution, and it is 

observed that there are no differences in the convergence rates even for high 

orders. Therefore, it is safe to conclude that Fekete triangles can be preferred if 

high order (p>12) elements are required. If the lower order elements (p<12) are 

to be employed, both element types can be used. 
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Another study done with this problem is to investigate the effects of multiplying 

the continuity equation by a weighting factor. For this study, the solution with 

Lobatto triangles of order p=9 is repeated by using weight factors of 2, 5, 10, 

20, 50. The mass flow rates and the recirculation lengths for each case are 

recorded and presented in Table 5.2. As seen in the table, the mass conservation 

of the method is improved considerably as the weight factor increases. Even if 

very high order elements are used, the mass conservation performance of the 

solution done by using weight factors can not be reached without weighting (see 

Table 5.1). However the recirculation length, which must be 0.489 as it is given 

in [56], is overestimated for all weight factors. Therefore, as it is also stated in 

[21], the overall quality of the solution is not improved when the weighting 

factor is used. Furthermore, the large weight factors increase the condition 

number of the coefficient matrix, which delays the convergence of the iterative 

method. Considering these negative side effects, weight factors will not be used 

in the solutions done in the present work. 

Table 5.2 Mass flow rates and recirculation lengths for different weight factors 

Weight factor                  

1 0.838 0.454 

2 0,945 0,600 

5 0,988 0,680 

10 0,995 0,680 

20 0,997 0,700 

50 0,998 0,700 

 

The last set of solutions of the FASC problem is done to perform the adaptive p-

refinement study and compare the performances of three different error 

measures. For this purpose, a 45° tilted square cylinder is used. This time the 

parameter D shown in Figure 5.3 is the diagonal of the square. The blockage 

ratio and the Reynolds number are calculated based on the diagonal of the 

square. The blockage ratio is,      , and Reynolds number is, Re=10 for the 

problems solved in this part. The problem is first solved on a very fine mesh of 

842 elements of order 19 without adaptive mesh refinement. The results of this 

solution are used for validation of the results obtained by using adaptive 

refinement. This solution is referred as “benchmark solution” in the following 

parts.  
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To perform the adaptive refinement study, the mesh shown in Figure 5.7 is used. 

Lobatto triangles are used for the solutions presented here. For all cases, 

solution starts with a conforming mesh of 6th order elements. Then according to 

the error estimator used and the minimum and maximum allowable error values 

selected by the user, the orders of the elements are increased or decreased by 1 

at each refinement level.  

 
Figure 5.7 244 element mesh used in the adaptive refinement studies 

The first error measure used for the refinement study is the error based on the 

least squares functional,    . The upper and lower error limits are set as 10-4 and 

10-7. The minimum and maximum allowable expansion orders are 5 and 19 

respectively. With these specified parameters, the orders of all elements 

between 0<x<10 are increased to 19 in 13 steps of refinement. At the 13th 

refinement step, the elements after x=10 have the orders of 5 and 6. The mass 

flow rate ratios at x=3, x=6 (this is where the square is placed) and x=25 are 

recorded at various refinement levels and they are presented in Table 5.3. Also 

the x-velocity profiles at x=6 (velocity profile between the upper vertex of the 

tilted square and the upper wall of the channel) at various refinement levels are 

presented in Figure 5.8. It is worth to note that the velocity profile and mass flux 

ratios do not change considerably after the 11th refinement level. Therefore 

results remain the same if the maximum allowable order of elements is set as 

17. Furthermore, when upper and lower limits are selected as 10-3 and 10-6, 

respectively, all elements between 0<x<8 are refined up to order of 19 and the 

elements in the downstream part of the channel have the orders of 5 and 6, with 

the results being almost identical with the one obtained by setting the limits as 

10-4 and 10-7. That means the same result can be obtained by using less 

computer resources. The last two observations about the limits of errors and 

expansion orders show the difficulty in choosing convenient error and expansion 

order limits when adaptive p-refinement is employed. 
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Table 5.3 Mass flow rate ratios at various refinement steps when     is used 

Refinement Level         

 x = 3 x = 6 x = 25 

Level 0 0.923 0.840 0.843 

Level 7 0.954 0.906 0.908 

Level 13 0.969 0.935 0.935 

 

 

 
Figure 5.8 x-velocity profiles at x=6 at different levels of adaptive refinement 

done by using the error estimate     

For the second adaptive p-refinement study, spectral error estimate based on x-

velocity,    
 , is used. The error limits and allowable expansion order limits are 

the same as the previous refinement study. The solution is performed in 14 

successive refinements. This time the resulting mesh near the square is not 

uniform; therefore, in Figure 5.9 the orders of the elements near the square 

cylinder are shown for the last refinement level. The elements in upstream have 

the orders of 6 and 7 and the elements in the downstream have the order of 6. 

Also it should be noted that, at the inlet boundary (at x=0), there are two 

elements which are refined up to order 11. The flow rate ratios for this case are 

presented in Table 5.4, and the velocity profiles at x=6 are presented in Figure 
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5.10. As can be seen in Table 5.4, the mass conservation performance of this 

solution is almost same with the one obtained by using     error measure. 

However, the resulting mesh obtained by using    
  has a total number of nodes, 

NN=8565, while the mesh obtained by using     has NN=28588. This shows the 

importance of making refinements in the proper regions of the problem domain. 

The refinement studies are also done with the spectral coefficient error estimates 

based on other variables,  ,  ,   and the results obtained turned out to be 

almost identical. The only difference is that, when these three error estimates 

(   
 ,    

 
,    

 ) are used, the elements near the inlet and outlet boundaries are also 

refined up to the orders 13 and 15. However these refinements do not have a 

considerable effect on the results. 

 
Figure 5.9 Orders of elements near the square obstacle at the last level of 

adaptive refinement done by using the error estimate    
  

Table 5.4 Mass flow rate ratios at various refinement steps when    
  is used 

Refinement Level         

 x = 3 x = 6 x = 25 

Level 0 0.923 0.840 0.843 

Level 8 0.956 0.910 0.912 

Level 14 0.968 0.936 0.936 
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Figure 5.10 x-velocity profiles at x=6 at different levels of adaptive refinement 

done by using the error estimate    
  

The last adaptive p-refinement study is done by using the elemental mass 

deficit,      , as the error measure. The upper and lower error measures are set 

as 10-6 and 10-8 respectively. The allowable minimum and maximum expansion 

orders are 5 and 19 respectively. When the adaptive refinement is done with 

these parameters, the resulting mesh is very similar to the one obtained by 

using    . The orders of 0<x<11 are increased to 19 and the orders of the 

elements in the downstream are 5 and 6. There are a total of 15 refinement 

steps. The orders of elements between 0<x<11 are refined uniformly between 

step 1 and 13, and the orders of some elements at downstream are increased at 

the last two refinement steps, which does not affect the final solution 

considerably. The flow rate ratios are presented in Table 5.5 and the velocity 

profiles are shown in Figure 5.11, which are very similar to the ones obtained by 

using other error measures. The change in the results is negligible when the 

error limits are increased by an order of 10 but increasing the limits by order of 

102 results in an unsatisfactory solution for this problem. 
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Table 5.5 Mass flow rate ratios at various refinement steps when       is used 

Refinement Level         

 x = 3 x = 6 x = 25 

Level 0 0.923 0.840 0.843 

Level 8 0.957 0.912 0.914 

Level 15 0.969 0.935 0.935 

 

 
Figure 5.11 x-velocity profiles at x=6 at different levels of adaptive refinement 

done by using the error estimate       

The mass flow rate ratios are very similar for all adaptive refinement solutions 

done by different error measures; however, for this specific problem, when the 

error measure based on the spectral coefficients is used, the same result is 

obtained by using less number of nodes. Therefore the spectral coefficients error 

measure has the best performance for this problem when storage requirements 

and the run time are considered. But it is worth to note that the performance of 

the error measure is problem dependent; that is to say,    
  may not come up 

with a better mesh when used with a different problem. Backward facing step 

problem, which is discussed in Section 5.3, is an example of this. 
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For all types of error measures mentioned in the present work, selection of the 

error limits depends on the problem and it is hard to automate. One way of 

selecting them properly is to perform a pre-solution with the initial mesh and set 

the error limits according to the orders of magnitude of the maximum and 

minimum errors of this first solution. The other way is to watch the change of 

variables at several points throughout refinement steps and stop the solution 

when the changes in the variables at these points are small enough. 

Furthermore, for the mass deficit error measure the flow rate at the inlet 

boundary can be used to specify the error. For instance, upper bound of the 

error can be selected just by multiplying the inlet mass flux with 10-6, which is 

done to specify the error limit in the present work. The total number of elements 

in the mesh can also be used together with inlet mass flow rate to estimate the 

error limits. 

As can be seen in the mass flow rate ratio tables, all of the solutions results in 

about 6% of mass deficit in the channel. Figure 5.12 shows the velocity profile at 

x=6 for these adaptive refinement solutions together with the one of the 

benchmark solution mentioned before. Note that the velocity profiles at x=6 

match almost perfectly for all three adaptive solutions; therefore, they are 

shown with a single line in Figure 5.12. The mass deficit in the channel is about 

2% for the benchmark solution. When Figure 5.12 and the mass flow rate tables 

are investigated, it is obvious that the further p-refinement is required to obtain 

more accurate results. However, when the orders of elements are so high, the 

run time increases dramatically. Therefore, it is a better idea to use not only p-

refinement but also h-refinement in adaptive solutions. To solve the problems 

with high gradients in an efficient way, a solution should be done which starts 

with a coarse and low order mesh, then employs an hp adaptive refinement 

strategy which keeps the orders of elements in a reasonable range. 

Note that the same adaptive refinement study is also done with a coarser initial 

mesh of 138 elements. For this solution, the mesh around the obstacle is as 

coarse as possible, which means there is only one element on each face of the 

tilted square obstacle. Very similar refinement patterns are observed for each 

error estimate but of course the mass conservation through channel is worse for 

this case. The results of this solution are not presented here since they do not 

change the conclusions done about the performances of error measures. 
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Figure 5.12 Comparison of the x-velocity profiles at x=6 for adaptively refined 

grids and the benchmark solution 

5.3. Flow over backward facing step (BFS) 

Steady viscous flow over two-dimensional backward facing step (BFS) is a 

standard test problem visited by many researchers before. In the present work, 

this problem is used for testing adaptive refinement performance of the solver. 

In this part, mainly two set of solutions are performed. First, a comparison of the 

refinement pattern and the results of two adaptive solutions obtained by using 

quadrilateral and triangular elements is done. With the second set of solutions, 

the performances of different error measures used with triangular elements are 

compared.  

In a previous work a BFS solution with adaptive p-refinement on quadrilateral 

elements was performed by Özçelikkale and Sert [7]. The same problem is 

solved here by using a triangular mesh which is created by dividing the 

quadrilateral elements into two triangular elements. The problem domain and 

u

y

0 0.1 0.2 0.3 0.4
0.25

0.5

0.75

1

1.25

1.5

1.75

2

Adaptively refined grids

Benchmark solution



48 

 

the quadrilateral and triangular meshes are shown in Figure 5.13. Fekete nodal 

points are used with the triangular elements. 

 

Figure 5.13 31 element quadrilateral and 62 element triangular meshes used 

for the BFS problem (y axis is stretched so that y/x=2) 

Fluid enters the region with a developed, parabolic velocity profile, pressure and 

the y-velocity are set to zero at the outlet boundary and no slip boundary 

condition applies at the walls of the channel. Reynolds number based on the 

average inlet velocity and channel height is set as 800. 

The case solved here is the same with the one presented in [7]. All the elements 

are 4th order at the start of the adaptive solution. The spectral coefficient error 

measure based on the x-velocity,    
 , is used with the limits of 10-4 and 10-6. The 

minimum and maximum allowable expansion orders are set as 4 and 19 

respectively. 

During the adaptive solutions the refinement of the triangular mesh follows a 

similar pattern with the quadrilateral one and the two solutions end up with 

perfectly matching results. The final mesh between -2<x<10 obtained with 

triangular elements are shown in Figure 5.14. Note that the orders at the 

downstream decreases from 10 to 6 gradually. At the beginning, both meshes 

have total number of nodes, NN=569 and when the refinement ends they come 

up with close NN values, 3451 and 3112 for triangular and quadrilateral meshes, 

respectively. This shows that the adaptive refinement works in a similar way for 

both triangular and quadrilateral elements. 

 

Figure 5.14 Resulting mesh for triangular elements between -2<x<10 
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Figure 5.15 shows the streamlines together with the x-velocity contour up to 

x=15, after where the flow is fully developed. There are two recirculation regions 

attached to the upper and lower walls of the channel. The lengths of the 

recirculation regions and the vorticities at the vortex centers are presented in 

Table 5.6 together with the ones obtained by Gartling [57]. Figure 5.16 shows 

the velocity profiles at x=7 for various refinement levels together with the 

results presented in [57]. 

 
Figure 5.15 Stream lines and x-velocity profile between -2<x<15 (y axis is 

stretched so that y/x=2) 

Table 5.6 The upper and lower recirculation lengths and vorticities at the vortex 

centers 

 Lower wall Upper wall 

 
Recirculation 

length 

Vorticity at 

the vortex 

center 

Recirculation 

length 

Vorticity at 

the vortex 

center 

Present work 6.03 -2.252 5.50 1.150 

Gartling[57] 6.10 -2.283 5.63 1.322 

 

BFS problem is also used to compare the performances of the three error 

estimates. An adaptive refinement study is done with all three types of the error 

measures. The refinement patterns are similar for all error measures; the 

elements close to the step are refined the most and the order of elements 

decreases gradually through the downstream. They also performed similar in 

terms of efficiency. The solution starts with total number of nodes, NN=569 and 

at the last level of the refinements NN=3451 for    
 , NN=3915 for    , NN=3099 

for      . The results obtained by these adaptive refinement studies are almost 

same. Therefore, each error estimate can be used for this problem.  
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Figure 5.16 x-velocity profile at x=7 at various steps of refinement using the 

triangular mesh 

The results and the refined meshes are not presented here for brevity; but, the 

distribution of the errors along the y=0 line is investigated, which gives an idea 

about the regions that are to be refined most. In BFS problem, the errors are 

expected to be high near the corner of the step since the gradients are high at 

this region. In Figure 5.17, the error distributions along y=0 is presented. Since 

the difference between the maximum and minimum errors is very high at the 0th 

level of the refinements (all the elements are 4th order at this level), the error 

distributions at the 2nd level are presented in Figure 5.17. As expected, all error 

estimates have their maximum near the step and they are very low at 

downstream where the flow is fully developed. Note that, for brevity only 

spectral coefficient error estimate based on x-velocity is presented in Figure 

5.17, but the trends of spectral coefficient error based on the other variables are 

also similar. 
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Figure 5.17 Error estimate distributions along the line y=0 
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CHAPTER 6 

6.CONCLUSION 

This study is a continuation of the work done by Özçelikkale and Sert [6,7], in 

which a flow solver based on Least-Squares Spectral Element Method (LSSEM) 

was developed. With the enhancements done in the present work, the solver is 

now compatible with the triangular elements and it uses a new error measure 

based on the elemental mass deficit. The developed code is capable of solving 

2D, steady, incompressible, laminar flows on p-type nonconforming grids and 

has the capability of adaptive p-refinement. Using the solver, several benchmark 

problems are solved for validation and comparison purposes. 

Firstly, the Kovasznay flow, which has a smooth solution, is solved and it is 

shown that the meshes of triangular elements with and without nonconforming 

interfaces provide exponential convergence. Also it is shown that the maximum 

true errors for this problem are very close for meshes of triangular Fekete, 

triangular Lobatto and quadrilateral elements. The convergence rate of the 

elemental mass deficit is compared with the relative true error. The exponential 

decay in the elemental mass deficit is observed, which makes it a promising 

candidate to be used as an error measure in adaptive mesh refinement. 

Secondly, the confined flow over an obstacle is solved, which is a challenging 

problem in terms of mass conservation since it includes a sudden contraction 

region. Solving this problem, the performances of the Lobatto and Fekete 

triangular nodal distributions are compared and the same accuracy is obtained 

for both element types. However, for the expansion orders higher than 12, the 

iterative solution converged faster when Fekete nodal distribution is used. With 

this problem, the effect of multiplying the continuity equation with a weighting 

factor is also investigated and it is shown that the weighting does not improve 

the overall quality of the solution since it deteriorates the proper prediction of 

the overall flow field while improving the mass conservation. This problem is also 

used for comparing the performances of three error measures based on spectral 

coefficients, least squares functional and elemental mass deficit. The results 



53 

 

obtained by using all three error measures are very similar. However, the error 

measure based on the spectral coefficients performed best for this problem, 

achieving the same solution with the others by making less refinements. 

The last problem solved is the flow over a backward facing step. This problem is 

solved for two purposes; comparing the refinements done on quadrilateral and 

triangular elements and comparing the performances of three different error 

measures. The case solved by Özçelikkale and Sert [7] is revisited to compare 

the refinements done on quadrilateral and triangular elements. A triangular 

mesh is created by dividing each quadrilateral element into two and the adaptive 

mesh refinement study is performed with the same error measures for both 

meshes. It is observed that the refinement patterns are very similar and the 

results obtained are identical. Adaptive refinement studies are done using the 

different three error measures and it is observed that the performances of all 

three error indicators are very similar for this problem.  

There is no single error measure that works best for all problems. Therefore the 

selection of the error indicator depends on the problem. In the present work, this 

is shown by solving the last two problems. In the first problem the error based 

on the spectral coefficients performed the best but in the second problem there 

is no remarkable difference in their performances.  

The present work has two main interests. The first one is the selection of 

triangular element type. As stated in [7], use of very high order elements 

decreases the solution efficiency dramatically. Therefore from a practical point of 

view comparison of triangular elements should be done for relatively low orders 

(p<12). In the present work it is shown that, for orders p<12, the performances 

of Fekete and Lobatto triangles are the same in terms of accuracy and 

convergence speed. The two element types should also be compared in terms of 

the complexity of the grid construction. Knowing that constructing the grid for 

Fekete nodal points is cumbersome and constructing the Lobatto grid is much 

simpler; using Lobatto triangles can be preferable.  

The second interest of the research is on the adaptive refinement performance of 

the error measure based on the elemental mass deficit. The performance of this 

error estimator depends on the problem, which is also the case for other error 

measures. Furthermore, the difficulty of selecting the error limits is an issue for 

this error measure too. Still it can be used in problems in which poor mass 

conservation is expected. 
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As a future work, the hp adaptive refinement strategy should be implemented to 

the solver to obtain accurate results in an efficient way. In h-refinement, using 

triangular elements is advantageous since it provides an opportunity to divide 

elements without creating h-nonconforming faces. Also, the weighted LSSEM 

formulation can be used in an adaptive refinement strategy in which different 

weight factors are used for each element according to the elemental error 

estimates. By using different weight factors for each element, the mass 

conservation may be improved without affecting the prediction of the flow field 

significantly. Another future work is to add the ability to work on curved edge 

triangular elements; the solver does not support the triangular elements with 

curved edges at the moment. Furthermore, using modal expansion bases has 

some advantageous in adaptive refinement implementations, which can be 

employed and compared against the nodal expansions already used. Lastly, the 

solver works on hybrid triangular/quadrilateral meshes; therefore, fully 

automated solutions with Cartesian grids supporting cut cells can be performed. 
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