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ABSTRACT

ANALYSIS OF SINGLE PHASE FLUID FLOW AND HEAT TRANSFER IN SLIFFLOW
REGIME BY PARALLEL IMPLEMENTATION OF LATTICE BOLTZMANN METHOD
ON GPUS

Celik, Sitki Berat
M.S., Department of Mechanical Engineering
Supervisor : Asst. Prof. Dr. Clneyt Sert

Co-Supervisor : Asst. Prof. Dr. Barbaros Cetin

September 2012, 97 pages

In this thesis work fluid flow and heat transfer in two-dimemsil microchannels are studied
numerically. A computer code based on Lattice Boltzmannhdet(LBM) is developed for

this purpose. The code is written using MATLAB and Jacketvgaife and has the important
feature of being able to run parallel on Graphics Procedsmts (GPUs). The code is used to
simulate flow and heat transfer inside micro and macro cHan@btained velocity profiles

and Nusselt numbers are compared with the Navier-Stokesl lzamlytical and numerical re-
sults available in the literature and good matches are wbdeSlip velocity and temperature
jump boundary conditions are used for the micro channel lsitioms with Knudsen number
values covering the slip flow regime. Speed of the paralleiva of the developed code run-
ning on GPUs is compared with that of the serial one runnin@€BtJ and for large enough

meshes more than 14 times speedup is observed.

Keywords: Lattice Boltzmann Method, GPU computing, JackBitrochannel Flows



0z

KAYGAN AKIS REJIMINDEKI TEK FAZLI AKIS VE ISI TRANSFERININ LATTICE
BOLTZMANN METODU ILE GRAFIK KARTLARI UZERINDE PARALEL
CALISACAK SEKILDE ANAL iZi

Celik, Sitki Berat
Yiksek Lisans, Makina Muhendisligi Bolimi
Tez Yoneticisi : Yard. Dog. Dr. Cuneyt Sert
Ortak Tez Yoneticisi : Yard. Doc¢. Dr. Barbaros Cetin

Eylul 2012, 97 sayfa

Bu projede iki boyutlu mikrokanallarda, kaygan akis rejide tek fazli akis ve isI trans-
feri problemi sayisal olarak calisiimistir. Bu amakkttice Boltzmann Metodu (LBM) kul-
lanilarak bir kod gelistirilmistir. MATLAB ve Jacket yamlari kullanilarak gelistirilen ko-
dun onemli bir 6zelligi grafik kartlari (GPU) Uzerindemalel ¢alisabilmesidir. Gelistirilen
kod ile mikro ve makro kanallarda benzetimler yapiimigleetdilen hiz profilleri ve Nusselt
sayilar literatirdeki Navier-Stokes tabanl analit& sayisal sonuclarla karsilastiriimis ve
uyumlu sonugclar alinabildigi gosterilmistir. Kaygakis rejimini kapsayan Knudsen sayisi
araligi icin yapilan mikrokanal benzetimlerinde hiz keasi ve sicaklik atlamasi sinir sartlari
kullanilmistir.  Gelistirilen kodun grafik karti Uzedeki paralel performansi ana islemci
Uzerinde c¢alisan hali ile kiyaslanmis ve belli bir Blliikten sonraki aglarda 14 kattan daha

biyik hizlanmalar elde etmenin mimkin olabildigstgsilmistir.

Anahtar Kelimeler: Lattice Boltzmann Metodu, GPU hesagadacket, Mikrokanal akislari
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CHAPTER 1

Introduction

The ability of human beings to make tools hafeatientiated them from other kinds of crea-
tures. In the early ages, this ultimate ability allowed teate tools in the order of magnitude
of a human [1]. Houses, temples, knifes, etc. were at mosbtder of magnitude bigger or
smaller than their makers. In long time, we have learnt t@buauch bigger and smaller tools
and buildings. With the help of fast developing technologyrianufacturing industry after
13th century, today, it is possible both to build hundredmeters tall buildings and to build
atomic size tools. While dealing with such massive and neirstituctures, the physics and
engineering behind switch from the conventional everydf@ydpproaches to more complex
and completely dferent practices. Micro-Electro-Mechanical-Systems (MiMre the tools
having dimensions in the size of microns (smaller than orlinnetre and larger than one mi-
cron) and including electricahechanical components. The attractiveness of MEMS depends
on their miniaturization, multiplicity and microelectrios [2]. Beside being light weighted,
small volumed and power saving [3], it is also possible tadpoe thousands and millions of
samples of a single device easily by lithography-basediqales. However, MEMS get their

major power from the integration with microelectronics.

MEMS are used in numerous engineering-medical applicati@npressure sensori) iner-
tial sensors(iii) fluid regulation and controljv) optical switching, andv) mass data storage
are considered to be the five dominant applications (seeeTah). These applications have
found roles in transportation, medicine, telecommunicatcomputers [4] as well as defence
industry [4, 5]. Microsystems for radio frequency (RF-MEMg#pplications, are not listed
in Table 1.1, yet have entered in the commercialization @003, and have promising

application in both communication, space and defence tridag6].



The market size of MEMS reached one billion dollars in 1996Gf# have billions of dollars

market size worldwide today [1].

Table 1.1:Market Projections for MEMS , Adapted from [4].

Application Market
Pressure Sensors

Blood Pressure Transducers Medical
IUP Sensors Medical
Angioplasty Pressure Transducers Medical
Infusion Pressure Sensors Transportation
Pressure Sensors: Automobile tires Transportation
Inertial Sensors

Airbag Accelerometer Transportation
Suspension Accelerometer Transportation
Braking Accelerometer Transportation
IVHS Navigation Gyros Transportation
Smart Munitions Military
Pacemakers Medical
Machine Monitoring Manufacturing
Motion Control Numerous
Fluid Regulation Control

Medical Infusion Pumps Medical
Industrial valves Numerous
Fluid Meters Numerous
Micromechanical Valves Numerous
Ink/Bubble Printers Computgtrinter

Optical Switches
Access Switches
Floating Switches

Mass Data Storage

Telecommunication
Telecommunication

Rigid Disk Drive Computers
Optical Disk Drives Computers
Flash Memory Computers
Other Applications

Analytical Instruments Numerous
Displays Numerous
Blood Oxygen Sensors Medical
Other Medical Applications Medical
Threshold Sensors Numerous
Temperature Sensors Transportation




Some of the MEMS devices involve fluid flows in microchanneistsas microducts, micro-
pumps, microturbines, microvalves, microcombustorststic jets and lab-on-a-chip de-
vices [1]. The behaviour of flows in such tiny systems are Isw@ter from the ones en-
countered in everyday life. Thereforeftdirent approaches are needed to model fluid flows
in microchannels. The fluid flow modelling is needed to makeaghdesigns and estimates.
Before performing experiments and manufacture the pradine simulation of the system

can save time and money.

1.1 Fluid Flow Modelling

The physics of fluids flows can be modelled by severfiedént sets of mathematical equa-
tions. All those diferent sets can be successful even though the logic behindatecom-
pletely diterent. The idea behind those equations can be split in tworrt@gics: Continuum

models and particle models (see Fig.1.1).

1.1.1 Continuum Models

Continuum assumption states that every single point in afflelel has a finite physical prop-
erty (temperature, pressure, density etc.) by acceptindsflio be divisible into sub-fluids
indefinitely. Hence, there occurs no discontinuity and tesuenption is called continuum.
Assuming flow fields and time are infinitely divisible enabtke of use dierential calculus
which leads to sets of partial fierential equations as governing equations. The discovered
non-linear partial dterential equations are to conserve mass, energy and mameNavier-
Stokes, Euler, and Burnett equations are the accomplishesl. d\ote that the solutions of
dependent variables of those equations are continuouidnac The continuum assumption
inherently causes the sets of equations to be incompletether words, there are more un-
knowns than equations. Therefore, one is supposed to eropiwgtitutive relations to relate
stress and rate of strain; heat flux and temperature gradiedtin some situations equa-
tions of state to relate density and internal energy to pressnd temperature [1]. Also, it is

necessary to consider boundary and initial conditions.

In the continuum model the flow field needs to be in thermodyoamquilibrium, by which, it

is understood that there is always enough time for particledeculegatoms) to adjust them-
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selves according to surrounding variations. For instawten the velocity or temperature of
the flow is begun to change, the particles need some time ®rgoddficient number of col-
lisions to reflect the proper physics of the changes andtie should be incomparable (very
small) with the macroscopic time scales. In reality, it ipwasible to have perfect equilibrium
state due to the fact that particles in motion continuoubnge energy and momentum. It is
more acceptable to say quasi-equilibrium. Thermodynamiglierium assumption spawns
no-slip and no-temperature-jump boundary condition ¢he. boundaries have the same ve-

locity and temperature with the barrier of the fluid).

The continuum and equilibrium assumptions may break dowsome conditions. For in-
stance, shock wave lengths are comparable with averagadésbf molecules; hence, it is
not possible to have thermodynamic equilibrium or to assoaminuum. Also, rarefied gas
media have large intermolecular distances which is ussaign at the outer layers of the at-
mosphere. In MEMS, it is common not to have continuum andntiakequilibrium due to
the tiny length scales of the fluid channels. These examgleforvard the importance of
average molecular distance and it is a common practise toedife characteristics of such
problems with a non-dimensional parameter called Knudsenber (Kn). If we describa
(mean-free-path) to be the average distance of molecupmtaibetween two successive col-
lisions, Knudsen number is the ratigH, whereH is the characteristic length of the system,
usually the hydraulic diameter for channel flows [7]. Insieg Kn is either due to increase in
mean-free-path or due to decrease in characteristic lehgtfeasing Kn violates the assump-
tions of the continuum model equations. High Knudsen nurfibers may be encountered in
flows in narrow channels (microchannels) grdlows at low density. Oferent approaches
are needed to model fluid flow at high Knudsen numbers for wbatftinuum assumption

fails [1].

1.1.2 Molecular Models

Molecular models -unlike continuum models- accept flow Beddmpose of many particles.
The particles have their individual mass and velocity arette@oulombic force to neighbour-
ing particles. Although the physics seems to be simple, b in interest is composed of
billions of particles. (Imagine 10.000 particles in a culagihg 65 nm (65x10° meter side).

Particles undergo numerous collisions in such a short tiraeis far beyond human percep-

4
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|

| |
|Molecular Modelsl | Continuum Models

Statistical

\
[Euler
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Navier—Stokes] |Burnett]
T

|Chapman—Ensk0g|

[DSMC | | Boltzmann} .......................................

Figure 1.1:Fluid Modelling, Adapted from [1].

tion. In this chaotic environment, the feasible properdiesnot the velocities of the molecules
but their collective and average behaviour. In continuunde®the average behaviours are

named as temperature, pressure, viscosity etc.

Molecular models are examined under two subtopics; detestii methods and statistical
methods. The former one uses basic Newtonian mechanicsatoa¢w spatial coordinates
of particles for every discrete time step. A well studied muical tool among deterministic
methods is called Molecular Dynamics (MD). The pros of thethoé are very valuable.
It usually reflects the physics successfully. It is not nesdvorry about the macroscopic
properties such as temperature, pressure, Newt@arNewtonian behaviours, slip velocity
on boundaries, etc. They appear inherently as a result ahthetic behaviour of the particles.
Furthermore, the relation between stress and rate of staaith heat flux and temperature
gradient are also possible to evaluate. In theory, MD haksvior every Knudsen number
regime. It is valid for Kn numbers from zero to infinity. Howerythe number of molecules is
supposed to be big enough to get average quantities. Thepéxafrl0.000 particles indicates
the minimum number of air particles in standard conditiomgét macroscopic properties
with a 1% statistical variation [8]. [ierentiating the Newtonian equations of motion and
solve them for thousands of particles is easy, yet solvimgiltions of particles is required
most of the time. The computational power, today, howegenat ready to deal with such
extreme numbers. 1 second realistic simulation includitgation modes, orientation of

polymer molecules and collisions takes hundreds of yea@R time [9].
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Another disadvantage of MD is the potential function deiams. Potential functions like
Lennard-Jones, are used to calculate the potential enémprticles and its spatial derivative
of them result in the force exerted on the other particleis rieeded to fit a potential empiri-
cally or according to numerical experiments. The funct®supposed to be fit well to reflect
the appropriate physics. It has no unique definition andegadiepending on the problem
solved. The latter methods, statistical ones, are dedidatealculate the probability of the
particles to be in a spatial volume (betweeandx + 0x) and to be in a finite velocity interval
(betweenv andv + dv) at any time. The mathematical corresponding of the prditiabiare
expressed in distribution functions using the Sturm-Litdextheorem [10]. The distribution
functions are used to find out the macroscopic propertiesucsessful tool among numer-
ous statistical methods is Direct Simulation Monte Carl&DC). The method uses random
and uniform numbers, and hence the name “Monte Carlo” isngieeit [11]. It randomly
assigns the velocities of particles using the Boltzmantmidigion function. Assigning veloc-
ities randomly may be seem irrelevant but if the chaoticraons of billions of molecules
are considered, one can confess that the velocities antigpssare random in a sense. Not
surprisingly, the method results in very accurate simairegifor high Knudsen number flows.
As discussed previously, small Kn may refer to large charestic length and therefore, such
solutions require an increase of the number of particleaViD&lso stfers from the lack of

computational power with the increase of the number of siteal particles.

Finally, the Lattice Boltzmann method (LBM) is also a stitil simulation tool. The origin
of LBM is Cellular Gas Automata [12], which was not a succek$bol until the idea of
using it to solve Boltzmann Transport Equation (BTE). Inditye BTE is capable to cover
all flows with Kn ranging from zero to infinity. Fig. 1.2 comparthe working regimes of
continuum equations and BTE. Flows having Kn smaller th@i @re in continuum regime.
Euler equations are very successful to imitate the physitisis regime. With the increasing
Kn slip-flow regime starts and compressibility and slipewity effects come into the picture.
Navier-Stokes equations can force the limits of slip-flogimee; but, fluid flows in transition
and free molecular regimes can not be simulated using ecamtinequations. On the other
hand, BTE is capable to govern all of the regimes. Moreovsimglified version of BTE can
be adopted for free molecular regime. More information ath@M, which is based on BTE

is available in the next chapter.



2 Boltzmann Transport Equation Collisionless BTE
3 (BTE)
<@
[e]
=
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uler ier —
E ] Navier — Stokes Not a Complete Set
5 Equations Equations
2
S Kn
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Figure 1.2: Flow Regimes by Knudsen Number [11].

1.2 Scope of the Current Work

The major objective of the current work was to develop a tatBoltzmann Method code
to simulate slip flow regime which is encountered in microutel flows. To start with, an
LBM code for macrochannels was developedff&ient boundary condition implementations
and collision schemes from the literature were tested. e ¢s then enhanced to solve
microchannel flows. Poiseuille flow with and without heahsfer in macrochannels and mi-
crochannels were solved. Results were well suited to Natiaes and analytical solutions
in the literature. The second major aim was to develop a doalecan utilize the computa-
tional power of GPUs. The code was originally running on algrCPU. It was modified to
run on a single GPU. A further modification was done to run theeecon Multiple-GPU. The
codes were written in MATLAB. GPU computations were achielg the use of the software

Jacket.

1.3 Outline of the Dissertation

Chapter 1 is a brief introduction to the Micro-Electro-Mechanicatlsfems (MEMS). The
importance of MEMS and its application fields are emphasi$ée simulation techniques of

the flows in MEMS are discussed. An appropriate and fast opetigorward.
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Chapter 2 is an introduction to the Lattice Boltzmann Method. The msgof the method
from kinetic theory and the concept of statistical mechaisdiscussed. Liouville’s Equation
and Boltzmann Transport Equation are derived and explaifiee link between microscopic

and macroscopic properties is explained.

Chapter 3 gives theoretical information about the Lattice Boltzmaviathod (LBM). The

details from the statistical thermodynamics to modern fofmbBM is discussed. Besides
the derivation, a historical perspective is provided. Thacept of lattice units, collision,
streaming and macroscopic property calculations are iqula Various boundary conditions

are derived and the ones used in the current work are prouidgetail.

Chapter 4 includes the results obtained by the developed LBM code. rébelts are com-

pared by these obtained by classical Navier-Stokes sadveralso by analytical solutions.

Chapter 5 is about the implementation details of LBM on the CPU and tiRJGStarting
from the history of computing it compares the CPU and GPU aging. The éects of
parallel computing on LBM is reported in this chapter. Theisure of the parallel LBM

code is also studied here.

Chapter 6 tells about the conclusion of the project and the possiktieréuwork to further

enhance the developed code.



CHAPTER 2

Kinetic Theory

2.1 Statistical Mechanics

Statistical mechanics deals with enormous number of pestimbeying the classical mechan-

ics rules [10]. Therefore, the Newton’s second law of motgapplicable to each particle.

azxi ~

=5 =F (2.1)
OXi
E =V (22)

wherex; is position vectory; is velocity vector and"; is force vector per mass acting on
theith particle and = 1, 2,..., N with N being the number of particleﬂ;:—.i is sum of inertial,
electric, magnetic etc. forces, and is a known function dfigion that makes the equations
coupled. There are 3 positions and 3 velocity componentgdch particle, which means
the solution can be obtained solving 6N second-ordffemintial equations simultaneously,
and also, 6N initial conditions are needed. Note that fossaable simulations, the order of
magnitude of N starts from billions. Solving billions oftidirential equations with billions of
initial conditions simultaneously is far beyond the congblatnal power acquired today. The
only concern is not the computational power; but there ase tie issue of selecting initial
datum, initial positions and velocities. It is nearly impide to simultaneously determine
the positions and velocities initially withouffacting the states of particles. Therefore, math-
ematical approaches such as Maxwellian distribution magrbployed to approximate the
initial conditions; however, the solution of the equatievsuld result in positions and veloci-
ties of each particle, and do not provide practical data sisdemperature, pressure, stresses
etc. Here is where the statistical mechanics is used. Airegagf momentum and energy of

particles, and probability of particles to exist in a smalhtrol volume and in a small velocity

9



range are the main ideas. Cercignani provides detailedeassw questions such as “Why
do we need to know the probability in some range of space aloditye?” or "Can we find a
probability for exact position and exact velocity?” [13].Hilé tossing a coin we know that
we will get either heads (H) or tails (T). In terms of probélilthe result lay between 0 and
1. The probability of getting heads or tails i21 If we denote probability with P, the proba-
bilities of getting heads and tails are equal, PéH) = P(T) = 1/2. The summation of all the
possibilities is 1 which ensures that one of the possieditvill definitely occur. In statistical
mechanics, on the other hand, the possibility is a contistdionction rather than discrete sets

of values. There exist infinitely many possibilities copesding to infinitely many states.

If we were able to increase the variables of coin example f2otm many, the possibilities
would decrease from/2. Further increase to infinity will create a continuous fiort of
variables and probability of any variable on that contirsifunction would be zero. However
the sum of the probabilities is still 1. This is not surprgsiand resembles to a finite line
segment composed of many points with zero length. Therefbis needed to deal with
the probability of the values which lie in an interval. If wefthe the probability density of
this curveP(z), the multiplicationP(z)dz represents the probability of the smallest interval.
Note thatz is the coordinates andl = 21,2, ..., Z,. The integral of the multiplication over
all variables results unity, which means absolutely ondefgossibilities will occur. This is

analogous with that integral of mass density over the voluesalts in total mass.

f P(2)dz=1 (2.3)

Z
The probability density is used to get the averages. Wheprthtgability density is known we

can calculate the average of functions.

72 = f P()e(2)dz (2.4)

z

whereg(z) is the average of a functiop(z)

2.2 Phase Space and the Liouville’s Equation

Now, let's draw two pictures. First one is a picture of cdilec of many particles having po-
sitions and velocities. Second one is a 6N dimensional doatel system where dimensions

arexg andvyg (k = 1,2,...N). It is easier to imagine the former one. From now on; however
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the derivation of equations will depend on the second peciutich will ease our work to rep-

resent the probabilities. The new picture is the so-calleabp space. In terms of “certainty”
(rather than probability), the state (velocity and posifiof particles represents only points
in such a system. While talking about “probability”, thes@ns have density-like property,

in other words they are like spread points in 6N dimensiopate. We also can define the
variables in the phase space picture with one variablgie p(xk, vk). Phase space is intro-
duced due to the fact that the Liouville’s theorem is deriveghase [14]. First, the number

of phase points inside an arbitrary but fixed volume is deitezch

np:dep. (2.5)

\%

The rate of change of the number of phase points is

dn, [ oP
a ~ ) a P
Vv

(2.6)

Another expression fam, can be obtained by equating the net rate of change of phasts poi
to the phase points passing through the surfaceAlso p expresses 6N dimensional flow
vector in phase space.

dnp

L Sf (- p)PS @)

wheref denotes the unit normal vector, and due to the fact that ittpaiut we have a minus

sign. Using the Gauss theorem the above expression can hderwas

dnp _
S
Equating Eq. 2.5to Eq. 2.8 results in
9P +V,-(pP) =0. (2.9)

ot

Expanding the gradient operator and writing the flow veataspen form gives

N
oP oP . Z oP .

To be consistent on the previous notation, the equation earritten as

N
oP oP oP .
E'ﬁ‘i:la—Xi'Wﬁ‘ :E —i'F|—0 (211)



which is known as the Liouville’s equation. The solution bistequation for every particle
results in the distribution density. However, we have owlgused on the positions and the
velocities of the particles, and interpret them as mathieadgpoints in space, which move
but have no interaction with their surroundings. They as¢ijudependently moving particles.
The question of “What is the physical system correspondirthe solution of this equation?”
arrives at this point. To give an answer to this question,emiver the ideal gas assumption.
Ideal gas means that the intermolecular potential energyeggigible. The particles move
in straight paths. The interaction occurs only during thkissons which is in a confined
region called action sphere bounded by molecular distance,is very small compared with
the mean free path. Another assumption is that the colbsae always monatomic, which
means that the molecules have only linear momentum andyenénge can say, therefore,
the behaviour of monatomic ideal gasses in thermal eqiuitibresembles the solution of
Liouville’s equation. Those kind of particle systems arerfd in free-molecular regime (see
Fig. 1.2). In real applications, we can hardly find a flow irefr@olecular regime. However,

it is quiet possible to encounter a flow of a real gas in nonfibgium conditions.

2.3 The Boltzmann Transport Equation

For the flows in free-molecular regime, the Liouville’s ejaa with appropriate boundary
conditions is enough to calculate the density distributiddut using this density distribu-
tion, we cannot calculate the temperature or the pressutikecystem. The macroscopic
behaviours cannot be explained by Liouville’s theorem, tn@equation cannot be used in
the case of non-equilibrium. By non-equilibrium, it sholle understood that the particles
collide continuously and hence, reach t@elient states. The non-equilibrium level is related
to the collision time of particles. In order to find a solutimnsuch a system, the collisions of
particles are supposed to be modelled mathematically. fhatiematical model is the Boltz-
mann equation and it also makes a link between the microseoyl macroscopic properties.
Integrating the Liouville’s equation ovet and& and manipulating it to model binary colli-

sions result in the following Boltzmann transport equafiody.

L f [P )P(E)) - PE)PED]Vrdrdeds; (2.12)

where N is the number of molecules, prime indicates the ptppefore the collisior, andé;

are the molecular speeds of particles, V is tHéedence of the speeds of the particlgs; &1|
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(relative speed), ris the radial coordinate of the “actiphese” bounded by the onset and end
of collision, € is the half of the angle between the entering and leavingspaitthe moving
particles. The maximum distance of particles that can d@utewith others forms the action
sphere and one of the particles is assumed to be in rest deolligion. While dealing with

the Boltzmann equation, it is a common practice to define avagiable, f
f =NmP (2.13)

wherem is the mass of a particle anfdis the mass density in phase space. Remember that
the sum of all the probabilities equals to unity. With theamtty defined variable, total mass

can be obtained as unity.

dexdg:l (2.14)

ffdxdg:Nm: M (2.15)

whereM is total mass of the N particles . Hence the Boltzmann equatm be written as
of of 1 ) gt

5t +&- Foi Ef(f f; — ff)Vrdrdedés (2.16)

Our interest is in this form of the Boltzmann equation.

2.4 Bridge Between Microscopic and Macroscopic Worlds

The solution of the Boltzmann equation, Eq. 2.16, resultfistribution function. It basically
stores the data of the probability of a particle (resting andx + dx ; £ andé + d¢) times the
total mass of the gas at timieIntegration off over only the velocity vector, one can obtain

the volume independent mass, in other words, density

f fdé = p(x, 1) (2.17)
This equation is also described as the “zeroth moment” oflisteibution function.
Table 2.1 summarizes all the moments used. Next, the firstanbis going to be calculated.
It was mentioned that the probability functions are useditoudate the averages of functions.
After successfully calculating the distribution functj@me can calculate the average velocity

of the particles in the system. The average velocity canladsdefined as the bulk velocity.

Let's take the first moment to get the average of the velocity.

fffdf =pV (2.18)
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Table 2.1: Moments of Distribution Function in Kinetic Thigo

Zeroth Moment f fdé =p
First Moment fgfdg =pV

Second Moment %fczfdg = %ffzfdf— %pv2

Dividing both sides by results in the macroscopic velocity, The division is not demon-
strated in the formula intentionally to visualize the monseanf distribution functions clearly.

Before proceeding to the second moment let’s introduce avagable
c=&-V (2.19)

The velocity of the particles can be separated into two carapts.v is the bulk velocity (av-
erage velocity) and is the random or peculiar velocity. For instance, gas mdéscenclosed
in a box has zero bulk velocity, however they are moving in the box with velocity Now,

let’s calculate the second moment of the distribution fiomct
1 1 5 1,
éfczfolg_ sz fde¢ SV (2.20)

The term on the left hand side is the internal energy per veluirst term on the right hand
side is the total energy per volume and the second one istletickienergy per volume. After

addressing internal energy per unit mass,dke first term on the left can be written as

%fczfdf = pe (2.21)
Pressure is directly related to the energy per unit masssagigieén with the formula
p= gpe (2.22)

Macroscopic relation between pressure and temperature is
p =pRT (2.23)

wherep is pressureR is gas constant and@ is temperature. From equations 2.22 and 2.23

temperature as a function of microscopic velocity becomes

_2e

T=2= 2.24
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All the above formulations demonstrate that from the distibn functions, practical macro-
scopic properties like density, mass, velocity, presseraperature, and of course, some more

which are not mentioned here can be determined.

15



CHAPTER 3

Lattice Boltzmann Method

The Boltzmann equation is an integrd¥drential equation with 7 dimensions which is very
complicated and challenging to solve; however, there amesanalytical solutions available
[10, 14, 15, 8, 16]. For almost every solution, the collisierm, which is the most problematic
term is simplified to a linear function. If this is not done,eohas to solve a flerential
equation containing a double integral. The approximatedali functions, as expected, do
not carry the complicated physics into mathematics, butreanlt in solutions with desired
resolution. Unfortunately, the analytical solutions arailable only for very simplified cases.
Some examples are steddlysteady Poiseuille flow, shock wave structure, RayleigheBd
convection, Couette flow [14] and ffec flow [17]. The hurdle in analytical solutions lead
researchers to seek for numerical solutions. There havedmeesiderable féords to solve the
equation numerically in terms of hydro-dynamics [18, 1%c&on motion [20, 21], plasma

physics [22], etc.

Beside numerical approaches to solve the Boltzmann transgoation, there were also some
other techniques to simulate fluid flows. One of them is Lat@as Automata (LGA) which
was introduced by von Neuman in 1966. However, it had beendats popularity until par-
allel computing technology was invented [23]. LGA was camstied on boolean numbers (0
or 1) which are representing the speed of particles traagetin lattices and undergo collisions
on lattice cross-roads according to some collision rulestwserve particle number and linear
momentum [12]. While the method was in redeveloping age,ital980’s, the idea to use the
Boltzmann equation in Lattice Gas methods became populacNdmara and Zanetti were
the first researchers who succeed to solve the BoltzmanrsgoanEquation in Lattice Gas

methods numerically [24]. Hence, a new method combining L&B#& Boltzmann equation
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arose. The recently revolutionized technique was able éncovne the drawbacks of LGAs
such as statistical noise and lack of Galilean invarianed,itinherently satisfied thel the-
orem by the use of BTE. What's more, the massively paradibles property of LGAs was
possible to be carried to the new one [25]. McNamara and Zameie loyal to the collision
rules common in LGA. The issue with the collision was how tmdify it. Some dfords
[26, 27] have been tried but alffieient linearisation was obtained by Qian et al. [28]. They
proposed the use of relaxation parameter, which is a knoatepure in computational fluid
dynamics community, for the solution of the Navier-Stokgaations. The relaxation param-
eter approach, in fact,is exactly the same as the appraximdone by Bhatnagar et al. [29],
namely BGK, with a properly selected equilibrium distriouat function. Further more, they
replaced the Fermi-Dirac distribution function with Maxian distribution function. All in
all, this revised LGA method solving BTE with BGK approxirtat and using Maxwellian

distribution function is now called the Lattice Boltzmanretod.

3.1 From Boltzmann Equation to the Lattice Boltzmann Method

Although the Lattice Boltzmann Equation is primarily dexivfrom Lattice Gas methods,
it is proved that, a decade later, LBE can be derived from tbkkzBrann equation directly
[30, 31]. The derivation below is based on Abe’s works [31feBoltzmann equation with

BGK approximation is

E+g.&=w(feq—f) (3.1)

for which the right hand side of Eq. 2.16 is replaced by a liisea approximation [29]f%is
a Maxwellian equilibrium distribution function. The suéttion term stands for the departure
from the equilibrium. Frequenay, controls the rate of reaching to equilibrium and is related

to pressure and kinematic viscosity [8].

F= 2;;& eXp(_ zéT(g - V)z) (3.2
= % (3.3)

Equilibrium distribution function stands on macroscopi&ues. Note that the aim is to solve
for macroscopic properties from microscopic velocitiest initially, the densityp, temper-

atureT and velocityv of the flow are needed to be known. The velocities in Eq. 3.2 are
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normalized by a factorV3RT and gets the form

fed = ZnL/?; exp(—g(f - v)2) (3.4)

Similarly, the acoustic sounds = VRT reduces to 1V3. € is simplified up to second

order accuracy by Taylor series expansion [32].

1+3E-v) + g(g V)2 — glvlz] , (3.5)

= G -3¢
whereD is the number of space dimensions, which is in our case. MateHq. 3.1 requires
velocity, space and time discretisation. The velocity idissation is obtained by selecting 9
velocities as shown in Fig. 3.1. The system is 2 dimensiondltes 9 discrete velocities;

hence, it will be addressed as D2Q9 from now on.

6 2
A

/5
3€ 9 > 1
v\
4 8

Figure 3.1: Discrete Velocities of D2Q9 LBM formulation

Ly
K=k

Figure 3.2: Discretization of Space

e
K

Fig. 3.2 shows the discretization of space for a channel flmblpm in a 2D rectangular

domain. The domain in the figure has 6 nodes and each node lieg&el velocities.
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Eqg. 3.1 in discrete velocities can be written in the form

e Sl =t ) (3.6)

wherei = 1,2,...,9 andeg refer to the discrete velocities shown in Fig. 3.8 € i,e =
j,....g = i — j,eg = 0). Note that now the BTE is reduced to a system dledéntial equa-
tions. The moment integrals, Eqs. 2.17 and 2.18, after theretisation of velocity, are

approximately calculated using Gaussian-type quadratui@ points.

9
p.B) = > WHi(x.D) (37)
i=1
9
pvix.t) = > Wefi(x.t) (38)
i=1

whereW,’s are the Gauss-type quadrature weight functions. Lefime@nother variable
fitx.t) = W fi(x. 1) (3.9)

which also satisfies the same equatiorf;&s t)

ofi  of  eq
o te = (£~ f) (3.10)
where
. 9 3
fieq =wp[l+3(g V) + E(Q V)% - §|V|2] (3.11)
W 3
W= 5a exp( Zqz) (3.12)

Equilibrium distribution function,ﬁeq is valid for low speeds. In other words, the equilibrium
is satisfied for small Mach Numbers (Ma). He et al. and Abe pedelently calculated the

new weight functionsy;’s as [30, 31]

w =1/9 for 1=1234 (3.13)
w; =1/36 for i=56,7,8 (3.14)
wi=4/9 for i=9 (3.15)

The cartesian mesh with uniform and equal spacing in x andectibns Ax = Ay = 1) is

used. The spatial derivative of Eq. 3.10 can be approximatedfirst order upwind dierence
and the time derivative with a first order expliciti@grence with time stept = 1. Equating
AX, Ay andAt to 1 simplifies the equation and this does not create a jegar¢onvergence.

The equation yields to
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fi(x + Ate, t+At) = w0+ (1 - w)fi(x, 1) (3.16)

where
Fe 9 2 3 2
9= wip[L + 3@ - V) + 5@ - V) - SI7] (3.17)
Y=3 j 05 (3.18)
9
o(X, 1) = Z fi(x,1) (3.19)
9|:1
oV(X, 1) = Z af(x.1) (3.20)
i=1

Egs. 3.16 - 3.20 are the Lattice Boltzmann Equations, ang &ne exactly the same as
the ones obtained from LGAw is defined only as a function of lattice kinematic viscosity
for incompressible flows [33]. Also, it was mathematicallyoyed that obtaining Navier-
Stokes’s Equations from Boltzmann Equation is possiblesfoall Knudsen numbers [34].

For simplicity, a variable change given below will be apgabte for the rest of the work.

fi(x, t) — fi(x,1) (3.21)

3.2 Thermal Lattice Boltzmann Equation

The derivation from BTE to LBE in Sec. 3.1 is built on consteerhperature approximation,

in other words temperature has nteet on Egs. 3.16 through 3.20, but only the density and
velocity. In the pioneering work to enhance LBE to solve famperature, Alexander used
a D2Q13 model on a hexagonal lattice to simulate viscous,pcessible, heat-conducting
flows of an ideal monatomic gas [35]. He calculated the secoothent, Eq. 2.20, after
calculating a modified collision operator. He revised thaildzrium distribution function,
f€d, to be correct up to'8 order in velocity,v. But he obtained good results only for small
temperature variations only. Besides, the method wésring from numerical instability and

was valid for a fixed Prandtl number.

There have been several authors studied thermal LBE to dleidbove mentioned draw-
backs [36, 37, 38]. Pavlo studied the instability of therinBE in detail for both hexagonal

and square grids [39]. All those works were also availabiefiked Prandtl number due to
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the fact that the relaxation times of energy and momentune Wer same. Vahala used mul-
tiple relaxation time for the collision operator [40], yepeomising result was not obtained
until a new scheme was published by He [41]. They defined andtistribution function for
energy transport, internal energy density distributionction, g = @f. The idea to use
two different distribution functions for momentum and energy tesubetter stability than
the previous methods. The relaxation parameters of mommeand heat transfer were also
separated. In the current work, a simplified, hence comipuigty efficient, version of en-
ergy density distribution function with Boussinesq appmeation is used [33]. The energy

equations are as follows:

Gi(X + Ate, t + At) = wing " + (1 — win)gi(X, t) (3.22)
where
g = wig(x, ) [1 + 3(& - V)] (3.23)
wh = ﬁs (3.24)
d(x, 1) = |Zgjl; Gi(%. 1) (3.25)

where the weight functionsy;, are the same as momentum weight functieng,is collision

frequency for thermal LBEy is lattice thermal dtusivity andg(x, t) is lattice temperature.

3.3 Lattice Units

Lattice Boltzmann Methods have their own non-dimensiomahmeters. The real parameters
like temperature, viscosity, length, etc. first should bevested to non-dimensional param-
eters used in classical fluid mechanics. A further procesgpjdied to those properties to

obtain Lattice Units [42] as seen in Fig. 3.3.

‘ Physical Systere— Dimensionless Systerm— Lattice System

Figure 3.3: System exchange

An example can make the process clear. Think about a chamr2eDi which is 10 meters
long (L) and is 1 meter in height (H). Air enters in uniformlyitiv2 meters per second speed

(V). The kinematic viscosity of air is 2x1Bm?/s (v). All the properties up to here belong to
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the Physical System in Fig. 3.3. Let’s define two non-dimamel parameters to govern the
system, aspect ratio and Reynolds number. Aspect ratisisdlly the ratio of the length and

height of the tunnel. Reynolds Number is the ratio of inégra viscous forces.

10

r=L/H="=10 (3.26)
Re= 2H _ _2x1 _ (3.27)
v~ 2x105

Aspect ratio and Reynolds number are enough to describe asmple system and they
define the Dimensionless System in Fig. 3.3. Now it is timedlzwate the Lattice Units.
First of all, height of the channel should be determined. figight is given in terms of grid
point spacing. Increasing the number of grid points allowsvork with higher Reynolds
numbers and heals the numerical error; however, brings guetational cost. Usually this
value is determined by numerical experimentation afteningpa few simulations. For now,
lets chose a grid of 11 nodes along the channel height. Hémddight of the channel
becomes 10. Secondly, the velocity of the flow needs to berdated. The velocity should
be smaller than the speed of sound VB, defined in the method. LBM usually works fine
with a velocity ofv* = 0.02. This velocity has no physical dimension but is in the icett
System. () indicates that the property is in Lattice System. So fag variables are defined,
lattice height H*) and lattice velocity *). After determining them, one can proceed to
determine the other lattice properties such as length ofredleand viscosity of fluid. Using
aspect ratio and Reynolds number determined previously dliece Units are calculated as

follows

L* = H*r = 10x10= 100 (3.28)
_0.02x10
10

v =V'*H*/Re = 2x10°® (3.29)

The Lattice Units indicates that the computational domsagoimposed of 10x108 1000 grid
points, and the Eqn. 3.18 is calculated using lattice kinEnvéscosity,v*. Same procedure

is applicable to calculate Lattice thermattdsivity using Prandtl number (Pr) equality.

a* =v'/Pr (3.30)

Pr = Pe/Re (3.31)
wherePeis Péclet number.
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The return to physical system from lattice system is donehkyirtiverse of this procedure.
For example, consider a channel flow. If the velocity on a risadalculated as* = 0.05, the

physical velocity can be calculated as

Re= R€ (3.32)

UH Vv'H*
— = — (3.33)

4 4

ViH* v
U= — 3.34
S (3.34)

0.05x102x107°
= 3.35
2x106 1 ( )
U=5m/s (3.36)

whereU is the physical velocity.

3.4 Collision and Streaming

LBM can be considered to be composed offliatent parts; collision, streaming, implementa-
tion of boundary conditions and calculation of macroscqp@perties. Streaming (updating)
process is actually a part of collision calculations. Hogrevt is simpler if handled sepa-

rately. During the collision calculations, ti distribution function of any grid node can be
calculated as follows

fio6t+ A = w9+ (1 - w)fi(x, 1) (3.37)

which actually results in the distribution functions of thext time step. Remember that
there is also a spatial discretization. This is performegtmperly transferring the values of

distribution functions between neighbouring nodes
fi(x + AX, t + At) = fi(x, t + At), (3.38)

and this process is addressed as streaming in LBM. The sticemh#he process is demon-
strated in Fig. 3.4. It shows the pre-streaming and posasting of the first distribution
function, f1, on every node of a sample 6 node mesh. The direction of thedfatsibution
function is [1,0], and they are moved in that direction. Bvdistribution function is go-
ing to be moved according to their directions. Note thatradtstreaming step, there exists
some missing distribution functions demonstrated witthddsarrows in Fig. 3.4 and some

functions need to leave the domain. The distribution fumdileaving the domain are not

23



important but the missing ones must be recalculated. Atgbist the boundary conditions

take the stage for the missing distribution functions.

VAP NI
KKK

S

v

Figure 3.4: Streaming Process fafon a sample grid of 6 points. Left: Before Streaming,
Right: After Streaming

3.5 Boundary Conditions

Boundary conditions can be obtained by applying the massramentum conservations at

the boundaries [43]:

o= 29: f (3.39)

pv=>af (3.40)
i=1

The derivations below are based on Eqgns. 3.39 and 3.40 whefe,, w]. Fig. 3.5 shows the
boundary conditions for the 2D channel flow problem congidén this study. For simplicity
the* sign being used to denote lattice units is removed for theafahe work. In Fig. 3.5

is the lattice temperature.

3.5.1 Inlet Velocity Boundary Condition

While simulating the inlet boundary condition of a flow in aacimel like the one shown in
Fig. 3.5, it is assumed that there is no velocity componentdirection but there is a non
zero velocity in x-direction. After the streaming step, sodistribution functions remain
unknown. On the left boundary the unknown distribution fiows aref,, fs and fs. Due to

the fact that, we have some unknown distribution functidhe, density,o, is an unknown,
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Top Wall v, =0,v,=0,¢ =0

Outlet

—_— 7
vy = 0.02 Re, Pr Uy : H

=7
vy, !

vy, =0 y
- > ¢ =?
=1 __ |

Bottom Wall v, =0,v, =0, =0

Figure 3.5: Boundary Conditions for a 2D Channel Flow

too. To solve 4 unknowns, at least 4 equations are neededfirfhequation we will use
is the equality of the non-equilibrium distribution furatis, f"°"€4 = f — €4 which are

perpendicular to the wall. Remaining equations are Eq$ &n8l 3.40.

f1 — ffq = f3 - f;q (3.41)
p=fh+hHh+fa+f+f5+fg+ 7+ fg+ fg (3.42)
oV = f1 — fa+ f5— fg— f7 + fg (3.43)

pVy =To— T4+ f5+ fo— f7—fg=0 (3.44)

Solution of these 4 equation provides the following restdisthe unknowns at the inlet

boundary
_ fo+ fa+ fo+ 2(f3 + f5 + f7) (3.45)
1 - V)( ’
fi=fz+ %pvx (3.46)
fo = fr 4 S(f4— fp) + £ (3.47)
2 6
B 1 PV
fg = fg 2(f4 f2) + 6 (3.48)

wherevy is the known inlet velocity.

3.5.2 No-slip Boundary Condition

No slip boundary condition can be obtained by equating thedxyavelocities to zero for the

nodes on necessary boundaries. The non-equilibrium pitte aistribution functions also
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need to be used as

fo— f;q: fq— ffq (3.49)
p=fh+hHh+fa+f+f5+fg+ 7+ fg+ fg (3.50)
oVx=f—fa+ f5—fg—f;+ fg=0 (3.51)
pWy=fh-fa+fs+fs—f;—fg=0 (3.52)

Note that whervy andvy velocities are set to zero, the unknogymultiplies with zero in two
of the equations and becomes unimportant for those equations. Solution of the B9,

3.51 and 3.52 results in the following relation for the unknof’s of the bottom wall.

fo =4 (3.53)
fo = f; — fl; fs (3.54)
fo = fg + fl; fs (3.55)

3.5.3 Outlet Boundary Condition

Contrary to the inlet boundary, the velocity at the outletignown. However, we can assume
that the velocity is no more varying in the stream-wise diogcin a long enough channel.
That is equivalent to say that the flow is fully developed. §ach cases, Succi suggests two
methods [44]. One is to directly copy the distribution fuons closest to the exit on the
ones at exit. The other one is to calculate the unknowns lrggadiating the ones in the flow
domain. It is observed that both schemes add extra numeyical to the method and they
will not be used in this work. On the other hand, assumingttievelocity distribution close
to the exit does not change in the stream-wise direction, avesafely assign the velocity
close to exit to the exit nodes. The simultaneous solutioBgs. from 3.49 to 3.52 result in

the following relation when velocity on y direction is asseairto be zero.

_ f2+f4+f9+2(f1+f5+f8)

— (3.56)
2

fo= 1+ Zpv, (3.57)

1 PVx
fo = fg+ =(fs— fo) — — 3.58
6= fg+ 2( 4— f2) 5 (3.58)

B 1 PV
f7="1s 2(f4 f2) 5 (3.59)
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3.5.4 Temperature Boundary Condition

Temperature boundary condition is implemented using theléy of the non-equilibrium

distribution functions [33]. The equation set below is ded for the bottom wall.

92 = ¢ (W(2) + W(4)) — 04 (3.60)
95 = ¢ (W(5) + W(7)) — g7 (3.61)
96 = ¢ (W(6) +W(8)) — 08 (3.62)

The outlet boundary condition for temperature can be impleied using the methods of
Succi [44] which are discussed earlier. The extrapolatiresie among them is employed

for the current work. End results are tabulated in Appendix B

3.5.5 Boundary Conditions for Microchannels

3.5.5.1 Slip Boundary Condition

Upon the simultaneous solution of the mass and momentumliggdaan formulated the

Maxwell first-order slip boundary condition without therheeeep [45]. The non-dimensional

form of slip boundary condition is given as

slip ou
= 0 — =oKn|— 3.63
Vi—o = Vxy=0 — Vxw = CKN ( aY)y=o ( )
VP = vy — v _ okn( (3.64)
y=h = o B 9 Jy=n '

whereo is momentum-accommodation d¢beient and assumed to be unity to simulate com-
pletely difuse reflection. In most of the engineering applications thmemtum-accommodation
codficient for gas-solid interactions is close to unity [46j£8, vj'z'pH Viy=0, Vxy=H andvy

are the slip velocities at bottom and top walls of the channebmponent of flow velocity at
bottom and top walls, and the x component of the correspgndgil velocity, respectively.

In this work the walls are stationary amng,, is set to zero. The derivatives of the velocity

appearing in Egs. 3.63 and 3.64 are calculated using a sexdedimplicit scheme. The slip
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boundary condition for bottom wall is derived as follows

pw = T+ fa+ fg + 2(f7 + f4 + fg) (3.65)

f,= 1t (3.66)

fo = ow(1+Vy) —2(f2 + f4 + fg) —(f1 + fg) (3.67)

by = ow(l = Vy) —2(f2 +fa+1fo) (fs + ) (3.68)
_ (4Vxl - VX,Z)

S T (369

wherevy 1 andvy, are the first two velocity values after the fluid velocity oe thall. A is

KnH. Fig. 3.6 demonstrates the rows of which the velocitiesrzplo.

. . . . .
. . . ° .

° ° ° ° o—)'l?x_z
° . . ° o —>Vyq

Figure 3.6: Rows of velocities used in slip boundary conditi

3.5.5.2 Temperature Jump Boundary Condition

The work of Tian explains how to obtain a temperature jumpnidawy condition [45], which
is similar to the slip velocity boundary condition. Mathdioal representation of temperature

jump is

mp _ o[22 (K (92

y0 = Py-0~Pw = a(y - 1)( Pr)(ay)y:0 (3.70)
ump _ o[22 (KM (92
Pyt = Pw = y=n ‘“(y+1)(Pr)(ay)y=H (3.71)

whereq is thermal-accommodation dbeient and is assumed to be onas the specific heat

ratio andPr is Prandtl number¢)j,ir8p, ¢i‘iﬂp, dy-0, By-H, ande,, are the temperature jump at
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bottom and top walls, fluid temperature on the walls and thi teaperature respectively.
Similar to velocity derivative the spatial derivative ofrtperature is also calculated using a
second-order implicit scheme. For simplicity a tempemjump codicient can be defined

as

2y
Ci = «kKn = Kna| ——2— 3.72
i = kKn na((y+1)Pr) (3.72)

Hence, the equations of temperature jump for bottom wall are

|Ci(461 — 62) + 29

by-0 = TES (3.73)
02 = ¢y=0 (W(2) + W(4)) — 04 (3.74)
05 = ¢y=0 (W(5) + W(7)) — g7 (3.75)
Js = ¢y=0 (W(6) + W(8)) — Js (3.76)

Necessary equations for all BCs, including the ones thahairélescribed in this section can

be found in Appendix B.

3.6 Calculation of Macroscopic Properties

Density and velocity of the flow field are calculated usingrieess and momentum conserva-

tions for each node.

e

o) = > fi(x 1) (3.77)
9|=1
igl € fi (X’ t)
V(X, t) = W (378)

The temperature, on the other hand, is calculated usindnémenal distribution function.

9
o0 = > Gix,1) (3.79)
i=1
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CHAPTER 4

Results

Validity of the developed LBM code is tested by using Poibedlow in micro and macro

scales. Poiseuille flow is, basically, the fluid flow between parallel plates shown in Fig.
3.5. The velocity profiles, temperature distributions andg$&lt number variations obtained
by LBM are compared against analytical solutions when als&l There is no analytical
solution for the developing regime of the channel; henckerhumerical solutions were

employed.

4.1 Analytical Solution of Fully Developed Poiseuille Flow

The results for Poiseulle flow is discussed in detail in thet of the chapter. But first, some
definitions and analytical solution to velocity profile wile provided. Velocity component
in the x direction can be obtained by the x-component of theali momentum conservation,

which can be simplified as

vy Ap
MaE T T @y
which is supported by the following boundary conditions

Bottom wall: v = Kna—V (4.2)

ay

ov
Top wall: vy = —-Kn— 4.3
p H dy (4.3)

Apis the pressure drop along the channel section of lehgiihe solution of this equation is
a parabolic curve. When a non-dimensional length is defised=ay/H the solution is

Vx 60" —n-Kn)

= 4.4
Vx’mean 6Kn + 1 ( )

Note that in the case of zekn the solution is still valid and corresponds to the case with n

slip on the walls. Heat transfer characteristic of the flowtlee other hand, can be determined
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using the Nusselt number. Nusselt number is the ratio of exiiwe and conductive heat
transfers. For a fully developed channel flow the Nusselt bemtonverges to a constant
value. The mathematical derivation starts with the follogviequation written for a cross

section of the flow

oT
h(Tw — Tmean — K| — =0 .

whereh andk are convective and conductive heat transfer constapts the temperature on
the wall andTeanis the mean temperature of the flow at a cross section defined as
JupVTdA

L\deA
Using the previously defined non-dimensional lenghtand defining the following non-

(4.6)

Tmean =

dimensional temperature

Tmean_ TW
= ——— 4.7
whereT; is the constant temperature of the fluid flow at the inlet Ef.b&comes
k 00
_(Ti - TW) (—) = h(TW - Tmear) (4-8)
H om)so

which can be arranged to get the following non-dimensiomalterature profile

- - 4.9
(Be)a= 20 s (“9)
Previously mentioned Nusselt number is definetllas= 2Hh/k, which in this case turns into
Nu= _E(@) (4.10)
6 \on x=0

4.2 Fluid Flow and Heat Transfer Results in Macrochannel

The Poiseuille flow domain in macro scale (see Fig. 4.1) haslipdboundary conditions
at the walls. We assume to have uniform velocity profile atittet and at the exit flow is
assumed to be fully developed. The non-dimensional teryrerat the inlet and at the walls
are 1 and O respectively. The aspect ratio is 20, ane R@, Pr= 10. Although the problem
is solved by a number of flerent meshes, the results presented here are obtainedwébha

of 81x1620 nodes.

The velocity profile in the developing regime is comparechwisults from a commercial
software COMSOL which uses Finite Element Method (See Fig). 4Normalized veloc-

ity in the plot is generated via the division of velocity taetmean velocity over the cross
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ﬁ X
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Figure 4.1: Schematic Drawing and Parameters of Poisdtlid in Macro Scale

section. The lines belong to LBM solution and signs belongEM. Due to the use of a
small Reynolds number the velocity profile reaches fullyadeped regime fast. The lines of
x/L = 0.04 andx/L = 0.5 are overlapping. The filerence of the profilex/L = 0.04 from

analytical solution is less than 1% and the profilxdt = 0.5 covers the analytical solution

very well. Temperature profile in the developing regime impared with FEM in Fig. 4.3.

. - = =xL=001 (} q
= | == XIL = 0.02 ;
no 0500 oo xIL = 0.04 q o
[y =

x/L =0.5 o ¢

0 0.5 1 1.5
Normalized Velocity v/iv
mean

Figure 4.2: FEM and LBM Comparison of Developing VelocityMdcro Scale

The temperature profile af/L = 0.2 is on top of the profile at/L = 0.5, with less than 1%

difference, hence afteyL = 0.2 the flow is thermally fully developed.
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Figure 4.3: FEM and LBM comparison of Developing TempemtatrMacro Scale

The Nusselt number variation along the channel is given gn Bi4 where LBM solution is
compared with the solution of Bejan [47]. The variation ie tteveloping regime is close to
the one given in the reference and by the end of the channel e&Merges to the analytical

solution of 7.54.
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Figure 4.4: Nusselt Number Variation Along the Macrochdanne
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4.3 Fluid Flow and Heat Transfer Results in Microchannels

After having credible result from LBM for macroflows, the ei$ modified to simulate mi-
croflows in the slip-flow regime. The same problem, Poisedithw, is simulated. However,
for this case, the flow haveftierent characteristics with slip velocity and temperaturep at
the boundaries. The boundary conditions are shown in Figy. Alspect ratio, Re and Pr are
kept unchanged while the boundary conditions had non-zalwey Boundary velocity and
temperature values depend on Knudsen number, and thevedaiepeated the simulation for

several Knudsen numbers between 0 and 0.1.

I L=20H I
v #0,v, =0, #0

—_—
—_ dav.
v, = 0.02 X
Ui _ — Re=10, Pr=10 o y
Kn=0-0.1 0
b1 — % _
d0x
—_—

vy #0,v,=0,¢#0

Figure 4.5: Schematic Drawing of Poiseuille flow in microlsca

To observe the validity of the boundary condition implenagion, first the velocity profile
for different Knudsen numbers are plotted together with the anal\gdlution, where perfect
agreement is observed (Fig. 4.6). The Nusselt number depemdhe velocity and tem-
perature profiles. For the developing part of the flow, Nussg&hber seems to converge to a
value as soon as both the velocity and temperature becoimelévieloped. The characteristic
of velocity is determined by th&n and the temperature profile is determinedKay and«

defined in Eqg. 3.72. Results are obtained fdfadtentx and Knudsen numbers.

Fig. 4.7 shows Nusselt number variation along the chanmretiéweloping and developed
regimes fork = 0 and forkKn = 0, 0.04, 0.08. As expected, than = 0 case converges to the
analytical result for macro channels. Increaskg results in higher Nusselt number. Also

note thak = 0 indicates that there exists no temperature jump which &ifidus case but is
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Figure 4.6: Analytical Solution and LBM Comparison of Deygtd Velocity inside
Microchannel

used in data validation in the literature [48].
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Figure 4.7: Nusselt Number Variation along the Channel fdfdbent Knudsen Numbers at
k=0

Fig. 4.8 has the results far= 1.667 which is a typical value for air. A non zekand hence
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temperature jump, changed the characteristic of Nussetieu to a decreasing trend with
increasing Knudsen number. The heat transfer in the chaaoals in two ways: Convection
and conduction. The value ®fu indicates the ratio of heat transfer due to convection and
conduction. Note that larger and Kn resulted in decrease ®fu which means that heat

convection rate is decreased.
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9 : S
o m .
g |- . SR
E 8 T 'm ~ Kn=0 ]
= o— 20 0 o pa—
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Figure 4.8: Nusselt Number Variation along the Channel fidfdbent Knudsen Numbers at
k = 1.667

Fig. 4.9 provides the variation dfu for « = 10 which corresponds to a large temperature
jump case. The variation along the channel is much smaléar the previous cases ahdi
has lower values. As discussed earlier, the conductionimateases withk and Kn which
resulted in decrease Mu. Increasing th&n of the flow makes the flow to approach the tran-
sition Knudsen regime where heat transfer by convectiosslds importance and conduction

becomes more significant due to the rarefactifiacts.

The values of Nusselt number for fully developed flow caltedeby the developed LBM code

are tabulated in Table 4.1.

A grid convergence test was also performed and tabulatedbie®.2. A set of runs for sev-

eral diferent mesh resolution indicated that the solution is ca@eato the expected values.

Finally, itis worth to mention that the developed code i aised to solve problems other than
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Figure 4.9: Nusselt Number Variation along the Channel fdfdbent Knudsen Numbers at
k=10

Table 4.1: Fully Developed Nusselt Numbers in 2D ChannelvFlo

Kn
K 0.00 0.02 0.04 0.06 0.08 0.10
0.000 755 7.75 791 8.05 8.18 8.28
1.667 755 6.93 6.38 5.88 5.44 5.06
10.00 755 448 3.14 241 195 1.64

Table 4.2: Grid Convergence Testkat 1.667

Kn
Grid Size 0.00 0.02 0.04 0.06 0.08 0.10
21x420 757 6.94 6.38 588 543 5.04
41x820 756 6.94 6.38 588 5.44 5.06
61x1220 7.55 6.93 6.38 5.88 5.44 5.06
81x1620 755 6.93 6.38 5.88 5.44 5.06
Cetin[48] 754 6.92 6.37 5.88 544 5.05
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channel flows. For example for the classical lid-driven §alsgenchmark problem successful
results are obtained up to Reynolds numbers of 5000 [49le¥@hedding behind a circular
cylinder is also simulated successfully with the develop8d/ code. For these relatively
high Re flows an additional benefit of LBM is observed. Unliketé volume or finite element
techniques, LBM does not need to be altered for convectionimated flows. There is no
need to use artificial €iusion or the formulation does need to be modified by the use of
stabilization techniques. Also due to the purely expli@ture of the LBM algorithm, time

consuming tasks such as the solution of a linear equatidersyis not required.
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CHAPTER 5

GPU Computing

The struggle in product design, analysis and academicnasese usually restricted by op-
positions and regulatory barriers like the need to redueal#sign cycles, costs and environ-
mental influence, satisfy the governmental rules, impravaity and safety and complexity
of physicgmathematics. Those barriers made people require the fidddafrate (and fast)
product and system simulations [50]. The simulations canm@se coupled, complex and
non-linear physical phenomena, very fine time steps, lahysipal space and complicated
geometries to investigate. Researchers make use of albtiwsgn terms of computational
power which is sometimes not satisfactory. Nowadays theofigeaphical processing units
(GPUs) for general purpose parallel scientific computingeien to be a promising way of

accelerating number crunching codes.

Central Processing Units (CPU) are where the mathemapesibtions are performed in com-
puters and they are designed to perform operations in a seajuerder. One of their prop-

erties is that with the duplication of computing frequenlg speed of CPU is also doubled
[51]. The technology in engineering limits the frequency twexceed 4.0 GHz due to the
extreme heat generation close to a heat density of nuclaatorecore [52]. The barrier of

extreme heat generation drove people to explore variolns gaich as parallel programming.
Instead of working on a single computer processor serigdlyearchers began to use multi

processors in parallel.

Graphical Processing Units (GPU) was started to be usedefoergl purpose computations
in 1990’s [51]. GPUs were known as capable to perform basthemaatical operations only.
Even though their main purpose was to visualize a 3D virtuadldvon a 2D screen, appro-

priate programming languages made them challengers to CIFbisalmost a decade the
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manufacturers of GPUs design them to easily handle matieahaperations. Unlike CPUs,
GPUs can accommodate hundreds of processors and do noagehneat that we cannot deal
with. The working principle of GPUs is also parallel by theura of the problem they are
designed for. During 2000’s the use of GPUs is having ingngaattention in the field of
parallel computing. A drawback of GPU computing could besidered as that the program-
ming languages were too complex. There had been severaldgag and most of them were
abandoned. After the invention of CUDA and OpenCL prograngribols, researchers no
more need to be experts in computer graphics to harness mhputational power of GPUs
[53]. However, the nature of parallel computing is not sanito serial programming and
needs a dierent approach to the design of algorithms, a familiaritcdache memory and

core sharing features.

Cellular Gas Automata which is the origin of LBM, is known vits highly parallelizable al-
gorithm. This feature is carried to LBM. Many researchetsjrdy the last decade, tested this
property of LBM and reported their findings. Tolke develo@edLBM code using CUDA.
He wrote his code in C language to run on a single GPU and @utalnorder of magni-
tude speedup compared to his serially running LBM code [®2hrecht et al. wrote their
3DQ19 LBM code and ran it on a nVidia GTX295 GPU [55]. They atdxtained nearly 2
fold increase and they reported GPU computing to be a cheagaah solution. Riegel et
al. developed an LBM solver called LBultra and tested it foe& 8D benchmark problem of
flow over a cylinder [56]. Their code, written in43 ran on 3 Tesla C1060 GPUs and they
reported about 19 fold increase in speed. Their parallel C&l¢ ran on 4 AMD cores or 2
Intel cores but those could not approach the speed of miti+Gode. 4 AMD cores provided
1.8 fold speed up and 2 Intel cores provided 2 fold of incréaspeed. They also observed
that GPU programming saves more energy, space and monepdnaliel CPU computing.
Baieley et al. [57] compared their LBM code running on a @n@PU with an OpenMP

version that runs on quad-core CPU, and reported a speedtinfies.

In this work, we used m language which is served by MathWodtapmany via the software
MATLAB. m language is serial inherently and hence works otUCRnother program named
as Jacket, which is created by AccelerEyes company, is aoa@gbplication to MATLAB

and allows MATLAB to perform mathematical operations on GPBasically, Jacket is a link
from m language to GPU programming through the use of CUDArelgy. The advantage

of Jacket is the ease of its use. With a very littleoed, measured in usually seconds and
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minutes, the standard m language gets ready to run on GPU.

5.1 Run Time Comparison LBM on CPU and GPU

For the Poiseuille flow benchmark problem Bérent programs are developed. These codes
are given in App. A and can be downloaded from the website/fitgle.google.coyp/lbm-
jacket-microchanngl First code solves the problem serially on a single core oP& CThe
CPU used is Intel Xeon E5620 Quad-Core 2.40 GHz. Second codeparallel on a single
GPU that is Tesla C1060. Tesla C1060 has 240 cores and capginteviding 933 GFLOPs

of performance with 4 GB of GDDR3 memory at 102 GBandwidth. The last one is parallel
too, yet distributed among 4 Tesla C1060s and referred ag MBU (MGPU) version. Due

to the fact that Tesla C1060 GPUs work mofiaently on single precision numbers, all the
programs are written to run in single precision. Neverts®lbe accuracy of the solutions are

checked to be notfected by this.

All the parts of the code, collision, streaming, boundargditons and macroscopic proper-
ties are well suited to parallel computing. There is no nau r@o distribution function that
depends on the others. For example, while calculating teedspf the flow at a grid point we
do not need to know the velocities at the neighbouring notles property of LBM makes it

convenient to parallel programming.

An important point is that we are comparing the speed of sit@fPU core with hundreds
of GPU cores. The comparison doesn’'t seem to be fair. One sarseveral CPU cores
and get higher speeds against hundreds of GPU cores. Buién tar do so one has to deal
with complicated parallel programming algorithms. Usingamguage with Jacket, we do not
worry about the details of parallel programming. In minytae code becomes ready to runin
parallel. Defining the variables on GPU memory is enough tkentlae operations performed

on GPUs. The dierence can be seen in the codes which are present in Appendix A

If the CPU and GPU programs were written in complied langeagech as C or Fortran,
most probably they would run much more faster. m languagetisompiled and that is a
disadvantage if the concern is the speed. However, the cedelappment, post processing,
profiling and debugging is much faster in MATLAB environmemhe time saved from those

processes is thought to eliminate the speed disadvantagdamsiguage.
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The physical properties of the flow do not change the run tifrtae@CPU, GPU and MGPU
versions, therefore only the results of a single flow arentepio The parameters arlge= 10,

Pr = 10, Kn = 0, aspect ratic= 20. All three LBM codes are composed of 2 parts as
seen in Fig. 5.1: momentum and heat transfer calculatiasts, &f which include collision,
streaming, boundary conditions and macroscopic propettuation subsections. A pseudo

code can be found in Appendix B.

Memory allocation
Start time loop
Momentum

Collision

Streaming

Boundary conditions
Macroscopic properties

Heat Transfer

Collision

Streaming

Boundary conditions
Macroscopic properties

End time loop

Figure 5.1: Structure of the Developed LBM Code

The solution domain is discretized into MxN grid points. 8tdbution functions which are
MxN in size are allocated for each collision part. In the istdin the new values of the dis-
tribution functions are calculated. Even though the opemabn one distribution function
does not #ect the other distribution functions on the same or othet gdints, MATLAB
performs these calculations serially. However, Jacketidiges the operations of one distri-
bution function among 240 cores of the GPU. In other wordsdthraain is divided into 240

sub-domains for each distribution function.

The streaming part shifts every distribution function oo® langlor column. For instance,
consider the first distribution function as a matrix MxN izesi The elements of that matrix
are shifted one column to the right, similarly the elemeritthe second distribution func-

tion matrix are shifted one row upward. The other ones arm stéfted according to their
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directions as demonstrated in Fig. 3.4. CPU computingsstestn the first grid point and
ranges over all the others serially. On the other hand, GRitiess the operations evenly
through all the cores available to it. Similar to collisidhe domain is divided into hundreds

of sub-domains and all those sub-domains are handled aathe sme.

The boundary conditions are the parts where minimdiareis spent. Only 3 distribution
functions on 2x(M-N) nodes are edited. The operation time for BC implementatio both

serial and parallel computing is negligible.

In macroscopic property calculations, 9 distribution fiimes are added up at every grid
points. If it is the momentum part, also the vectorial sumhaf distribution functions are

performed. GPU again distributes the operations into 246sco

Table 5.1: Time in Percentages which are Consumedfiiei2int Parts of the Codes for
Mesh Size 4000 x 1000

CPU Code GPU Code

Collision 82% 15%
Streaming 2% 76%
Boundary Conditions 0.3% 8%
Macroscopic Properties 16% 1%

Time consumed for dlierent tasks performed by the LBM codes are provided in Taldle 5
Note that this table is generated for a mesh of 4000 x 1000soékercentage times for
different mesh sizes resulted almost the same. For the code whiglon CPU, the collision

part takes 82% of the time. This part is where the most of ththemaatical calculations

are performed. Macroscopic property calculation sectimmsames 16% of the time where
streaming and boundary condition implementation consuth@2d 0.3% of the total elapsed
time respectively. On the other hand these percentagegeragnificantly in GPU codes.

Streaming takes 76%, collision takes 15%, boundary candithplementation part takes 8%
and macroscopic property calculations take 1% of the totaltime. Parallelism decreased
the time spent in collision and macroscopic property calooih parts significantly and hence

other parts, streaming and boundary condition implememiabecame more dominant.

The Multi GPU code has a little fierent structure than the CPU and single GPU code. In
order to utilize all 4 GPUs, the domain is divided into 4 passeen in Fig. 5.2. Every part is
solved on a dterent GPU. Due to the fact that every device has its own merti@yariables

should be allocated on each device witlffelient names. After the collision, the nodes on
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GPU boundaries are updated using ghost nodes. The updatdaits @&xchange between
neighbouring GPUs as seen in Fig. 5.2. The data is first wamesf to CPU memory and than
to the other GPU. This process only exists in Multi GPU codeé lrings extra load to the

program. Separating two adjacent nodes ceases the intencoication on the boundaries
of sub-domains. The lack of communication can be eliminaiedhost nodes. First step is
memory allocation. To create ghost nodes, add one more eojanrow) for each boundary

of the sub-domains. The new nodes, in our case are in a comnmcalled ghost nodes which
are represented as circles in Fig. 5.3. The variables ont giwates are assigned from the
neighbouring sub-domain. They are going to be used justltulede new data in each sub-
domain and just after they need to be updated using the raigimig sub-domain. After the

variables in each sub-domain are calculated (after thesizol), the variables on ghost nodes
are updated using the nodes in neighbouring sub-domain.dasleed arrows indicates the

transfer origins and destinies of the variables.

GPU1 GPU2 GPU3 GPUA4

(] (] o (] () (] L] (] o () o o
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Figure 5.2: Sharing of the Domain among GPUs

The computational time demonstrated in Fig. 5.4 is not thvemence time but rather it is
a time that covers a smaller number of time steps which isgiméaicompare the speeds. It
is seen that with the increasing mesh density CPU time isereantinuously . Single GPU

parallel code has a constant elapsed time up to a mesh siZ®.oB&fore that mesh size,

single GPU consumes more time than a single CPU core. Afteshsize of 3x10the GPU

time approaches to CPU time due to memory issues. The mem@k W is 24GB whereas
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a single Tesla C1060 has only 4GB memory. In other words, fshsizes greater than®10
and smaller than 3x¥Qit is feasible to run on GPU. The curve for MGPU is steady up to
mesh size of 19 After this point both CPU and GPU times increase faster, &P\ can be

used for meshes greater tharf 10

The GPU and MGPU programs have constant speeds for smaltdr simes. This is a com-
mon picture in GPU computing. Even though the code runs in GR&Je should be variable
transfer between CPU memory and GPU memory. The time dueriabl@transfer is dom-
inant for small mesh sizes. In the Fig. 5.4, most of the timensn the steady region is due
to the variable transfer. A mesh size ofIfor GPU and 16 for MGPU programs are the
limits where the time spent on computation begins to overctime time spent on variable
transfer. Due to this fact, domains with small mesh numbeneotbe accelerated; also, they

run slower than serial computing.

The numerical results of Fig. 5.4 are tabulated in Table Bahle 5.3 shows the speed ups.
Speed up values are calculated as a ratio of run times. Ceaparthe serial program, the
single GPU parallel program can consume about 5 fold less &t784x10 grid points and

14 fold increase in the speed of MGPU program is observedhorrtaximum mesh size.

During the current study, Accelereyes company releasegtaleversions of Jacket. Surpris-
ingly, older versions of Jacket performed better. The Jalikrary is a closed box, users
cannot modify or explore what is written inside. The same LBdde showed worse perfor-

mance on latest versions of Jacket.

LBM works with discrete time, space and velocity. The codesveritten in 2 dimensional
space with 9 speeds. The scheme is addressed as D2Q9. B2€)&dlizre are other schemes
like D2Q4, D2Q5, D2Q8 etc. D2Q9 is a commonly used schemeslilts in good accuracy
but decreasing the number of discrete velocities can cawsgeed up. If the code is en-
hanced two solve three dimensional problems the schemeyebarTypical 3 dimensional
versions are D3Q15, D3Q19 and D3Q27. Increasing numbersafate velocities reduces
the numerical error, yet it also brings computational lobiding a diferent scheme should
be accompanied with appropriate boundary conditions. Thendtary condition equations
are needed to be re-derived. Note that all the boundary tonsliin this work are for D2Q9
model. Collision, streaming and macroscopic propertyuaton parts do not require severe

alterations.
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Table 5.2: Representative MGPU, GPU and CPU Run Times inrdiscior Diferent Mesh
Sizes

Mesh Size  MGPU GPU CPU
1.60x1¢ 10.12 2.850 0.153
6.40x1¢ 10.16 2.850 0.276
2.56x1¢ 10.19 2.897 0.819
4.00x1¢  10.67 2.962 1.274
5.76x1d¢  10.21 2.996 1.477
1.02x1¢ 10.35 3.142 2582
1.60x1¢ 10.43 3.541 3.792
6.40x10@ 11.65 6.396 15.51
1.44x16¢ 12,96 11.92 33.07
2.56x16¢ 1485 19.66 58.53
4.00x16¢ 17.45 29.59 90.14
7.84x1¢ 25.72 56.09 271.6
1.60x10  43.78 1479 553.2
1.94x10 51.23 331.3 670.2
2.30x10 59.40 3359 794.4
2.70x10 68.53 563.5 933.2
3.14x10 78.01 701.3 1084
3.60x10 88.80 798.9 1261

Table 5.3: MGPU, GPU and CPU Speedups foff&ent Mesh Sizes

Mesh Size MGPUvs CPU GPUvs CPU MGPU vs GPU

1.60x16G 0.01 0.05 0.28
6.40x16 0.03 0.09 0.28
2.56x16 0.08 0.28 0.28
4.00x10 0.12 0.43 0.28
5.76x1¢ 0.14 0.49 0.29
1.02x1¢ 0.25 0.82 0.30
1.60x10 0.36 1.07 0.34
6.40x10 1.33 2.43 0.55
1.44x16 2.55 2.77 0.92
2.56x16 3.94 2.98 1.32
4.00x16 5.17 3.05 1.70
7.84x16 10.6 4.84 2.18
1.60x10 12.7 3.74 3.38
1.94x10 13.1 2.02 6.47
2.30x10 13.4 2.37 5.66
2.70x10 13.6 1.66 8.22
3.14x10 13.9 1.55 8.99
3.60x10 14.2 1.58 9.00
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As afinal note it is worth to mention that couple of the finesshes used in this project is too
much for a basic 2D benchmark problem. The intention wasnootistrate the computational
power comparison of CPU and GPUs. But such large meshes emetién three dimensional
problems. Three dimensional version of the code would hayleeh computational time due
to the increase in mathematical operations and it is aatieg that the speed up of GPU

would be higher.
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CHAPTER 6

Conclusion and Future Work

Micro Electro Mechanical Systems combine electronics, meéigs, acoustics, biology, chem-
istry and fluid mechanics in very small dimensions. Thistfuliand compact blend provides
them to have promising future in many fields like transp@tatmedicine, telecommunica-
tion, computer, military, manufacturing, etc. Design otlsisystems, of course, are chal-
lenging. Not well prepared designs invite time and moneg insmost cases. The heart of a
well prepared design is accurate and fast simulation. Téreraumerous methods to simulate
systems and products, yet proper simulation tool shoulceleeted for proper systems. For
MEMS, the assumptions of physics aréféient than many other engineering applications.
The assumptions of mathematical model and the assumptitire gghysics of MEMS must
match. The commonly used mathematical approaches to MEBIBiadified Navier-Stokes
equations as well as Newtonian mechanics equations andlyfthal Boltzmann Transport

Equation.

In theory, the Boltzmann Transport Equation governs caomiin, slip-flow, transition and free
molecular regimes yet BTE is very hard to solve if it is poksitrherefore, researchers are
studying numerical solutions of BTE. The numerical solutaf BTE is capable to simulate
continuum and slip flow regimes like, Burnett and Navierketequations do and also transi-
tion and free molecular regimes like Newtonian mechanicgggns do. A powerful numeri-
cal tool to solve the BTE is the Lattice Boltzmann Method.His fproject, LBM is studied for
continuum and slip flow regimes in microchannels which amoantered in MEMS. Using
the LBM we have simulated Poiseuille flow in continuum regirfike validity of the method
in continuum regime is proved by the comparison of the véjogiofile with the analytical
solution and the comparison of the temperature profile frararaerical result via the Finite

Element method. The Nusselt number in developing and fiyetbped flows are compared
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with the solution from a reliable source e.g. Bejan [47]. ekfbbtaining well agreed results
the program is advanced to simulate slip-flow regime: slijpcity and temperature jump
boundary conditions are implemented. The velocity profileéll agreed with analytical so-
lution and also for th&Kn = O case the Nu converged to the analytical solution. In th lig
of these information the Nusselt number variation alongctiennel is generated forftérent

Kn andk values.

Three diferent Lattice Boltzmann codes have been developed. Fiestunrs serially on CPU.
Second one runs on a single GPU and the last one is capabla tmrd GPUs. The LBM
codes are written in MATLAB which runs on CPU by default. Ho®e using a commercial
software, Jacket, the serial MATLAB codes are convertechéoparallel ones easily. It is
reported that the usage of Jacket with MATLAB saves time éngdtages of developing a new
code, as well as running the codes. Using the parallel canmgptgchnology, it is observed

that a simulation time can be reduces 14 times for very largghrsizes.

The consistent results which are obtained from this studp@maged us to enhance the de-
veloped codes. The other rarefactidieet, viscous heating, will be added in the method for
a more proper microflow simulation. Further more, the abitit LBM to solve for mutli-
phase flows will be examined. In the beginning, we will focus atwo-phase problem:
The simulation of bubble formation which is an important phena encountered in heat
removal processes. Those problems will also be solved in@Baths and hence more real-
istic solutions will be obtained. Due to the fact that workion a 3D domain requires more
computational power and memory, the codes will be writte@ lianguage and they will run

parallel on GPUs.
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Appendix A

Developed LBM Codes
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All the codes in Appendix A are available online: hitpode.google.coyp/Ibm-jacket-microchanngl

A.1 CPU Code

function time = LBM_CPU(nY)
% nY is the Horizontal Node Number
% Slit Channel
% Runs on CPU
% Flow + Heat Transfer
% Calculates Nusselt Number

nX = nY*4; % nX is the Vertical Node Number.

% For this example it is choosen to be 4 times of height
tstep = 100;
Kn = 0;
Kappa = 0;

Lambda = Kn*(nY-1);
C = Kappa*Lambda;

% Nu = zeros(nX,1); % Nusselt Number Calculation is omitted. When this
% variable definition and the commented out parts before Momentum section are
% uncommented the code can calculate the Nusselt number.

Re = 10;

Pe = 100;

Ulattice = 0.02;

Pr = Pe/Re;

Viscosity=Ulattice*(nY-1)/Re;
alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);
oneMinusOmega = l-omega;
omegat = 1/(3*alpha+0.5);
oneMinusOmegat = 1-omegat;



LS

rho = zeros(nX,nY);

fl = rho;f2 = rho;f3 = rho;f4 = rho;f5 = rho;f6 = rho;f7 = rho;f8 = rho;f9 = rho;
u = rho; v=rho;

T = zeros(nX,nY);

gl = rho;g2 = rho;g3 = rho;g4 = rho;g5 = rho;g6 = rho;g7 = rho;g8 = rho;g9 = rho;
rho = rho+5;
tic
for kk=1:tstep
% if mod(kk, 1000)==0
% %-——-————- Nusselt-------------
% [Nu, Nuold] = NusseltcalculatorD2Q9(u,rho,Ulattice,U_in,T,nX,nY,Height,Kn,Nu);
% NuoldSum = sum(abs(Nuold));
% NuSum = sum(abs(Nu));
% diff = abs(NuSum-NuoldSum) ;
% if diff<0.001
% display(’Program converged and paused’);
% savestring = [’Nusselt_’,’Kn’ ,num2str(Kn), ’'Kappa’,num2str(Kappa),’ 'Pe’,num2str(Pe),’Re’ ,num2str(Re),’ N’ ,num2str(nY),’r’ ,num2
% save(savestring)
% break
% end
% disp(kk)
% disp(Nu(max(nX)-100))
% Kn
% Kappa
% nY
% end

%% Momentum

% Collision
[f1,£2,£3,f4,£5,f6,£f7,£8,£f9] = CollisionD2Q9(u,v,rho, fl,f2,£3,£f4,£5,£6,£f7,£8,f9,omega,oneMinusOmega) ;

% Streaming
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%% Heat

[f1,£2,£3,f4,£5,f6,£7,£8] = StreamingD2Q9(f1, f2,£3,f4,£5,£6,£7,£8,nX,nY);

% Boundary Conditions

[f1(1,:),f2(1,:),£4(1,:),£5(1,:),£6(1,:),£7(1,:),£8(1,:)] = InletconstantVelocityD2Q9(£2(1,:),£3(1,:),£f4(1,:),£6(1,:),£7(1,:),£9(1,:)

[£3(nX,:),f6(nX,:),f7(nX,:)] = OutletConstantVelocity( f1(nX,:),f2(nX,:),f4(nX,:),f5(nX,:),f8(nX, :),f9(nX, :),u(nX-10,:));
[£f2(:,1),£5(:,1),f6(:,1)] = SlipBottomWallD2Q9(f1(:,1),£f3(:,1),£f4(:,1),£f7(:,1),£8(:,1),£f9(:,1),u(:,2:3),Kn,nY);
[f4(:,nY),£f7(:,nY),£8(:,nY)] = SlipTopWallD2Q9(£f1(:,nY),f2(:,nY),£f3(:,nY),£5C:,nY),f6(:,nY),f9(:,nY),u(:,nY-2:nY-1),Kn,nY);

% Macroscopic Values
[u,v,rho] = MacroscopicD2Q9(f1,f2,£3,£f4,£5,16,£f7,£8,£f9,nX,nY);

Diffiusion

% Collision
[g1,92,93,94,95,96,97,98,99] = CollisionTD2Q9(u,v,T,gl,92,93,94,95,96,97,98,9g9,omegat,oneMinusOmegat) ;

% Streaming
[g91,92,93,94,95,96,97,98] = StreamingD2Q9(gl,92,93,94,95,96,97,98,nX,nY);

% Boundary Conditions for Temperature
gl(1,2:nY-1)=2/9-9g3(1,2:nY-1);
g5(1,2:nY-1)=1/18-g7(1,2:nY-1);
g8(1,2:nY-1)=1/18-g6(1,2:nY-1);

% Outlet zero-flux (Extrapolation)

g3(nX,2:nY-1)=2*%g3(nX-1,2:nY-1)-g3(nX-2,2:nY-1);
g6(nX,2:nY-1)=2*%g6(nX-1,2:nY-1)-g6(nX-2,2:nY-1);
g7(nX,2:nY-1)=2*%g7(nX-1,2:nY-1)-g7(nX-2,2:nY-1);

% Wall Boundaries
[g4(:,nY),g7(:,nY),g8(:,nY)] = TIumpTop(g2(:,nY),g5C:,nY),g6(:,nY),T(:,[nY-2:nY-1]),0,0);
[g2(:,1),95(:,1),96(:,1)] = TJumpBottom(g4(:,1),97(:,1),98(:,1),T(:,2:3),0,0); % 0 = Wall teperature

% Macroscopic
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T = MacroscopicTD2Q9(gl,92,93,94,95,96,97,98,99);
end
time = toc;
fprint£(’CPU: time = %6.4f for %d X %d\n’,time,nX,nY);
end
%%%%%%%% End of Main Function %%%%%%%%

function [g4,97,98] = TJumpTop(g2,95,96,T,Tw,C)
tw = (C*(4*T(:,2)-T(C:,1))+2*%Tw) /(2+3%C) ;
g8=tw/18-9g6;
g7=tw/18-9g5;
g4=2*tw/9-92;

end

function [g2,95,96] = TJumpBottom(g4,97,98,T,Tw,C)
tw = (C*(4*T(:,1)-T(:,2))+2%Tw) / (2+3*C) ;
g6=tw/18-9g8;
g5=tw/18-9g7;
g2=2*tw/9-g4;

end

function [f1,f2,£3,f4,£f5,f6,£f7,£8,f9] = CollisionD2Q9(u,v,rho,fl,f2,f3,f4,£5,£f6,£7,£8,f9,omega, oneMinusOmega)
t10 = u.*u + v.*v;
t10 = 1.5%t10;

tl = u;

t2 = v;

t3 = -u;

t4 = -v;

t5 = u + v;

t6 = -u + v;

t7 = -u - v;

t8 = u - v;

feql = rho/9 .* (1 + 3*tl + 4.5*tl.%*tl - t10);

feq2 = rho/9 .* (1 + 3*t2 + 4.5%t2.%t2 - tl10);



feq3 = rho/9 .* (1 + 3*t3 + 4.5%t3.%t3 - t10);
feq4 = rho/9 .* (1 + 3*t4 + 4.5%t4.%t4 - t10);
feq5 = rho/36 .* (1 + 3*t5 + 4.5%t5.%t5 - t10);
feqb = rho/36 .* (1 + 3*t6 + 4.5*t6.%t6 - tl0);
feq7 = rho/36 .* (1 + 3*t7 + 4.5%t7.%t7 - tl1l0);
feq8 = rho/36 .* (1 + 3*t8 + 4.5*t8.%t8 - t10);

feq9 = 4*rho/9 .*(1 - t10);

f1 = omega*feql + oneMinusOmega*f1;
f2 = omega*feq2 + oneMinusOmega*£f2;
f3 = omega*feq3 + oneMinusOmega*f3;
f4 = omega*feq4 + oneMinusOmega*f4;
f5 = omega*feq5 + oneMinusOmega*f5;
f6 = omega*feq6 + oneMinusOmega*f6;
£7 = omega*feq7 + oneMinusOmega*£f7;
f8 = omega*feq8 + oneMinusOmega*£f8;
f9 = omega*feq9 + oneMinusOmega*f9;

o end
o
function [g1,92,93,94,95,96,97,98,99] = CollisionTD2Q9(u,v,th,g1,92,93,94,95,96,97,98,9g9,omegat,oneMinusOmegat)
tl = u;
t2 = v;
t3 = -u;
t4 = -v;
t5 = u + v;
t6 = -u + v;
t7 = -u - v;
t8 = u - v;
feql = th/9 .* (1 + 3*tl );
feq2 = th/9 .* (1 + 3*t2 );
feq3 = th/9 .* (1 + 3*t3 );
feq4 = th/9 .* (1 + 3*t4 );

feq5 = th/36 .* (1 + 3*t5 );
feqgb6 = th/36 .* (1 + 3*t6 );
feq7 = th/36 .* (1 + 3*t7 );
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feq8 = th/36 .* (1 + 3*t8 );
feq9 = 4*th/9;

gl = omegat*feql
g2 = omegat*feq2

+ oneMinusOmegat*gl;
+ oneMinusOmegat*g2;
g3 = omegat*feq3 + oneMinusOmegat*g3;
g4 = omegat*feq4 + oneMinusOmegat®g4;
g5 = omegat*feq5 + oneMinusOmegat*g5;
g6 = omegat*feq6 + oneMinusOmegat®g6;
g7 = omegat*feq7 + oneMinusOmegat*g7;
g8 = omegat*feq8 + oneMinusOmegat*g8;
g9 = omegat*feq9 + oneMinusOmegat*g9;
end

function [f1,f2,£f4,f5,£6,£f7,f8] = InletconstantVelocityD2Q9(£f2, f3,f4,£6,£7,£f9,Ulattice,nY)
rhow = (£9 +£2 +f4 +2*(£3 +£f6 +£f7 ))/(1-Ulattice);
f1 f3 + 2*rhow*Ulattice/3;
f5 = £7 + 0.5%(£4-f2) + rhow*Ulattice/6;
8 f6 + 0.5*(f2-f4) + rhow*Ulattice/6;

end

function [u,v,rho] = MacroscopicD2Q9(f1,f2,£3,£f4,£5,16,£f7,£8,£f9,nX,nY)
rho = f1+£f2+£f3+f4+£5+f6+f7+£8+£9;
usum = f1-£f3+£5-f6-f7+1£8;
vsum = f2-f4+f5+f6-£f7-£8;
u = usum./rho;
v vsum. /rho;

end

function th = MacroscopicTD2Q9(gl1,92,93,94,95,96,97,98,g99)
th = gl+g2+9g3+g4+g5+g6+g7+g8+g9;
end

function [Nu,Nuold] = NusseltcalculatorD2Q9(u,rho,Ulattice,U_real,T,nX,nY,Height,Kn,Nu)
% Ulattice=umean
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Nuold Nu;
Umean = zeros(nX,1);
dy = 1;
ut = zeros(nX,nY);
T_mean = zeros(nX,1);
A = zeros(nX,1);
H = nY-1;
for i=1:nX
dummy=0;
for j=1:5:nY-1
dummy=dummy+(5*dy) * (19*rho(i, j)+75*rho(i, j+1)+. ..
50*rho(i, j+2)+50*rho(i, j+3)+75*rho(i, j+4)+19*rho(i, j+5))/288;
end
Rhomean (i)=dummy/H;
dummy=0;
for j=1:5:nY-1
dummy=dummy+(5*dy) * (19*rho (i, j)*u(i, j)+75*rho(i, j)*u(i, j+1)+...
50*rho (i, j)*u(i,j+2)+50*rho(i,j)*u(i, j+3)+75*rho(i, j)*u(i, j+4)+19*rho(i, j)*u(i, j+5))/288;
end

Umean (i) =dummy/Rhomean (i) /H;

dummy=0;
ut(i,:) = rho(di,:).*u(i,:).*T(,:);
for j=1:5:nY-1
dummy=dummy+5*dy* (19*ut (i, j)+75*ut (i, j+1)+50*ut (i, j+2)+...
50*ut (i, j+3)+75*ut(i, j+4)+19*ut (i, j+5))/288;
end
T_mean (i)=(dummy/Rhomean(i) /Umean(i)/H);
A(i)= 49/20*T(i,1)-6*T(i,2)+15/2*T(i,3)-20/3*T(i,4)+...
15/4*T(i,5)-6/5*T(1,6)+1/6*T(i,7); % derivative
Nu(i) = -A(i)/T_mean(i)*2*H;

end
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subplot(2,2,1)
imagesc(T’)
subplot(2,2,2)
plot(Nu)
drawnow

end

function [ £3,£6,£f7] = OutletConstantVelocity( f1,f2,f4,f5,£8,f9,u_out )
rho_o = (£9+£2+f4+2*(£1+£5+£8))./(1.0+u_out);
f3 =f1 -0.667*rho_o.*u_out;
£f7 =f5 +0.5*(£f2 -f4 )- rho_o.*u_out/6.0;
f6 =£f8 +0.5*(f4 -f2 )- rho_o.*u_out/6.0;
end

function [£2,f5,£f6] = SlipBottomWallD2Q9(f1,£3,£f4,£7,£8,£f9,u,Kn,nY)
Lamda = Kn*(nY-1);
uslip = Lamda*(4*u(:,1)-u(:,2))/(2+3*Lamda) ;
rhow = (£f1+£3+£9+2% (£f4+£7+£8));
f2 = f4;
5 rhow.*(l+uslip)/2 - (£1+£8) - (£2+£f4+£9)/2;
£6 = rhow.*(1l-uslip)/2 - (£3+£f7) - (£2+£f4+£9)/2;
end

function [f4,£f7,£f8] = SlipTopWallD2Q9(f1,f2,£3,£5,£6,f9,u,Kn,nY)
Lamda = Kn*(nY-1);
uslip = Lamda*(4*u(:,2)-u(:,1))/(2+3*Lamda);
rhow = (£f1+£3+£9+2* (£2+£5+£6));
f4 = £2;
£7 rhow.*(1-uslip)/2 - (£3+£f6) - (£2+£f4+£9)/2;
8 rhow.*(l+uslip)/2 - (£1+£5) - (£2+£f4+£9)/2;
end

function [fla,f2a,f3a,f4a,f5a, f6a,f7a,f8a] = StreamingD2Q9(f1,f2,f3, f4,£5,£f6,£f7,£f8,nX,nY)
fla = f1([1,1:nX-1],1:nY);
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end

f2a
f3a
f4a
f5a
f6a
f7a
f8a

f2(1:nX,[1,1:nY-1]);
f3([2:nX,nX],1:nY);
f4(1:nX,[2:nY,nY]);
f5([1,1:nX-1],[1,1:nY-1]);
f6([2:nX,nX],[1,1:nY-1]);
£f7([2:nX,nX],[2:nY,nY]);
f8([1,1:nX-1],[2:nY,nY]);
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A.2 GPU Code

function time = LBM_GPU(nY)

% nY is the Horizontal Node Number

% Slit Channel

% Runs on GPU

% Flow + Heat Transfer

% Calculates Nusselt Number

% Linux:
% addpath /usr/local/jacket/engine

% Windows:
% addpath C:\Progra”1\AccelerEyes\Jacket\engine
nY = gsingle(nY);

nX = nY*4; % nX is the Vertical Node Number
% For this example it is choosen to be 4 times of height

Kn = gsingle(0);

Kappa = gsingle(0);

Lambda = Kn*(nY-1);

C = Kappa*Lambda;

tstep = 100;

Re = gsingle(10);

Pe = gsingle(100);

Ulattice = gsingle(0.02);

Pr = Pe/Re;

Viscosity=Ulattice*(nY-1)/Re;

alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);

omegat = 1/(3*alpha+0.5);

oneMinusOmegat = 1-omegat;

oneMinusOmega = l-omega;

rho = gzeros(nX,nY);

fl = rho;f2 = rho;f3 = rho;f4 = rho;f5 = rho;f6 = rho;f7 = rho;f8 = rho;f9 = rho;

u = rho; v=rho;
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T =
gl
rho
tic
for
%% Mome

%% Heat

gzeros(nX,nY);
= rho;g2 = rho;g3 = rho;g4 = rho;g5 = rho;g6 = rho;g7 = rho;g8 = rho;g9 = rho;
= rho+5;

kk=1:tstep
ntum

% Collision
[f1,f2,£3,f4,£5,f6,£f7,£8,£f9] = CollisionD2Q9(u,v,rho, fl,f2,£3,£f4,£5,£6,£f7,£8,f9,omega,oneMinusOmega) ;

% Streaming
[f1,f2,£3,f4,£5,f6,f7,f8] = StreamingD2Q9(f1,f2,£3,f4,£5,£6,£7,£8,nX,nY);

% Boundary Conditions

[f1(1,:),£f2(1,:),£f4(1,:),£5(1,:),f6(1,:),£f7(1,:),£8(1,:)] = InletconstantVelocityD2Q9(£f2(1,:),£f3(1,:),£f4(1,:),f6(1,:),£f7(1,:),f9(1,:)
[£3(nX,:),f6(nX,:),f7(nX,:)] = OutletConstantVelocity( f1(nX,:),f2(nX,:),f4(nX,:),f5(nX,:),f8(nX, :),f9(nX, :),u(nX-100,:));
[£f2(:,1),£5(:,1),f6(:,1)] = SlipBottomWallD2Q9(f1(:,1),£f3(:,1),£f4(:,1),£f7(:,1),£8(:,1),£9(:,1),u(:,2:3),Kn,nY);
[f4(:,nY),£f7(:,nY),£f8(:,nY)] = SlipTopWallD2Q9(£f1(:,nY),f2(:,nY),£f3(:,nY),£5C:,nY),f6(:,nY),f9(:,nY),u(:,nY-2:nY-1),Kn,nY);

% Macroscopic Values
[u,v,rho] = MacroscopicD2Q9(f1,f2,£3,£f4,£5,f6,£f7,£8,£9);

Diffiusion

% Collision
[g91,92,93,94,95,96,97,98,99] = CollisionTD2Q9(u,v,T,gl,92,93,94,95,96,97,98,9g9,omegat,oneMinusOmegat) ;

% Streaming
[g91,92,93,94,95,96,97,98] = StreamingD2Q9(gl,92,93,94,95,96,97,98,nX,nY);

% Boundary Conditions for Temperature
gl(1,2:nY-1)=2/9-9g3(1,2:nY-1);
g5(1,2:nY-1)=1/18-g7(1,2:nY-1);
g8(1,2:nY-1)=1/18-g6(1,2:nY-1);
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% Outlet zero-flux (Extrapolation)

g3(nX,2:nY-1)=2*g3(nX-1,2:nY-1)-g3(nX-2,2:nY-1);
g6(nX,2:nY-1)=2*%g6(nX-1,2:nY-1)-g6(nX-2,2:nY-1);
g7(nX,2:nY-1)=2*%g7(nX-1,2:nY-1)-g7(nX-2,2:nY-1);

%Top & Bottom Walls
[g4(:,nY),97(:,nY),g8(:,nY)] = TJumpTop(g2(:,nY),g5(C:,nY),g6(:,nY),T(:,nY-2:nY-1),0,C);
[g2(:,1),95(:,1),96(:,1)] = TJumpBottom(g4(:,1),97(:,1),98(:,1),T(:,2:3),0,0); % 0 = Wall teperature

% Macroscopic
T = MacroscopicTD2Q9(gl,92,93,94,95,96,97,98,99);
end
time = toc;
nXC = double(nX);
nYC = double(nY);
fprintf(’GPU: time = %6.4f for %d X %d\n’,time,nXC,nYC);
end
%%%%%%%% End of Main Function %%%%%%%%

% All the Subroutines are the same as the CPU code.
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A.3 MGPU Code

function time = LBM_MGPU(Y)

% Y is the Horizontal Node Number

% addpath /usr/local/jacket/engine

% addpath C:\Progra~1\AccelerEyes\Jacket\engine

% gactivate

X = Y*4;

x = X/4;

y =Y;

tstep = 100;

Kn = single(0);
Kappa = 1.67;
Lambda = Kn*(Y-1);
C = Kappa*Lambda;

Re = 10;
Pe = 100;
Pr = Pe/Re;

Viscosity=0.02*(Y-1)/Re;
alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);
oneMinusOmega = 1-omega;
omegat = 1/(3*alpha+0.5);
oneMinusOmegat = l-omegat;

gselect (1)

glu = gzeros(x+1,y, single’);
glv = glu;

glrho = glu+5;

glfl = glu;

glf2 = glu;
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glf3 = glu;

glfd = glu;
glf5 = glu;
glf6 = glu;
glf7 = glu;
glf8 = glu;
glf9 = glu;
glT = glu;
glgl = glu;
glg2 = glu;
glg3 = glu;
glg4 = glu;
glg5 = glu;
glg6 = glu;
glg7 = glu;
9198 = glu;
g1g9 = glu;
gselect(2)
g2u = gzeros(x+2,y, single’);
g2v = g2u;
g2rho = g2u+5;
g2fl = g2u;
g2f2 = g2u;
g2f3 = g2u;
g2f4 = g2u;
g2f5 = g2u;
g2f6 = g2u;
g2f7 = g2u;
g2f8 = g2u;

g2f9 = g2u;



0.

92T = g2u;

9291 = g2u;
9292 = g2u;
g2g3 = g2u;
g2g4 = g2u;
9295 = g2u;
9296 = g2u;
9297 = g2u;
9298 = g2u;
9299 = g2u;
gselect(3)

g3u = gzeros(x+2,y, single’);
g3v = g3u;
g3rho = g3u+5;

g3fl = g3u;
g3f2 = g3u;
g3f3 = g3u;
g3f4 = g3u;
g3£f5 = g3u;
g3f6 = g3u;
g3f7 = g3u;
g3f8 = g3u;
g3f9 = g3u;
93T = g3u;

9391 = g3u;
9392 = g3u;
9393 = g3u;
g3g4 = g3u;
9395 = g3u;
9396 = g3u;
9397 = g3u;

9398 = g3u;



T.

9399 = g3u;

gselect(4)
gd4u = gzeros(x+1l,y,’ single’);
g4v = g4u;
g4rho = g4u+5;
g4fl = g4du;
g4f2 = g4du;
g4f3 = g4du;
g4fd = g4du;
g4f5 = g4du;
g4f6 = g4du;
g4f7 = g4du;
g4f8 = g4du;
g4f9 = g4du;
94T = g4u;
g491 = g4u;
9492 = g4u;
g4g3 = g4u;
9494 = g4u;
9495 = g4u;
g496 = g4u;
9497 = g4u;
g4g8 = g4du;
9499 = g4u;
gsync(’all’);
tic

for kk = 1: tstep % Time Loop

% Collision
gselect (1)
gltl® = glu.*glu + glv.*glv;
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gltl® =
gltl
glt2 =
glt3 =
gltd =
glts =
glte =
glt7 =
glt8 =
glfeql

glfeq2 =

glfeq3

glfeq4d =
glfeq5 =

glfeqb

glfeq7 =

glfeq8
glfeq9
glfl =
glf2 =
glf3 =
glfd =
glfs =
glf6 =
glf7 =
glfs8 =
glf9 =
gselect
g2tl0 =
g2t10 =
g2tl
g2t2
g2t3
g2t4

1.5*g1t10;
glu;
glv;
-glu;
-glv;
glu + glv;
-glu + glv;
-glu - glv;
glu - glv;
glrho/9 .*
glrho/9 .*
= glrho/9 .*
glrho/9 .*
glrho/36 .*
= glrho/36 .*
glrho/36 .*
= glrho/36 .*
= 4*glrho/9 .*
omega*glfeql +
omega*glfeq2 +
omega*glfeq3 +
omega*glfeqd +
omega*glfeq5 +
+
+
+
+

omega*glfeq6b
omega*glfeq7
omega*glfeq8
omega*glfeq9
2

g2u.*g2u +g2v.*

1.5%g2t10;
g2u;
g2v;

-g2u;

-g2v;

(1
(1
(1
(1
(1
(1

3*gltl
3*glt2
3*glt3
3*glt4
3*glt5
3*glt6
(1 + 3*glt7
(1 3*glt8
(1 - gltl®);
oneMinusOmega

+ o+ o+ + o+ o+t
+ o+ o+ + o+ 4+

oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
oneMinusOmega*

oneMinusOmega
oneMinusOmega
oneMinusOmega

oneMinusOmega*

g2v;

.5%gltl.*gltl
.5%glt2.*glt2
.5*glt3.*glt3
.5*glt4.*glt4d
.5%g1t5.*%glt5
.5%g1lt6.*gltb
.5%glt7.*glt7
.5*g1t8.*glt8

f Y S S A L )

*glfl;
glf2;
glf3;
glf4;
glf5;
*g1f6;
*gl£7;
*g1£8;
glf9;

gltl®);
gltl®);
gltl®);
gltl®);
gltl®);
gltl®);
gltl®);
gltl®);
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g2t5
g2t6

g2t7 =

g2t8

g2feql

g2feq2 =
g2feq3 =
g2feq4d =
g2feq5 =

g2feqb

g2feq7 =

g2feq8
g2feq9

g2fl
g2f2
g21£3
g2f4
g2f£5
g2f6
g2£f7
g21f8
g2f9

gsele
g3tl® = g3u.*g3u +g3v.*

ct

g2u + g2v;
-g2u + g2v;
-g2u - g2v;
g2u - g2v;

= g2rho/9 .*
g2rho/9 .*
g2rho/9 .*
g2rho/9 .*
g2rho/36 .*
= g2rho/36 .*
g2rho/36 .*
= g2rho/36 .*
= 4*g2rho/9 .*
omega*g2feql +
omega*g2feq2 +
omega*g2feq3 +
omega*g2feqd +
omega*g2feq5 +
omega*g2feqb +
omega*g2feq7 +
omega*g2feq8 +
omega*g2feq9 +
3

g3tl® = 1.5%g3t10;

g3tl

g3t2 =
g3t3 =

g3t4d
g3t5
g3t6
g3t7
g3t8

g3u;
g3v;
-g3u;
-g3v;
g3u + g3v;
-g3u + g3v;
-g3u - g3v;
g3u - g3v;

g3feql = g3rho/9 .*

(1
(1
(1
(1
(1
(1
(1
(1
1

3*g2tl
3*g2t2
3*g2t3
3*g2t4
3*g2t5
3*g2t6
3*g2t7
3*g2t8
g2t10);

+ o+ o+ + o+ o+t
+ o+ o+ + o+ o+ o+t
C T S S S S S

oneMinusOmega*
*g2£2;
*g213;
*g2f4;
*g21£5;

oneMinusOmega
oneMinusOmega
oneMinusOmega
oneMinusOmega

oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
oneMinusOmega*

g3v;

.5%g2tl.*g2tl
.5*g2t2.*%g2t2
.5*g2t3.*%*g2t3
.5*g2t4.*g2t4
.5%g2t5.*%g2t5
.5%g2t6.%g2t6
.5%g2t7.*%g2t7
.5*g2t8.*%g2t8

g2£fl;

g2£6;
g2£f7;
g2£8;
g2£9;

g2t10);
g2tl10);
g2tl10);
g2tl10);
g2t10);
g2t10);
g2t10);
g2tl10);

(1 + 3*g3tl + 4.5*g3tl.*g3tl - g3tl0);
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g3feq2 = g3rho/9 .*
g3feq3 = g3rho/9 .*
g3feq4 = g3rho/9 .*
g3feq5 = g3rho/36 .*
g3feq6 = g3rho/36 .*
g3feq7 = g3rho/36 .*
g3feq8 = g3rho/36 .*
g3feq9 = 4*g3rho/9 .*
g3fl = omega*g3feql
g3f2 = omega*g3feq2
g3f3 = omega*g3feq3
g3f4 = omega*g3feq4
g3f5 = omega*g3feq5
g3f6 = omega*g3feqb
g3f7 = omega*g3feq7
g3f8 = omega*g3feq8
g3f9 = omega*g3feq9
gselect(4)

g4tl® = g4u.*gdu +g4v.*
g4tl® = 1.5%g4t10;
g4tl = g4u;

g4t2 = g4v;

g4t3 = -g4u;

g4td = -g4v;

g4t5 = g4u + g4v;
g4t6 = -g4u + g4v;
g4t7 = -g4u - g4v;
g4t8 = g4u - g4dv;
g4feql = g4rho/9 .*
g4feq2 = g4rho/9 .*
g4feq3 = g4rho/9 .*
g4feqd4 = g4rho/9 .*
g4feq5 = g4rho/36 .*
g4feq6 = g4rho/36 .*

+ oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
oneMinusOmega*
*g3£7;
*g3£8;
*g3f9;

+
+
+
+
+
+
+
+

(1
(1
(1
(1
(1
(1
(1
1 -

3*g3t2
3*g3t3
3*g3t4
3*g3t5
3*g3t6
3*g3t7
3*g3t8
g3tl0);

+ o+ + + o+ +
+ 4+ + + o+
B S S A )

oneMinusOmega
oneMinusOmega
oneMinusOmega

g4v;

(1
(1
(1
(1
(1
(1

3*g4dtl
3*g4t2
3*g4t3
3*g4t4
3*g4t5
3*%g4t6

+ o+ o+ o+ o+ o+
+ o+ o+ + o+ o+
L

.5%g3t2
.5%g3t3
.5%g3t4
.5*g3t5
.5%g3t6
.5%g3t7
.5%g3t8

g3£f1;
g3£2;
g3£3;
g3f4;
g3£5;
g3£6;

.5%g4tl
.5%g4t2
.5%g4t3
.5*g4t4
.5%g4t5
.5%g4t6

.*g3t2
.*g3t3
.*g3t4
.*g3t5
.*g3t6
.*g3t7
.*g3t8

.*g4tl
.*g4t2
.*g4t3
.*g4t4
.*g4t5
.*g4t6

g3tl0);
g3tl0);
g3tl0);
g3tl0);
g3tl0);
g3tl0);
g3tl0);

g4tl0);
g4tl0);
g4tl0);
g4tl0);
g4tl0);
g4tle);



g4feq7 = g4rho/36
g4feq8 = g4rho/36

g4feq9 = 4*g4rho/9

¥ (1 + 3%g4t7 + 4.5%g4t7.%g4t7 - g4tle);
¥ (1 + 3%g4t8 + 4.5%g41t8.%g4t8 - g4tl0);
F(1 - g4tl0);

G/

gafl =

g4f2
g4f3
gaf4
g4f£5
g4f6
g4f7
g41f8
g4f9

% End of

omega*g4feql
= omega*g4feq?2
= omega*g4feq3
= omega*g4feq4d
= omega*g4feq5
= omega*g4feqb
= omega*g4feq7
= omega*g4feq8
= omega*g4feq9

Collision

%% Streaming Ghost Node

gselect(2)

glfl_r =
glf2_r =
glf3_r =
glfd_r =
glf5_r =
glf6_r =
glf7_r =
glf8_r =
glfo_r =
glu_r =

double(g2f1(2,:
double(g2£2(2,:
double(g2£3(2,:
double(g2f4(2,:
double(g2£f5(2,:
double(g2£f6(2,:
double(g2£7(2,:
double(g2£8(2,:
double(g2£9(2,:

gselect(1)

glfl(end,
glf2(end,
glf3(end,
glfd(end,

)=glfl_r;
1)=glf2_r;
:)=glf3_r;
:)=glfd_r;

+
+
+
+
+
+
+
+
+

oneMinusOmega*
oneMinusOmega*
*g4f£3;
*g4f4;
*g4f£5;
*g416;

oneMinusOmega
oneMinusOmega
oneMinusOmega
oneMinusOmega

oneMinusOmega*
oneMinusOmega*
oneMinusOmega*

));
));
));
));
));
));
));
));
));

double(g2u(2,:));

g4fl;
g4£2;

g4£7;
g4£8;
g4f9;
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glf5(end, :)=gl1f5_r;
glf6(end, :)=gl1f6_r;
glf7(end, :)=gl1f7_r;
glf8(end, :)=glf8_r;
glf9(end, :)=g1f9_r;
glu(end, :)=glu_r;

gselect (1)

g2f1_1 = double(glfl(end-1,:));
g2f2_1 = double(glf2(end-1,:));
g2f3_1 = double(glf3(end-1,:));
g2f4_1 = double(glf4(end-1,:));
g2f5_1 = double(glf5(end-1,:));
g2f6_1 = double(glf6(end-1,:));
g2f7_1 = double(glf7(end-1,:));
g2f8_1 = double(glf8(end-1,:));
g2f9_1 = double(glf9(end-1,:));
g2u_l = double(glu(end-1,:));

gselect(2)

g2f1(1,:) = g2f1_1;
g2f2(1,:) = g2f2_1;
g2f3(1,:) = g2£f3_1;
g2f4(1,:) = g2f4_1;
g2£f5(1,:) = g2£5_1;
g2f6(1,:) = g2f6_1;
g2f7(1,:) = g2£7_1;
g2f8(1,:) = g2£8_1;
g2f9(1,:) = g2£f9_1;

g2u(l,:) = g2u_l;

gselect(3)
g2fl_r = double(g3£f1(2,:));
g2f2_r = double(g3£f2(2,:));



L

g2f3_r = double(g3£3(2,:));
g2f4_r = double(g3£f4(2,:));
g2f5_r = double(g3£5(2,:));
g2f6_r = double(g3f6(2,:));
g2f7_r = double(g3£f7(2,:));
g2f8_r = double(g3£8(2,:));
g2f9_r = double(g3£f9(2,:));
g2u_r = double(g3u(2,:));

gselect(2)

g2fl(end,:) = g2fl_r;
g2f2(end,:) = g2f2_r;
g2f3(end,:) = g2f3_r;
g2fd(end,:) = g2f4_r;
g2f5(end, :) = g2f5_r;
g2f6(end,:) = g2f6_r;
g2f7(end,:) = g2f7_r;
g2f8(end,:) = g2f8_r;
g2f9(end,:) = g2f9_r;

g2u(end, :) = g2u_r;

gselect(2)

g3fl_1 = double(g2fl(end-1,:));
g3f2_1 = double(g2f2(end-1,:));
g3f3_1 = double(g2f3(end-1,:));
g3f4_1 = double(g2f4(end-1,:));
g3£f5_1 = double(g2f5(end-1,:));
g3f6_1 = double(g2f6(end-1,:));
g3f7_1 = double(g2f7(end-1,:));
g3£f8_1 = double(g2f8(end-1,:));
g3f9_1 = double(g2f9(end-1,:));
g3u_l = double(g2u(end-1,:));

gselect(3)
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g3f1(1,:) = g3f1_1;
g3f2(1,:) = g3f2_1;
g3f3(1,:) = g3£f3_1;
g3£f4(1,:) = g3£f4_1;
g3f5(1,:) = g3£5_1;
g3f6(1,:) = g3f6_1;
g3f7(1,:) = g3£f7_1;
g3f8(1,:) = g3£8_1;
g3f9(1,:) = g3£f9_1;

g3u(l,:) = g3u_l;

gselect(4)

g3fl_r = double(g4f1(2,:));
g3f2_r = double(g4f2(2,:));
g3f3_r = double(g4f3(2,:));
g3f4_r = double(g4f4(2,:));
g3f5_r = double(g4£f5(2,:));
g3f6_r = double(g4£f6(2,:));
g3f7_r = double(g4£f7(2,:));
g3f8_r = double(g4£8(2,:));
g3f9_r = double(g4f9(2,:));
g3u_r = double(g4u(2,:));

gselect(3)

g3fl(end,:) = g3fl_r;
g3f2(end,:) = g3f2_r;
g3f3(end,:) = g3f3_r;
g3fd(end,:) = g3fd_r;
g3f5(end,:) = g3f5_r;
g3f6(end,:) = g3f6_r;
g3f7(end,:) = g3£f7_r;
g3f8(end,:) = g3£f8_r;
g3f9(end,:) = g3f9_r;

g3u(end, :) = g3u_r;
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gselect(3)

g4fl1_1 = double(g3fl(end-1,:));
g4f2_1 = double(g3f2(end-1,:));
g4f3_1 = double(g3f3(end-1,:));
g4f4_1 = double(g3f4(end-1,:));
g4f5_1 = double(g3f5(end-1,:));
g4f6_1 = double(g3f6(end-1,:));
g4f7_1 = double(g3f7(end-1,:));
g4£f8_1 = double(g3f8(end-1,:));
g4£f9_1 = double(g3f9(end-1,:));
gd4u_l = double(g3u(end-1,:));

gselect(4)
g4f1(l,:) = g4fl_1;
g4f2(1,:) = g4f2_1;
g4f3(1,:) = g4f3_1;
g4fda(l,:) = g4f4_1;
g4f5(1,:) = g4f5_1;
g4f6(1,:) = g4f6_1;
gd4f7(1,:) = g4f7_1;
g4f8(1,:) = g4£8_1;
g4f9(1,:) = g4f9_1;
gdu(l,:) 4u_1;

=9
gsync(’all’);

gselect(1)

[glfl,g1f2,91£f3,91f4,91£5,91f6,91f7,91f8] = StreamingGND2Q9(glfl,glf2,g1f3,91f4,91£f5,91f6,91f7,91£8,x+1,y);
[glf1(1,2:y-1),g1f2(1,2:y-1),91f4(1,2:y-1),91£5(1,2:y-1),91f6(1,2:y-1),91£7(1,2:y-1),91£8(1,2:y-1)] =...
InletconstantVelocityD2Q9(gl1f2(1,2:y-1),91£3(1,2:y-1),91£4(1,2:y-1),91f6(1,2:y-1),91£f7(1,2:y-1),...
glf9(1,2:y-1),0.02); % 0.02=Ulattice

[g1f2(:,1),91£5(:,1),91f6(:,1)] =
[91f4(:,y),91£7(:,y),g1f8(:,¥] =
glf6(:,y),g1f9(:,y),glu(:,y-2

SlipBottomWallD2Q9(g1f1(:,1),91£3(:,1),91f4(:,1),91£7(:,1),91£8(:,1),91£9(:,1),g1u(:,2:3),Kn,y);
SlipTopWallD2Q9(glfl(:,y),gl1f2(:,y),g1£f3(:,y),glf5C:,y), ...
1y-1),Kn,y);
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glrho = glfl+glf2+gl1f3+glf4+glf5+gl1f6+glf7+glf8+gl1f9;
glusum = gl1fl1-gl1f3+gl1£f5-g1f6-g1f7+g1£8;

glvsum = gl1f2-gl1f4+glf5+gl1f6-g1£f7-g1£8;

glu = glusum./glrho;

glv = glvsum./glrho;

gselect(2)

[g2f1,92f2,92f3,92f4,92£f5,92f6,92f7,92f8] = StreamingGND2Q9(g2fl,g2f2,9g2f3,92f4,92f5,92f6,92£f7,92£8,x+2,y);
[g2f2(:,1),92£5(:,1),92f6(:,1)] = SlipBottomWallD2Q9(g2f1(:,1),92£f3(:,1),92f4(:,1), ¢g2£f7(:,1),92£f8(:,1),92f9(:,1),g2u(:,2:3),Kn,y);
[g2f4(:,y),92f7(:,y),92£8(:,y)] = SlipTopWallD2Q9(g2f1(:,y),g2f2(:,y),92f3(:,y), 92£5(:,y),92f6(:,y),92f9(:,y),g2u(:,y-2:y-1),Kn,y);
g2rho = g2f1+g2f2+92£3+9g2f4+g2£5+9g2£f6+g2£f7+g2£8+g2f9;

g2usum = g2f1-g2f3+g2f5-g2f6-g2£f7+g2£8;

g2vsum = ¢g2f2-g2f4+92£f5+g2f6-9g2f7-g2£8;

g2u = g2usum./g2rho;

g2v = g2vsum./g2rho;

gselect(3)

[g3f1,93f2,93f3,93f4,93f5,93f6,93f7,93f8] = StreamingGND2Q9(g3fl1,g3f2,93f3,93f4,93f5,93f6,93f7,93£8,x+2,y);

[g3f2(:,1),93£5(:,1),93f6(:,1)] = SlipBottomWallD2Q9(g3f1(:,1),g3£f3(:,1),93f4(:,1),...
g3£f7(:,1),93£8(:,1),93f9(:,1),93u(:,2:3),Kn,y);

[g3f4(:,y),93f7(:,y),93£8(:,y)] = SlipTopWallD2Q9(g3£f1(:,y),g3£f2(:,y),93f3(:,y),93£f5(:,y),g3£f6(:,y),g93f9(:,y),g3u(:,y-2:y-1),Kn,y);

g3rho = g3fl+g3f2+g3£f3+g3f4+g3£f5+9g3£f6+9g3£f7+g3£8+g3f9;

g3usum = g3f1-g3£f3+g3£f5-g3f6-g3£f7+g3£8;

g3vsum = ¢g3f2-g3f4+g3£f5+g3f6-g3£f7-9g3£8;

g3u = g3usum./g3rho;

g3v = g3vsum./g3rho;

gselect(4)

[g4fl,94f2,94f3,94f4,94£5,94£6,94f7,94f8] = StreamingGND2Q9(g4fl,g4f2,g4f3,94f4,94£5,94f6,94£f7,94£8,x+1,y);
[g4f3(x,:),94f6(x,:),94f7(x,:)] = OutletConstantVelocity( g4f1(x,:),g4f2(x,:),94f4(x,:),94£5(x,:),94£f8(x,:),94f9(x,:),g4u(x-5,:));
[g4f2(:,1),94£5(:,1),94£f6(:,1)] SlipBottomWallD2Q9(g4f1(:,1),94£3(:,1),94f4(:,1),94£7(:,1),94£8(:,1),94£9(:,1),94u(:,2:3),Kn,y);
[g4fa(:,y),94£f7(:,y),94£8(:,y)] = SlipTopWallD2Q9(g4f1i(:,y),g4f2(:,y),g94£3(:,y), 9g4£5(:,y),g4f6(:,y),g4f9(:,y),g4u(:,y-2:y-1),Kn,y);
g4rho = g4fl+g4f2+g4£f3+9g4f4+g4f5+g4£f6+94£f7+g4£8+g4f9;

gdusum = g4f1-g4£f3+g4£f5-g4f6-g4£f7+g4£8;
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g4vsum =

gsync(’all

g4f2-g4f4+9g4£5+94f6-9g4£f7-9g4£8;
g4u = g4usum./g4rho;
g4v = g4vsum./g4rho;

)

%% Heat Transfer

% Collisio
gselec
gltl =
glt2 =
glt3 =
gltd =
glts =
glte =
glt7 =
glt8 =
glfeql

glfeq3

n
t(1)
glu;
glv;
-glu;
-glv;
glu
-glu
-glu
glu

+
+

glv;
glv;
glv;
glv;

= glT/9 .*
glfeq2 =

glfeq4d =
glfeq5 =

glfeqb

glfeq7 =
glfeq8 =

glfeq9 =

glgl =
glg2 =
glg3 =
glg4 =
glgs =
glgb =

glT/9 .*
glT/9 .*
glT/9 .*

glT/36 .*
glT/36 .*
glT/36 .*
glT/36 .*

4*gl1T/9 ;

(1
(1
1
1
1
(1
(1
(1

omegat*glfeql
omegat*glfeq2
omegat*glfeq3
omegat*glfeq4
omegat*glfeq5
omegat*glfeqb

+ o+ + o+ o+ o+ o+

*gltl
*glt2
*glt3
*glt4
*glt5
*glt6
*glt7
*glt8

w w w wwwww
L A N O T T e

oneMinusOmegat*
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat*®
oneMinusOmegat*®

glgl;
glg2;
glg3;
glg4;
glg5;
glg6;
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glg7
glg8
glg9
gselect
g2tl =
g2t2 =
g2t3 =
g2t4d =
g2t5 =
g2t6 =
g2t7 =
g2t8 =
g2feql

g2feq2 =
g2feq3 =
g2feq4d =

g2feq5
g2feqb

g2feq7 =
g2feq8 =

g2feq9
g2gl =
g2g2 =
g2g3 =
g2g4 =
g2g5 =
g2g6 =
9297 =
9298 =
9299 =
gselect
g3tl =
g3t2
g3t3

omegat*glfeq7 + oneMinusOmegat*glg7;
omegat*glfeq8 + oneMinusOmegat*glg8;
omegat*glfeq9 + oneMinusOmegat*glg9;

(2)

g2u;

g2v;

-g2u;

-g2v;

g2u + g2v;
-g2u + g2v;
-g2u - g2v;
g2u - g2v;

= g2T/9 .* (1
g2T/9 .* (1
g2T/9 .* (1
g2T/9 .* (1
= g2T/36 .* (1
= g2T/36 .* (1
g2T/36 .* (1
g2T/36 .* (1
= 4*g2T/9;
omegat*g2feql
omegat*g2feq?2
omegat*g2feq3
omegat*g2feq4
omegat*g2feq5
omegat*g2feqb
omegat*g2feq7
omegat*g2feq8
omegat*g2feq9
3

g3u;

g3v;

-93u;

+ 4+ o+ A+ o+ o+ o+ o+

+ o+ o+ + o+ o+ o+

*g2tl);
*g2t2);
*g2t3);
*g2t4);
*g2t5);
*g2t6);
*g2t7);
*g2t8);

w wwwwwww

oneMinusOmegat*
oneMinusOmegat*
oneMinusOmegat*
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat*®
oneMinusOmegat*®
oneMinusOmegat®

9291;
9292;
9293;
92g4;
92g5;
92g6;
9297;
9298;
9299;
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g3t4d
g3t5

g3t6 =

g3t7 =

g3t8

g3feql

g3feq2 =
g3feq3 =
g3feq4d =
g3feq5 =

g3feqb
g3feq7

g3feq8 =

g3feq9

g3gl
g3g2
g3g3
9394
9395
g3g6
g3g7
9398
9399

gsele

g4tl

g4t2 =

g4t3

g4t4d =
g4ts =

ct

g4t6 =

g4t7
g4t8

gifeq

1

gdfeq2

-g3v;
g3u + g3v;
-g3u + g3v;
-g3u - g3v;
g3u - g3v;
= g3T/9 .* (1 + 3*g3tl);
g3T/9 .* (1 + 3*g3t2);
g3T/9 .* (1 + 3*g3t3);
g3T/9 .* (1 + 3*g3t4);
g3T/36 .* (1 + 3*g3t5);
= g3T/36 .* (1 + 3*g3t6);
= g3T/36 .* (1 + 3*g3t7);
g3T/36 .* (1 + 3*g3t8);
= 4*g3T/9;
omegat*g3feql + oneMinusOmegat™
omegat*g3feq2 + oneMinusOmegat™
omegat*g3feq3 + oneMinusOmegat*
omegat*g3feq4 + oneMinusOmegat*
omegat*g3feq5 + oneMinusOmegat*
omegat*g3feq6 + oneMinusOmegat*
omegat*g3feq7 + oneMinusOmegat™
omegat*g3feq8 + oneMinusOmegat*
omegat*g3feq9 + oneMinusOmegat*
€Y
g4u;
g4v;
-g4u;
-g4v;
gd4u + g4v;
-g4u + g4v;
-g4u - g4v;
gdu - g4v;
= g4T/9 .* (1 + 3*g4tl);
= g4T/9 .* (1 + 3*g4t2);

g3gl;
9392;
9393;
9394;
9395;
g3g6;
9397;
9398;
9399;
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gifeq3 =
gifeqd =
gdfeq5s
g4feqb =
gdfeq7 =
gifeq8 =
g4feq9

g4gl
g4g2
g4g3
g4g4
9495
9496
g4g7
g4g8
9499

% End of

g4T/9 .* (
g4T/9 .* (
g4T/36 .* (
g4T/36 .* (
g4T/36 .* (
g4T/36 .* (
= 4*g4T/9;

= omegat*gdfeql
= omegat*g4feq2
= omegat*gdfeq3
= omegat*g4feq4d
= omegat*gdfeq5
= omegat*g4feqb
= omegat*g4feq?7
= omegat*g4feq8
= omegat*g4feq9

Collision

% Streaming Ghost Node

1
1
1
1
1
1

+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ A+ 4+

));
));
));
));
));
));
));
));
));

gselect(2)

glgl_r = double(g2gl(2,:
glg2_r = double(g2g2(2,:
glg3_r = double(g2g3(2,:
glg4_r = double(g2g4(2,:
glg5_r = double(g2g5(2,:
glg6_r = double(g2g6(2,:
glg7_r = double(g2g7(2,:
glg8_r = double(g2g8(2,:
glg9_r = double(g2g9(2,:
glu_r = double(g2u(2,:));

gselect (1)

*94t3);
*g4t4d);
*94t5);
*941t6) ;
*94t7);
*g4t8);

w w w w ww

oneMinusOmegat*
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat*®
oneMinusOmegat*®
oneMinusOmegat®
oneMinusOmegat®
oneMinusOmegat®

g4g1;
g9492;
g493;
9494;
9495;
94g6;
9497;
g498;
9499;
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glgl(end,
glg2(end,
glg3(end,
glg4(end,
glg5(end,
glg6(end,
glg7(end,
glg8(end,
glg9(end,
glu(end, :)=glu_r;

:)=glgl_r;
:)=glg2_r;
:)=glg3_r;
:)=glgd_r;
:)=glg5_r;
:)=glg6b_r;
:)=glg7_r;
:)=g1g8_r;
1)=g1g9_r;

gselect (1)

g2gl_1 = double(glgl(end-1,:
g2g2_1 = double(glg2(end-1,:
g2g3_1 = double(glg3(end-1,:
g2g4_1 = double(glg4(end-1,:
g2g5_1 = double(glg5(end-1,:
g2g6_1 = double(glg6(end-1,:
g2g7_1 = double(glg7(end-1,:
g29g8_1 = double(glg8(end-1,:
9299_1 = double(glg9(end-1,:

));
));
));
));
));
));
));
));
));

g2u_l = double(glu(end-1,:));

gselect(2)

g2g1(1l,:) = g2gl_1;
g292(1,:) = g2g2_1;
g293(1,:) = g2g3_1;
g2g4(1l,:) = g2g4_1;
g2g5(1,:) = g2g5_1;
g2g6(1,:) = g2g6_1;
g2g97(1,:) = g2g7_1;
g298(1,:) = g2g8_1;
g299(1,:) = g2g9_1;

g2u(l,:) = g2u_l;
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gselect(3)

g2gl_r = double(g3g1(2,:));
g2g2_r = double(g3g2(2,:));
g2g3_r = double(g3g3(2,:));
g2g4_r = double(g3g4(2,:));
g2g5_r = double(g3g5(2,:));
g2g6_r = double(g3g6(2,:));
g2g7_r = double(g3g7(2,:));
g29g8_r = double(g3g8(2,:));
g299_r = double(g3g9(2,:));
g2u_r = double(g3u(2,:));

gselect(2)

g2gl(end,:) = g2gl_r;
g2g2(end, :) = g2g2_r;
g2g3(end, :) = g2g3_r;
g2g4(end,:) = g2g4_r;
g2g5(end, :) = g2g5_r;
g2g6(end,:) = g2g6_r;
g2g7(end, :) = g2g7_r;
g2g8(end, :) = g2g8_r;
g2g9(end, :) = g2g9_r;

g2u(end, :) = g2u_r;

gselect(2)

g3gl_1 = double(g2gl(end-1,:));
g3g2_1 = double(g2g2(end-1,:));
g3g3_1 = double(g2g3(end-1,:));
g3g4_1 = double(g2g4(end-1,:));
g3g5_1 = double(g2g5(end-1,:));
g3g6_1 = double(g2g6(end-1,:));
g3g7_1 = double(g2g7(end-1,:));
g3g8_1 = double(g2g8(end-1,:));
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g399_1 = double(g2g9(end-1,:));
g3u_l = double(g2u(end-1,:));

gselect(3)

g3g1(1,:) = g3gl_1;
g3g2(1l,:) = g3g2_1;
g3g3(1,:) = g3g3_1;
g3g4(1l,:) = g3g4_1;
g3g5(1,:) = g3g5_1;
g3g6(1,:) = g3g6_1;
g397(1,:) = g3g7_1;
g398(1,:) = g3g8_1;
g399(1,:) = g3g9_1;

g3u(l,:) = g3u_l;

gselect(4)

g3gl_r = double(g4gl(2,:));
g3g2_r = double(g4g2(2,:));
g3g3_r = double(g4g3(2,:));
g3g4_r = double(g4g4(2,:));
g3g5_r = double(g4g5(2,:));
g3g6_r = double(g4g6(2,:));
g3g7_r = double(g4g7(2,:));
g3g8_r = double(g4g8(2,:));
g3g9_r = double(g4g9(2,:));
g3u_r = double(g4u(2,:));

gselect(3)

g3gl(end,:) = g3gl_r;
g3g2(end,:) = g3g2_r;
g3g3(end,:) = g3g3_r;
g3g4(end,:) = g3g4_r;
g3g5(end, :) = g3g5_r;
g3g6(end, :) = g3g6_r;
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g3g7(end, :) = g3g7_r;
g3g8(end, :) = g3g8_r;
g3g9(end, :) = g3g9_r;
g3u(end, :) = g3u_r;

% GPU4

gselect(3)

g4gl_1 = double(g3gl(end-1,:
g4g2_1 = double(g3g2(end-1,:
g4g3_1 = double(g3g3(end-1,:
g4g4_1 = double(g3g4(end-1,:
g4g5_1 = double(g3g5(end-1,:
g4g6_1 = double(g3g6(end-1,:
g4g7_1 = double(g3g7(end-1,:
g49g8_1 = double(g3g8(end-1,:
g499_1 = double(g3g9(end-1,:

));
));
));
));
));
));
));
));
));

g4u_l = double(g3u(end-1,:));

gselect(4)
g4g1(1l,:) = g4gl_1;
g4g92(1,:) = g4g2_1;
g4g93(1,:) = g4g3_1;
g4g94(1l,:) = g4g4_1;
g4g5(1,:) = g4g5_1;
g496(1,:) = g4g6_1;
g4g7(1,:) = g4g7_1;
g498(1,:) = g498_1;
g499(1,:) = g4g9_1;
gd4u(l,:) = gdu_l;
gsync(’all’);

% Streaming, Boundary Conditions and Macroscopic
gselect (1)

[glgl,9192,9193,9194,9195,9196,9197,919g8] = StreamingGND2Q9(glgl,glg2,91g3,91g4,9195,9196,9197,91g8,x+1,y);
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glgl(l,2:y-1)=1%2/9-g1g3(1,2:y-1); % 1 Inlet Temperature

glg5(l,2:y-1)=1/18-g1g7(1,2:y-1); % 1 Inlet Temperature

glg8(l,2:y-1)=1/18-g1g6(1,2:y-1); % 1 = Inlet Temperature

[glg2(:,1),9195(C:,1),91g6(:,1)] = TJumpBottom(glg4(:,1),9l1g7(:,1),9198(:,1),gl1T(:,2:3),0,0);
[g1lg4(:,y),9197(:,y),9198(:,y)] = TIumpTop(glg2(:,y),glg5C:,y),9196(:,y),glT(:,y-2:y-1),0,0);
glT = glgl+glg2+glg3+glg4+glg5+glg6+glg7+glg8+glg9;

gselect(2)

[g291,9292,9293,9294,9295,9296,9297,9298] = StreamingGND2Q9(g2gl,g9292,9293,9294,9295,9296,9297,9298,x+2,Y);
[g2g2(:,1),9295(:,1),9296(:,1)] = TJumpBottom(g2g4(:,1),9297(:,1),9298(:,1),92T(:,2:3),0,0); % 0 = Wall teperature
[9294(:,y),9297(:,y),9298(:,y)] = TJumpTop(g292(:,y),9295(:,y),9296(:,y),g2T(:,y-2:y-1),0,0);

92T = g2gl+g292+9293+9294+9295+9296+9297+9298+9299;

= Wall teperature

% 0
% 0 = Wall teperature

gselect(3)

[g9391,9392,9393,9394,9395,9396,9397,9398] = StreamingGND2Q9(g39l,9392,9393,9394,9395,9396,9397,9398,x+2,y);
[g392(:,1),9395(:,1),9396(:,1)] = TJumpBottom(g3g4(:,1),9397(:,1),9398(:,1),93T(:,2:3),0,0); % 0 = Wall teperature
[9394(:,y),9397(:,y),9398(C:,y)] = TIumpTop(9392(:,y),9395(:,y),9396(:,y),93T(:,y-2:y-1),0,0);

93T = g3gl+g392+g393+9394+939g5+93g6+9397+9398+9g399;

gselect(4)

[g491,9492,9493,9494,9495,9496,9497,,9498] = StreamingGND2Q9(g4gl,g4g2,9493,9494,9495,9496,9497,9498,x+1,y);

% Outlet zero-flux (Extrapolation)

9493 (x+1,2:y-1)=2%g493(x,2:y-1)-g493(x-1,2:y-1);

g496(x+1,2:y-1)=2%g4g6(x,2:y-1)-g496(x-1,2:y-1);

9497 (x+1,2:y-1)=2%g497(x,2:y-1)-g497(x-1,2:y-1);

[g492(:,1),9495(:,1),9496(:,1)] = TJumpBottom(g4g4(:,1),9497(:,1),9498(:,1),94T(:,2:3),0,0); % 0 = Wall teperature
[9494(:,y),9497(:,y),9498(:,y)] = TJumpTop(g492(:,y),9495(C:,y),0496(:,y),g4T(:,y-2:y-1),0,0);

94T = g4gl+g4g2+g493+94g94+94g5+9496+9497+9498+9499;

% End of Streaming, Boundary Conditions and Macroscopic

% gsync(’all’);
%% End of Heat Trasnfer

end % enTime Loop
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time = toc;
fprintf(CMGPU: time = %6.4f for %d X %d\n’,time,X,Y);

end
%%% End of Main Function %%%

function [fla, f2a,f3a, f4a,f5a,f6a,f7a,f8a] = StreamingGND2Q9(f1,f2,£3,£f4,£5,f6,£f7,£8,X,Y)
fla = f1([1,1:X-11,1:Y);
f2a = £2(1:X,[1,1:Y-11]);
f3a = £3([2:X,X],1:Y);
f4a = £f4(1:X,[2:Y,Y]);
f5a = £5([1,1:X-17,[1,1:Y-11);
f6a = f6([2:X,X],[1,1:Y-1]);
f7a = £7([2:X,X],[2:Y,Y]);
f8a = £8([1,1:X-11,[2:Y,Y]);
end

function [ £3,£6,£f7] = OutletConstantVelocity( f1,f2,f4,f5,£8,f9,u_out )
rho_o = (£9+£2+£f4+2*(£1+£5+£8))./(1.0+u_out);
f3 =f1 -0.667*rho_o.*u_out;
£7 =f5 +0.5*(£f2 -f4 )- rho_o.*u_out/6.0;
f6 =£f8 +0.5*(f4 -f2 )- rho_o.*u_out/6.0;
end

function [£2,£5,f6] = SlipBottomWallD2Q9(f1,£f3,f4,£7,£8,f9,u,Kn,Y)
Lamda = Kn*(Y-1);
uslip Lamda*(4*u(:,1)-u(:,2))/(2+3*Lamda) ;
rhow = (£1+£3+£9+2* (£4+£7+£8));
f2 = f4;
5 rhow.*(l+uslip)/2 - (£1+£8) - (£2+£f4+£9)/2;
f6 = rhow.*(1-uslip)/2 - (£3+£f7) - (£2+£f4+£9)/2;
end
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function [f4,£f7,£8] = SlipTopWallD2Q9(f1,f2,£3,£5,£f6,f9,u,Kn,Y)
Lamda = Kn*(Y-1);
uslip = Lamda*(4*u(:,2)-u(:,1))/(2+3*Lamda);
rhow = (£f1+£3+£9+2* (£2+£5+£6)) ;
f4 = £2;
£7 = rhow.*(1-uslip)/2 - (£3+£f6) - (£2+£f4+£9)/2;
8 rhow.*(1+uslip)/2 - (£1+£5) - (£2+£f4+£9)/2;

end

function [f1,f2,f4,£5,f6,£f7,£f8] =...
InletconstantVelocityD2Q9(f2,f3,£f4,£6,£f7,f9,Ulattice)
rhow = (£9 +£2 +f4 +2*(£3 +£f6 +£f7 ))/(1-Ulattice);
f1 = £3 + 2*rhow*Ulattice/3;
5 7 + 0.5%(£f4-£f2) + rhow*Ulattice/6;
8 f6 + 0.5%(£f2-f4) + rhow*Ulattice/6;

end

function [g4,97,98] = TJumpTop(g2,95,96,T,tw,C)
tw = (C*(4*T(:,2)-T(C:,1))+2%tw) /(2+3%0) ;
g8=tw/18-g6;
g7=tw/18-9g5;
g4=tw*2/9-92;

end

function [g2,95,96] = TJumpBottom(g4,97,98,T,Tw,C)
tw = (C*(4*T(:,1)-T(:,2))+2%Tw) /(2+3*C) ;
g6=tw/18-9g8;
g5=tw/18-9g7;
g2=2%tw/9-g4;

end



Appendix B

Implementation of Boundary Conditions

B.1 Macro Channel Boundary Conditions

B.1.1 Inlet Velocity Boundary Condition (Left)

_ f2+ f4+f9+2(f3+ f6+ f7)
- 1_Vx

2

1 PVx
fo= fr4+ =(f4— f) + 2
5 7+2(4 2)+6

1 V
fo = fo— 5(fa— f2) + £

B.1.2 No-slip Boundary Condition (Bottom)

fo="1a
fi—f3

fs = f7 -

f1— f3
2

f6= f3+

B.1.3 No-slip Boundary Condition (Top)

fa=1

f7:f5+ fl_f3

fi—f
fo = fs— 12 3
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(B.1)
(B.2)
(B.3)

(B.4)

(B.5)
(B.6)

(B.7)

(B.8)
(B.9)

(B.10)



B.1.4 Outlet Boundary Condition (Right)

_ f2+ f4+f9+2(f1+ f5+ fg)
B 1— vy

2

PVx
6

PVx
6

1
fo=fg+ E(f4— f2) -

1
f7=fs - §(f4_ f2) -

B.1.5 Temperature Boundary Condition (Left)

01 = ¢ (W(1)+w(3)) - 03
95 = ¢ (W(S) +wW(7)) - g7
98 = ¢ (W(8) + W(6)) — Gs

B.1.6 Temperature Boundary Condition (Bottom)

g2 = ¢ (W(2) +W(4)) — 4
g5 = ¢ (W(5) + W(7)) — g7
96 = ¢ (W(6) +W(8)) — gs

B.1.7 Temperature Boundary Condition (Top)

9 = ¢ (W(2) +wW(4)) - g2
97 = ¢ (W(S) +W(7)) - G5
98 = ¢ (W(6) + W(8)) - Gs
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(B.11)

(B.12)
(B.13)

(B.14)

(B.15)
(B.16)

(B.17)

(B.18)
(B.19)
(B.20)

(B.21)
(B.22)
(B.23)



B.1.8 Zero Flux Temperature Boundary Condition (Right)

UBx = 203 x-1 — I3 X2
O6.x = 206,x-1 — Up,X-2

07.x = 207,x-1 — O7,x-2

B.2 Micro Channel Boundary Conditions

B.2.1 Slip Boundary Conditions (Bottom)

A=Kn=H

_ (4vx1 — Vx2)
X 2+31
pw = 1+ f3+ fg+ 2(f7 + f4 + fg)

fo="1a

(fr+ fg)

- (fza+17)

pw(l+Vy) = (f2 + f4 + fo) _
2

_ pw(l = Vx) = (f2 + f4 + fo)

2

fs =

fe

B.2.2 Slip Boundary Conditions (Top Wall)

A=Kn=H

_ BV = Vo)
T 2+30
Pw = f1+f3+f9+2(f7+f4+f8)

fa=1

(f3+ fe)

—(fr+ fs)

pw(l—vy) - (fa+ fa+fg)
2

_ pw(l+ V) = (f2 + f4 + fo)

2

f; =

fg
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(B.24)
(B.25)
(B.26)

(B.27)

(B.28)
(B.29)
(B.30)
(B.31)
(B.32)

(B.33)

(B.34)
(B.35)
(B.36)
(B.37)

(B.38)

(B.39)



B.2.3 Temperature Jump Boundary Conditions (Bottom)

1=Kn+H (B.40)
Ci =k (B.41)

Ci — ¢2) + 20w
0:|J@i;+zgo ] (B.42)
%2 = ¢o (W(2) + W(4)) — ga (B.43)
95 = ¢o (W(5) +W(7)) — 97 (B.44)
g6 = po (W(6) + W(8)) — gs (B.45)

B.2.4 Temperature Jump Boundary Conditions (Top)

A=KnxH (B.46)
Cj=«a (B.47)

C _1— ¢y_2) + 20y
- St d 2 .10
01 = v (W(2) + W) - 6o (B.49)
07 = v (W(S) + W(7) - Gs (B.50)
Go = ¢y (W(E) + W(E) - Go (B.51)
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Appendix C

Pseudo Code
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Algorithm C.0.1: LarricEBorrzmannMEeTHOD()

for time« 1to ntStep
1. Momentum Transfer
1.1 Collision
fori « 1tonX
for j « 1tonY
o {fkeq(i, i) = wio(i, )L+ 3(ec- V(i J)) + (& V(. 1))* - Siv(, DIP]

fiei, ) = w £ §) + (1 - w) (i, )
1.2 Streaming
{See Appendix A
1.3 Implementation of Boundary Conditions
{See Appendix B
1.4 Macroscopic Property Calculation
for i « 1tonX

for j « 1tonY
9

p(.j) = 2 %, )
k=1

do 9
V(i) = 2 &kl 1)/, J)

2. Heat Transfer
2.1 Collision
for i « 1tonX
for j « 1tonY
do {gﬁq(i, 1) = wie(i, ) [1 + 3(ex - v(i. )]
ak(i, J) = xgi (i, J) + (1 = wr)ak(is )
{2.2 Streaming

See Appendix A

2.3 Implementation of Boundary Conditions
{See Appendix B
2.4 Macroscopic Property Calculation
for i « 1tonX

for j « 1tonY

do i, ]) = 3 6. )

97



