

ANALYSIS OF SINGLE PHASE FLUID FLOW AND HEAT TRANSFER IN SLIPFLOW
REGIME BY PARALLEL IMPLEMENTATION OF LATTICE BOLTZMANN METHOD

ON GPUS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SITKI BERAT ÇELİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

SEPTEMBER 2012

Approval of the thesis:

ANALYSIS OF SINGLE PHASE FLUID FLOW AND HEAT TRANSFER IN SLIP FLOW

REGIME BY PARALLEL IMPLEMENTATION OF LATTICE BOLTZMANN MET HOD

ON GPUS

submitted bySITKI BERAT ÇEL İK in partial fulfillment of the requirements for the degree
of
Master of Science in Mechanical Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan̈Ozgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Suha Oral
Head of Department,Mechanical Engineering

Asst. Prof. Dr. Cüneyt Sert
Supervisor,Mechanical Engineering Department

Asst. Prof. Dr. Barbaros Çetin
Co-supervisor,Mechanical Engineering

Examining Committee Members:

Asst. Prof. Dr. Cüneyt Sert
Mechanical Engineering, METU

Asst. Prof. Dr. Barbaros Çetin
Mechanical Engineering, Bilkent University

Asst. Prof. Dr. Nevsan Şengil
Astronautical Engineering, UTAA

Assoc. Prof. Dr. Almıla Güvenç Yazıcıoğlu
Mechanical Engineering, METU

Assoc. Prof. Dr.̇Ilker Tarı
Mechanical Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: SITKI BERAT ÇELİK

Signature :

iii

ABSTRACT

ANALYSIS OF SINGLE PHASE FLUID FLOW AND HEAT TRANSFER IN SLIPFLOW
REGIME BY PARALLEL IMPLEMENTATION OF LATTICE BOLTZMANN METHOD

ON GPUS

Çelik, Sıtkı Berat

M.S., Department of Mechanical Engineering

Supervisor : Asst. Prof. Dr. Cüneyt Sert

Co-Supervisor : Asst. Prof. Dr. Barbaros Çetin

September 2012, 97 pages

In this thesis work fluid flow and heat transfer in two-dimensional microchannels are studied

numerically. A computer code based on Lattice Boltzmann Method (LBM) is developed for

this purpose. The code is written using MATLAB and Jacket software and has the important

feature of being able to run parallel on Graphics ProcessingUnits (GPUs). The code is used to

simulate flow and heat transfer inside micro and macro channels. Obtained velocity profiles

and Nusselt numbers are compared with the Navier-Stokes based analytical and numerical re-

sults available in the literature and good matches are observed. Slip velocity and temperature

jump boundary conditions are used for the micro channel simulations with Knudsen number

values covering the slip flow regime. Speed of the parallel version of the developed code run-

ning on GPUs is compared with that of the serial one running onCPU and for large enough

meshes more than 14 times speedup is observed.

Keywords: Lattice Boltzmann Method, GPU computing, Jacket, Microchannel Flows

iv

ÖZ

KAYGAN AKIŞ REJİM İNDEKİ TEK FAZLI AKIŞ VE ISI TRANSFERİNİN LATTICE
BOLTZMANN METODU İLE GRAFİK KARTLARI ÜZERİNDE PARALEL

ÇALIŞACAK ŞEKİLDE ANAL İZİ

Çelik, Sıtkı Berat

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Cüneyt Sert

Ortak Tez Yöneticisi : Yard. Doç. Dr. Barbaros Çetin

Eylül 2012, 97 sayfa

Bu projede iki boyutlu mikrokanallarda, kaygan akış rejiminde tek fazlı akış ve ısı trans-

feri problemi sayısal olarak çalışılmıştır. Bu amaçlaLattice Boltzmann Metodu (LBM) kul-

lanılarak bir kod geliştirilmiştir. MATLAB ve Jacket yazılımları kullanılarak geliştirilen ko-

dun önemli bir özelliği grafik kartları (GPU) üzerinde paralel çalışabilmesidir. Geliştirilen

kod ile mikro ve makro kanallarda benzetimler yapılmış, elde edilen hız profilleri ve Nusselt

sayıları literatürdeki Navier-Stokes tabanlı analitik ve sayısal sonuçlarla karşılaştırılmış ve

uyumlu sonuçlar alınabildiği gösterilmiştir. Kayganakış rejimini kapsayan Knudsen sayısı

aralığı için yapılan mikrokanal benzetimlerinde hız kayması ve sıcaklık atlaması sınır şartları

kullanılmıştır. Geliştirilen kodun grafik kartı üzerindeki paralel performansı ana işlemci

üzerinde çalışan hali ile kıyaslanmış ve belli bir büyüklükten sonraki ağlarda 14 kattan daha

büyük hızlanmalar elde etmenin mümkün olabildiği gösterilmiştir.

Anahtar Kelimeler: Lattice Boltzmann Metodu, GPU hesaplama, Jacket, Mikrokanal akışları

v

To my Family

vi

ACKNOWLEDGMENTS

I would like to thank my teachers, Dr. Çetin and Dr. Sert, fortheir support, patience and

directions during the past several years it has taken me to graduate. I would like to thank my

parents for their unending love and support. I would like to thank Northern Cyprus Campus of

METU for their association via BAP-FEN 10 Campus Research Project, to Dr. Volkan Esat,

Abdullah Önal and Kaya Yorulmaz for their precious assistance, and mycolleagues/friends,

especially Erşan Erdoğan and Arif Koray Koska who companioned me during my studies.

Last but not least, i thank to ESN METU family for their lovelyfriendship and support.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 Introduction . 1

1.1 Fluid Flow Modelling . 3

1.1.1 Continuum Models . 3

1.1.2 Molecular Models . 4

1.2 Scope of the Current Work . 7

1.3 Outline of the Dissertation . 7

2 Kinetic Theory . 9

2.1 Statistical Mechanics . 9

2.2 Phase Space and the Liouville’s Equation 10

2.3 The Boltzmann Transport Equation 12

2.4 Bridge Between Microscopic and Macroscopic Worlds 13

3 Lattice Boltzmann Method . 16

3.1 From Boltzmann Equation to the Lattice Boltzmann Method. 17

3.2 Thermal Lattice Boltzmann Equation20

3.3 Lattice Units . 21

3.4 Collision and Streaming . 23

3.5 Boundary Conditions . 24

viii

3.5.1 Inlet Velocity Boundary Condition 24

3.5.2 No-slip Boundary Condition 25

3.5.3 Outlet Boundary Condition 26

3.5.4 Temperature Boundary Condition 27

3.5.5 Boundary Conditions for Microchannels 27

3.5.5.1 Slip Boundary Condition 27

3.5.5.2 Temperature Jump Boundary Condition . . . 28

3.6 Calculation of Macroscopic Properties 29

4 Results . 30

4.1 Analytical Solution of Fully Developed Poiseuille Flow. 30

4.2 Fluid Flow and Heat Transfer Results in Macrochannel 31

4.3 Fluid Flow and Heat Transfer Results in Microchannels 34

5 GPU Computing . 39

5.1 Run Time Comparison LBM on CPU and GPU 41

6 Conclusion and Future Work . 49

REFERENCES . 51

A Developed LBM Codes . 55

A.1 CPU Code . 56

A.2 GPU Code . 65

A.3 MGPU Code . 68

B Implementation of Boundary Conditions 92

B.1 Macro Channel Boundary Conditions 92

B.1.1 Inlet Velocity Boundary Condition (Left) 92

B.1.2 No-slip Boundary Condition (Bottom) 92

B.1.3 No-slip Boundary Condition (Top) 92

B.1.4 Outlet Boundary Condition (Right) 93

B.1.5 Temperature Boundary Condition (Left) 93

B.1.6 Temperature Boundary Condition (Bottom) 93

B.1.7 Temperature Boundary Condition (Top) 93

B.1.8 Zero Flux Temperature Boundary Condition (Right) 94

ix

B.2 Micro Channel Boundary Conditions 94

B.2.1 Slip Boundary Conditions (Bottom) 94

B.2.2 Slip Boundary Conditions (Top Wall) 94

B.2.3 Temperature Jump Boundary Conditions (Bottom) 95

B.2.4 Temperature Jump Boundary Conditions (Top) 95

C Pseudo Code . 96

x

LIST OF TABLES

TABLES

Table 1.1 Market Projections for MEMS 2

Table 2.1 Moments of Distribution Function in Kinetic Theory 14

Table 4.1 Fully Developed Nusselt Numbers in 2D Channel Flow. 37

Table 4.2 Grid Convergence 37

Table 5.1 The Time in Percentages which are Consumed in Different Parts of the Codes 43

Table 5.2 Representative Multiple GPU, GPU and CPU Run Timesin Seconds for

Different Mesh Sizes . 47

Table 5.3 Multiple GPU, GPU and CPU Speedups for Different Mesh Sizes 47

xi

LIST OF FIGURES

FIGURES

Figure 1.1 Fluid Modelling 5

Figure 1.2 Flow Regimes by Knudsen Number 7

Figure 3.1 Discrete Velocities 18

Figure 3.2 Discretization of Space 18

Figure 3.3 Lattice Units 21

Figure 3.4 Streaming Process off1 on a sample grid of 6 points 24

Figure 3.5 Boundary Conditions for a 2D Channel Flow 25

Figure 3.6 Rows of Velocities 28

Figure 4.1 Poiseuille Flow in Macro Scale 32

Figure 4.2 Developing Velocity at Macro Scale 32

Figure 4.3 Developing Temperature at Macro Scale 33

Figure 4.4 Nusselt Number for Macrochannel 33

Figure 4.5 Poiseuille flow in Micro Scale 34

Figure 4.6 Developed Velocity at Micro Scale 35

Figure 4.7 Nusselt Number forκ = 0 . 35

Figure 4.8 Nusselt Number forκ = 1.667 . 36

Figure 4.9 Nusselt Number forκ = 10 . 37

Figure 5.1 Structure of the Developed LBM Code 42

Figure 5.2 Multi GPU Domain .. 44

Figure 5.3 Ghost Nodes .. 45

Figure 5.4 Comparison of Multiple GPU, GPU and CPU Run Times 45

xii

CHAPTER 1

Introduction

The ability of human beings to make tools has differentiated them from other kinds of crea-

tures. In the early ages, this ultimate ability allowed to create tools in the order of magnitude

of a human [1]. Houses, temples, knifes, etc. were at most twoorder of magnitude bigger or

smaller than their makers. In long time, we have learnt to build much bigger and smaller tools

and buildings. With the help of fast developing technology in manufacturing industry after

13th century, today, it is possible both to build hundreds ofmeters tall buildings and to build

atomic size tools. While dealing with such massive and minute structures, the physics and

engineering behind switch from the conventional everyday life approaches to more complex

and completely different practices. Micro-Electro-Mechanical-Systems (MEMS) are the tools

having dimensions in the size of microns (smaller than one millimetre and larger than one mi-

cron) and including electrical/mechanical components. The attractiveness of MEMS depends

on their miniaturization, multiplicity and microelectronics [2]. Beside being light weighted,

small volumed and power saving [3], it is also possible to produce thousands and millions of

samples of a single device easily by lithography-based techniques. However, MEMS get their

major power from the integration with microelectronics.

MEMS are used in numerous engineering-medical applications. (i) pressure sensors,(ii) iner-

tial sensors,(iii) fluid regulation and control,(iv) optical switching, and(v) mass data storage

are considered to be the five dominant applications (see Table 1.1). These applications have

found roles in transportation, medicine, telecommunication, computers [4] as well as defence

industry [4, 5]. Microsystems for radio frequency (RF-MEMS) applications, are not listed

in Table 1.1, yet have entered in the commercialization phase in 2003, and have promising

application in both communication, space and defence industries [6].

1

The market size of MEMS reached one billion dollars in 1996 [2] and have billions of dollars

market size worldwide today [1].

Table 1.1:Market Projections for MEMS , Adapted from [4].

Application Market

Pressure Sensors
Blood Pressure Transducers Medical
IUP Sensors Medical
Angioplasty Pressure Transducers Medical
Infusion Pressure Sensors Transportation
Pressure Sensors: Automobile tires Transportation

Inertial Sensors
Airbag Accelerometer Transportation
Suspension Accelerometer Transportation
Braking Accelerometer Transportation
IVHS Navigation Gyros Transportation
Smart Munitions Military
Pacemakers Medical
Machine Monitoring Manufacturing
Motion Control Numerous

Fluid Regulation Control
Medical Infusion Pumps Medical
Industrial valves Numerous
Fluid Meters Numerous
Micromechanical Valves Numerous
Ink/Bubble Printers Computer/Printer

Optical Switches
Access Switches Telecommunication
Floating Switches Telecommunication

Mass Data Storage
Rigid Disk Drive Computers
Optical Disk Drives Computers
Flash Memory Computers

Other Applications
Analytical Instruments Numerous
Displays Numerous
Blood Oxygen Sensors Medical
Other Medical Applications Medical
Threshold Sensors Numerous
Temperature Sensors Transportation

2

Some of the MEMS devices involve fluid flows in microchannels such as microducts, micro-

pumps, microturbines, microvalves, microcombustors, synthetic jets and lab-on-a-chip de-

vices [1]. The behaviour of flows in such tiny systems are usually alter from the ones en-

countered in everyday life. Therefore different approaches are needed to model fluid flows

in microchannels. The fluid flow modelling is needed to make cheap designs and estimates.

Before performing experiments and manufacture the products the simulation of the system

can save time and money.

1.1 Fluid Flow Modelling

The physics of fluids flows can be modelled by several different sets of mathematical equa-

tions. All those different sets can be successful even though the logic behind them are com-

pletely different. The idea behind those equations can be split in two major topics: Continuum

models and particle models (see Fig.1.1).

1.1.1 Continuum Models

Continuum assumption states that every single point in a flowfield has a finite physical prop-

erty (temperature, pressure, density etc.) by accepting fluids to be divisible into sub-fluids

indefinitely. Hence, there occurs no discontinuity and the assumption is called continuum.

Assuming flow fields and time are infinitely divisible enablesthe of use differential calculus

which leads to sets of partial differential equations as governing equations. The discovered

non-linear partial differential equations are to conserve mass, energy and momentum. Navier-

Stokes, Euler, and Burnett equations are the accomplished ones. Note that the solutions of

dependent variables of those equations are continuous functions. The continuum assumption

inherently causes the sets of equations to be incomplete. Inother words, there are more un-

knowns than equations. Therefore, one is supposed to employconstitutive relations to relate

stress and rate of strain; heat flux and temperature gradient, and in some situations equa-

tions of state to relate density and internal energy to pressure and temperature [1]. Also, it is

necessary to consider boundary and initial conditions.

In the continuum model the flow field needs to be in thermodynamic equilibrium, by which, it

is understood that there is always enough time for particles(molecules/atoms) to adjust them-

3

selves according to surrounding variations. For instance,when the velocity or temperature of

the flow is begun to change, the particles need some time to undergo sufficient number of col-

lisions to reflect the proper physics of the changes and the time should be incomparable (very

small) with the macroscopic time scales. In reality, it is impossible to have perfect equilibrium

state due to the fact that particles in motion continuously change energy and momentum. It is

more acceptable to say quasi-equilibrium. Thermodynamic equilibrium assumption spawns

no-slip and no-temperature-jump boundary condition (i.e.the boundaries have the same ve-

locity and temperature with the barrier of the fluid).

The continuum and equilibrium assumptions may break down insome conditions. For in-

stance, shock wave lengths are comparable with average distance of molecules; hence, it is

not possible to have thermodynamic equilibrium or to assumecontinuum. Also, rarefied gas

media have large intermolecular distances which is usuallyseen at the outer layers of the at-

mosphere. In MEMS, it is common not to have continuum and thermal equilibrium due to

the tiny length scales of the fluid channels. These examples set forward the importance of

average molecular distance and it is a common practise to define the characteristics of such

problems with a non-dimensional parameter called Knudsen number (Kn). If we describeλ

(mean-free-path) to be the average distance of molecules migrate between two successive col-

lisions, Knudsen number is the ratioλ/H, whereH is the characteristic length of the system,

usually the hydraulic diameter for channel flows [7]. Increasing Kn is either due to increase in

mean-free-path or due to decrease in characteristic length. Increasing Kn violates the assump-

tions of the continuum model equations. High Knudsen numberflows may be encountered in

flows in narrow channels (microchannels) and/or flows at low density. Different approaches

are needed to model fluid flow at high Knudsen numbers for whichcontinuum assumption

fails [1].

1.1.2 Molecular Models

Molecular models -unlike continuum models- accept flow fields compose of many particles.

The particles have their individual mass and velocity and exert Coulombic force to neighbour-

ing particles. Although the physics seems to be simple, the system in interest is composed of

billions of particles. (Imagine 10.000 particles in a cube having 65 nm (65x10−9 meter side).

Particles undergo numerous collisions in such a short time that is far beyond human percep-

4

Figure 1.1:Fluid Modelling , Adapted from [1].

tion. In this chaotic environment, the feasible propertiesare not the velocities of the molecules

but their collective and average behaviour. In continuum models the average behaviours are

named as temperature, pressure, viscosity etc.

Molecular models are examined under two subtopics; deterministic methods and statistical

methods. The former one uses basic Newtonian mechanics to evaluate spatial coordinates

of particles for every discrete time step. A well studied numerical tool among deterministic

methods is called Molecular Dynamics (MD). The pros of the method are very valuable.

It usually reflects the physics successfully. It is not need to worry about the macroscopic

properties such as temperature, pressure, Newtonian/non-Newtonian behaviours, slip velocity

on boundaries, etc. They appear inherently as a result of thechaotic behaviour of the particles.

Furthermore, the relation between stress and rate of strain, and heat flux and temperature

gradient are also possible to evaluate. In theory, MD has works in every Knudsen number

regime. It is valid for Kn numbers from zero to infinity. However, the number of molecules is

supposed to be big enough to get average quantities. The example of 10.000 particles indicates

the minimum number of air particles in standard conditions to get macroscopic properties

with a 1% statistical variation [8]. Differentiating the Newtonian equations of motion and

solve them for thousands of particles is easy, yet solving for billions of particles is required

most of the time. The computational power, today, however, is not ready to deal with such

extreme numbers. 1 second realistic simulation including vibration modes, orientation of

polymer molecules and collisions takes hundreds of years ofCPU time [9].

5

Another disadvantage of MD is the potential function definitions. Potential functions like

Lennard-Jones, are used to calculate the potential energy of particles and its spatial derivative

of them result in the force exerted on the other particles. Itis needed to fit a potential empiri-

cally or according to numerical experiments. The function is supposed to be fit well to reflect

the appropriate physics. It has no unique definition and varies depending on the problem

solved. The latter methods, statistical ones, are dedicated to calculate the probability of the

particles to be in a spatial volume (betweenx andx+ ∂x) and to be in a finite velocity interval

(betweenv andv + ∂v) at any time. The mathematical corresponding of the probabilities are

expressed in distribution functions using the Sturm-Liouville theorem [10]. The distribution

functions are used to find out the macroscopic properties. A successful tool among numer-

ous statistical methods is Direct Simulation Monte Carlo (DSMC). The method uses random

and uniform numbers, and hence the name “Monte Carlo” is given to it [11]. It randomly

assigns the velocities of particles using the Boltzmann distribution function. Assigning veloc-

ities randomly may be seem irrelevant but if the chaotic interactions of billions of molecules

are considered, one can confess that the velocities and positions are random in a sense. Not

surprisingly, the method results in very accurate simulations for high Knudsen number flows.

As discussed previously, small Kn may refer to large characteristic length and therefore, such

solutions require an increase of the number of particles. DSMC also suffers from the lack of

computational power with the increase of the number of simulated particles.

Finally, the Lattice Boltzmann method (LBM) is also a statistical simulation tool. The origin

of LBM is Cellular Gas Automata [12], which was not a successful tool until the idea of

using it to solve Boltzmann Transport Equation (BTE). In theory, BTE is capable to cover

all flows with Kn ranging from zero to infinity. Fig. 1.2 compares the working regimes of

continuum equations and BTE. Flows having Kn smaller than 0.01 are in continuum regime.

Euler equations are very successful to imitate the physics in this regime. With the increasing

Kn slip-flow regime starts and compressibility and slip-velocity effects come into the picture.

Navier-Stokes equations can force the limits of slip-flow regime; but, fluid flows in transition

and free molecular regimes can not be simulated using continuum equations. On the other

hand, BTE is capable to govern all of the regimes. Moreover, asimplified version of BTE can

be adopted for free molecular regime. More information about LBM, which is based on BTE

is available in the next chapter.

6

Figure 1.2: Flow Regimes by Knudsen Number [11].

1.2 Scope of the Current Work

The major objective of the current work was to develop a Lattice Boltzmann Method code

to simulate slip flow regime which is encountered in microchannel flows. To start with, an

LBM code for macrochannels was developed. Different boundary condition implementations

and collision schemes from the literature were tested. The code is then enhanced to solve

microchannel flows. Poiseuille flow with and without heat transfer in macrochannels and mi-

crochannels were solved. Results were well suited to Navier-stokes and analytical solutions

in the literature. The second major aim was to develop a code that can utilize the computa-

tional power of GPUs. The code was originally running on a single CPU. It was modified to

run on a single GPU. A further modification was done to run the code on Multiple-GPU. The

codes were written in MATLAB. GPU computations were achieved by the use of the software

Jacket.

1.3 Outline of the Dissertation

Chapter 1 is a brief introduction to the Micro-Electro-Mechanical-Systems (MEMS). The

importance of MEMS and its application fields are emphasised. The simulation techniques of

the flows in MEMS are discussed. An appropriate and fast one isput forward.

7

Chapter 2 is an introduction to the Lattice Boltzmann Method. The origins of the method

from kinetic theory and the concept of statistical mechanics is discussed. Liouville’s Equation

and Boltzmann Transport Equation are derived and explained. The link between microscopic

and macroscopic properties is explained.

Chapter 3 gives theoretical information about the Lattice BoltzmannMethod (LBM). The

details from the statistical thermodynamics to modern formof LBM is discussed. Besides

the derivation, a historical perspective is provided. The concept of lattice units, collision,

streaming and macroscopic property calculations are explained. Various boundary conditions

are derived and the ones used in the current work are providedin detail.

Chapter 4 includes the results obtained by the developed LBM code. Theresults are com-

pared by these obtained by classical Navier-Stokes solversand also by analytical solutions.

Chapter 5 is about the implementation details of LBM on the CPU and the GPU. Starting

from the history of computing it compares the CPU and GPU computing. The effects of

parallel computing on LBM is reported in this chapter. The structure of the parallel LBM

code is also studied here.

Chapter 6 tells about the conclusion of the project and the possible future work to further

enhance the developed code.

8

CHAPTER 2

Kinetic Theory

2.1 Statistical Mechanics

Statistical mechanics deals with enormous number of particles obeying the classical mechan-

ics rules [10]. Therefore, the Newton’s second law of motionis applicable to each particle.

∂2xi

∂t2
= F̂i (2.1)

∂xi

∂t
= vi (2.2)

wherexi is position vector,vi is velocity vector and̂Fi is force vector per mass acting on

the ith particle andi = 1, 2, ...,N with N being the number of particles.̂Fi is sum of inertial,

electric, magnetic etc. forces, and is a known function of position that makes the equations

coupled. There are 3 positions and 3 velocity components foreach particle, which means

the solution can be obtained solving 6N second-order differential equations simultaneously,

and also, 6N initial conditions are needed. Note that for reasonable simulations, the order of

magnitude of N starts from billions. Solving billions of differential equations with billions of

initial conditions simultaneously is far beyond the computational power acquired today. The

only concern is not the computational power; but there are also the issue of selecting initial

datum, initial positions and velocities. It is nearly impossible to simultaneously determine

the positions and velocities initially without affecting the states of particles. Therefore, math-

ematical approaches such as Maxwellian distribution may beemployed to approximate the

initial conditions; however, the solution of the equationswould result in positions and veloci-

ties of each particle, and do not provide practical data suchas temperature, pressure, stresses

etc. Here is where the statistical mechanics is used. Averaging of momentum and energy of

particles, and probability of particles to exist in a small control volume and in a small velocity

9

range are the main ideas. Cercignani provides detailed answers to questions such as “Why

do we need to know the probability in some range of space and velocity?” or ”Can we find a

probability for exact position and exact velocity?” [13]. While tossing a coin we know that

we will get either heads (H) or tails (T). In terms of probability, the result lay between 0 and

1. The probability of getting heads or tails is 1/2. If we denote probability with P, the proba-

bilities of getting heads and tails are equal, i.e.P(H) = P(T) = 1/2. The summation of all the

possibilities is 1 which ensures that one of the possibilities will definitely occur. In statistical

mechanics, on the other hand, the possibility is a continuous function rather than discrete sets

of values. There exist infinitely many possibilities corresponding to infinitely many states.

If we were able to increase the variables of coin example from2 to many, the possibilities

would decrease from 1/2. Further increase to infinity will create a continuous function of

variables and probability of any variable on that continuous function would be zero. However

the sum of the probabilities is still 1. This is not surprising and resembles to a finite line

segment composed of many points with zero length. Therefore, it is needed to deal with

the probability of the values which lie in an interval. If we define the probability density of

this curveP(z), the multiplicationP(z)dz represents the probability of the smallest interval.

Note thatz is the coordinates andz = z1, z2, ..., z∞. The integral of the multiplication over

all variables results unity, which means absolutely one of the possibilities will occur. This is

analogous with that integral of mass density over the volumeresults in total mass.
∫

Z

P(z)dz = 1 (2.3)

The probability density is used to get the averages. When theprobability density is known we

can calculate the average of functions.

ϕ̄(z) =
∫

Z

P(z)ϕ(z)dz (2.4)

whereϕ̄(z) is the average of a functionϕ(z)

2.2 Phase Space and the Liouville’s Equation

Now, let’s draw two pictures. First one is a picture of collection of many particles having po-

sitions and velocities. Second one is a 6N dimensional coordinate system where dimensions

arexk andvk (k = 1, 2, ...N). It is easier to imagine the former one. From now on; however,

10

the derivation of equations will depend on the second picture which will ease our work to rep-

resent the probabilities. The new picture is the so-called phase space. In terms of “certainty”

(rather than probability), the state (velocity and position) of particles represents only points

in such a system. While talking about “probability”, these points have density-like property,

in other words they are like spread points in 6N dimensional space. We also can define the

variables in the phase space picture with one variable i.e.p = p(xk, vk). Phase space is intro-

duced due to the fact that the Liouville’s theorem is derivedin phase [14]. First, the number

of phase points inside an arbitrary but fixed volume is determined.

np =

∫

V

Pdp. (2.5)

The rate of change of the number of phase points is

dnp

dt
=

∫

V

∂P
∂t

dp. (2.6)

Another expression fornp can be obtained by equating the net rate of change of phase points

to the phase points passing through the surfaceS. Also ṗ expresses 6N dimensional flow

vector in phase space.

dnp

dt
= −

∫

S

(n̂ · ṗ)PdS, (2.7)

wheren̂ denotes the unit normal vector, and due to the fact that it points out we have a minus

sign. Using the Gauss theorem the above expression can be rewritten as

dnp

dt
= −

∫

S

∇p · (ṗP)dp. (2.8)

Equating Eq. 2.5 to Eq. 2.8 results in

∂P
∂t
+ ∇p · (ṗP) = 0. (2.9)

Expanding the gradient operator and writing the flow vector in open form gives

∂P
∂t
+

N
∑

i=1

∂P
∂xi
· ẋi +

N
∑

i=1

∂P
∂vi
· v̇i = 0. (2.10)

To be consistent on the previous notation, the equation can be written as

∂P
∂t
+

N
∑

i=1

∂P
∂xi
· vi +

N
∑

i=1

∂P
∂vi
· F̂i = 0 (2.11)

11

which is known as the Liouville’s equation. The solution of this equation for every particle

results in the distribution density. However, we have only focused on the positions and the

velocities of the particles, and interpret them as mathematical points in space, which move

but have no interaction with their surroundings. They are just independently moving particles.

The question of “What is the physical system corresponding to the solution of this equation?”

arrives at this point. To give an answer to this question, remember the ideal gas assumption.

Ideal gas means that the intermolecular potential energy isnegligible. The particles move

in straight paths. The interaction occurs only during the collisions which is in a confined

region called action sphere bounded by molecular distance,σ. σ is very small compared with

the mean free path. Another assumption is that the collisions are always monatomic, which

means that the molecules have only linear momentum and energy. One can say, therefore,

the behaviour of monatomic ideal gasses in thermal equilibrium resembles the solution of

Liouville’s equation. Those kind of particle systems are found in free-molecular regime (see

Fig. 1.2). In real applications, we can hardly find a flow in free-molecular regime. However,

it is quiet possible to encounter a flow of a real gas in non-equilibrium conditions.

2.3 The Boltzmann Transport Equation

For the flows in free-molecular regime, the Liouville’s equation with appropriate boundary

conditions is enough to calculate the density distribution. But using this density distribu-

tion, we cannot calculate the temperature or the pressure ofthe system. The macroscopic

behaviours cannot be explained by Liouville’s theorem, andthe equation cannot be used in

the case of non-equilibrium. By non-equilibrium, it shouldbe understood that the particles

collide continuously and hence, reach to different states. The non-equilibrium level is related

to the collision time of particles. In order to find a solutionto such a system, the collisions of

particles are supposed to be modelled mathematically. Thismathematical model is the Boltz-

mann equation and it also makes a link between the microscopic and macroscopic properties.

Integrating the Liouville’s equation overxi andξi and manipulating it to model binary colli-

sions result in the following Boltzmann transport equation[10].

∂P
∂t
+ ξ ·

∂P
∂x
= N

∫

[P(ξ
′
)P(ξ

′

1) − P(ξ)P(ξ1)]Vrdrdǫdξ1 (2.12)

where N is the number of molecules, prime indicates the property before the collision,ξ andξ1

are the molecular speeds of particles, V is the difference of the speeds of the particles,|ξ − ξ1|

12

(relative speed), r is the radial coordinate of the “action sphere” bounded by the onset and end

of collision, ǫ is the half of the angle between the entering and leaving paths of the moving

particles. The maximum distance of particles that can interact with others forms the action

sphere and one of the particles is assumed to be in rest duringcollision. While dealing with

the Boltzmann equation, it is a common practice to define a newvariable, f

f = NmP, (2.13)

wherem is the mass of a particle andf is the mass density in phase space. Remember that

the sum of all the probabilities equals to unity. With the recently defined variable, total mass

can be obtained as unity.
∫

P dx dξ = 1 (2.14)
∫

f dx dξ = Nm= M (2.15)

whereM is total mass of the N particles . Hence the Boltzmann equation can be written as

∂ f
∂t
+ ξ ·

∂ f
∂x
=

1
m

∫

(f
′
f
′

1 − f f1)Vrdrdǫdξ1 (2.16)

Our interest is in this form of the Boltzmann equation.

2.4 Bridge Between Microscopic and Macroscopic Worlds

The solution of the Boltzmann equation, Eq. 2.16, results indistribution function. It basically

stores the data of the probability of a particle (resting inx andx+ dx ; ξ andξ + dξ) times the

total mass of the gas at timet. Integration off over only the velocity vector, one can obtain

the volume independent mass, in other words, density
∫

f dξ = ρ(x, t) (2.17)

This equation is also described as the “zeroth moment” of thedistribution function.

Table 2.1 summarizes all the moments used. Next, the first moment is going to be calculated.

It was mentioned that the probability functions are used to calculate the averages of functions.

After successfully calculating the distribution function, one can calculate the average velocity

of the particles in the system. The average velocity can alsobe defined as the bulk velocity.

Let’s take the first moment to get the average of the velocity.
∫

ξ f dξ = ρv (2.18)

13

Table 2.1: Moments of Distribution Function in Kinetic Theory

Zeroth Moment
∫

f dξ = ρ

First Moment
∫

ξ f dξ = ρv

Second Moment
1
2

∫

c2 f dξ =
1
2

∫

ξ2 f dξ −
1
2
ρv2

Dividing both sides byρ results in the macroscopic velocity,v. The division is not demon-

strated in the formula intentionally to visualize the moments of distribution functions clearly.

Before proceeding to the second moment let’s introduce a newvariable

c = ξ − v (2.19)

The velocity of the particles can be separated into two components.v is the bulk velocity (av-

erage velocity) andc is the random or peculiar velocity. For instance, gas molecules enclosed

in a box has zero bulk velocity,v, however they are moving in the box with velocityc. Now,

let’s calculate the second moment of the distribution function f

1
2

∫

c2 f dξ =
1
2

∫

ξ2 f dξ − 1
2
ρv2 (2.20)

The term on the left hand side is the internal energy per volume, first term on the right hand

side is the total energy per volume and the second one is the kinetic energy per volume. After

addressing internal energy per unit mass ase, the first term on the left can be written as

1
2

∫

c2 f dξ = ρe (2.21)

Pressure is directly related to the energy per unit mass and is given with the formula

p =
2
3
ρe (2.22)

Macroscopic relation between pressure and temperature is

p = ρRT (2.23)

wherep is pressure,R is gas constant andT is temperature. From equations 2.22 and 2.23

temperature as a function of microscopic velocity becomes

T =
2
3

e
R

(2.24)

14

All the above formulations demonstrate that from the distribution functions, practical macro-

scopic properties like density, mass, velocity, pressure,temperature, and of course, some more

which are not mentioned here can be determined.

15

CHAPTER 3

Lattice Boltzmann Method

The Boltzmann equation is an integro-differential equation with 7 dimensions which is very

complicated and challenging to solve; however, there are some analytical solutions available

[10, 14, 15, 8, 16]. For almost every solution, the collisionterm, which is the most problematic

term is simplified to a linear function. If this is not done, one has to solve a differential

equation containing a double integral. The approximated linear functions, as expected, do

not carry the complicated physics into mathematics, but canresult in solutions with desired

resolution. Unfortunately, the analytical solutions are available only for very simplified cases.

Some examples are steady/unsteady Poiseuille flow, shock wave structure, Rayleigh-Benard

convection, Couette flow [14] and traffic flow [17]. The hurdle in analytical solutions lead

researchers to seek for numerical solutions. There have been considerable affords to solve the

equation numerically in terms of hydro-dynamics [18, 19], electron motion [20, 21], plasma

physics [22], etc.

Beside numerical approaches to solve the Boltzmann transport equation, there were also some

other techniques to simulate fluid flows. One of them is Lattice Gas Automata (LGA) which

was introduced by von Neuman in 1966. However, it had been losing its popularity until par-

allel computing technology was invented [23]. LGA was constructed on boolean numbers (0

or 1) which are representing the speed of particles travelling on lattices and undergo collisions

on lattice cross-roads according to some collision rules toconserve particle number and linear

momentum [12]. While the method was in redeveloping age, late in 1980’s, the idea to use the

Boltzmann equation in Lattice Gas methods became popular. MacNamara and Zanetti were

the first researchers who succeed to solve the Boltzmann Transport Equation in Lattice Gas

methods numerically [24]. Hence, a new method combining LGAand Boltzmann equation

16

arose. The recently revolutionized technique was able to overcome the drawbacks of LGAs

such as statistical noise and lack of Galilean invariance, and it inherently satisfied theH the-

orem by the use of BTE. What’s more, the massively parallelisable property of LGAs was

possible to be carried to the new one [25]. McNamara and Zanetti were loyal to the collision

rules common in LGA. The issue with the collision was how to simplify it. Some affords

[26, 27] have been tried but an efficient linearisation was obtained by Qian et al. [28]. They

proposed the use of relaxation parameter, which is a known procedure in computational fluid

dynamics community, for the solution of the Navier-Stokes equations. The relaxation param-

eter approach, in fact,is exactly the same as the approximation done by Bhatnagar et al. [29],

namely BGK, with a properly selected equilibrium distribution function. Further more, they

replaced the Fermi-Dirac distribution function with Maxwellian distribution function. All in

all, this revised LGA method solving BTE with BGK approximation and using Maxwellian

distribution function is now called the Lattice Boltzmann Method.

3.1 From Boltzmann Equation to the Lattice Boltzmann Method

Although the Lattice Boltzmann Equation is primarily derived from Lattice Gas methods,

it is proved that, a decade later, LBE can be derived from the Boltzmann equation directly

[30, 31]. The derivation below is based on Abe’s works [31]. The Boltzmann equation with

BGK approximation is
∂ f
∂t
+ ξ ·

∂ f
∂x
= ω(f eq− f) (3.1)

for which the right hand side of Eq. 2.16 is replaced by a linearised approximation [29].f eq is

a Maxwellian equilibrium distribution function. The subtraction term stands for the departure

from the equilibrium. Frequencyω, controls the rate of reaching to equilibrium and is related

to pressure and kinematic viscosity [8].

f eq =
ρ

2πRT
exp

(

−
1

2RT
(ξ − v)2

)

(3.2)

ω =
p(x, t)
ν(T)

(3.3)

Equilibrium distribution function stands on macroscopic values. Note that the aim is to solve

for macroscopic properties from microscopic velocities; but initially, the densityρ, temper-

atureT and velocityv of the flow are needed to be known. The velocities in Eq. 3.2 are

17

normalized by a factor
√

3RT and gets the form

f eq =
ρ

2π/3
exp

(

−3
2

(ξ − v)2
)

(3.4)

Similarly, the acoustic sound,cs =
√

RT reduces to 1/
√

3. f eq is simplified up to second

order accuracy by Taylor series expansion [32].

f eq =
ρ

(2π/3)D/2
exp

(

−3
2
ξ2

) [

1+ 3(ξ · v) +
9
2

(ξ · v)2 − 3
2
|v|2

]

, (3.5)

whereD is the number of space dimensions, which is in our case. Note that Eq. 3.1 requires

velocity, space and time discretisation. The velocity discretisation is obtained by selecting 9

velocities as shown in Fig. 3.1. The system is 2 dimensional and has 9 discrete velocities;

hence, it will be addressed as D2Q9 from now on.

Figure 3.1: Discrete Velocities of D2Q9 LBM formulation

Figure 3.2: Discretization of Space

Fig. 3.2 shows the discretization of space for a channel flow problem in a 2D rectangular

domain. The domain in the figure has 6 nodes and each node has 9 discrete velocities.

18

Eq. 3.1 in discrete velocities can be written in the form

∂ fi
∂t
+ ei ·

∂ fi
∂x
= ω(f eq

i − fi) (3.6)

wherei = 1, 2, ..., 9 andei refer to the discrete velocities shown in Fig. 3.1. (e1 = i, e2 =

j, ..., e8 = i − j, e9 = 0). Note that now the BTE is reduced to a system of differential equa-

tions. The moment integrals, Eqs. 2.17 and 2.18, after the discretisation of velocity, are

approximately calculated using Gaussian-type quadratureon 9 points.

ρ(x, t) =
9

∑

i=1

Wi fi(x, t) (3.7)

ρv(x, t) =
9

∑

i=1

Wiei fi(x, t) (3.8)

whereWi ’s are the Gauss-type quadrature weight functions. Let’s define another variable

f̌i(x, t) =Wi fi(x, t) (3.9)

which also satisfies the same equation asfi(x, t)

∂ f̌i
∂t
+ ei ·

∂ f̌i
∂x
= ω(f̌ eq

i − f̌i) (3.10)

where

f̌ eq
i = wiρ[1 + 3(ei · v) +

9
2

(ei · v)2 − 3
2
|v|2] (3.11)

wi =
Wi

2π/3
exp

(

−3
2

e2
i

)

(3.12)

Equilibrium distribution function,f̌ eq
i is valid for low speeds. In other words, the equilibrium

is satisfied for small Mach Numbers (Ma). He et al. and Abe independently calculated the

new weight functionswi ’s as [30, 31]

wi = 1/9 f or i = 1, 2, 3, 4 (3.13)

wi = 1/36 f or i = 5, 6, 7, 8 (3.14)

wi = 4/9 f or i = 9 (3.15)

The cartesian mesh with uniform and equal spacing in x and y directions (∆x = ∆y = 1) is

used. The spatial derivative of Eq. 3.10 can be approximatedby a first order upwind difference

and the time derivative with a first order explicit difference with time step∆t = 1. Equating

∆x, ∆y and∆t to 1 simplifies the equation and this does not create a jeopardy for convergence.

The equation yields to

19

f̌i(x + ∆tei , t + ∆t) = ω f̌ eq
i + (1− ω) f̌i(x, t) (3.16)

where

f̌ eq
i = wiρ[1 + 3(ei · v) +

9
2

(ei · v)2 −
3
2
|v|2] (3.17)

ω =
1

3ν + 0.5
(3.18)

ρ(x, t) =
9

∑

i=1

f̌i(x, t) (3.19)

ρv(x, t) =
9

∑

i=1

ei f̌i(x, t) (3.20)

Eqs. 3.16 - 3.20 are the Lattice Boltzmann Equations, and they are exactly the same as

the ones obtained from LGA.ω is defined only as a function of lattice kinematic viscosity

for incompressible flows [33]. Also, it was mathematically proved that obtaining Navier-

Stokes’s Equations from Boltzmann Equation is possible forsmall Knudsen numbers [34].

For simplicity, a variable change given below will be applicable for the rest of the work.

f̌i(x, t) −→ fi(x, t) (3.21)

3.2 Thermal Lattice Boltzmann Equation

The derivation from BTE to LBE in Sec. 3.1 is built on constanttemperature approximation,

in other words temperature has no effect on Eqs. 3.16 through 3.20, but only the density and

velocity. In the pioneering work to enhance LBE to solve for temperature, Alexander used

a D2Q13 model on a hexagonal lattice to simulate viscous, compressible, heat-conducting

flows of an ideal monatomic gas [35]. He calculated the secondmoment, Eq. 2.20, after

calculating a modified collision operator. He revised the equilibrium distribution function,

f eq, to be correct up to 3rd order in velocity,v. But he obtained good results only for small

temperature variations only. Besides, the method was suffering from numerical instability and

was valid for a fixed Prandtl number.

There have been several authors studied thermal LBE to avoidthe above mentioned draw-

backs [36, 37, 38]. Pavlo studied the instability of thermalLBE in detail for both hexagonal

and square grids [39]. All those works were also available for fixed Prandtl number due to

20

the fact that the relaxation times of energy and momentum were the same. Vahala used mul-

tiple relaxation time for the collision operator [40], yet apromising result was not obtained

until a new scheme was published by He [41]. They defined another distribution function for

energy transport, internal energy density distribution function, g = (ξ−v)2

2 f . The idea to use

two different distribution functions for momentum and energy resulted better stability than

the previous methods. The relaxation parameters of momentum and heat transfer were also

separated. In the current work, a simplified, hence computationally efficient, version of en-

ergy density distribution function with Boussinesq approximation is used [33]. The energy

equations are as follows:

gi(x + ∆tei , t + ∆t) = ωthgeq
i + (1− ωth)gi (x, t) (3.22)

where

geq
i = wiφ(x, t) [1 + 3(ei · v)] (3.23)

ωth =
1

3α + 0.5
(3.24)

φ(x, t) =
9

∑

i=1

gi(x, t) (3.25)

where the weight functions,wi, are the same as momentum weight functions,ωth is collision

frequency for thermal LBE,α is lattice thermal diffusivity andφ(x, t) is lattice temperature.

3.3 Lattice Units

Lattice Boltzmann Methods have their own non-dimensional parameters. The real parameters

like temperature, viscosity, length, etc. first should be converted to non-dimensional param-

eters used in classical fluid mechanics. A further process isapplied to those properties to

obtain Lattice Units [42] as seen in Fig. 3.3.

Physical System←→ Dimensionless System←→ Lattice System

Figure 3.3: System exchange

An example can make the process clear. Think about a channel in 2-D which is 10 meters

long (L) and is 1 meter in height (H). Air enters in uniformly with 2 meters per second speed

(U). The kinematic viscosity of air is 2x10−5m2/s (ν). All the properties up to here belong to

21

the Physical System in Fig. 3.3. Let’s define two non-dimensional parameters to govern the

system, aspect ratio and Reynolds number. Aspect ratio is basically the ratio of the length and

height of the tunnel. Reynolds Number is the ratio of inertial and viscous forces.

r = L/H =
10
1
= 10 (3.26)

Re=
UH
ν
=

2x1

2x10−5
= 105 (3.27)

Aspect ratio and Reynolds number are enough to describe sucha simple system and they

define the Dimensionless System in Fig. 3.3. Now it is time to calculate the Lattice Units.

First of all, height of the channel should be determined. Theheight is given in terms of grid

point spacing. Increasing the number of grid points allows to work with higher Reynolds

numbers and heals the numerical error; however, brings a computational cost. Usually this

value is determined by numerical experimentation after running a few simulations. For now,

lets chose a grid of 11 nodes along the channel height. Hence the height of the channel

becomes 10. Secondly, the velocity of the flow needs to be determined. The velocity should

be smaller than the speed of sound, 1/
√

3, defined in the method. LBM usually works fine

with a velocity ofv∗ = 0.02. This velocity has no physical dimension but is in the Lattice

System. (∗) indicates that the property is in Lattice System. So far, two variables are defined,

lattice height (H∗) and lattice velocity (v∗). After determining them, one can proceed to

determine the other lattice properties such as length of channel and viscosity of fluid. Using

aspect ratio and Reynolds number determined previously theLattice Units are calculated as

follows

L∗ = H∗r = 10x10= 100 (3.28)

ν∗ = v∗H∗/Re=
0.02x10

105
= 2x10−6 (3.29)

The Lattice Units indicates that the computational domain is composed of 10x100= 1000 grid

points, and the Eqn. 3.18 is calculated using lattice kinematic viscosity,ν∗. Same procedure

is applicable to calculate Lattice thermal diffusivity using Prandtl number (Pr) equality.

α∗ = ν∗/Pr (3.30)

Pr = Pe/Re (3.31)

wherePe is Péclet number.

22

The return to physical system from lattice system is done by the inverse of this procedure.

For example, consider a channel flow. If the velocity on a nodeis calculated asv∗ = 0.05, the

physical velocity can be calculated as

Re= Re∗ (3.32)

UH
ν
=

v∗H∗

ν∗
(3.33)

U =
v∗H∗

ν∗
ν

H
(3.34)

U =
0.05x10

2x10−6

2x10−5

1
(3.35)

U = 5 m/s (3.36)

whereU is the physical velocity.

3.4 Collision and Streaming

LBM can be considered to be composed of 4 different parts; collision, streaming, implementa-

tion of boundary conditions and calculation of macroscopicproperties. Streaming (updating)

process is actually a part of collision calculations. However, it is simpler if handled sepa-

rately. During the collision calculations, theith distribution function of any grid node can be

calculated as follows

fi(x, t + ∆t) = ω f eq
i + (1− ω) fi(x, t) (3.37)

which actually results in the distribution functions of thenext time step. Remember that

there is also a spatial discretization. This is performed byproperly transferring the values of

distribution functions between neighbouring nodes

fi(x + ∆x, t + ∆t) = fi(x, t + ∆t), (3.38)

and this process is addressed as streaming in LBM. The schematic of the process is demon-

strated in Fig. 3.4. It shows the pre-streaming and post-streaming of the first distribution

function, f1, on every node of a sample 6 node mesh. The direction of the first distribution

function is [1,0], and they are moved in that direction. Every distribution function is go-

ing to be moved according to their directions. Note that after a streaming step, there exists

some missing distribution functions demonstrated with dashed arrows in Fig. 3.4 and some

functions need to leave the domain. The distribution functions leaving the domain are not

23

important but the missing ones must be recalculated. At thispoint the boundary conditions

take the stage for the missing distribution functions.

Figure 3.4: Streaming Process off1 on a sample grid of 6 points. Left: Before Streaming,
Right: After Streaming

3.5 Boundary Conditions

Boundary conditions can be obtained by applying the mass andmomentum conservations at

the boundaries [43]:

ρ =

9
∑

i=1

fi (3.39)

ρv =
9

∑

i=1

ei fi (3.40)

The derivations below are based on Eqns. 3.39 and 3.40 wherev = [vx, vy]. Fig. 3.5 shows the

boundary conditions for the 2D channel flow problem considered in this study. For simplicity

the∗ sign being used to denote lattice units is removed for the rest of the work. In Fig. 3.5φ

is the lattice temperature.

3.5.1 Inlet Velocity Boundary Condition

While simulating the inlet boundary condition of a flow in a channel like the one shown in

Fig. 3.5, it is assumed that there is no velocity component iny-direction but there is a non

zero velocity in x-direction. After the streaming step, some distribution functions remain

unknown. On the left boundary the unknown distribution functions aref1, f5 and f6. Due to

the fact that, we have some unknown distribution functions,the density,ρ, is an unknown,

24

Figure 3.5: Boundary Conditions for a 2D Channel Flow

too. To solve 4 unknowns, at least 4 equations are needed. Thefirst equation we will use

is the equality of the non-equilibrium distribution functions, f non−eq = f − f eq, which are

perpendicular to the wall. Remaining equations are Eqs. 3.39 and 3.40.

f1 − f eq
1 = f3 − f eq

3 (3.41)

ρ = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 (3.42)

ρvx = f1 − f3 + f5 − f6 − f7 + f8 (3.43)

ρvy = f2 − f4 + f5 + f6 − f7 − f8 = 0 (3.44)

Solution of these 4 equation provides the following resultsfor the unknowns at the inlet

boundary

ρ =
f2 + f4 + f9 + 2(f3 + f6 + f7)

1− vx
(3.45)

f1 = f3 +
2
3
ρvx (3.46)

f5 = f7 +
1
2

(f4 − f2) +
ρvx

6
(3.47)

f8 = f6 −
1
2

(f4 − f2) +
ρvx

6
(3.48)

wherevx is the known inlet velocity.

3.5.2 No-slip Boundary Condition

No slip boundary condition can be obtained by equating the x and y velocities to zero for the

nodes on necessary boundaries. The non-equilibrium parts of the distribution functions also

25

need to be used as

f2 − f eq
2 = f4 − f eq

4 (3.49)

ρ = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 (3.50)

ρvx = f1 − f3 + f5 − f6 − f7 + f8 = 0 (3.51)

ρvy = f2 − f4 + f5 + f6 − f7 − f8 = 0 (3.52)

Note that whenvx andvy velocities are set to zero, the unknownρmultiplies with zero in two

of the equations andρ becomes unimportant for those equations. Solution of the Eqs. 3.49,

3.51 and 3.52 results in the following relation for the unknown f ′sof the bottom wall.

f2 = f4 (3.53)

f5 = f7 −
f1 − f3

2
(3.54)

f6 = f8 +
f1 − f3

2
(3.55)

3.5.3 Outlet Boundary Condition

Contrary to the inlet boundary, the velocity at the outlet isunknown. However, we can assume

that the velocity is no more varying in the stream-wise direction in a long enough channel.

That is equivalent to say that the flow is fully developed. Forsuch cases, Succi suggests two

methods [44]. One is to directly copy the distribution functions closest to the exit on the

ones at exit. The other one is to calculate the unknowns by extrapolating the ones in the flow

domain. It is observed that both schemes add extra numericalerror to the method and they

will not be used in this work. On the other hand, assuming thatthe velocity distribution close

to the exit does not change in the stream-wise direction, we can safely assign the velocity

close to exit to the exit nodes. The simultaneous solution ofEqs. from 3.49 to 3.52 result in

the following relation when velocity on y direction is assumed to be zero.

ρ =
f2 + f4 + f9 + 2(f1 + f5 + f8)

1− vx
(3.56)

f3 = f1 +
2
3
ρvx (3.57)

f6 = f8 +
1
2

(f4 − f2) − ρvx

6
(3.58)

f7 = f5 −
1
2

(f4 − f2) −
ρvx

6
(3.59)

26

3.5.4 Temperature Boundary Condition

Temperature boundary condition is implemented using the equality of the non-equilibrium

distribution functions [33]. The equation set below is derived for the bottom wall.

g2 = φ (w(2)+ w(4)) − g4 (3.60)

g5 = φ (w(5)+ w(7)) − g7 (3.61)

g6 = φ (w(6)+ w(8)) − g8 (3.62)

The outlet boundary condition for temperature can be implemented using the methods of

Succi [44] which are discussed earlier. The extrapolation scheme among them is employed

for the current work. End results are tabulated in Appendix B.

3.5.5 Boundary Conditions for Microchannels

3.5.5.1 Slip Boundary Condition

Upon the simultaneous solution of the mass and momentum equality, Tian formulated the

Maxwell first-order slip boundary condition without thermal creep [45]. The non-dimensional

form of slip boundary condition is given as

vslip
y=0 = vx,y=0 − vx,w = σKn

(

∂u
∂y

)

y=0
(3.63)

vslip
y=H = vx,w − vx,y=H = σKn

(

∂u
∂y

)

y=H
(3.64)

whereσ is momentum-accommodation coefficient and assumed to be unity to simulate com-

pletely diffuse reflection. In most of the engineering applications the momentum-accommodation

coefficient for gas-solid interactions is close to unity [46].vslip
y=0, vslip

y=H , vx,y=0, vx,y=H andvx,w

are the slip velocities at bottom and top walls of the channel, x component of flow velocity at

bottom and top walls, and the x component of the corresponding wall velocity, respectively.

In this work the walls are stationary andvx,w is set to zero. The derivatives of the velocity

appearing in Eqs. 3.63 and 3.64 are calculated using a second-order implicit scheme. The slip

27

boundary condition for bottom wall is derived as follows

ρw = f1 + f3 + f9 + 2(f7 + f4 + f8) (3.65)

f2 = f4 (3.66)

f5 =
ρw(1+ vx) − (f2 + f4 + f9)

2
− (f1 + f8) (3.67)

f6 =
ρw(1− vx) − (f2 + f4 + f9)

2
− (f3 + f7) (3.68)

vx = λ
(4vx,1 − vx,2)

2+ 3λ
(3.69)

wherevx,1 andvx,2 are the first two velocity values after the fluid velocity on the wall. λ is

KnH. Fig. 3.6 demonstrates the rows of which the velocities belong to.

Figure 3.6: Rows of velocities used in slip boundary condition

3.5.5.2 Temperature Jump Boundary Condition

The work of Tian explains how to obtain a temperature jump boundary condition [45], which

is similar to the slip velocity boundary condition. Mathematical representation of temperature

jump is

φ
jump
y=0 = φy=0 − φw = α

(

2γ
γ + 1

)

(Kn
Pr

)

(

∂φ

∂y

)

y=0
(3.70)

φ
jump
y=H = φw − φy=H = α

(

2γ
γ + 1

)

(Kn
Pr

)

(

∂φ

∂y

)

y=H
(3.71)

whereα is thermal-accommodation coefficient and is assumed to be one.γ is the specific heat

ratio andPr is Prandtl number.φ jump
y=0 , φ jump

y=H , φy=0, φy=H , andφw are the temperature jump at

28

bottom and top walls, fluid temperature on the walls and the wall temperature respectively.

Similar to velocity derivative the spatial derivative of temperature is also calculated using a

second-order implicit scheme. For simplicity a temperature jump coefficient can be defined

as

C j = κKn = Knα

(

2γ
(γ + 1)Pr

)

(3.72)

Hence, the equations of temperature jump for bottom wall are

φy=0 =

[

C j(4φ1 − φ2) + 2φw

]

(2+ 3C j)
(3.73)

g2 = φy=0 (w(2)+ w(4)) − g4 (3.74)

g5 = φy=0 (w(5)+ w(7)) − g7 (3.75)

g6 = φy=0 (w(6)+ w(8)) − g8 (3.76)

Necessary equations for all BCs, including the ones that arenot described in this section can

be found in Appendix B.

3.6 Calculation of Macroscopic Properties

Density and velocity of the flow field are calculated using themass and momentum conserva-

tions for each node.

ρ(x, t) =
9

∑

i=1

fi(x, t) (3.77)

v(x, t) =

9
∑

i=1
ei fi(x, t)

ρ(x, t)
(3.78)

The temperature, on the other hand, is calculated using the thermal distribution function.

φ(x, t) =
9

∑

i=1

gi(x, t) (3.79)

29

CHAPTER 4

Results

Validity of the developed LBM code is tested by using Poiseuille flow in micro and macro

scales. Poiseuille flow is, basically, the fluid flow between two parallel plates shown in Fig.

3.5. The velocity profiles, temperature distributions and Nusselt number variations obtained

by LBM are compared against analytical solutions when available. There is no analytical

solution for the developing regime of the channel; hence, other numerical solutions were

employed.

4.1 Analytical Solution of Fully Developed Poiseuille Flow

The results for Poiseulle flow is discussed in detail in the rest of the chapter. But first, some

definitions and analytical solution to velocity profile willbe provided. Velocity component

in the x direction can be obtained by the x-component of the linear momentum conservation,

which can be simplified as

µ
∂2vx

∂y2
=
∆p
L

(4.1)

which is supported by the following boundary conditions

Bottom wall: v0 = Kn
∂v
∂y

(4.2)

Top wall : vH = −Kn
∂v
∂y

(4.3)

∆p is the pressure drop along the channel section of lenghtL. The solution of this equation is

a parabolic curve. When a non-dimensional length is defined as η = y/H the solution is

vx

vx,mean
= −6(η2 − η − Kn)

6Kn+ 1
(4.4)

Note that in the case of zeroKn the solution is still valid and corresponds to the case with no-

slip on the walls. Heat transfer characteristic of the flow, on the other hand, can be determined

30

using the Nusselt number. Nusselt number is the ratio of convective and conductive heat

transfers. For a fully developed channel flow the Nusselt number converges to a constant

value. The mathematical derivation starts with the following equation written for a cross

section of the flow

h(Tw − Tmean) − k

(

∂T
∂y

)

x=0
= 0 (4.5)

whereh andk are convective and conductive heat transfer constants,Tw is the temperature on

the wall andTmeanis the mean temperature of the flow at a cross section defined as

Tmean=

∫

A
ρvTdA

∫

A
ρvdA

(4.6)

Using the previously defined non-dimensional lenghtη, and defining the following non-

dimensional temperature

θ =
Tmean− Tw

Ti − Tw
(4.7)

whereTi is the constant temperature of the fluid flow at the inlet Eq. 4.5 becomes

k
H

(Ti − Tw)

(

∂θ

∂η

)

x=0
= h(Tw − Tmean) (4.8)

which can be arranged to get the following non-dimensional temperature profile
(

∂θ

∂η

)

x=0
=

2Hh
k

(Tw − Tmean)
2(Ti − Tw)

(4.9)

Previously mentioned Nusselt number is defined asNu= 2Hh/k, which in this case turns into

Nu= −2
θ

(

∂θ

∂η

)

x=0
(4.10)

4.2 Fluid Flow and Heat Transfer Results in Macrochannel

The Poiseuille flow domain in macro scale (see Fig. 4.1) has no-slip boundary conditions

at the walls. We assume to have uniform velocity profile at theinlet and at the exit flow is

assumed to be fully developed. The non-dimensional temperature at the inlet and at the walls

are 1 and 0 respectively. The aspect ratio is 20, and Re= 10, Pr= 10. Although the problem

is solved by a number of different meshes, the results presented here are obtained with amesh

of 81x1620 nodes.

The velocity profile in the developing regime is compared with results from a commercial

software COMSOL which uses Finite Element Method (See Fig. 4.2). Normalized veloc-

ity in the plot is generated via the division of velocity to the mean velocity over the cross

31

Figure 4.1: Schematic Drawing and Parameters of PoiseuilleFlow in Macro Scale

section. The lines belong to LBM solution and signs belong toFEM. Due to the use of a

small Reynolds number the velocity profile reaches fully developed regime fast. The lines of

x/L = 0.04 andx/L = 0.5 are overlapping. The difference of the profilex/L = 0.04 from

analytical solution is less than 1% and the profile atx/L = 0.5 covers the analytical solution

very well. Temperature profile in the developing regime is compared with FEM in Fig. 4.3.

0 0.5 1 1.5
0.0

0.25

0.50

0.75

1.0

Normalized Velocity v/v
mean

 η
 =

 y
/H

x/L = 0.01
x/L = 0.02
x/L = 0.04
x/L = 0.5
FEM
data6
data7
data8

Figure 4.2: FEM and LBM Comparison of Developing Velocity atMacro Scale

The temperature profile atx/L = 0.2 is on top of the profile atx/L = 0.5, with less than 1%

difference, hence afterx/L = 0.2 the flow is thermally fully developed.

32

0 0.5 1 1.5
0.5

1.0

Normalized Temperature (φ / φ
mean

)

η
=

 y
/H

data1
x/L = 0.02
x/L = 0.2
FEM
x/L = 0.01
x/L = 0.02
x/L = 0.2
x/L = 0.5

Figure 4.3: FEM and LBM comparison of Developing Temperature at Macro Scale

The Nusselt number variation along the channel is given in Fig. 4.4 where LBM solution is

compared with the solution of Bejan [47]. The variation in the developing regime is close to

the one given in the reference and by the end of the channel LBMconverges to the analytical

solution of 7.54.

Figure 4.4: Nusselt Number Variation Along the Macrochannel

33

4.3 Fluid Flow and Heat Transfer Results in Microchannels

After having credible result from LBM for macroflows, the code is modified to simulate mi-

croflows in the slip-flow regime. The same problem, Poiseuille flow, is simulated. However,

for this case, the flow have different characteristics with slip velocity and temperature jump at

the boundaries. The boundary conditions are shown in Fig. 4.5. Aspect ratio, Re and Pr are

kept unchanged while the boundary conditions had non-zero value. Boundary velocity and

temperature values depend on Knudsen number, and thereforewe repeated the simulation for

several Knudsen numbers between 0 and 0.1.

Figure 4.5: Schematic Drawing of Poiseuille flow in micro scale

To observe the validity of the boundary condition implementation, first the velocity profile

for different Knudsen numbers are plotted together with the analytical solution, where perfect

agreement is observed (Fig. 4.6). The Nusselt number depends on the velocity and tem-

perature profiles. For the developing part of the flow, Nusselt number seems to converge to a

value as soon as both the velocity and temperature become fully developed. The characteristic

of velocity is determined by theKn and the temperature profile is determined byKn andκ

defined in Eq. 3.72. Results are obtained for differentκ and Knudsen numbers.

Fig. 4.7 shows Nusselt number variation along the channel for developing and developed

regimes forκ = 0 and forKn = 0, 0.04, 0.08. As expected, theKn = 0 case converges to the

analytical result for macro channels. IncreasingKn results in higher Nusselt number. Also

note thatκ = 0 indicates that there exists no temperature jump which is a fictitious case but is

34

0 0.5 1 1.5
0.5

0.6

0.7

0.8

0.9

1

Normalized Velocity (v/v
mean

)

η
=

 y
/H

LBM

Analytical Solutiono

Increasing
Kn = 0, 0.04, 0.08

Figure 4.6: Analytical Solution and LBM Comparison of Developed Velocity inside
Microchannel

used in data validation in the literature [48].

0.1 1.0
7

8

9

10

11

12

Stream Direction

N
u

ss
el

t
N

u
m

b
er

Nu∞ = 7.54

κ = 0Increasing
Kn = 0, 0.04, 0.08

Figure 4.7: Nusselt Number Variation along the Channel for Different Knudsen Numbers at
κ = 0

Fig. 4.8 has the results forκ = 1.667 which is a typical value for air. A non zeroκ and hence

35

temperature jump, changed the characteristic of Nusselt number to a decreasing trend with

increasing Knudsen number. The heat transfer in the channeloccurs in two ways: Convection

and conduction. The value ofNu indicates the ratio of heat transfer due to convection and

conduction. Note that largerκ and Kn resulted in decrease ofNu which means that heat

convection rate is decreased.

0.1 1.0
5

6

7

8

9

10

Stream Direction

N
u

ss
el

t
N

u
m

b
er

κ = 1.667

Nu∞ = 7.54

Kn = 0.08

Kn = 0.04

Kn = 0

Figure 4.8: Nusselt Number Variation along the Channel for Different Knudsen Numbers at
κ = 1.667

Fig. 4.9 provides the variation ofNu for κ = 10 which corresponds to a large temperature

jump case. The variation along the channel is much smaller than the previous cases andNu

has lower values. As discussed earlier, the conduction rateincreases withκ andKn which

resulted in decrease inNu. Increasing theKn of the flow makes the flow to approach the tran-

sition Knudsen regime where heat transfer by convection loses its importance and conduction

becomes more significant due to the rarefaction effects.

The values of Nusselt number for fully developed flow calculated by the developed LBM code

are tabulated in Table 4.1.

A grid convergence test was also performed and tabulated in Table 4.2. A set of runs for sev-

eral different mesh resolution indicated that the solution is converged to the expected values.

Finally, it is worth to mention that the developed code is also used to solve problems other than

36

0.1 1.0
0

2.5

5

7.5

10

Stream Direction

N
u

ss
el

t
N

u
m

b
er

Nu∞ = 7.54

Kn = 0.08

κ = 10

Kn = 0.04

Kn = 0

Figure 4.9: Nusselt Number Variation along the Channel for Different Knudsen Numbers at
κ = 10

Table 4.1: Fully Developed Nusselt Numbers in 2D Channel Flow

Kn
κ 0.00 0.02 0.04 0.06 0.08 0.10
0.000 7.55 7.75 7.91 8.05 8.18 8.28
1.667 7.55 6.93 6.38 5.88 5.44 5.06
10.00 7.55 4.48 3.14 2.41 1.95 1.64

Table 4.2: Grid Convergence Test atκ = 1.667

Kn
Grid Size 0.00 0.02 0.04 0.06 0.08 0.10
21x420 7.57 6.94 6.38 5.88 5.43 5.04
41x820 7.56 6.94 6.38 5.88 5.44 5.06
61x1220 7.55 6.93 6.38 5.88 5.44 5.06
81x1620 7.55 6.93 6.38 5.88 5.44 5.06
Çetin [48] 7.54 6.92 6.37 5.88 5.44 5.05

37

channel flows. For example for the classical lid-driven Cavity benchmark problem successful

results are obtained up to Reynolds numbers of 5000 [49]. Vortex shedding behind a circular

cylinder is also simulated successfully with the developedLBM code. For these relatively

high Re flows an additional benefit of LBM is observed. Unlike finite volume or finite element

techniques, LBM does not need to be altered for convection dominated flows. There is no

need to use artificial diffusion or the formulation does need to be modified by the use of

stabilization techniques. Also due to the purely explicit nature of the LBM algorithm, time

consuming tasks such as the solution of a linear equation system is not required.

38

CHAPTER 5

GPU Computing

The struggle in product design, analysis and academic research are usually restricted by op-

positions and regulatory barriers like the need to reduce the design cycles, costs and environ-

mental influence, satisfy the governmental rules, improve quality and safety and complexity

of physics/mathematics. Those barriers made people require the field ofaccurate (and fast)

product and system simulations [50]. The simulations can comprise coupled, complex and

non-linear physical phenomena, very fine time steps, large physical space and complicated

geometries to investigate. Researchers make use of all the goods in terms of computational

power which is sometimes not satisfactory. Nowadays the useof graphical processing units

(GPUs) for general purpose parallel scientific computing isseen to be a promising way of

accelerating number crunching codes.

Central Processing Units (CPU) are where the mathematical operations are performed in com-

puters and they are designed to perform operations in a sequential order. One of their prop-

erties is that with the duplication of computing frequency the speed of CPU is also doubled

[51]. The technology in engineering limits the frequency not to exceed 4.0 GHz due to the

extreme heat generation close to a heat density of nuclear reactor core [52]. The barrier of

extreme heat generation drove people to explore various paths such as parallel programming.

Instead of working on a single computer processor serially,researchers began to use multi

processors in parallel.

Graphical Processing Units (GPU) was started to be used for general purpose computations

in 1990’s [51]. GPUs were known as capable to perform basic mathematical operations only.

Even though their main purpose was to visualize a 3D virtual world on a 2D screen, appro-

priate programming languages made them challengers to CPUs. For almost a decade the

39

manufacturers of GPUs design them to easily handle mathematical operations. Unlike CPUs,

GPUs can accommodate hundreds of processors and do not generate heat that we cannot deal

with. The working principle of GPUs is also parallel by the nature of the problem they are

designed for. During 2000’s the use of GPUs is having increasing attention in the field of

parallel computing. A drawback of GPU computing could be considered as that the program-

ming languages were too complex. There had been several languages and most of them were

abandoned. After the invention of CUDA and OpenCL programming tools, researchers no

more need to be experts in computer graphics to harness the computational power of GPUs

[53]. However, the nature of parallel computing is not similar to serial programming and

needs a different approach to the design of algorithms, a familiarity tocache memory and

core sharing features.

Cellular Gas Automata which is the origin of LBM, is known with its highly parallelizable al-

gorithm. This feature is carried to LBM. Many researchers, during the last decade, tested this

property of LBM and reported their findings. Tolke developedan LBM code using CUDA.

He wrote his code in C language to run on a single GPU and obtained 1 order of magni-

tude speedup compared to his serially running LBM code [54].Obrecht et al. wrote their

3DQ19 LBM code and ran it on a nVidia GTX295 GPU [55]. They alsoobtained nearly 2

fold increase and they reported GPU computing to be a cheap and fast solution. Riegel et

al. developed an LBM solver called LBultra and tested it for the 3D benchmark problem of

flow over a cylinder [56]. Their code, written in C++ ran on 3 Tesla C1060 GPUs and they

reported about 19 fold increase in speed. Their parallel CPUcode ran on 4 AMD cores or 2

Intel cores but those could not approach the speed of multi-GPU code. 4 AMD cores provided

1.8 fold speed up and 2 Intel cores provided 2 fold of increasein speed. They also observed

that GPU programming saves more energy, space and money thanparallel CPU computing.

Baieley et al. [57] compared their LBM code running on a single GPU with an OpenMP

version that runs on quad-core CPU, and reported a speedup of28 times.

In this work, we used m language which is served by MathWorks company via the software

MATLAB. m language is serial inherently and hence works on CPU. Another program named

as Jacket, which is created by AccelerEyes company, is an add-on application to MATLAB

and allows MATLAB to perform mathematical operations on GPUs. Basically, Jacket is a link

from m language to GPU programming through the use of CUDA technology. The advantage

of Jacket is the ease of its use. With a very little afford, measured in usually seconds and

40

minutes, the standard m language gets ready to run on GPU.

5.1 Run Time Comparison LBM on CPU and GPU

For the Poiseuille flow benchmark problem 3 different programs are developed. These codes

are given in App. A and can be downloaded from the website http://code.google.com/p/lbm-

jacket-microchannel/. First code solves the problem serially on a single core of a CPU. The

CPU used is Intel Xeon E5620 Quad-Core 2.40 GHz. Second code runs parallel on a single

GPU that is Tesla C1060. Tesla C1060 has 240 cores and capableof providing 933 GFLOPs/s

of performance with 4 GB of GDDR3 memory at 102 GB/s bandwidth. The last one is parallel

too, yet distributed among 4 Tesla C1060s and referred as Multi GPU (MGPU) version. Due

to the fact that Tesla C1060 GPUs work more efficiently on single precision numbers, all the

programs are written to run in single precision. Nevertheless the accuracy of the solutions are

checked to be not effected by this.

All the parts of the code, collision, streaming, boundary conditions and macroscopic proper-

ties are well suited to parallel computing. There is no node and no distribution function that

depends on the others. For example, while calculating the speed of the flow at a grid point we

do not need to know the velocities at the neighbouring nodes.This property of LBM makes it

convenient to parallel programming.

An important point is that we are comparing the speed of single CPU core with hundreds

of GPU cores. The comparison doesn’t seem to be fair. One can use several CPU cores

and get higher speeds against hundreds of GPU cores. But in order to do so one has to deal

with complicated parallel programming algorithms. Using mlanguage with Jacket, we do not

worry about the details of parallel programming. In minutes, the code becomes ready to run in

parallel. Defining the variables on GPU memory is enough to make the operations performed

on GPUs. The difference can be seen in the codes which are present in Appendix A.

If the CPU and GPU programs were written in complied languages such as C or Fortran,

most probably they would run much more faster. m language is not compiled and that is a

disadvantage if the concern is the speed. However, the code development, post processing,

profiling and debugging is much faster in MATLAB environment. The time saved from those

processes is thought to eliminate the speed disadvantage ofm language.

41

The physical properties of the flow do not change the run time of the CPU, GPU and MGPU

versions, therefore only the results of a single flow are reported. The parameters are:Re= 10,

Pr = 10, Kn = 0, aspect ratio= 20. All three LBM codes are composed of 2 parts as

seen in Fig. 5.1: momentum and heat transfer calculations, both of which include collision,

streaming, boundary conditions and macroscopic property calculation subsections. A pseudo

code can be found in Appendix B.

Figure 5.1: Structure of the Developed LBM Code

The solution domain is discretized into MxN grid points. 9 distribution functions which are

MxN in size are allocated for each collision part. In the collision the new values of the dis-

tribution functions are calculated. Even though the operation on one distribution function

does not affect the other distribution functions on the same or other grid points, MATLAB

performs these calculations serially. However, Jacket distributes the operations of one distri-

bution function among 240 cores of the GPU. In other words thedomain is divided into 240

sub-domains for each distribution function.

The streaming part shifts every distribution function one row and/or column. For instance,

consider the first distribution function as a matrix MxN in size. The elements of that matrix

are shifted one column to the right, similarly the elements of the second distribution func-

tion matrix are shifted one row upward. The other ones are also shifted according to their

42

directions as demonstrated in Fig. 3.4. CPU computing starts from the first grid point and

ranges over all the others serially. On the other hand, GPU scatters the operations evenly

through all the cores available to it. Similar to collision,the domain is divided into hundreds

of sub-domains and all those sub-domains are handled at the same time.

The boundary conditions are the parts where minimum effort is spent. Only 3 distribution

functions on 2x(M+N) nodes are edited. The operation time for BC implementation on both

serial and parallel computing is negligible.

In macroscopic property calculations, 9 distribution functions are added up at every grid

points. If it is the momentum part, also the vectorial sum of the distribution functions are

performed. GPU again distributes the operations into 240 cores.

Table 5.1: Time in Percentages which are Consumed in Different Parts of the Codes for
Mesh Size 4000 x 1000

CPU Code GPU Code
Collision 82% 15%
Streaming 2% 76%

Boundary Conditions 0.3% 8%
Macroscopic Properties 16% 1%

Time consumed for different tasks performed by the LBM codes are provided in Table 5.1.

Note that this table is generated for a mesh of 4000 x 1000 nodes. Percentage times for

different mesh sizes resulted almost the same. For the code whichruns on CPU, the collision

part takes 82% of the time. This part is where the most of the mathematical calculations

are performed. Macroscopic property calculation section consumes 16% of the time where

streaming and boundary condition implementation consume 2% and 0.3% of the total elapsed

time respectively. On the other hand these percentages change significantly in GPU codes.

Streaming takes 76%, collision takes 15%, boundary condition implementation part takes 8%

and macroscopic property calculations take 1% of the total run time. Parallelism decreased

the time spent in collision and macroscopic property calculation parts significantly and hence

other parts, streaming and boundary condition implementation, became more dominant.

The Multi GPU code has a little different structure than the CPU and single GPU code. In

order to utilize all 4 GPUs, the domain is divided into 4 partsas seen in Fig. 5.2. Every part is

solved on a different GPU. Due to the fact that every device has its own memory, the variables

should be allocated on each device with different names. After the collision, the nodes on

43

GPU boundaries are updated using ghost nodes. The update is adata exchange between

neighbouring GPUs as seen in Fig. 5.2. The data is first transferred to CPU memory and than

to the other GPU. This process only exists in Multi GPU code and brings extra load to the

program. Separating two adjacent nodes ceases the intercommunication on the boundaries

of sub-domains. The lack of communication can be eliminatedby ghost nodes. First step is

memory allocation. To create ghost nodes, add one more column (or row) for each boundary

of the sub-domains. The new nodes, in our case are in a column,are called ghost nodes which

are represented as circles in Fig. 5.3. The variables on ghost nodes are assigned from the

neighbouring sub-domain. They are going to be used just to calculate new data in each sub-

domain and just after they need to be updated using the neighbouring sub-domain. After the

variables in each sub-domain are calculated (after the collision), the variables on ghost nodes

are updated using the nodes in neighbouring sub-domain. Thedashed arrows indicates the

transfer origins and destinies of the variables.

Figure 5.2: Sharing of the Domain among GPUs

The computational time demonstrated in Fig. 5.4 is not the convergence time but rather it is

a time that covers a smaller number of time steps which is enough to compare the speeds. It

is seen that with the increasing mesh density CPU time increase continuously . Single GPU

parallel code has a constant elapsed time up to a mesh size of 105. Before that mesh size,

single GPU consumes more time than a single CPU core. After a mesh size of 3x107 the GPU

time approaches to CPU time due to memory issues. The memory of CPU is 24GB whereas

44

Figure 5.3: Ghost Nodes

10
2

10
4

10
6

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Nodes

R
ep

re
se

nt
at

iv
e

R
un

 T
im

e
(s

)

MGPU time
GPU time
CPUtime

Figure 5.4: Comparison of MGPU, GPU and CPU Run Times

45

a single Tesla C1060 has only 4GB memory. In other words, for mesh sizes greater than 105

and smaller than 3x107, it is feasible to run on GPU. The curve for MGPU is steady up toa

mesh size of 106. After this point both CPU and GPU times increase faster, so MGPU can be

used for meshes greater than 106.

The GPU and MGPU programs have constant speeds for smaller mesh sizes. This is a com-

mon picture in GPU computing. Even though the code runs in GPU, there should be variable

transfer between CPU memory and GPU memory. The time due to variable transfer is dom-

inant for small mesh sizes. In the Fig. 5.4, most of the time spent in the steady region is due

to the variable transfer. A mesh size of 105 for GPU and 106 for MGPU programs are the

limits where the time spent on computation begins to overcome the time spent on variable

transfer. Due to this fact, domains with small mesh number cannot be accelerated; also, they

run slower than serial computing.

The numerical results of Fig. 5.4 are tabulated in Table 5.2.Table 5.3 shows the speed ups.

Speed up values are calculated as a ratio of run times. Compared to the serial program, the

single GPU parallel program can consume about 5 fold less time at 7.84x107 grid points and

14 fold increase in the speed of MGPU program is observed for the maximum mesh size.

During the current study, Accelereyes company released several versions of Jacket. Surpris-

ingly, older versions of Jacket performed better. The Jacket library is a closed box, users

cannot modify or explore what is written inside. The same LBMcode showed worse perfor-

mance on latest versions of Jacket.

LBM works with discrete time, space and velocity. The codes are written in 2 dimensional

space with 9 speeds. The scheme is addressed as D2Q9. Beside D2Q9 there are other schemes

like D2Q4, D2Q5, D2Q8 etc. D2Q9 is a commonly used scheme. It results in good accuracy

but decreasing the number of discrete velocities can cause aspeed up. If the code is en-

hanced two solve three dimensional problems the scheme changes. Typical 3 dimensional

versions are D3Q15, D3Q19 and D3Q27. Increasing number of discrete velocities reduces

the numerical error, yet it also brings computational load.Using a different scheme should

be accompanied with appropriate boundary conditions. The boundary condition equations

are needed to be re-derived. Note that all the boundary conditions in this work are for D2Q9

model. Collision, streaming and macroscopic property calculation parts do not require severe

alterations.

46

Table 5.2: Representative MGPU, GPU and CPU Run Times in Seconds for Different Mesh
Sizes

Mesh Size MGPU GPU CPU
1.60x103 10.12 2.850 0.153
6.40x103 10.16 2.850 0.276
2.56x103 10.19 2.897 0.819
4.00x104 10.67 2.962 1.274
5.76x104 10.21 2.996 1.477
1.02x105 10.35 3.142 2.582
1.60x105 10.43 3.541 3.792
6.40x105 11.65 6.396 15.51
1.44x106 12.96 11.92 33.07
2.56x106 14.85 19.66 58.53
4.00x106 17.45 29.59 90.14
7.84x106 25.72 56.09 271.6
1.60x107 43.78 147.9 553.2
1.94x107 51.23 331.3 670.2
2.30x107 59.40 335.9 794.4
2.70x107 68.53 563.5 933.2
3.14x107 78.01 701.3 1084
3.60x107 88.80 798.9 1261

Table 5.3: MGPU, GPU and CPU Speedups for Different Mesh Sizes

Mesh Size MGPU vs CPU GPU vs CPU MGPU vs GPU
1.60x103 0.01 0.05 0.28
6.40x103 0.03 0.09 0.28
2.56x103 0.08 0.28 0.28
4.00x104 0.12 0.43 0.28
5.76x104 0.14 0.49 0.29
1.02x105 0.25 0.82 0.30
1.60x105 0.36 1.07 0.34
6.40x105 1.33 2.43 0.55
1.44x106 2.55 2.77 0.92
2.56x106 3.94 2.98 1.32
4.00x106 5.17 3.05 1.70
7.84x106 10.6 4.84 2.18
1.60x107 12.7 3.74 3.38
1.94x107 13.1 2.02 6.47
2.30x107 13.4 2.37 5.66
2.70x107 13.6 1.66 8.22
3.14x107 13.9 1.55 8.99
3.60x107 14.2 1.58 9.00

47

As a final note it is worth to mention that couple of the finest meshes used in this project is too

much for a basic 2D benchmark problem. The intention was to demonstrate the computational

power comparison of CPU and GPUs. But such large meshes can beused in three dimensional

problems. Three dimensional version of the code would have higher computational time due

to the increase in mathematical operations and it is anticipated that the speed up of GPU

would be higher.

48

CHAPTER 6

Conclusion and Future Work

Micro Electro Mechanical Systems combine electronics, magnetics, acoustics, biology, chem-

istry and fluid mechanics in very small dimensions. This fruitful and compact blend provides

them to have promising future in many fields like transportation, medicine, telecommunica-

tion, computer, military, manufacturing, etc. Design of such systems, of course, are chal-

lenging. Not well prepared designs invite time and money lose in most cases. The heart of a

well prepared design is accurate and fast simulation. Thereare numerous methods to simulate

systems and products, yet proper simulation tool should be selected for proper systems. For

MEMS, the assumptions of physics are different than many other engineering applications.

The assumptions of mathematical model and the assumption ofthe physics of MEMS must

match. The commonly used mathematical approaches to MEMS are modified Navier-Stokes

equations as well as Newtonian mechanics equations and finally the Boltzmann Transport

Equation.

In theory, the Boltzmann Transport Equation governs continuum, slip-flow, transition and free

molecular regimes yet BTE is very hard to solve if it is possible. Therefore, researchers are

studying numerical solutions of BTE. The numerical solution of BTE is capable to simulate

continuum and slip flow regimes like, Burnett and Navier-Stokes equations do and also transi-

tion and free molecular regimes like Newtonian mechanics equations do. A powerful numeri-

cal tool to solve the BTE is the Lattice Boltzmann Method. In this project, LBM is studied for

continuum and slip flow regimes in microchannels which are encountered in MEMS. Using

the LBM we have simulated Poiseuille flow in continuum regime. The validity of the method

in continuum regime is proved by the comparison of the velocity profile with the analytical

solution and the comparison of the temperature profile from anumerical result via the Finite

Element method. The Nusselt number in developing and fully developed flows are compared

49

with the solution from a reliable source e.g. Bejan [47]. After obtaining well agreed results

the program is advanced to simulate slip-flow regime: slip velocity and temperature jump

boundary conditions are implemented. The velocity profile is well agreed with analytical so-

lution and also for theKn = 0 case the Nu converged to the analytical solution. In the light

of these information the Nusselt number variation along thechannel is generated for different

Kn andκ values.

Three different Lattice Boltzmann codes have been developed. First one runs serially on CPU.

Second one runs on a single GPU and the last one is capable to run on 4 GPUs. The LBM

codes are written in MATLAB which runs on CPU by default. However, using a commercial

software, Jacket, the serial MATLAB codes are converted to the parallel ones easily. It is

reported that the usage of Jacket with MATLAB saves time in the stages of developing a new

code, as well as running the codes. Using the parallel computing technology, it is observed

that a simulation time can be reduces 14 times for very large mesh sizes.

The consistent results which are obtained from this study encouraged us to enhance the de-

veloped codes. The other rarefaction effect, viscous heating, will be added in the method for

a more proper microflow simulation. Further more, the ability of LBM to solve for mutli-

phase flows will be examined. In the beginning, we will focus on a two-phase problem:

The simulation of bubble formation which is an important phenomena encountered in heat

removal processes. Those problems will also be solved in 3D domains and hence more real-

istic solutions will be obtained. Due to the fact that working on a 3D domain requires more

computational power and memory, the codes will be written inC language and they will run

parallel on GPUs.

50

REFERENCES

[1] M. Gad-elHak. Advances in Multiphysics Simulation and Experimental Testing of
MEMS. Imperial College Press, 2008.

[2] D. A. Koester, K. W. Markus, and M. D. Walters. MEMS: Smallmachines for the
microelectronics age.Computer, 29:93–94, 1996.

[3] R. R. Mansour. RF MEMS for space applications. InInternational Conference on
MEMS, NANO and Smart Systems (ICMENS05), 2005.

[4] H. Helvajian. Microengineering Technology for Space Systems. The Aerospace Press,
Los Angeles, 1997.

[5] J. L. Zunino, D. Skelton, and R. Mason. Micro-electromechanical systems (MEMS)
reliability assessment program for department of defende activities. Nanotech, 3:463–
466, 2005.

[6] J. Bouchaud. RF MEMS: status of the industry and roadmaps. In Radio Frequency
integrated Circuits (RFIC) Symposium, pages 379–384, 2005.

[7] Y. H. Zhang, X. J. gu, R. W. Barber, and D. R. Emerson. Capturing knudsen layer
phenomena using a lattice Boltzmann model.Physical Review E, 74(046704), 2006.

[8] G. Karniadakis, A. Beskok, and N. Aluru.Microflows and Nanoflows Fundamentals
and Simulation. Springer, 2005.

[9] M. Gad-elHak. Gas and liquid transport at microscale.Heat Transfer Engineering,
27(4):13–29, 2006.

[10] C. Cercignani. Mathematical Methods in Kinetic Theory. Plenum Press, New York,
1969.

[11] G. A. Bird. Monte Carlo simulation of gas flows.Ann. Rev. Fluid Mech., 10:11–31,
1978.

[12] U. Frisch, B.Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes
equation.Phys. Rev. Lett., 56(14):1505–1508, 1986.

[13] C. Cercignani. The Boltzmann Equation and Its Applications (Applied Mathematical
Sciences). Springer-Verlag, 1988.

[14] S. Harris.An Introduction to the Theory of the Boltzmann Equation. Holt, Rinehart and
Winston, Inc, USA, 1971.

[15] Richard L. Liboff. Kinetic Theory Classical, Quantum, and Relavistic Descriptions.
Springer, New York, 3rd edition, 2003.

[16] P. V. Panat.Thermodynamics and Statistical Mehanics. alpha Science, Oxford, 2008.

51

[17] I. Prigogine and F. C. Andrews. A Boltzmann-like approach for traffic flow. Operations
Research, 8(6):789–797, 1960.

[18] S.M. YEN. Numerical solution of the nonlinear Boltzmann equation for nonequilibrium
gas flow problems.Annual Review of Fluid Mechanics, 16(1):67–97, 1984.

[19] A. J. C. Ladd. Numerical simulations of particulate suspensions via a discretized Boltz-
mann equation.Journal of Fluid Mechanics, 271:311–339, 1994.

[20] N. Goldsman, L. Henrickson, and J.Frey. A physics-based analytical/numericalsolution
to the Boltzmann transport equation for use in device simulation. Solid-State Electron-
ics, 34(4):389–396, 1991.

[21] I. D. Reid. An investigation of the accuracy of numerical solutions of Boltzmann’s
equation for electron swarms in gases with large inelastic cross sections.Australian
Journal of Physics, 32(3):231–254, 1979.

[22] C. Busch and U. Kortshagen. Numerical solution of the spatially inhomogeneous Boltz-
mann equation and verification of the nonlocal approach for an argon plasma.Phys.
Rev. E, 51(1):280–288, 1995.

[23] U. Frisch, D. D’Humieres, B. Hasslacher, P. Lallemand,Y. Pomeau, and J. Rivet. Lattice
gas hydrodynamics in two and three dimensions.Complex Systems, 1:649–707, 1987.

[24] G. R. McNamara and G. Zanetti. Use of Boltzmann equationto simulate lattice-gas
automata.Phys. Rev. Let., 61(20):2332–2335, 1988.

[25] F. J. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations.Europhys.
Lett., 9(7):663–668, 1989.

[26] F. J. Higuera, S. Succi, and R. Benzi. Lattice gas dynamics with enhanced collisions.
Europhys. Lett., 9(4):345–349, 1989.

[27] S. Chen, H. Chen, D. Martinez, and W. Matthaeus. LatticeBoltzmann model for simu-
lation of magnetohydrodynamics.Physc. Rev. Lett., 67(27):3776–3779, 1991.

[28] Y. H. Qian, D. D’Humieres, and P. Lallemand. Lattice BGKmodels for Navier-Stokes
equations.Europhysc. Lett., 17(6):479–484, 1992.

[29] P. L. Bhatnagar, E. P. Groos, and M. Krook. A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems.Physc. Rev.,
94(3):511–525, 1954.

[30] X. He and L. Luo. Theory of the lattice Boltzmann method:From the Boltzmann
equation to the lattice Boltzmann equation.Physc. Rev. E, 56(6):6811–6817, 1997.

[31] T. Abe. Derivation of the lattice Boltzmann method by means of the discrete ordinate
method for the Boltzmann equation.J. Comp. Physc., 131(1):241–246, 1997.

[32] S. Chen and G. Doolen. Lattice Boltzmann method for fluidflows. Annu. Rev. Fluid
Mech., 30(1):329–364, 1998.

[33] A. A. Mohamad. Lattice Boltzmann Method Fundamentals and Engineering Applica-
tions with Computer Codes. Springer, 2011.

52

[34] S. Hou, Q. Zou, S. Chen, G. Doolen, and A. C. Cogley. Simulation of cavity flow by the
lattice Boltzmann method.J. Comput. Physics, 118(2):329–347, 1994.

[35] F. J. Alexander, S. Chen, and J. D. Sterling. Lattice Boltzmann thermohydrodynamics.
Physical Review E, 47(4), 1993.

[36] Y. Chen, H. Ohashi, and M. Akiyama. Thermal lattice Bhatnagar-Gross-Krook model
without nonlinear deviations in macrodynamic equations.Phys. Rev. E, 50(4):2776–
2783, 1994.

[37] G. R. McNamara, A. L. Garcia, and B. J. Alder. Stabilization of thermal lattice Boltz-
mann models.J. of Stat. Physc., 81(1-2):395–408, 1995.

[38] X. Shan. Simulation of rayleigh-benard convection using a lattice boltzman method.
Physc. Rev. E, 55(3):2780–2788, 1997.

[39] P. Pavlo, G. Vahala, L. Vahala, and M. Soe. Linear stability analysis of thermo-lattice
Boltzmann models.J. of Com. Physc., 139:79–91, 1998.

[40] G. Vahala, P. Pavlo, L. Vahala, and N. S. Martys. Thermallattice Boltzmann models
(tlbm) for compressible flows.Int. J. of M. Physics C, 9(8):1247–1261, 1998.

[41] X. He, S. Chen, and G. D. Doolen. A novel thermal model forthe lattice Boltzmann
method in incompressible limit.J. of Com. Physics, 146:282–300, 1998.

[42] Jonas Latt.Choice of units in lattice Boltzmann simulations, April 2008.

[43] X. He, Q. Zou, L. Luo, and M. Dembo. Analytic solutions ofsimple flows and analysis
of nonslip boundary conditions for the lattice Boltzmann BGK model. J. of Stat. Physc.,
87(1/2), 1997.

[44] S. Succi.The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Numerical
Mathematics and Scientific Computation). Clarendon, 2001.

[45] Z. Tian, C. Zou, Z. Liu, Z. Guo, H. Liu, and C. Zheng. Lattice Boltzmann method in
simulation of thermal micro-flow with temperature jump.Int. J. of Modern Physc. C,
17(5):603–614, 2006.

[46] R. M. Jr. Drake E. G. R. Eckert.Analysis of Heat and Mass Transfer. McGraw-Hill,
Newyork, 1972.

[47] A. Bejan. Convective Heat Transfer. John Wiley & Sons, 2004.

[48] B. Cetin. Anaylsis of single phase convective heat transfer in microtubes and microchan-
nels. Master’s thesis, Middle East Technical University, 2005.

[49] S. B. Celik, C. Sert, and B. Cetin. Simulation of lid-driven cavity flow by parallel
implementation of lattice Boltzmann method on GPUs. InInternational Symposium on
Computing in Science and Engineering (ISCSE 2011), 2011.

[50] M. Eldredge, T. J. R. Hughes, R. M. Ferencz, S. M. Rifai, A. Raefsky, and B. Herndon.
High-performance parallel computing in industry.Parallel Computing, 23:1217–1233,
1997.

[51] A. R. Brodtkorb, T. R. Hagen, and M. L. Saetra. Graphics processing unit (GPU) pro-
gramming strategies and trends in GPU.J. Parallel Distrib. Comput., 2012.

53

[52] G. Taylor. Energy efficient circuit design and the future of power delivery.EPEPS’09,
2011.

[53] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated molecular
modelling comming of age.Journal of Molecular Graphics and Modelling, 29:116–
125, 2010.

[54] Jonas Tolke. Implementation of a Lattice Boltzmann kernel using the compute unified
device architecture developed by nVidia.Comput Visual Sci, 13:29–39, 2010.

[55] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux. A new approach to the Lattice
Boltzmann Method for graphics processing units.Computers and Mathematics with
Applications, 61:3628–3638, 2011.

[56] E. Riegel, T. Indinger, and N. A. Adams. Implementationof a Lattice Boltzmann
Method for numerical fluid mechanics using the nVIDIA CUDA technology. CSRD,
23:241–247, 2009.

[57] International Conference on Parallel Processing.Accelerating Lattice Boltzmann Fluid
flow simulations using Graphics processors. IEEE, 2009.

54

Appendix A

Developed LBM Codes

55

All the codes in Appendix A are available online: http://code.google.com/p/lbm-jacket-microchannel/

A.1 CPU Code

function time = LBM_CPU(nY)

% nY is the Horizontal Node Number

% Slit Channel

% Runs on CPU

% Flow + Heat Transfer

% Calculates Nusselt Number

nX = nY*4; % nX is the Vertical Node Number.

% For this example it is choosen to be 4 times of height

tstep = 100;

Kn = 0;

Kappa = 0;

Lambda = Kn*(nY-1);

C = Kappa*Lambda;

% Nu = zeros(nX,1); % Nusselt Number Calculation is omitted. When this

% variable definition and the commented out parts before Momentum section are

% uncommented the code can calculate the Nusselt number.

Re = 10;

Pe = 100;

Ulattice = 0.02;

Pr = Pe/Re;

Viscosity=Ulattice*(nY-1)/Re;

alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);

oneMinusOmega = 1-omega;

omegat = 1/(3*alpha+0.5);

oneMinusOmegat = 1-omegat;

56

rho = zeros(nX,nY);

f1 = rho;f2 = rho;f3 = rho;f4 = rho;f5 = rho;f6 = rho;f7 = rho;f8 = rho;f9 = rho;

u = rho; v=rho;

T = zeros(nX,nY);

g1 = rho;g2 = rho;g3 = rho;g4 = rho;g5 = rho;g6 = rho;g7 = rho;g8 = rho;g9 = rho;

rho = rho+5;

tic

for kk=1:tstep

% if mod(kk,1000)==0

% %---------Nusselt-------------

% [Nu, Nuold] = NusseltcalculatorD2Q9(u,rho,Ulattice,U_in,T,nX,nY,Height,Kn,Nu);

% NuoldSum = sum(abs(Nuold));

% NuSum = sum(abs(Nu));

% diff = abs(NuSum-NuoldSum);

% if diff<0.001

% display(’Program converged and paused’);

% savestring = [’Nusselt_’,’Kn’,num2str(Kn),’Kappa’,num2str(Kappa),’Pe’,num2str(Pe),’Re’,num2str(Re),’N’,num2str(nY),’r’,num2s

% save(savestring)

% break

% end

% disp(kk)

% disp(Nu(max(nX)-100))

% Kn

% Kappa

% nY

% end

%% Momentum

% Collision

[f1,f2,f3,f4,f5,f6,f7,f8,f9] = CollisionD2Q9(u,v,rho,f1,f2,f3,f4,f5,f6,f7,f8,f9,omega,oneMinusOmega);

% Streaming

57

[f1,f2,f3,f4,f5,f6,f7,f8] = StreamingD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,nX,nY);

% Boundary Conditions

[f1(1,:),f2(1,:),f4(1,:),f5(1,:),f6(1,:),f7(1,:),f8(1,:)] = InletconstantVelocityD2Q9(f2(1,:),f3(1,:),f4(1,:),f6(1,:),f7(1,:),f9(1,:),

[f3(nX,:),f6(nX,:),f7(nX,:)] = OutletConstantVelocity(f1(nX,:),f2(nX,:),f4(nX,:),f5(nX,:),f8(nX,:),f9(nX,:),u(nX-10,:));

[f2(:,1),f5(:,1),f6(:,1)] = SlipBottomWallD2Q9(f1(:,1),f3(:,1),f4(:,1),f7(:,1),f8(:,1),f9(:,1),u(:,2:3),Kn,nY);

[f4(:,nY),f7(:,nY),f8(:,nY)] = SlipTopWallD2Q9(f1(:,nY),f2(:,nY),f3(:,nY),f5(:,nY),f6(:,nY),f9(:,nY),u(:,nY-2:nY-1),Kn,nY);

% Macroscopic Values

[u,v,rho] = MacroscopicD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,f9,nX,nY);

%% Heat Diffiusion

% Collision

[g1,g2,g3,g4,g5,g6,g7,g8,g9] = CollisionTD2Q9(u,v,T,g1,g2,g3,g4,g5,g6,g7,g8,g9,omegat,oneMinusOmegat);

% Streaming

[g1,g2,g3,g4,g5,g6,g7,g8] = StreamingD2Q9(g1,g2,g3,g4,g5,g6,g7,g8,nX,nY);

% Boundary Conditions for Temperature

g1(1,2:nY-1)=2/9-g3(1,2:nY-1);

g5(1,2:nY-1)=1/18-g7(1,2:nY-1);

g8(1,2:nY-1)=1/18-g6(1,2:nY-1);

% Outlet zero-flux (Extrapolation)

g3(nX,2:nY-1)=2*g3(nX-1,2:nY-1)-g3(nX-2,2:nY-1);

g6(nX,2:nY-1)=2*g6(nX-1,2:nY-1)-g6(nX-2,2:nY-1);

g7(nX,2:nY-1)=2*g7(nX-1,2:nY-1)-g7(nX-2,2:nY-1);

% Wall Boundaries

[g4(:,nY),g7(:,nY),g8(:,nY)] = TJumpTop(g2(:,nY),g5(:,nY),g6(:,nY),T(:,[nY-2:nY-1]),0,C);

[g2(:,1),g5(:,1),g6(:,1)] = TJumpBottom(g4(:,1),g7(:,1),g8(:,1),T(:,2:3),0,C); % 0 = Wall teperature

% Macroscopic

58

T = MacroscopicTD2Q9(g1,g2,g3,g4,g5,g6,g7,g8,g9);

end

time = toc;

fprintf(’CPU: time = %6.4f for %d X %d\n’,time,nX,nY);

end

%%%%%%%% End of Main Function %%%%%%%%

function [g4,g7,g8] = TJumpTop(g2,g5,g6,T,Tw,C)

tw = (C*(4*T(:,2)-T(:,1))+2*Tw)/(2+3*C);

g8=tw/18-g6;

g7=tw/18-g5;

g4=2*tw/9-g2;

end

function [g2,g5,g6] = TJumpBottom(g4,g7,g8,T,Tw,C)

tw = (C*(4*T(:,1)-T(:,2))+2*Tw)/(2+3*C);

g6=tw/18-g8;

g5=tw/18-g7;

g2=2*tw/9-g4;

end

function [f1,f2,f3,f4,f5,f6,f7,f8,f9] = CollisionD2Q9(u,v,rho,f1,f2,f3,f4,f5,f6,f7,f8,f9,omega,oneMinusOmega)

t10 = u.*u + v.*v;

t10 = 1.5*t10;

t1 = u;

t2 = v;

t3 = -u;

t4 = -v;

t5 = u + v;

t6 = -u + v;

t7 = -u - v;

t8 = u - v;

feq1 = rho/9 .* (1 + 3*t1 + 4.5*t1.*t1 - t10);

feq2 = rho/9 .* (1 + 3*t2 + 4.5*t2.*t2 - t10);

59

feq3 = rho/9 .* (1 + 3*t3 + 4.5*t3.*t3 - t10);

feq4 = rho/9 .* (1 + 3*t4 + 4.5*t4.*t4 - t10);

feq5 = rho/36 .* (1 + 3*t5 + 4.5*t5.*t5 - t10);

feq6 = rho/36 .* (1 + 3*t6 + 4.5*t6.*t6 - t10);

feq7 = rho/36 .* (1 + 3*t7 + 4.5*t7.*t7 - t10);

feq8 = rho/36 .* (1 + 3*t8 + 4.5*t8.*t8 - t10);

feq9 = 4*rho/9 .*(1 - t10);

f1 = omega*feq1 + oneMinusOmega*f1;

f2 = omega*feq2 + oneMinusOmega*f2;

f3 = omega*feq3 + oneMinusOmega*f3;

f4 = omega*feq4 + oneMinusOmega*f4;

f5 = omega*feq5 + oneMinusOmega*f5;

f6 = omega*feq6 + oneMinusOmega*f6;

f7 = omega*feq7 + oneMinusOmega*f7;

f8 = omega*feq8 + oneMinusOmega*f8;

f9 = omega*feq9 + oneMinusOmega*f9;

end

function [g1,g2,g3,g4,g5,g6,g7,g8,g9] = CollisionTD2Q9(u,v,th,g1,g2,g3,g4,g5,g6,g7,g8,g9,omegat,oneMinusOmegat)

t1 = u;

t2 = v;

t3 = -u;

t4 = -v;

t5 = u + v;

t6 = -u + v;

t7 = -u - v;

t8 = u - v;

feq1 = th/9 .* (1 + 3*t1);

feq2 = th/9 .* (1 + 3*t2);

feq3 = th/9 .* (1 + 3*t3);

feq4 = th/9 .* (1 + 3*t4);

feq5 = th/36 .* (1 + 3*t5);

feq6 = th/36 .* (1 + 3*t6);

feq7 = th/36 .* (1 + 3*t7);

60

feq8 = th/36 .* (1 + 3*t8);

feq9 = 4*th/9;

g1 = omegat*feq1 + oneMinusOmegat*g1;

g2 = omegat*feq2 + oneMinusOmegat*g2;

g3 = omegat*feq3 + oneMinusOmegat*g3;

g4 = omegat*feq4 + oneMinusOmegat*g4;

g5 = omegat*feq5 + oneMinusOmegat*g5;

g6 = omegat*feq6 + oneMinusOmegat*g6;

g7 = omegat*feq7 + oneMinusOmegat*g7;

g8 = omegat*feq8 + oneMinusOmegat*g8;

g9 = omegat*feq9 + oneMinusOmegat*g9;

end

function [f1,f2,f4,f5,f6,f7,f8] = InletconstantVelocityD2Q9(f2,f3,f4,f6,f7,f9,Ulattice,nY)

rhow = (f9 +f2 +f4 +2*(f3 +f6 +f7))/(1-Ulattice);

f1 = f3 + 2*rhow*Ulattice/3;

f5 = f7 + 0.5*(f4-f2) + rhow*Ulattice/6;

f8 = f6 + 0.5*(f2-f4) + rhow*Ulattice/6;

end

function [u,v,rho] = MacroscopicD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,f9,nX,nY)

rho = f1+f2+f3+f4+f5+f6+f7+f8+f9;

usum = f1-f3+f5-f6-f7+f8;

vsum = f2-f4+f5+f6-f7-f8;

u = usum./rho;

v = vsum./rho;

end

function th = MacroscopicTD2Q9(g1,g2,g3,g4,g5,g6,g7,g8,g9)

th = g1+g2+g3+g4+g5+g6+g7+g8+g9;

end

function [Nu,Nuold] = NusseltcalculatorD2Q9(u,rho,Ulattice,U_real,T,nX,nY,Height,Kn,Nu)

% Ulattice=umean

61

Nuold = Nu;

Umean = zeros(nX,1);

dy = 1;

ut = zeros(nX,nY);

T_mean = zeros(nX,1);

A = zeros(nX,1);

H = nY-1;

for i=1:nX

dummy=0;

for j=1:5:nY-1

dummy=dummy+(5*dy)*(19*rho(i,j)+75*rho(i,j+1)+...

50*rho(i,j+2)+50*rho(i,j+3)+75*rho(i,j+4)+19*rho(i,j+5))/288;

end

Rhomean(i)=dummy/H;

dummy=0;

for j=1:5:nY-1

dummy=dummy+(5*dy)*(19*rho(i,j)*u(i,j)+75*rho(i,j)*u(i,j+1)+...

50*rho(i,j)*u(i,j+2)+50*rho(i,j)*u(i,j+3)+75*rho(i,j)*u(i,j+4)+19*rho(i,j)*u(i,j+5))/288;

end

Umean(i)=dummy/Rhomean(i)/H;

dummy=0;

ut(i,:) = rho(i,:).*u(i,:).*T(i,:);

for j=1:5:nY-1

dummy=dummy+5*dy*(19*ut(i,j)+75*ut(i,j+1)+50*ut(i,j+2)+...

50*ut(i,j+3)+75*ut(i,j+4)+19*ut(i,j+5))/288;

end

T_mean(i)=(dummy/Rhomean(i)/Umean(i)/H);

A(i)= 49/20*T(i,1)-6*T(i,2)+15/2*T(i,3)-20/3*T(i,4)+...

15/4*T(i,5)-6/5*T(i,6)+1/6*T(i,7); % derivative

Nu(i) = -A(i)/T_mean(i)*2*H;

end

62

subplot(2,2,1)

imagesc(T’)

subplot(2,2,2)

plot(Nu)

drawnow

end

function [f3,f6,f7] = OutletConstantVelocity(f1,f2,f4,f5,f8,f9,u_out)

rho_o = (f9+f2+f4+2*(f1+f5+f8))./(1.0+u_out);

f3 =f1 -0.667*rho_o.*u_out;

f7 =f5 +0.5*(f2 -f4)- rho_o.*u_out/6.0;

f6 =f8 +0.5*(f4 -f2)- rho_o.*u_out/6.0;

end

function [f2,f5,f6] = SlipBottomWallD2Q9(f1,f3,f4,f7,f8,f9,u,Kn,nY)

Lamda = Kn*(nY-1);

uslip = Lamda*(4*u(:,1)-u(:,2))/(2+3*Lamda);

rhow = (f1+f3+f9+2*(f4+f7+f8));

f2 = f4;

f5 = rhow.*(1+uslip)/2 - (f1+f8) - (f2+f4+f9)/2;

f6 = rhow.*(1-uslip)/2 - (f3+f7) - (f2+f4+f9)/2;

end

function [f4,f7,f8] = SlipTopWallD2Q9(f1,f2,f3,f5,f6,f9,u,Kn,nY)

Lamda = Kn*(nY-1);

uslip = Lamda*(4*u(:,2)-u(:,1))/(2+3*Lamda);

rhow = (f1+f3+f9+2*(f2+f5+f6));

f4 = f2;

f7 = rhow.*(1-uslip)/2 - (f3+f6) - (f2+f4+f9)/2;

f8 = rhow.*(1+uslip)/2 - (f1+f5) - (f2+f4+f9)/2;

end

function [f1a,f2a,f3a,f4a,f5a,f6a,f7a,f8a] = StreamingD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,nX,nY)

f1a = f1([1,1:nX-1],1:nY);

63

f2a = f2(1:nX,[1,1:nY-1]);

f3a = f3([2:nX,nX],1:nY);

f4a = f4(1:nX,[2:nY,nY]);

f5a = f5([1,1:nX-1],[1,1:nY-1]);

f6a = f6([2:nX,nX],[1,1:nY-1]);

f7a = f7([2:nX,nX],[2:nY,nY]);

f8a = f8([1,1:nX-1],[2:nY,nY]);

end

64

A.2 GPU Code

function time = LBM_GPU(nY)

% nY is the Horizontal Node Number

% Slit Channel

% Runs on GPU

% Flow + Heat Transfer

% Calculates Nusselt Number

% Linux:

% addpath /usr/local/jacket/engine

% Windows:

% addpath C:\Progra˜1\AccelerEyes\Jacket\engine

nY = gsingle(nY);

nX = nY*4; % nX is the Vertical Node Number

% For this example it is choosen to be 4 times of height

Kn = gsingle(0);

Kappa = gsingle(0);

Lambda = Kn*(nY-1);

C = Kappa*Lambda;

tstep = 100;

Re = gsingle(10);

Pe = gsingle(100);

Ulattice = gsingle(0.02);

Pr = Pe/Re;

Viscosity=Ulattice*(nY-1)/Re;

alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);

omegat = 1/(3*alpha+0.5);

oneMinusOmegat = 1-omegat;

oneMinusOmega = 1-omega;

rho = gzeros(nX,nY);

f1 = rho;f2 = rho;f3 = rho;f4 = rho;f5 = rho;f6 = rho;f7 = rho;f8 = rho;f9 = rho;

u = rho; v=rho;

65

T = gzeros(nX,nY);

g1 = rho;g2 = rho;g3 = rho;g4 = rho;g5 = rho;g6 = rho;g7 = rho;g8 = rho;g9 = rho;

rho = rho+5;

tic

for kk=1:tstep

%% Momentum

% Collision

[f1,f2,f3,f4,f5,f6,f7,f8,f9] = CollisionD2Q9(u,v,rho,f1,f2,f3,f4,f5,f6,f7,f8,f9,omega,oneMinusOmega);

% Streaming

[f1,f2,f3,f4,f5,f6,f7,f8] = StreamingD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,nX,nY);

% Boundary Conditions

[f1(1,:),f2(1,:),f4(1,:),f5(1,:),f6(1,:),f7(1,:),f8(1,:)] = InletconstantVelocityD2Q9(f2(1,:),f3(1,:),f4(1,:),f6(1,:),f7(1,:),f9(1,:),

[f3(nX,:),f6(nX,:),f7(nX,:)] = OutletConstantVelocity(f1(nX,:),f2(nX,:),f4(nX,:),f5(nX,:),f8(nX,:),f9(nX,:),u(nX-100,:));

[f2(:,1),f5(:,1),f6(:,1)] = SlipBottomWallD2Q9(f1(:,1),f3(:,1),f4(:,1),f7(:,1),f8(:,1),f9(:,1),u(:,2:3),Kn,nY);

[f4(:,nY),f7(:,nY),f8(:,nY)] = SlipTopWallD2Q9(f1(:,nY),f2(:,nY),f3(:,nY),f5(:,nY),f6(:,nY),f9(:,nY),u(:,nY-2:nY-1),Kn,nY);

% Macroscopic Values

[u,v,rho] = MacroscopicD2Q9(f1,f2,f3,f4,f5,f6,f7,f8,f9);

%% Heat Diffiusion

% Collision

[g1,g2,g3,g4,g5,g6,g7,g8,g9] = CollisionTD2Q9(u,v,T,g1,g2,g3,g4,g5,g6,g7,g8,g9,omegat,oneMinusOmegat);

% Streaming

[g1,g2,g3,g4,g5,g6,g7,g8] = StreamingD2Q9(g1,g2,g3,g4,g5,g6,g7,g8,nX,nY);

% Boundary Conditions for Temperature

g1(1,2:nY-1)=2/9-g3(1,2:nY-1);

g5(1,2:nY-1)=1/18-g7(1,2:nY-1);

g8(1,2:nY-1)=1/18-g6(1,2:nY-1);

66

% Outlet zero-flux (Extrapolation)

g3(nX,2:nY-1)=2*g3(nX-1,2:nY-1)-g3(nX-2,2:nY-1);

g6(nX,2:nY-1)=2*g6(nX-1,2:nY-1)-g6(nX-2,2:nY-1);

g7(nX,2:nY-1)=2*g7(nX-1,2:nY-1)-g7(nX-2,2:nY-1);

%Top & Bottom Walls

[g4(:,nY),g7(:,nY),g8(:,nY)] = TJumpTop(g2(:,nY),g5(:,nY),g6(:,nY),T(:,nY-2:nY-1),0,C);

[g2(:,1),g5(:,1),g6(:,1)] = TJumpBottom(g4(:,1),g7(:,1),g8(:,1),T(:,2:3),0,C); % 0 = Wall teperature

% Macroscopic

T = MacroscopicTD2Q9(g1,g2,g3,g4,g5,g6,g7,g8,g9);

end

time = toc;

nXC = double(nX);

nYC = double(nY);

fprintf(’GPU: time = %6.4f for %d X %d\n’,time,nXC,nYC);

end

%%%%%%%% End of Main Function %%%%%%%%

% All the Subroutines are the same as the CPU code.

67

A.3 MGPU Code

function time = LBM_MGPU(Y)

% Y is the Horizontal Node Number

% addpath /usr/local/jacket/engine

% addpath C:\Progra˜1\AccelerEyes\Jacket\engine

% gactivate

X = Y*4;

x = X/4;

y = Y;

tstep = 100;

Kn = single(0);

Kappa = 1.67;

Lambda = Kn*(Y-1);

C = Kappa*Lambda;

Re = 10;

Pe = 100;

Pr = Pe/Re;

Viscosity=0.02*(Y-1)/Re;

alpha = Viscosity/Pr;

omega = 1/(3*Viscosity+0.5);

oneMinusOmega = 1-omega;

omegat = 1/(3*alpha+0.5);

oneMinusOmegat = 1-omegat;

gselect(1)

g1u = gzeros(x+1,y,’single’);

g1v = g1u;

g1rho = g1u+5;

g1f1 = g1u;

g1f2 = g1u;

68

g1f3 = g1u;

g1f4 = g1u;

g1f5 = g1u;

g1f6 = g1u;

g1f7 = g1u;

g1f8 = g1u;

g1f9 = g1u;

g1T = g1u;

g1g1 = g1u;

g1g2 = g1u;

g1g3 = g1u;

g1g4 = g1u;

g1g5 = g1u;

g1g6 = g1u;

g1g7 = g1u;

g1g8 = g1u;

g1g9 = g1u;

gselect(2)

g2u = gzeros(x+2,y,’single’);

g2v = g2u;

g2rho = g2u+5;

g2f1 = g2u;

g2f2 = g2u;

g2f3 = g2u;

g2f4 = g2u;

g2f5 = g2u;

g2f6 = g2u;

g2f7 = g2u;

g2f8 = g2u;

g2f9 = g2u;

69

g2T = g2u;

g2g1 = g2u;

g2g2 = g2u;

g2g3 = g2u;

g2g4 = g2u;

g2g5 = g2u;

g2g6 = g2u;

g2g7 = g2u;

g2g8 = g2u;

g2g9 = g2u;

gselect(3)

g3u = gzeros(x+2,y,’single’);

g3v = g3u;

g3rho = g3u+5;

g3f1 = g3u;

g3f2 = g3u;

g3f3 = g3u;

g3f4 = g3u;

g3f5 = g3u;

g3f6 = g3u;

g3f7 = g3u;

g3f8 = g3u;

g3f9 = g3u;

g3T = g3u;

g3g1 = g3u;

g3g2 = g3u;

g3g3 = g3u;

g3g4 = g3u;

g3g5 = g3u;

g3g6 = g3u;

g3g7 = g3u;

g3g8 = g3u;

70

g3g9 = g3u;

gselect(4)

g4u = gzeros(x+1,y,’single’);

g4v = g4u;

g4rho = g4u+5;

g4f1 = g4u;

g4f2 = g4u;

g4f3 = g4u;

g4f4 = g4u;

g4f5 = g4u;

g4f6 = g4u;

g4f7 = g4u;

g4f8 = g4u;

g4f9 = g4u;

g4T = g4u;

g4g1 = g4u;

g4g2 = g4u;

g4g3 = g4u;

g4g4 = g4u;

g4g5 = g4u;

g4g6 = g4u;

g4g7 = g4u;

g4g8 = g4u;

g4g9 = g4u;

gsync(’all’);

tic

for kk = 1: tstep % Time Loop

% Collision

gselect(1)

g1t10 = g1u.*g1u + g1v.*g1v;

71

g1t10 = 1.5*g1t10;

g1t1 = g1u;

g1t2 = g1v;

g1t3 = -g1u;

g1t4 = -g1v;

g1t5 = g1u + g1v;

g1t6 = -g1u + g1v;

g1t7 = -g1u - g1v;

g1t8 = g1u - g1v;

g1feq1 = g1rho/9 .* (1 + 3*g1t1 + 4.5*g1t1.*g1t1 - g1t10);

g1feq2 = g1rho/9 .* (1 + 3*g1t2 + 4.5*g1t2.*g1t2 - g1t10);

g1feq3 = g1rho/9 .* (1 + 3*g1t3 + 4.5*g1t3.*g1t3 - g1t10);

g1feq4 = g1rho/9 .* (1 + 3*g1t4 + 4.5*g1t4.*g1t4 - g1t10);

g1feq5 = g1rho/36 .* (1 + 3*g1t5 + 4.5*g1t5.*g1t5 - g1t10);

g1feq6 = g1rho/36 .* (1 + 3*g1t6 + 4.5*g1t6.*g1t6 - g1t10);

g1feq7 = g1rho/36 .* (1 + 3*g1t7 + 4.5*g1t7.*g1t7 - g1t10);

g1feq8 = g1rho/36 .* (1 + 3*g1t8 + 4.5*g1t8.*g1t8 - g1t10);

g1feq9 = 4*g1rho/9 .*(1 - g1t10);

g1f1 = omega*g1feq1 + oneMinusOmega*g1f1;

g1f2 = omega*g1feq2 + oneMinusOmega*g1f2;

g1f3 = omega*g1feq3 + oneMinusOmega*g1f3;

g1f4 = omega*g1feq4 + oneMinusOmega*g1f4;

g1f5 = omega*g1feq5 + oneMinusOmega*g1f5;

g1f6 = omega*g1feq6 + oneMinusOmega*g1f6;

g1f7 = omega*g1feq7 + oneMinusOmega*g1f7;

g1f8 = omega*g1feq8 + oneMinusOmega*g1f8;

g1f9 = omega*g1feq9 + oneMinusOmega*g1f9;

gselect(2)

g2t10 = g2u.*g2u +g2v.*g2v;

g2t10 = 1.5*g2t10;

g2t1 = g2u;

g2t2 = g2v;

g2t3 = -g2u;

g2t4 = -g2v;

72

g2t5 = g2u + g2v;

g2t6 = -g2u + g2v;

g2t7 = -g2u - g2v;

g2t8 = g2u - g2v;

g2feq1 = g2rho/9 .* (1 + 3*g2t1 + 4.5*g2t1.*g2t1 - g2t10);

g2feq2 = g2rho/9 .* (1 + 3*g2t2 + 4.5*g2t2.*g2t2 - g2t10);

g2feq3 = g2rho/9 .* (1 + 3*g2t3 + 4.5*g2t3.*g2t3 - g2t10);

g2feq4 = g2rho/9 .* (1 + 3*g2t4 + 4.5*g2t4.*g2t4 - g2t10);

g2feq5 = g2rho/36 .* (1 + 3*g2t5 + 4.5*g2t5.*g2t5 - g2t10);

g2feq6 = g2rho/36 .* (1 + 3*g2t6 + 4.5*g2t6.*g2t6 - g2t10);

g2feq7 = g2rho/36 .* (1 + 3*g2t7 + 4.5*g2t7.*g2t7 - g2t10);

g2feq8 = g2rho/36 .* (1 + 3*g2t8 + 4.5*g2t8.*g2t8 - g2t10);

g2feq9 = 4*g2rho/9 .*(1 - g2t10);

g2f1 = omega*g2feq1 + oneMinusOmega*g2f1;

g2f2 = omega*g2feq2 + oneMinusOmega*g2f2;

g2f3 = omega*g2feq3 + oneMinusOmega*g2f3;

g2f4 = omega*g2feq4 + oneMinusOmega*g2f4;

g2f5 = omega*g2feq5 + oneMinusOmega*g2f5;

g2f6 = omega*g2feq6 + oneMinusOmega*g2f6;

g2f7 = omega*g2feq7 + oneMinusOmega*g2f7;

g2f8 = omega*g2feq8 + oneMinusOmega*g2f8;

g2f9 = omega*g2feq9 + oneMinusOmega*g2f9;

gselect(3)

g3t10 = g3u.*g3u +g3v.*g3v;

g3t10 = 1.5*g3t10;

g3t1 = g3u;

g3t2 = g3v;

g3t3 = -g3u;

g3t4 = -g3v;

g3t5 = g3u + g3v;

g3t6 = -g3u + g3v;

g3t7 = -g3u - g3v;

g3t8 = g3u - g3v;

g3feq1 = g3rho/9 .* (1 + 3*g3t1 + 4.5*g3t1.*g3t1 - g3t10);

73

g3feq2 = g3rho/9 .* (1 + 3*g3t2 + 4.5*g3t2.*g3t2 - g3t10);

g3feq3 = g3rho/9 .* (1 + 3*g3t3 + 4.5*g3t3.*g3t3 - g3t10);

g3feq4 = g3rho/9 .* (1 + 3*g3t4 + 4.5*g3t4.*g3t4 - g3t10);

g3feq5 = g3rho/36 .* (1 + 3*g3t5 + 4.5*g3t5.*g3t5 - g3t10);

g3feq6 = g3rho/36 .* (1 + 3*g3t6 + 4.5*g3t6.*g3t6 - g3t10);

g3feq7 = g3rho/36 .* (1 + 3*g3t7 + 4.5*g3t7.*g3t7 - g3t10);

g3feq8 = g3rho/36 .* (1 + 3*g3t8 + 4.5*g3t8.*g3t8 - g3t10);

g3feq9 = 4*g3rho/9 .*(1 - g3t10);

g3f1 = omega*g3feq1 + oneMinusOmega*g3f1;

g3f2 = omega*g3feq2 + oneMinusOmega*g3f2;

g3f3 = omega*g3feq3 + oneMinusOmega*g3f3;

g3f4 = omega*g3feq4 + oneMinusOmega*g3f4;

g3f5 = omega*g3feq5 + oneMinusOmega*g3f5;

g3f6 = omega*g3feq6 + oneMinusOmega*g3f6;

g3f7 = omega*g3feq7 + oneMinusOmega*g3f7;

g3f8 = omega*g3feq8 + oneMinusOmega*g3f8;

g3f9 = omega*g3feq9 + oneMinusOmega*g3f9;

gselect(4)

g4t10 = g4u.*g4u +g4v.*g4v;

g4t10 = 1.5*g4t10;

g4t1 = g4u;

g4t2 = g4v;

g4t3 = -g4u;

g4t4 = -g4v;

g4t5 = g4u + g4v;

g4t6 = -g4u + g4v;

g4t7 = -g4u - g4v;

g4t8 = g4u - g4v;

g4feq1 = g4rho/9 .* (1 + 3*g4t1 + 4.5*g4t1.*g4t1 - g4t10);

g4feq2 = g4rho/9 .* (1 + 3*g4t2 + 4.5*g4t2.*g4t2 - g4t10);

g4feq3 = g4rho/9 .* (1 + 3*g4t3 + 4.5*g4t3.*g4t3 - g4t10);

g4feq4 = g4rho/9 .* (1 + 3*g4t4 + 4.5*g4t4.*g4t4 - g4t10);

g4feq5 = g4rho/36 .* (1 + 3*g4t5 + 4.5*g4t5.*g4t5 - g4t10);

g4feq6 = g4rho/36 .* (1 + 3*g4t6 + 4.5*g4t6.*g4t6 - g4t10);

74

g4feq7 = g4rho/36 .* (1 + 3*g4t7 + 4.5*g4t7.*g4t7 - g4t10);

g4feq8 = g4rho/36 .* (1 + 3*g4t8 + 4.5*g4t8.*g4t8 - g4t10);

g4feq9 = 4*g4rho/9 .*(1 - g4t10);

g4f1 = omega*g4feq1 + oneMinusOmega*g4f1;

g4f2 = omega*g4feq2 + oneMinusOmega*g4f2;

g4f3 = omega*g4feq3 + oneMinusOmega*g4f3;

g4f4 = omega*g4feq4 + oneMinusOmega*g4f4;

g4f5 = omega*g4feq5 + oneMinusOmega*g4f5;

g4f6 = omega*g4feq6 + oneMinusOmega*g4f6;

g4f7 = omega*g4feq7 + oneMinusOmega*g4f7;

g4f8 = omega*g4feq8 + oneMinusOmega*g4f8;

g4f9 = omega*g4feq9 + oneMinusOmega*g4f9;

% End of Collision

%% Streaming Ghost Node

gselect(2)

g1f1_r = double(g2f1(2,:));

g1f2_r = double(g2f2(2,:));

g1f3_r = double(g2f3(2,:));

g1f4_r = double(g2f4(2,:));

g1f5_r = double(g2f5(2,:));

g1f6_r = double(g2f6(2,:));

g1f7_r = double(g2f7(2,:));

g1f8_r = double(g2f8(2,:));

g1f9_r = double(g2f9(2,:));

g1u_r = double(g2u(2,:));

gselect(1)

g1f1(end,:)=g1f1_r;

g1f2(end,:)=g1f2_r;

g1f3(end,:)=g1f3_r;

g1f4(end,:)=g1f4_r;

75

g1f5(end,:)=g1f5_r;

g1f6(end,:)=g1f6_r;

g1f7(end,:)=g1f7_r;

g1f8(end,:)=g1f8_r;

g1f9(end,:)=g1f9_r;

g1u(end,:)=g1u_r;

gselect(1)

g2f1_l = double(g1f1(end-1,:));

g2f2_l = double(g1f2(end-1,:));

g2f3_l = double(g1f3(end-1,:));

g2f4_l = double(g1f4(end-1,:));

g2f5_l = double(g1f5(end-1,:));

g2f6_l = double(g1f6(end-1,:));

g2f7_l = double(g1f7(end-1,:));

g2f8_l = double(g1f8(end-1,:));

g2f9_l = double(g1f9(end-1,:));

g2u_l = double(g1u(end-1,:));

gselect(2)

g2f1(1,:) = g2f1_l;

g2f2(1,:) = g2f2_l;

g2f3(1,:) = g2f3_l;

g2f4(1,:) = g2f4_l;

g2f5(1,:) = g2f5_l;

g2f6(1,:) = g2f6_l;

g2f7(1,:) = g2f7_l;

g2f8(1,:) = g2f8_l;

g2f9(1,:) = g2f9_l;

g2u(1,:) = g2u_l;

gselect(3)

g2f1_r = double(g3f1(2,:));

g2f2_r = double(g3f2(2,:));

76

g2f3_r = double(g3f3(2,:));

g2f4_r = double(g3f4(2,:));

g2f5_r = double(g3f5(2,:));

g2f6_r = double(g3f6(2,:));

g2f7_r = double(g3f7(2,:));

g2f8_r = double(g3f8(2,:));

g2f9_r = double(g3f9(2,:));

g2u_r = double(g3u(2,:));

gselect(2)

g2f1(end,:) = g2f1_r;

g2f2(end,:) = g2f2_r;

g2f3(end,:) = g2f3_r;

g2f4(end,:) = g2f4_r;

g2f5(end,:) = g2f5_r;

g2f6(end,:) = g2f6_r;

g2f7(end,:) = g2f7_r;

g2f8(end,:) = g2f8_r;

g2f9(end,:) = g2f9_r;

g2u(end,:) = g2u_r;

gselect(2)

g3f1_l = double(g2f1(end-1,:));

g3f2_l = double(g2f2(end-1,:));

g3f3_l = double(g2f3(end-1,:));

g3f4_l = double(g2f4(end-1,:));

g3f5_l = double(g2f5(end-1,:));

g3f6_l = double(g2f6(end-1,:));

g3f7_l = double(g2f7(end-1,:));

g3f8_l = double(g2f8(end-1,:));

g3f9_l = double(g2f9(end-1,:));

g3u_l = double(g2u(end-1,:));

gselect(3)

77

g3f1(1,:) = g3f1_l;

g3f2(1,:) = g3f2_l;

g3f3(1,:) = g3f3_l;

g3f4(1,:) = g3f4_l;

g3f5(1,:) = g3f5_l;

g3f6(1,:) = g3f6_l;

g3f7(1,:) = g3f7_l;

g3f8(1,:) = g3f8_l;

g3f9(1,:) = g3f9_l;

g3u(1,:) = g3u_l;

gselect(4)

g3f1_r = double(g4f1(2,:));

g3f2_r = double(g4f2(2,:));

g3f3_r = double(g4f3(2,:));

g3f4_r = double(g4f4(2,:));

g3f5_r = double(g4f5(2,:));

g3f6_r = double(g4f6(2,:));

g3f7_r = double(g4f7(2,:));

g3f8_r = double(g4f8(2,:));

g3f9_r = double(g4f9(2,:));

g3u_r = double(g4u(2,:));

gselect(3)

g3f1(end,:) = g3f1_r;

g3f2(end,:) = g3f2_r;

g3f3(end,:) = g3f3_r;

g3f4(end,:) = g3f4_r;

g3f5(end,:) = g3f5_r;

g3f6(end,:) = g3f6_r;

g3f7(end,:) = g3f7_r;

g3f8(end,:) = g3f8_r;

g3f9(end,:) = g3f9_r;

g3u(end,:) = g3u_r;

78

gselect(3)

g4f1_l = double(g3f1(end-1,:));

g4f2_l = double(g3f2(end-1,:));

g4f3_l = double(g3f3(end-1,:));

g4f4_l = double(g3f4(end-1,:));

g4f5_l = double(g3f5(end-1,:));

g4f6_l = double(g3f6(end-1,:));

g4f7_l = double(g3f7(end-1,:));

g4f8_l = double(g3f8(end-1,:));

g4f9_l = double(g3f9(end-1,:));

g4u_l = double(g3u(end-1,:));

gselect(4)

g4f1(1,:) = g4f1_l;

g4f2(1,:) = g4f2_l;

g4f3(1,:) = g4f3_l;

g4f4(1,:) = g4f4_l;

g4f5(1,:) = g4f5_l;

g4f6(1,:) = g4f6_l;

g4f7(1,:) = g4f7_l;

g4f8(1,:) = g4f8_l;

g4f9(1,:) = g4f9_l;

g4u(1,:) = g4u_l;

gsync(’all’);

gselect(1)

[g1f1,g1f2,g1f3,g1f4,g1f5,g1f6,g1f7,g1f8] = StreamingGND2Q9(g1f1,g1f2,g1f3,g1f4,g1f5,g1f6,g1f7,g1f8,x+1,y);

[g1f1(1,2:y-1),g1f2(1,2:y-1),g1f4(1,2:y-1),g1f5(1,2:y-1),g1f6(1,2:y-1),g1f7(1,2:y-1),g1f8(1,2:y-1)] =...

InletconstantVelocityD2Q9(g1f2(1,2:y-1),g1f3(1,2:y-1),g1f4(1,2:y-1),g1f6(1,2:y-1),g1f7(1,2:y-1),...

g1f9(1,2:y-1),0.02); % 0.02=Ulattice

[g1f2(:,1),g1f5(:,1),g1f6(:,1)] = SlipBottomWallD2Q9(g1f1(:,1),g1f3(:,1),g1f4(:,1),g1f7(:,1),g1f8(:,1),g1f9(:,1),g1u(:,2:3),Kn,y);

[g1f4(:,y),g1f7(:,y),g1f8(:,y)] = SlipTopWallD2Q9(g1f1(:,y),g1f2(:,y),g1f3(:,y),g1f5(:,y),...

g1f6(:,y),g1f9(:,y),g1u(:,y-2:y-1),Kn,y);

79

g1rho = g1f1+g1f2+g1f3+g1f4+g1f5+g1f6+g1f7+g1f8+g1f9;

g1usum = g1f1-g1f3+g1f5-g1f6-g1f7+g1f8;

g1vsum = g1f2-g1f4+g1f5+g1f6-g1f7-g1f8;

g1u = g1usum./g1rho;

g1v = g1vsum./g1rho;

gselect(2)

[g2f1,g2f2,g2f3,g2f4,g2f5,g2f6,g2f7,g2f8] = StreamingGND2Q9(g2f1,g2f2,g2f3,g2f4,g2f5,g2f6,g2f7,g2f8,x+2,y);

[g2f2(:,1),g2f5(:,1),g2f6(:,1)] = SlipBottomWallD2Q9(g2f1(:,1),g2f3(:,1),g2f4(:,1), g2f7(:,1),g2f8(:,1),g2f9(:,1),g2u(:,2:3),Kn,y);

[g2f4(:,y),g2f7(:,y),g2f8(:,y)] = SlipTopWallD2Q9(g2f1(:,y),g2f2(:,y),g2f3(:,y), g2f5(:,y),g2f6(:,y),g2f9(:,y),g2u(:,y-2:y-1),Kn,y);

g2rho = g2f1+g2f2+g2f3+g2f4+g2f5+g2f6+g2f7+g2f8+g2f9;

g2usum = g2f1-g2f3+g2f5-g2f6-g2f7+g2f8;

g2vsum = g2f2-g2f4+g2f5+g2f6-g2f7-g2f8;

g2u = g2usum./g2rho;

g2v = g2vsum./g2rho;

gselect(3)

[g3f1,g3f2,g3f3,g3f4,g3f5,g3f6,g3f7,g3f8] = StreamingGND2Q9(g3f1,g3f2,g3f3,g3f4,g3f5,g3f6,g3f7,g3f8,x+2,y);

[g3f2(:,1),g3f5(:,1),g3f6(:,1)] = SlipBottomWallD2Q9(g3f1(:,1),g3f3(:,1),g3f4(:,1),...

g3f7(:,1),g3f8(:,1),g3f9(:,1),g3u(:,2:3),Kn,y);

[g3f4(:,y),g3f7(:,y),g3f8(:,y)] = SlipTopWallD2Q9(g3f1(:,y),g3f2(:,y),g3f3(:,y),g3f5(:,y),g3f6(:,y),g3f9(:,y),g3u(:,y-2:y-1),Kn,y);

g3rho = g3f1+g3f2+g3f3+g3f4+g3f5+g3f6+g3f7+g3f8+g3f9;

g3usum = g3f1-g3f3+g3f5-g3f6-g3f7+g3f8;

g3vsum = g3f2-g3f4+g3f5+g3f6-g3f7-g3f8;

g3u = g3usum./g3rho;

g3v = g3vsum./g3rho;

gselect(4)

[g4f1,g4f2,g4f3,g4f4,g4f5,g4f6,g4f7,g4f8] = StreamingGND2Q9(g4f1,g4f2,g4f3,g4f4,g4f5,g4f6,g4f7,g4f8,x+1,y);

[g4f3(x,:),g4f6(x,:),g4f7(x,:)] = OutletConstantVelocity(g4f1(x,:),g4f2(x,:),g4f4(x,:),g4f5(x,:),g4f8(x,:),g4f9(x,:),g4u(x-5,:));

[g4f2(:,1),g4f5(:,1),g4f6(:,1)] = SlipBottomWallD2Q9(g4f1(:,1),g4f3(:,1),g4f4(:,1),g4f7(:,1),g4f8(:,1),g4f9(:,1),g4u(:,2:3),Kn,y);

[g4f4(:,y),g4f7(:,y),g4f8(:,y)] = SlipTopWallD2Q9(g4f1(:,y),g4f2(:,y),g4f3(:,y), g4f5(:,y),g4f6(:,y),g4f9(:,y),g4u(:,y-2:y-1),Kn,y);

g4rho = g4f1+g4f2+g4f3+g4f4+g4f5+g4f6+g4f7+g4f8+g4f9;

g4usum = g4f1-g4f3+g4f5-g4f6-g4f7+g4f8;

80

g4vsum = g4f2-g4f4+g4f5+g4f6-g4f7-g4f8;

g4u = g4usum./g4rho;

g4v = g4vsum./g4rho;

gsync(’all’);

%% Heat Transfer

% Collision

gselect(1)

g1t1 = g1u;

g1t2 = g1v;

g1t3 = -g1u;

g1t4 = -g1v;

g1t5 = g1u + g1v;

g1t6 = -g1u + g1v;

g1t7 = -g1u - g1v;

g1t8 = g1u - g1v;

g1feq1 = g1T/9 .* (1 + 3*g1t1);

g1feq2 = g1T/9 .* (1 + 3*g1t2);

g1feq3 = g1T/9 .* (1 + 3*g1t3);

g1feq4 = g1T/9 .* (1 + 3*g1t4);

g1feq5 = g1T/36 .* (1 + 3*g1t5);

g1feq6 = g1T/36 .* (1 + 3*g1t6);

g1feq7 = g1T/36 .* (1 + 3*g1t7);

g1feq8 = g1T/36 .* (1 + 3*g1t8);

g1feq9 = 4*g1T/9 ;

g1g1 = omegat*g1feq1 + oneMinusOmegat*g1g1;

g1g2 = omegat*g1feq2 + oneMinusOmegat*g1g2;

g1g3 = omegat*g1feq3 + oneMinusOmegat*g1g3;

g1g4 = omegat*g1feq4 + oneMinusOmegat*g1g4;

g1g5 = omegat*g1feq5 + oneMinusOmegat*g1g5;

g1g6 = omegat*g1feq6 + oneMinusOmegat*g1g6;

81

g1g7 = omegat*g1feq7 + oneMinusOmegat*g1g7;

g1g8 = omegat*g1feq8 + oneMinusOmegat*g1g8;

g1g9 = omegat*g1feq9 + oneMinusOmegat*g1g9;

gselect(2)

g2t1 = g2u;

g2t2 = g2v;

g2t3 = -g2u;

g2t4 = -g2v;

g2t5 = g2u + g2v;

g2t6 = -g2u + g2v;

g2t7 = -g2u - g2v;

g2t8 = g2u - g2v;

g2feq1 = g2T/9 .* (1 + 3*g2t1);

g2feq2 = g2T/9 .* (1 + 3*g2t2);

g2feq3 = g2T/9 .* (1 + 3*g2t3);

g2feq4 = g2T/9 .* (1 + 3*g2t4);

g2feq5 = g2T/36 .* (1 + 3*g2t5);

g2feq6 = g2T/36 .* (1 + 3*g2t6);

g2feq7 = g2T/36 .* (1 + 3*g2t7);

g2feq8 = g2T/36 .* (1 + 3*g2t8);

g2feq9 = 4*g2T/9;

g2g1 = omegat*g2feq1 + oneMinusOmegat*g2g1;

g2g2 = omegat*g2feq2 + oneMinusOmegat*g2g2;

g2g3 = omegat*g2feq3 + oneMinusOmegat*g2g3;

g2g4 = omegat*g2feq4 + oneMinusOmegat*g2g4;

g2g5 = omegat*g2feq5 + oneMinusOmegat*g2g5;

g2g6 = omegat*g2feq6 + oneMinusOmegat*g2g6;

g2g7 = omegat*g2feq7 + oneMinusOmegat*g2g7;

g2g8 = omegat*g2feq8 + oneMinusOmegat*g2g8;

g2g9 = omegat*g2feq9 + oneMinusOmegat*g2g9;

gselect(3)

g3t1 = g3u;

g3t2 = g3v;

g3t3 = -g3u;

82

g3t4 = -g3v;

g3t5 = g3u + g3v;

g3t6 = -g3u + g3v;

g3t7 = -g3u - g3v;

g3t8 = g3u - g3v;

g3feq1 = g3T/9 .* (1 + 3*g3t1);

g3feq2 = g3T/9 .* (1 + 3*g3t2);

g3feq3 = g3T/9 .* (1 + 3*g3t3);

g3feq4 = g3T/9 .* (1 + 3*g3t4);

g3feq5 = g3T/36 .* (1 + 3*g3t5);

g3feq6 = g3T/36 .* (1 + 3*g3t6);

g3feq7 = g3T/36 .* (1 + 3*g3t7);

g3feq8 = g3T/36 .* (1 + 3*g3t8);

g3feq9 = 4*g3T/9;

g3g1 = omegat*g3feq1 + oneMinusOmegat*g3g1;

g3g2 = omegat*g3feq2 + oneMinusOmegat*g3g2;

g3g3 = omegat*g3feq3 + oneMinusOmegat*g3g3;

g3g4 = omegat*g3feq4 + oneMinusOmegat*g3g4;

g3g5 = omegat*g3feq5 + oneMinusOmegat*g3g5;

g3g6 = omegat*g3feq6 + oneMinusOmegat*g3g6;

g3g7 = omegat*g3feq7 + oneMinusOmegat*g3g7;

g3g8 = omegat*g3feq8 + oneMinusOmegat*g3g8;

g3g9 = omegat*g3feq9 + oneMinusOmegat*g3g9;

gselect(4)

g4t1 = g4u;

g4t2 = g4v;

g4t3 = -g4u;

g4t4 = -g4v;

g4t5 = g4u + g4v;

g4t6 = -g4u + g4v;

g4t7 = -g4u - g4v;

g4t8 = g4u - g4v;

g4feq1 = g4T/9 .* (1 + 3*g4t1);

g4feq2 = g4T/9 .* (1 + 3*g4t2);

83

g4feq3 = g4T/9 .* (1 + 3*g4t3);

g4feq4 = g4T/9 .* (1 + 3*g4t4);

g4feq5 = g4T/36 .* (1 + 3*g4t5);

g4feq6 = g4T/36 .* (1 + 3*g4t6);

g4feq7 = g4T/36 .* (1 + 3*g4t7);

g4feq8 = g4T/36 .* (1 + 3*g4t8);

g4feq9 = 4*g4T/9;

g4g1 = omegat*g4feq1 + oneMinusOmegat*g4g1;

g4g2 = omegat*g4feq2 + oneMinusOmegat*g4g2;

g4g3 = omegat*g4feq3 + oneMinusOmegat*g4g3;

g4g4 = omegat*g4feq4 + oneMinusOmegat*g4g4;

g4g5 = omegat*g4feq5 + oneMinusOmegat*g4g5;

g4g6 = omegat*g4feq6 + oneMinusOmegat*g4g6;

g4g7 = omegat*g4feq7 + oneMinusOmegat*g4g7;

g4g8 = omegat*g4feq8 + oneMinusOmegat*g4g8;

g4g9 = omegat*g4feq9 + oneMinusOmegat*g4g9;

% End of Collision

% Streaming Ghost Node

gselect(2)

g1g1_r = double(g2g1(2,:));

g1g2_r = double(g2g2(2,:));

g1g3_r = double(g2g3(2,:));

g1g4_r = double(g2g4(2,:));

g1g5_r = double(g2g5(2,:));

g1g6_r = double(g2g6(2,:));

g1g7_r = double(g2g7(2,:));

g1g8_r = double(g2g8(2,:));

g1g9_r = double(g2g9(2,:));

g1u_r = double(g2u(2,:));

gselect(1)

84

g1g1(end,:)=g1g1_r;

g1g2(end,:)=g1g2_r;

g1g3(end,:)=g1g3_r;

g1g4(end,:)=g1g4_r;

g1g5(end,:)=g1g5_r;

g1g6(end,:)=g1g6_r;

g1g7(end,:)=g1g7_r;

g1g8(end,:)=g1g8_r;

g1g9(end,:)=g1g9_r;

g1u(end,:)=g1u_r;

gselect(1)

g2g1_l = double(g1g1(end-1,:));

g2g2_l = double(g1g2(end-1,:));

g2g3_l = double(g1g3(end-1,:));

g2g4_l = double(g1g4(end-1,:));

g2g5_l = double(g1g5(end-1,:));

g2g6_l = double(g1g6(end-1,:));

g2g7_l = double(g1g7(end-1,:));

g2g8_l = double(g1g8(end-1,:));

g2g9_l = double(g1g9(end-1,:));

g2u_l = double(g1u(end-1,:));

gselect(2)

g2g1(1,:) = g2g1_l;

g2g2(1,:) = g2g2_l;

g2g3(1,:) = g2g3_l;

g2g4(1,:) = g2g4_l;

g2g5(1,:) = g2g5_l;

g2g6(1,:) = g2g6_l;

g2g7(1,:) = g2g7_l;

g2g8(1,:) = g2g8_l;

g2g9(1,:) = g2g9_l;

g2u(1,:) = g2u_l;

85

gselect(3)

g2g1_r = double(g3g1(2,:));

g2g2_r = double(g3g2(2,:));

g2g3_r = double(g3g3(2,:));

g2g4_r = double(g3g4(2,:));

g2g5_r = double(g3g5(2,:));

g2g6_r = double(g3g6(2,:));

g2g7_r = double(g3g7(2,:));

g2g8_r = double(g3g8(2,:));

g2g9_r = double(g3g9(2,:));

g2u_r = double(g3u(2,:));

gselect(2)

g2g1(end,:) = g2g1_r;

g2g2(end,:) = g2g2_r;

g2g3(end,:) = g2g3_r;

g2g4(end,:) = g2g4_r;

g2g5(end,:) = g2g5_r;

g2g6(end,:) = g2g6_r;

g2g7(end,:) = g2g7_r;

g2g8(end,:) = g2g8_r;

g2g9(end,:) = g2g9_r;

g2u(end,:) = g2u_r;

gselect(2)

g3g1_l = double(g2g1(end-1,:));

g3g2_l = double(g2g2(end-1,:));

g3g3_l = double(g2g3(end-1,:));

g3g4_l = double(g2g4(end-1,:));

g3g5_l = double(g2g5(end-1,:));

g3g6_l = double(g2g6(end-1,:));

g3g7_l = double(g2g7(end-1,:));

g3g8_l = double(g2g8(end-1,:));

86

g3g9_l = double(g2g9(end-1,:));

g3u_l = double(g2u(end-1,:));

gselect(3)

g3g1(1,:) = g3g1_l;

g3g2(1,:) = g3g2_l;

g3g3(1,:) = g3g3_l;

g3g4(1,:) = g3g4_l;

g3g5(1,:) = g3g5_l;

g3g6(1,:) = g3g6_l;

g3g7(1,:) = g3g7_l;

g3g8(1,:) = g3g8_l;

g3g9(1,:) = g3g9_l;

g3u(1,:) = g3u_l;

gselect(4)

g3g1_r = double(g4g1(2,:));

g3g2_r = double(g4g2(2,:));

g3g3_r = double(g4g3(2,:));

g3g4_r = double(g4g4(2,:));

g3g5_r = double(g4g5(2,:));

g3g6_r = double(g4g6(2,:));

g3g7_r = double(g4g7(2,:));

g3g8_r = double(g4g8(2,:));

g3g9_r = double(g4g9(2,:));

g3u_r = double(g4u(2,:));

gselect(3)

g3g1(end,:) = g3g1_r;

g3g2(end,:) = g3g2_r;

g3g3(end,:) = g3g3_r;

g3g4(end,:) = g3g4_r;

g3g5(end,:) = g3g5_r;

g3g6(end,:) = g3g6_r;

87

g3g7(end,:) = g3g7_r;

g3g8(end,:) = g3g8_r;

g3g9(end,:) = g3g9_r;

g3u(end,:) = g3u_r;

% GPU4

gselect(3)

g4g1_l = double(g3g1(end-1,:));

g4g2_l = double(g3g2(end-1,:));

g4g3_l = double(g3g3(end-1,:));

g4g4_l = double(g3g4(end-1,:));

g4g5_l = double(g3g5(end-1,:));

g4g6_l = double(g3g6(end-1,:));

g4g7_l = double(g3g7(end-1,:));

g4g8_l = double(g3g8(end-1,:));

g4g9_l = double(g3g9(end-1,:));

g4u_l = double(g3u(end-1,:));

gselect(4)

g4g1(1,:) = g4g1_l;

g4g2(1,:) = g4g2_l;

g4g3(1,:) = g4g3_l;

g4g4(1,:) = g4g4_l;

g4g5(1,:) = g4g5_l;

g4g6(1,:) = g4g6_l;

g4g7(1,:) = g4g7_l;

g4g8(1,:) = g4g8_l;

g4g9(1,:) = g4g9_l;

g4u(1,:) = g4u_l;

gsync(’all’);

% Streaming, Boundary Conditions and Macroscopic

gselect(1)

[g1g1,g1g2,g1g3,g1g4,g1g5,g1g6,g1g7,g1g8] = StreamingGND2Q9(g1g1,g1g2,g1g3,g1g4,g1g5,g1g6,g1g7,g1g8,x+1,y);

88

g1g1(1,2:y-1)=1*2/9-g1g3(1,2:y-1); % 1 = Inlet Temperature

g1g5(1,2:y-1)=1/18-g1g7(1,2:y-1); % 1 = Inlet Temperature

g1g8(1,2:y-1)=1/18-g1g6(1,2:y-1); % 1 = Inlet Temperature

[g1g2(:,1),g1g5(:,1),g1g6(:,1)] = TJumpBottom(g1g4(:,1),g1g7(:,1),g1g8(:,1),g1T(:,2:3),0,C); % 0 = Wall teperature

[g1g4(:,y),g1g7(:,y),g1g8(:,y)] = TJumpTop(g1g2(:,y),g1g5(:,y),g1g6(:,y),g1T(:,y-2:y-1),0,C); % 0 = Wall teperature

g1T = g1g1+g1g2+g1g3+g1g4+g1g5+g1g6+g1g7+g1g8+g1g9;

gselect(2)

[g2g1,g2g2,g2g3,g2g4,g2g5,g2g6,g2g7,g2g8] = StreamingGND2Q9(g2g1,g2g2,g2g3,g2g4,g2g5,g2g6,g2g7,g2g8,x+2,y);

[g2g2(:,1),g2g5(:,1),g2g6(:,1)] = TJumpBottom(g2g4(:,1),g2g7(:,1),g2g8(:,1),g2T(:,2:3),0,C); % 0 = Wall teperature

[g2g4(:,y),g2g7(:,y),g2g8(:,y)] = TJumpTop(g2g2(:,y),g2g5(:,y),g2g6(:,y),g2T(:,y-2:y-1),0,C);

g2T = g2g1+g2g2+g2g3+g2g4+g2g5+g2g6+g2g7+g2g8+g2g9;

gselect(3)

[g3g1,g3g2,g3g3,g3g4,g3g5,g3g6,g3g7,g3g8] = StreamingGND2Q9(g3g1,g3g2,g3g3,g3g4,g3g5,g3g6,g3g7,g3g8,x+2,y);

[g3g2(:,1),g3g5(:,1),g3g6(:,1)] = TJumpBottom(g3g4(:,1),g3g7(:,1),g3g8(:,1),g3T(:,2:3),0,C); % 0 = Wall teperature

[g3g4(:,y),g3g7(:,y),g3g8(:,y)] = TJumpTop(g3g2(:,y),g3g5(:,y),g3g6(:,y),g3T(:,y-2:y-1),0,C);

g3T = g3g1+g3g2+g3g3+g3g4+g3g5+g3g6+g3g7+g3g8+g3g9;

gselect(4)

[g4g1,g4g2,g4g3,g4g4,g4g5,g4g6,g4g7,g4g8] = StreamingGND2Q9(g4g1,g4g2,g4g3,g4g4,g4g5,g4g6,g4g7,g4g8,x+1,y);

% Outlet zero-flux (Extrapolation)

g4g3(x+1,2:y-1)=2*g4g3(x,2:y-1)-g4g3(x-1,2:y-1);

g4g6(x+1,2:y-1)=2*g4g6(x,2:y-1)-g4g6(x-1,2:y-1);

g4g7(x+1,2:y-1)=2*g4g7(x,2:y-1)-g4g7(x-1,2:y-1);

[g4g2(:,1),g4g5(:,1),g4g6(:,1)] = TJumpBottom(g4g4(:,1),g4g7(:,1),g4g8(:,1),g4T(:,2:3),0,C); % 0 = Wall teperature

[g4g4(:,y),g4g7(:,y),g4g8(:,y)] = TJumpTop(g4g2(:,y),g4g5(:,y),g4g6(:,y),g4T(:,y-2:y-1),0,C);

g4T = g4g1+g4g2+g4g3+g4g4+g4g5+g4g6+g4g7+g4g8+g4g9;

% End of Streaming, Boundary Conditions and Macroscopic

% gsync(’all’);

%% End of Heat Trasnfer

end % enTime Loop

89

time = toc;

fprintf(’MGPU: time = %6.4f for %d X %d\n’,time,X,Y);

end

%%% End of Main Function %%%

function [f1a,f2a,f3a,f4a,f5a,f6a,f7a,f8a] = StreamingGND2Q9(f1,f2,f3,f4,f5,f6,f7,f8,X,Y)

f1a = f1([1,1:X-1],1:Y);

f2a = f2(1:X,[1,1:Y-1]);

f3a = f3([2:X,X],1:Y);

f4a = f4(1:X,[2:Y,Y]);

f5a = f5([1,1:X-1],[1,1:Y-1]);

f6a = f6([2:X,X],[1,1:Y-1]);

f7a = f7([2:X,X],[2:Y,Y]);

f8a = f8([1,1:X-1],[2:Y,Y]);

end

function [f3,f6,f7] = OutletConstantVelocity(f1,f2,f4,f5,f8,f9,u_out)

rho_o = (f9+f2+f4+2*(f1+f5+f8))./(1.0+u_out);

f3 =f1 -0.667*rho_o.*u_out;

f7 =f5 +0.5*(f2 -f4)- rho_o.*u_out/6.0;

f6 =f8 +0.5*(f4 -f2)- rho_o.*u_out/6.0;

end

function [f2,f5,f6] = SlipBottomWallD2Q9(f1,f3,f4,f7,f8,f9,u,Kn,Y)

Lamda = Kn*(Y-1);

uslip = Lamda*(4*u(:,1)-u(:,2))/(2+3*Lamda);

rhow = (f1+f3+f9+2*(f4+f7+f8));

f2 = f4;

f5 = rhow.*(1+uslip)/2 - (f1+f8) - (f2+f4+f9)/2;

f6 = rhow.*(1-uslip)/2 - (f3+f7) - (f2+f4+f9)/2;

end

90

function [f4,f7,f8] = SlipTopWallD2Q9(f1,f2,f3,f5,f6,f9,u,Kn,Y)

Lamda = Kn*(Y-1);

uslip = Lamda*(4*u(:,2)-u(:,1))/(2+3*Lamda);

rhow = (f1+f3+f9+2*(f2+f5+f6));

f4 = f2;

f7 = rhow.*(1-uslip)/2 - (f3+f6) - (f2+f4+f9)/2;

f8 = rhow.*(1+uslip)/2 - (f1+f5) - (f2+f4+f9)/2;

end

function [f1,f2,f4,f5,f6,f7,f8] =...

InletconstantVelocityD2Q9(f2,f3,f4,f6,f7,f9,Ulattice)

rhow = (f9 +f2 +f4 +2*(f3 +f6 +f7))/(1-Ulattice);

f1 = f3 + 2*rhow*Ulattice/3;

f5 = f7 + 0.5*(f4-f2) + rhow*Ulattice/6;

f8 = f6 + 0.5*(f2-f4) + rhow*Ulattice/6;

end

function [g4,g7,g8] = TJumpTop(g2,g5,g6,T,tw,C)

tw = (C*(4*T(:,2)-T(:,1))+2*tw)/(2+3*C);

g8=tw/18-g6;

g7=tw/18-g5;

g4=tw*2/9-g2;

end

function [g2,g5,g6] = TJumpBottom(g4,g7,g8,T,Tw,C)

tw = (C*(4*T(:,1)-T(:,2))+2*Tw)/(2+3*C);

g6=tw/18-g8;

g5=tw/18-g7;

g2=2*tw/9-g4;

end

91

Appendix B

Implementation of Boundary Conditions

B.1 Macro Channel Boundary Conditions

B.1.1 Inlet Velocity Boundary Condition (Left)

ρ =
f2 + f4 + f9 + 2(f3 + f6 + f7)

1− vx
(B.1)

f1 = f3 +
2
3
ρvx (B.2)

f5 = f7 +
1
2

(f4 − f2) +
ρvx

6
(B.3)

f8 = f6 −
1
2

(f4 − f2) +
ρvx

6
(B.4)

B.1.2 No-slip Boundary Condition (Bottom)

f2 = f4 (B.5)

f5 = f7 −
f1 − f3

2
(B.6)

f6 = f8 +
f1 − f3

2
(B.7)

B.1.3 No-slip Boundary Condition (Top)

f4 = f2 (B.8)

f7 = f5 +
f1 − f3

2
(B.9)

f8 = f6 −
f1 − f3

2
(B.10)

92

B.1.4 Outlet Boundary Condition (Right)

ρ =
f2 + f4 + f9 + 2(f1 + f5 + f8)

1− vx
(B.11)

f3 = f1 +
2
3
ρvx (B.12)

f6 = f8 +
1
2

(f4 − f2) −
ρvx

6
(B.13)

f7 = f5 −
1
2

(f4 − f2) −
ρvx

6
(B.14)

B.1.5 Temperature Boundary Condition (Left)

g1 = φ (w(1)+ w(3)) − g3 (B.15)

g5 = φ (w(5)+ w(7)) − g7 (B.16)

g8 = φ (w(8)+ w(6)) − g6 (B.17)

B.1.6 Temperature Boundary Condition (Bottom)

g2 = φ (w(2)+ w(4)) − g4 (B.18)

g5 = φ (w(5)+ w(7)) − g7 (B.19)

g6 = φ (w(6)+ w(8)) − g8 (B.20)

B.1.7 Temperature Boundary Condition (Top)

g4 = φ (w(2)+ w(4)) − g2 (B.21)

g7 = φ (w(5)+ w(7)) − g5 (B.22)

g8 = φ (w(6)+ w(8)) − g6 (B.23)

93

B.1.8 Zero Flux Temperature Boundary Condition (Right)

g3,X = 2g3,X−1 − g3,X−2 (B.24)

g6,X = 2g6,X−1 − g6,X−2 (B.25)

g7,X = 2g7,X−1 − g7,X−2 (B.26)

(B.27)

B.2 Micro Channel Boundary Conditions

B.2.1 Slip Boundary Conditions (Bottom)

λ = Kn ∗ H (B.28)

vx = λ
(4vx,1 − vx,2)

2+ 3λ
(B.29)

ρw = f1 + f3 + f9 + 2(f7 + f4 + f8) (B.30)

f2 = f4 (B.31)

f5 =
ρw(1+ vx) − (f2 + f4 + f9)

2
− (f1 + f8) (B.32)

f6 =
ρw(1− vx) − (f2 + f4 + f9)

2
− (f3 + f7) (B.33)

B.2.2 Slip Boundary Conditions (Top Wall)

λ = Kn ∗ H (B.34)

vx = λ
(4vx,1 − vx,2)

2+ 3λ
(B.35)

ρw = f1 + f3 + f9 + 2(f7 + f4 + f8) (B.36)

f4 = f2 (B.37)

f7 =
ρw(1− vx) − (f2 + f4 + f9)

2
− (f3 + f6) (B.38)

f8 =
ρw(1+ vx) − (f2 + f4 + f9)

2
− (f1 + f5) (B.39)

94

B.2.3 Temperature Jump Boundary Conditions (Bottom)

λ = Kn ∗ H (B.40)

C j = κλ (B.41)

φ0 =

[

C j(4φ1 − φ2) + 2φw

]

(2+ 3C j)
(B.42)

g2 = φ0 (w(2)+ w(4)) − g4 (B.43)

g5 = φ0 (w(5)+ w(7)) − g7 (B.44)

g6 = φ0 (w(6)+ w(8)) − g8 (B.45)

B.2.4 Temperature Jump Boundary Conditions (Top)

λ = Kn ∗ H (B.46)

C j = κλ (B.47)

φY =

[

C j(4φY−1 − φY−2) + 2φw

]

(2+ 3C j)
(B.48)

g4 = φY (w(2)+ w(4)) − g2 (B.49)

g7 = φY (w(5)+ w(7)) − g5 (B.50)

g8 = φY (w(6)+ w(8)) − g6 (B.51)

95

Appendix C

Pseudo Code

96

Algorithm C.0.1: LatticeBoltzmannMethod()

for time← 1 to ntS tep

1. Momentum Transfer
































































































































































































































































































1.1 Collision

for i ← 1 to nX

for j ← 1 to nY

do



















f eq
k (i, j) = wkρ(i, j)[1 + 3(ek · v(i, j)) + 9

2(ek · v(i, j))2 − 3
2 |v(i, j)|2]

fk(i, j) = ω f eq
k (i, j) + (1− ω) fk(i, j)



















1.2 Streaming

See Appendix A


















1.3 Implementation of Boundary Conditions

See Appendix B














































































1.4 Macroscopic Property Calculation

for i ← 1 to nX

for j ← 1 to nY

do































ρ(i, j) =
9
∑

k=1
fk(i, j)

v(i, j) =
9
∑

k=1
ek fk(i, j)/ρ(i, j)

2. Heat Transfer












































































































































































































































































2.1 Collision

for i ← 1 to nX

for j ← 1 to nY

do



















geq
k (i, j) = wkφ(i, j)

[

1+ 3(ek · v(i, j))
]

gk(i, j) = ωtg
eq
k (i, j) + (1− ωt)gk(i, j)



















2.2 Streaming

See Appendix A


















2.3 Implementation of Boundary Conditions

See Appendix B


























































2.4 Macroscopic Property Calculation

for i ← 1 to nX

for j ← 1 to nY

do φ(i, j) =
9
∑

k=1
gk(i, j)

97

